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ABSTRACT: Influence of anti-CD44 on B cell activation 

 
Tiana Lynn Wyant 

 
Lymphocyte activation and trafficking are indispensable to the immune system. 

CD44, an adhesion molecule, plays important roles in T cell activation, lymphocyte 

homing/trafficking, and tumor metastasis. Although the functions of CD44 have been 

shown in T cells and other leukocytes, little is known about its role in B cells. The effects 

of CD44 cross-linking on murine B cell activation via CD40L/IL-4 was explored using 

the anti-CD44 mAbs RK3G9 and IM7. Immobilized RK3G9 and IM7 could strongly 

inhibit B cell proliferation and Ig production, with IgE inhibition being prominent. 

Soluble anti-CD44 had no effect. The inhibitory effect of RK3G9 was not influenced by 

addition of anti-FcγRII, indicating no role for the inhibitory receptor. The effects of 

delayed addition of immobilized anti-CD44 mAbs were studied, and the results indicated 

no inhibition after 96 hrs of culture. B cells were also activated by either LPS or anti-IgM 

F(ab’)2. While LPS-induced B cell activation was inhibited by immobilized anti-CD44 

mAbs, anti-IgM activation was refractory. Interestingly, addition of both anti-IgM and 

CD40L or LPS resulted in some modulation of the inhibitory activity. Additionally, 

FACS and Elispot revealed that RK3G9-treated cells had reduced numbers of plasma 

cells. Taken together, these results suggest that CD44 cross-linking could control 

polyclonal B cell activation by CD40L, but allow sIgM/CD40L activation to continue.  

 
 
 

 



     

INTRODUCTION 
 
I. CD44: Adhesion Receptor. 
A. Structure. CD44 is a single pass, highly polymorphic type II cell surface glycoprotein 

ranging in size from 80 to 250 kDa and is a member of the hyaldherin or link protein 

superfamily.1,2 This adhesion receptor has four major domains: the distal extracellular, 

membrane-proximal extracellular, transmembrane, and cytoplasmic domain (Fig. 1). The 

distal extracellular domain is responsible for the binding of ligand. The membrane 

proximal extracellular domain contains the site where additional “variant” exons – which 

encode additions to the CD44 protein – may be spliced into the CD44 mRNA transcript 

to generate multiple variant isoforms of the CD44 molecule. The transmembrane domain 

is typical of single-pass proteins, but studies using site-directed mutagenesis have 

generated data which suggests that lipids or accessory membrane proteins may interact 

with the transmembrane domain of CD44 to modulate ligand binding. The 70-amino-acid 

(a.a.) cytoplasmic tail is present in most isoforms of CD44 and data indicates that it 

functions to interact with cytoskeletal components and also is involved in intracellular 

signaling. It can also influence the binding of ligand to CD44.3-5 

CD44 is a single gene with a total of 20 exons and is located on the short arm of 

chromosome 11 in the human. Exons 1-5, 16-18, and 20 comprise the most often 

expressed form of CD44, called CD44s (CD44 standard) or CD44H (because this is the 

predominant form expressed on hematopoietic cells). CD44s, then, is expressed when 

direct splicing of exon 5 to exon 16 occurs (see Fig. 2), skipping the variant exons (exons 

6-15 = v1-v10). CD44s is 363 amino acids long. Exon 19 encodes the short tail (three  
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Figure 1. Structure of the CD44 glycoprotein. CD44 has four domains – the 

membrane-distal extracellular domain (ligand-binding domain), the membrane-proximal 

extracellular domain (where variant exons may be inserted), transmembrane region, and 

cytoplasmic tail. When the CD44 tail is phosphorylated due to ligand binding, contact 

with actin and other cytoskeletal components occurs, leading to cytoskeletal 

rearrangement and a change in the phenotype of the cell. (Schematic is from “The 

Hyaluronan Receptor, CD44” by Warren Knudson and Cheryl Knudson, 

http://www.glycoforum.gr.jp/science/hyaluronan/HA10/HA10E.html. Reprinted with 

permission from Editors at Glycoforum.com and Warren Knudson, author) 
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Figure 2. Gene Structure of CD44. CD44 has 20 exons total, but only nine (1-5, 16-18, 

20) are expressed in the standard isoform (CD44s). The variant exons (6-15, also called 

v1-v10) are alternatively spliced into the mRNA to create, theoretically, hundreds of 

different isoforms. Note that exon 19 is the short tailed version of CD44 and is rarely 

employed in any isoform. (Schematic is drawn with inspiration from “The Hyaluronan 

Receptor, CD44” by Warren Knudson and Cheryl Knudson, on the web site 

www.glycoforum.gr.jp 

[http://www.glycoforum.gr.jp/science/hyaluronan/HA10/HA10E.html] 
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amino acids) of CD44 and is rarely used. Studies have suggested that this nearly 

“tailless” CD44 isoform negatively regulates CD44-mediated uptake of hyaluronic acid 

(ligand). When transfected into a chondrocyte, this truncated tail isoform acts as a 

dominant negative receptor, causing a loss of the capacity to either bind or internalize 

hyaluronan6,7 and a loss of Smad signaling.8 The 10 variant exons are numbered 6 

through 15 and are utilized by alternative mRNA splicing. The isoform nomenclature, 

when a variant exon is added to the standard CD44 protein, is “CD44v1” to refer to 

“CD44s plus exon 6” (the first variant exon, v1), and so on, up to v10. A CD44 molecule 

containing variant exons 2 and 5-7 is named CD44v2,v5-7. Theoretically, any number 

and combination of variant exons may be added to the CD44 protein to generate hundreds 

of different isoforms; thus far, about 30 have been identified. Recently, it has been found 

that certain cell types can use intronic sequence as part of the coding sequence. For 

example, synovial cells isolated from the joints of individuals suffering from rhuematoid 

arthritis (RA) express a CD44v3-10 mRNA transcript that includes an extra trinucleotide 

between variant exons 4 and 5. This merely adds an alanine and does not interfere with 

the reading frame. Investigators found that cells transfected with this variant isoform of 

CD44v3-10 (named CD44vRA) can bind more soluble Fibroblast Growth Factor 

Receptor-1 (FGFR1) than could CD44v3-10-expressing cells, suggesting that these 

CD44vRA-expressing cells in RA patients have enhanced FGF-R1 activation,9 which 

indicates increased disease susceptibility. Another example of intronic sequence use is 

with a group of alternatively spliced CD44 isoforms termed “soluble CD44”. In mouse 

embryonic muscle and cartilage tissues, CD44v8-10 was found to have additional coding 
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sequence derived from intronic sequence between v9 and v10. Of the four transcripts 

found, two contained extensions of v9 and two had a “new exon”; the common feature 

these four transcripts share is a stop codon, which results in a protein truncated within the 

membrane-proximal extracellular domain.10  

Individual cells can repeatedly change the splicing of their CD44 pre-mRNA, 

consistent with the responses that need to be made in reference to the extracellular and 

intracellular microenvironment. The CD44s protein is approximately 37 kDa prior to 

glycosylation; after addition of the appropriate N-linked and O-linked oligosaccharides, 

the final molecular mass is 80-100 kDa. There are at least five conserved N-glycosylation 

sites in the N-terminal domain and two chondroitin sulphate attachment sites on the exon 

5 product.11 There are also several possible O-linked glycosylation sites in the membrane 

proximal region and consensus attachment sites for heparin suphate, keratin sulphate, and 

sialic acid on the standard extracellular domain. As noted before, hyaluronic acid (HA) is 

the major ligand for CD44. The structure of HA, a glycosaminoglycan, is characterized as 

a linear polymer. There are three places on the CD44 molecule that contact HA and form 

the binding sites; these binding sites are basic amino acid clusters, with specific and 

critical arginine residues.11  

The addition of variant exons can introduce new glycosylation sites, including 

serine/threonine-rich regions for O-glycosylation,12 glycosaminoglycan attachment 

consensus SGXG motifs,13 and tyrosine sulfation.14 The molecular mass may reach up to 

250 kDa. Different CD44 isoforms can have specific patterns of glycosylation and these 



   

 

8

additions have repercussions on the ability of CD44 to bind ligand.15 Interestingly, the 

mouse has 10 variant exons, but the human has nine.3,4,16,17 

B. Expression. CD44s is expressed ubiquitously on mesenchymal and hematopoietic cell 

types.3  It has been also found on cells of the central nervous system, lung, liver, 

pancreas, and epidermis. CD44v has a more restricted expression profile: it is expressed 

on activated lymphocytes, macrophages, selected epithelial cells, and keratinocytes;17-19 

the level of expression, as well as the particular CD44 isoform, varies according to cell 

type and activation state.16,20 The primary ligand for CD44 is hyaluronate,19,21 a major 

component of the extracellular matrix, although there are other ligands, including 

fibronectin,22 collagen,23 laminin, chondroitin sulfate, L and E selectins, and the MHC 

class II invariant chain,24,25 among others. The hyaluronan (hyaluronic acid, HA) binding 

domain is highly conserved in all CD44 isoforms and contains two clusters of positively 

charged amino acids, and these bind a six-sugar sequence of HA.5,26 The ligand 

specificity of CD44 is markedly influenced by post-translational modifications, primarily 

glycosylation,27 as well as the extensive alternative mRNA splicing3 that leads to the 

generation of variant isoforms. Glycosylation has been shown to have an additive effect 

on CD44 ligand binding; glycosaminoglycans (long chains of repeating disaccharides) 

such as chondroitin sulfate or heparin sulfate have highly charged sulfate and carboxylate 

groups. These contribute to a negatively charged environment, which naturally attracts 

positive ions, and so create an osmotic potential. This can then influence CD44 ligand 

binding. The data suggests that CD44v isoforms have a reduced ability to bind 

hyaluronate and that it is due to the degree of glycosylation.12 Binding studies have found 
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that CD44v can bind HA as efficiently as CD44s if the O-linked glycosylation is removed 

prior to binding,12 and N-linked glycosylation has been shown to inhibit HA binding as 

well.28,29 Phosphorylation of serine in the  cytoplasmic portion of CD44 also increases its 

capacity to bind HA, as well as increasing the binding of ankyrin to the cytoplasmic tail 

of CD44.4,30 This has been implicated in downstream events which lead to cell migration. 

Other factors influencing HA binding are the distribution of CD44 on the cell surface (ie, 

within a lipid raft or not) and the ability of the CD44 present to cluster once HA is bound 

(which promotes tighter binding).31 

CD44 is transcriptionally upregulated by proinflammatory cytokines such as 

interleukin-1 (IL-1) and growth factors (TGF-β, EGF, BMP-7).17,32-34 These can have an 

impact on CD44 splicing. 

 CD44 can be found in three states of activation on cells: active, inducible, and 

inactive. The “state of activation” simply refers to its functional ability to bind 

hyaluronan. The “active state” CD44 constitutively binds hyaluronan, whereas the 

“inducible state” CD44 binds HA weakly or not at all, unless it is activated by inducing 

mAbs, cytokines, or growth factors. The inactive CD44 simply does not bind HA, even in 

the presence of inducing agents. It has been suggested that this is a mechanism to prevent 

unnecessary engagement of the receptor, as both CD44 and its prinicipal ligand are 

ubiquitously expressed.3 These three states of activation can be directly correlated with 

the level of glycosylation on individual CD44 proteins; low glycosylation is found on 

active state CD44, while intermediate and high glycosylation levels are found on 

inducible and inactive state CD44, respectively.19,24,35 
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C. Function. There are multiple known functions for CD44. It acts as a co-receptor, 

functions in cell-cell aggregation, anchors pericellular matrix, acts as a docking protein 

for matrix metalloproteinases (MMPs), functions in cell-matrix and matrix-cell signaling, 

mediates cell migration, and ligation can result in receptor-mediated 

internalization/degradation of hyaluronan.4,59 One example is CD44v3, which bears a 

heparin-sulfate proteoglycan chain; it can bind basic growth factors such as fibroblast 

growth factors (FGFs), which are essential to proper development of the limb bud.  

More specific to the immune system, CD44 is involved with cellular adhesion 

(migration and aggregation), lymphocyte activation,36,37 angiogenesis, and release of 

cytokines.17 A recent paper by Bradl, et al, reported that CD44 is dispensable for B cell 

lymphopoeisis, and that CD44-deficient B cells, activated by stimuli such as IL-4/CD40, 

IL-4/anti-IgM HC, and LPS, are normal in their responses.38 Another report on CD44-/- 

mice agrees that the mice develop normally but also shows that lymphocyte homing to 

the thymus and lymph nodes is impaired.39  A separate report by Stoop, et al, 

investigating the responses of CD44-/- leukocytes to acute or chronic inflammation, 

suggests that CD44 can actually interfere with homing to lymphoid tissues under 

inflammatory conditions.40 That is, there is increased homing to inflamed tissues in the 

presence of CD44. This is based on work done in mice with induced acute or chronic 

inflammatory conditions and showed that CD44-/- lymphocytes transferred from mice 

with collagen-induced arthritis into wild-type mice with arthritis preferentially homed to 

lymph nodes and were slower to enter inflamed synovial joints than the wild type 

lymphocytes.  
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CD44 has no inherent receptor kinase or phosphatase activity; however, it is 

coupled to classical signaling molecules such as c-Met, members of the ErbB family 

receptor tyrosine kinases, and TGF-βRI.41-46  In T cells, CD44 has been shown to be 

physically and functionally associated with p56lck47 as well as with Fyn.48 The 

cytoplasmic domain of CD44 does not seem to contain any Src family sequence motif, 

but CD44 signaling may be thought of as being similar to that of integrins: an indirect 

transfer of information about the state of the extracellular matrix via “linker” proteins that 

become associated with the CD44 cytoplasmic domain after the “activation event” has 

occurred. A precise definition of the “CD44 signaling complex activation event” has not 

yet been defined. However, what is known is that there are two ways to “activate” CD44, 

depending on the context in which the CD44-bearing cell lives: in blood-borne cells, as 

well as migrating embryonic, endothelial, or malignant cells, unoccupied CD44 receptors 

undergo “activation” when they are bound by hyaluronan. The other scenario is tissues 

where hyaluronan is ubiquitous: here, multivalent hyaluronan bound by clustered CD44 

is the normal resting state of the cells, and the “activation event” is begun when there is 

disruption of the CD44-hyaluronan interactions (by a variety of events detailed below).  

When CD44 on blood-borne or migrating cells binds high molecular weight 

hyaluronan, CD44 clusters and this results in multiple intracellular events. The kinases c-

Src, FAK, Rho, and Rac are activated,6,8,49 leading to closer CD44-actin cytoskeleton 

associations and the recruitment and activation of other signaling molecules which are 

involved in cell migration. CD44 also co-immunoprepitates with Lyn, Fyn, Lck, and Hck, 

and in v-Src-transformed cells, CD44-HA intereactions increase the phosphorylation of 
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Akt and MAP kinase.50 RANTES typically signals via a G-protein coupled chemokine 

receptor, but can also signal via CD44 by binding to the glycosaminoglycan chains of 

certain CD44 variants which bear these chains and activate p44/p42 MAP kinase. 

Additionally, when CD44 is cross-linked by monoclonal antibodies, Lck is activated, 

ZAP-70 is tyrosine phosphorylated, and Pyk2 is phosphorylated in T lymphocytes.51.  

In tissues such as cartilage, where the quiescent state of CD44-HA interaction is 

multivalent binding (stable cell-matrix interactions), disruption of this binding by 

degradation of hyaluronan,52,53 cleavage of the extracellular domain of CD44,54,55 soluble 

CD44 competing for HA,56 or the presence (and thus competition) of small molecular 

weight hyaluronan oligosaccharides,57-59 can cause CD44 signaling events. The major 

effect of this release of extracellular restraints imposed by CD44-multivalent HA binding 

is that the cell’s sensitivity to apoptosis may increase substantially. Nitric oxide (NO) is 

released when HA oligosaccharides are added to many cells, including chondrocytes, and 

NO can downregulate PI-3 kinase and induce apoptosis in chondrocytes.60,61 In addition, 

hyaluronan can reduce anti-Fas-mediated apoptosis in chondrocytes. The pervading 

hypothesis, then, is that disruption of stable HA-CD44 interactions results in release of 

both CD44 and CD95 clustering, causing the cell surface to be more susceptible to Fas 

ligand and its consequent activation of apoptosis.  

Apoptosis due to oligosaccharides was also observed in mammary and lung 

carcinoma cell lines and in glioma cells.57,62 Initiation of apoptosis was found to be due to 

inhibition of PI-3 kinase leading to an inhibition of Akt, BAD, and FKHR 
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phosphorylation. The sum effect was that Bcl-2 and caspase-3 activation was inhibited.57 

A similar inhibition of PI-3 kinase was observed with the use of anti-CD44 antibodies.63  

Other work done on signaling via CD44 has been researched in the context of 

tumor progression and dissemination. CD44 is coupled to the tyrosine kinases p185HER2 

and c-Src kinase; it is actually linked via disulphide bonds to the former and has a high 

affinity binding site to the other. HA binding results in activation of CD44-associated 

p185HER2 and increased tumor growth. The CD44-HA interaction also leads to c-Src 

stimulation, and this induces increased phosphorylation of the cytoskeletal protein 

cortactin, which in turn attentuates its interaction with filamentous actin. This may lead to 

cytoskeleton-regulated tumor cell migration.64 Additionally, CD44 can interact with Rho 

GTPases (such as RhoA and Rac1, which have roles in cytoskeletal movement and 

migration of the cell) and in breast tumor cells, CD44v3,v8-10 is noncovalently linked to 

RhoA.65 Rac1 signaling regulates a pathway known to be involved in membrane ruffling, 

cellular projections, cell motility, and cell transformation.66,67 The first nineteen residues 

of the cytoplasmic domain of CD44 interact with the cytoskeleton via the 

ezrin/radixin/moiesin (ERM) membrane linker proteins, which contain the 

phosphatidylinositol 4,5-biphosphate (PIP2) binding motif.66,68 The CD44 cytoplasmic 

domain has a 15-amino acid ankyrin binding domain; biochemical analysis (competition 

studies) and in vitro mutagenesis, as well as deletion analysis, indicate that the ankyrin-

binding domain is required for CD44-mediated "outside-in" and "inside-out" cell 

activation events. In addition, CD44-cytoskeleton interaction is known to be coupled with 

signal transducing molecules (such as p185HER2 and Src kinases) during tumor cell 
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signaling. Overall, the data suggests that this CD44-ankyrin association is pivotal for 

promotion of oncogenic signaling and tumor cell transformation.69 

Recently, there have been several reports which support a new mechanism for 

direct  signaling by CD44: it is a 2-step process whereby the CD44 ectodomain is 

cleaved, followed by cleavage of the transmembrane (TM) domain; this releases a CD44 

intracellular domain (ICD) which can translocate to the nucleus and act as a transcription 

factor.54,70,71 It should be noted that this mirrors the mechanism for the Notch receptor.72 

Cleavage of the extracellular domain can occur by membrane-associated 

metallopreteinases (MMPs)73 (specifically MT1-MMP74) or ADAM10.75 Release of the 

CD44 ICD is accomplished by γ-secretase cleavage of the TM domain and the CD44 ICD 

potentiates activation with the p300/CREB-binding protein (CBP) to activate 

transcription of target genes, including the CD44 gene.54 This dual cleavage pathway is 

thought to modulate the role of CD44 as a docking protein and co-receptor, and may 

regulate cell detachment from hyaluronan during tumor cell migration/invasion.63 

Two of the major functions of CD44 within the context of the immune system are 

organ-specific homing (particularly lymph node19,21,76,77), and lymphocyte activation. 

Lymph node (and Peyer’s Patch) homing occurs via cell-surface CD44 binding to a 

protein called mucosal addressin, which is present on the high endothelial venules 

(HEV). This binding occurs via the membrane proximal domain of CD44. The variant 

CD44v6, which has been shown to be required for activation of T and B lymphocytes, 

has a crucial role in the movement and homing of antigen-activated lymphocytes in 

lymph nodes.17,78 CD44 and membrane HA is a fairly weak interaction (in comparison to 
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integrins and cadherins), and can indeed be an advantage in certain situations involving 

lymphocyte-to-lymphocyte exchange of chemical signals. This could account for the 

ability of CD44 to mediate T lymphocyte activation and B lymphocyte maturation.79,80 

CD44v isoforms have been implicated in conferring both increased growth and metastatic 

properties on tumor cells, particularly CD44v6/7.81,82 

It has been reported that rolling lymphocytes may sometimes exploit epithelial 

cell-surface CD44 glycoprotein instead of selectin for the tethering and rolling process 

(the first step in extravasation), using their own cell-surface HA as a 

countermolecule.3,83,84 This data was shown in experiments tracking leukocyte entry into 

infected tissues through inflamed capillaries, as well as in lymphoma migration into 

lymph nodes. Other investigators have shown that cell-surface CD44v4-10 (not CD44s) 

mediates the rolling of mouse (tumor) cells on HA substrate.84 In addition, studies have 

shown that CD44 can mediate leukocyte rolling under physiological flow conditions;85 

and Estess, et al, showed that CD44 on T cells can interact with endothelial HA to 

mediate rolling under shear stress, with a secondary firm adhesion occurring via VLA-

4.86 Clark, et al, demonstrated that the rolling of tonsillar lymphocytes on cultured 

tonsillar stromal cells was dependent on CD44-HA binding by inhibiting lymphocyte 

rolling via addition of anti-CD44 antoantibodies, soluble HA, and hyaluronidase 

treatment.21  

Lymphocyte CD44-dermal endothelial HA interactions can result in lymphocyte 

homing to sites of inflammation.87 Pro-inflammatory cytokines such as TNFα and IL-1 

enhance endothelial presentation of HA, thus presenting an immobilized HA surface 
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conducive to lymphocyte rolling. This HA is resistant to fluid shear forces as it is 

anchored to endothelial CD4488. TNFα also induces TSG-6, another HA-binding protein, 

which can present HA to the lymphocytes and facilitates enhanced lymphocyte rolling 

and adhesion (over HA without TSG-6).89 It has been shown that CD44-HA interactions 

play a key role in mediating lymphocyte rolling to enhance leukocyte adhesion at sites of 

inflammation,63 and it has been hypothesized that the inflammatory cascade might also be 

affected by the affinity of the appropriate CD44 variant expression on the circulating 

lymphocyte, though this has not yet been proven directly.   

Ligation of CD44 by anti-CD44 Ab can trigger effector functions in T 

lymphocytes, activate monocytes, and enhance natural killer cell-mediated 

cytotoxicity.36,37,90-95 Interaction between hyaluronate and CD44, as well as between anti-

CD44 mAbs and CD44, results in murine B cell activation and a phenotype closely 

resembling a germinal center B cell.96,97 

II. B lymphocytes in the Immune System. 

A. Introduction. B lymphocytes are members of the adaptive immune system and arise 

from lymphoid progenitor stem cells in the bone marrow (see Figure 3 for an overview of 

B cell development). They progress through stages – pro-B, pre-B, immature B, and 

mature B cell – with the identity of the individual B cell depending on the genes 

expressed at each stage and on productive rearrangements of the genes which produce the 

B cell receptor Ig (immunoglobulin). As a pro-B cell, there is VDJ rearrangement of the 

heavy chain genes; the pre-B cell expresses a “pre-B receptor” (μ chain) combined with a 

surrogate light chain; light chain VJ gene rearrangement results in an immature B cell  
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Figure 3. This shows a very general overview of B cell development and differention.  

(Schematic is drawn with inspiration from Immunology, 4/e, by Roitt, Brostoff, and Male, 

1996 Times Mirror International Publishers Unlimited) 
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expressing a full-size B cell receptor (membrane IgM); the mature B cell expresses IgD 

and IgM. This mature B cell is considered functionally naïve because it has not yet seen 

antigen.   

B. CD44 and B cells. B cell activation and differentiation are regulated by components in 

the surrounding microenvironment.98 During the differentiation of a mature naïve B cell 

into an activated B cell, cell-cell interactions, as well as soluble molecules, mediate 

phenotypical changes. The involvement of cell-matrix interactions is still 

uncharacterized, but may represent a novel mechanism for regulation of lymphocyte 

activation. It is known that different adhesion molecules and homing receptors, including 

selectins, integrins, and members of the Ig superfamily, can influence the cellular 

response, and CD44 is a representative adhesion molecule that is capable of affecting B 

cell responses.97 The functional role of CD44 on B cells is relatively unknown, although 

the protein has been implicated in B cell differentiation and activation in several previous 

studies 99-103. These studies showed that CD44 expression on B cells is rapidly induced 

via interaction of CD40-CD40L,104 as well as by IL-5.105 B cells upregulate CD44 upon 

activation,20,78,106 and mature mouse B cells can be activated in vivo by interaction of 

hyaluronate and CD44.96 During the germinal center reaction, however, CD44 is 

downregulated.107-109 CD44 ligation in human B cells also results in upregulation of the 

genes for IL-6, IL-1α, and β2-adrenergic receptor (β2-AR) – indicating a role in 

immunomodulation and inflammation.110 

C. Pathways of B cell Activation.  
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C1. CD40 and its ligand CD40L (CD154). CD40, a 45-kD transmembrane 

glycoprotein, is a member of the tumor necrosis factor receptor (TNFR) family and is 

expressed on B lymphocytes, monocytes, and dendritic cells, as well as endothelial and 

epithelial cells. Its ligand, CD40L, is expressed primarily on activated CD4+ T cells. 

CD40 signaling (Fig. 4) has important roles in the following functions: 1) promotion of 

the activation and differentiation of B cells by T-cell-dependent antigens; 2) germinal 

center formation 3) Ig class switching 4) affinity maturation (of Ig on B cells) and 5) the 

development of plasma cells and memory B cells.111-113 Binding of CD40L to CD40 

causes the CD40 monomer to cluster in lipid rafts in order to propogate the signal; the 

cytoplasmic tail of CD40 has binding sites for TRAF (TNF receptor-associated factor) 

proteins, which act as adaptor proteins to couple CD40 to the phosphoinositide-3 kinase 

(PI3K), phospholipase Cγ (PLC-γ), mitogen-activated protein kinase (MAPK-ERK, p38, 

and JNK), and nuclear factor κB (NFκB) signaling pathways. The primary pathway of 

interest for this discussion is the NFκB pathway; the others are involved in the inhibition 

of genes involved in cell cycle arrest and promotion of genes related to cell cycle 

progression. The intracellular domain of CD40 both associates with and signals through 

TRAF2, TRAF3, TRAF4, and TRAF6, although recent research has shown that TRAF6 

is dispensable; upon oligomerization of CD40, TRAF2, TRAF5, and TRAF6 encourage 

the dissociation of NFκB from its inhibitor, IκB. NFκB can then translocate from the 

cytoplasm to the nucleus and synergizes with Signal Transducer and Activator of 

Transcription-6 (STAT6) to activate the Iε promoter, the first step in class switching by 

inducing production of Cε GLTs.111,113,114 Additionally, CD40 can activate signal  
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Figure 4. CD40 signaling. The CD40 signaling pathway is shown here. It is a primary B 

cell signaling pathway utilized as a costimulatory pathway to induce B cell activation 

and, in vivo, germinal center initiation. The IL-4 pathway is also shown. (Schematic is 

drawn with inspiration from Geha, et al111) 
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transducer and activator of transcription 6 (STAT6) and the Janus kinase 3/STAT3 

pathway independently of the TRAFs.  

