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    In multicellular organism, bioenergetic metabolism is strictly regulated toward 

efficient generation of ATP. However, in certain situations, such as in limiting oxygen or 

in the rapidly proliferating system like growing juvenile or cancer cells, organisms apply 

the metabolic strategy that favors the production of biomass (e.g., nucleotides, amino 

acids, and lipids) over efficiency of ATP generation. The conserved estrogen-related 

receptors (ERRs) are master regulators in controlling metabolic homeostasis, and good 

candidates for mediating the metabolic transition induced by hypoxia and development. 
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    First, we investigate how dERR influences hypoxic adaptation in Drosophila 

melanogaster. We find that dERR is required for a competent hypoxic response alone, or 

together with hypoxia inducible factor (HIF), which is the main transcription factor 

modulating the hypoxic adaptation. We show that dERR binds to dHIFα and participates 

in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the 

absence of dHIFα in hypoxia and a significant portion of HIF-independent transcriptional 

responses can be attributed to dERR actions, including up-regulation of glycolytic 

transcripts. These results indicate that competent hypoxic responses arise from complex 

interactions between HIF-dependent and -independent mechanisms, and that dERR plays 

a central role in both of these programs. 

    Secondly, we examine how dERR modulates metabolic transition toward the fatty 

acid oxidation at late L3 larva stage. We show that dERR is essential for the expression 

of an uncharacterized long-chain-fatty-acid acyl-CoA synthetase, CG4500, which is 

subject to induction by starvation. Furthermore, late L3 larvae of dERR mutants exhibit 

altered lipid profiles with elevated medium-chain and long-chain fatty acids. Together, 

with the previous finding that ERR directs an early switch toward glycolysis in the 

embryo, our studies indicate that ERR is a master regulator of programmed metabolic 

shifts through Drosophila development.     
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CHAPTER 1 Introduction 

 

1.1 Molecular mechanism of nuclear receptor function 

Nuclear receptors (NRs) are a superfamily of ligand-inducible transcription factors 

that control diverse processes, including metabolic homeostasis, detoxification, cellular 

differentiation and embryonic development. NRs are responsible for sensing small 

molecules that include steroid and thyroid hormones, vitamins, and many metabolites. 

Unlike convoluted signal-transduction pathways with membrane-bound receptors, like 

other transcription factors NRs directly bind to DNA and regulate the expression of 

adjacent genes. Upon stimulation, these receptors, form monomers, homodimers, or 

heterodimers, and transcriptionally regulate the expression of their target genes, thereby 

directly controlling biological processes (1-4). There are 48 NRs in human (5), and they 

can be categorized into three classes, based on their ligand-binding and DNA-binding 

characteristics (2). The first class is the classical steroid hormone receptors, like 

glucocorticoid receptors (GRs), androgen receptors (ARs) and estrogen receptors (ERs). 

The only sources of ligands for this class of receptors are steroid hormones that are 

regulated by negative-feedback control of the hypothalamic-pituitary axis. The binding 

affinity between ligand and these receptors is fairly high (dissociation constant Kd = 0.01 

to 10 nM) (6). Steroid receptors that are produced in their inactive form reside in the 
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cytoplasm and/or nucleus and form complex with heat-shock proteins (HSP). Upon 

binding to hormones, these receptors are dissociated from chaperone protein complexes 

and are allowed to bind to specific DNA sequence known as hormone response elements 

(HREs) in target genes, which consist of two inverted repeat half-sites separated by a 

variable length of DNA (3). The second class of NRs is known as orphan nuclear 

receptors. They do not have known endogenous ligands and in some cases even function 

in a ligand-independent manner. A large subset of this category of NRs primarily binds to 

DNA as monomers, but other members of this group could function as homodimers or 

heterodimers. Whether or not they form dimers, only a single receptor DNA binding 

domain attaches to a single half-site response element (2). The next class of NRs are the 

so-called ‘adopted’ orphan receptors (also known as type II receptors), including fatty 

acid receptors (PPARs), oxysterol receptors (LXRs), and the bile acid receptor (FXR). 

They were first considered as orphan receptors, but naturally occurring ligands were 

identified subsequently. These receptors form heterodimers with the retinoid X receptor 

(RXR), and recognize hormone response elements that consist of two direct hexameric 

repeats separated by varied number of nucleotides for different receptors. For example, 

PPAR/RXR response element has an interspacing of one basepair (DR1), but LXREs and 

FXREs have an interspacing of four nucleotides (DR4) (7, 8).  They function as lipid 

sensors by transcriptionally regulating genes that are widely involved in lipid 

metabolism, storage, transport, and elimination. Ligand binding to these receptors causes 
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dissociation of co-repressor proteins and recruitment of co-activator proteins, which 

initiates a feedforward metabolic cascade that maintains lipid homeostasis (4). In addition 

to the adopted orphan receptors, four NRs also form a complex with RXR, but cannot be 

fit in to either feedforward or feedback models precisely. They are thyroid hormone (TR), 

retinoic acid (RAR), vitamin D (VDR), and ecdysone (EcR) receptors as a Drosophila 

NR. Their ligands and target pathways engage elements of both the endocrine and lipid-

sensing receptor pathways. For example, EcR not only acts as endocrine receptors in 

regulating development and reproduction in Drosophila, but also functions as a lipid 

sensor, because its ligand, ecdysone, is converted from cholesterol that is essential dietary 

lipids. These four receptors may fill the evolutionary gap between steroid receptors and 

adopted orphan receptors (4). 

NRs consist of typical structural elements, including a variable amino N-terminal 

activation domain, a highly conserved DNA-binding domain (DBD) and a relatively 

conserved C-terminal ligand-binding domain (LBD). N-terminal domain containing at 

least one activation function region (AF-1) and several autonomous transactivation 

domains (Ad) is highly variable in length and function (9). DBD often consist of two 

zinc-fingers. The first zinc-finger has a stretch of five amino acids called the P-box, 

which mediates the binding between DNA and DBD (10). The second zinc-finger 

contains a moderately weak dimerization interface that permits DBDs to form dimers 

when exposed to a target DNA molecule (11). The relatively conserved LBD is the 
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largest domain in NR protein. The 12 α-helix secondary structure of LBD is better 

conserved than the primary sequence (12). As its name suggests, LBD bears the function 

of interacting with ligands. But other than ligand binding, the LBD participates in several 

other NR functions, such as forming homo- and/or heterodimers, nuclear localization, 

formation of heat-shock protein complexes (steroid receptors only), and, most 

importantly, transcriptional activation or repression (3). LBDs mediate transcriptional up-

regulation or down-regulation through interacting with either co-activator or co-repressor 

proteins, respectively. Generally, binding to ligands causes the conformational changes in 

an α-helical region in the C terminus of LBD, also known as activation function2 (AF2). 

These structural changes facilitate the binding with co-repressor or co-activator proteins 

that often contain a consensus sequence LXXLL in their interaction motif (12, 13).  

 

1.2 Drosophila melanogaster as a model for nuclear receptor biology 

    Drosophila melanogaster, also known as the fruit fly, is a widely used model 

organism. It features easy to care for, low cost, fast development, and well-established 

genetic and genomic tools. It is a species in the family of Drosophilidae. The 

developmental period for fruit fly varies with temperature. At 25°C, eggs normally take 

24 hours to hatch as first-instar larvae (L1). L1 and second-instar larvae (L2) generally 

grow 24h until molting to the next stage, and third-instar larvae (L3) normally grow 48h 

until pupariation. Metamorphosis is about 5 days long, after which the adults emerge. L2 

http://en.wikipedia.org/wiki/Celsius
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larvae need to reach a critical mass of about 0.3mg to pupariate. Until mid-L3, larvae are 

burrowed in food and eat constantly. After mid-L3, larvae exit the food and start to 

wander. The larvae reach their highest wet weight and dry weight in mid-L3. In the four 

days of development from embryos to mid-L3, the fruit fly larvae experience a 200-fold 

increase in mass (14).  

Although studies in mammals have revealed the molecular mechanism of how NRs 

transcriptionally regulate target genes, their biological roles in many processes, including 

development and energy homeostasis, still require further investigation. In addition to a 

well-established model organism, the fruit fly has other special advantages to study NRs 

biology. Firstly, the hormone signaling pathways in Drosophila is less complex 

compared to humans. Only two physiologically active lipophilic hormones, the steroid 

hormone 20-hydroxyecdysone (20E) and the sesquiterpinoid juvenile hormone (JH), have 

been identified in fruit fly. Furthermore there are only 18 nuclear-receptor genes found in 

Drosophila genome, versus 48 genes in humans. Secondly, NRs in fruit flies still 

represent all the main NR superfamilies (1). Furthermore the structure and operating 

function of NRs are also conserved between fly and humans. For example, ultraspiracle 

(USP), an ortholog of the vertebrate RXR, works as an heterodimeric partner for many 

fly NRs, just as its vertebrate counterparts (15). Hepatocyte nuclear receptor 4 (HNF4) is 

a good example of the functional similarity of NRs between flies and humans. HNF4 has 

two paralogs in mammals, HNF4α and HNF4γ. In humans, it has been shown that 
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HNF4α is associated with MODY (early onset type 2 diabetes), whose patients show 

defects in the expression of genes involved glucose and lipid metabolism genes. But the 

function of HNF4γ is not very well understood (16, 17). Genetic mutation of HNF4 in 

flies revealed reduced ability to generate energy from stored fat under starvation through 

significant down-regulation of genes involved in lipolysis and β-oxidation. Together with 

the fact that long chain fatty acid (LCFAs) can tightly bind with and activate HNF4, it 

suggests that HNF4 is activated by fatty acids released from triglycerides, and then 

induces genes involved in fatty acid oxidation for energy production. This is a feed-

forward model; similar to the model of adapted orphan receptors introduced previously 

(18). Lastly, I want to point out that our work on the estrogen-related receptor (ERR), 

which is the main focus of this document, is another great example of using fruit fly as an 

ideal system for investigating the regulation and function of NRs in vivo. 

 

1.3 Estrogen-related receptors (ERRs) control metabolic gene networks in mammals 

Estrogen-related receptors (ERRs) were the first orphan nuclear receptors found in 

the NR superfamily. There are three paralogs (ERRα, β, and γ) in mammals. ERRα 

(NR3B1) and ERRβ (NR3B2) were first discovered in a screen to identify genes 

encoding proteins closely related to estrogen receptor α (ERα, NR3A1) from kidney and 

heart (19). ERRγ (NR3C3) was found later by several studies (20-22). In addition to the 
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three isoforms, several splice variants of ERRβ and ERRγ were also identified in humans, 

but their function is not currently understood (23).  

Each of these ERRs has the typical structural elements of NRs, including a non-

conserved NTD, a highly conserved DBD, and a fairly conserved LBD. Unlike the other 

NRs, the three ERRs share appreciable amino acid similarity in their NTDs. 

Posttranslational modification, including mainly phosphorylation and sumoylation, can 

affect the transcriptional activities of ERRs. Phosphorylation on serine 19 subsequently 

results in sumoylation of lysine 14 in ERRα and γ, leading to inhibition of the 

transcriptional activity of both receptors via a functional phospho-sumoyl switch motif 

(24, 25). Interestingly, PPARγ also has a phospho-sumoyl switch motif within its NTD 

(26), which suggests that phosphorylation-dependent sumoylation might play an 

important role in the transcriptional control of energy metabolism by nuclear receptors.  

ERRs recognize the ERR response element (ERRE) containing the consensus sequence 

TCAAGGTCA, as monomer, a homodimer, or heterodimer (27). In addition to 

recognizing an ERRE, that is a single core motif preceded by three nucleotides, ERRs can 

also interact in tubes with estrogen response element (ERE) that is an inverted repeat of 

AGGTCA with three nucleotides in between (28). However, investigations have revealed 

that ERRs tend to regulate their target genes, and also ER targets via ERREs, rather than 

an ERE. Studies done in breast cancer showed that ERRα is preferentially recruited to 

ERRE enriched regions, and binding to EREs happen infrequently and mostly when 
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combined with an ERRE (29). It suggests that ERRα regulates transcription in an ERα-

independent manner in breast cancer cells. So the overlapping function between ER and 

ERRs is not as important as it was anticipated. Although ERRs are orphan NRs, their 

LBD has a conserved AF-2 helix motif and can interact with synthetic molecules like 4-

hydroxytamoxifen, co-activator such as PPARγ coactivator-1α and β (PGC-1α/β), and co-

repressor proteins such as RIP140 (30, 31). Notably, the AF-2 motif stays in an active 

configuration even in the absence of a ligand, which suggests that ERRs are capable of 

binding to co-activators no matter the presence of ligands (32). In fact, full transcriptional 

activity of ERRs depend on PGC-1α/β in most cellular contexts, which makes PGC1s 

function as alternate protein ligands for the ERRs (33).  

The expression pattern for ERR isoforms is not uniform. However, all three of them 

are abundantly present in organs maintaining high metabolic needs, including the heart 

and kidneys. ERRα is expressed in most tissues and in more abundant quantities than the 

other two isoforms. Other than heart and kidney, ERRα is also highly expressed in the 

intestinal tract, skeletal muscles, and brown adipose tissue (BAT), but ERRβ and ERRγ 

tend to be expressed in organs associated with basal metabolic functions. This 

distribution hints that three ERR isoforms collectively play key roles in regulating 

networks of energy metabolism (34).  

