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The purpose of this investigation was to evaluate the effects of smoking and 

gender on 1) tetrahydroisoquinolines (TIQs) and β-carbolines (BCs) in a population of 

healthy subjects and 2) TIQ’s in an alcohol-dependent population undergoing in-patient 

detoxification. Comparison in plasma TIQ’s between the populations was additionally 

conducted.  To support the clinical investigations, a HPLC-FD method was developed 

and validated to assess plasma concentrations of BCs, harman and norharman, while a 

HPLC-ESI-MS/MS method was validated to quantify the TIQ’s, R/S-salsolinol along 
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with dopamine.  Forty-one young volunteers were recruited including 19 nonsmokers 

(NS), 11 light smokers (LS) and 11 heavy smokers (HS), stratified by their smoking 

history.  Each group had, at least, 5 males and females.  Plasma samples were obtained 

for analyte measurement within 30 minutes of smoking for LS and HS groups.  Two–

way ANCOVA was performed on the log-transformed concentrations.  Significant 

differences were found between HS-NS and LS-NS in analyte concentrations.  A 

comparison to eighteen subjects (6 NS, LS and HS) abstaining from smoking for 15 

hours resulted in a difference only between NS and HS, suggesting that acute tobacco 

smoking has a major influence on circulating TIQs and BCs between smoking status 

groups.   In a study involving thirty-five alcohol dependent subjects (12 NS, 11 LS, and 

12 HS, balanced with gender), TIQ measurements were taken on day 1, 2, 3, 8 and 15 of 

inpatient detoxification.  A significant effect of time was observed, with TIQ 

concentrations slightly increasing from admission to day 15.  Both factors of smoking 

status and gender did not have a significant effect on plasma TIQ’s at any of the time 

points evaluated.   Although, measures of acute and chronic alcohol intake had no effect 

on TIQ levels, liver function showed moderate correlation with plasma TIQ’s.  

Comparison of both populations showed that alcoholics had a lower average TIQ 

concentration than healthy subjects.    The results indicate that smoking status 1) has an 

effect on plasma TIQs and BCs in healthy individuals and 2) does not have an effect in 

alcoholics during detoxification.  The alcoholics possessed lower TIQ concentrations 

than the healthy subjects.  No gender effect was observed in either study. 

 



 

 
 
 
 

 

 

 

CHAPTER 1  

INTRODUCTION AND BACKGROUND 
 
 
 
1.1. Introduction 

Alcohol and nicotine, the most frequently abused drugs, are likely also the most 

costly drugs in terms of health and societal costs.  It is estimated that there are 15.1 

million alcohol-abusing or alcohol-dependent individuals (approx 1 in 18 or 5.55%)  in 

the United States (Allen et al., 2004).    Alcoholism is a chronic, often progressive 

disease with symptoms that consist of a strong need to drink regardless of negative 

consequences.  Like many other diseases, it has a generally predictable course, has 

recognized symptoms, and is influenced by both genetic and environmental factors that 

are being increasingly well defined.  Although the prevalence is decreasing, 

approximately 20.8% of the US population aged 18 years or older, are current smokers. 

Tobacco use kills nearly half a million Americans each year, with one in every six U.S. 

deaths is the result of smoking (Volkow, 2006).  
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The co-occurrence of alcohol and nicotine dependence in people are common 

and well documented (Istvan and Matarazzo, 1984; Bien and Burge, 1990; Miller and 

Gold, 1998).  Several studies have established that the vast majority (80-90%) of 

alcoholics smoke at a prevalence that is about three times higher than amongst the 

population as a whole (Dreher and Fraser, 1967; Crowley et al., 1974; Burling et al., 

1982).  Conversely, smokers consume twice as much alcohol as do non-smokers, and 

alcoholism has been estimated to be 10-14 times more familiar among smokers than 

nonsmokers (DiFranza and Guerrera, 1990).  Furthermore, alcoholics who smoke use 

more cigarettes per day than do non-alcoholic smokers (Dawson, 2000).   The close 

interrelationship between smoking and alcohol use is also exemplified by the 

observation that smoking cessation is more difficult to attain in previous or current 

alcohol abusers (Bobo et al., 1987) and that successful smoking or alcohol cessation 

improves the likelihood of alcohol intake reduction (Miller et al., 1983) or smoking 

cessation (Burling et al., 1982),  respectively.  Major reasons are that concurrent alcohol 

use, and/or prior alcohol exposure, may modify the reinforcing effects of nicotine, and 

vice-versa, and that each drug becomes a pharmacological cue for the expectation of the 

other.   Results of the investigations on the relation of nicotine addiction and alcoholism 

suggest a synergism in the reinforcing properties of dependence. 
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1.2  Background 

1.2.1 Current Biomarkers for Smoking Dependence and Alcoholism 

In the clinical management of these problems, a critical necessity are effective 

and accurate biological markers that will enable clinicians to identify the extent of 

alcohol abuse and smoking dependence, as well as to monitor progress in treatment.  

Clinical laboratory procedures are commonly used to corroborate results of subjective 

patient interviews and clinical examinations when assessing drug dependence.  In recent 

years, inherited components in the etiology of certain aspects of drug abuse are widely 

acknowledged and, as a consequence, the searches for biomarkers have gained 

importance.  The markers of alcohol and smoking dependence may offer objective 

evidence of excessive dependence, especially in patients who deny their problems. 

Abusers of alcohol and tobacco may exhibit several clinical and/or chemical 

changes.   The more frequent the use of screening tests, combined with the use of new 

biochemical markers in patients who are suspected of alcohol abuse or tobacco use, will 

improve detection and permit intervention earlier in the course of illness.  In the case of 

alcoholism, establishment of several biomarker candidates for excessive alcohol use has 

been attempted, including aspartate aminotransferase (AST), alanine aminotransferase 

(ALT), erythrocyte mean corpuscular volume (MCV), γ-glutamyl transferase (GGT), 

and Carbohydrate-deficient transferrin (CDT) (Yersin et al., 1995; Allen et al., 2004). 

Unfortunately, these current markers have variable sensitivity and/or low specificity 

(Moravcova et al., 2004).  CDT  has been reported to be the best laboratory marker of 
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the chronic alcohol abuse, but there are conflicting data on its accuracy and sensitivity 

(Stibler, 1991; Anton and Sillanaukee, 1996).  

In the case of smoking, an array of biomarkers of tobacco smoke exposure have 

been proposed.  Chemicals in tobacco smoke such as carbon monoxide or cyanide (the 

latter metabolized in the body to thiocyanate) can be measured in blood.  However, the 

levels of these chemicals are nonspecific, i.e., there are significant sources of carbon 

monoxide and cyanide, including the body's own metabolism, other than tobacco smoke 

exposure (Benowitz, 1999). Thus, these markers are both nonspecific and insensitive 

markers of tobacco smoke exposure.  Other markers that have been proposed to 

quantitate tobacco exposure consist of adducts of benzo[a]pyrene carcinogens to DNA 

(Binkova et al., 1995), 4-aminobiphenyl adducts to hemoglobin (Bartsch et al., 1990), 

adducts of polycyclic aromatic hydrocarbons (Crawford et al., 1994), urinary excretion 

of nicotine-derived nitrosoamines (Adikofer et al., 1984), and others.  Specificity and 

sensitivity to these markers have yet to be acceptable for clinical use.  The measurement 

of cotinine concentrations in biologic fluids has been used most widely by scientists to 

evaluate tobacco smoke exposure because cotinine reflects exposure to nicotine, which 

is almost specific to tobacco (Benowitz, 1996).  The specificity of cotinine as a marker 

of tobacco exposure may come into question as food sources may contribute to overall 

exposure of cotinine.  Moreover, cotinine is not a suitable marker in persons undergoing 

treatment with nicotine replacement therapy (e.g., gum, inhaler, transdermal patch). 

Therefore, substances present in tobacco or endogenously formed upon inhalation of 

tobacco, measurable in biological fluids, but not derived metabolically from nicotine 



5 

would be valuable for validating tobacco abstinence in persons undergoing nicotine 

replacement therapy. Additional benefit would come about if the biochemical 

measurement has implications in the mechanism by which smoking dependence and 

reinforcement transpires (i.e., causal repercussions).  

 Issues pertaining to alcohol and tobacco smoke exposure biomarkers primarily 

consist of a lack of sensitivity and specificity for the measurements.   Importantly, the 

current candidates for biomarkers generally consist of molecules presenting as result of 

insult to the natural physiology.   These types of markers may present false positive 

rates due to organ pathophysiology and may have a delayed quantifiable presentation in 

the body.   Although some of the aforementioned markers attempt to relate to the acute 

and chronic exposure of alcohol and/or cigarette smoke, none of the markers show a 

mechanistic relationship to the reinforcing aspects of alcohol and nicotine.   An 

understanding of the mechanism by which these drugs of abuse produce a reinforcing 

effect is essential to elucidate a biomarker with this type of characteristic.  

 

1.2.2 The “Reward” pathway 
 

During the past few decades, investigations on the molecular basis of alcohol 

and nicotine dependence and its etiology, per se, have concentrated on the discovery 

and validation of endogenous neurochemical factors.  Drugs of abuse, such as ethanol 

(Thielen et al., 2004; Rodd et al., 2005) and nicotine (Balfour, 1989; Rausch et al., 

1989; Crooks and Dwoskin, 1997; Staley et al., 2001)  exert numerous pharmacological 

effects through their interactions with various neurotransmitter and neuromodulator 
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systems.  Acute central nervous system (CNS) effects are mediated by different proteins 

and receptors, classically, the nicotinic acetylcholine receptors for nicotine and N-

methyl-D-aspartate (NMDA) and γ-amino butyric acid (GABA) for ethanol (Gamberino 

and Gold, 1999).  Tobacco smoke and alcohol intake are known to cause major acute 

and chronic neurochemical adaptations in the brain, including a profound enhancement 

of dopamine (DA) and serotonin (5-HT) transmission.  The increased neurotransmission 

of these biogenic amines, particularly in the nucleus accumbens of the 

mesocorticolimbic system, is central to mechanisms regulating CNS effects of both 

nicotine and alcohol (Gamberino and Gold, 1999).  Activation of DA and 5-HT 

transmission within the mesocorticolimbic pathways (dopaminergic system) has also 

been implicated in the reinforcing aspect of reward from natural stimuli (Groenewegen 

et al., 1991; Philips et al., 1991).   It is suggested that compounds that interact with the 

nucleus accumbens and the dopaminergic neurons within these pathways plays a 

significant role in drug dependence and in drug-seeking behavior.  In essence, this 

paradigm states that the pharmacological effect of the drug along with increased levels 

of DA and 5-HT within this dopaminergic ‘reward’ pathway, give way to the 

reinforcing properties of substances of abuse. 

A primary means in which DA and 5-HT levels increase pertains to inhibition of 

monoamine oxidase (MAO) enzymes.  As the actions of catecholamines are terminated 

via MAO-metabolic transformation, inhibition of MAO (e.g., pargyline, nialamide) can 

cause an increase in the concentration of norepinephrine (NE), DA, and 5-HT in the 

postsynaptic membrane of the brain and other tissues accompanied by a variety of 
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pharmacological effects (Nicotra et al., 2004).   Both tobacco smokers and alcohol 

dependent subjects were reported to show a decrease in MAO activity in the brain and 

peripheral tissues. Several studies have illustrated that, in the alcoholic population, 

peripheral and central MAO-A and MAO-B activity is significantly decreased 

compared to control (Berggren et al., 2000; Coccini et al., 2002; Demir et al., 2002). In 

addition, researchers have found constituents in tobacco that inhibit both forms of 

monoamine oxidase, in-vitro (Berlin et al., 1995; Rose et al., 2001), and clinical studies 

have shown that ex-vivo MAO activity is lower in smokers than in nonsmokers 

(Norman et al., 1987; Ward et al., 1987; Berlin et al., 1995).  Both ethanol and nicotine, 

the pharmacologically active constituents of alcohol and tobacco, and corresponding 

immediate metabolites of both drugs, are not inhibitors of either MAO isoenzymes.   

Several studies exemplified that recently abstaining alcoholics produce higher 

circulating levels of acetaldehyde than control following ethanol administration 

(Collins, 1988).    In addition, peripheral levels of acetaldehyde in smokers are known 

to be higher than non-smokers and depend on the number of cigarettes smoked 

(McLaughlin et al., 1990).   Acetaldehyde is a highly reactive molecule that can react 

with many molecules via adduction, condensation and polymerization.   The by-

products of these reactions exert a wide variety of biological effects and 

neuropharmacological properties directly affecting psychological behavior.   It is 

plausible that levels of stable adducts, consequent from acetaldehyde condensation with 

biogenic amines, also may be increased in alcoholics and smokers consuming ethanol 

and smoking, thus serving in body fluids as biochemical markers that are more 
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persistent that acetaldehyde itself.    Moreover, these markers may provide a basis for 

the alcohol and nicotine seeking behavior seen in alcohol and smoking dependent 

individuals.   

Of note, two classes of endogenously-formed compounds, the 

tetrahydroisoquinolines (TIQ’s) and β-carbolines, have been indicted as chemicals that 

display MAO inhibition and are by-products associated with acetaldehyde from alcohol 

and tobacco smoke exposure.   There is also evidence that these classes of compounds 

are potent inhibitors of 5-HT, DA, and NE reuptake mechanisms, in-vitro (Airaksinen et 

al., 1980; Komulainen et al., 1980; McNaught et al., 1996).    Additional mechanisms 

that TIQ’s and β-carbolines may be implicated in dopaminergic system modulation 

include dopamine receptor regulation, enzyme activity inhibition (e.g., catechol-O-

methyl transferase), catecholamine biosynthesis (e.g., tyrosine hydroxylase) and 

mitochondrial metabolism (Bringmann et al., 2002; Toth et al., 2002)  In essence, these 

compounds may be responsible for the increase in biogenic amine transmission within 

the dopaminergic ‘reward’ pathway.    In addition, human exposure to TIQ’s and β-

carbolines via smoking and/or alcohol consumption may contribute to the 

pharmacological reinforcing effects.  

 

1.2.3 Tetrahydroisoquinolines (TIQ’s: R/S-Salsolinol) 

1.2.3a Chemistry and biosynthesis  

TIQ's are a class of partially aromatic alkaloids that include R/S-salsolinol, 1-

carboxysalsolinol, and tetrahydropapaveroline.   TIQ's are compounds that are formed 
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as a result of a condensation reaction between DA and acetaldehyde or pyruvate 

(Rommelspacher et al., 1991a) and are natural metabolites of DA produced in the brain 

as well as other organs (Rommelspacher et al., 1995).  Tetrahydropapaveroline (THP) is 

the dopamine - 3,4, -dihydroxyphenyl acetaldehyde condensation product whereas 

salsolinol  is the dopamine-acetaldehyde condensation product (Duncan and Dietrich, 

1980).   

Salsolinol (SAL), 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is an 

isoquinoline analogue consisting of a catechol ring and a secondary amine that is able to 

be protonated at physiological pH (primarily ionized).   Like many other TIQ’s, SAL 

has an asymmetric center at the C-1 position of the heterocycle, thus leading to two 

stereo-isomeric forms (+)-(R)-SAL and (-)-(S)-SAL.  The physicochemical properties of 

SAL have not been experimentally characterized.   According to calculated results, the 

primary ionizable moiety is the secondary amine that possesses a pKa of ~ 9.4.    SAL is 

very soluble in water possessing a log D of -1.68 (calculated from Advanced Chemistry 

Development, ACD/Labs, Software V 8.19 for Solaris © 1994-2008).    The structure of 

SAL is shown in the figure below. 

 

 

 

 



10 

        

NH

OH

OH
CH3

*

 

Chemical:  Salsolinol (SAL) 
IUPAC name:  1-methyl-6,7-hydroxy-1,2,3,4-tetrahydroisoquinoline 
Mol Weight (g/mol)  179.22 
pKa     9.4 (secondary amine)   
logD (calc)  -1.68 
solubility   very soluble (1000g/L), slightly soluble in methanol 
 
Figure 1-1:  Structure and physicochemical characteristics of salsolinol.  Chiral center 
denoted with asterisk.  

 

SAL is present in various foods and beverages such as bananas, soy sauce, wine, 

and beer (Smythe and Duncan, 1985).    The enantiomeric ratio within these food 

sources is close to 1, especially in dried banana, a food source rich in R- and S-SAL 

(Strolin-Benedetti et al., 1989), while the R-SAL enantiomer predominates in port wine 

(Dostert et al., 1991).   The contribution of dietary SAL to the overall human exposure 

has not been extensively or well investigated.    Attempts have been made to classify 

each enantiomer in terms of exogenous contribution or endogenous synthesis, but 

further studies are needed.   In recent studies, it has been demonstrated that R-SAL 

predominates in human urine (Strolin-Benedetti et al., 1989).  Results showed that the 

S-SAL enantiomer seemed to be formed in individuals who drink significant amounts of 

alcohol regularly.   The differential enantiomer exposures are discussed to be affected 

by a genetic predisposition for an alcohol-induced SAL formation.  

One biosynthetic pathway of SAL is the non-enzymatic condensation of 

dopamine and acetaldehyde to yield the racemic mixture of both enantiomers.  The 
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Pictet-Spengler condensation reaction is known to form a 1:1 ratio of both R-SAL and 

S-SAL (Musshoff et al., 1999).  Other pathways of biosynthesis of SAL have been 

proposed including the enzymatic formation by salsolinol synthase or the reaction of 

dopamine to pyruvic acid via intermediate formation of salsolinol-1-carboxylic acid 

(Naoi et al., 1996).    Additional enzymes involved in this pathway have not been well 

characterized or further studied.  Recently, the nature of R-SAL biosynthesis may be 

due to stereospecific enzymatic condensation of dopamine with pyruvic acid but 

substantiated evidence is still missing.   A schematic depicting synthesis routes is shown 

in the figure below. 

 

 

Figure 1-2:  Biosynthetic pathway of Salsolinol.  In addition to the condensation 
reaction product between dopamine and acetaldehyde, enzymatic formation has been 
purported (? = unknown enzyme). (adapted from Naoi et al, 2002). 
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Although the few reports describe the synthesis of the SAL isoquinoline, the 

metabolic disposition of SAL has been less extensively evaluated.   It was thought that 

the metabolism of SAL yielded the neurotoxin 1,2-dimethyl-6,7-hydroxyisoquinolinium 

ion via N-methyl-transferase and amine oxidase (Naoi et al., 2002).    Further studies 

need to be performed to evaluate the metabolic disposition of SAL and the 

stereoselective nature of the metabolism.   Salsoline and isosalsoline are mono-O-

methylated metabolites of SAL.  Cateholamine-derived 6,7-dihydroxy-TIQs, such as 

SAL, serve as substrates for catechol-O-methyltransferase, in which SAL is O-

methylated at the 7-position in-vivo (Collins and Origitano, 1983).    

 

1.2.3b SAL in-vitro pharmacology 

The neurotoxic properties of SAL have been extensively studied due to similar 

structural characteristics of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

which is known to induce selective neuronal cell death of dopaminergic neurons 

(Martinez-Alvarado et al., 2001; Maruyama and Naoi, 2002).  In-vitro studies have 

shown that incubation of dopaminergic neuroblastoma SH-SY5Y cells with N-methyl-

salsolinol caused cell apoptosis (Storch et al., 2000).    Other proposed catecholamine 

system dysfunctions invoked by SAL include autonomic dysfunction in Parkinson’s 

Disease and production of positive ionotropic effect on guinea pig myocardium and 

isolated perfused rat heart (Chavez-Lara et al., 1989).  

 It has been suggested that SAL, the condensation product of the alcohol 

metabolite acetaldehyde and dopamine, may be involved in the balance of the reward 
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systems.  It is well known that alcohol itself does not have any affinity for pre- or post-

synaptic receptors in the neurons of the brain (Myers, 1989).  The intra-cranial self-

administration technique has shown that SAL induced reinforcement in the nucleus 

accumbens shell of rats occurs at concentrations that are pharmacologically possible.  

The mechanisms by which SAL induces this effect have been thoroughly evaluated.   At 

relatively low concentrations (1 µmol/l), both enantiomers of SAL were able to 

antagonistically bind to dopamine receptors (D2 and D3), with the S-SAL form binding 

with higher affinity (Melzig et al., 1998).   In-vitro data exemplified a substantial 

decrease in pro-opiomelanocortin gene expression caused by SAL, suggesting possible 

involvement of SAL in the role of opioid deficiency in alcoholism and the rewarding 

effect the SAL may have on mu-opioid receptors.    

While R-SAL more specifically inhibits MAO-A (Ki = 31 μM) in vitro, 1,2,3,4-

tetrahydroisoquinoline (TIQ) is more specific to MAO-B (Ki = 15 μM) (Bembenek et 

al., 1990; Naoi et al., 2004).  S-SAL is an inhibitor of both MAO isoforms but less 

potent than that of the R-isomer (Naoi et al., 2004).  It is speculated that these 

condensation products may also interfere with biogenic amine uptake and release.  

These compounds were found to inhibit the extraneuronal uptake of biogenic amines in 

the vas deferens, and SAL injections released DA and large amounts of 5-HT from the 

striatum, in rats (Duncan and Dietrich, 1980).   In addition, SAL has shown to inhibit 

uptake and cause release of stored catecholamines via presynaptic α2- and postsynaptic 

β-adrenergic receptor binding, to be an inhibitor of catechols-O-methyl transferase, and 

tyrosine and tryptophan hydroxylases, in-vitro (Haber et al., 1996).   All sites of action 
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may lead to increased synaptic supply of dopamine within the dopaminergic “reward” 

pathway. 

 

1.2.3c SAL in-vivo animal and human studies 

In order to illustrate the drug reinforcing aspects of these compounds, several 

investigators showed that consumption of particular drugs of abuse (e.g. amphetamine, 

ethanol, cocaine) significantly increased upon exposure to TIQ’s (Vetulani et al., 2001).   

Previous studies have found that chronic injection of TIQ causes an increase in alcohol 

intake in rats (Melchior and Myers, 1977; Myers and Oblinger, 1977; Duncan and 

Dietrich, 1980).  Specifically, rats infused intraventricularly with 4.0 μg of salsolinol 

increased alcohol intake from 0.74 to 4.9 gm/kg/day.   In another study, single infusions 

of racemic salsolinol in doses ranging from 0.1 - 1.0 μg increased alcohol consumption 

from 0.62 to 4.38 g/kg/day in the non-alcohol-preferring strain of Sprague-Dawley rats 

(Melchior and Myers, 1977).  Animal studies have provided evidence that significant 

differences in SAL levels exist between alcohol-preferring (AP) and alcohol-non-

preferring rats, with the AP rats showing significantly lower SAL content in the 

striatum and adrenal glands (Haber and Dumaual, 1999). A recent study also illustrated 

that SAL produces reinforcing effects when administered directly into the shell of the 

nucleus accumbens of AP rats (Rodd et al., 2003).  Acute and chronic administration of 

selected TIQ’s have been reported to alter alcohol consumption significantly.    

In self-administration studies, it was exemplified that SAL exerts its reinforcing 

effect by stimulating receptors in the dopamine-rich nucleus accumbens (Rodd et al., 
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2003).  In conditioned fear stress tests, it was found that SAL induced a marked place 

preference in rats using doses ranging from 1-10 mg/kg i.p. (Matsuzawa et al., 2000).  It 

was concluded that the potentiation and inhibition of this effect by morphine and β-

funaltrexamine, respectively, indicate that SAL exerts its effect via the µ-opioid 

receptor.    

A novel study utilizing a microdialysis-HPLC technique evaluated the action of 

R-SAL on 5-HT and DA metabolism in the brain (Naoi et al., 1996).   It was concluded 

that R-SAL acts to stimulate a release of biogenic amines via inhibition of MAO and 

COMT.  R-SAL was shown to be a more potent inducer of 5-HT and DA release from 

synapses than amphetamine itself.  Additional animal studies have exemplified the in 

vivo formation of SAL upon high exposure of acetaldehyde (AcH), a primary 

metabolite of ethanol (Mostafa et al., 2003).  Using a microdialysis-HPLC technique 

into the striatum, rats were treated with cyanamide, a potent inhibitor of aldehyde 

dehydrogenase, and 4-methylpyrazole (4-MP, a strong inhibitor of alcohol 

dehydrogenase), followed by ethanol (1 g/kg).  High concentrations of SAL were 

detected in striatal dialysates and high AcH concentrations were found in the blood. The 

time course of changes in SAL concentrations correlated with blood AcH 

concentrations.  In the other experimental groups, SAL in the dialysates and high AcH 

concentrations in the blood were not detected.  It was concluded that high AcH 

concentrations induce the formation of SAL in the rat striatum.  The delineation of 

individual SAL enantiomer exposure was not assessed.    
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Preclinical in-vivo pharmacological effects of SAL have been studied in rats.  

SAL has shown to have a modulatory role on cerebral benzodiazepine receptor 

(Kuriyama et al., 1987).  The authors conclude that the decreased capacity of such a 

modulating mechanism may be involved in the exhibition of alcohol withdrawal 

syndrome, possibly by decreasing the function of endogenous ligands for 

benzodiazepine receptor in the brain. 

Initial in-vitro and animal studies stimulated several researchers to evaluate SAL 

exposure in an alcoholic population.   Of note, formal assessments of SAL effect on 

nicotine self-administration, or vice-versa, in rats have not been performed.  SAL has 

been identified in urine, cerebrospinal fluid and the brain of humans (Melzig et al., 

1998; Naoi et al., 2004).  It was also found that blood acetaldehyde is positively 

correlated with urinary SAL (r = 0.88, p < 0.001), which supports the hypothesis that 

SAL is produced in-vivo from acetaldehyde condensation with dopamine (Adachi et al., 

1986).  Numerous human studies investigating plasma and urine concentrations of SAL 

have been published with regards to ethanol abuse (See Table 1-1).  Baseline levels vary 

considerably within and between these studies.  This may be due to methodological 

differences but some confounding factors have been identified, such as foodstuffs and 

tobacco smoke (Pais and Knize, 2000).  The extent of these factors on SAL exposure 

levels has not been fully elucidated.  Moreover, a majority of the studies were 

unbalanced with regards to group sample size and the effect of gender has not been 

explored.  To date there are no clinical investigations that address the contribution of 

smoking to TIQ, and specifically SAL exposure, in the alcoholic and control 
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populations. SAL has not been reported as a cigarette smoke component.  Moreover, 

dopamine is not present in tobacco and therefore tobacco smoke acetaldehyde can 

therefore only react with endogenous dopamine to contribute to circulating SAL 

concentrations. 

 Of equal importance, robust time-course measurements of SAL exposure have 

not been evaluated after acute and chronic ethanol exposure.  Of the reports evaluated, 

sampling schedules only included a baseline measurements and, if assessed, one time 

point after ethanol exposure or after the start of detoxification, in the case for alcohol 

dependent subjects.    The pharmacokinetic profiles of SAL have not been explored 

after acute ethanol exposure.    Adequate sampling schedules after ethanol exposure 

would be needed in order to critically evaluate SAL concentrations between 

populations.  A study performed by Rommelspacher et al, 1995 attempted to investigate 

the time course of SAL exposure in alcoholic subjects undergoing detoxification. 

Significant baseline differences were seen between alcoholic and control plasma SAL 

and declined over a three-month period, exemplifying the importance of the temporal 

effects of SAL exposure.   The data suggests that alcohol dependent persons attempt to 

maintain particular physiological levels of SAL to possibly circumvent withdrawal 

effects or sustain a pleasurable “reward” feeling.   Although the time-course of 

enantiomeric SAL plasma concentrations was assessed, sampling schedule was sparse 

and inadequate.  Of important note, no formal preclinical or clinical pharmacokinetic 

investigations on the endogenous formation, exposure and elimination of R- and S-SAL 

have been performed to date. 
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1.2.4  β-carbolines (harman and norharman) 
 
1.2.4a Chemistry and biosynthesis 
 

β-carbolines, such as harman and norharman, are another class of aromatic 

compounds that are formed via the condensation of serotonin (5-HT) or other 

indolealkylamines with aldehydes (Airaksinen and Kari, 1981a).   This class of 

compound possesses aromatic, planar, conjugated ring structures.   The lipophilic nature 

of an array of β-carbolines has been studied, with harman (1-methyl-9H-pyrido-[3,4-

b]indole) and norharman (9H-pyrido-[3,4-b]indole) resulting in relatively high logD 

values (Biagi et al., 1989).  The pyridine nitrogen behaves as a base and is easily 

protonated, while the pyrrolic nitrogen is acidic and loses its proton in an alkaline 

environment, although outside its pH scale (pH>14).    

 

N
N
H

R

  

 
 

Chemical:   Harman                           Norharman 
R:          CH3             H 
Mol Weight (g/mol)       182.2                                           168.2 
pKa      7.37, 14.46                               7.26, 14.23 
logD (calc)        2.8                                             2.6 
solubility   insol in H2O, sol in dilute acids, methanol, and non-polar solvents 
 
Figure 1-3:  Structure and physicochemical characteristics of the β-carbolines, harman 
and norharman.  
 
 
 
   



21 

 There is substantial evidence suggesting that simple β-carbolines, may be 

biosynthesized from tryptophan, serotonin or its metabolites in animal cells, i.e., 

“mammalian alkaloids” (Melchior and Myers, 1977; Airaksinen and Kari, 1981a).  The 

key biosynthetic pathway is shown below.   

 

 

Figure 1-4:  Reaction pathways for the formation of heteroaromatic β-carbolines (βC), 
1,2,3,4 tetrahydro-β-carbolines (THβC) or 3,4 dihydro-β-carbolines (DHβC) via A) the 
Pictet-Spengler condensation or the B) N-acylation with cyclization.  Adapted from 
(Collins and Neafsey, 1998). 
 

 Indolealkylamines like tryptophan or serotonin can non-enzymatically condense 

with acetaldehyde to form the tetrahydro-β-carbolines and spontaneously oxidize to the 

heteroaromatic harman or norharman (βC).  Alternatively, biogenic amines may 

undergo enzymatic n-acylation and cyclization to yield dihydro-β-carbolines and to 

ultimately oxidize to form harman or norharman.   Fekkes and co-workers reported that 
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the ingestion of tryptophan resulted in a low increase of the plasma concentration of 

norharman, but concluded that the primary norharman content in the body was from 

other sources (Fekkes et al., 2001).  In general, the exact sequence of the specific steps 

in the pathways is yet to be established.  Indeed, other, more complicated, biosynthetic 

pathways are also conceivable. 

 Few reports have evaluated the metabolism of the β-carbolines.    The primary 

elimination route of norharman is the liver, where its half-life is approximately 20 

minutes (Fekkes et al., 2001).    Moreover, it has been reported that norharman binding 

in rat liver microsomes can be inhibited by CYP2E1 ligands and indole-3-carbinol 

(Stawowy et al., 1999), and is a known inhibitor of benzo[a]pyrene metabolism.  Both 

β-carbolines are methylated by S-adenosyl-L-methionine N-methyltransferase on both 

the pyridyl and indole nitrogens (Matsubara et al., 1993).  Driven by a combination of 

reported results, carboline based neurotoxic entities possibly involved in Parkinson’s 

disease  might be quarternary, cationic β-carbolines possessing methyl groups on both 

nitrogens (Matsubara et al., 1993).  The charged molecules could form via sequential 

methyl transfer reactions within the brain from hydrophobic, blood-brain barrier 

permeable β-carbolines of environmental as well as endogenous biosynthetic origins.   

 Exogenous food sources such as cheese, charred beef and chicken contain 

variable amounts of β-carbolines (Pfau and Skog, 2004), but the post-prandial 

contribution of these foods to circulating β-carbolines have not been evaluated.   

Alcoholic beverages including wine and beer, contain substantial amounts of norharman 

and harman ranging from 0.3 – 22.7 ng/ml (Rommelspacher et al., 1996; Adachi et al., 
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2000).    Certain hallucinogenic plants can also biosynthesize β-carbolines and, as a 

consequence, have been purported to contribute to psychogenic pharmacological effects 

(Airaksinen and Kari, 1981b).  Interestingly, the quantification of β-carbolines from 

tobacco smoke condensate and tobacco leaves have shown that harman and norharman 

are present in significant concentrations.  The smoke of one cigarette contains 0.1-5.8 

µg of harman and 1.3-6.2 μg of norharman (Poindexter and Carpenter, 1962; Herraiz 

and Chaparro, 2005).  Of note, additional β-carboline may be formed endogenously 

from acetaldehyde inhaled from cigarette smoke and condensation with biogenic 

amines.   

 

1.2.4b β-carbolines in-vitro pharmacology 
 
 Substantial data is available with regard to the harmala alkaloids and MAO 

inhibition, effects on membrane ion transport, blockade of the serotonin transporter, and 

antagonism of the GABA/benzodiazepine receptor complex (Collins and Neafsey, 

1998).  Speculations on the biological significance of harman and norharman consist of 

cytotoxic as well as neuroprotective properties. They have been proposed as 

endogenous ligands for benzodiazepine (Rommelspacher et al., 1980) and imidazoline 

(Hudson et al., 1999) receptors.  Apart from the actions at these receptors, other effects 

of harman and norharman at the cellular level have been identified.  These include 

activation of 5-HT2A and 5-HT2C receptors, potent inhibition of synaptosomal γ-

hydroxybutyrate (McCormick and Tunnicliff, 1998) re-uptake and impairment of 

sodium-hydrogen exchange (Glennon et al., 2000).  
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 Kinetic analysis revealed that β-carbolines from cigarette smoke were 

competitive, reversible, and potent inhibitors of MAO enzymes (Herraiz and Chaparro, 

2005).  It has been established that, in vitro, norharman and harman inhibit MAO B (Ki 

= 730 nM, brain tissue, rats) and MAO A (Ki = 220 nM), respectively (Rommelspacher 

et al., 2002).  These results suggest that β-carboline alkaloids from cigarette smoke 

acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-

reduced activity produced by tobacco smoke in smokers. Note that nicotine and 

corresponding metabolites (e.g., cotinine, thiocyanate) are not potent inhibitors of 

MAO, having inhibitory constants, (Ki’s) 1000-fold or more higher than β-carbolines 

(Oreland et al., 1981).  Moreover, the concentrations required to inhibit MAO by 

nicotine and its corresponding metabolites are not of physiological range (Volkow et al., 

2005).  In-vitro experimentation of harman and norharman effects on tyrosine 

hydroxylase and catechol-O-methyl transferase activity has not been explored.    

 

1.2.4c β-carbolines in-vivo animal and human studies 
 

Studies in animals have provided evidence of induction of ethanol intake by β-

carbolines.  When unanesthetized rats were infused with tryptoline, a β-carboline, the 

release of dopamine in the caudate nucleus and nucleus accumbens was significantly 

increased (Myers and Oblinger, 1977).   In addition, it was shown that norharman 

plasma levels were significantly elevated in rats that ingested ethanol for two-weeks.  

Authors suggest elevated plasma norharman was due to binding to enzymes of the 

cytochrome P450 superfamily (Stawowy et al., 1999).  A subsequent study involving 
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injections of a range of doses on norharman showed that administration of doses of 2.44 

μmol/kg and 43.97 μmol/kg induced an increase of dopamine efflux by 70% and 160% 

(Baum et al., 1995).  This was thought to indicate that norharman influences the 

mesolimbic dopaminergic neurons in a dose-response fashion, and the authors 

suggested that norharman is affecting the dopaminergic system via different receptors, 

namely MAO-A, MAO-B and non-MAO binding site. 

Harman has been shown to induce preference for ethanol in rats 

(Rommelspacher et al., 1987).   Increasing concentrations of ethanol were accessible to 

male Wistar rats for 21 days.  Between day 8 and day 21, the animals were treated with 

several doses of harman and tetrahydronorharman (tetrahydro-beta-carboline) by means 

of continuous intraventricular infusion.  Harman and tetrahydronorharman induced a 

significant preference for ethanol in a dose-dependent manner with harman being three 

times more potent than THN.  The amount of ethanol consumed during the second and 

third weeks of the experimental period correlated with the harman concentration in the 

brain after the cessation of the treatment (p-value < 0.01).  In an additional study, 

harman has been shown to induce volitional drinking of ethanol in the rat (Adell and 

Myers, 1994).   The results demonstrated that the long-term exposure of hippocampal 

neurons to harman induces a preference for high concentrations of alcohol even in a line 

of rats lacking such a genetic predisposition.  Harman administration increased the 

release of DA and 5-HT in the nucleus accumbens (Baum et al., 1996).  These results 

have been corroborated by the results of harman administration enhanced the brain 

levels of 5-HT up to four times (Adell, 1996).    No reports, to date, have investigated 
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the self administration of cigarette smoke and/or nicotine solution upon administration 

of harman or norharman to rats.   

Interestingly, norharman has been shown to attenuate the withdrawal effects of 

alcohol in rats.  Norharman injected intraperitoneally (6.3 mg/kg) attenuated the 

behavioral signs of alcohol withdrawal significantly in rats who were administered 

ethanol for 21 consecutive days and subsequently abstained (Fekkes et al., 2004).   

Conversely, Spies et al showed that norharman levels were significantly increased on 

days in patients who developed alcohol withdrawal syndrome compared with those who 

did not.  An increase in norharman levels preceded hallucinations or delirium with a 

median period of approximately 3 days (Spies et al., 1996).  The researchers suggested 

that norharman may be a possible substance that triggers convulsions and alcohol 

withdrawal syndrome. 

In humans, these compounds are formed endogenously under normal conditions 

with the highest natural concentrations found in the substantia nigra (16 nmol/kg 

tissue)(Matsubara et al., 1993).      Early investigations in humans exemplified that a 

high dose of ethanol (100g) resulted in an increase in urinary excretion of norharman.    

Moreover, it was shown that plasma levels of ethanol and acetaldehyde paralleled that 

of harman blood concentrations with a maximum concentration reached at ~1-2 hours 

after dosing (Rommelspacher et al., 1996).  No harman was detectable in blood when 

no ethanol was given.  Experimental studies showed that dosing with ethanol resulted in 

elevated harman levels while, conversely, elevated norharman levels were reported in 

alcoholics.     In all studies reported (See table 1-2 below), considerable variability exist 
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in the results for both harman and norharman.  In all studies involving alcoholics, the 

tobacco smoking of patients or control was not accounted for.    

Recently, clinical studies have investigated the of role acute cigarette 

consumption on the plasma levels of harman and norharman.   A clinical study 

determining the impact of smoking and drinking on norharman found that resumption of 

smoking after a period of abstinence generated elevated plasma levels of norharman 

among smokers (who did not drink alcohol excessively) as compared to the non-

smoking, non-drinking (control) group (Breyer-Pfaff et al., 1996).  It has been 

suggested that the acutely elevated plasma levels of β-carbolines in smokers may be due 

to recent cigarette consumption (Spijkerman et al., 2002).  However, a clinical study 

investigating ex-vivo MAO-B platelet inhibition by harman and norharman 

demonstrated a baseline difference of β-carbolines in plasma and platelets between non-

smokers (n=5) and smokers (n=19)(Rommelspacher et al., 2002).  In plasma, baseline 

levels were two-fold higher in smokers than non-smokers (smokers: harman = 8.7 

pg/ml, norharman = 19.2 pg/ml; nonsmokers: harman = 4.1 pg/ml, norharman = 9.5 

pg/ml).  After both groups consumed one and two cigarettes, harman and norharman 

levels were significantly higher in smokers than the nonsmokers at all time points. 

Only few studies have evaluated the pharmacokinetics of harman or norharman 

in man.  Oral administration of norharman was investigated in a small number of 

healthy subjects receiving doses of 7, 65, or 110 µg/kg body weight with considerable 

inter-individual differences in exposure (area under the curve)(Fekkes et al., 2001).   

Sublingual administration resulted in a maximum exposure after 5 minutes of 
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administration and was twenty-fold higher than oral administration.  Elimination half-

lives of 51 minutes (Breyer-Pfaff et al., 1996) and 25-30 minutes (Rommelspacher et 

al., 2002) for harman and norharman, respectively, have been estimated from human 

studies. 

 

1.3 TIQ’s and β-carbolines summary 

As it has been noted in the literature, the modulation of drug abuse behavior and 

the consequent interaction of TIQ's and β-carbolines with the dopaminergic system 

demonstrate that these compounds may have a role in drug dependence. Among the 

brain neurotransmitters, dopamine is by far the one, if not the only to have been 

implicated in the behavioral stimulus effects of nicotine and alcohol.
  
The dopaminergic 

system has been well established as the "reward system" in the brain. Therefore, 

compounds that interact with the nucleus accumbens and the dopaminergic neurons 

could have a significant role in drug dependence.   TIQ's and β-carbolines possess 

various significant pharmacological properties to modulate dopamine transmission 

within this pathway, namely MAO inhibition.  Furthermore, as the dopaminergic system 

has a significant role in the drug-seeking behavior, it is possible that other drugs of 

dependence such as nicotine or other ingredients of cigarette smoke may also interact 

with the TIQ's and β-carbolines.  Additionally, these compounds may mediate smoking 

behavior.
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A number of studies investigating the biological concentrations of the β-

carbolines and TIQ’s have been published.    Considerable variability in results between 

and within studies has been reported in alcohol dependent patients compared to control. 

Several confounding issues are present that may contribute to the variability.   For the 

most part, the majority of studies did not account for the effects of smoking on 

circulating β-carbolines and TIQ’s.    As the co-dependence of alcohol and smoking is 

prevalent, research involving the contribution of alcohol exposure on physiological 

concentrations of β-carbolines and TIQ’s need to account for the exposure of tobacco 

smoke within the control and alcohol-dependent patients.   

The information summarized above lead to the hypotheses that (1) TIQ’s and β-

carbolines may have implications in the etiology of smoking and alcohol dependence 

via the dopaminergic ‘reward pathway’, (2) TIQ’s and β-carbolines are elevated in 

plasma and urinary levels differ between smoking and alcohol dependent populations 

compared to control, and (3) smoking and alcohol consumption differentially alters the 

blood levels of TIQ’s and β-carbolines. All aforementioned points suggest that these 

compounds of interest possess tobacco-smoking and alcohol exposure biomarker 

characteristics.   To date there are only a few studies that address the contribution of 

smoking to TIQ’s and β-carbolines levels in the tobacco-smoking dependent population. 

In addition, the majority of the studies did not study the effect of gender. 



 

 

 

 

 

 

CHAPTER 2  

RESEARCH HYPOTHESES 
 

 

2.1 Hypothesis  

The hypotheses directing this research project are: 

1) Within a healthy, non-alcoholic population, smokers will have higher 

concentrations of TIQ’s and β-carbolines than non-smokers, in a dose-dependent 

manner (i.e., heavy-smokers > light-smokers > nonsmokers) (Figure 2-1).    

Concentrations in light- and heavy-smokers will be observed within thirty-

minutes of smoking a cigarette. 

2) The plasma concentrations of TIQ’s will decline over a two-week period in a 

population of alcoholics during detoxification (Figure 2-2).  

3) At all sampling times, smokers will have higher exposure of TIQ’s compared to 

nonsmokers in both abstinent non-alcoholic and alcoholic populations.  

Moreover, heavy smokers are expected to have higher levels of TIQ’s as 

compared to light-smokers (Figure 2-2). 
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4) The alcoholic population will have higher average exposure of TIQ’s, and at 

admission and discharge of detoxification, compared to the control non-

alcoholic population, regardless of smoking status. 

5) A time-dependent withdrawal assessment, the CIWA-AR (Clinical Institute 

Withdrawal Assessment-Alcohol Revised), will correlate with the levels of 

TIQ’s during detoxification of the alcoholic cohort.  

6) A positive relationship between the degrees of smoking and/or alcohol 

dependence with TIQ’s and/or β-carbolines will exist (e.g., the higher the degree 

of dependence, the higher the exposure).     

 

 This study was performed in two parts.  Study I was a pilot study in forty-one 

male and female volunteers to study the effects of smoking on TIQ and β-carboline 

exposure.  The outpatient study was non-interventional, designed to evaluate baseline 

measurements of plasma TIQ’s and β-carbolines.  Subjects were stratified according to 

smoking status of non-smokers (NS), light-smokers (LS) and heavy smokers (HS).    

Stratification was based on the number of cigarettes smoked per day and the Fagerström 

Test for Nicotine Dependence (FTND).     Subject participation involved two morning 

outpatient visits in which a single blood sample was taken on each visit for the 

quantification of plasma TIQ’s and β-carbolines.  This study was designed to evaluate 

the effects of smoking and gender in baseline plasma TIQ’s and β-carbolines in addition 

to the inter- and intra-individual variability that may be associated with the 

measurements.  
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 A comparison was made to a second study involving an alcohol-dependent 

cohort undergoing detoxification treatment at the National Institutes of Health - 

National Institute on Alcohol Abuse and Alcoholism.  This investigation proposed to 

evaluate detoxification-induced changes in plasma TIQ concentrations in n = 36 

alcoholics undergoing a four-week, inpatient alcohol abstinence program.   Subjects 

were stratified with respect to smoking status of NS, LS and HS and the analysis was 

balanced for gender.  Plasma samples were collected during the first two weeks of 

detoxification: on admission, day 2, 3, 8, and 15 days after enrollment.  A clinical 

endpoint, the Clinical Institute Withdrawal Assessment-Alcohol Revised (CIWA-AR), 

was used to assess a possible correlation of these levels to withdrawal symptoms.  

Plasma TIQ levels were assessed along with CIWA-AR, smoking history and exposure, 

and alcohol dependence measurements in order to assess their feasibility as a clinical 

biomarker for smoking and alcohol dependence.   Importantly, the time-course of these 

compounds during early abstinence in an alcohol-dependent cohort was assessed.  

Evaluation of the contribution of smoking to levels of these compounds and, ultimately, 

the time-course was the primary objective of this study. 

 

2.1.1 Study #1 Hypothesis 

 As nicotine is a drug of dependence interacting with the dopaminergic reward 

pathways in the brain, and cigarette smoking involves systemic exposure to aldehydes 

and/or TIQ and β-carbolines, we expect that smokers will have higher concentration as 

compared to control in a ‘dose-response’ fashion.  In other words smoking status will 
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have an effect on plasma TIQ and β-carbolines with NS < LS < HS.  A graphical 

representation of the research hypotheses are presented in the figure below. 

 

 

 

 

 

 

 

 

 
Figure 2-1:  Proposed hypothesis of TIQ and β-carbolines relative average baseline 
plasma exposure in healthy nonsmoking (NS), light-smoking (LS), and heavy smoking 
(HS) populations.  
 

 Upon statistical evaluation, significant difference will be seen with the 

circulating TIQ’s and β-carbolines when accounting for the factors of smoking and/or 

gender.    A statistically significant positive correlation between the degree of 

dependence, as measured by the Fagerström Test for Nicotine Dependence (FTND) and 

the number of cigarettes smoked per day will be observed.    

 

2.1.2 Study #2 Hypothesis 

Study #1 Hypothesis
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 On the foundation that smoking will have a significant effect on plasma TIQ, it 

is expected that smoking tobacco should have an influence on the time-course of the 
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compounds in alcohol dependent patients.    In these patients, the time course of the 

aldehydes adducts will differ at baseline and throughout the detoxification period, 

dependent on smoking status.   The average aldehyde adduct concentrations, throughout 

the detoxification period, will be dependent on smoking status, with HS > LS > NS.     

Moreover, this relationship will be observed on day 15 of the detoxification period.    

 A withdrawal scale, the Clinical Institute Withdrawal Assessment (CIWA-AR) 

will decline during the initial stages of the detoxification period.  Levels of circulating 

TIQ’s and β-carbolines are expected to decline along with the CIWA-AR.  A schematic 

representing the hypothesis for study #2 is shown below.   

 

  

Figure 2-2:  Proposed hypothesis of TIQ’s relative average plasma exposure in alcohol 

 

dependent nonsmoking (NS), light-smoking (LS), and heavy smoking (HS) populations 
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undergoing 3-weeks of detoxification.  CIWA-AR profile denotes the withdrawal scale 
used within the first week of alcohol abstinence. 
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 A statistically significant difference will be observed with regard to day 1, day 

and cigarette smoking involves 

stem

.2 Rationale and Significance 

neurochemical basis underlying the addictive 

propert

15 and average concentrations of plasma TIQ’s and β-carbolines upon accounting for 

the two factors of smoking status and gender.  A positive correlation between 

concentrations of TIQ’s and FTND or number of cigarettes smoked per day.    The 

CIWA-AR withdrawal scale will positively correlate with plasma TIQ’s in a 

concentration dependent fashion.  Overall a statistically significant difference will be 

seen between levels of smoking status and gender.    

  As the combination of alcohol drinking 

sy ic exposure to aldehydes and/or TIQ and β-carbolines, we expect that smokers 

and alcohol dependent patients will have higher concentration as compared to control.  

Upon comparison between the studies, the alcohol dependent cohort will possess higher 

circulating levels of TIQ’s with respect to the population observed in study #1, 

regardless of smoking status.   

 

2

The understanding of the 

ies of drugs of abuse is imperative for the rational development of new 

pharmacological treatments to reverse the addictive state, prevent relapse and/or reduce 

the intake of these drugs. The TIQ’s and β-carbolines have demonstrated to have a 

variety of neuropharmacological effects that may be related to the reinforcing aspects of 

drug and alcohol abuse.  However, sound evidence for the formation of these 

compounds and elevated concentrations after alcohol abuse and smoking is not yet 



37 

conclusive.  Due to great inter-individual variations is plasma/urinary TIQ’s and β-

carbolines exposure levels and excretion rate, these compounds remain an insufficient 

marker to distinguish between alcoholics and non-alcoholics.  The variability in the 

reported data might be a result of variables, including smoking status and gender, 

duration and amount of ethanol exposure, polymorphisms in metabolizing systems, and 

analytical problems associated with the quantification of the TIQ’s and β-carbolines, all 

of which have not been thoroughly explored.  

Currently, there are only a few studies reported in the literature that have studied 

the effe

overall research hypothesis of 

ct of alcohol and detoxification on exposure TIQ’s and β-carbolines.   Some of 

these investigations had questionable methodology, including not following the 

complete time-course of the levels, and not accounting for other variables influencing 

TIQ and β-carboline exposure, such as smoking.  This research provides new, hitherto 

unknown information about the baseline levels of these compounds in regards to 

smoking status.  In addition, this investigation assessed the effects of alcohol 

detoxification on the time-course of TIQ exposure in humans and attempted to establish 

a relationship to a clinical endpoint, the CIWA-AR.   

 These anticipated results will support the 

activation of the central dopaminergic pathways as a consequence of smoking and 

alcohol dependence.  Furthermore, if differences are found between NS, LS and HS, 

this would suggest that chronic exposure to TIQ’s affects the withdrawal response, 

possibly as a result of chronic tolerance (e.g., CNS receptor down regulation).  

Measurement and examination of covariates, such as smoking and drinking history, will 
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allow comprehensive evaluation of TIQ and β-carboline levels in the alcohol and 

nicotine-dependent populations versus controls.  Moreover, it will provide valuable 

information on its potential use as a state marker of alcohol and smoking dependence.  

Essentially, understanding TIQ and β-carboline exposure differences among individuals 

with smoking and/or alcohol dependence may provide clues about the dynamics of 

nicotine and alcohol seeking behavior and may provide a basis for enhanced treatment 

efficacy. 



 

 

 

 

 

 

CHAPTER 3  

BIOANALYTICAL ASSAY DEVELOPMENT FOR THE β-CARBOLINES, 
HARMAN AND NORHARMAN, IN HUMAN PLASMA 

 

 

3.1  Introduction – Selection of Analytical method 

 In order to adequately evaluate physiological concentrations of β-carbolines in 

human plasma, a sensitive and specific analytical method is required.  Several β-

carboline alkaloids have been analyzed in different matrices including plant extracts, 

foods and beverages (Pfau and Skog, 2004).   While the majority of these methods have 

been employed for quantification of the β-carbolines in foodstuffs (Pais and Knize, 

2000), few analytical methods have been published for the support of the investigation 

of harman and norharman in human pharmacological studies.   Applicability of 

transferring the assays for food sources to biological matrices have yet to be 

satisfactorily explored.   Since the physiological concentrations of β-carbolines are 

reported to be in the low nanogram/ml to low picogram/ml range, and the available 

samples from humans are complex matrices, multi-step enhancement and preparation 

techniques are necessary for ultimate detection and quantification.  In alcoholic patients 

39 
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(Matsubara et al., 1986; Breyer-Pfaff et al., 1996; Rommelspacher et al., 1996; 

Tsuchiya et al., 1996; Wodarz et al., 1996) and patients undergoing elective tumor 

resection (Spies et al., 1995), the reported physiological concentrations ranged from ~5 

pg/ml to 2 ng/ml of plasma and/or urine.  In control subjects and smokers, similar 

plasma concentrations were seen immediately after smoking cigarettes (Breyer-Pfaff et 

al., 1996; Rommelspacher et al., 2002).  Due to the highly lipophilic nature and the 

strong intrinsic fluorophore of the β-carboline alkaloids, bioanalytical methods used for 

quantification included primarily reversed-phase high-pressure liquid chromatography 

coupled with fluorescence detection (FD).  The reported methodologies for 

quantification of harman and norharman in a biological matrix have been sensitive but 

several shortcomings exist for the published techniques.  A list of published records of 

norharman and harman analysis in a biological matrix is presented in the table below. 

 Further critique of the reported bioanalytical assays is warranted, as the 

inadequacies in the chromatography, extraction, and validation of the β-carboline assay 

methods are apparent.  Chromatographic baseline resolution for both harman and 

norharman has not been accomplished with majority of the assays presented, especially 

in reports that have supposed relatively low limits of quantification.  Separation or 

resolution is an essential requirement in quantitative HPLC analysis and a baseline 

resolutions of Rs > 1.5 favors maximum precision and accurate quantification in 

reported results (Snyder et al., 1997). 
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 With regard to quantification, several deficiencies are present in reported 

methods.  Firstly, internal standards have not been used for the greater part of reported 

assays.  Significant sample pretreatment and preparation steps utilized in these methods 

necessitate the use of an internal standard.  A properly chosen internal standard can 

compensate for changes in sample size or concentration due to instrumental variations 

as well as variation in extraction recovery.  

 Requirements for a proper internal standard include, but are not limited to, well 

resolved from the analytes of interest, similar retention to the analyte, should not be 

present in the  original sample, and stable and unreactive with sample or mobile phase 

(Snyder et al., 1997).    For the assays in which an internal standard was employed, 

endogenous levels of internal standards are present which may compromise accuracy 

and precision estimates.  For these methods, the concentrations of endogenous levels of 

internal standard in the plasma was not assessed or reported.  In biological samples such 

as plasma or tissue where even lower levels are detected, the fluorescent 1-ethyl-9H-

pyrido[3,4-b]indole or 1-propyl-9H-pyrido[3,4-b]indole have been used successfully as 

internal standards, but both require laborious organic synthesis (Bosin and Faull, 1988).

 Secondly, appropriate bioanalytical validation metrics (i.e., accuracy and 

precision) have either not been presented or assessed.  These aspects of method 

development are necessary to challenge the method and determine limits of allowed 

variability for the conditions needed to run the assay, both of which have significant 

bearing on suitable analyte quantitation in a biological matrix.   
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  Most importantly, the calibration matrix that has been used for quantitation in 

published assays has been via external calibration in buffer or mobile phase.  The 

premise behind the use of these matrices is the lack of a true blank matrix.  Approaches 

used to minimize background noise and interference, via data processing and 

chromatographic separation, have not solved the seemingly insurmountable problem of 

a significant background signal when the analyte itself is present in the blank matrix 

used to prepare calibration standards (Li and Cohen, 2003).  Calibration techniques used 

in reported β-carboline assays do not use the matrix the analyte(s) are intended to be 

measured in, but are quantitated via calibration curve in neat aqueous and/or organic 

solvents.   This practice of calibration completely disregards sample extraction 

efficiency or matrix effects that may occur during the analysis or detection.    

 In summary, the reported bioanalytical methodologies for quantification of the 

β-carbolines, harman and norharman, in human plasma are not adequate for clinical 

study use due to poor resolution of analytes, lack of internal standard use in samples 

that have significant pretreatment steps, and, of utmost importance, insufficient and 

inappropriate validation of the bioanalytical assay.  The current method developed for 

β-carboline quantification addresses the limitations associated with reported assay 

literature, whilst keeping the sensitivity needed for use in human pharmacology studies. 

 

3.2 Physico-chemical Characteristics of Harman and Norharman   

 β-carbolines, such as harman (1-methyl-9H-pyrido-[3,4-b]indole) and 

norharman (9H-pyrido-[3,4-b]indole), are a class of aromatic compounds that are 
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formed via the condensation of indolealkylamines (e.g., tryptophan, serotonin) with 

aldehydes. Recall the structure and physicochemical characteristics from figure 1-3.  

The β-carboline class of molecules show commonality in possessing aromatic, planar, 

conjugated ring structures with extended π-electron systems.   The lipophilic nature of 

an array of β-carbolines has been studied (Biagi et al., 1989), with harman and 

norharman resulting in relatively high logD values.    The pyridine nitrogen behaves as 

a base and is easily protonated, therefore, all β-carboline derivatives studied possess 

pKa values that vary from 6.2-9.5 (Draxler and Lippitsch, 1995).  Conversely, the 

pyrrolic nitrogen is acidic and loses its proton in alkaline environment, although outside 

the usual pH scale (pH>14).   Due to their structural properties, norharman and harman 

exhibit a notable native fluorescence and atypical acid-base behavior in the ground and 

excited states (Pardo et al., 1992).  Considering that β-carbolines are lipophilic and 

highly fluorescent, reversed-phase HPLC with fluorometric detection is a very useful 

technique to determine these compounds in a biological fluid.  Therefore, the following 

experiments for assay development were designed to optimize fluorescence detection 

and chromatographic separation.  The ultimate goal of the bioanalytical assay 

development was to quantify the β-carbolines, harman and norharman, in human plasma 

for the support of two clinical studies.  
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3.3  HPLC-Fluorescence Detection Method Development 

3.3.1 Fluorescence Detection (FD) Experiments 

 Owing to their strong fluorescence characteristics, the β-carbolines have been 

investigated by numerous photophysical methods (Carmona et al., 2000).  The 

fluorescent nature of these molecules may be due in part to their planar, conjugated ring 

structures, which possess extended π-electron systems.  These compounds, in particular 

norharman, have been proposed as fluorescence standards due to their high quantum 

yields and their inability to be quenched by halide ions (Pardo et al., 1992).  The pH- 

dependence of the absorption and fluorescence spectra of several naturally occurring β-

carboline derivatives have been thoroughly investigated (Balon et al., 1993), (Wolfbeis 

et al., 1982).  All reports infer that the polarity and acidity of the surrounding media 

greatly affect the fluorescence emission spectra, quantum yields and life-time of β-

carboline derivatives.  Unquestionably, much of the interesting photophysical properties 

of the β-carbolines arise from the polyfunctional hydrogen bonding nature of the β-

carboline ring.  Thus, the presence in this ring of the acidic pyrrolic and basic pyridinic 

acidic nitrogen atoms allows β-carbolines to act as hydrogen bond donor and acceptor 

molecules.  As the fluorescence of an aromatic compound with acidic and/or basic ring 

substituents is usually pH-dependent (Skoog et al., 1998), spectral characteristics are 

likely to be different for the ionized and unionized forms of the molecule.   The changes 

in the excitation and emission energy of ionizable species arise from the different 

number of resonance species that are associated with the acidic and basic forms of the 
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molecule.  These observations suggest that analytical procedures based on fluorescence 

detection frequently require control of pH.    

 As protonation of the amine groups results in a loss of electron-donating 

characteristics, the pH dependence of the fluorescence behavior of these aromatic 

amines was studied.     The aim of this investigation was to determine the most 

favorable λexcitation and λemission for fluorescent detection analysis and to evaluate the 

effect that pH may have on the fluorescence excitation and emission of both β-

carbolines, using standard applications for spectrofluorometric techniques.    

 Harman and norharman physiological concentrations are reported to be in the 

low picogram to nanogram per milliliter range, therefore optimization of fluorescence 

detection was based on: 

1. evaluation of the dependency of signal intensity on pH for both analytes; 

2. obtaining the most advantageous λexcitation and λemission for fluorescent detection 

analysis, along with an adequate Stokes’ shift for selective measurement; and 

3. determination of any deviations from linearity of fluorescence signal in the expected 

physiological concentration range of analytes at optimal λexcitation and λemission. 

 The Stokes shift is fundamental to the sensitivity and selectivity of fluorescence 

techniques because it allows emission photons to be detected against a low background, 

isolated from excitation photons (Skoog et al., 1998).  Optimal pH and λexcitation and 

λemission results will aid in selecting an appropriate mobile phase for sensitive and 

specific detection of harman and norharman after chromatographic separation.    
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3.3.1a Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  Solvents used for the spectrofluorometric measurements were of spectroscopic 

or HPLC grade and used without further purification.   

1. Harman, purum ≥ 98%  (Sigma-Aldrich Corp., St. Louis, MO) 

2. Norharman (Sigma-Aldrich Corp., St. Louis, MO) 

3. 0.05 M  H2SO4, pH 1  

  - H2SO4, double distilled (GFS Chemicals Columbia, OH), 18M 

4. Potassium phosphate buffer (for buffers between pH 2-3 and pH 7.2) 

 - monobasic potassium phosphate, KH2PO4 (Sigma-Aldrich Corp, St. Louis,  MO) 

 - dibasic potassium phosphate, K2HPO4 (Sigma-Aldrich Corp., St. Louis, MO) 

 - phosphoric acid, H3PO4 (Sigma-Aldrich Corp., St. Louis, MO), 14.8M 

5. Ammonium acetate buffer (for buffers pH 4 and 5.5) 

 - ammonium acetate (Fisher Chem, Fairlawn, NJ) 

 - glacial acetic acid (CMS Chempure Houston, TX) 

6. Ammonium chloride buffer pH 9, 10, 12 

 - ammonium chloride (Fisher Chem, Fairlawn, NJ) 

 - ammonia, anhydrous (Sigma-Aldrich, St. Louis, MO)  

7. 10 M NaOH (VWR, Westchester, PA) 

8. Methanol, HPLC Grade (Burdick and Jackson, Morristown, NJ) 

9. Acetonitrile (Burdick and Jackson, Morristown, NJ) 

10.  Milli-Q® water (Virginia Commonwealth University, Bioanalytical Laboratory) 
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3.3.1b Equipment   

1. Instrumentation:  Shimadzu RF-5301 Spectrofluorometer 

2. Data acquisition:   Shimadzu RF-5301PC Software 

3. Cuvettes, Silica quartz 10.0 mm Shimadzu Scientific  (Columbia, MD) 

4. Corning pH meter, Model 240 (Corning, NY) 

5. 10-μl, 100-μl, and 1000-μl VWR variable volume pipette and corresponding pipette 

tips.  

 

3.3.1c Preparation of Solutions and Standards 

1. 0.001 M Harman in methanol 

 Approximately 10.3 mg of harman was weighed and placed in a volumetric 

 flask of 50-ml methanol.  For additional concentration levels, serial dilutions 

 were performed using respective buffers. 

2. 0.001 M Norharman in methanol 

 Approximately 10.1 mg of norharman was weighed and placed in a volumetric 

 flask of 50-ml methanol.  For additional concentration levels, serial dilutions 

 were performed using respective buffers. 

3.  0.05 M H2SO4 (GFS Chemicals Columbia, OH), pH 1 

 In a 100 ml volumetric flask, 270 μl of 18M H2SO4 was added to 100 ml Milli-

 Q® water. 
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4.  Buffers - For each pH level, an appropriate amount of stock 0.5M base, stock 0.5M 

acid and Milli-Q® water was added to make a 100 ml 0.025M buffer at the respective 

pH.   

a) Potassium phosphate buffers (for buffers between pH 2-3 and pH 7.2) 

 - 0.5 M monobasic potassium phosphate (KH2PO4)- 6.804 g added to 100 ml of 

 Milli-Q® water in a 100 ml volumetric flask.  

 - 0.5M dibasic potassium phosphate (K2HPO4)- 8.708 g added to 100 ml of 

 Milli- Q water in a 100 ml volumetric flask.  

 - 0.5M phosphoric acid (H3PO4) - 3.3784 ml was added to a 100 ml of Milli-Q® 

 water. 

b) Ammonium acetate buffers (for buffers pH 4 and 5.5) 

 - 0.5M ammonium acetate – 3.854 mg was added to 100 ml of Milli-Q® water. 

 - 0.5M acetic acid  - 2.87 ml of glacial acetic acid, 17.4M was added to 100 ml 

 of Milli-Q® water.  

c) Ammonium chloride buffers  (for pH 9, 10, and 12 buffers) 

 - 0.5M ammonium chloride – 2.67g of NH4Cl was added to 100 ml of Milli-Q® 

 water.  

 - 0.5M ammonia solution - 373 μl of anhydrous ammonia (13.4M) was added to 

 100 ml of Milli-Q® water.  

5.  0.1 N NaOH – 5 ml of 10 M NaOH was added to 100ml of Milli-Q® water in a 100 

ml volumetric flask.   
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3.3.1d Methods  

 Freshly prepared methanolic stock solutions of H and NH were prepared at a 

concentration of 0.001 M.   Buffered solutions of various pH’s were prepared at a 

concentration of ~ 0.025 M in order to maintain a maximum buffer capacity of at least 

40%.   Initially, the pH’s (and respective buffers) that were evaluated for the 

optimization were the following:  pH 1 (0.05 M H2SO4); pH 2 and 3 (KH2PO4/H3PO4 

buffer); pH 4 and 5.5 (NH4C2H3O2/CH3COOH buffer); pH 7.2 (K2HPO4/KH2PO4 

buffer); pH 9, 10 and 12 (NH3/NH4Cl buffer); and pH 13 (0.1 N NaOH).   In order to 

determine the fluorescent properties of H and NH in common HPLC solvents, 

measurements were additionally made in 100% methanol and 100% acetonitrile.    

 Stationary excitation and emission spectra (uncorrected for instrument) were 

evaluated at each pH for the given concentration of H and NH.  Blank buffer or solvent 

was additionally assessed for matrix evaluation.  In order to obtain λmax
excitation and 

λmax
emission at each respective pH for both H and NH, fluorescence scanning experiments 

were performed.  The excitation spectra were evaluated between the ranges of 220-400 

nm, at a fixed λemission of 500 nm.  Upon appraisal of the spectra, the λmax
excitation was 

fixed, and the λemission was scanned from between 250-550 nm.   The excitation and 

emission slit width was set at 10 nm and 1.5 nm, respectively.  All recorded spectra 

were taken at room temperature (22± 2 °C) at a scan speed at the medium setting with a 

response time of 0.1 seconds.     

 To make solutions for spectral pH optimization measurements, a predetermined 

amount of stock solution was added to a buffered solution to make a desired 



51 

concentration of 250 pg/ml (~1.4 x 10-6 M) and 220 pg/ml (~1.3 x 10-6 M) for H and 

NH, respectively.  Dilution to this low of a concentration was necessary to avoid inner 

filter effects and reabsorption phenomena (Munoz et al., 2000). Final solvent for 

spectral measurement was 3:1 buffer to methanol mixture and was not degassed.    At 

each pH excitation and emission spectra were scanned and recorded for both analytes (n 

= 3 for each measurement).  Further pH optimization was performed at intervals of 0.1 

pH units around the most favorable pH from the prior experiment.   

 For the linearity assessment of response the optimal λmax
excitation and λmax

emission 

with an optimal pH buffer was used.   An approximately 1000-fold concentration range 

from ~5 pg/ml (~2.8 x 10-8 M) to 2.7 ng/ml (7.9 x 10-6M) for both analytes was assessed 

and a calibration curve was plotted and evaluated for any deviations from linearity (10 

concentrations in triplicate).  The standards for the curve were prepared for the 0.001 M 

stock solution of H and NH and serial dilution was preformed to achieve the desired 

concentrations.  

 
3.3.1e Results 
 
 For both β-carbolines, the spectral λexcitation  and λemission varied, reliant on the pH 

of the solvent environment.  The λmax
excitation  and λmax

emission for each analyte are 

presented in the table 3-2 below.  Of note, all solvents were checked for background 

fluorescence that yielded a negligible fluorescence signal.  Using the λmax
excitation for 

each solvent in the respective pH, the signal intensity at the λmax
emission was recorded.    

For situations where two or more λmax
excitation were observed, the longer wavelength 
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(lower energy) was used for excitation to improve the selectivity of the detection.  

Fluorescence detection sensitivity can be severely compromised by background signals, 

which may originate from endogenous sample constituents.  Minimization of the 

background noise can be performed by selecting excitation energies at longer 

wavelengths.  Furthermore, at longer wavelengths, light scattering by dense media such 

as plasma is much reduced, resulting in greater penetration of the excitation light 

(Cullander, 1994).  Moreover, the fluorescence emission spectrum is independent of the 

excitation wavelength, due to the partial dissipation of excitation energy during the 

excited-state lifetime (Lakowicz, 2007).  

 The pH dependency of signal intensity at λmax
emission is presented in figure 3-1 

below for the pH range between pH 1 and 13.  An important experimental design 

criterion for a reversed-phase HPLC pertains to the pH stability of the solid phase of the 

column.  The majority of the manufactured HPLC columns are stable at a pH range 

between 2 and 9 with temperature control <50 ºC (Snyder et al., 1997).   For this reason, 

further evaluation for the optimal fluorescence signal of H and NH was performed 

between the stable pH ranges of commercially available HPLC columns.  
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Figure 3-1:  Harman and norharman fluorescence intensity and speculated ionization 
state as a function of pH at optimal excitation and emission wavelengths (mean ± SD, 
n=3). 
 

 Maximum fluorescent response was observed for H and NH at pH of ~3.0 in 

which H: λ  = 298 nm, λexcitation emission = 437 nm and NH: λ  = 299 nm, λexcitation emission = 

440 nm.  As the pH 3 solvent resulted in the most favorable fluorescence signal, 

supplementary experiments at 0.1 pH units below and above below pH 3 were appraised 

(range from pH 2.6-3.6).  Using a 0.025 M buffer solution of KH PO /H PO2 4 3 4, at the 

respective pH, fluorescent scanning experiments were performed (pH adjusted using 

1M H PO3 4).  The spectral characteristics of the excitation and emission did not vary 

much over small pH range, therefore the signal intensities were evaluated at λmax
excitation 

max max max= 298 nm and λ =  437 nm for H and λemission  excitation  = 297 nm and λ =emission   449 
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nm for NH.   The results of the pH dependency on fluorescence intensity are presented 

in figure 3-2.  
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Figure 3-2:  Harman and norharman fluorescence intensity between pH 2.6 and 3.6 
(mean ± SD, n=3). 
 

In the methanol and acetonitrile solutions, the neutral molecule’s fluorescence is present 

within the UV range.   

 The additional pH experiments, at smaller pH intervals, resulted in an optimal 

fluorescence signal intensity at pH ~ 3.2, as deemed by the largest, most reproducible 

signal intensity for the given concentration of H and NH.    From the pH optimization 

experiments, the resultant wavelengths were used for calibration curve experiments at 

pH 3.2; H: λmax max max= 298 nm, λ = 437 nm; NH: λexcitation emission  excitation  = 297 nm, 

λmax = 449 nm.   The excitation and fluorescence spectra for H and NH are emission  
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exemplified in the figures below.  For reference, the structure of the presumed ionic 

state is represented in the spectra. 
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Figure 3-3:  Excitation and emission fluorescence spectrum of harman in the cationic 
state, pH = 3.2.      
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Figure 3-4:  Excitation and emission fluorescence spectrum of norharman in the 
cationic state, pH = 3.2. 
 

  

 From this investigation, it was concluded that H and NH show good 

photophysical properties with strong fluorescence, large Stokes shifts (>90 nm) and 

relatively long excitation (>278 nm) and emission (>360 nm) wavelengths for both 

analytes throughout the pH range, all of which can minimize the effects of the 

background fluorescence.   The difference in the wavelengths of maximum excitation 

and maximum emission is called the Stokes’ shift (λmax max- λemission excitation) (Gaigalas et 

al., 2001).  Stokes’ shifts that were observed as a function of pH are presented in the 

table below. 
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Table 3-3: Stokes shifts (nm) for harman and norharman at varying pH’s  
 

pH Harman  Norharman 
(nm) 

Speculated 
Ionization state 

 
(nm) 

1 135 153 cationic  
2 135 157 cationic 
3 139 152 cationic  
4 127 119 neutral 

5.5 123 125 neutral  
7.2 82 102 neutral 
9 99 97 neutral  
10 124 119 anionic* 
12 199 198 anionic*  
13 196 202 anionic* 

MeOH 113 120 neutral  
ACN 122 130 neutral 

 *zwitterionic species may be present 

 

 

 Larger stokes shifts were observed at pH’s >10 (presumed anionic state).  For 

practicality and utility of HPLC development, the acidic pH ranges between 1 and 3 

yielded the larger Stoke’s shifts.  As the pH of approximately 3 resulted in the highest 

fluorescent intensity for a given concentration of H and NH, and the Stoke’s shift at this 

pH was the largest, the pH 3.2, 0.025 M buffer solution of KH PO /H PO2 4 3 4, was used to 

maximize sensitivity and selectivity for spectrofluorometric quantification experiments.   

 Calibration curve experiments resulted in linear response throughout the 

concentration range for both H (R2 > 0.998) and NH (R2 > 0.997).  For each analyte, the 

inter-individual variability between slopes of the calibration curves was negligible and 

showed consistency for each analyte.  Moreover, the y-intercepts obtained from each 

calibration regression were insignificant and statistically not different from zero.  In this 
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spectrofluorometric system, the minimum concentration detected (LOD) for H and NH 

were 32 pg/ml and 25 pg/ml, respectively.  This LOD calculation was based on the 

standard deviation of the noise and slope of the calibration curve (3 times the standard 

deviation of the noise divided by the slope of the calibration curve)(ICH, December 18, 

1996).  The standard deviation was estimated based on n = 3 blank sample signals or 

can be extracted from the calibration curve.  Of note, the LOD is not a very stable 

characteristic because of its susceptibility to minor changes in the conditions of the 

analytical method, like temperature, purity of reagents, sample matrices, and 

instrumental system changes.    This measurement was expected to change upon 

analysis of, H and NH in a biological matrix and upon transfer onto an HPLC-FD 

system.  Additional experiments were conducted on additional, more concentrated 

solutions for testing fluorescence signal saturation.  Non-linearity of the instrument 

response occurred at concentrations above 10 ng/ml, likely due to insolubility issues, 

and implying that dilution may be required of any samples above this concentration.   

 

3.3.1f Discussion    

 The molecular resonance energy of a fluorophore in aqueous solutions are rather 

sensitive to the surrounding milieu that, in turn, tends to influence the energy of the 

electronic states.   Thus, changes in solution properties, such as pH, usually lead to 

shifts in the wavelength of maximum emission and large changes in the quantum yield.   

As seen in experimentation and previously reported literature, the β-carbolines, H and 

NH, have been extensively evaluated for their spectral properties in different solvents.   
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The pH, and consequently ionization state, significantly alters the fluorometric 

measurement of H and NH.  Owing to the acidic nitrogen moiety and the basic nitrogen 

atom in the pyridine nucleus, H and NH can exist in three differently charged ground 

state species.  Their respective equilibria, shown in the scheme below are governed by 

two pKa’s.  The zwitterionic species may also be present, especially in the excitation 

spectra observed in the pH range of greater than neutral.    

 

NH
N
H

N
N
H

N_
N

+

pKa1 pKa2

        

 

Figure 3-5:  Structure and ionization states of the β-carbolines, governed by two pKa’s  

cation (conjugate acid)                      neutral species        anion (conjugate base) 

 

 According to the proton transfer dynamics of the β-carbolines in differing pH’s, 

the cationic form of H and NH yielded the maximal response for a given concentration 

(between pH 1-4), and the anionic and zwitterionic form (> pH 10).    This is consistent 

with reported literature in which it was found that the fluorescence yield of the cationic 

species of norharman was the largest and found to be constant at pH’s below 4.  It has 

been observed that the molar extinction coefficients (log ε) for the cationic forms are 

4.16 and 3.64 and the quantum yield (ΦF) is 0.56 and 0.83 for NH and H, respectively 

(Balon et al., 1993).  Within the 4-10 pH range the fluorescence signal, albeit 

reproducible, yielded the smallest response for the given concentration.  Within this pH 

range, the neutral species for both H and NH are seemingly predominant. 
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 For further HPLC method development, an initial pH of 3.2 was used for 

additional experimentation due to the following reasons: (1) at this pH, a relatively large 

fluorescence intensity was seen for a given concentration of H and NH; (2)  the cationic 

form of H and NH predominates at this pH and, in concordance with previous literature, 

has the highest quantum yield;  (3) for practical HPLC method development, the Stokes 

shift observed at this pH was relatively large, which was expected to improve selectivity 

and sensitivity of the method.   Furthermore, there is small overlap between excitation 

and fluorescence spectra and the spectrum are independent of exciting wavelength, 

which are characteristic of superior fluorescence standards (Pardo et al., 1992).  From 

these results, it was concluded that the 0.025 M buffer solution of KH2PO4/H3PO4 at pH 

= 3.2 was used for an initial mobile phase buffer for HPLC method optimization.  At 

this pH, the resulting wavelengths were used were: λmax
excitation = 298 nm, λmax

emission = 

437 nm for harman and λmax
excitation  = 297 nm, λmax

emission =  449 nm for norharman. 

 

3.3.2 Chromatographic Experiments and Optimization 

 The high-pressure liquid chromatography (HPLC) method was chosen due to the 

sensitivity of the method, its ready adaptability to accurate quantitative determinations, 

and its suitability for separating non-volatile species.  Moreover, the physicochemical 

properties of the β-carbolines, H and NH, make the HPLC method conducive for 

separation and quantification.   To address the concerns of previously reported assay 

methodologies, the following aims of chromatographic optimization were considered:  
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1. Baseline resolution of H and NH was paramount in order to ensure precision during 

quantification. 

2. Retention time, peak shape (e.g., tailing factor and symmetry), resolution of peaks, 

selectivity and system suitability parameters (e.g., reproducibility of replicate 

injections) were to be optimized in order to ascertain the effectiveness of the final 

operating system. 

3. In order to achieve adequate sensitivity to detect trace amount of H and NH in a 

minimal amount of human plasma, the chromatography was optimized to achieve 

the smallest amount of analyte(s) on column. 

4. Exploration of a chromatographically suitable internal standard for further 

extraction method development.  

 

 As the analytes are considered to be a mixture of small molecules and are highly 

lipophilic, reversed-phase HPLC optimization was performed.  Initial conditions of 

mobile phase pH were chosen based on the fluorescence detection optimization in 

which the cationic forms of H and NH yielded the optimal detection (in sensitivity and 

reproducibility).  The preferred initial experimental conditions (Snyder et al., 1997) 

HPLC separation for ionized analytes were based on the conditions listed in table 3-4.   

 Specifically, the optimization of the chromatographic conditions was based on 

the USP XXIV 621 requirements for chromatographic separation and system suitability 

(USPharmacopoeia, 1999). Separation of the β-carbolines was based on the most 

favorable capacity factor, resolution of the peaks, and injection precision.  Moreover, 
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peak shape for both H and NH were assessed for tailing factor, peak asymmetry, and 

number of theoretical plates.   

 
 
Table 3-4: Initial Experimental Conditions for RP-HPLC Separation of Ionized H and 
NH (Snyder et al., 1997) 

Separation variable   Initial Choice 
Column  
     Dimensions (length, ID) 15 x 0.46 cm 
     Particle Size 5 μm 
     Stationary phase C18 and C8

Mobile Phase  
     Solvents A and B Buffer and Methanol or Acetonitrile 
     % B 50% 
     Buffer (compound, pH, concentration) 25 mM potassium phosphate, pH 3 

Flow rate  Isocratic, 1.0 ml/min 
  
Temperature Room temperature 
 

 
Injection volume 50 μl 

 

 Capacity factor (k) describes the migration rates of the analytes on column and 

is related to retention time of the analyte: 

( )
0

0

t
tt

k R −=    (Equation 3.1)     

 where tR is the band retention time and t0 is the column dead time.   The goal of the 

solvent strength adjustment and buffer pH optimization was to position the bands within 

a k range of roughly 0.5 to 20.  This range was based on the avoidance of initial 
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baseline disturbance overlapping the first band (early-eluting interferences) and to 

evade broadening of the last band that may be seen with long run times (Snyder et al., 

1997).    

 An inadequacy apparent from reported assays for H and NH quantification 

biological matrices is resolution, Rs, between β-carboline analytes. With baseline 

resolution, the HPLC data system is able to draw an accurate baseline under each band-

peak, thereby increasing the accuracy of the band-area measurements and resultant 

calculation of sample concentrations (Snyder et al., 1997).   The measurement of 

efficiency of the separation of H and NH in a mixture was determined by the equation: 

12

12 )(2
WW
ttRs −

−
=      (Equation 3.2) 

whereby t  and t  are the retention times for the two components, H and NH, and W2 1 2 

and W1 are the corresponding widths of the bases of the peaks (bandwidth), obtained by 

extrapolating the relatively straight sides of the peaks to the baseline.   The goal 

baseline resolution that corresponds to Rs > 1.5 will allow for adjacent bands of 

dissimilar bands  and account for the usual deterioration of an HPLC method from day-

to-day use (Snyder et al., 1997).   

 Another useful parameter is the reproducibility of replicate injections of the 

analytical solution of H and NH.  The reproducibility of the replicate injection is best 

expressed by the injection precision, or percent relative standard deviation, %RSD.  The 

calculation is expressed by the equation:   
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xin which, %RSD is the relative standard deviation in percentage,  is the mean of a set 

of n measurements and xi is an individual measurement.  The x term refers to the peak 

area response corresponding to the reference standard.  The injection precision 

suggested limit is a %RSD < 3% for n ≥ 5 chromatographic measurements 

(USPharmacopoeia, 1999).   

 Additional information such as peak shape (i.e., tailing factor, peak asymmetry) 

and number of theoretical plates should also be assessed to evaluate the performance of 

the HPLC method.  More specifically, column performance can be defined in these 

terms for a test substance run under “optimal” conditions.   The column plate number, 

N, is an important characteristic of the column and is defined as the ability of the 

column to produce sharp narrow peaks for achieving good resolution between band 

pairs (Snyder et al., 1997).   A relationship used to measure plate number is:  

2'2 ⎟
⎠
⎞

⎜
⎝
⎛=

A
htN Rπ   (Equation 3.4)     

where tR is the band retention time, and h’ and A are the peak height and area, 

respectively.     Equation 3.4 is often used in HPLC data systems to determine the value 

of N and is used for measuring column performance (Snyder et al., 1997).     

Representative values of an ideal N value for columns of differing lengths and particle 

sizes vary and are generally reported under ‘ideal conditions’.  For the purposes of 
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initial HPLC method development, an acceptance limit of N > 2000 was proposed as a 

criterion.   The plate number was evaluated primarily for the evaluation of column 

efficiency and evaluation of column lifetime throughout the HPLC method 

development.        

  While the column plate number is a useful measure of column quality and 

efficiency, the peak shape and tailing assessment is also important during development 

(Snyder et al., 1997).    Lack of symmetry in peak shape, As (exactly symmetrical peaks 

have a value of 1.0), can result in issues in imprecise quantitation, poor retention 

reproducibility, and degraded resolution (Snyder et al., 1997).  The peak symmetry is 

calculated at 10% of full peak height and samples of interest generally should have As 

values of <1.5 (Snyder et al., 1997).   

 Chromatographic optimization for H and NH separation in neat solution was 

based on the initial criteria and limits aforementioned.   These suggested limits were 

used as a reference to set up initial system suitability criteria during the early HPLC 

method development process. The goal of this chromatographic investigation was to 

obtain a range of HPLC system parameters (i.e., %B, pH of mobile phase, flow rate) 

from neat solution in order to further optimize the conditions from those of extracted 

human plasma matrix.  This safeguard provided initial HPLC parameters for further 

method chromatographic exploration from extracted plasma, especially in the case of 

selectivity issues that may arise.   The results of the optimization were carried further in 

subsequent validation and analysis with human plasma matrix.   
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3.3.2a Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  Solvents used for the chromatographic optimization measurements were of 

spectroscopic or HPLC grade and used after filtration with a 0.2 μm porosity filter 

(Corning, Corning, NY).   

1. Harman, purum ≥ 98%  (Sigma-Aldrich Corp., St. Louis, MO) 

2. Norharman (Sigma-Aldrich Corp., St. Louis, MO) 

3. Potassium phosphate buffer (for buffers between pH 2-5 and pH 7.2) 

 - monobasic potassium phosphate - KH2PO4 (Sigma-Aldrich Corp, St. Louis, MO) 

 - dibasic potassium phosphate, K2HPO4 (Sigma-Aldrich Corp., St. Louis, MO) 

 - phosphoric acid, H3PO4 (Sigma-Aldrich Corp., St. Louis, MO), 14.8M 

4. Methanol, HPLC Grade (Burdick and Jackson, Morristown, NJ) 

5. Acetonitrile (Burdick and Jackson, Morristown, NJ) 

6. Milli-Q® water (Virginia Commonwealth University, Bioanalytical Laboratory) 

 

3.3.2b Equipment   

1. Instrumentation: Waters HPLC, 600 Controller, 717+ Autosampler, 2475 

Fluorescence Detector, with In-line Degasser. 

2. Data acquisition:   Waters Empower® Software 

3. Corning pH meter, Model 240 (Corning, NY) 

4. 10-μl, 100-μl, and 1000-μl VWR variable volume pipette and corresponding pipette 

tips.  
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5. Columns (all end-capped): 

 - Waters Symmetry®, C18, 3.5 μm (150 x 4.6mm) 

 - Waters Symmetry®, C18, 5 μm (75 x 4.6mm) 

 - Agilent Zorbax Eclipse XDB®, C8, 5 μm (150 x 4.6mm)   

6. Vials/Caps/Septa:  Waters®, 1ml glass shell with polypropylene caps 

 

3.3.2c Preparation of Solutions and Standards 

1. 0.001 M Harman in methanol 

 Approximately 10.2 mg of harman was weighed and placed in a volumetric 

 flask of 50-ml methanol.  For additional concentration levels, serial dilutions 

 were performed using methanol. 

2. 0.001 M Norharman in methanol 

 Approximately 10.0 mg of norharman was weighed and placed in a volumetric 

 flask of 50-ml methanol.  For additional concentration levels, serial dilutions 

 were performed using methanol. 

3.  Buffers - For each pH level, an appropriate amount of stock 0.5M base, stock 0.5M 

acid and Milli-Q® water was added to make a 100 ml 0.025M buffer at the respective 

pH.  For the potassium phosphate buffers (for buffers between pH 2-5 and pH 7.2): 

 - 0.5 M monobasic potassium phosphate (KH2PO4)- 6.804 g added to 100 ml of 

 Milli-Q® water in a 100 ml volumetric flask.  

 - 0.5M dibasic potassium phosphate (K2HPO4)- 8.708 g added to 100 ml of 

 Milli- Q water in a 100 ml volumetric flask.  
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 - 0.5M phosphoric acid (H3PO4) - 3.3784 ml was added to a 100 ml of Milli-Q® 

 water. 

 

3.3.2d Methods 

 The steps taken during the optimization of chromatographic separation were 

based on current HPLC method development practice (Snyder et al., 1997).  Initial 

specific conditions were described previously, and the results of which were used in 

subsequent experiments.  Moreover, optimal analyte solvent (pH ~3) along with 

excitation and emission wavelengths at the most favorable pH were utilized for mobile 

phase pH and detection, respectively.  A systematic (along with a trial-and-error) 

process was continued until successful separation was achieved.  Based on the 

physicochemical characteristics of H and NH, the reversed phase separation conditions 

and parameters that were explored were column chemistry (packing) and configuration, 

mobile phase strength (%B), pH and concentration of buffer, flow rate, temperature of 

column, injection volume and sample plug solvent composition.  For all experiments, 

the conditions were evaluated via univariate experimental design.  

 Specifically, the types of columns that were evaluated ranged from a single C8 

column to two different C18 columns with differing column configurations (in length 

and particle size, see section 3.3.2.2 under “Columns”).   A C8 or C18 column made 

from specially purified, less acidic silica and designed specifically for the separation for 

basic compounds is generally suitable for all samples and is strongly recommended 

(Snyder et al., 1997).   An optimal column was chosen on the basis of the ability for H 
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and NH to be retained and eluted from the column, the retention time, and the resolution 

and peak shape of H and NH bands.   Isocratic methods were explored initially for 

method development simplicity.   

 With respect to the mobile phase composition, optimization experiments were 

performed with the following prioritization of conditions (most important to less 

important): (1) the percent organic, %B, (2) flow rate of mobile phase, (3) pH of buffer, 

and (4) concentration of buffer.  In particular, the %B was varied from 5% to 50% in 

increments of 5%.   Both methanol and acetonitrile, or a combination of both, were 

utilized to determine best retention and separation conditions.  The initial experiments 

used a H3PO4/KH2PO4 buffered mobile phase at ~ pH 3 at a concentration of 50 mM.  

These initial pH conditions were used to reflect the results from the spectrofluorometric 

experiments described earlier.  The initial concentration of the buffer was used to 

maintain adequate buffer capacity and, at the same time, to avoid salt precipitation upon 

introduction of larger %B.   The flow rate of the mobile phase was subsequently 

explored from between 0.5 ml/min to 1.5 ml/min.   Along with chromatographic 

evaluation, the pressure was evaluated for consistency within the chromatographic run 

and between injections.   

 As H and NH are expected to be in its cationic state at the initial pH conditions 

(pH ~ 3), the buffered aqueous composition was subsequently optimized.   Besides the 

notion that this pH yielded the largest signal intensity for a given concentration of H 

and NH, a low pH protonates column silanols and reduces their chromatographic 

activity (Snyder et al., 1997).  Secondly, the low pH is far enough from the pKa values 
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for the basic functional groups of H and NH to maintain its ionization.  Therefore, at the 

initial low pH conditions it was hypothesized that the retention of H and NH will not be 

affected by the small changes in pH and the reversed-phase HPLC method will be more 

rugged.  Optimization at pH 3.0, 3.2, 3.5, 4.0, 4.5, 5.0 and 7.2 was explored to evaluate 

effects of pH conditions on H and NH chromatography.    pH values lower than 3.0 

were not evaluated as the solid phase stability of the columns used may be 

compromised.    In conjunction with pH assessment, the concentration of the buffer was 

explored to maintain the pH.  This was performed to ensure the pH reproducibility and 

buffering capacity of the final mobile phase upon dilution.  The buffer concentrations 

that were explored were between 10 mM and 50 mM at increments of 10 mM.   Higher 

buffer concentrations, provide an increased buffer capacity but may not show favorable 

solubility in mobile phases with a high organic content (%B).   As the initial conditions 

for the HPLC separation were for the ionized form of H and NH, consideration of 

buffers with a marginal buffer capacity (i.e., low concentration) were avoided to 

circumvent less reproducible separations for the ionized H and NH.   A H3PO4/KH2PO4 

buffered mobile phase was adjusted accordingly with acid or base to achieve a desired 

pH and concentration.  

 Along with the column configurations and mobile phase compositions, the 

sample injection volume and composition of the sample solution (i.e., injected solution) 

was also evaluated.  The volume of sample introduced into the HPLC was constrained 

by the injection loop size (100 μl for the Waters HPLC system used).   Injection 

volumes < 10 μl were not used due to irreproducibility that may occur with sample 
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introduction from the sample loop and needle.  Sample volume was assessed upon 

chromatographic evaluation using the system suitability and peak shape requirements 

aforementioned.    The goal of the sample volume investigation was to avoid an 

undesirable change in separation due to a sample size that is too large (e.g., column 

overload) and to increase detection sensitivity for the trace analysis of H and NH by 

using the largest possible sample size.  The composition of the sample solvent was kept 

close (±5%) to the composition of the mobile phase to evade extra-column effects 

associated with the HPLC (e.g., band broadening or peak asymmetry).   It has been 

exemplified that injecting the sample in a solvent that is stronger than the mobile phase 

usually results in early bands that are distorted and tailing (Snyder et al., 1997).  

 The initial solution concentrations used for the chromatographic optimization 

were 406 pg/ml and 452 pg/ml for NH and H, respectively.   Injections for each 

optimization step (i.e., when a chromatographic condition was changed) were 

performed in triplicate.   Univariate optimization was performed in a step-wise fashion.    

This sequential single-factor approach requires all factors but one to be held constant 

while the univariate search was carried out on the factor of interest (Massart et al., 

1988). After optimization of the conditions, three levels of concentrations for both 

analytes were investigated for precision, system suitability requirements, and peak 

shape reproducibility.  The concentrations were 202 pg/ml and 260 pg/ml for the low 

level, 406 pg/ml and 452 pg/ml for the medium level, and 1.12 and 1.25 ng/ml for the 

high level for H and NH, respectively.  A total of n=6 injections were performed for 

each level using the optimized chromatographic conditions.       
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 For the calibration and sensitivity analyses for both analytes, a range of reported 

physiological concentrations for both analytes were used to determine the linearity of 

the response and to determine the lowest amount of analyte on column.  The 

concentrations (n=16) that were employed for both analytes ranged from 5 ng/ml down 

to 5 pg/ml for both β-carbolines.  Areas under the peak for both analytes were used for 

calibration quantitation.  Once the calibration range was established and assessed via 

linear regression, injections were run in triplicate for those injections giving an adequate 

signal-to-noise ratio for detection (S/N > 3).    The lowest detectable amount on column 

was defined as a S/N > 3 with %RSD < 2% for n=6 repeated injections.  