 CD40-CD40L ligation also synergizes with IL-4 to induce expression of 

activation-induced cytidine deaminase (AID), which is crucial for class switch 

recombination (CSR) and also is important for somatic hypermutation. For example, 

when B cells switch to IgE, IL-4 signaling leads to STAT6 homodimerization and its 

subsequent binding to a response element in the AID gene; CD40 ligation causes a 

signaling cascade that leads to NFκB binding to two sites in the AID gene. This synergy 

is important - STAT6-deficient mice or NFκB p50-deficient mice have impaired ability 

to induce AID expression. This “two signal” requirement – IL-4-induced STAT6 and 

CD40-induced NFκB working together to initiate AID expression – seems to be required 

to overcome a potential threshold level of AID expression so that CSR to IgE can 

occur.111,113,115 Two signals are required for the induction of AID and the eventual 

expression of other immunoglobulin isotypes also. 

C2. B Cell Receptor (BCR). The B cell antigen receptor (BCR) plays a crucial role in 

the development and survival of B lymphocytes as well as the response to antigen.  The 

BCR is a multiprotein structure composed of membrane Ig (mIg) and Igα (CD79a) plus 

Igβ (CD79b) chains, which are noncovalently attached. The mIg is produced from the 

rearrangement of VDJ segments for the heavy and light chain genes and functions to bind 

antigen, while each Igα and Igβ chain contains a single ITAM (Immunoreceptor 

Tyrosine-based Activation Motif). These ITAM motifs contain two tyrosines precisely 

spaced, along with a specific amino acid sequence, to provide a binding site for src-
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homology-2(SH2)-domain-containing proteins and thus functions to begin the signal 

transduction pathway (Fig 5). CD19 is a B cell coreceptor that lowers the signaling 

threshold, thereby augmenting the signals received through the BCR; however, it is not 

crucial to B cell development prior to the mature B cell stage. When antigen becomes 

bound to mIg and receptor aggregation is induced, the two ITAM sites on Igα/β are 

phosphorylated by Src family protein tyrosine kinases (PTK) such as Lyn, Fyn and Blk. 

Lyn can have both positive and negative effects on BCR signaling – it is, indeed, vital to 

negative regulation of the BCR, as it can phosphorylate ITIMs (Immunoreceptor 

Tyrosine-based Inhibition Motif) on FcγRIIb and CD22, both of which play a role in 

inhibition of the BCR response. Once src-family PTKs have become active, progressive 

amplification of the ITAM phosphorylation occurs and additional effector proteins/lipids 

are recruited. Another src-family PTK, Syk, binds to the ITAM with appreciable affinity 

via its SH2 domains only once the ITAM is doubly phosphorylated, which facilitates 

further Igα/β phosphorylation and subsequent initiation of downstream signaling events. 

There is a check and balance system “in the house”. B220 (also known as CD45) is a 

transmembrane tyrosine phosphatase that modulates BCR signaling by ensuring that a 

small population of the src-family PTKs, such as Lyn, are in a “positive” state of 

phosphorylation so that they are in readiness for a response to BCR aggregation. The C-

terminal src tyrosine kinase (Csk) counters this by keeping some src PTKs “repressed” 

via phosphorylation of their C-terminal inhibitory tyrosine.116-118 BCR ligation leads to 

activation of phosphatidylinositol-3-kinase (PI3K), which phosphorylates 

phosphatidylinositol-4,5-biphosphate, which creates phosphatidylinositol-3,4,5- 
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Figure 5. BCR signaling. This diagram shows the relationship of the multiprotein 

complex called the BCR and various signaling molecules which mediate and amplify the 

signals received; the cascade that is initiated determines the B cell response in 

development and survival or to antigen recognition. (Schematic is drawn with inspiration 

from Gauld, et al, and Dal Porto, et al116,117) 
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triphosphate [PI(3,4,5)P3], also called simply PIP3. This phospholipid then recruits PH-

domain containing proteins like the Tec-family kinase Btk or the serine-threonine kinase 

Akt, putting them into close proximity to membrane-associated substrates and other 

phospholipid-binding pleckstrin homology (PH)-domain containing molecules, and any 

or all of these may serve a function in the ongoing signal propogation. CD19, the BCR 

co-receptor briefly mentioned earlier, is an integral transmembrane glycoprotein which 

associates with CD21 (complement receptor 2, CR2) and CD81 in a tri-molecular 

complex; this complex also associates with the BCR via CD21 binding to complement 

bound to the antigen. Once BCR ligation has occurred, the tyrosines in the cytoplasmic 

tail of CD19 are phosphorylated by Lyn; this creates binding sites for the p85 adaptor 

subunit of PI3K, as well as for other SH2-domain containing proteins. The 

adaptor/scaffold protein BCAP can also be tyrosine phosphorylated and attract PI3K. 

This binding localizes PI3K close to its lipid substrates and increases its catalytic 

activity.116-118  

 Once Lyn, Syk, and Btk have been activated, the adaptor molecule B cell LiNKer 

protein (BLNK), which is quickly phosphorylated by Syk following BCR aggregation, 

helps to recruit PLCγ2 (via the SH2 domain of PLCγ2), associates with the SH2 domains 

of Btk, and functions to couple BCR signaling to [Ca2+]i influx. BLNK acts as a major 

platform for the assembly of effector molecules and this is also where the signaling 

pathways diverge. PLCγ2 cleaves PI(4,5)P2 into the second messengers inositol 1,4,5-

trisphosphate (also called IP3) and diacylglycerol (DAG). Creation of IP3 causes 

increased [CA2+]i, which is necessary for the activation of numerous transcription factors, 
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among them NFκB and N-FAT. DAG activates protein tyrosine kinases (PKCs), and 

these regulate the mitogen-activated protein kinase (MAPK) family proteins. Three of the 

most important MAPK family proteins, which phosphorylate different sets of 

transcription factors, are extracellular signal-regulated kinase (ERK), c-Jun N-terminal 

kinase (JNK), and p38 MAPK; ERK activates Elk-1 and c-Myc, JNK activates C-Jun and 

ATF-2, and p38 MAPK activates ATF-2 and MAX. Akt and PKC activation both 

eventually terminate in NFκB activation and translocation into the nucleus where it 

activates the transcription factors Bfl-1 and Oct-2. In summary, these events, illustrated 

in Fig. 5 and discussed above, lead to B cell activation and maturation.116,117 

C3. LPS – the “innate” activator. Toll-like Receptors (TLR) (Fig. 6) are Type I integral 

membrane glycoproteins which act as a “bridge” between the innate and adaptive 

systems, since these receptors are found on macrophages, dendritic cells, T cells, and B 

cells. Interestingly, they have significant target specificity; TLR proteins recognize a 

diverse array of ligands on bacteria, fungi, viruses, and parasites. The ligands are known 

as pathogen-associated molecular patterns (PAMPs), and examples are Gram-negative 

bacterial lipopolysaccharide (LPS), Gram-positive bacterial peptidoglycan, bacterial 

flagellin, DNA, and RNA. The TLR family of proteins has a cytoplasmic tail containing a 

toll/IL-1 receptor (TIR) domain, so named because of its similarity to the IL-1 receptor. 

This TIR domain is the active motif that initiates signaling when ligand is bound.119-122  

Significant expression of TLRs on human B cells is seen only for TLR1 and TLR6-10; 

these are upregulated in response to antigen-BCR or CD40 ligation. However, murine B 

cells express TLR4 in response to LPS exposure (Fig. 6), and the cells proliferate and  
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Figure 6. TLR4 pathway. LPS bound to the TLR4/MD2 proteins initiates a signal 

cascade resulting in NFκB activation and the subsequent expression of imfammatory 

cytokines and interferons. (Schematic is drawn with inspiration from Fitzgerald, et al119) 
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differentiate into plasma cells in vitro. When LPS is present, it will be bound first by 

LPS-binding protein (LBP), which is present in serum, and this opsonic activity enhances 

the detection of LPS in the blood (by about 300-fold).119 This complex of LBP/LPS will 

be bound by CD14, a GPI-linked protein123,124 that has no intrinsic signaling capacity. 

LBP is also found as a soluble protein which enhances LPS binding by 1000-fold for 

leukocytes that do not express CD14.123,124 TLR4 is expressed on the B cell surface in 

complex with MD-2, and this heterodimer participates in recognition of CD14/LPS and 

initiates intracellular signaling via two pathways. One is the MyD88-TIRAP (Myeloid 

Differentiation factor 88-TIR-domain-containing adaptor protein) pathway, which 

regulates the activation of NFκB (which heterodimerizes with AP-1) and related 

inflammatory cytokine production; the second is the TRIF-TRAM (TIR domain-

containing adaptor Inducing IFNβ-TRIF-related Adaptor Molecule) pathway (also called 

the MyD88-independent pathway), which controls the activation of the transcription 

factor interferon regulatory factor-3 (IRF-3) (with STAT1) and the induction of Type I 

interferons and costimulatory molecules.119-122 

The MyD88-dependent pathway operates as follows: upon stimulation, MyD88 – 

which possesses both a TIR domain and a death domain – recruits a serine-threonine 

kinase called IL-1-receptor-associated kinase (IRAK) via the death domains of each 

molecule, and IRAK then becomes activated and associates with TRAF6. TRAF6 

activation leads to NFκB activation and transcription of genes related to the inflammatory 

process, such as TNFα, IL-6, and IL-12. TIRAP is also associated with MyD88 and in 
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the case of a deficiency of either MyD88 or TIRAP, NFκB activation is delayed but still 

occurs.119-122  

The MyD88-independent pathway also utilizes TIRAP. Activation and 

homodimerization of IRF-3 occurs via TIRAP after LPS stimulation, and it translocates 

into the nucleus to switch on genes for IFNβ and other IRGs (interferon regulatory 

genes). A third protein involved in LPS signaling is TRIF; it activates IRF-3 and is a very 

potent activator of the IFNβ promoter. TRAM, about which less is known, does associate 

with TIRAP and TRIF, but not with MyD88. According to TRAM-knockout mouse 

studies, TRAM is essential to MyD88-independent LPS signaling via the TLR4 

pathway.119-122 

C4. Interleukin-4. IL-4 is a pleiotropic Type 1 cytokine produced by CD4+ T cells 

(TH2), mast cells, basophils, and NK T cells (these express NK1.1); it has also been 

reported to be produced by γδ T cells and eosinophils. T helper (TH) cells are a functional 

subclass of T cells – TH1 cells help to generate cytotoxic T cells and TH2 cooperate with 

B cells in the generation of antibody-mediated responses. Two major functions of IL-4 

include differentiation of antigen-stimulated T cells (into TH2 type cells) and control of 

the specificity of B cell immunoglobulin class switching (in mouse, to IgE and IgG1). IL-

4 also has a number of other functions in hematopoietic cells, including upregulation of 

expression of MHC class II in B cells, upregulation of CD23, upregulation of the IL-4 

receptor (IL-4R), and can act as a mitogen for B cell growth. In inflammation, it can also 

act with TNF to induce expression of VCAM-1 (vascular adhesion molecule-1) on 



   

 

33
vascular endothelial cells and downregulates their expression of E-selectin (this is 

thought to favor recruitment of T cells and eosinophils rather than granulocytes).125  

 The IL-4 receptor complex is made up of an α chain (IL-4Rα) and a γc chain; the 

IL-4Rα binds IL-4 and the γc chain initiates clustering of the IL-4 receptors. The γc chain 

is responsible for the initiation of the signaling pathway (Figure 4). IL-4 engagement 

(crosslinking) of the IL-4R causes tyrosine phosphorylation of Jak (Janus family tyrosine 

kinase) proteins, which then phosphorylate the IL-4Rα chain. Jak-1 associates with the 

IL-4Rα chain, while Jak-3 associates with the γc chain. Once the IL-4Rα chain is 

phosphorylated, sites for SH2- or PTB-domain-containing adaptor proteins become 

available. There are three main signaling pathways: the IRS1/2 pathway, the Shc 

pathway, and the STAT6 activation pathway. 

 The IL-4 phosphorylation substrate (4PS), also called IRS2 due to its high 

homology with IRS1 (insulin receptor substrate), interacts with PI3K to initiate pathways 

that lead to PKC and Akt activation and subsequent cell growth and survival. IL-4Rα 

chain interaction with SH2-containing collagen-related protein (Shc) can lead to 

activation of Grb2, Sos, and Ras/MAPK pathways, culminating in cell growth and 

differentiation.  

 STAT6 activated by IL-4 is crucial for activation or enhanced expression of many 

IL-4-responsive genes such as MHC class II, CD23, germline immunoglobulin ε (see Fig. 

3) and γ1, and IL-4Rα chain. Upon IL-4 engagement, the IL-4Rα chain is phosphorylated 

by the Jaks and STAT6 docks to the receptor via its SH2-domain. The receptor-

associated kinases phosphorylate STAT6, which then disengages from the receptor, 
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proceeds to form homodimers with other STAT6 proteins via their same SH2 domains, 

and translocates to the nucleus. In the nucleus, STAT6 homodimers bind to consensus 

STAT6 binding sites in IL-4-responsive genes to activate/enhance transcription.121 

D. Immunoglobulin E. Immunoglobulin E (IgE) is one of five classes of antibodies. It is 

involved in protective immunity only in cases of parasite invasion; worms and other 

parasites are opsonized by IgE and IgG, leading to the further activation and recruitment 

of eosinophils, macrophages, neutrophils, platelets, and the activation of complement. In 

developed countries where national hygiene is promoted, there is little problem with 

parasites. However, IgE can be produced in response to innocuous particles – an 

unfortunate and exaggerated reaction called an allergic response. Normal individuals 

have very small amounts (ng/ml) of IgE, as compared to IgG (μg/ml to mg/ml), and IgE 

is elevated (particularly Ag-specific IgE) in allergic individuals. Both genetic and 

environmental factors also play a role in any individual’s predisposition to allergic 

disease. The most common allergic diseases include asthma, allergic rhinitis (hay fever), 

atopic dermatitis, and food allergies. The most dangerous of the allergic reactions is 

systemic anaphylaxis, which can be induced by any one of a number of antigens – such 

as an insect sting. Allergies affect up to ⅓ of the population, and are therefore an 

important disease state to be studied.  

The IgE molecule is a member of the immunoglobulin family and is composed of 

two light chains and two heavy chains. The light chains, either λ or κ, each contain a 

constant and a variable domain, and the identical heavy chains (ε chain) have four 

constant region domains and one variable domain. The antigen-binding specificity lies in 
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the variable domains of the heavy and light chains, while the effector function and 

isotype specificity are dictated by the heavy chain constant region.  

E. Class Switch Recombination. When B cells class-switch (from IgM) to express IgE, 

the first step is to synthesize germline Ig RNAs. These germline transcripts (Iε in this 

case) are “sterile” because they do not code for proteins due to stop codons. However, 

they do serve to initiate isotype switching. A recombination event (i.e., isotype switching 

or class switching) then occurs wherein a downstream constant heavy-chain (CH) gene is 

juxtaposed to the expressed V(D)J genes. V (variable), D (diversity), and J (joining) 

regions make up the variable region of the heavy chain, and when the new CH gene joins 

the V(D)J, the intervening sequences are deleted. The S (switch) region, which flanks 

each CH gene, is the recognition sequence for the joining process during switch 

recombination.126 These molecular events take place when the B cell has been activated 

and is in secondary lymphoid tissue. 

 Regulation of isotype switching to IgE is dependent on cytokines and cell surface 

molecules. Interleukin-4 (IL-4) and/or interleukin-13 (IL-13, human only), cytokines 

secreted by T cells, mast cells, and basophils, are necessary but not sufficient for 

induction of class switching; a second signal is required to switch to any isotype. This 

second signal is CD40L, which is expressed by activated T cells responding to antigen. 

This binds to CD40 on B cells and, together with IL-4, causes a signaling cascade that 

results in ε germline RNA synthesis. Other cytokines and cell surface molecules have 

been shown to affect IgE synthesis. Downregulation of IgE in vitro has been attributed to 

interferon-α (IFNα), IFNγ, IL-8, IL-10, IL-12, and transforming growth factor β (TGFβ). 
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Also, the interactions between sCD23-CD21 and CD28-B7 have been shown to increase 

IgE production. The molecular regulation and modulation of IgE production are reviewed 

in detail in 126. IL-4 directs class switching to both IgG1 and IgE, but the second signal 

can be a T-I (thymus-independent) antigen such as LPS or cell-contact-dependent signals 

through cell-surface proteins such as the TCR (T Cell Receptor). 

F. Plasma Cell Differentiation. After a B cell is mature (although naïve), it can 

encounter its cognate antigen, usually within the context of the spleen or lymph node. 

This interaction, along with CD4+ T cell help and follicular dendritic cells, leads to 

germinal center formation, affinity maturation, and class switch recombination. The B 

cells now differentiate into plasma cells and migrate to the bone marrow. The gene 

expression profile of an activated germinal center B cell is significantly different than 

that of the plasma cell (see Fig. 7). PAX5 (PAired box Protein 5; formerly called BSAP), 

which can act as either a transcriptional activator or repressor, is required to maintain B 

cell identity. PAX5 activates Activation-Induced cytidine Deaminase (AID), which plays 

a vital role in class switch recombination, and represses the expression of X-box-binding 

protein 1 (XBP1), the IgH, the IgL, and the J (joining) chain, all of which are important 

for plasma cell development. While PAX5 must be repressed to induce plasma cell 

formation, experiments have shown that loss of PAX5 is not sufficient to induce 

expression of BLIMP1 (discussed below) or to induce plasma cell differentiation.127 A 

key intermediate in CD40-mediated B cell activation is to apurinic/apyrimidinic 

endonuclease 1 (APE-1) redox factor 1 (Ref-1). CD40 ligation leads to APE/Ref-1  
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Figure 7. Plasma cell differentiation. The gene expression profile of a B cell 

characterizes its identity: activated B cell or plasma cell. The key proteins and 

transcription factors as well as the important known target genes are shown below.  In the 

text boxes, the gene expression programs are summarized. Theese transcription factors 

regulate these genes either directly or indirectly. The transcription factors BCL-6, MTA3, 

MITF, and PAX5 all repress plasma cell formation by repressing BLIMP1, XBP1, and 

IRF4. When B cells begin the plasma cell development pathway, BLIMP1 represses the 

B cell gene expression program. Mutual repression prevents activated B cells from 

spontaneously progressing to the plasma cell stage and prevent plasma cells from 

reverting to activated B cells. (Schematic is drawn with inspiration from Shapira-Shelef, 

et al127) 
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translocation from the cytoplasm to the nucleus, where it modulates PAX5 and early B 

cell factor; importantly, this protein is crucial to CD40-mediated PAX5 activation.114 

Microphthalmia-associated transcription factor (MITF) also inhibits plasma cell 

formation by repression of interferon-regulatory factor 4 (IRF4) expression; loss of MITF 

results in loss of the mature resting state and initiation of the plasma cell program.127  

Another transcription factor, B-cell lymphoma 6 (BCL-6), is crucial to germinal 

center formation, as it represses the expression of B lymphocyte-induced maturation 

protein 1 (BLIMP1). BCL-6 performs this function by interfering with AP-1 

transcriptional activators and also by binding a site within the BLIMP1 gene. MTA3 

(metastasis-associated 1 family, member 3) interacts directly with BCL6 to repress 

BLIMP1; loss of MTA3 leads to spontaneous expression of BLIMP1. Another important 

repressor of plasma cell differentiation is BACH2 (BTB and CNC homology 1, basic 

leucine-zipper transcription factor 2), although its mechanism of action has yet to be 

defined.127 

 Plasma cell differentiation is driven by expression of several different 

transcription factors. BLIMP-1, a transcriptional repressor, is required for plasma cell 

formation and immunoglobulin secretion; it represses genes involved in cell cycle 

progression and genes involved in maintenance of the identity of a mature GC B cell 

(such as PAX5 and BCL-6), while inducing genes related to immunoglobulin secretion 

pathways, such as IRF4. Repression of PAX5 leads to derepression of the IgH, IgL, J 

chain, and XBP1 gene expression.127 
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 XBP1 is critical to plasma cell differentiation and acts downstream of BLIMP1 as 

a regulator of the secretory phenotype in plasma cells. IRF4 is a transcriptional activator 

whose role is not yet clearly delineated, but evidence indicates that it gives the “go 

ahead” to the B cell for transition to plasma cell development by inducing the 

proliferation necessary to do so. The exact mechanisms regulating the transition from 

germinal center B cell to plasma cell are not known; generally, some factors must be 

released from repression, and others must be downregulated or repressed.127 What is 

known is briefly outlined above.  

 Immunoglubulin secretion is regulated by BLIMP1 and XBP1. BLIMP1 acts by 

repressing PAX5 and thereby derepressing the transcription of IgH, IgL, and the J chain; 

it also induces expression of IRF4 and OBF1 (octamer-binding transcription factor 

(OCT)-binding factor 1), which function to activate various enhancers and promoters of 

genes that encode proteins of the Ig chains. XBP1, whose mRNA is induced by activating 

transcription factor 6 (ATF6) and is processed by inositol-requiring 1α (IRE1α), is 

critical to the secretory program in plasma cells. It induces genes whose products are 

involved in ER targeting and translocation, protein folding, protein degradation, 

glycosylation of proteins, ER-to-Golgi trafficking, and targeting of Golgi vesicles to the 

membrane. XBP1 also is involved in cell size and in increasing the size of the ER.127,128  

 For an overall picture of the events outlined above, please see Figure 6. 

III. CD23 (FceRII), the low affinity IgE receptor. 

A. Introduction to CD23. The two types of Fc receptors for IgE are called FcεRI and 

FcεRII. FcεRI is a high affinity receptor that is involved in allergic mediator release. The 



   

 

41
other, FcεRII (CD23), is a low affinity receptor for IgE. CD23, first described by 

Lawrence et al,129 is a natural regulator of IgE production.  

B. Structure. FcεRII (CD23) (Fig. 8) is a member of the calcium-dependent (C-type) 

lectin family,130 which require calcium for ligand (IgE) binding.131 Other proteins contain 

this lectin “cassette”, including cell adhesion proteins (selectins).132 CD23 does not, 

however, bind to IgE via a carbohydrate epitope133 like other members of this family, 

such as the asialoglycoprotein receptor;134 instead, the lectin homology region contacts 

the IgE. CD23 is a Type II integral membrane protein with an extracellular carboxyl 

terminus. A series of repeat regions (3 in humans, 4 in mouse), composed of 21 amino 

acids each, extend from the cell membrane to the lectin domain - the “stalk” region. 

General differences between the human and mouse CD23 include a shorter C-terminal 

region in mouse CD23 with loss of the inverted RGD sequence; mouse CD23 also has an 

additional repeat region and an additional N-linked glycosylation site, both of which are 

used.135 Gould et al136 found that the region of homologous repeats had a repetitive 

heptad pattern similar to that of tropomyosin; this kind of pattern has a periodicity of 

seven in the distribution of hydrophobic and hydrophilic residues. These structures are 

predicted to form α-helical coiled-coils with two or three individual molecules interacting 

with each other.137 This lab has obtained considerable evidence to support this model, and 

the data indicates that receptor-receptor association is critical for ligand binding. 

Crosslinking studies confirm that the stalk domains form oligomers and suggest that the 

trimer is formed and binds IgE in a divalent manner involving two of the lectin heads 

interacting with either symmetrical or non-symmetrical sites on IgE. 
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Figure 8. Model for associated trimeric CD23.  The stalk of the CD23 molecule forms a 

coiled-coil structure.  This would allow the lectin heads to interact in a divalent (or 

trivalent) manner with IgE (published in Conrad, DH, et al. 138). 
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 CD23 breakdown can occur at the cell surface139 via cleavage by an 

uncharacterized membrane-associated metalloprotease to release a monomeric 38Kd 

(mouse) or 37Kd (human) molecule consisting of the carboxy-terminal portion of CD23 

(soluble CD23 or sCD23). Further breakdown usually occurs due to the first fragment 

remaining quite labile.135,140,141 In man, both fragments (37 and 25 Kd) have IgE-binding 

capacity and the IgE interaction has been mapped to the lectin homology region of 

CD23.141-143 The IgE-binding capacity of murine sCD23 is known to be a matter of 

affinity and is related to the capacity of the receptor to self-associate. It is noteworthy that 

mice transgenic for sCD23 displayed no changes in IgE responses, suggesting that the 

associated form of CD23 is required for the regulation of IgE. 

Cellular CD23 levels are known to be regulated by two different mechanisms. On 

B cells, CD23 is protected from degradation while present on the cell surface; IgE does 

not cause an increase in CD23 biosynthesis.144 The second mechanism is cytokine-

specific upregulation. IL-4/STAT6 are very important in CD23 regulation, as seen in the 

IL-4145 and STAT6146,147 knockouts – which had very low CD23 expression. IL-4, 

however, has no effect on surface CD23, unlike IgE; rather, it increases the expression of 

CD23 by increasing the levels of mRNA and protein.148  

The genetic structure of the human and mouse CD23 is similar. A second isoform 

of CD23 was discovered in man,149 and the two forms are called CD23a and CD23b (Fig 

9). The second isoform (CD23b) is caused by an alternative transcription initiation site, 

but the actual difference between the two isoforms is only the 6 amino-terminal amino  
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Figure 9. The murine CD23a and CD23b promoter sequences. This details their 

transcription factor binding sites and the placement of exons. 
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CD23a 
 
CAGATTCAGTCCACCACAGGTTTGATTCAGATCCAGGTTGTGTCATTTCCTTCCTTCTGCATTTTCAAGAGTTCTGA 
 
      C/EBP motif 1 STAT6 site              NFκB1 site 
TTGGCATCGCTGACTCTCCAACAGTTTGCTTACCTGAGAAATAAAGGTAATAATAGCCCGGACTTCCCCAGGTTCTA 
        C/EBP motif 2 
NFκΒ2 site                 TATA box 
GGGAGCACCAAAAAAGGCCTTGTGTGTGCTGTGGCCACCCAGGCGGTGAGCCCATAATTAGGTCTATAAAAATAGAA 
 
     Transcription start site  Exon 1 
GCCATTAATGAACTGCTCACAGAAGACTACTGTCTTCAACACACTAGCCTGAGCTACCTTATCCAAGTGCTCCACAT 
 
 
ATTCCAGAAGGAGAAGGACAGACTTCAAGTTCAAGTGAGTTTGTATTTATATGGGGCGNGGNNNNGAGANGGGGGCA 
 
 
ACGGTATGGACAGAATCAAGAGGCATATGGGTCTCAGCTTCGGTCCTAAG 
 

 

CD23b 
     Exon 2 
AGGTAGTGCACGCCTCATCACTGAAAGGATCCAAACAAGACTGCCATGGAAGAAAATGAATACTCAGGTAGGAAGAT 
 
            NFκB site 
TCCCAGGTGCCAATGCTGGCACTCATTTTGCTCAGGAGAGGGGGCGGCTCTTCAGTCCCTCTTTACCCAAGAGGGTG 
 
   STAT6 site 
AATTCCCAAGAAGGGCCAGGAGGTAGAGTAGAGTGGGGGTTGAGCACTGACTGGCACCCGTGGCACACAGCCAGGTG 
 
                  
AAACAGGGAAATTCAAGGCCCCTCCTTTCTGTGACTCAACACCTTCCTAACAAAACTCAGCTCCAGCTGGACAGTTG 
 

Mouse CD23b-specific exon      Exon 1b 
GGAGTCAGATAGAGTTGAAAGCCAATTTGAACGGGAACTTGGAATTCAGAATGAATTCTCAAAACCAGGGTAAGGAA 
 
 
GAACTGGGAACCTGCA 
 

TA = missing 19 base pairs here, as compared to the human CD23b promoter 

GA = missing 9 base pairs here, as compared to the human CD23b promoter 

GA = missing 3 base pairs here, as compared to the human CD23b promoter 

GG = missing 1 base pair here, as compared to the human CD23b promoter 
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acids. CD23a is found on B cells and follicular dendritic cells. CD23b is widely 

expressed on hematopoietic cells, including CD5+ B cells, T cells, monocytes, 

eosinophils, platelets, Langerhan’s cells, and bone-marrow-derived mast cells.149 Both 

human and mouse B cells constitutively express CD23a and it is upregulated by IL-4, 

whereas CD23b (human) on any cell type requires IL-4 for expression.149-151 Until 

recently, it was thought that only CD23a is found in the mouse;152 CD23b has lately been 

found to be expressed and upregulated on murine intestinal epithelium in conditions of 

food allergy.153 In addition, there are several CD23b isoform variants found in the mouse, 

as depicted in Fig. 10; the Δ sign followed by a number indicates the lack of that exon. 