    The ERRs are recruited to the promoter regions of nearly all enzymes involved in 

each step of the tricarboxylic acid (TCA) cycle, all parts of the oxidative phosphorylation 
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(OXPHOS) apparatus, lipid, glutamine, amino acid, nucleic acid and pyruvate 

metabolism and energy sensing in metabolic tissues (35-41). ERRs also bind to the 

regulatory region of more than 700 nuclear genes encoding mitochondrial proteins in 

many tissues and function collectively with PGC1 α and β to regulate mitochondrial 

biogenesis (42). Although all ERR isoforms are involved in controlling metabolic 

homeostasis, the specific function for each isoform is distinct and sometime even 

conflicting. ERRα, together with PGC-1α, transcriptionally regulates medium-chain acyl-

coenzyme a dehydrogenase (MCAD), which is the rate-limiting enzyme of tissue FAO. 

Other studies have found a more profound role for ERRα in metabolic regulation. In 

SAOS2 cells, the ERRα/PGC-1α complex up-regulates 151 nuclear genes that encode 

proteins involved in many aspects of mitochondrial functions (mitochondrial protein 

synthesis and transport across the mitochondrial membrane, FAO, the TCA cycle, and 

OXPHOS) (43). However, ERRα null mice are lean and resistant to diet-induced obesity, 

display substantial impaired lipid absorption in the intestine and are incapable of adapting 

to cold temperatures (44-46). These phenotypes are unexpected considering that ERRα 

up-regulates genes involved in FAO and mitochondrial energy expenditure. It has been 

hypothesized that ERRα might be important in fat absorption in intestine, but this idea 

needs further investigation. Furthermore, ERRα is responsible to adjust energy imbalance 

induced by physiological pressures. For example, ERRα is essential for inducing 

mitochondrial reactive oxygen species (ROS) production in response to IFN-γ in bone 
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marrow-derived macrophages, as well as the adaptive bioenergetic response to 

hemodynamic stressors in heart (41, 47). These phenomena propose that ERRα could be 

a crosslink between metabolism and inflammation. Unlike ERRα null mice, mice lacking 

ERRγ present a lethal phenotype shortly after birth, due to their failure to switch from 

primarily depending on glycolysis to oxidative metabolism as a newborn pup. ERRγ also 

plays a role in promoting myogenesis. Overexpressing either constitutively active ERRγ 

or wild-type ERRγ in skeletal muscle enhances mitochondrial enzyme activity, exercise 

capacity, and expression of genes involved in fat metabolism. And overexpressing ERRγ 

promotes a switch toward more oxidative fiber types and vascularization in muscle (48, 

49). In contrast, muscle specific loss of function of ERRγ form immature myotubes with 

reduced mitochondrial content and altered distribution, increased rates of medium-chain 

FAO, decreased rates of glucose oxidation and oxidative stress (50). These phenotypes 

suggest that the ERRγ, but not ERRα, is crucial for establishing and keeping a basal 

oxidative metabolic gene program (40). The function of ERRβ is not studied as 

extensively as the other two isoforms. This is probably because ERRβ null mice are 

embryonic lethal due to abnormal differentiation of the trophoblast lineage (51). 

However, the phenotypes of ERRβ null and ERRγ null mice also support the idea that the 

ERRs also control cell growth and differentiation during development.  

 

1.4 ERRs is a potential therapeutic target in human diseases 
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ERRs are excellent drug target candidates, because the tertiary structure of their 

ligand-binding domains often permit binding of full and partial agonists, antagonists and 

inverse agonists (52). Emerging studies show that pharmacologically targeting ERRs 

could have a beneficial impact on human diseases, including breast cancer and metabolic 

disorders (obesity and type 2 diabetes).  

As discussed previously, ERRα null mice are lean and resistant to high fat induced 

obesity (44). But the underlying molecular mechanism for this phenotype is not 

understood. It is not clear whether using a potent ERRα antagonist will lead to a similar 

phenotype. One epidemiological study in 703 Japanese individuals observed that a higher 

ERRE copy number was associated with a higher body mass index (53).This result would 

agree with the lean phenotype observed in the ERRα-null mice because more ERRα 

expression would lead to a higher body weight. However, a genome wide association 

study (GWAS) done in 334500 Danish white individuals revealed that ERRα is not 

associated with obesity, type 2 diabetes, or related quantitative traits (54). However, 

recent studies found that fasting and diabetes conditions induce hepatic ERRγ expression, 

which leads to increased expression of gluconeogenic genes and blood glucose in wild 

type mice. Also, ablation of hepatic ERRγ gene expression decreases gluconeogenic 

genes expression and normalizes blood glucose levels in mouse models of T2DM (55, 

56). Interestingly, another epidemiological study found that the levels of bisphenol A, 

which has been shown to bind ERRγ with high affinity, in humans are linked with type 2 
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diabetes and metabolic dysfunction (57). However, further investigations still need to be 

done to address the specific molecular mechanisms that individual ERR isoforms affect 

the pathology of metabolic disorders including obesity and type 2 diabetes.  

ERRs have also been found to be associated with cancer progression. ERRα has been 

found to be correlated with recurrence and adverse clinical outcomes; however, ERRγ is 

associated with favorable prognosis. In ovarian cancer cells, ERRα is expressed at high 

levels and correlates with advanced tumor stages and grades (58). In colorectal cancers, 

another study found that the mRNA level for ERRα is higher in the cancer mucosa than 

in the surrounding normal mucosa (59). In a breast cancer model, ERRα is not only 

inversely associated with ERα and the progesterone receptor (PR), which are markers of 

good prognosis and hormone sensitivity, but also found to be positively correlated with 

ERBB2 (a marker of aggressive tumor), Myc oncogene, the proliferation marker Ki-67 

and the NR co-activator AIB1 (60-63). In contrast, ERRγ is positively linked with ER 

and ERBB2 that are marks of favorable prognosis in breast cancer (60). ERRα also has 

been shown to regulate the proliferation and migration of cancer cells. In a mammary 

gland xenografts model, ERRα can promote proliferation through inducing the expression 

of vascular endothelial growth factor (VEGF) and osteoprotegerin (OPG) (64). VEGF 

and OPG can function together to stimulate angiogenesis. Also, another study showed 

that down-regulation of ERRα would result in decreased proliferation and migratory 

capacity through down-regulating the expression of WNT11 and CCNE1 (65). 
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Importantly, because ERRs stand at the center hinge of the metabolic network, it would 

be surprising if ERRs did not regulate the distinct metabolic profile in cancer pathology. 

To support the fast growing profile, cancer cells undergo metabolic reprogramming that 

features a metabolic shift from oxidative respiration to an aerobic glycolytic profile. This 

phenomenon is called the Warburg effect (66, 67). The regulatory role of ERRs on 

metabolic transitions in fast growing system will be discussed extensively in the 

following manuscript. Lastly, I want to point out that ERRs can interact with functional 

HIF-1 and stimulate HIF-induced transcription, which also contributes to cancer 

pathology from not only metabolic perspectives (68). However, only a few HIF-1α target 

genes were tested in vitro in this study. The physiological role that the ERR/HIF complex 

plays under hypoxic conditions has not been tested. The regulatory role of dERR under 

hypoxia will be extensively discussed in chapter 2.    

         

1.5 ERR regulates the metabolic transitions in fast growing programs (Warburg effect in 

cancer and Drosophila development) 

In the first four days of development from embryos to mid-L3, Drosophila larvae 

experience a dramatic increase in mass as discussed in section 1.2. The fast-growing 

programs of larvae and cancer cells have similar metabolic needs. A large number of 

nucleotides, amino acids and lipids are needed to either grow (larvae) or proliferate 

(cancer). When larvae need to grow rapidly, they primarily depend on aerobic glycolysis 
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instead of OXPHOS, a program that resembles the Warburg effect during development. 

Again as mentioned previously, the Warburg effect refers to the phenomenon that most 

proliferating cell, including cancer cells but not limited to them, primarily rely on 

glycolysis rather than mitochondrial OXPHOS even under aerobic conditions (69, 70). 

However, normal differentiated cells depend primarily on mitochondrial OXPHOS to 

generate the energy needed for their function and growth. OXPHOS is aerobic, i.e. it uses 

oxygen. Later research found that the lower the OXPHOS capacity of tumor cells, the 

more aggressive they are (71). OXPHOS generates ATP more efficiently than does 

glycolysis. Catabolizing one mole of glucose by TCA cycle and OXPHOS can produce 

approximately 36 moles of ATP. But catabolizing one mole of glucose by aerobic 

glycolysis can only generate 2 moles of ATP. This raises the question why fast-

proliferating tumor cells prefer glycolysis as their major way to produce energy. 

Originally, Warburg hypothesized that cancer cells have a defect in their mitochondria 

which leads to impaired aerobic respiration. However, later studies showed that many 

cancer cells largely maintain their mitochondrial function (72, 73). Alternative 

explanations of the Warburg effect are required to better understand this phenomenon. 

One possible explanation is that ATP production is not an issue when resources are 

abundant. Normal cells do not take up nutrients such as glucose unless they are 

stimulated by growth factors. But cancer cells have altered receptor-initiated signaling 

pathways and constitutively take up nutrients. This provides sufficient energy for the 
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survival and growth of tumor cells (74, 75).  Proliferating cells have metabolic 

requirements in addition to their need for ATP. They must replicate all the cellular 

contents to produce daughter cells in mitosis. Thus, they need a large number of 

nucleotides, amino acids and lipids to produce new cells. For most mammalian cells, 

glucose and glutamine provide most of the carbon, nitrogen, free energy, and reducing 

equivalents. A glucose molecule can produce 36 ATPs (full oxidation), or 30 ATPs and 2 

NADPHs (which go into the pentose phosphate pathway), or 6 carbons for 

macromolecular synthesis. From this perspective, ATP is not the only material needed for 

growth by cancer cells, but acetyl-CoA for fatty acids, glycolytic intermediates for 

nonessential amino acids, and ribose for nucleotides are all necessary as macromolecular 

precursors to support the proliferation of cancer cells (76). Cancer cells therefore need to 

catabolize glucose in such a way to provide all these resources, not just ATP. For 

example, a study showed that glioblastoma cells in culture convert about 90% of glucose 

and 60% of glutamine they take into lactate or alanine, and meanwhile NADPH is 

actively generated and important for fatty acid synthesis (77). Lactate dehydrogenase 

(LDH) is a key enzyme involved in converting glucose and glutamine to lactate. Possibly, 

LDH activity is required for generating enough NADPH which is needed by the fast 

proliferation. In many breast cancer cell lines and tissue sections, LDH activity has been 

found to be increased. More interestingly, later studies showed that inhibiting LDH 

activity in cancer cells stimulated their mitochondrial respiration and impaired their 
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proliferation (78). Furthermore, several studies showed that mutations of metabolic 

enzymes can directly assist carcinogenesis. Mutations in genes of the TCA cycle 

enzymes succinate dehydrogenase and fumarate hydratase have been found in a variety of 

cancers (79, 80). Mutations in cytosolic isocitrate dehydrogenase-1 and 2 (IDH 1 and 2) 

have been found in several human brain tumors (81-83). It becomes crucial to understand 

the molecular mechanism that directs this metabolic reprogramming not only in cancer 

cells but also in proliferating cells, in order to develop new anti-cancer therapies. 

Accumulating evidence suggests that ERRs control the Warburg effect in 

proliferating cells such that ERRα assists in setting an aerobic glycolytic profile, but 

ERRγ rather tries to maintain the oxidative metabolic program. This hypothesis 

corresponds with the observations that ERRα is linked with poor prognosis but ERRγ is 

associated with better prognosis. ERRα is expressed in aggressive tumors that often 

display an increase in glucose uptake (84). Furthermore, ERRα not only up-regulates 

enzymes that are involved in the glycolysis pathway in breast cancer cells, but is also 

indispensable for the switch from oxidative to glycolytic metabolism in hepatocarcinoma 

cells (37, 85). On the other hand, the expression of ERRγ is inhibited by miR-378, which 

directs a metabolic reprogramming to an aerobic glycolytic phenotype in breast cancer 

cells (86). In spite of the fact that ERRα and ERRγ are recruited to the same set of target 

genes, can readily form heterodimers, and share a capability to regulate genes governing 

both the glycolytic and the oxidative mitochondrial respiration phenotype, the opposing 
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roles of the two isoforms in the establishment of a Warburg-like profile illustrate the 

complexity of metabolic reprogramming by ERR proteins in cancer cells (27). So it 

becomes very important to understand how ERRs control metabolic shift in a 

physiological context. 

    Drosophila is a great tool to study ERR biology. There is only one ERR in 

Drosophila, making it an excellent tool to study ERR function. ERRs are well conserved 

from flies to mammals. The dERR DBD and LBD are approximately 85% and 35% 

identical to mERR DBD and LBD. In 2011, Tennessen et al. showed that the expression 

of active dERR protein triggers a coordinate switch from OXPHOS toward glycolysis at 

late embryogenesis in flies, which is also considered as developmental Warburg effect 

(87). This report demonstrates that the role of the ERRs as regulators of carbohydrate 

metabolism and metabolic programs associated with proliferating cells is highly 

conserved from flies to humans. As discussed in previous sections, Drosophila undergoes 

massive proliferation during the first four days of development from embryos to mid-L3. 