 

3.3.2e Results 

 Using a neat solution, the chromatography was optimized with respect to the 

column chemistry and configuration, the percent of organic modifier, pH and 

concentration of the buffer, flow rate and injection volume.    Chromatographic 

retention of both H and NH was seen for all columns investigated.   Although they were 

not baseline resolved, peak(s) were observed within one minute for each column when 

100% methanol or 100% acetonitrile was used for the mobile phase.   For these extreme 

conditions, the capacity factor (k) was < 0.2, resulting in the need to use a weaker, more 

polar mobile phase.    Adequate retention for the analytes, as defined by 0.5 < k < 20, 

was seen for a %B < 50%.    Although resolution of the analytes was not observed at 

various solvent strengths for both configurations of the C18 columns, the C8 column 

employed for investigation resulted in a sufficient capacity factor and resolution.  The 
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results of solvent strength (%B is 50:50 methanol:acetonitrile) on the capacity factor for 

both H and NH are exemplified in the figure below.  

  

Figure 3-6:  Capacity factor (k), on logarithmic scale, as a function of organic strength 
of mobile phase (%) for H (solid line) and NH (dashed line) on the C8 column.  Other 
HPLC parameters:  flow rate 1 ml/min, %A is pH = 3 H PO /KH PO3 4 2 4 buffer, 50 mM, 
and injection volume = 20 μl, column temp = RT.  (mean response on n=3 injections, 
%RSD < 2% for all) 
 

 Under these conditions, it can be seen that the organic strength of the mobile 

phase has a significant influence on the retention and the capacity factor for both H and 

NH.   As NH is slightly less lipophilic, the capacity factor is less than that of H at all 

%B.   Moreover, the separation (and resolution) between the analytes appear to increase 

with a decrease in %B.  At first approximation, the retention behavior of H and NH 
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decreases logarithmically with respect to mobile phase strength.  The dependence of 

RP-HPLC retention on %B has been studied exhaustively, and the retention behavior of 

H and NH is in agreement with other highly lipophilic compounds (Snyder et al., 1997).  

The successive reductions in %B from 50% to approximately 15% yielded results in the 

desired capacity factor range (0.5 < k < 20).  When the mobile phase strength was much 

weaker (%B <15%) the retention for both H and NH were unacceptably long.  

Moreover, the peak shape, albeit symmetrical, decreased in sharpness and, in turn, the 

S/N ratio. Superior resolution was obtained with the lower strengths of %B at the cost 

of a longer run time.   From the optimization results of organic strength, a range that 

was most favorable was between 15% - 35%.  Within this range of organic composition, 

the analytes showed baseline separation with the resolution increasing with a decrease 

in %B.  Moreover, at this concentration a sufficient S/N ratio was observed for both 

analytes.  This range was kept in mind in order to evaluate selectivity of the assay 

during method development in the biological matrix.     

 In the initial organic strength experimentation, the optimization was based on 

the separation of the cationic form of both H and NH (pH~3 buffered aqueous phase).    

For ionic compounds, a change in pH can result in a 10-fold or greater range in capacity 

factor (Snyder et al., 1997), but also have a profound effect on the resolution of the 

analytes.  Therefore, based on the initial isocratic conditions and using a %B of 30% 

methanol, the pH was adjusted to evaluate the effects on retention and resolution for H 

and NH.   As seen in figure 3-7, a systematic increase in the capacity factor is observed 

with increases in pH of the mobile phase.   Between the low pH range of 3.0 to 4.0, the 
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capacity factor is relatively consistent with sufficient resolution between H and NH.    

As the pH approaches the pKa of H and NH (i.e., ~7.3) the capacity factor increases and 

less resolution is observed between analytes, due to a shorter retention (see figure 

below).   
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Figure 3-7:  Capacity factor (k) and resolution (Rs) on Cartesian scale, as a function 
mobile phase pH (H PO /KH PO  buffer, 50 mM) for H (●) and NH (○) on the C3 4 2 4 8 
column.  Other HPLC parameters:  flow rate 1 ml/min, %B is 30% methanol, 50 mM, 
and injection volume = 20 μl, column temp = RT.  (mean response on n=3 injections, 
%RSD < 3% for all) 
 
 
At all pH measurements, H possessed a larger capacity factor than NH and the retention 

behavior became similar upon increasing pH towards the pKa.     

 Peak shape, asymmetry and peak tailing was evaluated at each pH.  Peak 

asymmetry was close to unity (As~1.4) for the mobile phase pH between 3.0-3.5.  An 



77 

increase to more neutral pH yielded less symmetric peaks, significant tailing, and less 

resolution.  For these experimental conditions, the peak shape of both H and NH 

deteriorates progressively as the pH is increased above 4, presumably due to a 

decreased buffer capacity of the phosphate buffer at this pH.   The buffer capacity at 

each pH was further explored by changing the concentration between 10-50 mM at pH 

values below 4.0.   Influence of the concentration of phosphate buffer (20 - 50 mM) on 

the peak separation and shape was negligible at pH values below 4.0.   Although 

separation with the 10 mM buffer concentration at low pH yielded adequate separation, 

reproducibility was slightly compromised, presumably due to a lower buffering 

capacity.   

 Under the conditions with 30% methanol as the organic modifier, at low pH 

(3.0-3.5) an acceptable retention factor for both H and NH was seen with satisfactory 

baseline resolution and symmetrical peak shape.  A buffer concentration of 20 mM was 

used for further method development as this concentration would less likely precipitate 

with the organic solvents used and would maintain sufficient buffer capacity.   

 Flow rates between 0.8 – 1.2 ml/min were explored, ensuring that the pressure 

requirements for the columns utilized were met (<1800 psi).    For the C8 column used 

(5-μm particle size, 15 x 0.46 cm) the run times and resolution varied, with no intended 

change in selectivity.  The majority of the optimization was performed at controlled 

room temperature (22ºC) with successive increases in column temperature yielding 

shorter run times, sharper peaks, and slightly decreased resolution.   Temperature 

optimization was performed in the later stages of HPLC method development using the 
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biological matrix.  Injection volumes, at the concentration used for optimization, did not 

show peak distortion or irreproducibility between 20 and 80 μl, suggesting that 

sensitivity optimization may be explored between these injection volumes at the later 

stages.   The sample solvent composition was kept similar to that of the mobile phase 

composition.  Deviations of ±15% organic composition for the solvent, relative to the 

mobile phase, resulted in peak distortion and double-peaking.  The final optimized 

conditions, for the neat solution, that were used for system suitability, peak shape 

assessment, and calibration assessment are presented in the table below. 

 
 
Table 3-5: Final Experimental Conditions for RP-HPLC Separation of Ionized H and 
NH in neat solution (mobile phase). 
 
Separation variable    Optimized condition    
 
Column     Agilent® Zorbax Eclipse XDB, C8
       15 x 0.46 cm, 5 μm, endcapped 
Solvents A and B 
     % B     methanol, 30% 
     Buffer (compound, pH, concentration) KH2PO4/H3PO4 buffer (pH=3.2, 25mM) 
 
Flow rate     Isocratic, 0.9 ml/min 
 
Column temperature    22ºC (room temperature) 
 
Injection volume    80 μl     
 
Detection     λexcitation

 = 300 nm, λ emission = 433 nm 
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 Under these chromatographic conditions, separation of H and NH was optimized 

(figure 3-8).  With this separating system, good resolution, plate numbers and band 

symmetries were found for H and NH and separated rapidly at a mobile phase flow rate 

of 0.9 ml/min. 
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Figure 3-8:  Chromatogram of norharman (406 pg/ml) and harman (452 pg/ml) in a 
neat solution of MeOH: KH PO /H PO2 4 3 4 buffer (pH 3.2) (25:75). Baseline resolved 
retention times are at 5.02 min and 6.51 min for norharman and harman, respectively.    
 
  

 Along with run time, capacity factor and retention time, the peak shape and 

system suitability measurements were assessed to finalize the chromatographic 

conditions.     The system suitability parameters are presented in the table below.  
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Table 3-6:  System suitability measurements for the final RP-HPLC Separation 
Conditions for H and NH in neat solution (mobile phase).  Peak shape measurements 
are based on the medium concentration used for both analytes (chromatogram in Figure 
3-8). 
 
Suitability parameter     Norharman     Harman  
 
Resolution, Rs                                       2.99                 
 

Retention time (min)               5.02            6.51 
 

Number of theoretical plates, N             4641          5104  
 

Peak tailing factor, T              1.21          1.05 
 

Peak asymmetry factor, As                1.41          1.10 
 

%RSD (n = 6) of Area:                                      

 Low                  2.6 (202 pg/ml)       2.3 (260 pg/ml) 
                                            

Med                  1.3 (406 pg/ml)                    2.4 (452 pg/ml) 
     High                  0.9 (1.12 ng/ml)                  1.3 (1.25 ng/ml) 
  

 

 The optimized RP-HPLC conditions were consequently used to assess linearity 

of the response via calibration curves.   Linear regression parameters and statistical 

assessment resulted in linearity throughout the concentration range for both H and NH, 

with adequate precision and accuracy for all concentrations.   The regression was 

performed on the relationship between analyte concentration (pg/ml) and peak area 

response with a 1/x2 weighting factor.  The calibration curve results are presented in the 

table below. 
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Table 3-7:  Calibration curve measurements (n=6 injections) for final RP-HPLC 
separation conditions for H and NH in neat solution.    

 
Calibration curve parameter 

 
Norharman 

 
Harman 

 

Slope ± SD 

 

4315 ± 82 

 

5121 ± 128 

Intercept ± SD 23 ± 43 52 ± 67 

% RSD (all concentrations) < 3.2 < 2.7 

% DFN (all concentrations) < 6.7 < 9.2 

R2 (range) 0.9982 (0.9811 – 0.9994) 0.9965 (0.9872 – 0.9991) 

Linear range 20 pg/ml – 2524 pg/ml 26 pg/ml – 2653 pg/ml 

Lowest amount on column, 
LOD (pg)  

1.6 pg  2.1 pg  

 

 The calibration results showed linearity throughout the specified range, deemed 

by the values of R2 > 0.99 for both analytes.  For concentrations tested above the range, 

signal saturation was apparent, suggesting that samples with concentrations above the 

linear range may require dilution.    The slopes for both H and NH yielded reproducible 

results upon replication, with H possessing larger response factor sensitivity.  In other 

words, a given change in concentration of H produced a larger response than that of 

NH.    The accuracy assessment as defined by %DFN (%deviation from nominal), 

showed that a linear regression model was appropriate for calibration purposes and 

interpolation between concentrations may be performed for unknown concentration 

evaluation.    The method exemplified precision with superior relative standard 

deviations (%RSD) in comparison to the limits aforementioned.   
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3.3.2f Discussion    

 The RP-HPLC method for the quantitative analysis of a neat solution of H and 

NH has been optimized for further bioanalytical method development.  The most 

favorable fluorescence detection environment (i.e., pH) and initial RP-HPLC conditions 

used for highly lipophilic compounds were used as a springboard for further 

modifications.  The initial pH of ~3 resulted in the most sensitive signal per 

concentration of analyte for spectrofluorometric results.   The major species of H and 

NH at this pH was in its cationic form, classifying this sample as ionic.   In turn, both 

organic modifier (%B) and pH were optimized, as both are recognized to have a 

profound effect on retention behavior of ionized samples.   

 For the cationic forms of H and NH, the C8 column configuration employed 

confirmed satisfactory baseline resolution and retention, as deemed by the capacity 

factor.  As expected, the less lipophilic NH eluted before H in all chromatographic runs 

and selectivity was maintained.  A range of organic content for the mobile phase was 

determined to be between 15-35%.  Differing strengths of organic solvents (i.e., 

methanol and acetonitrile) can be used for H and NH separation and was considered for 

selectivity and interference chromatographic optimization in the biological matrix.   In 

comparison to previously published methods, improvement in the resolution of H and 

NH was sought, with this range demonstrating adequate and reproducible resolution.  

This range %B was to be further investigated using the biological matrix, in the case of 

interfering endogenous analytes in the chromatography.    In the case of pH adjustment, 

a range between pH 3.0-3.5 provided favorable retention and resolution, giving room 
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for selectivity investigation in the biological matrix.    The concentration of phosphate 

buffer in this pH range provided significant buffering capacity to maintain 

reproducibility without compromising the chromatographic endpoints required.   

 The concentration range used for calibration assessment was in physiological 

range.    Using a neat solution of H and NH, concentrations of up to ~ 2.5 ng/ml (200 pg 

on column) may be detected using the calibration regression; concentrations above may 

require dilution.  A low picogram level can be detected on column, suggesting that this 

method may be sensitive enough to detect reported amounts in human plasma.  A 

formal assessment of sensitivity for the method (lower limit of quantification) was not 

assessed during the current point in the method development and was postponed to the 

validation in the actual biological matrix.    

 Upon assessment of the system suitability requirements, reproducible and 

symmetrical bands for both H and NH were seen under the ideal chromatographic 

parameters.  The chromatographic conditions from these results were used for 

subsequent experimentation in the biological matrix.   Moreover, favorable ranges for 

organic content and pH of the mobile phase were carried forth for further optimization 

in plasma. From the detection and chromatographic investigations, the experimental 

conditions that were to be used in the human plasma matrix are included in the table 

below. 
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Table 3-8:  Experimental conditions, with ranges, to be used for RP-HPLC Separation 
of Ionized H and NH in human plasma matrix. 
 
Separation variable    Optimized condition    
 
Column     Agilent® Zorbax Eclipse XDB, C8
       15 x 0.46 cm, 5 μm, endcapped 
Solvents A and B 
     % B     methanol and/or acetonitrile, 15-35% 
     Buffer (compound, pH, concentration) KH2PO4/H3PO4 buffer (pH=3.0-3.5, 
25mM) 
 
Flow rate     Isocratic, 0.8 – 1.2 ml/min 
 
Column temperature    22 - 40ºC  
 
Injection volume    20-80 μl     
 
Detection for H and NH   λexcitation

 = 300 nm, λ emission = 433 nm 
 

 

3.3.3 Extraction Optimization and Internal Standard Investigation 

 As an essential part of the bioanalytical method development, the sample 

preparation is intended to provide a reproducible and homogeneous solution that is 

suitable for injection into the HPLC system.  The goal of the sample preparation is to 

produce a sample aliquot that is relatively free of interferences, will not damage the 

HPLC column/system and is compatible with the intended HPLC method.    

Furthermore, the careful method development of the sample extraction method deserves 

scrutiny because the method precision and accuracy are frequently determined by the 

sample pretreatment procedure (van der Wal and Snyder, 1981).    

 Norharman and harman have been analyzed in different matrices including fried 

food, plant extracts, beverages and biological matrices such as urine, blood plasma and 
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organs.     The majority of the extraction techniques have been in part to the evaluation 

of heterocyclic amines (HCA) in food sources.  These methods include liquid-liquid 

extraction with lipophilic solvent at alkaline pH (Airaksinen and Kari, 1981a) or solid-

phase extraction using one ion-exchange column (Herraiz, 2000) or extraction with 

phthalocyanin-based blue cotton, blue rayon or blue chitin (Hayatsu et al., 1991; Bang 

et al., 2002).  Although these methods proved quite successful in the quantification of 

the β-carbolines in food sources, their applicability in human plasma has yet to be 

determined.     

 Since the amounts of norharman and harman in the human plasma matrix are 

low, and plasma is considered a complex matrix, multi-step enrichment and preparation 

techniques are necessary.    A liquid-liquid extraction method involving alkalinization 

and tert-butyl-methyl-ether extraction (Breyer-Pfaff et al., 1996) was developed to 

consolidate norharman and harman from 2-ml of human plasma.  Although the method 

proved sensitive enough to detect physiological concentrations, an internal standard was 

not used and method ruggedness and reproducibility were not reported.  Solid-phase 

extraction (SPE) procedures have also been performed for extraction of H and NH from 

plasma using C18 (Spijkerman et al., 2002) and phenyl (Rommelspacher et al., 1991b) 

SPE sorbent beds, but the methods have inadequacies such as poor sensitivity and the 

lack of an internal standard, respectively.  

 In order to improve upon the inadequacies of reported methods, the following 

extraction investigations were designed to provide a reproducible quantitative recovery 

of both H and NH analytes from human plasma.  The goals for optimization of the 
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extraction was to (1) obtain the highest recovery of each analyte to enhance sensitivity 

and assay precision, (2) to attain a reproducible extraction method, and (3) to minimize 

the sample-pretreatment steps in order to decrease the opportunity for errors.  Moreover, 

the investigation involved an exploration of a suitable internal standard for calibration 

purposes and, in the case of extensive sample preparation, correct for sample losses due 

to the extraction.    

 With respect to the exploration of the extraction process, SPE techniques were 

chosen over the LLE (liquid-liquid extraction) a priori.    SPE was chosen due in part to 

its advantages over LLE methods including a more complete extraction of the 

analyte(s), a more efficient separation of interferences, easier collection of the total 

analyte fraction, and more efficient separation process that LLE methods (Snyder et al., 

1997).    Practically, SPE is effective in removing interferences and “column killers” 

and this extraction technique permits the trace enrichment or concentration of the 

analyte, especially in the case for the low reported concentrations of H and NH.  A 

primary disadvantage of SPE is the variability associated between extraction columns of 

similar column chemistry and configuration (Snyder et al., 1997).   For this reason, 

employment of an internal standard may be necessary to account for differences in the 

efficiency of analyte removal from the sample. 

 Although SPE methods provide fast and efficient pre-analysis sample clean-up 

and concentration, the development requires attention to four related factors:  (1) proper 

physical and chemical characterization of the analyte and the sample is required.  

Factors such as the analytes’ polarity relative to the sample matrix, the presence of 
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ionizable functional groups, solubility and molecular weight determine how strongly the 

analyte is retained by the packing bed; (2) A proper retention strategy needs to be 

explored.   Generally, the analyte is retained on the packing bed while the interferences 

are unretained or washed off the packing bed prior to eluting the analyte; (3) A suitable 

packing type and bed size should be investigated.  Different packing types offer 

different selectivities that should be exploited to maximize the structural differences 

between the analyte and sample interferences.  The goal is to obtain the cleanest extract 

with the highest recovery.  (4)  Suitable conditioning, wash and elution solvents should 

be   explored for maximal and reproducible recoveries.  Attention should be given to the 

solvent strength relative to the packing material.  The final conditioning solvent should 

be relatively weak which will not act as an elution solvent.  Buffers should be used in 

the case of ionizable species.  The wash solvents should remove the weakly retained 

interferences but should not be strong enough to elute the analyte.  Finally, the elution 

solvents should be strong enough to completely elute the analyte in a small volume.  

Post-column concentration may be employed to improve the sensitivity of the method.  

Each of the aforementioned factors should be considered and optimized to result in a 

robust and sensitive SPE method.  

 The physicochemical characteristics of H and NH have to be considered when 

developing a SPE method for human plasma.  As the human plasma matrix is quite 

complex and may possess many interfering substances, the lipophilicity, pKa, and 

chemical structure plays an important role in the isolation of the analytes of interest 

from the matrix.    Successful isolation of the analytes from the biological matrix 
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depends on the relative affinities of the analyte between the biological matrix and the 

adsorbent and relative ease of eluting the compound for subsequent analysis 

(McDowall, 1989).  Both β-carbolines are regarded as hydrophobic molecules that are 

strongly to moderately non-polar.   Moreover, the structure owns to a functional group 

that is basic in nature, the ionizable secondary amine.  The imidazoline nitrogen is 

suspected to play a minor role in the retention characteristics on an SPE column, as the 

pKa is present in an extreme range (pKa > 14).    Due to these characteristics, typical 

SPE phases that may be used for the extraction of H and NH consist of reversed phase 

nonpolar bonded phases that are strong to intermediate in hydrophobicity.  Some 

examples of the typical solid phases that exemplify these characteristics include 

octadecylsilane (C18), octylsiloxane (C8), cyclohexyl and phenyl.  Due to the ionizable 

secondary nitrogen, strong cation exchange columns may be used for the SPE method.  

The physicochemical characteristics of H and NH render retention mechanisms 

comprising of hydrophobic van der Waals forces and π-π interactions.    

 Since several sample preparation steps are required, especially in the case of 

SPE, quantification requires the application of an internal standard.  Deuterated 

norharman or harman would be most suitable internal standards for mass spectrometry 

analysis but are not commercially available.   In biological samples such as plasma or 

tissue where lower levels (pg/ml) are detected, the fluorescent synthetic 1-ethyl-9H-

pyrido[3,4-b]indole or 1-propyl-9H-pyrido[3,4-b]indole have been used successfully as 

internal standards in HPLC analyses with fluorescence detection (Pfau and Skog, 2004).   

The synthesis of these compounds is quite laborious and requires extensive spectral and 
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structural confirmation prior to appropriate use.    Therefore, an appropriate internal 

standard was explored for the use in H and NH quantification in plasma.   

 For HPLC-FD the internal standard is generally a different compound from the 

analyte, but is well resolved in the HPLC separation (Snyder et al., 1997).  The main 

purpose of the internal standard is to compensate for changes in sample size and 

recovery from SPE.   When added prior to sample preparation, a properly chosen 

internal standard can be used to correct for sample losses.  These sample losses may be 

due to variability associated between extraction columns of similar column chemistry 

and configuration.   The internal standard should be chosen, in part, to mimic the 

physicochemical characteristics of the analyte in the pretreatment steps (Snyder et al., 

1997).   Therefore, requirements for the choice of an appropriate internal standard 

include: (1) adequate resolution in the HPLC separation from the other analytes, whilst 

maintaining a similar retention (capacity factor) behavior; (2) should not be in the 

original sample or be a precursor of the endogenous analytes; (3) should mimic the 

analyte in any of the sample pretreatment steps; (4) should be commercially available in 

high purity; and (5) should be stable and unreactive with components of the matrix or 

mobile phase.  These necessities were evaluated in conjunction with the calibration.    

The calibration plot incorporates the ratio of the peak area of the analyte (H or NH) to 

the internal standard peak area plotted vs. the concentration of H or NH.     Calibration 

plots are generally assessed for reproducibility and its capacity to be characterized by a 

simple regression model.   
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 The following experiments were performed to appraise an appropriate SPE 

method for the extraction of H and NH from human plasma.  Moreover, the exploration 

of a suitable internal standard for the extraction method was performed.  The 

methodology for assessment of the appropriateness of an SPE method and internal 

standard included the following: 

1. An internal standard that possessed similar physicochemical characteristics to H and 

NH was sought through reported literature.  The physicochemical characteristics 

evaluated included lipophilicity, solubility, and the ability to give an adequate 

fluorescence signal. 

2. Chromatographic resolution of both H and NH along with the internal standard was 

explored by using the aforementioned HPLC parameters (see table 3-8).   The 

criteria for the acceptance of chromatographic parameters included resolution of H 

and NH along with the internal standard, peak shape and favorable capacity factors 

for all compounds. 

3. SPE extraction was initially evaluated for the H and NH analytes in a neat buffered 

solution in order to obtain optimal conditioning, loading, washing and eluting 

conditions for the highest and most reproducible absolute recoveries.  

4. SPE conditions were further evaluated using the internal standard along with both 

analytes to obtain optimal absolute and relative recoveries and reproducibility.  

5. The SPE methodology obtained from neat buffered solution was subsequently used 

for the extraction method from human plasma. Further exploration of additional 
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extraction steps (i.e., protein precipitation) were evaluated in the event that further 

sample clean up was required.  

6. Calibration curves were constructed in neat solution and plasma to evaluate the 

amount of plasma required to quantify a low amount (~5 pg/ml), concentration 

dependency of the extraction recovery, and to assess the concentration range to be 

used for calibration curves. 

 The optimized SPE extraction method was to be carried forth for method 

validation purposes. 

 

3.3.3a Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  Solvents used for the chromatographic optimization measurements were of 

spectroscopic or HPLC grade and used after filtration with a 0.2 μm porosity filter 

(Corning, Corning, NY).    In addition to all reagents used for the aforementioned 

optimized investigations, the extraction experiments also incorporated the following 

materials and reagents. 

1. Yohimbine HCl, 98%  (Sigma-Aldrich Corp., St. Louis, MO) 

2. Potassium phosphate buffer (for buffers at pH 7.0) 

 - monobasic potassium phosphate, KH2PO4 (Sigma-Aldrich Corp, St. Louis, 

 MO) 

 - dibasic potassium phosphate, K2HPO4 (Sigma-Aldrich Corp., St. Louis, MO) 

3. Borate buffer (for buffers pH 8 and 9) 
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 - Sodium tetraborate decahydrate, Na2BB4O7*10 H2O (Sigma-Aldrich Corp., St. 

 Louis, MO) 

 - Boric acid, H3BO4 (Sigma-Aldrich Corp., St. Louis, MO) 

4. Acetonitrile, HPLC grade (VWR, West Chester, PA) 

5. Methanol, HPLC grade (VWR, West Chester, PA) 

6. Perchloric acid, 70% HClO4 , double distilled (GFS Chemicals, Columbus, OH) 

 

3.3.3b Equipment   

1. Solid Phase Extraction (SPE) cartridges - Mixed mode (C18-cation exchange) and 

lipophilic sorbent beds (C2, C8, C18 and phenyl), 100 mg bed mass, 1.5 ml volume 

(Alltech, Deerfield, IL)  

2. Centrifuge – Eppendorf 5804R, Benchtop Temperature Controlled (Westbury, NY) 

3. SPE manifold – 24-port, with stopcocks (Alltech, Deerfield, IL)  

4. Vacuum for SPE manifold (KMF Neuberger Vacuums, Trenton, NJ) 

5. Borosilicate glass test tubes, 15mm x 125mm, 16 ml volume (VWR, West Chester, 

PA) 

6. Polypropylene tubes, 15 ml volume (VWR, West Chester, PA) 

 

3.3.3c Preparation of Solutions and Standards 

1.  Harman and Norharman in methanol – combination standards were made for both 

analytes. A stock solution of 1 µg/µl (1 mg/ml) was made for H and NH.  

Approximately 3 mg for both H and NH was added to a silanized, 4-ml amber vial in 
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which an appropriate volume (~3 ml) was added to dilute to a desired concentration, 

ensuring to account for salt weight and purity.   Serial dilutions of 50 ng/µl and 500 pg/ 

µl were made from the stock solution to create smaller “stock solution” concentrations.  

All concentrations used for the experiments were diluted, with methanol from these 

three stock solutions. 

2.   Yohimbine in methanol - A stock solution of 1 µg/µl (1 mg/ml) was made.  

Approximately 2 mg for both H and NH was added to a silanized, 4-ml amber vial in 

which an appropriate volume (~2 ml) was added to dilute to a desired concentration, 

ensuring to account for salt weight and purity.   Serial dilutions of 100 ng/µl and 1 ng/µl 

were made from the stock solution to create smaller “stock solution” concentrations.  

All concentrations used for the experiments were diluted, with methanol from these 

three stock solutions. 

3.  Protein precipitation solutions – all subsequently kept at 4˚C until use. 

  a)  Acetonitrile:Methanol – approximately a 1:1 ratio of both organic solvents  

  b) 1 M HClO4 –  for 100 ml, 8.54 ml of a 70% HClO4 solution (11.6M) was 

  added to a volumetric flask and qs to 100 ml with Milli-Q® water. 

  c)  1 M HClO4 : Acetonitrile – approximately a 75:25 ratio of acid to organic 

  solvent. 

 

3.3.3d Methods 

 A literature review was conducted in order to find a suitable internal standard 

for H and NH quantification.    Desired characteristics for the internal standard included 
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similar physicochemical properties, structural similarity, and solubility as compared to 

H and NH.    Although an internal standard need not be structurally similar to the 

analytes, the structural attributes of the internal standard was important for the 

fluorescence detection and chromatographic behavior seen with H and NH.  Internal 

standards for use in the extraction of β-carbolines from food sources included sotalol, 

ibogaine, harmaline, and harmine.   With the exception of sotalol, the reported internal 

standards possess a similar planar β-carboline scaffold.    Harmaline and harmine were 

avoided as internal standards as they may be present in human plasma and/or may serve 

as precursors of the H and NH analytes.    The fluorescence qualities of ibogaine is not 

well understood but is suspected to be sufficient in its quantum yield.  However, 

ibogaine could not be purchased for the experimentation due to its classification as a 

Schedule I hallucinogen (Sigma-Aldrich, 1997).     

 Yohimbine (17-hydroxyyohimban-16-carboxylic acid methyl ester) was chosen 

as an initial internal standard as the physicochemical and structural characteristics are 

similar to those of the β-carboline analogues.  Yohimbine has been successfully 

quantified in human plasma via HPLC with fluorescence detection (Owen et al., 1985) 

in sub-nanogram levels.    Most importantly, this compound is not found endogenously 

in humans and is not suspected to be a metabolic precursor of the analytes of interest.    

The strong fluorescent characteristics are similar to those of H and NH, with yohimbine 

possessing a relatively large quantum yield (Gurkan, 1974). The structure and 

physicochemical characteristics of yohimbine are shown in the figure below.  
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            MW* (g/mol)                      390.9 
            pKa                         8.44, 14.39                                 
 Log D                                    2.4                                              
 Solubility*      slightly soluble in H2O (10 mg/ml), sparingly soluble in dilute 

        acids, soluble in ethanol, methanol 
 
Figure 3-9:  Structure and physicochemical characteristics of yohimbine (calculated 
using Advanced Chemistry Development (ACD/Labs) Software V 8.14 for Solaris, © 
1994-2007, ACD/Labs; *(Sigma-Aldrich, 2002) 
 

 Similar to the H and NH compounds, yohimbine has two ionizable nitrogen 

functional groups and a planar, conjugated ring structure.  Both of which can prove 

beneficial for the optimization of chromatographic and SPE experiments.     

 Chromatographic experiments were performed to obtain most favorable 

resolution of the analytes and the proposed internal standard yohimbine (YOH).   

Optimization for H, NH and the YOH separation were made in neat solution, prior to 

SPE exploration.    Initial chromatographic conditions were based on those obtained 

from prior optimization of H and NH separation (see table 3-8).    The percent of 

organic phase was varied from 15-35% methanol or acetonitrile.   If needed, pH of the 

aqueous phase was altered between 3.0-3.5 to optimize the peak shape of all analytes 

and YOH.   Within this pH range, YOH is suspected to be ionized at the pyridine 

nitrogen site of the structure, similar to the other β-carboline analogues.    The influence 

of mobile phase flow rate was investigated to obtain ideal capacity factors and 
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resolution.    The fluorescence detection parameters for YOH was taken from reported 

results: λexcitation=  280 nm, λemission = 360 nm (Owen et al., 1985).  Of note, YOH could 

not be detected using the excitation and emission wavelengths needed for H and NH 

detection.   

 In the case of H and NH, a range of expected physiological concentrations were 

tested for quantification and linearity in the presence of the internal standard.    

Calibration curves were constructed within expected physiological ranges (5 pg/ml – 

2.0 ng/ml for both H and NH) to determine linearity and the least quantifiable amount 

on column.  To evaluate the suitability of YOH as an appropriate IS, similar 

concentrations were used for assessment of linearity and to determine an ideal 

concentration needed for the internal standard.   

 Initial exploration of a potential SPE method was performed in water at a 

concentration of 1 ng/ml for both analytes and IS.   Mixed mode (C18-cation exchange) 

and lipophilic sorbent beds (C2, C8, C18 and phenyl), with 100 mg bed mass and 1.5 ml 

volume (Alltech ®) were assessed for retention capacity of H, NH and YOH.   Loading, 

washing, and elution solvents, with pH adjustments were investigated for adequate and 

reproducible recovery.   

 For the lipophilic sorbent beds, loading solvents included unbuffered and 

buffered aqueous solutions at least 2 pH units above the pKa of H and NH.   At pH > 7 

both analytes are expected to be in its neutral state, thereby increasing the retention onto 

the lipophilic sorbent bed.    Buffering solutions included pH 7 phosphate buffer (20 

mM) and pH 8 and 9 H3BO4/Na2BB4O7 buffer (20 mM).   Analyte retention onto the SPE 
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column was assessed by evaluation of breakthrough upon loading.   Ideal conditions 

were regarded as possessing minimal to no analyte breakthrough with maximum 

retention of the analytes.   Washing solvents included water, buffered solutions (same as 

above), and a range of aqueous mixtures with organic solvent (5-30% methanol).   The 

washing solvent with the highest percent organic, with minimal analyte breakthrough, 

was subsequently employed for the plasma analysis for the eluting of potential 

interfering substances.     Elution solvents included 100% organic solutions of methanol 

and/or acetonitrile that was or was not acidified with 0.5% acetic acid.  The pH 

adjustment of the elution solvent was explored to ensure the ionization of the analytes 

to, in turn, release the analytes from the SPE sorbent bed.    Elution volumes ranging 

between 1 and 3-ml were explored with the acceptance criteria being the lowest volume 

of elution solvent that yielded the highest recovery.  If needed, concentration of the 

elution solvent was performed via N2 in order to achieve an adequate signal for HPLC 

analysis.  Upon dry-down, the residue was dissolved in approximately 100 μl of mobile 

phase.    This step required the use of a control to assess for sample loss due to the N2 

(dried down and reconstituted vs. neat solution in reconstitution solvent).   For each 

extraction condition, experiments were performed in triplicate.   The SPE vacuum flow 

was not to exceed 1 ml/min to minimize analyte breakthrough. 

  Absolute recovery (extracted vs. unextracted area under the peak) was evaluated 

for each H and NH at 50 pg/ml, 500 pg/ml, 1.0 ng/ml and 2.0 ng/ml.   Moreover, similar 

concentrations were used to assess absolute recovery for YOH.  Ideal conditions yielded 

maximum and most reproducible recovery for all analytes and internal standard.  In 
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addition, relative recovery (analyte to internal standard peak area ratio for extracted vs. 

unextracted) was assessed to compare the relative retention behavior of H and NH to 

YOH.  The SPE conditions that yielded the most reproducible results were used for 

assessment of H, NH, and YOH extraction recovery from pooled plasma.  Recovery 

experiments were performed in triplicate. 

 The ideal chromatographic parameters and SPE conditions were consequently 

used for evaluation of H and NH extraction from plasma.  Pooled human plasma 

(EDTA anticoagulant, non-smoking, drug-free, pooled from n = 20 males and females) 

was utilized as the matrix for SPE recovery exploration.    Optimization was performed 

using a 1.0 ng/ml concentration of both H and NH with 1 ng of YOH internal standard.  

The concentrations used for H and NH recovery assessment included 10 pg/ml, 50 

pg/ml, 500 pg/ml, 1.0 ng/ml and 2.0 ng/ml.    Moreover, “blank” plasma (unspiked) and 

a “zero” concentration level (spiked with 1 ng YOH internal standard) to evaluate the 

chromatographic interference of the internal standard and assess if an endogenous H 

and NH signal is present, respectively.   No more than 100 μl of standard solution was 

spiked into the plasma, ensuring that > 90% of the total volume was plasma matrix.   

The amount of pooled plasma that was used for the assessment was 1-ml.  In the case 

that the required sensitivity (~5 pg/ml) was not obtained larger volumes were used (up 

to 3-ml).  Larger volumes of plasma were not used due to the clinical sampling volume 

constraint and practicality of using a 100 mg sorbent bed for SPE (volumes greater than 

3-ml may cause decreased capacity of retention for the SPE sorbent bed).           



99 

 In the event that further sample clean-up be required, protein precipitation 

techniques were evaluated as a pretreatment step prior to the optimized SPE method.    

The viscosity and sample size of the plasma was thought to have a functional hindrance 

on the loading of the sample, with the viscous sample not being able to flow through the 

SPE tube at a given flow rate of 1 ml/min.    For 1-ml of pooled plasma, protein 

precipitation solutions included 1-ml cold acetonitrile, 1-ml cold acetonitrile:methanol 

(50:50), 1-ml cold HClO4 and 1-ml cold HClO4:acetonitirile (75:25);  each of which 

have shown to be effective in the extraction of highly lipophilic compounds (Souverain 

et al., 2004).    All solutions were kept in 0 ºC prior to use.  For each experiment, pooled 

plasma spiked with 1.0 ng of each analyte and internal standard was subjected to protein 

precipitation, with a 1:1 mixture of plasma to protein precipitation solution.  The 

mixture was vortexed for 2 minutes and refrigerated between 10 ºC for 10 minutes.  The 

sample was later centrifuged at 2300 rpm for 10 minutes at 4 °C.  The supernatant was 

pH adjusted to pH = 9 with 100 µl of 1 N NaOH and H3BO4/Na2BB4O7 buffer (pH = 9.0, 

20 mM) and subjected to the SPE cartridge.   

 A comparison was made to the plasma sample with and without protein 

precipitation.    The plasma samples evaluated without protein precipitation were treated 

with a buffer dilution (4:1 buffer to plasma) to ensure proper flow rates and minimize 

viscosity effects through the SPE column.   The final SPE and protein precipitation 

extraction method was to be used for subsequent method validation experiments.   
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3.3.3e Results 

 The proposed YOH internal standard was chromatographically resolved from 

the H and NH analytes using the following conditions:   

 
 
Table 3-9:  Experimental conditions for RP-HPLC Separation of Ionized H, NH and the 
internal standard, YOH, in neat solution. 
 
 
Separation variable    Optimized condition    
 
Column     Agilent® Zorbax Eclipse XDB, C8
       15 x 0.46 cm, 5 μm, endcapped 
Solvents A and B 
     % B     35% methanol 
     Buffer (compound, pH, concentration) KH2PO4/H3PO4 buffer (pH=3.2, 25mM) 
 
Flow rate     Isocratic, 0.95 ml/min 
 
Column temperature    40ºC  
 
Injection volume    50 μl     
 
Run Time     11 minutes 
 
Detection for H and NH   λexcitation

 = 300 nm, λ emission = 433 nm 
           YOH    λexcitation

 = 280 nm, λ emission = 360 nm  
 

  

 Slight modification of the flow rate and % organic composition from the initial 

RP-HPLC conditions yielded adequate resolution and peak shape of both H and NH (Rs 

>1.9) and the internal standard YOH.      The capacity factor (3 < k < 9) and number of 

theoretical plates (> 4000) for all compounds were in the desired range.  Peak shape 

(including asymmetry and tailing factor) was slightly compromised, but yielded 

sufficient results for quantification purposes.    The HPLC chromatogram for the 
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separation of NH, H and the proposed internal standard, YOH is shown in the figure 

below. 

 

       

Figure 3-10:  Sample chromatogram of spiked NH and H (500 pg/ml each), with YOH 
as internal standard (1 ng/ml) in neat solution.  Retention times for NH, H, and YOH 
were at 4.86, 5.89, and 7.95 minutes, respectively.   
 

 Chromatographic response was linear throughout the concentration range 

through ~2.5 ng/ml for H (R2 > 0.996), NH (R2 > 0.997) and YOH R2 > 0.998).  The 

minimum amount quantified on column (as deemed by the limit of detection) for H, NH 

and YOH was 1.6 pg, 2.1 pg, and 53 pg, respectively.  The optimized RP-HPLC 

conditions were used for the evaluation of a suitable SPE extraction methodology.     

, C Lipophilic sorbent beds including C8 18, and phenyl, yielded high (>80%) and 

reproducible (%COV< 6%) absolute recoveries in buffered water matrix for all analytes 

and internal standard. The phenyl sorbent bed was initially chosen for subsequent 
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plasma analysis to increase the selectivity of the extraction.    All solutions used for SPE 

from a neat matrix required optimization.  The loading conditioning solution required 

buffering to maintain significant retention of all the compounds.  In the case of the 

loading solution, 97±3% of H and NH was retained while 92±4% of YOH was retained 

upon loading of a pH = 9, H3BO4/Na2BB4O7 buffer (pH = 9.0, 20 mM) adjusted solution 

(n=3 extractions).   The systematic decrease in pH of loading and conditioning solvents 

(from pH 8 to 7), decreased the retention of the compounds slightly but caused 

significant amount of variability in the retention capacity (%COV > 9% for all 

compounds).   

 With the specified pH for conditioning, the washing solvents included water and 

the H3BO4/Na2BB4O7 buffer (pH = 9).  The amount of organic solvent for the washing 

step could not exceed 10% methanol without significant analyte breakthrough.    A 

water washing step was employed prior to elution in order to minimize salt transfer into 

the elution solvent step.   The water wash step, although not buffered, did not yield any 

significant analyte breakthrough.  At least 2-ml of elution solvent was required to elute 

H, NH and YOH from the phenyl sorbent bed.   The organic solutions that were capable 

of complete elution included 100% methanol and 100% acetonitrile.   Acidification of 

the elution solvent was not necessary to elute the compounds from the sorbent bed.     

As consequence of the elution volume, a dry-down procedure was required to 

concentrate the analyte mixture prior to introduction to the HPLC.  Concentration of the 

sample via N2 did not lead to significant sample loss.  Silanization of all glassware used 

in the extraction procedure was used as precautionary measures to ensure maximum and 
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recproducible recoveries.  For a neat solution of H, NH and the internal standard YOH, 

the SPE method in depicted in figure 3-11 was employed.  

 

1 ml aliquot of pH = 9 buffered water  
with H/NH and 1 ng of YOH 

SPE Extraction (phenyl, 100 mg sorbent, Alltech®) 

Conditioning 
2 ml MeOH 

1 ml Milli-Q water  
2 ml  H3BO4/Na2B4O7 buffer (pH = 9.0, 20 mM)  

 
Loading 

 1.0 ml sample, adjusted to with  
H3BO4/Na2B4O7 buffer (pH = 9.0, 20 mM)  

 
Washing 

1 ml Milli-Q water 
2 ml H3BO4/Na2B4O7 (pH = 9.0, 20 mM)  

1 ml 10% Methanol and 90% H3BO4/Na2B4O7 buffer, pH = 9 
1 ml Milli-Q water 

 
Eluting 

3.0 ml MeOH 

Sample evaporated to dryness via N2 

Residue dissolved in 100 μl of mobile phase 

Injection volume of 50 μl into HPLC-FD 
 

 
Figure 3-11: Optimized SPE method in a 1-ml neat buffered solution for H, NH, and 
the internal standard YOH.   
  

 The concentration-dependency for the extraction of H, NH, and YOH from a 

neat matrix was evaluated.   Absolute recovery of both analytes and YOH at 
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concentrations of 50, 500, 1000, and 2000 pg/ml was > 94% with %COV < 4.3 % for 

each analyte, across the concentration range evaluated. The relative recovery for both H 

and NH at all concentrations was > 90% with %COV < 2.9 %.       

 

Table 3-10:  Absolute recovery from buffered water of norharman, harman and 
yohimbine following SPE (n=3 for each concentration).  (% mean ± SD). 
 
    50 pg  500 pg  1000 pg 2000 pg

Harman          95.6 ± 2.1 97.1 ± 0.5 96.4 ± 1.9 98.7 ± 5.2 

Norharman          97.6 ± 4.3 98.6 ± 4.1 95.8 ± 1.2 93.4 ± 4.7 

Yohimbine (IS)         94.4 ± 5.2 95.9 ± 1.2 95.2 ± 2.3 94.5 ± 3.6 

 

 The recovery experiments performed in the neat buffered matrix were also 

performed in the pooled plasma matrix.   For plasma experiments, further sample clean 

up was needed for elution through the SPE cartridge.   Protein precipitation was 

employed to ease the loading of the plasma sample and to remove potential additional 

interferences.   Moreover, the use of this additional cleanup step would potential extend 

the lifetime of the HPLC column used for the analysis.   The efficacy of the various 

precipitants in removing the protein from plasma sample and extracting the H and NH is 

shown in table 3-11.   Using 1 ng/ml level of analyte concentration the protein 

precipitation optimization yielded highest and most consistent relative recovery using 1-

ml cold HClO4:acetonitirile (75:25). Moreover, this particular protein precipitation 

treatment yielded statistically similar results to the samples not subjected to protein 
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precipitation (harman: p-value = 0.2701 and norharman: p-value = 0.1685, via unpaired 

Student’s t-test). 

 
 
Table 3-11:  Relative recovery from pooled plasma of norharman and harman (1 ng 
each) using different protein precipitation methods prior to SPE (n=3 for each 
concentration, % mean ± SD). 
 
 None* ACN ACN:MeOH  HClO4 HClO4:ACN*

Harman 85.3 ± 2.1 73.6 ± 14.1 79.1 ± 9.8 80.3 ± 5.9 89.7 ± 3.2 

 

Norharman 

 

83.2 ± 1.9 

 

8.2 ± 11.9 

 

77.2 ± 8.1 

 

5.8 ± 7.9 

 

91.9 ± 2.7 

 
(All solutions were used in a 1:1 ratio of protein precipitation solution to plasma.  ACN: 
acetonitrile; MeOH: methanol, HClO4: perchloric acid) *statistically similar via 
Student’s t-test, p-value > 0.05 
 

 

 The concentration dependency of the extraction procedure was evaluated at five 

different concentrations (see table 3-12).   The “blank” plasma (no spiked H, NH, or 

YOH) yielded a significant chromatographic signal for H and NH but not YOH, 

suggesting that there are no interferences in the pooled plasma for the YOH signal.  The 

“zero” concentration level (spiked with only 1 ng YOH internal standard) resulted in a 

significant signal for H and NH, which is suspected that these are constitutive of the 

pooled plasma.    Chromatograms for the “blank” and “zero” level are present in the 

validation section for this chapter. 
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Table 3-12:  Concentration-dependency of relative recovery of harman and norharman 
from 2-ml of pooled plasma after protein precipitation and SPE (n=3 for each 
concentration, % mean ± SD). 
 

Concentration (pg/ml) Harman Norharman 

10 81.6 ± 2.3 80.9 ± 1.3 

50 85.1 ± 2.5 82.5 ± 1.6 

500 88.2 ± 3.9 91.4 ± 5.3 

1000 89.1 ± 4.2 91.3 ± 3.1 

2000 91.7 ± 6.9 93.6 ± 7.4 

  

 Throughout the concentration range, the relative recovery was > 80% suggesting 

that the method of extraction resulted in a relatively high recovery from pooled plasma.    

A slight concentration dependency on the extraction was observed with larger 

concentrations yielding higher recoveries.  The extraction method throughout the 

concentration range was reproducible with % COV < 6% for both analytes across the 

concentrations.   In is expected that the constitutive contribution of H and NH in pooled 

plasma would increase the relative recovery from samples without endogenous analyte.   

 The amount of plasma needed to attain an adequate lower limit of quantification 

was initially explored.  For the experiments three volumes of “zero” concentration were 

evaluated, 1-ml, 2-ml, and 3-ml of pooled plasma.  The 2-ml plasma volume yielded 

statistically higher signals (peak area) compared to that of the 1-ml volume (p-value > 

0.182 for both analytes, via unpaired Student’s t-test).   In comparison with the 3-ml 

volume, peak areas of H and NH resulted in a less that proportional increase in signal, 

suggesting that these larger volumes affects the retention capacity of the SPE cartridge.  
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Moreover the variability in the extraction increased with the increase to the 3-ml 

volume.   This evaluation of volume suggests that 2-ml of pooled plasma was optimal is 

obtaining an adequate signal from presumably, drug-free, tobacco smoke-free plasma. 

Further evaluation of the accuracy, precision, recovery and endogenous signals of H and 

NH will be presented in the following section on validation of the method. 

 

3.3.3f Discussion  

 Prior to developing the extraction method and choosing an appropriate internal 

standard, proper characterization of the physical and chemical characteristics of H and 

NH was necessary.  Factors such as the β-carbolines’ polarity relative to the matrix, the 

presence of charged functional groups, and solubility, etc. was considered to assess how 

strongly the analyte would be retained by the packing bed.    For the extraction of H and 

NH from human pooled plasma, YOH was successfully used as an internal standard.    

Possessing similar physicochemical characteristics (i.e., logD and pKa), a strong 

fluorophore, and similar retention characteristics on the lipophilic SPE sorbent beds, 

YOH proved to be suitable for H and NH extraction conditions.   The chromatographic 

baseline resolution between H and NH was maintained with the addition of the well 

resolved YOH, maintaining a relatively short chromatographic run time (~11 minutes).    

From the original chromatographic conditions, the addition of YOH required only 

negligible changes in chromatographic parameters.  The signal response for both H and 

NH analytes was not compromised, maintaining peak shape, reproducibility and 
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sensitivity, while yielding a linear response for the YOH internal standard throughout 

the concentration range evaluated. 

 The primary approach used for the extraction involved retaining H and NH on 

the packing bed while interferences were unretained or washed off of the sorbent bed 

prior to elution of the analytes.  Packing beds of different selectivities were exploited to 

explore to maximize structural differences between the analytes and the sample 

interferences.  The phenyl sorbent bed was chosen, in part, due to the high and 

reproducible recoveries seen in the neat buffered matrix.   Moreover, the retention 

chemistry of the phenyl ring of the sorbent is hypothesized to interact with the phenyl 

rings associated with the H and NH analytes and the proposed internal standard, 

improving selectivity of the extraction method.     In essence, the selectivity of the 

phenyl sorbent bed was expected to provide a unique, non-polar retention mechanism 

via π-π and hydrophobic interactions with the phenyl rings of the analytes and internal 

standard.    This phase has been successfully utilized in the extraction of other aromatic 

hydrophobic compounds from biological fluids. 

 In addition to the SPE column configuration, thorough experimentation of 

suitable conditioning, wash and elution solvent was performed.  For each step, attention 

was given to the solvent strength and pH relative to the packing material.   A pH = 9 

buffered conditioning step (H3BO4/Na2BB4O7 buffer: pH = 9.0, 20 mM) minimized the 

variability associated with the absolute and relative recovery of H and NH to YOH.    

The pKa’s of all compounds tested for the extraction dictated the need for a buffered 

conditioning and loading step in order to control the ionization of the potentially 
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charged compounds.  The wash solvents were used effectively and removed weakly 

retained interferences, but were not strong enough to elute the analytes and internal 

standard.  A 10% methanol buffered solution proved successful in the removal of 

interferences while maintaining a high and reproducible recovery.   The methanol 

elution solvent was strong enough to completely elute the analytes in a relatively small 

volume.  Using the optimized extraction procedure provided high and reproducible 

absolute recoveries from the neat matrix, prompting its use in the plasma matrix. 

   A 1-ml plasma sample was insufficient to obtain a significant endogenous peak 

of both H and NH from pooled plasma (healthy, not drug-dependent subjects).   

Therefore, a 2-ml plasma sample was necessary to detect a significant chromatographic 

response.  Extraction of plasma samples greater than 2-ml resulted in the functional 

issues of irreproducible SPE solvent flow and pressure fluctuations of the vacuum 

manifold.     Dilution of the sample, albeit a solution, required relatively large volumes 

to be passed through the SPE cartridge, increasing the chances of analyte breakthrough 

and prolonging the time for analysis.    The effects of the sample volume on the SPE 

extraction required an additional protein precipitation step to the SPE procedure in order 

to provide a cleaner extract and to minimize SPE time.  A 1-ml cold HClO4:acetonitirile 

(75:25) treatment provided a clean extract and reproducible recovery for subsequent 

HPLC analysis.  The 1 M HClO4 solution alone provided a superiorly clean extract but 

the addition of acetonitrile provided additional extraction efficiency.  As all compounds 

of interest are highly lipophilic, the addition of a strong solvent like acetonitrile, would 

increase the extraction yield more so than the use of the aqueous HClO4 solution.   
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 Upon investigation of the concentration dependency of the extraction of H and 

NH from 2-ml of plasma, recoveries varied only slightly but were all above 80%.  The 

endogenous contribution, in addition to the spiked H and NH, are expected to cause an 

increased absolute and relative recovery from sample not containing constitutive H and 

NH.  Therefore, the relative recoveries obtained in the concentration dependency 

investigation are thought to be a product of endogenous and spiked H and NH.   On a 

side note, the artifactual formation of the β-carbolines upon subjecting the biological 

matrix to an acidic environment may cause circulating precursors to condense with 

aldehydes (Tsuchiya et al., 1999).    The evaluation of artifactual formation of H and 

NH from the extraction process will be assessed in the next section.    For the most part, 

the recoveries obtained from the final extraction procedure are relatively high (>80%), 

and more importantly reproducible.   

 Extraction from the pooled plasma matrix resulted in no interfering substances 

for the internal standard, as deemed by a lack of a substantial signal, at the expected 

YOH retention time, from the blank sample (no H, NH or YOH spiked).   Moreover, the 

addition of YOH to pooled plasma did not affect the signal for either H or NH, 

suggesting that YOH is not a precursor of the analytes of interest. 

 In summary, a combination protein precipitation-SPE extraction procedure was 

developed for the analysis of H and NH in 2-ml of human pooled plasma.  An internal 

standard, YOH, was successfully employed for the extraction process.  The optimized 

procedure was subsequently used for the validation of the complete method.  The final 

extraction method is summarized in the figure below. 
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Conditioning 
2 ml MeOH 

1 ml Milli-Q water  
2 ml  H3BO4/Na2B4O7 buffer (pH = 9.0, 20 mM)  

 
Loading 

 2.0 ml sample, adjusted to with  
H3BO4/Na2B4O7 buffer (pH = 9.0, 20 mM) and 1N NaOH  

 
Washing 

1 ml Milli-Q water 
2 ml H3BO4/Na2B4O7 (pH = 9.0, 20 mM)  

1 ml 10% Methanol and 90% H3BO4/Na2B4O7 buffer, pH = 9 
1 ml Milli-Q water 

 
Eluting 

3.0 ml MeOH 

Sample evaporated to dryness via N2 

2 ml plasma  
Addition of internal standard, YOH 

SPE Extraction (phenyl, 100 mg sorbent, Alltech®) 

Residue dissolved in 100 μl of mobile phase 

Injection volume of 50 μl into HPLC-FD 

Protein precipitation with 1 ml cold 1M HClO4:ACN 

Centrifuged at 2300 rpm for 10 minutes at 4 °C, 
Supernatant pH adjusted to pH = 9 

Figure 3-12: Optimized protein-precipitation/SPE method using 2-ml human plasma 
and YOH for H and NH quantification.   
 



112 

3.3.4 Validation of Assay Method 

 The general issue of analytical method validation has been discussed and 

documented in great detail (Karnes et al., 1991; FDA, 2001; Bansal and DeStefano, 

2007; Viswanathan et al., 2007), with many official groups establishing guidelines and 

recommendations.  However, these guidelines are generally not specific or only apply to 

certain applications.  Preferred approaches for each phase of an assay validation 

includes the assessment of selectivity, sensitivity, accuracy, precision, reproducibility 

and precision (FDA, 2001).  Other parameters of interests include those of extraction 

efficiency, calibration range, matrix effects, a dilution integrity, and response function 

(e.g., nonlinear or linear)(Bansal and DeStefano, 2007).    As for any bioanalytical 

method, the extent to which an assay should be validated depends on the intended 

application of the method and, in turn, different validation parameters require different 

levels of scrutiny.   Along with testing the acceptability of a method, the validation 

process challenges the bioanalytical method and determines allowed variability for the 

conditions needed to run the method.   

 Special consideration is required for the validation of assays quantifying 

constitutive components of a biological matrix.   In the case for putative biomarkers 

such as H and NH, appropriate clinical and assay controls should be incorporated to 

produce unbiased clinical results.  As most biomarkers are endogenous compounds with 

quantifiable baseline levels in the biological matrix of interest, the nature of biomarkers 

posts a challenge to find analyte-free biological matrix to prepare calibrator standards.  

As calibrators used for drug compound analysis, the biomarker assays require the 
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similar parameters (e.g., accuracy and precision) for validation of the assay method.   

One primary difference between biomarker assays and that of drug compounds is the 

preparation of calibrators not in the intended sample matrix, but in a “surrogate matrix”.  

As a consequence of this divergence, validation is required to demonstrate that the 

analytical concentration-responses relationships are similar in the sample matrix and the 

surrogate matrix.    

 Of the reported methods used for the quantification of H and NH in biological 

matrices, the majority of the validation was performed in a neat buffered matrix, 

without the formal assessment of a matrix effect.  The buffered solutions utilized for 

calibration curves are most likely not representative of calibrations used in biological 

matrix.   It has been recommended that validation be performed and calibration 

curves/control samples be prepared in a matrix same as those being analyzed (Findlay 

and Das, 1998; Shah et al., 2000).   As the background signal of constitutive H and NH 

poses an issue with calibration curve construction, a strategy limiting or completely 

eliminating the background needs to be investigated.  There is no limitation to what can 

be an appropriate substitute matrix for standard preparation.  Removal of the 

endogenous analyte or alterations of the biological matrix have proven successful form 

quantification purposes, but this results in a matrix that it is no longer representative of 

the test sample matrix.   Therefore, if modification of the matrix is necessary, behavior 

(i.e., slope) of the calibration curves between the unadulterated and the altered matrix 

needs to be statistically similar to deem matrix surrogacy.   A “matrix effect” should not 
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be present upon testing the calibration between the two matrices.  Only when surrogacy 

is proven, quantification using the modified matrix may be performed.     

 Considering the issues of endogenous H and NH background and the lack of a 

true blank matrix, the following strategy was employed for the H and NH assay 

bioanalytical validation in human plasma: 

 

1. A pooled plasma matrix was used for the initial exploration of validation, with the 

parameters such as precision, linear range, and selectivity being assessed.    In this 

investigation the goal was to determine, in an unadulterated matrix, the precision of 

the bioanalytical assay throughout a given concentration range.  Accuracy was 

expected to be confounded by the constitutive concentrations of H and NH and was 

not scrutinized during the pooled plasma analysis.  Moreover, an exploration of a 

suitable concentration of internal standard was evaluated at this step.   Short-term 

and long-term stability studies were conducted in the unadulterated pooled plasma. 

2. Exploration of a suitable surrogate matrix included dilution of pooled plasma, to 

decrease the signal for the endogenous H and NH background signal.   The pooled 

plasma matrix was modified until devoid of a significant H and NH 

chromatographic signal (<20% of LLOQ), while minimizing the difference of 

composition in the true matrix.  Therefore, the goal was to obtain a minimal dilution 

factor, attempting to maintain a comparable matrix to the unadulterated plasma 

matrix.    Subsequently, H and NH were spiked into the modified matrix to assess 

the validation parameters aforementioned.  Full calibration curves (n = 6) and 
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quality control samples were used to evaluate the linear range, accuracy and 

precision.  In addition, an AULOQ (Above Upper Limit of Quantification) 

dilutional control was evaluated for precision and accuracy. Of importance, the 

Lower Limit of Quantification (LLOQ) was determined during this step using n = 6 

replicates.   Sensitivity of the method was enhanced by increasing the sample 

volume, if needed.  Recovery assessment was evaluated using this matrix to assess 

the relative recovery and, more importantly, the precision.    

3. Upon calibration curve evaluation of both pooled plasma and modified plasma 

matrix, n = 6 individual, unmodified plasma sources were subsequently spiked with 

H and NH standards.   Owing to the different constitutive concentrations of H and 

NH in the individual plasma sources, it was expected that the intercepts for each 

calibration regression would differ.  Therefore, precision was the primary 

assessment in this portion of the investigation. 

4. To appraise surrogacy of the modified plasma matrix, parallelism studies were 

performed.  The slopes of all calibration curves from pooled plasma matrix, 

modified matrix and the n = 5 different sources were to be statistically similar 

(parallel) in order to deem the modified matrix and appropriate “surrogate” matrix.   

If statistically different, the method was considered to have a significant matrix 

effect and issues of selectivity.   In the case that selectivity was of concern, 

chromatographic or extraction re-optimization experiments were conducted to rid 

the interference. 
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5. For all successive experiments, including ultimate sample analysis, the calibration 

curves and quality control samples were to be constructed using the “surrogate” 

plasma matrix.   

 To account for matrix effects associated with quantification, studies for the 

small molecule validation in a surrogate matrix requires the implementation of 

“parallelism” studies.  In essence, the surrogate matrix should behave similarly to the 

sample matrix for intended use with regard to calibration.  Parallelism (of 

concentration–response curves) is defined as the concentration– response curves of the 

test (surrogate) and standard (unmodified) being identical in shape and differ only in a 

constant horizontal difference (Singer et al., 2006).   If the two curves are shown to be 

sufficiently similar (equivalent) in shape by its linearity and slope, and tested 

statistically for similarity, “surrogacy” of the modified matrix is verified.   The 

parallelism studies were based on reported strategies for large-molecule validation 

(Miller et al., 2001).  The design of the method validation procedures were based on 

previously published reports (Karnes et al., 1991; FDA, 2001; Lee et al., 2006)  

 

3.3.4a Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  All solvents used for the H and NH validation analysis were of spectroscopic 

or HPLC grade and used after filtration with a 0.2 μm porosity filter (Corning, Corning, 

NY).    The validation required the following materials and reagents, in addition to 

those aforementioned: 
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1. Perchloric acid, 70% HClO4 , double distilled (GFS Chemicals, Columbus, OH) 

2. Sodium Hydroxide, 10 N (VWR, Westchester, PA) 

3. Ascorbic Acid, reagent grade crystalline, C6H8O6, (Fluka, Buchs, Switzerland) 

4. Semicarbazide HCl, purum >99% (Aldrich, St.Louis, MO) 

5. Pooled human plasma, n = 20 donors – Healthy, fasting, drug-free, non-smoker, 

collected in EDTA (Biochemed Services, Winchester, VA) 

6. Individual human plasma – six different donors, healthy, drug-free, non-smokers or 

smokers, collected in EDTA (from clinical study)  

 

3.3.4b Equipment   

 The same equipment used for extraction and optimization procedures were used 

for subsequent validation.  

 

3.3.4c Preparation of Solutions and Standards 

1. Harman and Norharman in methanol – combination standards were made for 

both analytes.  A stock solution of 1 µg/µl (1 mg/ml) was made for H and NH.  Serial 

dilutions of 50 ng/µl and 500 pg/µl were made from the stock solution to create smaller 

“stock solution” concentrations.  All concentrations used for the experiments were 

diluted, with methanol from these three stock solutions.  In order to minimize error of 

volumetric transfer of the H and NH standard solution to the plasma matrices, stock 

calibrators were made to ensure that an appropriate mass of each concentration level 

was transferred with 10 µl of volume.  All standards were made fresh and checked via 
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HPLC-FD prior to each and any experiment to confirm concentrations did not deviate 

from batch to batch.    

 Approximately 3 mg of H and NH were weighed and subsequently placed in a 4 

ml silanized amber vial.   The appropriate volume of methanol was used as the solvent 

to ensure a 1 mg/ml (µg/µl) concentration of solution was made (e.g., 3.2 mg in 3.2 ml 

of methanol), accounting for salt and impurity of the powder form.  The primary 

standard concentrations were 1 µg/µl, 50 ng/µl, and 500 pg/µl. 

 

Table 3-12:  Preparation of Primary H and NH standards at 1 µg/µl, 50 ng/µl, and 500 
pg/µl levels. 
 

 Final STD conc        amount of STD    methanol  

 1 µg/µl  H and NH  ~3 mg    ~ 3 ml     

 50 ng/µl H/NH  100 µl of H and NH (1 µg/µl)    1.8 ml 

 500 pg/µl H/NH  30 µl of H/NH mix (50 ng/µl)      2.97 ml 

 

From the primary stock solutions, 1-ml volumes of calibrators and quality control 

standards were created to ensure that the mass required for each level was transferred 

into plasma matrix via a 10 µl volume.  The preparation of all the concentration levels is 

presented in the table below. 
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Table 3-13:  Preparation of calibrator and quality control standards.    Standards were 
prepared at concentrations to ensure that a 10 µl volume was transferred into the matrix 
of interest.  
  

STD  Final STD conc amount of Primary STD   methanol

2.5 ng  250 pg/µl   5 µl (50 ng/µl)    995 µl 

1.0 ng  100 pg/µl   200 µl (500 pg/µl)   800 µl 

800 pg  80.0 pg/µl   160 µl (500 pg/µl)   840 µl 

625 pg  62.5 pg/µl   125 µl (500 pg/µl)   775 µl 

500 pg  50.0 pg/µl  100 µl (500 pg/µl)   900 µl 

400 pg  40.0 pg/µl  80 µl (500 pg/µl)   920 µl 

250 pg  25.0 pg/µl  50 µl (500 pg/µl)   950 µl 

100 pg  10.0 pg/µl  20 µl (500 pg/µl)   980 µl 

50 pg  5.0 pg/µl  10 µl (500 pg/µl)   990 µl 

25 pg  2.5 pg/µl  5 µl (500 pg/µl)    995 µl 

12.5 pg  1.25 pg/µl  2.5 µl (500 pg/µl)   997.5 µl 

6.25 pg (2ml) 0.625 pg/µl  2.5 µl (500 pg/µl)   1997.5 µl 

3.12 pg  0.321 pg/µl  1.0 ml (0.625 pg/µl)   1000.0 µl 

 

  

 All standards were checked chromatographically, with triplicate injection, to 

ensure stability of stocks and reproducibility of construction.    Solution stability, of all 

compounds was assessed at room temperature and storage temperature (-20˚C).  H and 

NH solutions were stable for > 24 hours at room temp and > 1 month in storage 

temperature.  

2.  Yohimbine in methanol - A stock solution of 1 µg/µl (1 mg/ml) was made for YOH.  

Approximately 2 mg for both H and NH was added to a silanized, 4-ml amber vial in 

which an appropriate volume (~2 ml) was added to dilute to a desired concentration, 
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ensuring to account for salt weight and purity.   Serial dilutions of 100 ng/µl and 1 ng/µl 

were made from the stock solution to create smaller “stock solution” concentrations.  

All concentrations used for the experiments were diluted, with methanol from these 

three stock solutions.  YOH solution was stable for > 24 hours at room temp and > 1 

month in storage temperature (-20˚C).  

3.  Protein precipitation/antioxidant solution – A 1 M HClO4 : acetonitrile solution 

(75:25) was made by making a 1 M HClO4 solution and adding appropriate volume of 

acetonitrile to make the appropriate ratio.    For the protein precipitation solution, an 

antioxidant (ascorbic acid) and aldehyde trapping agent (semicarbazide) was added. Per 

750 ml of HClO4 in the protein precipitation solution, 112.5 mg of ascorbic acid and 45 

mg of semicarbazide was added. The final solution was subsequently kept at 4˚C until 

use. 

4.  Mobile phase (aqueous) – For 4 L of buffer a 90% K2HPO4/H3PO4: 10% methanol 

solution was made.  Methanol was added to the aqueous phase to hinder bacterial 

growth in the buffer.  Monobasic K2HPO4 (11.02 g) was added to 3.6 L of Milli-Q® 

water along with 621 µl of H3PO4 as the acidic component to make a pH=3.2, 25 mM 

solution. The pH was recorded to ensure the required buffering before and after adding 

400 ml of methanol.   

5.  Extraction buffer – A 1.0 L solution of H3BO4/Na2BB4O7 buffer (pH = 9, 10 mM) was 

made for the pH adjustment, conditioning and was solvent.  Approximately 0.316 g of 

H3BO4 and 1.854 g of Na2B4B O7*10 H2O was added to 1.0 L of Milli-Q® water and 
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subsequently measured for pH.  A 500 ml wash solution of 75% H3BO4/Na2BB4O7 buffer 

25% methanol was made from this solution.  

  

3.3.4d Methods 

 Validation of the bioanalytical assay was performed using optimized ideal 

extraction conditions (see figure 3-12).  The HPLC-FD parameters were modified 

slightly because of selectivity issues approached in the later validation stages of the 

assay.  Therefore, all subsequent experiments and results were obtained with parameters 

denoted in table 3-14.  

 
Table 3-14:  Experimental conditions used for validation of the RP-HPLC bioanalytical 
assay for H and NH in a human plasma matrix. 
 
Separation variable    Optimized condition_______________                                   
 
Column w/guard column   Agilent® Zorbax Eclipse XDB, C8
       15 x 0.46 cm, 5 μm, endcapped 
Solvents A,B, and C 
      %A      80% KH2PO4/H3PO4 (pH=3.2, 25mM) 
      %B     15% acetonitrile 
      %C     5% methanol   
 
Flow rate     Isocratic, 0.9 ml/min 
 
Column temperature    40ºC  
 
Sample temperature    4ºC 
 
Injection volume    75 μl     
 
Detection for H and NH   λexcitation

 = 300 nm, λ emission = 433 nm 
      for YOH    λexcitation

 = 280 nm, λ emission = 360 nm 
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 Another major distinction from the previous experimentation incorporated the 

use of an antioxidant/aldehyde trapping agent.  Several investigators noted a major 

concern in the quantitative analysis of β-carboline alkaloids is the suppression of 

artifactual formation during sample preparation (Allen and Holmstedt, 1980; Bosin and 

Faull, 1988; Tsuchiya et al., 1999).   The successful use of semicarbazide as an 

aldehyde trapping reagent and ascorbic acid as an antioxidant in decreasing artifactual 

formation has been exemplified (Rommelspacher et al., 1984; Adell and Myers, 1994; 

Fekkes et al., 2004).   Therefore, a solution of semicarbazide (4.5 mmol), ascorbic acid 

(0.5 nmol), and EDTA (0.05 nmol) per 1.0 ml of 1M HC1O4 was implemented in the 

extraction of H and NH from human plasma to circumvent any issues pertaining to 

artifactual formation.   

 Before formal matrix experiments, stock solution stability for H, NH and YOH, 

post preparative (extracted samples/autosampler tray) and benchtop stability 

experiments were performed.   Stock solution and benchtop stability for both analytes 

and internal standard at two different concentrations was assessed for 6 hours at room 

temperature.   

 

3.3.4d-1 Pooled plasma experiments 

 Using pooled plasma (from presumably healthy, fasting, drug-free, non-

smokers, collected in EDTA) initial partial validation experiments were explored to 

evaluate the linear concentration range for H and NH, a concentration of the internal 

standard, YOH, needed to produce a representative response for calibration purposes, 
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precision of the method and stability.    Parameters such as accuracy and LLOQ were 

not scrutinized during this initial exploration due to the probable significant 

confounding effects of endogenous H and NH in the pooled plasma.     

 The linearity of the developed method was evaluated by preparing n=2 standard 

curves for the two analytes in duplicate (2 x 1 day) with varying (n = 5) concentrations 

of YOH.  The concentrations of both H and NH used for a nine-point standard curve 

were 3.2, 6.3, 12.5, 25, 50, 100, 250, 500, 1000, and 2500 pg/ml.   YOH internal 

standard amounts evaluated included: 100 pg, 300 pg, 500 pg, 750 pg and 1000 pg, for 

each calibration curve. Moreover, along with at least 9 non-zero standards, a blank 

sample (matrix processed without internal standard) and a zero sample (matrix 

processed with internal standard) were processed.  A 10 µl volume of standard 

calibrator solutions were used at each concentration level to ensure that the volume of 

the stock solution added was <10% of the total matrix volume.  Initial experiments were 

performed using 1-ml of human pooled plasma.  In the case that adequate sensitivity 

was not obtained, 2-ml of pooled plasma was used.  Plots of peak area ratio (H or NH / 

YOH) against analyte concentration were constructed.  Plots of the residual against 

concentration assessed the behavior of the response variance across the calibration 

range.  If the residuals for the linear regression analysis were heteroschedastic in nature, 

an appropriate weighting factor was investigated (1/x and 1/x2).       

 Initially, the linear range was approximately based on an observable 

chromatographic response (peak) for both H and NH between the concentration ranges, 

until formally tested.  In the case that higher concentrations distorted the peak signal, 
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the upper limit was deemed to be the highest standard that did not distort the peak 

shape, in order to have a reliable estimate of the peak area response.  In the case that the 

upper limit was lower than that reported in physiological levels, an AULOQ (above 

upper limit of quantification) dilutional control was used in subsequent calibration 

curves. The calibration function (e.g., linear or weighted-linear) was established through 

observation of reverse calculated standard concentrations of which were reverse 

predicted from the curve.   The appropriateness of the concentration of YOH was based 

on the peak height of the YOH being approximately at the mean of H and NH response 

of the concentration range tested.   Moreover, the analyte to internal standard ratio at the 

upper and lower limits were not to exceed 10 or be less than 0.1, respectively, in order 

to minimize error associated at the extremes of the linear calibration curve.       

  The optimized internal standard and linear range were subsequently tested in the 

pooled plasma with n = 6 replicates (2 calibration curves x 3 days) to assess precision of 

the method.  Moreover, quality control samples were created at the following levels: 

• Low QC is ≤ 3 X LLOQ 
 
• Medium QC approximately the geometric mean between low and high 

QC. 
 
• High QC between 75% to 90% of highest calibrator. 
 
• AULQC (above upper limit quality control 2.5 x highest calibrator and 

diluted. 
  

 The LQC, MQC, and HQC concentrations were used to assess relative recovery 

from the pooled plasma.   The comparison of an extracted to unextracted analyte to 
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internal standard ratio, at each concentration, was used to calculate the relative 

recovery.  Experiments were performed in triplicate.  

 It was expected that a systematic bias (positive y-intercept) would be present in 

the calibration curve because of the presence of endogenous H and NH. Therefore, 

accuracy and precision calculations were performed on the analyte to internal standard 

ratio, across the concentration range.  For accuracy assessment, the predicted area ratio 

was based on the linear regression parameters, where the predicted area ratio is: 

 

 Predicted area ratio = (slope of calibration curve x conc.) + y-intercept  

 

Accuracy and precision, for each analyte to internal standard ratio, were calculated as 

follows: 

Accuracy (%DFN – deviation from nominal)   

 %DFN = {observed ratio – predicted ratio} / predicted ratio x 100% 

Precision (%COV – coefficient of variation) 

 %COV = {standard deviation of the observed ratio / average ratio} x 100% 

  

 Within-run and between-run precision and practical LLOQ was assessed in the 

later stages of validation.   The basis for accepting the precision was that >75% of all  

standards must be within ±15 % COV, with the exception of the LLOQ where a ±20 % 

COV, would be permitted.  

 For long-term stability, standard solutions using a high, low, and zero (unspiked) 

control concentrations in biological matrix were portioned and stored under the 

conditions of study sample storage (-80˚C).  Measurements were taken in triplicate over 
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a six-month period on four separate occasions. For each sample, the ratio of the analyte 

to internal standard was recorded and concentration back-calculated and compared 

between measurements and across occasions for statistical deviations (accuracy and 

precision within ±15 % nominal value).    Freeze-thaw stability was assessed over three 

cycles, in which the initial freeze was 24 hours and subsequent cycles was held in -80˚C 

for 12 hours.   A low and high concentration control (n=3) was used to assess deviations 

from expected (evaluation of precision).    

 Of primary importance, the linear regression parameters for the calibration 

curves, including slope and y-intercept, for the pooled plasma validation were assessed 

upon evaluating the estimates and corresponding 95% confidence interval (CI) along 

with the precision of the slope and y-intercepts (% COV).  In the case that a significant 

peak was observed in the zero standard (with only IS spiked), the back calculated 

concentration from the regression slope with a fixed intercept of zero (corrected 

baseline) was compared to the positive y-intercept value obtained from the calibration 

regression (non-corrected).  This was to determine if the calibration curve was able to 

reliably quantify the endogenous H and NH.   

 

3.3.4d-2 Pooled plasma results 

 Initial exploration of a calibration range and an appropriate concentration of the 

internal standard were performed in pooled plasma.  Using 1-ml of plasma, a linear 

concentration range between 12.5 pg/ml and 1.0 ng/ml was seen for both H and NH.  

The calibration levels detected less than 12.5 pg/ml, although detectable, did not show 
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adequate reproducibility in measurement (%COV> 17% for both H and NH).  At the 

concentration of 2.5 ng/ml, chromatographic peak distortion was seen for both analytes 

(saturation of signal).  Sensitivity for the calibration was subsequently improved using 

2-ml of plasma.   A mass of 300 pg of YOH yielded an analyte to internal standard ratio 

at the upper (1.0 ng/ml) and lower limit (12.5 pg/ml) of approximately < 11.5 and > 

0.04, respectively for both H and NH.  These ratios loosely met the criteria for 

minimizing error associated with the extremes of the linear calibration curve.     Larger 

concentrations (>300 pg/ml) of the YOH internal standard yielded results that were not 

representative of the linear calibration range for both H and NH.    According to the 

“blank” sample (no IS) measurements, there were no significant peaks associated with 

the retention time of the YOH, exemplifying selectivity of the YOH chromatography.  

Significant peaks at the representative H and NH retention times were present (data not 

shown).    Using the optimal concentration range of H and NH (6.3, 25, 50, 100, 250, 

500, 1000 pg per 2 ml plasma) and 300 pg of internal standard, n = 6 calibration curves 

were constructed in pooled plasma with quality control samples of  12.5 pg (LQC), 400 

pg (MQC) and 750 pg (HQC),  and 2.5 ng (AULQC, dilutional control).  Area ratios of 

the calibration points and quality control samples with precision estimates (%COV) are 

presented in the following tables for NH (Table 3-15) and H (Table 3-16).   Moreover, 

the individual linear regression parameters for each calibration curve for both NH and H 

are presented with a goodness of fit (R2) metric for linearity.    An average calibration 

curve is presented for both NH (Figure 3-13) and H (Figure 3-14).  Of note, the 

calibration curve for both H and NH was constructed upon calculation of an average 
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response (across n=6 calibration levels).  A linear regression, utilizing a 1/x2 weighting 

factor, was performed on the average response for each concentration level.    The 

calibration levels all showed acceptable precision for NH and H with %COV less than 

13.5% and 11.3%, respectively.  The precision of the quality control samples ranged 

from 5.3% to 12.11% for NH while the H quality control precision resulted in a %COV 

ranged 3.5% to 9.9%.    The dilutional control (2.5 ng/2ml) precision was acceptable for 

both analytes. 

 

Table 3-15:  Peak area ratio for norharman in pooled plasma (n=6), with precision 
assessment (%COV) and calibration curve parameters (1/x2 weighting). 
 

pg NH calib #1 calib #2 calib #3 calib #4 calib #5 calib #6 average sd %COV
6.25 0.148 0.142 0.144 0.140 0.141 0.136 0.142 0.004 2.93
25 0.254 0.268 0.270 0.273 0.256 0.244 0.261 0.011 4.38
50 0.381 0.398 0.382 0.398 0.342 0.410 0.385 0.024 6.16

100 0.793 0.752 0.722 0.761 0.639 0.711 0.730 0.053 7.28
250 1.923 1.653 1.782 1.423 1.673 1.513 1.661 0.180 10.83
500 3.669 3.069 2.826 3.023 3.262 2.862 3.118 0.312 10.00

1000 5.946 7.446 6.562 5.562 5.110 6.610 6.206 0.838 13.50
12.5 (LQC) 0.177 0.196 0.186 0.176 0.177 0.169 0.180 0.010 5.28
400 (MQC) 2.421 2.525 2.112 2.852 2.110 2.228 2.375 0.287 12.11
800 (HQC) 5.532 4.913 5.022 4.571 4.639 4.433 4.852 0.399 8.22

2500 (AUL QC) 4.402 3.902 3.424 3.553 3.616 3.323 3.703 0.395 10.67
zero 0.078 0.071 0.059 0.082 0.071 0.065 0.071 0.008 11.76

slope 0.0068 0.0072 0.0065 0.0065 0.0068 0.0064 0.0067 0.0003
y-int 0.0670 0.0713 0.0660 0.0780 0.0810 0.0691 0.0721 0.0061
R2 0.9874 0.9910 0.9933 0.9982 0.9832 0.9971 0.9917 0.0057  
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Average Norharman Calibration Curve 

y = 0.0061x + 0.1053
R2 = 0.9899
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Figure 3-13:  Average calibration curve (n=6) for Norharman in pooled plasma.   
Linear regression performed on the average of the response across concentrations.   
Each point represents the average response ± SD.   
 
 
 
 
 
 
Table 3-16:  Peak area ratio for harman in pooled plasma (n=6), with precision 
assessment (%COV) and calibration curve parameters (1/x2 weighting). 
 

pg H calib #1 calib #2 calib #3 calib #4 calib #5 calib #6 average sd %COV
6.25 0.173 0.165 0.152 0.171 0.156 0.168 0.164 0.008 5.16
25 0.363 0.373 0.331 0.387 0.346 0.323 0.354 0.025 7.09
50 0.636 0.587 0.590 0.587 0.527 0.600 0.588 0.035 5.96

100 0.976 1.093 1.193 1.217 1.088 1.046 1.102 0.090 8.20
250 2.364 2.873 2.339 2.609 2.440 2.668 2.549 0.206 8.09
500 4.390 5.573 5.573 5.193 5.185 5.003 5.153 0.438 8.51

1000 9.620 11.371 10.939 12.098 9.628 9.092 10.458 1.184 11.32
12.5 (LQC) 0.228 0.236 0.223 0.245 0.226 0.230 0.231 0.008 3.45
400 (MQC) 3.539 3.833 3.863 4.032 4.154 4.377 3.966 0.290 7.30
800 (HQC) 7.688 8.532 8.213 9.328 7.102 7.541 8.067 0.797 9.88

2500 (AUL QC) 6.491 7.424 7.153 6.373 6.093 6.543 6.680 0.504 7.55
zero 0.065 0.061 0.059 0.078 0.071 0.065 0.067 0.007 10.60

slope 0.0094 0.0113 0.0109 0.0118 0.0096 0.0091 0.0104 0.0011
y-int 0.0580 0.0524 0.0642 0.0688 0.0721 0.0830 0.0664 0.0108
R2 0.9963 0.9877 0.9980 0.9938 0.9897 0.9974 0.9938 0.0043  
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Average Harman Calibration Curve 

y = 0.0103x + 0.0557
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Figure 3-14:  Average calibration curve (n=6) for Harman in pooled plasma.   Linear 
regression performed on the average of the response across concentrations.  Each point 
represents the average response ± SD.   
 
 

 The “zero” level, consisting of 2-ml plasma with only internal standard, yielded 

a significant response for both H and NH, suggestive of the significant constitutive 

nature of these analytes in the matrix.  The peak area ratios for both analytes were 

reproducible, yielding %COV of 11.8% and 12.2% and for NH and H, respectively.     

With respect to accuracy of the measurements within the calibration range, back-

calculated concentrations were compared to the linear-regression, corrected for the 

baseline.  Throughout the concentration range, %DFN were less than 13.6% and 14.8% 

(absolute value) for NH and H, respectively.  

 Regarding the linear regression of the calibration curves, a weighting factor of 

1/x2 was required to rid the unequal variance associated with the residuals (data not 

shown).  Therefore, a weighted linear regression was performed on each individual 
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calibration curve for both analytes.    Linearity of the calibration curves, as assessed by 

the coefficient of determination (R2), was acceptable for both analytes with NH 

possessing R2 ranging between 0.983 - 0.998 and H having a range between 0.987 - 

0.998.   For both analytes, the 95% CI for each individual calibration slopes included 

the estimate of the other individual calibration slopes, signifying similarity between the 

slope calibration parameter of each curve.   Of major note, each calibration curve 

yielded a significant y-intercept for both analytes, indicating a significant background.  

The y-intercepts were significantly different from zero with NH having an intercept 

(mean ± SD) of 0.072 ± 0.006 (p-value > 0.34) and H having an intercept of 0.066 ± 

0.011 (p-value > 0.17).   Moreover, the y-intercepts obtained from the linear regressions 

for both analytes were reproducible.   

 In order to assess the precision and accuracy of the endogenous measured 

amount of H and NH in pooled plasma, a comparison of the “blank” sample was made 

to the y-intercept of the regression of its respective calibration construction.  In 

addition, a concentration of the endogenous measurement of NH and H was calculated 

from the respective calibration curve, corrected for the significant y-intercept.  

Accuracy (%DFN) was calculated by evaluation of the 100% x (observed concentration 

– predicted concentration) / predicted concentration.   In this investigation, the observed 

concentration for the “zero sample” was obtained from the respective calibration curve, 

correcting for the y-intercept (equaling zero).    The predicted concentration was 

obtained from evaluation of the y-intercept of the calibration curve and back-calculating 

the concentration using a baseline-corrected calibration curve.   A comparison was 
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made to assess if a difference in the values was seen and if the calibration curve was 

able to accurately quantify the endogenous H and NH within pooled plasma.    The 

results from each calibration curve for each analyte is presented below.  

 

Table 3-17:  Accuracy and precision assessment for “zero” calibration level for 
norharman.   
 

corrected corrected
calibration slope y-intercept conc zero conc %DFN

1 0.0068 0.067 9.9 0.078 11.5 16.4
2 0.0072 0.071 9.9 0.071 9.9 -0.4
3 0.0065 0.066 10.2 0.059 9.1 -10.6
4 0.0065 0.078 12.0 0.082 12.6 5.1
5 0.0068 0.081 11.9 0.071 10.4 -12.3
6 0.0064 0.069 10.8 0.065 10.2 -5.9

avg 10.8 10.6
stdev 1.0 1.3

%COV 9.1 11.9

predicted observed

                
 

Table 3-18:  Accuracy and precision assessment for “zero” calibration level for harman.   

corrected corrected
calibration slope y-intercept conc zero conc %DFN

1 0.0094 0.058 6.2 0.065 6.9 12.1
2 0.0113 0.052 4.6 0.061 5.4 16.4
3 0.0109 0.064 5.9 0.059 5.4 -8.1
4 0.0118 0.069 5.8 0.078 6.6 13.4
5 0.0096 0.072 7.5 0.071 7.4 -1.5
6 0.0091 0.083 9.1 0.065 7.1 -21.7

avg 6.5 6.5
stdev 1.6 0.9

%COV 24.0 13.4

predicted observed
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 This evaluation was to deem the calibration curve as useful for the quantification 

of H and NH in pooled plasma.  According to the corrected calibration curves, the 

accuracy for the measurement was in a range of -12.3 and 16.4% for NH and 12.1 and     

-21.7% for H.    The precision for the NH and H measurement was 11.9 and 13.4%, 

respectively.   Upon statistical comparison (unpaired t-test, two-tailed assuming unequal 

variance), the concentration calculated from the y-intercept and the observed response 

ratio (from the “zero” calibration sample), was similar.  No statistically significant 

difference was detected (p-values < 0.05) for both NH and H.   According to the 

analysis, and using the baseline corrected calibration curves, the pooled plasma 

contained 10.6 pg of NH and 6.5 pg of H per 2-ml, which is within reported 

physiological range.   

 Long-term stability, in pooled plasma was evaluated at three different levels of 

High (500 pg/2ml), Low (25 pg/2ml) and zero (unspiked H and NH) over a six month 

period.  Of note, the theoretical concentrations for the High and Low controls are those 

of spiked and constitutive, additive. The concentrations were measured, using baseline 

corrected calibration curves, at 15 days, 1, 3 and 6 months after standard pooled plasma 

preparation.   At each time-point the analysis was performed in triplicate.     Over a six-

month period, there was a negligible variation in concentration for both H and NH, with 

most of the variability seen at the zero concentration level (unspiked H and NH; see 

table 3-19).  
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Table 3-19:  Long-term stability assessment for “zero”, Low and High level of Harman 
and Norharman in 2 ml pooled plasma over a 6-month period.  Each value presented as 
mean of n=3 back calculated concentrations (pg/2ml)  
 

Norharman zero control low control high control
day 0 12.5 37.3 520.1
day 15 14.1 32.1 515.8
month 1 13.2 33.8 518.3
month 3 10.7 34.1 531.4
month 6 9.1 33.1 522.6
concentration (pg/2ml) 10.6 35.6 510.6
mean 11.9 34.1 521.6
stdev 2.0 2.0 6.0
%COV 16.9 5.7 1.1
%DFN 12.5 -4.3 2.2

Harman zero control low control high control
day 0 7.2 31.2 518.1
day 15 5.2 35.4 522.1
month 1 6.4 32.1 537.5
month 3 7.7 32.5 518.4
month 6 7.1 35.6 527.9
concentration (pg/2ml) 6.5 31.5 506.5
mean 6.7 33.4 524.8
stdev 1.0 2.0 8.1
%COV 14.4 6.0 1.5
%DFN 3.4 5.9 3.6   

 

 Freeze-thaw stability assessment did not yield any significant changes in H or 

NH at all concentration levels evaluated through three-cycles, with %DFN and %COV 

not exceeding 6.7% for both analytes at all concentration levels. 

 The relative recovery, across the quality control concentrations, did not show 

much variation within and across concentrations (see table 3-20).   Of note, the analyte 

to internal standard ratio obtained from the extraction procedure includes constitutive H 

and NH, contributing to the relative recovery.  Therefore, the recoveries obtained from 
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the analysis are expected to be larger than if the endogenous analyte was not present in 

the matrix.  

 

Table 3-20:  Relative recovery from 2 ml pooled plasma of norharman and harman 
(n=3 for each concentration).  (% mean ± SD). 
    
    12.5 pg  400 pg   800 pg  

Harman          87.2 ± 4.1  90.9 ± 1.4  91.6 ± 2.3 

Norharman          85.2 ± 3.9  89.2 ± 3.5  90.3 ± 2.8 

  

 The information obtained from the pooled plasma analysis was used to design a 

more formal validation using a modified matrix for assessing surrogacy.   Using 2-ml of 

matrix, the calibration range between 6.3 and 1000 pg of both H and NH with 300 pg of 

YOH internal standard was used for validation purposes.  Quality control samples used 

for subsequent tests included 12.5 pg (LQC), 400 pg (MQC) and 750 pg (HQC), and 

2500 pg (AULQC, dilutional control).    The results of minimal deviation for long-term 

and freeze-thaw stability tests proved the chemical robustness of analyzing H and NH in 

the plasma matrix.    

 

3.3.4d-3 Surrogate matrix experiments 

 Similar experiments to the aforementioned were performed using a modified 

pooled plasma matrix, with an emphasis on both accuracy and precision assessment.  

The modification employed the dilution, with pH = 9 buffer, of plasma until 

chromatogram for H and NH was devoid of a significant peak area response (unable to 
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integrate under the peak).   Moreover, the goal was to minimize the dilution factor in 

order to maintain unmodified plasma composition as close possible.   Dilution factors 

(buffer to plasma) such as 0.5:1, 1:1, 2:1, 4:1, 5:1 and 10:1 were evaluated to decrease 

the signal.   Experiments in triplicate were evaluated for each dilution factor under two 

conditions:  plasma spiked with 300 pg internal standard only and “blank” plasma.   

Devoid of peak areas for both H and NH were assessed.  

 Upon appropriate dilution of the modified matrix, full calibration curves (n = 6) 

and quality control samples were used to evaluate the linear range, accuracy and 

precision.  The concentrations evaluated in 2-ml of modified matrix included a seven-

point standard curve including 6.3, 25, 50, 100, 250, 500, 1000 pg.  Quality controls 

(QC) for the low, medium and high were 12.5, 400, and 750 pg, respectively.   In 

addition, an AUL (Above Upper Limit) dilutional control of and 2500 pg was evaluated 

for precision and accuracy.  Of importance, the Lower Limit of Quantification (LLOQ) 

was determined during this step using n = 6 replicates, separate from the calibrators.   

At this point, recovery assessment was evaluated using this matrix to assess the relative 

recovery and, more importantly, the precision or the recovery.  The room temperature 

stability measurements, as mentioned before, was also performed in this in modified, 

pH = 9 buffer matrix.      

A more formal evaluation for precision and accuracy was conducted by 

evaluation of n = 6 each of the LLOQ, low, medium, high, and AUL control sample 

concentrations in one day for within-run assessment.  Between run-precision and 

accuracy was assessed in triplicate over three days for the same controls.   The accuracy 
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(%DFN) and the precision (%COV) between and within-runs were found acceptable at 

a level of within ±15%.   All quality control samples, including those that failed with no 

assignable cause, were used for the final calculation.   

 Using the modified matrix, extraction efficiency (recovery) was assessed at 

three quality control levels in triplicate of 12.5 pg, 400 pg and 750 pg (LQC, MQC, and 

HQC).   The normalized extraction efficiency was evaluated by reviewing the H or NH / 

YOH ratio from an extracted sample to the peak area response ratio obtained from the 

unextracted sample.    In addition to the relative recovery, the precision of the extraction 

method was evaluated at this step.   

 As the case for the calibration curves obtained for the pooled plasma, the linear 

regression parameters for the calibration curves, including slope and y-intercept, for the 

modified plasma validation were assessed.   The estimates and corresponding 95% 

confidence interval along with the precision of the slope and y-intercepts (% COV) 

were evaluated.  For approval of the matrix modification via dilution factor, the mean of 

the y-intercepts should not be statistically different from zero (as deemed by a one-sided 

unpaired Student’s t-test).  The individual confidence intervals of the y-intercept 

estimates should include zero for each individual calibration curve.   

 The slope of the linear regressions within all calibration curves should not be 

statistically different from one another (as deemed by a 95% CI).  Moreover, the mean 

of all calibration slopes between the pooled plasma and the modified plasma matrix 

were evaluated for “parallelism” (i.e., the average slopes obtained between each matrix 
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should be statistically similar).  Lack of similarity was evaluated by a two-sided 

unpaired Student’s t-test.   