These CD23b variant isoforms will be discussed in further detail in Part D (CD23b 

Expression) in this section. 

C. Function. CD23 plays a role in the regulation of IgE synthesis. Development 

of transgenic mice in which the CD23 gene was deleted154-156 or animals that overexpress 

CD23157 allowed examination of the role of CD23 in IgE production. One group reported 

that CD23 knockouts had an enhanced IgE response,156 while other groups did not find 

considerable differences in IgE responses to either parasite or antigen/alum 

regimens;154,155 this lab also (data not shown) found IgE responses to be similar in 

knockout and control mice. However, CD23 transgenic animals have a greatly reduced 

IgE response in both parasite and antigen/alum regimens.  

One finding with the use of anti-IgE is that basophils have a lower level of FcεRI 

expression as a result of the lower serum levels of IgE,158 and this relates to the efficacy 

of this treatment. CD23 is also a candidate for this type of therapy, and either the  
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Figure 10. Pictoral view of the murine CD23 isoforms and isoform variants. This 

shows the functional organization of the exons of the CD23 gene and the domains 

encoded by the exons are noted along the top: TM = transmembrane domain, CC = 

coiled-coil stalk domain, and IgE-BD = IgE-binding domain. As seen in the figure, 

CD23bΔ5 lacks exon 5, CD23bΔ6 lacks exon 6, CD23bΔ5,6 laxk both exon5 and 6, and 

CD23bΔ5,6,7 lacks exons 5-7. This occurs via mRNA splicing and affects the function of 

CD23b. The last two gene constructs in this schematic are MCY and MTM, which are 

CD23 constructs created for the purposes of research; MCY is full-length CD23 lacking 

the sequence encoding the five N-terminal amino acids, while MTM is full-length CD23 

minus the entire intracellular sequence except the last five amino acids. (Figure 

Schematic reprinted from Montagnac, et al 160) 

 

 

 

 

 

 



   

 

49
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

50
membrane form or an engineered soluble form with full IgE-binding capacity may be 

used. It is a self component and therefore no immune response could occur; in addition, 

the close proximity of the interaction sites of CD23 and FcεRI159 also indicates that CD23 

could not cause an anaphylactic reaction. 

IgE production has been shown to be inhibited by anti-CD23 monoclonal 

antibodies using both PBL (peripheral blood lymphocytes) from allergic patients and the 

IgE-producing cell line U266.161,162 Anti-CD23 mediates suppression163 of mRNA for 

secreted, but not membrane, IgE. With regard to sCD23, there was a modest potentiation 

of IL-4-induced IgE production in the human in vitro system,164,165 but this lab was 

unable to alter IgE synthesis using native sCD23 in mice. This lab has achieved IgE 

modulation with intact CD23 in vitro and in vivo, using transgenic mice,166 culture in the 

presence of CD23-transfected cells,167 and culture in the presence of LZ-CD23 (a trimeric 

soluble CD23, created in this lab). A second function of CD23, due to endocytosed IgE-

antigen complexes, is enhanced antigen presentation in both humans and mice.168,169 This 

lab has explored this area further using anti-CD23-antigen complexes and found 

increased immunogenicity of these complexes.169 

D. CD23b expression. As indicated earlier, the two isoforms are expressed on different 

cell types, leading to a wide expression of the CD23b isoform in humans but none in 

mouse (or so it was thought at the time that this project was begun). There were 

hypotheses regarding the lack of murine CD23b expression; one was that there was a 

defect in the transcription start site; the second was that perhaps murine lymphocytes 
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simply do not express the CD23b isoform, while it was yet possible that other murine cell 

types (other leukocytes or other cells) may express it under specific conditions.  

Examination of the mouse CD23b sequence led to several observations. Kohler et 

al 170 used a luciferase reporter gene system to isolate the IL-4RE in the human CD23b 

gene and went on to confirm by EMSA that an IL-4 induced protein did bind the 

sequence. This lab conducted a computer-assisted homology search to find the 

comparable sequence in mouse. EMSA analysis showed that the STAT6 site in the mouse 

CD23b gene was fully functional. However, there was still little expression seen. Kondo 

et al.171 showed by RT-PCR that the b isoform is produced, although at very low levels. 

The conclusion was that the CD23b isoform was intact but still obviously unresponsive to 

IL-4 stimulation. To examine the CD23b promoter in isolation, it was cloned into a 

luciferase vector and evaluated in vitro for upregulation by IL-4. The murine CD23b 

promoter region has a (functional) STAT6 site that allows for IL-4 inducibility; there is 

also an NFκB site 38 bp upstream of the STAT6 site. This same orientation occurs in the 

human CD23b promoter, and the two sites are 36 bp apart. However, the human and 

mouse CD23a promoters have their transcription factor (TF) binding sites in opposite 

orientation, with only 18 bp between them.  

Initially, studies in this lab analyzed the mouse CD23b promoter (murine CD23b: 

283 bp, from –239 to +44) as compared to the human CD23b (hCD23b) promoter, and 

the murine version of the promoter had three regions "deleted" (see Figure 8). None of 

the deletions correspond to any known TF binding sites when compared to the human 

CD23b promoter region; namely, STAT 6 and NFκB.  
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The mouse CD23b (mCD23b) promoter was corrected for two of the defects, 

alone and in combination. The reporter (luciferase) plasmids were transfected into 

M12.4.5 cells (a murine B cell line) and cultured in the presence and absence of IL-4. 

Replacement of the 19-bp deletion or restoration of the NFκB site to consensus alone or 

in combination had no effect on the efficiency of the CD23b promoter. Also note that 

isolation of the CD23b promoter from any possible negatively influencing sequences had 

no effect upon its inducibility by IL-4. 

 Since the mCD23b promoter seemed to be intact, this same reporter vector 

containing the murine CD23b promoter was transfected into the RPMI 8866 human B 

cell line; this was to determine if the mouse was simply lacking a factor required for 

CD23b expression. There was no increase in luciferase production by these cells when 

they were induced by human IL-4. Two other human cell lines were also transiently 

transfected with similar results. Reciprocal experiments were also performed; the human 

CD23b promoter in a luciferase vector was transiently transfected into the M12.4.5 

murine B cell line. No luciferase expression was observed. 

This led to the “faulty transcription initiation hypothesis”, in which the defect in 

the mCD23b promoter is in transcription initiation. This is supported by the fact that 

neither replacement of the 19-bp deletion at +6 nor consensus matching of the NFκB site 

can explain the lack of mCD23b expression. Additionally, in the mCD23b promoter 

region, there is a cluster of putative TF binding sites for several proteins; these may 

inhibit transcription initiation efficiency by blocking the interaction of RNA polymerase 

with the DNA. It is also not known if CD23a can “sequester” transcription factors away 
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from CD23b. This cluster is not found in the hCD23b promoter region. Also, mouse 

CD23b does not upregulate in either mouse or human cell lines – further evidence that 

transcription cannot be initiated from the CD23b promoter.  

Since the work described above was done, Ewart, et al,172 showed that the CD23a 

promoter is only sensitive to IL-4 when the STAT6 site most distal to the transcription 

initiation site is available; and that the CD23b promoter is responsive to IL-4, CD40L, 

and is variably responsive to anti-μ stimulation.172 

The second hypothesis for the lack of CD23b expression was that mice just may 

not express high levels of CD23b in their lymphocytes, which are the cells in which we 

would expect to find the protein. Lymphocyte cell lines have typically been chosen for 

experiments based on that assumption. Instead, murine CD23b (mCD23b) has been found 

to be expressed in intestinal epithelial cells.153 This alone suggests that the regulation of 

murine CD23b may be very different from the human system. 

A collaborator found mCD23b expression153 on intestinal epithelial cells when the 

individual had food allergies. Briefly, after ingestion of food antigen, local GI symptoms 

develop, such as vomiting, nausea, and diarrhea; extraintestinal symptoms may occur in 

the skin and airways.173 In severe cases, systemic anaphylaxis may occur.173-175 It is 

interesting to note that increased levels of CD23 have been found in individuals with food 

allergy, inflammatory bowel disease,176 and in the airways of asthmatics.177 CD23 

appears to be expressed constitutively at extremely low levels on the apical membrane of 

murine intestinal epithelial cells,153 and is dramatically upregulated in sensitized mice.153  
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An understanding of the physiology of food allergy is crucial to understanding the 

role of CD23 in this disease. Mast cells, the effectors of the symptoms of an allergic 

reaction, are beneath the lamina propria of the gut and should therefore be masked from 

antigen contact.178 There are two phases of antigen penetration in hypersensitivity 

reactions. In phase I, most ingested proteins are digested by enzymes anchored in the 

enterocyte microvillus membrane prior to transcytosis, but a few proteins are taken up 

into endosomes and transported across the cells. Most of these fuse with lysosomes and 

are digested before reaching the basal epithelial cell membrane and gaining access to the 

lamina propria and the circulatory system. This process is relatively slow, usually taking 

20-30 minutes.179 However, a food antigen is specifically and rapidly taken up by the 

intestinal epithelial cells as intact protein. Uptake of the food antigen and transepithelial 

protein transport occurs within 3 minutes after exposure to antigen in the sensitized 

animal, as has been shown in rats sensitized to HRP.180,181 Phase I was shown to be IgE-

dependent (intestinal epithelial cell dependent) but mast cell independent and is specific 

for the sensitizing antigen.180-182 In phase II, mast cells are activated >30 min. later via 

IgE-ag complexes cross-linking the FcεRI and degranulation occurs. GI symptoms, such 

as altered intestinal epithelial cell ion transport, which can result in diarrhea and other 

unpleasant GI tract effects, ensue following mast cell degranulation. 

It has been shown that CD23 and IgE can enhance intestinal transepithelial 

antigen transport in sensitive rats.181 Antigen uptake at the level of the intestinal 

epithelium was found to be specific; HRP-sensitive rats had allergic reactions to HRP but 

not ovalbumin.180 IgE is required for sensitization: whole serum, but not IgE-depleted 
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serum, could transfer sensitivity into naive rats and, additionally, the sensitization was 

specific.183 Enhanced expression of CD23 in sensitized rats was shown to be present on 

the apical surface of the intestinal epithelial cell membrane by immunogold labeling; 3 

min. after challenge, these same cells had a sharp decrease in membrane-expressed CD23 

but a concurrent increase in CD23 in the endosomes of these cells.153 The involvement of 

CD23 in the state of sensitization of the animal was further supported by the inhibition of 

antigen transport and the hypersensitivity reaction in CD23-/- mice.183 

There is evidence153 that CD23b is the protein isoform involved in the sensitized 

murine system. Yu, et al. examined the role of CD23 in enterocyte (intestinal epithelial 

cell) uptake and transport. Gut epithelial CD23, shown by immunohistochemical staining 

and immunogold labeling to be present on the apical membrane of the jejunal epithelial 

cells, is involved in the uptake and transport of antigen in sensitized IL-4+/+ mice but not 

in sensitized IL-4-/- mice, suggesting that IL-4 is involved in the regulation of CD23 

expression in intestinal epithelial cells.183 Importantly, CD23-/- mice were found to lack 

antigen transport.183,184 In addition, cultured intestinal epithelial cells (IEC4.1 cells) were 

shown by RT-PCR (Reverse-Transcriptase PCR) to be expressing only CD23b 

transcript.153 Yu et al153 also showed that intestinal epithelium can and does express 

CD23b transcript; indeed, as shown in a couple more recent reports, there are several 

different splice forms of CD23b (Fig. 10) that can be found in intestinal epithelium. 

Classical CD23b is the predominant form expressed, but CD23bΔ5 is the next most 

prevalent, while CD23bΔ6, Δ5,6 and Δ5,6,7 are found only in very tiny amounts.185 
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CD23bΔ5 was found to bind to IgE with the typical biphasic affinity as the 

classical CD23b form, whereas CD23bΔ6 did not bind IgE at all185 – apparently the 

coiled-coil stalk is necessary for optimal IgE binding. CD23bΔ5 is induced in vitro by IL-

4 and in vivo by sensitization to a food allergen.153,186 This CD23b-derived splice form is 

constitutively internalized153 and is the form which mediates the apical to basolateral 

transport of free IgE and IgE/allergen complexes. Classical CD23b can only bind 

IgE/allergen complexes, but not free IgE, for transcytoplasmic transport. The 

physiological function of free IgE binding by CD23bΔ5 may be the recycling/clearance 

of luminal IgE. In both cases, the IgE or IgE/allergen complex was “protected” from 

degradation during CD23-dependent transport across the cell in sensitized mice.185 

However, a related problem, that of basolateral-to-apical transport of IgE to the lumen of 

the intestine, has yet to be observed and the mechanism remains elusive.  

Interestingly, in the human, both CD23a and CD23b are co-expressed in intestinal 

epithelial cells.160 CD23a is found in the basolateral surface and CD23b is found at the 

apical surface. This is quite opposite the situation in mouse, where CD23b is the 

exclusive isoform. mRNA for human intestinal epithelial CD23 was also cloned and 

tested for the presence of a bΔ5-like product, but none was found. Only full-length stalk 

region was found in all clones tested.160 CD23a is effectively internalized by CCPs and 

bears a cytoplasmic tyrosine-6 (encoded in the CD23a-specific exon) which is found to 

be in the classical consensus sequence for a tyrosine-based, clathrin-dependent signal for 

internalization. 
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The internalization mechanism of CD23b and its splice forms was discovered to 

be CCPs (clathrin-coated pits), and the absence of exon 5 in CD23bΔ5 caused this variant 

to be constitutively internalized. Data from anti-CD23/transferrin-internalization co-

localization experiments with the CD23b Δ5, Δ6, Δ5,6 and Δ5,6,7 indicates that 

endocytosis of CD23 isoforms is strongly related to the stalk region of CD23 (less stalk = 

more efficient endocytosis).160 Montagnac, et al,160 suggests first that the CD23b-specific 

exon negatively regulates the endocytosis signal and, further, that the modulatory 

function of the CD23b-specific exon is under control of the stalk region. Evidence comes 

from the CD23bΔ5, wherein a deletion of the stalk allows for constitutive internalization, 

which has CD23b-type intracytoplasmic region. This is very different from the scenario 

in human CD23, and as more data is gathered, underscores the suggestion that human and 

mouse CD23 (and its isoforms) is regulated very differently.  

 

IV. Research Objectives. 

A. Effects of anti-CD44 on B cell Growth and Differentiation. Prior to the beginning 

of this project, an anti-CD44 mAb created in this lab (and named RK3G9) was found to 

inhibit IgE production by murine B cells when coated on a culture plate. The present 

study focused on the effects of CD44 cross-linking on murine B cell activation and 

differentiation in vitro, to begin to elucidate the role of CD44 in B cell maturation. This 

study demonstrates that CD44 cross-linking via anti-CD44 mAb inhibits B cell 

proliferation and affects antibody production. Following CD44 cross-linking, B cells 

acquire a fibroblast-like morphology and do not cluster. In addition, CD44 cross-linking 
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inhibits B cells stimulated via the CD40L or LPS signaling pathways, but not by BCR 

stimulation. This indicates that the CD44 cross-linking effects have some specificity and 

suggests that CD44 cross-linking could control polyclonal B cell activation by CD40L, 

but allow sIgM/CD40L activation to continue. In addition, the formation of plasma cells 

is decreased. 

B. CD23b Promoter Defect: to B or not to B. This project was begun – and finished - 

prior to much of the information just given in the Introduction Section. However, in the 

early stages of this project, the main objective was to correct the CD23b promoter 

“defect” by various combinations of the mouse CD23a and CD23b promoters. Human 

CD23b was also compared to mouse CD23b and these promoters were also to be 

combined. Human CD23b is known to be expressed on a wide variety of hematopoetic 

cells and these studies would allow determination of whether the two species regulate this 

important molecule in entirely different or very similar manners. With the discovery of 

CD23b on enterocytes, this project objective changed: to discover what regulates CD23b 

expression – as it differs considerably from that of CD23a – in the murine system. The 

elucidation of the regulatory apparatus would no doubt be an important step in the fight 

to eradicate food allergy.  
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MATERIALS AND METHODS 
 
 
I. Anti-CD44 project. 

A. Animals and Media.  Female Balb/c mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and were housed in accredited animal facilities. All mice 

used in experiments were between 6 and 14 weeks of age. The medium used consisted of 

RPMI 1640 supplemented with 10% heat-inactivated FBS (Hyclone, Logan, UT), 2 mM 

glutamine, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 100 U/ml 

penicillin, 100 U/ml streptomycin (all from Life Technologies, Rockville, MD), 10 mM 

HEPES buffer, and 5 X 10-5 M 2-mercaptoethanol (Sigma, St Louis, MO), referred to as 

“B cell medium”.  

B. B cell isolation and growth conditions.  B220+ B cells (>95%) were isolated from 

disrupted spleens by staining with PE-anti-B220 (Becton Dickinson, Los Angeles, CA) or 

FITC-anti-B220 and sorting using a MoFlo cytometer (Dako-cytomation, Ft Collins, 

CO). B cells were plated at various concentrations in 96-well plates (Costar, Cambridge, 

MA) in a volume of 200 μl of B cell medium and stimulated with 50,000 U/ml 

interleukin-4 (IL-4), 5 ng/ml IL-5, 0.01 μg/ml CD40 ligand trimer (CD40LT), and 0.1 

μg/ml mouse IgG1 anti-trimer (M15), collectively referred to as “Activation Cocktail”, at 

37°C in a 5% CO2 incubator. These activation conditions have previously been shown to 

be optimal for IgE production.167 Plates were coated with 50 μl of 10 μg/ml of RK3G9 

(anti-CD44, rat IgG2a
187), IM7 (anti-CD44, Pharmingen, San Diego, CA), or C0H2 (rat 

IgG2a isotype control) and blocked with 2% FBS in PBS, prior to plating cells.  
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C. B cell proliferation. On day 3 post-culture, the B cells were pulsed using 1μCi 

[3H]thymidine (ICN Biomedicals, Costa Mesa, CA)/well for 6 hrs. Cells were then 

harvested onto a Unifilter 96 plate (Packard Instruments, Meriden, CT) using a Filtermate 

196 plate harvester (Packard), and the incorporation of [3H]thymidine into DNA was 

measured by reading the plate in a model 9902 TopCount (Packard). 

D. ELISAs. On day 8 post-culture, levels of IgE, IgG1, IgM, or IgG2a in supernatants 

were determined by ELISA as described previously 166. Briefly, a pair of rat anti-mouse 

IgE monoclonals, B1E3 (5 μg/ml) and biotinylated R1E4, were used as the capture and 

biotinylated secondary antibody, respectively. Biotin was then recognized by streptavidin 

coupled to alkaline phosphatase (Southern Biotechnology Associates, Birmingham, AL). 

Total IgG1 was determined by using an unlabeled primary goat anti-mouse Ab at 5 μg/ml 

and detected with goat anti-mouse class-specific Ab coupled to alkaline phosphatase (all 

Abs are from Southern Biotechnology Associates). Total IgM and IgG2a were determined 

similarly; the primary Ab was unlabeled goat anti-mouse IgG2a or IgM, and the detection 

Ab was alkaline-phosphatase-coupled goat anti-mouse IgG2a or IgM.   

E. Elispot. On the appropriate day, B cells were removed from 96-well plates via 

Trypsin-EDTA (due to the RK3G9-mediated spreading and binding to the plates), 

counted, and plated (in 150 μl) onto a PVDF-membrane Elispot plate (Multiscreen-HTS, 

from Millipore, Bedford, MA) at a concentration of 50K in the 1st well, with dilutions of 

1:2 all the way through well 11. The plates were pre-coated with B1E3 (see details in 

ELISA section) or anti-IgG1 at 10 μg/ml in 100 μl/well overnight at 4°C prior to B cell 

plating. The cells were then allowed 16-20 hours to bind to the plate at 37°C (+ 5% CO2).  
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After incubation, the Elispot plate is washed with filtered PBS + 0.1% Tween 20 five 

times, with two of the washes having a 5-minute soak at room temperature. The primary 

antibody, biotinylated R1E4 (in the case of an IgE Elispot), is added (at a 1:500 dilution 

in 100 μl/well) to the plates in PBS and incubated for 1 hour at 37°C. The plate is then 

washed as described above and streptavidin-AP (at a 1:250 dilution in 100 μl/well) (or 

IgG1-AP in the case of an IgG1 elispot) is added to the plates for 1 hour at 37°C. The 

plate is washed as described previously and substrate (AMP buffer + 1 mg/ml BCIP) is 

added for 5 minutes at room temperature in the dark. The plate is then washed with DI 

water on both sides and allowed to dry before counting. Counting was done on a stereo 

microscope. 

F. FACS. Cells were washed and stained with PE-conjugated anti-CD38 in PBS/1% FBS 

on ice for 30 minutes. They were then washed once more prior to reading in the FC500 

flow cytometer (Beckman-Coulter, Fullerton, CA). 

G. Steptavidin-microbeads cross-linking experiments. For the cross-linking of 

biotinylated RK3G9:  100 μl streptavidin microbeads (Miltenyi Biotec, Auburn, CA) 

were pre-mixed with 100 μg of biotinylated RK3G9 and incubated on ice for 30 min., 

washed in PBS three times, resuspended in media, and added to the cell cultures. For the 

cross-linking of unlabeled RK3G9 with biotinylated MAR18: 100 μl streptavidin beads 

were pre-mixed with 200 μg biotinylated MAR18, incubated on ice for 30 min., washed 

in PBS three times, resuspended in media, and added to the cell cultures in conjunction 

with 1 or 10 μg of RK3G9. 
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H. In vivo RK3G9 experiment. Male Balbc/J mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and were housed in accredited animal facilities. These mice 

were 6 weeks of age. Alum-Ag injections consisted of 4 mg/mouse Alum (Pierce, 

Rockford, IL) + 100 μg/mouse KLH-DNP (San Diego, CA) + PBS. Each mouse was 

injected with 200μl Alum-Ag intraperitoneally (i.p.) on days 0 and 7. The RK3G9 

injection consisted of 1 mg/mouse in PBS and was given subcutaneously (s.c.) on days -

2, 0, and 7.   

The blood was taken by a capillary tube held to a tail vein nick. 200-400 μl of 

blood was collected from each mouse. This blood was then put on ice for one hour and 

then centrifuged at 10,000 rpm for 5 min. The supernatant (serum minus blood cells) was 

collected and used in an IgE ELISA, which was performed as described above. 

II. CD23b Promoter Project. 
 
A. Cell Lines. Cell lines used were the M12.4.5 (mouse B cell, ATCC), HEK293 (human 

epithelial kidney cells, ATCC) and IEC4.1 (mouse intestinal epithelial cells, courtesy of 

Mary Perdue, Intestinal Disease Reasearch Programme, McMaster University, Hamilton, 

Ontario, Canada). 

B. Plasmids. The firefly luciferase vectors pGL3-Basic, pGL3-promoter, and pRL-TK 

(Renilla luciferase) were purchased from Promega (Madison, WI). The luciferase vector 

pLUC+ and the construct pLUC+CD23b were generously provided by Ioana Visan and 

Christian Kneitz (Medizinische Poliklinik, University of Würzburg, Würzburg, 

Germany). The TA cloning vectors pCR2.1 and pCR3.1-Uni were purchased from 
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Invitrogen (Carlsbad, CA). The four pCR3.1 CD23b constructs were generously provided 

by Alexandre Benmerah (Institut National de la Santé et de la Recherche Médicale). 

1. pGL3-CD23bProm-TATA construct. Previous work in this lab had been done with 

the CD23a and CD23b promoters in the pGL3 vector. To begin the process, the pCR2.1-

CD23bProm construct was used, described as follows: first, an NcoI site was added to the 

CD23b promoter region (5’-AAAGCCAATTTGAACCCATGGCCGAATTCTGCAG-

3’, NcoI site in bold, underlined A to be deleted, underlined G to be mutated to A) via 

Quikchange Site-Directed Mutagenesis (Stratagene, La Jolla, CA) by PCR. The oligo 

sequences are listed in Table 1, primer set #1. After the Quikchange, the resulting product 

was transformed into XL1-Blue Supercompetent Cells and the plasmid DNA was isolated 

by miniprep (Promega). The mutation was confirmed by restriction enzyme digest 

(MscI). The CD23bProm fragment was amplified by PCR (Table 1, primer set #2) and 

cut to fit its vector by MscI and Acc65 I. The PCR protocol was 35 cycles of the 

following: 94°C for 1 min., 55°C for 1 min., 72°C for 2 min. This was followed by a final 

cycle at 72° for 6 min. Meanwhile, the pGL3 vector containing CD23a (pGL3-CD23a) 

was digested by restriction enzymes (MscI and Acc65 I) to remove the entire CD23a 

promoter except for its TATA box. The CD23bProm insert was then ligated into the 

pGL3 vector containing the CD23a promoter TATA box, creating a construct comprised 

of CD23b promoter plus CD23a TATA box, called pGL3-CD23bProm-TATA. Ligation 

was confirmed by digest with Ava I. This was subsequently confirmed to be in the correct 

orientation by sequencing (VCU DNA Core Lab) with the Promega primers RVPrimer3  
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Table 1. This table lists the oligos used in the construction of various CD23 plasmids. 
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Table I. Oligos used in construction of CD23b constructs 
 

 

 

 

 

 

 

 

 

1. pCR2.1-
CD23bProm – 
added NcoI site 

sense: GAA AGC CAA TTT GAA CCC TGG CCA AAT TCT 
GCA GAT ATC 
antisense: GAT ATC TGC AGA ATT TGG CCA GGG TTC AAA 
TTG GCT TTC 

2. Primers used to 
amplify the 
~300bp 
CD23bProm  

sense: AGG GTA CCG AGC TCG GAT CCA CTA G (covers 
Acc65 I site) 
antisense: AGG GTG GCC AGG GTT CAA ATT GGC (covers 
MscI site) 

3. Promega 
primers 

RVPrimer3: CTA GCA AAA TAG GCT GTC CC 
GLPrimer2: CTT TAT GTT TTT GGC GTC TTC CA 

4. CD23 full-
length primer  

End-1: GCA GAA CTG GTA CGT ATG GAA GAT CC 
End-2: CGA GAT CCA TTG TGA GCA GAA GTT TG 
(used in conjunction with either the α or β primer, in row #5) 

5. CD23 isoform 
specific primers 

α: CCT CAT CAC TGA AAG GAT CCA AAC AAG 
β: GAA AGC CAA TTT GAA CGG GAA CTT GG 
ε: GGA GCC CTT GCC AAA ATA GTA GCA C 

6. Dr. Benmerah’s 
Full-length CD23 
oligos 

Oligo B:  ATG AAT TCT CAA AAC CAG GGA 
Oligo F:  TCA GGG TTC ACT TTT TGG G 
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and GLPrimer2 (Table 1, #3), which are specifically created for sequencing pGL3 and 

pLUC+ luciferase vectors.  

2. CD23a and CD23b full-length clones to test serum potentially containing 

specific anti-CD23a or anti-CD23b antibodies. The cell line used for RNA in these 

experiments was M12.4.5 cells. These were stimulated with IL-4 and grown for 48 hrs. 