Starting around day one after L3 onset, the larvae will go out of the food and start to 

wander and be prepared for pupariation. Then in the next 4 days, pupae undergo a total 

reconstruction of all body parts to form adult fly. During this period, they have to depend 

on burning the fat that was accumulated in their fast growing phase (the time from 

embryo to mid-L3), which is also considered as developmental starvation. Eventually, an 

adult fly will be emerge and run a metabolic program that very much resembles 
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differenciated mammalian cells. These phenotypes suggest flies trigger two switch-like 

metabolic reprogrammings. They have to turn on glycolysis in late embryogenesis to 

facilitate massive fat storage and turn it off right before pupariation in order to stop 

storing and start consuming fat. There is a study that showed that dERR governs the first 

transition, and hopefully our work here will provide evidence the dERR controls the 

second transition, but also control metabolic transitions induced by physical stress, like 

hypoxia. I hope my work in this thesis will provide a molecular context to understand the 

close association between mammalian ERR family members and human diseases, such as 

metabolic syndromes and cancer.  
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CHAPTER 2 HIF-and Non-HIF-Regulated Hypoxic Responses Require the ERR in 

Drosophila melanogaster 

 

2.1 Introduction 

Hypoxia is a condition in which the body or a region of the body is deprived of 

adequate oxygen supply. Hypoxia plays an essential role in the pathology of many 

disease, including heart disease, stroke, chronic lung disease, and especially cancers. 

Although in the past oxygen sensing was thought to be limited to certain cells, it is now 

been recognized that all nucleated cells in the body can respond to hypoxia (88). One 

important way that cells adapt to limiting oxygen is by transitioning from oxidative 

metabolism toward glycolytic lactate production for energy production. Specifically, cells 

convert glucose to pyruvate by glycolytic enzymes, and subsequently pyruvate will be 

derived either to acetyl coenzyme A (CoA) for oxidation in the tricarboxylic acid cycle 

(TCA) in the present of oxygen or to lactate by lactate dehydrogenase (LDH) as a 

glycolytic end product under hypoxia (89). Complementing this strategic change of 

metabolism are complex shifts in the transcriptome, which add durability to the initial 

hypoxic response. Hypoxia-inducible factor 1 (HIF-1) regulates the expression of genes 

that mediate the adaptive response to hypoxia. The HIF transcriptional complex is 

comprised of an oxygen-labile HIF-1α subunit and its stable partner HIF-1β. This 
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pathway is central to the hypoxic response and is highly conserved from worms to human 

(88). HIF-1 complex has been found to be important in the etiologies of many diseases, 

including cancers and heart disease (90-92); these conditions have a hypoxic component- 

and therefore an altered metabolic component - that is critical to disease progression.  

In mammals, HIF-1α belongs to the family of basic-helix-loop-helix (bHLH)/PAS 

transcription factors.  It forms a heterodimer with the constitutively expressed HIF-1β 

(aka aryl hydrocarbon receptor nuclear translocator or ARNT). Together they bind to the 

HIF response elements (HREs) in the promoter regions of their target genes to regulate 

transcription. Under normoxia, HIF-1α expression is tightly regulated and quickly 

degraded in the cytosol. Two prolyl residues in the oxygen-dependent degradation 

domain (ODD) of HIF-1α are Fe(II)- and O2-dependently hydroxylated by prolyl 

dehydroxylase (PHD) (93). Then, HIF-1α binds to the von Hippel-Lindau (VHL) protein 

which can be recognized by the E3 ubiquitin ligase complex, leading to HIF-1α 

degradation by the proteasome. In mammals the two prolyl sites are Pro
402

 and Pro
564 

(94-

96). Additionally, to fully function, HIF-1α needs to bind to the coactivator protein 

p300/CBP. Under normoxia, an asparagine site (Asn
803

) in its C-terminal activation 

domain (CAD) is hydroxylated by FIH-1, which prohibits HIF-1α from interacting with 

p300. Without binding to p300, HIF-1α is not capable of completely up-regulating its 

target genes (97-99).  
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The number of transcripts impacted by HIF-1α is large and ontologically diverse. 

Despite this, a few affected pathways generally characterize HIF-mediated adaptation 

responses, including upregulation of angiogenic (100, 101), erythropoietic (102) and 

glycolytic transcripts (103, 104). The total hypoxic response, however, is not entirely 

dependent on the HIF pathway. For example, Shen et al. found 110 hypoxia response 

genes in C. elegans, 47 of which were induced in the absence of HIF (105). Although 

HIF-independent hypoxia-induced activities have also been identified in other organisms, 

these pathways remain poorly understood, though even in mammalian cells, HIF-1α is 

dispensable for hypoxic upregulation of a number of transcripts (106–108). These results 

suggest that HIF-independent hypoxic signaling mechanisms may act in concert with, or 

even supplant, the HIF response pathway in a context-dependent manner. 

Drosophila melanogaster deal with no/low oxygen conditions well when compared 

to mammals, and can survive anoxic challenge for hours at a time (109, 110). This 

phenomenon is possibly due to the highly efficient gas exchange systems in flies. Flies 

maintain the three fundamental components of the HIF pathway: 1) the HIF prolyl 

hydroxylase (Fatiga); 2) dVHL; and 3) both components the HIF complex-dHIFα 

(encoded by sima) and Tango (dHIFβ). As in mammals, dHIFα has an ODD domain that 

is sufficient to direct oxygen-sensitive degradation when hydroxylated (111). While 

previous studies have examined hypoxic responses in adult flies (112, 113), the precise 

input that dHIFα has in this process has not been examined. In contrast, detailed studies 
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have shown that dHIFα plays a vital role in directing hypoxia-driven terminal branching 

of the tracheal system during development (114, 115). The Drosophila tracheal network 

serves as the fly respiratory system, and it is noteworthy that its developmental branching 

bears a striking resemblance to processes controlling mammalian angiogenesis (116). In 

addition, similar hypoxia-induced metabolic transitions have been reported in flies and 

mammals (117), although these remain poorly defined. 

As thoroughly discussed in Chapter 1, the highly conserved dERR nuclear receptor 

directs a developmentally-regulated transcriptional switch towards glycolytic metabolism 

that supports developmental growth (87). This function is similar to that described for 

ERRα in vertebrates, which is associated with glycolytic metabolism and breast cancer 

(62, 118). Importantly, mammalian ERRs are also active participants in HIF-mediated 

hypoxic responses. They are directly recruited by HIF-1α to HREs and are required for a 

complete transcriptional response at specific promoters (68), suggesting that ERRs play a 

critical role in hypoxic responses. 

Principal component analysis (PCA) is a widely used technique to transform a 

number of possibly correlated variables into a smaller number of uncorrelated variables 

called principal components. In general terms, PCA uses a vector space transform to 

reduce the dimensionality of large data sets. Using mathematical projection, the original 

data set with many variables can often be interpreted in just a few variables (the principal 

components). It is therefore often the case that an examination of the reduced dimension 
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data set will allow the user to spot trends, patterns and outliers in the data (119). In this 

study, we wanted to use PCA detect the general trends of the high-throughput GC-MS 

analysis that carried out on four experimental conditions (w
1118

 N, w
1118

 H, sima N, sima 

H). In our data, N is the number of metabolites and p is 4 (number of conditions). The 

mathematical background of principal component analysis will be explained briefly here. 

Let X denotes the N×p data matrix, where N is the number observations and p is the 

dimension of each observation. PCA first find the average metabolites m which is a 4×1 

vector across all metabolites. It is the center of the N data points. PCA then subtracts the 

mean from all data points to form a centered data matrix Xc. Then PCA seeks the first 

projection direction v1 onto which the variance of the projected data points has the 

maximal variance. This projection direction v1 is called the first PC loading vector. The 

projected values from data point’s Xc × v1 are called the first PC scores. The second PC 

loading vector v2 is orthogonal to the first PC loading vector and maximizes the variance 

of projected data points. Correspondingly, the projected values from data points Xc × v2 

are called the second PC scores. The kth PC loading vector vk is orthogonal to the first (k-

1) PC loading vectors and maximized the variance of projected data points. The 

associated projected values Xc × vk are called the kth PC scores. In our application, the 

maximal number of PC loading vectors/PC scores is the dimension of the data points p. 

With the all the PC loading vectors and PC scores, the original data point x can be 

reconstructed as x = m + PC1 * v1 + PC2 * v2 + … + PCp * vp. 
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In this Chapter, we wanted to investigate hypoxic responses in Drosophila and assess 

the influence of dHIFα on transcriptional and metabolic adaptation. We report here that 

the hypoxic transcriptional response segregates into distinct HIF-dependent and HIF-

independent pathways. These pathways are differentially sensitive to hypoxic challenge 

in a temporal fashion during development, but both pathways are most sensitive prior to 

metamorphic onset and least active in the immediate hours following pupariation. 

Contrary to expectations, we find that upregulation of glycolytic transcripts is HIF-

independent. Our metabolic analysis suggests that loss of dHIFα has a profound and 

wide-ranging effect on all aspects of carbohydrate catabolism when unchallenged in 

normoxia. In hypoxia, however, dHIF (also called as sima) mutants remain unable to 

mobilize glycogen, which is preferentially depleted under hypoxic conditions. We 

additionally show that dERR is required during hypoxia, in that it controls a unique set of 

hypoxia-regulated dERR-dependent transcripts that include HIF-independent glycolytic 

genes. Altogether, our studies raise important questions regarding the breadth of HIF 

involvement in hypoxic transitions and identify dERR as an essential factor that 

complements HIF-dependent and -independent responses. 

 

2.2 Methods 

2.2.1 Fly strains and hypoxic treatments 
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Flies were maintained on regular cornmeal-molasses-yeast media at 25°C. sima 

mutants (sima
07607

) (120) were obtained from Bloomington Stock Center. w
1118

 animals 

were treated as controls. dERR mutants (dERR
1
/dERR

2
) are described elsewhere (87). 

dERR,sima double-mutants were generated by recombination of the sima
07607

 allele with 

each of the individual dERR
1
 and dERR

2
 mutations. Embryos were collected at 25°C for 

14 hrs onto egg caps (molasses-agar media in 35 mm×10 mm dishes) with yeast paste. 

Mid-L2 larvae were transferred to a fresh egg cap with blue yeast paste (0.3% 

bromophenol blue), and allowed to develop until achieving the partial clear-gut L3 stage 

(-10 to -4 hrs RTP). Staged animals were moved to fresh agar plates and allowed to age 

an additional 6 hours at 25°C (normoxic treatment); or, animals were placed in an airtight 

Modular Incubator Chamber (Billups-Rothenberg, Inc., Del Mar, CA) for 6 hours at 25°C 

after a gas mixture containing 4% oxygen balanced with nitrogen was flashed into the 

chamber (hypoxic treatment). The sima
07607

 chromosome was carried over a TM3, twi-

GFP (green fluorescent protein) balancer chromosome. Homozygous mutant larvae were 

sorted for the absence of GFP expression using a Zeiss Discovery V.8 dissecting 

stereoscope with fluorescence at mid-L2. For lethal phase analysis in Figure 2.8B, 0–4 hr 

post-hatch L1 larvae were sorted for fluorescence to assign genotype. Larvae were placed 

in vials containing fresh yeast paste and were then exposed to 21% (normal air) or 4% 

oxygen for 48 hrs and scored for lethality or completion of L1. 

 

http://en.wikipedia.org/wiki/Celsius
http://en.wikipedia.org/wiki/Celsius
http://en.wikipedia.org/wiki/Celsius
http://en.wikipedia.org/wiki/Celsius
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2.2.2 Microarray analysis 

Microarray analyses were performed on at least three biological replicates of w
1118

 

animals, sima mutants, dERR mutants, and sima,dERR double-mutants at the partial 

clear-gut L3 stage and treated for 6 hrs in normoxia or 4% O2. For each biological 

replicate, at least 10 larvae were collected and washed with 1×PBS before 

homogenization in TRIzol (Invitrogen, Carlsbad, CA) using a VWR disposable pellet 

mixer. Total RNA was isolated using a TRIzol/RQ1 DNase hybrid extraction protocol 

(Promega, Madison, WI). Template labeling was done using the GeneChip 3’ IVT 

Express Kit according to the manufacturer’s specifications (Affymetrix, Santa Clara, 

CA). Hybridizations to Affymetrix GeneChip Drosophila Genome 2.0 arrays were 

performed using the manufacturer’s recommendations. Every chip was scanned at a high 

resolution by the Affymetrix GeneChip Scanner 3000 according to the GeneChip 

Expression Analysis Technical Manual procedures (Affymetrix, Santa Clara, CA). Raw 

data were normalized with RMA (121) and analyzed with the significance analysis of 

microarray (SAM) program (122). No changes below 1.5-fold were considered 

significant. Additionally, the following false discovery rate percentages were imposed: 

0.733% for w
1118

 normoxia vs. w
1118

 hypoxia; 0.414% for sima normoxia vs. sima 

hypoxia; 0.721% for w
1118

 hypoxia vs. sima hypoxia; 7.84% dERR normoxia vs. dERR 

hypoxia; 0.619% for w
1118

 hypoxia vs. dERR hypoxia; 0.662% dERR,sima double-mutant 

normoxia vs. dERR,sima double-mutant hypoxia; 0.703% for w
1118

 hypoxia vs. 
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dERR,sima double-mutant hypoxia. Microsoft Access was used to compare data sets. 

Microarray data from this study can be accessed at the Omnibus website 

(http://www.ncbi.nlm.nib.gov/geo) with the accession number GSE33100.  