 

3.3.4d-4  Surrogate matrix results 

 A modified matrix, using pH = 9 buffer used for dilution, was constructed from 

pooled plasma until chromatogram for H and NH was devoid of a significant peak area 

response.   The minimum dilution factor required to rid significant chromatographic 

signal was the 4:1 dilution (buffer: plasma).  Dilutions less than this resulted in 

significant chromatographic peaks for both H and NH.    From previous experiments in 

pooled plasma, it was expected that at least a 3:1 fold dilution would be required to 

significantly decrease the detectable signal.    Although the analysis of larger dilution 

factors (5:1 and 10:1) resulted in peaks that were not able to be integrated, the 4:1 

dilution was used for validation purposes to keep the matrix as similar to the original 

sample as possible.    Full calibration curves (n=6) were constructed using 2-ml of 

modified matrix along with corresponding quality control samples.  For NH, throughout 

the concentration range the precision (%COV) was less than 12.1% and the accuracy 

(%DFN, absolute value) was less than 14.9% (see table 3-21).   In addition, the analysis 

of H yielded acceptable results with a precision < 9.7% and an accuracy of < 15.3% 

(table 3-22).  Of note, the analysis met the criteria in which >75% of all standards must 

be within ±15 % COV, with the exception of the LLOQ where a ±20 % COV. 

 Further evaluation at the LLOQ level (6.3 pg/2ml) yielded a %COV of 14.8% 

and %DFN of 11.5%, with n = 6 replicates different from the calibration points.  The 
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additional quality control samples, including the dilutional control, yielded a suitable 

accuracy and precision.  For inter-run precision and accuracy (3 replicates for 3 days), 

%COV was no greater than 11.4% and no more than an absolute variation in 

concentration of 14.6% across the quality control concentrations (data not shown).   

 The linear regression parameters for each calibration curve were compared to 

assess consistency of slope and for lack of a y-intercept.  Using a 1/x2 weighting factor 

for each calibration curve, the parameters presented (tables 3-23 and 3-24) showed 

consistency between calibration curves.  The slope parameters were statistically 

different from zero, while the intercept did not show a statistical difference from zero 

(p-values > 0.3 for both analytes).   The zero intercept highlights the ability for the 

dilution factor to be appropriate for the H and NH analysis.    For both analytes, the 

coefficient of determination (R2) was acceptable for each calibration curve, supporting 

the use of a linear regression for the calibration.  

 Of note, “blank” and “zero” samples did not result in a significant peak for 

either H or NH at the respective retention time (see figure 3-15).   The diluted plasma 

matrix did not yield a significant YOH peak in the “blank” sample.   Throughout all 

calibration runs, the YOH peak was consistent and showed minimal variability of the 

absolute peak area (%COV < 5.2%).  The extraction recovery was assessed at three 

quality control levels in triplicate of 12.5 pg, 400 pg and 750 pg (LQC, MQC, and 

HQC).   The normalized extraction efficiency is shown in table 3-25.    The recoveries 

obtained from this analysis were constant but showed a slightly less recovery from that 

of unmodified pooled plasma.   



14
0 

T
ab

le
 3

-2
1:

  
C

al
cu

la
te

d 
co

nc
en

tra
tio

n 
(p

g/
2m

l) 
fo

r 
no

rh
ar

m
an

 in
 m

od
ifi

ed
 p

la
sm

a 
ca

lib
ra

tio
n 

cu
rv

es
 (

n=
6)

, w
ith

 p
re

ci
si

on
 

(%
C

O
V

) a
nd

 a
cc

ur
ac

y 
(%

D
FN

, a
bs

ol
ut

e 
va

lu
e)

 a
ss

es
sm

en
t. 

 

pg
 N

H
ca

lib
 #

1
ca

lib
 #

2
ca

lib
 #

6
av

er
ag

e
sd

%
C

O
V

%
D

FN
6.

3
6.

9
5.

8
5.

8
6.

3
0.

6
9.

5
< 

10
.8

25
23

.5
25

.7
24

.4
26

.2
1.

9
7.

4
< 

12
.9

50
43

.2
45

.9
53

.1
46

.7
3.

6
7.

7
< 

13
.5

10
0

10
7.

6
10

1.
3

10
4.

9
10

3.
7

3.
7

3.
6

< 
7.

6
25

0
28

4.
2

24
2.

0
24

6.
7

25
7.

7
28

.8
11

.2
< 

14
.9

50
0

55
7.

0
46

3.
2

47
5.

8
50

0.
4

51
.1

10
.2

< 
14

.8
10

00
91

2.
8

11
47

.2
11

22
.0

10
11

.2
12

2.
3

12
.1

< 
14

.7
12

.5
 (L

Q
C

)
11

.4
14

.4
11

.5
12

.7
1.

4
10

.7
< 

15
.1

40
0 

(M
Q

C
)

36
2.

0
37

8.
3

36
6.

5
37

8.
6

41
.4

10
.9

< 
14

.9
80

0 
(H

Q
C

)
84

8.
1

75
1.

4
74

6.
7

78
7.

5
54

.1
6.

9
< 

9.
9

25
00

 (A
U

L 
Q

C
)

26
86

.3
23

73
.8

22
21

.2
23

85
.3

19
5.

1
8.

2
< 

11
.2

ca
lib

 #
3

ca
lib

 #
4

ca
lib

 #
5

6.
8

5.
7

6.
9

28
.2

27
.3

27
.9

47
.2

47
.4

43
.5

10
4.

8
10

5.
9

97
.4

28
4.

4
21

2.
7

27
6.

3
46

1.
4

47
0.

7
57

4.
3

10
94

.5
88

0.
2

91
0.

4
13

.9
11

.6
13

.4
34

0.
4

45
9.

3
36

4.
9

83
3.

6
72

0.
4

82
4.

7
22

50
.9

22
24

.6
25

54
.8

 

 T
ab

le
 3

-2
2:

  
C

al
cu

la
te

d 
co

nc
en

tra
tio

n 
(p

g/
2m

l) 
fo

r 
ha

rm
an

 i
n 

m
od

ifi
ed

 p
la

sm
a 

ca
lib

ra
tio

n 
cu

rv
es

 (
n=

6)
, 

w
ith

 p
re

ci
si

on
 

(%
C

O
V

) a
nd

 a
cc

ur
ac

y 
(%

D
FN

, a
bs

ol
ut

e 
va

lu
e)

 a
ss

es
sm

en
t. 

 

pg
 H

ca
lib

 #
1

ca
lib

 #
2

ca
lib

 #
3

ca
lib

 #
4

ca
lib

 #
5

ca
lib

 #
6

av
er

ag
e

sd
%

C
O

V
%

D
FN

6.
3

6.
6

7.
1

6.
0

5.
5

5.
8

6.
7

6.
3

0.
6

9.
7

< 
13

.8
25

26
.1

27
.3

24
.2

27
.0

27
.2

22
.7

25
.8

1.
9

7.
4

< 
9.

4
50

54
.4

48
.1

50
.7

46
.0

47
.0

51
.3

49
.6

3.
1

6.
3

< 
8.

7
10

0
89

.4
97

.2
11

2.
2

10
6.

0
10

8.
0

97
.2

10
1.

7
8.

5
8.

4
< 

12
.2

25
0

23
2.

4
27

0.
0

22
9.

2
23

8.
6

25
4.

9
26

4.
4

24
8.

2
17

.2
6.

9
< 

8.
3

50
0

44
1.

3
53

2.
1

55
9.

1
48

4.
6

55
3.

2
50

5.
2

51
2.

6
45

.0
8.

8
< 

11
.8

10
00

98
0.

5
10

95
.0

11
06

.7
11

42
.2

10
36

.2
10

02
.8

10
60

.6
63

.8
6.

0
< 

14
.2

25
 (L

Q
C

)
12

.3
14

.0
13

.3
13

.4
14

.2
13

.1
13

.4
0.

7
5.

2
< 

13
.9

40
0 

(M
Q

C
)

35
3.

6
36

3.
2

38
4.

6
37

4.
1

44
1.

3
44

0.
7

39
2.

9
38

.7
9.

8
< 

11
.6

80
0 

(H
Q

C
)

78
1.

4
81

9.
5

82
8.

5
87

8.
4

76
1.

7
76

6.
8

80
6.

0
44

.8
5.

6
< 

9.
8

25
00

 (A
U

L 
Q

C
)

26
31

.8
28

47
.5

28
81

.4
23

88
.1

26
07

.9
26

55
.5

26
68

.7
17

9.
5

6.
7

< 
15

.3

140 

  



141 

Table 3-23:  Standard curve parameters for n = 6 norharman calibration curves in 
modified plasma.  Each parameter presented as an estimate with standard error (SE).   
 

Calibration slope SE y-intercept SE R2
1 0.0064 0.0008 0.0091 0.0035 0.9858
2 0.0067 0.0004 (-)0.0081 0.0037 0.9817
3 0.0059 0.0007 (-)0.0067 0.0018 0.9908
4 0.0062 0.0003 0.0044 0.0023 0.9912
5 0.0055 0.0007 (-)0.0049 0.0025 0.9855
6 0.0058 0.0004 0.0029 0.0049 0.9890

average 0.0061 0.0055 0.9873
stdev 0.0004 0.0032 0.0037  

 
 
Table 3-24: Standard curve parameters for n = 6 harman calibration curves in modified 
plasma.  Each parameter presented as an estimate with standard error (SE).   
 

Calibration slope SE y-intercept SE R2
1 0.0097 0.0004 0.0051 0.0044 0.9802
2 0.0103 0.0005 0.0037 0.0031 0.9977
3 0.0098 0.0011 (-)0.0039 0.0022 0.9834
4 0.0105 0.0009 0.0040 0.0028 0.9822
5 0.0092 0.0005 (-)0.0031 0.0021 0.9873
6 0.0097 0.0012 0.0013 0.0027 0.9888

average 0.0099 0.0035 0.9866
stdev 0.0005 0.0016 0.0063  

 

Table 3-25:  Relative recovery from 2 ml modified diluted plasma of norharman and 
harman (n=3 for each concentration).  (% mean ± SD). 
 

     

    12.5 pg  400 pg   800 pg  

Harman          82.8 ± 3.5  86.5 ± 2.8  89.2 ± 5.2 

Norharman          79.4 ± 2.1  82.7 ± 4.2  86.5 ± 3.7 
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 In comparison to the unmodified, pooled plasma matrix surrogacy for the diluted 

matrix was established.   From the linear regression parameters (i.e., slope) obtained 

with calibration curves constructed of both sets of matrices, a statistical similarity was 

seen.  Table 3-26 presents the comparison of the pooled plasma (PP) linear regression 

parameters to those found in the modified plasma (MP) matrix for both analytes.  An 

unpaired, two-tailed Student’s t-test was performed on the slope and y-intercept 

parameters, assuming unequal variances.   

 The y-intercept showed a statistically significant difference between matrices.  

While the modified, diluted plasma was not significantly different from zero, the pooled 

plasma matrix possessed a significant y-intercept, reflecting the constitutive H and NH 

concentrations in the plasma.  Moreover, the lack of a significant y-intercept in the 

modified plasma denotes successful dilution of the matrix.   The statistical comparison 

of the y-intercept illustrates a successful dilution of the matrix. 
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Table 3-26:  Linear regression comparison between pooled plasma (PP) and modified 
plasma (MP), n = 6 each, for NH (top) and H (bottom).  Statistical significance was 
defined at the α = 0.05 level.  
 

calibration PP MP PP MP
1 0.0068 0.0064 0.0670 0.0091
2 0.0072 0.0067 0.0713 (-)0.0081
3 0.0065 0.0059 0.0660 (-)0.0067
4 0.0065 0.0062 0.0780 0.0044
5 0.0068 0.0055 0.0810 (-)0.0049
6 0.0064 0.0058 0.0691 0.0029

avg 0.0067 0.0061 0.0721 0.0055
stdev 0.0003 0.0004 0.0061 0.0032

p-value 0.9399 <0.01

Regression Parameter
Slope Y-intercept

   

 

calibration PP MP PP MP
1 0.0094 0.0097 0.0580 0.0051
2 0.0113 0.0103 0.0524 0.0037
3 0.0109 0.0098 0.0642 (-)0.0039
4 0.0118 0.0105 0.0688 0.0040
5 0.0096 0.0092 0.0721 (-)0.0031
6 0.0091 0.0097 0.0830 0.0013

avg 0.0104 0.0099 0.0664 0.0035
stdev 0.0011 0.0005 0.0108 0.0016

p-value 0.3337 <0.01

Regression Parameter
Slope Y-intercept

  
 
 
   

 Of primary importance is the statistical similarity in the slopes for both H and 

NH in both matrices. The comparison proves similarity and supports the 

interchangeability of the matrix for calibration purposes.   In essence, for a given 

change in concentration of H or NH analyte, a similar change in response will be seen, 

regardless of using a modified or pooled plasma matrix.  Moreover, “parallelism” 
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between the matrices was proven between the modified and the pooled plasma matrix. 

Further assessment of selectivity was warranted for this method, evaluating additional 

plasma sources for potential interferences.  A similar approach was used to assess 

“parallelism” in patient plasma samples.    

 

3.3.4d-5   Patient plasma experiments 

 In order further evaluate selectivity and parallelism, individual plasma from 

separate donors was used as a matrix.   Selectivity should be assessed to show that the 

anticipated analytes are measured and that their quantification is not affected by the 

presence of biological matrix, known metabolites, degradation products, or co-

administered drugs (Viswanathan et al., 2007).   In assay wherein the intrinsic 

selectivity is low (e.g., HPLC with detection other than MS), it is essential to confirm 

using blank matrices from at least n=6 independent sources, that the matrix will not 

impede the assay significantly.  The White Paper from the 3rd Bioanalytical Workshop 

has proposed determination of matrix factors from 6 independent sources of matrix as a 

way of assessing the matrix effect (AAPS, 2006).    

 In the case for drug molecules, the “blank” matrix should not produce any 

significant background at the retention time of the analytes.  For chromatographic 

assays, the peak response in the blank matrix at the retention time for the analytes 

should be no more than 20% of the response for the LLOQ of the assay.  Both 

statements would be violated in the assessment of selectivity of H and NH 

quantification, because of the endogenous nature of the analytes in plasma. Nonetheless, 
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selectivity of the bioanalytical assay may still be assessed by spiking known 

concentrations of analyte into the matrix of interest, as performed as a standard addition 

experiment.    Standard addition methods are particularly useful for analyzing complex 

samples in which the likelihood of matrix effects is substantial (Skoog et al., 1998).    In 

this approach, different weights of the analyte(s) are added to the sample matrix, which 

initially contains an unknown concentration of analyte.    Extrapolation of a plot of 

response found for the standard-addition calibration concentrations to zero 

concentration defines the original concentration of the unspiked sample.   One 

disadvantage of this calibration method is the fact that at least three to five aliquots need 

to be prepared because and increasing amount of calibrant must be added to these 

different aliquots.    In general, this method may require a significant volume of plasma 

that may not be available for the intended method.    Moreover, an important aspect of 

standard addition is that the response prior to spiking additional analyte should be high 

enough to provide a reasonable S/N ratio (>10), otherwise, the result will have poor 

precision (Snyder et al., 1997).   

 The major criteria in establishing “surrogacy” of the proxy matrix, is that the 

response factor, or slope of the calibration curves obtained in the substitute matrix, 

should be statistically similar.  Upon approval, matrix differences between the surrogate 

and unmodified, sample matrix, may presumably be accounted for.  The parallelism 

between the calibration curves of both matrices suggests that quantification via a 

common calibration curve would be similar between the surrogate and actual sample 

matrix.    In essence, parallelism studies need to be performed where the response of the 
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assay to a range of calibration standard concentrations made up in the surrogate matrix 

is compared to that of a series of dilutions of patient samples. This method of deeming 

“surrogacy” of a proxy matrix for quantification has been successfully employed  

(DeSilva et al., 2003; Smolec et al., 2005).   In order to evaluate the use of the HPLC-

FD method along with the modified matrix, a total of six sources of unmodified plasma 

were used in the subsequent experiments.  

 Using individual plasma (n=5, presumably healthy, drugs of abuse-free, smokers 

and non-smokers, collected in EDTA) and pooled plasma were used to satisfy the 

conditions for testing selectivity.  Using the finalized extraction method, spiked 

concentrations of H and NH was evaluated in 2-ml of human patient plasma.  As the 

availability of significant volumes of individual human plasma was limited, full 

calibration curves could not be constructed in the patient plasma.   For the individual 

plasma experiments a total of five concentrations was used for the standard addition 

calibration curve construction including 12.5, 100, 400, 625, and 800 pg of H and NH 

and 300 pg of YOH in 2-ml of plasma.  Moreover, a “zero” concentration (unspiked H 

or NH with 300 pg of YOH) was evaluated to assess the endogenous H and NH 

concentrations.   Individual plasma calibration curves were constructed in singlicate.  

The concentrations assessed in these experiments are representative of those used in 

previous calibration curves.    

 In order to assess potential interferences with YOH retention time, absolute peak 

area was compared to that of the pooled plasma chromatogram, where there was no 

observable interference.  A significant observable interference was defined as a %COV 
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>10% of absolute peak area at the YOH retention time for all individual plasma 

chromatograms.  In addition to the patient plasma calibration curves, a pooled plasma 

matrix calibration curve was constructed (n=1), using the full range of calibration 

concentrations. 

 In order to appraise the identity of the constitutive H and NH, spectral 

confirmation studies were performed.  The emission spectra of authentic H and NH 

were scanned at a fixed excitation wavelength of 300 nm for both authentic (spiked) and 

constitutive (unspiked) patient samples at the respective retention times    Comparison 

was made between the emission spectra scans of the samples to assess the spectra shape 

and emission wavelength maximum.   

 A five-point, linear calibration curve was constructed for each individual plasma 

donor using a 1/x2 weighing, identical to the weighted regressions performed as the 

other experiments.   The linear regression parameters for the calibration curves, 

including slope and y-intercept, for the individual plasma were assessed.  The y-

intercept for each individual calibration curve presumably reflected the constitutive 

contribution of H and NH and compared to that of the “zero” concentration level, as 

calculated from the surrogate matrix calibration curve.  The 95% confidence interval for 

the y-intercept (peak area ratio) should include the peak area ratio of that seen of the 

“zero” sample for both H and NH.   This method was to ensure the accuracy of using 

the surrogate matrix calibration curve to calculate a concentration in unmodified, real 

sample. 
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 Of primary importance was the evaluation of the slope parameter for each 

individual plasma calibration curve.  The estimate and its corresponding 95% CI was 

calculated and compared across donors.   The estimates for the slope parameter should 

be statistically similar upon evaluation of the 95% CI.  Across patient calibration 

curves, concentrations were back-calculated using (1) the regression obtained from the 

patient calibration curve, with baseline correction and (2) the full calibration curve 

using the modified “surrogate” matrix.  At each level, the concentrations were 

compared between matrices to appraise difference between the two quantification 

methods.  It was defined that, if the percent difference was greater than 20%, surrogacy 

of the matrix was not obtained and a significant issue of selectivity was present. 

Individual NH and H concentrations were calculated and compared for each patient 

sample using the standard addition method and the surrogate matrix calibration.  

 Moreover, the slopes ± standard deviation between the surrogate matrix plasma 

(n=6), individual patient plasma (n=5), and pooled plasma (n=6) calibrations were 

compared via one-way analysis of variance (ANOVA) to ensure a matrix effect between 

the matrices was not present.   Prior to statistical contrast, the residuals were evaluated 

for equal variance and tested accordingly if that assumption did not hold true.   If 

significant deviations and variability in the slopes was present in the analysis, the 

chromatographic parameters and/or extraction method was further optimized eliminate 

the interfering substances. 
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3.3.4d-6   Patient plasma results  

 Using the finalized extraction method, spiked concentrations of H and NH was 

evaluated in 2-ml of human patient plasma from n=5, presumably healthy, drugs of 

abuse-free, smokers and non-smokers.  Representative chromatograms for LLOQ in 

modified matrix, patient plasma, and “zero” modified matrix are presented in figure 3-

15 below.   The respective retention times for NH, H and the internals standard, YOH 

are 3.82, 4.43, and 8.09 minutes, respectively.  The LLOQ of 6.3 pg/2ml of modified 

plasma (Figure 3-15a) shows distinct bands at the respective retention times of H and 

NH while figure 3-15c exemplifies the “zero” sample level (dilution of H and NH) in 

the presence of the internal standard, YOH.  Unmodified patient plasma (2 ml) sample 

was quantified with the surrogate matrix calibration curve and resulted in 42.5 pg/2 ml 

of NH and 25 pg/ 2ml of H, both of which fall within reported physiological ranges of 

plasma β-carboline (Figure 3-15b). 

 The goal of patient plasma experiments was to assess selectivity of the assay 

methodology.   Of note, the accessibility of significant volumes of individual human 

plasma was limited, as consequence, full calibration curves could not be constructed in 

the patient plasma.  The corresponding calibration curve parameters are presented 

below. 
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Table 3-27:  Linear regression parameters obtained from patient plasma (PP #1-5) and 
one modified plasma (MP) calibration curve for NH (top) and H (bottom).  95% CI 
denotes the upper and lower bounds in brackets for both slope and y-intercept.  
 

Norharman

plasma slope 95% CI y-int 95% CI R2

MP 0.0064 [0.0058, 0.0074] 0.01 [-0.06, 0.04] 0.9985
PP#1 0.0065 [0.0054, 0.0078] 1.40 [1.12, 1.73] 0.9882
PP#2 0.0071 [0.0051, 0.0080] 1.05 [0.91, 1.16] 0.9748
PP#3 0.0071 [0.0066, 0.0074] 0.32 [0.22, 0.41] 0.9955
PP#4 0.0073 [0.0063, 0.0081] 0.10 [0.03, 0.16] 0.9833
PP#5 0.0059 [0.0040, 0.0075] 2.00 [1.45, 2.33] 0.9722

avg 0.0067 0.81 0.9854
stdev 0.0005 0.80 0.0107  

Harman

plasma slope 95% CI y-int 95% CI R2
MP 0.0099 [0.0094, 0.0105] 0.00 [-0.03, 0.05] 0.9974

PP#1 0.0107 [0.0101, 0.0114] 0.37 [0.28, 0.45] 0.9872
PP#2 0.0098 [0.0092, 0.0103] 1.47 [1.43, 1.52] 0.9987
PP#3 0.0091 [0.0079, 0.0111] 0.25 [0.11, 0.41] 0.9637
PP#4 0.0089 [0.0082, 0.0096] 0.08 [0.05, 0.14] 0.9911
PP#5 0.0109 [0.0093, 0.0115] 2.68 [2.55, 2.74] 0.9884
avg 0.0099 1.01 0.9878

stdev 0.0008 1.06 0.0127  

  

 The coefficients of determinations for NH and H, in the patient plasma, were 

greater than 0.96 for both, suggesting the linear calibration function is acceptable for 

this matrix (using 1/x2 weighting).   The y-intercepts obtained for all calibration curves, 

with the exception of the modified plasma, were all statistically different from zero, as 

deemed by the 95% CI.    Moreover, the intercepts between the plasma sources resulted 

in significant deviations, suggesting the variable nature of the constitutive NH and H 

between the five patients (COV%, NH: 98.4% and H: 130%).   
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 The slope parameters from the calibration curves were all statistically similar 

between the patient plasma sources and in comparison to the modified matrix.   Because 

of the limited number of concentration points on each calibration curve (5-point) for the 

patient plasma, the 95% CI range was relatively large as compared to the modified 

plasma matrix (i.e., a full calibration curve).  Of note, according to the aforementioned 

criteria, no significant interference was seen at the YOH, internal standard retention 

time.  For all individual plasma chromatograms and pooled plasma chromatograms the 

%COV in absolute peak area for the internal standard was 7.2%. 

 Results of spectral confirmation studies compare the authentic to that of 

constitutive H and NH.  According to the shape and maximum wavelength of emission 

spectra for both analytes, the patient plasma peaks seen at the respective retention times 

of H and NH (i.e., 3.82 and 4.43 minutes) are similar to those of authentic, spiked H and 

NH (see figure 3-16).    

 

 

 

 

 

 

 

H NH 

Figure 3-16:  Spectral confirmation of NH and H comparing the emission spectra of 50 
pg of authentic (spiked) NH and H (top spectra) to endogenous NH and H (bottom 
spectra). 
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 To further evaluate the “surrogacy” of using the modified matrix, a comparison 

of the utility between the patient plasma and the modified plasma calibrations was 

appraised.  This analysis compares the back calculated concentrations obtained from the 

modified matrix calibration curve to that of the back-calculated concentrations of the 

standard addition calibration of the patient plasma (see tables 3-28 and 3-29).  Of 

importance is the calculation of the constitutive concentrations of H and NH within the 

patient plasma sources.  Upon comparison of both calibration methods, a significant 

percent difference (denoted as %diff on tables) is present between both methods of 

quantification for both analytes.  The standard addition method of calibration possesses 

greater inaccuracy as compared to the surrogate matrix calibration.  This discrepancy 

maybe caused by the difference in the number of calibration points used in each method 

(n=5 for standard addition vs. n = 8 for the surrogate matrix calibration).    This 

limitation of using the standard addition method for calibration purposes is due to the 

lack of significant volumes of patient plasma.  In order to run an accurate standard 

addition calibration for this developed assay, at least 16-ml of patient plasma would be 

required.   

 The concentrations obtained from the surrogate matrix calibration curves 

yielded endogenous levels that were within reported physiological ranges.  For NH, the 

concentration range within the individual patient samples ranged 12.6 - 309 pg per 2 ml 

plasma.  For H the concentration range within the five patient samples ranged from 6.2 - 

292 pg per 2 ml plasma. 
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 Surrogacy of the modified matrix was further evaluated by statistical 

comparison of calibration curves from pooled plasma and patient plasma.  One-way 

ANOVA was performed on the slopes of the calibration curves between three different 

plasma matrices, modified (surrogate), pooled, and patient plasma.    The summary 

table of all calibration slopes is presented in the table 3-30 below. The three groups of 

plasma matrices, compared using the unequal variance F-test, was not significantly 

different for both NH and H.  For NH the means were found to be statistically similar, 

F(1, 15) = 1.3, p-value = 0.067, while the same conclusion was drawn for the H 

calibration parameter F(1, 15) = 0.96, p-value = 0.341.    The results are presented as F-

test calculation (degrees of freedom for groups, residuals) and p-value.   All statistical 

comparisons were performed on S-PLUS 8.0 for Windows.   
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Table 3-28: Concentration calculations (pg/2ml) between standard addition calibration 
and surrogate matrix (SM) calibration curve for Norharman (measurements, n=1).   
 

patient #1 pg NH calc conc %DFN SM conc %DFN % Diff
12.5 222.2 10.0 208.5 -1.2 -6.1
100 332.5 14.9 336.8 12.8 1.3
400 598.9 1.6 597.1 -0.2 -0.3
625 777.5 -4.5 838.8 1.9 7.9
800 1036.0 4.7 1011.4 1.3 -2.4
zero 189.4 ** 198.5 ** 4.8

patient #2 pg NH calc conc %DFN SM conc %DFN % Diff
12.5 178.9 11.0 176.4 5.4 -1.4
100 274.3 10.3 271.9 6.6 -0.9
400 545.8 -0.5 508.6 -8.3 -6.8
625 683.8 -11.6 741.1 -5.0 8.4
800 1067.5 12.5 1003.6 5.1 -6.0
zero 148.7 ** 155.0 ** 4.2

patient #3 pg NH calc conc %DFN SM conc %DFN % Diff
12.5 61.0 15.6 55.5 0.9 -9.1

100 146.9 4.7 136.7 -4.0 -6.9
400 417.7 -5.1 461.2 4.2 10.4
625 641.0 -3.6 676.9 1.4 5.6
800 889.3 5.8 872.2 3.5 -1.9
zero 40.3 ** 42.5 ** 5.4

patient #4 pg NH calc conc %DFN SM conc %DFN % Diff
12.5 31.3 24.2 23.3 -7.3 -25.6
100 91.9 -18.5 103.6 -8.0 12.7
400 397.0 -3.8 433.9 5.2 9.3
625 665.0 4.3 711.6 11.6 7.0
800 895.4 10.2 885.6 9.0 -1.1
zero 12.7 ** 12.6 ** -0.8

patient #5 pg NH calc conc %DFN SM conc %DFN % Diff
12.5 392.0 4.6 327.1 1.8 -16.6
100 492.7 6.6 426.2 4.2 -13.5
400 709.5 -6.9 665.7 -6.1 -6.2
625 1033.8 4.7 957.6 2.5 -7.4
800 1043.9 -10.2 1053.2 -5.0 0.9
zero 362.3 ** 309.0 ** -14.7

standard addition surrogate mat calib
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Table 3-29: Concentration calculations (pg/2ml) between standard addition calibration 
and surrogate matrix calibration curve for Harman (measurements, n=1).   
 

patient #1 pg H calc conc %DFN SM conc %DFN % Diff
12.5 38.0 -3.0 43.1 1.7 13.3
100 119.8 -5.5 131.4 1.2 9.8
400 478.2 12.1 439.3 2.2 -8.1
625 712.6 9.3 670.1 2.3 -6.0
800 787.7 -4.7 863.4 4.0 9.6
zero 26.7 ** 29.8 ** 11.8

patient #2 pg H calc conc %DFN SM conc %DFN % Diff
12.5 168.6 8.1 166.2 7.3 -1.4
100 275.1 13.0 233.7 -3.6 -15.0
400 573.9 5.6 545.7 0.6 -4.9
625 791.5 3.0 780.2 1.7 -1.4
800 941.0 -0.3 919.5 -2.4 -2.3
zero 143.5 ** 142.4 ** -0.7

patient #3 pg H calc conc %DFN SM conc %DFN % Diff
12.5 29.8 -20.9 38.3 2.2 28.8

100 102.4 -18.2 111.0 -11.2 8.4
400 525.1 23.5 477.2 12.3 -9.1
625 791.9 21.8 757.3 16.5 -4.4
800 843.8 2.3 787.0 -4.6 -6.7
zero 25.1 ** 25.0 ** -0.6

patient #4 pg H calc conc %DFN SM conc %DFN % Diff
12.5 21.2 16.0 18.8 0.6 -11.3
100 102.7 -17.9 130.1 4.1 26.6
400 449.5 5.7 388.9 -8.5 -13.5
625 667.4 2.7 644.4 -0.9 -3.4
800 855.6 3.7 757.5 -8.2 -11.5
zero 5.8 ** 6.2 ** 7.0

patient #5 pg H calc conc %DFN SM conc %DFN % Diff
12.5 294.6 6.1 310.4 1.9 5.4
100 338.4 -7.3 376.6 -4.0 11.3
400 573.4 -13.8 624.5 -9.8 8.9
625 953.8 7.1 997.2 8.7 4.6
800 1018.9 -4.3 1078.7 -1.2 5.9
zero 265.3 ** 292.2 ** 10.2

standard addition surrogate mat calib
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Table 3-30: Statistical comparison of calibration regression slope parameter between 
pooled, patient and surrogate matrix for NH and H.  One-way ANOVA performed 
between matrices with significance at the α = 0.05 level. 
 

Norharman

calibration Pooled Patient Surrogate
1 0.0068 0.0065 0.0064
2 0.0072 0.0071 0.0067
3 0.0065 0.0071 0.0059
4 0.0065 0.0073 0.0062
5 0.0068 0.0059 0.0055
6 0.0064 0.006

avg 0.0067 0.0068 0.0062
stdev 0.0003 0.0006 0.0004

p-value 0.067

Slope of Regression

4

       

   

Harman

calibration Pooled Patient Surrogate
1 0.0094 0.0107 0.0097
2 0.0113 0.0098 0.0103
3 0.0109 0.0091 0.0098
4 0.0118 0.0089 0.0105
5 0.0096 0.0109 0.0092
6 0.0091 0.009

avg 0.0104 0.0099 0.0099
stdev 0.0011 0.0009 0.0005

p-value 0.341

Slope of Regression

7

 

 

 From these results, the appropriateness of using the modified plasma matrix as a 

surrogate matrix was demonstrated.    Parallelism between the calibration curves in 

different matrices suggests the interchangeable nature of using either matrix for 

validation purposes.    Limitations of using patient plasma pertain to insufficient 

volumes available for constructing an accurate calibration curve.  Moreover, an accurate 
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and precise assessment of an LLOQ for the standard addition method is dependent on 

the constitutive concentration of the analyte in the plasma.  The utilization of pooled 

plasma, solely, does not address the selectivity assessment as required for any 

bioanalytical method development.     Therefore, the surrogate matrix will be 

incorporated for the clinical sample analysis.   

 

3.3.4e Validation Conclusions  

 In summary, the acceptance criteria for validation were met according to 

predetermined specifications. In the surrogate and unmodified matrices, 

chromatographic response was linear throughout the concentration range of 6.3 pg/2 ml 

(LLOQ) and 1 ng/2 ml (ULOQ).    For both analytes, accuracy throughout the 

calibration range was acceptable with %DFN ranging from -7.6 to 14.9%.   Surrogacy 

of the modified matrix was confirmed via statistical comparison of calibration curve 

slopes with those of unmodified matrix (pooled and patient plasma).   For both types of 

calibration matrices, the slope precision (%COV) for H and NH were < 6.5% for both 

analytes with both analytes possessing R2 precision of <3.7%.   

  Accuracy and precision estimates for the assay were in acceptable ranges for the 

calibration points, the LLOQ and quality control samples with %COV and %DFN 

meeting analytical validation criteria.  Selectivity of the method was evaluated with 6 

donor lots (5 individual plasma and 1 pooled plasma) and no interference was apparent 

with the analyte or YOH detection.   Across all quality control samples, recovery was 

relatively high (>80.2%) and reproducible for both H and NH.    
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 Long-term plasma stability experiments for 6 months at -80ºC resulted in 

negligible deviations over time for both analytes.  Additional stability experiments, 

including stock solution, bench-top, and post-preparative resulted in negligible 

deviations throughout the respective tested time-spans.   Under the optimized SPE 

experimental conditions and chromatography, endogenous H and NH were detected in 

plasma at concentrations comparable to reported literature values.    

 

3.4  β-carboline assay conclusions  

 A robust, sensitive, selective and reproducible assay has been developed for the 

quantification of the endogenous β-carbolines, H and NH, in 2 ml of human plasma. 

This optimized assay technique involves a simple protein precipitation with SPE 

extraction along with 300 pg of the internal standard, YOH.   

 In comparison to reported methodologies for the quantification of H and NH in 

human plasma, this procedure has overcome the limitations aforementioned.  The 

optimized chromatography has preserved the baseline resolution of the H and NH 

analytes (Rs > 1.5) throughout the concentration range, improving the reliability of 

quantification.   In addition, an appropriate internal standard, YOH, was chosen in part 

to the similar physicochemical characteristics of H and NH.  The internal standard 

possesses comparable HPLC retention attributes, stability in plasma, and extraction 

recovery efficiency.  For these reasons, YOH proved to be a valuable candidate for H 

and NH extraction from human plasma.  
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 Successful quantitation without a true blank matrix requires the use of surrogate 

matrices, especially in the case where the analytes of interests are in low concentrations.  

This method justified the use of a surrogate matrix for validation and practical purposes.  

The standard addition method, although useful, resulted in less accurate results 

compared to the surrogate matrix calibration method.    This is presumably due to the 

lack of significant patient plasma volume to run a full and accurate calibration curve.    

 The current developed method has maintained resolution between analytes, 

utilizes a novel internal standard to assess sample loss from extraction and has been 

fully validated using and appropriate surrogate matrix, unlike currently reported assays 

for H and NH quantification in plasma. Moreover, this new method has maintained 

adequate sensitivity for physiological studies. The chromatographic separation 

conditions along with the optimized extraction technique and surrogate matrix 

calibration will be used to support clinical studies for the quantification if the β-

carbolines, H and NH, in human plasma. 

 



 

 

 

 

 

 

CHAPTER 4  

BIOANALYTICAL ASSAY OPTIMIZATION AND VALIDATION FOR R/S-
SALSOLINOL AND DOPAMINE IN HUMAN PLASMA 

 

 

4.1  Introduction – Selection of Analytical method 
 
 Salsolinol (1-methyl-1,2,3,4-tetrahydro-6,7-dihydroxy-isoquinoline, SAL) is a 

dopamine-derived tetrahydroisoquinoline (TIQ) alkaloid that has been purported to play 

a role in the neurochemical mechanisms underlying addiction.  However, results found 

in previous human studies on SAL plasma and urine concentrations and its enantiomeric 

ratio between healthy and alcoholic populations show conflicting results and show large 

variability.   A sensitive and reliable method to determine the enantiomeric composition 

of endogenous SAL is required to test a possible correlation between alcoholism and 

R/S-SAL exposure.  Moreover, as SAL is a dopamine derived TIQ alkaloid, it would be 

useful to determine the physiological concentrations of dopamine (DA) to assess SAL 

synthesis characteristics in human populations.  Assessment of the DA precursor along 

161 
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with the SAL product may provide valuable information on the characterization of SAL 

biosynthesis.   

 Both enantiomers of SAL are found in urine, cerebrospinal fluid (CSF), blood, 

and brain of humans.  As physiological concentrations of SAL are reported to be in the 

low nanogram to low picogram / ml plasma range, and the available samples from 

humans are complex matrices, multi-step enhancement and preparation techniques are 

necessary for ultimate detection and quantification.   

 Few reports of bioanalytical assays for total SAL in biofluids and foods have 

been published including GC-MS (Musshoff et al., 1997), HPLC-ECD (Riggin and 

Kissinger, 1977; Dufay et al., 1991) and HPLC-FD (Pagel et al., 2000) methodologies.  

Recently, LC/MS methods using electrospray ionization (ESI) tandem mass 

spectrometry (MS) (Song et al., 2006) or atmospheric pressure photoionization MS 

(Starkey et al., 2006) have been used for SAL analysis without enantiomeric separation.   

 The enantiomeric discrimination of SAL became of importance when in-vitro 

and in-vivo pharmacological differences between R-SAL and S-SAL were identified.   

SAL enantiomers were first analyzed by GC and nitrogen-phosphorus detection after 

derivatization with N-trifluoroacetyl-L-proyl chloride (Strolin-Benedetti et al., 1989).  

Regular analyses of SAL enantiomers from biological matrices using this methodology 

have been complex and irreproducible.  A GC/MS method was developed by a two-step 

derivatization process to SAL diastereomers with N-methyl-N-trimethyl-silyl-

trifluoroacetamide (MSTFA) and (R)-(-)-2-phenylbutyryl chloride as a chiral 

derivatizing agent (Haber et al., 1995b; Musshoff et al., 2000).  Although baseline 
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separation of SAL enantiomers was established, this method utilized water sensitive 

derivatization procedures that required evaporation of aqueous solvent to absolute 

dryness, frequently promoting oxidative degradation of SAL.  Moreover, the resulting 

chiral derivatives were unstable, hindering a consistent quantifiable analysis for both R- 

and S-SAL. 

 Use of chiral HPLC employing β-cyclodextrin stationary phases or as mobile 

phase additives has been used to provide enantiomeric separation of SAL 

(Rommelspacher et al., 1995; Stammel et al., 1995; Deng et al., 1997).   In addition, 

determination of SAL enantiomers by HPLC-ECD has been conducted as 

diastereoisomeric derivatives, via reaction with (S)-1-(1-naphthyl) ethyl isothiocyanate 

as a chiral derivatizing reagent (Pianezzola et al., 1989).  Yet, poor resolution, 

specificity, and sensitivity as well as lack of positive identification were severe 

limitations in the reported HPLC/ECD methods.  The reported methodologies for 

quantification of R- and S-SAL in a biological matrix have been sensitive but several 

shortcomings exist for the published techniques.  A list of published records of R-SAL 

and S-SAL analysis in a biological matrix is presented in the table below.     

 Further critique of the reported bioanalytical assays is warranted as inadequacies 

in the chromatography, extraction, and validation of the SAL assay methods are present.  

Adequate chromatographic baseline resolution between the SAL enantiomers has not 

been accomplished with majority of the assays presented, even after sophisticated 

techniques used for the separation.  In regard to quantification, several deficiencies are
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present in reported methods.  Firstly, internal standards have not been used in the 

reported assays.  Significant sample pretreatment and preparation steps utilized in these 

methods necessitate the use of an internal standard. 

 Aside from the methodological issues pertaining to R/S-SAL assays, appropriate 

bioanalytical validation metrics (i.e., accuracy and precision) have either not been 

presented or assessed.   Most importantly, the calibration matrix that has been used for 

quantitation in published assays has been via external calibration in buffer or mobile 

phase (see discussion in Chapter 3).  This practice of calibration completely disregards 

sample extraction efficiency or matrix effects that may occur during the analysis or 

detection.    

 In summary, the reported bioanalytical methodologies for quantification of the 

SAL enantiomers in human plasma are not adequate for clinical study.   In this 

investigation, a new robust analytical technique to determine SAL enantiomers and their 

precursor DA simultaneously based on chemical derivatization and chiral HPLC/ESI-

tandem mass spectrometry was developed, optimized and validated (Lee et al., 2007). 

Presented throughout this chapter is the investigation on the optimization and validation 

of the already developed assay.  The current method developed for R-SAL, S-SAL and 

DA quantification addresses the limitations associated with reported assay literature, 

maintaining the sensitivity required for use in human pharmacology studies. 
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4.2 Physicochemical Characteristics of R/S-SAL and DA 

 Tetrahydroisoquinolines, such as SAL (1-methyl-6,7-hydroxy-1,2,3,4-

tetrahydroisoquinoline), are a class of partially aromatic compounds that are formed via 

the condensation of catecholamines (e.g., dopamine) with aldehydes.  Recall the 

structure and pertinent physiochemical characteristics of salsolinol (SAL, figure 1-1). 

 Like many other TIQ’s, SAL has an asymmetric center at the C-1 position of the 

heterocycle, thus leading to two stereo-isomeric forms (+)-(R)-SAL and (-)-(S)-SAL.  

SAL is an isoquinoline analog consisting of a catechol ring and a secondary amine that 

is able to be protonated at physiological pH (primarily ionized).  Under acidic pH the 

secondary nitrogen possesses the propensity to form a quarternary ammonium species.  

The catechol moiety of SAL is speculated to have a pKa of ~ 9.4 in which, at 

physiological pH, is primarily unionized.  The solubility and lipophilicity of S-SAL has 

not been well characterized.  The logD has not been experimentally determined.  

Therefore, as SAL is primarily ionized at physiological pH and is moderately 

hydrophilic.  

 The precursor dopamine (4-(2-aminoethyl)benzene-1,2-diol, DA), is one of the 

primary catecholamine neurotransmitters in the brain. It is derived from tyrosine and is 

the precursor to norepinephrine and epinephrine.  Dopamine is a major transmitter in 

the extrapyramidal system of the brain, and important in regulating movement, in which 

a family of receptors mediate its action.  The structure and pertinent physicochemical 

characteristics are shown in the figure below. 
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NH2OH

OH                              
 
 
Mol Weight (g/mol)  153.2 g/mol 
pKa     9.8 (primary amine)  
log D    -2.34 
solubility   Very soluble (1000 g/L water) 
 
Figure 4-1:  Structure and physicochemical characteristics of dopamine (calculated 
from Advanced Chemistry Development, ACD/Labs, Software V 8.19 for Solaris © 
1994-2008). 
 

DA is an biogenic amine consisting of a catechol ring and a primary amine that is able 

to be protonated at physiological pH (primarily ionized).  Like SAL, the catechol 

moiety of DA is speculated to have a pKa of ~ 9.0 in which, at physiological pH, is 

primarily unionized.  DA is very soluble in water and the logD suggests that it is very 

hydrophilic in nature.   

 

4.3  Enantiomeric Determination of R/S-SAL and DA via HPLC-ESI MS/MS  

 A method for the simultaneous determination of the enantiomeric concentrations 

of R- and S-SAL, along with the precursor, DA, was developed in the Laboratory of 

Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National 

Institutes of Health (Lee et al., 2007).  Along with a synopsis of the reported method, 

below summarizes the optimization of derivatization steps along with final validation of 

the assay in human plasma.  The method was subsequently used to the support the 



168 

quantification of R/S-SAL and DA in two clinical studies involving alcohol dependent 

and tobacco smoking population.   

 

4.3.1    Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  Solvents used for experiments and measurements were of spectroscopic or 

HPLC grade and used without further purification.   

 
1. (±)-Salsolinol hydrochloride (racemic, SAL-HCl, Sigma-Aldrich Corp., St. Louis, 

MO) 

2. Dopamine hydrochloride (DA-HCl, Sigma-Aldrich Corp., St. Louis, MO) 

3. N,N-diisopropylethylamine (DIPEA, Sigma-Aldrich Corp., St. Louis, MO) 

4. Pentafluorobenzyl bromide (PFBBr, Pierce Chemical Company, Rockford, IL) 

5. Deuterium-labeled (S)-SAL-d4-HBr (1’-methyl-d4) and (R)-SAL-d4-HBr (1’-

methyl-d4) prepared by Cambridge Isotope Laboratories (Andover, MA) 

6. Deuterium-labeled 1,1,2,2-d4-DA-HCl (Cambridge Isotope Laboratories, Andover, 

MA) 

7. Perchloric acid, 70% HClO4 , double distilled (GFS Chemicals, Columbus, OH) 

8. Ethylene glycol bis-2-aminoethyl ether-tetraacetic acid, (EGTA, Sigma-Aldrich 

Corp., St. Louis, MO) 

9. Semicarbazide hydrochloride (Fluka Chemie., Buchs, Switzerland) 

10. Sodium metabisulfite (Sigma-Aldrich Corp., St. Louis, MO) 
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11. Monobasic sodium phosphate, NaH2PO4 • H20 (Sigma-Aldrich Corp, St. Louis, 

MO) 

12. Dibasic sodium phosphate, Na2HPO4 • 7 H20 (Sigma-Aldrich Corp., St. Louis, MO) 

13. 10 M NaOH (VWR, Westchester, PA) 

14. Hydrochloric Acid, ACS Reagent grade, 37% (Sigma-Aldrich Corp., St. Louis, MO) 

15. Methanol, HPLC Grade (Burdick and Jackson, Morristown, NJ) 

16. Hexane (Burdick and Jackson, Morristown, NJ) 

17. Acetonitrile (Burdick and Jackson, Morristown, NJ) 

18. Isopronanol, HPLC grade (Burdick and Jackson, Morristown, NJ) 

19. Milli-Q water (Millipore, Bedford, MA) 

20. Human plasma samples for validation - collected from healthy volunteers at the 

National Institutes of Health Apheresis Clinic and were either analyzed immediately 

or stored at -80 °C until the time of analysis.  

21. Pooled plasma for validation, n = 20 males and females, drug free, nonsmokers 

(BioChemed Services, Winchester, VA). 

 

4.3.2    Equipment   

1. Solid Phase Extraction Manifold, 20-port with stopcocks – (Alltech, Deerfield, IL) 

2. Solid phase extraction cartridges, Bond Elute phenyl boronic acid (PBA) – 100 mg, 

1.0 ml (Varian Inc., Palo Alto, CA) 

3. 10-μl, 100-μl, and 1000-μl Eppendorf variable volume pipette and corresponding 

pipette tips.  
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4. Instrumentation: 

a. Mass spectrometer: TSQ Quantum mass spectrometer with Electrospray 

Ionization source (Thermo-Finnigan, San Jose, CA) 

b. HPLC:  Agilent 1100 HPLC System (Agilent, San Jose, CA) 

c. Column: Chiralpak AD-H column, 2.1 mm x 150 mm, 5 µm, (Chiral 

Technologies, Inc., West Chester, PA) 

d. Guard Column: Chiralpak AD-H column, 2.1 mm x 10 mm, 5 µm, (Chiral 

Technologies, Inc., West Chester, PA) 

e. Data acquisition:  Excalibur 2.0 Software (Thermo-Finnigan, San Jose, CA) 

 

4.3.3 Preparation of Solutions and Standards 

 As neither of the (S)-SAL and (R)-SAL enantiomers are available separately, 

standard solutions of SAL were prepared by dissolving the racemic mixture of (R/S)-

SAL-HCl in methanol.  Standard stock solutions of (R/S)-SAL-HCl as well as DA-HCl 

were prepared in methanol at a concentration of 1 mg/ml in amber, silanized vials.  The 

deuterated internal standard stock solutions were additionally made in methanol at a 

concentration of 100 ng/ml for (S)-SAL-d4-HBr and (R)-SAL-d4-HBr and 1 mg/ml for 

d4-DA-HCl.  Of note, the individual enantiomers of R-SAL-d4 and S-SAL-d4 were 

synthesized and purchased.  Stock standard solutions were stored in darkness at -20 °C 

until further use. The working internal standard solutions were prepared by further 

dilution of the stock solutions to 500 pg/ml of each SAL-d4 enantiomer and 500 pg/ml 

of DA-d4.  Further dilutions used for calibration and validation are presented below in 
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the SAL validation section.  The solutions used for the assay methodology and 

validation are presented below.   

 

1.  Sodium phosphate buffer (pH 8.2, 0.2 M) for derivatization procedure  

 In 500 ml of Milli-Q® water 26.81 g of Na2HPO4 • 7 H20 and 1.38 g of 

 NaH2PO4 • H20 to a 500 ml volumetric flask.  The maximum buffering capacity 

 ~ 33% at this pH level and buffer concentration. 

2.  Sodium phosphate buffer (pH 8.5, 0.5 M) for solid-phase extraction  

 In 500 ml of Milli-Q® water 67.04 g of Na2HPO4 • 7 H20 and 1.725 g of 

 NaH2PO4 • H20 to a 500 ml volumetric flask.  The maximum buffering capacity 

 ~ 18.2% at this pH level and buffer concentration. 

3.  Protein precipitation/Antioxidant solution (1M perchloric acid with 0.01% EGTA,       

 0.02% semicarbazide HCL, 0.02% sodium metabisulfite)  

 Approximately 400 ml of 1M perchloric acid was made by adding 34.18 ml of 

 70% HClO4 to 365 ml Milli-Q® water.  To this solution 80 mg EGTA, 80 mg of 

 sodium metabisulfite and 400 mg of semicarbazide HCl was added and 

 subsequently stirred.   

4.  6N NaOH and 2N NaOH for pH adjustment of sample for solid phase extraction and 

 derivatization procedure.   

 A 10 N NaOH solution was diluted accordingly to obtain the required normality. 

5.  10% Pentafluorobenzyl bromide (PFBBr) in acetonitrile for derivatization 



172 

 Approximately 500 µl of PFBBr was added to 4.5 ml of acetonitrile in an amber 

 vial and vortexed.   

6.  10%  N,N-diisopropylethylamine (DIPEA) in acetonitrile for derivatization 

  Approximately 500 µl of DIPEA was added to 4.5 ml of acetonitrile in an amber 

 vial and vortexed. 

7.  0.1 M Hydrochloric acid: Methanol (HCl:MeOH, 1:1 ratio) for elution solvent  

   2.06 ml of 37% HCl was added to 248 ml of Milli-Q® water and mixed.  250 ml 

 of methanol was added and mixed accordingly.   

8.  1% acetic acid for post-column addition 

 5 ml of glacial acetic acid was added to 495 ml of Milli-Q® water. 

 

4.3.4 Method Summary for the Analysis of R/S-SAL and DA in human plasma 

4.3.4a Sample Preparation 

 Pooled plasma and human plasma samples that were collected from healthy 

volunteers were stored at -80 °C until the time of analysis.  Aliquots of 1.0 ml plasma 

were spiked with 1 ng each of (S)-SAL-d4 and (R)-SAL-d4 and 5 ng of DA-d4 as 

internal standards.    Extraction of SAL from human plasma was carried out as 

described by Haber et al. with a slight modification (Haber et al., 1995b).  Samples 

were acidified with 1.0 ml of a 1 M HClO4 antioxidant solution containing 0.01% 

EGTA, 0.02% semicarbazide hydrochloride, and 0.02% sodium metabisulfite.   This 

solution was used primarily for protein precipitation.  The additives utilized in the 

HClO4 solution were used as a precautionary measure to inhibit artifactual formation of 
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SAL during the sample work up.  EGTA is a chelating agent that acts as a preservative 

and antioxidant while sodium metabisulfite serves as a strong antioxidant.  The 

semicarbazide component acts as an “aldehyde trapping” agent to prevent artifactual 

formation of SAL.   

 The plasma solution was subsequently centrifuged at 2000g for 15 min at 4 °C 

to remove precipitated proteins.  In order to hydrolyze any conjugated SAL and DA, the 

supernatant was collected and heated for 60 min at 80 °C.  More than 90-98% of SAL 

and DA were present as the conjugated form in plasma based on their levels determined 

with or without acid hydrolysis (data not shown).   This assessment is consistent with 

the reported literature.  The protein free, hydrolyzed sample was cooled and the pH of 

the sample was adjusted to 8.5 using ~ 100 µl of a 6 N NaOH solution and buffered 

with 0.5 ml of 0.5 N potassium phosphate buffer (pH 8.5).  A further, more fine, 

adjustment of pH was performed with a less concentrated 2N NaOH, if needed.   

 

4.3.4b Solid Phase Extraction by Phenyl Boronic Acid (PBA) 

 After pH adjustment, the SAL and DA in plasma were isolated by PBA solid-

phase extraction.    PBA has been successfully used to isolate SAL and DA from 

biological matrices (see table 4-1).   PBA is a distinctive sorbent comprising of a 

phenylboronic acid covalently linked to a silica gel surface.  The boronate group has a 

high specificity for cis-diol containing compounds like catechols, nucleic acids, low 

molecular weight proteins and carbohydrates.  PBA utilizes a covalent retention 

mechanism that involves an interaction of 10-100 times greater energy than other 



174 

extraction mechanisms (Varian, 2005).  PBA has proven to be especially effective in the 

isolation of catecholamines from biological fluids.  Retention is usually strongest when 

the analytes' functional groups are co-planar, as in the case of SAL and DA. 

 The PBA solid-phase cartridge was rinsed twice with 2 ml each of methanol and 

water to remove any contaminants and subsequently conditioned with 2 ml of potassium 

phosphate buffer (0.5 M, pH 8.5).  The pH 8.5 buffered sample was loaded on the PBA 

cartridge and washed twice with 1 ml each of water and methanol.  Two 750 ml aliquots 

of the 0.1 M HCl/MeOH (1:1) elution solvent mixture was used to elute SAL and DA 

from the cartridges.  The acidic component of the elution solvent was employed to 

break the covalent bonds between the PBA solid phase and the cis-diol groups from the 

SAL and DA.  The elution solvent containing the analytes of interest was directly 

subjected to derivatization without drying and reconstituting in organic solvents.  

 

4.3.4c SAL and DA derivatization via direct PFBBr alkylation 

 Derivatization of SAL and DA from the SPE column directly in the eluting 

solvent minimized the sample loss and oxidation.  After elution, the sample was 

adjusted to a pH of 8.2 using 5-10 µl of 2 N NaOH and 100 µL of 0.2 N potassium 

phosphate buffer (pH 8.2).   PFBBr was used as the primary reagent for the 

derivatization of both SAL and DA.  DIPEA was used to prevent the formation of 

quaternary ammonium species from “over-alkylation” of SAL, of which would not be 

the product of interest for analysis.   Optimization of this derivatization step was pH, 

temperature, and reagent concentration dependent.   Further discussion on the 
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procedures used to optimize this step is presented in the succeeding section.   As result, 

approximately 100 µL of 10% PFBBr and 20 µL of 10% DIPEA in acetonitrile were 

added.  The derivatization was performed at 68 °C for 2.5 h with intermittent vortexing, 

to ensure completeness of the reaction.    A schematic summarizing the reaction of R- 

and S-SAL to their respective tri-PFB derivatives is shown below. 
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Figure 4-2:  Chemical structures and derivatization reaction summary of (R)- and (S)-
SAL to their respective PFB derivatives. 
 

 Resultant SAL-PFB and DA-PFB derivatives were extracted into a 500 µL 

hexane phase followed by simple water-hexane partitioning to remove water soluble 

salt components from the reaction mixture.  A 200 µl aliquot of the hexane layer 

containing the derivatives was removed and evaporated to dryness, reconstituted in 

methanol, and subjected to chiral phase HPLC/ESI-MS/MS analysis.  A schematic of 

the entire sample preparation is presented in the figure below.   
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Figure 4-3:  Flow chart of sample preparation for the analysis of R/S-SAL and DA 
from human plasma. 
 
 
 
4.3.4d  Chromatographic and Mass Spectrometric Conditions 

 After extraction and derivatization, of the analytes of interest were analyzed via 

HPLC-MS/MS analysis, with an electrospray ionization source (ESI). Simultaneous 

chromatographic separation of both derivatized SAL enantiomers and DA, was attained 

using a Chiralpak AD-H column (2.1 mm x 150 mm, 5 µm).  This type of column 

utilizes a cellulose chiral stationary phase, specifically tris(3,5-

dimethylphenylcarbamate)-amylose, to attain separation of enantiomers. The 
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phenylcarbamate derivative of the optically active amylose polysaccharide exhibits a 

high chiral recognition capability (Yashima et al., 1995). These types of columns 

involve a combination of attractive interactions and inclusion complexes to produce 

separation.     Each unit of the amylose phases displays a propeller-type shape and are 

believed to form helical polymeric structures which combine polar, π-π interactions 

with inclusion complexation (Ghanem and Naim, 2006).  These phases are generally 

used in the normal phase mode due to the water solubility of cellulose-type stationary 

phases.  For chromatographic separation, an isocratic mobile phase consisting of 

isopropyl alcohol and methanol (IPA/MeOH, 3:2) at a flow rate of 0.12 ml/min was 

delivered by the HPLC system.   

 Detection after chromatographic separation of the derivatized analytes was 

conducted via MS/MS analysis with an ESI source in the positive ion mode.  The heated 

capillary temperature was set at 350 °C, sheath gas (nitrogen) flow rate at 35 units, 

auxiliary gas at 5 units, and spray voltage at 3.5 kV.  For quantitation, the mass 

spectrometer was operated in the multiple reaction monitoring (MRM) mode.   

Collision-induced dissociation (CID) was performed using argon as the collision gas at 

1.5 mtorr with relative collision energy set at 35 V for SAL and 28 V for DA.   Signal 

intensity was significantly improved via post-column addition of 1% acetic acid in 

water (~50 µL/ min) and was employed prior to the detection by MS. 

 ESI mass spectra of tri-PFB derivatives of SAL and d4-SAL contained [M+H]+ 

ion as the base peaks at m/z 720 and m/z 724, respectively.  Chromatograms of MRM 

transitions m/z 720→181, 210, 358 for (R/S)-SAL and m/z 724→181, 210, 362 for d4-
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(S)-SAL were used upon initial analysis.  For SAL enantiomers the MRM 

corresponding to the ring cleavage, m/z 720→210 (SAL) and m/z 724→210 (d4-SAL), 

was selected to ensure the selectivity of detection.  The quantitation of DA was 

performed by MRM using the transitions of m/z 874 → 497 (DA) and m/z 878 → 501 

(d4-DA).   The ESI-MS/MS product ion mass spectra of [M+H]+ produced from tri-PFB 

derivatives of SAL and  d4-SAL with the tetra-PFB derivatives for DA and d4-DA are 

shown in the figures below.   

 The chromatograms of derivatized (R/S)-SAL and d4-(S)-SAL show resolution, 

Rs > 2.2 between SAL enantiomers and that the (S)-form (retention time: 8.2 min) 

eluted prior to the (R)-form (retention time: 12.6 min).  DA possessed a retention time 

of 7.9 minutes.  Of importance, the inter-conversion, from R to S or vice versa, between 

two enantiomers did not occur throughout the analysis.  The SRM chromatograms of 

(R/S)-SAL further indicated that each isomer was detected with approximately 1:1 

relative peak area ratio.  The deuterium labeled SAL and DA internal standards were 

stable during the analysis and there was no evidence of deuterium/hydrogen exchange.  

Separate MS and MS/MS analyses was performed to test lack of this phenomenon in an 

aqueous environment over a wide pH range (data not shown).  

 Even though monitoring all three transitions in the MRM mode for SAL yielded 

a higher relative intensity, the sensitivity of the assay was not improved due to a 

compromise in specificity when plasma samples were analyzed.  Consequently, the 

SRM to the ring cleavage, m/z 720→210 (SAL) and m/z 724→210 (d4-SAL), was 

selected to ensure the selectivity of detection.  Post-column infusion of 1% acetic acid 
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in water (~50 μL/min) to the main column flow considerably improved the sensitivity 

(by > 10-fold) by enhancing ionization efficiency while circumventing the adverse 

effects of and acidic and aqueous environment that may affect the chiral column 

stability.  
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4.3.4e Method Summary Discussion  

 Only a few analytical assays for the measurement of total (unconjugated and 

conjugated) R- and S-SAL in biological samples have been developed, including HPLC 

with electrochemical detection and GC/MS.  Quantitation of the enantiomeric 

composition in biological samples can be difficult due to inadequate baseline separation 

of enantiomers, irreproducibility, and lack of internal standard use for extraction 

techniques.  Therefore, the development of analytical techniques for the enantiomeric 

determination of SAL is indispensable due to its enantioselective occurrence and 

physiological activities underlying alcoholism.   

 The selectivity of this method in determining SAL and DA from plasma is 

superior to those already reported.  Utilization of PBA SPE was able to discriminately 

remove catechol moieties from plasma, namely the SAL enantiomers and DA.   Use of 

this method of extraction of SAL from plasma has been exemplified in the literature.  

Novel deuterium-labeled R-SAL and S-SAL along with DA allowed for the adequate 

compensation of analyte loss throughout the assay method.   A stable isotopically 

labeled analogue is believed to be the most appropriate internal standard in a 

quantitative bioanalytical LC/MS/MS assay.  It is assumed that a this type of internal 

standard compensates for variability in chemical derivatization, sample extraction and 

LC/MS/MS analysis due to its nearly identical chemical and physical properties to the 

unlabeled analyte.  The derivatization of SAL and DA to its corresponding PFBBr 

analogues, along with the innovative chiral stationary phase, allowed for sufficient 

resolution of both SAL enantiomers, in addition to simultaneous separation of DA.     



184 

Moreover, racemization of the analytes was not observed, permitting reliable 

interpretation of pharmacological studies discerning specific roles for each SAL 

enantiomer.   

 Selectivity of the assay was reinforced by the detection via ESI-MS/MS.   

Choosing the appropriate MRM transitions improved the selectivity, whilst maintaining 

the sensitivity required for ultimate plasma analysis.  The product ion spectra of 

[M+H]+ acquired from the SAL derivatives possessed the major peaks at m/z 181, 210 

and 358 for SAL and at m/z 181, 210 and 362 for d4-SAL, respectively.  The most 

prevalent product ion appeared at m/z 181 corresponding to the PFB fragment ion.  The 

product ions at m/z 358 and 362 were derived from the loss of two PFB groups from the 

corresponding [M+H]+ ions of SAL and d4-SAL derivatives, respectively. The product 

ion at m/z 210 and 210 derived from the ring cleavage with one PFB group on the 

amine group, was common for SAL and d4-SAL, respectively.   Therefore, the reaction 

monitoring transition of m/z 720→210 for SAL and m/z 724→210 for d4-SAL was used 

to ensure the selectivity of detection. 

Detection of DA in plasma was also achievable with use of the assay method 

and LC-MS/MS system.  The MS/MS analysis revealed the presence of four derivatives 

of DA corresponding to three tri-PFB-DA isomers (m/z 694) and a fully derivatized 

tetra-PFB-DA derivative (m/z 874).   Experiments exemplified the tetra-PFB-DA is the 

major derivative under the conditions employed (data not shown), which was ultimately 

chosen as the derivative of interest for quantitative analysis of DA.  The mass spectrum 

obtained by CID of tetra-PFB-DA produced major product ions at m/z 181, 316 and 
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497.   The ultimate quantitation of DA was performed by MRM using the transitions of 

m/z 874 → 497 (DA) and m/z 878 → 501 (d4-DA).   

This novel method was developed at NIH-NIAAA Laboratory of Molecular 

Signaling.    Prior to validation of the method, optimization of the PFBBr derivatization 

was carried further to ensure high reaction yield and, more importantly, consistent and 

reproducible derivatization products for the primary analyte(s) of interest, R- and S-

SAL.  Subsequently, validation of the assay methodology was performed to ensure 

accurate and precise results for the support of two clinical studies.    

 

4.3.5 PFBBr Derivatization Optimization for R/S-SAL and DA  

 The efficient separation of the SAL enantiomers required the use of a PFBBr 

derivatization procedure after SPE from plasma.    Derivatization involves a chemical 

reaction between an analyte and a reagent to change the chemical and physical 

properties of the analyte of interest.  In turn, the method improves detectability and 

chromatographic separation, thereby enhancing the assay method sensitivity (Snyder et 

al., 1997).    In the case of SAL, the key to the chiral analysis is the ability to react an 

optically active target with PFBBr, in order to achieve adequate resolution between the 

enantiomers.    The derivatization of SAL enables the chiral recognition by the novel 

chiral column used for this analysis.     The ability of the derivatized analyte and the 

chiral stationary phase to form transient-diastereomeric complexes utilizing hydrogen 

bonding, dipole stacking, inclusion complexing and π-π interactions governs the 

enantioseparation.  Therefore, the derivatization step involved in the R- and S-SAL 
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analysis is of great importance.   Of note, successfully resolved enantioseparation of 

SAL without derivatization has not been reported.   

 The first step for derivatization for chiral method development is to examine the 

chemical structure of the analyte and identify information such as solubility in different 

solvents, hydrogen and π-bonding capability, pKa, functional groups and inclusion-

complexing capability.    All characteristics, of which, determine the ability for the 

chiral stationary phase to resolve the sample enantiomers.  The ultimate arrangement of 

the substituent groups, relative to the achiral center plays an important role in the 

enantiomer separation (Snyder et al., 1997).    Recall the structure of SAL.  This analyte 

is primarily water soluble with three important functional groups, two being the 

hydroxyls of the cis-diol catechols moiety of the molecule.  The chiral center at the C-1 

position is directly adjacent to the secondary amine present in the molecule.    In most 

cases, the closer a functional group is to the chiral center, the more likely is chiral 

recognition.  Therefore, derivatization of the secondary nitrogen is of greater 

importance than that of the hydroxyl groups of SAL.   

 The use of PFBBr was used for its ease and successful use for derivatization of 

amines and hydroxyl functional groups that are present in SAL.  PFBBr converts 

carboxylic acids, mercaptans, phenols, and sulfonamides to halogenated derivatives that 

are easily detected by electron capture.  Electron capturing esters are popular for gas 

chromatographic analyses of short chain fatty acids.  Specifically, PFBBr has been 

effectively used as a derivatizing agent for GC analysis of polyfunctional thiols 

(Montanari et al., 2006).  In addition, this reagent was used for the preparation of 
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pentafluorobenzyl esters of organic acids for determination by capillary (Cataldi et al., 

1999) and GC (Husek et al., 2008).    PFBBr is used in extractive alkylation 

(simultaneous extraction and derivatization), in conjunction with tetrabutylammonium 

hydrogen sulfate as the counterion an ion-pairing reagent (Sigma-Aldrich, 1999).  

Pentafluorobenzylation by alkylation gives derivatives of phenols, carboxylic acids, and 

sulfonamides to create esters, ethers, alkyl amines and alkyl amides.  The specific 

alkylation reaction reduces molecular polarity by replacing active hydrogens with an 

alkyl group.  The principal reaction employed for preparation of these derivatives is 

nucleophilic displacement (Knapp, 1979). 

 PFBBr is generally used to convert organic acids into esters.  Of note, the 

primary functional moiety of interest in the secondary nitrogen of SAL because its 

proximity to the chiral center.  As the acidity of the active hydrogen decreases, the 

strength of the alkylating reagent must be increased.   The harsher the reaction 

conditions or reagents, the more limited the selectivity and applicability of this method.  

For these reasons, optimization of the derivatization reaction was pertinent.   Some 

advantages of PFBBr derivatization include 1) reaction conditions can vary from 

strongly acidic to strongly basic, 2) some reactions can be done in aqueous solutions, 

and more importantly , 3) the alkylation derivatives are generally stable (Sigma-

Aldrich, 1999).  The disadvantages include sometimes severe reaction conditions and 

toxicity of PFBBr (this reagent is a strong lachrymator).   Nevertheless, PFBBr is an 

effective reagent for alkylation of amines and acidic hydroxyls, as those part of the SAL 

structure.   
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 The following experiments were designed to optimize the derivatization of SAL 

with PFBBr.  As the primary goal of the optimization, the derivatization of the 

secondary nitrogen of SAL was imperative for chiral recognition.    

 

4.3.5a Methods  

 Prior to optimization of the PFBBr-SAL reaction, preliminary information about 

the reaction was obtained from the literature.    The environment of the reaction was to 

take place in the elution solvent from the PBA extraction (0.1 M HCl:MeOH = 1:1), 

which is highly acidic and primarily aqueous in nature.    SAL is known to possess two 

types of functional groups that may be derivatized.  The hydroxyl groups of the catechol 

moiety are primarily unionized while the secondary nitrogen is in its ionized form in 

this acidic milieu.   This characteristic suggests that pH dependency of the reaction is 

important for a high and reproducible reaction yield.  The physicochemical 

characteristics of both PFBBr and SAL differ greatly where PFBBr is highly lipophilic 

as opposed to the analyte.   A consideration on use of a dispersion agent in order to 

ensure the interaction and subsequent reaction of PFBBr and SAL was necessary 

because of the differing characteristics.   The structure of PFBBr is shown below. 
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Figure 4-7:  Chemical structure of pentafluorobenzyl bromide (PFBBr). 
 

 As PFBBr has been used extensively for the derivatization for GC detection, 

molar ratios of reagent to the functional groups have been thoroughly explored.   An 

approximate molar ratio of 1 to 0.3 (reagent to phenols) is necessary for derivatization 

of the catechol portion of SAL (Sigma-Aldrich, 1999), while the secondary amine 

requires a molar ratio of 1.1 to 1 (reagent to secondary amine) for alkylation to occur 

(Moore et al., 2005).     

 Of importance is the alkylation of the secondary amine with the PFBBr alkyl 

halide to form a tertiary amine.   From a methodological view, direct alkylation to the 

tertiary amine is straight-forward but has been somewhat limited.  Direct N-alkylation 

of secondary amines often results in the formation of the quaternary ammonium salts 

and a mixture of the desired tertiary amine and the starting secondary amine (Moore et 

al., 2005).   In turn, derivatization yields of the desired products have been low and 

irreproducible.    The use of a Huenig base, N,N-Diisopropylethylamine (DIPEA), has 

been proven to hamper the formation of quaternary ammonium salts to yield desired 

tertiary amines from alkylation of secondary amines (Moore et al., 2005).  This 
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compound is a good base but a poor nucleophile, which makes it a useful organic 

reagent.  The recommended molar ratio of secondary amine to DIPEA to alkyl halide is 

(1 to 1.5 to 1:1) in acetonitrile at room temperature.  

 With prior information about the PFBBr reaction with the functional groups of 

SAL, experiments were designed to evaluate several factors to construct a reproducible 

and high reaction yield.    In a univariate manner the following factors were explored to 

improve the reaction equilibrium of the alkylation in elution solvent (1M HCl: MeOH), 

in priority order: 

1. molar ratio of total SAL to PFBBr (1:3) 

2. molar ratio of SAL:PFBBr with respect to the Huenig base, DIPEA, (1 : 3 : 1.5)  

3.   use of a dispersion agent:  (i.e., acetonitrile, chloroform, hexane, benzene) 

4. pH dependency, buffer type and concentration 

5. time dependency (15 min, 1, 2, 3, 6, 8, 12, and 24 hours) 

6. temperature dependency (RT, 40, 50, 60, 70, 80, 100°C) 

 

 For formal evaluation, relatively high concentrations of total SAL and d4-R/S-

SAL were prepared in 1.5 ml of elution solvent (total of 2 ng for total internal standard 

and 4 ng of total analyte).  Throughout the experiments it was assumed that smaller 

concentration would yield similar results.    All experiments were performed in 

triplicate to assess precision of the reaction conditions.  The formation of the desired tri-

PFB-SAL product was identified by GC/NCI-MS.  Reversed phase HPLC/ESI-MS was 

further used to confirm results.    Of note, total SAL and total d4-SAL was used for the 

http://en.wikipedia.org/wiki/Nucleophile
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interpretation of results.  The individual SAL enantiomers were not evaluated for 

reaction yield.    

 Prior to optimization, initial reaction conditions included those that have been 

reported (Knapp, 1979; Moore et al., 2005).  Initial reaction conditions in the elution 

solvent included excess of reagent to SAL ratio (1:100), at pH 7.0, for 2 hours at 68ºC.  

For PFBBr: SAL reaction ratio in elution solvent, molar ratios of 1:1, 1:3, 1:10 and 

1:1000 were varied from initial conditions.    Conditions for reaction include without 

and with varying concentrations of the DIPEA Huenig base.   As the physicochemical 

characteristics of the SAL and PFBBr differ greatly, dispersion agents such as 

acetonitrile, chloroform, hexane, and benzene were evaluated for improvement of 

reaction yields.    In the elution solvent, pH ranging studies were performed by 

adjusting pH at the following values: 7.0, 7.5, 8.0, 8.2, 8.5, 9.1, 9.5, and 10.0.    1N 

NaOH was used to adjust to the desired pH and varying concentrations of phosphate 

and borate buffer were used to maintain pH.  Reaction time and temperature 

dependency experiments were performed for 15 min, 1, 2, 2.5, 3, 6, 12 hours and room 

temperature, 40, 68, 80, 100°C, respectively.   In priority order the factors were varied 

and optimal results were carried through for evaluation of the next factor.   

 Throughout each experiment the SAL was subsequently extracted with 500 µl of 

hexane, washed with 2 ml water to remove salts and unwanted polar products.  A 200 µl 

aliquot was dried down and reconstituted in 20 µl of methanol and subjected to HPLC-

MS/MS analysis.  Further confirmation was performed by GC/NCI-MS and PCI-MS.     
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4.3.5b Results 

 Excess reagent was used for the reaction of PFBBr and SAL to result in a >90% 

reaction yield.  Approximately 100 µl of 10% PFBBr in acetonitrile reagent was used 

for reproducible reaction equilibrium.  The molar ratio of PFBBr to SAL for this 

reaction was approximately 1000:1.   DIPEA was necessary to produce a precise 

derivatization yield in which a 20 µl of 10% DIPEA in acetonitrile reagent was used to 

prevent formation of the quaternary ammonium species.  As both reagents were 

dissolved in acteonitrile, additional use of a dispersion agent was not needed for the 

reaction.  Consistent yields were observed with or without the use of additional 

acetonitrile, chloroform, hexane, or benzene.   

 Upon evaluation, the pH dependency of the reaction yield ad reproducibility 

proved important.    The result of the pH dependency study is shown in the figure 

below. The final pH utilized for the reaction was 8.2 using 100 µl of 0.2M 

K2HPO4/KH2PO4 buffer.  Apparently, at this pH both phenol and amine groups of SAL 

were deprotonated for efficient alkylation, and yet degradation of SAL and PFBBr was 

minimal.    For the reaction to occur, the pH of the environment needed to be between 

pH 7 and 9.5.    Relatively large and precise reaction yields were observed at between 

pH 8.0-8.2.   The reaction time and temperature dependency experiments yielded 

consistent results at a time of 2.5 hours at 68°C.    The results of the pH ranging 

experiment are shown in the figure below. 
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Figure 4-8:  pH dependency of the PFBBr – SAL derivatization reaction in 1.5 ml 1M 
HCl:MeOH (1:1).  Presented as pH vs. total SAL area (mean ± SD).  Reaction 
conditions:  100 µl of 10% PFBBr and 20 µl of 10% DIPEA in acetonitrile, for 2 hours 
at 68°C.   
 

 Under the optimized conditions, the extracted ion chromatograms from 

GC/NCI-MS analysis indicated that the desired tri-PFB-SAL was the predominant 

product while the mono- and di-derivatized forms were the minor components. The 

positive ion spectrum obtained by GC/PCI-MS contained [M+H]+ at m/z 720.  Reversed 

phase HPLC/ESI-MS and HPLC/ESI-MS/MS analyses confirmed the results obtained 

by GC/MS analyses (data not shown). The reaction products were stable for > 8 hours at 

room temperature and > 48 hours in -20°C.    The final desired SAL derivative is shown 

in the figure below. 
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Figure 4-9:  Structure of the desired S-SAL-PFB3 (MW = 719) reaction product under 
optimized derivatization conditions. 
 

 

4.3.5c Discussion 

 Derivatization conditions vary widely, depending upon the specific compounds 

being derivatized.  If derivatization is not complete under the recommended procedures, 

the addition of a catalyst, use of another solvent, pH control, higher reaction 

temperature, longer reaction time, and/or higher reagent concentration should be 

evaluated. Experiments confirmed that, in presence of excess PFBBr reagent, both 

DIPEA and pH dependency were important for formation of the desired SAL product.    

The use of DIPEA for the formation of tertiary amines via alkylation has been 

exemplified in other reports.   The distinctive role of DIPEA in preventing the 

quaternization is not well understood.  It can be implicitly understood that this non-

nucleophilic strong base forms a salt with the released hydrogen halide permitting the 

reaction to proceed under kinetically restricted conditions.   In this case, the reaction of 
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the secondary amine with the starting alkyl halide may be faster than the reaction of the 

tertiary amine product with the starting alkyl halide.  Of note, higher concentrations 

employed of DIPEA resulted in a decrease of reaction yield.  This is presumed to be a 

result of an increase in unfavorable side reaction products of PFBBr with DIPEA.  

Moreover, DIPEA is a strong base that may cause the lack of an appropriate pH 

buffering in the elution solvent.  

 The influence of pH has a profound effect on the derivatization reaction.   As the 

desired product involved the simultaneous deprotonation of the both the catechol and 

secondary amine, pH effects were expected.    At lower pH, SAL functional groups are 

primarily protonated hindering the preferred alkylation.  At higher pH (> pH 9) the 

reaction yield was minimal to none for the desired product.    In a basic milieu, both 

SAL (Haber et al., 1996) and PFBBr (Gyllenhaal, 1978) are reported to be unstable 

which would explain the lack of the preferred reaction product.   The pH ranging study 

suggests that a tight regulation of the pH (between 8.0 – 8.2) is necessary for the 

reproducible and high (>90%) reaction yields.  The buffer concentration used in the 

reaction was strong enough to maintain and adequate buffering capacity (~30% of 

maximum).  As a phosphate buffer was utilized for the reaction, it was imperative that a 

wash step be employed to the hexane extract to prevent instrumental exposure to 

phosphate salts. Additional inclusion of a dispersing agent or phase transfer catalysts 

was not necessary for the reaction equilibrium.     

These experimental conditions were also chosen for the simultaneous 

derivatization of DA.  The HPLC/ESI-MS/MS analysis revealed presence of four 
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derivatives of DA corresponding to three tri-PFB-DA isomers (m/z 694) and a fully 

derivatized tetra-PFB-DA derivative (m/z 874).  Since the tetra-PFB-DA is the major 

derivative under the optimized SAL derivatization conditions, we chose this form for 

quantitative analysis of DA.  The mass spectrum obtained by CID of tetra-PFB-DA 

produced major product ions at m/z 181, 316 and 497. The characteristic fragment ion 

at m/z 497 resulted from the loss of NH-(PFB)2 from [M+H]+ ions as depicted in figure 

4-5.  

 

4.3.5d Conclusion  

 In a primarily aqueous environment both SAL and DA were able to be 

derivatized by PFBBr to its tri-PFB and tetra-PFB products, respectively.    Structural 

confirmation of the products was evaluated via separate analytical methods to ensure 

the reaction yield.  The optimal conditions used for subsequent analytes in plasma 

included a favorable molar ratio of analyte to PFBBr to DIPEA.    With an unyielding 

control of pH, the desired products were derivatized with high and reproducible yield.    

The summarized method, along with the optimized derivatization reaction was 

subsequently used for the validation of R/S-SAL and DA quantification in human 

plasma. 

 

4.3.6 Validation of the Assay Method in Human Plasma  

 Discussion of analytical method validation has been discussed in the prior 

chapter for the β-carboline HPLC-FD assay in human plasma.  The approaches for 
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validation of the R/S/-SAL assay presented henceforth includes the assessment of 

selectivity, sensitivity, accuracy, precision, reproducibility and precision.  Other 

parameters of interests that will be investigated include those of extraction efficiency, 

calibration range, matrix effects, a dilution integrity, and response function.     

 Similar special considerations are required for the validation of the R/S-SAL 

assay as the β-carbolines for quantification of constitutive SAL components in a 

biological matrix.   R/S-SAL are endogenous compounds with quantifiable baseline 

levels in the biological matrix of interest, therefore the nature of biomarkers posts a 

challenge to find analyte-free biological matrix to prepare calibrator standards.    For 

this reason, the “surrogate matrix” approach for calibration was also used for the R/S-

SAL quantification. 

 Along with formal validation of the R/S-SAL method, this section will 

investigate the similarity of the analytical concentration-responses relationships 

between the unadulterated sample matrix and the surrogate matrix.   All reported 

methodologies used for the quantification of R/S-SAL and DA in biological matrices 

utilized a neat buffered matrix for validation purposes, without the formal assessment of 

a matrix effect.   As the hindrance of constitutive SAL and DA poses an issue with 

calibration curve construction, a strategy limiting or completely eliminating the 

background was investigated.   

 Moreover, if alteration of the plasma matrix is necessary, the response behavior 

(i.e., slope) of the calibration curves between the unadulterated and the altered matrix 

needs to be statistically indistinguishable to judge matrix surrogacy.   “Matrix effect” 
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should not be present upon testing the calibration between the two matrices.  Only until 

surrogacy is proven, quantification using the modified matrix may be performed.     

 Considering the issues of endogenous R/S-SAL and DA background and the 

lack of a true blank matrix, the same strategy to that of the β-carbolines was employed 

for this assay for bioanalytical validation in human plasma.    The strategy for the 

bioanalytical validation of the R/S-SAL and DA assay is as follows: 

 

1. Preliminary exploration of the assay was evaluated in a pooled plasma matrix, with 

the parameters such as precision, calibration range, and selectivity being assessed.    

Moreover, the type of calibration function (i.e., linear or nonlinear) used was 

assessed at this point.  The primary objective was to determine, in an unadulterated 

matrix, the precision of the bioanalytical assay throughout a given concentration 

range.  Accuracy was expected to be confounded by the constitutive concentrations 

of SAL and was not scrutinized during the pooled plasma analysis.  Short-term and 

long-term stability studies were conducted in the unadulterated pooled plasma. 

2. Exploration of a suitable surrogate matrix included destruction of constitutive SAL 

and DA in pooled plasma, to create a “blank” matrix.   The pooled plasma matrix 

was modified until devoid of a significant SAL and DA chromatographic signal, 

while minimizing the difference of composition in the true matrix.  Subsequently, 

SAL and DA were spiked into the modified matrix to assess the validation 

parameters aforementioned.  Full calibration curves (n = 6) and quality control 

samples were used to evaluate the linear range, accuracy and precision.  Of 
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importance, the Lower Limit of Quantification (LLOQ) was determined during this 

step using n = 6 non-calibration point replicates.  Recovery assessment was 

evaluated using this matrix to assess the relative recovery and, more importantly, the 

precision.    

3. Upon calibration curve evaluation of both pooled plasma and modified plasma 

matrix, n = 5 individual, unmodified plasma sources were subsequently spiked with 

a range of SAL and DA standards.   Owing to the different constitutive 

concentrations of SAL and DA in the individual plasma sources, it was expected 

that the intercepts for each calibration regression would differ.  Therefore, precision 

was the primary assessment in this portion of the investigation. 

4. To appraise surrogacy of the modified plasma matrix, parallelism studies were 

performed.  The slopes of all calibration curves from pooled plasma matrix, 

modified matrix and the n = 5 different sources were to be statistically similar 

(parallel) in order to deem the modified matrix and appropriate “surrogate” matrix.   

If statistically different, the method was considered to have a significant matrix 

effect and issues of selectivity.   In the case that selectivity was of concern, MS 

detection or chromatographic re-optimization experiments were conducted to rid the 

interference. 

5. For all successive experiments, including ultimate sample analysis, the calibration 

curves and quality control samples were to be constructed using the “surrogate” 

plasma matrix.   
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Comprehensive discussion for the use and validation of a “surrogate matrix” is 

summarized in the previous chapter.   

 

4.3.6a Materials and Reagents 

 All chemicals were or analytical grade quality and obtained from commercial 

sources.  All solvents used for the R/S-SAL and DA validation analysis were of 

spectroscopic or HPLC grade.  The validation required the materials and reagents listed 

in section 4.3.1 of this chapter. 

 

4.3.6b  Equipment  

 The analytical equipment used for validation of the assay is presented in section 

4.3.2 of this chapter.     

 

4.3.6c Preparation of Solutions and Standards 

 (S)-SAL and (R)-SAL enantiomers are not separately available, standard 

solutions of SAL were prepared by dissolving the racemic mixture of (R/S)-SAL-HCl in 

methanol.  Standard stock solutions of (R/S)-SAL-HCl as well as DA-HCl were 

prepared in methanol at a concentration of 1 mg/ml (1µg/µl) in amber, silanized vials.  

Further dilutions were created to obtain lower concentrations, if needed.  The deuterated 

internal standard stock solutions were additionally made in methanol at a concentration 

of 100 ng/ml for (S)-SAL-d4-HBr and (R)-SAL-d4-HBr and 1 mg/ml for d4-DA-HCl.  

Of Stock standard solutions were stored in darkness at -20 °C until further use.  The 
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working internal standard solutions were prepared by further dilution of the stock 

solutions to 500 pg/ml of each SAL-d4 enantiomer and 500 pg/ml of DA-d4.  From the 

primary stock solutions, 1-ml volumes of calibrators and quality control standards were 

created to ensure that the mass required for each level was transferred into the matrix 

via 10 µl.   

 
 
Table 4-2:  Preparation of SAL calibrator and quality control standards.  Standards 
were prepared at concentrations to ensure that a 10 µl volume was transferred into the 
matrix of interest.  SAL concentrations reported are individual enantiomers. 
  

STD  Final STD conc amount of STD    methanol

4000 pg  400.0 pg/µl  800 µl (500 pg/µl)   200 µl 

2000 pg  200.0 pg/µl  400 µl (500 pg/µl)   600 µl 

1200 pg  120.0 pg/µl  240 µl (500 pg/µl)   760 µl 

1000 pg  100.0 pg/µl  200 µl (500 pg/µl)   800 µl 

750 pg  75.0 pg/µl  150 µl (500 pg/µl)   850 µl 

500 pg  50.0 pg/µl  100 µl (500 pg/µl)   900 µl 

200 pg  20.0 pg/µl  40 µl (500 pg/µl)   980 µl 

160 pg  16.0 pg/µl  32 µl (500 pg/µl)   968 µl 

100 pg  10.0 pg/µl  20 µl (500 pg/µl)   980 µl 

50 pg  5.0 pg/µl  10 µl (500 pg/µl)   990 µl 

20 pg  2.0 pg/µl  4 µl (500 pg/µl)    996 µl 

10 pg  1.0 pg/µl  2 µl (500 pg/µl)    998 µl 
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Table 4-3:  Preparation of DA calibrator and quality control standards.  Standards were 
prepared at concentrations to ensure that a 10 µl volume was transferred into the matrix 
of interest.   
 

STD  Final STD conc amount of STD            methanol 

20000 pg 2000.0 pg/µl  20 µl (10 ng/µl)    980 µl 

10000 pg 1000.0 pg/µl  1000 µl (1 ng/µl)   0 µl 

8000 pg  800.0 pg/µl  800 µl (1 ng/µl)    200 µl 

5000 pg  500.0 pg/µl  500 µl (1 ng/µl)    500 µl 

4000 pg  400.0 pg/µl  400 µl (1 ng/µl)    600 µl 

2000 pg  200.0 pg/µl  200 µl (1 ng/µl)    800 µl 

1000 pg  100.0 pg/µl  100 µl (1 ng/µl)    900 µl 

600 pg  60.0 pg/µl  60 µl (1 ng/µl)    940 µl 

500 pg  50.0 pg/µl  50 µl (1 ng/µl)    950 µl 

200 pg  20.0 pg/µl  20 µl (1 ng/µl)    980 µl 

100 pg  10.0 pg/µl  10 µl (1 ng/µl)    990 µl 

 

 All other solution prepared for the analysis is presented in section 4.3.3 of this 

chapter. 

 

4.3.6d Methods 

 Validation of the bioanalytical assay was performed using optimized ideal 

extraction and derivatization conditions.  The HPLC-ESI-MS/MS parameters are 

denoted in method summary previously reported in this chapter and by Lee and 

colleagues (Lee et al., 2007).  A table summarizing the parameters is presented in the 

table below. 

 



203 

Table 4-4:  Experimental conditions used for validation of the HPLC-ESI MS/MS 
bioanalytical assay for R/S-SAL and DA in a human plasma matrix. 
 
Variable     Condition                                   
 
HPLC System      Agilent 1100 system (autosampler/pump) 
 
Column w/guard column   Chiralpak AD-H (2.1x 150 mm, 5 μm) 
       protected with a guard column 
 
Solvents A and B (normal phase) 
      %A      50% isopropyl alcohol 
      %B     50% methanol 
      
Flow rate     Isocratic, 150 µl/min 
 
Column, sample temperature   room temperature, 5ºC 
 
Injection volume    10 μl     
 
Run time     20 minutes 
 
Post column addition     1% CH3COOH in H2O, ~50 μl/min   
____________________________________________________________ 

MS/MS System     Thermo-Finnegan TSQ Ultra 

Ionization      ESI – positive ion mode 

Capillary temperature    150°C 

Sheath, Auxiliary gas    N2 flow rate, 35 units, 5 units  

Spray voltage     3.5 kV 

Collision-induced dissociation (CID)  Argon @ 1.5 mTorr in the second (rf 
      only) quadrupole 
 
Relative collision energy    35 eV  
 
Detection (Selective Reaction Monitoring) R/S-SAL   m/z  720→210  
      d4-R/S-SAL  m/z  724→210 
      DA   m/z  874→497  
      d4-DA    m/z  878→501 
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 Another major distinction from the previous reports incorporated the use of an 

antioxidant/aldehyde trapping agent.  Several investigators noted a major concern in the 

quantitative analysis of TIQ alkaloids is the suppression of artifactual formation during 

sample preparation.   The successful use of semicarbazide as an aldehyde trapping 

reagent and ascorbic acid as an antioxidant in decreasing artifactual formation has been 

exemplified (Rommelspacher et al., 1984; Adell and Myers, 1994; Fekkes et al., 2004).   

Therefore, the protein precipitation/antioxidant solution describes in section 4.3.3 was 

implemented in the extraction of R/S-SAL from human plasma to circumvent any issues 

pertaining to artifactual formation. 

 Stock solution stability for R/S-SAL and DA, deuterated and non-deuterated 

were performed and did not vary at -20°C for 6 months.   Stock solution and benchtop 

stability for both analytes and internal standard at two different concentrations was 

assessed for 6 hours at room temperature and no variation was seen.   The plasma 

samples used for validation were subjected to three freeze and thaw cycles during which 

no appreciable degradation of R/S-SAL or DA was observed (<2%, data not shown). 

 

4.3.6d-1   Pooled plasma experiments 

 Using pooled plasma (presumably healthy, fasting drug free, non smokers, 

collected in EDTA) initial partial validation experiments were explored to evaluate the 

linear concentration range for R/S-SAL along with precision and stability of the 

method.    Of note, evaluation of DA in pooled plasma was not performed.  Further 
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calibration assessment of DA was involved in subsequent testing with surrogate and 

individual plasma matrices. 

 The linearity of the developed method was evaluated by preparing n=3 standard 

curves for the R/S-SAL analytes in duplicate (2 x 1 day) with 1 ng of d4-R/S-SAL.  The 

concentrations of R/S-SAL used for a seven-point standard curve were 20, 50, 100, 500, 

1000, and 2000 and 4000 pg/ml for each enantiomer.   Moreover, along with at least 8 

non-zero standards, a blank sample (matrix processed without internal standard) and a 

zero sample (matrix processed with internal standard) were processed.  A 10 µl volume 

of standard calibrator solutions were used at each concentration level to ensure that the 

volume of the stock solution added was <10% of the total matrix volume.  Experiments 

were performed using 1-ml of human pooled plasma.  Plots of peak area ratio (R-

SAL/d4-R-SAL and S-SAL/d4-S-SAL) against analyte concentration were constructed.  

Plots of the residual against concentration assessed the behavior of the response 

variance across the calibration range.  If the residuals for the linear regression analysis 

were heteroschedastic in nature, an appropriate weighting factor was investigated (1/x 

and 1/x2).       

 The calibration function (e.g., linear or weighted-linear) was established through 

observation of reverse calculated standard concentrations of which were reverse 

predicted from the curve.   The appropriateness of the concentration of internal standard 

for R/S-SAL was based on the peak height of the internal standard being approximately 

at the mean of analyte response of the concentration range tested.   Moreover, the 

analyte to internal standard ratio at the upper and lower limits were not to exceed 10 or 
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be less than 0.1, respectively, in order to minimize error associated at the extremes of 

the linear calibration curve.       

  The linear range was subsequently tested in the pooled plasma with n = 3 

replicates (1 calibration curves x 3 days) to assess precision of the method.  Moreover, 

quality control samples for SAL were created at the following levels: Low QC: 125 

pg/ml, Medium QC 1: 600 pg/ml, Medium QC 2: 1200 pg/ml and High QC: 2500 pg/ml 

for each SAL enantiomer.     The QC concentrations were used to assess relative 

recovery from the pooled plasma.   The comparison of an extracted to unextracted 

analyte to internal standard ratio, at each concentration, was used to calculate the 

relative recovery.  Experiments were performed in triplicate.  