RNA was extracted using Trizol (Invitrogen, Carlsbad, CA). The primers used in RT-

PCR are detailed in Table 1, #4. The RT-PCR kit used was Perkin Elmer Gene Amp PCR 

system 2400 (Applied Biosystems, Foster City, CA). The RT (reverse transcriptase) step 

consisted of the addition of 19 μl of a “MasterMix” (10x PCR buffer, DEPC dH2O, 25 

mM MgCl2, 1 mM of each dNTP, 2.5 μM random hexamer primers (in the case of 

CD23b) or “End-2” oligo (in the case of CD23a) (Table 1, Row #4), 20 U RNase 

inhibitor, and 50 U muLVRT) to 1 μg of sample RNA. The cycling parameters were as 

follows: 25°C for 10 min., 42°C for 15 min., and 95°C for 5 min.  

a) CD23a: The cell line used was M12.4.5 cells. The PCR portion consisted of 20 

μl RT product, 25 mM MgCl2, 10x PCR buffer, 0.5 μl DNA polymerase, and the 

remaining volume up to 100 μl is DEPC dH2O. The PCR cycling parameters were 94°C 

for 1 min., 55°C for 1 min., and 72°C for 1 min. 30 sec. This was repeated 49 times and 

finished with 72°C for 8 minutes. Primers used in PCR were the “End-1” and the α oligo. 

The PCR product was run on a 1% TBE gel to verify size, then the PCR reaction was 

ligated directly into pCR2.1 plasmid. This was transformed into XL1-Blue 

supercompetent cells (Stratagene), and the presence of the 612 base-pair CD23a clone 

was confirmed by EcoRI restriction enzyme digestion. This was sent to the VCU DNA 
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Core Lab for sequencing (T7 primers) and was shown to be both the correct sequence and 

in the correct orientation. This plasmid was called pCR2.1-CD23a-α2ε (full-length 

CD23a). 

b) CD23b: The PCR portion consisted of 20 μl RT product, 25 mM MgCl2, 10x 

PCR buffer, 0.5 μl DNA polymerase, and the remaining volume up to 100 μl is DEPC 

dH2O. The PCR cycling parameters were 94°C for 3 min. (only once), then 94° for 30 

sec., 58°C for 30 sec., and 72°C for 30 sec, done in all a for a total of 35 cycles, followed 

by 72°C for 5 min. Oligos used were “Oligo B” (with phosphate added) and “Oligo F”. 

The ~1 Kb product was then cloned into pCR3.1-Uni (where the added phosphate on the 

Oligo B caused the CD23b DNA to insert in the correct orientation) and transformed into 

XL1-Blue supercompetent cells (Stratagene). The presence of the CD23b clone was 

confirmed by EcoRI and HindIII restriction enzyme digestion. The sequence was 

confirmed by sequencing (VCU DNA Core Lab). The plasmid was called pCR3.1-

CD23bFL (FL = Full Length).  

The pCR3.1-CD23bFL was also put into the pEF4 vector. The CD23bFL was cut 

from pCR3.1-CD23bFL by sequential Nhe I and Not I digestion; the CD23bFL fragment 

was blunt-ended by the Klenow procedure prior to the second enzyme digestion. The 

pEF4 vector was cut by sequential digestion with EcoRV and Not I. The appropriate 

fragments were ligated, transformed into XL-1 Blue cells as usual, plasmid DNA 

isolated, and ligation was confirmed by digestion with BamHI. This product (pEF4-

CD23bFL) was sequenced at the VCU DNA Core Lab and found to be correct.  
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3. Other CD23b constructs. Four CD23b constructs were very generously 

provided by Dr. Alexandre Benmerah. These were pCR3.1-CD23b∆5, pCR3.1-

CD23b∆6, pCR3.1-CD23b-MCY’, and pCR3.1-CD23b-MTM. These plasmids (see 

Figure 11) are defined as follows: 

a) pCR3.1-CD23b∆5: full-length CD23, minus exon 5 

b) pCR3.1-CD23b∆6: full-length CD23, minus exon 6 

c) pCR3.1-CD23b-MCY’: full-length CD23, but lacks the sequence encoding the 

five N-terminal amino acids 

d) pCR3.1-CD23b-MTM: full-length CD23, but lacks the entire intracellular 

sequence EXCEPT for the sequence encoding the five N-terminal amino acids 

C. Transfection of cell lines.  

 1. Electroporation. Log phase cells were washed in PBS, resuspended in EB 

(Electroporation Buffer, composed of appropriate media for cells + 10% FBS + 10mM 

HEPES), and brought to a concentration of 4 x 107 cells/ml. Added to each 0.4mm 

electroporation cuvette was 200 μl of cells and either 20 μg of the “test” DNA  or the 

control plasmid at a 1:50 ratio. When the Dual Luciferase Assay was performed, an 

additional control plasmid (pRL-TK) was added at either a 1:50 or 1:100 ratio. 

Electroporation parameters were 250 V, 950 F, with only 1 pulse; electroporation 

constants were recorded. Pulsed cells were incubated on ice for 10 min. prior to being 

added to 60mm cell culture dishes (50 μl/dish) containing 10 ml of appropriate media or 

EB +/- stimulation. Cells were grown for 48 hrs at 37°C, 5% CO2.  
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Figure 11. The schematic of the CD23b coding regions from the four pCR3.1-CD23b 

constructs provided by Dr. Alexandre Benmerah.  
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2. FuGene Transfection. Fugene 6 Transfection Reagent (Roche Molecular 

Biochemicals, Indianapolis, IN) is a multi-component lipid-based transfection reagent 

that complexes with and transports DNA into the cell during transfection. The basic 

protocol is to add FuGene reagent + DNA to log phase cells. For more detailed 

information, go to http://biochem.roche.com\pack-insert\1814443a.pdf.  

D. Luciferase Assay Protocol. At the appropriate time-point, harvest cells and wash 

with PBS 2x. Resuspend pelleted cells in 250 μl Cell Lysis Buffer to lyse cells (provided 

with the Promega Luciferase Assay kit) for 15 min. at room temperature. Lysates may be 

frozen down at -70°C or read immediately. These lysates were analyzed in a Monolight 

2010 luminometer (Analytical Luminescence Laboratory, San Diego, CA).  

E. RT-PCR for CD23b in IEC4.1 cells. RT-PCR was used to confirm the presence of 

CD23b mRNA in the IEC4.1 cells. The RT (reverse transcriptase) step consisted of the 

addition of 19μl of a “MasterMix” (10x PCR buffer, DEPC dH2O, 25 mM MgCl2, 1 mM 

of each dNTP, 2.5 μM random hexamer primers, 20 U RNase inhibitor, and 50 U 

muLVRT) to 1 μg of sample RNA. The RT cycling parameters were as follows: 25°C for 

10 min., 42°C for 15 min., and 95°C for 5 min. The PCR portion of the IEC4.1 CD23b 

experiment consisted of 20 μl RT product, 25 mM MgCl2, 10x PCR buffer, 0.5 μl DNA 

polymerase, and the remaining volume up to 100 μl is DEPC dH2O. The PCR cycling 

parameters were 94°C for 3 min., followed by 94°C for 1 min. 30 sec., 60°C for 2 min., 

and 72°C for 3 min. Steps 2-4 were repeated 34 times and finished with 72°C for 7 

minutes. The RT-PCR results were analyzed by DNA electrophoresis on a 1% TBE gel. 
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RESULTS 
 
I. Results of investigation of effects of anti-CD44 on B cell activation and 

differentiation.  

A. Immobilized anti-CD44 Abs inhibit B cell proliferation. The goal of this study was 

to examine the role of CD44 cross-linking via immobilized anti-CD44 antibody in B cell 

activation and/or differentiation. The cell culture plates used were chosen for high 

protein-binding capacity (Costar #3370). Both RK3G9 and IM7 are anti-CD44 

antibodies. The monoclonal anti-CD44 (RK3G9) was made in this lab; IM7 is a 

commercially available mAb. 2H10 is a mAb directed against CD23, and is used in this 

context as a specific control. C0H2 is a non-specific rat IgG antibody used as a non-

specific isotype control. 96-well Costar plates were coated with RK3G9, IM7, 2H10, or 

C0H2. The stimulation used was Il-4, CD40LT, M15, and IL-5 (as detailed in the 

Material & Methods section). Freshly isolated B cells (>94% B220+) were then grown for 

three days on these immobilized anti-CD44 or control Abs and were assayed for 

proliferation by [3H]-thymidine incorporation. The proliferation of the cells grown on 

both anti-CD44 Abs was significantly reduced, as compared to the two controls, across 

the entire range of B cell concentrations used (Figure 12A). Having established that 

C0H2 and 2H10 both have no effect on the B cells, C0H2 was chosen as a single control 

for the remainder of the experiments. 

 It is interesting that the RK3G9-treated cells displayed a spread phenotype (Fig 

12C, panel B), while C0H2-treated cells had a round cell shape and clustering (Fig 12C, 

Panel A), which is normal for B cell cultures. However, this spread phenotype has been  
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Figure 12. B cell proliferation is greatly reduced due to CD44 cross-linking by 

immobilized anti-CD44 antibody. A, Immobilized anti-CD44 (RK3G9 or IM7) causes 

greatly reduced proliferation, as compared to control antibodies 2H10 or C0H2, of B 

cells grown for 3 days in culture. B, Soluble RK3G9 or C0H2, at a concentration of 

100 mg/ml, was added to B cell cultures. Proliferation was not affected by soluble 

RK3G9. These data are representative of at least three separate experiments. 
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In order to determine whether immobilization of the anti-CD44 antibody is 

critical to its ability to inhibit proliferation, soluble RK3G9 or C0H2 antibody was added 

to B cell cultures. The results showed that soluble RK3G9 had no effect on the 

proliferation of the B cells, as compared to control cells (Fig. 12B). Reduction of B cell 

proliferation could be attributed to increased apoptosis, as it is known that signaling via 

CD44 can promote apoptosis.19,24,25,31 However, CD44 cross-linking did not promote 

increased B cell apoptosis, as measured by the TUNEL assay (data not shown). 

The possibility that RK3G9 could also cause inhibition of T cell responses was 

tested, since T cells have been shown to interact with many anti-CD44 antibodies. The T 

cells were tested with a non-specific activator (Concavalin A) or a specific activator 

(anti-CD3). Examination of the proliferation of the T cells revealed that, in both cases, 

there was no reduction in growth due to the presence of the anti-CD44 antibody RK3G9 

(Fig. 13). 

B. Ig production is inhibited by CD44 cross-linking on B cells. We next examined Ig 

production to further assess the inhibitory activity of immobilized RK3G9. In view of the 

fact that IgE production in vitro is known to require a high cell division level,115,188 we 

chose to examine the ability of the B cells to produce IgE when cultured on immobilized 

anti-CD44. We have also shown that the amount of IgE produced is higher when 

relatively low numbers of B cells are cultured using our protocol,189 again due to 

increased B cell proliferation.115,188 Plates were coated with RK3G9, IM7, or C0H2, and 

purified B cells were grown for 8 days in the presence of the Activation Cocktail (see 

Materials & Methods). Secreted IgE was assayed by ELISA on day 8. B cells incubated  
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Figure 13. CD44 crosslinking on T cells via anti-CD44 antibodies causes no decrease in 

their ability to proliferate. A, T cells grown on immobilized RK3G9 or control had similar 

levels of proliferation. These were stimulated with the mitogen ConcavalinA. B, The T 

cells had no decrease in proliferation capacity, as evidenced by 3H-thymidine 

incorporation, when grown on RK3G9 or control when specifically stimulated by the 

anti-CD3 antibody 2C11. 2C11 was coated onto the plate concomitantly with RK3G9 or 

C0H2, or plated alone as a positive control; RK3G9 and C0H2 were also coated alone as 

negative (no stimulation) controls. There was no difference between any of the cultures 

which had contact with the anti-CD3, regardless of anti-CD44 presence or not. 
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Figure 14. CD44 crosslinking via anti-CD44 antibodies on B cells causes a decrease 

in their ability to produce immunoglobulins. A, B cells grown on immobilized 

RK3G9 or IM7 produced dramatically reduced quantities of IgE, in comparison to the 

control (C0H2). B, When the IgE production is plotted as IgE produced per input B 

cell, the IgE production is shown to be incredibly inhibited.  C, IgG1 production 

(μg/input cell) is significantly inhibited by immobilized anti-CD44. D, IgM 

production is massively inhibited by immobilized anti-CD44, shown as μg IgM/input 

cell. E, B cell cultures were also stimulated with LPS (25 μg/ml) + IFN-γ (10 ng/ml) 

and grown on RK3G9. The anti-CD44-treated cells had decreased IgG2a production, 

compared to control. These data are representative of at least two separate 

experiments. 
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on immobilized RK3G9 or IM7 produced significantly less IgE, compared to control 

cells, particularly at low cell concentrations (Fig. 14A). Indeed, when the data is 

expressed as the amount of IgE produced per B cell, inhibition at all B cell concentrations 

was seen in the anti-CD44-treated cells (Fig. 14B). 

Isotype switching to IgG1 generally requires fewer cell divisions than switching to 

IgE. IgM production requires no isotype switching. In order to determine whether 

RK3G9 was inhibiting switching (IgG) or if it was simply preventing Ig secretion (IgM), 

the supernatants were assayed for IgG1 and IgM. The production of both isotypes was 

inhibited at all cell concentrations tested (Fig. 14C, D). This result suggests that Ig 

secretion is inhibited under these conditions. 

Finally, the B cells were also stimulated with LPS (25 μg/ml) + IFN-γ (10 ng/ml). 

This promotes class switching to IgG2a; also note that IL-4, which could potentially be 

aiding the RK3G9 in its effects, is absent. These cultures were assayed for IgG2a 

production (Fig. 14E). The cells cultured in the presence of immobilized anti-CD44 Abs 

exhibited a decreased proliferation (data not shown) as well as IgG2a production (Fig. 

14E), both indicating that the inhibitory activity of RK3G9 was not dependent on the 

presence of IL-4 and that other isotypes could be inhibited. Consistent with the 

proliferation studies, when soluble RK3G9 antibody (1, 10, and 100 μg/ml) was added to 

B cell cultures, it had no effect on the IgE production by B cells, as compared to control 

cells (Fig. 15). 

Interestingly, the anti-CD44-mediated inhibition was somewhat less at higher cell 

numbers. It was therefore hypothesized that if a greater number of anti-CD44 antibodies  
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Figure 15.  Soluble RK3G9, even up to 100 μg/ml, was added to B cell cultures and had 

no effect on B cell IgE production.  
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were presented to the B cells, then perhaps inhibition would be seen at higher B cell 

concentrations. A MAR18 (mouse anti-rat) antibody could be coated onto the plate and in 

theory could “present” two secondary antibody molecules to the cells being cultured. 

Hence, MAR18 (10 μg/ml) was coated onto the 96-well plates prior to a secondary 

antibody coating of RK3G9 or C0H2. B cells were cultured as described in the Methods 

section and grown for 3 or 8 days. The spread phenotype was observed in the MAR18-

RK3G9 cultures but not the MAR18-C0H2 cultures. Proliferation, measured via 3H-

thymidine incorporation, of the B cells grown on MAR18-RK3G9 was less than that of 

MAR18-C0H2 (Fig. 16A). However, the degree of inhibition was significantly less than 

that of B cells cultured on RK3G9 alone. A likely explanation for this is the on-off rate 

for the MAR18-RK3G9 interaction; it could mean that the B cell CD44 does not undergo 

as much crosslinking as it does when immobilized anti-CD44 is present alone. 

C. Cross-linking does not increase the ability of soluble RK3G9 to inhibit B cell 

proliferation or IgE production. In reference to the lack of anti-CD44 ability to inhibit 

proliferation when added to the cultures in solution, a hypothesis was formed and tested. 

It was thought that if the RK3G9 could be “bound” (cross-linked) in solution rather than 

on a plate – as clustering of CD44 on the cell surface is a prerequisite to causing 

activation/signaling63 – then perhaps the soluble “cross-linked” RK3G9 could act as a 

scaffold and mimic the plate-bound version of anti-CD44 presentation. Hence, an 

experiment was set up wherein soluble RK3G9 (1 or 10 μg/ml) was combined with 

biotinylated MAR18 and streptavidin in an effort to promote the hypothesized “soluble 

scaffold”, and this combination was added to the cell cultures. Control cells were grown  
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Figure 16. Mouse anti-rat (MAR18) antibody was coated as a primary antibody onto 

plates, followed by a secondary antibody - RK3G9 or C0H2. The B cell cultures grown 

on anti-CD44 exhibited some degree of inhibition as compared to the control, but it was 

much smaller effect than what is seen without the primary MAR18 antibody. A, 

proliferation of the B cells; B, IgE production. 
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with no antibody (PBS). Analysis of the proliferative capacity (Fig. 17A) and the IgE-

producing ability (Fig 17B) of the B cells incubated with the RK3G9 + biotinylated 

MAR18 + streptavidin showed that there was a small anti-CD44 inhibitory effect on 

these cells (30-50% inhibition). 

 Because it was thought that a soluble form of the anti-CD44 was more 

physiologically relevant, a second type of crosslinking experiment was considered. There 

were two ways to crosslink RK3G9 with micro-beads to make a physical “scaffold” in 

solution: 1) add biotinylated RK3G9 to the cultures in conjunction with streptavidin-

linked microbeads and 2) add unlabeled RK3G9 + biotinylated MAR18 + streptavidin 

microbeads. Both options, plus controls, were used. IgE levels were tested after 8 days. 

RK3G9 (10 μg/ml), when cross-linked to the beads via biotinylated MAR18, inhibited 

IgE production (Fig. 18) by about 60% at lower cell concentrations. Hence, even cross-

linking RK3G9 to make a sort of “physical scaffold” in solution did not fully mimic the 

plate-bound environment.  

D. CD44 knockout mice confirm RK3G9 specificity. RK3G9 was confirmed to bind to 

only CD44 by using CD44 knockout mice. These CD44-/- B cells were harvested, 

isolated, and cultured on RK3G9 or control for 3 days. A proliferation experiment 

showed no inhibition of proliferation in the CD44-/- mouse B cells grown on RK3G9 (Fig. 

19A). This showed that RK3G9 is not simply having a cross-effect on some other 

molecule on the mouse B cell surface and is specific for CD44. Additionally, CD44v7 

knockout mice were available, so the B cells from these were also cultured and tested as 

above. These did respond to the anti-CD44-mediated inhibition (Fig. 19B), and we  
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Figure 17. Proliferation by B cells grown with RK3G9 plus biotinylated MAR18 plus 

streptavidin. PBS is the control in this initial experiment. A, Proliferation was not 

inhibited by addition of RK3G9 + biotinylated MAR18 + streptavidin. B, Addition of the 

“scaffold” materials did inhibit IgE production, but to a much smaller degree than plate-

bound RK3G9. 
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Figure 18. IgE production by B cells grown with RK3G9 plus cross-linking agents. 

Biotinylated RK3G9 + streptavidin microbeads and biotinylated MAR18 + streptavidin 

microbeads + 1 or 10 μg RK3G9 inhibited IgE production by about 50% at lower cell 

concentrations, as compared to the control.  
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Figure 19.  The CD44-/- mice can not respond to RK3G9-mediated B cell inhibition of 

proliferation. A, CD44-/- B cells proliferate normally when cultured with either anti-CD44 

or control antibody (C0H2), and the IgE production shows no difference (B). C, CD44v7 

KO B cells respond to the RK3G9-mediated inhibition, as shown by the IgE inhgibition 

in the RK3G9-treated cells. C, Splenocytes from C57BL/6 and Balb/cJ mice had identical 

reactions to RK3G9, thereby confirming that the CD44 knockout data was valid.  
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conclude that RK3G9 does not bind to CD44v7. It is also possible that normal, activated 

B cells do not express CD44v7. 

The CD44 knockout mice were bred on the C57BL/6 background, and normal 

C57 splenocytes were isolated and grown as discussed above. Comparison was made to 

Balb/c splenocytes, as Balb/c is the strain used throughout these experiments. The 

proliferative capacity of the Balb/c and C57 cells was equal, and equally inhibited by the 

presence of plate-bound CD44 (Fig 19C).  

E. FcγRIIb is not involved in the inhibition seen during B cell CD44 cross-linking. 

FcγRIIb, the inhibitory gamma receptor found on murine B cells, can inhibit B cell 

activation once it is bound and cross-linked. It was possible that the mechanism of B cell 

inhibition by RK3G9 was due to FcγRIIb binding the Fc portion of the anti-CD44. To 

rule this out, the effect of addition of an anti-FcγRIIb (2.4G2) Ab on the proliferation and 

IgE production of B cells was examined. The B cells were pre-incubated with 2.4G2 for 

40 min. on ice prior to culture in “IgE cocktail”. The data showed that, with the inclusion 

of 2.4G2, the decrease in B cell proliferation (Fig. 20A) and IgE production (Fig. 20B) 

caused by immobilized anti-CD44 Abs was identical to that seen in Figs 12A and 12B. 

These data suggested that the inhibitory effect of plate-bound anti-CD44 Ab is a result of 

specific interaction with CD44 expressed on B cells, rather than a non-specific effect 

mediated by FcγRIIb. 

F. The “Missing Factor” Hypothesis. It was hypothesized that the B cells could be 

missing some important factor due to the RK3G9 effect on them; the proliferation and 

even later IgE production was inhibited. They could make some factor under normal  
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Figure 20. The inhibitory gamma receptor is not involved in the inhibition of IgE 

production by B cells whose CD44 is crosslinked by an anti-CD44 antibody. A, Cultures 

of B cells grown on immobilized RK3G9 or C0H2, regardless of addition of 2.4G2 

addition or not, were significantly inhibited in their ability to proliferate (A) or produce 

IgE (B). In the right-hand graph in A, 2.4G2 was added to cultures grown on RK3G9, 

IM7, C0H2, or 2H10 (anti-CD23 control). Anti-FcgRIIb addition had no effect on the 

RK3G9- or IM7-mediated inhibition of proliferation of these cells. Control cultures 

provide the normal standard. These data are representative of at least two separate 

experiments. 
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conditions that helps them grow – perhaps a contact-dependent factor (as B cells 

normally grow in clumps in culture) – and when cultured on anti-CD44 they could be 

unable to make the necessary connections. Two different experiments were conducted; in 

one, Cloning Factor was added, and in the other, supernatants from B cells grown in 

normal conditions from days 3 and 8 were added back to the RK3G9-treated cultures. 

 Cloning Factor is normally used as a supplement to “feed” hybridoma cells – 

ensuring that they get all the possible factors needed for growth. It is derived from a 

conditioned culture supernatant from a murine macrophage-like cell line. This was added 

at a 10% concentration to the RK3G9- or C0H2-treated murine B cells. Fig. 21 shows 

that addition of Cloning Factor (CF) did not ameliorate the inhibition seen by culture on 

RK3G9. This experiment was done prior to the regular FACS purification of the B cells, 

and when the cells were only partially pure (~85% by Percoll gradient isolation), they 

regularly partially overcame the RK3G9-mediated inhibition at the higher cell 

concentrations (25,000/well). This may be noteworthy and will be discussed further in the 

Discussion section. 

 Further testing of this “missing factor” hypothesis followed. It was possible that B 

cells grown in culture produced a contact-dependent or –independent factor which helped 

them to grow under normal conditions. The potential that receptors for these factors were 

or were not expressed was an issue that could not be addressed at this point. An 

experiment was set up to test this idea. Normal B cell cultures were grown for three or 

eight days and supernatants were collected. New B cell cultures were set up and grown  
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Figure 21. Addition of Cloning Factor to the cells did not cause a release of the 

inhibition seen in the RK3G9-treated cultures. B cells grown on RK3G9 with the addition 

of CF (Cloning Factor) were not released from the anti-CD44-mediated inhibition, as 

compared to B cells grown on RK3G9 alone.  

 

 

 

 

 

 

 

 

 

 



   

 

98
 

 

 

 

 

 

 

 

 

 

B cell number (x 1000)
1 10 100

Ig
E

 x
 1

0-3
 (μ

g/
m

l)

0

5

10

15

20

25

30

35
RK3G9 
C0H2 
RK3G9 + CF 
C0H2 + CF 



   

 

99
on RK3G9 or control, with the media consisting of 25% supernatant from either the 3-

day or 8-day timepoints, with 75% new media. The results from the “day 3 supernatant 

addition” experiment were unclear, but Figure 22A shows that for the experiment 

involving Day 8 supernatants there was no effect of the “normal” B cell supernatant on 

the proliferation of B cells grown on RK3G9. In fact, regardless of the type (RK3G9 or 

C0H2) of supernatant added to the cultures, the B cells still responded to the anti-CD44 

or control with similar proliferation. This suggests that the normal B cells do not produce 

a “factor” and also suggests that RK3G9- treated cells are producing any “factors” 

similarly to the normal B cells (as shown by the C0H2 B cells grown with 25% RK3G9 

supernatant). The B cells incubated with Day 8 RK3G9 or  “block” supernatant and 

grown on RK3G9 or C0H2 all have lower proliferative values than the B cells grown 

with 100% fresh media on either RK3G9 or C0H2; this is most likely a media effect. The 

IgE results showed that RK3G9-treated cells were not relieved of the anti-CD44-

mediated inhibition by addition of either RK3G9 or C0H2 supernatants. The C0H2 

culture grown in C0H2 supernatant had lower IgE-producing ability than its counterpart 

grown in RK3G9 supernatant. This is likely due to media depletion; the C0H2 

supernatants would have fewer nutrients left and more cellular waste product buildup in 

the culture well after eight days than would the RK3G9 supernatant. This makes sense - 

control cells grow very quickly and use up the media, while RK3G9-treated cells grow 

very slowly (see Fig 12A). Another factor to be considered is that there may be 

contaminating IgE in the supernatants from day 8, as the supernatants were not filtered 

prior to addition back into fresh cultures. However, all things considered, there does not  
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Figure 22. Mouse B cells grown with additive supernatants still respond to anti-CD44. A, 

Proliferation of the cells grown for three days and incubated with day 8 RK3G9 or Day 8 

“block” supernatants. The cells grown with RK3G9 or block supernatant and incubated 

on RK3G9 showed slightly greater inhibition with reference to the normal (100% fresh 

media) RK3G9-treated cells. As discussed in the text, this could be a media depletion 

effect. B, Addition of C0H2 supernatant did not relieve the inhibition seen in the RK3G9-

treated cells. Again, the C0H2 control cultures differed somewhat and this is due to a 

media depletion effect. 
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seem to be a “factor” in the supernatants that will provide relief from the anti-CD44 

inhibition. 

G. The effects of CD44 cross-linking on B cells are dependent on the type of B cell 

activator used. In order to further explore the activation conditions in which CD44 

cross-linking inhibited B cell activation, B cell cultures were stimulated with IL-4 + LPS 

(25 μg/ml) and cultured on immobilized RK3G9 or C0H2. Under these conditions, B 

cells grown on immobilized RK3G9 were significantly inhibited in comparison to control 

cells, when proliferation (Fig. 23A) was examined. IgE production was similarly 

inhibited (Fig. 23B). B cell cultures were also stimulated with just CD40LT + M15 + IL-

5 (no IL-4); the IFNγ experiment had indicated that IL-4 is not involved in the RK3G9-

mediated inhibitory effect. However, the inhibition of proliferation by RK3G9 in this 

case was greatly decreased (Fig 23C). In addition, B cell cultures that were stimulated 

with IL-4 + anti-IgM F(ab’)2 (10 μg/ml) on immobilized RK3G9 or C0H2 for 3 days 

showed no effect due to CD44 cross-linking (Fig. 23D) in comparison to control cells. 

This suggests that CD44 cross-linking has no effect on the B cells when they are 

stimulated through the B cell receptor (BCR). Taken together, these data suggested that B 

cell activation and/or differentiation is affected by cross-linking CD44 when the cells are 

receiving their activation stimulus within the context of CD40LT or LPS; however, a 

stimulus promoting BCR activation is not subject to RK3G9 modulation.  