 

2.2.3 Quantitative RT-PCR 

Total RNA samples were isolated as described above. RNA was reverse transcribed 

with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystem, Carlsbad, 

CA) using the manufacturer’s specifications. For real-time PCR, premixed primer-probe 

sets were purchased from Applied Biosystems, with the exception of the primer set used 

for amylase. For amylase, a standard SYBR Green (Bioline, Taunton, MA) protocol was 

used with the primer sets: 5’ AACTACAACGACGCCAACGAG 3’ and 5’ 

TGGTCGGTGTTCAGGTTCTTG 3’. All amplifications were carried out on a CFX96 

real-time PCR system (Bio-Rad, Hercules, CA). Experimental values were normalized to 

values obtained for the Rp49 probe set. Data are reported as the mean ± SEM. All values 

reported represent experiments performed on at least three biological replicates.  

 

2.2.4 Metabolic analysis 

Analyses were performed on partial clear-gut L3 larvae treated for 6 hours in 

normoxia or 4% O2. After treatment, animals were washed twice in PBS pH 8.0 and 

immediately frozen at -80°C. For glycogen measurements, 45 animals were split into 

http://www.ncbi.nlm.nib.gov/geo
http://en.wikipedia.org/wiki/Celsius
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three pools and the assay was performed essentially as described (18). Color intensity 

was measured using a Bio-Tek Elx800 absorbance microplate reader at 540 nm. Glucose 

and glucose+glycogen amounts were determined using a standard curve. The amount of 

glycogen was determined by subtracting the glucose from the glucose+glycogen total. 

Glycogen amounts were normalized to protein content in each homogenate using a 

Bradford assay (Bio-Rad). For ATP measurements, larvae were homogenized in 300 µl 

of 6M guanidine-HCl extraction buffer (100 mM Tris and 4 mM EDTA, pH 7.5). The 

homogenate was heated at 70°C for 5 min and centrifuged in at 3000×g for 1 min. The 

supernatant was diluted 1:750 in dilution buffer (25 mM Tris and 100 mM EDTA, pH 

7.5) and spun at 14000×g for 3 min, after which 10 µl supernatant was transferred to a 

96-well white opaque plate and mixed with 100 µl of luminescent solution (Invitrogen, 

Molecular probes). Luminescence was immediately measured by a Bio-Tek Synergy 2 

SL luminometer. The amount of ATP was determined using a standard curve. Amounts 

were normalized to total protein. For lactate measurements, 300 first instar larva, 60 third 

instar larva or 30 1-day-old males were split into three pools and measured as described 

Monserrate et al. (2012) using Lactate Assay Kit (Biovision Milpitas, CA,) (123). For 

metabolomics, analyses were performed by Metabolon, Inc. (Durham, NC). Replicates 

were normalized by protein content (Bradford analysis). Recovery standards were added 

to samples prior to extraction using a proprietary series of organic and aqueous solutions. 

Extracts were divided into two fractions, one for GC and one for LC. Organic solvent 

http://en.wikipedia.org/wiki/Celsius
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was removed using a TurboVap (Zymark). Briefly, for LC/MS, split samples were dried 

and reconstituted in acidic or basic LC-compatible solvents containing standards. Positive 

and negative ion-optimized sample conditions were analyzed in separate injections. For 

acidic reconstitutions a gradient of water and methanol containing 0.1% formic acid was 

used, and for basic extracts a water/methanol gradient with 6.5 mM NH4HCO3. Analysis 

was performed on a Thermo-Finnigan LTQ mass spectrometer with an electrospray 

ionization source and linear ion-trap mass analyzer. For GC, samples were re-dried under 

vacuum prior to derivatization under nitrogen using bistrimethyl-silyl-trifluoroacetamide. 

The column was 5% phenyl with a temperature ramp of 40˚ to 300°C over 16 minutes. 

Samples were analyzed using a Thermo-Finnigan Trace DSQ fast-scanning single-

quadrapole mass spectrometer with electron impact ionization. Refer to Appendix table 2 

for normalized data of each replicate and p- and q-values. Extensive quality control care 

was applied to minimize variability between days. The Metabolon platform has been 

described elsewhere (124, 125). Data values were imputed in the following way when 

values fell below the threshold level of detection: when all six replicates were 

undetectable, each was assigned the minimum detectable value of across all compounds 

tested; when five or less replicates were undetectable, sample values were assigned the 

minimum value obtained among those that were detected for a given compound. 

 

2.2.5 Yeast two-hybrid screen and GST-pull down 

http://en.wikipedia.org/wiki/Celsius
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A yeast two-hybrid screen was conducted using the Invitrogen ProQuest Two-Hybrid 

System. For this purpose, three cDNA prey libraries were simultaneously prepared using 

the CloneMiner cDNA Library Construction Kit (Invitrogen). All the libraries (a, b, c) 

were made from poly-A-selected RNA that was extracted from w
1118

 animals at -4, +0, or 

+4 RTP, which was reverse transcribed and pooled in equal proportions before library 

construction. Each library differs by only a single base pair in the adapter sequence to 

facilitate expression of clones in all three frames. Extensive procedures, provided by the 

manufacturer, were followed to capture clones into the pDONR222 vector. Clones in the 

donor vector were subsequently recombined into the pDEST22 vector. Libraries were 

titered (a=7.18E6 CFU, b=4.44E6 CFU, c=14.28E6 CFU) and sampled for average insert 

size (a=1.64 kb, b=1.25 kb, c =1.60 kb) before transformation into ElectoMax cells 

(Invitrogen). Transformed cells for each library were pooled (total of 6.4E6 CFU) and 

grown for 22 hrs at 30°C for preparation of library DNA by standard techniques. 22lg of 

library DNA was transformed into the yeast bait strain containing the LBD of dERR 

(L193-R496) that had been recombined into the pDEST32 vector. A total of 5.28E5 

clones were screened by auxotrophic selection. All positive hits were sequenced. GST-

pulldown experiments and the expression of GST-fused ERR constructs in pGEX-4T1 

were performed as described (126).  

 

2.2.6 Statistical analysis  

http://en.wikipedia.org/wiki/Celsius
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A one-way ANOVA F-test was applied to test for the differences in glycogen levels, 

followed by Tukey’s HSD method. For developmental qRT-PCR analysis, delta CT 

values were used to perform statistical analysis, whereby a two-tailed unpaired student’s 

t-test was applied for the differences in gene expression using a Bonferroni correction. 

Following log transformation and imputation, a one-way ANOVA with contrasts was 

used to identify significance for metabolites in the mass spec analysis (See Appendix 

table 2). Cumulative hypergeometric probability was used to determine significance 

between overlapping gene sets. For PCA analysis, the original scan data of metabolites in 

each experiment condition (w
1118

 normoxia, w
1118 

hypoxia, sima normoxia, sima hypoxia, 

dERR normoxia, dERR hypoxia) measured by GC/LC-MS were averaged and normalized 

by protein concentration. For missing data, the global minimum of the non-missing 

average was imputed. Then we take a logarithm with base 10 of the data. For sima 

hypoxia and normoxia, there are 243 metabolites, so the final data matrix is 243×4. All 

statistical analysis was performed using R 3.0.2.  

 

2.3 Results 

2.3.1 Robust transcriptional response to hypoxia in late third instar larvae 

To better understand the contribution of dHIFα in the hypoxic adaptation response, 

we wanted to determine the developmental time point when dHIFα was most active. To 

start, we examined the wild-type expression of two known hypoxia-responsive transcripts 
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in Drosophila, lactate dehydrogenase (LDH, known also as: ImpL3, CG10160), and the 

HIF prolyl hydroxylase, fatiga (CG31543) (127, 128). We also examined the rate-

limiting enzyme of glycolysis, phosphofructokinase, encoded by Pfk (CG4001) as a 

potential hypoxia-responsive gene. We surveyed three times points, late embryo, mid-

second instar (mid-L2) larvae, and late-L3 larvae by qRT-PCR to examine transcriptional 

responses of whole animals that were allowed to develop in normoxia (21% O2) and then 

challenged with a 4% O2 treatment for 6 hours – hereafter referred to as H-treatment 

(Figure 2.1A). This level of oxygen, and this time course, has previously been shown to 

mobilize the fly HIF pathway (129). As seen in Figure 2.1D, the late-L3 time point of 

wandering larvae [-10 to -4 hours relative to the onset of pupariation (RTP)] is a period 

where each of the three genes is significantly induced by H-treatment. This expression 

profile is different from responses observed in embryos 18–24 hr after egg laying (AEL) 

(Figure 2.1B) and mid-L2 larvae (Figure 2.1C), when LDH and Pfk were unresponsive to 

treatment, indicating that hypoxic responses are developmentally tempered. 

 

2.3.2 Identification of HIF-dependent and HIF-independent hypoxic transcripts 

To establish the identity of the full complement of H-regulated transcripts, RNA 

samples were prepared from N- and H-treated pools of control w
1118

 animals and sima 

mutants at the late-L3 time. The sima mutant line (sima
07607

) contains a lethal P-element 

insertion in the first intron in the sima locus, which eliminates detectable expression of 
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the transcript, rendering the animals incapable of directing expression of an oxygen-

sensitive murine LDH-reporter and, importantly, unable to respond competently to 

hypoxic challenge (120, 130). 

 

Figure 2.1 Temporal-dependent hypoxic responses. (A) Hypoxic treatment regimen of 

w
1118

 animals that were allowed to develop in normoxia (N) until they reached one of 

three developmental stages, at which point they were treated for 6 hours in N or hypoxia 

(H) (4% O2). (B-D) qRT-PCR analysis was performed to assess the espression of fatiga, 

LDH, and Pfk at 18-24 hr AEL, mid-L2, or partial clear-gut larvae in late-L3. All 

experiments of H/N. Error bars are SEM. * = p-value<0.05 (statistically significant). 

 

 



34 
 

 

 

 

As expected, H-treatment resulted in a pronounced change in the transcriptome. Using 

the microarray scheme outlined in Figure 2.2, we extracted a series of significantly 

altered gene sets (Appendix table 1). We were primarily concerned with identifying two 

mutually exclusive H-regulated gene sets – HIF-independent (HI) and HIF-dependent 

(HD). Transcripts that did not exhibit at least a 1.5-fold change in expression, and which 

did not have a false discovery rate (FDR, q-value) of less than 1%, were not included in 

any set. This high stringency means that we have likely excluded genuinely H-regulated 

transcripts from our final sets, be they HD or HI. Despite this, we classified 254 

transcripts as HI and 171 as HD. It is important to note that the HI and HD 

categorizations reflect the hypoxic responsiveness of individual transcripts at the late-L3 

time alone. The top 20 affected transcripts from the HIF-dependent and -independent 

categories are listed in Table 2.1. 

Gene ontology (GO) analysis (130) was performed on the hypoxia genes sets (Figure 

2.3A and 2.3B). Notably, the HI gene set, and not the HD gene set, contain glycolytic 

transcripts that are up-regulated in hypoxia, which was the single most statistically 

impacted process in either the HD or the HI sets (Figure 2.3A). Instead of glycolytic 

genes, significant GO categories were identified for HD genes involved in translational 

control and RNA processing (Figure 2.3B). However, among the HD H-regulated 
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transcripts are fatiga and dVHL. This suggests that dHIFα participates in a feedback 

regulatory loop that attenuates its own activity. 

 

 

 

Figure 2.2. Scheme to identity dHIF-independent (HI) and dHIF-dependent (HD) 

hypoxia-regulated genes. The dHIF-independent set (640 genes), represents the direct 

comparison of N- or H-treated samples from dHIF mutants. The Total H genes set (1127 

genes) represents the direct comparison of N- or H-treated samples from w
1118

 animals. 

The HI H genes set (red circle), represents the overlap of the Total H genes set with the 

dHIF-independent set. The dHIF-dependent set2 (873 genes), represents the subtraction 

of the dHIF-independent H genes set from the Total H genes set. The dHIF-dependent 

set1 (801 genes), represents the direct comparison of H-treated samples from w
1118

 

animals and dHIF mutants. The HD H genes set (green circle), represents the overlap 

between the dHIF-dependent sets1 and 2. All genes in any of the sets are up- or 

downregulated at least 1.5-fold and have a FDR of less than 1%. See Appendix table 1 

for gene set lists. 
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Table 2.1. List of 20 top transcripts whose expression changes in response to hypoxic 

challenge in a dHIF-dependent or –independent fashion. 