 It was suspected that a systematic bias (positive y-intercept) would be present in 

the calibration curve because of the endogenous R/S-SAL.  Therefore, accuracy and 

precision calculations were performed on the analyte to internal standard ratio, across 

the concentration range.   Accuracy and precision assessment and acceptance criteria for 

the calibration range along with the QC samples were calculated as seen in the previous 

chapter.   

 For long-term stability, standard solutions using a high, low, and zero (unspiked) 

control concentrations in biological matrix were portioned and stored under the 

conditions of study sample storage (-80˚C).   Measurements were taken in triplicate 

over a six-month period on three separate occasions.  For each sample, the ratio of the 

analyte to internal standard was recorded and concentration back-calculated and 

compared between measurements and across occasions for statistical deviations 
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(accuracy and precision within ±15 % nominal value).  Freeze-thaw stability was 

assessed over three cycles, in which the initial freeze was 24 hours and subsequent 

cycles was held in -80˚C for 12 hours.   

 Of primary importance, the linear regression parameters for the calibration 

curves, including slope and y-intercept, for the pooled plasma validation were assessed 

upon evaluating the estimates and corresponding 95% confidence interval (CI) along 

with the precision of the slope and y-intercepts (% COV) for R/S-SAL.   

 

4.3.6d-2  Pooled plasma results 

 Using 1-ml of plasma, a linear concentration range between 10.0 pg/ml and 4.0 

ng/ml was seen for both R-SAL and S-SAL and between 100 pg/ml and 20 ng/ml for 

DA.  According to the “blank” sample (no IS) measurements, there were no significant 

peaks associated with the retention time and SRM of the SAL-d4 and DA-d4, 

exemplifying a lack of interference with the internal standard.  Significant peaks at the 

representative R-SAL, S-SAL and DA retention times were present (data not shown).    

Using the calibration concentration range of R/S-SAL with 1 ng d4-R/S-SAL, (each 

enantiomer)  n = 3 calibration curves were constructed in pooled plasma with quality 

control samples.  Area ratios of the calibration points and quality control samples with 

precision estimates (%COV) are presented in the following tables for S-SAL (table 4-5) 

and R-SAL (table 4-6).   

 The individual linear regression parameters for each calibration curve for both 

R/S-SAL and DA are presented with a goodness of fit (R2) metric for linearity.    An 
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average calibration curve is presented for both S-SAL (figure 4-10) and R-SAL (figure 

4-11).  Of note, the calibration curve for both SAL was constructed upon calculation of 

an average response (across n=3 calibration levels).   

 

Table 4-5:  Peak area ratio for S-SAL in pooled plasma (n=3), with precision 
assessment (%COV) and calibration curve parameters (1/x2 weighting). 
 
           

pg S-SAL calib #1 calib #2 calib #3 average sd %COV
20 0.583 0.572 0.616 0.590 0.023 3.88
50 0.771 0.788 0.792 0.784 0.011 1.42

100 1.172 1.155 1.303 1.210 0.081 6.69
500 1.732 1.653 1.782 1.722 0.065 3.78

1000 2.447 3.069 2.826 2.781 0.313 11.27
2000 4.810 4.530 4.784 4.708 0.155 3.29
4000 8.920 8.489 8.122 8.511 0.399 4.69

125 (LQC) 1.023 1.044 1.230 1.099 0.114 10.37
600 (MQC1) 1.827 1.745 1.801 1.791 0.042 2.33
1200 (MQC2) 2.625 2.598 2.929 2.837 0.184 6.47
2500 (HQC) 5.233 5.001 5.627 5.287 0.316 5.99

zero 0.433 0.455 0.412 0.433 0.022 4.96

slope 2.5300 2.6060 2.5982 2.5781 0.0418
y-int 0.5127 0.4256 0.4872 0.4251 0.0448
R2 0.9928 0.9990 0.9891 0.9936 0.0050  
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Figure 4-10:  Average calibration curve (n=3) for S-SAL in pooled plasma.   Linear 
regression performed on the average of the response across concentrations.   Each point 
represents the average response ± SD.   
 
 
 
Table 4-6:  Peak area ratio for R-SAL in pooled plasma (n=3), with precision 
assessment (%COV) and calibration curve parameters (1/x2 weighting). 
 
      

pg R-SAL calib #1 calib #2 calib #3 average sd %COV
20 0.896 0.853 0.802 0.850 0.047 5.54
50 1.094 1.172 1.266 1.177 0.086 7.32

100 1.523 1.255 1.272 1.350 0.150 11.11
500 2.171 2.526 2.727 2.475 0.281 11.37

1000 3.083 3.192 3.626 3.300 0.287 8.71
2000 4.945 4.992 4.819 4.919 0.089 1.82
4000 9.798 9.517 10.244 9.853 0.367 3.72

125 (LQC) 1.583 1.526 1.552 1.554 0.029 1.84
600 (MQC1) 2.292 2.335 2.371 2.333 0.040 1.70
1200 (MQC2) 3.227 3.524 3.223 3.325 0.173 5.19
2500 (HQC) 5.934 6.102 6.533 6.190 0.309 4.99

zero 0.671 0.626 0.653 0.650 0.023 3.51

slope 2.1120 2.2810 2.0182 2.1371 0.1332
y-int 0.6270 0.6521 0.6132 0.6308 0.0197
R2 0.9988 0.9892 0.9817 0.9899 0.0086  
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Average R-SAL Calibration Curve 

y = 2.09x + 0.629
R2 = 0.9987

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 1000 2000 3000 4000 5000

pg R-SAL

ar
ea

 r
at

io

  

Figure 4-11:  Average calibration curve (n=3) for R-SAL in pooled plasma.   Linear 
regression performed on the average of the response across concentrations.  Each point 
represents the average response ± SD.   
 
  

 A linear regression, utilizing a 1/x2 weighting factor, was performed on the 

average response for each concentration level.    The calibration levels all showed 

acceptable precision for S-SAL and R-SAL with %COV less than 11.3% and 11.4%, 

respectively.   The precision of the quality control samples ranged from 2.3% to 10.4% 

for S-SAL while the R-SAL quality control precision resulted in a %COV ranged 1.7% 

to 5.2%.     

 The “zero” level, consisting of 1-ml plasma with only internal standard, yielded 

a significant instrumental response for both SAL enantiomers, suggestive of the 

noteworthy constitutive nature of these analytes in the matrix.   

 Regarding the linear regression of the calibration curves, a weighting factor of 

1/x2 was required correct for the unequal variance associated with the residuals (data 
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not shown).  In turn, a weighted linear regression was performed on each individual 

calibration curve for both analytes.    Linearity of the calibration curves, as assessed by 

the coefficient of determination (R2), was acceptable for both analytes with S-SAL 

possessing R2 ranging between 0.989 – 0.999 and R-SAL having a range between 0.982 

- 0.998.   For both analytes, the 95% CI for each individual calibration slopes included 

the estimate of the other individual calibration slopes, signifying similarity between the 

slope calibration parameter of each curve.   Of major note, each calibration curve 

yielded a significant y-intercept for both analytes, indicating a significant background 

signal.  The y-intercepts were significantly different from zero with S-SAL having an 

intercept (mean ± SD) of 0.425 ± 0.045 (p-value = 0.042) and R-SAL having an 

intercept of 0.631 ± 0.019 (p-value = 0.034).   Moreover, the y-intercepts obtained from 

the linear regressions for both analytes were reproducible.   

 Of note the intercepts obtained from the weighted linear regression were not 

significantly different from that obtained from the “blank” sample for both S-SAL and 

R-SAL (p-value for both enantiomers > 0.14).  According to the analysis, and using the 

baseline corrected calibration curves, the pooled plasma contained 259 pg of S-SAL and 

430 pg of R-SAL per 1-ml plasma, which is within reported physiological range.   

 Long-term stability, in pooled plasma was evaluated at three different levels of 

High (2500 pg/1ml), Low (600 pg/1ml) and zero (unspiked R and S-SAL) over a six 

month period.  Of note, the theoretical concentrations for the High and Low controls are 

those of spiked and constitutive, additive. The concentrations were measured, using 

baseline corrected calibration curves, at 15 days, 1 and 6 months after standard pooled 
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plasma preparation.   At each time-point the analysis was performed in triplicate.     

Over a six-month period, there was a negligible variation in concentration for both SAL 

enantiomers (<2%). Freeze-thaw stability assessment did not yield any significant 

changes in R-SAL or S-SAL at all concentration levels evaluated through three-cycles, 

with %DFN and %COV not exceeding 4% for both analytes at all concentration levels. 

 The relative recovery, across the quality control concentrations, did not show 

much variation within concentrations (see table below).   A slight increase of the 

recovery for both enantiomers was observed at the highest concentration level.   Of 

note, the analyte to internal standard ratio obtained from the extraction procedure 

includes constitutive R- and S-SAL, contributing to the relative recovery.  Therefore, 

the recoveries obtained from the analysis are expected to be larger than if the 

endogenous analyte was not present in the matrix.  

 

Table 4-7:  Relative recovery from 1 ml pooled plasma of R-SAL and S-SAL (n=3 for 
each concentration).  (% mean ± SD). 
 
 

    50  pg   200 pg   1000 pg

S-SAL           82.2 ± 2.6  84.1 ± 5.7  94.6 ± 2.4 

R-SAL           83.1 ± 2.7  82.2 ± 4.6  90.8 ± 4.2 

 

 The information obtained from the pooled plasma analysis was used to design a 

more formal validation using a modified matrix for assessing surrogacy.   Using 1-ml of 

matrix, the calibration range between 10 and 4000 pg of both R-SAL and S-SAL with 

1.0 ng of deuterated internal standard for each enantiomer was used for validation 
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purposes.  Quality control samples used for subsequent tests included 125 pg (LQC), 

600 pg (MQC1) and 1200 pg (MQC2), and 2500 pg (HQC).    The results of minimal 

deviation for long-term and freeze-thaw stability tests proved the chemical robustness 

of analyzing R- and S-SAL in the plasma matrix.    

 

4.3.6d-3   Surrogate matrix experiments  

 Similar experiments aforementioned were performed using a modified pooled 

plasma matrix, with an emphasis on both accuracy and precision assessment.  The 

matrix modification employed the destruction of constitutive R/S-SAL and DA in the 

pooled plasma via alkalization of the plasma to pH~10 and kept under refrigeration for 

24 hours.  Upon destruction of the constitutive SAL and DA from pooled plasma, the 

pH was readjusted to a physiological pH and the assay was performed per protocol.    

 The linearity of the developed method was evaluated by preparing n = 6 

standard curves for the R/S-SAL and DA analytes in duplicate (2 x 3 days) with 1 ng of 

d4-R/S-SAL and 5 ng d4-DA internal standard.   Similar concentrations of R/S-SAL 

were used for the standard curve constructed in the pooled plasma.   In addition DA 

concentrations used for the calibration curve included 100, 200, 500, 1000, 2500, 5000, 

and 10000 pg/ml.  Moreover, along with at least 7 non-zero standards, a blank sample 

(matrix processed without internal standard) and a zero sample (matrix processed with 

internal standard) were processed to assess for effectiveness of SAL and DA 

destruction.   Experiments were performed using 1-ml of modified human plasma.  

Plots of peak area ratio (R-SAL/d4-R-SAL, S-SAL/d4-S-SAL and  DA/d4-DA) against 
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analyte concentration were constructed.   Calibration data were analyzed similarly to 

that of the pooled plasma experiments (i.e., upon evaluation of the residuals of the 

linear fit).         

 The calibration function (e.g., linear or weighted-linear) was established through 

observation of reverse calculated standard concentrations of which were reverse 

predicted from the curve.    The linear range was subsequently compared to that 

obtained in pooled plasma.   Quality control samples for SAL were created at the same 

levels previously mentioned.  For DA the following QC levels were tested: Low QC: 

600 pg/ml, Medium QC 1: 2000 pg/ml, Medium QC 2: 4000 pg/ml and High QC: 8000 

pg/ml.  The QC concentrations were used to assess relative recovery from the modified 

plasma.   The comparison of an extracted to unextracted analyte to internal standard 

ratio, at each concentration, was used to calculate the relative recovery.  Experiments 

were performed in triplicate.  

 Accuracy and precision calculations were performed on the back-calculated 

concentrations from the regression, across the concentration range for both R/S-SAL 

and DA.     Unlike the pooled plasma experiments, a formal assessment of the Lower 

Limit of Quantification (LLOQ) was determined during this step using n = 6 replicates 

of 20 pg/ml in modified matrix, separate from the calibrators.   The linear regression 

parameters for the calibration curves, including slope and y-intercept, for the modified 

plasma validation were assessed upon evaluating the estimates and corresponding 95% 

confidence interval (CI) along with the precision of the slope and y-intercepts (% COV) 

for R/S-SAL and DA.  Recovery assessment was evaluated using this matrix to assess 
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the relative recovery and the precision or the recovery.  The room temperature stability 

measurements, as mentioned before, was also performed in this in modified matrix.      

A more formal evaluation for precision and accuracy was conducted by 

evaluation of n = 6 each of the LLOQ, LQC, MQC1, MQC2, and HQC sample 

concentrations in one day for within-run assessment.  Between run-precision and 

accuracy was assessed in triplicate over three days for the same controls.   The accuracy 

(%DFN) and the precision (%COV) between and within-runs were found acceptable at 

a level of within ±15% for each.   All quality control samples, including those that 

failed with no assignable cause, were used for the final calculation.    

 As the case for the calibration curves obtained for the pooled plasma, the linear 

regression parameters for the calibration curves, including slope and y-intercept, for the 

modified plasma validation were assessed and compared to that obtained in the pooled 

plasma experiments.  For approval of the matrix modification via constitutive analyte 

destruction, the mean of the y-intercepts should not be statistically different from zero 

(as deemed by a one-sided unpaired Student’s t-test).  The individual confidence 

intervals of the y-intercept estimates should include zero for each individual calibration 

curve.   

 The slope of the linear regressions within all calibration curves should not be 

statistically different from one another (as deemed by a 95% CI).  Moreover, the mean 

of all calibration slopes between the pooled plasma and the modified plasma matrix 

were evaluated for “parallelism” (i.e., the average slopes obtained between each matrix 

should 
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be statistically similar).  Lack of similarity was evaluated by a two-sided unpaired 

Student’s t-test.   

 

4.3.6d-4   Surrogate matrix results  

 The modified matrix was constructed from destruction of endogenous R/S-SAL 

and DA from pooled plasma.  Criteria to evaluate the removal of the analytes included 

devoid of an analytical response at the respective retention times of R/S-SAL and DA.   

Using this destruction technique, both R and S-SAL along with DA were successfully 

removed.  The blank plasma spiked with d4-SAL and d4-DA showed no MRM peaks 

corresponding to endogenous SAL and DA (See figure below). 

 

 

 

 

 

 

 

 

 

 

 

 



217 

 

 

 

 

 

 

 

 

 

 

 

 

 0 2 4 6 8 10 12 14 16 180

100

100

100

100

1.76E2

8.25E4

1.72E2

8.81E4

R
el

at
iv

e 
Ab

un
da

nc
e

Retention Time (min)

SAL
m/z 720→210
SAL
m/z 720→210

d4-SAL
m/z 724→210
d4-SAL
m/z 724→210

DA
m/z 874→497

d4-DA 
m/z 878→501
d4-DA 
m/z 878→501

d4-(R):1ng/mL
d4-(S):1ng/mL

d4-DA:5ng/mL

 
Figure 4-12: SRM chromatogram of SAL and DA prepared with 1 ml modified plasma.  
(spiked with 1 ng each of d -(S)- and d -(R)-SAL and 5 ng d4 4 4-DA. No endogenous SAL 
or DA was detected.  
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 Full calibration curves (n=6 for R/S-SAL, n=5 for DA) were constructed using 

1-ml of modified matrix along with corresponding quality control samples.   For S-

SAL, throughout the concentration range the imprecision (%COV) was less than 14.4% 

and the inaccuracy (%DFN, absolute value) was less than 7.9% (see table 4-8).   In 

addition, the analysis of R-SAL yielded acceptable results with a imprecision < 14.4% 

and an inaccuracy of < 9.6% (table 4-9).   DA yielded acceptable results with an 

imprecision < 10.3% and an inaccuracy of < 12.4% (table 4-10).  Of note, the analysis 

met the criteria in which >75% of all standards must be within ±15 % COV, with the 

exception of the LLOQ where a ±20 % COV is acceptable. 

 In separate experiments, further evaluation at the SAL LLOQ level (20 pg/1ml) 

yielded an imprecision %COV of < 11.7% and %DFN of < 6.5%, with n = 6 replicates 

of both R- and S-SAL.  For DA %COV of < 6.8% and %DFN of < 5.2%.  All quality 

control samples for all analytes yielded a suitable accuracy and precision.  For inter-run 

precision and accuracy (3 replicates for 3 days), %COV was no greater than 12.7% and 

no more than an absolute variation in concentration of 14.1% across the quality control 

concentrations for all analytes (data not shown).  The LLOQ of 20 pg/ml for R/S-SAL 

and 100 pg/ml for DA in the modified plasma is shown in the figure below.   
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Figure 4-13: SRM chromatogram of SAL and DA prepared with 1 ml modified plasma 
at the LLOQ level (spiked 20 pg R and S-SAL with 1 ng each of d4-(S)- and d4-(R)-SAL 
and 100 pg of DA with 5 ng d -DA).  4
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 The linear regression parameters for each calibration curve were compared to 

assess consistency of slope and for lack of a y-intercept.  Using a 1/x2 weighting factor 

for each calibration curve, the parameters presented showed consistency between 

calibration curves.    The slope parameters for S/R-SAL and DA were statistically 

different from zero, while the intercept did not show a statistical departure from zero (p-

values > 0.23 for all analytes).   The zero intercept signifies the effective destruction of 

the constitutive SAL and DA.  For all analytes, the coefficient of determination (R2) 

was acceptable for each calibration curve, supporting the use of a linear regression for 

the calibration (see tables 4-11, 4-12 and 4-13 below).  

 The extraction efficiency (recovery) was assessed at three quality control levels 

in triplicate.  The recoveries obtained from this analysis were constant across 

concentrations of all analytes with recoveries > 82% with less than 6% variation for all 

analytes. 

 In comparison to the unmodified, pooled plasma matrix surrogacy for the 

modified matrix was established.   From the linear regression parameters (i.e., slope) 

obtained with calibration curves constructed of both sets of matrices, a statistical 

similarity was seen.  An unpaired, two-tailed Student’s t-test was performed on the 

slope and y-intercept parameters, assuming unequal variances, for all analytes between 

pooled plasma and modified plasma matrices.   For S-SAL, R-SAL and DA the p-values 

were 0.35, 0.51, and 0.22 respectively.  Statistical significance was defined at the α = 

0.05 level.    
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Table 4-11:  Standard curve parameters for n = 6 S-SAL calibration curves in modified 
plasma.  Each parameter presented as an estimate with standard error (SE).   
 

Calibration slope SE y-intercept SE R2
1 2.5820 0.0922 (-)0.0124 0.0275 0.9892
2 2.6129 0.0721 (-)0.0833 0.0359 0.9917
3 2.4672 0.0733 0.0127 0.0223 0.9748
4 2.4422 0.0261 0.0245 0.0425 0.9933
5 2.5342 0.0526 (-)0.0101 0.0266 0.9898
6 2.3272 0.0882 0.0229 0.0355 0.9913

average 2.4943 0.0200 0.9884
stdev 0.1046 0.0064 0.0068  

 
 
Table 4-12: Standard curve parameters for n = 6 R-SAL calibration curves in modified 
plasma.  Each parameter presented as an estimate with standard error (SE).   
 

Calibration slope SE y-intercept SE R2
1 2.1452 0.0883 (-)0.0251 0.0139 0.9934
2 2.2316 0.0728 0.0247 0.0227 0.9897
3 2.0928 0.0557 (-)0.0133 0.0182 0.9912
4 2.1330 0.0623 0.0154 0.0266 0.9855
5 2.2516 0.0611 (-)0.0088 0.0019 0.9914
6 2.2199 0.0572 0.0122 0.0214 0.9937

average 2.1790 0.0174 0.9908
stdev 0.0639 0.0065 0.0030  

 

Table 4-13: Standard curve parameters for n = 5 DA calibration curves in modified 
plasma.  Each parameter presented as an estimate with standard error (SE).   
 

Calibration slope SE y-intercept SE R2
1 0.9962 0.0251 0.0133 0.0237 0.9823
2 0.9881 0.0099 (-)0.0092 0.0241 0.9899
3 0.9928 0.0172 (-)0.0221 0.0035 0.9846
4 0.9821 0.0133 0.0258 0.0102 0.9915
5 0.9954 0.0352 (-)0.0288 0.0196 0.9977

average 0.9909 0.0196 0.9892
stdev 0.0059 0.0088 0.0061  
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 The y-intercept showed a statistically significant difference between matrices.  

While the modified plasma was not significantly different from zero, the pooled plasma 

matrix possessed a significant y-intercept, reflecting the constitutive R/S-SAL and DA 

concentrations in the plasma.  Moreover, the lack of a statistically significant y-intercept 

in the modified plasma denotes successful removal of the constitutive background 

signal.    

 Of primary importance is the statistical similarity in the slopes for all analytes in 

both matrices.    The comparison supports the interchangeability of the matrix for 

calibration purposes.   Moreover, “parallelism” between the matrices was demonstrated 

between the modified and pooled plasma matrix.  Further assessment of selectivity was 

warranted for this method, evaluating additional plasma sources for potential 

interferences.  A similar approach was used to assess “parallelism” in patient plasma 

samples.    

 

4.3.6d-5   Patient plasma experiments  

 In order further evaluate selectivity and parallelism, individual plasma from 

separate donors was used as a matrix.   Further selectivity should be assessed to show 

that the anticipated analytes are measured and that their quantification is not affected by 

the presence of any interferences in the biological matrix (see discussion in chapter 3).  

Although the intrinsic selectivity of this assay is high (compared to other types of 

analytical methods, e.g., HPLC-FD), further confirmation using matrices from at least n 

= 5 independent sources was evaluated for matrix effects.   
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 Nonetheless, selectivity of the bioanalytical assay will be assessed by spiking 

known concentrations of analyte into the matrix of interest, as performed as a standard 

addition experiment.    In this approach, different masses of R-SAL, S-SAL and DA are 

spiked to the sample matrix, which initially contains an unknown concentration of 

analyte.    Extrapolation of a plot of response found for the standard-addition calibration 

concentrations to zero concentration defines the original concentration of the unspiked 

sample.     

 The primary criteria in establishing “surrogacy” of the modified matrix, is that 

the response factor, or slope of the calibration curves obtained in the substitute matrix, 

should be statistically similar to that of unmodified matrix and “parallelism” between 

the calibration curves of both matrices be present.   In order to evaluate the use of the 

HPLC-ESI-MS/MS method along with the modified matrix, a total of five sources of 

unmodified plasma were used in the subsequent experiments.  

 Individual patient plasma samples (n=5, presumably healthy, drugs of abuse-

free, smokers and non-smokers, collected in EDTA) were used to test the conditions for 

selectivity.  Using the finalized extraction method, spiked concentrations of R- and S-

SAL along with DA was evaluated in 1-ml of human patient plasma.  As the availability 

of significant volumes of individual human plasma was limited, full calibration curves 

could not be constructed in the patient plasma.   For the individual plasma experiments 

a total of four concentrations were used for the standard addition calibration curve 

construction including 20, 160, 600, and 1250 pg of both R- and S-SAL using 1 ng of 

the deuterated R/S-SAL internal standard in 1-ml of plasma.  In these experiments DA 
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selectivity was assessed with 200, 600, 2000, and 4000 pg of DA using 5 ng of the DA 

internal standard.  Moreover, a “zero” concentration (unspiked SAL and DA with 

internal standard) was evaluated to assess the endogenous R/S-SAL and DA 

concentrations.   Individual plasma calibration curves were constructed in singlicate.  

The concentrations assessed in these experiments are representative of those used in 

previous calibration curves.     

 A four-point, linear calibration curve was constructed with each individual 

donation of plasma using a 1/x2 weighing, identical to the weighted regressions 

performed as the other experiments.   The linear regression parameters for the 

calibration curves, including slope and y-intercept, for the individual plasma were 

assessed.  The y-intercept for each individual calibration curve was presumably the 

amount of constitutive contribution of R/S-SAL and DA and compared to that of the 

“zero” concentration level, as calculated from the surrogate matrix calibration curve.  

The 95% confidence interval for the y-intercept (peak area ratio) should include the 

peak area ratio of that seen of the “zero” sample for all analytes.   This method was to 

ensure the accuracy of using the surrogate matrix calibration curve to calculate a 

concentration in unmodified, real sample. 

 Of primary importance was the evaluation of the slope parameter for each 

individual plasma calibration curve.  The estimate and its corresponding 95% CI was 

calculated and compared across donors.   The estimates for the slope parameter should 

be statistically similar upon evaluation of the 95% CI.  Individual R/S-SAL 
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concentrations were calculated and compared for each patient sample using the 

surrogate matrix calibration.  

 Moreover, the slopes ± standard deviation between the surrogate matrix plasma 

(n=6), individual patient plasma (n=5), and pooled plasma (n=3) calibrations were 

compared via one-way analysis of variance (ANOVA) to ensure a matrix effect between 

the matrices was not present.   Prior to statistical comparison, the residuals were 

evaluated for equal variance and tested accordingly if that assumption did not hold true.   

If significant deviations and variability in the slopes was present in the analysis, the 

HPLC-MS/MS parameters and/or extraction method was further optimized eliminate 

the interfering substances. 

 

4.3.6d-6   Patient plasma results  

 Using the finalized extraction method, spiked concentrations of R/S-SAL and 

DA were evaluated in 1-ml of human patient plasma from n=5, presumably healthy, 

drugs of abuse-free, smokers and non-smokers.  Representative chromatograms for an 

individual patient plasma are present in figure 4-18 below.   The calculated 

concentrations were obtained from the linear regression from a calibration curve in 

modified plasma. The respective retention times for S-SAL, R-SAL and DA are 7.92, 

12.3, and 7.42 minutes, respectively.   
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Figure 4-14: Representative SRM chromatograms of endogenous SAL and DA found 
in 1.0 ml human plasma spiked with 1 ng each of d -(S)- and d4 4-(R)-SAL and 5 ng of 
d4-DA as internal standards. The concentrations of (S)-SAL, (R)-SAL and DA were 
determined to be 146 pg/ml, 194 pg/ml and 3.13 ng/ml, respectively. 
 

  

 The goal of patient plasma experiments was to assess selectivity of the assay 

methodology.   Of note, the accessibility of significant volumes of individual human 

plasma was limited, as consequence, full calibration curves could not be constructed in 

the patient plasma.   The corresponding calibration curve parameters are presented 

below. 
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Table 4-14:  Linear regression parameters obtained from patient plasma (PP #1-5) 
calibration curve for S-SAL, R-SAL and DA.  95% CI denotes the upper and lower 
bounds in brackets for both slope and y-intercept.  
 

S-SAL

plasma slope 95% CI y-int 95% CI R2
PP#1 2.553 [2.231, 2.774] 0.56 [0.44, 0.67] 0.9734
PP#2 2.511 [2.229, 2.825] 1.32 [1.15, 1.56] 0.9883
PP#3 2.736 [2.483, 2.955] 1.72 [1.63, 1.84] 0.9921
PP#4 2.637 [2.232, 3.036] 0.64 [0.56, 0.72] 0.9853
PP#5 2.441 [2.136, 2.750] 2.23 [2.10, 2.37] 0.9798
avg 2.576 1.29 0.9838

stdev 0.114 0.71 0.0073  

 

R-SAL

plasma slope 95% CI y-int 95% CI R2
PP#1 2.167 [1.940, 2.305] 0.49 [0.35, 0.54] 0.9811
PP#2 2.189 [1.998, 2.283] 1.65 [1.43, 1.81] 0.9859
PP#3 2.059 [1.824, 2.187] 1.93 [1.78, 2.17] 0.9955
PP#4 2.114 [2.056, 2.170] 0.91 [0.75, 1.09] 0.9993
PP#5 2.154 [2.155, 2.387] 2.77 [2.40, 2.97] 0.9784
avg 2.137 1.55 0.9880

stdev 0.051 0.89 0.0091   

 

DA

plasma slope 95% CI y-int 95% CI R2
PP#1 0.986 [0.954, 1.092] 2.31 [2.16, 2.54] 0.982
PP#2 0.991 [0.975, 1.105] 3.81 [3.33, 4.07] 0.9777
PP#3 0.994 [0.970, 1.068] 0.63 [0.44, 0.82] 0.9833
PP#4 0.979 [0.958, 1.070] 1.02 [0.83, 1.24] 0.9875
PP#5 0.984 [0.953, 1.035] 1.42 [1.29, 1.56] 0.9899
avg 0.987 1.84 0.9841

stdev 0.006 1.27 0.0048             
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 The coefficients of determinations for S-SAL, R-SAL and DA in the patient 

plasma were greater than 0.97, suggesting the linear calibration function is acceptable 

for this matrix (using 1/x2 weighting).   From evaluation of the 95% CI, the y-intercepts 

obtained for all calibration curves, were all statistically different from zero.  Moreover, 

the intercepts between the plasma sources resulted in significant deviations, suggesting 

the variable nature of the constitutive S/R-SAL and DA between the five patients.   

 Slope parameters from the calibration curves were all statistically similar 

between the patient plasma sources and in comparison to the modified matrix.   Because 

of the limited number of concentration points on each calibration curve (4-point) for the 

patient plasma, the 95% CI range was relatively large as compared to the modified 

plasma matrix (i.e., a full calibration curve).      

    

 The concentrations obtained from the surrogate matrix calibration curves 

yielded endogenous levels that were within reported physiological ranges.  For S-SAL, 

the concentration range within the individual patient samples ranged from 32 - 224 

pg/ml plasma.  For R-SAL the concentration range within the five patient samples 

ranged from 38 - 304 pg/ml plasma.  As for DA, the concentrations ranged from 1.06 – 

2.05 ng/ml plasma.   

 Surrogacy of the modified matrix was further evaluated by statistical 

comparison of calibration curves from pooled plasma and patient plasma.  One-way 

ANOVA was performed on the slopes of the calibration curves between three different 

plasma matrices, modified (surrogate), pooled, and patient plasma.    The summary 

table of all calibration slopes is presented in the table below. The three groups of plasma 
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matrices, compared using the unequal variance F-test, were not significantly different 

for all analytes.  For S-SAL the means were found to be statistically similar, F(2, 13) = 

1.14, p-value = 0.355; while the same conclusion was drawn for the R-SAL calibration 

parameter F(2, 13) = 0.506, p-value = 0.615 and DA was F(2,10) = 0.523, p-value = 

0.608.    The results are presented as F-test calculation (degrees of freedom for groups, 

total) and p-value.   All statistical comparisons were performed on S-PLUS 8.0 for 

Windows.   

 From these results, the appropriateness of using the modified plasma matrix as a 

surrogate matrix was demonstrated.    Parallelism between the calibration curves in 

different matrices suggests the interchangeable nature of using either matrix for 

validation purposes.    The surrogate matrix will be incorporated for the clinical sample 

analysis.   
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4.3.6e Validation conclusion  

 In summary the acceptance criteria for validation were met according to 

predetermined specifications.  In the surrogate and unmodified matrices, 

chromatographic response was linear throughout the concentration range of 20 pg/1 ml 

(LLOQ) and 4000 pg/1 ml (ULOQ) for S- and R-SAL, while for DA the range was 

between 100-10000 pg/ml.   Accuracy and precision estimates for the assay were in 

acceptable ranges for the calibration points, the LLOQ and quality control samples with 

%COV and %DFN meeting analytical validation criteria.  Selectivity of the method was 

evaluated with 5 donor lots and no interference was apparent with the analyte or internal 

standard.   Across all quality control samples, recovery was relatively high (>80.2%) 

and reproducible for both H and NH. 

   Of importance, surrogacy of the matrix was demonstrated by the statistically 

indistinguishable slopes between modified and unadulterated matrix.   “Parallelism” of 

the slopes confirms the interchangeability of calibration matrices.     

 Long-term plasma stability experiments for 6 months at -80ºC resulted in 

negligible deviations over time for both analytes.  Additional stability experiments, 

including stock solution, bench-top, and post-preparative resulted in negligible 

deviations throughout the respective tested time-spans.   Under the optimized SPE, 

derivatization and HPLC-MS/MS conditions endogenous R/S-SAL and DA in plasma at 

concentrations comparable to reported literature values.    
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4.4 HPLC-MS/MS Assay Conclusion  

 A robust, sensitive, selective and reproducible assay has been developed for the 

quantification of the endogenous tetrahydroisoquinolines S and R-SAL along with their 

precursor DA, in 1 ml of human plasma.  A direct single-step pentafluorobenzyl (PFB) 

derivatization scheme in an aqueous media, without extractive alkylation using phase 

transfer catalysts, was devised for the enantioseparation of SAL with simultaneous 

detection of DA.  This procedure permitted high derivatization yields with minimal 

sample degradation and low chemical background. As stable PFB derivatives, SAL 

enantiomers were baseline separated on a chiral phase HPLC column. Coupling with 

ESI-MS/MS analysis in the SRM mode allowed the detection of SAL enantiomers and 

DA with increased specificity and sensitivity. In the presence of deuterium-labeled 

internal standards, this approach allowed accurate and reliable quantitative analysis of 

enantiomeric (R/S)-SAL and DA in human plasma. 

 In comparison to reported methodologies for the quantification of R and S-SAL  

in human plasma, this procedure has surmounted the limitations aforementioned.  The 

optimized chromatography has preserved the baseline resolution of the both 

enantiomers (Rs > 2.1) throughout the concentration range, improving the reliability of 

quantification.   Quantification with the isotopically labeled internal standards of R and 

S-SAL with DA yielded suitable assay performance results for the quantitative 

bioanalytical HPLC-MS/MS assay. 

 



 

 

 

 

 

 

CHAPTER 5  

CLINICAL STUDY #1 – EFFECTS OF GENDER AND SMOKING ON 
BASELINE TIQ’S AND β-CARBOLINES 

 

 

5.1   Specific Aims 

 The primary objective of this investigation was to evaluate the effects of 

smoking and gender on the baseline levels of TIQ and β-carboline concentrations in the 

blood of non-, light- and heavy-smokers.   In this study, the baseline measurement in 

smoking subjects is considered to be concentration measurements 30 minutes after 

cigarette smoke inhalation.   In particular, aims of this study included: 

1)  To determine information on the baseline concentrations of plasma TIQ’s and β-

carbolines in the blood of non-, light-, and heavy-smokers and assess if differences exist 

between these groups.  

2)  To evaluate if gender has an effect on baseline concentrations of the plasma TIQ’s 

and β-carbolines. 

235 



236 

3)  To classify subjects according to smoking history and nicotine dependence with the 

Fagerström Test for Nicotine Dependence (FTND) into nonsmokers, light smokers, and 

heavy smokers. 

4)  To assess a possible association between the concentration of plasma TIQ’s and β-

carbolines with the smoking history and dependence of the volunteers. 

5)  Statistical assessment of inter- and intra-individual variability in the plasma TIQ’s 

and β-carbolines along with smoking history/nicotine dependence scores. 

 

5.2   Study Design  

 In order to address the objectives aforementioned, the study was designed as an 

observational, two-period outpatient clinical study in which each study period was 

separated by at least one week.  To determine the effects of smoking and gender on TIQ 

and β-carboline plasma concentrations, the study integrated a classification scheme to 

stratify the volunteers into nonsmoking (NS), light-smoking (LS) and heavy-smoking 

(HS) groups and with respect to gender, respectively.     

 Forty-one (41) healthy male and female volunteers, aged 21-35, were recruited, 

including 19 nonsmokers, 11 light-smokers, and 11 heavy-smokers.  Although this was 

a pilot study, the sample size for the study was determined a priori, via a two-way 

ANOVA power analysis (with gender and smoking status as factors). The number of 

subjects in each smoking status group required to show a difference of 50% in TIQ and 

β-carboline baseline concentrations between smoking groups with an α value of 0.05 

and a power of 1 – β = 0.8, was ten (10), assuming a coefficient of variation (CV%) of 
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50%.  To evaluate the effects of smoking, the Fagerström Test for Nicotine Dependence 

(FTND) was administered to determine their dependence on smoking in order to 

classify the potential subjects into three groups: nonsmokers, light-smokers, and heavy-

smokers (Fagerström and Schneider, 1989).   In this study, smokers were required to 

smoke one complete cigarette prior to sampling of the biological specimen.   As a 

separate analysis, a comparison of these results will be made to an additional eighteen 

(18) subjects from a separate study, balanced for smoking status and gender, that 

abstained from smoking for at least 15 hours prior to biological sampling (Leu, 2002). 

 

5.3   Experimental methods 

5.3.1 Subjects 

 Forty-three (43) male and female volunteers were screened for the study (11 NS 

females, 9 NS males, 7 LS females, 5 LS males, 6 HS females and 5 HS males).    A 

total of forty-one (41) healthy volunteers successfully completed the study (10 NS 

females, 9 NS males, 6 LS females, 5 LS males, 6 HS females and 5 HS males).   

Subjects were required to be between the ages of 21-35 and be healthy.   The 

recruitment of volunteers who participated in the study involved VCU-IRB approved 

advertisements that were placed around the Richmond, VA metro area.  Potential 

volunteers called on their own accord, and information regarding the logistics of the 

study was given over the telephone.    Upon their permission, a confidential health 

survey was administered to determine initial study qualification.  Information such as 
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gender, ethnicity, height and weight, present disease states, concurrent medications or 

dietary supplements, drugs of abuse and alcohol usage, smoking history and the 

Fagerström Test for Nicotine Dependence (FTND) was gathered from each subject 

participant.  In order to participate, the potential subject could not possesses any 

significant health disease state, not be currently taking any prescribed medications, nor 

be using any other drugs of abuse other than nicotine from cigarette smoking.    Alcohol 

intake was informally assessed during the telephone interview. 

 

5.3.2 Procedures 

5.3.2a  Smoking Classification 

 According to the number of cigarettes smoked per day and the FTND score, 

each patient was classified into a smoking status classification including nonsmoker 

(NS), light-smoker (LS), and heavy-smoker (HS).  The FTND is a standard instrument 

to assess the intensity of this physical addiction (Fagerström and Schneider, 1989). This 

test is designed to help physicians document the indications for prescribing medication 

for nicotine withdrawal.   The survey is measured on a scale of 0-10 with the higher the 

FTND score, the more intense the patient's physical dependence on nicotine.   

 Specifically, the requirements listed in table 5-1 were necessary for subjects to 

be classified in each group.  In the situation that the smoking history and FTND scores 

put the subject into two different categories (specifically for LS and HS), preference 

was given to the smoking history (number of cigarettes per day) over the FTND score. 
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Table 5-1:  Smoking status classification criteria. 

Subject Group Inclusion/Exclusion Criteria 
Nonsmoker (NS) 1. No current tobacco product use 
 2. Not a smoker for the past 5 years 
 3. If previously a smoker, did not smoke more than once a 

year continuously and < 10 cigarettes/year 
 4. FTND score = 0 
 
Light-smoker (LS) 

 
1. Current smoker of cigarettes (No other tobacco products) 

 2. Smokes at least 10 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score 1-7 
 
Heavy-smoker (HS) 

 
1. Current smoker of cigarettes (No other tobacco products) 

 2. At least more than 20 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score > 7 
 

 

5.3.2b  Admission to the Clinical Research Unit 

 Upon qualification of the telephone screening, each patient was categorized into 

a smoking status classification and visits to the clinical center were scheduled.   Prior to 

participation, the subject was required to abstain from prescription/over-the-

counter/herbal medications or caffeinated products for 72-hours prior to each visit (with 

exception of oral contraceptives prescription for females) and no alcoholic beverages 

12-hours prior to each visit.  The subject was given a chance to decline participation in 

the study or, if necessary, to seek his/her personal physician's advice as to whether to 

discontinue any medications he/she may be on.   

 The study involved two visits in which the volunteer presented to the Virginia 

Commonwealth University Health Systems General Clinical Research Center (VCUHS-
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GCRC).   Before participation in the study procedures, each subject signed a VCU-IRB 

approved Informed Consent Form (Appendix E) attesting that the study procedures 

were explained to them and that their participation in the study was voluntary.   

 Both clinical visits took place between 8 – 10 AM with sampling of biological 

specimens and additional observations were performed before 10 AM (see figure 5-1 

for study flow chart).  During the first screening visit, each volunteer completed forms 

including:  Comprehensive Medical History, Subject Entry Probe, Smoking History, 

Annual Alcohol Intake (AAI, Appendix C), and a TIQ/BC Food and Beverage 

Inventory (Appendix D).   The food and beverage inventory, including caffeinated 

beverages, were logged by self-report prior to sampling to explore the influences of 

dietary factors on TIQ and β-carboline levels at baseline.  All female subjects were 

requested to give information pertaining to the date of their last menses.  Of important 

note, subjects who were light- and heavy-smokers were asked to smoke one (1) 

complete cigarette within 30 minutes prior to biological sampling, for standardization 

purposes.  

 Additionally, during each visit, the subject was tested for abstention of alcohol 

via an alcohol breathalyzer and breath carbon monoxide test for assessment of exposure 

to cigarette smoke.  A 60-ml blood sample for estimation of TIQ and β-carboline 

plasma concentrations was drawn during each visit.  The volunteer also provided a urine 

sample for drugs of abuse screen.   
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Figure 5-1:  Activity Flow for Clinical Study #1 

  
 Screening/Visit #1               Visit #2 
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 Official enrollment and subject number assignment was allocated after the 

screening visit upon meeting particular inclusion/exclusion criteria.  The criteria for 

enrollment were as follows: 

1)   Demographics:  Participating subjects were required to be between the ages of 

21-35 years of age and be a healthy male or female.  Female subjects could not be 

pregnant during the clinical study and were to be using acceptable methods of 

contraception (abstinence, barrier methods, or oral contraceptives).  However, females 

that were not using oral contraceptives must have had regular menstrual cycles of 28-32 

days on average and must not have dysmenorrhea.  Subjects were required to be within 

± 15% ideal body weight according to their height.   

2) Medical history:  During the initial screening visit, a six-page medical 

evaluation form, in which the patient self-reported questions regarding personal medical 

history, family medical history, personal habits, current medications, social history, and 

current symptoms, was administered.  The subject had to have no history of clinically 

significant renal, hepatic, cardiovascular, gastrointestinal, pulmonary, neurological, and 

psychiatric diseases upon evaluation of the medical history questionnaire.  Moreover, 

subjects had to have no history of alcohol or illicit drug abuse.   Classification of the 

health status was based solely on the medical history form.  A physical exam was not 

performed on these subjects prior to participation. 

3) Laboratory results:  The primary laboratory tests performed on each subject 

were urine drugs of abuse test, urine human chorionic gonadotropin to test for 



243 

pregnancy of female subjects and a spot urine creatinine.    All pregnancy tests and 

urine drug screens had to be negative for further participation in the study.  

4) Vital Signs:  Sitting systolic and diastolic blood pressure (after five minutes of 

sitting), heart rate and oral temperature had to be within normal limits. 

5) Medications:  Subjects who qualified for the study were not allowed to take any 

prescription or over-the-counter medications.   Females that were currently taking oral 

contraceptives were permitted to participate in the study.     

 Upon successful screening, the volunteer was subsequently scheduled for a 

second visit to the clinical unit.  The same abstentions applied, as what was followed for 

the first screening visit.   During the second visit, only the breath tests, blood and urine 

sample were repeated.  A pregnancy test was given to female subjects and repeated if 

the time elapsed between the two visits exceeded one week.    

  

5.3.2c  Blood/urine sampling and safety measurements 

 During participation in the protocol, a total of one (1) blood sample was drawn 

during each study period.  The total amount of blood from each session was 60-ml and a 

total of 120-ml over the entire duration of the study.  During the two outpatient periods, 

the subjects’ vital signs was recorded before and after sampling and was monitored for 

appearance of any adverse events by the VCU-GCRC nursing staff.  A medical monitor 

was available to monitor for signs of adverse events associated with blood drawing such 

as mental confusion, dizziness, and weakness.  If necessary, adverse events were 

followed up until resolution. 
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Of note, subjects who were light- (LS) and heavy-smokers (HS) were asked to 

smoke one (1) complete cigarette within 30 minutes prior to biological sampling.  The 

exact time before sampling was noted as well as the type of cigarette smoked.  A 60-ml 

blood sample was collected from the non-dominant forearm in a reclined, seated 

position during the study.   Blood was collected into four 10-ml purple top vacutainer 

tubes containing K2-ethylenediaminetetraacetic acid (K2-EDTA) and was immediately 

centrifuged for 10 minutes at 4 °C at 3000 rpm to obtain plasma (Sorvall RC 3C Plus 

Centrifuge, Kendro Laboratory Products, Newton, CT).  Approximately 6-ml of plasma 

was placed into a Sarstedt Tube (Newton, NC) along with a 2-ml solution containing 

60% HClO4, ascorbic acid, semicarbazide HCl in aqua distillata for consequent SAL 

quantification analysis.   The anti-oxidant/aldehyde-trapping reagent solution was added 

to ensure the prevention of in-vitro artifactual formation of SAL.   An aliquot of 

approximately 10-ml of plasma was placed in a Sarstedt Tube for future β-carboline 

analysis.  Both sets of plasma samples were stored at -80°C until analysis. 

 

5.3.2d  Breath sampling 

 As part of protocol, subjects were required to abstain from alcohol for 12-hours 

prior to participation in each visit.   Moreover, smokers were required to smoke one 

complete cigarette prior to blood sampling.  Therefore, breath alcohol (BrAC) and 

breath carbon monoxide (CO) tests were performed to ensure that the subject was 

abstinent from alcohol (BrAC of 0.0 mg / 210ml), and to measure tobacco smoke 

exposure, respectively.   
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5.3.2e Diet and alcohol intake 

 As diet and alcohol intake are speculated to contribute to circulating TIQ’s and 

β-carbolines, a dietary survey and alcohol consumption scale were given to each 

subject.  These “pen and paper” style scales were administered to further characterize 

the subjects according to dietary intake of TIQ’s and β-carbolines.    Subjects were 

asked to abstain from caffeinated beverages and alcoholic beverages for 72-hours and 

12-hours, respectively, prior to each clinical visit.   

 The food survey incorporated a list of foods that are known to have a 

considerable composition of TIQ’s and β-carbolines.  Of major note, this survey is not a 

validated instrument.  The subject was required to mark the type of TIQ and/or β-

carbolines containing food they eat along with the frequency of intake. The TIQ/BC 

food inventory may be seen in Appendix D.   From the information provided, a 

calculation of weekly dietary intake of TIQ and/or β-carbolines in nanograms was 

reported. 

 Alcohol consumption was assessed for each subject participant via the Annual 

Alcohol Inventory (AAI, (Khavari and Farber, 1978).  This survey assesses the 

frequency and type (e.g., beer, wine and spirits) of alcohol consumed in a twelve 

question format.    Based on the responses, annual absolute alcohol intake can be 

estimated via a mathematical calculation.  This process is thought to capture both 

regular and binge drinking consumption but does not diagnose alcoholism.  The survey 

takes approximately 1-2 minutes to complete and was performed once per protocol at 

screening.  
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5.3.2f Discharge from VCU-GCRC 

 For each visit, subjects were discharged from the VCU-GCRC after 

approximately 2 hours of start of protocol procedures.  The volunteers were followed up 

the following day to assess for any discomfort from the protocol procedures, primarily 

the needle stick site.   The Flow Sheet that summarizes all procedures performed per 

protocol can be seen in Figure 5-1.  

 

5.3.3 Blood Sample Analysis 

 The samples containing TIQ’s and β-carbolines were kept at -80°C until 

analysis.   β-carboline analysis was conducted by the investigator using resources and 

equipment from the PK/PD Research Laboratory, Department of Pharmaceutics, 

Virginia Commonwealth University, Richmond, VA.     The β-carbolines, harman and 

norharman were analyzed via a validated HPLC-FD method (see chapter 3).  In brief, 2-

ml of patient plasma sample was subjected to protein precipitation with subsequent 

solid phase extraction (SPE).  Quantification for both analytes was conducted using 

yohimbine as an internal standard and detected via HPLC-FD.  

 TIQ samples were analyzed and assayed by the investigator using resources and 

equipment with generous permission granted from the Laboratory of Molecular 

Signaling, National Institute on Alcohol Abuse and Alcoholism-NIH, Rockville, MD.   

The assay procedure incorporated the use of 1-ml of patient plasma sample in addition 

to the equivalent volume of 1-ml antioxidant solution (total volume of 2-ml).    Phenyl 

boronic acid SPE followed by PFBBr derivatization was used to isolate R-SAL, S-SAL 
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and DA.  The final sample was chromatographically resolved via a chiral column and 

subjected to ESI-MS/MS detection.   Deuterated internal standards of each analyte were 

incorporated into the samples for adequate quantification (see Chapter 4 for further 

details). 

 

5.3.4 Statistical Analysis 

5.3.4a Descriptive statistics 

 Descriptive statistics, including mean, standard deviation, and coefficient of 

variation were calculated for each endpoint.    In addition, intra-individual variability 

(e.g., COV%) was calculated for all measured endpoints, i.e., TIQ and β-carboline 

concentrations, for each volunteer.   

 In the case that assumptions of normal distribution and equal variance was not 

met, raw data were log-transformed to comply with the parametric assumptions of equal 

variance across groups and normal distribution of the residuals.   Appropriate summary 

statistics, using the log-transformed data, such as, median, COV%, percentiles and 

ranges were computed.  

 

5.3.4b Inferential statistics 

 Inter-individual variability (i.e., COV% and range) was calculated for the above 

endpoints as well as all the rating scale scores for each of the three groups and across all 

groups.  The effects of smoking status and gender were evaluated via two-way 

ANCOVA, incorporating comparison of the factors smoking history and gender.  The 
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effect of sampling occasion (visit) was additionally explored.   Specifically, TIQ and β-

carboline individual concentrations were evaluated using the following model: 

 

   Yijk = μ + δi + πj + (δπ)ij + mγk + εijk

   i = NS, LS, HS 

   j = M, F 

   k = baseline covariate 

 

where Yijk was the response (concentration of TIQ or β-carboline) of the ith smoking 

status and jth gender relative to their kth covariate.  μ is the overall mean, δi is the effect 

of the ith smoking status, πj  is the effect of gender, (δπ)ij  is the interaction between the 

effect of the ith smoking status and the jth gender, γk is the effect of the kth baseline 

covariate possessing a m slope and, εijk is the random error associated with the Yijk 

response.  The error term is assumed to be independent and randomly distributed with a 

mean of 0 and variance σ2 respective to their effects and independent from each other.   

 Further exploratory analysis was performed.  Both TIQ and β-carboline 

individual concentrations were correlated with the measures of cigarette exposure (# 

cigarettes smoked/day) and dependence (FTND) using Pearson’s product-moment 

correlation to evaluate whether these variables are better descriptors for TIQ and β-

carboline exposure than the pre-specified smoking status.  

 Moreover, both TIQ and β-carboline mean concentrations were correlated with 

the measures dietary intake (TIQ/BC Food Inventory) and alcohol consumption (AAI) 

using Pearson’s product-moment correlation and linear regression to evaluate if these 
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are significant covariates that need to be implemented into the full model.  Associations 

are to be considered significant with a p-value of <0.05 and a coefficient of 

determination (R2) > 0.2.   Multiple covariate analysis was performed similar to as 

defined for exposure if there was more than one significant covariate. 

 All endpoints were tested and compared across all groups in S-PLUS 8.0 

(Insightful Corporation, Seattle, WA).  The full statistical model was implemented 

incorporating covariates, if required.    The residuals were tested for normality using 

Quantile-Quantile (Q-Q) plots and further tested using the Shapiro-Wilk test, where α 

was set to 0.05 such that any p-values > 0.05 indicated that the data was normally 

distributed.  If the data were not normally distributed, the data were log-transformed 

and the full model was repeated.    If the interaction or the baseline covariate was found 

not to contribute significantly to the full model, the interaction and/or the baseline were 

removed and a simpler model was used.  The level of significance was set a-priori at 

0.05.  Any statistically significant differences found via ANCOVA were further 

investigated via Scheffé test to isolate factor differences.  All ANCOVAS performed 

are included in Appendix L. 

 

5.4 Results 

5.4.1 Clinical Results 
 
5.4.1a Subject Demographics 
 
 A total of forty-three subjects qualified for the study after successfully passing 
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the initial telephone screening.   Forty-one subjects completed both observational 

periods according to protocol procedures.   Two subjects were disqualified from the 

study due to a positive urine drug screen.   Into each smoking status group, 19 NS, 11 

LS and, 11 HS were recruited and completed protocol, with twenty-two females and 

nineteen males comprising the gender distribution within the entire population.   The 

distribution of gender and smoking status for subjects who completed the protocol is as 

follows: 10 NS females, 9 NS males, 6 LS females, 5 LS males, 6 HS females and 5 HS 

males.  Final subject demographics are included in Table 5-2.  The patient summary is 

included in Appendix G.    The subjects were of a mean age of 25.1 years old, ranging 

from 21-32 years.  Females weighed an average of 64.1 kg (range 48.7 – 86.2), while 

males weighed an average of 80.1 kg (range 66.5 – 107.4).  No differences in weight 

and age were found between smoking groups.  Twenty-four Caucasians, fifteen Asians, 

one Hispanic and one African-American completed the study. 
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Table 5-2:  Clinical Study #1 Subject Demographics 

Nonsmokers
mean CO 

Subject # Race Gender Age Weight FTND # Cig/day pack years     ppm 
1 White F 21 68 0 0 0 2
2 Black F 22 52.7 0 0 0 3
3 White F 31 86.2 0 0 0 2.2
4 Asian F 26 52.2 0 0 0 1
5 White F 26 73.3 0 0 0 2.1
6 Asian F 30 65.3 0 0 0 2
7 White F 25 65.1 0 0 0 1.8
8 Asian F 26 52.6 0 0 0 2
9 Asian F 28 51.8 0 0 0 2.1

10 Asian F 25 56.8 0 0 0 2.2
11 Hispanic M 26 70.2 0 0 0 1.6
12 White M 22 88.1 0 0 0 2
13 White M 25 71.3 0 0 0 1.8
14 Asian M 24 71.3 0 0 0 3.2
15 Asian M 26 67.5 0 0 0 2.2
16 White M 22 103.6 0 0 0 2.1
17 Asian M 26 90.8 0 0 0 2
18 Asian M 30 83.7 0 0 0 1.7
19 Asian M 23 72.5 0 0 0 2.1

Total Mean 25.5 70.7 0.0 0.0 0.0 2.1
Total SD 2.8 14.6 0.0 0.0 0.0 0.5
Mean Female 26.0 62.4 0.0 0.0 0.0 2.0
SD 3.1 11.4 0.0 0.0 0.0 0.5
Mean Male 24.9 79.9 0.0 0.0 0.0 2.1
SD 2.5 12.3 0.0 0.0 0.0 0.5  
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Table 5-2:  Subject Demographics (continued) 

Light-smokers
mean CO 

Subject # Race Gender Age Weight FTND # Cig/day pack years     ppm 
21 White F 23 49.5 4 16 2.6 8.0
22 White F 22 60.9 0 5 1.8 12.2
23 White F 21 86.0 2 10 1.7 14.1
24 White F 21 58.7 1 10 3.2 13.2
25 White F 31 54.1 1 5 1.5 14.5
26 White F 22 70.2 1 4 1.4 11.7
31 Asian M 24 67.7 6 10 2.2 16.5
32 White M 32 78.5 3 17 2.1 14.1
33 Asian M 26 81 0 5 2.4 9.5
34 Asian M 24 81.1 2 6 1.4 12.2
35 Asian M 21 66.5 1 7 1.7 13.4

Total Mean 24.3 68.6 1.9 8.6 2.0 12.7
Total SD 3.9 12.0 1.8 4.5 0.6 2.4
Mean Female 23.3 63.2 1.5 8.3 2.0 12.3
SD 3.8 13.1 1.4 4.6 0.7 2.4
Mean Male 25.4 75.0 2.4 9.0 2.0 13.1
SD 4.1 7.3 2.3 4.8 0.4 2.6  

 

Heavy-smokers
mean CO 

Subject # Race Gender Age Weight FTND # Cig/day pack years     ppm 
41 White F 21 51.2 4 20 9.5 18.4
42 White F 23 59.0 5 20 11.2 19.5
43 White F 21 48.7 6 30 13.2 11.7
44 White F 24 79.7 7 25 11.5 17.5
45 White F 28 83.6 7 30 7.4 23.7
46 White F 31 83.6 4 30 11.2 11.9
51 White M 23 107.4 7 15 5.8 13.7
52 White M 24 78.8 8 15 12.2 19.5
53 White M 25 79.8 6 17 10.2 16.8
54 Asian M 25 79.7 7 20 7.5 20.4
55 White M 31 82.6 6 20 10.5 22.7

Total Mean 25.1 75.8 6.1 22.0 10.0 17.8
Total SD 3.5 16.9 1.3 5.8 2.3 4.0
Mean Female 24.7 67.6 5.5 25.8 10.7 17.1
SD 4.0 16.5 1.4 4.9 2.0 4.6
Mean Male 25.6 85.7 6.8 17.4 9.2 18.6
SD 3.1 12.2 0.8 2.5 2.6 3.5  

 

 



253 

 Of note, no statistically significant difference was observed with respect to 

weight and age between smoking groups.   With regard to smoking status and frequency 

of cigarette smoking, figures 5-2, 5-3 and 5-4 show FTND scores, mean cigarette 

consumption per day and breath carbon monoxide (CO), respectively.  Both 

nonsmoking (NS) males and females scored a mean of 0 (± 0 SD) on the FTND and self 

reported mean number of cigarettes smoked per day, as expected.  LS females scored a 

mean FTND of 1.5 (± 1.4 SD) while LS males scored a slightly higher value of 2.4 (± 

2.3 SD).    HS females scored a 5.5 (± 1.4 SD) compared to HS males who scored on 

average a 6.6 (± 0.9 SD).  Of note, the FTND difference between the genders was not 

significantly different (two-tailed unpaired t-test, p-values were greater than 0.088 for 

both LS and HS status).    With respect to the number of cigarettes smoked per day, LS 

females and LS males had similar results with averages of both groups being 8.3 (± 4.6 

SD) and 9.0 (± 4.8 SD) cigarettes smoked per day for females and males, respectively.   

HS subjects smoked on average a two-fold more number of cigarettes per day than the 

LS counterparts.    In this group, female smokers possessed a higher average than that of 

males with an average of 25.8 (± 4.9 SD) for females and 17.4 (± 2.5 SD) for males.   

As expected, smokers had both higher FTND and number of cigarettes smoked per day 

than that of nonsmokers.    
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Figure 5-2:  Mean (± SD) Fagerström Test for Nicotine Dependence (FTND) Score vs. 
Smoking Status (F: female, M: male) 
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Figure 5-3:  Mean (± SD) Cigarettes smoked per day vs. Smoking Status (F: female, M: 
male) 
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Figure 5-4:  Mean (± SD) Expired Carbon Monoxide vs. Smoking Status (F: female, 
M: male) 
   

 With respect to breath carbon monoxide (CO), negligible differences were 

observed between genders within smoking groups.    NS males and females possessed a 

mean CO level of 2.0 (± 0.5 SD) and 2.1 ppm (± 0.5 SD), respectively.    This positive 

value of expired CO in the NS group is presumed to stem from incidental environmental 

exposure.    Conversely, LS and HS possessed significantly higher levels of expired CO, 

seemingly due to recent cigarette smoking (within 30 minutes) by the smoking subjects.  

The mean CO measured in LS males and females was 13.1 (± 2.6 SD) and 12.3 (± 0.5 

SD) while CO measurement in HS males and females resulted in 18.6 (± 3.5 SD) and 

17.1 (± 4.6 SD), respectively.  
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5.4.1b Alcohol Intake and Food Inventory 

 In addition to the demographic and TIQ and β-carboline plasma measurements, 

information including alcohol intake and weekly exposure to dietary total SAL, harman 

and norharman was recorded via the Annual Alcohol Intake (Khavari and Farber, 1978) 

and TIQ/BC Food Inventory (Appendix C and D).     As dietary intake of ethanol and/or 

TIQ and β-carboline containing foods may affect the overall exposure, these 

assessments may provide clues into the variability associated with the plasma 

measurement of SAL, harman and norharman.    If alcohol intake and/or dietary 

exposure were found to significantly correlate with SAL or β-carboline exposure, AAI 

or Food Intake was considered a significant covariate and implemented into the 

statistical model. 

 With regard to ethanol intake, the AAI was administered to each subject on a 

single occasion.  The total amount of alcohol consumed, in terms of milligrams of pure 

ethanol, was calculated upon evaluation of the usual and maximum frequencies along 

with usual and maximum volumes of three different types of alcoholic beverages 

including, wine, beer and spirits.    From the assessment a total quantity of alcohol was 

calculated in milliliters with subsequent calculation of the absolute yearly ethanol 

content, accounting for the different percentage of ethanol in each type of beverage.   Of 

primary note, this is a self-report measure of overall estimate of total ethanol 

consumption.  It is not a diagnostic tool for alcoholism disease status nor is it sensitive 

to detect change in drinking patterns.  The descriptive results of the AAI may be viewed 

in the table below in milligrams of annual absolute ethanol consumed. 
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  In regard to dietary exposure of the analytes, the food survey incorporated 

measurements of type of food, average frequency and average portion size of each 

known food source to have significant quantities of SAL or β-carboline.   A numerical 

value for each food type was calculated for each subject accounting for frequency and 

portion size.   The ordinal value was subsequently multiplied by the absolute amount of 

SAL or β-carboline present in that food source.     Absolute amounts within those food 

sources that have known, measureable quantities of SAL and/or β-carboline were 

calculated using reported literature values (Hirst et al., 1985; Collins et al., 1990; Pfau 

and Skog, 2004).  SAL, harman and norharman amounts are reported as weekly intake 

of analyte in nanograms.   The descriptive results of the TIQ/BC Food Inventory may be 

viewed table 5-3 below in average nanograms of weekly total SAL, norharman and 

harman consumed. 
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Table 5-3:  Descriptive statistics of alcohol intake and dietary consumption 

 

GRAND

Mean 3055
%COV 99
Median 1266
Mean 1301
%COV 151
Median 702
Mean 2114
%COV 125
Median 970

Mean 1296
%COV 65
Median 1218
Mean 1369
%COV 48
Median 1203
Mean 1335
%COV 56
Median 1218
Mean 2051
%COV 58
Median 1826
Mean 2027
%COV 48
Median 1805
Mean 2038
%COV 53
Median 1826

Mean 2568
%COV 91
Median 1562
Mean 2176
%COV 100
Median 1559
Mean 2358
%COV 95
Median 1562
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Male
1334 1529 997

45 90 43
1197 1971 1218
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63 42 17
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Overall
1360 1414 1216
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Male
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Female
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Male
2136 3822 2092

65 90 46
1122 4928 1562

Female
2905 1712 1424

87 110 101
1988 1269 965

Overall
2541 2671 1728

89 107 73
1663 1555 1421

Non-smoker Light-smoker Heavy-smoker
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 Estimated annual ethanol exposure (AAI) resulted in substantial differences 

between genders within smoking groups.   Results here are reported as median and 

range.  NS males and females possessed a median annual ethanol exposure of 717 

mg/year (range: 0 – 4614 mg/year) and 506 mg/year (26.5 – 2758 mg/year), 

respectively.    Conversely, LS and HS possessed significantly higher AAI scores.  The 

median mg of ethanol estimated in LS males and females was 4744 mg/year (184 – 

4764 mg/year) and 804 mg/year (57.9 – 3214 mg/year) while in HS males and females 

resulted in 6516 mg/year (969 – 10264 mg/year) and 910 mg/year (129 – 9120 

mg/year), respectively.   Nonsmokers possessed a median mg of annual ethanol 

consumed of 668 mg/day (range 0 – 4614 mg/day) while the estimated LS and HS 

annual ethanol intake was 1004 mg/day (58 – 5399 mg/day) and 1159 (128 – 10624 

mg/day).    Figure 5-5 represents the distribution of the mg of ethanol intake, per 

smoking status and gender. 
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Figure 5-5:  Estimated annual absolute alcohol intake in mg ethanol / year  
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 A systematic trend was observed between smoking groups and gender for the 

total amount of ethanol consumed per annum.  On average, females had a lower 

estimated ethanol intake compared to males as a whole and across smoking groups.   

Interestingly smoking status showed a significant trend with a resultant increase in 

estimated ethanol consumption with increasing level of smoking status.  This result was 

expected as smokers are known to consume twice as much alcohol as do non-smokers 

(DiFranza and Guerrera, 1990).   Formal evaluation of AAI as a significant covariate 

will be explored further as alcohol intake may affect the exposure of plasma SAL and β-

carbolines.  

 Dietary TIQ and β-carboline exposure measured via the TIQ/BC food inventory 

yielded estimates that were statistically similar across smoking groups.  For weekly 

dietary harman intake, NS males and females possessed an estimated median weekly 

dietary harman exposure of 1168 ng/week while in LS and HS, estimated median 

dietary exposure was 1393 ng/week and 1334 ng/week, respectively.    For weekly 

dietary norharman intake, estimated median weekly dietary exposure for NS was 1752 

ng/week while in LS and HS, estimated median dietary exposure was 2089 ng/week and 

1998 ng/week.   Within all smoking status groups, a large range of dietary intake of 

harman and norharman was observed. 

 In the case of weekly dietary SAL exposure, the individual enantiomeric 

composition of the food sources was not available.  Therefore, dietary total SAL was 

estimated.  It has been purported that, in food sources, the enantiomeric ratio is 1:1, as 

previously discussed.   For weekly dietary SAL intake, estimated median weekly dietary 
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exposure for NS was 1663 ng/week (range: 243 – 9182 ng/week) while in LS and HS, 

estimated median dietary exposure was 1555 ng/week (range: 109 – 8729 ng/week) and 

1421 ng/week (range: 109 – 4322 ng/week).     

 The average dietary intake between smoking status and gender groups for 

harman, norharman, and SAL are shown in the figures 5-6, 5-7, and 5-8, respectively. 
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 Figure 5-6:  Estimated dietary harman intake in ng / week (mean ± SD) 
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 Figure 5-7:  Estimated dietary norharman intake in ng / week (mean ± SD) 
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 Figure 5-8:  Estimated dietary total salsolinol (SAL) intake in ng / week (mean 
 ± SD) 
 
 
 
 With the exception of dietary SAL, no statistically significant difference was 

observed between the smoking status groups.  The LS group possessed, on average, a 
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higher estimated consumption of dietary SAL than NS and HS groups but the variability 

associated with this estimate is large (%COV of 107%). 

 

5.4.1c  Adverse Events 

 Due to the minimally invasive nature of this study, the investigation progressed 

without major complications.   Out of all subject completions, only one subject 

complained of bruising at the injection site but was subsequently resolved within 12 

hours upon follow up telephone call.    During the first visit, three subjects possessed 

asymptomatic systolic hypotension after blood draw.  For the second visit, four different 

individuals had similar signs.   At the end of each visit, all subjects, including those 

with mild hypotension, were alert and able to ambulate independently and return to 

daily routines.  

 
 
5.4.2 Primary Analysis for β-carbolines – Effects of smoking and gender 

5.4.2a β-carbolines – Within Subject Variability 

 Prior to formal statistical comparison of H and NH between smoking and gender 

factors, within-subject variability of both β-carbolines for each subject was evaluated.  

This analysis was performed to assess the baseline stability of H and NH over two 

observational time points with the second observation being collected within one week 

of the first clinical visit.   The intra-subject variability (%COV and inter-quartile ranges) 

for NH and H may be seen in the tables 5-4 and 5-5 below.   
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Table 5-4:  Within Subject Variability for Plasma Norharman (pg/ml)  

Sample # GEN NH avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 9 11 123 9 5 13
2 F 5 1 31 5 4 5
3 F 19 3 15 19 18 20
4 F 7 0 4 7 7 7
5 F 28 3 10 28 27 29
6 F 5 0 5 5 5 5
7 F 45 28 62 45 35 55
8 F 21 3 14 21 20 22
9 F 2 0.1 10 2 2 2
10 F 25 11 43 25 21 28
11 M 23 7 31 23 21 26
12 M 7 2 24 7 7 8
13 M 60 36 60 60 47 72
14 M 24 20 83 24 17 31
15 M 51 33 64 51 39 62
16 M 15 1 10 15 14 15
17 M 62 10 17 62 58 65
18 M 4 1 25 4 4 4
19 M 30 28 92 30 20 40

Light Smokers
21 F 89 4 5 89 87 90
22 F 39 23 58 39 31 47
23 F 36 5 15 36 34 38
24 F 17 7 41 17 15 20
25 F 45 12 26 45 41 50
26 F 84 30 36 84 73 94
31 M 333 85 26 333 303 364
32 M 81 5 6 81 79 83
33 M 40 8 21 40 37 43
34 M 140 17 12 140 134 146
35 M 43 1 2 43 42 43

Heavy Smokers
41 F 236 124 52 236 193 280
42 F 289 117 40 289 247 330
43 F 109 15 14 109 104 114
44 F 161 181 112 161 97 225
45 F 284 177 62 284 221 347
46 F 238 109 46 238 199 277
51 M 67 53 78 67 49 86
52 M 33 12 35 33 29 37
53 M 119 116 98 119 78 160
54 M 181 3 2 181 180 182
55 M 145 150 104 145 92 198  
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Table 5-5:  Within Subject Variability for Plasma Harman (pg/ml)  

Sample # GEN H avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 12 13 115 12 7 16
2 F 2 4 165 5 4 6
3 F 26 4 16 29 28 31
4 F 7 1 8 8 8 8
5 F 19 3 17 21 20 22
6 F 4 0 8 4 4 4
7 F 74 29 39 54 43 64
8 F 13 13 101 22 18 27
9 F 2 0 14 2 2 2
10 F 13 5 41 9 7 11
11 M 12 16 138 23 17 28
12 M 10 2 19 8 8 9
13 M 16 3 18 14 13 15
14 M 7 13 176 16 12 21
15 M 88 7 8 93 90 95
16 M 23 1 5 22 21 22
17 M 96 17 18 84 78 90
18 M 5 0 7 6 5 6
19 M 4 3 72 5 5 6

Light Smokers
21 F 129 5 4 125 124 127
22 F 76 33 43 53 42 65
23 F 55 11 19 62 58 66
24 F 5 47 1026 38 21 55
25 F 4 62 1668 47 26 69
26 F 139 23 17 155 147 163
31 M 36 2 5 37 37 38
32 M 102 57 56 62 42 82
33 M 68 70 103 118 93 142
34 M 144 31 22 121 110 132
35 M 68 5 8 64 62 66

Heavy Smokers
41 F 422 41 10 393 379 408
42 F 12 5 40 15 13 16
43 F 386 181 47 258 194 322
44 F 63 106 168 138 100 175
45 F 55 63 115 99 77 121
46 F 49 110 224 127 88 166
51 M 36 4 12 39 38 41
52 M 11 13 121 20 15 24
53 M 356 217 61 202 126 279
54 M 46 65 142 91 68 114
55 M 4 30 760 26 15 36  
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 For NH and H concentrations, it can be noted that the variability between 

sampling occasions ranged from a %COV 1.8 to 123 % for NH and %COV 3.6 to 

1668% for H,  suggesting that baseline concentrations of these β-carboline analytes are 

not always stable or reproducible between occasions.   Inter-quartile ranges for the 

between occasion variability is the more appropriate assessment for variability between 

two observations but, for simplicity sake, %COV were computed and compared.  For 

non-smokers %COV ranged from 3.7 – 123% for NH and 7.4 – 165% for H.   

Presumably, these persons have not been recently exogenously exposed to H and NH, 

inferring that factors, other than smoking status or gender may contribute to the 

variability in baseline between occasions.  For the LS population, %COV 2.1 – 58% for 

NH and %COV 3.6 – 1668% for H were observed, while the HS population possessed 

%COV 1.8 – 112% for NH and %COV 9.7 – 760% for H.   The large variability 

between occasions observed within the smoking status populations may be due to the 

different times of sampling with respect to cigarette smoking.  Although each subject 

was sampled within 30 minutes of smoking, the sampling times varied considerably 

within this time frame for each subject.  As it has been noted by two researchers, plasma 

half-lives of 51 minutes (Breyer-Pfaff et al., 1996) and 25-30 minutes (Rommelspacher 

et al., 2002) for harman and norharman, respectively, have been estimated from human 

studies.    Because of short plasma half-lives, and the time it takes for the subject to 

smoke a complete cigarette and arrive to the clinic for a blood draw is variable, it was 

difficult to consistently sample at a reproducible time.   Of note, both genders possessed 

the similar amount of within-subject variability with males possessing a %COV 1.8 – 
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103.7% for NH and %COV 4.7 to 760% for H were observed while in the female 

counterparts, a  %COV 2.1 – 123.0% for NH and %COV 7.2 to 1668.1% for H were 

observed.   Only two subjects in the LS female group possessed very large within 

subject variability (%COV >1000%) for H concentrations.    This is seemingly due to 

the large sampling time differences with respect to smoking a cigarette, between 

occasions.    

 As large within-subject variability was observed with majority of the subjects, 

individual subject concentrations were used, as opposed to average subject 

concentrations for providing descriptive statistics of the overall measure of central 

tendency and variability.    This was to ensure that the intra-subject variability was not 

masked during descriptive and inferential statistical analysis.    

 Tables 5-6 and 5-7 exemplify the descriptive statistics for the concentrations 

observed for each smoking status and gender.    Measures of central tendency, such as 

mean and median, along with the variability including %COV and range are presented 

for each factor.  Of note, the distribution for the number of subjects is unbalanced with 

respect to smoking status and gender within each group.  The distribution of gender and 

smoking status for subjects who completed the protocol is as follows: 10 NS females, 9 

NS males, 6 LS females, 5 LS males, 6 HS females and 5 HS males.    It is important to 

note that each smoking status: gender group contains at least 5 subjects.   
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Table 5-6: Descriptive statistics for Norharman concentrations (pg/ml) divided into 
smoking status and gender. 
 
NORHARMAN

Mean 81
Stdev 107
%COV 132
Median 32
MIN 2
MAX 410
Mean 77
Stdev 87
%COV 113
Median 42
MIN 3
MAX 394
Mean 79
Stdev 98
%COV 123
Median 38
MIN 2
MAX 410

   
 F

em
al

e
   

   
M

al
e

Non-smoker
16

65
2

17
93

Light-smoker Heavy-smoker GRAND

15

85
3

23
84
26
31

52
30
57
47

93
81
34

12
105
127

394

220
119
55

183
33

410
109
86119
79
73
25

251

89
105

   
 G

R
A

N
D

85
2

17
95
22
23

54
12
394

169
117
69

160
25

410

86

 

 
Table 5-7: Descriptive statistics for Harman concentrations (pg/ml) divided into 
smoking status and gender. 
 
HARMAN

Mean 76
Stdev 103
%COV 136
Median 32
MIN 2
MAX 422
Mean 55
Stdev 66
%COV 119
Median 36
MIN 4
MAX 356
Mean 66
Stdev 88
%COV 132
Median 34
MIN 2
MAX 422

Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

16 80 172
17 53 148
107 66 86
10 74 137
2 4 12

74 172 422

   
   

M
al

e

30 80 76
33 47 105
111 59 139
14 68 44
4 22 4

98 167 356

   
 G

R
A

N
D

23 80 128
27 49 136
117 61 107
12 71 52
2 4 4

98 172 422  
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 The overall average, across all patients for NH and H were 79.2 (123.4%) and 

66.4 pg/ml (132.4%) suggesting that the plasma β-carboline concentrations are quite 

variable between all patients.    The significant differences between the median and 

mean NH and H concentrations suggest that the data follow non-normal distribution.    

Upon comparison of the median concentrations and ranges, females were observed to 

have a median NH concentration of 32 pg/ml while median H concentrations were 31.8 

pg/ml.  Their male counterparts had a similar median NH concentration of 41.8 pg/ml 

and median H concentrations were 36.3 pg/ml.   With respect to smoking status, median 

concentrations along with ranges are presented in the preceding table. 

 Median H concentrations of female NS, LS and HS were 10.4, 73.8 and 136.5 

pg/ml, respectively while median NH concentrations were 16.8, 44.6 and 183.3 pg/ml.  

Males within NS, LS and HS groups had median H concentrations of 13.5, 70.5, and 

51.9 pg/ml and median NH concentrations of 17.2, 54.4, and 159.6 pg/ml, respectively. 

 

5.4.2b β-carbolines - Primary Factors of Smoking and Gender Analysis 
 
 The distribution of the data within each smoking group for both H and NH 

followed a non-normal distribution upon evaluation of quantile-quantile (Q-Q) plots.  

The large discrepancy between the median and mean concentrations within each group 

also exemplifies the non-normality of the distributions.  Further evaluation of normality 

of the data via the Shapiro-Wilk test resulted in p-values all less than 0.03 for both 

analytes across all groups, suggesting that the data were indeed non-normally 

distributed.  Moreover, unequal variance was present with the data upon visual 
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inspection of the residuals.    For these reasons, log-transformed data were used for the 

primary analysis.  

 Separate evaluation of the effects of smoking status and gender were performed 

on both log H and log NH concentrations.  Correlation analysis between the analytes 

suggested that the association between the two analytes was moderate (r = 0.65, see 

figure 5-9 below), therefore both analytes are treated separately for statistical analysis.    

0.0 0.5 1.0 1.5 2.0 2.5
log.H

0.0

0.5

1.0
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Figure 5-9:  Correlation between log H and log NH.  Correlation coefficient for the 
association is r = 0.652. 
 

 Two-way ANOVA was performed on the log transformed H and NH evaluating 

the factors of smoking status and gender.  Evaluation of the effects of sampling visit 

was performed and was further explored upon significance of the effect.   Box-plots 

showing the median and distribution, including outliers for the effects of gender and 

smoking status are presented below for both H (figure 5-10) and NH (figure 5-11).   The 
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horizontal line in the interior of the box is located at the median log β-carboline, while 

the “x” denotes the mean concentration.    The height of the box is equal to the 

interquartile distance or IQD, which is the difference between the third and first 

quartiles of the data.   The whiskers include 99.3% of all data while the outliers are 

presented as horizontal lines outside of the whiskers.    
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 Two-way ANOVA was performed to evaluate the effects of gender and smoking 

on log H concentrations.    Statistical data are presented as F test for two-way ANOVA 

(df for factors, df for residuals = F-statistic, p-value).    

 A significant effect of smoking status (SS) was observed with respect to log H 

concentrations with F (2, 75) = 16.7, p-value = 1.0 x 10-6.   The effect of gender (GEN) 

was not significant with the test statistic resulting in F (1, 75) = 0.09, p-value = 0.756.    

No interaction between the SS and GEN factors was observed (F (2, 75) = 3.02, p-value 

= 0.074).  An effect of sampling visit was not observed (p-value = 0.08). The coefficient 

of determination (R2) for the entire model was 0.312 (p-value = 7.4 x 10-6).  Thus, the 

factors of SS and GEN account for approximately 31.2% of the variability associated 

with the log H concentration measurements.   

 In order to determine where the difference within smoking status resides, a post-

hoc multiple comparison test was performed.  The Scheffé method for multiple 

comparisons found that the primary differences were observed between the HS and NS 

groups as well as the LS and NS groups.   Via this comparison, a significant difference 

was not observed between the HS and LS smoking status groups.     

 The full two-way ANOVA output for Log H can be seen in figure 5-12 below 

along with the residual plot of the model fit (figure 5-13).   Upon visual evaluation, the 

residuals show an even spread of the distribution of data suggesting the lack of unequal 

variance.  The results of the multiple comparisons are presented below the ANOVA 

table where a significant difference between groups is denoted by asterisks.  
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 *** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.H ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.031808, na.action =  
 na.exclude) 
 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2   7.40497 3.702483 16.69658 0.0000010 
      GEN  1   0.02159 0.021590  0.09736 0.7558877 
    visit  1   0.71119 0.711188  3.20715 0.0773521 
   SS:GEN  2   1.34362 0.671812  3.02958 0.0742898 
Residuals 75  16.63132 0.221751                  

 
Multiple R-Squared: 0.3116  
F-statistic: 8.715 on 4 and 77 degrees of freedom, the p-value is 7.41e-006 
 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
critical point: 2.86  
response variable: log.H  
rank used for Scheffé method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS   -0.032     0.143      -0.440       0.376      
HS-NS    0.571     0.127       0.209       0.933 **** 
LS-NS    0.603     0.127       0.241       0.965 **** 

 
 
 
Figure 5-12:  Two-way ANOVA output, with multiple comparisons, for the effects of 
SS and GEN on Log H plasma concentrations. 
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Figure 5-13:  Residual plot for two-way ANOVA fit for Log H. 

   
Fitted : SS + GEN + visit + SS:GEN

Residuals
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 With respect to Log NH concentrations, a significant effect of smoking status 

(SS) was observed with F (2, 75) = 41.67, p-value = 0.3 x 10-7.   The effect of gender 

(GEN) was not significant with the test statistic resulting in F (1, 75) = 2.11, p-value = 

0.150.    No interaction between the SS and GEN factors was observed (F (2, 75) = 2.7, 

p-value = 0.065).   An effect of sampling visit was not observed (p-value = 0.74). The 

coefficient of determination (R2) for the entire model was 0.498 (p-value = 6.2 x 10-11).   

Thus, the factors of SS and GEN account for approximately 49.8% of the variability 

associated with the log NH concentration measurements.   

 The Scheffé method for multiple comparisons found that the primary differences 

were observed between the HS and NS groups as well as the LS and NS groups.   Via 
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this comparison, a significant difference was not observed between the HS and LS 

smoking status groups, as in the same case for H.  

 The full two-way ANOVA output for Log NH may be seen in the figure 5-14 

below along with the residual plot of the model fit (figure 5-15).   Upon visual 

evaluation, the residuals show an even spread of the distribution of data suggesting the 

lack of unequal variance. 
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*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
aov(formula = log.NH ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.031808, na.action =  
 na.exclude) 
 
Residual standard error: 0.4090246  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2  13.94415 6.972076 41.67382 0.0000000 
      GEN  1   0.35342 0.353417  2.11246 0.1502757 
    visit  1   0.01848 0.018483  0.11048 0.7405308 
   SS:GEN  2   1.90789 0.953946  5.70197 0.0649521 
Residuals 75  12.54758 0.167301                 
 
 
Multiple R-Squared: 0.4976  
F-statistic: 19.06 on 4 and 77 degrees of freedom, the p-value is 6.246e-011  
 
 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
critical point: 2.86  
response variable: log.NH  
rank used for Scheffé method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.276     0.124     -0.0778       0.631      
HS-NS    0.924     0.110      0.6100       1.240 **** 
LS-NS    0.648     0.110      0.3330       0.962 **** 
 
 
 

Figure 5-14:  Two-way ANOVA output, with multiple comparisons, for the effects of 
SS and GEN on Log NH plasma concentrations. 
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           Figure 5-15:  Residual plot for two-way ANOVA fit for Log NH. 

 

 A significant effect of smoking status was observed for both log H and log NH 

plasma concentrations.   A statistically significant effect of gender was not observed in 

the exposure and an interaction between the factors was not observed for either analyte.  

According to the two-way ANOVA, the following rank was observed with plasma H 

concentrations (geometric means) across smoking groups and gender.  NS F < NS M < 

HS M < LS M < LS F < HS F.   The post-hoc multiple comparisons via Scheffé test 

showed that the major difference that was observed with the smoking groups were the 

HS – NS group and the LS – NS groups.  According to this analysis, no significant 

difference was observed between the two smoking groups of LS and HS.     On average, 

the LS group had a slightly larger mean than that of the HS groups for log H.     
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 ANOVA results assigned the following rank with respect to observed plasma 

NH concentrations across smoking groups and gender.  NS F < NS M < LS F < HS M < 

LS M < HS F.   The post-hoc multiple comparisons via Scheffé test showed that the 

major difference that was observed with the smoking groups were the HS – NS group 

and the LS – NS groups.  A statistically significant difference was not observed 

between the two smoking groups of LS and HS.     On average, across smoking groups, 

the HS group > LS group > NS group for log NH.  See figures below.       

 For both NS and LS smoking status groups, males possessed higher 

concentrations than females.  The female HS group yielded higher average 

concentrations than that of their male counterparts for both H and NH.    The fact that 

HS females smoked more cigarettes per day on average compared to males may provide 

an explanation for this divergence in plasma concentrations.     
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 Figure 5-16:  Log H as function of smoking status and gender (mean ± SD). 
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 Figure 5-17:  Log H as function of smoking status (mean ± SD).  Statistically 
 significant results observed between NS-LS and NS-HS groups. 
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 Figure 5-18:  Log NH as function of smoking status and gender (mean ± SD). 
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 Figure 5-19:  Log NH as function of smoking status (mean ± SD).   
 Statistically significant results observed between NS-LS and NS-HS groups. 
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5.4.2c β-carbolines – Exploratory Analyses 

 As observed from the primary analysis, a statistically significant effect of 

smoking status was observed on both log H and log NH plasma concentrations.  In 

order to further explain the variability of H and NH exposure associated with smoking 

status, the criteria of FTND and number of cigarettes smoked per day were analyzed as 

continuous dependent variables to explain the individual subjects’ H and NH exposures.   

FTND and the number of cigarettes smoked per day were replaced by the SS category 

for the ANOVA analysis.      The individual concentrations for each subject were used 

to assess the relationship between FTND and number of cigarettes and the analyte 

concentrations in order to represent the intra-subject variability for the log H and log 

NH in the analysis.     

 The tables below summarize the regression analysis for log H and log NH using 

different explanatory variables for the dependent variable.  For reference, results of the 

primary analysis using smoking status and gender for the model fit are supplied.  As 

FTND and the number of cigarettes smoked per day are measures of nicotine 

dependence that were not expected to change between sampling periods, intra-subject 

average log H and log NH concentrations were also explored for an association.   

 Although the model fits were statistically significant on the individual log H 

concentrations, use of the FTND and number of cigarettes/day did not improve 

coefficient of determinations from the initial model.   Of note, all model fits were  
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Table 5-8:  Explanatory variable model comparison for Log H.  

Log Harman     

Model Description R2 p-value 
Slope (for continuous 
dependent variable) 

and notes 
SS + GEN 

(pre-specified 
primary factors) 

Original 2-way 
ANOVA with SS and 

GEN as factors 
 

0.3116 < 0.0001 No interaction 

FTND + GEN 
 

Linear regression 
with continuous 

FTND as dependent 
variable 

 

0.2558 < 0.0001 0.1516, sig interaction 
observed between FTND 

and GEN 

#cig/day+ GEN Linear regression 
with continuous 

#cig/day as 
dependent variable 

 

0.2757 < 0.0001 0.0342, no interaction, no 
effect of gender 

 
Avg log H 

    

FTND + GEN Linear regression on 
avg log H with 

continuous FTND as 
dependent variable 

 

0.2123 0.003 0.0866, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression on 
avg log H with 

continuous #cig/day 
as dependent variable 

 

0.3306 < 0.0005 0.0303, no interaction 
No effect of gender. 
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statistically significant (all p-values < 0.003).  Upon evaluation of the average log H 

concentrations, an improvement was observed when the number of cigarettes smoked 

per day was implemented into the model in place of smoking status.   Average 

concentrations were expected to show a better model fit compared to the individual 

concentrations as the average masks the intra-subject variability associated with the 

observations.  According to this model, gender or the gender:cigarettes/day interaction 

was not significant.  Figure 5-20 below shows the final model regression for log H as a 

function of # of cigarettes smoked per day.       

 Smoking status was able to explain more of the variability associated with log H 

concentrations (31.6%) than the FTND (25.8%) and #cigarettes/day (27.5%) covariates.   
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Figure 5-20:  Linear regression of #of cigarettes smoked per day vs. average log H.  
Dotted lines represent 95% confidence bounds (R2 = 0.3306, log H = 0.0303 #cig/day + 
1.1). 
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According to this model, 33.6% of the variability associated with average log H plasma 

concentration can be explained by the number of cigarettes smoked per day.  For every 

single cigarette smoked on average results in an increase in average log H concentration 

of 0.03. 

 With respect to the individual log NH, all model fits were statistically significant 

with use of the FTND and number of cigarettes/day (all p-values < 0.0001).   The model 

fit is shown in the following table.  In this case, the use of the # of cigarettes smoked 

per day was a slightly better predictor of individual log NH concentrations than 

smoking status possessing a R2 of > 0.50.  In other words, the # of cigarettes smoked 

per day was able to explain 50.2% of the variability associated with the log NH 

concentrations as opposed to the smoking status, which explained 49.7%.  A plot 

showing the regression between the individual log NH concentrations as a function of 

the number of cigarettes smoked per day is shown below the table.   
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Table 5-9:  Explanatory variable model comparison for Log NH.  

Log norharman     

Model Description R2 p-value 
Slope (for continuous 
dependent variable) 

and notes 
SS + GEN 

(pre-specified 
primary factors) 

Original 2-way 
ANOVA with SS 

and GEN as factors 
 

0.4976 < 0.0001 No interaction 

FTND + GEN 
 

Linear regression 
with continuous 

FTND as dependent 
variable 

 

0.4417 < 0.0001 0.2006, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression 
with continuous 

#cig/day as 
dependent variable 

 

0.5016 < 0.0001 0.0443, no interaction 

 
Avg log NH 

    

FTND + GEN Linear regression on 
avg log NH with 

continuous FTND as 
dependent variable 

 

0.5505 < 0.0001 0.0866, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression on 
avg log NH with 

continuous #cig/day 
as dependent 

variable 
 

0.5639 < 0.0001 0.0449, no interaction 
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Figure 5-21:  Linear regression of #of cigarettes smoked per day vs. individual log NH.  
Dotted lines represent 95% confidence bounds (R2 = 0.5016, log NH = 0.0443 #cig/day 
+ 1.2). 
 

In this model, gender or the gender:cigarettes/day interaction was not significant and 

was not implemented into the model.   Approximately 50.2% of the variability 

associated with individual log NH plasma concentration can be explained by the 

average number of cigarettes smoked per day.  Every 1 cigarette smoked on average 

results in an increase in average log NH concentration of 0.044.  

 Upon comparison of all models for log NH, smoking status was able to and 

FTND were able to explain 49.7% and 44.2% of the variability associated with 

individual log NH concentrations, while the # of cigarettes smoked per day design 

variable was able to explain a slightly higher percentage of 50.2%. 
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 Further evaluation of fitting the model to average log NH concentrations as a 

function of number of cigarettes smoked per day resulted in a superior fit (p-value < 

0.0001, R2 = 0.5639).   Approximately 56.4% of the variability associated with average 

log NH concentrations could be explained by the average number of cigarettes smoked 

per day.  This improvement of fit was expected as the factor of intra-subject variability 

is stabilized upon averaging, decreasing the variability associated with the linear 

regression fit. 

 According to the exploratory analyses, for both log H and log NH, the number 

of cigarettes smoked per day would be a better predictor of β-carboline exposure as 

opposed to smoking status.  Further studies implementing the number of cigarette 

smoked per day as a design factor would be needed for further evaluation the 

association with log H and log NH.    Smoking status, the FTND measurement and the 

average number of cigarettes smoked per day were better predictors for log NH 

measurement than log H.    This may be due to the fact that norharman concentrations in 

dry weight of tobacco are two-fold higher than that of harman (Pfau and Skog, 2004).  
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5.4.2d β-carbolines – Covariate Analysis 

 Information including alcohol intake and weekly exposure to dietary total H and 

NH was recorded to evaluate for their effects on circulating levels of H and NH.     As 

dietary intake of ethanol and/or β-carboline containing foods may affect the overall 

exposure, this covariate assessments may provide information into the variability 

associated with the plasma measurement log H and/or NH.    If alcohol intake and/or 

dietary exposure were found to significantly correlate with SAL or β-carboline 

exposure, AAI or Food Intake was considered a significant covariate and implemented 

into the statistical model. 

 Linear regressions were performed on log H and log NH as a function of mg of 

annual absolute ethanol (AAI) or average weekly dietary H or NH (Food Inventory) 

intake.   If the regression was significant (p-value < 0.05) with a coefficient of 

determination of > 0.2, the variable of interest was considered a significant covariate, in 

which it was implemented into the model.  Of note the covariate analysis was 

incorporated into the model fit for the original factors smoking status and gender.     

Evaluation of the significance of the covariate was additionally assessed upon 

implementation into the final ANCOVA model.  The p-value was evaluated for 

significance of the covariate.  If considered significant, the fit of the entire model was 

evaluated for goodness of fit, with use of the covariate.      

 A table summarizing the covariate regression analysis for AAI and dietary 

intake is shown below.   
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Table 5-10:  Covariate analysis results for log H and log NH 
 

variable Log harman Log norharman 

R2 0.0091 R2 0.1514 

p-value 0.3741 p-value 0.0003 
AAI 
(mg 

ethanol/annum) significance NS significance YES 

R2 0.0281 R2 0.0215 

p-value 0.1330 p-value 0.1302 
Weekly 

Dietary intake 
(ng/H or ng/NH) significance NS significance NS 

 
 
 The covariate analysis revealed that a poor association was observed between 

weekly dietary intake of H and NH to circulating concentrations, which was 

unexpected.  Several reasons, including the use of a non-validated measure of dietary H 

and NH intake, may explain this discrepancy.    As H and NH are present in various 

sources of foods in relatively large amounts, it was expected that influence of dietary 

consumption of H and NH would contribute to the circulating plasma concentrations.    