H. The CD44 cross-linking effects are limited to the initiation of B cell activation. In 

order to explore the possibility that the effects of cross-linking CD44 on B cells were 

dependent upon how soon after activation that the B cells encountered the anti-CD44  
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Figure 23. B cell activation/differentiation is affected by CD44 cross-linking under a 

variety of growth conditions. A, Effect of IL-4 + LPS stimulation on proliferation of 

the naïve B cells. Immobilized RK3G9 significantly reduced the proliferation of the B 

cells. B, CD44 cross-linking due to RK3G9 resulted in a decrease of IgE production, 

when stimulated with LPS + IL-4. C, B cell cultures grown on RK3G9 and stimulated 

with IL-4 + anti-IgM F(ab’)2 (10 μg/ml) were identical in proliferation to control 

cells. D, B cell growth when stimulated by only CD40LT + M15 + IL-5 (no IL-4). 

The RK3G9 inhibitory effect is less than when IL-4 is included (see Fig. 12A). These 

data are representative of at least two separate experiments. 
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antibody, B cells were stimulated with “IgE cocktail” and subsequently transferred, on 

four successive days, onto RK3G9-coated plates. The supernatants were assayed for IgE 

after 8 days in culture. Although cell numbers increased daily, the relative amount of IgE 

made by the cells cultured on RK3G9, up to a Day 3 transfer, was significantly lower 

than that made by cells cultured on control Ab. Day 4 transfer to RK3G9 or control 

resulted in similar amounts of IgE production. Table 2 shows the relative amounts of IgE 

(μg/ml) production by B cells either transferred to RK3G9 or C0H2, on successive days. 

The IgE produced by all concentrations of cells transferred to RK3G9 was averaged and 

is compared to that of cells transferred to control. The table clearly shows that B cells 

which are exposed to activating stimuli for 3 days or less, prior to transfer, are still 

subject to RK3G9-mediated inhibition. B cells which are activated for 4 days prior to 

transfer to immobilized anti-CD44 Ab almost completely lose the ability to respond to 

CD44 cross-linking. CD44 is known to be upregulated at the time of activation of a B cell 

but also is downregulated by Day 4-5, when the cell begins to display a germinal-center 

phenotype. This data suggests that there may be a link between time of activation and the 

ability to respond to CD44 cross-linking.  

I. Activation of the B cells is dependent on both anti-CD44 signals and the interplay 

between different activation pathways.  It is well known that there are three major B 

cell pathways of activation: through the CD40 receptor, through the B cell receptor 

(BCR), and through the Toll-like receptor (TLR). It has been shown here that B cells, 

when stimulated by IL-4 + CD40LT or IL-4 + LPS, – activating the B cells through an  
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Table 2. B cell ability to respond to anti-CD44 signals is absent by day 4 of 

stimulation. B cells were first grown in culture with stimulation and then added to 

RK3G9-coated plates after the specified number of days (left-hand column). The 

middle column shows the amounts of IgE (ng/ml) production by B cells transferred to 

RK3G9 and the right-hand column shows the amounts of IgE produced by cells 

transferred to C0H2. The IgE produced by all concentrations of cells transferred to 

RK3G9 or C0H2 was averaged and these are compared to each other. Parentheses 

indicate the standard error of the mean. By Day 4, cells transferred to RK3G9 lost 

their ability to respond to CD44-mediated inhibition and produced almost as much 

IgE as the control cells. These data are representative of at least two separate 

experiments. 
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TABLE II. B cell IgE response to anti-CD44 after X number of days 
growth  
 
        Day of B     
     cell transfer                 Cells on RK3G9              Cells on 
C0H2 

Day 0 413.8 (101.3) 1371.1 (154.9) 

Day 1 629.4 (188.5) 2257.6 (624.9) 

Day 2 907.3 (333.4) 2850.1 (946.4) 

Day 3 913.5 (275.8) 2714.8 (522.6) 

Day 4 2160.4 (321.9) 2781.2 (567.1) 
 

The numbers are average nanograms of IgE produced by these cultures as a whole; the 
cultures were grown at a variety of concentrations from 500 cells/well up to 100,000 
cells/well. The numbers in parentheses are the standard error of the mean. 
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antigen-non-specific pathway – can be inhibited in their activation if CD44 cross-linking 

has occurred. In addition, B cell activation is not inhibited by CD44 cross-linking if the 

activation stimulus is anti-IgM F(ab’)2. Experiments were performed to examine the 

possibility that one of the pathways activated by the stimuli could be downregulated by 

BCR ligation during CD44 cross-linking. To address this question, purified B cells were 

incubated with IL-4 + CD40LT + anti-IgM F(ab’)2 (10 μg/ml) (Fig. 24A) or IL-4 + LPS + 

anti-IgM F(ab’)2 (10 μg/ml) (Fig. 25A) and they were grown for 3 days on RK3G9-

coated or C0H2-coated plates. The results were, in each case, that CD44 cross- linking 

could still inhibit proliferation of the B cells (Fig. 24A and 25A), albeit less so with the 

inclusion of BCR stimulation. B cells were then stimulated with IL-4 + anti-IgM F(ab’)2 

– at increased concentrations of 25, 50, and 100 μg/ml – plus either CD40LT or LPS. 

Again, they were grown on immobilized anti-CD44 for 3 days. Data for the 25 and 50 

μg/ml anti-IgM are not shown, but at 100 μg/ml anti-IgM F(ab’)2, +/- CD40LT (Fig. 

24B) or LPS (Fig. 25B), growth inhibition was no longer observed. While increased 

stimulation of the BCR will stimulate a greater number of cells, so also will this increased 

anti-IgM presence cause a phenomenon termed “receptor blockade” – which is what 

occurs when receptors are downregulated in response to overwhelming stimulation, i.e, 

the stimulation itself becomes inhibitory. One explanation for the data in Figs. 24B or 

25B is that the receptors are downregulated and the BCR-stimulated culture did not 

proliferate as well as it did at lower stimulation, thus creating a false impression that the 

RK3G9-treated cultures were able to overcome the anti-CD44 crosslinking. However, 

while this may be a factor, the relative differences between the cultures on RK3G9 and. 
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Figure 24. B cell activation inhibition by CD44 cross-linking is dependent on the 

type and amount of stimulation. A, Using 10 μg/ml anti-IgM F(ab’)2 + CD40LT + IL-

4 as the stimulus, B cells grown on RK3G9 are inhibited in their ability to proliferate. 

The “RK3G9 – Ref.” is put in as a reference line (in 24A-B and 25A-B) and the data 

is seen originally in Figure 12A with “IgE Cocktail”-stimulated cells. This line 

illustrates maximal inhibition. B, Using an increased concentration of anti-IgM, - 100 

μg/ml anti-IgM F(ab’)2 + CD40LT + IL-4 as the stimulus – B cells grown on RK3G9 

are no longer inhibited in their ability to proliferate. These data are representative of 

at least two separate experiments. 
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Figure 25. A, Similarly, with 10 μg/ml anti-IgM F(ab’)2 + LPS + IL-4 as the 

stimulus, B cells proliferation is again inhibited when they are grown on RK3G9, 

though with less potency. B, B cells stimulated by 100 μg/ml anti-IgM F(ab’)2 + LPS 

+ IL-4 did not respond with reduced proliferation to CD44 cross-linking. B cells 

grown on RK3G9 proliferated similarly to those grown on the control antibody. 

These data are representative of at least two separate experiments. 
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C0H2 when stimulated with combinations including 10 or 100 μg/ml are still valid: 

increasing amounts of anti-IgM in combination with CD40LT or LPS will overcome the 

RK3G9-mediated effect. 

J. In vivo experiment with RK3G9. The purpose of this experiment was to discover if 

soluble anti-CD44 could cause an inhibition of B cell responses in vivo, as measured by 

IgE production. IgE was chosen because it is very low prior to antigen exposure and 

because that is the one immunoglobulin which was repeatedly seen to be inhibited to the 

greatest degree in the in vitro experiments. Fig. 26A shows the setup for the experiment. 

The mouse strain used was Balbc/J and the nine mice were given three subcutaneous 

injections of RK3G9 – on days -2, 0, and 7. Alum-Ag (KLH-DNP) was also injected on 

days 0 and 7. The mice were bled on days -3, 1, 4, 8, 11, 14, 21, and 28. The day -3 bleed 

is a pre-bleed to ensure that the IgE levels in these mice was low (naïve). Fig. 26B shows 

the IgE pre-bleed levels. Mouse #3 in the RK3G9 group had very high (~1.5 μg) IgE and 

was not used for the remainder of the experiment. There were five mice in the C0H2 

(control) group and four in the RK3G9 group. The IgE levels over the course of the 28-

day experiment are shown in Fig. 26C.  

K. CD138+ B cells are decreased with RK3G9-treated cells. CD138 is known to be a 

marker of plasmacytic differentiation in B cells. If the striking decrease in IgE production 

was due to some “anti-CD44-induced defect” in becoming plasma cells, there should be 

fewer CD138+ cells. B cells were isolated and grown with “IgE cocktail” on RK3G9 and 

6B2 (anti-B220) antibodies at 10,000 (10K) cells per well – a concentration wherein the 

immunoglobulin production was affected by the presence of RK3G9 and simultaneously  
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Figure 26. IgE levels were unchanged by injection of RK3G9 in vivo. A, Schematic of 

the time-course of the injections and bleeds for the mice. The mice were given three 

subcutaneous injections of RK3G9 – on days -2, 0, and 7. Alum-Ag (KLH-DNP) was 

also injected on days 0 and 7. The mice were bled on days -3, 1, 4, 8, 11, 14, 21, and 28. 

B, IgE levels in the mice prior to injection. Mouse #3 in the RK3G9 group had very high 

initial IgE levels and was not used in this experiment. C, IgE levels in the mice treated 

with RK3G9 or C0H2. Pre-bleed IgE levels were not subtracted from the final results.  
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where enough cells could be collected for FACS and Elispot analysis. The 6B2 antibody 

was chosen as a control for this and remaining experiments due to its lack of signaling 

properties under the conditions used to stimulate the cells, as well as its being a pan-B 

cell marker. It also was chosen because it would flatten the cells onto the plate and act as 

a control for the use of trypsin-EDTA (to get the cells off the plate and into a FACS 

tube). It has been shown in this lab previously that 6B2 can be used as a control and has 

no effect on proliferation or IgE production (data not shown).  

 For FACS analysis, cells were collected at day 6 and stained with CD138. Day 6 

was chosen because most of the mouse B cells in culture are dead by day 8. While there 

were greater overall numbers of cells recovered from the C0H2 cultures, the percentage 

of live vs. dead cells was similar (FACS data, not shown). Figure 27 shows that cells 

grown on control (6B2) were 30.71% positive for the plasma cell marker CD138, while 

RK3G9-treated cells were 7.62% positive. The decrease in CD138 positivity in the 

RK3G9-treated cells was not as great as the decrease in Ig production, but it was still 

significant.  

  To confirm the data (above) suggesting that the anti-CD44-mediated inhibition 

was at least partially due to formation of fewer plasma cells, Elispot analysis was 

performed for the presence of IgG1- and IgE-bearing plasma cells. Again, the cells were 

grown as stated above and collected at day 6. Elispot spot counts by light microscope 

revealed that B cells grown on immobilized RK3G9 had formed fewer IgE+ plasma cells 

than the control cells grown on 6B2 (Fig 28A). IgG1
+ plasma cells (Fig. 28B) were also 

counted and similar results were obtained. 
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Figure 27. Fewer CD138+ cells are present with RK3G9-treated cells. This graph depicts 

the FACS analysis of the CD138+ cells present after growth on RK3G9 or 6B2 for 6 

days. RK3G9-treated cells are only 7.62% CD138+, while the 6B2-treated cells are 

30.71% CD138+. This experiment is representative of four separate experiments. 
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Figure 28. Elispot analysis showed that fewer plasma cells formed in the B cell cultures 

grown on anti-CD44 (black bars), as opposed to those grown on 6B2 control antibody 

(white bars). A, Elispot for IgE-forming cells; B, Elispot for IgG1-forming cells. 
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These experiments, taken together and added to the immunoglobulin inhibition 

data, strongly suggest that anti-CD44 is inhibiting plasma cell formation under these 

experimental conditions. 

 
II. Investigation of CD23b promoter region. 
 

A. Efforts to “fix” the “defect” in the transcription initiation region of the CD23b 

promoter. The relative similarities, as well as the lack thereof, between the CD23a and 

CD23b promoters was discussed in the Introduction. The CD23a promoter has a TATA 

box in the transcription initiation site; hence the first step was to put a TATA box into the 

transcription initiation site in the CD23b promoter. The TATA box was added by cloning 

the CD23b promoter into a pGL3 vector containing the TATA box used by CD23a. The 

TATA box was cloned in to enhance the likelihood of RNA polymerase binding, so that 

transcription could be initiated and mCD23b protein could be expressed. An initial 

luciferase assay showed an almost 5-fold increase of CD23b promoter activity (with 

stimulation by IL-4 + CD40L) over the basal level (no stimulation) and very little 

increase with IL-4 alone, indicating that IL-4 is not the sole regulator of CD23b (Figure 

29A). However, a second experiment measuring total luciferase activity of CD23b with 

or without the added TATA box was still far below that seen with CD23a (Fig 29B). 

The mCD23b promoter was also compared to the human CD23b (huCD23b) 

promoter in luciferase vector constructs; used in this set of experiments were the human 

CD23b promoter (pLUC+CD23BP) and the murine CD23b promoter with and without 

the CD23a TATA box (pGL3-CD23b and pGL3-CD23b-TATA). These were transiently  
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Figure 29. Activity of the CD23b promoter vs. CD23b-TATA vs. CD23a promoter. The 

RLU20(relative light units) are a measure of the fluorescence of the luciferase, which 

correlates with the activity of the promoter.  A, The CD23b-TATA had a ~5-fold increase 

in luciferase activity when stimulated with both IL-4 and CD40LT. B, Two additional 

experiments revealed that CD23b-TATA had essentially equal activity to CD23b 

promoter, and neither was as active as the CD23a promoter.   
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transfected into either M12.4.5 cells or HEK293 cells. An initial luciferase assay 

confirmed that the pLUC+CD23BP construct did work in the M12.4.5 cell line (Fig. 

30A), suggesting that the mouse B cells do not appear to be lacking any proteins that 

would inhibit CD23b expression. Additional experiments in either M12.4.5 cells or in 

HEK293 cells (Fig. 30B) showed that both murine and human CD23b promoters had 

some activity. Figure 30B shows the activity of the pLUC+CD23BP when stimulated 

with various concentrations of huIL-4 vs. pGL3-CD23bProm with the previously 

determined optimal IL-4 stimulation. pGL3-CD23bProm-TATA was also assayed in a 

separate experiment & its activity was similar to that of pGL3-CD23bProm. 

B. Creation of an antibody specific for the CD23a or CD23b isoform. Oligos for use 

in RT-PCR were created to encompass full-length CD23a or CD23b, for the purpose of 

cloning each isoform and transforming it into CD23-/- competent cells (see Materials & 

Methods). Simultaneously, CD23a and CD23b peptides (using sequence from the 

intracellular portion) were created and used to immunize rabbits (both services from 

Open Biosystems, Huntsville, AL) in order to get a CD23 isoform-specific antibody. The 

full-length CD23 protein would be harvested and used to test the rabbit serum containing 

the isoform-specific antibody. The isoform-specific antibody would be used to confirm 

the presence of CD23b in apical intestinal cells and to look for its surface expression also 

in lymphocytes. Experiments by intracellular FACS staining and Western blot, using 

IEC4.1 and 293 cells, showed that there was no isoform-specific antibody activity in the 

rabbit serum for either CD23a or CD23b.  
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Figure 30. Activity of the human and mouse CD23b promoters. The RLU (relative light 

units) are a measure of the fluorescence of the luciferase, which correlates with the 

activity of the promoter.  A, The pLUC+CD23BP had a measurable luciferase activity – 

approximately a 5-fold increase when stimulated with both IL-4 and CD40LT. B, 

Luciferase vectors containing huCD23b or mCD23b were transiently transfected into 

HEK293 cells. The human CD23b is shown in the left three bars and is stimulated with 

various amounts of IL-4. It is compared to the mCD23b stimulated by a standardized 

amount (see Materials & Methods) of rmIL-4, shown on the right. The greatest amount of 

luciferase was produced when the human CD23b promoter was stimulated with 2000 

U/ml of rhuIL-4, a non-physiological amount. The 20 U and 200 U of IL-4, which are 

closer to physiological proportions, show that the human and mouse CD23b have similar 

responses to IL-4 stimulation. 
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Figure 31. RT-PCR for CD23b in the IEC4.1 cells. A, The first lane is the DNA ladder; 

Lanes 1-5 are for CD23a; Lanes 6-10 are for CD23b.  Lanes 1 and 7 are M12.4.5 cell 

RNA; Lanes 2 and 8 are unstimulated IEC4.1 RNA; Lanes 3 and 9 are IL-4-treated 

IEC4.1 RNA; Lanes 4 and 10 are IL-13-treated IEC4.1 RNA; Lanes 5 and 11 are IL-

4+IL-13-treated IEC4.1 RNA; and Lanes 6 and 12 are control reactions with no RNA 

added. The M12 RNA is a positive control for CD23a and CD23b. IL-4+IL-13 

combination treatment caused the most CD23b expression in the IEC4.1 cells. B, A 

separate RT-PCR for CD23b in IEC4.1 cells. Lane 1 is unstimulated IEC4.1, Lane 2 is 

IL-4 stimulated IEC4.1, Lane 3 is IL-13 stimulated IEC4.1, Lane 4 is unstimulated M12 

RNA, and Lane 5 is the  no RNA control. Lane 6 is the DNA Ladder standard. 
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C. Analysis of murine intestinal epithelial cells for expression of the CD23b isoform. 

With the exciting possibility that the CD23b isoform could be expressed in intestinal 

epithelial cells, this angle was pursued and experiments involving IEC4.1 cells (a 

Balb/cJ-derived intestinal epithelial cell line) were begun. Initially, reverse-transcriptase 

polymerase chain reaction (RT-PCR) confirmed the presence of CD23b in these cells 

(Fig. 31); however, a band corresponding to CD23a was also seen – and CD23a is not 

expressed in these cells.153 As mentioned above, the proposed “isoform-specific 

antibody” was tested on these cells as well as HEK293 cells transfected with full-length 

CD23a or CD23b. After multiple tests by Western Blot and FACS, the results were 

negative for CD23 and there was no “isoform-specific antibody” activity.  
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DISCUSSION 
 

I. Anti-CD44 studies on B cell activation.  

The current study describes the effects of the immobilized anti-CD44 mAb 

RK3G9 on the activation of purified murine B cells. When cultured in anti-CD44-coated 

plates, proliferation was inhibited to a significant degree at all cell concentrations tested, 

and immunoglobulin production was decreased. There was neither inhibition nor 

enhancement of T cell growth when cultured on RK3G9. Soluble RK3G9 had no effect, 

inhibitory or stimulatory, on the B cells, at any cell concentration or antibody 

concentration tested. The inhibitory IgG Fc receptor, FcγRIIb, was not involved in this 

anti-CD44-mediated inhibition, as demonstrated by the absence of any reversal of the B 

cell inhibition when 2.4G2 was added to the cultures. Addition of microbeads to make a 

soluble “scaffold” and mimic the plate-bound RK3G9 was only minimally successful. 

Addition of B cell supernatants or Cloning Factor could not provide relief to the B cells 

grown on RK3G9. When the B cells were stimulated and allowed to grow for 4 days 

prior to exposure to immobilized anti-CD44 antibody, the effects of CD44 cross-linking 

were lost. B cell responses to CD44 co-ligation by immobilized anti-CD44 Abs were 

dependent upon the specific stimuli used to activate the B cells. Immobilized anti-CD44 

in combination with CD40L or LPS stimulation resulted in inhibition of B cell activation, 

whereas CD44 cross-linking had no effect on anti-IgM F(ab’)2-stimulated cells. 

Combined addition of the activating cocktails indicated that BCR signaling could 

completely reverse the inhibition seen. The plasma cell marker CD138 was decreased in 
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the RK3G9-treated cells and Elispot analysis confirmed the anti-CD44-mediated decrease 

in plasma cell numbers. Overall, the data in this dissertation suggests an important 

regulatory role for CD44 cross-linking with respect to B cell activation and 

differentiation. To my knowledge, this is the first report that immobilized anti-CD44 

antibody is capable of inhibiting B cell function with the concurrent dependence of such 

on the activating stimuli.  

Immobilized mAbs to CD44 typically initiate a spreading type of 

morphology.190,191 This morphologic phenotype has plasticity and requires 

rearrangements of the intracellular actin, tubulin, and vimentin, suggesting that B cells 

are prepared to interact with other cells or the extracellular matrix (ECM).192  This is 

proposed to regulate the activation status or the migration of activated B cells.192 Santos-

Argumeda, et al, examined the effect of immobilized anti-CD44 mAbs on murine B 

cells.191 This report detailed the spreading of activated B cells on immobilized anti-CD44, 

using various immobilized mAbs. The activation stimuli were either IL-4 + anti-IgM or 

IL-4 + anti-CD38 and the cell concentration used was 106/ml. Resting (unactivated) B 

cells were unable to spread on anti-CD44, but activated B cells spread and formed 

dendritic-type processes with polymerized actin as a major component. The functional 

parameters of B cell activation, however, such as proliferation or Ig production, were not 

examined in the report. This spreading on immobilized anti-CD44, due to multivalent 

cross-linking and increased affinity,101 could perhaps be similar to the integrin-mediated 

form of cell adhesion.101 Inasmuch as anti-CD44 mAbs, as an “artificial ligand”, can 

initiate clustering of CD44 molecules on the cell surface,193,194 - and this is a higher 
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affinity pairing than CD44-HA – the signal given to the B cell via CD44 cross-linking 

(by mAb) may be significantly stronger.  

Soluble anti-CD44 antibodies have been shown to influence cell activation in 

various cell types, including increasing binding to hyaluronic acid,195,196 triggering 

hemopoiesis via cytokine release from bone marrow macrophages,197 activating T cells,95 

and inducing cytokine/chemokine release from monocytes.198 A report by Rafi, et al,96 

demonstrated that soluble anti-CD44 (KM201), as well as HA itself, triggered the 

proliferation and differentiation of murine B cells. The parameters measured included cell 

surface markers CD44 (upregulated) and CD45R (downregulated), and IgM production. 

The results reported by this group contrast with the present study in that they found 

soluble anti-CD44 Ab able to induce B cell activation. This can be explained by the fact 

that, in the Rafi, et al, study, a different antibody was used and the cells were cultured at 

six-fold higher density. Also of note in the previous study is the important fact that the 

effect of anti-CD44 Abs or HA was studied on naïve B cells that had not been previously 

activated, unlike the current study wherein the B cells were activated with a variety of 

agents at the time of CD44 ligation. Additionally, this report deals with B cells whose 

CD44 has been cross-linked by a specific immobilized antibody and which likely have 

upregulated CD44 splice forms (unidentified at present).  

Ingvarsson, et al, showed that naïve human tonsillar B cells, in response to 

stimulation by soluble anti-CD44 (BU52) plus anti-CD40, would begin to display a 

phenotype similar to that of a germinal center cell (upregulated CD10, CD95, and CD38; 

also downregulation of  CD24 and CD39).97 These naïve B cells also were stimulated 
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with both anti-IgM + anti-CD40 plus or minus anti-CD44. The B cells that had the anti-

CD44 proliferated to levels 4x that of the cells without anti-CD44. One parameter not 

tested in this experiment was the B cells’ ability to produce Ig. However, a separate study 

by Hogerkorp, et al, shed some light on the genes that were being activated in naïve 

human tonsillar B cells when they were stimulated with a combination of anti-IgM, anti-

CD40, and (soluble) anti-CD44 (BU52).110 The genes induced by anti-CD44 included IL-

1α, IL-6, and β2-adrenergic receptor (β2-AR), among many others; and the pattern of 

genes upregulated by anti-CD44 suggested that CD44 may play a role in 

immunomodulation and inflammation. In this report, soluble anti-CD44, up to 100 μg/ml, 

in combination with IL-4 and CD40LT, had no effect either on the growth of murine B 

cells or on their ability to produce IgE. It is not known whether this is an RK3G9-specific 

effect or if this is due to an as yet uncharacterized difference between murine and human 

CD44 or between the way that CD44 functions on a mouse B cell vs the human.  

While the B cell CD44 crosslinking resulted in less proliferation and Ig 

production, there was no increase in apoptosis. However, senescence is also a possibility 

and proposed experiments include activated cyclin identification. 

A single gene expression experiment was performed for the RK3G9-treated cells. 

Freshly isolated B cells were grown at a concentration of 25,000 cells/well (96-well 

plate) on RK3G9 or C0H2 for 48 hours and RNA was extracted. The Virginia 

Commonwealth University’s DNA Core Facility provided the service of microarray 

analysis (Affymetrix, Mouse 430A 2.0). A number of genes were upregulated or 

downregulated in these cells, but only the most important are recorded here.  Upregulated 
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genes included actin binding proteins, Btg1 and Btg2 (B cell translocation genes, 

antiproliferative), Ltbr (lymphotoxin B receptor), cyclin G1 and G2, BAX (pro-apoptotic 

protein), Ikbke (Inhibitor of kappaB kinase epsilon), several members of the MAPK 

family, actin, Rel, several members of the TNFR family, cyclin-dependent kinase inhibor 

1a,  SMAD7, Bcl-2 binding component 3, Abcg1 (ATP-binding and involved in ATPase 

activity coupled to transmembrane movement of substances), Itpr5 (inositol 1,4,5-

triphosphate receptor 5, involved in ion channels), Alcam (activated leukocyte adhesion 

molecule), CD80, several members of the Ras family, and Pias3 (protein inhibitor of 

activated STAT3). Downregulated genes included Cyclin B1, Napa (N-ethylmaleimide 

sensitive fusion protein attachment protein alpha, involved in intracellular transporter 

activity in endoplasmic reticulum (ER) and Golgi), Sec61 (protein translocase activity, 

ER), various transcription factors (no known pathways), CD22, AID (activation-induced 

cytidine deaminase, involved in mRNA processing), members of the MAPK family, 

members of the TNF family, caspase 3 (pro-apoptotic), immunoglobulin lambda and 

kappa chains (variable 1), CD48, karyopherin (importin) beta 1 (protein-nucleus 

transport), syntaxin 6 (intracellular transport), Bid (BH3 interacting death domain 

agonist, regulation of apoptosis), CD36 (involved in transport and cell adhesion), various 

adaptor and docking proteins (again, no known pathways), various proteins involved in 

intracellular transport, and CD23. At a glance, these up- or down-regulated genes simply 

confirm what was already known – that proliferation is inhibited and that Ig levels are 

decreased. This data does suggest that 1) there is an actual decrease in Ig gene 

transcription and this may lead to less Ig production at the protein level, and 2) the 
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decrease in mRNA expression of proteins involved in intracellular transport, especially in 

the ER and/or Golgi apparatus to the membrane, may be part of the backdrop for the 

decreased Ig secretion (Fig. 14) and the decreased numbers of surface Ig-bearing cells as 

shown by Elispot (Fig. 28) seen on RK3G9-treated cells. Further gene chip experiments 

are necessary to determine the reproducibility of the RK3G9 gene chip study and 

ultimately elucidate the most important genes involved in the RK3G9-mediated inhibition 

of B cell activation.  