 
Top 20 HIF-Dependent Hypoxia Response Genes 

Probe Set ID CG Gene Title Process/Function W
1118

 hypoxia vs. 

sima  hypoxia 

W
1118

 hypoxia vs. 

sima  hypoxia 

1639737_at CG34330 ˗˗˗ ˗˗˗ -67.60 4.82 

AFFX-Dm-

U46493-1_s_at 

˗˗˗ ˗˗˗ ˗˗˗ -22.19 2.47 

1625173_s_at CG11652 dDPH1 diphthamide synthesis -16.82 10.91 

1626857_at CG4408 ˗˗˗ carboxypeptidase -11.90 -2.93 

1627135_at CG4608 Branchless FGF receptor -9.51 10.87 

1637758_at CG7737 ˗˗˗ spermine oxidase -7.93 8.56 

1638797_a_at CG31543 Fatiga HIF prolyl hydroxylase -7.91 7.70 

1637182_at CG9503 ˗˗˗ choline dehydrogenase -6.85 2.51 

1624497_at CG2676 ˗˗˗ ˗˗˗ -6.44 4.28 

1634786_at CG7106 Lectin-28C mannose receptor -6.01 1.80 

1628705_at CG31022 PH4alphaEB prolyl hydroxylase -5.62 3.08 

1636482_at CG14005 ˗˗˗ ˗˗˗ -5.34 5.69 

1639555_at CG17724 ˗˗˗ ˗˗˗ -4.66 4.23 

1629753_at CG3340 Kruppel Transcriptional repression -4.47 -1.76 

1632203_at CG31706 ˗˗˗ ˗˗˗ -4.26 6.16 

1628428_at CG12389 dFPP geranyltransferase -4.25 3.79 

1635558_s_at CG17724// 

CG32904 

˗˗˗//sequoia ˗˗˗ -4.19 4.31 

1627535_a_at CG1333 Ero1L protein disulfide isomerase -3.79 5.91 

1636145_at CG7219 Serpin 28D serline-type endopeptidase 

inhibitor 

-3.78 3.87 

1626844_at CG5748 HSF1 transcriptional activator -3.54 2.98 

Top 20 HIF-Independent Hypoxia Response Genes 
1631533_at CG10240 Cyp6a22 E-class cytochrome P450 7.82 5.38 

1638182_at CG5999 ˗˗˗ UDP-glucuronosyltransferase 7.49 5.89 

1635227_at CG10160 ImpL3 lactate dehydrogenase 7.38 14.16 

1626324_at CG9964 Cyp309a1 E-class cytochrome P450 6.48 3.57 

1628758_at CG1774 dACOT acyl-CoA thioesterase 6.36 4.39 

1632021_at CG10245 Cyp6a20 E-class cytochrome P450 6.30 2.79 

1629061_s_at CG32041 Hsp22//Hsp67Bb response to stress 5.83 6.01 

1628052_at CG10241 Cyp6a17 E-class cytochrome P450 5.20 5.67 

1632343_at CG3017 Alas 5-aminolevulinate synthase 5.07 3.82 

1631637_a_at CG11567 Cpr NADPH-Cyp reductase 4.91 4.36 

1639495_at CG4485 Cyp9b1 E-class cytochrome P450 4.80 5.44 

1628660_at CG7130 Hsp40 dnaJ homolog 4.18 3.05 

1624156_at CG18578 Ugt86Da UDP-glucuronosyltransferase 4.02 3.06 

1632639_at CG13941 Arc2 synaptic plasticity 3.94 3.44 

1631611_at CG33983 obstructor-H chitin-binding 3.94 2.39 

1641169_s_at CG11050 ˗˗˗ phosphoric diester hydrolase 3.71 3.68 

1634072_s_at CG4311 Hmgs HMG-CoA synthase 3.68 2.53 

1625134_at CG10873 p53 tumor suppressor 3.57 2.36 

1630885_at CG12534 Alr flavin-linked sulfhydryl 

oxidase 

3.52 1.97 

1628657_at CG17534 GstE9 glutathione S transferase 3.38 3.89 
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Figure 2.3 HIF-dependent and HIF-independent hypoxic response genes. (A-B) 

Gene ontology (GO) analysis was performed on sima -independent (HI) and sima -

dependent (HD) gene sets that were derived from microarray analysis of H- or N-treated 

control (w
1118

) animals or sima  (sima
07607

) mutants collected at the partial clear-gut late-

L3 time. See Figure S1 for the analysis scheme. GO categories are listed in order of 

statistical significance. The numbers of H-regulated genes affected are shown along with 

the total number of genes in each category. All transcripts are up- or downregulated at 

least 1.5-fold and have a false discovery rate (FDR) of <1%. (C) A heat map was created 

to illustrate the similarity or dissimilarity of hypoxic responses observed in control and 

sima mutant animals for major GO categories impacted by H-treatment.  Red (up-

regulated), green (down-regulated), or white (no significant change) values represent 

hypoxic responses observed in the backgrounds indicated. For this analysis, FDR 

stringency was <1%, unless otherwise noted with * for a particular genotype, where a 

relaxed gate was used (1-5%), also means that false discovery rate equals to 1-5%. 

 

 

    Ontology-focused heat maps were generated to compare hypoxic transcriptional 

responsiveness. In addition to glycolytic genes, comparisons were made for other 

metabolic categories where GO significance was identified, including oxidoreductase 

activity, lipid metabolism, vitamin binding, and amino acid metabolism (Figure 2.3C). 

With the exception of lipid metabolic genes, when hypoxic responsiveness is seen (up- or 

down-regulated) in the control background, the majority of genes also respond in-kind in 

the sima background, and usually with a similar fold change increase. These results 

suggest that HIF-independent, H-sensitive mechanisms account for a large percentage of 

the hypoxic response. 
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2.3.3 Temporal-dependent hypoxic responses 

The unexpected breadth of contribution of the HI pathway in the hypoxic response led 

us to reconsider our initial observations made in Figure 2.1, where fatiga displayed a 

similar response profile across each of the times assayed, and LDH and Pfk displayed a 

hypoxic response at only the late-larval time. Indeed, fatiga is a HD gene, whereas LDH 

and Pfk are HI genes (Appendix table 1). Were LDH and Pfk unresponsive at earlier 

developmental times because the HI pathway was not active until just prior to 

metamorphic onset? To address this question, we collected RNA from control animals 

and sima mutants staged at times that spanned development. In all, twelve samples were 

gathered: 4 embryonic times (0–6 hrs AEL [w
1118

 background only], 6–12 hrs AEL, 12–

18 hrs AEL, and 18–24 hrs AEL); 4 larval times (mid-L1, mid-L2, mid-L3, and -4 hr 

RTP); 3 metamorphic times (0 hr RTP, +12 hr RTP, +72 hr RTP); and 1 adult time (1 

day-old males). qRT-PCR was used to assess H responses of 13 select genes that 

displayed varying levels of H-sensitive expression. Of those genes analyzed: five were 

classified as HD genes – fatiga, spermine oxidase (CG7737), sequoia (CG17724), 

branchless (CG4608), and Peroxiredoxin 2540-2 (Prx2540, CG11765); seven were 

classified as HI genes – LDH, Pfk, NMNAT (CG13645), Alas (CG3017), Cyp9b1 

(CG4485), Cyp6a17 (CG10241), and Cyp6a22 (CG10240); and one was highly affected 

by H, but did not meet the stringency requirements for H set inclusion –CG31769, which 

had a largely HIF-dependent expression profile in late-L3. 
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Figure 2.4 Temporal expression of HIF-dependent hypoxic response genes. (A-E) 

Developmental hypoxic response profiles from qRT-PCR analyses are shown for 

transcripts that display HIF-dependent (A - fatiga, B - spermine oxidase, C - sequoia, D - 

branchless) or largely HIF-dependent expression (E - CG31769). Control (w
1118

) animals 

or sima mutants were challenged for 6-hrs with 4% O2. Animals were challenged at 0-6 

hr after egg laying (AEL) (not from mutant), 6-12 hr AEL, 12-18 hr AEL, 18-24 hr AEL, 

mid-L1, mid-L2, mid-L3, -10 - -4 hr relative to pupariation (RTP) L3, 0 hr RTP, +12 hr 

RTP, +72 hr RTP, and 1-day old males. All values are from experiments performed in 

triplicate from pools of biological replicates. Values are normalized to rp49 expression 

and are reported as the relative fold-change of H/N. The dotted line represents no net 

change in response, or a value of 1.0. The vertical black line in late-L3 is when 

microarray analysis was performed. Error bars are the SEM. 
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Figure 2.5. Temporal expression of HIF-independent hypoxic response genes. (A-H) 

Developmental hypoxic response profile from qRT-PCR analyses are shown for 

transcripts that display HIF-independent (A - LDH, B - phosphofuctokinase, C - NMNAT, 

D - Alas, E - Cyp9b1, F - Cyp6a17, G - Cyp6a22) or largely HIF-independent expression 

(H - Peroxiredoxin 2540-2 – we note that Prx2540-2 displays HD expression for probe 

set 1631628_s_at in the microarray and is thus classified as such; however, a second, 

non-overlapping probe set, 1633471_at, which is much more robustly induced in H 

appears to be from HI action, although its variability is too great to classify in this 
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manner (Appendix table 1). Our qPCR primer set favors HI expression.) Control (w
1118

) 

animals or sima mutants were challenged for 6-hrs with 4% O2. Developmental challenge 

times are identical to those from Figure 2.4. All values are from experiments performed 

in triplicate from pools of biological replicates. Values are normalized to rp49 expression 

and are reported as the relative fold-change of H/N. The dotted line represents no net 

change in response, or a value of 1.0. The vertical black line in late-L3 is when 

microarray analysis was performed. Error bars are the SEM. 

 

 

Several patterns emerged from the developmental analysis. First, hypoxic 

transcriptional induction is most evident at the late-L3 time for each gene assayed. 

Second, without exception, HD and HI genes display marked drops in H responsiveness 

just after metamorphic onset. In most cases, H responsiveness is eliminated during the 

hours surrounding head eversion, which is the initiation of the pupal phase. Among the 

transcripts examined, HD genes were not induced in hypoxia in a sima background at any 

developmental time, with the notable exception of a single point in mid-L3 for branchless 

(Figure 2.4D). Finally, in the absence of dHIFα, HI genes tend to be hyper-responsive to 

H challenge throughout development – this was true for all genes examined except LDH 

(Figure 2.5A). The LDH profile was unique amongst those assayed, in that late-L3 

expression was HI, while pupal expression appears to be dominated by HD expression. 

The super-activation of LDH during the pupal phase in the w
1118

 background (vs. sima) 

suggests that both the HD and HI pathways are capable of converging simultaneously at 

the same locus to contribute to its overall expression. Collectively, these developmental 
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expression data indicate that hypoxic responses are comprised of a patchwork of HD and 

HI activities throughout life-stage progression. 

 

2.3.4 sima mutants are metabolically disturbed in normoxia and are unable to mobilize 

glycogen in hypoxia 

    The observation that glycolytic transcripts are effectively up-regulated in sima 

mutants challenged with hypoxia raised the question of how metabolism was affected 

under these conditions. As before, we concentrated on the late-L3 time because of its 

particularly robust transcriptional response to H-treatment. We found that glycogen was 

significantly depleted by control w
1118

 animals in H, in addition to a near 50% reduction 

in the level of ATP (Figure 2.6A and 2.6B). 

  We tested for additional HIF-dependent metabolic defects in carbohydrate 

catabolism using mass spectrometry tied to gas and/or liquid chromatography (GC/MS, 

LC/MS). Extracts were prepared from animals subjected to N- and H-treatments and 243 

metabolites in all major metabolic processes were measured. At first, we applied PCA 

analysis on the 24 normalized metabolite data sets (6 replicates in each four experimental 

conditions as w
1118

 N, w
1118

 H, sima N, sima H) to see whether the majority of 

metabolites in the replicates clustered in each different conditions. We see indeed nicely 

clustering of data in all four experimental conditions without obvious outliers (data not 

shown). Next, we carried out PCA analysis on the raw data sets as described in section 
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2.2.6 to detect the changing patterns in the four experimental conditions (w
1118 

N, w
1118

 H, 

sima H, sima H). Unsurprisingly, we see that many metabolites do not change at all 

within any conditions. However, if we exclude those unchanged metabolites and only 

consider those do change statistically significantly, we observed an interesting 

phenomenon that there is a genotype-dependent component that accounts for 71% of the 

variance and an oxygen-dependent component that accounts for 25%. This result suggests 

that the genotype has more influence on the change of metabolites than the oxygen 

concentration.  

  Here, we measure 32 carbohydrate metabolites measured (Appendix table 2). The 

metabolites correspond to four broad categories: 1) aminosugar metabolism; 2) fructose, 

mannose, galactose, starch, and sucrose metabolism; 3) glycolysis, gluconeogenesis, and 

pyruvate metabolism; and 4) nucleotide sugars and pentose metabolism (Figure 2.6C). 

We found that the control response to hypoxia is characterized by a remarkable level of 

metabolic stability for carbohydrate catabolites (third column in Figure 2.6C). Among 

those compounds that do display significant H-induced depletions are oligomeric forms 

of glucose (maltose, maltotriose, maltotetraose, and maltopentaose), which are catabolic 

products from glycogen and starch breakdown (Figure 2.6C and 2.6E). These sugars feed 

into the glycolytic cascade by replenishing glucose. They are successively depleted in H 

the larger they are, and their reductions are consistent with a depletion of total glycogen 
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seen in the w
1118

 response (Figure 2.6A), as well as the HIF-dependent up-regulation of 

amylase in H in the same background (Figure 2.6D). 

  In contrast to the effects that H-treatment has on w
1118

 animals, sima mutants cannot 

deplete glycogen in H (Figure 2.6A). Instead, they adopt a profile for the maltose 

oligomers in normoxia that resembles the hypoxia-mobilized profile in control animals 

(Figure 2.6C and 2.6E). This is likely a combination of two factors- the sima mutant’s 

inability to effectively up-regulate amylase in H and its constitutively elevated expression 

profile for amylase in normoxia that is greater than w
1118

 expression in hypoxia (Figure 

2.6D, Appendix table 1). 
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Figure 2.6. HIF-dependent effects on carbohydrate catabolism. (A) Unlike the w
1118

 

response, sima mutants are not able to mobilize glycogen stores in response to 6-hr H-

treatment in late-L3. (B) ATP levels are significantly depleted upon H-challenge by w
1118 

animals. Although sima mutants showed a similar trend, the decrease observed was not 

significant. Levels of glycogen and ATP are normalized to total protein. (C) Shown is a 

metabolic heat map of individual metabolites measured by GC/MS or LC/MS from late-

L3 w
1118

 animals or sima mutants subjects to N (left two columns) or H (right two 

columns). Six replicates were measured for each treatment group. Each replicate has 250 

independently collected and pooled animals. Metabolite levels are expressed as log2 

transformations of the average values, which are plotted relative to the normoxic level 

obtained in the WT background. The data are normalized to total protein content. Red 

indicates an elevated metabolite level; green indicates a decreased level, and black 

no/little change. See Appendix table 2 for further information and statistics. (D) qRT-

PCR analysis showing amylase expression increases in hypoxia in control animals. 