Formal assessment of pharmacokinetics has not been performed on the influence of 

circulating H and NH on acute exposure to a food source rich in β-carbolines.  The 

results of this covariate analysis suggest that the weekly average intake of H and NH do 

not influence circulating levels.     Implementation of the dietary H and NH intake was 

subsequently incorporated into the ANCOVA model and was found to be not significant 

for either analyte (H:  p-value = 0.19, NH: p-value = 0.18). 

 Annual absolute alcohol did not have a significant effect on circulating H 

concentrations.   The association between this alcohol intake measurement to log H was 
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inferior (R2 = 0.0091) to that of the food inventory (R2 = 0.0281).   Upon incorporation 

of AAI into the ANCOVA statistical model for log H, significance of mg of ethanol per 

annum was not considered a significant covariate (p-value = 0.21).   In the case of 

circulating NH, a statistically significant (p-value < 0.001) effect of AAI was apparent 

with the mg of ethanol consumed per annum explaining 15.1% of the variability 

associated with log NH concentrations.  Upon incorporation of AAI into the ANCOVA 

statistical model for log NH, significance of mg of ethanol per annum was not 

considered a significant covariate (p-value = 0.38).  

 Use of the AAI or Food Intake as a covariate was not significant and was not 

implemented into the full model.   Of note, AAI may be a confounding variable that 

shows a strong relationship with smoking status (see table 5-3).  ANOVA analysis 

found a significant relation between AAI and smoking status (p-value < 0.01), 

suggesting that the smoking status factor and AAI are considered to be collinear.  

Therefore the AAI should not be considered a covariate because of its correlation with 

smoking status. 

 

5.4.3   Primary Analysis for TIQ’s and DA – Effects of Smoking and Gender 

5.4.3a R/S-SAL and DA – Within Subject Variability 

 Before appropriate statistical comparison of R-SAL, S-SAL and DA for the 

smoking and gender factors, within subject variability of both TIQ’s and DA for each 

individual was evaluated.  This analysis was performed to evaluate the baseline 

concentration of R-SAL, S-SAL and DA over two observational time points.  The intra-
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subject variability (%COV and inter-quartile ranges) for R-SAL, S-SAL and the DA 

precursor may be seen in the tables 5-11, 5-12 and 5-13 below.   

 For R-SAL and S-SAL concentrations, it can be noted that the variability 

between sampling occasions ranged from a %COV 0.0 to 1745% for S-SAL and %COV 

0.0 to 4473% for R-SAL, suggesting that baseline concentrations of the TIQ analytes 

vary considerably between occasions.  The within-subject variability associated with the 

DA measurements was more consistent, as compared to the SAL analytes, with intra-

subject %COV ranging from 3.8 – 159%.   

 For non-smokers %COV ranged from 0.0 – 1272% for S-SAL, 12.2 – 1352% 

for R-SAL and 2.5 – 159% for DA.   Presumably, these persons have not been 

exogenously exposed to SAL enantiomers recently, inferring that other factors, other 

than smoking status or gender may contribute to the varying baseline between 

occasions.    Of note, DA concentrations showed less intra-subject variability between 

occasions than that of the TIQ’s.   Results are suggestive that DA concentrations are 

less variable compared to the SAL enantiomers between sampling occasions.  
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Table 5-11:  Within Subject Variability for Plasma S-SAL (pg/ml) 

Sample # GEN S-SAL avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 66 22 33 66 58 73
2 F 860 593 69 441 231 650
3 F 183 43 24 153 137 168
4 F 25 1 3 25 24 25
5 F 160 47 29 193 177 210
6 F 13 14 109 23 18 28
7 F 16 0 0 16 16 16
8 F 23 19 83 37 30 43
9 F 98 264 269 285 191 378
10 F 17 216 1273 170 94 247
11 M 359 240 67 190 105 274
12 M 75 36 48 50 37 62
13 M 56 8 14 51 48 53
14 M 54 8 16 48 45 51
15 M 57 13 24 48 43 52
16 M 42 17 40 30 24 36
17 M 91 43 47 61 45 76
18 M 67 182 272 196 132 261
19 M 50 14 28 60 55 65

Light Smokers
21 F 18 14 79 28 23 33
22 F 306 194 64 169 100 237
23 F 25 16 65 37 31 42
24 F 47 14 30 37 32 42
25 F 36 51 141 72 54 90
26 F 808 281 35 609 510 709
31 M 448 209 47 300 226 374
32 M 236 98 42 306 271 340
33 M 134 49 36 100 82 117
34 M 1188 684 58 705 463 946
35 M 230 991 431 931 581 1282

Heavy Smokers
41 F 66 16 24 77 72 83
42 F 1238 238 19 1070 986 1154
43 F 49 18 36 62 55 68
44 F 866 3690 426 3475 2171 4780
45 F 602 190 31 468 401 535
46 F 761 325 43 531 416 646
51 M 43 47 110 77 60 93
52 M 25 1 3 26 25 26
53 M 1210 752 62 679 413 944
54 M 2438 113 5 2518 2478 2558
55 M 90 1571 1746 1201 646 1757  
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Table 5-12:  Within Subject Variability for Plasma R-SAL (pg/ml) 

Sample # GEN R-SAL avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 68 42 62 68 53 83
2 F 1210 837 69 619 323 914
3 F 222 48 22 188 171 205
4 F 21 5 24 18 16 19
5 F 286 75 26 339 313 366
6 F 17 22 129 33 25 40
7 F 13 6 49 9 6 11
8 F 32 20 62 46 39 53
9 F 100 384 384 372 236 507
10 F 24 325 1352 254 139 368
11 M 507 344 68 264 142 385
12 M 86 47 54 53 37 70
13 M 45 18 39 33 26 39
14 M 60 10 16 53 50 57
15 M 64 8 12 70 67 72
16 M 46 23 49 30 22 38
17 M 93 31 33 71 60 82
18 M 105 105 100 179 142 216
19 M 35 8 24 29 26 32

Light Smokers
21 F 12 16 136 24 18 29
22 F 386 247 64 211 124 299
23 F 25 17 68 37 31 43
24 F 24 5 21 28 26 29
25 F 23 1029 4473 751 387 1114
26 F 1094 386 35 821 685 958
31 M 772 419 54 476 328 624
32 M 285 226 79 445 365 525
33 M 186 90 48 123 91 154
34 M 1304 716 55 798 544 1051
35 M 266 73 27 318 292 343

Heavy Smokers
41 F 87 10 11 94 91 98
42 F 2864 1213 42 2006 1577 2435
43 F 50 15 30 61 55 66
44 F 1102 4675 424 4408 2755 6061
45 F 671 176 26 547 484 609
46 F 771 471 61 438 272 605
51 M 42 0 0 42 42 42
52 M 25 7 28 30 28 33
53 M 1450 865 60 838 532 1144
54 M 4308 186 4 4177 4111 4242
55 M 87 2337 2686 1740 913 2566  
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Table 5-13:  Within Subject Variability for Plasma DA (ng/ml) 

Sample # GEN DA avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 10.3 6.4 62.1 10.3 8.0 12.5
2 F 9.4 3.6 37.8 6.9 5.6 8.2
3 F 13.7 1.2 8.6 12.8 12.4 13.3
4 F 5.7 0.5 8.3 6.1 5.9 6.2
5 F 6.6 5.4 82.5 10.4 8.5 12.3
6 F 2.3 0.6 25.9 1.9 1.7 2.1
7 F 4.6 0.8 17.3 5.1 4.8 5.4
8 F 3.2 0.7 21.9 2.7 2.4 2.9
9 F 3.7 1.2 31.2 2.9 2.5 3.3
10 F 5.1 0.4 8.5 4.8 4.6 4.9
11 M 9.1 2.3 25.5 7.5 6.6 8.3
12 M 13.7 1.1 8.1 14.5 14.1 14.9
13 M 6.3 0.8 12.9 6.9 6.6 7.2
14 M 8.7 2.1 24.7 7.2 6.4 7.9
15 M 8.4 0.2 2.5 8.5 8.4 8.6
16 M 6.0 1.0 17.4 5.2 4.9 5.6
17 M 3.6 3.5 98.0 6.1 4.8 7.3
18 M 5.1 8.1 158.6 10.8 8.0 13.7
19 M 4.0 5.0 124.9 7.5 5.8 9.3

Light Smokers
21 F 11.3 14.7 130.3 21.7 16.5 26.9
22 F 12.9 0.6 4.8 12.4 12.2 12.6
23 F 8.6 1.7 20.2 9.8 9.2 10.4
24 F 4.0 0.9 22.4 4.6 4.3 4.9
25 F 6.8 0.5 7.3 6.5 6.3 6.6
26 F 14.2 4.7 32.7 10.9 9.3 12.6
31 M 9.8 1.5 15.4 8.8 8.2 9.3
32 M 22.7 4.5 19.9 19.5 17.9 21.1
33 M 11.7 9.5 81.0 18.4 15.1 21.8
34 M 9.9 6.8 68.6 5.1 2.7 7.5
35 M 7.0 1.7 23.9 5.9 5.3 6.4

Heavy Smokers
41 F 10.2 5.2 51.3 13.9 12.1 15.8
42 F 22.4 10.8 48.4 30.1 26.2 33.9
43 F 17.8 0.7 3.8 18.2 18.0 18.5
44 F 30.7 2.1 6.7 32.2 31.4 32.9
45 F 27.8 9.8 35.3 20.9 17.4 24.4
46 F 9.8 4.2 42.5 12.7 11.3 14.2
51 M 17.6 2.1 12.0 16.1 15.3 16.8
52 M 9.1 1.4 15.1 8.1 7.6 8.6
53 M 7.4 0.6 8.3 6.9 6.7 7.1
54 M 14.3 6.8 47.7 9.5 7.1 11.9
55 M 9.3 3.7 39.6 11.9 10.6 13.2  
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For the LS population, %COV 30.1 – 430% for S-SAL, 20.6 – 4473% for R-SAL and 

4.8 – 130.3% for DA were observed, while the HS population possessed a  %COV 

range of 2.8 – 1745% for S-SAL, 0.0 – 2686% for R-SAL, and 3.8 – 48% for DA.  The 

large variability between occasions observed within the smoking status populations are 

speculated to be due to the different times of sampling with respect to cigarette 

smoking.     

 Of important note, SAL enantiomers and DA are not found in tobacco.  The 

exposure of SAL is hypothesized to occur from the endogenous biosynthesis of SAL 

from the acetaldehyde from cigarette smoke and endogenous circulating DA.  In-vivo 

condensation reaction rates have not been characterized, but may contribute to the wide 

intra-subject variability observed within the smoking groups. Although each subject 

was sampled within 30 minutes of smoking, the sampling times varied considerably 

within this time frame for each subject.  It is important to comment that DA 

concentrations within HS individuals were more stable than LS and NS. 

 Both genders possessed the similar amount of within subject variability with 

males possessing a %COV 2.8 – 1745% for S-SAL, 0.0 – 2686% for R-SAL and 2.5 – 

158% for DA were observed, while in the female counterparts, a  %COV 0.0 – 1272% 

for S-SAL, 11.4 – 4473% for R-SAL and 3.8 – 130% for DA were observed.   As large 

within-subject variability was observed with majority of the subjects, individual subject 

concentrations were used, as opposed to average subject concentrations for providing 

descriptive statistics of the overall measure of central tendency and variability.    This 
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was to ensure that the intra-subject variability was not masked during descriptive and 

inferential statistical analysis. 

 Tables 5-14, 5-15 and 5-16 show the descriptive statistics for the concentrations 

S-SAL, R-SAL and DA observed for each smoking status and gender.  Measures of 

central tendency, such as mean and median, along with the variability including %COV 

and range is presented for each factor.  Of note the distribution for the number of 

subjects are unbalanced with respect to smoking status and gender within each group.  

The distribution of gender and smoking status for subjects who completed the protocol 

is the same to that of the β-carbolines.   

 
 
Table 5-14: Descriptive statistics for S-SAL concentrations (pg/ml) divided into 
smoking status and gender. 
 

S-SAL

Mean 365
Stdev 935
%COV 256
Median 78
MIN 13
MAX 6084
Mean 399
Stdev 705
%COV 177
Median 83
MIN 18
MAX 2598
Mean 381
Stdev 831
%COV 218
Median 78
MIN 13
MAX 6084

Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

141 159 947
208 240 1665
148 152 176
50 43 468
13 18 49
860 808 6084

   
   

M
al

e

81 468 900
97 519 1128
119 111 125
52 233 129
18 65 25
359 1632 2598

   
 G

R
A

N
D

113 299 926
166 413 1414
147 138 153
50 143 318
13 18 25
860 1632 6084  
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Table 5-15: Descriptive statistics for R-SAL concentrations (pg/ml) divided into 
smoking status and gender. 
 
R-SAL

Mean 517
Stdev 1239
%COV 240
Median 93
MIN 4
MAX 7714
Mean 514
Stdev 1066
%COV 207
Median 87
MIN 14
MAX 4308
Mean 515
Stdev 1155
%COV 224
Median 87
MIN 4
MAX 7714

Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

194 312 1259
299 493 2184
154 158 174
54 36 547
4 12 50

1210 1478 7714

   
   

M
al

e

87 432 1365
118 371 1824
136 86 134
48 288 157
14 59 25
507 1304 4308

   
 G

R
A

N
D

143 366 1307
235 436 1982
164 119 152
49 226 324
4 12 25

1210 1478 7714  

 
Table 5-16: Descriptive statistics for DA concentrations (ng/ml) divided into smoking 
status and gender. 
 
DA

Mean 11.7
Stdev 9.1
%COV 77.6
Median 9.6
MIN 1.5
MAX 37.7
Mean 9.7
Stdev 5.3
%COV 54.7
Median 8.6
MIN 0.3
MAX 25.2
Mean 10.8
Stdev 7.6
%COV 70.4
Median 8.7
MIN 0.3
MAX 37.7

Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

6.4 11.0 21.3
4.2 7.4 9.2
65.8 67.3 43.1
5.4 9.8 18.2
1.5 4.0 9.8
14.8 32.1 37.7

   
   

M
al

e

8.2 11.5 10.5
3.8 7.8 4.4
46.0 67.6 41.7
7.9 9.9 9.2
3.6 0.3 4.7
16.6 25.2 17.6

   
 G

R
A

N
D

7.3 11.2 16.4
4.1 7.4 9.1
56.0 65.9 55.5
5.9 9.9 14.6
1.5 0.3 4.7
16.6 32.1 37.7  
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 The overall average (mean and %COV), across all patients for S-SAL, R-SAL 

and DA were 380.8 (218.3%), 515.4 pg/ml (224.1%) and 10.8 ng/ml (70.4%) 

suggesting that the plasma SAL and DA concentrations are quite variable between all 

patients. The significant differences between the median and mean R/S-SAL and DA 

concentrations suggest that the data follow non-normal distribution.    Upon comparison 

of the median concentrations, females were observed to have a median S-SAL 

concentration of 77.5 pg/ml, while the median R-SAL concentration was 92.5 pg/ml.  

Their male counterparts had similar median S-SAL concentration of 82.5 pg/ml and a 

median R-SAL concentration of 86.5 pg/ml.   Median DA concentrations were similar 

between genders with similar ranges. 

 With respect to smoking status, the NS median S-SAL concentration was 50.0 

pg/ml while the median R-SAL concentration was 48.5 pg/ml.  LS possessed a higher 

median S-SAL concentration of 143 pg/ml while the median R-SAL concentration was 

226.0 pg/ml.  The HS group resulted in a median S-SAL concentration of 317.5 pg/ml 

while the median R-SAL concentration was 324.0 pg/ml.  Median DA concentrations of 

female NS, LS and HS were 5.4, 9.8 and 18.2 ng/ml, respectively while males within 

NS, LS and HS groups had median DA concentrations of 7.9, 9.9, and 9.2 ng/ml. 
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5.4.3b  TIQ’s and DA – Primary factors of Smoking and Gender Analysis 
 
 The distribution of the data within each smoking group for R-SAL, S-SAL and 

DA followed a non-normal distribution upon assessment of quantile-quantile (Q-Q) 

plots.   Divergence among the median and mean concentrations within each group also 

exemplified the non-normality of the distribution, with the Shapiro-Wilk test resulting 

in p-values all less than 0.048 for R/S-SAL and DA analytes across all groups, 

suggesting that the data was non-normally distributed.  Moreover, unequal variance was 

present with the data upon visual inspection of the residuals.    For these reasons, log-

transformed data were used for the primary analysis.  

 Separate evaluation of the effects of smoking status and gender were performed 

on both log S-SAL and log R-SAL concentrations.  Correlation analysis between the 

analytes suggest that the association between the two analytes is very strong (r = 0.954).  

Nevertheless, separate statistical analysis for the two analytes was conducted.   

Moreover, associations between DA and the SAL enantiomers was relatively weak with 

log DA vs. log S-SAL possessing a correlation coefficient of 0.410 and log DA vs. log 

R-SAL was 0.374.   A matrix evaluating the correlation may be seen in figure 5-22 

below. 

 



 

 Two-way ANOVA was performed on the log transformed R-SAL, S-SAL and 

DA, evaluating the factors of smoking status and gender.  Box-plots exemplifying the 

median and distribution, including outliers for the effects of gender and smoking status 

are presented below for all analytes.  Observation of the box-plots suggest that there is 

no significant difference between gender group while a trend is observed between 

smoking groups, with HS > LS > NS across all analytes. 

302 

log.S.SAL

0

1

2

3

4

1.0 1.5 2.0 2.5 3.0 3.5

0 1 2 3 4

log.R.SAL

1.0

1.5

2.0

2.5

3.0

3.5

log.DA

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.0 -0.5 0.0 0.5 1.0 1.5

 

 
Figure 5-22:  Correlation between log R-SAL vs. log S-SAL (r = 0.954), log DA vs. S-
SAL (r = 0.410) and log DA vs. R-SAL (r =0.374).   
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 Two-way ANOVA was performed to evaluate the effects of gender and smoking 

on log S-SAL concentrations.   A significant effect of smoking status (SS) was observed 

with respect to log S-SAL concentrations with F (2, 75) = 15.5, p-value = 1.2 x 10-6.   

The effect of gender (GEN) was not significant with the test statistic resulting in F (1, 

75) = 0.57, p-value = 0.45.    No interaction between the SS and GEN factors was 

observed (F (2, 75) = 2.99, p-value = 0.054).  Therefore, linear contrasts were 

unnecessary. An effect of sampling visit was not observed (p-value = 0.89).   The 

coefficient of determination (R2) for the entire model was 0.192 (p-value = 0.008).  The 

factors of SS and GEN account for approximately 19.2% of the variability associated 

with the log S-SAL concentration.   

 The Scheffé method for multiple comparisons found that the primary differences 

were observed between the HS and NS groups as well as the LS and NS groups.   Via 

this comparison, a significant difference in S-SAL was not observed between the HS 

and LS smoking status groups.    The full two-way ANOVA output for Log S-SAL may 

be seen in the figure below along with the residual plot of the model fit.   Upon visual 

evaluation, the residuals show an even spread of the distribution of data suggesting the 

lack of unequal variance. 
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*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.S.SAL ~ SS + GEN + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032608, na.action =  
 na.exclude) 
 
 
Response: LOG S-SAL 
 
           Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS   2   7.89131 3.945656 15.52240 0.0000012 
      GEN   1   0.14529 0.145293  0.57159 0.4512744 
    visit   1   0.00779 0.007790 0.017859 0.8940485 
   SS:GEN   2   1.52140 0.760699  2.99263 0.0543319 
 Residuals 75  32.71512 0.436202      
 
 
Multiple R-Squared: 0.1921  
F-statistic: 3.402 on 5 and 76 degrees of freedom, the p-value is 0.007939  
 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
critical point: 2.8393  
response variable: log.S.SAL  
rank used for Scheffé method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.267     0.128     -0.0969       0.632      
HS-NS    0.623     0.116      0.2930       0.952 **** 
LS-NS    0.355     0.116      0.0252       0.685 **** 
 
 
 
Figure 5-26:  Two-way ANOVA output, with multiple comparisons, for the effects of 
SS and GEN on Log S-SAL plasma concentrations. 
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Fitted : SS + GEN + visit + SS:GEN
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  Figure 5-27:  Residual plot for two-way ANOVA fit for Log S-SAL. 
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 With respect to R-SAL, two-way ANOVA was performed to evaluate the effects 

of gender and smoking.   A significant effect of smoking status was observed with 

respect to log R-SAL concentrations with F (2, 75) = 13.9, p-value = 0.4 x 10-6.   The 

effect of gender (GEN) was not significant with the test statistic resulting in F (1, 75) = 

0.052, p-value = 0.819.    No interaction between the SS and GEN factors was observed 

(F (2, 75) = 2.05, p-value = 0.113).  The coefficient of determination (R2) for the entire 

model was 0.271 (p-value = 1.8 x 10-5).  The factors of SS and GEN account for 

approximately 27.1% of the variability associated with the R-SAL concentration 

measurements.   

 The Scheffé method for multiple comparisons found that the primary differences 

were observed between the HS and NS groups as well as the LS and NS groups.   Via 

this comparison, a significant difference in R-SAL was not observed between the HS 

and LS smoking status groups.     

 The full two-way ANOVA output for log R-SAL may be seen in the figure 

below along with the residual plot of the model fit.   Upon visual evaluation, the 

residuals show an even spread of the distribution of data suggesting the lack of unequal 

variance. 
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*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.R.SAL ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
 
 
Response: LOG R-SAL 
 
         Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS   2   9.62605 4.813024 13.97085 0.0000040 
      GEN   1   0.01798 0.017981  0.05219 0.8197207 
    visit   1   0.00047 0.000468 0.000777 0.9778414 
   SS:GEN   2   1.41383 0.706913  2.05197 0.1334615 
Residuals  75  37.20651 0.344505                    
 
 
 
Multiple R-Squared: 0.2571  
F-statistic: 9.156 on 3 and 75 degrees of freedom, the p-value is 0.00001845  

 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
critical point: 2.8401  
response variable: log.R.SAL  
rank used for Scheffé method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.233     0.147     -0.1840       0.650      
HS-NS    0.676     0.133      0.2990       1.050 **** 
LS-NS    0.443     0.133      0.0656       0.821 **** 
 
 

 
Figure 5-28:  Two-way ANOVA output, with multiple comparisons, for the effects of 
SS and GEN on Log R-SAL plasma concentrations. 
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  Figure 5-29:  Residual plot for two-way ANOVA fit for Log R-SAL. 
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 For DA, a significant effect of smoking status was observed with F (2, 75) = 

5.89, p-value = 0.004.    The effect of gender (GEN) was not significant with the test 

statistic resulting in F (1, 75) = 0.199, p-value = 0.656.   A significant interaction 

between the SS and GEN factors was observed (F (2, 75) = 7.21, p-value = 0.021).  

Further linear contrasts with respect to the interaction were performed as the 

interpretability of the main effects were confounded by the interaction.  Upon linear 

contrasts, it was observed that a significant effect for smoking status was observed 

between the NS females and HS females.  For the most part, a significant effect of 

smoking status was not seen in the male groups.  The coefficient of determination (R2) 

for the entire model was 0.265 (p-value = 2.2 x 10-4).  The factors of SS and GEN, 

including the interaction, account for approximately 26.5% of the variability associated 

with the log DA concentration measurements.  The Scheffé method for multiple 

comparisons across smoking status found that the primary differences were observed 

between the HS and NS groups.    

 The full two-way ANOVA output for log DA may be seen in the figure below 

along with the residual plot of the model fit.   Upon visual evaluation, the residuals 

show an even spread of the distribution of data suggesting the lack of unequal variance. 
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*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.DA ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  1.165686 0.5828430 5.897008 0.0041824 
      GEN  1  0.019696 0.0196963 0.199280 0.6565887 
    visit  1  0.000109 0.0001090 0.001103 0.9735986 
   SS:GEN  2  1.426734 0.7133668 7.217604 0.0213590 
Residuals 75  7.412780 0.0988371                    
 
                   
R-Squared:  0.2656  
F-statistic: 5.277 on 2 and 75 degrees of freedom, the p-value is 0.0002244 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
critical point: 2.86  
response variable: log.DA  
rank used for Scheffé method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS   0.1980    0.0952     -0.0742       0.470      
HS-NS   0.2650    0.0845      0.0238       0.507 **** 
LS-NS   0.0674    0.0845     -0.1740       0.309      

 
 
 
 
Figure 5-30:  Two-way ANOVA output, with multiple comparisons, for the effects of 
SS and GEN on Log DA plasma concentrations.  
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Fitted : SS + GEN + visit + SS:GEN
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 Figure 5-31:  Residual plot for two-way ANOVA fit for Log DA. 

 

 A significant effect of smoking status was observed for log S-SAL, log R-SAL 

and log DA plasma concentrations.   A statistically significant effect of gender was not 

observed in the exposure of log S- or R-SAL and an interaction between the factors was 

not observed for either analyte.   A gender:smoking status interaction was observed with 

the log DA concentrations.  

 According to the two-way ANOVA, the following ranking was observed with 

plasma S-SAL concentrations (geometric means) across smoking groups and gender.  

NS F < NS M < LS F < LS M < HS M < HS F.   The post-hoc multiple comparisons via 

Scheffé test showed that the major difference that was observed with the smoking 

groups were the HS – NS group and the LS – NS groups with no significant difference 

being observed between the two smoking groups of LS and HS.  
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Figure 5-32:  Log S-SAL as function of smoking status and gender (mean ± SD). 
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Figure 5-33:  Log S-SAL as function of smoking status (mean ± SD).  Statistically 
significant results observed between NS-LS and NS-HS groups. 
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Both HS and LS groups possessed larger means than NS.  On average, the HS group 

had a larger mean than that of the LS groups for log S-SAL, but the difference was not 

statistically significant. 

 ANOVA results assigned the following rank with respect to observed plasma R-

SAL concentrations across smoking groups and gender:  NS M < NS F < LS F < LS M 

< HS F < HS M.   The post-hoc multiple comparisons via Scheffé test showed that the 

major difference that was observed with the smoking groups were the HS – NS group 

and the LS – NS groups.  A statistically significant difference was not observed 

between the two smoking groups of LS and HS.     On average, across smoking groups, 

the HS group > LS group > NS group for log R-SAL.  See figures below.  
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          Figure 5-34:  Log R-SAL as function of smoking status and gender (mean ± SD). 
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 Figure 5-35:  Log R-SAL as function of smoking status (mean ± SD).   
 Statistically significant results observed between NS-LS and NS-HS groups. 
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 ANOVA results assigned the following rank with respect to observed plasma 

log DA concentrations across smoking groups and gender:   NS F < NS M < LS M < 

HS M < LS M < HS F.   The post-hoc multiple comparisons via Scheffé test showed 

that the major difference that was observed with the smoking groups were the HS – NS 

group.  A statistically significant difference was not observed between the NS and LS or 

the two smoking groups of LS and HS.     On average, across smoking groups, the HS 

group > LS group > NS group for log DA.  See figures below.       
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 Figure 5-36:  Log DA as function of smoking status and gender (mean ± SD). 
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 Figure 5-37:  Log DA as function of smoking status (mean ± SD).  Statistically 
 significant results observed between NS-HS. 
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 With respect to R and S-SAL, LS and HS smoking status groups were 

significantly different from NS..  Within the LS and HS groups, males possessed 

slightly higher R-SAL and S-SAL concentrations than females (not significant), but the 

incongruity was reversed in the case of the NS groups, with females resulting in larger 

SAL concentrations.    Interestingly, a trend was observed with log DA, in which the 

trend in observed means between the smoking status groups was NS < LS < HS.  DA 

concentrations were not statistically different from one another between genders.   

 For both SAL enantiomers an increase of log TIQ concentration was observed 

with the level of smoking status.    This is presumed to be due to an acute effect of 

inhalation of aldehydes from the cigarette smoke.   SAL enantiomers are not present in 

dry cigarette tobacco, but may form from pyrrolysis of tobacco and inhaled upon 

smoking.  Acetaldehyde is a known component of cigarette tobacco that may be inhaled 

upon cigarette smoke exposure, thereby non-enzymatically condensing with 

endogenous circulating DA to form the SAL enantiomers.   Of note, R and S-SAL 

enantiomers were present in similar concentrations within the plasma of nonsmokers 

and smokers.    Therefore, mechanistic differences between the SAL enantiomers 

cannot be interpreted from the design of this clinical study 

 Of interesting note, a trend was observed with plasma DA concentrations in 

which smokers on average, possessed higher concentrations than nonsmokers.    DA is 

not known to be present in tobacco or tobacco smoke.    The trend observed in DA 

concentrations may be a physiological difference between smokers and non-smokers, 

due to different peripheral and central MAO activity between nonsmokers and smokers.   
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It is known that smoking a cigarette increases DA within the nucleus accumbens in the 

CNS, but the peripheral concentrations after acute cigarette smoke exposure have been 

less thoroughly evaluated.    An investigation evaluated the combined impact of 

smoking and stress on catecholaminergic and cardiovascular reactivity in disease-free 

adult smokers (Robinson and Cinciripini, 2006).   The authors propose that ad-lib 

smoking increases catecholamine and cardiovascular response to stress in smokers.    

All of these reasons may explain the trend of plasma DA observed within this study.  

 

5.4.3c  TIQ’s and DA – Exploratory Analysis 

 A statistically significant effect of smoking status was observed on log R-SAL, 

log S-SAL and log DA plasma concentrations.   To further elucidate the variability 

associated with R/S-SAL and DA exposure, the criteria of FTND and number of 

cigarettes smoked per day were analyzed as continuous dependent variables to explain 

the individual subjects’ exposures.   As in the case of the β-carbolines, FTND and the 

number of cigarettes smoked per day were replaced by the SS category for the ANOVA 

analysis for SAL enantiomers and DA.    The individual concentrations for each subject 

were used to assess the association between FTND and number of cigarettes and the 

analyte concentrations in order to represent the intra-subject variability for the log R-

SAL, log S-SAL, and log DA in the analysis.     

 The tables below summarize the regression analysis for all three analytes using 

different explanatory variables for the dependent variable.  For reference, results of the 

primary analysis using smoking status and gender for the model fit are supplied.  As 
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FTND and the number of cigarettes smoked per day are measures of nicotine 

dependence that were not expected to change between sampling periods, intra-subject 

average log R-SAL, S-SAL and DA concentrations were also explored for an 

association.   

 All model fits were statistically significant on the individual log S-SAL 

concentrations incorporating the use of the FTND and number of cigarettes/day.     The 

use of FTND and number of cigarettes smoked per day in place of smoking status 

resulted in statistically significant fits but yielded an inferior coefficient of 

determinations from the initial model.    In essence, the smoking status + gender factors 

was able to explain more to the variability associated with log S-SAL concentrations 

(19.2%) than its FTND (15.2%) and #cigarettes/day (11.4%) design variables.   

 Upon evaluation of the average log S-SAL concentrations, an improvement was 

observed when the number of cigarettes smoked per day was implemented into the 

model in place of smoking status.  According to this model, gender or the 

gender:cigarettes/day interaction was not significant.   
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Table 5-17:  Explanatory variable model comparison for Log S-SAL.  

Log S-SAL     

Model Description R2 p-value 
Slope (for continuous 
dependent variable) 

and notes 
SS + GEN 

(primary pre-
specified factors) 

Original 2-way 
ANOVA with SS and 

GEN as factors 
 

0.1921 < 0.0001 No interaction 

FTND + GEN 
 

Linear regression 
with continuous 

FTND as dependent 
variable 

 

0.1521 0.004 0.123, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression 
with continuous 

#cig/day as 
dependent variable 

 

0.1143 0.0113 0.024, no interaction, yes 
effect of gender 

 
Avg log S-SAL 

    

FTND + GEN Linear regression on 
avg log S-SAL with 
continuous FTND as 
dependent variable 

 

0.1995 0.0257 0.1149, no sig interaction 
observed between FTND 

and GEN 
No effect of GEN 

#cig/day + GEN Linear regression on 
avg log S-SAL with 
continuous #cig/day 

as dependent variable 
 

0.2544 < 0.01 0.0211, no interaction 
No effect of gender. 
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 With respect to the individual log R-SAL, FTND model fits were not 

statistically significant (all p-values > 0.05).   The results of the model fits are shown in 

the following table.   In this case, the use of the # of cigarettes smoked per day was a 

more inferior predictor of individual log R-SAL concentrations than smoking status 

possessing a R2 of > 0.061.  In other words, the # of cigarettes smoked per day was only 

able to explain 6.1% of the variability associated with the log R-SAL concentrations as 

opposed to the smoking status, which explained 25.7%.  Replacement of the smoking 

status factor with FTND did show statistically significant results (p-value= 0.01, R2 = 

0.101), suggesting that FTND is a poorer predictor of log R-SAL than the other 

smoking design variables.    

 Upon assessment of the average log R-SAL concentrations, a statistically 

significant effect of number of cigarettes smoked per day was observed.   However, the 

variability that could be accounted for by this model was approximately 21%, which is 

inferior to the original smoking status model.      
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Table 5-18:  Explanatory variable model comparison for Log R-SAL.  

Log R-SAL     

Model Description R2 p-value 
Slope (for continuous 
dependent variable) 

and notes 
SS + GEN 

(primary pre-
specified factors) 

Original 2-way 
ANOVA with SS 

and GEN as factors 
 

0.2571 < 0.0001 No interaction 

FTND + GEN 
 

Linear regression 
with continuous 

FTND as dependent 
variable 

 

0.1016 0.013 0.122, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression 
with continuous 

#cig/day as 
dependent variable 

 

0.0661 0.045 0.0215, no interaction 

 
Avg log R-SAL 

    

FTND + GEN Linear regression on 
avg log R-SAL with 
continuous FTND as 
dependent variable 

 

NS NS NS, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression on 
avg log R-SAL with 
continuous #cig/day 

as dependent 
variable 

 

0.2191 < 0.026 0.0186, no interaction 
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 For individual log DA, all model fits were statistically significant with use of the 

FTND and number of cigarettes/day (all p-values < 0.002).   Information obtained from 

the model fits are shown in the following table.  In this case, the use of FTND was a 

slightly better predictor of individual log DA concentrations than smoking status 

possessing a R2 of > 0.288.  In other words, FTND was able to explain 28.8% of the 

variability associated with the log DA concentrations as opposed to the smoking status, 

which explained 26.1%.  Incorporating the number of cigarettes/day into the model 

resulted in an inferior fit compared to that of the smoking status group.     Results of the 

model fits with respect to log DA should be interpreted with caution as significant 

interactions between the gender and FTND factors exist.  

 Upon assessment of the average log DA concentrations, a statistically 

significant effect of number of cigarettes smoked per day and FTND was observed upon 

incorporation into the model.   Replacement of both FTND and number of cigarette per 

day design variables into the model resulted in fits that were able to explain 50.2% and 

41.9% of the variability associated with log DA concentrations.     Of note, in the case 

of FTND, a significant interaction was observed with GEN, hindering interpretability of 

the results. 
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Table 5-19:  Explanatory variable model comparison for Log DA.  

Log DA     

Model Description R2 p-value 
Slope (for continuous 
dependent variable) 

and notes 
SS + GEN 

(primary pre-
specified factors) 

Original 2-way 
ANOVA with SS 

and GEN as factors 
 

0.2606 < 0.0003 Interaction between GEN 
and SS 

FTND + GEN 
 

Linear regression 
with continuous 

FTND as dependent 
variable 

 

0.2888 < 0.0001 0.105, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression 
with continuous 

#cig/day as 
dependent variable 

 

0.2311 < 0.002 0.0205, effect of GEN 
and interaction present 

 
Avg log DA 

    

FTND + GEN Linear regression on 
avg log DA with 

continuous FTND as 
dependent variable 

 

0.5016 < 0.0001 0.1745, sig interaction 
observed between FTND 

and GEN 

#cig/day + GEN Linear regression on 
avg log DA with 

continuous #cig/day 
as dependent 

variable 
 

0.4197 < 0.0002 0.0205, no interaction, no 
effect of gender 
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 According to the exploratory analysis, for both individual log R-SAL and S-

SAL, smoking status resulted in a superior model fit than that of the FTND and number 

of cigarettes smoked per day design variables.    This is suggestive that variability 

associated with the log R- or S-SAL cannot be explained by the design factors 

themselves, but with the overall combination of both, which were used for stratification 

into the smoking status groups.   Although a significant effect of smoking status was 

observed on log DA, similar results were observed upon replacement of the smoking 

status factor with the FTND and number of cigarettes smoked per day design variables.  

A significant interaction of gender was observed with all smoking design factors, 

hindering the statistical inference of the final model results.  

 

5.4.3d TIQ’s and DA – Covariate Analysis 

 As the case for the β-carbolines, information including alcohol intake and 

weekly exposure to dietary total SAL was recorded to evaluate for their effects on 

circulating levels of R-SAL, S-SAL and DA.     As dietary intake of ethanol and/or SAL 

containing foods may affect the overall exposure, this covariate assessments may 

provide information into the variability associated with the plasma measurement log R-

SAL and/or S-SAL.    If alcohol intake and/or dietary exposure were found to 

significantly correlate with SAL exposure, AAI or Food Intake was considered a 

significant covariate and implemented into the statistical model. 

 Linear regressions were performed on log R-SAL, log S-SAL as a function of 

mg of annual absolute ethanol (AAI) or average weekly dietary total SAL (Food 
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Inventory) intake.   Similar criteria aforementioned for the β-carboline covariate 

analysis were used for the SAL and DA analysis.     Evaluation of the significance of 

the covariate was additionally assessed upon implementation into a final ANCOVA 

model.  The p-value was evaluated for significance of the covariate.  If considered 

significant, the fit of the entire model was evaluated for goodness of fit, with use of the 

covariate.   Dietary DA intake was not captured from the study, therefore was not 

computed as a covariate of log DA concentrations.     

 A table summarizing the covariate regression analysis for AAI and dietary 

intake is shown below.   

 
 
Table 5-20:  Covariate analysis results for log R-SAL, log S-SAL and log DA 

 AAI Weekly 
(mg ethanol/ Dietary intake variable annum) (ng SAL) 

NS:   not significant 
N/A: dietary intake of DA was not available   
  

R2 0.0743 R2 0.001 

p-value 0.076 p-value 0.996 Log R-SAL 
significance NS significance NS 

R2 0.0655 R2 0.004 

p-value 0.203 p-value 0.882 Log S-SAL 
significance NS significance NS 

R2 0.0211 R2 N/A 

p-value 0.1925 p-value N/A Log DA 
significance NS significance N/A 
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 The covariate analysis revealed that a poor association was observed between 

weekly dietary intake of total SAL to circulating concentrations.  As SAL enantiomers 

are present in various sources of foods in substantial amounts, it was expected that 

influence of dietary consumption of SAL would contribute to the circulating plasma 

concentrations.    Formal assessment of pharmacokinetics has not been performed on 

the influence of circulating SAL on acute exposure to a food source rich in these 

compounds.  The results of this covariate analysis suggest that the weekly average 

intake of total SAL do not influence circulating levels of R-SAL or S-SAL.     

Implementation of the dietary SAL intake was subsequently incorporated into the 

ANCOVA model and was found to be not significant for either analyte (R-SAL:  p-

value = 0.99, S-SAL: p-value = 0.87). 

 Annual absolute alcohol intake did not have a significant effect on circulating R-

SAL, S-SAL or DA concentrations.  Upon incorporation of AAI into the ANCOVA 

statistical model for log R-SAL, mg of ethanol per annum was not considered a 

significant covariate (p-value = 0.06).   In the case of circulating S-SAL, the AAI 

yielded an insignificant effect as a covariate (p-value = 0.164).  Upon incorporation of 

AAI into the ANCOVA statistical model for log DA, significance of mg of ethanol per 

annum was not considered a significant covariate (p-value = 0.77).   Use of the AAI or 

Food Intake as a covariate was not significant and was not implemented into the full 

statistical model.   ANOVA analysis found a significant relation between AAI and 

smoking status (p-value < 0.01), suggesting that the smoking status factor and AAI are 
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considered to be collinear variables.  Of note, AAI may be a confounding variable that 

shows a strong relationship with smoking status.   

 

5.5 TIQ and β-carbolines – Acute Cigarette Exposure vs. Smoking Abstinence 

 All information presented thus far summarizes TIQ and β-carboline exposure 

information obtained from non-smokers, in addition to light-smokers and heavy 

smokers within thirty-minutes of smoking one complete cigarette.  In essence, the 

presented information compares nonsmokers, who were not exposed to inhaled and 

environmental tobacco smoke to that of light-smokers and heavy smokers who just 

smoked a cigarette.     The significant relationship of smoking status and TIQ and/or β-

carboline exposure observed may be resultant of acute inhalation of tobacco smoke.  To 

further clarify this relationship, a comparison was made to subjects who had abstained 

from smoking for 15 hours prior to plasma sampling of the analytes of interest.   

 In brief, the study design incorporated 18 healthy volunteers (6 NS, 6 LS, and 6 

HS, in which there were 3 males and 3 females in each group).  This study was 

designed to evaluate the effects of intranasal nicotine on neuroendocrine, cognitive and 

behavioral function in healthy, young, nonsmokers and smokers (Leu, 2002).     

Subjects were randomized into one of two sequences based on smoking status such that 

they received intranasal nicotine or placebo.    Prior to treatment administrations during 

each of two visits, subjects provided plasma samples for the analysis of baseline TIQ’s 

and β-carboline exposure.   The volunteers were required to abstain from smoking for 
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15-hours prior to sampling, which was conducted pre-prandially during the inpatient 

visit.    

 Subjects were young and healthy, using the same inclusion/exclusion criteria, 

and more importantly, utilized the same smoking status classification as the study 

aforementioned.    Plasma samples for the evaluation of TIQ’s and β-carboline exposure 

were obtained on two-different visits.    Similar procedures were used for the sampling, 

processing and ultimate analysis of the plasma.  Demographic results of this study may 

be seen in the table 5-21 below.   This study is referred to as abstained smokers (ABST 

SM).  As a comparison was made to the primary investigation, a demographic summary 

of the study is also provided below.  This study is referred to as the recently smoked 

(REC SM) keeping in mind that the NS group did not smoke a cigarette prior to 

biological sampling.   Demographic variables such as age, FTND and number of 

cigarettes smoked per day are reported as mean ± SD. 
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Table 5-21:  Demographic Results of ABST SM study (mean ± SD) 

Smoking 

Status 

Demographic 

variable 
Males Females Overall 

N 3 3 6 

Age 28.0 (2.6) 25.7 (1.5) 26.8 (2.3) 

 

Table 5-22:  Demographic Results of REC SM study (mean ± SD) 

FTND 0 (0) 0 (0) 0 (0) NS 

# Cig/day 0 (0) 0 (0) 0 (0) 

N 3 3 6 

Age 24.3 (4.9) 23.3 (4.9) 23.8 (3.3) 

FTND 2.7 (1.5) 2.0 (1.0) 2.3 (1.0) LS 

# Cig/day 10.8 (3.8) 10.0 (6.1) 14.0 (3.6) 

N 3 3 6 

Age 26.7 (5.7) 24.0 (2.6) 25.3 (4.2) 

FTND 6.0 (2.6) 6.3 (2.5) 6.2 (2.3) HS 

# Cig/day 20.8 (1.4) 22.3 (4.5) 21.2 (4.8) 

Demographic 

variable 
Smoking Status Males Females Overall 

N 9 10 19 

Age 24.9 (2.5) 26.0 (3.1) 25.5 (2.8) 

FTND 0 (0) 0 (0) 0 (0) NS 

# Cig/day 0 (0) 0 (0) 0 (0) 

N 5 6 11 

Age 25.4 (4.1) 23.3 (3.8) 24.3 (3.9) 

FTND 2.4 (2.3) 1.5 (1.4) 1.9 (1.8) LS 

# Cig/day 9.0 (4.8) 8.3 (4.6) 8.6 (4.5) 

N 5 6 11 

Age 25.6 (3.1) 24.7 (4.0) 25.1 (3.5) 

FTND 6.8 (0.8) 5.5 (1.4) 6.1 (1.3) HS 

# Cig/day 17.4 (2.5) 25.8 (4.9) 22.0 (5.8) 
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 With the exception of the number of subjects within each smoking status and 

gender group, the demographics between studies are similar with respect to age, FTND 

and the number of cigarettes smoked per day.   

 As performed in the REC SM study, statistical analysis via two-way ANOVA 

was conducted on the individual concentrations of the β-carbolines, H and NH along 

with the TIQ’s and DA.   Log transformed values were compared evaluating the two 

primary factors of gender and smoking status.   

 Prior to formal analysis, within subject variability was assessed across the two 

sampling periods.  Of note, the variability between occasions for smokers was much 

less in the ABST SM study compared to that of the REC SM study.    For nonsmokers, 

the within-subject variability was similar between studies.  Below is a chart of the 

ranges of within subject variability obtained from both studies reported in ranges of 

COV% across all subjects per study for each analyte.   

 

Table 5-23:   Ranges of Within-Subject Variability of Smokers between both studies
  

Analyte ABST SM REC SM 

Harman 3 – 63 %COV 4 – 760% COV 

Norharman 8 – 54% COV 2 – 112% COV 

S-SAL 2 – 93% COV 3 – 1745% COV 

R-SAL 8 – 82% COV 0 – 2686% COV 

DA 0.5 – 28% COV 3.8 – 130% COV 
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 The large range of the within-subject variability associated with the REC SM 

study suggests that the recent smoking of a cigarette, along with the lack of an 

inconsistent sampling schedule after smoking between sampling occasions, contributes 

to the overall variability associated with the analyte.  The %COV observed in the ABST 

SM study is suggestive of a more stable baseline measurement and less inter-occasion 

variability.   

 Table 5-24 exemplifies the comparison of the two-way ANOVA fits, accounting 

for smoking status and gender between the study in which smokers abstained from 

smoking for 15 hours (ABST SM) and recently smoked smokers (REC SM).    Multiple 

comparison tests were performed on both studies for each log transformed analyte 

concentration and the significant group differences are reported.  Coefficients of 

determination are reported to evaluate the fit of the model between studies.  To further 

support the observations of the model fits, median and ranges are reported in table 5-25 

for both studies, accounting only for smoking status.    An unpaired t-test was 

performed between studies (abstaining vs. smoking) on the average log transformed 

concentrations within each smoking status group. Note, the assumption equal 

variance was violated upon comparison of the smoking status groups between studies.

 As in the case for the primary REC SM study, in which measurements were 

taken within 30 minutes of smoking, a smoking status effect was observed with respect 

to log S-SAL, log R-SAL, and log NH in the ABST SM study (table 5-24).    A 

significant effect of smoking status was not observed for log H and log DA.  A gender 
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effect or a gender – smoking status interaction was not observed with any of the 

analytes.      

 Contrary to the REC SM study, the only observed difference between smoking 

statuses resided between the NS-HS groups for R-SAL and S-SAL.  No observed 

difference was apparent between the HS-LS and, as in the opposite case of the REC SM 

study, the LS-NS groups.    For median R-SAL and S-SAL, a trend was observed in 

which HS > LS > NS.    In the ANOVA model fit smoking status was able to account 

for approximately 33.7% of the variability associated with log S-SAL concentrations 

and 36.0% of the variability of log R-SAL concentrations.   While in the REC SM 

study, only 18.3% and 25.5% of the variability was accounted for by smoking status for 

S-SAL and R-SAL respectively.  This suggests that there exists an inherent constitutive 

difference in R-SAL and S-SAL concentrations between NS and HS, regardless of 

recent smoking.  Upon consuming a cigarette, the difference in concentrations became 

more pronounced with LS-NS groups.  In essence, R-SAL and S-SAL concentrations 

are intrinsically different between smoking status groups and additional smoking makes 

this discrepancy more pronounced.   The incongruity in results between studies suggest 

that the exogenous contribution of these analytes from recent smoking provides 

additional exposure of R-SAL and S-SAL to the LS and HS groups, resulting in an 

overall observed difference between the smoking and nonsmoking groups.  

 With respect to log NH concentrations in the ABST SM study, the observed 

difference between smoking statuses resided both between the NS-HS and NS-LS 

groups.  No observed difference was apparent between the HS-LS as already seen in the 
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REC SM study.    For median NH a trend was observed in which HS > LS > NS.   With 

the ANOVA model fit, smoking status in abstinent smokers was able to account for 

approximately 44.0% of the variability associated with log NH concentrations while 

after smoking 49.7% of the variability associated with log NH concentrations could be 

explained.   This suggests that there exists an inherent constitutive difference in NH 

concentrations between NS-HS and NS-LS groups, regardless of recent smoking.  Upon 

consuming a cigarette, the difference in concentrations became more pronounced 

between both sets of groups, especially the NS-HS difference.  In essence, NH 

concentrations are fundamentally dissimilar between smoking status groups and 

additional smoking makes this discrepancy more pronounced.   As in the case of SAL 

enantiomers, the disparity in observations between studies suggest that the exogenous 

contribution of these analytes from recent smoking provides additional exposure of NH 

to the LS and HS groups, resulting in an overall observed difference between the 

smoking and nonsmoking groups.    This is expected, as NH is present in significant 

concentrations within tobacco.   

 It is of interest that H concentrations did not show a similar trend in the ABST 

SM study and the effect of smoking status was not observed.   This suggests that 

harman differences between smoking status groups is due to the recent exposure of H 

after smoking, as seen in the REC SM study.    For DA, it is apparent that a difference 

in median concentrations between smokers and nonsmokers is present.  Recent smoking 

results in a greater and statistically different difference between HS-NS and LS-NS 

groups.   



338 

Table 5-24:  Comparison of Two-way ANOVA model fits between ABST SM and 
REC SM study for all analytes.   
 

Analyte Model Factor 
ABST SM Study 

 
REC SM Study 

log S-SAL 

SS 
GEN 

SS:GEN 
R2

difference 

sig (p-value = 0.017) 
NS  
NS 

0.3371 
HS-NS 

sig (p-value < 0.0001) 
NS  
NS 

0.1829 
HS-NS, LS-NS 

log R-SAL 

SS 
GEN 

SS:GEN 
R2

difference 

sig (p-value = 0.008) 
NS  
NS 

0.3602 
HS-NS 

sig (p-value < 0.0001) 
NS  
NS 

0.2556 
HS-NS, LS-NS 

log Harman 

SS 
GEN 

SS:GEN 
R2

difference 

NS 
NS  
NS 

0.2254 
No difference 

sig (p-value < 0.0001) 
NS  
NS 

0.2844 
HS-NS, LS-NS 

log Norharman 

SS 
GEN 

SS:GEN 
R2

difference 

sig (p-value = 0.001) 
NS  
NS 

0.4440 
HS-NS, LS-NS 

sig (p-value < 0.0001) 
NS  
NS 

0.4969 
HS-NS, LS-NS 

log DA 

SS 
GEN 

SS:GEN 
R2

difference 

NS 
NS  
NS 

0.2421 
No difference 

sig (p-value < 0.0002) 
NS  

sig (p-value < 0.05) 
0.2606 

HS-NS, LS-NS 
 
SS:   Smoking status factor 
GEN:   Gender factor 
SS:GEN:   Smoking status : gender interaction 
Sig:  Significant 
Difference:  Observed difference via Scheffé multiple comparison  
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Table 5-25:  Comparison of median (range) between ABST SM and REC SM study for 
all analytes. 
 

Analyte 
Smoking 

status 

ABST SM Study 
median (range) 
NS, LS, HS = 6, 

6, 6 

REC SM Study 
median (range) 

NS, LS, HS = 19, 
11, 11 

significance 
unpaired t-

test* 
(p-value) 

NS 77 (51 – 437) 50 (13 – 860) NS  

LS 175 (40 – 250) 143 (18  – 1632) NS S-SAL 

HS 228 (81  – 693 ) 317 (25  – 6084) < 0.05 

NS 45  (5 – 609) 48 (4  – 1210) NS 

LS 277  (149 – 705) 226  (12  – 1478) NS R-SAL 

HS 547(76 – 1002 ) 324  (2  – 7714) < 0.05 

NS 19 (3  – 56) 12 (1 – 98) NS 

LS 31 (12  – 54) 71 (4 – 172) NS Harman 

HS 29  (5  – 110) 52 (4  – 422) NS 

NS 12 (2 – 65) 17  (2  – 850) NS 

LS 49 (20 – 104 ) 54  (12  – 396) < 0.05 Norharman 

HS 59 (5  – 133) 159 (25 – 410) < 0.05 

NS 2.3 (1.0 – 9.5) 5.9 (1.5 – 17) NS 

LS 5.5 (3.6 – 7.5) 9.9 (0.3 – 32) < 0.05 DA 

HS 5.1 (3.4 – 8.2) 14.6 (4.7 – 37.7) < 0.05 

* unpaired t-test performed on log-analyte concentration between two studies, 
assumption of unequal variance.   
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 The measurements observed in the ABST SM study were presumably due to 

constitutive concentrations with no influence of acute exogenous exposure of cigarette 

smoke.    Having abstained from smoking for 15 hours prior to sampling under fasting 

conditions, the significant effect of smoking status may also be due to accumulation of 

S-SAL, R-SAL and NH in which the analytes reside in the physiological system well 

after exposure to exogenous sources.  In addition, the analytes that were significant with 

respect to smoking status may be an inherent discrepancy between smokers and 

nonsmokers that may be related to the dependence of tobacco smoking itself.    Of 

importance, this study is not designed to test causality between these analytes to 

smoking dependence, but results obtained from the ABST SM study are suggestive of 

inherent differences in endogenous physiological concentrations of S-SAL, R-SAL and 

NH.   

 

5.6 Summary of Clinical Study #1 

 This investigation was designed to test the effects of smoking status and gender 

on plasma concentrations of TIQ’s and β-carbolines in a healthy population.   The study 

utilized a nicotine dependence scale and the number of cigarettes smoked per day in 

order to stratify the subjects into smoking status groups.    Besides the alleged nicotine 

dependence difference, all subjects were relatively homogeneous with respect to 

demographics.   

Overall the variability observed between subjects was pronounced across all 

groups for all analytes tested.     The effect of smoking status was significant within this 
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study with the primary difference being between nonsmokers and smokers.    Although 

a trend was observed, a statistically significant difference was not noticed between the 

two LS and HS smoking groups.    It is important to report that the smoking groups 

were sampled within thirty minutes of smoking an entire cigarette.  Therefore, the 

exposures of the TIQ’s and β-carbolines between smokers and nonsmokers may be 

resultant of the acute inhalation of β-carbolines from tobacco smoke or spontaneous 

condensation of the acetaldehyde and dopamine, as in the case of the SAL enantiomers.     

Moreover, the endogenous formation of the β-carbolines via condensation of 

acetaldehyde with 5-HT or tryptamine may also contribute to the overall exposure of H 

and NH from cigarette smoke.    As β-carbolines are present in significant 

concentrations in tobacco, the rationale of inhalation of these analytes causing the 

“baseline” difference between nonsmoking and smoking groups is a plausible 

mechanistic reason.  On the other hand, the SAL enantiomers and dopamine are not 

known to be constituents of tobacco smoke.   It is presumed that the acute exposure of 

acetaldehyde from the tobacco smoke is responsible for the divergence of SAL 

concentrations between nonsmokers and smokers.     

Dopamine differences between smoking status groups were also observed.  This 

effect may be due to a few reasons.    Acute smoking may induce a stress response 

thereby releasing dopamine from the medulla of the adrenal glands.  The phasic 

responses of dopamine neurons are observed when a reward is presented, such as in 

smoking.  A more indirect reason for the increase in peripheral dopamine 

concentrations observed pertained to the TIQ’s and β-carbolines.  As these analytes are 
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elevated upon acute cigarette exposure, their pharmacological actions upon inhibiting 

the enzymes responsible for degrading dopamine may cause the peripheral elevation of 

dopamine.   In order to characterize this relationship, further studies are necessary for 

evaluating the enzymes responsible for the metabolism of dopamine and the inhibitory 

relationship with TIQ and β-carboline concentrations. 

For all analytes, a large inter-occasion variability was observed between 

observational periods.  Thorough characterization of the analyte pharmacokinetics is 

imperative in order to evaluate this variability.  The within subject variability was 

relatively small for the nonsmokers as compared to smokers.  The sampling schedule, 

with respect to inhalation of tobacco smoke, required more rigid control to minimize 

variability associated with the separate sampling occasion.  This variability may 

contribute to the overall between group variability observed within the smoking 

subjects.   

An attempt was made to characterize true baseline differences between smoking 

status groups with evaluation of a population of smokers who abstained from smoking 

for 15 hours.    A significant baseline difference was observed for the SAL enantiomers 

and norharman within this study with the primary difference being between the heavy 

and nonsmokers.    This is presumed to be a function of a true constitutive difference 

between smokers and nonsmokers or an additive accumulation of SAL enantiomer and 

norharman concentrations within the body.  Of note, a formal conclusion with respect to 

this study cannot be deduced without full understanding of the pharmacokinetics.  

When compared to the study involving smoker’s recent exposure to tobacco smoke, the 
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difference between nonsmokers and smokers was more pronounced.   This suggests 

that, in addition to a supposed baseline difference, inhalation of tobacco smoke provides 

additional exposure to circulating TIQ and β-carbolines contributing to the incongruity 

of concentrations between smoking status groups.   A major critique of this analysis is 

that the two separate populations were compared to assess the baseline differences, one 

study abstaining from smoking and one study not.  Ideally, a study consisting of 

observations in the same population, sampling before and after smoking, with an 

adequate sampling schedule would be needed to further support the notion of “true” 

smoking status differences.     

In addition, the primary study was not balanced with respect to gender and 

smoking status.   This insufficiency confounds the results and variability associated 

between smoking status groups.  Of note, a gender difference was not observed but the 

true difference may have been masked due to the unbalanced design for this factor.      

Additional information was gathered from the volunteers that may have an 

effect on circulating TIQ and β-carboline concentrations.  A non-validated food 

inventory was designed to evaluate average weekly intake of TIQ and β-carboline 

amounts.   This assessment was used to review chronic dietary intake of the analytes 

and its speculated effects on circulating levels.    Nevertheless, a significant difference 

was not observed between smoking groups with respect to dietary intake while smoking 

status had an effect on circulating TIQ and β-carbolines.  A more robust manner to 

evaluate the effects is to have adequate dietary control throughout the observational 

period to sufficiently account for dietary intake. The exposure of circulating TIQ and β-
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carbolines with respect to acute dietary intake of TIQ and β-carbolines needs to be 

further evaluated in order to properly assess its influence.   

 A well-known variable associated with TIQ and β-carboline exposure is alcohol 

intake.  The AAI was used to evaluate the intake of absolute ethanol from alcoholic 

beverages over a year.    It is important to account that a strong relationship between 

AAI and smoking status was present.  In essence, the characteristics of smoking 

dependence, as deemed by the smoking status classification and the AAI showed a 

strong relation.   Persons who had a higher degree of smoking dependence also imbibed 

more alcohol per annum.    Using AAI as a sole predictor, alcohol consumption was 

only able to explain less than 10% of the variability associated with TIQ and β-

carboline exposure.    Further multiple regression techniques would be necessary to 

evaluate the relative contribution of AAI and smoking status on TIQ and β-carboline 

exposure in order to make an assessment.   Nevertheless, smoking status as a sole 

predictor was able to explain more of the variability associated with the analyte 

concentrations compared to that of AAI.   

 It was found that, in a healthy population, a noteworthy trend was observed 

between smoking status and TIQ and β-carboline exposure.   This trend is hypothesized 

to be a product of a combination of true endogenous differences between smoking 

status groups and exposure via the inhalation of the analytes themselves and/or 

inhalation of precursors required for endogenous synthesis, acetaldehyde.  The 

concentrations of TIQ and β-carboline exposure are assumed to be reflective of central 

dopaminergic activity.    The baseline level difference in the study involving smoking 
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abstinence suggests that smokers have higher concentrations.  Smokers may require 

maintenance of these higher concentrations in order to experience feelings of pleasure, 

simultaneously circumventing negative symptoms of nicotine withdrawal.   Behavioral 

studies do indicate that nicotine is an addictive drug that reinforces self-administration 

and the effects of nicotine on tests of reinforcement and behavioral sensitization are 

primarily mediated through the mesolimbic dopamine system.   TIQ and β-carboline 

exposure within this “reward pathway” may play a synergistic role, along with the 

pharmacological actions of nicotine, in the reinforcing aspects of tobacco smoking.  

 TIQ and β-carboline exposure has been purported to be influenced by acute 

ethanol intake and chronic alcoholism (See tables 1-1 and 1-2).    Significant variability 

within these studies have been reported, hampering the ability for these compounds to 

be an adequate marker for alcohol abuse.  As the association of smoking and alcohol 

abuse is strong, it is suspected that the variability in TIQ and β-carboline exposure 

observed may be explained by tobacco smoking.    As smoking status had a significant 

effect on TIQ and β-carboline exposure in a healthy population, it is expected that this 

effect would be observed in an alcoholic population.  The next chapter attempts to 

investigate the effects of smoking status in an alcoholic population undergoing inpatient 

detoxification. 

 



 

 

 

 

 

 

CHAPTER 6  

CLINICAL STUDY #2 – TEMPORAL EFFECTS OF GENDER AND SMOKING 
ON R/S-SALSOLINOL DURING ALCOHOL DETOXIFICATION  

 

 

6.1   Specific Aims 

 The key objective of this study was to evaluate the influence of time on R/S-

SAL and DA concentrations in the plasma of alcohol-dependent patients undergoing 

alcohol-detoxification.  This observational study was conducted as part of an ongoing 

NIH-IRB approved investigational protocol conducted at the National Institutes of 

Health – National Institute on Alcohol Abuse and Alcoholism (Herion, 2004), referred 

to here onward as the NIAAA-Natural History Protocol (NIAAA-NHP).  Moreover, a 

formal comparison of R/S-SAL plasma concentrations between alcohol-dependent 

patients and the healthy population from Clinical Study #1 was conducted. 

 Thirty-six alcohol-dependent patients (18 M, 18 F) were stratified into non-, 

light-, and heavy smoker (NS, LS, and HS) subgroups to determine the influence of 

smoking on R/S-SAL and DA concentrations.  In principle, observed differences of 

R/S-SAL levels could be interpreted as either a consequence of alcohol and/or tobacco 
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use (exogenous) or as a primitive condition of the brain that leads people to drink and 

smoke (endogenous).   Specific aims of this study included: 

1) Determine whether there are time-related changes in plasma TIQ’s (R- and S- SAL) 

and DA in a cohort of alcohol-dependent subjects during early abstinence. 

2) Assess if variations of R/S-SAL and DA exist between NS, LS and HS subgroups 

within the alcohol-dependent population; specifically, a comparison of the average 

concentrations and concentrations at predetermined time points during 

detoxification that may exist with R/S-SAL and DA levels between these subgroups. 

3) Evaluate the Clinical Institute Withdrawal Assessment-Alcohol Revised (CIWA-

AR) scores of the volunteers throughout the detoxification period and assess if 

differences are present between subgroups; appraise if an association exists with 

levels of R/S-SAL and DA with CIWA-AR scores. 

4) Characterize severity of alcohol dependence of the volunteers via the Timeline 

Follow Back assessment and determine in an association exists with the exposure of 

alcohol and R/S-SAL concentrations. 

5) Determine if a gender effect exists in R/S-SAL and DA concentrations and CIWA-

AR scores within this special population.  

6) Provide statistical measurement of inter- and intra-individual variability in the levels 

of R/S-SAL and DA concentrations along with CIWA-AR scores, which would 

permit formal sample size calculations in future studies. 
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7) Compare all pertinent endpoints and measurements between the abstaining, alcohol-

dependent cohort and results from the study involving a healthy, non alcohol-

dependent, healthy population of NS, LS, and HS (Clinical Study #1). 

 

 The design of the study allows characterization of plasma levels of R/S-SAL in 

order to evaluate these compounds as potential biomarkers alcohol dependence.  It was 

additionally designed to evaluate the effects of smoking and gender on the observed 

R/S-SAL concentrations to allow comparison with clinical study #1.  In essence, this 

study attempts to assess whether potential confounding factors, such as smoking status 

and gender, influence the temporal pattern of R/S-SAL concentrations in an alcoholic 

population.   

 A comparison between the alcohol dependent population and a healthy 

population will be made to assess influence of the effect of alcohol dependence on the 

R/S-SAL concentrations.    The stratification of smoking status groups within both 

populations will permit formal assessment of the relative contribution of smoking or 

chronic alcoholism on R/S-SAL plasma concentrations.   

 

6.2   Study Design  

 This clinical study was designed as an observational, longitudinal study in a 

cohort of alcohol-dependent patients that may or may not be dependent on cigarette 

smoking.   The alcohol-dependent cohort participated in an inpatient detoxification 

program for duration of 4-weeks in which observations, such as plasma R/S-SAL and 
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DA concentrations, were assessed.  The protocol involved the typical clinical course of 

events in people with alcohol dependence and abuse over a brief, intensive time period.  

During this time, the standard-of-care, as deemed by the clinical staff at NIH-NIAAA, 

was employed to all patients enrolled in the study.  Informed consent was obtained 

before the start of the study after explaining the purpose, risks and benefits of the study 

to the prospective study subjects.   

 To determine the effects of smoking and gender on R/S-SAL and DA plasma 

concentrations, the study integrated a classification scheme to stratify the volunteers 

into nonsmoking (NS), light-smoking (LS) and heavy-smoking (HS) groups and with 

respect to gender, respectively.    The stratification incorporated the same criteria 

incorporated in the healthy population from clinical study #1 (see table 5-1).  

 This investigation was not prospective in design, rather subjects were chosen 

from a database of 115 subjects that possessed already incurred samples and 

information with regards to health status, concurrent medications, demographics and 

smoking dependence information (FTND and number of cigarettes smoked per day).   

Thirty-six (36) alcohol-dependent male and female volunteers were chosen, including 

12 NS, 12 LS, and 12 HS.   The number of subjects in each group required to show a 

difference of 50% in SAL concentrations between smoking groups with an α risk of 

0.05 and a power of 1 – β = 0.8, was twelve (12), assuming a coefficient of variation 

(CV%) of 75%.  To evaluate the effects of smoking, the FTND was administered to 

determine their dependence on smoking in order to classify the potential subjects into 

the three groups of NS, LS, and HS.    To evaluate the effects of gender, an even 
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distribution was chosen within each group.  The factorial design of this study was to be 

similar to the clinical study #1 design for comparison. 

 

6.3   Experimental methods 

6.3.1 Subject Selection 

 From a database consisting of 115 alcohol dependent patients that were recruited 

into the NIAAA-NHP protocol between December 2006 – December 2007, patients 

were chosen based on a few primary criteria.    The NIAAA-NHP database consisted of 

information about each alcohol-dependent volunteer including:  admission date, subject 

demographics (e.g., age, weight, height, gender, ethnicity, etc.), medications that were 

given as part of protocol and for other concurrent disease states, other drugs of 

dependence, and most importantly, smoking habit assessment.  Each patient had been 

administered the FTND and a smoking history evaluation form during their stay in 

order to assess the severity of nicotine dependence.    Moreover, information with 

respect to the sampling schedule that was conducted on each subject during the first tree 

weeks of inpatient detoxification was supplied.   

 The primary criteria that were used to choose subjects for the analysis included 

the following, in order of priority. 

1)  As the time-course of R/S-SAL and DA was of primary interest, subjects that 

obtained at least five-sampling time points throughout detoxification were included.  

Specifically, subjects that were sampled on day 1 (admission), day 2, day 3, day 8 and 
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day 15 were included in the analysis.    The sampling schedule was restricted to only 

five-samples throughout the detoxification period.    Moreover, the schedule involved 

observations that were hypothesized to characterize the effects of recent alcohol-

detoxification on plasma R/S-SAL and DA concentrations.  

2)   Of the patients who possessed a complete time-course, subjects that met the criteria 

for inclusion into the smoking status groups were included in the analysis.    

Approximately 12 subjects for each smoking status group were required to evaluate the 

effects of smoking.  Within each smoking status group, patients were selected to ensure 

that gender was evenly distributed.  Therefore, the analysis required 6 HS males, 6 HS 

females, 6 LS males, 6 LS females, 6 NS males, and 6 LS females.   

3)   The subjects that were involved in the analysis were required to be relatively 

healthy and free of significant disease.   As the physiological effects of alcohol 

detoxification are severe to life-threatening, benzodiazepines and/or acamprosate 

(Campral®) was used in subjects that required them for withdrawal symptoms.    The 

use of these drugs did not preclude the subject from participation in the analysis.  

Further information, with respect to the protocol employed, is included in the section 

below. 

 

6.3.2 NIH-NIAAA Natural History Protocol  

 As part of the NIAAA-NHP, participants were recruited through local media and 

professional avenues in the Washington, DC Metro area.  They were evaluated by a 
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nurse and physician, among others, who determined the need for hospitalization, 

detoxification and to address other issues.  For those participants who needed medically 

supervised detoxification, a standard program of monitoring and treatment with 

benzodiazepines and other medications was instituted. 

 The alcohol-dependent cohort participated in an inpatient detoxification program 

for duration of 4-weeks.  Therefore, it consisted of a series of periods involving a pre-

visit gathering of subject information, physical and psychiatric evaluation at NIH-

NIAAA clinical research center, inpatient alcohol withdrawal and psychosocial 

management, and baseline observation.  The procedures involved scheduled verbal and 

observational procedures typically used in detoxification, and minimally invasive 

procedures (e.g., phlebotomy and urine collection), vital signs evaluation, 

electrocardiogram, chest-X-ray to provide a comprehensive medical and psychiatric 

evaluation.  

 Volunteers who passed the initial telephone screening were invited to the NIH-

NIAAA CRC for an outpatient visit including medical history (particularly personal or 

family history of psychiatric disorders and/or drug dependence), smoking history, 

physical and neurological exam, ECG, vital signs, blood chemistry, and complete blood 

count in order to ensure the health status of the subject prior to participation.  This 

excluded the participation of subjects with significant concurrent disease.  
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6.3.2a Inclusion / Exclusion Criteria 

 In order to be enrolled in the study, subjects had to meet the following criteria 

for inclusion: 1)  age of 21 years or older; 2) ability to give informed consent; 3) 

seeking help for alcohol drinking related problems; and 4) diagnosis of alcohol 

dependence by the Structures Clinical Interview for Diagnostics and Statistics Manual 

IV (DSM-IV, SCID-I) criteria.   

 Exclusion criteria for participation in the NIAAA-NHP included: 1) unstable or 

emergent medical or psychiatric conditions; 2) serious neuro-psychiatric conditions 

which impair judgment or cognitive function to an extent that precludes them from 

providing informed consent (incompetent individuals); 3) individuals with major 

depression, bipolar disorders, serious medical disorders, and those receiving 

psychotropic medications (with the exception of benzodiazepines used for withdrawal 

treatment); 4) people presenting with complicated medical problems such as, 

hypertensive emergency, serious GI bleeding, major organ or body system dysfunction 

such as decompensated liver disease, renal failure, myocardial ischemia, congestive 

heart failure or cerebrovascular disease, major endocrine problems such as uncontrolled 

diabetes, pancreatic or thyroid disease; and 5) people who are infected with the Human 

Immunodeficiency Virus (HIV). 

 Of note, current illicit drug misuse and a positive urine drug screen did not 

preclude any of the subjects for involvement in the protocol or the R/S-SAL analysis. 
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6.3.2b Procedures during detoxification period  

 The screening period included IRB-approved informed consent form discussion, 

comprehension and signing, a complete physical evaluation, blood and CHEM-20 

panel, urinalysis, vital signs assessment, ECG, and chest X-ray.  The DSM-IV/SCID-I 

was used to diagnose the volunteer as an alcohol-dependent patient.  Throughout the 

study, participants underwent various verbal and observational evaluations. Based on 

these assessments, multidisciplinary treatment planning was undertaken by the staff 

with the active participation of the patient.   

 Therapies that were employed to the volunteer were recorded as drug name, 

strength, dose and time drug was given.  Throughout the inpatient detoxification phase 

subjects were scheduled to be seen for clinic visits at admission, day 2, 3, 8 and day 15 

for brief medical and psychiatric check-ups, selected blood and urine tests, as well as 

selected written and computer assessments.   Following subject testing on discharge day 

(day 28), a complete physical exam was given.       

 

6.3.2b-1 Biological measurements 

 Biological sampling for clinical visits took place at 7AM, prior to consumption 

of foodstuffs/beverages and smoking, with the exception of the admission date.  

Sampling time on the day of admission was sporadic, dependent on when the subject 

entered the clinic for detoxification.   Breath alcohol (BrAC) was monitored at 

admission and throughout the inpatient detoxification period.     Patient volunteers with 

positive (BrAC level of ≥ 0.01 g/210L breath) and negative (< 0.01 g/210L breath) 



355 

results at admission were included in the analysis.  Of note, subjects were required to 

have a negative BrAC throughout subsequent tests.   

 Throughout the detoxification period, a total of five (5) biological samples (e.g., 

plasma) were taken for R/S-SAL and DA concentration assessment on admission, day 

2, 3, 8, and 15.  At all sampling points, a 6-ml plasma sample was collected from the 

non-dominant forearm in a reclined, seated position during the study.  The blood 

samples were centrifuged to obtain plasma.   Briefly, blood samples were centrifuged at 

2915 x g (3800 RPM) for 10 min, 4°C.  An equivalent volume of anti-oxidant/aldehyde 

trapping solution containing 0.6 mol/L, 15 mg ascorbic acid, 6 mg semicarbazide HCl 

in distilled water was added to approximately 3-ml of plasma.  Plasma samples were 

stored at -70°C until analysis for R-SAL, S-SAL and DA concentrations. 

  

6.3.2b-2 Smoking and Alcohol Consumption Assessments 

 For the assessment of smoking dependence and alcohol consumption measures, 

the FTND with Smoking History form, and the Alcohol Timeline-Follow Back (TLFB) 

was administered once during the detoxification period, upon sobriety.    The FTND and 

Smoking History Form were used to classify each subject into a smoking status 

subgroup.  Further discussion may be reviewed in Chapter 5.    The Alcohol TLFB is a 

drinking assessment method that obtains estimates of daily drinking.  Using a calendar, 

subjects provided retrospective estimates of daily drinking over a specified time period 

(Sobell and Sobell, 1992a).   This assessment has been shown to have good 

psychometric characteristics with a variety of drinker groups, and can produce variables 
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that provide a wide array of information about an individual’s drinking. Trained clinical 

staff was responsible for the administration of the TLFB in which the subject recorded 

the total number and type of drinks consumed for the past 90-days into a computer.    

 

6.3.2b-3 Clinical Endpoint Assessment: The CIWA-AR 

 A clinical endpoint characterizing the withdrawal severity during alcohol 

detoxification was administered to each subject.  The Clinical Institute Withdrawal 

Assessment-Alcohol Revised (CIWA-AR) is a validated 10-item assessment tool that 

categorizes the severity of alcohol withdrawal based on symptoms and physical signs 

(Sullivan et al., 1989a).  Scores of 8 points or fewer correspond to mild withdrawal, 9 to 

15 points correspond to moderate withdrawal, and scores of > 15 points correspond to 

severe withdrawal symptoms (maximum score = 67).  Initially, alcohol withdrawal 

assessment was done hourly or every 2-4 hours until the scores were consistently below 

a range of 5-7.  It was also performed on an “as indicated” basis, at the discretion of the 

healthcare team.  This assessment was used primarily to evaluate the withdrawal 

symptoms of the patient and to subsequently administer a benzodiazepine for alleviation 

of withdrawal symptoms.   The CIWA-AR may be reviewed in Appendix I. 

 

6.3.2b-4 Eligibility and Safety Procedures 

 Various safety procedures were conducted to evaluate the health status of the 

volunteer for qualification purposes and during sampling time points.  The Structured 

Clinical Interview for Diagnostics and Statistics Manual-IV (DSM-IV, SCID-I) is a 
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standard clinical procedure to establish criteria for psychiatric diagnoses (First, 2002).  

It is a structured interview consisting of 11 modules with between 35-292 items/module 

that takes about 120-180 minutes.  It was employed for the diagnosis of alcoholism.  

 Blood test panels (BTP) were used throughout the detoxification period to assess 

physiological functions and screen for organ damage, as well as assessment of the 

extent of alcohol and drug exposure, including toxicology and biomarkers. The blood 

tests included Complete blood count with differential, CHEM-20 Panel, thyroid screen, 

Lipid panel, Viral Markers Protocol Screen and Trace Mineral panel.  They were 

performed once in the alcohol-dependent population during screening.   Of importance, 

evaluation of liver function was performed by investigation of markers of liver function 

such as blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), 

albumin, γ-glutamyl transferase (GGT) and total bilirubin.  These measures were 

performed at admission and throughout the detoxification period. 

 Urine drug screens including the qualitative and Drug Profile #1 tests were 

administered to evaluate whether the subject was using other drugs of abuse such as 

benzodiazepines, barbiturates, cocaine, LSD, methamphetamines, opiates, 

phencyclidine, and tetrahydrocannabinol (THC).   It was performed at baseline and 

throughout inpatient detoxification for subject characterization and to appraise whether 

the subject required additional treatment for other drugs of abuse besides alcohol.   

Subjects who had tested positive for a drug of abuse, at any time other than admission, 

was not included in the primary analysis.   
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 Other procedures used to screen for medical diseases and abnormalities were 

incorporated at baseline and throughout the study to test for abnormalities that may 

prevent study participation.  

 

6.3.2b-5 Diet and Smoking  

 Dietary intake for each of the subjects undergoing alcohol detoxification was not 

based on a specific restrictive diet (e.g., low monoamine diet).  The TIQ/BC food and 

beverage inventory was administered to assess average weekly intake of dietary SAL 

(Appendix D).   Further discussion about the food inventory may be viewed in the 

preceding chapter.      

 Cigarette use of the subjects was carefully monitored to assess any influences of 

these factors on R/S-SAL levels, at baseline and throughout the study.  Subject 

participants who were in the LS and HS groups were permitted to smoke ad-libitum 

throughout the inpatient period.    Of importance, biological sampling was conducted 

pre-prandially and prior to smoking the initial cigarette of the day, with the exception of 

on admission day.    

 For all tests and procedures, a timeline and study flow chart for the NIAAA-

NHP is presented below in figure 6-1 and table 6-1, respectively. 
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6.3.3 Blood Sample Analysis 

 The samples containing TIQ’s were kept at -70°C until analysis.  TIQ samples 

were analyzed and assayed for S-SAL, R-SAL and DA by the investigator using 

resources and equipment with generous permission granted from the Laboratory of 

Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism-NIH, 

Rockville, MD.   The assay procedure incorporated the use of 1-ml of patient plasma 

sample in addition to the equivalent volume of 1-ml antioxidant solution (total volume 

of 2-ml).   Details have been described earlier (see Chapter 4). 

 

6.3.4 Statistical Analysis 

6.3.4a Descriptive statistics 

 Descriptive statistics, including mean, standard deviation, and coefficient of 

variation were calculated for each endpoint.    In addition, intra-individual variability 

(e.g., COV%) was calculated for all measured endpoints, i.e., R/S-SAL and DA 

concentrations along with and CIWA-AR, for each volunteer.   

 In the case that assumptions of normal distribution and equal variance was not 

met, raw data were log-transformed to comply with the parametric assumptions of equal 

variance across groups and normal distribution of the residuals.   Appropriate summary 

statistics, using the log-transformed data, such as, median, COV%, percentiles and 

ranges were computed.  
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6.3.4b Inferential statistics 

 The data obtained from this investigation were used to compare prespecified 

factors of smoking status and gender responses to detoxification on the pertinent 

endpoints, including exposure levels of R/S-SAL, DA and CIWA-AR scores.  To 

evaluate the effects of time on R/S-SAL and DA concentrations and the clinical 

endpoint, CIWA-AR, regression analysis was conducted across all subjects.   In the case 

that assumptions of normal distribution and equal variance was not met, raw data was 

log-transformed to comply with the parametric assumptions and the analysis was 

conducted on the log-transformed concentrations.    

 Inter-individual variability (i.e., COV% and range) was calculated for the above 

endpoints as well as all the rating scale scores and CIWA-AR for each of the three 

groups and across all groups via two-way ANOVA, incorporating comparison of 

smoking history and gender factors.  Specifically, R/S-SAL individual concentrations 

were evaluated using the model descried in section 5.3.4b.  The two-way ANOVA was 

performed on the grand total mean (GTM) concentrations, and concentrations obtained 

from admission (day 1) and day 15.   GTM concentrations consisted of the mean of the 

individual subjects concentrations obtained across time. 

 Moreover, R/S-SAL and DA concentrations were correlated with the measures 

dietary intake (TIQ/BC Food Inventory) and alcohol consumption (TLFB) using 

Pearson’s product-moment correlation and linear regression to evaluate if these are 

significant covariates that need to be implemented into the full model.  Associations 

were considered significant with a p-value of <0.05 and a coefficient of determination > 
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0.2.   Multiple covariate analysis was performed on SAL and DA exposure if we have 

more than one significant covariate.  Exploratory analyses using these procedures were 

performed on clinical variables, such as liver function, to evaluate their effects on the 

analyte concentrations on the GTM, day 1, or day 15.   The clinical endpoint, CIWA-

AR, was assessed for a relationship with SAL concentrations during the first three days 

of patient observation.  

 To evaluate differences between the healthy (Clinical study #1) and alcoholic 

populations, an unpaired t-test was employed for all log-transformed biological 

endpoints between smoking status groups in each cohort.   The baseline control from 

Clinical study #1 will be compared to the admission and discharge levels of the 

alcoholic population.   

 All endpoints were tested and compared across all groups in S-PLUS 8.0 

(Insightful Corporation, Seattle, WA).  The full statistical model was implemented 

incorporating covariates, if required.    The residuals were tested for normality using 

Quantile-Quantile (Q-Q) plots and further tested using the Shapiro-Wilk test, where α 

was set to 0.05 such that any p-values > 0.05 indicated that the data was normally 

distributed.  If the data were not normally distributed, the data were log-transformed 

and the full model was repeated.   The level of significance was set a-priori at 0.05.  

Any statistically significant differences found via ANCOVA were further investigated 

via Scheffé test to isolate factor differences.  All ANCOVAS performed are included in 

Appendix O. 
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6.4 Results 

6.4.1 Clinical Results 

6.4.1a Subject Demographics 

 Out of 115 subjects who were enrolled and completed the detoxification 

protocol, a total of thirty-six (36) subjects were chosen for the SAL investigation using 

the aforementioned criteria. Upon plasma concentration analysis, one subject 

disqualified for the study due to a positive HIV testing (subject #13).  Therefore, a total 

of thirty-five subjects were included in the analysis.   Into each smoking status group, 

12 NS, 11 LS and, 12 HS were included, with seventeen females and eighteen males 

comprising the gender distribution within the entire population.   The distribution of 

gender and smoking status for subjects who completed the protocol and met the 

selection criteria is as follows: 6 NS females, 6 NS males, 5 LS females, 6 LS males, 6 

HS females and 6 HS males.  Final subject demographics are included in Table 6-2.  

The subjects incorporated in the analysis were of a mean age of 41.1 years old, ranging 

from 28-58 years.   No statistically significant differences in weight and age were found 

between smoking groups.  Twenty-four Caucasians, seven African-Americans, two 

Hispanics and two subjects of unknown origin completed the study. 
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Table 6-2:  Clinical Study #2 Demographics 

Nonsmokers

Subject # Race Gender Age (yrs) W eight (kg) FTND # Cig/day
1 White F 56 74.1 0 0
2 White F 53 80.2 0 0
3 White F 32 54.1 0 0
4 White F 32 63.7 0 0
5 White F 46 47.2 0 0
6 Black F 40 69.8 0 0
7 Hispanic M 36 78.7 0 0
8 Hispanic M 31 98.9 0 0
9 White M 41 98.8 0 0

10 Black M 38 72.5 0 0
11 Unknown M 46 71.8 0 0
12 White M 48 103 0 0

Total Mean 41.6 76.1 0.0 0.0
Total SD 8.3 17.4 0.0 0.0
Mean Female 43.2 64.9 0.0 0.0
SD 10.3 12.4 0.0 0.0
Mean Male 40.0 87.3 0.0 0.0
SD 6.4 14.5 0.0 0.0

  

Light-smokers

Subject # Race Gender Age (yrs) Weight (kg) FTND # Cig/day
14 White F 34 63.4 5 10
15 White F 45 75.2 1 10
16 White F 31 70.0 4 10
17 Black F 28 99.2 2 5
18 Black F 50 76.6 6 12.5
19 Unknown M 41 89.5 4 10
20 White M 58 87.9 6 10
21 White M 45 91.2 4 6
22 White M 29 116.1 3 10
23 Black M 43 100.2 6 12
24 Black M 30 75.2 5 13

Total Mean 39.5 85.9 4.2 9.9
Total SD 9.8 15.5 1.7 2.5
Mean Female 37.6 76.9 3.6 9.5
SD 9.4 13.5 2.1 2.7
Mean Male 41.0 93.4 4.7 10.2
SD 10.7 13.7 1.2 2.4  

 



 Information regarding therapies utilized during detoxification and other drugs of 

abuse present in drug screen at admission was obtained is supplied in table 6-3.   

 Additional clinical variables were obtained from each of the subjects during 

admission such as information regarding liver function (AST, ALT, albumin, GGT, and 

total bilirubin).  Information about clinical variables is supplied in table 6-3 below and 

divided according to smoking status (NS, LS, and HS) and gender (male or female). 

Clinically significant anomalies were not present amongst the subjects chosen for the 

analysis.  Liver function tests such as AST, ALT, and GGT were all less than three-

times normal values of healthy liver function.   The majority of subjects possessed 

albumin, and total bilirubin within normal ranges. 
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Heavy-smokers

Sub ject # Race Gender Age (yrs) W eigh t (kg) FT ND # C ig/day
25 W hite F 33 48.8 8 20
26 W hite F 57 44.1 8 20
27 W hite F 40 63.1 10 20
28 W hite F 40 69.6 10 50
29 W hite F 35 70.0 8 20
30 Black F 40 52.1 9 31
31 W hite M 33 87.2 8 35
32 W hite M 52 85.3 7 40
33 W hite M 56 105.0 10 40
34 W hite M 53 92.0 8 30
35 W hite M 28 89.4 5 28
36 W hite M 39 78.0 6 20

T otal Mean 42.2 73.7 8.1 29.5
1 1.6 10.1
0 8.8 26.8
1 1.0 12.2
5 7.3 32.1

1.8 7.8

Table 6-2:  Clinical Study #2 Demographics (continued) 

 

T otal SD 9.9 19.
Mean Female 40.8 58.
SD 8.5 11.
Mean Male 43.5 89.
SD 11.7 9.0  
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 It is important to note that 13 of 35 subjects (37%) that were evaluated showed a 

positive urine drug screen at admission for various drugs of abuse (ADM drug screen).  

Moreover, acamprosate (ACAMP) was administered to 9 of the 35 subjects (26%) 

accrued, with all of the subjects being smokers.   All patients were administered various 

therapies throughout the course of detoxification, including benzodiazepines.  

Consideration of these clinical and therapeutic observations is necessary, as their effects 

on R/S-SAL concentrations have not been established.   

  

6.4.1b Smoking, alcohol and dietary exposure variables  
 
 With respect to smoking status and frequency of cigarette smoking, figures 6-2 

and 6-3 report FTND scores and mean cigarette consumption per day, respectively.  

Both NS males and females scored a mean of 0 (± 0 SD) on the FTND and self-reported 

mean number of cigarettes smoked per day.  LS females scored a mean FTND of 3.6 (± 

2.1 SD) while LS males scored a slightly higher value of 4.2 (± 1.7 SD).    HS females 

scored 8.8 (± 1.0 SD) compared to HS males who scored on average 7.3 (± 1.8 SD).  Of 

note, the FTND difference between the genders was not significantly different (two-

tailed unpaired t-test, p-values > 0.073 for LS and HS status).    For the number of 

cigarettes smoked per day, LS females and LS males had similar results with averages 

of both groups being 9.5 (± 2.7 SD) and 10.2 (± 2.4 SD) cigarettes smoked per day, 

respectively.   HS subjects smoked on average a three-fold more number of cigarettes 

per day than the LS counterparts.    In this group, male smokers smoked more cigarettes 
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Figure 6-2:  Mean (± SD) Fagerström Test for Nicotine Dependence (FTND) Score vs. 
Smoking Status (F: female, M: male) 
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Figure 6-3:  Mean (±SD) Cigarettes smoked per day vs. Smoking Status (F: female, M: 
male) 
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per day on average than that of females with an average number of cigarettes smoked 

per day of 32.1 (± 7.8 SD) for males and 26.8 (± 12.2 SD) for females.  Although a 

significant difference was observed with the number of cigarettes smoked per day 

between smoking statuses, a gender difference within each smoking status was not 

detected. 

 In addition to the demographic and R/S-SAL and DA plasma measurements, 

additional information including alcohol intake and weekly exposure to dietary total 

SAL, was recorded via the TLFB and TIQ/BC Food Inventory.  As intake of ethanol 

has been reported to influence the exposure of SAL enantiomers, a measurement of the 

past ninety (90) days of alcohol intake was reported by a validated measure of alcohol 

consumption, the TLFB.  The TLFB assessment was administered to each subject on a 

single occasion during the detoxification period.  The total amount of alcohol 

consumed, in terms number of drinks in the past 90 days, was calculated upon self-

report on the number of alcoholic beverages consumed.   Evaluation of the daily 

frequencies all different types of alcoholic beverages including, wine, beer, wine 

coolers, and spirits were reported by the subject and tallied to calculate the total number 

of drinks within the time period, prior to detoxification.  Of primary note, this is a self-

report measure of overall estimate of total ethanol consumption for the past three 

months. The raw data for the TLFB can be viewed in table 6-4 while the descriptive 

results can be viewed in the table 6-5 reported as total number of ethanol containing 

beverages consumed in the past ninety days prior to inpatient abstinence. 
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 Breath alcohol (BrAC) was measured for each subject upon admission to the 

clinical center.  Subjects who possessed no measureable BrAC were classified as 

negative (neg) while persons who yielded a positive BrAC, as defined by > 0.01 g/210L 

breath, were classified as positive (pos).   If positive, the level of BrAC was reported for 

each subject.  The information with respect to BrAC may be seen in the table 6-4 below  

 Ethanol exposure estimated by the TLFB resulted in substantial differences 

between genders within smoking groups and between smoking groups.   Results here 

are reported as mean, median and range.   NS males and females showed a similar 

median number of drinks of 657 drinks/90 days and 621 drinks/90 days, respectively.    

Conversely, LS and HS possessed significantly higher TLFB scores.  The median 

number of alcoholic drinks estimated in LS males and females was 1381 drinks/90 days 

and 666 drinks/90 days while in HS males and females resulted in 1504 drinks/90 days 

(range: 610 – 2445) and 629 drinks/90 days (range: 75 – 1890), respectively.   In both 

smoking groups, males drank more alcoholic beverages in the past ninety days 

compared to females.  Nonsmokers had a median of 617 drinks/90 days (range: 105 – 

1819) while the estimated LS and HS alcoholic beverage intake was 1112 drinks/90 

days (range: 167 – 2191) and 1134 (range: 75 – 2445).     

 A systematic trend was observed between smoking groups and gender for the 

total amount of alcoholic beverages consumed per last 90 days.  On average, females 

had a lower estimated intake compared to males as a whole and across smoking groups.   

Smoking status showed a significant trend with a resultant increase in estimated 

alcoholic beverage consumption with increasing level of smoking status.  Formal  
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Table 6-4:  Individual reports for TLFB and % BrAC on admission   

 

Subject # SS GEN TLFB (90 days) BrAC BrAC level (%)
1 NS F 655.4 neg 0.00
2 NS F 579 neg 0.00
3 NS F 105 neg 0.00
4 NS F 361 neg 0.00
5 NS F 731 pos 0.29
6 NS F 1295 pos 0.08
7 NS M 385.3 neg 0.00
8 NS M 337.7 neg 0.00
9 NS M 327 neg 0.00
10 NS M 1819 neg 0.00
11 NS M 930 neg 0.00
12 NS M 1268 neg 0.00
14 LS F 666.6 neg 0.00
15 LS F 167 neg 0.00
16 LS F 242 neg 0.00
17 LS F 837 pos 0.11
18 LS F 2191 pos 0.31
19 LS M 1272 neg 0.00
20 LS M 1122 neg 0.00
21 LS M 683 neg 0.00
22 LS M 1818.5 pos 0.30
23 LS M 2011 pos 0.10
24 LS M 1491 pos 0.10
25 HS F 75 neg 0.00
26 HS F 366 neg 0.00
27 HS F 354 neg 0.00
28 HS F 1560 pos 0.48
29 HS F 891 pos 0.15
30 HS F 1890 pos 0.07
31 HS M 1104.8 neg 0.00
32 HS M 1164 neg 0.00
33 HS M 1705 neg 0.00
34 HS M 610 pos 0.05
35 HS M 1999 pos 0.18
36 HS M 2445 pos 0.06  

  pos :  positive BrAC 
  neg :  negative BrAC 
  % :  g/210L of breath 
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evaluation of TLFB as a significant covariate will be explored further as the history 

alcohol intake prior to detoxification may affect the exposure of plasma SAL.  