The inhibitory activities of the anti-CD44 Ab RK3G9 are most prominent at lower 

cell concentrations, relative to the number of cells which are activated by the specific 

stimulus used. The relationship between the B cell concentration and the functional 

inhibition may be explained by the amount of CD44 “ligand” (RK3G9) that is bound to 

the plate, relative to the amount of CD44 present on the cell surface. Obviously the latter 

relates both to cell concentrations and to the CD44 upregulation achieved by activation of 

the cells. Larger cell numbers would thus be anticipated to reduce the inhibitory activities 

of the anti-CD44, which is the effect we observed. In addition, activation for a period of 

time prior to culturing on immobilized anti-CD44 would cause an upregulation78 of CD44 

on the B cell surface; hence, the limited amount of immobilized anti-CD44 has little to no 

functional effect on these cells once they have increased in number as well as in their 

surface CD44 expression. Here is an example: in the first stages of this project, the B 

cells were purified by Percoll gradient, and the yield was 80-90% B220+ B cells as 

measured by FACS. When these cells were grown on immobilized anti-CD44, the higher 

cell concentrations (25,000 per well up to 100,000 per well) would invariably overcome 
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the RK3G9-mediated inhibition and produce levels of IgE that were similar to the levels 

produced by cells grown on control antibody. However, the control cells produced IgE 

best at lower (less than 25,000 cells per well) concentrations of cells. It was hypothesized 

that at higher cell concentrations that there was less anti-CD44 available for the greater 

number of cells and the RK3G9-treated cells began to act like the control cells (at the 

control cell low cell number). Interestingly, later in the project, the B cells were isolated 

to 96-98% purity by FACS and this increase in IgE production by the RK3G9-treated 

cells (at the higher cell numbers) disappeared. For the remainder of the project the cells 

were isolated by FACS since their behavior on immobilized RK3G9 was more reliable – 

they always reacted the same way at the same cell concentrations, and there was no 

sudden increase in IgE production when the cell numbers were too high. The reason why 

B cells at a lower purity should not respond in the same manner as B cells of higher 

purity is still a mystery. During Percoll-isolation of splenic B cells, the T cells are lysed 

using a combination of antibodies specific for T cell markers and guinea pig complement. 

The Percoll gradient itself does, in theory, separate out the B cells from the other cells 

(follicular dendritic cells, monocytes, eosinophils, etc) based on their density and rate of 

migration during centrifugation. The only cells that could potentially contaminate the 

Percoll-isolated B cells are the monocytes, FDCs, and NK cells. FACS for CD3-bearing 

T cells showed only 1-3% T cells in the Percoll-isolated B cell populations (which were, 

on average, 85% pure). Perhaps it is possible that another CD44-bearing cell type (any 

leukocyte) was influencing the RK3G9-mediated inhibition. 
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The IgE results in Fig. 16B showed some inhibition of IgE production by the 

MAR18-RK3G9-treated cultures, but again the degree of inhibition was less than that of 

cells grown on RK3G9 alone. This may be due to the “on-off rate” between plate-bound 

MAR18 and the RK3G9; potentially, less anti-CD44 was presented to the B cells as is 

usually found on an RK3G9-coated plate. The results suggested that this was true – that 

there was less CD44 crosslinking and thus the IgE inhibition was ameliorated.   

Interestingly, although RK3G9 had a profound effect on the B cells, it did not 

have any effect on T cell proliferation. It has been shown repeatedly in the literature that 

anti-CD44 can induce T cell proliferation and secretion of IL-236,37,91-93,199 and 

stimulation of cytotoxic effector functions in CTL and neutrophils.90,92,200 Hyaluronan 

binding to T cell CD44 is stimulatory,201,202 and the HA-binding function of T cells is 

activated during an in vivo immune response.203 Although this report shows no inhibition 

of T cell proliferation, the data also shows that there is no increase in proliferation, 

although an increase might have been expected. Because B cells responded identically to 

RK3G9 and the commercially available IM7, it is assumed that RK3G9 is similar to other 

anti-CD44 antibodies and that cells that respond to anti-CD44 stimulation would respond 

positively to RK3G9. However, the only parameter measured in this report’s T cell 

experiments was proliferation. There may have been an effect on T cell IL-2 production 

or some other parameter of T cell activation status, but none of them were tested. 

Although, in other reports, B cells responded to soluble anti-CD44,96,97,110 the B 

cells in this report did not; there was no increase in proliferation or IgE, nor was there the 

decrease seen with immobilized RK3G9. Figures 17 and 18 illustrate the attempts made 
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in this report to cross-link the anti-CD44 and make a “scaffold” in solution. This was 

purported to mimic the plate-bound RK3G9. The results showed that the B cells could 

respond to the “scaffolded” anti-CD44 to a certain extent (up to 60% inhibition), but the 

>90% inhibition seen with immobilized RK3G9 was not evident.   

Another explanation for the RK3G9 effect on B cells – a very simple one, in fact 

– could be that the inhibitory Fc gamma receptor (FcγRIIb) was binding to the Fc portion 

of the RK3G9 immobilized on the plate. The FcγRIIb, only found on B cells, has a 

cytoplasmic immunoreceptor tyrosine-based inhibitory motif204,205 (ITIM) and has been 

shown to inhibit the proliferation206-208 and Ca+ mobilization of B cells.209-211 This occurs 

when FcγRIIb binds ligand, clusters, and is phosphorylated by Lyn, a Src-family 

kinase.212-214 This provides a docking site for an SH2-domain-containing phosphatase 

such as the inositol phosphatase SHIP (SH2-containg inositol polyphosphate 5-

phosphatase).210,215 Recruitment of SHIP leads to abrogation of BCR activation signaling 

via hydrolysis of PIP3, leading to a blockage of the Ca+ signal.209-211 FcγRIIb activation 

can also arrest BCR-triggered proliferation by inhibiting the activation of MAP kinases 

and by inhibiting the recruitment of the anti-apoptotic protein kinase Akt.216,217 The data 

in Figure 20 shows that activation of the FcγRIIb is not the reason that proliferation and 

Ig production are so dramatically decreased. In this experiment, the cells were incubated 

with 10 μg/ml 2.4G2 (anti-FcγRIIb) for 40 minutes on ice prior to culture on immobilized 

RK3G9, and these cells were not released from the inhibition imposed by CD44-RK3G9 

ligation. Although it was unlikely that an anti-rat antibody should affect mouse B cells, 

the possibility existed and had to be invalidated. 
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The experiments involving the CD44-/- mice were interesting in that they 

confirmed that RK3G9 does bind to CD44 and not a similar protein on the B cell surface. 

Also of interest is the data showing the Balb/cJ vs the C57BL/6 mice. RK3G9 interacted 

with the B cells from the C57 mice in an identical manner to those from Balb/c mice, 

suggesting additionally that RK3G9 is not interacting with a particular mutation in Balb/c 

CD44. Unpublished data in this lab suggests that other molecules (ie, CD23) can have 

strain-specific mutations which allow recognition only by antibodies which recognize 

certain epitopes.  

The possibility that there was a “missing factor” was intriguing. The B cells were 

spread out on the plate and not allowed to “clump” and interact with the other cells, so 

the most viable hypothesis was that there was a contact-dependent secreted factor – or 

perhaps a physical signal was given between cells when they clump (binding protein & 

ligand). The latter idea was supported by the data showing that higher cell numbers 

tended to ameliorate the RK3G9-mediated inhibition, at least when the cells were at a 

lower purity. The former idea was more easily tested and Fig. 22 shows that when normal 

B cell supernatants (at 25% of the total media volume) were added to RK3G9-treated 

cultures, there was no relief from the anti-CD44-mediated inhibition by addition of the 

C0H2 supernatants. Another media supplement which is used to “feed” cells is Cloning 

Factor (Fig. 21) – this was added to the media and also had no effect on the RK3G9-

mediated inhibition. The data from these experiments suggests that there is no “missing 

factor” but further experimentation is needed. Another possibility is that there could be a 

needed receptor for this “missing factor” which is itself not present. Another route for 
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this “missing factor”, in the case of Percoll-purified B cells, could be that it comes in the 

form of help from another cell type, such as NK cells or monocytes. This is a likely 

possibility, since Percoll-purified cells are typically 80-90% B220+ and 1-3% CD3+ (T 

cells). The remainder would be NK, monocytes, dendritic cells, and other leukocytes. 

Since CD44 is expressed on all leukocytes, the immobilized anti-CD44 could “activate” 

some of these non-B cells, which could then provide “help” to the B cells by way of 

cytokines or other factors. 

The data from the in vivo experiment suggested that the in vitro RK3G9 effects 

are not physiologically relevant. However, the only parameter measured in this 

experiment was IgE; this immunoglobulin was chosen because in the in vitro work, it was 

the most affected by immobilized RK3G9. Other reports of in vivo (murine) anti-CD44 

use are usually treating specific experimentally-induced diseases involving conditions 

such as vascular disease,218 arthritis,103,219 experimental autoimmune 

encephalomyelitis,220 and autoimmune diabetes.221 The mice in the experiment in this 

report were healthy and were simply being “vaccinated” in order to achieve upregulation 

of immunoglobulin production. It was hoped that anti-CD44 treatment would decrease 

the antibody response since the in vitro work suggested that the major parameter to be 

affected was antibody (particularly IgE) production. In fact, this experiment proved very 

little either way. If it did have an effect on IgE production, it likely would have been on 

antigen-specific IgE, but total IgE was the parameter measured. Also, antigen-specific 

IgM and IgG levels could also be telling. Another very important point to note is that 

immune responses are typically localized and, physiologically, CD44-ligand interactions 
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would be expected to be involved only in a very tiny area and number of cells. Hence, it 

would be quite difficult to pinpoint any effect from the systemic injection of anti-CD44 

antibodies.  

The data in Table 2 suggests that RK3G9 ligation will elicit a response from the B 

cells only if they have not been stimulated for very long. In other words, after the B cell 

has been activated, signaling events occur and the cellular machinery begins to set the B 

cells on the path indicated by the type of activation stimulus. At a certain point on this 

path, the B cells are “committed”, and anti-CD44, which normally inhibits (or slows) this 

pathway, cannot influence the B cells at this point. The data indicates that the B cells are 

committed by day four, as the ratio of IgE produced by the RK3G9-treated cells vs 

C0H2-treated cells remains at 1:3 until day four. It should also be noted that germinal-

center phenotypic markers have been shown to appear on or about day 4 and that the 

surface CD44 expression drops on these activated cells.93 

It is interesting that different types of stimuli, which of course activate different 

signaling pathways, can modulate the effects of CD44 ligation by mAb (ie, RK3G9). As 

shown in Fig. 14E, stimulation of the B cell cultures with LPS and IFNγ (minus IL-4) 

modulated the anti-CD44 inhibition slightly, as IgE production was decreased but not as 

dramatically as with CD40/IL-4 stimulation (Fig. 14B). This suggested that IL-4 was not 

involved in the downregulation, but stimulation by CD40LT (no IL-4) only had 

decreased IgE production by about 30-50%, which seemed to indicate that IL-4 could be 

involved. However, the “best” way to signal a B cell to make IgE is to use IL-4, 

especially in combination with CD40L (the “two signal” requirement), so it is possible 
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that in its absence the control cultures also did not produce as much IgE as might have 

been expected, leading to a false impression that IL-4 is involved in the RK3G9 

inhibition of IgE.  

RK3G9 was still able to inhibit B cell proliferation and production of IgE with 

other stimuli such as LPS + IL-4. However, anti-μ stimulation resulted in complete 

inhibition of the RK3G9 effect; that is, RK3G9 could not inhibit B cell proliferation 

when they were being stimulated by anti-IgM. Interestingly, as Hathcock,222 et al, 

reported, it is not simply the amount of CD44 expressed by a B cell that determines how 

well it will bind to its ligand, but the type of stimulation can influence the CD44-HA 

binding ability. This could be due to the CD44 isoforms induced by the type of activation 

stimuli or the glycosylation of the CD44. Mouse B cells were tested for the expression of 

CD44 variant isoforms using reverse-transcriptase polymerase chain reaction (RT-PCR), 

but the results were unclear. It may also be that the anti-μ and anti-CD44 pathways do not 

cross, or that the anti-μ signaling extinguishes the signaling initiated by RK3G9.  

Three major signaling pathways are activated in the three types of stimulation 

mentioned above. In the CD40-CD40L or the LPS-TLR interaction, the primary 

commonality is the involvement of NFκB transcription factor.112,223 BCR signaling 

involves ITAM-mediated activation of Ras, IP3, and DAG, with less involvement of 

NFκB.116,117 Also, CD44 is known to be associated with some signaling molecules, such 

as the src-related kinases lck and fyn.47,48 It is interesting that the B cells respond 

differently to RK3G9 when they are activated by different types of stimulation. The 

experiment in which combination of the activation signals resulted in the “rescue” of the 
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LPS-activated cells suggests that the BCR signal can modulate the inhibitory capacity of 

anti-CD44. Given this result, one could hypothesize that high level CD44 cross-linking 

would restrict polyclonal B cell activation, but allow antigen-specific activation. Further 

experiments will be required to determine if natural ligands of CD44 will result in the 

same activities and if a similar regulation occurs in vivo.  

If there was less IgE being produced under the influence of RK3G9, then the 

logical hypotheses would be that: 1) isotype switching was not occurring or was being 

slowed; 2) the “pathway” to plasma cell formation had been slowed and the cell died 

before it could achieve plasma cell status (murine B cells only live 7-8 days in culture 

and must undergo a certain minimum number of cell divisions before switching and 

maturing to a plasma cell); 3) there was a “stop” signal given to the machinery during the 

production of the IgE and it was not being secreted; or 4) there were fewer cells 

becoming plasma cells. The data in Fig. 14 suggests that isotype switching is not being 

inhibited, as all immunoglobulins are inhibited by RK3G9 treatment to a nearly equal 

extent. FACS analysis for CD138+ cells – which are plasma cells – showed that the 

presence of immobilized RK3G9 in B cell cultures decreased the number of plasma cells 

by 75%. In addition, Elispot analysis for IgE and IgG1 confirmed that there were fewer 

plasma cells in the RK3G9-treated cell cultures.  

Overall, this set of experiments shows a profound effect of CD44 ligation on B 

cell division, activation, and end-state plasma cell formation. Local inflammation, 

wherein CD44 ligand would be upregulated on epithelial cells, does occur in vivo. This 

new data involving CD44 ligation and the effects of different stimuli on the activation 
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state of the cells suggests that ligation of CD44 inhibits non-antigen-specific reactions 

and may enhance antigen-specific B cell responses. If this is true, then CD44-ligand 

interactions may play a role in the activation of the localized B cell in vivo to promote 

antigen-specific activation. In addition, activated B cells in the germinal center, 

expressing upregulated CD44, could bind HA (or other ligand) on other leukocytes (also 

expressing high levels of CD44 and potentially “presenting” a CD44 ligand). CD44 

interactions between leukocytes can lead to activation of the cells involved and these 

interactions may play a role in determining antigen-specific activation. Figure 32 

diagrams an outline of this idea. This data is highly relevant to the study of B cell biology 

and activation. Knowledge of each piece of the puzzle, particularly with regard to the 

immune response to a “danger signal”, is an essential addition to our understanding of the 

intricacies of B cell activation. 

 The mechanism for this decrease in plasma cell numbers is not known. It could be 

intimately related to the slowing of proliferation and the probable subsequent decrease in 

cell division. It could also be a decrease in plasma cell formation due to a specific signal 

or simply a slowing of the process or impairment of immunoglobulin secretion. Further 

experiments are needed to elucidate the mechanism(s) at work here. Levels of the 

transcription factors XBP-1 and BLIMP1 would reveal whether the majority of the 

RK3G9-treated B cell cultures were plasma-cell-committed, even if the immunoglobulin 

secretion was inhibited. If so, then the rates of plasma cell formation could be elucidated 

by a time course of RNA analysis for the levels of germinal-center-type transcription 

factors such as PAX5 and BCL-6 vs the plasma-cell-type transcription factors BLIMP1  
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Figure 32. Model for RK3G9 (anti-CD44)-mediated B cell antigen-specific activation. 

The top panel depicts the in vitro model, in which immobilized anti-CD44 acts in concert 

with anti-IgM to promote antigen-specific activation of the B cell, but inhibits non-

antigen-specific activation. The bottom panel shows two possible scenarios in vivo: in the 

peripheral B cell, CD44-ligand interaction (ligand on activated epithelial cells during 

inflammation) could promote antigen-specific activation while inhibiting non-antigen-

specific activation; similarly, in the B cell in the lymph node, CD44-ligand interactions 

could regulate leukocyte interactions and activation and limit activation to only those B 

cells that are antigen-specific. 
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CD44 crosslinking via anti-CD44 antibody immobilized on plate: 
 
 
 
 
            IL-4 + CD40LT + IL-5  non-antigen-specific signals 
  B cell    OR   result in inhibition of  
     IL-4 + LPS + IL-5  proliferation, Ig production,  
         and plasma cell formation 
       CD44 
 
             anti-IgM   antigen-specific signals  
         result in reversal of the  
   anti-CD44 on plate      anti-CD44 influence/signals 
 
 
 
 
Potential mechanism for CD44 regulation of B cell activation at work in vivo: 
 
 
 
    BCR bound to antigen 
 
     CD44                 In presence of specific antigen,   
       ligand binding on      B cell will proliferate and produce 
       epithelial cells     antibody directed against antigen 
 
 
peripheral B cell 
 
 
    BCR bound to antigen 
  CD44                  In presence of activated T cells  
       ligand binding on     expressing co-stimulatory molecules, 
       other leukocytes    antigen-specific B cell will receive at 
                   least two signals and will proliferate 
                   and produce antibody 
 
lymph node B cell 
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The work detailed in this report answered a few questions but has brought up 

many more. Another thing that would be interesting to investigate further is the CD44 

shedding/signaling aspect. Shi, et al, reports that anti-CD44 antibodies can induce CD44 

shedding.224 Additionally, Okamoto, et al, and Murakami, et al, report the identification 

of a new mechanism for direct signaling by CD44: a 2-step process wherein the CD44 

ectodomain is cleaved by MT1-MMP,73,74 followed by cleavage of the transmembrane 

(TM) domain by presenilin-dependent γ-secretase. This releases the CD44 intracellular 

domain (ICD), which then translocates to the nucleus and act as a transcription 

factor54,70,71 to potentiate activation of target genes (including CD44 itself54) in 

conjunction with the p300/CREB-binding protein (CBP). The levels of surface CD44 on 

the RK3G9-treated B cells were not determined in this report due to the difficulty of 

getting the lower cell numbers off the bottom of the well in a 96-well plate – which 

would also be the most important to find out as this is where the greatest inhibition was 

seen. The levels of soluble CD44 – an indication of shedding – should have been 

determined but were not. It would be most interesting to see if CD44 ICD is at work in 

these cells and it can be hypothesized that it may affect a step in the pathway to becoming 

a fully functional plasma cell. There is an antibody available (in the Hideyuki Saya 

laboratory) called anti-CD44cyto which is directed against the CD44-ICD, so the 

hypothesis could be tested. A great deal of work needs to be done before this hypothesis 

could be substantiated, but it does propose a most intriguing mechanism for RK3G9-

mediated effects on mouse B cells.   
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II. CD23b studies. 

Expression of murine CD23b protein has long been difficult to pinpoint. Suter et 

al,.225 examined the human CD23b and found that IL-4 stimulation of transiently 

transfected B cell lines yielded a 2-4-fold increase in CD23b expression in 

chloramphenicol acetyl transferase (CAT) assays. The comparable region in mouse was 

analyzed here, both with and without a CD23a-like TATA box added; using luciferase 

reporter assays, a similar induction was observed, as shown in Fig. 29. Both CD23b and 

CD23b-TATA were equally stimulated. The increase in promoter activity was shown to 

be additive depending on the stimulation: IL-4 alone caused a ~1.5-fold increase, 

CD40LT alone caused a ~4-fold increase, and IL-4+CD40LT showed a ~5-fold increase. 

However, the reporter activity of the CD23a promoter was significantly greater (~9-fold). 

Ewart, et al, showed that the murine CD23a promoter is sensitive to only IL-4 and that 

the STAT6 site most distal to the transcription initiation site was crucial for reporter 

activity.172 The second STAT6 site, proximal to the transcription initiation site, which is 

adjacent to an NFkB site, could not support IL-4-driven reporter gene expression when 

the STAT6 site distal to the transcription iniation site was removed. The NFκB site was 

unresponsive to stimulation by anti-CD40 and the data suggests that this region of the 

CD23a promoter is silent with regard to cell surface receptor-initiated signals. CD23b 

was far more responsive to signals initiated by extracellular stimuli. Both STAT6 sites 

were physiologically competent and both had to be deleted before there was a loss of IL-

4-mediated reporter activity. In fact, one STAT6 site is sufficient for maximal activity. 

The NFκB site was necessary for CD40-driven reporter expression. Anti-μ stimulation 
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caused variable reporter expression, and activity was lost only after both of the putative 

AP1 sites were deleted. This data suggests that AP1 family proteins may play a role in 

the regulation of CD23b expression.168.  

In this study, it was shown that human CD23b (pLUC-CD23BP) could be 

expressed in a mouse B cell line and that its activity, as measured by luciferase 

production, was similar to that of mCD23b and mCD23b-TATA activity. As will be 

discussed in greater detail below, the human and murine systems may regulate their 

CD23a and CD23b proteins very differently.  

With regard to the experiments involving the “CD23 isoform-specific antibody”, 

it was possible that the rabbits’ serum would contain an antibody that would be specific 

and high affinity for both CD23a and CD23b. Peptides consisting of the CD23a or 

CD23b intracellular tail sequence were used to immunize rabbits but these have a 

difference of only the N-terminal 6 amino acids. Western blots were performed on both 

the CD23b-expressing IEC4.1 cells and the CD23a or CD23b full-length-transfected 293 

cells, with no positive results. Intracellular FACS was also performed with these same 

cells as outlined above. The “CD23 isoform-specific antibody” reacted with its cognate 

peptide, but had no activity with the intact protein, suggesting that the CD23 folding 

“hid” the epitope to which it was directed. The failure of the anti-CD23 peptide reagent to 

recognize CD23b means that detection of CD23 isoforms remains limited to RNA 

methodologies. 

The IEC4.1 cell line was created from Balbc/J mouse intestinal epithelial cells, 

and these cells express CD23b. As discussed in the Introduction in detail, Yu, et al, 
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showed that CD23b expression could be found in sensitized (food allergic) mouse 

intestinal cells, as well as these cells. CD23b lacking (Δ) exon 5 or 6 was also found, but 

only classical CD23b or CD23bΔ5 were shown to have the ability to bind IgE/allergen 

complexes and were internalized in a sensitized animal.153 In later reports, Montagnac, et 

al, showed that classical CD23b is most efficient in mediating the transepithelial 

transport of IgE/allergen complexes, whereas CD23bΔ5 was shown to bind free IgE as 

well as IgE/allergen complexes and may play a role in lumenal IgE recycling.185 

Additionally, regulation of the intracellular trafficking of CD23a and CD23b was shown 

to be quite different. While CD23a exhibits constitutive clathrin-dependent 

internalization, CD23b is stable on the cell membrane. The internalization of all murine 

CD23 splice forms was due to a positive signal located in the cytoplasmic region of the 

protein; however, this positive signal was negated by the presence of the CD23b-specific 

exon. In addition to this, CD23b splice forms with a lack of exon 5, 6, 5 and 6, or 5, 6, 

and 7, were constitutively internalized, which suggested that this region can negatively 

regulate internalization. The human CD23a internalization signal was found to be present 

in the CD23a-specific exon and human intestinal epithelial cell lines express both CD23a 

and CD23b.160 

In the present study, IEC4.1 cells were grown at the concentration and level of 

stimulation as suggested by Yu, et al, and RNA was isolated for RT-PCR. M12.4.5 

(Murine B cell line) RNA was used as a positive control for CD23a and FDC RNA was 

used as a positive control for CD23b. However, while only rarely did the IEC4.1 cells 

have a band indicating the presence of CD23b, they almost always had a band indicating 
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CD23a. The PCR was done repeatedly with the utmost care but the CD23a presence was 

unvarying, suggesting that either the IEC4.1 cells do indeed express CD23a, or there was 

repeated contamination of either the cell line or the RNA derived from it.  

There are more interesting aspects of CD23 – especially CD23b – yet to be 

discovered. In particular, the question of the regulation of CD23a vs CD23b promoters in 

human vs mouse – how are the two regulated and what makes them different? Then the 

expression of the CD23a vs CD23b protein - is it entirely due to the inherent structure of 

the protein itself or is it also partially due to the regulation of the promoters and the cell 

type, as well as the species? Why are the CD23a and CD23b different between species – 

does the answer lie in the promoter or in the protein itself or in the cell type(s) that 

expresses the protein? The answers to these questions are potentially very important with 

respect to the further elucidation of the role that CD23 isoforms and splice forms play in 

allergic disease.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 

152
Reference List 

 
 1.  Flanagan, B. F., R. Dalchau, A. K. Allen, A. S. Daar, and J. W. Fabre. 1989. 

Chemical composition and tissue distribution of the human CDw44 

glycoprotein. Immunology 67:167. 

 2.  Haynes, B. F., M. J. Telen, L. P. Hale, and S. M. Denning. 1989. CD44--a 

molecule involved in leukocyte adherence and T-cell activation. Immunol. 

Today 10:423. 

 3.  Naor, D., and S. Nedvetzki. 2003. CD44 in rheumatoid arthritis. Arthritis Res. 

Ther. 5:105. 

 4.  Knudson, W., and Knudson C.B. 1999. The Hyaluronan Receptor, CD44. 

http://www.glycoforum.gr.jp/index.html, Glycoforum, pp. 1. 

 5.  Yang, B., B. L. Yang, R. C. Savani, and E. A. Turley. 1994. Identification of a 

common hyaluronan binding motif in the hyaluronan binding proteins 

RHAMM, CD44 and link protein. EMBO J 13:286. 

 6.  Embry, J. J., and W. Knudson. 2003. G1 domain of aggrecan cointernalizes with 

hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes. 

Arthritis Rheum. 48:3431. 

 7.  Jiang, H., R. S. Peterson, W. Wang, E. Bartnik, C. B. Knudson, and W. Knudson. 

2002. A requirement for the CD44 cytoplasmic domain for hyaluronan binding, 

pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 

cells. J Biol. Chem. 277:10531. 



   

 

153
 8.  Peterson, R. S., R. A. Andhare, K. T. Rousche, W. Knudson, W. Wang, J. B. 

Grossfield, R. O. Thomas, R. E. Hollingsworth, and C. B. Knudson. 2004. 

CD44 modulates Smad1 activation in the BMP-7 signaling pathway. J Cell 

Biol. 166:1081. 

 9.  Nedvetzki, S., I. Golan, N. Assayag, E. Gonen, D. Caspi, M. Gladnikoff, A. 

Yayon, and D. Naor. 2003. A mutation in a CD44 variant of inflammatory cells 

enhances the mitogenic interaction of FGF with its receptor. J Clin. Invest. 

111:1211. 

 10.  Yu, Q., and B. P. Toole. 1996. A new alternatively spliced exon between v9 and 

v10 provides a molecular basis for synthesis of soluble CD44. J Biol. Chem. 

271:20603. 

 11.  Goodison, S., V. Urquidi, and D. Tarin. 1999. CD44 cell adhesion molecules. 

Mol. Pathol. 52:189. 

 12.  Bennett, K. L., B. Modrell, B. Greenfield, A. Bartolazzi, I. Stamenkovic, R. 

Peach, D. G. Jackson, F. Spring, and A. Aruffo. 1995. Regulation of CD44 

binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol. 

131:1623. 

 13.  Jackson, D. G., J. I. Bell, R. Dickinson, J. Timans, J. Shields, and N. Whittle. 

1995. Proteoglycan forms of the lymphocyte homing receptor CD44 are 

alternatively spliced variants containing the v3 exon. J Cell Biol. 128:673. 