Although sima mutants have an elevated constitutive level of amylase expression, they do 

not induce expression in hypoxia. (E) Integrated snapshots of the transcriptional and 

metabolic response to hypoxia at 6-hr. Shown, are the metabolites and enzymes of stored 

sugar and circulating sugar as they feed into glycolysis. When significant H-induced 

changes were noted (fold-change > 1.5, FDR < 1%) for transcripts in microarray 

experiments, those changes are noted in brackets next to the enzyme names. HD or HI 

status, as classified in Appendix table 1 is also noted. Metabolite levels from mass spec 

analysis are additionally shown as box and whisker plots. The upper and lower 

boundaries of the box note the upper and lower quartile values, while the ends of the 

vertical line indicate the maximum and minimum values. The average value is the noted 

by the horizontal line within the box. Error bars are the SEM. * = p-value < 0.05.  
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Figure 2.7. Lactate production in hypoxia is life-stage-dependent. Lactate 

measurements from mid-L1 (A), late-L3 (B), and day-old males (C) from w
1118

 animals 

and sima mutants treated for 0, 4, or 6 hrs in 4% O2. All measurements were determined 

in triplicate. Values are normalized to protein content. Error bars are the SEM. 
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  Curiously, despite the clear transcriptional switch toward glycolytic energy 

production at late-L3, lactate levels remained unchanged for either genotype in H (Figure 

2.6C). This failure to generate lactate in hypoxia is a stage-specific block. We 

independently performed lactate measurements by an enzymatic assay to confirm the 

late-L3 findings made by GC/MS. Indeed, we find that mid-L1 larvae and young adults 

from either the w
1118

 or sima backgrounds produce lactate in hypoxia, but not late-L3 

larvae (Figure 2.7A–2.7C). Notably, early larval and young adult sima mutants exhibit an 

exacerbated hyperlactatemic phenotype when subject to hypoxia (Figure 2.7A, 2.7C) – 

this does not happen to late-L3 animals. Additionally, though the transcriptional H 

response profile was largely normal for glycolytic genes in the sima mutant, profound 

depletions were still observed for glucose-6-phosphate and fructose-6-phosphate in H 

(Figure 2.6C and 2.6E). This is because the normoxic levels for these compounds, rather 

than H-induced changes, dominate their metabolism. We also observed a HIF-dependent 

increase for pyruvate in N and H. This is consistent with findings in HIF-1α-/- MEFs, 

which maintain higher levels of ATP in hypoxia than WT MEFs do in normoxia (131). 

Finally, the elevated level of Ru5P:Xu5P and ribulose, coupled with the depleted levels 

of S7P, reveal that sima mutants display a clear split in the oxidative (NADPH-

generating) and non-oxidative phases of the pentose phosphate pathway in normoxia, 

which is exacerbated by H-treatment. 
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2.3.5 dERR binds to dHIFα 

    The only factor known to transcriptionally regulate glycolytic transcripts in 

Drosophila is dERR (87). Our lab identified this orphan nuclear receptor as a potential 

factor that may participate in hypoxic signaling when the dERR ligand-binding domain 

(LBD) was used to repeatedly isolate sima clones in a large-scale yeast two-hybrid 

screen. Of the 20 positive clones recovered in the screen, seven encoded different C-

terminal fragments of dHIFα. These findings are consistent with a previous report that 

demonstrated HIF/ERR interactions between the Drosophila proteins and their 

mammalian homologs (68); however, there are two important aspects about HIF/ERR 

complexes that we note differentiate the fly and mammalian complexes. First, we find 

that the dERR DBD is dispensable for interaction with dHIFα, whereas the Ao report 

showed that interaction occurs between the mammalian ERR DBD and the HIF-1α/β 

heterodimer. Second, unlike in mammals (68), HIF-1β (tango) is not required for dERR 

association with dHIFα in Drosophila – tango was not present in the screen. In this 

respect, our findings are consistent with the findings made by Ao et al. Their two-hybrid 

screen of Drosophila components also did not have a HIF-1β (68). 

We validated our two-hybrid screen findings by performing a GST-pulldown with 

GST-fused dERR LBD protein with full-length dHIFα, which confirmed a robust 

interaction (Figure 2.8A). The C-terminal AF-2 helix of nuclear receptors often mediates 

interaction with transcriptional coregulators through an LXXLL motif that is found on the  
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Figure 2.8. dERR binds to dHIFα and is essential to hypoxia survival. (A) GST-

pulldown experiment showing GST-fused dERR LBD association with full-length dHIFa, 

which is diminished when the final 11 amino acids of the LBD are deleted (ΔAF-2). 

Similarly, when the LXXLL motif in dHIFα is mutated, binding with the ERR LBD and 

ΔAF-2 proteins is lessened, but not eliminated when compared to GST alone. (B) dERR 

mutant animals are sensitive to H exposure and fail to successfully progress to the molt 

when challenged with 4% O2. Shown also are the results of w
1118

 animals and sima 

mutants. The L1 stage takes ~24 hrs to progress through in N at 25°C, but the allotted 

time was extended to 48 hrs to account for developmental delays that are caused by H 

treatment. For more details and additional data, see Appendix table 3.  
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interacting protein (132). A single such sequence resides within dHIFα, at amino acids 

1289–1293 (LKNLL). When the last two leucines of this sequence were mutated to 

alanine and/or when the last 12 amino acids of the dERR LBD were deleted, spanning the 

AF-2 helix (479–491), the interaction between the proteins was severely reduced, but not 

eliminated (Figure 2.8A). These data indicate that the dERR AF-2 helix mediates a 

docking point with the dHIFα LXXLL motif, but that at least one additional point of 

contact is maintained between dERR and dHIFα. 

 

2.3.6 dERR mutants are hypoxia-sensitive 

We have recently shown that the orphan nuclear receptor dERR is essential for 

triggering the pro-growth glycolytic program during Drosophila development (86). 

Without the dERR-initiated metabolic switch, development cannot successfully proceed. 

Many of the same metabolic genes that exhibit H-sensitive regulation are also mis-

regulated in the dERR mutant. If dERR is important in the hypoxic response, as suggested 

by its association with dHIFα, then the mutants should be sensitive to H-treatment. To 

test this, we challenged dERR mutants and compared their H-sensitivity with sima 

mutants and control animals. Indeed, 24–30 hr AEL L1 larvae challenged with constant 

hypoxia resulted in sima mutant lethality (Figure 2.8B). The dERR mutants were also H-

sensitive, but not to the same extent as sima embryos. Nevertheless, less than 25% of 
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dERR mutant animals survived as compared to 97% survival for the w
1118

 background. 

These data indicate that dERR is essential for hypoxic adaptation. 

 

2.3.7 dERR is essential for HIF-dependent and HIF-independent responses 

Using the same analytic framework that was used to assess sima involvement in the 

late-L3 larval hypoxic response, we collected RNA samples from dERR mutants and 

dERR,sima double-mutants for microarray analysis to determine how loss of ERR alone 

or ERR and dHIFα together would affect hypoxic responses (Figure 2.9). Through these 

analyses, we identified 282 dERR-dependent (ED) transcripts and 207 double-mutant-

dependent (DM) transcripts whose expression changed in hypoxia (Figure 2.10A, 

Appendix table 1). The ED and DM H-genes sets encompass a variety of highly 

significant GO categories, including H-induced kinases and transferases that specifically 

require dERR, and a host of nucleolar and RNA processing transcripts that are 

coordinately up-regulated in hypoxia due to the lack of both dERR and dHIFα (Table 2.2, 

Appendix table 1). 
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Figure 2.9. Scheme to identity ERR-dependent (ED) and ERR&HIF-dependent 

(DM) hypoxia-regulated genes. The HD H-genes (green circle) were determined as 

outlined in Figure 2.2. The dERR-independent set (blue outlined oval) represents the 

direct comparison of N- or H-treated samples from dERR mutants. The Total H-genes set 

(black outlined oval) represents the direct comparison of N- or H-treated samples 

from w
1118

 animals. The dERR-dependent set 2, represents the subtraction of the dERR-

independent set from the Total H-genes set. The dERR-dependent set1 represents the 

direct comparison of H-treated samples from w
1118

 animals and dERR mutants. The ED 

H-genes set (blue circle), represents the overlap between the dERR-dependent sets1 and 

2. The ERR&HIF-dependent H-genes set (red circle) was determined using the same 

scheme as above, except that the dERR,sima double-mutant was used instead of 

the dERR mutant. All genes in any of the sets are up- or downregulated at least 1.5-fold 

and have a FDR of less than 1%, except for the dERR-independent set (noted with *). 

FDR constraints were relaxed for this set alone. It includes FDR scores that are elevated 

to <7%. See Appendix table 1 for gene set lists.  
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Table 2.2 List of Gene ontology (GO) analysis of ERR-dependent and ERR&HIF-

dependent hypoxic genes.  

 
dERR-Dependent (ED) H genes 

GO Category Number of Genes (total) p-value 

Up-Regulated ≥ 1.5-fold  --- 56 total 

No Significant Category --/-- --/-- 

Down-Regulated ≥ 1.5-fold  --- 124 total 

- kinase activity 22 (371) 1.6 e-10 

- transferase activity, phosphorus-

containing 
23 (446) 8.1 e-9 

- transferase activity 32 (851) 6.3 e-7 

- phosphotransferase activity, 

alcohol as acceptor 
20 (333) 9.0 e-6 

- glycolysis 5 (11) 5.0 e-5 

- protein kinase activity 16 (275) 2.2 e-4 

- hexose catabolic process 5 (16) 2.2 e-4 

- protein serine/threonine kinase 

activity 
13 (190) 2.4 e-4 

- glucose metabolic activity 5 (22) 9.7 e-4 

- IMP biosynthesis 3 (5) 1.6 e-3 

dERR & dHIF-Dependent (DM) H genes 

Up-Regulated ≥ 1.5-fold  --- 61 total 

- nucleolus 8 (95) 3.8 e-7 

-ribosome biogenesis and 

assembly 
5 (33) 1.7 e-5 

- nuclear lumen 8 (348) 1.5 e-3 

- ribonucleoprotein complex 

biogenesis 
5 (100) 1.5 e-3 

- pseudouridine synthesis 2 (13) 2.0 e-3 

- rRNA processing 3 (20) 2.1 e-3 

Down-Regulated ≥ 1.5-fold  --- 146 total 

No Significant Category --/-- --/-- 

 

The numbers of H-regulated genes affected are shown along with the total number of genes in each 

category. All transcripts are up- or downregulated at least 1.5-fold and have a false discovery rate (FDR) of 

<1%. 
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    Venn analysis was used to assess the similarity of the independently derived H-gene 

sets (HI, HD, ED, DM). The overlapping pattern of the ED genes set with the mutually 

exclusive HI and HD sets demonstrates that dERR significantly affects both HIF-

dependent H-genes (71 transcripts) and HIF-independent genes (54 transcripts) (Figure 

2.10B). Among the overlap between the HI and ED genes sets are all the glycolytic 

transcripts that are upregulated in hypoxia. These data reinforce our earlier findings that 

demonstrate that at metamorphic onset, dHIF is not part of the hypoxic-induced 

glycolytic shift. They suggest that a portion of the HI response is attributable to dERR. 

    Given that dERR can interact with dHIFα, and that it can impact hypoxic 

transcription independent of HIF, we anticipated that the DM H-genes set would 

significantly overlap the ED and HD genes sets. Indeed, this is the case – as shown by 

Venn analysis, the DM set has more overlap with the HD and ED sets than not (Figure 

2.10C). A listing of the top hypoxia-sensitive transcripts in the various Venn overlapping 

regions can be found in Figure 2.10D. 

    To verify that loss of dERR and/or dHIFα selectively eliminates/diminishes hypoxic 

induction, RNA samples were independently collected from control animals, sima 

mutants, dERR mutants, and double-mutants (Figure 7D). Six genes were chosen for 

further analysis by qRT-PCR. Independent samples were separately collected and 

prepared for RNA extraction. The results demonstrate that the factor-dependent 

classification we employed for hypoxic responsiveness is accurate. For example, Pfk is 
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classified as HI, ED, and DM, indicating that hypoxic regulation should be affected in the 

double-mutant and the dERR mutant backgrounds, but unaffected in the sima mutant – 

this is the pattern that is observed (Figure 2.10E). Similar trends also held true for fatiga 

and spermine oxidase, which were expected, respectively, to only respond in the dERR 

mutant background, or not in any of the three mutant lines. With the exception of a 

modest H-induction in the dERR mutant for spermine oxidase the responses were as 

expected. Hypoxic responses for NMNAT, LDH, and ALAS were all expected to display 

the same pattern; which is that only in the dERR background will H-responsiveness be 

significantly reduced/eliminated. Responses were, by-and large, as expected, except for 

the significant H-induction of LDH in the in dERR mutants. 