 With respect to admission BrAC, 13 out of 35 subjects (37%) showed a positive 

measureable breath alcohol.  While two of these subjects were part of the NS smoking 

status group, 5 subjects were part of LS and 6 subjects out of HS groups.  If a 

significant effect of positive BrAC was present with respect to admission R/S-SAL 

concentrations, further analysis was employed for correlation between the numeric 

value obtained vs.  SAL concentration.    Formal evaluation of BrAC as a significant 

covariate was also explored.   

 

Table 6-5:  Descriptive results for the TLFB measurement by SS and GEN 

 

GRAND
Mean 1249
Median 1216
Range 327 - 2445
Mean 762
Median 655
Range 75 - 2191
Mean 1013
Median 891
Range 75 - 2445
%COV 66.2

Non-smoker Light-smoker Heavy-smoker

TL
FB

   
   

   
   

  
(#

 d
rin

ks
 in

 p
as

t 9
0 

da
ys

)

Male
844 1399 1434
657 1381 1504

327 - 1819 683 - 2011 610 - 2445

Female
617 820 856
621 666 629

105 - 1295 167 - 2191 75 - 1890

Overall
732 1136 1180
617 1122 1134

105 - 1819 167 - 2191 75 - 2445
69.5 60.4 63.4  

 

 In regard to dietary exposure of SAL, the food survey incorporated 

measurements of type of food, average frequency and average portion size of each 

known food source to have significant quantities of total SAL.   Similar calculations 

used in the Clinical study #1 were used to assess the average nanograms of weekly total 
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SAL consumed from dietary intake (see section 5.4.1b).    The amount of dietary intake 

of these SAL containing food and beverages were not reported for the foods consumed 

during the detoxification period.    The descriptive results of the TIQ/BC Food 

Inventory can be viewed table 6-6 below in average nanograms of average weekly total 

SAL consumed. 

 

Table 6-6:  Descriptive results for the dietary total SAL by SS and GEN 

 

GRAND
Mean 3286
Median 2844
Range 1004 - 4520
Mean 2471
Median 3088
Range 1032 - 5136
Mean 2857
Median 2952
Range 1004 - 5209
%COV 71.8

Non-smoker Light-smoker Heavy-smoker

D
ie

ta
ry

 to
ta

l S
A

L 
(n

g/
w

ee
k)

Male
3112 2977
2871 3099

1134 - 4520 1996 - 4005

Female
3098

3769
2563

1004 - 4296
1872 2444

4562 2031 2671
2091 - 5029 1032 - 5136 1562 - 4010

Overall
3291 2544 2736
3455 2781 2620

75.2 85.4 56.7
1134 - 5209 1032 - 5136 1004 - 4296

 

 

 With the exception of the NS status group, a gender difference was not observed 

within smoking status groups.    Overall, the NS group possessed a higher median 

intake of dietary SAL (3455 ng/week) than that of the LS (2781 ng/week) and HS (2620 

ng/week) groups.  The variability (%COV) within each smoking status group was > 

56%.   As dietary intake of SAL containing foods may affect the overall exposure, the 

food inventory measurement may provide clues into the variability associated with the 

plasma measurement of enantiomeric SAL.    If dietary exposure was found to 

significantly correlate with SAL exposure, average nanograms of total dietary SAL per 
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week was considered as a significant covariate and implemented into the statistical 

model. 

 

6.4.2 Primary Analysis for R/S-SAL and DA – Effects of Smoking and Gender 

6.4.2a R/S-SAL and DA – Within Subject Variability 

 Preceding the statistical assessment of the effects of time, and the factors of 

smoking status and gender on R/S-SAL and DA concentrations, within subject 

variability was evaluated.   This analysis was conducted to assess the fluctuation of 

concentrations over fifteen days of early alcohol abstinence. The intra-subject 

variability (median, inter-quartile ranges, %COV) for S-SAL, R-SAL and DA can be 

seen in the tables 6-7, 6-8 and 6-9 below.   
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Table 6-7:  Within Subject Variability for Plasma S-SAL (pg/ml), n =5 timepoints.  

Subject # GEN S-SAL avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 236 146 62 263 113 321
2 F 290 451 156 145 31 164
3 F 181 196 108 93 74 199
4 F 77 40 53 61 52 105
5 F 117 78 67 95 79 181
6 F 207 178 86 153 134 211
7 M 30 11 37 30 20 38
8 M 136 237 174 36 26 38
9 M 146 90 61 189 61 21

10 M 86 120 139 8 5 141
11 M 20 28 143 9 7 11
12 M 75 34 46 72 48 105

Light Smokers
14 F 108 122 113 92 17 104
15 F 35 18 52 26 22 50
16 F 217 196 90 144 114 154
17 F 40 49 120 33 6 40
18 F 31 43 136 14 5 26
19 M 68 29 43 55 51 72
20 M 71 102 144 24 18 46
21 M 22 16 72 24 8 31
22 M 136 145 107 85 26 179
23 M 31 13 41 28 26 30
24 M 90 82 91 79 26 106

Heavy Smokers
25 F 38 21 55 31 30 41
26 F 73 53 73 40 39 124
27 F 189 222 117 102 82 147
28 F 313 443 142 113 71 217
29 F 40 18 44 38 34 43
30 F 50 27 54 41 39 43
31 M 135 191 141 65 29 91
32 M 111 87 79 61 48 169
33 M 58 7 12 61 51 61
34 M 287 368 128 175 14 337
35 M 128 203 158 32 18 90
36 M 92 74 80 59 37 125

6
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Table 6-8:  Within Subject Variability for Plasma R-SAL (pg/ml), n =5 timepoints. 

Subject # GEN R-SAL avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 322 266 83 303 155 322
2 F 594 1007 169 243 45 274
3 F 185 257 139 70 40 216
4 F 112 81 72 76 74 198
5 F 181 137 76 133 103 322
6 F 285 258 90 242 174 297
7 M 27 16 58 30 15 31
8 M 200 382 191 30 26 47
9 M 218 141 65 293 96 311

10 M 123 169 137 12 5 217
11 M 27 51 189 4 3 10
12 M 129 67 52 125 71 170

Light Smokers
14 F 423 589 139 146 21 524
15 F 42 25 60 29 22 66
16 F 313 309 99 166 158 238
17 F 69 76 111 65 17 67
18 F 57 74 129 27 10 57
19 M 95 48 51 77 69 103
20 M 105 150 142 25 22 92
21 M 28 25 87 27 10 35
22 M 241 268 111 150 50 313
23 M 16 15 89 11 9 18
24 M 113 119 105 88 23 119

Heavy Smokers
25 F 77 49 64 64 48 96
26 F 69 55 80 51 30 99
27 F 226 281 125 120 96 157
28 F 567 919 162 168 85 300
29 F 42 27 64 33 24 46
30 F 49 33 68 36 35 42
31 M 187 284 152 95 36 107
32 M 143 128 89 77 50 268
33 M 67 27 41 60 45 78
34 M 452 641 142 240 11 456
35 M 178 318 179 32 9 98
36 M 98 102 105 45 30 150  
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Table 6-9:  Within Subject Variability for Plasma DA (ng/ml), n =5 timepoints. 

Subject # GEN DA avg stdev %COV median 25% IQR 75% IQR
Nonsmokers

1 F 8.3 1.5 19 8.3 8.2 9.3
2 F 10.3 6.4 61 8.1 6.1 12.7
3 F 6.9 2.0 29 6.5 5.5 7.9
4 F 6.7 0.9 14 6.7 5.7 7.4
5 F 3.7 1.7 46 3.0 2.9 3.7
6 F 9.8 2.8 28 10.6 8.4 11.5
7 M 3.0 0.5 18 2.8 2.6 3.5
8 M 2.8 1.5 53 3.1 2.8 3.3
9 M 5.5 0.9 17 5.3 5.2 6.2

10 M 3.2 1.3 42 2.8 2.6 3.5
11 M 3.4 0.9 27 3.5 2.5 4.0
12 M 7.0 1.2 18 6.3 6.3 7.8

Light Smokers
14 F 4.8 2.2 46 4.2 3.6 4.4
15 F 5.5 1.3 24 6.2 4.2 6.4
16 F 4.9 1.0 21 4.6 4.3 5.1
17 F 2.4 1.2 52 2.1 1.4 3.3
18 F 3.2 0.9 29 2.8 2.6 3.8
19 M 3.2 0.5 15 3.2 2.8 3.6
20 M 4.2 1.2 29 3.7 3.6 4.4
21 M 5.4 1.1 21 5.2 5.1 5.4
22 M 5.6 3.4 60 4.5 3.7 5.7
23 M 3.8 1.3 35 3.4 2.9 4.2
24 M 8.2 2.2 26 8.4 6.4 9.1

Heavy Smokers
25 F 5.2 0.8 16 5.0 5.0 5.8
26 F 5.4 2.0 38 4.2 4.1 5.8
27 F 5.4 2.7 49 4.4 3.3 6.5
28 F 20.1 24.6 122 7.9 7.5 14.6
29 F 5.2 1.8 35 5.4 4.4 5.8
30 F 7.3 1.0 14 7.4 6.7 8.1
31 M 4.3 2.3 52 3.7 3.4 4.1
32 M 7.8 4.6 59 5.7 5.1 8.4
33 M 5.2 2.0 37 5.3 3.7 6.5
34 M 15.9 12.6 79 16.6 4.9 27.8
35 M 11.9 13.7 115 5.9 4.9 8.0
36 M 5.7 3.2 56 4.5 4.3 5.7  
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 For S-SAL and R-SAL concentrations, it is apparent that the within-subject 

variability was large ranging from a %COV 12 to 174% for S-SAL and %COV 41 to 

191% for R-SAL, suggesting that concentrations of these analytes fluctuate throughout 

detoxification.   For non-smokers, %COV ranged from 37 – 174% for S-SAL and 52 – 

191% for R-SAL.  For the LS population, a range of %COV’s of  41 – 144% for S-SAL 

and 51 – 142% for R-SAL were observed, while the HS population possessed %COV 

12 – 158% and %COV 41 – 179% for S-SAL and R-SAL, respectively.     As the 

subjects who were smokers were allowed to smoke ad-libitum throughout the 

detoxification period, it was expected that the intra-individual variability within the LS 

and HS groups would be larger than that of NS.   However, this observation was not 

apparent from the analysis, as the intra-subject variability was not affected by smoking 

status or gender.  In other words, the variability associated with the measurements was 

large, regardless of smoking status or gender. 

 In the case of DA concentrations within-subject variability was relatively 

smaller compared to that of the SAL enantiomers.   DA concentrations ranged from 

%COV 14 to 122%, suggesting that concentrations of DA are more stable throughout 

detoxification.   For non-smokers %COV ranged from 14 – 53%, while for the LS and 

HS populations, a range of %COV’s of 15 – 60% and 14 – 122% were observed, 

respectively.    An interesting note is that the HS populations possessed larger intra-

subject variability than that of the LS and NS smoking status groups.  An effect of 

gender was not observed with DA concentrations. 
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   As biological sampling of the analytes were pre-prandial and before the initial 

cigarette of the day, it is hypothesized that the intra-subject variability is not due to 

consumption of SAL containing foods or from acute inhalation of SAL precursors.   

Rather, the large fluctuation in R/S-SAL concentrations may be a consequence of the 

physiological effects of alcohol detoxification upon early abstinence.  Moreover, several 

factors such as pharmacological therapies and alcohol exposure and/or other drugs of 

abuse used prior to admission may contribute to the variability.  These variables will be 

formally addressed in the subsequent analyses within this chapter.    An interesting 

observation was that the SAL precursor, DA, fluctuated less over sampling periods for 

each subject, relative to R/S-SAL.  This is suggestive that, regardless of the DA 

precursor, the R/S-SAL concentrations between sampling occasions vary and may be a 

consequence of different endogenous sources/precursors or from exogenous 

contribution to overall exposure. Moreover, the biosynthetic pathway of SAL may be 

affected via pathophysiological effects during alcohol detoxification. 

 

6.4.2b Effect of time on R/S-SAL and DA concentrations 

 Prior to evaluation of time and the major study design factors of smoking status 

and gender, correlation analysis was performed between S-SAL, R-SAL and DA.   Of 

note, in order to meet the assumptions of normal distribution and equal variance across 

smoking groups, all data were log-transformed.   Separate evaluation of the effects of 

time, smoking-status and gender were performed on both SAL enantiomers and DA.  

Although the correlation analysis between the analytes suggest that the association 
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between the two SAL enantiomers is very strong (r = 0.933), separate statistical 

analyses for the two enantiomers was conducted.   In addition, associations between DA 

and SAL enantiomers were relatively weak with DA vs. S-SAL possessing a correlation 

coefficient of 0.390 and DA vs. R-SAL was 0.352.  Correlation results from this study 

were similar to those seen in Clinical study #1.  A matrix evaluating the correlation can 

be seen in Figure 6-4 below. 

 

log.S.SAL

log.R.SAL

log.DA

  

Figure 6-4:  Correlation between log S-SAL vs. log R-SAL (r = 0.933), log DA vs. log 
S-SAL (r = 0.390) and log DA vs. log R-SAL (r = 0.352). 
 

  

 As it was expected that time would be a major influence on the concentration of 

the SAL enantiomers, statistical evaluation was conducted on the analytes over the 

detoxification period.    In figures 6-5, 6-6, and 6-7, spaghetti plots of concentration vs. 
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time for S-SAL, R-SAL, and DA, respectively, are presented for all subjects.  Plots are 

depicted on a logarithmic scale with average concentrations, for each time point, 

denoted by the solid line.  Individual plots of concentration vs. time may be viewed in 

Appendix M. 

 Upon visual inspection of the plots on logarithmic scale, the concentrations of S-

SAL and R-SAL within and between subjects were quite variable.  Baseline admission 

concentrations varied approximately 1000-fold between patients for both SAL 

enantiomers.   A well defined, systematic trend in concentrations is not observed within 

subjects with concentrations fluctuating throughout the detoxification period.  

Moreover, the trend of concentration vs. time profiles for both enantiomers reveals that 

subjects mat either increase or decrease in concentration over the sampling period.   At 

each time point, at least a 100-fold variability in R/S-SAL concentration is observed 

between subjects. 

 In the case of the DA precursor, concentrations within- and between-subjects 

was less variable.   Moreover, the concentration time profiles are relatively stable 

throughout the detoxification period.    The majority of the inter-individual variability is 

observed during the baseline and approximately a 10-fold difference is seen between 

subjects at all time points.   
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 Regression analysis was performed on all subjects to evaluate the effects of time 

on log S-SAL, log R-SAL and log DA concentrations over the detoxification period.  

Furthermore, the factors of SS and GEN were incorporated in the full model to assess 

whether the design variables have an influence on the time course of the log analyte 

concentrations.  If the effects were considered insignificant, exploratory analyses 

involving individual time points, including admission day, day 15 and GTM, were 

assessed for design factor effects.  Statistical data are presented as F test for the 

regression (df for factors, df for residuals = F-statistic, p-value).  

 A statistically significant effect of time was observed with respect to log S-SAL 

concentrations with F (1, 170) = 21.7, p-value = 6.3 x 10-6.   The coefficient of 

determination (R2) for the entire model was 0.113.  Thus, the factor of time accounts for 

approximately 11.3% of the variability associated with the log S-SAL concentration 

measurements.    On average, a slight increase in log S-SAL concentrations was 

observed throughout the detoxification period across all subjects.   For every day spent 

abstinent from alcohol in the clinical center, an average increase of 0.033 log S-SAL 

concentration was observed from admission day to day 15.     

 The full linear model output for log S-SAL can be seen in figure 6-8 below 

along with the residual plot of the model fit.   Upon visual evaluation, the residuals 

show an even spread of the distribution of data suggesting the lack of unequal variance.   
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*** Linear Model *** 
 
Call: lm(formula = log.S.SAL ~ Day, data = 
NIAAA.d.14.SAL.DA.time.assess.041108, 
 na.action = na.exclude) 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.5513  0.0563    27.5628  0.0000  
        Day  0.0334  0.0072     4.6606  0.0000  
 
Multiple R-Squared: 0.1133  
 

Fitted : Day

R
es

id
ua

ls

1.6 1.7 1.8 1.9 2.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

131

51
74

   

Figure 6-8:  Regression output for log S-SAL concentrations for all subjects as a factor 
of time along with the residual plot of the model fit. 
 

 With regard to R-SAL concentrations, a statistically significant effect of time 

was observed with the model fit resulting in F (1, 170) = 19.2, p-value = 2.1 x 10-5.   

The R2 for the entire model was 0.101.  Thus, the factor of time accounts for 

approximately 10.1% of the variability associated with the log R-SAL concentration 

measurements.    On average, a slight increase in log R-SAL concentrations was 

observed throughout the detoxification period across all subjects.   For every day spent 

abstinent from alcohol in the clinical center, an average increase of 0.04 log R-SAL 
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concentration was observed from admission day to day 15.  The full linear model output 

for Log R-SAL can be seen in figure 6-9 below along with the residual plot of the 

model fit.   As in the case of log S-SAL, the residuals for log R-SAL show an even 

spread of the distribution of data suggesting the lack of unequal variance.   

 
 
*** Linear Model *** 
 
Call: lm(formula = log.R.SAL ~ Day, data = 
NIAAA.d.14.SAL.DA.time.assess.041108, 
 na.action = na.exclude) 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.5674  0.0717    21.8645  0.0000  
        Day  0.0400  0.0091     4.3792  0.0000  
 
Multiple R-Squared: 0.1014  
 

Fitted : Day

R
es

id
ua

ls

1.6 1.7 1.8 1.9 2.0 2.1

-2
-1

0
1

53
74

51

   

Figure 6-9: Regression output for log R-SAL concentrations for all subjects as a factor 
of time along with the residual plot of the model fit.  
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 Converse to log S- and R-SAL concentrations, a significant effect of time was 

not observed with log DA concentrations across all subjects throughout the 

detoxification period (F (1, 170) = 1.6, p-value = 0.208).   The R2 for the entire model 

was 0.009.   For every day spent abstinent from alcohol in the clinical center, an 

average of 0.68 log DA concentration was observed from admission day to day 15.  The 

full linear model output for log DA can be seen in figure 6-10 below along with the 

residual plot of the model fit.    

 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.DA ~ Day, data = NIAAA.d.14.SAL.DA.time.assess.041108,  
 na.action = na.exclude) 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.6834  0.0309    22.0835  0.0000  
        Day  0.0050  0.0039     1.2625  0.2085  
 
Multiple R-Squared: 0.009289  
 

Fitted : Day

lo
g.

D
A

0.70 0.72 0.74 0.76

-0
.5

0.
0

0.
5

1.
0

1.
5

  
 

Figure 6-10:  Regression output for log DA concentrations for all subjects as a factor of 
time along with the residual plot of the model fit. 
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 In essence, a significant effect of time was observed for the R- and S-SAL 

enantiomers while DA concentrations were stable throughout the detoxification period.   

On average across all subjects, a slight increase in concentrations was observed from 

day 1 to day 15, although time was only able to explain 11.3% and 10.1% of the 

variability associated with log S-SAL and log R-SAL concentrations, respectively.   Of 

note, regression analysis on the individual concentration–time profiles for the log R-

SAL and S-SAL analytes yielded significant effects of time with p-values for all 

subjects < 0.046.   The direction of the trend-in-time effect varied between subjects with 

increase and decreases being seen in concentrations over the detoxification period.   

Further assessment of the variability associated with time was further scrutinized upon 

evaluation of concentrations between different smoking status and gender groups.   

 

6.4.2c Effect of Smoking Status and Gender on R/S-SAL and DA concentrations 

 The average concentration vs. time plots for S-SAL, R-SAL and DA for 

smoking status and gender are shown in Figures 6-11 through 6-16 below.  The plots 

are depicted as average concentrations within each factor group (smoking status or 

gender) with corresponding standard deviation for each time point.  Individual 

concentration-time profiles may be viewed in Appendix M. 

 With respect to S-SAL and R-SAL concentrations, a systematic trend (i.e., 

increase or decrease) in concentrations was not observed within and between each 

smoking status group.  Regardless of smoking status, concentrations of S-SAL fluctuate 

with all subjects over the detoxification period.        
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Figure 6-11:  Plot of S-SAL over time on logarithmic scale for subjects within each 
smoking status group (pg/ml).  Each time point represents an average concentration 
within each group with corresponding + SD. 
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Figure 6-12:  Plot of S-SAL over time on logarithmic scale for subjects within each 
gender group (pg/ml).  Each time point represents an average concentration within each 
group with corresponding + SD. 
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Figure 6-13:  Plot of R-SAL over time on logarithmic scale for subjects within each 
smoking status group (pg/ml).  Each time point represents an average concentration 
within each group with corresponding + SD. 
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Figure 6-14:  Plot of R-SAL over time on logarithmic scale for subjects within each 
gender group (pg/ml).  Each time point represents an average concentration within each 
group with corresponding + SD. 
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 Incorporation of the factors of SS and GEN into the full statistical model found 

insignificant effects of both factors on the time course of log S-SAL.   Although a 

significant effect of time was observed, neither SS nor GEN had an influence on the 

time-course of log S-SAL.  Moreover an interaction was not observed between time and 

SS or GEN.  The full statistical model output for the regression analysis may be shown 

in figure 6-15 below.   The factors of time, SS and GEN were able to account for 13.1% 

of the variability associated with log S-SAL concentrations over the detoxification 

period. 

   

 

Call: 
   lm(formula = log.S.SAL ~ Day + SS + GEN + Day:SS + Day:GEN, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
 
  Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.5718   0.1571    10.0037   0.0000 
        Day   0.0241   0.0202    21.1908   0.0000 
         SS  -0.0478   0.0680    -0.7039   0.4825 
        GEN   0.1535   0.1129     1.3604   0.1756 
     Day:SS   0.0060   0.0087     0.6909   0.4906 
    Day:GEN  -0.0050   0.0144    -0.3477   0.7285 
 
Residual standard error: 0.4915 on 166 degrees of freedom 
Multiple R-Squared: 0.1312  
F-statistic: 5.015 on 5 and 166 degrees of freedom, the p-value is 0.0002637  
 
        

Figure 6-15:  Regression output for the factors of SS, GEN and time on log S-SAL 
concentrations throughout detoxification. 
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 The rank order of average concentrations between each smoking status group 

are not consistent throughout time.   For instance, at day 2 of detoxification the rank of 

HS > NS > LS was observed for the average S-SAL concentrations while the rank 

changes the next day (day 3) to HS > LS > NS.    Upon observation of the average 

profiles of both SAL enantiomers for each smoking status group, the variability 

associated with each time point appears to make the effect of smoking status 

indistinguishable.  

 Interestingly, a difference of gender was observed upon visual inspection of the 

profiles (figure 6-12).  For S-SAL, females had on average a higher concentration 

throughout the detoxification period.  The difference was more pronounced on 

admission day and day 2 of detoxification where a 20-fold difference was observed for 

the average S-SAL concentrations.   Including and subsequent to day 3, average S-SAL 

concentrations were similar between genders.   Both genders showed a parallel 

concentration time profile during the detoxification period, with the exception of the 

first two days.   

 Conversely, the concentration disparity for average R-SAL concentrations was 

observed in an opposite manner with respect to gender (figure 6-14).    Throughout 

detoxification, males showed, on average, higher R-SAL concentrations compared to 

their female counterparts.    At each time point, males had at least a five-fold higher 

average R-SAL concentration than females.  The concentration-time profiles between 

genders showed analogous trends for average R-SAL concentrations.  
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 Incorporation of the factors of SS and GEN into the full statistical model found 

insignificant effects of SS and GEN on the time course of log R-SAL.   A significant 

effect of time was observed with the test statistic for the factor of time yielding F (1, 

166) = 19.4, p-value = 1.8 x 10-5.  An interaction was not observed between time and SS 

or GEN.  The full statistical model output for the regression analysis may be shown in 

figure 6-16 below.   The factors of time, SS and GEN were able to account for 13.4% of 

the variability associated with log R-SAL concentrations over the detoxification period. 

   

Call: 
   lm(formula = log.R.SAL ~ Day + SS + GEN + SS:Day + GEN:Day, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
 
   
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.5275  0.1986     7.6934  0.0000  
        Day  0.0293  0.0255    19.1470  0.0000  
         SS -0.0411  0.0859    -0.4786  0.6328  
        GEN  0.2501  0.1426     1.7536  0.0813  
     Day:SS  0.0065  0.0110     0.5905  0.5557  
    Day:GEN -0.0038  0.0182    -0.2078  0.8356  
 
Multiple R-Squared: 0.1335  
F-statistic: 5.113 on 5 and 166 degrees of freedom, the p-value is 0.0002182  
 
 

Figure 6-16:  Regression output for the factors of SS, GEN and time on log R-SAL 
concentrations throughout detoxification. 
 

 

 Average DA concentration profiles for smoking status and gender are shown in 

figures 6-17 and 6-18, respectively.   Across all time-points, the rank of average DA 
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Figure 6-17:  Plot of DA over time on logarithmic scale for subjects within each 
smoking status group (ng/ml).  Each time point represents an average concentration 
within each group with corresponding + SD. 
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Figure 6-18:  Plot of DA over time on logarithmic scale for subjects within each gender 
group (ng/ml).  Each time point represents an average concentration within each group 
with corresponding + SD. 
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concentrations resulted in NS > HS > LS.   On average, NS possessed higher DA 

concentrations than both smoking groups.    Throughout the detoxification period, no 

more than a five-fold difference was observed between smoking status groups.  

Although the within-group variability at each time point was large, the concentration 

time profile for DA was relatively stable as compared to the SAL enantiomers.    With 

respect to gender, the concentration-time profiles were parallel with the exception of 

admission day, in which males possessed a three-fold higher DA concentration than 

females on average. 

 Incorporation of the factors of SS and GEN into the full statistical model found 

insignificant effects of both factors on the time course of log DA.  An insignificant 

effect of time was observed, with neither SS nor GEN having an influence on the time-

course of log DA.  The full statistical model output for the regression analysis may be 

shown in figure 6-19 below.       
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Call: 
   lm(formula = log.DA ~ Day + SS + GEN + SS:Day + GEN:Day, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
 
     Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.7241  0.0860     8.4211  0.0000  
        Day  0.0089  0.0111     0.8024  0.4235  
         SS -0.0383  0.0372    -1.0292  0.3049  
        GEN  0.0724  0.0618     1.1722  0.2428  
     Day:SS -0.0010  0.0047    -0.2087  0.8349  
    Day:GEN -0.0038  0.0079    -0.4783  0.6331  
 
Multiple R-Squared: 0.03846  
F-statistic: 1.328 on 5 and 166 degrees of freedom, the p-value is 0.2548  
 

 
Figure 6-19:  Regression output for the factors of SS, GEN and time on log DA 
concentrations throughout detoxification. 
 

 For all analytes, an effect of SS was not observed with respect to the time course 

of the R/S-SAL and DA analytes over the detoxification period.  In order to further 

characterize the variability associated with the R/S-SAL enantiomers and DA 

concentrations, further evaluation of smoking status and gender was evaluated on the 

GTM of concentrations over the detoxification period, on the day of admission (day 1) 

and day 15.    Separate analyses for each analyte were performed for each of these time-

periods in order to assess for the effects of smoking status and gender.   

 

6.4.2c-1 Grand total mean of R/S-SAL and DA  

 Tables 6-10, 6-11 and 6-12 show the descriptive statistics for the concentrations 

S-SAL, R-SAL and DA observed for each smoking status and gender, respectively.  

Measures of central tendency, such as mean and median, along with the variability 

including %COV and range is presented for each factor.  With the exception of the LS 

female group, the gender distribution was similar for each smoking status group with  
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Table 6-10:  Descriptive statistics for GTM S-SAL concentrations (pg/ml) divided into 
smoking status and gender. 
 

Mean 132
Stdev 96
%COV 72
Median 108
MIN 31
MAX 313
Mean 97
Stdev 65
%COV 67
Median 90
MIN 20
MAX 287
Mean 113
Stdev 81
%COV 72
Median 90
MIN 20
MAX 313

S-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

117 86 184
111 80 78
95 92 42
61 40 194
38 31 77
313 217 290

   
   

M
al

e

135 70 82
79 41 52
59 59 64
120 70 81
58 22 20
287 136 146

   
 G

R
A

N
D

126 77 133
93 59 83
73 76 62
102 68 126
38 22 20
313 217 290      

 

 
Table 6-11:  Descriptive statistics for GTM R-SAL concentrations (pg/ml) divided into 
smoking status and gender. 
 

Mean 213
Stdev 181
%COV 85
Median 181
MIN 42
MAX 594
Mean 136
Stdev 104
%COV 77
Median 118
MIN 16
MAX 452
Mean 173
Stdev 150
%COV 86
Median 123
MIN 16
MAX 594

R-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

172 181 280
205 175 172
120 97 61
73 69 235
42 42 112
567 423 594

   
   

M
al

e

187 100 121
138 80 82
73 81 68
160 100 126
67 16 27
452 241 218

   
 G

R
A

N
D

179 137 200
167 132 153
93 96 76
120 95 183
42 16 27
567 423 594      
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Table 6-12:  Descriptive statistics for GTM DA concentrations (ng/ml) divided into 
smoking status and gender. 
 

Mean 6.5
Stdev 3.1
%COV 48
Median 5.4
MIN 2.4
MAX 15.2
Mean 6.1
Stdev 3.4
%COV 57
Median 5.4
MIN 2.8
MAX 15.9
Mean 6.2
Stdev 3.2
%COV 52
Median 5.4
MIN 2.4
MAX 15.9

4.3 2.4 2.8
15.9 8.2 10.3

52 34 46
5.6 4.8 6.1

15.9 8.2 7.0

   
 G

R
A

N
D

7.9 4.7 5.9
4.1 1.6 2.7

6.8 4.8 3.3
4.3 3.2 2.8

   
   

M
al

e

8.5 5.1 4.2
4.5 1.8 1.7
53 35 41

5.2 2.4 3.7
15.2 5.5 10.3

32
5.4 4.8 7.6

GRAND

   
 F

em
al

e

7.3 4.2 7.6
4.0 1.3 2.4
55 31

DA
Non-smoker Light-smoker Heavy-smoker

     
 

 

each group of 6 males and 6 females.  In the LS group, 6 males and 5 females were 

analyzed.   

 The overall averages (mean and %COV), across all patients for S-SAL, R-SAL 

and DA were 113 (72%), 173 pg/ml (86%) and 6.2 ng/ml (52%), suggesting that the 

GTM plasma SAL and DA concentrations are quite variable between all patients. The 

large differences between the median and mean R/S-SAL and DA concentrations 

suggest that the data follow non-normal distribution.    Upon comparison of the median 

concentrations, females were observed to have a slightly higher median S- and R-SAL 

concentrations compared to males.  Median DA concentrations and ranges were similar 

between genders for the GTM throughout detoxification. 
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 With respect to smoking status, the ranking of median S-SAL concentration was 

HS > NS > LS with similar within-group variability observed.  The same ranking was 

observed with median R-SAL concentrations with a higher amount of within-group 

variability.  Within each smoking status group a gender difference in the ranking was 

observed with S-SAL.   Females had the same overall smoking status group ranking 

while males had the ranking of NS > LS > HS for median S-SAL GTM concentrations.     

A discrepancy was also observed with R-SAL GTM concentrations, in which females 

had the similar overall smoking status group ranking, while in males the following 

ranking was observed of the median concentrations: NS > HS > LS.    For DA, the HS > 

NS > LS ranking was observed.  The inconsistency of ranking between genders was 

also observed with males possessing a rank for median concentration of NS > LS > HS, 

while the female counterparts shared the same ranking as the smoking status group.   

 The distribution of the GTM data within each smoking group for R-SAL, S-SAL 

and DA followed a non-normal distribution upon assessment of quantile-quantile (Q-Q) 

plots.   Moreover, unequal variance was present with the data upon visual inspection of 

the residuals.    For these reasons, log-transformed data were used for the primary 

analysis.  Two-way ANOVA was performed on the log transformed R-SAL, S-SAL and 

DA GTM concentrations, evaluating the factors of smoking status and gender.  Box-

plots exemplifying the median and distribution, including outliers for the effects of 

gender and smoking status are presented below for the GTM log S-SAL (figure 6-20) 

and GTM log R-SAL (figure 6-21).    

 



402 

 

 
1.

4
1.

6
1.

8
2.

0
2.

2
2.

4

A
v.

Lo
g.

S
.S

A
L

x

x

x

HS LS NS

SS

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

A
v.

Lo
g.

S
.S

A
L x

x

F M

GEN

  
Figure 6-20:  Boxplots of the GTM of log S-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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Figure 6-21:  Boxplots of the GTM of log R-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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 Observation of the S-SAL and R-SAL box-plots suggests that there was no 

significant difference between gender groups and a lack of a significant trend was 

observed between smoking groups.  Two-way ANOVA was performed to evaluate the 

effects of gender and smoking on GTM log S-SAL and log R-SAL concentrations.   A 

significant effect of smoking status (SS) and gender (GEN) was not observed with 

respect to GTM log S-SAL and R-SAL concentrations.   For both enantiomers, the 

smoking status factor was insignificant with the test statistic resulting in F (2, 29) = 2.0, 

p-value = 0.15 for S-SAL and F (2, 29) = 0.97, p-value = 0.39 for R-SAL.  The effect of 

gender (GEN) was not significant with the test statistic resulting in p-values > 0.22 for 

both enantiomers.    No interaction between the SS and GEN factors was observed, 

therefore, linear contrasts were unnecessary.   The coefficient of determination (R2) for 

the entire model was 0.257 (p-value = 0.107) for S-SAL and 0.095 (p-value = 0.368).  

Abbreviated ANOVA tables may be viewed in figure 6-22 below.    Full two-way 

ANOVA outputs may be viewed in Appendix O along with the residual plots of the 

model fit.   Upon visual evaluation, the residuals show an even spread of the 

distribution of data suggesting the lack of unequal variance.  As significance was not 

found with the main effects, further multiple comparisons were not performed.  
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*** log S_SAL GTM Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Av.Log.S.SAL ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.386512 0.1932561 1.993205 0.1544943 
      GEN  1  0.084351 0.0843511 0.869980 0.3586619 
   SS:GEN  2  0.504868 0.2524341 2.603555 0.0912186 
Residuals 29  2.811766 0.0969575                    
 
 
Multiple R-Squared: 0.2576  
F-statistic: 2.013 on 5 and 29 degrees of freedom, the p-value is 0.1065  
 

 

 
*** log R_SAL GTM Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Av.Log.R.SAL ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.288904 0.1444520 0.969432 0.3912530 
      GEN  1  0.225614 0.2256137 1.514116 0.2284000 
   SS:GEN  2  0.557630 0.2788149 1.871155 0.1720623 
Residuals 29  4.321198 0.1490068                    
 
 
Multiple R-Squared: 0.0954  
F-statistic: 1.09 on 3 and 31 degrees of freedom, the p-value is 0.368  
 

 
 
Figure 6-22:  Two–way ANOVA output for the effects of SS and GEN on GTM log S-
SAL (top) and GTM log R-SAL (bottom) concentrations. 
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 Contrary to the SAL enantiomers results, GTM log DA box-plots suggest that 

there was a trend observed between smoking groups. (see figure 6-23 below).  Two-way 

ANOVA was performed to evaluate the effects of gender and smoking on GTM log DA 

concentrations.   While a significant effect of GEN was not observed, the factor of SS 

was significant.  The SS factor was significant with the test statistic resulting in F (2, 

29) = 4.1, p-value = 0.026.  The effect of gender (GEN) was not significant with the test 

statistic resulting in a p-value = 0.403.   No interaction between the SS and GEN factors 

was observed, therefore, linear contrasts were unnecessary.   The coefficient of 

determination (R2) for the entire model was 0.346 (p-value = 0.024).   The factor of SS 

and GEN account for approximately 34.6% of the variability associated with the GTM 

log DA concentration. 

 Multiple comparisons via the Scheffé method found the difference to be 

between the NS and LS groups while differences were not observed between the NS-HS 

and LS-HS groups.  The two-way ANOVA output may be viewed below in figure 6-24 

along with the results of the multiple comparison tests.   The residuals of the model fit 

showed a lack of unequal variance.   
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Figure 6-23:  Boxplots of the GTM of log DA for smoking status (SS, left plot) and 
gender (GEN, right plot). 
 

 

Call: 
   aov(formula = Av.Log.DA ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2 0.2755988 0.1377994 4.106723 0.0268920 
      GEN  1 0.0241072 0.0241072 0.718446 0.4035956 
   SS:GEN  2 0.2139152 0.1069576 3.187569 0.0560593 
Residuals 29 0.9730832 0.0335546                    
 
Multiple R-Squared: 0.3455  
F-statistic: 3.061 on 5 and 29 degrees of freedom, the p-value is 0.0244 

95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffé method  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS   0.0825    0.0766      -0.145       0.310      
HS-NS  -0.1370    0.0748      -0.359       0.085      
LS-NS  -0.2190    0.0766      -0.447      -0.008 ****   

 

Figure 6-24:  Two–way ANOVA output for effects of SS and GEN on GTM log DA. 
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6.4.2c-2  Exploratory and Covariate analysis for GTM 

 A statistically significant effect of smoking status was not observed on log R-

SAL and log S-SAL plasma GTM concentrations.   Further evaluation of the variability 

associated with GTM R/S-SAL and DA exposure was performed by using the FTND 

score and number of cigarettes smoked per day as continuous dependent variables to 

explain the individual subjects’ exposures.    

 As in the case for Study #1, the analyses incorporated FTND and the number of 

cigarettes smoked per day in lieu of the SS category for the ANOVA analysis of GTM 

concentrations.    For GTM log S-SAL, neither the FTND nor the number of cigarettes 

smoked per day had a significant influence on the ANOVA fit with resultant p-values 

being 0.591 and 0.844, respectively.    The same observation was seen for GTM log R-

SAL with the FTND fit having a p-value of 0.552 and the number of cigarettes having a 

p-value of 0.774.     Moreover, use of these smoking variables yielded inferior fits as 

compared to the smoking status factor.   Full linear model results may be viewed in 

Appendix O.  Results of the primary analysis, using smoking status as a factor and the 

exploratory analysis, using FTND and the number of cigarettes per day, suggest that 

smoking does not have a significant influence on GTM log S-SAL and log R-SAL 

concentrations.   

 Information including alcohol intake and weekly exposure to dietary total SAL 

and whether or not acamprosate was used in the subject was recorded to evaluate for 

their effects on the GTM of R-SAL, S-SAL and DA.     As dietary intake of ethanol 

and/or SAL containing foods may affect the overall exposure, this covariate 
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assessments may provide information into the variability associated with the plasma 

measurement of GTM log R-SAL and/or S-SAL.   Moreover, it is unknown whether 

acamprosate has an effect on circulating R/S-SAL or DA, therefore it was prudent to 

evaluate whether this drug may have a significant effect.    If alcohol intake, dietary 

exposure, or acamprosate administration were found to significantly correlate with SAL 

exposure, the TLFB, Food Intake and whether or not the subject was taking 

acamprosate was considered a significant covariate and implemented into the statistical 

model. 

 Linear regressions were performed on GTM log R-SAL, log S-SAL as a 

function of number of drinks in the past ninety days (TLFB) or average weekly dietary 

total SAL (Food Inventory) intake.   Similar criteria aforementioned for covariate 

analysis were used for the SAL and DA analysis.     Evaluation of the significance of 

the covariate was additionally assessed upon implementation into a final ANCOVA 

model.  The p-value was evaluated for significance of the covariate.  If considered 

significant, the fit of the entire model was evaluated for goodness of fit, with use of the 

covariate.    A table summarizing the covariate regression analysis for the TLFB, 

dietary SAL intake, and acamprosate administration is shown below (table 6-13).   

 
 
 
 
 
 
 
 
 



410 

Table 6-13:  Covariate analysis results for GTM log R-SAL, log S-SAL and log DA 

Weekly 
Dietary Intake 

Acamprosate 
administration 

TLFB   
(# of drinks in 
past 90 days) variable (ng SAL) (yes or no) 

R2 0.0551 0.0382 0.002 

p-value 0.175 0.324 0.803 Log R-SAL 
significance NS NS NS 

R2 0.069 0.102 0.006 

p-value 0.128 0.546 0.657 Log S-SAL 
significance NS NS NS 

R2 0.008 N/A 0.006 

p-value 0.611 N/A 0.646 Log DA 
significance NS N/A NS 

NS:   not significant 
N/A: dietary intake of DA was not available   
 
 
 
 
 The covariate analysis revealed a poor association between the TLFB, weekly 

dietary SAL intake, and acamprosate administration on GTM concentrations of SAL 

enantiomers and DA.  As SAL enantiomers are hypothesized to be influenced by 

chronic alcohol exposure, it was expected that influence of the TLFB would contribute 

to the circulating plasma concentrations.  The TLFB was subsequently incorporated into 

the ANCOVA model as a covariate, with the primary factors of smoking status and 

gender, and was found not to be significant for all analytes.   Moreover, the ANCOVA 

model for assessment of the primary factors was not improved upon implementation of 

the TLFB covariate, for all GTM analytes.  
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 Use of the acamprosate or SAL food Intake as a covariate was not significant 

and was not implemented into the full statistical model.    The results of this covariate 

analysis suggest that the number of drinks consumed in the past ninety days, weekly 

dietary intake of total SAL, and administration of acamprosate do not influence the 

GTM levels of R/S-SAL or DA.   

 The GTM concentrations of the SAL enantiomers and DA represent the overall 

average behavior of concentrations throughout the in-patient detoxification period.    

The analysis was utilized to reflect the influence of smoking and gender, rather than 

time, during of circulating SAL levels throughout the abstinence period.  For the SAL 

enantiomers, a significant effect of smoking status or gender was not observed on the 

GTM concentrations.  This was unexpected as patients were able to smoke cigarettes 

throughout the detoxification period.  A trend between the HS and NS was observed 

with HS possessing a higher GTM R/S-SAL concentration than NS, but statistical 

significance was not observed due to the within group variability.    The within-group 

variability associated for the LS group was large for both SAL enantiomers, 

confounding the lack of a significant effect of smoking status.     In addition, smoking 

variables such as the FTND and number of cigarettes smoked per day did not have a 

significant influence. 

 On the other hand, a significant effect of smoking status was observed with 

GTM DA concentrations, with NS possessing higher concentrations than that of both 

the smoking groups.  Assuming that circulating plasma DA is reflective of CNS 

concentrations, this result supports the hypothesis of the reinforcing properties of 
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cigarette exposure.   In other words, the LS and HS groups possess low concentrations 

of circulating DA compared to NS, and smokers require smoking to increase DA levels 

for homeostasis of central DA activity.   Of note, biological sampling was performed 

prior to smoking the first cigarette of the day.   

 It is important to note that smoking behavior throughout the detoxification 

period was not recorded nor was dietary intake of SAL during the inpatient stay, both of 

which may obscure the primary factor analysis on the GTM concentrations.   

Interestingly, speculated influences of SAL exposure such as prior alcohol exposure or 

average dietary intake did not have an effect on GTM concentrations. Correlation 

analyses found no significant association between these variables and GTM 

concentrations. Throughout the inpatient abstinence period, the use of additional 

pharmacotherapies was employed for concomitant disease states other than alcoholism.    

The use of acamprosate did not have an effect on GTM concentrations.  However, 

evaluation of additional therapies was not assessed for their influence on SAL or DA 

concentrations, which may confound the current results.   

 Of primary importance is the time-course and sampling schedule employed for 

the observations.   Rommelspacher and co-workers found that, during an in patient 

detoxification period, the results of the R/S-SAL concentrations on each day observed 

were quite variable across subjects. For the first week R-SAL and S-SAL 

concentrations were statistically similar.  Time-dependence of the SAL concentrations 

was not observed until 3 and 6-months after detoxification center admission.    At these 

time points, the effect of the underlying alcoholism on SAL levels is presumably 
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negligible with similar SAL concentrations to non-alcoholics (Rommelspacher et al., 

1995).   The effect of smoking on SAL levels in alcoholics my not be observed within 

the time period assessed in our investigation, but rather at a later time of alcohol 

abstinence.   

 

6.4.2c-3 Analysis of R/S-SAL and DA on Admission Day  

 Tables 6-14, 6-15 and 6-16 show the descriptive statistics for the admission day 

concentrations S-SAL, R-SAL and DA observed for each smoking status and gender, 

respectively.  

 
Table 6-14:  Descriptive statistics for admission S-SAL concentrations (pg/ml) divided 
into smoking status and gender. 
 

Mean 86
Stdev 130
%COV 151
Median 58
MIN 1
MAX 567
Mean 37
Stdev 27
%COV 74
Median 33
MIN 5
MAX 106
Mean 61
Stdev 95
%COV 156
Median 41
MIN 1
MAX 567

S-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

85 130 52
46 245 28
54 189 53
72 15 49
39 1 21
147 567 95

   
   

M
al

e

35 43 32
24 37 22
69 85 68
30 36 33
10 5 5
66 106 61

   
 G

R
A

N
D

60 82 42
44 156 26
73 191 62
51 36 35
10 1 5
147 567 95       

 

 



414 

Table 6-15:  Descriptive statistics for admission R-SAL concentrations (pg/ml) divided 
into smoking status and gender. 
 

Mean 103
Stdev 200
%COV 194
Median 46
MIN 1
MAX 860
Mean 41
Stdev 38
%COV 93
Median 28
MIN 3
MAX 119
Mean 71
Stdev 144
%COV 201
Median 36
MIN 1
MAX 860

R-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e
86 190 52
43 375 28
50 197 53
91 15 49
36 1 21
157 860 95

   
   

M
al

e

33 47 32
40 44 22
122 94 68
17 30 33
3 4 5

108 119 61

   
 G

R
A

N
D

60 112 45
49 251 40
82 223 88
45 19 31
3 1 4

157 860 133              

 
Table 6-16:  Descriptive statistics for admission DA concentrations (pg/ml) divided 
into smoking status and gender. 
 

Mean 6.2
Stdev 2.9
%COV 47
Median 5.8
MIN 1.4
MAX 13.6
Mean 4.9
Stdev 2.9
%COV 59
Median 4.0
MIN 1.5
MAX 11.2
Mean 5.5
Stdev 2.9
%COV 53
Median 4.6
MIN 1.4
MAX 13.6

DA
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

7.5 3.9 6.9
3.5 2.1 1.7
47 54 25
7.0 3.6 6.9
4.4 1.4 4.6

13.6 6.7 9.7

   
   

M
al

e

5.0 5.1 4.6
3.5 3.1 2.6
69 60 56
4.3 4.0 3.2
1.5 2.8 2.8

11.2 11.2 8.8

   
 G

R
A

N
D

6.3 4.5 5.7
3.6 2.6 2.4
57 58 42
5.1 3.7 6.2
1.5 1.4 2.8

13.6 11.2 9.7             
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 The overall averages (mean and %COV), across all patients for S-SAL, R-SAL 

and DA were 61 pg/ml (156%), 71 pg/ml (201%) and 5.5 ng/ml (53%), suggesting that 

the admission plasma SAL and DA concentrations were variable between all patients. 

More variability was observed with the admission concentrations than that of the GTM 

concentrations.   Upon comparison of the median concentrations, females were 

observed to have a slightly higher median S-SAL, R-SAL and DA concentrations 

compared to males.    

 With respect to smoking status, the ranking of median S-SAL concentration was 

NS > LS > HS with varying degrees of within-group variability observed.  The NS and 

HS groups possessed similar %COV while the LS group had a much larger variability 

in admission S-SAL concentration.  The ranking of NS > HS > LS was observed with 

median R-SAL concentrations with a highest amount of within-group variability for the 

LS group.  Within each smoking status group, a gender difference in the ranking was 

observed with S-SAL.   Females possessed the same overall smoking status group 

ranking while males had the ranking of  LS > HS > NS.  In addition, the difference in 

males between smoking status groups was observed to be small for median S-SAL 

admission concentrations.     A discrepancy was also observed with R-SAL admission 

concentrations in which females had the similar overall smoking status group ranking, 

while in males the following ranking was observed of the median concentrations: HS > 

LS > NS.    For DA, the HS > NS > LS ranking was observed.  The inconsistency of 

ranking between genders was also observed with males possessing a rank for median 

concentration of NS > LS > HS, while the female counterparts NS ~ HS > LS.   
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 The distribution of the admission data within each smoking group for R-SAL, S-

SAL and DA followed a non-normality and unequal variance. Therefore, log-

transformed data were used for the primary analysis.  Box-plots are presented below for 

the admission log S-SAL (figure 6-25), log R-SAL (figure 6-26) and log DA (figure 6-

27).    
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Figure 6-25:  Boxplots of admission log S-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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Figure 6-26:  Boxplots of admission log R-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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Figure 6-27:  Boxplots of admission log DA for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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 Observation of the S-SAL, R-SAL and DA box-plots suggest that there was no 

significant difference between gender groups and a lack of a significant trend was 

observed between smoking groups.  Two-way ANOVA was performed to evaluate the 

effects of gender and smoking on admission log S-SAL, log R-SAL and log DA 

concentrations.   A significant effect of smoking status (SS) and gender (GEN) was not 

observed with respect to admission concentrations.   No interaction between the SS and 

GEN factors was observed.   Abbreviated ANOVA tables may be viewed in figure 6-28 

below.  Significance was not found with the main effects, thus further multiple 

comparisons were not performed.  
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*** log S_SAL Admission Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.404638 0.2023190 0.790651 0.4630836 
      GEN  1  0.357304 0.3573041 1.396324 0.2469397 
   SS:GEN  2  0.531942 0.2659710 1.039400 0.3664710 
Residuals 29  7.420785 0.2558891                    
    
Multiple R-Squared: 0.1485  
F-statistic: 1.011 on 5 and 29 degrees of freedom, the p-value is 0.4289  
 
 
 
*** log R_SAL Admission Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.078214 0.0391069 0.118296 0.8888598 
      GEN  1  0.500541 0.5005412 1.514103 0.2284020 
   SS:GEN  2  0.807796 0.4038981 1.221764 0.3094337 
Residuals 29  9.586996 0.3305861                    
 
Multiple R-Squared: 0.1264  
F-statistic: 0.8388 on 5 and 29 degrees of freedom, the p-value is 0.5332  
 

 
 
*** log DA Admission Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.DA.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.196977 0.0984884 1.273453 0.2950514 
      GEN  1  0.195106 0.1951058 2.522713 0.1230619 
   SS:GEN  2  0.333961 0.1669806 2.159055 0.1336306 
Residuals 29  2.242850 0.0773397                    
 
 
Multiple R-Squared: 0.2446  
F-statistic: 1.878 on 5 and 29 degrees of freedom, the p-value is 0.1291 

 
Figure 6-28:  Two–way ANOVA output for the effects of SS and GEN on admission 
log S-SAL (top) log R-SAL (middle) and log DA (bottom) concentrations. 
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6.4.2c-4 Exploratory and Covariate analysis for admission day 

 A statistically significant effect of smoking status was not observed on log R-

SAL and log S-SAL admission day plasma concentrations.   Further evaluation of the 

variability associated with admission day R/S-SAL and DA exposure was performed by 

using the FTND score and number of cigarettes smoked per day as continuous 

dependent variables to explain the individual subjects’ exposures.    

 For admission day log S-SAL, neither the FTND nor the number of cigarettes 

smoked per day had a significant influence on the ANOVA fit with resultant p-values 

being 0.704 and 0.799, respectively.    The same observation was seen for admission log 

R-SAL with the FTND fit resulting in a p-value of 0.801 and the number of cigarettes 

having a p-value of 0.851.    Results of the primary analysis (using smoking status as a 

factor) and the exploratory analysis (FTND or the number of cigarettes per day), 

suggest that smoking does not have a significant influence on admission day log S-SAL 

and log R-SAL concentrations.   

 With respect to admission day concentrations, it is important to note that 

biological sampling was conducted upon admission to the clinic.  The time of day of 

sampling was variable across subjects, which may confound the analysis.  More 

importantly, 13 of the 35 subjects evaluated (37.1%) tested positive for a drug of abuse 

other than alcohol and nicotine (see table 6-3).  It is unknown to what extent drugs of 

abuse such as amphetamines, cocaine, or benzodiazepine influence circulating R/S-SAL 

plasma concentrations.  Moreover, 13 of the 35 subjects entered the detoxification clinic 
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with a positive BrAC.   This is the result of recent exposure to alcohol and therefore 

may influence the admission day concentration of log R/S-SAL.   

 Similar to the GTM analysis, information including alcohol intake and weekly 

exposure to dietary total SAL  was evaluated for their effects on the admission day log 

R-SAL, S-SAL and DA.  If recent alcohol intake (i.e., positive or negative BrAC), 

chronic alcohol intake (i.e., TLFB),  dietary exposure, or drugs of abuse (i.e., positive or 

negative of admission) were found to significantly correlate with log R/S-SAL of DA 

exposure, they were considered a significant covariate and implemented into the 

statistical model. 

 Linear regressions were performed on log R-SAL, log S-SAL as a function of 

TLFB and average weekly dietary total SAL (Food Inventory) intake.  An association of  

positive or negative BrAC, positive or negative admission drug of abuse as used to 

assess an influence of recent alcohol exposure or drug of abuse, respectively.     Similar 

criteria aforementioned for covariate analysis were used for the SAL and DA analysis.     

Evaluation of the significance of the covariate was additionally assessed upon 

implementation into a final ANCOVA model.  The p-value was evaluated for 

significance of the covariate.   If considered significant, the fit of the entire model was 

evaluated for goodness of fit, with use of the covariate.    For the case of BrAC and 

drug of abuse influence, a dummy-regression variable was used for implementation into 

ANCOVA model.  Boxplots of these variables are included in figure 6-29.   A table 

summarizing the covariate regression analysis for the TLFB, dietary SAL intake, BrAC 

and drugs of abuse (table 6-17). 
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 No correlation was observed between the TLFB, weekly dietary SAL intake, 

positive BrAC and positive drug of abuse for the admission concentrations of SAL 

enantiomers and DA.  As SAL enantiomers are hypothesized to be influenced by acute 

alcohol exposure, it was expected that influence of the BrAC would contribute to the 

circulating plasma concentrations.  The boxplot in figure 6-29 exemplifies a lack of a 

difference between positive admission BrAC and negative for both enantiomers, 

suggesting that the sole factor of BrAC is not descriptive of SAL concentrations.    

Interestingly, persons with a positive BrAC had a slightly lower average log 

concentration of both S-SAL and R-SAL.  Employment of BrAC as a categorical 

regression variable in the ANCOVA models, accounting for the factors of smoking 

status and gender, found a lack of statistical significance for the potential covariate.   

Moreover, the fit for the primary factors did not show statistical significance with use of 

BrAC as a covariate.     The same case was observed for persons showing positive 

results for the urine drug of abuse (DOA) screen.   

 Use of the TLFB or SAL food intake as a covariate was not significant and was 

not implemented into the full statistical model.    The results of this covariate analysis 

suggest that the number of drinks consumed in the past ninety days, weekly dietary 

intake of total SAL, positive or negative BrAC, and positive or negative drug of abuse 

testing do not influence the admission levels of R/S-SAL or DA.   

 As a separate analysis, liver function as assessed by AST (aspartate 

aminotransferase) had a significant effect on admission SAL concentrations.   While 

AST is considered a marker of acute ethanol exposure and hepatocellular damage, 
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correlation with the SAL enantiomers on day 1 was performed.    Results showed that, 

for both enantiomers, a significant effect of AST was observed.  AST as a predictor of 

day 1 log S-SAL and R-SAL was significant with the test statistic resulting in F (1, 32) 

= 5.98, p-value = 0.02 for log S-SAL and F (1, 32) = 7.42, p-value = 0.01 for log R-

SAL.  The regression plots of admission day log S-SAL and log R-SAL are shown in 

the figures 6-30 and 6-31 below.   
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Figure 6-30:  Admission log S-SAL as a function of AST (p-value = 0.02, R2 = 0.158, 
log S-SAL = -0.0037 AST + 1.74)   
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Figure 6-31:  Admission log R-SAL as a function of AST (p-value = 0.01, R2 = 0.188, 
log R-SAL = -0.0048 AST + 1.76)   
 

 
 

 According to the regression analysis, liver function as deemed by AST, may be 

an important variable when evaluating admission SAL enantiomer concentrations.    As 

liver function declines, an observed decrease in the both enantiomers is present.    For 

every U/L increase in AST a corresponding 0.0037 decrease in log S-SAL and 0.0048 

decrease in log R-SAL concentration is observed.    Of note, analysis of other liver 

function measures (e.g., alanine aminotransferase and albumin) yielded insignificant 

correlations.   Therefore, as the relationship observed between SAL concentrations and 

AST was not strong, and other measures of liver function did not have a significant 

effect, the interpretability of the relationship should be taken with discretion.   
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 The admission concentrations of the SAL enantiomers and DA represent the 

initial concentrations at the beginning of the in-patient detoxification period.    The 

analysis was utilized to assess the influence prior to initial detoxification on circulating 

SAL levels.  It is important to note that the SAL concentrations at the admission time-

point possessed the greatest variability compared to that of the GTM and day 15.    A 

lack of investigational control of the subjects prior to admission may account for this 

variability.   Biological sampling was performed without information regarding the time 

relative to exposure of SAL-containing or aldehyde-containing foods and beverages. 

 A significant effect of smoking status or gender was not observed on the 

admission log SAL enantiomer concentrations.  Knowledge of prior acute tobacco 

smoking exposure, before entrance into the detoxification center and before biological 

sampling, was unavailable and may have influenced the admission concentrations.    In 

addition, smoking variables such as the FTND and number of cigarettes smoked per day 

did not have a significant influence.  With respect to gender, a slight trend was observed 

with females possessing higher concentrations than males, but the difference was 

statistically insignificant.   

  Interestingly, hypothesized influences of SAL exposure, such as prior alcohol 

exposure, average dietary intake or positive drugs of abuse screen, did not have a 

significant influence on admission concentrations. Correlation analyses found no 

significant association between these variables and the admission concentrations.    

 Liver function, as assessed by AST, had an influence on admission R/S-SAL 

concentrations.    For this reason, the applicability of BrAC or TLFB measures of 
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alcohol exposure may not have been reliable covariates.  As the endogenous formation 

of the SAL enantiomer within the body may require consequent metabolism of ethanol, 

liver function may be an important determinant of SAL exposure upon acute ingestion 

of alcohol.    Moreover, some researchers speculate that SAL enantiomers are formed 

via enzymatic routes (Naoi et al., 1996), therefore, hepatocellular function my play a 

role in the synthesis of SAL enantiomers.    

 

6.4.2c-5 Analysis of R/S-SAL and DA on Day 15  

 Tables 6-18, 6-19 and 6-20 show the descriptive statistics for day 15 

concentrations S-SAL, R-SAL and DA observed for each smoking status and gender, 

respectively.  
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Table 6-18:  Descriptive statistics for day 15 S-SAL concentrations (pg/ml) divided into 
smoking status and gender. 
 

Mean 151
Stdev 118
%COV 78
Median 122
MIN 18
MAX 504
Mean 127
Stdev 141
%COV 111
Median 73
MIN 9
MAX 560
Mean 139
Stdev 129
%COV 93
Median 102
MIN 9
MAX 560

S-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e
104 147 200
66 99 164
64 68 82
99 122 139
18 50 77
217 314 504

   
   

M
al

e

132 78 172
118 88 203
89 113 118
76 41 128
32 26 9
337 253 560

   
 G

R
A

N
D

118 110 186
92 96 176
78 87 95
94 85 136
18 26 9
337 314 560            

 
Table 6-19:  Descriptive statistics for day 15 R-SAL concentrations (pg/ml) divided 
into smoking status and gender. 
 

Mean 210
Stdev 177
%COV 84
Median 166
MIN 25
MAX 704
Mean 180
Stdev 221
%COV 123
Median 92
MIN 4
MAX 883
Mean 195
Stdev 198
%COV 102
Median 149
MIN 4
MAX 883

R-SAL
Non-smoker Light-smoker Heavy-smoker GRAND

   
 F

em
al

e

132 228 274
93 172 235
70 75 86
113 185 236
25 73 42
300 524 704

   
   

M
al

e

162 107 272
165 137 322
102 127 118
92 43 217
32 18 4
456 367 883

   
 G

R
A

N
D

147 162 273
128 159 269
88 98 99
107 150 217
25 18 4
456 524 883  
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Table 6-20:  Descriptive statistics for day 15 DA concentrations (pg/ml) divided into 
smoking status and gender. 
 

Mean 6.1
Stdev 2.6
%COV 43
Median 5.0
MIN 3.7
MAX 12.7
Mean 5.8
Stdev 3.2
%COV 55
Median 5.2
MIN 2.6
MAX 16.6
Mean 5.9
Stdev 2.9
%COV 49
Median 5.2
MIN 2.6
MAX 16.6

3.7 3.5 2.6
16.6 9.1 12.7

55 31 51
5.5 4.5 5.1

16.6 9.1 6.3

   
 G

R
A

N
D

6.6 5.1 5.9
3.6 1.6 3.0

5.1 5.8 4.1
3.7 3.5 2.6

   
   

M
al

e

6.7 5.9 4.3
4.9 1.8 1.3
73 31 30

4.0 3.9 3.7
9.6 4.5 12.7

47
6.1 4.2 6.2

GRAND
   

 F
em

al
e

6.4 4.2 7.4
2.0 0.2 3.5
31 5

DA
Non-smoker Light-smoker Heavy-smoker
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 The overall averages (mean and %COV), across all patients for S-SAL, R-SAL 

and DA were 139 pg/ml (93%), 195 pg/ml (102%) and 5.9 ng/ml (49%). Upon 

comparison of the median concentrations, females were observed to have a slightly 

higher day 15 median S-SAL and R-SAL concentrations compared to males, while DA 

concentrations were similar between genders.    

 With respect to smoking status, the ranking of median S-SAL concentration was 

HS > NS > LS with similar degrees of within-group variability observed.  The ranking 

of HS > LS > NS was observed with median R-SAL concentrations on day 15.  Within 

each smoking status group a gender difference in the ranking was observed with S-SAL.   

Males possessed the same overall smoking status group ranking while females had the 

ranking of  HS > LS > NS.   A discrepancy was also observed with R-SAL admission 

concentrations in which females had the similar overall smoking status group ranking, 

while in males the following ranking was observed of the median concentrations: HS > 

NS > LS.    For DA, the NS > HS > LS ranking was observed, although the differences 

were negligible between NS and HS groups.  The inconsistency of ranking between 

genders was also observed with males possessing a rank for median concentration of LS 

> NS > HS, while the female counterparts HS ~ NS > LS.  Box-plots are presented 

below for the day 15 log S-SAL (figure 6-32), log R-SAL (figure 6-33) and log DA 

(figure 6-34).    
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Figure 6-32:  Boxplots of day 15 log S-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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Figure 6-33:  Boxplots of day 15 log R-SAL for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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Figure 6-34:  Boxplots of admission log DA for smoking status (SS, left plot) and 
gender (GEN, right plot). 
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 Observation of the S-SAL, R-SAL and DA box-plots suggest that there was no 

significant difference between gender groups and a lack of a significant trend was 

observed between smoking groups on day 15.  Two-way ANOVA was performed to 

evaluate the effects of gender and smoking on admission log S-SAL, log R-SAL and 

log DA concentrations.   A significant effect of smoking status (SS) and gender (GEN) 

was not observed with respect to admission concentrations.   No significant interaction 

between the SS and GEN factors was observed.   Abbreviated ANOVA tables may be 

viewed in figure 6-35 below.  Significance was not found with the main effects, 

therefore further multiple comparisons were not performed.  
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*** log S_SAL day 15 Analysis of Variance Model *** 
 
Call: 
   aov(formula = Log.S.SAL.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.155235 0.0776174 0.432217 0.6531812 
      GEN  1  0.327546 0.3275460 1.823960 0.1872881 
   SS:GEN  2  0.309619 0.1548093 0.862065 0.4328294 
Residuals 29  5.207807 0.1795795                    
 
Multiple R-Squared: 0.1321  
F-statistic: 0.8825 on 5 and 29 degrees of freedom, the p-value is 0.5052  
 

 
*** log R_SAL day 15 Analysis of Variance Model *** 
 
Call: 
   aov(formula = Log.R.SAL.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.129790 0.0648950 0.229385 0.7964508 
      GEN  1  0.616341 0.6163408 2.178589 0.1507193 
   SS:GEN  2  0.392646 0.1963232 0.693947 0.5077060 
Residuals 29  8.204339 0.2829082                    
 
Multiple R-Squared: 0.1219  
F-statistic: 0.8051 on 5 and 29 degrees of freedom, the p-value is 0.5554 
 
 
*** log DA day 15 Analysis of Variance Model *** 
 
Call: 
   aov(formula = Log.DA.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
          Df Sum of Sq    Mean Sq  F Value     Pr(F)  
       SS  2 0.0369333 0.01846667 0.705681 0.5020544 
      GEN  1 0.0133690 0.01336899 0.510880 0.4804731 
   SS:GEN  2 0.1738083 0.08690416 3.320936 0.0502740 
Residuals 29 0.7588887 0.02616858                    
 
Multiple R-Squared: 0.228  
F-statistic: 1.713 on 5 and 29 degrees of freedom, the p-value is 0.1632  

 

 
Figure 6-35:  Two–way ANOVA output for the effects of SS and GEN on day 15 log 
S-SAL (top) log R-SAL (middle) and log DA (bottom) concentrations. 
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6.4.2c-6 Exploratory and Covariate analysis for day 15 

 A statistically significant effect of smoking status was not observed on log R-

SAL and log S-SAL day-15 plasma concentrations.   For admission day log S-SAL and 

log R-SAL, neither the FTND nor the number of cigarettes smoked per day had a 

significant influence on the ANOVA fit.  Although a statistically significant difference 

was not observed, HS possessed and apparent higher average log S-SAL concentrations 

compared to that of the LS and NS groups on day 15.   Results of the primary analysis 

(using smoking status as a factor) and the exploratory analysis (FTND or the number of 

cigarettes per day), suggest that smoking does not have a significant influence on log S-

SAL and log R-SAL concentrations observed on day 15.   

 With respect to day 15 concentrations, it is important to note that biological 

sampling was conducted pre-prandially and before smoking a cigarette.  The time of 

day of sampling was similar across subjects.  Information including chronic alcohol 

intake and weekly exposure to dietary total SAL was evaluated for their effects on the 

admission day log R-SAL, S-SAL and DA.   If chronic alcohol intake (i.e., TLFB) or 

dietary SAL was found to significantly correlate with log R/S-SAL of DA exposure, 

they were considered a significant and subsequently implemented into the statistical 

model.  A table summarizing the covariate regression analysis for the TLFB and dietary 

SAL intake is shown below (table 6-21).   
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Table 6-21:  Covariate analysis results for log R-SAL, log S-SAL and log DA 
concentrations in day 15. 
 
 

Weekly 
Dietary Intake  

TLFB     (# of drinks in 
past 90 days)  variable (ng SAL) 

 
R2 0.0005 0.034  

 
p-value 0.901 0.221  Log R-SAL 

 
significance NS NS  

 R2 0.001 0.093  
 p-value 0.804 0.349 Log S-SAL  
 significance NS NS 
 

R2 0.032 N/A  
 

p-value 0.301 N/A  Log DA 
 

significance NS N/A  
 
  NS:   not significant 
  N/A: dietary intake of DA was not available   
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 The covariate analysis yielded a lack of association between the TLFB and 

weekly dietary SAL intake for the day 15 concentrations of SAL enantiomers and DA.  

Therefore, use of the TLFB or SAL food intake as a covariate was not significant and 

was not implemented into the full statistical model.    

 A known biomarker of chronic alcohol consumption and liver damage, γ-

glutamyl transferase (GGT), was used to assess its correlation with the SAL 

enantiomers.   Liver function, as assessed by GGT did not have a significant effect on 

day 15  SAL concentrations.     Results showed that, for both enantiomers, a lack of a 

significant effect of GGT was observed.   GGT as a predictor of day 15 log S-SAL and 

R-SAL  was insignificant with the test statistic resulting in F (1, 32) = 1.09, p-value = 

0.302 for log S-SAL and F (1, 32) = 0.774, p-value = 0.385 for log R-SAL.  According 

to the regression analysis, liver function as deemed by GGT, is not a good predictor of 

log SAL enantiomer concentrations on day 15.  The results of this covariate analysis 

suggest that the number of drinks consumed in the past ninety days, weekly dietary 

intake of total SAL, and GGT do not influence the day 15 levels of R/S-SAL.    

 The day 15 concentrations of the SAL enantiomers and DA characterize the 

point during detoxification where, presumably, the subject is not recently exposed to 

any alcohol, and the acute, physiological effects of alcohol withdrawal are complete.    

This analysis assumes that the SAL concentrations reflected on day 15 are 

representative of either the physiological effects of chronic alcohol intake and/or 

continuous smoking throughout the detoxification period.         

 



441 

 The analysis was done to assess the influence of smoking and gender on 

circulating SAL levels, two weeks after in-patient detoxification.  It is important to note 

that the SAL concentrations at the day 15 time-point showed less variability than that 

admission day across all subject.   A significant effect of smoking status or gender was 

not observed on the log R/S-SAL enantiomer concentrations on day 15.  In addition, 

smoking variables such as the FTND and number of cigarettes smoked per day did not 

have a significant influence.   Although a statistically significant difference was not 

observed with respect to smoking status, a divergence of median R- and S-SAL 

concentrations was observed with the HS compared to the LS and NS.  For instance, R-

SAL concentrations possessed a median concentration two-fold higher than that of the 

other smoking status groups.   As reported in figure 6-3, the HS group smoked at least a 

two fold more cigarettes, on average than that of the LS group.   This may account for 

the difference seen on median R-SAL concentrations on day 15, albeit statistically 

insignificant.  With respect to gender, no observable or statistically significant 

difference was seen between males and females at day 15.   

 Chronic exposure measurements such as the TLFB and GGT did not show any 

significant influence on SAL exposure on day 15.   This information suggests that 

neither variable is a good predictor of SAL exposure.  It is interesting to note that, upon 

comparison of the known biomarker of chronic alcohol consumption GGT with TLFB, 

a significant relationship was not established (p-value 0.134, R2 = 0.066).   
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6.4.2d   CIWA-AR correlation with R/S-SAL and DA 

 A clinical endpoint, the CIW-AR was evaluated to assess if a relation between 

R-SAL and S-SAL plasma concentrations and withdrawal symptoms.   Information 

regarding the time course of the CIWA-AR was gathered for the first three days during 

the detoxification period, in which coinciding SAL plasma samples were measured.  Of 

note, biological specimen sampling and CIWA-AR scores occurred within 2 hours of 

each other.    Exploratory evaluation of the distribution of day 1 and average CIWA-AR 

scores were assessed between smoking status and gender (see table 6-22 below).   

 
 
Table 6-22:  Descriptive statistics for day 1 and average CIWA-AR score divided into 
smoking status and gender. 
 

GRAND
Mean 5.5
Median 4.0
Range 0 - 14
Mean 6.0
Median 5.0
Range 0 - 18
Mean 5.7
Median 5.0
Range 0 - 18

GRAND
Mean 3.3
Median 2.2
Range 0 - 7.6
Mean 5.8
Median 5.0
Range 0 - 15.3
Mean 4.5
Median 3.6
Range 0 - 15.3

Overall
5.0 3.4 5.1
4.3 2.6 4.2

0 - 12.7 0.6 - 7.6 1 - 15.3 

Non-smoker Light-smoker Heavy-smoker

Male
3.8 4.8 7.8
2.0 3.5

0 - 12 2 - 10 3 - 18

9.0
0 - 12 2 - 12 1 - 14

0 - 12 2 - 12 0 - 18 

Female
5.0 5.0 7.8
5.5 5.0 6.0

Overall
4.4 4.9 7.8
4.0 4.0 8.0C

IW
A

-A
R

 D
A

Y
 1

   

Non-smoker Light-smoker Heavy-smoker

C
IW

A
-A

R
 a

vg
   

   

Male
2.6 2.9
1.7 2.3

0 - 7.6 0.6 - 7.6

Female
7.3

4.3
4.2

1 - 8
4.0 5.9

7.2 3.9 4.2
0 - 12.7 1.5 - 6.6 1.8 - 15.3
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 Overall, the range of CIWA-AR scores was between 0 and 18.  Of note the 

maximum score for the CIWA-AR is 67, therefore subjects who participated in the 

analysis possessed relatively low scores.   Every individual had a positive score, with 

the exception of two NS who scored a “0” over the three days of initial detoxification. 

For day 1 CIWA-AR, a difference between genders in median scores was not different 

with males and females possessing median scores similar to the overall population.   

Conversely, a two-fold difference in median CIWA-AR scores was seen between HS 

and LS or NS groups.  This is suggestive that HS underwent a more severe withdrawal 

that that of the LS and NS groups upon initiation of alcohol abstinence.   With respect to 

average CIWA-AR scores, the effect of smoking status was not observed while the 

apparent effect of gender was seen.   Females had a two-fold higher average CIWA-AR 

score as compared to males.  This observation implies that females underwent more 

severe withdrawal symptoms than males throughout the detoxification period.     

 Over the initial time period of alcohol abstinence, the withdrawal symptoms in 

chronic alcoholics were suspected to decline.   Of note, no subject possessed a positive 

CIWA-AR score after day three of detoxification. The effect of time was evaluated for 

the individual CIWA-AR scores over the first three days of detoxification for all 

subjects.  Via linear regression, a significant difference in CIWA-AR was seen with the 

test statistic yielding F (1, 98) = 7.78, p-value = 0.006 (R2 = 0.074).    Time was able to 

only account for 7.4% of the variability associated with CIWA-AR scores. The 

regression may be viewed in the figure 6-36 below. 
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1.0 1.5 2.0 2.5 3.0
DAY
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C
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 *** Linear Model *** 
 
Call: lm(formula = CIWA ~ DAY, data = CIWA.AR.ANAL.041208, na.action = 
na.exclude) 
Residuals: 
    Min     1Q  Median    3Q  Max  
 -6.295 -3.323 -0.8511 2.149 11.7 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  7.7389  1.1081     6.9839  0.0000  
        DAY -1.4439  0.5178    -2.7886  0.0064  
 
Residual standard error: 4.205 on 98 degrees of freedom 
Multiple R-Squared: 0.07352  
F-statistic: 7.776 on 1 and 98 degrees of freedom, the p-value is 0.00636 

 
 
Figure 6-36:  Regression of CIWA-AR vs. time (days) for all subjects until day 3 with 
95% confidence bounds, along with full ANOVA output.  
 
 
 
 The effect of time on the CIWA-AR score was significant for each subject upon 

individual analyses.  Of note, the effect of smoking status was not significant with 

respect to the overall CIWA-AR profile resulting in a test statistic F (2, 94) = 1.12, p-

value = 0.329.  On the other hand, gender showed a significant effect with F (1, 94) = 
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4.62, p-value = 0.034.    Females possessed a greater difference in CIWA-AR score 

over time than their male counterpart.  Interaction of time and smoking status or gender 

was not observed.      The entire model, accounting for time, SS and GEN was able to 

account for 13.6% of the variability associated with CIAW-AR scores during the first 

three-days of detoxification. 

 
 
*** Linear Model *** 
 
Call: lm(formula = CIWA ~ DAY + SS + GEN, data = CIWA.AR.ANAL.041208, 
na.action =  
 na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -6.638 -2.721 -1.005 2.123 10.42 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  9.4308  1.2817     7.3581  0.0000  
        DAY -1.3893  0.5083    -2.7330  0.0075  
       SSLS -1.2979  1.0339    -1.2553  0.2124  
       SSNS -1.4035  0.9872    -1.4217  0.1584  
        GEN -1.7750  0.8257    -2.1497  0.0341  
 
 
Multiple R-Squared: 0.1359  
F-statistic: 3.737 on 4 and 95 degrees of freedom, the p-value is 0.007216  
 
 
 

Figure 6-37:  Linear model output for the effects of time, smoking status and gender on 
CIWA-AR scores.  
 

 

 As an effect of time was present in the CIWA-AR scores, exploratory evaluation 

of an association between the SAL enantiomers was performed.    Individual 

correlations were performed for each subject using log SAL concentration as the 

independent variable and CIWA-AR as the dependent variable.  The regressions may be 

seen in Appendix O.     For 28 of the 36 subjects, a significant relation was not observed 
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yielding p -values > 0.05 and R2 ranging from 0.002 – 0.146.   Of the remaining 

subjects, a significant relationship was observed with R2 ranging from 0.532 – 0.924.   

Statistical significance and R2 was not governed by the two factors of smoking status or 

gender.    In addition, the direction of the relationship (negative or positive) varied 

across subjects and was not systematic with respect to smoking status or gender. 

 Day 1 concentrations of log S-SAL, log R-SAL and log DA were compared with 

initial CIWA-AR score to evaluate the admission concentration with severity of 

withdrawal.  The regressions, including all subjects, of Day 1 log S-SAL, log R-SAL 

and log DA may be seen in figures 6-38, 6-39, and 6-40 below.   An insignificant 

relation between admission concentrations was observed for either of the SAL 

enantiomers (p-values:  S-SAL = 0.753, R-SAL = 0.694).     In essence, both log R-SAL 

and log S-SAL were not able to explain any of the variability associated with the 

CIWA-AR scores.    Moreover, a statistically significant association was not observed 

with log DA and CIWA-AR with p-value being 0.227.   

 

 

 



447 

y = -0.1112x + 5.9124
R2 = 0.0001

0

2

4

6

8

10
12

14

16

18

20

0.00 0.50 1.00 1.50 2.00 2.50 3.00

LOG S-SAL day 1

CI
W

A-
AR

 d
ay

 1

  

 Figure 6-38:  Day 1 log S-SAL vs. day 1 CIWA-AR score for all subjects.    
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 Figure 6-39:  Day 1 log R-SAL vs. day 1 CIWA-AR score for all subjects.    
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 Figure 6-40:  Day 1 log DA vs. day 1 CIWA-AR score for all subjects.    

 

 An analysis was performed on the change of CIWA-AR scores as a function of 

admission day concentrations.   This assessment was executed to evaluate if initial SAL 

concentrations had an influence on the decline of CIWA-AR scores during the first 

three days.     If a significant relationship were to be found, it could be deduced that 

recovery of withdrawal symptoms was influenced by circulating SAL concentrations.  

The regressions for each analyte are present in figures 6-41, 6-42 and 6-43 below.   
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 Figure 6-41:  Day 1 log S-SAL vs. change in CIWA-AR scores over three days 
 for all subjects.    
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 Figure 6-42:  Day 1 log R-SAL vs. change in CIWA-AR scores over three days 
 for all subjects.    
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 Figure 6-43:  Day 1 log DA vs. change in CIWA-AR scores over three days 
 for all subjects.    
 

  

 It can be concluded that no significant relationship between admission SAL or 

DA concentrations and a change in CIWA-AR scores exists.  The regression for each 

SAL and DA analyte yielded statistically insignificant p-values for the association (p-

values all greater than 0.467).  In essence, admission SAL concentrations were not 

predictive of the recovery symptoms associated with alcohol withdrawal.    

 An exploratory analysis was performed on the change of CIWA-AR scores as a 

function of a change in analyte concentrations over three days.   This evaluation was 

performed to assess if the change in SAL concentrations had an influence on the change 

of CIWA-AR scores during the first three days.  The regressions for each analyte are 

present in figures 6-44, 6-45 and 6-46 below.   
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 Figure 6-44:  Change in CIWA-AR scores over three days as a function of 
 change of S-SAL for all subjects. 
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 Figure 6-45:  Change in CIWA-AR scores over three days as a function of 
 change of R-SAL for all subjects. 
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 Figure 6-46:  Change in CIWA-AR scores over three days as a function of 
 change of DA for all subjects. 
 

A significant relationship was not found for any of the analytes.  The regression for 

each SAL and DA analyte yielded statistically insignificant p-values for the association 

(p-values all greater than 0.664).  According to theses results, it could be inferred that 

recovery of withdrawal symptoms was not influenced by a change in SAL 

concentrations over the first three days of alcohol detoxification.   

 

6.4.2e  Summary of Primary Analysis 

 Large within-subject variability was observed with the SAL enantiomers over 

the first 15 days of detoxification.  The levels \fluctuated throughout the detoxification 

period with individual subjects possessing both decreases and increases in 

concentrations of both R and S-SAL enantiomers from admission day to day 15.  A 
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small effect of time was observed on the enantiomers with R-SAL and S-SAL 

concentrations, on average, increasing minimally from admission day to day 15 while 

DA concentrations remained constant.  For individuals, covariates, such as smoking 

status or gender, did not explain the direction of increase or decrease in SAL 

concentrations during detoxification period.  Therefore, three different measurements of 

time were evaluated to assess the influence of smoking and gender on SAL 

concentrations, admission day, day 15 and GTM concentrations throughout the in-

patient period.     

 Admission day concentration assessment was to reflect the initial behavior of 

SAL concentrations at the start of alcohol detoxification.  At this point in time, patients 

were expected to have recently consumed alcohol, compared to the rest of the time 

course.    Of note, this time point showed the largest amount of between-subject 

variability as compared to the other time point assessments.  An effect of smoking 

status or gender was not observed at this time point.   Interestingly, recent exposure of 

alcohol or a drug of abuse did not have any bearing on SAL concentrations, which is 

contrary to the hypotheses involved with acute ethanol exposure effects on circulating 

SAL.  Possibly confounding the results on admission day was presumably alcohol 

induced liver dysfunction, as assessed by AST.    A relationship was observed on 

admission S-SAL and R-SAL and AST, suggesting that the degree of acute liver 

impairment has an influence.  Exploratory covariate analysis evaluating the effects of 

the TLFB and food inventory yielded insignificant results.  Grand total mean (GTM) 

concentrations were assessed for the influence of smoking and gender factors.   This 
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assessment was to reflect the overall behavior of SAL and DA throughout the 

detoxification period.  An effect of the primary factors was not seen upon evaluation of 

the GTM concentrations.    Other potential covariates such as TLFB, dietary SAL intake 

and acamprosate administration was not able to explain the variability associated with 

the GTM measurements.  Day 15 concentration evaluation resulted in an insignificant 

effect of the factors of smoking and gender.  This time point was assumed to be a true 

reflection of SAL concentrations after prolonged abstinence of alcohol, and the 

significant withdrawal effects have subsided.  At this time point, accounting for 

covariates such as the TLFB, dietary SAL assessment, a marker of chronic alcohol 

consumption, the GGT, did not explain any of the variability associated with the SAL 

concentrations.   

 The clinical endpoint, CIWA-AR, did not correlate with S-SAL or R-SAL 

concentrations suggesting that neither enantiomer is predictive of the withdrawal 

symptoms associated with alcohol detoxification.  It is important to note that biological 

specimens were not obtained at the exact time point of CIWA-AR assessment.  The 

acute effects of SAL concentrations on the time-course withdrawal symptoms have not 

been formally assessed.   This discrepancy between sampling and CIWA-AR 

administration was a major limitation and may provide some explanation to the lack of 

association between the clinical endpoint and SAL concentrations.   

 Several shortcomings exist in this investigation on the influence of 

detoxification, smoking status and gender on SAL enantiomer concentrations.   Of 

important note, the subject demographics, including age and disease status throughout 
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the detoxification period, are quite variable between and within smoking status groups.  

Moreover, different therapies were administered to each of the subjects including 

antihypertensives and antidepressants, both of which have not been assessed for their 

influence on SAL concentrations.   A large majority of the subjects received thiamine as 

supportive therapy and vitamin supplementation.    The precursor of SAL, acetaldehyde, 

is known to bind to thiamine (Takabe and Itokawa, 1983), which may disturb the 

endogenous synthesis of the analyte.     The administration of daily thiamine at various 

times of the detoxification period may have confounded the assessment of SAL levels 

in these patients.   

 No statistically significant differences were observed at any time point with 

respect to gender or smoking status.  Several short comings in this analysis precluded 

thorough interpretation of the results.  As this was an observational study, a lack of 

investigational control was a major limitation.  Admission concentrations were quite 

variable with patients possessing different exposures to ethanol and other drugs of abuse 

in the system, relative to the initial sampling time.    Patients throughout the 

detoxification period were able to smoke cigarettes ad-libitum.   An assessment of the 

number of cigarettes smoked during the detoxification period, via a self-report smoking 

log, would have been prudent to formally assess the effects of smoking on SAL levels 

during the detoxification period.   Other functions of SAL exposure such as dietary 

intake was not controlled or accounted for throughout the detoxification period, which 

may have influenced the SAL measurements.   Utilization of the Food Inventory 

attempted to capture the dietary intake of SAL but was unable to account for the 
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variability SAL concentrations.  It is important to note that this in not a validated 

measure of SAL dietary intake.  In essence, diet may have affected the measurements of 

SAL throughout the alcohol abstinence period, but may be unlikely as biological 

specimen sampling was primarily performed pre-prandial.     

 Two major validated measures of alcohol consumption, the TLFB and BrAC 

were assessed for possible effects on circulating SAL concentrations.   The TLFB was 

an insufficient measure to characterize SAL concentrations at any of the time points 

assessed.   This suggests that SAL was not influenced by chronic consumption of 

alcohol, which is contrary to other references.  Moreover, the measure of acute alcohol 

consumption, the BrAC measurement, was also unable to provide explanation of the 

variability associated with plasma SAL.    As endogenous SAL biosynthesis requires the 

enzymatic conversion of ethanol to acetaldehyde via alcohol dehydrogenase, liver 

function is presumed to be an important factor in the exposure of plasma SAL.   It was 

found that a measure of acute liver damage, AST, had a significant effect on SAL 

exposure, with a decline in liver function resulting in decreased SAL concentration 

upon entry to the clinical unit.  The correlation of AST with SAL enantiomers at 

different time-points throughout the detoxification period was not assessed, but the 

factor of liver function may have confounded the results associated with the primary 

analysis.   In essence, the varying degrees of AST levels may have been responsible for 

some of the variability associated with SAL at each measurement in time.    The acute 

effects of alcohol intake may have impaired the livers ability to synthesize acetaldehyde 

to yield the SAL product.  



457 

 Upon further evaluation of the biosynthesis of SAL, both polymorphisms in 

alcohol dehydrogenase (ADH) and aldehydes dehydrogenase (ALDH) may contribute 

to varying exposures of SAL.   The specific polymorphisms at the loci ADH1B, 

ADH1C, and ALDH2 can increase the levels of acetaldehyde more so than other alleles 

(Day et al., 1991).  This can lead to increased circulating acetaldehyde and, in turn, the 

exposure of SAL.   An abnormally high circulating level of SAL caused by a 

polymorphism in an alcohol metabolizing system is equally plausible.  The intriguing 

possibility exists that the ALDH and ADH enzyme, in one or more of its isoforms, 

could partially be responsible for the formation of SAL in humans.  As these 

polymorphisms are present in differing ethnicities, it would be prudent to genotype the 

populations being studied to determine if there is any effect of ALDH and ADH 

polymorphisms on circulating SAL levels.     

 The metabolic fate of the SAL enantiomers has not been addressed in published 

reports.  This investigation principally evaluates exposure of SAL through different 

measures of intake of potential SAL sources such as cigarette smoking and chronic or 

acute alcohol consumption.    However, this study does not evaluate the influence of 

varying degrees of SAL metabolism.   The disposition for the SAL enantiomers have 

not been formally assessed, but according to SAL structural analysis, enzymes such as 

catechol-o-methyl transferase (COMT) and N-methyl transferase may play an important 

role.  These enzymes are known to have major functional polymorphisms in an alcohol 

dependent population (Kauhanen et al., 2000; Oroszi et al., 2005).  Results of both 

studies indicate that COMT and N-methyl transferase polymorphisms may contribute 
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significantly to alcohol intake not only in alcoholics but also in a general male 

population.   As both enzymes are speculated to have a role in the metabolic fate of 

the SAL enantiomers, polymorphisms with these enzymes may explain the variability in 

SAL exposure.    Moreover, as both of these enzymes are present in the liver, 

impairment of liver function may effect the metabolic disposition of SAL.  

  

6.5 R/S-SAL and DA – Alcohol-dependent vs. control subjects 

 All information presented thus far summarizes R/S-SAL and DA exposure 

information obtained from non-alcohol dependent and alcohol-dependent NS, LS, and 

HS.   In essence, the presented information examines the influence of smoking and 

gender within each population of healthy and alcoholic subjects undergoing 

detoxification.     The significant relationship of smoking status and SAL exposure was 

observed from study #1, which may be resultant of acute inhalation of tobacco smoke 

and/or the inherent physiological difference of smokers to that of nonsmokers.  No 

effect of smoking status was observed in the alcohol-dependent subjects at any point in 

time during the detoxification period.   It is speculated that this discrepancy between 

study populations may have been confounded by the influence of alcoholism.  To 

further clarify this relationship, a comparison was made from the subjects who were 

healthy nonsmokers and smokers to those patients who were alcohol dependent 

nonsmokers and smokers.   

 In brief, this analysis compared two different populations of healthy subjects to 

alcoholic subjects on admission day.  The populations included 1) 41 healthy volunteers 
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including 19 NS and 11 LS and HS who smoked within 30 minutes of biological 

specimen sampling (Study #1) and 2) admission day concentrations of 35 alcohol 

dependent subjects undergoing detoxification including 12 NS, 11 LS and 12 HS.   In 

the non smoking groups between populations, an assessment of the influence on 

alcoholism on circulating SAL levels can be performed.  With respect to the smoking 

groups within each population, the comparison would evaluate the effects of recent 

smoking in the healthy population to that of alcoholic smokers who were assumed to 

have recently smoked a cigarette on admission to the detoxification clinic.  For 

reference the subject demographics of both populations are shown in the tables 6-23 and 

6-24 below.  

 
Table 6-23:  Demographic Results of Study #1 (healthy population acute cigarette 
smoking, mean ± SD) 

Demographic 

variable 
Smoking Status Males Females Overall 

N 9 10 19 

Age 24.9 (2.5) 26.0 (3.1) 25.5 (2.8) 

 

FTND 0 (0) 0 (0) 0 (0) NS 

# Cig/day 0 (0) 0 (0) 0 (0) 

N 5 6 11 

Age 25.4 (4.1) 23.3 (3.8) 24.3 (3.9) 

FTND 2.4 (2.3) 1.5 (1.4) 1.9 (1.8) LS 

# Cig/day 9.0 (4.8) 8.3 (4.6) 8.6 (4.5) 

N 5 6 11 

Age 25.6 (3.1) 24.7 (4.0) 25.1 (3.5) 

FTND 6.8 (0.8) 5.5 (1.4) 6.1 (1.3) HS 

# Cig/day 17.4 (2.5) 25.8 (4.9) 22.0 (5.8) 
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Table 6-24:  Demographic Results Study #2 (alcohol dependent population, mean ± 
SD) 

Smoking 

Status 

Demographic 

variable 
Males Females Overall 

N 6 6 12 

Age 40.0 (6.4) 43.2 (10.3) 41.6 (8.3) 

 

 

 With the exception of the number of subjects within each smoking status and 

gender group, the demographics between studies are similar with respect to FTND.   

There existed significant ethnicity differences between the two populations with the 

clinical study #1 having predominately Asian and Caucasian subjects, while subjects in 

clinical study #2 were predominately African American and Caucasian subjects (see 

tables 5-2 and 6-2).  On average, the alcohol-dependent population smoked more 

cigarettes per day compared to the healthy population of smokers. It should be duly 

noted that the alcoholic subjects, on average, were at least twenty-years older than the 

healthy population, precluding a definitive interpretation of the comparative results 

between the populations.   

FTND 0 (0) 0 (0) 0 (0) NS 

# Cig/day 0 (0) 0 (0) 0 (0) 

N 6 5 11 

Age 41.0 (10.7) 37.6 (9.4) 41.0 (10.7) 

FTND 4.7 (1.2) 3.6 (2.1) 4.2 (1.7) LS 

# Cig/day 10.2 (2.4) 9.5 (2.7) 9.9 (2.5) 

N 6 6 12 

Age 43.5 (11.7) 40.8 (8.5) 42.2 (9.9) 

FTND 7.3 (1.8) 8.8 (1.0) 8.1 (1.6) HS 

# Cig/day 32.1 (7.8) 26.8 (12.2) 29.5 (10.1) 
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 A statistical analysis via two-way ANOVA was conducted on the individual 

SAL and DA concentrations between the populations.   Log transformed values were 

compared evaluating the two primary factors of gender and smoking status.   

 Median smoking status concentrations, along with ranges, of the concentrations 

of Study #1 are compared to the median smoking status concentrations obtained from 

the admission concentrations from the alcoholic population in study #2 in table 6-25 

below.    Between studies, it was observed that the healthy population that recently 

smoked had a higher median concentration of all analytes as compared to the alcohol 

dependent population with approximately 2-fold difference seen with S-SAL, R-SAL, 

and DA concentrations.   The discrepancy in concentrations between the studies is 

due, in part, to the smokers of the healthy population, who were exposed to cigarette 

smoking 30 minutes prior to biological specimen sampling.  With respect to the NS 

groups between populations, it was observed that the concentrations were similar 

between the healthy and alcohol-dependent populations.  Comparison via ANOVA 

found the comparison to be statistically insignificant across all analytes for the NS 

population.     In other words, regardless of the dependency on alcohol, concentrations 

of S-SAL, R-SAL and DA are similar.   Conversely, the populations showed a 

divergence when comparing both smoking groups of LS and HS.     Healthy smokers 

who were recently exposed to tobacco had significantly higher median concentrations 

of R/S-SAL and DA than that of the alcoholic population on admission day.    For 

instance, comparison of the S-SAL concentrations between LS populations showed that 

the healthy smokers have a three-fold higher median concentration than that of the LS 
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alcoholic population.  This effect was more pronounced with the HS groups with 

healthy smokers, possessing a 9-fold higher median concentration of S-SAL than that of 

the alcoholic HS. Similar statistically significant trends were observed for the R-SAL 

and DA analytes. 