 14.  Sleeman, J. P., U. Rahmsdorf, A. Steffen, H. Ponta, and P. Herrlich. 1998. CD44 

variant exon v5 encodes a tyrosine that is sulphated. Eur. J. Biochem. 255:74. 



   

 

154
 15.  He, Q., J. Lesley, R. Hyman, K. Ishihara, and P. W. Kincade. 1992. Molecular 

isoforms of murine CD44 and evidence that the membrane proximal domain is 

not critical for hyaluronate recognition. J. Cell Biol. 119:1711. 

 16.  Isacke, C. M., and H. Yarwood. 2002. The hyaluronan receptor, CD44. Int. J 

Biochem. Cell Biol. 34:718. 

 17.  Sneath, R. J., and D. C. Mangham. 1998. The normal structure and function of 

CD44 and its role in neoplasia. Mol. Pathol. 51:191. 

 18.  Lazaar A.L., and Pure E. 1995. CD44: a model for regulated adhesion function., 

p. 19. 

 19.  Lesley, J., R. Hyman, and P. W. Kincade. 1993. CD44 and its interaction with 

extracellular matrix. Adv. Immunol. 54:271-335.:271. 

 20.  Camp, R. L., T. A. Kraus, M. L. Birkeland, and E. Pure. 1991. High levels of 

CD44 expression distinguish virgin from antigen-primed B cells. J. Exp. Med. 

173:763. 

 21.  Clark, R. A., R. Alon, and T. A. Springer. 1996. CD44 and hyaluronan-dependent 

rolling interactions of lymphocytes on tonsillar stroma. J. Cell Biol. 134:1075. 

 22.  Carter, W. G. 1982. The cooperative role of the transformation-sensitive 

glycoproteins, GP140 and fibronectin, in cell attachment and spreading. J. Biol. 

Chem. 257:3249. 

 23.  Carter, W. G., and E. A. Wayner. 1988. Characterization of the class III collagen 

receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated 

human cells. J. Biol. Chem. 263:4193. 



   

 

155
 24.  Naor, D., R. V. Sionov, and D. Ish-Shalom. 1997. CD44: structure, function, and 

association with the malignant process. Adv. Cancer Res. 71:241-319.:241. 

 25.  Naor, D., S. Nedvetzki, I. Golan, L. Melnik, and Y. Faitelson. 2002. CD44 in 

cancer. Crit Rev. Clin. Lab Sci. 39:527. 

 26.  Peach, R. J., D. Hollenbaugh, I. Stamenkovic, and A. Aruffo. 1993. Identification 

of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell 

Biol. 122:257. 

 27.  Kincade, P. W., Z. Zheng, S. Katoh, and L. Hanson. 1997. The importance of 

cellular environment to function of the CD44 matrix receptor. Curr. Opin. Cell 

Biol. 9:635. 

 28.  Katoh, S., Z. Zheng, K. Oritani, T. Shimozato, and P. W. Kincade. 1995. 

Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J. 

Exp. Med. 182:419. 

 29.  Lesley, J., and R. Hyman. 1992. CD44 can be activated to function as an 

hyaluronic acid receptor in normal murine T cells. Eur. J Immunol 22:2719. 

 30.  Fujita, Y., M. Kitagawa, S. Nakamura, K. Azuma, G. Ishii, M. Higashi, H. Kishi, 

T. Hiwasa, K. Koda, N. Nakajima, and K. Harigaya. 2002. CD44 signaling 

through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 528:101. 

 31.  Lesley, J., and R. Hyman. 1998. CD44 structure and function. Front Biosci. 

3:d616-30.:d616-d630. 

 32.  Koyama, T., M. Yashiro, T. Inoue, S. Nishimura, and C. K. Hirakawa-YS. 2000. 

TGF-beta1 secreted by gastric fibroblasts up-regulates CD44H expression and 



   

 

156
stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int. 

J. Oncol. 16:355. 

 33.  Zhang, M., M. H. Wang, R. K. Singh, A. Wells, and G. P. Siegal. 1997. 

Epidermal growth factor induces CD44 gene expression through a novel 

regulatory element in mouse fibroblasts. J. Biol. Chem. 272:14139. 

 34.  Foster, L. C., B. M. Arkonac, N. E. Sibinga, C. Shi, M. A. Perrella, and E. Haber. 

1998. Regulation of CD44 gene expression by the proinflammatory cytokine 

interleukin-1beta in vascular smooth muscle cells. J. Biol. Chem. 273:20341. 

 35.  Lesley, J., N. English, A. Perschl, J. Gregoroff, and R. Hyman. 1995. Variant cell 

lines selected for alterations in the function of the hyaluronan receptor CD44 

show differences in glycosylation. J. Exp. Med. 182:431. 

 36.  Huet, S., H. Groux, B. Caillou, H. Valentin, A. M. Prieur, and A. Bernard. 1989. 

CD44 contributes to T cell activation. J. Immunol. 143:798. 

 37.  Shimizu, Y., G. A. Van Seventer, R. Siraganian, L. Wahl, and S. Shaw. 1989. 

Dual role of the CD44 molecule in T cell adhesion and activation. J. Immunol. 

143:2457. 

 38.  Bradl, H., W. Schuh, and H. M. Jack. 2004. CD44 is dispensable for B 

lymphopoiesis. Immunol Lett. 95:71. 

 39.  Protin, U., T. Schweighoffer, W. Jochum, and F. Hilberg. 1999. CD44-deficient 

mice develop normally with changes in subpopulations and recirculation of 

lymphocyte subsets. J. Immunol. 163:4917. 



   

 

157
 40.  Stoop, R., I. Gal, T. T. Glant, J. D. McNeish, and K. Mikecz. 2002. Trafficking of 

CD44-deficient murine lymphocytes under normal and inflammatory 

conditions. Eur. J. Immunol. 32:2532. 

 41.  Bourguignon, L. Y., H. Zhu, A. Chu, N. Iida, L. Zhang, and M. C. Hung. 1997. 

Interaction between the adhesion receptor, CD44, and the oncogene product, 

p185HER2, promotes human ovarian tumor cell activation. J Biol. Chem. 

272:27913. 

 42.  Bourguignon, L. Y., P. A. Singleton, H. Zhu, and B. Zhou. 2002. Hyaluronan 

promotes signaling interaction between CD44 and the transforming growth 

factor beta receptor I in metastatic breast tumor cells. J Biol. Chem. 277:39703. 

 43.  Ito, T., J. D. Williams, D. Fraser, and A. O. Phillips. 2004. Hyaluronan attenuates 

transforming growth factor-beta1-mediated signaling in renal proximal tubular 

epithelial cells. Am. J Pathol. 164:1979. 

 44.  Ito, T., J. D. Williams, D. J. Fraser, and A. O. Phillips. 2004. Hyaluronan 

regulates transforming growth factor-beta1 receptor compartmentalization. J 

Biol. Chem. 279:25326. 

 45.  Orian-Rousseau, V., L. Chen, J. P. Sleeman, P. Herrlich, and H. Ponta. 2002. 

CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes 

Dev. 16:3074. 

 46.  Yu, W. H., J. F. Woessner, Jr., J. D. McNeish, and I. Stamenkovic. 2002. CD44 

anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal 



   

 

158
growth factor precursor and ErbB4 and regulates female reproductive organ 

remodeling. Genes Dev. 16:307. 

 47.  Taher, T. E., L. Smit, A. W. Griffioen, E. J. Schilder-Tol, J. Borst, and S. T. Pals. 

1996. Signaling through CD44 is mediated by tyrosine kinases. Association 

with p56lck in T lymphocytes. J. Biol. Chem. 271:2863. 

 48.  Ilangumaran, S., A. Briol, and D. C. Hoessli. 1998. CD44 selectively associates 

with active Src family protein tyrosine kinases Lck and Fyn in 

glycosphingolipid-rich plasma membrane domains of human peripheral blood 

lymphocytes. Blood 91:3901. 

 49.  Bourguignon, L. Y., H. Zhu, L. Shao, and Y. W. Chen. 2001. CD44 interaction 

with c-Src kinase promotes cortactin-mediated cytoskeleton function and 

hyaluronic acid-dependent ovarian tumor cell migration. J Biol. Chem. 

276:7327. 

 50.  Sohara, Y., N. Ishiguro, K. Machida, H. Kurata, A. A. Thant, T. Senga, S. 

Matsuda, K. Kimata, H. Iwata, and M. Hamaguchi. 2001. Hyaluronan activates 

cell motility of v-Src-transformed cells via Ras-mitogen-activated protein 

kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol. 

Biol. Cell 12:1859. 

 51.  Li, R., N. Wong, M. D. Jabali, and P. Johnson. 2001. CD44-initiated cell 

spreading induces Pyk2 phosphorylation, is mediated by Src family kinases, and 

is negatively regulated by CD45. J. Biol. Chem. 276:28767. 



   

 

159
 52.  Nishida, N., Knudson C.B., and W. Knudson. 2003. Extracellular matrix recovery 

by human articular chondrocytes after treatment with hyaluronan 

hexasaccharides  or Streptomyces hyaluronidase., pp. 62. 

 53.  Ohno-Nakahara, M., K. Honda, K. Tanimoto, N. Tanaka, T. Doi, A. Suzuki, K. 

Yoneno, Y. Nakatani, M. Ueki, S. Ohno, W. Knudson, C. B. Knudson, and K. 

Tanne. 2004. Induction of CD44 and MMP expression by hyaluronidase 

treatment of articular chondrocytes. J Biochem. (Tokyo). 135:567. 

 54.  Okamoto, I., Y. Kawano, D. Murakami, T. Sasayama, N. Araki, T. Miki, A. J. 

Wong, and H. Saya. 2001. Proteolytic release of CD44 intracellular domain and 

its role in the CD44 signaling pathway. J Cell Biol. 155:755. 

 55.  Sugahara, K. N., T. Murai, H. Nishinakamura, H. Kawashima, H. Saya, and M. 

Miyasaka. 2003. Hyaluronan oligosaccharides induce CD44 cleavage and 

promote cell migration in CD44-expressing tumor cells. J. Biol. Chem. 

278:32259. 

 56.  Peterson, R. M., Q. Yu, I. Stamenkovic, and B. P. Toole. 2000. Perturbation of 

hyaluronan interactions by soluble CD44 inhibits growth of murine mammary 

carcinoma cells in ascites. Am. J Pathol. 156:2159. 

 57.  Ghatak, S., S. Misra, and B. P. Toole. 2002. Hyaluronan oligosaccharides inhibit 

anchorage-independent growth of tumor cells by suppressing the 

phosphoinositide 3-kinase/Akt cell survival pathway. J Biol. Chem. 277:38013. 



   

 

160
 58.  Knudson, W., B. Casey, Y. Nishida, W. Eger, K. E. Kuettner, and C. B. Knudson. 

2000. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and 

induce chondrocytic chondrolysis. Arthritis Rheum. 43:1165. 

 59.  Noble, P. W., C. M. McKee, M. Cowman, and H. S. Shin. 1996. Hyaluronan 

fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in 

murine macrophages. J. Exp. Med. 183:2373. 

 60.  Knudson, C. B., and W. Knudson. 2004. Hyaluronan and CD44: modulators of 

chondrocyte metabolism. Clin. Orthop. Relat Res.S152-S162. 

 61.  Oh, C. D., and J. S. Chun. 2003. Signaling mechanisms leading to the regulation 

of differentiation and apoptosis of articular chondrocytes by insulin-like growth 

factor-1. J Biol. Chem. 19;278:36563. 

 62.  Ward, J. A., L. Huang, H. Guo, S. Ghatak, and B. P. Toole. 2003. Perturbation of 

hyaluronan interactions inhibits malignant properties of glioma cells. Am. J 

Pathol. 162:1403. 

 63.  Knudson, W., and C. B. Knudson. 2005. The Hyaluronan Receptor, CD44 - An 

UPDATE. 

http://www.glycoforum.gr.jp/science/hyaluronan/HA10a/HA10aE.html 

 64.  Turley, E. A., P. W. Noble, and L. Y. Bourguignon. 2002. Signaling properties of 

hyaluronan receptors. J. Biol. Chem. 277:4589. 

 65.  Oliferenko, S., I. Kaverina, J. V. Small, and L. A. Huber. 2000. Hyaluronic acid 

(HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J. 

Cell Biol. 20;148:1159. 



   

 

161
 66.  Bourguignon, L. Y., H. Zhu, L. Shao, and Y. W. Chen. 2000. Ankyrin-Tiam1 

interaction promotes Rac1 signaling and metastatic breast tumor cell invasion 

and migration. J Cell Biol. 150:177. 

 67.  Bretscher, A. 1999. Regulation of cortical structure by the ezrin-radixin-moesin 

protein family. Curr. Opin. Cell Biol. 11:109. 

 68.  Barret, C., C. Roy, P. Montcourrier, P. Mangeat, and V. Niggli. 2000. 

Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site 

in the NH(2)-terminal domain of ezrin correlates with its altered cellular 

distribution. J Cell Biol. 151:1067. 

 69.  Bourguignon, L. Y., D. Zhu, and H. Zhu. 1998. CD44 isoform-cytoskeleton 

interaction in oncogenic signaling and tumor progression. Front Biosci. 3:d637-

49.:d637-d649. 

 70.  Lammich, S., M. Okochi, M. Takeda, C. Kaether, A. Capell, A. K. Zimmer, D. 

Edbauer, J. Walter, H. Steiner, and C. Haass. 2002. Presenilin-dependent 

intramembrane proteolysis of CD44 leads to the liberation of its intracellular 

domain and the secretion of an Abeta-like peptide. J Biol. Chem. 277:44754. 

 71.  Murakami, D., I. Okamoto, O. Nagano, Y. Kawano, T. Tomita, T. Iwatsubo, S. B. 

De, E. Yumoto, and H. Saya. 2003. Presenilin-dependent gamma-secretase 

activity mediates the intramembranous cleavage of CD44. Oncogene. 22:1511. 

 72.  De, S. B., W. Annaert, P. Cupers, P. Saftig, K. Craessaerts, J. S. Mumm, E. H. 

Schroeter, V. Schrijvers, M. S. Wolfe, W. J. Ray, A. Goate, and R. Kopan. 



   

 

162
1999. A presenilin-1-dependent gamma-secretase-like protease mediates release 

of Notch intracellular domain. Nature. 398:518. 

 73.  Okamoto, I., Y. Kawano, H. Tsuiki, J. Sasaki, M. Nakao, M. Matsumoto, M. 

Suga, M. Ando, M. Nakajima, and H. Saya. 1999. CD44 cleavage induced by a 

membrane-associated metalloprotease plays a critical role in tumor cell 

migration. Oncogene. 18:1435. 

 74.  Kajita, M., Y. Itoh, T. Chiba, H. Mori, A. Okada, H. Kinoh, and M. Seiki. 2001. 

Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell 

migration. J Cell Biol. 153:893. 

 75.  Murai, T., Y. Miyazaki, H. Nishinakamura, K. N. Sugahara, T. Miyauchi, Y. 

Sako, T. Yanagida, and M. Miyasaka. 2004. Engagement of CD44 promotes 

Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem. 

279:4541. 

 76.  Guo, Y. J., J. H. Wong, S. C. Lin, A. Aruffo, I. Stamenkovic, and M. S. Sy. 1994. 

Disruption of T lymphocyte reappearance in anti-Thy-1-treated animals in vivo 

with soluble CD44 and L-selectin molecules. Cell Immunol. 154:202. 

 77.  Picker, L. J., T. J. De los, M. J. Telen, B. F. Haynes, and E. C. Butcher. 1989. 

Monoclonal antibodies against the CD44 [In(Lu)-related p80], and Pgp-1 

antigens in man recognize the Hermes class of lymphocyte homing receptors. J. 

Immunol. 142:2046. 



   

 

163
 78.  Arch, R., K. Wirth, M. Hofmann, H. Ponta, S. Matzku, P. Herrlich, and M. Zoller. 

1992. Participation in normal immune responses of a metastasis-inducing splice 

variant of CD44. Science 257:682. 

 79.  Miyake, K., K. L. Medina, S. Hayashi, S. Ono, T. Hamaoka, and P. W. Kincade. 

1990. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in 

long-term bone marrow cultures. J. Exp. Med. 171:477. 

 80.  Underhill, C. 1992. CD44: the hyaluronan receptor. J Cell Sci. 103:293. 

 81.  Drillenburg, P., and S. T. Pals. 2000. Cell adhesion receptors in lymphoma 

dissemination. Blood. 95:1900. 

 82.  Zoller, M. 1995. CD44: physiological expression of distinct isoforms as evidence 

for organ-specific metastasis formation. J Mol. Med. 73:425. 

 83.  DeGrendele, H. C., P. Estess, and M. H. Siegelman. 1997. Requirement for CD44 

in activated T cell extravasation into an inflammatory site. Science 278:672. 

 84.  Wallach-Dayan, S. B., V. Grabovsky, J. Moll, J. Sleeman, P. Herrlich, R. Alon, 

and D. Naor. 2001. CD44-dependent lymphoma cell dissemination: a cell 

surface CD44 variant, rather than standard CD44, supports in vitro lymphoma 

cell rolling on hyaluronic acid substrate and its in vivo accumulation in the 

peripheral lymph nodes. J Cell Sci. 114:3463. 

 85.  Murai, T., N. Sougawa, H. Kawashima, K. Yamaguchi, and M. Miyasaka. 2004. 

CD44-chondroitin sulfate interactions mediate leukocyte rolling under 

physiological flow conditions. Immunol. Lett. 93:163. 



   

 

164
 86.  Siegelman, M. H., D. Stanescu, and P. Estess. 2000. The CD44-initiated pathway 

of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion. J. Clin. 

Invest 105:683. 

 87.  Pessac, B., and V. Defendi. 1972. Cell aggregation: role of acid 

mucopolysaccharides. Science. 175:898. 

 88.  Nandi, A., P. Estess, and M. H. Siegelman. 2000. Hyaluronan anchoring and 

regulation on the surface of vascular endothelial cells is mediated through the 

functionally active form of CD44. J Biol. Chem. %19;275:14939. 

 89.  Lesley, J., I. Gal, D. J. Mahoney, M. R. Cordell, M. S. Rugg, R. Hyman, A. J. 

Day, and K. Mikecz. 2004. TSG-6 modulates the interaction between 

hyaluronan and cell surface CD44. J. Biol. Chem. 279:25745. 

 90.  Seth, A., L. Gote, M. Nagarkatti, and P. S. Nagarkatti. 1991. T-cell-receptor-

independent activation of cytolytic activity of cytotoxic T lymphocytes 

mediated through CD44 and gp90MEL-14. Proc. Natl. Acad. Sci. U. S. A 

88:7877. 

 91.  Denning, S. M., P. T. Le, K. H. Singer, and B. F. Haynes. 1990. Antibodies 

against the CD44 p80, lymphocyte homing receptor molecule augment human 

peripheral blood T cell activation. J. Immunol. 144:7. 

 92.  Galandrini, R., N. Albi, G. Tripodi, D. Zarcone, A. Terenzi, A. Moretta, C. E. 

Grossi, and A. Velardi. 1993. Antibodies to CD44 trigger effector functions of 

human T cell clones. J. Immunol. 150:4225. 



   

 

165
 93.  Pierres, A., C. Lipcey, C. Mawas, and D. Olive. 1992. A unique CD44 

monoclonal antibody identifies a new T cell activation pathway. Eur. J. 

Immunol. 22:413. 

 94.  Tan, P. H., E. B. Santos, H. C. Rossbach, and B. M. Sandmaier. 1993. 

Enhancement of natural killer activity by an antibody to CD44. J. Immunol. 

150:812. 

 95.  Webb, D. S., Y. Shimizu, G. A. Van Seventer, S. Shaw, and T. L. Gerrard. 1990. 

LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and 

IL-1 release. Science 249:1295. 

 96.  Rafi, A., M. Nagarkatti, and P. S. Nagarkatti. 1997. Hyaluronate-CD44 

interactions can induce murine B-cell activation. Blood 89:2901. 

 97.  Ingvarsson, S., K. Dahlenborg, R. Carlsson, and C. A. Borrebaeck. 1999. Co-

ligation of CD44 on naive human tonsillar B cells induces progression towards 

a germinal center phenotype. Int. Immunol. 11:739. 

 98.  Butcher, E. C., and L. J. Picker. 1996. Lymphocyte homing and homeostasis. 

Science 272:60. 

 99.  Aarvak, T., and J. B. Natvig. 2001. Cell-cell interactions in synovitis: antigen 

presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res. 

3:13. 

 100.  Haynes, B. F., L. P. Hale, K. L. Patton, M. E. Martin, and R. M. McCallum. 1991. 

Measurement of an adhesion molecule as an indicator of inflammatory disease 



   

 

166
activity. Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid 

arthritis. Arthritis Rheum. 34:1434. 

 101.  Kim, J. H., T. T. Glant, J. Lesley, R. Hyman, and K. Mikecz. 2000. Adhesion of 

lymphoid cells to CD44-specific substrata: the consequences of attachment 

depend on the ligand. Exp. Cell Res. 256:445. 

 102.  Lindhout, E., M. van Eijk, M. van Pel, J. Lindeman, H. J. Dinant, and C. de 

Groot. 1999. Fibroblast-like synoviocytes from rheumatoid arthritis patients 

have intrinsic properties of follicular dendritic cells. J. Immunol. 162:5949. 

 103.  Mikecz, K., K. Dennis, M. Shi, and J. H. Kim. 1999. Modulation of hyaluronan 

receptor (CD44) function in vivo in a murine model of rheumatoid arthritis. 

Arthritis Rheum. 42:659. 

 104.  Schadt, E. E., C. Li, C. Su, and W. H. Wong. 2000. Analyzing high-density 

oligonucleotide gene expression array data. J. Cell Biochem. %20;80:192. 

 105.  Murakami, S., K. Miyake, C. H. June, P. W. Kincade, and R. J. Hodes. 1990. IL-5 

induces a Pgp-1 (CD44) bright B cell subpopulation that is highly enriched in 

proliferative and Ig secretory activity and binds to hyaluronate. J. Immunol. 

145:3618. 

 106.  Guo, Y., Y. Wu, S. Shinde, M. S. Sy, A. Aruffo, and Y. Liu. 1996. Identification 

of a costimulatory molecule rapidly induced by CD40L as CD44H. J. Exp. Med. 

184:955. 



   

 

167
 107.  Dahlenborg, K., J. D. Pound, J. Gordon, C. A. Borrebaeck, and R. Carlsson. 1997. 

Terminal differentiation of human germinal center B cells in vitro. Cell 

Immunol. 175:141. 

 108.  Feuillard, J., D. Taylor, M. Casamayor-Palleja, G. D. Johnson, and I. C. 

MacLennan. 1995. Isolation and characteristics of tonsil centroblasts with 

reference to Ig class switching. Int. Immunol. 7:121. 

 109.  Kremmidiotis, G., and H. Zola. 1995. Changes in CD44 expression during B cell 

differentiation in the human tonsil. Cell Immunol. 161:147. 

 110.  Hogerkorp, C. M., S. Bilke, T. Breslin, S. Ingvarsson, and C. A. Borrebaeck. 

2003. CD44-stimulated human B cells express transcripts specifically involved 

in immunomodulation and inflammation as analyzed by DNA microarrays. 

Blood 101:2307. 

 111.  Geha, R. S., H. H. Jabara, and S. R. Brodeur. 2003. The regulation of 

immunoglobulin E class-switch recombination. Nat. Rev. Immunol 3:721. 

 112.  Harnett, M. M. 2004. CD40: a growing cytoplasmic tale. Sci. STKE. 2004:e25. 

 113.  Ferrari, S., and A. Plebani. 2002. Cross-talk between CD40 and CD40L: lessons 

from primary immune deficiencies. Curr. Opin. Allergy Clin. Immunol 2:489. 

 114.  Lougaris, V., R. Badolato, S. Ferrari, and A. Plebani. 2005. Hyper 

immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and 

immunological features. Immunol Rev. 203:48-66.:48. 



   

 

168
 115.  Hasbold, J., A. B. Lyons, M. R. Kehry, and P. D. Hodgkin. 1998. Cell division 

number regulates IgG1 and IgE switching of B cells following stimulation by 

CD40 ligand and IL-4. Eur. J. Immunol. 28:1040. 

 116.  Dal Porto, J. M., S. B. Gauld, K. T. Merrell, D. Mills, A. E. Pugh-Bernard, and J. 

Cambier. 2004. B cell antigen receptor signaling 101. Mol. Immunol. 41:599. 

 117.  Gauld, S. B., J. M. Dal Porto, and J. C. Cambier. 2002. B cell antigen receptor 

signaling: roles in cell development and disease. Science 296:1641. 

 118.  Oettgen, H. C. 2000. Regulation of the IgE isotype switch: new insights on 

cytokine signals and the functions of epsilon germline transcripts. Curr. Opin. 

Immunol 12:618. 

 119.  Fitzgerald, K. A., D. C. Rowe, and D. T. Golenbock. 2004. Endotoxin recognition 

and signal transduction by the TLR4/MD2-complex. Microbes. Infect. 6:1361. 

 120.  Peng, S. L. 2005. Signaling in B cells via Toll-like receptors. Curr. Opin. 

Immunol 17:230. 

 121.  Yamamoto, M., K. Takeda, and S. Akira. 2004. TIR domain-containing adaptors 

define the specificity of TLR signaling. Mol. Immunol 40:861. 

 122.  Takeda, K. 2005. Evolution and integration of innate immune recognition 

systems: the Toll-like receptors. J Endotoxin. Res. 11:51. 

 123.  Moore, K. J., L. P. Andersson, R. R. Ingalls, B. G. Monks, R. Li, M. A. Arnaout, 

D. T. Golenbock, and M. W. Freeman. 2000. Divergent response to LPS and 

bacteria in CD14-deficient murine macrophages. J Immunol 165:4272. 



   

 

169
 124.  Haziot, A., E. Ferrero, F. Kontgen, N. Hijiya, S. Yamamoto, J. Silver, C. L. 

Stewart, and S. M. Goyert. 1996. Resistance to endotoxin shock and reduced 

dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 

4:407. 

 125.  Nelms, K., A. D. Keegan, J. Zamorano, J. J. Ryan, and W. E. Paul. 1999. The IL-

4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol 

17:701-38.:701. 

 126.  Worm, M., and B. M. Henz. 1997. Molecular regulation of human IgE synthesis. 

J Mol. Med. 75:440. 

 127.  Shapiro-Shelef, M., and K. Calame. 2005. Regulation of plasma-cell 

development. Nat. Rev. Immunol 5:230. 

 128.  Shaffer, A. L., M. Shapiro-Shelef, N. N. Iwakoshi, A. H. Lee, S. B. Qian, H. 

Zhao, X. Yu, L. Yang, B. K. Tan, A. Rosenwald, E. M. Hurt, E. Petroulakis, N. 

Sonenberg, J. W. Yewdell, K. Calame, L. H. Glimcher, and L. M. Staudt. 2004. 

XBP1, downstream of Blimp-1, expands the secretory apparatus and other 

organelles, and increases protein synthesis in plasma cell differentiation. 

Immunity. 21:81. 

 129.  Lawrence, D. A., W. O. Weigle, and H. L. Spiegelberg. 1975. Immunoglobulins 

cytophilic for human lymphocytes, monocytes, and neutrophils. J Clin Invest 

55:368. 

 130.  Kikutani, H., S. Inui, R. Sato, E. L. Barsumian, H. Owaki, K. Yamasaki, T. 

Kaisho, N. Uchibayashi, R. R. Hardy, T. Hirano, S. Tsumasawa, F. Sakiyama, 



   

 

170
M. Suemura, and T. Kishimoto. 1986. Molecular Structure of Human 

Lymhocyte Receptor for immunoglobulin E. C 47:657. 

 131.  Richards, M. L., and D. H. Katz. 1990. The binding of IgE to murine FcεRII is 

calcium-dependent but not inhibited by carbohydrate. JI 144:2638. 