These data indicate that dERR and dHIFα have a different activity profile when in the 

presence of the other, than either protein has by itself, and suggest that promoter-specific 

actions of different HIF and/or ERR complexes drive a large percent of hypoxic 

responses at metamorphic onset. In certain cases, loss of one factor does not influence the 

other’s response, as with loss of dHIFα for the dERR-mediated Pfk response (Figure 

2.10E). In other cases, loss of either dHIFα or dERR renders the H-response incomplete, 

such as occurs with spermine oxidase. And, still in other cases, loss of one factor is more 

detrimental for H-induction than is loss of both, as with ALAS. Responses of this type 

appear to suggest that, at certain loci, dHIFα acts as a negative regulator of hypoxic 

transcription in the absence of dERR but not in its presence. 
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Figure 2.10. The influence of dERR and dHIFα on hypoxic transcripts. (A) HIF-

independent (HI), HIF-dependent (HD), ERR-dependent (ED), and ERR&HIF-dependent 

(DM) gene sets identified by microarray schemes outlined in Figures 2.2 and 2.9. Circles 

are scaled to size by number of transcripts in each set. (B) A Venn diagram 

demonstrating the overlap of the HI/HD/ED H-genes sets. Note, HI and HD genes sets 

are, by definition, mutually exclusive. The asterisks indicate that the overlap is significant 

(p-value<0.05), as determined by hypergeometric probability. (C) A Venn diagram 

demonstrating the overlap of the HD/ED/DM H-genes sets. qRT-PCR analysis of 

hypoxia-regulated genes falling into specific Venn overlaps, as indicated by arrows. (D) 

The top ten affected transcripts, as assessed by the H-responses measured in the control 

background, for each of the seven Venn categories shown in Figure 2.10C. Hypoxic 

expression for each transcript in the different mutant backgrounds (compared to w
1118

) is 

reported as fold-change difference. Additionally shown is the N/H ratio obtained for 

w
1118

 animals. (E) Normoxic and hypoxic expression of each of the six genes (Pfk, fatiga, 

spermine oxidase, NMNAT, LDH, ALAS) was determined using RNA collected from 

animals of the indicated genotypes at late-L3. Samples were collected in triplicate and are 

independent from those used in the microarrays. Values are normalized to rp49 

expression and are reported relative to the value obtained for w
1118

 in normoxia. 

 

 

2.4 Conclusions and Discussions 

Our results underscore the complexities of adaptive responses in hypoxia, which are 

life-stage specific and controlled by multiple H-sensitive pathways. Although our data 

confirm that HIF is a major transcriptional driver of hypoxic responses, we also define 

distinct HIF-independent responses. These data raise new questions about dHIFα 

collaboration and challenge the notion that the HIF complex has little or no normoxic 

role. In addition, we show that a significant fraction of HIF-independent pathways can be 

attributed to the ERR nuclear receptor.  
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Among the HIF-independent genes were numerous glycolytic transcripts that are 

well-known responders to hypoxia (112, 117, 127). The fact that these genes are as 

effectively up-regulated in sima mutants as they are in a control response was surprising, 

particularly considering the known role of HIF-1α in this process (133). We find that 

dERR is the overriding factor that mediates hypoxic up-regulation of glycolytic genes 

(Pgi, Pfk, GAPDH2, enolase) just prior to metamorphic onset.   

Our findings, however, do not exclude dHIFα contribution in hypoxic expression of 

HI genes at other developmental times. The super-induction of LDH during 

metamorphosis in w
1118

 animals versus sima mutants is consistent with this scenario 

(Figure 2.5A). These temporal- and context-specific differences may explain the wide 

variability in hypoxic responses that have been seen between cell-types (103, 134), 

despite the ubiquitous presence of the HIF pathway. Furthermore, they may account for 

discrepancies between our data collected on Drosophila and reports on mammalian 

systems. For example, LDH is a HIF-independent hypoxia-regulated gene in late-L3 

animals. However, loss of dERR has a greater effect on the diminution of hypoxic 

induction at this developmental time than does loss of dHIFα (Figure 2.10C). But, this 

effect is short-lived, because just hours later, when the larva transitions into a pupa, 

dHIFα appears to work in combination with a non-HIF pathway to elicit hypoxic 

responsiveness (Figure 2.5A). This combinatorial response during Drosophila 

metamorphosis is consistent with vertebrate studies that show LDH expression is the 
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product of HIF-1 action that also requires the presence a cAMP response element for full 

hypoxic induction (133, 135). Thus, in addition to different pools of potential co-

regulatory molecules that may significantly alter HIF-dependent transcription, entirely 

different transcriptional pathways, with their own triggers of hypoxic induction, refine 

the H response. Given the right spatiotemporal setting, HIF-independent pathways may 

displace (or substitute for) the HIF pathway altogether, a result that is consistent with our 

data. Further support of this idea is evident in the expression of Alas2, the rate-limiting 

enzyme for heme production. Alas2 has been identified as a HIF-dependent and a HIF-

independent hypoxia-regulated gene in mammals (136–138). In our hands, ALAS is H-

responsive, and displays HIF-independent and ERR-dependent up-regulation, which may 

be subject to dHIFα negative regulation in dERR’s absence (Figure 2.10E). 

The dynamic patterns of temporal expression of HI and HD genes raise the 

fundamental question of how hypoxic responses are regulated through development and 

into the adult. Low-oxygen responses are not one-size-fits-all programs that mitigate 

oxidative damage and metabolic imbalance; they must be coordinated with 

developmental progression and metabolic state. In particular, late-L3 wandering larvae 

exhibit a hypersensitive transcriptional response to hypoxia for HIF-independent/ERR-

dependent glycolytic genes. This includes a robust LDH induction (Figure 2.5A). 

Paradoxically, however, late-L3 larvae do not produce lactate in the 6-hr hypoxic 

challenge (Figure 2.6C, 2.6E, and Figure 2.7). In contrast, at other developmental times 
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(L1, adult), animals correspondingly produce lactate in hypoxia, even though they remain 

transcriptionally incompetent to induce LDH transcript (Figure 2.7 and Figure 2.5A). We 

speculate that the atypical transcriptional and metabolic hypoxic profiles of the late-L3 

larva are a product of its developmentally programmed energetic state, which at this time 

is transitioning from low to high efficiency (Pfk expression dramatically decreases in late 

larvae, Figure 3.3A). Just prior to the wandering L3 time, larvae are prolifically growing, 

and in a state of metabolism that is fueled by aerobic glycolysis – this metabolic program 

is ERR-dependent (87). Just after this developmental time, larvae initiate metamorphosis, 

which will impose 5 days of developmentally forced starvation. During this lipid-driven 

phase (139), metabolism is characterized by high efficiency OXPHOS. 

In contrast to the switch-like hypoxic expression of HIF-independent glycolytic 

transcripts, the HIF prolyl hydroxylase fatiga displays relatively uniform expression 

throughout development (Figure 2.4A), suggesting that regulation of the HIF pathway, by 

HIF itself, is equally important at all times for the animal. Such disparities in induction 

are only understood in context. While our studies here provide a framework with which 

to view H responses, they indicate that further developmental analysis is needed to more 

fully appreciate hypoxic response pathways and the mechanisms that specifically support 

their activities.  

Although we have emphasized the transcriptional and metabolic impacts of hypoxia 

on carbohydrate catabolism, the range of our data sets indicate that many important 
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hypoxia-induced changes are thus far unappreciated and await further investigation. What 

is the significance, for instance, of the greater than 10-fold increase of HIF-dependent 

expression of dDPH-1 (CG11652) in hypoxia (Table 2.1)? DPH-1 is a tumor suppressor 

that is responsible for the first step of the unique protein modification that occurs on 

elongation factor 2 (eEF2), which converts a histidine residue to diphthamide. This 

residue is the target of diphtheria toxin that can shut down protein synthesis through 

ADP-ribosylation. Although diphthamide formation is conserved from archaea to human, 

its significance on cellular function is not clear, as it is dispensable for protein elongation 

(140). However, it has been implicated in translational fidelity (141) and is likely an asset 

under stress (142). GO analysis performed on HD H-regulated genes indicate that dHIFa 

is important in replenishing select protein translation/RNA processing transcripts. From 

this perspective, DPH-1 induction by dHIFα may be indicative of a regulatory role of 

hypoxic translation for HIFs. Such a role would be consistent with a recent report from 

mammals that demonstrates a HIF-2α-dependent association with ribosomal/translational 

control proteins and the selective hypoxic translation of transcripts containing an RNA 

hypoxic response element in the 3’UTR via a mechanism involving eIF4E2 (143).  

Our analysis of carbohydrate catabolism identifies amylase-mediated breakdown of 

glycogen as the fuel of first resort in hypoxia (Figure 2.6). This catabolic pathway feeds 

into glycolysis and supplies needed glucose for increased glycolytic flux, obviating the 

need to draw on circulating sugar in the form of trehalose, which did not change in the 6-
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hr challenge. The strategy of glycogen mobilization allows animals to maintain a 

remarkably stable profile for a wide variety of carbohydrate catabolites.  

Trehalose levels are substantially elevated in sima mutants, regardless of oxygen 

status (Figure 2.6C and 2.6E). These data may indicate a role for dHIFα in the insulin 

receptor pathway. Numerous studies demonstrate that trehalose levels are altered by 

genetic disruptions of the insulin-signaling components (144–147). Alternatively, 

elevated trehalose levels may be the result of constitutively high expression of amylase 

(Figure 2.6D). Although the increased amylase expression does not translate into a 

depleted level of glycogen in the sima mutant (Figure 2.6A), it is conceivable that 

increased glycogen deposition compensates for increased glycogenolysis.  

It is important to note that post-transcriptional control mechanisms are well known to 

impact glycolytic enzymes. Although we did not document them, we consider such 

influences on hypoxic glycolytic flux likely to have genotype-specific effects.  

sima mutants do not mobilize glycogen in hypoxia, but they are able to initiate H-

induced changes for other carbohydrates. This is the case for the glycolytic intermediate 

DHAP, which more than doubles in a control hypoxic response and significantly 

accumulates in mutants (Figure 2.6C, 2.6E). These findings are consistent with 

appropriate transcriptional responses we noted for glycolytic transcripts in sima animals, 

which are up-regulated in hypoxia by dERR, not dHIFα. The result for glycogen 

notwithstanding, it is the widespread derangement of normoxic set points for metabolites 
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that characterizes the metabolic incompetency of the sima mutant. Our data indicate that 

dHIFα has it greatest impact on metabolism in the unchallenged normoxic state, rather 

than in hypoxia. 

The mechanism whereby dERR participates in hypoxic responses needs to be 

explored further. We identified dERR as a potential player in hypoxic responses through 

its association with dHIFα (Figure 2.8A), suggesting that it acts in a collaborative role 

with the HIF complex through direct recruitment to HREs. This model was favored by 

the Ao et al. report for ERR participation in hypoxic responses in vertebrates (68). 

Additionally, dERR may recruit dHIFα to ERR-specific response elements to facilitate H 

responses. Another possibility is that dERR actively regulates hypoxic transcription 

without dHIFα at all; or, in parallel to the actions of dHIFα, which may occur 

independently, yet simultaneously. Each of these scenarios is consistent with hypoxic 

expression analysis that we performed to generate HD, HI, ED, and DM gene sets. 

Moreover, in the presence of dERR, dHIFα may act as a negative regulator of hypoxic 

responses at select hypoxia-regulated sites (Figure 2.10E, NMNAT, ALAS). Of further 

interest also, will be the identification of the triggers for ERR participation in hypoxic-

induced responses.  

Apart from dERR and dHIFα, our data indicate that at least one more hypoxic-

sensitive pathway is active and important for mediating hypoxic adaptation, as we found 

many H-sensitive transcripts that fall outside the regulation of either factor. The nature of 
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the alternate pathway(s) is unknown. The results shown here suggest that identifying the 

sensors and effectors that regulate these HIF- & ERR-independent hypoxic response 

pathways will have profound impacts on our understanding of hypoxic signaling, and will 

undoubtedly provide new avenues with which to approach the complex problem of 

metabolic transition. 
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CHAPTER 3 The ERR Regulates an Atypical Acyl-CoA Synthetase (CG4500) in 

Drosophila melanogaster  

 

3.1 Introduction 

Multicellular organisms from Drosophila to mammals need to coordinately maintain 

system-wide balance between cellular energy consumption and storage. Excessive 

metabolic consumption or storage will result in devastating consequences. In modern 

society, due to the advanced development of agricultural and animal husbandry, the 

contemporary human diet features an overabundance of fat, simple sugars, sodium and 

chloride, but also accompanies a scarcity of fiber, calcium and potassium (148). This kind 

of modern diet causes excessive energy storage and subsequent disturbance of lipid 

metabolism, which is tightly associated with metabolic syndrome that becomes a growing 

public health concern worldwide. Metabolic syndrome is a group of metabolic 

abnormalities including obesity as the central factor, as well as hypertension, 

dyslipidemia (decreased high-density lipoprotein, and elevated serum triglycerides), 

impaired fasting glucose (type 2 diabetes), and subsequent heart disease (149 - 151). 

Notably, the prevalence of metabolic syndrome in the United States is over 35% by two 

separate defining standards, the adult treatment panel (ATP) and the international 

diabetes federation (IDF) (152). Overall it is hard to overstate the importance of 
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understanding the molecular mechanism underlying all aspects of lipid storage, 

mobilization, and oxidation. 