 Upon comparison with healthy patients that abstained from smoking for 15 

hours, the NS group had statistically similar concentrations of all analytes across all 

populations.  This suggests that there are no significant effects with regard to the sole 

factor of alcoholism on SAL concentrations.  Moreover, even after smoking groups 

were abstinent from smoking for 15 hours, they still had higher median SAL 

concentrations as compared to their smoking status group counterparts from the 

alcohol-dependent patients on admission day.  This infers that the effects of alcoholism 

itself may decrease the concentrations of SAL exposure.  Of note, the ANOVA 

performed across all three populations resulted in the significant difference of SAL 

analytes being between the healthy recent smoking population and the alcohol 

dependent population on admission day.   All of the information obtained from this 

comparison implies that alcoholism has no effect on SAL exposure while the acute 

exposure of tobacco smoke has the most significant effect.   
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 It is interesting to note that the NS group amongst the healthy population had a 

higher median concentration than the HS group of the alcoholic population.   This 

observation is conflicting with all reports of SAL measurement between alcoholic and 

control populations (see chapter 1).   The rank observed for all analyte concentrations in 

the comparison between recently-smoking subjects to that of alcohol-dependent 

subjects on admission day yielded the following results:  for S-SAL the HS Alcoholics 

< LS Alcoholics < NS Alcoholics ~ NS Healthy < LS Healthy < HS Healthy; for R-

SAL the LS Alcoholics < HS Alcoholics < NS Alcoholics < NS Healthy < LS Healthy 

< HS Healthy; for DA the LS Alcoholics < NS Alcoholics < NS Healthy < HS 

Alcoholics < LS Healthy < HS Healthy.    

 Recall that the ANOVA analysis for the effects of smoking status resulted in 

significance for the healthy population, but did not yield significance for the alcohol 

dependent patients on admission day for all analytes.    More investigational control was 

implemented in the healthy population from Study #1 as compared to Study #2.    Study 

#1 implemented a requirement for healthy smokers to smoke one complete cigarette 

prior to sampling.    The treatment effect of smoking was seen to significantly affect the 

circulating SAL levels (see table 5-25).  For study #2, several confounding factors were 

present, hindering the interpretability of the results.    For the most part, the alcoholic 

population presented to the clinic with additional factors that may influence circulating 

SAL levels such as recent alcohol exposure and other drugs of abuse.  Moreover, 

opposite to the case for smokers in Study #1, the sampling time point of the admission 

sample, with respect to the subjects’ last cigarette was not recorded.  The variability 
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associated with the admission SAL concentrations within the alcohol dependent 

smoking groups may be due in part to the unknown pharmacokinetic characteristics of 

SAL in this population after smoking a cigarette.   

 The majority of the alcohol-dependent population either had a recent exposure 

to ethanol and/or a drug of abuse.  Therefore, it was expected that SAL concentrations 

in this population would be elevated compared to that of the healthy population.  

Surprisingly, the healthy population, especially the subjects who were recently exposed 

to smoking, had much greater SAL concentrations compared to that of the alcohol- 

dependent population.   From these results, it is concluded that the source of tobacco 

smoking is what influences the concentrations in a healthy population.  In an alcoholic 

population, the SAL levels are comparable to the NS healthy population.     

 It should be noted that a difference in ethnicity distribution was observed 

between the alcohol-dependent and healthy population with majority of the population 

being Asian in the latter group.  It is known that Asians possess polymorphisms in ADH 

and ALDH metabolizing systems (Yamamoto et al, 1993).  The specific polymorphisms 

at the loci ADH1B, ADH1C, and ALDH2 can increase the levels of acetaldehyde more 

so than other alleles.  This can lead to increased circulating acetaldehyde in the Asian 

population from Clinical Study #1 and, in turn, the exposure of SAL.   It is also duly 

noted that alcohol-dependent patients may have induced alcohol and acetaldehyde 

metabolizing systems yielding a decrease in acetaldehyde.  It is equally plausible that 

the decreased SAL concentrations in alcohol dependent patients compared to healthy 

subjects is due to a decrease in acetaldehyde levels due to metabolic induction.    
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 Factors such as polymorphisms in metabolizing enzyme systems responsible for 

ethanol and SAL disposition along with liver pathophysiology in the alcoholic 

population may account for the difference is SAL exposures seen within this study.   

 

6.6  Summary of Clinical Study #2 

 This investigation was designed to test the effects of smoking status and gender 

on plasma concentrations of R/S-SAL and DA in a population of alcohol dependent 

patients undergoing detoxification.   Demographic information and plasma samples, 

along with clinical variables, were obtained from thirty-five subjects undergoing a four- 

week inpatient alcohol abstention program.  Biological samples for R/S-SAL and DA 

measurements were obtained on days 1, 2, 3, 8, and 15 of the inpatient period. With 

respect to subject selection, patients were chosen based on health status, a complete 

sampling schedule over the sampling schedule, and stratification into smoking status 

groups, ensuring adequate distribution of smoking status and gender within each group. 

The observational study utilized a nicotine dependence scale and the number of 

cigarettes smoked per day in order to stratify the subjects into smoking status groups.    

Along with the alleged nicotine dependence difference between groups, all subjects 

were heterogeneous with respect to demographics.    A large portion of subjects that 

participated in the study possessed a positive BrAC and drugs of abuse screen upon 

admission, which may confound results obtained on admission day.  Throughout the 

inpatient detoxification, investigational control with respect to diet and smoking was not 

performed with patients allowing to smoke ad-libitum and consume foods that may 
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contain SAL.  This information was not recorded and may have had influence on the 

SAL levels reported throughout detoxification.    As biological specimen sampling was 

conducted early morning, pre-prandial and before the first cigarette of the day, it is 

unlikely that these variables would have an effect.    Another confounding variable that 

may hinder interpretation of the results obtained from this study are the different 

pharmacotherapies used on the individual subjects.  It is not known whether any of the 

therapies influence the distribution or disposition of the SAL enantiomers.    

Overall, the variability observed within- and between-subjects was pronounced 

across all groups for all analytes tested.    A general effect of time was observed with 

the both SAL enantiomers while DA concentrations were relatively consistent during 

alcohol abstinence.   A slight increase was observed in average concentration across all 

subjects from admission day to day 15 of sampling.   The variability in SAL 

concentrations associated with these time-points was large (> than 93% COV for S-SAL 

and R-SAL for admission day and day 15 across all subjects).  Therefore, separate 

analyses for the factors of gender and smoking status were performed on the grand total 

mean, admission day, and day 15 concentrations for each analyte.   

The effect of smoking status was not significant at any time-point evaluated.    

Although a trend was observed, with HS possessing higher SAL concentrations on day 

15 compared to that of NS and LS groups, a statistically significant difference was not 

noticed.  The effect of smoking status was further characterized into the design 

variables used for smoking status stratification, the FTND and cigarette smoking 

frequency.   Characterization of subjects utilizing these variables did not yield a 
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significant result in explaining the variability associated with the SAL enantiomer 

concentrations.    Further covariate analysis using the TLFB measure of chronic alcohol 

exposure, the BrAC measure of acute alcohol exposure, average dietary SAL intake, 

acamprosate administration throughout the detoxification period and admission drug of 

abuse screen, did not yield significant relation with R/S-SAL exposure.    A measure of 

acute hepatocellular dysfunction, aspartate amino transferase (AST), showed an inverse 

relation to circulating SAL concentrations.  An increase in AST (more hepatic 

impairment) yielded a decrease in plasma R/S-SAL enantiomers, suggesting that liver 

function was an important determinant of SAL exposure.    

An attempt was made to assess a clinical endpoint, the CIWA-AR to SAL 

exposure, which proved unsuccessful.   The lack of association could be due to the 

discrepancies involved with the biological sampling with the CIWA-AR measurement.  

Moreover a significant effect of time was observed with the CIWA-AR over three days 

with a decrease being observed in all patients.  This time effect was not observed with 

the SAL enantiomers in the first three days, further precluding the correlation of these 

analytes with the alcohol withdrawal assessment.   

Upon comparison with a healthy, non alcohol-dependent population, a 

surprising finding was observed.  On average, the SAL concentrations observed in the 

healthy population were higher that that of the alcohol dependent population on 

admission day of detoxification, despite the fact that 37% of the alcohol dependent 

population has been recently exposed to alcohol (as deemed by entrance BrAC).   

Within each smoking status group, NS healthy and alcohol dependent patients showed 
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statistically equivalent concentrations.  On the contrary, the LS and HS groups within 

the healthy population both possessed higher SAL concentrations than their alcohol 

dependent counterparts.   A major limitation of this analysis is that the smoking 

population in the healthy subjects were required to smoke within thirty minutes of SAL 

sampling, while the alcohol dependent sampling was not controlled for this factor of 

recent smoking.  The assessment of the time frame between last cigarette upon entrance 

into the clinic and the SAL sampling was not assessed in the alcohol dependent patients, 

hindering definitive interpretation of the results.     Nevertheless, the results of clinical 

study #1 conclude that recent smoking of a cigarette influences SAL plasma 

concentrations.   Throughout time, this observation was not observed in the alcohol 

dependent population as sampling, with the exception of admission day, occurred 

before the first cigarette of the day.  The observational results from clinical study #2 

may be confounded by several factors such as concurrent pharmacotherapies, other 

disease states, impaired liver function, and lack of rigid investigational control of 

smoking and dietary intake throughout the inpatient period.     

A major critique of this analysis is that the two separate populations were 

compared to assess the circulating SAL differences, one study of a healthy population 

recently smoking and one study involving an alcohol dependent population on 

admission to a detoxification clinic that may or may not have recently smoked a 

cigarette.  Ideally, a study consisting of observations in the same population, sampling 

before and after smoking, in a healthy and alcohol dependent population, with an 
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adequate sampling schedule would be needed to further support the notion of “true” 

smoking status differences.    



 

 

 

 

 

 

CHAPTER 7  

OVERALL CONCLUSIONS 
 

 

 TIQ and β-carboline exposure has been reported to be influenced by acute 

ethanol intake and chronic alcoholism.    Significant variability within published studies 

has been reported, hindering the ability for these compounds to be an adequate marker 

for alcohol abuse.  As the association of smoking and alcohol abuse is strong, it is 

suspected that the variability in TIQ and β-carboline exposure observed may be 

explained by tobacco smoking.     

 As the variability associated with measurements may be in part to the analytical 

methodology involved in quantification, two separate assays were developed and 

validated to assess biological concentrations of the β-carbolines, harman and 

norharman, and the TIQ’s, R- and S-Salsolinol.    Several of the reported bioanalytical 

methods used for the quantification of theses analytes in a biological matrix possessed 

many shortcomings including lack of internal standard use and unresolved 

chromatographic resolution between analytes of interest, decreasing the reliability of 
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accurate and precise quantification.   Of utmost importance, none of the reported 

methodologies utilized a calibration matrix that was intended for use in actual sample 

analysis, presumably due to the lack of a true blank matrix.   The bioanalytical methods 

developed in this investigation addressed the inadequacies associated with the reported 

methods.  Significant attention of the analytical procedure development involved 

assessment of an appropriate surrogate matrix for calibration purposes.   Using robust 

method development procedures and validation techniques, along with a thorough 

assessment of “surrogacy” of a modified matrix, two analytical methods used for the 

quantification of the β-carbolines and TIQ’s in human plasma was established. 

 A robust, sensitive, selective and reproducible assay was developed for the 

quantification of the endogenous β-carbolines, harman and norharman in human 

plasma. This technique utilized protein precipitation via cold acetonitrile and phenyl 

SPE cartridges to isolate both β-carbolines from 2-ml plasma.  Extraction efficiency 

was evaluated using yohimbine as an internal standard.   Analyte separation was 

achieved via a commercial C8 column with a ternary isocratic mobile phase consisting 

of methanol, acetonitrile and KH2PO4/H3PO4 buffer, resulting in acceptable resolution 

under optimal fluorescence detection conditions.  A modified matrix, using a minimal 

dilution factor, was proven to show similarity in analytical response as that of 

unmodified, plasma sample matrix.    The surrogate matrix was used to decrease the 

response of the observed constitutive harman and norharman concentrations, thus 

providing a “blank” matrix.     Therefore, this modified matrix was used for calibration 

purposes and subsequently used for validation.   
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 At physiologically relevant concentrations, method precision and accuracy were 

found to be acceptable for both inter- and intra-day measurements.  A linear response 

was observed in 2 ml plasma for both analytes from the LLOQ of 6.3 pg/2 ml to the 

ULOQ of 1.0 ng/2 ml for each analyte, yielding acceptable linear model fits.  The 

evaluation of endogenous plasma concentrations in healthy humans yielded vales that 

were consistent with literature values. 

 The current developed method for the β-carbolines, harman and norharman, has 

maintained resolution between analytes, utilized a novel internal standard to assess 

sample loss from extraction and was fully validated using and appropriate surrogate 

matrix. Moreover, this new method has maintained adequate sensitivity for 

physiological studies. The chromatographic separation conditions along with the 

optimized extraction technique and surrogate matrix calibration was used to support 

clinical investigation for the quantification if the β-carbolines in human plasma.     

 In the case of the TIQ’s, a robust, sensitive, selective and reproducible assay was 

developed for the quantification of the endogenous, S- and R-SAL, along with their 

precursor DA, in human plasma.  A direct single-step pentafluorobenzyl derivatization 

scheme in an aqueous media, without extractive alkylation using phase transfer 

catalysts, was devised for the enantioseparation of SAL with simultaneous detection of 

DA.   In brief, this technique utilized phenylboronic acid cartridges to isolate the 

analytes from 1-ml plasma.  An elution aliquot of acidified methanol was pH adjusted 

for subsequent, optimized, analyte derivatization with pentafluorobenzyl bromide.  The 

final product was hexane extracted, evaporated to dryness, and the residue was 
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dissolved in methanol for the analysis by HPLC-ESI-MS/MS.  Chiral separation was 

obtained via a commercial amylose-derivate based stationary phase HPLC column with 

a binary mixture of isopropanol and methanol as mobile phase.  Deuterium-labeled 

individual SAL enantiomers along with deuterium labeled dopamine were used as 

internal standards.  Detection was carried out via tandem mass-spectrometry and ESI 

mass spectra were acquired in positive ion mode with selected reaction monitoring.  The 

resultant derivatives were stable and base-line resolved both SAL enantiomers as well 

as the DA precursor.  A modified matrix involving destruction of constitutive SAL and 

DA was proven to be surrogate and subsequently used for calibration purposes.  

 At physiologically relevant concentrations, method precision and accuracy were 

found to be acceptable for both inter- and intra-day measurements.  A linear response 

was observed in 1-ml plasma for both SAL enantiomers from the LLOQ of 20 pg to the 

ULOQ of 4 ng for each racemate, yielding acceptable correlation coefficients.    For the 

DA precursor the range observed was between the LLOQ of 100 pg to the ULOQ of 10 

ng, resulting in adequate linear calibration fits.  For both SAL enantiomers, the average 

extraction recovery was 56 ± 5% within the concentration range.  Evaluation of 

endogenous concentrations in healthy, human plasma yielded results that were in the 

reported physiological range for R/S-SAL and DA. 

 In comparison to reported methodologies for the quantification of R/S-SAL and 

DA in human plasma, this procedure has surmounted the limitations aforementioned.  

The optimized chromatography has preserved the baseline resolution of the both 

enantiomers throughout the concentration range, improving the reliability of 
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quantification.   Quantification with the isotopically labeled internal standards of R- and 

S-SAL with DA yielded suitable assay performance results for the quantitative 

bioanalytical HPLC-MS/MS assay.   

 Employment of both of the sensitive and reproducible assays was suspected to 

circumvent any variability associated with the quantification of the β-carbolines and 

TIQ’s in human plasma.  Therefore, these assays were subsequently used to support the 

two separate clinical investigations.   

 Clinical Study #1 was a pilot study in forty-one male and female volunteers to 

study the effects of gender smoking on TIQ and β-carboline exposure.  The outpatient 

study was non-interventional, designed to evaluate measurements of plasma TIQ’s and 

β-carbolines in nonsmokers and in a smoking population who had just recently smoked 

a cigarette.   Subjects were stratified into groups of non-smokers (NS), light-smokers 

(LS) and heavy smokers (HS), based on the number of cigarettes smoked per day and 

the Fagerström Test for Nicotine Dependence (FTND).     Subject participation involved 

two morning outpatient visits in which a single blood sample was taken on each visit for 

the quantification of plasma TIQ’s and β-carbolines.   

 Overall, the variability observed between subjects was pronounced across all 

groups for both β-carbolines and the SAL enantiomers.     The effect of smoking status 

was significant within this study with the primary difference being between nonsmokers 

and smokers.    Although a trend was observed, a statistically significant difference was 

not noticed between the two LS and HS smoking groups.   The difference in exposures 

of the β-carbolines between smokers and nonsmokers are presumed to be resultant of 
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the acute inhalation of β-carbolines from tobacco smoke. Along with the inhaled β-

carbolines, the endogenous formation of the β-carbolines via condensation of 

acetaldehyde biogenic amines may also contribute to the overall exposure.    On the 

other hand, the SAL enantiomers and dopamine are not known to be constituents of 

tobacco smoke.   It is presumed that the acute exposure of acetaldehyde from the 

tobacco smoke, along with the subsequent condensation with dopamine, is responsible 

for the divergence of SAL concentrations between nonsmokers and smokers.    It was 

also observed that there were inherent dopamine differences between smoking status 

groups.   This effect was presumed to be caused by induction of a stress response upon 

smoking, thereby releasing dopamine.   

An attempt was made to characterize true baseline differences between smoking 

status groups with evaluation of a population of smokers who abstained from smoking 

for 15 hours.    A significant baseline difference was observed for both salsolinol 

enantiomers and norharman within this study with the primary difference being between 

the heavy-smokers and nonsmokers.    This is presumed to be a function of a true 

constitutive difference between smokers and nonsmokers or an additive accumulation of 

SAL enantiomer and norharman concentrations within the body.   When compared to 

the study involving smoker’s recent exposure to tobacco smoke, the difference between 

nonsmokers and smokers was more pronounced.   This suggests that, in addition to a 

supposed baseline difference, inhalation of tobacco smoke provides additional exposure 

to circulating TIQ and β-carbolines contributing to the incongruity of concentrations 

between smoking status groups.    As the difference between the smoking status groups 
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was much greater after smoking a cigarette, it was concluded that the effect on the 

analyte concentrations are due to recent tobacco smoke inhalation. 

The design of the investigation of baseline difference between smoking status 

groups possessed few shortcomings. The primary study was not balanced with respect 

to gender and smoking status.     Moreover a strong correlation was observed between 

the smoking status groups and measures of annual ethanol intake, hindering 

interpretability of the resultant smoking status effect.  For all analytes, a large inter-

occasion variability was observed between observational periods.  The sampling 

schedule, with respect to inhalation of tobacco smoke, required more rigid control to 

minimize variability associated with the separate sampling occasion.  A formal 

conclusion with respect to this study cannot be deduced without full understanding of 

the pharmacokinetics of the analytes in question.   These insufficiencies confound the 

results and variability associated between smoking status groups.  Of note, a gender 

difference was not observed but the true difference may have been masked due to the 

unbalanced design for this factor.        

The interrelationship between smoking and alcoholism is strong and has been 

exemplified by several researchers.  As smoking status had a significant effect on TIQ 

and β-carboline exposure in a healthy population, it is expected that this effect would be 

observed in an alcoholic population.    Therefore, a comparison was made to a second 

study involving an alcohol-dependent cohort undergoing detoxification treatment at the 

National Institutes of Health - National Institute on Alcohol Abuse and Alcoholism.  

This investigation evaluated detoxification-induced changes in plasma TIQ 
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concentrations in n = 35 alcoholics undergoing a four-week, inpatient alcohol 

abstinence program.   Using the same criteria used from study #1, subjects were 

stratified with respect to smoking status of NS, LS and HS.   Converse to the study 

involving healthy patients this analysis was balanced for gender.     

Plasma samples were collected during the first two weeks of detoxification: on 

admission, day 2, 3, 8, and 15 days after enrollment.  A clinical endpoint, the Clinical 

Institute Withdrawal Assessment-Alcohol Revised (CIWA-AR), was used to assess a 

possible correlation of these levels to withdrawal symptoms.  Plasma TIQ levels were 

assessed along with CIWA-AR, smoking history and exposure, and alcohol dependence 

measurements in order to assess their feasibility as a clinical biomarker for smoking and 

alcohol dependence.   Importantly, the time-course of these compounds during early 

abstinence in an alcohol-dependent cohort was assessed.  Evaluation of the contribution 

of smoking to levels of these compounds and, ultimately, the time-course was the 

primary objective of this study. 

Overall, the variability observed within- and between-subjects was pronounced 

across all groups for both SAL enantiomers.    A slight increase was observed in 

average R- and S-Salsolinol concentrations across all subjects from admission day to 

day 15 of sampling, while DA concentrations were relatively consistent during alcohol 

abstinence. Separate analyses for the factors of gender and smoking status were 

performed on the grand total mean, admission day, and day 15 concentrations for each 

analyte.   
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At every time point assessed, the effect of smoking status or gender was not 

significant.    Further covariate analysis using the a measure of chronic alcohol exposure 

the TLFB, the BrAC measure of acute alcohol exposure, average dietary SAL intake, 

acamprosate administration throughout the detoxification period and admission drug of 

abuse screen, did not yield significant relation with R/S-SAL exposure.    It is 

interesting to note that measures of alcohol intake such as the TLFB and acute ethanol 

intake, the BrAC did not yield a significant correlation.    These results refutes majority 

of the published literature with regard to SAL concentrations and ethanol intake.  A 

measure of acute hepatocellular dysfunction, aspartate amino transferase (AST), 

showed an inverse relation to circulating SAL concentrations at admission day 

suggesting that SAL exposure may be dependent on liver pathophysiology.   It was 

concluded in the investigation that the discrepancies observed may have been due, in 

part, to liver dysfunction. 

 Upon comparison with a healthy, non alcohol-dependent population, the SAL 

concentrations observed in the healthy population were higher that that of the alcohol 

dependent population on admission day of detoxification.    These results may have 

been due to the fact that the healthy subjects were required to smoke within thirty 

minutes of SAL sampling, while the alcohol dependent sampling was not controlled for 

this factor of recent smoking.  The assessment of the time frame between last cigarette 

upon entrance into the clinic and the SAL sampling was not assessed in the alcohol 

dependent patients, hindering definitive interpretation of the results.    The observational 

results from clinical study #2 may be confounded by several factors such as concurrent 



480 

pharmacotherapies, other disease states, impaired liver function, and lack of rigid 

investigational control of smoking and dietary intake throughout the inpatient period, 

other drugs of abuse and the heterogeneity of the subject demographics.     

 It was found that, in a healthy population, a noteworthy trend was observed 

between smoking status and TIQ and β-carboline exposure.   This trend is hypothesized 

to be a product of a combination of constitutive endogenous differences between 

smoking status groups and exposure via the inhalation of the analytes themselves and/or 

inhalation of precursors required for endogenous synthesis, acetaldehyde.  Moreover, 

TIQ exposure has been reported to be influenced by acute ethanol intake and chronic 

alcoholism.    Significant variability within these studies has been reported, hampering 

the ability for these compounds to be an adequate marker for alcohol abuse.  As the 

association of smoking and alcohol abuse is strong, it is suspected that the variability in 

TIQ exposure observed may be explained by tobacco smoking.    In the investigation 

with alcohol dependent subjects smoking status or gender was not significant with 

respect to TIQ levels, at any point during detoxification.   Moreover, our study 

concluded that alcohol-dependent patients did not have higher concentration of 

circulating TIQ’s compared to the healthy patients, which contests all published reports. 

 From the information provided from this investigation, SAL enantiomers do not 

seem to be viable biomarker candidates for alcoholism.  The specificity of these 

compounds as state markers of alcoholism is compromised by factors such as liver 

dysfunction.  Moreover, other factors such as other drugs of abuse or additional 

pharmacotherapies may further complicate the use for SAL as a biomarker.    Of most 
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importance, the use of the SAL measurement was unable to discriminate between a 

healthy population and an alcohol dependent population, further negating the use of 

SAL and an alcoholism marker.  It was observed that smoking does influence SAL and 

β-carboline concentrations in a healthy population.  Further research is warranted in the 

evaluation of the pharmacokinetics of these compounds to support additional smoking 

biomarker studies.  

The plasma concentrations of TIQ and β-carboline exposure are assumed to be 

reflective of central dopaminergic activity.    The concentration difference between 

smokers and nonsmokers suggest that nicotine dependent subjects may require 

maintenance of these higher concentrations in order to experience feelings of pleasure, 

simultaneously circumventing negative symptoms of nicotine withdrawal.   In the case 

of alcohol dependent subjects, concentrations of TIQ’s were actually lower than that of 

healthy subjects.   This difference between the populations infers that the alcohol-

dependent person may drink in order to attain higher concentrations of TIQ’s for 

feelings of pleasure and reward.   Further studies evaluating the acute cravings of 

alcoholics and smokers need to be conducted in order to substantiate these hypotheses.  

 Behavioral studies do indicate that nicotine and alcohol are addictive and that 

these drugs reinforce self-administration.  This phenomenon is reported to be governed 

by the mesolimbic dopamine system.   A major assumption in this investigation was 

that central TIQ and β-carboline concentrations reflect to those observed in plasma.  

Further investigations, including pharmacokinetic and central nervous system 

concentration assessment, would help corroborate the plasma TIQ and β-carboline 
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concentrations within the presumed in-vivo effects within the mesolimbic dopaminergic 

system.  TIQ and β-carboline exposure within this “reward pathway” may play a 

synergistic role, along with the pharmacological actions of nicotine and alcohol, in the 

reinforcing aspects of tobacco smoking and chronic alcoholism.  
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Appendix A
 

Fagerström Test for Nicotine Dependence 
Heatherton R, Kozlowski L, Frecker R and Fagerström K.   

Br. J. Addiction. 1991; 86, 1119-1127. 
 
1. How soon after you wake up do you smoke your first cigarette? 
 
 _____ After 60 minutes   
 
 _____ 31 – 60 minutes 
  
 _____ 6 – 30 minutes 
 
 _____ Within 5 minutes 
 
2.  Do you find it difficult to refrain from smoking in places where it is forbidden  
(e.g. library, cinema, church?) 
 
 _____ No 
 
 _____ Yes 
 
3.  Which cigarette would you be the most unwilling to give up? 
 
 _____ First one in the morning 
 
 _____ Any other 
 
4.  How many cigarettes a day do you smoke? 
 
 _____ 1 –10 
 
 _____ 11-20 
 
 _____ 21-30 
 
 _____ 30 + 
 
5.  Do you smoke more during the first hours in the morning than during the rest of the day? 
 
 _____ No 
 
 _____ Yes 
 
6.  Do you smoke if you are so ill that you are in bed all day? 
 
 _____ No 
 
 _____ Yes 
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Appendix B 
 

Subject Stratification Criteria 
 
 
 
Subject Group 

 
 
 
Inclusion/Exclusion Criteria 

Nonsmoker (NS) 1. No current tobacco product use 
 2. Not a smoker for the past 5 years 
 3. If previously a smoker, did not smoke more than once a 

year continuously and < 10 cigarettes/year 
 4. FTND score = 0 
 
Light-smoker (LS) 

 
1. Current smoker of cigarettes (No other tobacco products) 

 2. Smokes at least 10 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score 1-7 
 
Heavy-smoker (HS) 

 
1. Current smoker of cigarettes (No other tobacco products) 

 2. At least more than 20 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score > 7 
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Appendix C 
 

Annual Alcohol Intake (AAI) Inventory 
Khavari KA and Farber PD 1978.  J. Stud. Alcohol. 39: 1525-1539. 

 
 
Please answer the following questions as accurately as you can: 
 
1. How often do you drink beer? 

_____ Never had beer 
_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 

 
2.  What is the amount of beer that you usually drink per occasion? 
 
 
3. What is the maximum amount of beer you drink on any one occasion? 
 
 
4. How often do you drink this maximum amount of beer? 

_____ Never had beer 
_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 

 
 
5. How often do you drink wine? 
 _____ Never had wine 

_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
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_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 

 
6. What is the amount of wine that you usually drink per occasion? 
 
 
7. What is the maximum amount of wine you drink on any one occasion? 
 
 
8. How often do you drink this maximum amount of wine? 

_____ Never had wine 
_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 

 
 
9. How often do you drink distilled spirits? 

_____ Never had distilled spirits 
_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 

 
10. What is the amount of distilled spirits that you usually drink per occasion? 
 
 
 
11. What is the maximum amount of distilled spirits you drink on any one occasion? 
 
 
 
 
 
12. How often do you drink this maximum amount of distilled spirits? 
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_____ Never had distilled spirits 
_____ Tried, but not currently drinking 
_____ Once a year 
_____ Twice a year 
_____ Three or four times a year 
_____ Once a month 
_____ Twice a month 
_____ Three or four times a month 
_____ Once a week 
_____ Twice a week 
_____ Three or four times a week 
_____ Daily 
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Appendix D 
 

TIQ/BC Food Inventory 
 
 

INSTRUCTIONS: Place a check mark in the appropriate column to indicate how frequently you consume each the following foods.   
                             Then place a check mark to indicate your typical serving size when consuming these foods. 

TYPE HOW OFTEN HOW MUCH
OF Never or 1-3 1 2-4 5-6 1 2-3 4 5+ Medium Your 

FOOD less than per per per per per per per per Serving Serving Size
1 per month month week week week day day day day Size Small Medium Large

Tomatoes 1/2 cup
Tomato Sauce 1/2 cup
Tomato Paste 1/2 cup

Bananas 1 Medium Size
Chocolate Covered Doughnuts 1 Doughnut

Chocolate Filled Doughnuts 1 Doughnut
Chocolate Cookie Sandwich 1 Cookie
Chocolate Covered Raisins 10 pieces

Chocolate Syrup 1 T
Chocolate Pie 1/8 pie

Chocolate Cake 1/6 cake
Chocolate Fudge .5 oz piece
Chocolate Cereal 3/4 cup

Chocolate Candy Bar 1 bar (regular size)
Chocolate Chip Cookie 1 medium cookie

Chocolate Candy (M&M, Rolos) 1 pkg
Chocolate Covered Ice Cream Bar 1 bar 
Chocolate Ice Cream/ Yogurt 1/2 cup
Chocolate Pudding/Mousse 1/2 cup

Chocolate Milk 8 fluid oz
Cocoa 8 fluid oz

Hot Chocolate 8 fluid oz
Charred Beef 3 oz

Charred Chicken  3 oz
Charred Fish (specify type) 3 oz

Charred Pork 3 oz
Fish, other than charred (specify type)

 
 
 

TYPE HOW OFTEN HOW MUCH
OF Never or 1-3 1 2-4 5-6 1 2-3 4 5+ Medium Your 

FOOD less than per per per per per per per per Serving Serving Size
1 per month month week week week day day day day Size Small Medium Large

Soy Sauce 3oz
Ketchup 1 T

Fish Supplements/Oils
Instant Caffeinated Coffee 6 fluid oz
Brewed Caffeinated Coffee 6 fluid oz

Cappuccino 6 fluid oz
Mocha 6 fluid oz

Caffeinated Soda 12 fluid oz
Instant Caffeinated Tea 8 fluid oz
Brewed Caffeinated Tea 6 fluid oz

Supplements (Chocolate Flavored) 8 fluid oz
Red Wine 3.5 fluid oz

White Wine 3.5 fluid oz
Beer 12 fluid oz

Distilled spirits (liquor) 1.5 fluid oz
Liqueurs 1.5 fluid oz

Alcohol Coolers 12 fluid oz
Champagne 3.5 fluid oz

Other (please Specify)  
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Appendix E 
 

Protocol and Informed Consent Form – Clinical Study #1 
 
 
 
Project Title: A Pilot Study to Determine Tetrahydroisoquinoline (TIQ) and β-

Carboline Levels in Nonsmokers, Light-Smokers and Heavy 
Smokers 

 
 
Principal Investigator:  Jürgen Venitz, M.D., Ph.D. 
    Associate Professor, Department of Pharmaceutics 

Director, Pharmacokinetic/Pharmacodynamic Research Laboratory 
    Box 980533 
    Virginia Commonwealth University 
    Richmond, VA 23298-0533 
    (804) 828-6249 
    jvenitz@vcu.edu
 
 
Co-Investigator:   Satjit Brar, B.S., Pharm.D./Ph.D. candidate 

Department of Pharmaceutics 
    Box 980533 
    Virginia Commonwealth University 
    Richmond, VA 23298-0533 
    (804) 828-6136 
    ssbrar@vcu.edu
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A Pilot Study to Determine Tetrahydroisoquinoline (TIQ) and β-Carboline Levels in                                   
Nonsmokers, Light-Smokers and Heavy Smokers 

 
 
 
Abstract  
 
 Nicotine dependence is a complex biological and behavioral problem that can be extremely 
difficult to overcome.  An improved overall understanding of drug dependence, coupled with the 
identification of nicotine as a drug with dependence potential, has been instrumental in the development 
of medications and behavioral treatments for nicotine dependence.  Researchers are beginning to find out 
that there may be chemical ingredients other than nicotine in cigarette smoke that contribute to tobacco's 
addicting potential. 

Two classes of endogenously formed compounds, tetrahydroisoquinolines (TIQ) and β-
carbolines, have been involved in adaptive brain mechanisms that may advance to drug dependence.   
These substances have been found to react with specific CNS neuro-receptor system activity (notably 
dopaminergic and serotonergic receptors, see below).  Of primary importance is that TIQ’s and β-
carbolines may activate the brain circuitry that regulates feelings of pleasure, the so-called “reward 
pathways”.  In turn, both of these substances might be responsible in nicotine seeking behavior and 
dependence.  The anticipated results of the proposed pilot study are essential to assess a possible 
relationship between blood TIQ’s and β-carbolines with smoking history and dependence, if it is likely to 
exist.  The study is also intended to evaluate statistically the inter- and intra-individual variability in the 
TIQ and β-carbolines levels as well as the smoking history/nicotine dependence scores of nonsmokers, 
light-smokers, and heavy-smokers. 
 In the proposed study, sixty (60) healthy young volunteers (twenty nonsmokers, twenty light-
smokers, and twenty heavy-smokers) will supply blood samples for determination of baseline levels of 
TIQ’s and β-carbolines.  During outpatient visits, nicotine and cotinine plasma concentrations will also be 
measured from the urine collected to evaluate systemic self-exposure.  An evaluation of their smoking 
history and nicotine dependence score will be used along with the baseline levels of TIQ’s and β-
carbolines to determine any correlation between the compounds of interest and the degree of nicotine 
exposure and dependence. 

If such a relationship can be revealed, future, more detailed, interventional studies will be 
designed to assess the suitability of these endogenous compounds as possible biomarkers of nicotine 
dependence. 
 
Background 
 
 In the search for an explanation for the mechanism in which drug dependence develops, 
researchers have explored possible theories for why individuals become addicted to specific drugs 
including alcohol, nicotine, opiates and other drugs of abuse.  Of note, two classes of endogenously 
formed compounds, tetrahydroisoquinolines (TIQ) and β-carbolines, have been indicted as chemicals that 
may mediate mechanisms thought to be involved in dependence. 

TIQ's are a class of partially aromatic alkaloids that include salsolinol, 1-carboxysalsolinol, 
tetrahydropapaveroline, and salsoline.  TIQ's are compounds that are formed as a result of the 
condensation reaction between dopamine and acetaldehyde or pyruvate (1) and are natural metabolites of 
dopamine produced in the brain as well as other organs (2).  TIQ's also occur naturally such as in wine 
and bananas (3).   Tetrahydropapaveroline (THP) is the dopamine - 3,4, -dihydroxyphenyl acetaldehyde 
condensation product whereas salsolinol (SAL) is the dopamine-acetaldehyde condensation product (4).  
It is known that SAL exists in two chemical conformations, the S-enantiomer and the R-enantiomer (2).  
Previous studies have found that the R-enantiomer or racemic mixture of SAL predominates in the urine 
of normal healthy subjects whereas the S-enantiomer predominates in the urine of alcoholics (3). 
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β-carbolines are another class of compounds such as noreleagnine, harman and norharman. β-
carbolines are aromatic alkaloids that are formed via the condensation of tryptophan or indolealkylamines 
with aldehydes (5).  These compounds exist endogenously in humans under normal conditions, however 
some are also formed after the ingestion of alcohol and further more have been shown to increase ethanol 
consumption in rats (6).  These compounds also exist in plants that have psychotropic properties as well 
in food such as in charred meat and fish as well as in cigarette smoke (5).  Studies have shown that 
norharman may interact with several receptor systems including benzodiazepines as well as serotonin and 
dopamine in higher concentrations (7). 

Interestingly, previous studies have found that upon chronic injection of TIQ's and β-carbolines 
causes an increase in alcohol intake (4, 6, 8).  Specifically, rats infused intraventricularly with 4.0 μg of 
salsolinol increased alcohol intake from 0.74 to 4.9 gm/kg/day (8).  Additionally, 4 rats that were infused 
with 4.0 μg of noreleagnine also had an increase in alcohol consumption from 0.75 to 6.0 gm/kg/day (8).  
In another study, single infusions of THP ranging from a dose of 0.1 - 1.0 μg increased alcohol 
consumption from 0.62 to 4.38 g/kg/day in the non-alcohol-preferring strain of Sprague-Dawley rats (6).  
Furthermore, when unanesthetized rats were infused with THP and tryptoline (TLN), a β-carboline, the 
release of C-dopamine in the caudate nucleus and nucleus accumbens was significantly increased (9).  A 
later study (7) involving injections of a range of doses on norharman showed that administration of doses 
of 2.44 μmol/kg and 43.97 μmol/kg induced an increase of dopamine efflux by 70% and 160%, 
respectively; however, with the administration of 7.33 μmol/kg there was a 72% decrease in dopamine 
efflux from baseline (7).  This was thought to indicate that norharman must influence the mesolimbic 
dopaminergic neurons in a U-shaped dose-response curve, and the authors suggest that norharman is 
affecting the dopaminergic system via different receptors, namely MAO-A, MAO-B and non-MAO 
binding site. 

As it has been noted in the literature, the modulation of drinking behavior and the consequent 
interaction of TIQ's and β-carbolines with the dopaminergic system demonstrate that these compounds 
may have a role in alcohol and drug dependence.  The dopaminergic system has been well established as 
the "reward system" in the brain.  Therefore, compounds that interact with the nucleus accumbens and the 
dopaminergic neurons could have a significant role in drug dependence.  Furthermore, as the 
dopaminergic system has a significant role in the drug-seeking behavior, it is possible that other drugs of 
dependence such as nicotine or other ingredients of cigarette smoke may also interact with the TIQ's and 
β-carbolines.  Additionally, these compounds could possibly mediate smoking behavior. 

In this study, we seek to collect preliminary data on the endogenous baseline levels of TIQ's and 
β-carbolines in nonsmokers, light-smokers and heavy-smokers to assess if there are any gross differences 
between the three groups.  This information may aid the development of further interventional studies 
where the administration of these compounds could be performed to investigate if there is an effect on 
cigarette smoking behavior. 
 
Objectives 
 
 The objective of this study is to obtain preliminary information on the baseline levels of TIQ’s 
and β-carboline concentrations in the blood of non-, light-, and heavy-smokers.  Additionally, venous 
nicotine and cotinine plasma levels will be determined as a measure of systemic exposure due to 
smoking.  Specific aims of this study include: 
1. Assessment of a possible association between the levels of blood TIQ’s and β-carbolines with 

the smoking history and dependence of the volunteers to determine if the line of research in 
smokers should be continued; 

2. Statistical measurement of inter- and intra-individual variability in the levels and smoking 
history/nicotine dependence scores, which would permit formal sample size calculations in 
future studies. 

3. Classification of volunteers according to smoking history and nicotine dependence with the 
Fagerström Scale (Appendix I) in nonsmokers, light smokers, and heavy smokers; further 
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classification by personality type using the TCI personality survey (Temperament and Character 
Inventory). 

  
 The anticipated follow-up study would involve a larger sample size along with possible 
interventions to further characterize plasma levels of TIQs and β-carbolines in order to: 
1. establish TIQs and β-carbolines as biomarkers of nicotine dependence.  
2. be able to predict treatment success of nicotine-replacement and cessation therapies for 

individuals of varying degrees of nicotine dependence. 
 
Methods 
 
Study Design 
 
 Sixty young healthy male and female volunteers, aged 21-35, will be recruited, including 20 
nonsmokers, 20 light-smokers, and 20 heavy-smokers as follows: 
 Male 10 Nonsmoker  

Female 10  
Male 10  Light-Smoker 
Female 10  

 Male 10 Heavy-Smoker  Female 10 
 

The study will involve two visits in which the volunteer will present to the Clinical Research 
Center.  Prior to participation, the subject will be required to take a telephone interview for qualification 
purposes (Appendix VI).  Upon qualification, the subject will be notified of any abstentions required 
before each visit.  The abstentions include: no prescription/OTC/herbal medications or caffeinated 
products for 72 hours prior to each visit (with exception of oral contraceptives prescription for females) 
and no alcoholic beverages 12 hours prior to each visit.  The subject will be given a chance to decline 
participation in the study or, if necessary, to seek his/her personal physician's advice as to whether to 
discontinue any medications he/she may be on.  During the first visit, the volunteer will complete forms 
including:  Medical History (Appendix. V), Subject Entry Probe (Appendix. IV), Smoking History 
(Appendix. II), Annual Alcohol Intake (AAI, Appendix. IX), and Zuckerman's Sensation Seeking Scale 
(Appendix. VIII).  Additionally, during the first visit, the subject will take a Breathalyzer and carbon 
monoxide test as well as give a 60-ml blood sample for estimation of TIQ and β-carbolines levels.  The 
volunteer will also provide a urine sample for drugs of abuse screen and nicotine/cotinine levels.  During 
the second visit, only the breath tests, blood and urine sample will be repeated.  Additionally, the 
Temperament and Character Inventory (TCI) (App. X) will be administered as a computer test.  A 
pregnancy test will be given to female subjects and repeated if the time elapsed between the two visits 
exceeds one week.   
 
 
Inclusion/Exclusion Criteria 

 Potential subjects will be screened over telephone for inclusion/exclusion criteria.  A general 
health questionnaire will be administered over the telephone regarding their medical history, substance 
use, medications, and patient characteristics such as height and weight (Appendix VII).  In addition to the 
general health questionnaire, the Fagerström Test of Nicotine Dependence, (FTND) (10,11, Appendix I) 
will be administered to determine their dependence on nicotine in order to classify potential subjects into 
three groups:  Nonsmokers, Light-smokers, and Heavy-smokers.  The following criteria must be met for 
subjects in each group: 
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Subject Group Inclusion/Exclusion Criteria 
Nonsmoker 1. No current tobacco product use 
 2. Not a smoker for the past 5 years 
 3. If previously a smoker, did not smoke 

more than once a year continuously and no 
more than 10 cigarettes/year 

 4. FTND score = 0 
Light-smoker 1. Current smoker of cigarettes (No other 

tobacco products) 
 2. Smokes at least 10 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score 1-7 
Heavy-smoker 1. Current smoker of cigarettes  (No other 

tobacco products) 
 2. At least more than 20 cigarettes/day 
 3. Smoked for at least 1 year continuously 
 4. FTND score > 7 

 
In the situation that the smoking history and FTND scores put them in two different categories 

(specifically for light- and heavy-smokers), preference will be given to the smoking history (number of 
cigarettes/day) over the FTND score. 

 
Along with the Fagerström Test for Nicotine Dependence scores, personality surveys will be 

administered in order to characterize the study population in terms of their personality traits and alcohol 
use.  Personality surveys including the Temperament and Character Inventory, TCI (17,18, App. X), 
Zuckerman’s Sensation Seeking Scale, ZSSS (12, App. VIII).  In addition, the Annual Alcohol Intake, 
AAI (13, App. IX), will be administered to all subjects to assess concomitant alcohol intake as a potential 
major covariate for TIQ's. 

 
Cloninger et al. (17, 18, 19) developed a Temperament and Character Inventory (TCI) designed 

to assess personality traits that may be associated with activity of central neurotransmitter systems.  The 
TCI (App. X) consists of 240 true/false questions that will  
provide the basis for determining specific personality traits.  The personality characteristics measured 
incorporate: 1) novelty seeking, 2) harm avoidance, 3) reward dependence, 4) persistence, 5) self-
directedness, 6) cooperativeness and 7) self transcendence (17, 18).  This inventory was originally based 
on the concept that each factor is a function of brain neurochemical transmitter systems, i.e., dopamine, 
serotonin, and/or norepinephrine.  The original research suggested that three of the characteristics 
evaluated were a function of one of these neurotransmitters: novelty seeking to dopamine; harm 
avoidance to serotonin; and reward dependence to norepinephrine (17,18).  Human research suggests that 
there is a correlation between personality and neurochemistry but the data are not overwhelming (19). 
  

The ZSSS (12, App VIII) is designed to characterize subjects according to their interests and 
preferences.  The survey features 40 questions of two choices of answers. 
  

The AAI (13, App. IX) survey will be primarily used to assess a potentially significant covariate 
for TIQs:  Several human studies have noted that norharman (a β-carboline) levels are significantly 
elevated in chronic alcoholics (15).  Furthermore, chronic alcoholics who have undergone controlled 
abstinence have shown two-fold higher levels of norharman compared to control subjects at the beginning 
of the abstinence period, with a gradual decline in levels at the end of the 3-week abstinence period (16). 
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The results of these surveys will allow for better characterization of the study population and 
permit comparison with other clinical studies. 
 
 Female subjects must not be pregnant during the clinical study and must be using acceptable 
methods of contraception (abstinence, barrier methods, or oral contraceptives).  However, females that 
are not using oral contraceptives must have regular menstrual cycles of 28-32 days on average and must 
not have dysmenorhea.  Subjects who satisfactorily pass the screening exam will be enrolled in the study. 
 
 Volunteers who have passed the initial telephone screening will be invited to the General 
Clinical Research Center (GCRC) for an out patient visit including medical history (particularly personal 
or family history of psychiatric disorders and/or drug dependence other than smoking), blood pressure, 
and vital signs in order to ensure the health of the subject.  Urine test for drugs of abuse, breath alcohol 
and breath carbon monoxide tests will be done to ensure that the subject does not abuse other drugs, is 
abstinent from alcohol, and to measure nicotine exposure, respectively.  Personality surveys including the 
Temperament and Character Inventory (TCI) (17,18, App. X), Zuckerman’s Sensation Seeking Scale (12, 
Appendix. VIII), and AAI (Annual Alcohol Intake (13, Appendix IX) will be administered to all subjects.  
The results of these surveys will allow for better characterization of the study population and permit 
comparison with other clinical studies. 

 

Endpoints and Measurements 

 For each visit period, the subject will be admitted as an outpatient to the GCRC between 8 AM-
10AM.  During this time, subjects classified as smokers will smoke a cigarette, and blood and urine 
samples will be collected within 30 minutes of smoking.  Upon entrance to the GCRC, a breath carbon 
monoxide test and Breathalyzer test will be administered.  A subject entry probe will also be given to 
determine their adherence to the 12-hour abstention from alcohol and caffeinated products in addition to 
the 72-hours abstention from medications. 
 

Before the blood samples are collected from the subject, Annual Alcohol Intake and 
Zuckerman’s Sensation Seeking Scale are administered (Appendices VIII and IX).  Subsequently, a urine 
specimen will be taken to evaluate drugs of abuse test and nicotine/cotinine levels.  A 60-ml blood 
sample will be collected from the non-dominant forearm in a reclined, seated position during the study.  
Sitting blood pressure, heart rate, and body temperature will be measured as safety precautions.  The 
blood samples will be centrifuged to obtain plasma and serum, and plasma samples will be stored at -
70°C until analysis.  Nicotine and cotinine plasma and urine concentrations will be determined by gas 
chromatography/mass spectroscopy method developed and validated by the Biopharmaceutical Analysis 
Laboratory at the Virginia Commonwealth University Department of Pharmaceutics (14).   A blood 
sample will be sent to Dr. H. Rommelspacher at Freie Universität Berlin in Berlin, Germany to determine 
levels of tetrahydroisoquinolines and β-carbolines (1,2); this sample will not have any identifying 
information about the subject to ensure confidentiality. 

The subject will discharged in approximately two hours pending an evaluation by the nursing 
staff for lack of adverse events. 

The second visit will consist of all of the aforementioned with exception of the medical history, 
smoking history, and personality survey, Annual Alcohol Intake, and Zuckerman’s Sensation Seeking 
Scale).  The Temperament and Character Inventory (TCI, App. X) will also be administered during this 
period.  
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Data Analysis 

 Intra-individual variability (e.g., COV%) will be calculated for all measured endpoints, i.e., TIQ 
and β-carboline concentrations, nicotine and cotinine urine concentrations for each volunteer.  
Appropriate summary statistics such as mean, median, COV%, percentiles and range will be computed. 

Inter-individual variability (i.e., COV% and range) will be calculated for the above endpoints as 
well as all the rating scale scores for each of the three groups and across all groups (see ANOVA, below).  
These variability measures will allow formal sample size calculations for future crossover or parallel-
group studies. 
 Both TIQ and β-carboline mean concentrations will be correlated with the measures of cigarette 
exposure (nicotine and cotinine mean urine concentrations) and dependence (Fagerström rating scale 
scores) using Spearman's rank sum correlation coefficient. 
 All the above endpoints will be compared with smoking history and gender by means of two-
way ANOVA.  If the overall ANOVA is significant at the p<0.05 level, this will followed by a Scheffé 
test to isolate group differences. 

For all tests and statistics, the raw data may be log- or rank-transformed to comply with the 
parametric assumptions of equal variance across groups and normal distribution of the residuals. If 
necessary, appropriate nonparametric tests, e.g., Wilcoxon U-test, will be performed. 
 
Description of Human Subject Protection 

Subject Selection 
 Subjects participating in the study will have passed outpatient screening including past medical 
history and drug screen.  This will exclude participation of subjects with significant disease states 
including renal, hepatic, neurological, cardiovascular, gastrointestinal, pulmonary, neurological and 
psychiatric diseases.   Female subjects must not be pregnant during the clinical study and must be using 
acceptable methods of contraception. 
 Prior to enrollment, all subjects will be explained the objectives, methods, benefits, risks, and 
inconveniences of the study: they will be required to sign the VCU IRB-approved Informed Consent 
Form.  They will be paid an honorarium for the time commitment and inconveniences that the study may 
entail. 
 
Inclusion of Children 

 Children (defined as individuals under the age of 21 years) are to be excluded from the study. 
For this particular study, it would be inappropriate to recruit smoking adolescents since it may reward 
their smoking habits, which should be discouraged.   
 
Risks and Safety Monitoring 

 This investigation does not require the introduction of a study drug or device.  Therefore, any 
risks or side effects associated with a therapeutic drug or device should not be observed. 

A total of one (1) blood sample will be drawn during each study period.  The total amount of 
blood from each session will be 60 ml (about 4 tablespoons) and about a total of 120ml (less than half a 
blood donation) over the entire duration of the study.  Obtaining these blood samples may cause some 
discomfort, pain, or slight bruising around the site of the needle stick.  Sometimes, fainting or infection 
may occur. 

During the two outpatient periods, the subjects’ vital signs will be recorded and will be 
monitored for the appearance of any adverse events by the GCRC nursing staff.  In addition, a Medical 
Monitor will be available to monitor for signs of adverse events associated with blood drawing such as: 
mental confusion, dizziness, and weakness. 
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Risks associated with the aforementioned procedures involving the subject are generally 
minimal to none.  During participation of the study, there is no direct benefit for the subject.   If 
necessary, adverse events will be treated and followed up until resolution. 

 
Confidentiality of Records 

 
Medical records, consent forms, and collected data, which identify the subject, may be looked at 

and/or copied for research or regulatory purposes by: 
 

 the FDA; 
 Department of Health and Human Services (DHHS) agencies; 
 Virginia Commonwealth University (VCU); 
 Governmental and/or regulatory agencies to the extent required by law. 

 
Blood samples will be sent to our collaborator, Dr. Rommelspacher without any identifying 

confidential patient information.  Absolute confidentiality will not be guaranteed because of the need to 
give information to these parties.  The results of this research study may be presented at meetings or in 
publications.  The identity of the subject will not be disclosed in those presentations. 
 
Dose Selection: 

 A therapeutic drug dose or medical device will not be introduced to the subject by the 
investigators or the GCRC staff at any time throughout the study. 
 
Expected Results and Directions for Future Research 
 
 Building on a series of recent scientific findings suggesting that, independent of a drug's initial 
site of action, a number of drugs of abuse appear to increase the levels of the neurotransmitter dopamine 
in a particular brain pathway, TIQ’s and β-carbolines may act as a link between nicotine dependence and 
this common reward producing pathway. 
 
 Several studies have reported that with injection of TIQ’s and β-carbolines, there is an increase 
in alcohol intake (4, 6, 8).  Several human studies have noted that norharman levels are significantly 
elevated in chronic alcoholics (15).  Furthermore, chronic alcoholics who have undergone controlled 
abstinence have shown two-fold higher levels of norharman compared to control subjects at the beginning 
of the abstinence period, with a gradual decline in levels at the end of the 3-week abstinence period (16).  
As nicotine is also a drug of dependence that may interact with the dopaminergic reward pathways, we 
expect that smokers should have higher levels of TIQ’s and β-carbolines compared to nonsmokers.  
Moreover, heavy smokers are expected to have higher levels of TIQ’s and β-carbolines as compared to 
light-smokers. 
 With data from this pilot study, a larger follow-up study will be done to further characterize 
plasma levels of TIQs and β-carbolines in order to establish TIQs and β-carbolines as biomarkers of 
nicotine dependence and consequently be able to predict or identify individuals of varying nicotine 
dependencies.  
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RESEARCH SUBJECT INFORMATION AND CONSENT FORM 
 
Title: Tetrahydroisoquinoline and β-carboline Levels in Healthy 

Nonsmokers, Light-Smokers, and Heavy Smokers 
 
Protocol No.:   VCU IRB #1990 
 
Principal Investigator:  Jürgen Venitz, M.D., Ph.D. 

(804) 828-6249 
    (804) 997-9261 (pager) 
    jvenitz@vcu.edu
 
Co-Investigators:  Satjit Brar, B.S., Pharm.D./Ph.D. candidate 
 
Site:    Virginia Commonwealth University 
    Medical College of Virginia Campus 
    Department of Pharmaceutics 
    Smith Building 
    410 North 12th Street, Room 450-B 
    Richmond, VA 23298-0533 
 
    Virginia Commonwealth University/VCU Health System 
    General Clinical Research Center (GCRC) 
    North Hospital, 8th Floor 
    1300 East Marshall Street 
    Richmond, VA 23298 
 

This consent form may contain words that you do not understand.  Please ask the study doctor or 
the study staff to explain any words or information that you do not clearly understand.  You may take 
home an unsigned copy of this consent form to think about or discuss with family or friends before 
making your decision. 
 
Introduction 
 
 This study is designed to measure the blood and urine levels of chemicals that already exist in 
your body and to study possible differences between nonsmokers, light-smokers, and heavy-smokers.  In 
this study, no drug(s) or medical device(s) will be given.  If you agree to participate, you will have to 
complete paperwork including your medical history, some personality surveys, and give a blood and 
urine sample on two occasions.  Your urine will be tested for drugs of abuse.  If you do not want to get 
involved with the study because of concerns about illicit drug use, please let us know immediately 
and you can opt out of the study.  If you are female, a pregnancy test will be done as well.  
Approximately 60 subjects are expected to participate in this study.  
 

Before coming in for this study, you will not be allowed to take any prescription medications for 
three (3) days before the start of the study.  However, females will be allowed to use oral contraceptives 
throughout the duration of the study.  Prior to discontinuing any medication, you are strongly advised to 
contact your primary care physician.  You will not be allowed to take over-the counter medications or 
drink any beverages containing caffeine for 72 hours, and not permitted to drink any beverages 
containing alcohol for the 12 hours before and during the in-house study periods.  Finally, if you are a 
smoker, you will be allowed to smoke only one cigarette starting from when you enter the General 
Clinical Research Center (GCRC) (i.e., from approximately 8:00am until discharge at 10am). 
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 You will come to the General Clinical Research Center (GCRC) at Virginia Commonwealth 
University / VCU Health System, two times for outpatient visits (spaced at least one week apart from 
each other).  Each time, you will come to the GCRC in the morning (about 8:00 a.m.) and will be released 
around 2 hours later the same morning.  
 
 During the first visit when you come to the GCRC, you will complete several forms including 
your medical history and smoking habits, as well as several personality surveys.  You will also take a 
breath test for carbon monoxide and alcohol.  You will have to give a urine sample of which your urine 
will be tested for drugs of abuse as well as for nicotine.  One (1) blood sample of 60 ml (approximately 4 
tablespoonfuls) will be collected from a vein in your arm by sticking a needle directly into the vein.  For 
your safety, your blood pressure will be taken before and after the blood sample. 
 
 The second visit when you come to the GCRC, everything is the same as the first visit, except 
you do not have to complete the forms on your medical history, smoking history, and personality surveys.  
One additional personality survey will be taken during the second visit in the form of a computer test. 
 

This study is being conducted at the Virginia Commonwealth University / VCU Health System 
by Jürgen Venitz, M.D., Ph.D., Satjit Brar, Pharm.D./Ph.D. candidate, and John Clore, M.D..  Dr. Clore is 
the Medical Monitor for this study and is the first person to be contacted in the case of a medical 
emergency. 
 
Risks, Inconveniences, Discomfort 

 
Since this investigation does not require the introduction of any study drug or device, there 

should be no risks or side effects which might be associated with therapeutic drugs or devices. 
 
A total of one (1) blood sample will be drawn during each study period.  The total amount of 

blood from each session will be 60 ml (about 4 tablespoons) and about a total of 120 ml (less than half a 
blood donation) over the entire duration of the study.  Obtaining these blood samples may cause some 
discomfort, pain, or slight bruising around the site of the needle stick.  Sometimes, fainting or infection 
may occur. 
 

You will report any adverse events after the end of the study up to 30 days after the final 
discharge from the GCRC.  If any undesirable effects occur, you should report them directly to the study 
doctors.  Dr. Clore is the Medical Monitor for this study, and is the person you should contact in the case 
of a medical emergency.  If you cannot reach Dr. Clore, you may contact any of the study doctors. 
 
Pregnancy 
 

There are no effects on pregnancy in this study since there is no drug being given.  However, for 
female subjects of childbearing potential who wish to participate in the study, a negative pregnancy test is 
required for entry into the study.  A pregnancy test will be repeated upon entry to the GCRC, unless a test 
has been performed within seven (7) days prior to admission.  These tests must be negative in order to 
qualify for participation in the study, as there may be an effect of pregnancy on the blood chemicals that 
are being measured.  

Women who are pregnant or nursing a child may not participate in this study.  The use of 
reliable birth control is required for sexually active women to enter this study.  This may include barrier 
methods, intrauterine devices (IUDs) or being surgically sterile; however, no birth control method 
completely eliminates the risk of pregnancy.  Females using birth control pills may be included in the 
study.  Females not using birth control pills may also be included in the study, provided that their periods 
are within 28 to 32 days on average (with no history of abnormal periods).  Before entering this study, 
you and your study doctor must agree on the method of birth control you will use during the entire study.  
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If you suspect that you have become pregnant during the study, you must notify the study doctor 
promptly. 
 
Benefits 
 

You are being asked to participate in this study as a volunteer.  This is not a treatment study, and 
you are not expected to receive any direct medical benefits from your participation in the study.  The 
information from this research study may lead to a better treatment in the future for people with smoking 
dependence.   
 
Costs of Participation 
 
 There will be no charge to you for any laboratory tests, GCRC visits, or other tests related to the 
conduct of this study.  
 
Payment for Participation 
 
 This is a time-consuming study that may interfere with your employment or other activities.  
You will be at the study unit two (2) times in the morning for the study. 
 
 You will be paid $40.00 for the completion of both outpatient visits.  If you withdraw early or 
are discontinued for medical reasons, you will be paid $20.00 for each visit you complete. 
 
 If you decided to withdraw from the study, you may be paid based on the amount of usable 
information that has been collected.  If it is determined that you did not give an accurate history or did not 
follow the guidelines of the study and the regulations of the General Clinical Research Center, you will 
be withdrawn from the study without compensation. 
 
Alternative Treatment 
 
 This is not a treatment study.  You may choose not to participate.  
 
Compensation for Injury 
 

Virginia Commonwealth University and the VCU Health System (formerly known as Medical 
College of Virginia Hospitals) have no plan for providing long-term care or compensation in the event 
that you suffer injury as a result of your participation in this research study. 

 
If you are injured or if you become ill as a result of your participation in this study, contact your 

study doctor immediately.  Your study doctor will arrange for short-term emergency care or referral if it 
is needed. 

 
Fees for such treatment may be billed to you or to appropriate third party insurance.  Your health 

insurance company may or may not pay for treatment of injuries as a result of your participation in this 
study. 
 
Sources of Funding 
 
 Funding for this research study will be provided from ongoing research overhead monies. 
 
Confidentiality of Records 
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Confidentiality of personal information about you – including your medical records and personal 
research data gathered in connection with this study – will be maintained in a manner consistent with 
federal and state laws and regulations. 

 
You should know that research data or medical information about you may be reviewed or 

copied by the sponsor of the research or by Virginia Commonwealth University.  Personal information 
about you might be shared with or copied by authorized official s of the Federal Food and Drug 
Administration, or the Department of Health and Human Services.   

Although results of this research may be presented at meetings or in publications, identifiable 
personal information pertaining to participants will not be disclosed.   
  
Voluntary Participation/Withdrawal 
 

Your participation in this study is voluntary.  You may decide to not participate in this study.  If 
you do participate, you may freely withdraw from the study at any time.  Your decision will involve no 
penalty or loss of benefits to which you are otherwise entitled. 

 
Your participation in this study may be stopped at any time by the study doctor or the sponsor 

without your consent. The reasons might include: 
• the study doctor thinks it necessary for your health or safety; 
• you have not followed study instructions; 
• the sponsor has stopped the study; or 
• administrative reasons require your withdrawal. 

 
If you leave the study before the final regularly scheduled visit, you may be asked by the study 

doctor to make a final visit for some of the end of study procedures. 
 

Questions 
 
 In the future, you may have questions about your study participation.  You may also have 
questions about a possible side effect or a possible research-related injury.  If you have any questions at 
any time concerning the study procedures, contact the study doctors: 
 
      Office   Pager 
Jürgen Venitz, M.D., Ph.D.   (804) 828-6249 (804) 997-9261 
Satjit Brar, Pharm.D./Ph.D. 2006   (804) 828-6136 
John Clore, M.D.     (804) 828-9349  
 

Dr. John Clore is the Medical Monitor for this study.  He is the first person to be contacted in the 
case of an emergency. 
 

If you have any questions regarding your rights as a volunteer in a clinical research study, you 
may contact: 
  

VCU Office of Research Subjects Protection  
Bio-Tech Research Park, Building 1 
800 E. Leigh St., Suite 111 
Richmond, VA 23298=0568 
Telephone: 804-828-0868  

  
 Do not sign this consent form unless you have had a chance to ask questions and have received 
satisfactory answers to all of your questions. 
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Consent 
 

I have been provided with an opportunity to read this consent form carefully.  All of the 
questions that I wish to raise concerning this study have been answered.   

 
By signing this consent form, I have not waived any of the legal rights or benefits, to which I 

otherwise would be entitled.  My signature indicates that I freely consent to participate in this research 
study. 
 
 
Printed         
        (subject name) 
 
 
Signed         Date      
   (subject) 
 
 
Printed          
        (witness name) 
 
 
Signed         Date    
   (witness) 
 
 
Signed         Date     
 (person conducting informed consent discussion) 
 
 
Signed         Date     
     (investigator – if different from above) 
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Appendix F 
 

 Activity Flow Sheet - Clinical Study #1  
 
 
 
 

Outpatient Period 1 Outpatient Period 2 
ICF SEP 
SEP Breathalyzer Test 

Weight and Height Recording CO 
MHx, SH TCI 

ZSSS SMOKE* 
AAI VS 

Breathalyzer Test Blood Sample 
CO VS 

SMOKE* Urine Sample 
VS Drug Screen / PT** 

Blood Sample  
VS  

Urine Sample  
Drug Screen / PT**  

 
*    for smokers only 
**  for female subjects only 

 
 
AAI:  Annual Alcohol Intake 
CO: Breath Carbon Monoxide Test 
ICF: Informed Consent Form 
MHx: Medical History 
PT:  Pregnancy Test 
SEP: Subject Entry Probe 
SH: Smoking History 
TCI: Temperament and Character Inventory 
VS: Vital Signs 
ZSSS: Zuckerman’s Sensation Seeking Scale 
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Appendix G 
 

Patient Summary – Clinical Study #1 
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No Init ID Dosing Labs Vital Signs Adverse Events
Date (Predose)

=== ===== ===== ========== =================== =========== =========== =================== ========== =========== ============= ========= ========= ========= =========
1 ADS 1980 Nov-16-01 DS/HCG: ncs ncs none
2 JKB 2232 Dec-17-01 DS/HCG: ncs ncs none
3 HAG 6554 Dec-19-01 DS/HCG: ncs ncs none
4 LGK 7838 Jan-25-02 DS/HCG: ncs ncs none
5 JIM 3916 Oct-08-02 DS/HCG: ncs ncs none
6 FLW 7447 Jul-24-03 DS/HCG: ncs ncs none
7 JAG 3606 Sep-25-07 DS/HCG: ncs ncs none
8 B-S 4592 Nov-27-07 DS/HCG: ncs (SBP: 97) -ncs none
9 PSB 9265 Nov-29-07 DS/HCG: ncs ncs none

10 JSS 9263 Nov-29-07 DS/HCG: ncs ncs none
11 BAC 6603 Nov-16-01 DS: ncs ncs none
12 TSL 3465 Feb-22-02 DS: ncs ncs none
13 PRB 0020 Jul-17-02 DS: ncs ncs none
14 P-G 8471 Jul-27-02 DS: ncs (asx hypoTN>91 mmHg) -ncs none
15 AJC 5839 Aug-13-03 DS: ncs ncs none
16 JBH 1461 Sep-17-03 DS: ncs ncs none
17 KAS 2911 Oct-05-07 DS: ncs ncs none
18 DSL 4231 Oct-05-07 DS: ncs ncs none
19 KDC 5842 Nov-21-07 DS: ncs ncs none
20
21 LMD 7823 Jun-06-02 DS/HCG: ncs ncs none
22 TAT 3529 Jun-06-02 DS/HCG: ncs ncs none
23 JMK 3716 Oct-08-02 DS/HCG: ncs (asx hypoTN>88 mmHg) -ncs none
24 ZER 6322 Jul-24-03 DS/HCG: ncs ncs none
25 NFL 2060 Oct-01-07 DS/HCG: ncs ncs none
26 C-M 0000 Nov-05-07 DS/HCG: ncs ncs none
27
28
20
30
31 KBR 5471 Mar-15-02 DS: ncs ncs none
32 JOF 2678 Aug-21-02 DS: ncs ncs none
33 BMR 3461 Oct-14-04 DS: ncs ncs none
34 ABB 1255 Nov-30-07 DS: ncs ncs none
35 M-R 6798 Jan-14-08 DS: ncs ncs none
36
37
38
39
40
41 RPR 6651 Dec-19-01 DS/HCG: ncs ncs none
42 JCD 8124 Jun-12-02 DS/HCG: ncs ncs none
43 CDP 5306 Jun-12-02 DS/HCG: ncs (asx hypotn: >91/58) -ncs none
44 MRH 6018 Sep-19-02 DS/HCG: ncs ncs none
45 CLM 6562 Feb-24-04 DS/HCG: ncs ncs none
46 CNL 0092 Oct-22-07 DS/HCG: ncs ncs none
47
48
49
50
51 KAB 1800 Mar-10-04 DS: ncs (HR: 90 bpm) - ncs none
52 GKJ 4593 Nov-30-07 DS: ncs ncs none
53 DRD 6917 Nov-30-07 DS: ncs ncs none
54 AAA 2976 Dec-10-07 DS: ncs ncs none
55 TFP 9482 Dec-19-07 DS: ncs ncs none
56
57
58
59
60

=== ===== ===== ========== =================== =========== =========== =================== ========== =========== ========= === ========= ========= ========= =========

PERIOD 1

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 



540 

No Init ID Dosing Labs Vital Signs Adverse Events
Date (Predose)

=== ===== ===== ========== =================== =========== =========== =================== ========== =========== ============= ========= ========= ========= =========
1 ADS 1980 Nov-27-01 DS: ncs ncs none
2 JKB 2232 Jan-07-02 DS/HCG: ncs ncs none (took APAP)
3 HAG 6554 Jan-11-02 DS/HCG: ncs ncs none (took biaxin, decongest for sinusitis until 1/7/02)
4 LGK 7838 Feb-01-02 DS/HCG: ncs ncs none
5 JIM 3916 Oct-14-02 DS: ncs ncs none
6 FLW 7447 Aug-18-03 DS: ncs ncs none
7 JAG 3606 Oct-02-07 DS: ncs ncs none (h/a, gastroenteritis)
8 B-S 4592 Nov-29-07 DS: ncs ncs none
9 PSB 9265 Dec-04-07 DS: ncs (105/59, 78) - ncs none

10 JSS 9263 Dec-04-07 DS: ncs ncs none
11 BAC 6603 Jan-16-02 DS: ncs ncs none
12 TSL 3465 Mar-01-02 DS: ncs ncs none
13 PRB 0020 Jul-24-02 (h/o claritin on 7/20) -ncs ncs none
14 P-G 8471 Aug-14-02 DS: ncs ncs none
15 AJC 5839 Aug-20-03 DS: ncs during blood draw: 95/45 mmHg, 50bpm feeling faint (no LOC) during blood draw
16 JBH 1461 Sep-25-03 DS: ncs ncs ncs
17 KAS 2911 Oct-22-07 DS: ncs ncs ncs
18 DSL 4231 Oct-12-07 DS: ncs ncs ncs
19 KDC 5842 Nov-27-07 DS: ncs (HR > 96) -ncs ncs
20
21 LMD 7823 Jun-27-02 DS: ncs ncs none
22 TAT 3529 Jun-21-02 DS: ncs ncs none
23 JMK 3716 Oct-15-02 DS: ncs ncs none
24 ZER 6322 Aug-27-03 DS: ncs (HR prior to blood draw: 112 bpm) -ncs none
25 NFL 2060 Oct-08-07 DS: ncs ncs none
26 C-M 0000 Nov-08-07 DS: ncs ncs none
27
28
20
30
31 KBR 5471 Mar-22-02 DS: ncs ncs ncs
32 JOF 2678 Aug-28-02 DS: ncs ncs ncs
33 BMR 3461 Oct-22-02 DS: ncs ncs ncs
34 ABB 1255 Dec-07-07 DS: ncs ncs ncs
35 M-R 6798 Jan-18-08 DS: ncs ncs ncs
36
37
38
39
40
41 RPR 6651 Jan-09-02 DS/HCG: ncs (SPB>96; HR>96 bpm) -ncs transient mild lightheadedness during blood draw
42 JCD 8124 Jun-21-02 DS/HCG: ncs ncs none
43 CDP 5306 Jul-22-02 DS/HCG: ncs ncs none
44 MRH 6018 Sep-26-02 DS/HCG: ncs ncs none
45 CLM 6562 Mar-02-04 DS/HCG: ncs ncs none
46 CNL 0092 Oct-30-07 DS/HCG: ncs (HR>97) - ncs none
47
48
49
50
51 KAB 1800 Mar-17-04 DS: ncs ncs none
52 GKJ 4593 Dec-03-07 DS: ncs ncs none
53 DRD 6917 Dec-07-072 DS: ncs ncs none
54 AAA 2976 Dec-11-07 DS: ncs ncs none
55 TFP 9482 Dec-21-07 DS: ncs ncs none
56
57
58
59
60

=== ===== ===== ========== =================== =========== =========== =================== ========== =========== ========= === ========= ========= ========= =========

PERIOD 2

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 



541 

Appendix H
 

Protocol and Informed Consent Form – Clinical Study #2 
 
 
 
Date:    March 13, 2007 
 
To:    Barbara Karp, M.D. Chair, CNS IRB  
 
Recommended by:  __________________ Clinical Director, NIAAA 
    __________________ Chief, LCTS, NIAAA 
 
Protocol title: Assessment and treatment of people with alcohol drinking problems 
 
Abbreviated title: Alcoholism assessment and treatment  
 
Identifying words: Dependence, CIWA, Addiction severity index, CPRS-S-A, combined 

behavioral intervention, medical management 
 
Principal Investigator: David Herion, M.D. 
 
Associate Investigators: Linda Doty, R.N., M.S.W. 

David T. George, M.D. 
Markus Heilig, M.D., Ph.D. 
Debby Hill, M.S.W. 

 Dan Hommer, M.D. 
 Judie Johnson, R.N.  

Tom Lionetti, R.N. 
 Vijay Ramchandani, Ph. D. 

Dave Spero, R.N. 
 John Umhau, M.D. 
 Margaret Weiser, R.N. 

Marjorie Wright, RN 
 
Estimated duration of study: Five years 
 
Participants in study 
 Number  Gender  Age range 
 1000  Male  18 years and older 
 1000  Female  18 years and older 
 
Project uses ionizing radiation:     No 
Project involves use of Durable Power of Attorney   No 
Off-site project:     No 
Multi-institutional project:     No 
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1. Précis  
 The purpose of this protocol is to create a mechanism whereby the intramural program of the 
NIAAA can evaluate and treat a broad range of people with drinking problems at the NIH Clinical Center 
(CC) in Bethesda, MD. Through this program, participants will receive comprehensive, state-of-the-art 
treatment for their alcohol, psychosocial and medical problems and the program will be able to evaluate 
and recruit participants for other, more focused clinical research efforts to advance its research goals. 
Additionally, this will allow investigators and staff to gain broad training experience in alcohol and 
addiction medicine through the clinical care of such patients. The protocol is open to any adult who is 
seeking help for a drinking problem and who is likely to qualify to participate in another NIAAA 
protocol. Participants will be recruited through local media and professional avenues in the Washington, 
DC Metro area. They will be evaluated by a nurse and physician, among others, who will determine the 
need for hospitalization, detoxification and to address other issues. For those needing medically 
supervised detoxification, a standard program of monitoring and treatment with benzodiazepines and 
other medications will be instituted. A standard battery of screening blood, urine and other clinically 
indicated tests, an electrocardiogram, chest x-ray and MRI of the brain will be done as part of the 
comprehensive medical and neurological assessment. Following at least five days of abstinence from 
alcohol, participants will undergo a series of verbal and observational-type assessments designed to 
evaluate psychiatric co-morbidity, psychopathology, psychosocial problems, neurocognitive function, 
personality and other factors relevant to alcoholism treatment. Participants will then be offered a 12-16 
week course of outpatient treatment, consisting of either of two, manual-based therapies used in Project 
COMBINE, a large, NIAAA-sponsored national trial of counseling and medication therapies for alcohol 
dependence(The COMBINE Study Research Group, 2003a; The COMBINE Study Research Group, 
2003b). The first is an intensive counseling approach (12 sessions) called Combined Behavioral 
Intervention (CBI) and the second, Medical Management (MM), is a series of brief counseling sessions 
every 2-4 weeks. At five points during the outpatient phase participants will come to the clinic for 
selected blood and urine tests, interviews and verbal/observational assessments to evaluate abstinence 
from alcohol and identify change in various psychological dimensions. During their participation in this 
protocol, participants will be approached to consider enrolling in other clinical research protocols such as 
imaging studies and drug-treatment trials. For participants willing to participate in these other protocols, 
other appropriate consent(s) will be obtained. 
 
2. Introduction  
     People who have serious problems related to alcohol drinking have heterogeneous historical 
courses, the most serious of which may come to clinical attention (Institute of Medicine, 1990). Some 
people independently experience resolution of their drinking problems, while others go through variable 
cycles of adverse consequences; various non-clinical and clinical treatments and other efforts at 
abstinence or reduced drinking; lapse (first drinking episode); relapse (recurring sustained heavy drinking 
episode); and reemergence of old and new untoward consequences (Institute of Medicine, 1990). It is in 
recognition of this cycle that alcoholism, here equated with alcohol dependence, has been dubbed a 
chronic, relapsing disease, analogous in some respects to diabetes (Institute of Medicine, 1990; O'Brien, 
1994; O'Connor and Schottenfeld, 1998). However, as medical, psychiatric and psychological research 
has advanced, the understanding of how alcohol affects the body’s (brain and other systems) health and 
how coping difficulties maintain problem drinking and, indeed, the concept of disease itself are changing 
(Monti et al., 1989). 
     Against this changing knowledge, treatments for clinically manifest alcohol problems are 
emerging. The most commonly employed psychosocial treatment options, cognitive-behavioral coping 
skills therapy, motivational enhancement therapy, and twelve-step facilitation, are equally effective with 
abstinence rates of 19-35% and relapse rates of 40-46% at one year, under optimal conditions, delivered 
either in inpatient, day treatment, residential or outpatient settings (Project MATCH Research Group, 
1998; Longabaugh and Wirtz, 2001). Neuro-pharmacological treatments are being increasingly studied; 
thus far two drugs, naltrexone and acamprosate, have demonstrated benefit (Kranzler and Van Kirk, 
2001; Anton and Swift, 2003; Soyka and Chick, 2003). Both are to be used in conjunction with 
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counseling and supportive approaches, where they yield abstinence rates at one year of (17-47%), with 
most relapse occurring at three months (35-60% relapsed) under typical clinical trial conditions (O'Malley 
et al., 1992; Anton et al., 1999; Kiefer et al., 2003). Furthermore, response to treatment in “real-world” 
care delivery environments is very sparsely documented (O'Malley et al., 2003; The COMBINE Study 
Research Group, 2003a; The COMBINE Study Research Group, 2003b). 
  Given the challenges of understanding and treating clinical problems related to alcohol use, the 
primary thrust of the Laboratory of Clinical and Translational Studies (LCTS) at the intramural research 
program of the NIAAA is to investigate the neurochemistry of alcohol dependence and withdrawal 
(which itself may play a role in relapse), mechanisms of relapse and craving and their possible inter-
relationship and the short-term efficacy of candidate drugs in promoting abstinence. The main approaches 
used by the LCTS are translational research from pre-clinical to clinical models using sensitive 
observational techniques and tools, collaborations with other intramural scientists and scientifically sound 
and relevant clinical research projects. 
     One important tool for the translational studies envisioned by the lab and created within this 
protocol is the evaluation of genes that may underlie processes involved in the more fine-grained 
behavioral and cognitive (so-called “intermediate”) phenotypes seen in clinical populations and relevant 
animal model systems. Among them are neuropeptide and monoaminergic genes. We therefore propose 
to collect genetic information from alcoholics for the purpose of studies of the association of various 
genes with endophenotypes, primarily regional brain volumes and/or functional brain imaging results.   
 For example, due to the well-documented role of dopamine (DA) in drug reinforcement 
processes (Koob and Nestler, 1997), and the role of serotonin (5-HT) in affective psychopathology 
pertinent to substance abuse (Heinz et al., 2001), we propose to obtain allelic data on the following genes: 
1) The 5-HT transporter, the expression of which is reduced in alcoholism (Heinz et al., 1998), and a 
genotype of which has been linked to vulnerability of the brain to excessive alcohol (Heinz et al., 2000), 
2) the 5-HT 2a receptor, which has been linked to impaired impulse control in the context of history of 
psychopathology (Bjork et al., 2002), 3) the DA DR4 receptor, an allelic variant of which has been linked 
to attentional deficits and conduct-disordered behavior (Faraone et al., 2001), 4) the catechol-O-
methyltransferase gene, which has been linked to working memory functioning (Heinz et al., 2001), and 
5) the DA DR2 receptor gene, which has been linked to severity/age of onset of alcoholism (Geijer et al., 
1994), and extraversion in an interaction with presence versus absence of an alcoholic father in the home 
(Ozkaragoz and Noble, 2000). Recently a number of research groups have reported that various genes are 
associated with differences in brain structure as well as function (Mustovic et al., 2005; Wrase et al., 
2005) (Gordon et al., 2005). 
 In addition to the genes discussed above, we will also examine other genes that affect normal 
brain metabolism or development.  In no case will we characterize a gene that has been established to be 
useful in the diagnosis of any medical or psychiatric disorder. In summary, we wish to explore how 
variants of these genes may relate to behavioral, cognitive, neurophysiological and neuroanatomical 
features of subjects, which are ascertained in this and other NIAAA protocols. 
 For this final approach, the NIAAA intramural program needs a steady base of people who are 
seeking treatment for problems related to alcohol drinking and willing to participate in clinical studies. 
Furthermore, a busy and broadly-based alcoholism unit supports another important program goal: to train 
clinicians and investigators in alcohol studies. 
 The evaluation and treatment plan offered in this protocol represents a state-of-the art clinical 
addiction medicine program. Evaluation, including assessments of alcohol use, negative consequences, 
alcohol dependence, co-morbid psychiatric conditions, family history, neuropsychological functioning 
and physical sequelae, has a strong evidence base and has been recommended for clinical use, particularly 
to enhance motivation, plan for treatment and to provide a basis for follow-up(Institute of Medicine, 
1990; Project MATCH Research Group, 1997; O'Connor and Schottenfeld, 1998; Miller et al., 2003). 
Unfortunately, such recommendations have not yet been routinely implemented outside leading treatment 
institutions. However, in accordance with the NIAAA mission and responsibility to lead the community 
not only by performing state-of-the-art, cutting-edge research in alcoholism, but we also plan for the 
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intramural program, in this protocol, to lead by example in the delivery of treatment by offering an 
evaluation and treatment  program that vastly exceeds the standard practice in the community. 
     Because of the evidence-based nature of all assessments used in this protocol, data obtained 
through them can serve at least three purposes: first, to provide a basis for individualizing patient 
treatment, enhancing motivation to change, and following-up such treatment for the sole purpose of 
providing optimal clinical care; second, to provide patient characteristics and outcome data for specific 
research protocols to which the patient may additionally and separately consent; and third, to provide data 
for monitoring the performance and functioning of the program as a whole. 
     To provide the framework for operational management of the LCTS research program and 
conducting clinical trials in coordination with the NIH CC operation as well as to achieve the goal of 
recruiting participants for research, we have written this protocol as a hybrid training and short-term 
natural history protocol. Through it, we offer patients a state-of-the-art clinical work-up that represents a 
research evaluation and a 12-16 week course of standard psychosocial treatment for alcoholism using 
well-documented, effective approaches. Within this framework, we will seek subject participation in 
other protocols focused on more specific questions, including those related to alcohol withdrawal and the 
neuropharmacology of relapse (prevention). The data collected in this protocol may be used in the future 
for research purposes. 
     Subjects enrolled in this protocol may participate in other protocols, including clinical trials or 
mechanism studies using experimental compounds. The data collected in this protocol will be shared and 
used for analysis in those protocols. The protocols whose enrollment is explicitly contingent on prior 
enrollment in this protocol include:    

- 05-AA-0120: Acamprosate for Central Nervous System Hyperexcitability and Neuroadaptation 
in Alcohol Withdrawal 

- 06-AA-0129: NK1 Receptor Antagonism for Treatment of Anxiety and Craving in Anxious 
Alcohol Dependent Subjects During Early Abstinence 

Furthermore, as part of a longitudinal effort to characterize the cohort of subjects seen at the NIAAA, 
data from this protocol will be combined with data from 98-AA-0009, Screening Evaluation for NIAAA 
Protocols, particularly for rating scale information (such as personality factor assessment, mood and 
anxiety scales, etc.), correlation with brain MRI volumes in alcoholics, organ damage and genetic tests. 
 
3. Objectives  
This protocol has several purposes:  
1) It is meant to serve as an entry mechanism to authorize a subject’s admission to the NIH CC in 

Bethesda, Maryland under the care of the NIAAA LCTS and the CC  nursing staff (NIAAA Inpatient 
and Outpatient Care Units). 

2) It authorizes the provision of state-of-the-art care for individuals with alcohol and drug problems, 
including detoxification, assessments, and outpatient counseling approaches. 

3) It provides a high-quality, research-driven venue for training physicians, fellows, residents, medical 
students and other health-care professionals in the diagnosis and management of alcohol use 
disorders. 

4) It provides a set of standard measures, serving a dual purpose: 
a) To provide a basis for optimal treatment planning/matching and follow-up for the benefit of the 

individual patient 
b) To potentially provide patient characteristics and follow-up measures for participants in other 

NIAAA clinical research protocols. 
5) It can serve as a reference document for community facilities that may be interested in referring 

clients to the NIAAA intramural program. 
6) To collect blood samples from alcoholic subjects for the purpose of analyses of DNA and biomarkers 

of alcohol exposure 
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4. Study Design and Methods 
 This protocol does not involve experimental procedures or therapeutics. Rather, it follows the 
typical clinical course of events in people with alcohol dependence and abuse over a brief, intensive time 
period. It therefore consists of a series of phases including: 

- pre-NIH visit gathering of subject information (which generally takes 1 week in our experience), 
- physical evaluation at NIH CC (1-2 days), 
- inpatient alcohol withdrawal and psychosocial management when necessary (5+ days, 2+ weeks, 

respectively), 
- baseline observation (3-5 days) 
- and outpatient treatment (12 weeks).  

     In summary, the planned procedures throughout this protocol involve routine verbal and 
observational procedures, such as “pen-and-paper”-style self-reports and interviews, and minimally 
invasive procedures, such as phlebotomy and urine collection, electrocardiogram (ECG), chest x-ray 
(CXR) and magnetic resonance imagining (MRI) of the brain to provide a comprehensive medical, 
psychiatric and addiction medicine evaluation. The treatment involves standard outpatient counseling-
type therapy for alcohol dependence. 
     Since the NIAAA clinical program also serves to train physicians, nurses and other health 
professionals in the practice of addiction medicine, trainees will be involved in the evaluation of, and 
have direct contact with patients in this protocol. Involvement of trainees will always be under 
supervision of Senior Medical Staff of the Clinical Center, according to the general regulations of clinical 
privileges of the Clinical Center. 
     Following recruitment to the CC, patients will be examined by the medical and nursing staff to 
determine medical and psychiatric stability and to evaluate inclusion and exclusion criteria. Selected 
blood and body fluid tests, among others, will be done as clinically indicated. 
     Patients may need to be hospitalized for monitoring and treatment for problems and certain 
conditions, such as severe alcohol withdrawal, which, when uncomplicated, typically lasts about a week 
(Sullivan et al., 1989b; Kosten and O'Connor, 2003). Currently, the standard care for the treatment of the 
alcohol withdrawal syndrome is to provide close monitoring, supportive care and symptomatic treatment 
with benzodiazepines (diazepam, oxazepam or lorazepam), using the Clinical Institute Withdrawal 
Assessment-Alcohol Revised (CIWA-AR), a validated tool to categorize severity of alcohol withdrawal 
based on symptoms and physical signs (Sullivan et al., 1989b). Which of the three benzodiazepines to use 
and in which dosing regimen, are ultimately clinical decisions, and will be so taught to trainees. 
     Additionally, intravenous fluids and parenteral medications, such as thiamine, haloperidol, and 
antibiotics, may be required. Patients will receive daily folic acid supplements. The successful treatment 
and resolution of the alcohol withdrawal syndrome, for example as measured by consecutive CIWA-Ar 
scores below 7 and a clear sensorium, constitutes the detoxification phase, after which begins the baseline 
period. 
     During the baseline period, participants will undergo various verbal and observational 
assessments (detailed below). Based on these assessments, multidisciplinary treatment planning will be 
undertaken by the staff with the active participation of the patient. They will then be offered an 
opportunity to enroll in a 12-16 week treatment course of counseling that would consist of one of the 
following: CBI or MM, run through the NIAAA/CC outpatient clinic (see 4.C., “Therapy”, below). 
Alternatively, patients may be referred to a suitable non-NIH program for further treatment, depending on 
their preferences and treatment availabilities. 
     During the outpatient follow-up phase they will also be scheduled to be seen for clinic visits at 
weeks 1, 2, 4, 8 and end-of-therapy for brief medical and psychiatric check-ups, and selected blood and 
body fluid tests will be performed, as well as selected verbal assessments (see below). The assessment 
instruments; blood, body fluid and body tests; and therapies, with schedules are: 
 
A. Structured assessments of a subject’s history and internal psychological experiences are performed 

using pen-and-paper and computerized tools after a subject has been abstinent form alcohol for at 
least 5 days. 



546 

a. The Addiction Severity Index (ASI) is an instrument used extensively in the Addiction Medicine 
field to comprehensively identify problems in multiple dimensions including medical, 
employment, drug and alcohol use, legal, family and social and psychiatric (McLellan et al., 
1980). It is a 200-item interview that takes about 60 minutes. It will be done prior to and at the 
end of the outpatient treatment phase, i.e. baseline and end-of-therapy. 

b. The Structured Clinical Interview for Diagnostics and Statistics Manual-IV (DSM-IV) (SCID-I) 
is another widely-used, standard clinical interview to establish criteria for psychiatric diagnoses 
(First et al., 2002). It is a structured interview consisting of 11 modules with between 35-292 
items/module that takes about 120-180 minutes. It will be done at baseline. DSM-IV diagnoses 
will be established via a consensus, or “blind-rating” process involving trained psychiatrists. 

c. The Alcohol Dependence Scale assesses severity of alcohol dependence in a variety of clinical 
settings (Skinner and Allen, 1982). It consists of 25 questions and takes about 5-10 minutes to 
complete. It will be done at the baseline. 

d. The Obsessive-Compulsive Drinking Scale (OCDS) assesses craving and urges for alcohol 
(Anton et al., 1995). It is a 10-item self-report that takes about 5-10 minutes. It will be done at 
baseline and at each clinic visit during the outpatient treatment phase. 

e. The affective symptoms (anhedonia, depression, anxiety, and dysphoria) following removal of 
alcohol and other drugs, the so-called motivational effects of alcohol, will be assessed with self-
administered subscales derived from the Comprehensive Psychopathological Rating Scale Self-
rating Scale for Affective Syndromes (CPRS-S-A) (Mattila-Evenden et al., 1996; Svanborg, 
1999). It is a 19-item self-report that takes 5-10 minutes to complete. It will be done every three 
days during the admission and baseline phases and during the outpatient phase, at clinic visits. 

f. The Timeline Follow-Back (TLFB) technique collects drinking information using personal 
historical events recounted over a fixed time period (Sobell and Sobell, 1992b; Sobell and 
Sobell, 1996). It is a commonly used technique to assess alcohol drinking patterns and 
quantification in treatment programs. The number of items corresponds to the number of days of 
interest, up to 360 which usually takes about 30 minutes. It will be done at baseline to cover the 
prior 360 days and at each clinic visit during the outpatient treatment phase. 

g. The University of Rhode Island Change Assessment Scale (URICA) is used to indicate a 
subject’s motivation and readiness for treatment. It is URICA is a 32-item self-report that takes 
about 5-10 minutes. It will be done at baseline. 

h. The Neurotocism-Extroversion/Introversion-Openess to Experience (Five Factor) Personality 
Inventory- Revised (NEO PI-R) provides scores on various dimensions of personality (Costa and 
McCrea, 1997; Costa and McCRea, 2002; Costa et al., 2002). It is a 240-item self-report that 
takes up to 35-45 minutes to complete. It will be done at baseline. 

i. The Wechsler Adult Intelligence Scale-Revised (WAIS-R) is the standard technique to 
determine Intelligence Quotient (IQ). We use the Block Design and Vocabulary components to 
measure IQ. In total the tasks comprise 50 items that take about 15-30 minutes to complete. It 
will be done at baseline. 

j. Trails A and B have been extensively used to globally measure executive cognitive performance 
and frontal lobe function. They take about 5 minutes to complete. 

k. The Family Tree Questionnaire (FTQ) is an interview about a subject’s family history of alcohol 
and drug problems (Mann et al., 1985). The duration of the interview depends on the number of 
first- and second-degree relatives, but generally takes about 5-10 minutes. It will be done at 
baseline. 

l. The Important People and Activities Instrument (IPA) is a structured interview about 
interpersonal and social networks, especially as they relate to alcohol drinking (Longabaugh, 
1991; Zywiak et al., 2002). It covers 19 items and takes about 20-30 minutes. It will be done at 
baseline. 

m. The Fagerström nicotine dependence scale is a 5-item self-reported questionnaire about 
smoking. It takes 1-2 minutes to complete. 
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n. The modified Overt Aggression Scale (m-OAS) is a scale to screen for a history of violent 
behavior. It is a single page of questions which takes about a minute to complete. It is an 
interview. 

o. The Lifetime Drinking History estimates the total amount of alcohol consumed over a lifetime. It 
is an interview that takes about 20 minutes to complete. 