 132.  Bevilacqua, M., E. Butcher, B. Furie, M. Gallatin, M. Gimbrone, J. Harlan, K. 

Kishimoto, L. Lasky, R. McEver, J. Paulson, S. Rosen, B. Seed, M. Siegelman, 

T. Springer, L. Stoolman, T. Tedder, A. Varki, D. Wagner, I. Weissman, and G. 

Zimmerman. 1991. Selectins:  A family of adhesion receptors. C 67:233. 

 133.  Vercelli, D., B. Helm, P. Marsh, E. Padlan, R. S. Geha, and H. Gould. 1989. The 

B-cell binding site on human immunoglobulin E. Nature 338:649. 

 134.  Drickamer, K. 1991. Clearing up glycoprotein hormones. C 67:1029. 

 135.  Keegan, A. D., and D. H. Conrad. 1987. The Murine Lymphocyte Receptor for 

IgE V. Biosynthesis, Transport, and Maturation of the B Cell Fcε Receptor. J. 

Immunol. 139:1199. 

 136.  Gould, H., B. Sutton, R. Edmeades, and A. Beavil. 1991. CD23/FcεRII:  C-type 

lectin membrane protein with a split personality. L. A. Hanson and F. Shakib, 

eds. Karger, Basel, pp. 28. 

 137.  Beavil, A. J., R. L. Edmeades, H. J. Gould, and B. J. Sutton. 1992. α-Helical 

coiled-coil stalks in the low-affinity receptor for IgE (FcεRII/CD23) and related 

C-type lectins. Proc. Natl. Acad. Sci. USA 89:753. 

 138.  Conrad, D. H. 1990. FcεRII/CD23: The low affinity receptor for IgE. Ann. Rev. 

Immunol. 8:623. 



   

 

171
 139.  Conrad, D. H. 1994. FcεRI, εBP, and FcεRII -- Structure and involvement in 

allergic diseases. 

 140.  Lee, B. W., C. F. Simmons, T. Wileman, and R. S. Geha. 1989. Intracellular 

cleavage of newly synthesized low affinity Fcε receptor (FcεRII) provides a 

second pathway for the generation of the 28-kDa soluble FcεRII fragment. J. 

Immunol. 142:1614. 

 141.  Letellier, M., M. Sarfati, and G. Delespesse. 1989. Mechanisms of formation of 

IgE-binding factors (soluble CD23)--I. FcεR II bearing B cells generate IgE-

binding factors of different molecular weights. Mol. Immunol. 26:1105. 

 142.  Bettler, B., R. Maier, D. Ruegg, and H. Hofstetter. 1989. Binding site for IgE of 

the human lymphocyte low-affinity Fc epsilon receptor (Fc epsilon RII/CD23) 

is confined to the domain homologous with animal lectins. Proc. Natl. Acad. 

Sci. U. S. A 86:7118. 

 143.  Bettler, B., G. Texido, S. Raggini, D. Rüegg, and H. Hofstetter. 1992. 

Immunoglobulin E-binding site in Fcε receptor (FcεRII/CD23) identified by 

homolog-scanning mutagenesis. J. Biol. Chem. 267:185. 

 144.  Lee, W. T., M. Rao, and D. H. Conrad. 1987. The murine lymphocyte receptor for 

IgE. IV. The mechanism of ligand- specific receptor upregulation on B cells. J 

Immunol 139:1191. 

 145.  Kuhn, R., K. Rajewsky, and W. Muller. 1991. Generation and analysis of 

interleukin-4 deficient mice. Science 254:707. 



   

 

172
 146.  Shimoda, K., J. van Deursen, M. Y. Sangster, S. R. Sarawar, R. T. Carson, R. A. 

Tripp, C. Chu, F. W. Quelle, T. Nosaka, D. A. A. Vignali, P. C. Doherty, G. 

Grosveld, W. E. Paul, and J. N. Ihle. 1996. Lack of IL-4-induced Th2 response 

and IgE class switching in mice with disrupted Stat6 gene. Nature 380:630. 

 147.  Takeda, K., T. Tanaka, W. Shi, M. Matsumoto, M. Minami, S. Kashiwamura, K. 

Nakanishi, N. Yoshida, T. Kishimoto, and S. Akira. 1996. Essential role of 

Stat6 in IL-4 signalling. Nature 380:627. 

 148.  Hudak, S. A., S. O. Gollnick, D. H. Conrad, and M. R. Kehry. 1987. Murine B-

cell stimulatory factor 1 (interleukin 4) increases expression of the Fc receptor 

for IgE on mouse B cells. Proc Natl Acad Sci U S A 84:4606. 

 149.  Yokota, A., H. Kikutani, T. Tanaka, R. Sato, E. L. Barsumian, M. Suemura, and 

T. Kishimoto. 1988. Two species of human Fcε receptor II (FcεRII/CD23): 

Tissue-specific and IL-4-specific regulation of gene expression. C 55:611. 

 150.  Fournier, S., I. D. Tran, U. Suter, G. Biron, G. Delespesse, and M. Sarfati. 1991. 

The in vivo expression of type B CD23 mRNA in B-chronic lymphocytic 

leukemic cells is associated with an abnormally low CD23 upregulation by IL-

4: comparison with their normal cellular counterparts. Leuk. Res. 15:609. 

 151.  Vercelli, D., H. H. Jabara, B. W. Lee, N. Woodland, and R. S. Geha. 1988. 

Human recombinant interleukin-4 induces FcεR2/CD23 on normal human 

monocytes. J. Exp. Med. 167:1406. 



   

 

173
 152.  Conrad, D. H., C. A. Kozak, J. Vernachio, C. M. Squire, M. Rao, and E. M. 

Eicher. 1993. Chromosomal location and isoform analysis of mouse 

FcεRII/CD23. Mol. Immunol. 30:27. 

 153.  Yu, L. C., G. Montagnac, P. C. Yang, D. H. Conrad, A. Benmerah, and M. H. 

Perdue. 2003. Intestinal epithelial CD23 mediates enhanced antigen transport in 

allergy: evidence for novel splice forms. Am. J Physiol Gastrointest. Liver 

Physiol. 285:G223-G234. 

 154.  Fujiwara, H., H. Kikutani, S. Suematsu, T. Naka, K. Yoshida, T. Tanaka, M. 

Suemura, N. Matsumoto, S. Kojima, T. Kishimoto, and N. Yoshida. 1994. The 

absence of IgE antibody-mediated augmentation of immune responses in CD23-

deficient mice. Proc. Natl. Acad. Sci. USA 91:6835. 

 155.  Stief, A., G. Texido, G. Sansig, H. Eibel, G. Le Gros, and H. Van der Putten. 

1994. Mice deficient in CD23 reveal its modulatory role in IgE production but 

no role in T and B cell development. J. Immunol. 152:3378. 

 156.  Yu, P., M. Kosco-Vilbois, M. Richards, G. Köhler, M. C. Lamers, and G. Kohler. 

1994. Negative feedback regulation of IgE synthesis by murine CD23. Nature 

369:753. 

 157.  Texido, G., H. Eibel, G. Le Gros, and H. Van der Putten. 1994. Transgene CD23 

expression on lymphoid cells modulates IgE and IgG1 responses. J. Immunol. 

153:3028. 



   

 

174
 158.  MacGlashan, D. W., Jr., B. S. Bochner, D. C. Adelman, P. M. Jardieu, A. Togias, 

and L. M. Lichtenstein. 1997. Serum IgE level drives basophil and mast cell 

IgE receptor display. Int. Arch. Allergy Immunol. 113:45. 

 159.  Keegan, A. D., C. Fratazzi, B. Shopes, B. Baird, and D. H. Conrad. 1991. 

Characterization of new rat anti-mouse IgE monoclonals and their use along 

with chimeric IgE to further define the site that interacts with FcεRII and FcεRI. 

Mol. Immunol. 28:1149. 

 160.  Montagnac, G., A. Molla-Herman, J. Bouchet, L. C. Yu, D. H. Conrad, M. H. 

Perdue, and A. Benmerah. 2005. Intracellular trafficking of CD23: differential 

regulation in humans and mice by both extracellular and intracellular exons. J 

Immunol. 174:5562. 

 161.  Sarfati, M., and G. Delespesse. 1988. Possible role of human lymphocyte receptor 

for IgE (CD23) or its soluble fragments in the in vitro synthesis of human IgE. 

J. Immunol. 141:2195. 

 162.  Sherr, E., E. Macy, H. Kimata, M. Gilly, and A. Saxon. 1989. Binding the low 

affinity FcεR on B cells suppresses ongoing human IgE synthesis. J. Immunol. 

142:481. 

 163.  Saxon, A., M. Kurbe-Leamer, K. Behle, E. E. Max, and K. Zhang. 1991. 

Inhibition of human IgE production via FcεR-II stimulation results from a 

decrease in the mRNA for secreted but not membrane ε H chains. J. Immunol. 

147:4000. 



   

 

175
 164.  Pene, J., I. Chretein, F. Rousset, F. Briere, J.-Y. Bonnefoy, and J. DeVries. 1989. 

Modulation of IL-4-induced human IgE production in vitro by IFN-τ and IL-5: 

the role of soluble CD23 (sCD23). J. Cell. Biochem. 39:253. 

 165.  Saxon, A., Z. Ke, L. Bahati, and R. H. Stevens. 1990. Soluble CD23 containing B 

cell supernatants induce IgE from peripheral blood B-lymphocytes and 

costimulate with interleukin- 4 in induction of IgE. J. Allergy Clin. Immunol. 

86:333. 

 166.  Payet, M. E., E. C. Woodward, and D. H. Conrad. 1999. Humoral response 

suppression observed with CD23 transgenics. J. Immunol. 163:217. 

 167.  Cho, S. W., M. A. Kilmon, E. J. Studer, P. H. van der, and D. H. Conrad. 1997. B 

cell activation and Ig, especially IgE, production is inhibited by high CD23 

levels in vivo and in vitro. Cell Immunol. 180:36. 

 168.  Pirron, U., T. Schlunck, J. C. Prinz, and E. P. Rieber. 1990. IgE-dependent 

antigen focusing by human B lymphocytes is mediated by the low-affinity 

receptor for IgE. Eur. J. Immunol. 20:1547. 

 169.  Squire, C. M., E. J. Studer, A. Lees, F. D. Finkelman, and D. H. Conrad. 1994. 

Antigen presentation is enhanced by targeting antigen to the Fc epsilon RII by 

antigen-anti-Fc epsilon RII conjugates. J. Immunol. 152:4388. 

 170.  Kohler, I., and E. P. Rieber. 1993. Allergy-associated I epsilon and Ec epsilon 

receptor II (CD23b) genes activated via binding of an interleukin-4-induced 

transcription factor to a novel responsive element. Eur. J. Immunol. 23:3066. 



   

 

176
 171.  Kondo, H., Y. Ichikawa, K. Nakamura, and S. Tsuchiya. 1994. Cloning of cDNAs 

for new subtypes of murine low-affinity Fc receptor for IgE (Fc epsilon 

RII/CD23). Int. Arch. Allergy Immunol 105:38. 

 172.  Ewart, M. A., B. W. Ozanne, and W. Cushley. 2002. The CD23a and CD23b 

proximal promoters display different sensitivities to exogenous stimuli in B 

lymphocytes. Genes Immun. 3:158. 

 173.  Lessof, M. H., D. G. Wraith, J. Merrett, and P. D. Buisseret. 1980. Food allergy 

and intolerance in 100 patients: local and systemic effects. Q. J. Med. 49:259. 

 174.  Amlot, P. L., D. M. Kemeny, C. Zachary, P. Parkes, and M. H. Lessof. 1987. Oral 

allergy syndrome (OAS): symptoms of IgE-mediated hypersensitivity to foods. 

Clin. Allergy 17:33. 

 175.  Crowe, S. E., P. Sestini, and M. H. Perdue. 1990. Allergic reactions of rat jejunal 

mucosa. Ion transport responses to luminal antigen and inflammatory 

mediators. Gastroenterology 99:74. 

 176.  Kaiserlian, D., A. Lachaux, I. Grosjean, P. Graber, and J. Y. Bonnefoy. 1993. 

Intestinal epithelial cells express the CD23/Fc epsilon RII molecule: enhanced 

expression in enteropathies. Immunology 80:90. 

 177.  Belleau, J. T., R. K. Gandhi, H. M. McPherson, and D. B. Lew. 2005. Research 

upregulation of CD23 (FcepsilonRII) expression in human airway smooth 

muscle cells (huASMC) in response to IL-4, GM-CSF, and IL-4/GM-CSF. Clin. 

Mol. Allergy 3:6. 



   

 

177
 178.  Yu, L. C., and M. H. Perdue. 2001. Role of mast cells in intestinal mucosal 

function: studies in models of hypersensitivity and stress. Immunol. Rev. 

179:61. 

 179.  Keljo, D. J., and J. R. Hamilton. 1983. Quantitative determination of 

macromolecular transport rate across intestinal Peyer's patches. Am. J. Physiol 

244:G637-G644. 

 180.  Berin, M. C., A. J. Kiliaan, P. C. Yang, J. A. Groot, J. A. Taminiau, and M. H. 

Perdue. 1997. Rapid transepithelial antigen transport in rat jejunum: impact of 

sensitization and the hypersensitivity reaction. Gastroenterology 113:856. 

 181.  Yang, P. C., M. C. Berin, L. C. Yu, D. H. Conrad, and M. H. Perdue. 2000. 

Enhanced intestinal transepithelial antigen transport in allergic rats is mediated 

by IgE and CD23 (FcepsilonRII). J. Clin. Invest 106:879. 

 182.  Berin, M. C., A. J. Kiliaan, P. C. Yang, J. A. Groot, Y. Kitamura, and M. H. 

Perdue. 1998. The influence of mast cells on pathways of transepithelial antigen 

transport in rat intestine. J. Immunol. 161:2561. 

 183.  Yu, L. C., P. C. Yang, M. C. Berin, L. Di, V, D. H. Conrad, D. M. McKay, A. R. 

Satoskar, and M. H. Perdue. 2001. Enhanced transepithelial antigen transport in 

intestine of allergic mice is mediated by IgE/CD23 and regulated by 

interleukin-4. Gastroenterology 121:370. 

 184.  Yu, L. C., P. C. Yang, M. C. Berin, L. Di, V, D. H. Conrad, D. M. McKay, A. R. 

Satoskar, and M. H. Perdue. 2001. Enhanced transepithelial antigen transport in 



   

 

178
intestine of allergic mice is mediated by IgE/CD23 and regulated by 

interleukin-4. Gastro. 121:370. 

 185.  Montagnac, G., L. C. Yu, C. Bevilacqua, M. Heyman, D. H. Conrad, M. H. 

Perdue, and A. Benmerah. 2005. Differential role for CD23 splice forms in 

apical to basolateral transcytosis of IgE/allergen complexes. Traffic. 6:230. 

 186.  Conrad, D. H., A. D. Keegan, K. R. Kalli, D. R. Van, M. Rao, and A. D. Levine. 

1988. Superinduction of low affinity IgE receptors on murine B lymphocytes by 

lipopolysaccharide and IL-4. J Immunol. 141:1091. 

 187.  Rao, M., R. Knox, and D. H. Conrad. 1991. Characterization of Pgp-1 antigen on 

murine B lymphocytes using a new anti-Pgp-1 monoclonal antibody. 

Hybridoma 10:281. 

 188.  Tangye, S. G., and P. D. Hodgkin. 2004. Divide and conquer: the importance of 

cell division in regulating B-cell responses. Immunology 112:509. 

 189.  Rabah, D., and D. H. Conrad. 2002. Effect of cell density on in vitro mouse 

immunoglobulin E production. Immunology 106:503. 

 190.  Kelleher, D., A. Murphy, C. Feighery, and E. B. Casey. 1995. Leukocyte 

function-associated antigen 1 (LFA-1) and CD44 are signalling molecules for 

cytoskeleton-dependent morphological changes in activated T cells. J. Leukoc. 

Biol. 58:539. 

 191.  Santos-Argumedo, L., P. W. Kincade, S. Partida-Sanchez, and R. M. Parkhouse. 

1997. CD44-stimulated dendrite formation ('spreading') in activated B cells. 

Immunology 90:147. 



   

 

179
 192.  Sumoza-Toledo, A., and L. Santos-Argumedo. 2004. The spreading of B 

lymphocytes induced by CD44 cross-linking requires actin, tubulin, and 

vimentin rearrangements. J. Leukoc. Biol. 75:233. 

 193.  Oliferenko, S., K. Paiha, T. Harder, V. Gerke, C. Schwarzler, H. Schwarz, H. 

Beug, U. Gunthert, and L. A. Huber. 1999. Analysis of CD44-containing lipid 

rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J. 

Cell Biol. 146:843. 

 194.  Sleeman, J., W. Rudy, M. Hofmann, J. Moll, P. Herrlich, and H. Ponta. 1996. 

Regulated clustering of variant CD44 proteins increases their hyaluronate 

binding capacity. J. Cell Biol. 135:1139. 

 195.  Lesley, J., Q. He, K. Miyake, A. Hamann, R. Hyman, and P. W. Kincade. 1992. 

Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic 

domain and activation by antibody. J. Exp. Med. 175:257. 

 196.  Zheng, Z., S. Katoh, Q. He, K. Oritani, K. Miyake, J. Lesley, R. Hyman, A. 

Hamik, R. M. Parkhouse, A. G. Farr, and . 1995. Monoclonal antibodies to 

CD44 and their influence on hyaluronan recognition. J. Cell Biol. 130:485. 

 197.  Khaldoyanidi, S., J. Moll, S. Karakhanova, P. Herrlich, and H. Ponta. 1999. 

Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release 

of interleukin-1beta and interleukin-6 from bone marrow macrophages. Blood 

94:940. 

 198.  McKee, C. M., M. B. Penno, M. Cowman, M. D. Burdick, R. M. Strieter, C. Bao, 

and P. W. Noble. 1996. Hyaluronan (HA) fragments induce chemokine gene 



   

 

180
expression in alveolar macrophages. The role of HA size and CD44. J. Clin. 

Invest 98:2403. 

 199.  Conrad, P., B. L. Rothman, K. A. Kelley, and M. L. Blue. 1992. Mechanism of 

peripheral T cell activation by coengagement of CD44 and CD2. J. Immunol. 

149:1833. 

 200.  Pericle, F., G. Sconocchia, J. A. Titus, and D. M. Segal. 1996. CD44 is a 

cytotoxic triggering molecule on human polymorphonuclear cells. J. Immunol. 

157:4657. 

 201.  Bourguignon, L. Y., V. B. Lokeshwar, X. Chen, and W. G. Kerrick. 1993. 

Hyaluronic acid-induced lymphocyte signal transduction and HA receptor 

(GP85/CD44)-cytoskeleton interaction. J. Immunol. 151:6634. 

 202.  Galandrini, R., E. Galluzzo, N. Albi, C. E. Grossi, and A. Velardi. 1994. 

Hyaluronate is costimulatory for human T cell effector functions and binds to 

CD44 on activated T cells. J. Immunol. 153:21. 

 203.  Lesley, J., N. Howes, A. Perschl, and R. Hyman. 1994. Hyaluronan binding 

function of CD44 is transiently activated on T cells during an in vivo immune 

response. J. Exp. Med. 180:383. 

 204.  Bolland, S., and J. V. Ravetch. 1999. Inhibitory pathways triggered by ITIM-

containing receptors. Adv. Immunol. 72:149. 

 205.  Vely, F., and E. Vivier. 1997. Conservation of structural features reveals the 

existence of a large family of inhibitory cell surface receptors and 

noninhibitory/activatory counterparts. J. Immunol. 159:2075. 



   

 

181
 206.  Tamir, I., J. C. Stolpa, C. D. Helgason, K. Nakamura, P. Bruhns, M. Daeron, and 

J. C. Cambier. 2000. The RasGAP-binding protein p62dok is a mediator of 

inhibitory FcgammaRIIB signals in B cells. Immunity. 12:347. 

 207.  Yamanashi, Y., T. Tamura, T. Kanamori, H. Yamane, H. Nariuchi, T. Yamamoto, 

and D. Baltimore. 2000. Role of the rasGAP-associated docking protein 

p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes 

Dev. 14:11. 

 208.  Ono, M., S. Bolland, P. Tempst, and J. V. Ravetch. 1996. Role of the inositol 

phosphatase SHIP in negative regulation of the immune system by the receptor 

Fc(gamma)RIIB. Nature 383:263. 

 209.  Bolland, S., R. N. Pearse, T. Kurosaki, and J. V. Ravetch. 1998. SHIP modulates 

immune receptor responses by regulating membrane association of Btk. 

Immunity. 8:509. 

 210.  Rohrschneider, L. R., J. F. Fuller, I. Wolf, Y. Liu, and D. M. Lucas. 2000. 

Structure, function, and biology of SHIP proteins. Genes Dev. 14:505. 

 211.  Scharenberg, A. M., O. El-Hillal, D. A. Fruman, L. O. Beitz, Z. Li, S. Lin, I. 

Gout, L. C. Cantley, D. J. Rawlings, and J. P. Kinet. 1998. 

Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-

dependent calcium signaling pathway: a target for SHIP-mediated inhibitory 

signals. EMBO J. 17:1961. 



   

 

182
 212.  Maeda, A., A. M. Scharenberg, S. Tsukada, J. B. Bolen, J. P. Kinet, and T. 

Kurosaki. 1999. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-

induced activation of Syk and Btk by SHP-1. Oncogene 18:2291. 

 213.  Malbec, O., D. C. Fong, M. Turner, V. L. Tybulewicz, J. C. Cambier, W. H. 

Fridman, and M. Daeron. 1998. Fc epsilon receptor I-associated lyn-dependent 

phosphorylation of Fc gamma receptor IIB during negative regulation of mast 

cell activation. J. Immunol. 160:1647. 

 214.  Smith, K. G., D. M. Tarlinton, G. M. Doody, M. L. Hibbs, and D. T. Fearon. 

1998. Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med. 

187:807. 

 215.  Tamir, I., J. M. Dal Porto, and J. C. Cambier. 2000. Cytoplasmic protein tyrosine 

phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr. 

Opin. Immunol. 12:307. 

 216.  Aman, M. J., T. D. Lamkin, H. Okada, T. Kurosaki, and K. S. Ravichandran. 

1998. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. 

Biol. Chem. 273:33922. 

 217.  Liu, Q., T. Sasaki, I. Kozieradzki, A. Wakeham, A. Itie, D. J. Dumont, and J. M. 

Penninger. 1999. SHIP is a negative regulator of growth factor receptor-

mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 13:786. 

 218.  Mustafa, A., R. J. McKallip, M. Fisher, R. Duncan, P. S. Nagarkatti, and M. 

Nagarkatti. 2002. Regulation of interleukin-2-induced vascular leak syndrome 



   

 

183
by targeting CD44 using hyaluronic acid and anti-CD44 antibodies. J. 

Immunother. 25:476. 

 219.  Mikecz, K., F. R. Brennan, J. H. Kim, and T. T. Glant. 1995. Anti-CD44 

treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. 

Nat. Med. 1:558. 

 220.  Brocke, S., C. Piercy, L. Steinman, I. L. Weissman, and T. Veromaa. 1999. 

Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central 

nervous system inflammation and experimental encephalomyelitis by blocking 

secondary leukocyte recruitment. Proc. Natl. Acad. Sci. U. S. A 96:6896. 

 221.  Weiss, L., S. Slavin, S. Reich, P. Cohen, S. Shuster, R. Stern, E. Kaganovsky, E. 

Okon, A. M. Rubinstein, and D. Naor. 2000. Induction of resistance to diabetes 

in non-obese diabetic mice by targeting CD44 with a specific monoclonal 

antibody. Proc. Natl. Acad. Sci. U. S. A 97:285. 

 222.  Hathcock, K. S., H. Hirano, S. Murakami, and R. J. Hodes. 1993. CD44 

expression on activated B cells. Differential capacity for CD44-dependent 

binding to hyaluronic acid. J. Immunol. 151:6712. 

 223.  Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 

4:499. 

 224.  Shi, M., K. Dennis, J. J. Peschon, R. Chandrasekaran, and K. Mikecz. 2001. 

Antibody-induced shedding of CD44 from adherent cells is linked to the 

assembly of the cytoskeleton. J. Immunol. 167:123. 



   

 

184
 225.  Suter, U., G. Texido, and H. Hofstetter. 1989. Expression of Human Lymphocyte 

IgE Receptor (FcεRII/CD23) Identification of FcεRIIa Promoter and its 

Functional Analysis in B lymphocytes. J. Immunol. 143:3087. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

185

Curriculum Vitae 

 

Wyant TL, Fisher MT, McKallip RJ, Nagarkatti PS, Nagarkatti M, Conrad DH.; Mouse 

B cell activation is inhibited by CD44 cross-linking. Immunological Investigations, 

2005;34(4):399-416 

 

American Heart Association Research Grant, 2001-2003. 

 


	Virginia Commonwealth University
	VCU Scholars Compass
	2006

	Influence of Anti-CD44 on Murine B Cell Activation
	Tiana L. Wyant
	Downloaded from


	Table of Contents
	List of Tables
	I. Oligos used in construction of CD23b constructs
	II. B cell ability to respond to anti-CD44 signals is absent by day 4 of stimulation

	List of Figures
	1 - Structure of the CD44 glycoprotein
	2 - Gene structure of CD44
	3 - General overview of B cell development
	4 - CD40 signaling
	5 - BCR signaling
	6 - TLR4 pathway
	7 - Plasma cell differentiation
	8 - Model for associated trimeric CD23
	9 - The murine CD23a and CD23b promoter sequences
	10 - Pictoral view of the murine CD23 isoforms and isoform variants
	11 - The schematic of the CD23b coding regions from the four pCR3.1-CD23b constructs provided by Dr. Alexandre Benmerah
	12 - B cell proliferation is greatly reduced due to CD44 cross-linking by immobilized anti-CD44 antibody
	13 - CD44 crosslinking on T cells via anti-CD44 antibodies causes no decrease in their ability to proliferate
	14 - CD44 crosslinking via anti-CD44 antibodies on B cells causes a decrease in their ability to produce immunoglobulins
	15 - Soluble RK3G9 added to B cell cultures had no effect on B cell IgE production
	16 - MAR18-RK3G9 is not as effective as RK3G9 alone
	17 - Proliferation by B cells grown with RK3G9 plus biotinylated MAR18 plus streptavidin
	18 - IgE production by B cells grown with RK3G9 plus cross-linking agents
	19 - The CD44 mice can not respond to RK3G9-mediated B cell inhibition of proliferation
	20 - The inhibitory gamma receptor is not involved in the inhibition of IgE production by B cells whose CD44 is crosslinked by an anti-CD44 antibody
	21 - Addition of Cloning Factor
	22 - Mouse B cells grown with additive supernatants still respond to anti-CD44
	23 - B cell activation/differentiation is affected by CD44 cross-linking under a variety of growth conditions
	24 - B cell activation inhibition by CD44 cross-linking is dependent on the type and amount of stimulation
	25 - B cell activation inhibition by CD44 cross-linking is dependent on the type and amount of stimulation
	26 - IgE levels were unchanged by injection of RK3G9 in vivo
	27 - Fewer CD138 cells are present with Rk3G9 treated cells
	28 - Elispot analysis showed that fewer plasma cells formed in the B cell cultures grown on anti-CD44
	29 - Activity of the CD23b promoter vs. CD23b-TATA vs. CD23a promoter
	30 - Activity of the human and mouse CD23b promoters
	31 - RT-PCR for CD23b in the IEC4.1 cells
	32 - Model for RK3G9 (anti-CD44)-mediated B cell antigen-specific activation

	List of Abbreviations
	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Reference List
	Curriculum Vitae