 
B. Neurocognitive tests of frontal lobe function: 
     
 Several reports collectively suggest that alcoholism-prone individuals are characterized by 
frontal lobe hypofunction (Ciesielski et al., 1995; Giancola and Moss, 1998), specifically deficits in 
executive cognitive functioning (ECF). These include response inhibition, attention, working memory, 
strategy, and assessment of behavior consequences. Patients need these cognitive abilities, at least to 
some degree, for the successful treatment of their alcohol use disorders. Thus, understanding the specific 
nature and severity of ECF will be helpful in treatment planning for individual patients. 
     We plan to measure and characterize ECF by using four computerized cognitive tests: the 
Wisconsin Card Sorting Task (WCST), The Iowa Gambling Task (IGT), a continuous performance, 
visual working memory task (CPT-WM), and a delay discounting task (DDT). The WSCT and the CPT-
CM both involve attention, working memory and strategy, and both are dependent on functions carried 
out by the lateral surface of the frontal lobes, while the IGT and the DDT both require inhibition and 
assessment of a behavior’s consequences and are thought to depend on the orbital and mesial surfaces of 
the frontal lobe (Bjork et al., in press). 
     We have developed computerized versions of the CPT-WM, IGT and DDT. These three tasks 
have all been used in NIAAA protocol 94-AA-0001, and they successfully discriminate between 
alcoholic and non-alcoholic individuals, as well as measure an individual’s ECF. For the WCST we will 
use a commercially available computerized version of this task. 
     Each of these tasks is performed by interacting with a computer. They are all minimal risk 
procedures and, although demanding, most individuals do not usually consider them unpleasant. The 
WCST is game-like and measures a person’s ability to make strategic changes based on changing 
circumstances. The IGT simulates a gambling game. In neither the WCST nor the IGT do the participants 
actually win money. However, both the CPT-WM and the DDT require that the participants be able to 
win money as part of the task. 
     The CPT-WM requires subjects to press a button in response to a series of letters displayed on a 
computer screen. By manipulating the targets it is possible to access an individual’s ability to focus 
attention as well as inhibit inappropriate responses. In the CPT-WM the amount won is based on a 
participant’s performance. The DDT assesses the degree to which a subject devalues a reward as a 
function of how long the subject must wait to receive it(Mitchell, 1999; Richards et al., 1999). In brief, 
the participant is presented with a series of choices between receiving either a monetary reward (either in 
cash or by mailed check as required) at time-points ranging from immediately to up to one year in the 
future. To enhance the realism of the task, actual reward (selected from a random question) will be 
delivered. A participant’s total winnings in the CPT-WM and DDT typically range from $30.00 - $45.00. 
The maximum amount possible to win from these two games is $80, but it is very unlikely that a 
participant can win this much. 
 
C. Bio-medical evaluations are procedures that physically analyze components of a subject’s body. 

They include: 
a. Breath alcohol analysis is a state measure of alcohol exposure which is also a clinically 

important marker of alcohol intoxication and tolerance and is serially used to correlate with signs 
and symptoms to diagnose the alcohol withdrawal syndrome. It will be done at baseline and each 
clinic visit during the outpatient treatment phase. 

b. Blood test panels to assess physiological functions and screen for organ damage, as well as 
assessment of the extent of alcohol and drug exposure, including toxicology and biomarkers. 
The blood tests (with blood volume) include: 
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i. Complete blood count with differential (CBC with diff) (3 mL, ~ 1 teaspoon). It will be 
done at baseline and each clinic visit during the outpatient treatment phase. 

ii. Chem 20 Panel (Chem 20): Sodium (Na), Potassium (K), Chloride (Cl), Total CO2 
(bicarbonate), Creatinine, Glucose, Urea nitrogen (BUN), Albumin, Calcium total, 
Magnesium total (Mg), Inorganic Phosphorus, Alkaline Phosphatase, ALT/GPT, 
AST/GOT, Total Bilirubin, Direct Bilirubin, LD, Total Protein, Total CK, Uric Acid, 
amylase (4 mL, ~1 teaspoon). It will be done at baseline. 

iii. Thyroid Screen: Thyroid stimulating hormone (TSH), Free thyroxine (FT4), Tri-
iodothyroine (T3) (3.5 mL, ~1 teaspoon)). It will be done at baseline. 

iv. Lipid and essential fatty acid panel: Total Cholesterol, Triglycerides, High-Density 
lipoprotein (HDL) Cholesterol, Low-Density Lipoprotein (LDL) Cholesterol; Lauric 
Acid, Myristic Acid, Hexadecenoic Acid, Palmitoleic Acid, Palmitic Acid, g-Linolenic 
Acid, a-Linolenic Acid, Linoleic Acid, Oleic Acid, Vaccenic Acid, Stearic Acid, EPA 
C20, Eicosapentaenoic Acid, Arachidonic Acid, Mead Acid, Homo-g-Linolenic Acid, 
Arachidic Acid, DHA, Docosahexaenoic Acid, DPA, DTA, C22 5W6, 5W3, C22, 4W6, 
Docosenoic Acid, Nervonic Acid, Triene Tetraene Ratio, Total Saturated Acid, Total 
Monounsaturated Acid, Total Polyunsaturated Acid, Omega 3, Omega 6, Fatty Acids 
(6.0 mL, 1.2 teaspoons). It will be done at baseline. The specimen will be stored in the 
LCTS in the laboratory of Dr. Markus Heilig.” 

v. Viral Markers Protocol Screen: Hepatitis B surface antigen (HBsAg), Hepatitis C Virus 
antibody (anti-HCV), Human Immunodeficiency Virus 1 and 2 (anti-HIV) (8 mL, 1.5 
teaspoons). It will be done at baseline. 

vi. Trace mineral panel: Trace mineral panel and vitamin analysis:  Vitamin C, and 
vitamins B12, homocysteine and methylmalonic acid, copper and ceruloplasmin, iron 
studies (serum iron, transferrin saturation, ferritin) and zinc (25.5 (5.2 teaspoons). It 
will be done at baseline. 

vii. Biomarkers: Currently, there is no clear standard set of blood and body fluid tests that 
clearly indicates relapse to alcohol use. However, guidelines are emerging (Litten and 
Fertig, 2003).  
1. Hepatic Panel (blood, 3.5 mL, ~1 teaspoon). It will be done each clinic visit during 

the outpatient treatment phase. 
2. Gammaglutamyl-transpeptidase (GGT) (blood, 3.5 mL, ~1 teaspoon)  (Conigrave 

et al., 2003). It will be done at baseline and each clinic visit during the outpatient 
treatment phase.  

3. Carbohydrate-deficient transferrin (CDT) (blood, 2.5 mL, ½ teaspoon)  (Javors and 
Johnson, 2003). It will be done at baseline and each clinic visit during the 
outpatient treatment phase.  

4. The ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-hydroxytryptophol (5HTOL) 
(urine) (Beck and Helander, 2003). It will be done at baseline and each clinic visit 
during the outpatient treatment phase. 

5. Ethyl glucuronide (urine) (Wurst et al., 2003). It will be done at baseline and each 
clinic visit during the outpatient treatment phase. 

6. During the baseline phase, two additional tubes of blood (20 mL) will be collected 
up to a maximum of five times (100 mL). During the outpatient follow-up phase, 
20 mL will be drawn at weeks 2, 4, 8 and 12 (or end of therapy) (80 mL). Various 
blood components (plasma, serum and intracellular proteins) will be assayed using 
experimental tests being developed as biomarkers of alcohol exposure and organ 
damage. The specimens will be stored in the NIAAA LCTS in the laboratory of Dr. 
Markus Heilig. The total amount of blood for the experimental biomarkers is 180 
mL (less than 37 teaspoons). 
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c. Urine tests 
i. Urinalysis to screen for renal and genitourinary abnormalities will be done at baseline 

and during follow-up as clinically indicated. 
ii. Urine drug screens 

1. The Qualitative (DLM) tests for benzodiazepines, cocaine, methamphetamines, 
opiates and tetrahydrocannabinol (THC). It provides a result within hours. It will 
be done at baseline and each clinic visit during the outpatient treatment phase. 

2. The Drug Profile #1 tests for amphetamines, barbiturates, benzodiazepines, 
cocaine, lysergic acid diethylamine, opiates, phencyclidine and THC. It has greater 
sensitivity than the DLM screen and takes about five days to complete. It will be 
done at baseline and each clinic visit during the outpatient treatment phase. 

iii. Pregnancy test. Some medications which may be indicated during routine treatment of 
alcohol related problems are inappropriate for pregnant subjects. For this reason, 
pregnancy tests will be done at baseline and as clinically indicated thereafter. 

iv. Biomarkers (see above) 
1. Ratio of 5-HIAA to 5-HTOL (see above) 
2. Ethyl glucuronide (see above) 

d. Other procedures used to screen for medical diseases and abnormalities. 
i. An electrocardiogram (ECG) is a minimal risk procedure that allows detection of 

cardiac rhythm and structural problems that may be associated with alcoholism. It will 
be performed at baseline. 

ii. The chest x-ray is a minimal risk procedure to allow detection of cardiac, bone and 
pulmonary abnormalities that may be associated with alcoholism and cigarette 
smoking. It will be performed at baseline. 

iii. An MRI of the brain is a minimal risk procedure which allows the diagnosis of brain 
damage associated with alcoholism. It will be performed at least 2 weeks after the last 
drink unless clinically urgent. 

e. Blood sample for collection of DNA (leukocytes) for analysis of polymorphisms in gene loci 
such as the following (other genes known to be involved in brain function and/or alcohol-related 
organ damage may also be examined):  

1) The 44 base-pair repeated element (SLC6A4) of the serotonin (5-HT) reuptake 
transporter (promoter), 
2) The T102C polymorphism of the 5-HT2a receptor  
3) The 48 base-pair repeated element in Exon III of the Dopamine DRD4 receptor 
4) The Val/Met polymorphism of the Catechol-O-Methyl-transferase (COMT),  
5) The Taq1 (A1)-defined polymorphism of the dopamine DRD2 receptor, 
6)  Alleles associated with Brain Derived Neurotrophic Growth Factor (BDNF).  
 

David Goldman, MD, Chief, NIAAA Laboratory of Neurogenetics in collaboration with LCTS will store 
and conduct the genetic analysis.  

 
The alcohol use disorder patients will not be asked to give consent for the blood draw for genetic analysis 
until at least five days after their most recent consumption of alcohol containing beverages. This will 
correspond to when they are asked to sign the “unimpaired subject consent” version of this protocol (05-
AA-0121). 

 
D. Therapy 

a. The assessments listed above are considered to be an important component of treatment 
planning, indicating individual areas of treatment focus and monitoring (Institute of Medicine, 
1990; Donovan, 2003). 

b. CBI is a recently developed form of therapy for alcohol dependence that draws on several 
approaches having reasonable evidence of efficacy. It combines three elements:  
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i. A community reinforcement approach (CRA) that integrates functional analysis of the 
drinking behavior, behavioral skills training (in project MATCH called Cognitive 
Behavioral Coping Skills Therapy, or CBT) and family involvement. Cognitive-
behavioral coping skills therapy (CBT) is an effective treatment approach that basically 
focuses on the training of interpersonal and self-management skills (Monti et al., 1989; 
Kadden et al., 1992; Miller et al., 1995).  

ii. Motivational interviewing and assessment feedback (in Project MATCH called 
Motivational Enhancement Therapy, or MET). MET is a systematic intervention 
approach based on the principles of motivational psychology and designed to produce 
rapid internally motivated change (Miller et al., 1992; Miller et al., 1995). 

iii. CBI will be conducted, as in Project COMBINE, in 4 phases: the first involves 
motivational interviewing and subject assessment (generally 1-2 sessions); phase 2, a 
functional analysis, held jointly with a supportive significant other when available, to 
identify problems in drinking behavior, skills and resources to target specific areas 
where improvement is need (1-2 sessions); phase 3, cognitive behavioral skills group 
therapy (10 sessions). These will be scheduled over a 12 to 16 week time period (The 
COMBINE Study Research Group, 2003b). This arm would be the standard treatment 
for patients not participating in pharmacotherapy trials (protocols) for relapse 
prevention. 

iv. All CBI sessions will be conducted by trained NIH staff: nurses from the CC and/or 
counselors from the NIAAA. Phase 1 and 2 will be conducted at the CC. The current 
plan is that Phase 3 will be conducted at the CC. However, there is initial planning for 
CBI treatment to be conducted at other local facilities that may be more accessible to 
outpatients, as it has been shown that one of the most important variables in retention in 
alcoholism treatment programs is proximity of the treatment to a client’s domicile. 
Also, concern has been raised that the current security circumstances at the NIH’s 
Bethesda facility may be a barrier to treatment retention in our program (personal 
communication, T. K. Li, Director, NIAAA, October 2004). In each such case where an 
outside facility may be considered as a treatment site, the plan would be brought to the 
IRB for discussion, approval and amendment to this protocol as stipulated. 

 
c. Medical Management (MM) is a manual-based behavioral intervention consisting of brief, 

structured counseling sessions to provide strategies for medication adherence and to support 
abstinence through education and referral to support groups (Pettinati et al., 2004). Follow-up 
sessions are used to assess drinking status, overall functioning, medication adherence, and any 
side effects. It is an adaptation of the BRENDA approach (biopsychosocial assessment, reporting 
the assessment results, empathetic understanding, identifying patient needs and priorities, and 
matching needs to treatment options, and adjusting advice to patient response- the “BRENDA” 
approach) developed and used at the Center for Addiction Studies at the University of 
Pennsylvania Health System (http://www.uphs.upenn.edu/trc/index.html).  

d. Under this protocol, pharmacological treatment to prevent relapse will be offered only using 
medications which are approved for this indication (naltrexone and acamprosate). Although 
Antabuse is approved, it will not be offered because of unacceptable safety risks. Other 
treatment options for relapse prevention may be offered if the patient additionally and separately 
consents to participation in treatment trial protocols aimed at evaluating novel candidate 
treatments. These will then be described in the respective clinical trial protocol. 

e. Assignment of subjects to CBI or MM will not be random. Instead, assignment to treatment will 
be based on (a) whether they are in a clinical trial of medication(s) for relapse prevention or 
(Bobo et al.) whether they are taking an approved medication for relapse prevention, such as 
naltrexone or acamprosate, as follows: 
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i. People who participate in approved LCTS drug studies to prevent relapse will be 
treated with MM. A single treatment keeps the study manageable and allows direct 
assessment of the drug’s effect. 

ii. The people who are not on drug studies, but are taking naltrexone or acamprosate off-
study (as they could/should in the real-world) will be offered CBI or MM. 

iii. Anyone not taking a drug for relapse prevention will be offered CBI. 
f. During the outpatient treatment phase participants may experience medical, psychiatric, or 

psychosocial problems. These clinical situations would be handled by trained staff 
(nurse/counselors, physicians, clinical psychologists, and/or social workers) in according to the 
standard of care appropriate for the situation. 

 
5. Inclusion and exclusion criteria  
a. Inclusion 

1) Age greater than 18 years old. 
2) Are seeking help for alcohol drinking-related problems. 

b. Exclusion  
1) People who present with complicated medical problems requiring intensive medical or 

diagnostic management, such as:  
a. Hypertensive emergency 
b. Serious GI bleeding 
c. Major organ or body system dysfunction such as decompensated liver disease, renal 

failure, myocardial ischemia, congestive heart failure or cerebrovascular disease, major 
endocrine problems such as uncontrolled diabetes, pancreatic or thyroid disease. 

2) People who are infected with the Human Immunodeficiency Virus (HIV). 
3) Serious neuro-psychiatric conditions which impair judgment or cognitive function to an extent 

that precludes them from providing informed consent, such as acute psychosis or severe 
dementia (incompetent individuals). 

4) People who are unlikely or unable to complete the treatment program because they become or 
are likely to be incarcerated while on the protocol. 

5) People who are required to receive treatment by a court of law or who are involuntarily 
committed to treatment. 

 
6. Monitoring research participants and criteria for withdrawal of participants from the study 
 Significant events in the natural history of alcohol abuse and dependency can have very serious 
consequences; they include severe depression, harm to self or others, cognitive impairment, medical 
illness and serious legal problems. Such events do have relevance for monitoring and withdrawal of 
participants from this protocol, despite the fact that it is they would very unlikely be related to therapy or 
procedures performed in the protocol. 
 During the hospitalization treatment phase, patients are kept on a secured unit under close nurse 
monitoring. Alcohol withdrawal severity is monitored with frequent vital signs (VS) monitoring and 
CIWA-Ar scoring. In general, during the first few days after stopping alcohol, VS monitoring and CIWA-
Ar scoring is done hourly or every 2-4 hours until the scores are consistently below a range of 5-7. They 
may also be done on an “as indicated” basis, at the discretion of the healthcare team. 
 During the outpatient treatment phase, participants will be examined in clinic (as scheduled 
above) by nurses and physicians with training and experience in the addictions who will specifically 
review symptoms of depression, intent to harm self or others and a history of complications such as 
serious legal or domestic problems. The healthcare professionals will also review the mood ratings scales 
from CPRS-S-A. Participants will be examined in greater detail for cognitive impairment and medical 
illness if either is suggested based on history and/or routine exam. 
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Withdrawal criteria 
- Participants who become incarcerated or who perpetrate harm to self or others. 
- Non-compliance with therapy: Guidelines and strategies for handling absences from therapy 

sessions, lateness, lapse (first instance of drinking) and relapse (first episode of sustained heavy 
drinking) to alcohol and/or drug use have been established and will be used in the context of CBI 
(Miller, 2004). For participants who miss appointments, efforts will be made to establish phone or 
other contact to enquire about the reasons for the absence(s) and to encourage them to return to 
treatment. Indeed, therapists are trained to use non-compliance itself as an area of focus for 
treatment, to the extent that the subject stays engaged. Absolute non-compliance, for example 
exhibited by extensive alcohol or drug use, and repeated absence from therapy will constitute 
grounds for withdrawal from the protocol. This will be at the discretion of the therapists in 
consultation with the Principal Investigator. 

- Participants may withdraw from the protocol at any time for any reason. If they do, NIAAA 
and/or CC staff will make efforts to ensure their safety and well being. 

The following participants will be considered stopped: 
- Those who are withdrawn 
- Those who decide to seek treatment referral elsewhere after the detoxification and assessment 

period 
- Those who successfully complete the outpatient course of therapy 

 
7. Analysis of the study 
     To assess performance of the program, statistics will be cumulatively kept regarding consent, 
screening, enrollment, and withdrawal/stop, including breakdown by timeline period: 
inpatient/stabilization, baseline and outpatient treatment. Specific participant outcomes to be measured 
include attendance at counseling sessions, drop-out, lapse, relapse, and follow-up ASI scores. For 
administrative and regulatory purposes, information such as the demographic composition of the cohort, 
co-morbid conditions and resource utilization (inpatient and outpatient visits, duration of stay, etc.) will 
be kept. This descriptive data will be also used in other protocols of relapse prevention, alcohol 
withdrawal and other studies in which patients may co-participate. The MRI scans collected under this 
protocol may be grouped together with the MRI’s collected under other descriptive protocols assessing 
the effects of heavy alcohol use on the recovering brain and correlating them with outcomes. 
 
8. Data Management Plan 
     Currently, data is collected by paper and entered into application-specific data tables. However, 
a web-based clinical research data management system is currently under development at the LCTS. The 
ultimate goal of this system is to permit point-of-observation data collection through user-friendly 
applications. Additionally, standard operating procedures and documentation for system use, data 
collection, auditing, disaster recovery and security are also being developed.  
     In summary the system consists of a relational database server, an object-oriented middle-tier 
(business model) and a variety of front-end applications. The front-end applications are designed to 
validate out-of-range values and missing key variables at the time of collection. Data will be entered by 
trained personnel such as investigators and staff who are directly engaged in and familiar with clinical 
activities. Self-report data will be audited at the time of capture. Also, data entry personnel without 
clinical research training may be employed at times to enter data from paper-based forms. Access to the 
system will be through authentication mechanisms established for all NIH systems (currently Microsoft® 
Active Directory). Access to data entry screens and reporting modules will be role-based, with oversight 
of the assignment of roles made by the principal investigator and the NIAAA Clinical Director. 
     Data from the CC information system, supplied through agreement with the Division of Clinical 
Research Informatics, is directly imported to the relational database; it includes: biographic and 
demographic data, medical record numbers, CC visits, protocol participation and laboratory test results. 
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9. Human subjects protection 
 
A. Rationale for subject selection 
     Alcohol problems occur in both men and women across all cultures. Thus, participation in our 
program of detoxification, assessment and treatment of alcohol problems will be open to all qualified 
people who can be accommodated. Individuals are recruited primarily from the Washington, D.C. 
metropolitan area through standing newspaper advertisements. A copy of the currently running ad is 
attached to this protocol (Figure). Any changes to it will be subject to IRB approval. Individuals will also 
be recruited through outreach to healthcare organizations, particularly those that see patients with alcohol 
and drug problems throughout Northern Virginia, Maryland, West Virginia and the Washington, D.C. and 
Baltimore metropolitan areas and elsewhere in the US. Increased efforts will be made to recruit 
Hispanics. This will take the form of contacts with treatment programs that serve Hispanic populations, as 
well as through advertising in Spanish language newspapers. Language interpreters are available for non-
English speaking participants. The intramural research program is primarily focused on alcohol-related 
problems in adults, thus patients must be at least 18 years of age to be enrolled. Furthermore, NIH CC 
policy forbids minors (individuals under age 18) to be housed on the same inpatient unit with adults (over 
age 18). 
     This research is covered by a Confidentiality Certificate, issued by the Public Health Service 
under the authority of 42 U.S.C. 241 (d). Under this certificate, NIAAA is authorized to protect the 
privacy of the participants engaged in research by withholding the subject’s name and other identifying 
information from all persons not connected to this research, except under the circumstances specified in 
the consent form under the section: Information on Confidentiality. 
 
B. Evaluation of Benefits and Risks/Discomforts 
  
1. Benefits 
To individual participants: 

1) A thorough medical and psychiatric screening examination, including dental and gynecological 
examinations, as indicated, may prevent long-term illness and deterioration of quality of life and 
identify treatable conditions. 

2) Supervised medical withdrawal from alcohol can prevent the risk of seizures, delirium tremens 
and other neurological and medical complications. It may also help prevent the development of 
long-term CNS damage. 

3) CBT and MET- as in CBI- and brief interventional and medication management approaches- as 
used in MM- among other counseling approaches and brief interventions, and have been shown 
to have a specific beneficial effect on improving outcome in alcohol dependency (Miller et al., 
1995; Carroll, 1996; Project MATCH Research Group, 1998; Burtscheidt et al., 2001). 

Benefit to NIAAA/CC program’s mission: 
1) Improved treatment program performance through feedback and formal analysis of outcomes of 

therapy and program subject factors (dimensions of assessments) 
2) Basis for clinical training of health professionals in the field of addiction medicine, including a 

fellowship program for physicians 
3) Consistent recruiting basis for alcohol clinical research program 

Benefit to community and society 
1) Source of referral and treatment for people with alcohol problems that impact negatively on 

community and society. 
2) Promote the research mission of a national health initiative (NIAAA). 
3) Competently trained addiction medicine specialists 
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2. Risks/Discomforts 
     This research protocol authorizes only routine medical care and proposes no experimental 
therapies and, indeed, carries no more risk than a conventional alcoholism treatment program. It falls 
under the minimal risk category. 
 
Bodily and Psychological 
     Psychological discomfort may derive from a variety of sources, for example during the 
assessment period or in therapy as patients are challenged to discuss personally sensitive issues. To the 
extent that they are appreciated by the patient themselves, the feelings themselves may become the 
subject of therapeutic focus and a target of further monitoring, if they are persistent and compelling. Also, 
some of the results of blood tests may at first create anxiety, such as a positive HIV test. However, 
anxiogenic these test results may be, they never-the-less provide the important assurance of safety of all 
participants and healthcare workers involved in the program. Furthermore, they are a responsible form of 
medical care and widely practiced in the community, and are thus essential. 
     Physical discomfort mainly would derive from the alcohol withdrawal experience, if it occurs, 
which is treated as described above. Phlebotomy entails no serious risk and is a relatively minor 
discomfort, except in individuals (roughly 5% of the population) who faint in response to a phlebotomy 
or anticipation thereof. A total of up to 364 mL (74 teaspoons) will be done over the course of the 
baseline evaluation (up to 178 mL, 36 teaspoons) and outpatient therapy (186 mL, 38 teaspoons). Some 
of the findings from these tests (for example, anti-HCV antibody (+) results) may require other tests for 
further clinical assessment. This research blood volume will be included in calculations in any additional 
protocols in which the subject might participate to ensure maximum allowable limits of blood draws will 
not be exceeded. 
     Since the CPT-WM and DDT neurocognitive tasks require the use of monetary compensation as 
a way of motivating subjects, efforts will be made to reduce the risk that alcoholic subjects will use the 
money they are paid to buy alcoholic beverages. Specifically, the risk of using the money to buy alcoholic 
beverages will be discussed with each alcoholic participant by the alcohol treatment unit staff. If an 
alcoholic subject reports that he or she expects that his/her earnings might be used to buy alcoholic 
beverages, the subject will be urged to make other arrangements for the disposition of the money (e.g., 
have a relative hold it). 
     Confidentiality and information technology standards are in place at the intramural programs of 
the NIH campus, including the NIAAA/LCTS to protect electronic repositories of patient data. It is 
reasonably expected that these safeguards will protect participants’ medical and personal health 
information, ensuring their privacy. 
  
C. Consent process 
     The informed consent process will take place at the NIH Clinical (Research) Center in Bethesda, 
Maryland. It will follow the policies and procedures as described in Manual Transmittal Sheet M77-2 
(rev.), 7 March 2003, “Informed Consent”, from the Medical Administrative Series of The Clinical 
Center. In summary, this policy states that informed consent begins at the time of recruitment of patients, 
involves oral discussions of the protocol with the potential participant, the signature of an IRB-approved 
consent document, and ongoing discussion and education about the protocol for the duration of their 
participation.  
     The determination of impairment is made by the admitting physician and the primary nurse on 
the basis of clinical examination, including factors such as the level of intoxication using breath alcohol 
and urine drug testing; severity of withdrawal (the CIWA has 5 parameters of CNS function); neurologic, 
psychiatric and other functioning. As a matter of standard practice, all subjects, regardless of the clinical 
setting (inpatient or outpatient), sign the Impaired version of the consent at the time of their initial 
protocol evaluation visit. After an extended period of hourly observation, assessment and treatment they 
sign the Unimpaired version. Practically speaking, for inpatients, this is usually sometime after hospital 
day 4; for outpatients, this is at the time of their second protocol visit (usually at least 1 week after the 
initial visit), provided they are not impaired on clinical grounds (see above). 
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     Either the Principal Investigator or an Associate Investigator will conduct the consent process in 
accordance with CC policy. The investigator will first explain that this protocol is primarily designed to 
allow patients to be treated at the NIH for alcohol problems, including alcohol withdrawal and outpatient 
counseling. Also, they will be told of the nature of the research mission at NIAAA and that during their 
participation in this protocol they may be asked about their willingness to participate in other research 
studies. Furthermore, the investigator will explain tests (pen-and-paper type and biomedical procedures) 
that are required and the information that will be sought, and roughly how much time they may take. 
They will be told of the fact that some of the biomedical tests that are performed may have serious 
implications about their future prognosis (life expectancy and well-being) and insurability, such as HIV 
infection. They will further be told that this information will be stored in the CC hospital information 
system as well as a secure centralized computer system maintained by the NIAAA staff. They will also be 
informed of the NIH confidentiality policy. Finally, they will be told of their option to voluntarily 
withdrawal from further participation in the protocol at any time. Signing the consent form will constitute 
enrollment. In keeping with standard good practice, the protocol will be re-explained to participants after 
admission to the program, particularly after the treatment for the alcohol withdrawal syndrome, if it 
occurs, to reassess their understanding of the nature of the protocol and treatment plan. 
 
10. Adverse Event (AE) Reporting 
Adverse events will be reported in accordance with Federal and NIH requirements. 
   
11. Subject Reimbursement Schedule  
 
Compensation 
 
Payment of all participants will conform to Clinical Center Schedules. Subjects will receive payment for 
the MRI Structural Scan as follows:  
 
 Activity     Time (+ICUs)  Cost 

Testing 
 
MRI Structural Scan*    1 hour (1)  20.00 (10.00) 
 
12. Data and Safety Monitoring 
Data and safety will be monitored by the Principal investigator. The medical staff, including other PI’s, 
the head nurse for the inpatient unit and outpatient clinic and the Clinical Director, will review adverse 
events and safety issues on a quarterly basis.  
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Timeline for Training and Natural History Protocol 
 
Phases with usual duration in parentheses 

1) Phone intake/screening (1-2 weeks) 
2) Detox/psychosocial stabilization (if necessary) (2-5 days) 
3) Baseline assessments (1-4 weeks) 

a. Blood and urine tests 
b. ECG, CXR 
c. Interviews/scales, pencil and paper tests 
d. MRI (or may be done during outpatient follow-up) 
e. Neurocognitive tests 
f. Biomarkers 
g. Genetics 

4) Inpatient stabilization, evaluation with treatment (1-30 + days) 
5) Outpatient follow-up (12 weeks): 

 
Week If in CBI group MD visit, if on 

medication 
Blood tests, urine drug 
screen, rating scales 

1    
2    
3    
4    
5    
6    
7    
8    
9    
10    
11    
12    
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Appendix I 
 

Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised  
(CIWA-Ar) 

 
 
Patient:__________________________ Date: ________________ Time: _______________  
(24 hour clock, midnight = 00:00) 
Pulse or heart rate, taken for one minute:_________________________ Blood pressure:______ 
 
NAUSEA AND VOMITING -- Ask "Do you feel sick to your stomach? Have you vomited?"  
 
0 no nausea and no vomiting 
1 mild nausea with no vomiting 
2 
3 
4 intermittent nausea with dry heaves 
5 
6 
7 constant nausea, frequent dry heaves and vomiting 
 
TACTILE DISTURBANCES -- Ask "Have you any itching, pins and needles sensations, any burning, 
any numbness, or do you feel bugs crawling on or under your skin?"  
 
0 none 
1 very mild itching, pins and needles, burning or numbness 
2 mild itching, pins and needles, burning or numbness 
3 moderate itching, pins and needles, burning or numbness 
4 moderately severe hallucinations 
5 severe hallucinations 
6 extremely severe hallucinations 
7 continuous hallucinations 
 
TREMOR -- Arms extended and fingers spread apart. 
 
0 no tremor 
1 not visible, but can be felt fingertip to fingertip 
2 
3 
4 moderate, with patient's arms extended 
5 
6 
7 severe, even with arms not extended 
 
AUDITORY DISTURBANCES -- Ask "Are you more aware of sounds around you? Are they harsh? 
Do they frighten you? Are you hearing anything that is disturbing to you? Are you hearing things you 
know are not there?"  
 
0 not present 
1 very mild harshness or ability to frighten 
2 mild harshness or ability to frighten 
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3 moderate harshness or ability to frighten 
4 moderately severe hallucinations 
5 severe hallucinations 
6 extremely severe hallucinations 
7 continuous hallucinations 
 
PAROXYSMAL SWEATS – 
 
0 no sweat visible 
1 barely perceptible sweating, palms moist 
2 
3 
4 beads of sweat obvious on forehead 
5 
6 
7 drenching sweats 
 
VISUAL DISTURBANCES -- Ask "Does the light appear to be too bright? Is its color different? Does it 
hurt your eyes? Are you seeing anything that is disturbing to you? Are you seeing things you know are 
not there?"  
 
0 not present 
1 very mild sensitivity 
2 mild sensitivity 
3 moderate sensitivity 
4 moderately severe hallucinations 
5 severe hallucinations 
6 extremely severe hallucinations 
7 continuous hallucinations 
 
ANXIETY -- Ask "Do you feel nervous?"  
 
0 no anxiety, at ease 
1 mild anxious 
2 
3 
4 moderately anxious, or guarded, so anxiety is inferred 
5 
6 
7 equivalent to acute panic states as seen in severe delirium or acute schizophrenic reactions 
 
HEADACHE, FULLNESS IN HEAD -- Ask "Does your head feel different? Does it feel like there is a 
band around your head?" Do not rate for dizziness or lightheadedness. Otherwise, rate severity. 
 
0 not present 
1 very mild 
2 mild 
3 moderate 
4 moderately severe 
5 severe 
6 very severe 
7 extremely severe 
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Appendix J 
 

Activty Flow Sheet – Clinical Study #2 
 

 
 
 
 
Step          A      B   C       D              E           F    
          
  
   
 

 Day            1      2  3           8          15      
             

 
 
Step A:   Potential subject contact with NIAAA; Interview and assess whether 
  patient would like to participate. Informed Consent Form discussion, 
  comprehension, and signing; Physical and psychiatric examination  
  including DSM-IV/SCID-I and Drugs of Abuse testing; Inclusion and 
  exclusion criteria evaluation of patient.  
  
Step B:  Admission for detoxification and stabilization at NIAAA/CRC.  BrAC 
  evaluation; Baseline sampling will be performed including: Blood  
  biological sampling, CIWA-AR, and vital signs, urine Drugs of Abuse 
  testing.   
 
Step C:    Day 2 after admission.  BrAC evaluation; Baseline sampling will be 
  performed including: blood biological sampling, CIWA-AR, and vital 
  signs, urine Drugs of Abuse testing;   Biological testing for biomarkers 
  performed in the AM, before smoking and eating.   FTND administration 
  to volunteer for categorization into subgroup (NS, LS, HS). 
 
Steps D-F:  Days 3, 8 and 15 after admission.  Same as step C.  Alcohol TLFB, Food 
  Inventory administration only once any time after sobriety.   
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Appendix K 
 

Patient Summary – Clinical Study #2 
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Appendix L 

 
S-PLUS® ANCOVA and Linear model outputs – Clinical Study #1 
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Table L-1:  ANOVA for main effects of SS and GEN on Log H  
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.H ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.031808, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit   SS:GEN Residuals  
 Sum of Squares  7.40497  0.02159  0.71119  1.34362  16.63132 
Deg. of Freedom        2        1        1        2        75 
 
Residual standard error: 0.4709044  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2   7.40497 3.702483 16.69658 0.0000010 
      GEN  1   0.02159 0.021590  0.09736 0.7558877 
    visit  1   0.71119 0.711188  3.20715 0.0773521 
   SS:GEN  2   1.34362 0.671812  3.02958 0.0742898 
Residuals 75  16.63132 0.221751                    
 
Residual standard error: 0.4832 on 77 degrees of freedom 
Multiple R-Squared: 0.3116  
F-statistic: 8.715 on 4 and 77 degrees of freedom, the p-value is 7.41e-006 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffe method  
 
critical point: 2.86  
response variable: log.H  
rank used for Scheffe method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS   -0.032     0.143      -0.440       0.376      
HS-NS    0.571     0.127       0.209       0.933 **** 
LS-NS    0.603     0.127       0.241       0.965 **** 
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Table L-2:  ANOVA for main effects of SS and GEN on Log NH  
 
 
 

 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.NH ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.031808, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit   SS:GEN Residuals  
 Sum of Squares 13.94415  0.35342  0.01848  1.90789  12.54758 
Deg. of Freedom        2        1        1        2        75 
 
Residual standard error: 0.4090246  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2  13.94415 6.972076 41.67382 0.0000000 
      GEN  1   0.35342 0.353417  2.11246 0.1502757 
    visit  1   0.01848 0.018483  0.11048 0.7405308 
   SS:GEN  2   1.90789 0.953946  2.70197 0.0649521 
Residuals 75  12.54758 0.167301                    
 
Residual standard error: 0.4333 on 77 degrees of freedom 
Multiple R-Squared: 0.4976  
F-statistic: 19.06 on 4 and 77 degrees of freedom, the p-value is 6.246e-011  
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffe method  
 
critical point: 2.86  
response variable: log.NH  
rank used for Scheffe method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.276     0.124     -0.0778       0.631      
HS-NS    0.924     0.110      0.6100       1.240 **** 
LS-NS    0.648     0.110      0.3330       0.962 **** 
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Table L-3:  Linear Model for effects of FTND on Log H  
 
 
*** Linear Model *** 
 
Call: lm(formula = log.H ~ GEN + FTND + GEN:FTND, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median     3Q    Max  
 -1.212 -0.3671 0.02479 0.4088 0.9894 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.0875   0.0974    11.1606   0.0000 
        GEN   0.2575   0.1425     1.8074   0.0746 
       FTND   0.1561   0.0310     5.0431   0.0000 
   GEN:FTND  -0.1241   0.0414    -2.9971   0.0037 
 
Residual standard error: 0.4991 on 78 degrees of freedom 
Multiple R-Squared: 0.2558  
F-statistic: 8.939 on 3 and 78 degrees of freedom, the p-value is 0.00003681  
 
 
 
  
Table L-4:  Linear Model for effects of #cig/day on Log H  
 
 
*** Linear Model *** 
 
Call: lm(formula = log.H ~ .cig.day + GEN + .cig.day:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.206 -0.3661 0.03123 0.3959 1.015 
 
Coefficients: 
                Value Std. Error  t value Pr(>|t|)  
 (Intercept)   1.0810   0.0967    11.1744   0.0000 
    .cig.day   0.0342   0.0067     5.1395   0.0000 
         GEN   0.2159   0.1431     1.5088   0.1354 
.cig.day:GEN  -0.0149   0.0126    -1.1823   0.2407 
 
Residual standard error: 0.4924 on 78 degrees of freedom 
Multiple R-Squared: 0.2757  
F-statistic: 9.896 on 3 and 78 degrees of freedom, the p-value is 0.00001328  
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Table L-5:  Linear Model for effects of FTND on Log NH  
 
 
*** Linear Model *** 
 
Call: lm(formula = log.NH ~ FTND + GEN + FTND:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q Median     3Q    Max  
 -1.054 -0.3148 0.1162 0.2901 0.7051 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.1142   0.0862    12.9225   0.0000 
       FTND   0.2006   0.0274     7.3253   0.0000 
        GEN   0.2987   0.1261     2.3691   0.0203 
   FTND:GEN  -0.1082   0.0367    -2.9514   0.0042 
 
Residual standard error: 0.4417 on 78 degrees of freedom 
Multiple R-Squared: 0.4712  
F-statistic: 23.16 on 3 and 78 degrees of freedom, the p-value is 8.026e-011  
 
 
 
 
 
Table L-6:  Linear Model for effects of #cig/day on Log NH  
 
 
*** Linear Model *** 
 
Call: lm(formula = log.NH ~ .cig.day + GEN + .cig.day:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median     3Q    Max  
 -1.042 -0.2874 0.07357 0.2893 0.8194 
 
Coefficients: 
                Value Std. Error  t value Pr(>|t|)  
 (Intercept)   1.1027   0.0842    13.0910   0.0000 
    .cig.day   0.0443   0.0058     7.6449   0.0000 
         GEN   0.2711   0.1246     2.1756   0.0326 
.cig.day:GEN  -0.0041   0.0110    -0.3731   0.7101 
 
Residual standard error: 0.4288 on 78 degrees of freedom 
Multiple R-Squared: 0.5016  
F-statistic: 26.16 on 3 and 78 degrees of freedom, the p-value is 8.201e-012  
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Table L-7:  ANCOVA for SS and GEN on Log H, Food and AAI as Covariates 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.H ~ SS + GEN + visit + Food.H + AAI, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit   Food.H      AAI Residuals  
 Sum of Squares  7.40497  0.02159  0.71119  0.41445  0.37278  17.18772 
Deg. of Freedom        2        1        1        1        1        75 
 
Residual standard error: 0.4787166  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2   7.40497 3.702483 16.15609 0.0000015 
      GEN  1   0.02159 0.021590  0.09421 0.7597453 
    visit  1   0.71119 0.711188  3.10333 0.0822077 
   Food.H  1   0.41445 0.414448  1.80848 0.1827439 
      AAI  1   0.37278 0.372784  1.62667 0.2061005 
Residuals 75  17.18772 0.229170                    
 
 
 

 
 
Table L-8:  ANCOVA for SS and GEN on Log NH, Food and AAI as Covariates 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.NH ~ SS + GEN + visit + Food.NH + AAI, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit  Food.NH      AAI Residuals  
 Sum of Squares 13.94415  0.35342  0.01848  0.28137  0.14743  14.02668 
Deg. of Freedom        2        1        1        1        1        75 
 
Residual standard error: 0.4324608  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2  13.94415 6.972076 37.27937 0.0000000 
      GEN  1   0.35342 0.353417  1.88971 0.1733284 
    visit  1   0.01848 0.018483  0.09883 0.7541161 
  Food.NH  1   0.28137 0.281367  1.50445 0.2238240 
      AAI  1   0.14743 0.147430  5.78830 0.0774522 
Residuals 75  14.02668 0.187022  



571 

Table L-9:  ANOVA for main effects of SS and GEN on Log S-SAL  
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.SAL ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.031808, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit   SS:GEN Residuals  
 Sum of Squares  7.40497  0.02159  0.71119  1.34362  16.63132 
Deg. of Freedom        2        1        1        2        75 
 
Residual standard error: 0.4709044  
Estimated effects may be unbalanced 
 
            Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS   2   7.89131 3.945656 15.52240 0.0000012 
      GEN   1   0.14529 0.145293  0.57159 0.4512744 
    visit   1   0.00779 0.007790 0.017859 0.8940485 
   SS:GEN   2   1.52140 0.760699  2.99263 0.0543319 
 Residuals 75  32.71512 0.436202      
 
Multiple R-Squared: 0.1921  
F-statistic: 3.402 on 5 and 75 degrees of freedom, the p-value is 0.007939  
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffe method  
 
critical point: 2.8393  
response variable: log.S.SAL  
rank used for Scheffe method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.267     0.128     -0.0969       0.632      
HS-NS    0.623     0.116      0.2930       0.952 **** 
LS-NS    0.355     0.116      0.0252       0.685 **** 
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Table L-10:  ANOVA for main effects of SS and GEN on Log R-SAL 
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.R.SAL ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Response: LOG R-SAL 
 
         Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS   2   9.62605 4.813024 13.97085 0.0000040 
      GEN   1   0.01798 0.017981  0.05219 0.8197207 
    visit   1   0.00047 0.000468 0.000777 0.9778414 
   SS:GEN   2   1.41383 0.706913  2.05197 0.1334615 
Residuals  75  37.20651 0.344505                    
 
Multiple R-Squared: 0.2571  
F-statistic: 9.156 on 3 and 75 degrees of freedom, the p-value is 0.00001845  

 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffe method  
 
critical point: 2.8401  
response variable: log.R.SAL  
rank used for Scheffe method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS    0.233     0.147     -0.1840       0.650      
HS-NS    0.676     0.133      0.2990       1.050 **** 
LS-NS    0.443     0.133      0.0656       0.821 **** 
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Table L-11:  ANOVA for main effects of SS and GEN on Log DA 

 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.DA ~ SS + GEN + visit + SS:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit   SS:GEN Residuals  
 Sum of Squares 1.165686 0.019696 0.000109 1.426734  7.412780 
Deg. of Freedom        2        1        1        2        75 
 
Residual standard error: 0.3143836  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  1.165686 0.5828430 5.897008 0.0041824 
      GEN  1  0.019696 0.0196963 0.199280 0.6565887 
    visit  1  0.000109 0.0001090 0.001103 0.9735986 
   SS:GEN  2  1.426734 0.7133668 7.217604 0.0213590 
Residuals 75  7.412780 0.0988371                    
 
R-Squared:  0.2656  
F-statistic: 5.277 on 2 and 75 degrees of freedom, the p-value is 0.0002244 
 
95 % simultaneous confidence intervals for specified  
linear combinations, by the Scheffe method  
 
critical point: 2.86  
response variable: log.DA  
rank used for Scheffe method: 3  
 
intervals excluding 0 are flagged by '****'  
 
      Estimate Std.Error Lower Bound Upper Bound       
HS-LS   0.1980    0.0952     -0.0742       0.470      
HS-NS   0.2650    0.0845      0.0238       0.507 **** 
LS-NS   0.0674    0.0845     -0.1740       0.309      
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Table L-12:  Linear Model for effects of FTND on Log S-SAL 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.S.SAL ~ FTND + GEN + FTND:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q   Median     3Q   Max  
 -1.152 -0.5319 -0.08436 0.5098 1.389 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.7735   0.1288    13.7686   0.0000 
       FTND   0.1235   0.0409     3.0171   0.0034 
        GEN   0.6218   0.1883     3.3014   0.0015 
   FTND:GEN  -0.1668   0.0548    -3.0472   0.0032 
 
Residual standard error: 0.6598 on 78 degrees of freedom 
Multiple R-Squared: 0.1521  
F-statistic: 4.664 on 3 and 78 degrees of freedom, the p-value is 0.004743  
 
 
 

 
Table L-13:  Linear Model for effects of #cig/day on Log S-SAL 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.S.SAL ~ .cig.day + GEN + .cig.day:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.058 -0.5184 -0.1093 0.5255 1.483 
 
Coefficients: 
                Value Std. Error  t value Pr(>|t|)  
 (Intercept)   1.7999   0.1325    13.5873   0.0000 
    .cig.day   0.0237   0.0091     2.5953   0.0113 
         GEN   0.5011   0.1960     2.5568   0.0125 
.cig.day:GEN  -0.0250   0.0173    -1.4457   0.1523 
 
Residual standard error: 0.6743 on 78 degrees of freedom 
Multiple R-Squared: 0.1143  
F-statistic: 3.354 on 3 and 78 degrees of freedom, the p-value is 0.02307  
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Table L-14:  Linear Model for effects of FTND on Log R-SAL 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.R.SAL ~ FTND + GEN + FTND:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
   Min      1Q  Median     3Q   Max  
 -1.67 -0.5535 -0.1323 0.6083 1.506 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.8309   0.1512    12.1058   0.0000 
       FTND   0.1216   0.0480     2.5308   0.0134 
        GEN   0.5504   0.2211     2.4887   0.0150 
   FTND:GEN  -0.1620   0.0643    -2.5200   0.0138 
 
Residual standard error: 0.7747 on 78 degrees of freedom 
Multiple R-Squared: 0.1016  
F-statistic: 2.94 on 3 and 78 degrees of freedom, the p-value is 0.03829  
 
 

 
 
Table L-15:  Linear Model for effects of #cig/day on Log R-SAL 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.R.SAL ~ .cig.day + GEN + .cig.day:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.583 -0.6324 -0.1439 0.6064 1.593 
 
Coefficients: 
                Value Std. Error  t value Pr(>|t|)  
 (Intercept)   1.8738   0.1552    12.0761   0.0000 
    .cig.day   0.0215   0.0107     2.0136   0.0475 
         GEN   0.4203   0.2295     1.8312   0.0709 
.cig.day:GEN  -0.0228   0.0202    -1.1279   0.2628 
 
Residual standard error: 0.7899 on 78 degrees of freedom 
Multiple R-Squared: 0.06611  
F-statistic: 1.841 on 3 and 78 degrees of freedom, the p-value is 0.1467  

 
 
 
 
 
 
 



576 

Table L-16:  Linear Model for effects of FTND on Log DA 
 
 
*** Linear Model *** 
 
Call: lm(formula = log.DA ~ FTND + GEN + FTND:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q  Median    3Q    Max  
 -1.491 -0.1326 0.01949 0.167 0.6027 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.7331   0.0590    12.4207   0.0000 
       FTND   0.1049   0.0188     5.5961   0.0000 
        GEN   0.2546   0.0863     2.9499   0.0042 
   FTND:GEN  -0.1122   0.0251    -4.4708   0.0000 
 
Residual standard error: 0.3023 on 78 degrees of freedom 
Multiple R-Squared: 0.2888  
F-statistic: 10.56 on 3 and 78 degrees of freedom, the p-value is 6.65e-006  
 
 

 
 
Table L-17:  Linear Model for effects of #cig/day on Log DA 
 
 
*** Linear Model *** 

 
Call: lm(formula = log.DA ~ .cig.day + GEN + .cig.day:GEN, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
Residuals: 
    Min      1Q    Median     3Q    Max  
 -1.488 -0.1701 -0.008683 0.2211 0.6238 
 
Coefficients: 
                Value Std. Error  t value Pr(>|t|)  
 (Intercept)   0.7519   0.0618    12.1760   0.0000 
    .cig.day   0.0205   0.0042     4.8250   0.0000 
         GEN   0.2147   0.0914     2.3501   0.0213 
.cig.day:GEN  -0.0199   0.0081    -2.4692   0.0157 
 
Residual standard error: 0.3144 on 78 degrees of freedom 
Multiple R-Squared: 0.2311  
F-statistic: 7.815 on 3 and 78 degrees of freedom, the p-value is 0.0001258  
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Table L-18:  ANCOVA for SS and GEN on Log S-SAL, Food and AAI as Covariates 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.S.SAL ~ SS + GEN + visit + Food.SAL + AAI, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit Food.SAL      AAI Residuals  
 Sum of Squares  1.06763  1.54763  0.00779  0.01073  0.80364  36.60837 
Deg. of Freedom        2        1        1        1        1        75 
 
Residual standard error: 0.6986498  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2   1.06763 0.533813 1.093630 0.3402800 
      GEN  1   1.54763 1.547630 3.170647 0.0790223 
    visit  1   0.00779 0.007790 0.015959 0.8998087 
 Food.SAL  1   0.01073 0.010733 0.021989 0.8825146 
      AAI  1   0.80364 0.803638 1.646422 0.2033975 
Residuals 75  36.60837 0.488112                            
 
 
 
Table L-19:  ANCOVA for SS and GEN on Log R-SAL, Food and AAI as Covariates 
  
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = log.R.SAL ~ SS + GEN + visit + Food.SAL + AAI, data =  
 SAL.BC..Final.Bioanalysis.Data.VCU.Smoking.032908, na.action =  
 na.exclude) 
 
Terms: 
                      SS      GEN    visit Food.SAL      AAI Residuals  
 Sum of Squares  1.01355  0.94390  0.00047  0.00001  2.06821  48.08055 
Deg. of Freedom        2        1        1        1        1        75 
 
Residual standard error: 0.8006709  
Estimated effects may be unbalanced 
 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       SS  2   1.01355 0.506773 0.790506 0.4573579 
      GEN  1   0.94390 0.943902 1.472376 0.2287788 
    visit  1   0.00047 0.000468 0.000731 0.9785085 
 Food.SAL  1   0.00001 0.000013 0.000020 0.9964389 
      AAI  1   2.06821 2.068209 3.226163 0.0764974 
Residuals 75  48.08055 0.641074                    
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Appendix M 
 

Individual concentration-time profiles – Clinical Study #2 
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Figure M-1:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 1 (HS, F) 
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Figure M-2:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 2 (HS, F) 
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Figure M-3:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 3 (HS, F) 
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Figure M-4:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 4 (HS, F) 



581 

0
50

100
150
200
250
300
350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day post admission

SA
L 

pg
/m

l

0
2
4
6
8
10
12
14
16

D
A

 n
g/

m
l

S-SAL

R-SAL

DA

  
 
Figure M-5:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 5 (HS, F) 
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Figure M-6:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 6 (HS, F) 
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Figure M-7:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 7 (HS, M) 
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Figure M-8:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 8 (HS, M) 
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Figure M-9:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 9 (HS, M) 
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Figure M-10:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 10 (HS, M) 
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Figure M-11:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 11 (HS, M) 
 
 

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day post admission

SA
L 

pg
/m

l

0
2
4
6
8
10
12
14
16

D
A

 n
g/

m
l

S-SAL

R-SAL

DA

 
 
Figure M-12:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 12 (HS, M) 
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Figure M-13:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 13 (LS, F) 
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Figure M-14:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 15 (LS, F) 
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Figure M-15:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 16 (LS, F) 
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Figure M-16:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 17 (LS, F) 
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Figure M-17:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 18 (LS, F) 
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Figure M-18:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 19 (LS, M) 
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Figure M-19:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 20 (LS, M) 
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Figure M-20:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 21 (LS, M) 
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Figure M-21:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 22 (LS, M) 
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Figure M-22:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 23 (LS, M) 
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Figure M-23:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 24 (LS, M) 
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Figure M-24:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 25 (NS, F) 
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Figure M-25:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 26 (NS, F) 
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Figure M-26:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 27 (NS, F) 
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Figure M-27:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 28 (NS, F) 
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Figure M-28:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 29 (NS, F) 
 
 



593 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day post admission

SA
L 

pg
/m

l

0
2
4
6
8
10
12
14
16

D
A

 n
g/

m
l

S-SAL

R-SAL

DA

 
 
Figure M-29:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 30 (NS, F) 
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Figure M-30:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 31 (NS, M) 
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Figure M-31:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 32 (NS, M) 
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Figure M-32:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 33 (NS, M) 
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Figure M-33:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 34 (NS, M) 
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Figure M-34:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 35 (NS, M) 
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Figure M-35:  S/R-SAL (pg/ml) and DA (ng/ml) concentration vs. time profile for 
Subject 36 (NS, M) 
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Appendix N 
 

Individual Clinical Endpoint (CIWA-AR) vs. time – Clinical Study #2 
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Figure N-1:  CIWA-AR vs. time profile for Subject 1 (HS, F) 
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Figure N-2:  CIWA-AR vs. time profile for Subject 2 (HS, F) 
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Figure N-3:  CIWA-AR vs. time profile for Subject 3 (HS, F) 
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Figure N-4:  CIWA-AR vs. time profile for Subject 4 (HS, F) 
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Figure N-5:  CIWA-AR vs. time profile for Subject 5 (HS, F) 
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Figure N-6:  CIWA-AR vs. time profile for Subject 6 (HS, F) 
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Figure N-7:  CIWA-AR vs. time profile for Subject 7 (HS, M) 
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Figure N-8:  CIWA-AR vs. time profile for Subject 8 (HS, M) 
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Figure N-9:  CIWA-AR vs. time profile for Subject 9 (HS, M) 
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Figure N-10:  CIWA-AR vs. time profile for Subject 10 (HS, M) 
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Figure N-11:  CIWA-AR vs. time profile for Subject 11 (HS, M) 
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Figure N-12:  CIWA-AR vs. time profile for Subject 12 (HS, M) 
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Figure N-13:  CIWA-AR vs. time profile for Subject 13 (LS, F) 
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Figure N-14:  CIWA-AR vs. time profile for Subject 15 (LS, F) 
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Figure N-15:  CIWA-AR vs. time profile for Subject 16 (LS, F) 
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Figure N-16:  CIWA-AR vs. time profile for Subject 17 (LS, F) 
 
 

0

2

4

6

8

10

12

14

0 1 2 3

day

C
IW

A
-A

R
 s

co
re

4

  
 
Figure N-17:  CIWA-AR vs. time profile for Subject 18 (LS, F) 
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Figure N-18:  CIWA-AR vs. time profile for Subject 19 (LS, M) 
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Figure N-19:  CIWA-AR vs. time profile for Subject 20 (LS, M) 
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Figure N-20:  CIWA-AR vs. time profile for Subject 21 (LS, M) 
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Figure N-21:  CIWA-AR vs. time profile for Subject 22 (LS, M) 
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Figure N-22:  CIWA-AR vs. time profile for Subject 23 (LS, M) 
 
 

0

1

2

3

4

0 1 2 3

day

C
IW

A
-A

R
 s

co
re

4

  
 
Figure N-23:  CIWA-AR vs. time profile for Subject 24 (LS, M) 
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Figure N-24:  CIWA-AR vs. time profile for Subject 25 (NS, F) 
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Figure N-25:  CIWA-AR vs. time profile for Subject 26 (NS, F) 
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Figure N-26:  CIWA-AR vs. time profile for Subject 27 (NS, F) 
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Figure N-27:  CIWA-AR vs. time profile for Subject 28 (NS, F) 
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Figure N-28:  CIWA-AR vs. time profile for Subject 29 (NS, F) 
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Figure N-29:  CIWA-AR vs. time profile for Subject 30 (NS, F) 
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Figure N-30:  CIWA-AR vs. time profile for Subject 31 (NS, M) 
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Figure N-31:  CIWA-AR vs. time profile for Subject 32 (NS, M) 
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Figure N-32:  CIWA-AR vs. time profile for Subject 33 (NS, M) 
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Figure N-33:  CIWA-AR vs. time profile for Subject 34 (NS, M) 
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Figure N-34:  CIWA-AR vs. time profile for Subject 35 (NS, M) 
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Figure N-35:  CIWA-AR vs. time profile for Subject 36 (NS, M) 
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Appendix O 
 

S-PLUS® ANCOVA and Linear model outputs – Clinical Study #2 
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Table O-1:  Linear model for main effects of time, SS and GEN on Log S-SAL  
 
 
 *** Linear Model *** 
 
Call: lm(formula = log.S.SAL ~ Day + SS + GEN, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
Residuals: 
    Min      1Q   Median     3Q   Max  
 -1.579 -0.2889 -0.01269 0.2943 1.182 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.5160   0.1125    13.4803   0.0000 
        Day   0.0337   0.0072     4.7046   0.0000 
         SS  -0.0125   0.0451    -0.2780   0.7814 
        GEN   0.1234   0.0748     1.6497   0.1009 
 
Residual standard error: 0.4895 on 168 degrees of freedom 
Multiple R-Squared: 0.128  
F-statistic: 8.218 on 3 and 168 degrees of freedom, the p-value is 0.00003901  
 
 
 
 

Table O-2:  Linear model for main effects of time, SS and GEN on Log R-SAL  
 
 
*** Linear Model *** 
 
Call: lm(formula = log.R.SAL ~ Day + SS + GEN, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
Residuals: 
    Min      1Q    Median     3Q   Max  
 -2.537 -0.4059 0.0004769 0.4087 1.407 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.4628   0.1420    10.3005   0.0000 
        Day   0.0404   0.0090     4.4732   0.0000 
         SS  -0.0031   0.0569    -0.0538   0.9572 
        GEN   0.2270   0.0944     2.4043   0.0173 
 
Residual standard error: 0.6182 on 168 degrees of freedom 
Multiple R-Squared: 0.1313  
F-statistic: 8.467 on 3 and 168 degrees of freedom, the p-value is 0.00002852  
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Table O-3:  Linear model for main effects of time, SS and GEN on Log DA  
 
 
 *** Linear Model *** 
 
Call: lm(formula = log.DA ~ Day + SS + GEN, data =  
 NIAAA.d.14.SAL.DA.time.assess.041108, na.action = na.exclude) 
Residuals: 
   Min      1Q   Median     3Q   Max  
 -1.14 -0.1661 -0.02412 0.1347 1.046 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.7457   0.0615    12.1299   0.0000 
        Day   0.0051   0.0039     1.3100   0.1920 
         SS  -0.0439   0.0246    -1.7798   0.0769 
        GEN   0.0505   0.0409     1.2348   0.2186 
 
Residual standard error: 0.2676 on 168 degrees of freedom 
Multiple R-Squared: 0.03693  
F-statistic: 2.148 on 3 and 168 degrees of freedom, the p-value is 0.09615  
 

 
 
Table O-4:  ANOVA model for main effects of SS and GEN on Log S-SAL Day 1 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.404638 0.357304 0.531942  7.420785 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.5058548  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.404638 0.2023190 0.790651 0.4630836 
      GEN  1  0.357304 0.3573041 1.396324 0.2469397 
   SS:GEN  2  0.531942 0.2659710 1.039400 0.3664710 
Residuals 29  7.420785 0.2558891                    
 
Residual standard error: 0.5059 on 29 degrees of freedom 
Multiple R-Squared: 0.1485  
F-statistic: 1.011 on 5 and 29 degrees of freedom, the p-value is 0.4289  
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Table O-5:  ANOVA model for main effects of SS and GEN on Log R-SAL Day 1 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.078214 0.500541 0.807796  9.586996 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.5749662  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.078214 0.0391069 0.118296 0.8888598 
      GEN  1  0.500541 0.5005412 1.514103 0.2284020 
   SS:GEN  2  0.807796 0.4038981 1.221764 0.3094337 
Residuals 29  9.586996 0.3305861                    
 
Residual standard error: 0.575 on 29 degrees of freedom 
Multiple R-Squared: 0.1264  
F-statistic: 0.8388 on 5 and 29 degrees of freedom, the p-value is 0.5332  
 
  
 

Table O-6:  ANOVA model for main effects of SS and GEN on Log DA Day 1 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.DA.d.1 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.196977 0.195106 0.333961  2.242850 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.2781001  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.196977 0.0984884 1.273453 0.2950514 
      GEN  1  0.195106 0.1951058 2.522713 0.1230619 
   SS:GEN  2  0.333961 0.1669806 2.159055 0.1336306 
Residuals 29  2.242850 0.0773397                    
 
Residual standard error: 0.2781 on 29 degrees of freedom 
Multiple R-Squared: 0.2446  
F-statistic: 1.878 on 5 and 29 degrees of freedom, the p-value is 0.1291 
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Table O-7:  ANOVA model for main effects of SS and GEN on Log S-SAL Day 15 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.155235 0.327546 0.309619  5.207807 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.4237683  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.155235 0.0776174 0.432217 0.6531812 
      GEN  1  0.327546 0.3275460 1.823960 0.1872881 
   SS:GEN  2  0.309619 0.1548093 0.862065 0.4328294 
Residuals 29  5.207807 0.1795795                    
 
Residual standard error: 0.4238 on 29 degrees of freedom 
Multiple R-Squared: 0.1321  
F-statistic: 0.8825 on 5 and 29 degrees of freedom, the p-value is 0.5052  
 

 
Table O-8:  ANOVA model for main effects of SS and GEN on Log R-SAL Day 15 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.129790 0.616341 0.392646  8.204339 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.5318912  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.129790 0.0648950 0.229385 0.7964508 
      GEN  1  0.616341 0.6163408 2.178589 0.1507193 
   SS:GEN  2  0.392646 0.1963232 0.693947 0.5077060 
Residuals 29  8.204339 0.2829082                    
 
Residual standard error: 0.5319 on 29 degrees of freedom 
Multiple R-Squared: 0.1219  
F-statistic: 0.8051 on 5 and 29 degrees of freedom, the p-value is 0.5554 
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Table O-9:  ANOVA model for main effects of SS and GEN on Log DA Day 15 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.DA.d.15 ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                       SS       GEN    SS:GEN Residuals  
 Sum of Squares 0.0369333 0.0133690 0.1738083 0.7588887 
Deg. of Freedom         2         1         2        29 
 
Residual standard error: 0.161767  
Estimated effects may be unbalanced 
 
          Df Sum of Sq    Mean Sq  F Value     Pr(F)  
       SS  2 0.0369333 0.01846667 0.705681 0.5020544 
      GEN  1 0.0133690 0.01336899 0.510880 0.4804731 
   SS:GEN  2 0.1738083 0.08690416 3.320936 0.0502740 
Residuals 29 0.7588887 0.02616858                    
 
Residual standard error: 0.1618 on 29 degrees of freedom 
Multiple R-Squared: 0.228  
F-statistic: 1.713 on 5 and 29 degrees of freedom, the p-value is 0.1632  

 
 
Table O-10:  ANOVA model for main effects of SS and GEN on Log S-SAL GTM 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Av.Log.S.SAL ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.386512 0.084351 0.504868  2.811766 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.3113799  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.386512 0.1932561 1.993205 0.1544943 
      GEN  1  0.084351 0.0843511 0.869980 0.3586619 
   SS:GEN  2  0.504868 0.2524341 2.603555 0.0912186 
Residuals 29  2.811766 0.0969575                    
 
Residual standard error: 0.3114 on 29 degrees of freedom 
Multiple R-Squared: 0.2576  
F-statistic: 2.013 on 5 and 29 degrees of freedom, the p-value is 0.1065  
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Table O-11:  ANOVA model for main effects of SS and GEN on Log R-SAL GTM 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Av.Log.R.SAL ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                      SS      GEN   SS:GEN Residuals  
 Sum of Squares 0.288904 0.225614 0.557630  4.321198 
Deg. of Freedom        2        1        2        29 
 
Residual standard error: 0.386014  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.288904 0.1444520 0.969432 0.3912530 
      GEN  1  0.225614 0.2256137 1.514116 0.2284000 
   SS:GEN  2  0.557630 0.2788149 1.871155 0.1720623 
Residuals 29  4.321198 0.1490068                    
 
Residual standard error: 0.3967 on 31 degrees of freedom 
Multiple R-Squared: 0.0954  
F-statistic: 1.09 on 3 and 31 degrees of freedom, the p-value is 0.368  

 
 
Table O-12:  ANOVA model for main effects of SS and GEN on Log DA GTM 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Av.Log.DA ~ SS + GEN + SS:GEN, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.041108, na.action = na.exclude) 
 
Terms: 
                       SS       GEN    SS:GEN Residuals  
 Sum of Squares 0.2755988 0.0241072 0.2139152 0.9730832 
Deg. of Freedom         2         1         2        29 
 
Residual standard error: 0.1831791  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2 0.2755988 0.1377994 4.106723 0.0268920 
      GEN  1 0.0241072 0.0241072 0.718446 0.4035956 
   SS:GEN  2 0.2139152 0.1069576 3.187569 0.0560593 
Residuals 29 0.9730832 0.0335546                    
 
Residual standard error: 0.1832 on 29 degrees of freedom 
Multiple R-Squared: 0.3455  
F-statistic: 3.061 on 5 and 29 degrees of freedom, the p-value is 0.0244  
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Table O-13:  Linear model: FTND or #cig/day and GEN on Log S-SAL GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.S.SAL ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.5998 -0.3068 0.03356 0.2557 0.6058 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.9577   0.1057    18.5170   0.0000 
        GEN  -0.1054   0.1143    -0.9225   0.3632 
       FTND   0.0087   0.0160     0.5434   0.5906 
 
Residual standard error: 0.3379 on 32 degrees of freedom 
Multiple R-Squared: 0.03532  
F-statistic: 0.5859 on 2 and 32 degrees of freedom, the p-value is 0.5625  
 

 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.S.SAL ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q Median     3Q    Max  
 -0.6023 -0.3328 0.0426 0.2562 0.5828 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.9837   0.0970    20.4443   0.0000 
        GEN  -0.1085   0.1150    -0.9436   0.3525 
      ..cig   0.0008   0.0042     0.1987   0.8438 
 
Residual standard error: 0.3392 on 32 degrees of freedom 
Multiple R-Squared: 0.02762  
F-statistic: 0.4545 on 2 and 32 degrees of freedom, the p-value is 0.6388  
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Table O-14:  Linear model: FTND or #cig/day and GEN on Log R-SAL GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.R.SAL ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.8089 -0.2907 0.04535 0.2861 0.7036 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.1172   0.1248    16.9681   0.0000 
        GEN  -0.1659   0.1349    -1.2295   0.2278 
       FTND   0.0113   0.0189     0.6010   0.5521 
 
Residual standard error: 0.3988 on 32 degrees of freedom 
Multiple R-Squared: 0.05634  
F-statistic: 0.9553 on 2 and 32 degrees of freedom, the p-value is 0.3954  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.R.SAL ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.7832 -0.3127 0.07042 0.2845 0.6785 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.1470   0.1146    18.7418   0.0000 
        GEN  -0.1705   0.1358    -1.2559   0.2182 
      ..cig   0.0014   0.0050     0.2901   0.7736 
 
Residual standard error: 0.4005 on 32 degrees of freedom 
Multiple R-Squared: 0.04819  
F-statistic: 0.8101 on 2 and 32 degrees of freedom, the p-value is 0.4537  
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Table O-15:  Linear model: FTND or #cig/day and GEN on Log DA GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.DA ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min     1Q   Median     3Q    Max  
 -0.4196 -0.124 -0.07247 0.1278 0.4732 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.8290   0.0651    12.7259   0.0000 
        GEN  -0.0604   0.0704    -0.8580   0.3973 
       FTND  -0.0125   0.0099    -1.2687   0.2137 
 
Residual standard error: 0.2082 on 32 degrees of freedom 
Multiple R-Squared: 0.06688  
F-statistic: 1.147 on 2 and 32 degrees of freedom, the p-value is 0.3304  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.DA ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min     1Q   Median     3Q    Max  
 -0.4184 -0.133 -0.04882 0.1359 0.4816 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.8207   0.0593    13.8505   0.0000 
        GEN  -0.0517   0.0702    -0.7367   0.4667 
      ..cig  -0.0036   0.0026    -1.3966   0.1721 
 
Residual standard error: 0.2072 on 32 degrees of freedom 
Multiple R-Squared: 0.07625  
F-statistic: 1.321 on 2 and 32 degrees of freedom, the p-value is 0.2811  
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Table O-16:  Linear model: FTND or #cig/day and GEN on Log S-SAL Day 1 
 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q Median     3Q   Max  
 -1.583 -0.2234 0.1005 0.3107 1.119 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.6712   0.1593    10.4925   0.0000 
        GEN  -0.2112   0.1722    -1.2263   0.2290 
       FTND  -0.0092   0.0241    -0.3832   0.7041 
 
Residual standard error: 0.5091 on 32 degrees of freedom 
Multiple R-Squared: 0.04842  
F-statistic: 0.8142 on 2 and 32 degrees of freedom, the p-value is 0.452  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q Median     3Q   Max  
 -1.575 -0.2275 0.1261 0.3069 1.117 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.6524   0.1458    11.3348   0.0000 
        GEN  -0.2066   0.1728    -1.1960   0.2405 
      ..cig  -0.0016   0.0063    -0.2565   0.7992 
 
Residual standard error: 0.5097 on 32 degrees of freedom 
Multiple R-Squared: 0.04602  
F-statistic: 0.7718 on 2 and 32 degrees of freedom, the p-value is 0.4706  
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Table O-17:  Linear model: FTND or #cig/day and GEN on Log R-SAL Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.408 -0.4111 0.01098 0.3415 1.314 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.6481  0.1787     9.2217  0.0000  
        GEN -0.2430  0.1932    -1.2574  0.2177  
       FTND -0.0069  0.0270    -0.2548  0.8005  
 
Residual standard error: 0.5712 on 32 degrees of freedom 
Multiple R-Squared: 0.0485  
F-statistic: 0.8155 on 2 and 32 degrees of freedom, the p-value is 0.4514  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.403 -0.4092 0.02338 0.3539 1.312 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.6357   0.1635    10.0073   0.0000 
        GEN  -0.2393   0.1937    -1.2356   0.2256 
      ..cig  -0.0013   0.0071    -0.1889   0.8514 
 
Residual standard error: 0.5715 on 32 degrees of freedom 
Multiple R-Squared: 0.04763  
F-statistic: 0.8002 on 2 and 32 degrees of freedom, the p-value is 0.458  
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Table O-18:  Linear model: FTND or #cig/day and GEN on Log DA Day 1 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.1 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median    3Q   Max  
 -0.6615 -0.1592 -0.01597 0.112 1.002 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.8020  0.0917     8.7459  0.0000  
        GEN -0.1560  0.0992    -1.5733  0.1255  
       FTND -0.0047  0.0139    -0.3363  0.7389  
 
Residual standard error: 0.2931 on 32 degrees of freedom 
Multiple R-Squared: 0.07417  
F-statistic: 1.282 on 2 and 32 degrees of freedom, the p-value is 0.2914  
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.1 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median    3Q   Max  
 -0.6591 -0.1536 -0.01238 0.121 1.008 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.7956  0.0839     9.4876  0.0000  
        GEN -0.1532  0.0994    -1.5418  0.1330  
      ..cig -0.0011  0.0036    -0.2952  0.7698  
 
Residual standard error: 0.2932 on 32 degrees of freedom 
Multiple R-Squared: 0.07343  
F-statistic: 1.268 on 2 and 32 degrees of freedom, the p-value is 0.2952  
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Table O-19:  Linear model: FTND or #cig/day and GEN on Log S-SAL Day 15 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.15 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.9397 -0.2655 0.01889 0.2384 0.8188 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.9870   0.1296    15.3343   0.0000 
        GEN  -0.1942   0.1401    -1.3863   0.1752 
       FTND   0.0195   0.0196     0.9957   0.3269 
 
Residual standard error: 0.4141 on 32 degrees of freedom 
Multiple R-Squared: 0.08527  
F-statistic: 1.492 on 2 and 32 degrees of freedom, the p-value is 0.2402  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.15 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min     1Q    Median     3Q    Max  
 -0.9868 -0.215 -0.001007 0.2376 0.7486 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.0075   0.1185    16.9349   0.0000 
        GEN  -0.2067   0.1405    -1.4715   0.1509 
      ..cig   0.0050   0.0051     0.9703   0.3392 
 
Residual standard error: 0.4145 on 32 degrees of freedom 
Multiple R-Squared: 0.08389  
F-statistic: 1.465 on 2 and 32 degrees of freedom, the p-value is 0.2461  
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Table O-20:  Linear model: FTND or #cig/day and GEN on Log R-SAL Day 15 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.15 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q  Median     3Q    Max  
 -1.339 -0.2579 0.04198 0.3555 0.9668 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.1039   0.1616    13.0219   0.0000 
        GEN  -0.2651   0.1747    -1.5172   0.1390 
       FTND   0.0200   0.0244     0.8191   0.4188 
 
Residual standard error: 0.5164 on 32 degrees of freedom 
Multiple R-Squared: 0.08666  
F-statistic: 1.518 on 2 and 32 degrees of freedom, the p-value is 0.2345  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.15 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min     1Q  Median     3Q    Max  
 -1.395 -0.267 0.04639 0.3433 0.8795 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.1178   0.1474    14.3662   0.0000 
        GEN  -0.2789   0.1747    -1.5967   0.1202 
      ..cig   0.0057   0.0064     0.8924   0.3789 
 
Residual standard error: 0.5154 on 32 degrees of freedom 
Multiple R-Squared: 0.09015  
F-statistic: 1.585 on 2 and 32 degrees of freedom, the p-value is 0.2206  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



625 

Table O-21:  Linear model: FTND or #cig/day and GEN on Log DA Day 15 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.15 ~ GEN + FTND, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median     3Q    Max  
 -0.2844 -0.1342 -0.02744 0.0747 0.4999 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.7631   0.0544    14.0380   0.0000 
        GEN  -0.0416   0.0588    -0.7075   0.4844 
       FTND  -0.0023   0.0082    -0.2783   0.7826 
 
Residual standard error: 0.1737 on 32 degrees of freedom 
Multiple R-Squared: 0.01746  
F-statistic: 0.2843 on 2 and 32 degrees of freedom, the p-value is 0.7544  
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.15 ~ GEN + ..cig, data =  
 LOG.SAL.Data.NIAAA.Detox.d1.d15.AVG.040508, na.action = na.exclude) 
Residuals: 
    Min      1Q  Median      3Q    Max  
 -0.268 -0.1356 -0.0329 0.06635 0.4918 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.7685   0.0495    15.5263   0.0000 
        GEN  -0.0390   0.0587    -0.6641   0.5114 
      ..cig  -0.0012   0.0021    -0.5723   0.5711 
 
Residual standard error: 0.1731 on 32 degrees of freedom 
Multiple R-Squared: 0.02506  
F-statistic: 0.4113 on 2 and 32 degrees of freedom, the p-value is 0.6662 
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Table O-22:  Linear model: TLFB on Log S-SAL GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.S.SAL ~ TLFB..90., data = COV.ANALYSIS.41208, 
na.action = na.exclude) 
 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.6332 -0.2766 0.05041 0.2253 0.6245 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.0715   0.1014    20.4327   0.0000 
  TLFB..90.  -0.0001   0.0001    -1.5593   0.1285 
 
Residual standard error: 0.327 on 33 degrees of freedom 
Multiple R-Squared: 0.06862  
F-statistic: 2.431 on 1 and 33 degrees of freedom, the p-value is 0.1285 
 

 
 
Table O-23:  Linear model: TLFB on Log R-SAL GTM 

 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.R.SAL ~ TLFB..90., data = COV.ANALYSIS.41208, 
na.action = na.exclude) 
 
Residuals: 
     Min      1Q  Median    3Q    Max  
 -0.7282 -0.2831 0.04199 0.271 0.6894 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   2.2199   0.1219    18.2181   0.0000 
  TLFB..90.  -0.0001   0.0001    -1.3868   0.1748 
 
Residual standard error: 0.393 on 33 degrees of freedom 
Multiple R-Squared: 0.05507  
F-statistic: 1.923 on 1 and 33 degrees of freedom, the p-value is 0.1748  
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Table O-24:  Linear model: TLFB on Log DA GTM 

 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.DA ~ TLFB..90., data = COV.ANALYSIS.41208, na.action 
= na.exclude) 
 
Residuals: 
     Min     1Q   Median     3Q    Max  
 -0.3673 -0.132 -0.03049 0.1246 0.5372 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.7751   0.0656    11.8238   0.0000 
  TLFB..90.   0.0000   0.0001    -0.5137   0.6109 
 
Residual standard error: 0.2114 on 33 degrees of freedom 
Multiple R-Squared: 0.007932  
F-statistic: 0.2638 on 1 and 33 degrees of freedom, the p-value is 0.6109  

 
 
 
Table O-25:  Linear model: ACAMP on Log S-SAL GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.S.SAL ~ ACAMP, data = COV.ANALYSIS.41208, na.action 
= na.exclude) 
 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.6062 -0.2748 0.01026 0.2228 0.5399 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.8986  0.1068    17.7754  0.0000  
      ACAMP  0.0565  0.1264     0.4471  0.6577  
 
Residual standard error: 0.3378 on 33 degrees of freedom 
Multiple R-Squared: 0.00602  
F-statistic: 0.1999 on 1 and 33 degrees of freedom, the p-value is 0.6577  
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Table O-26:  Linear model: ACAMP on Log R-SAL GTM 
   
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.R.SAL ~ ACAMP, data = COV.ANALYSIS.41208, na.action 
= na.exclude) 
 
Residuals: 
     Min      1Q   Median    3Q    Max  
 -0.8786 -0.2586 0.002235 0.257 0.6849 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  2.0512  0.1277    16.0601  0.0000  
      ACAMP  0.0379  0.1511     0.2509  0.8035  
 
Residual standard error: 0.4039 on 33 degrees of freedom 
Multiple R-Squared: 0.001904  
F-statistic: 0.06294 on 1 and 33 degrees of freedom, the p-value is 0.8035  
 

 
 
Table O-27:  Linear model: ACAMP on Log R-SAL GTM 
 
 
*** Linear Model *** 
 
Call: lm(formula = Av.Log.DA ~ ACAMP, data = COV.ANALYSIS.41208, na.action =  
 na.exclude) 
 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.3362 -0.1452 -0.0249 0.1158 0.5449 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.7207  0.0669    10.7719  0.0000  
      ACAMP  0.0367  0.0792     0.4631  0.6463  
 
Residual standard error: 0.2116 on 33 degrees of freedom 
Multiple R-Squared: 0.006458  
F-statistic: 0.2145 on 1 and 33 degrees of freedom, the p-value is 0.6463  
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Table O-28:  Regression and ANCOVA: TLFB on Log S-SAL Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ TLFB..90., data = COV.ANALYSIS.41208, 
na.action 
  = na.exclude) 
Residuals: 
    Min    1Q Median    3Q  Max  
 -1.489 -0.31 0.1064 0.296 1.08 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.7201   0.1541    11.1623   0.0000 
  TLFB..90.  -0.0002   0.0001    -1.5114   0.1402 
 
Residual standard error: 0.497 on 33 degrees of freedom 
Multiple R-Squared: 0.06474  
F-statistic: 2.284 on 1 and 33 degrees of freedom, the p-value is 0.1402  
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.1 ~ SS + GEN + SS:GEN + TLFB..90., data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN TLFB..90.   SS:GEN Residuals  
 Sum of Squares 0.404638 0.357304  0.174893 0.597973  7.179861 
Deg. of Freedom        2        1         1        2        28 
 
Residual standard error: 0.5063829  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.404638 0.2023190 0.789003 0.4641389 
      GEN  1  0.357304 0.3573041 1.393413 0.2477607 
TLFB..90.  1  0.174893 0.1748931 0.682048 0.4158642 
   SS:GEN  2  0.597973 0.2989863 1.165986 0.3262898 
Residuals 28  7.179861 0.2564236        
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Table O-29:  Regression and ANCOVA: TLFB on Log R-SAL Day 1 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ TLFB..90., data = COV.ANALYSIS.41208, 
na.action 
  = na.exclude) 
Residuals: 
    Min      1Q Median     3Q   Max  
 -1.745 -0.2703 0.1181 0.4162 1.292 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  1.6936  0.1843     9.1893  0.0000  
  TLFB..90. -0.0002  0.0002    -1.3689  0.1803  
 
Residual standard error: 0.5944 on 33 degrees of freedom 
Multiple R-Squared: 0.05374  
F-statistic: 1.874 on 1 and 33 degrees of freedom, the p-value is 0.1803  
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.1 ~ SS + GEN + SS:GEN + TLFB..90., data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN TLFB..90.   SS:GEN Residuals  
 Sum of Squares  0.13377  0.38933   0.31112  1.15898  10.32713 
Deg. of Freedom        2        1         1        2        28 
 
Residual standard error: 0.6073106  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2   0.13377 0.0668843 0.181344 0.8351204 
      GEN  1   0.38933 0.3893300 1.055592 0.3130170 
TLFB..90.  1   0.31112 0.3111247 0.843554 0.3662269 
   SS:GEN  2   1.15898 0.5794899 1.571174 0.2255764 
Residuals 28  10.32713 0.3688261                    
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Table O-30:  Regression and ANCOVA: TLFB on Log DA Day 1 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.1 ~ TLFB..90., data = COV.ANALYSIS.41208, 
na.action =  
 na.exclude) 
Residuals: 
     Min      1Q   Median     3Q    Max  
 -0.5607 -0.1329 -0.01419 0.1573 0.4198 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.7313  0.0743     9.8376  0.0000  
  TLFB..90.  0.0000  0.0001    -0.7656  0.4494  
 
Residual standard error: 0.2397 on 33 degrees of freedom 
Multiple R-Squared: 0.01745  
F-statistic: 0.5861 on 1 and 33 degrees of freedom, the p-value is 0.4494  
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Table O-31:  Regression and ANCOVA: BrAC on Log S-SAL Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ BrAC, data = COV.ANALYSIS.41208, na.action 
= na.exclude) 
 
Residuals: 
    Min      1Q Median     3Q   Max  
 -1.275 -0.3314 0.1402 0.2413 1.122 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.6316   0.1052    15.5050   0.0000 
       BrAC  -0.2874   0.1727    -1.6647   0.1054 
 
Residual standard error: 0.4936 on 33 degrees of freedom 
Multiple R-Squared: 0.07747  
F-statistic: 2.771 on 1 and 33 degrees of freedom, the p-value is 0.1054  
 
 
  
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.1 ~ SS + GEN + BrAC + SS:BrAC, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN     BrAC  SS:BrAC Residuals  
 Sum of Squares 0.404638 0.357304 0.563675 0.055005  7.334047 
Deg. of Freedom        2        1        1        2        28 
 
Residual standard error: 0.5117912  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.404638 0.2023190 0.772416 0.4714887 
      GEN  1  0.357304 0.3573041 1.364119 0.2526742 
     BrAC  1  0.563675 0.5636746 2.152003 0.1535270 
  SS:BrAC  2  0.055005 0.0275026 0.105000 0.9006774 
Residuals 28  7.334047 0.2619302                    
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Table O-32:  Regression and ANCOVA: BrAC on Log R-SAL Day 1 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ BrAC, data = COV.ANALYSIS.41208, na.action 
= na.exclude) 
 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.515 -0.3028 0.05519 0.3786 1.338 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.5964   0.1261    12.6584   0.0000 
       BrAC  -0.3077   0.2069    -1.4870   0.1465 
 
Residual standard error: 0.5915 on 33 degrees of freedom 
Multiple R-Squared: 0.0628  
F-statistic: 2.211 on 1 and 33 degrees of freedom, the p-value is 0.1465 
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.1 ~ SS + GEN + BrAC + SS:BrAC, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN     BrAC  SS:BrAC Residuals  
 Sum of Squares  0.13377  0.38933  0.78504  0.15329  10.85890 
Deg. of Freedom        2        1        1        2        28 
 
Residual standard error: 0.6227502  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2   0.13377 0.0668843 0.172463 0.8424764 
      GEN  1   0.38933 0.3893300 1.003899 0.3249496 
     BrAC  1   0.78504 0.7850445 2.024261 0.1658507 
  SS:BrAC  2   0.15329 0.0766467 0.197636 0.8218036 
Residuals 28  10.85890 0.3878178                    
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Table O-33:  Regression and ANCOVA: BrAC on Log DA Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.DA.d.1 ~ BrAC, data = COV.ANALYSIS.41208, na.action =  
 na.exclude) 
Residuals: 
     Min      1Q   Median     3Q    Max  
 -0.5407 -0.1342 -0.03163 0.1595 0.4436 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.6905   0.0515    13.4012   0.0000 
       BrAC  -0.0186   0.0845    -0.2205   0.8268 
 
Residual standard error: 0.2417 on 33 degrees of freedom 
Multiple R-Squared: 0.001471  
F-statistic: 0.04863 on 1 and 33 degrees of freedom, the p-value is 0.8268 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.DA.d.1 ~ SS + GEN + BrAC + SS:BrAC, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN     BrAC  SS:BrAC Residuals  
 Sum of Squares 0.114532 0.107844 0.001429 0.011235  1.695221 
Deg. of Freedom        2        1        1        2        28 
 
Residual standard error: 0.2460561  
Estimated effects may be unbalanced 
 
          Df Sum of Sq   Mean Sq  F Value     Pr(F)  
       SS  2  0.114532 0.0572659 0.945863 0.4004042 
      GEN  1  0.107844 0.1078437 1.781256 0.1927473 
     BrAC  1  0.001429 0.0014292 0.023606 0.8789927 
  SS:BrAC  2  0.011235 0.0056176 0.092786 0.9116676 
Residuals 28  1.695221 0.0605436                    
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Table O-34:  Regression and ANCOVA: Admit Drug of Abuse on Log S-SAL Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ Admit.DOA, data = COV.ANALYSIS.41208, 
na.action 
  = na.exclude) 
Residuals: 
    Min      1Q  Median     3Q   Max  
 -1.394 -0.2919 0.05191 0.3164 1.192 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.5613   0.1091    14.3149   0.0000 
  Admit.DOA  -0.0980   0.1790    -0.5479   0.5875 
 
Residual standard error: 0.5116 on 33 degrees of freedom 
Multiple R-Squared: 0.009014  
F-statistic: 0.3002 on 1 and 33 degrees of freedom, the p-value is 0.5875  
 

 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.S.SAL.d.1 ~ SS + GEN + Admit.DOA + SS:Admit.DOA, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN Admit.DOA SS:Admit.DOA Residuals  
 Sum of Squares 0.404638 0.357304  0.057277     0.334592  7.560858 
Deg. of Freedom        2        1         1            2        28 
 
Residual standard error: 0.5196447  
Estimated effects may be unbalanced 
 
             Df Sum of Sq   Mean Sq  F Value     Pr(F)  
          SS  2  0.404638 0.2023190 0.749245 0.4819652 
         GEN  1  0.357304 0.3573041 1.323198 0.2597487 
   Admit.DOA  1  0.057277 0.0572768 0.212112 0.6486740 
SS:Admit.DOA  2  0.334592 0.1672958 0.619544 0.5454048 
   Residuals 28  7.560858 0.2700306                    
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Table O-35:  Regression and ANCOVA: Admit Drug of Abuse on Log R-SAL Day 1 
 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ Admit.DOA, data = COV.ANALYSIS.41208, 
na.action 
  = na.exclude) 
Residuals: 
   Min     1Q  Median     3Q   Max  
 -1.61 -0.377 0.06613 0.4493 1.394 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.5404   0.1292    11.9223   0.0000 
  Admit.DOA  -0.1569   0.2120    -0.7402   0.4644 
 
Residual standard error: 0.606 on 33 degrees of freedom 
Multiple R-Squared: 0.01633  
F-statistic: 0.5478 on 1 and 33 degrees of freedom, the p-value is 0.4644  
 
 
 
*** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.R.SAL.d.1 ~ SS + GEN + Admit.DOA + SS:Admit.DOA, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN Admit.DOA SS:Admit.DOA Residuals  
 Sum of Squares  0.13377  0.38933   0.17225      0.29998  11.32501 
Deg. of Freedom        2        1         1            2        28 
 
Residual standard error: 0.6359754  
Estimated effects may be unbalanced 
 
             Df Sum of Sq   Mean Sq   F Value     Pr(F)  
          SS  2   0.13377 0.0668843 0.1653650 0.8484060 
         GEN  1   0.38933 0.3893300 0.9625807 0.3349394 
   Admit.DOA  1   0.17225 0.1722461 0.4258619 0.5193487 
SS:Admit.DOA  2   0.29998 0.1499889 0.3708330 0.6934981 
   Residuals 28  11.32501 0.4044647                     
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Table O-36:  Regression and ANCOVA: Admit Drug of Abuse on Log DA Day 1 
 
 
 *** Linear Model *** 
 
Call: lm(formula = Log.DA.d.1 ~ Admit.DOA, data = COV.ANALYSIS.41208, 
na.action =  
 na.exclude) 
Residuals: 
     Min      1Q   Median     3Q    Max  
 -0.5689 -0.1256 -0.03078 0.1596 0.4603 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.6738  0.0515    13.0865  0.0000  
  Admit.DOA  0.0264  0.0845     0.3119  0.7571  
 
Residual standard error: 0.2415 on 33 degrees of freedom 
Multiple R-Squared: 0.002939  
F-statistic: 0.09729 on 1 and 33 degrees of freedom, the p-value is 0.7571  
 
 
 
 *** Analysis of Variance Model *** 
 
Short Output: 
Call: 
   aov(formula = Log.DA.d.1 ~ SS + GEN + Admit.DOA + SS:Admit.DOA, data =  
 COV.ANALYSIS.41208, na.action = na.exclude) 
 
Terms: 
                      SS      GEN Admit.DOA SS:Admit.DOA Residuals  
 Sum of Squares 0.114532 0.107844  0.007380     0.040886  1.659619 
Deg. of Freedom        2        1         1            2        28 
 
Residual standard error: 0.2434586  
Estimated effects may be unbalanced 
 
             Df Sum of Sq   Mean Sq  F Value     Pr(F)  
          SS  2  0.114532 0.0572659 0.966153 0.3928709 
         GEN  1  0.107844 0.1078437 1.819468 0.1881854 
   Admit.DOA  1  0.007380 0.0073800 0.124510 0.7268365 
SS:Admit.DOA  2  0.040886 0.0204431 0.344903 0.7112561 
   Residuals 28  1.659619 0.0592721                    
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Table O-37:  Regression: AST on Log S- and R-SAL Day 1 
 
 
*** Linear Model *** 
 
Call: lm(formula = Log.S.SAL.d.1 ~ AST.U.L, data = COV.ANALYSIS.41208, 
na.action =  
 na.exclude) 
Residuals: 
    Min      1Q Median     3Q  Max  
 -1.309 -0.1192 0.1088 0.2266 1.07 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.7380   0.1205    14.4206   0.0000 
    AST.U.L  -0.0037   0.0015    -2.4455   0.0202 
 
Residual standard error: 0.4788 on 32 degrees of freedom 
Multiple R-Squared: 0.1575  
F-statistic: 5.98 on 1 and 32 degrees of freedom, the p-value is 0.02015  
1 observations deleted due to missing values  
 
 
 
 *** Linear Model *** 
 
Call: lm(formula = Log.R.SAL.d.1 ~ AST.U.L, data = COV.ANALYSIS.41208, 
na.action =  
 na.exclude) 
Residuals: 
    Min      1Q Median     3Q   Max  
 -1.524 -0.3227 0.1268 0.3586 1.241 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   1.7650   0.1407    12.5456   0.0000 
    AST.U.L  -0.0048   0.0017    -2.7232   0.0104 
 
Residual standard error: 0.5589 on 32 degrees of freedom 
Multiple R-Squared: 0.1881  
F-statistic: 7.416 on 1 and 32 degrees of freedom, the p-value is 0.01038  
1 observations deleted due to missing values  
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Table O-38:  Regression model for main effects of time on CIWA-AR 
                 

 
*** Linear Model *** 
 
Call: lm(formula = CIWA ~ DAY, data = CIWA.AR.ANAL.041208, na.action = 
na.exclude) 
Residuals: 
    Min     1Q  Median    3Q  Max  
 -6.295 -3.323 -0.8511 2.149 11.7 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  7.7389  1.1081     6.9839  0.0000  
        DAY -1.4439  0.5178    -2.7886  0.0064  
 
Residual standard error: 4.205 on 98 degrees of freedom 
Multiple R-Squared: 0.07352  
F-statistic: 7.776 on 1 and 98 degrees of freedom, the p-value is 0.00636 

 
 
 
 
 
Table O-39:  Regression model for main effects of SS and GEN on CIWA-AR 

 
 
*** Linear Model *** 
 
Call: lm(formula = CIWA ~ DAY + SS + GEN, data = CIWA.AR.ANAL.041208, 
na.action =  
 na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -6.638 -2.721 -1.005 2.123 10.42 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  9.4308  1.2817     7.3581  0.0000  
        DAY -1.3893  0.5083    -2.7330  0.0075  
       SSLS -1.2979  1.0339    -1.2553  0.2124  
       SSNS -1.4035  0.9872    -1.4217  0.1584  
        GEN -1.7750  0.8257    -2.1497  0.0341  
 
 
Multiple R-Squared: 0.1359  
F-statistic: 3.737 on 4 and 95 degrees of freedom, the p-value is 0.007216  
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