Fatty acids (FAs) are a major component of lipids, and key source of high efficiency 

ATP production through oxidation degradation. FAs are a group of carboxylic acids with 

a long aliphatic chain, which is either saturated or unsaturated. According to the length of 

the aliphatic tail, FAs can be categorized as short-chain fatty acids (SCFAs) with chain 

length of 6 carbons or less, medium-chain fatty acids (MCFAs) with 6 to 12 carbons, 

long-chain fatty acids (LCFAs) with 14-22 carbons, and very-long-chain fatty acids 

(VLCFAs) with aliphatic tails longer than 22 carbons. FAs with less than 14 carbons or 

more than 20 carbons are uncommon, and the predominant FAs in mammals are those of 

the C16 and C18 species (153). Fatty acid catabolism is a multi-step process. Generally, 

excess energy is stored in the form of triglycerides (TGs). When energy is needed 

somewhere in the body, free FAs are initially mobilized from TGs through the activity of 

lipases. Free FAs can be degraded by several cellular pathways, including α-, β-, and ω-

oxidation. In humans, α- and ω-oxidation can only occur in peroxisomes, but both 

peroxisomes and mitochondria are capable of catabolizeing FAs through β-oxidation. 

However, the favored path for FAs, including the majority of LCFAs, is through 

mitochondrial β-oxidation (mβ-ox) (154). Unlike MCFAs that freely penetrate the 

mitochondrial membrane, LCFAs have to be transferred by means of a carnitine cycle 

into mitochondrial matrix, where β-oxidation occurs. LCFAs have to first be activated by 
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coupling to Coenzyme A (CoA) by the acyl-CoA synthetase (ACS) family of enzymes on 

the mitochondrial outer membrane. The CoA group of the fatty acid-CoA molecule (acyl-

CoAs) is next replaced by carnitine to form acylcarnitines by carnitine 

palmitoyltransferase І (CPT-І). The long-chain acylcarnitines are then exchanged and 

translocated into the mitochondrial matrix by an integral inner membrane protein, 

carnitine-acylcarnitine translocase (CAT). Finally, the long-chain acylcarnitines in the 

mitochondria matrix are converted back to long-chain acyl-CoA by carnitine 

palmitoyltransferase II (CPT-II) on the inner mitrochondrial membrane. At last, the 

liberated carnitine is exchanged back to mitochondrial outer membrane and LCFAs are β-

oxidized to yield acetyl-CoA, which will enter TCA cycle to generate energy (Figure 

3.1A) (153). Essentially, the carnitine cycle is the barrier for LCFAs mβ-ox, because 

without it LCFAs are not able to go into the mitochondria. And it is not surprising that 

CPT-I is considered to be the rate-limiting step and a key regulatory site of mβ-ox.  

Noteworthy, in addition to mβ-ox, there are also other alternative routes for fatty acid 

oxidation (α-, β-, and ω-oxidation in peroxisome) (154). FA α-oxidation only occurring 

in peroxisomes is a process by which 3-methyl-branched-chain FAs like phytanic acid are 

broken down by removal of a single carbon from the carboxyl end. Compared to mβ-ox, 

peroxisomes β-oxidation (pβ-ox) is catalyzed by different enzymes encoded by distinct 

genes. Importantly pβ-ox breaks down a distinct set of FAs, such as VLCFAs, and di-

/trihydroxy acid (155). However, pβ-ox is not capable of complete oxidation, but 



70 
 

 

 

Figure 3.1 A scheme of the conversion of LCFAs into ATP in the mitochondria. 

 

 

rather truncates the FAs to lengths that can enter the mitochondrial matrix without the 

need for carnitine, and eventually these chain-shortened FAs are fully oxidized in 

mitochondria. FA ω-oxidation occurs in the endoplasmic reticulum (ER). The ω-carbon 

in FAs is the carbon furthest in the alkyl chain from the carboxylic acid, which is 

progressively oxidized first to an alcohol and then to a carboxylic acid, creating a 

molecule with a carboxylic acid on both ends in ω-ox. Eventually, the resulting 

dicarboxylic acids will enter pβ-ox to be catabolized (154). Notably, α- and ω-oxidation 
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of LCFAs, coupled with pβ-ox, can be vital alternate routes for humans or animals that 

cannot rely on mβ-ox of FA oxidation, such as CPT-I deficient patients. 

Fatty acid catabolism is regulated in many ways. As the rate-limiting step of mβ-ox, 

CPT-I activity is strictly regulated. Most importantly, it is potently inhibited by the 

concentration of malony-CoA. The formation of malony-CoA is catalyzed by acetyl-CoA 

carboxylase (ACC), the activity of which is acutely inactivated or activated by 

phosphorylation and dephosphorylation, respectively (156). The phosphorylation is 

achieved by 5’-AMP-activated kinase (AMPK)/AMPK-kinase cascade (157). In addition, 

the expression of CPT-I is also regulated at the transcriptional level by fatty acid 

concentration. The transcriptional regulation of fatty acids on CPT-I is very likely 

mediated through PPARs. A PPRE is found in the regulatory region of the human muscle 

type CPT-I gene (158). Another study showed that in primary rat neonatal cardiac 

myocytes, CPT-I mRNA levels are stimulated by oleate through PPARα (159).  

Fatty acids catabolism is also regulated through other sites other than CPT-I. The 

highly conserved insulin/IGF signaling (IIS) pathway is a critical regulator of lipid 

homeostasis, although the molecular mechanisms by which IIS controls lipid catabolism 

are only understood in part (160). It has been found that IIS is able to inhibit both 

expression and activity of lipases (161, 162). Furthermore, IIS also decreases the rate of 

fatty acid entry into mitochondria partially through FOXO action (163, 164). 

Interestingly, a recent study conducted in Drosophila identified an unconserved ACS, 
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pudgy, is direct target gene of FOXO in the fly. They also found that in mammalian cells 

multiple ACSs are regulated by insulin signaling at the transcriptional level (165). 

Importantly, this study identified fatty acid activation by ACSs as an important, regulated 

step in FAs oxidation, which has not been considered as a key step in FAs oxidation 

regulation. Furthermore, NRs and their co-partners, as discussed in Chapter one, are also 

important regulators of FAs catabolism. PPARs not only directly regulate the expression 

of CPT-I, but also transcriptionally regulate a broad range of genes involving in many 

aspects of fat catabolism, such as FAs uptake through membranes, intracellular fatty acid 

trafficking, FAs oxidation and ketogenesis, and triglyceride storage and lipolysis (166). 

PGC-1α/β regulate many steps of mitochondrial oxidative metabolism coordinately with 

lots of transcription factors, including mitochondria biogenesis, OXPHOS, CPT-I 

expression, FAs oxidation genes, glucogenesis and lipogenesis (167).  

Importantly, as discussed extensively in Chapter one, ERRs not only function as a 

master regulator of almost all aspects of metabolic processes, including glycolysis, FAs 

oxidation, mitochondrial biogenesis and mitochondrial function (the TCA cycle and 

OXPHOS), but also likely serves as a switch to metabolic transitions. However, the 

studies concerning the regulation on FAs catabolism have not focused on the ACS 

activation of LCFAs, except the one study that showed that the IIS pathway regulates 

ACS mRNA expression in both fly and human cells (165). This study provides a new 

perspective that the master regulator of metabolism, ERRs, may transcriptionally regulate 
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the expression of ACS genes and control the FAs flux into mitochondria in order to 

manipulate FAs catabolism. 

To test this hypothesis, we utilize Drosophila development as a platform to 

investigate lipid oxidation pathways. As discussed previously, the major metabolic 

processes are very much conserved in Drosophila, compared to mammals. Interestingly, 

Drosophila undergoes a programmed Warburg like transition in late embryogenesis (87), 

but strikingly they turn off the Warburg effect just before metamorphosic onset. These 

two metabolic switches correspond to the developmental profile that Drosophila 

experience. Figure 3.2 illustrates that flies accumulate lipid from L1 until partial clear gut 

stage (-10 to -4 hour before pupariation), when in preparation for metamorphosis, larvae 

finish their growth phase, leave the food, and start a starvation period initiating at the 

wandering stage and lasting through the pupa stage, which results in a dramatic depletion 

of fat stores (Figure 3.2). The majority of the liberated FAs are LCFAs, and at this 

developmental stage the main forms of FAs are myristic acid (14:0), 13.3% of total lipid; 

palmitic acid (16:0), 24.4% of total; palmitoleic acid (16:1), 24.9% of total; and oleic acid 

(18:1), 30.8% of total (168). This observation suggests that flies must trigger mβ-ox 

during this developmental starvation period in order to generate energy to survive. Since 

the previous study done by Tennessen et al. found that in L2 larvae dERR targets the 

transcription of glycolysis enzymes rather than enzymes involved in FAs catabolism, we 

reasoned to make the following hypothesis that dERR is very likely to transcriptionally 
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regulate FA oxidation at the wandering stage when FAs need to be degraded to produce 

enough energy for the larvae to survive. In this Chapter, we identify CG4500 as an ACS, 

which is strongly up-regulated upon fasting in a stage-dependent manner. We find 

that the expression of CG4500 is almost completed abolished in dERR mutant animals, 

and CG4500 is likely to be a direct target of dERR. Furthermore, we show that the dERR 

mutant is deranged in fatty acid oxidation with dramatically reduced levels of carnitine 

conjugates of LCFAs and elevated levels of all MCFAs and LCFAs in the C10-15 range. 

These results suggest that dERR is highly likely to direct the second metabolic switch 

toward FAs catabolism in late-L3. 

 

Figure 3.2 The profile of body weight and lipid percentage through Drosophila 

development. The mass (black line) and % lipid (blue line) of Drosophila melanogaster 

plotted with respect to developmental progression. L = instar, PP = prepupa.    
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3.2 Methods 

3.2.1 Fly strains, developmental collection and starvation treatments 

Flies were maintained on regular cornmeal-molasses-yeast media at 25°C. 

w
1118

 animals were treated as controls. dERR mutants (dERR
1
/dERR

2
) are described 

elsewhere (87).  The dERR
1
 and dERR

2
 chromosomes were carried over a TM3, twi-GFP 

(green fluorescent protein) balancer chromosome. Homozygous mutant larvae were 

sorted for the absence of GFP expression using a Zeiss Discovery V.8 dissecting 

stereoscope with fluorescence at developmental stage between 12hr AEL and mid-L2. 

For collecting the clear gut L3, embryos were collected at 25°C for 14 hrs onto egg caps 

(molasses-agar media in 35 mm×10 mm dishes) with yeast paste. Then mid-L2 larvae 

were either sorted for green fluorescence (dERR mutant) or not (wild type), and 

transferred to a fresh egg cap with blue yeast paste (0.3% bromophenol blue), and 

allowed to develop until achieving the clear-gut L3 stage (−4 to 0 hrs RTP). For 

developmental analysis of gene expressions, 12 developmental stages were collected in 

w
1118

 animal: 6-12 hr AEL, 12-18 hr AEL, 18-24 hr AEL, 0-6 hr L1, mid-L1, mid-L2, 

mid-L3, -4 to 0 hr RTP (relative to pupariation) L3, 6 hr RTP, +18 hr RTP, +72 hr RTP, 

and 1-day old males. For starvation treatment in Figure 3.5, mid-L2 of w
1118

 or 

dERR
1
/dERR

2
 allowed to grow on egg cups as described earlier with yeast paste were 

sorted for green fluorescence (mutant) or not (wild type), and transferred to a) new egg 

cups with yeast paste for control; b) kimwipe paper with water for complete starvation, or 
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c) kimwipe paper with 20% sucrose in water that was sterilized by filtering, treated for 8 

hours. For 1-day male starvation experiment, w
1118

 larvae grow on egg cup with yeast 

paste as described earlier until pupariation, and then pupae were transferred to regular 

cornmeal-molasses-yeast media until emerge. 1-day old males were picked and treated 

with a) regular cornmeal-molasses-yeast media; b) kimewipe with water, or c) 20% 

sucrose prepared as described in this paragraph, treated for 24 hours. All treatment 

experiments were carried out at 25°C. 

 

3.2.2 Microarray analysis and Quantitative RT-PCR 

Microarray analyses were performed on at least three biological replicates 

of w
1118

 animals and dERR mutants at the lear-gut L3 stage. For each biological replicate, 

at least 10 larvae were collected and washed with 1×PBS before homogenization in 

TRIzol (Invitrogen, Carlsbad, CA) using a VWR disposable pellet mixer. RNA 

preparation and microarray analysis were done as described in Chapter 2 Section 2.2.2. 

No changes below 1.5-fold were considered significant. Additionally, the following false 

discovery rate percentages were imposed: <1% w
1118

 vs dERR mutant.  Microsoft Access 

was used to compare data sets.  

For qRT-PCR analysis, cDNA samples were prepared as described in Chapter 2 

Section 2.2.3. For real-time PCR, premixed primer-probe sets were purchased from 

Applied Biosystems. Experimental values were normalized to values obtained for 
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the Rp49 probe set. Data are reported as the mean±SEM. All values reported represent 

experiments performed on at least three biological replicates. 

 

3.2.3 Assay for ACS activity 

His-tagged luciferase protein was obtained by cloning the coding sequence into 

pET16b, expressing it in BL21 E. coli, and purifying it using Ni-NTA Agarose beads 

(Thermo Fisher Scientific, Waltham, MA). GST-tagged CG4500 protein was obtained by 

cloning the cDNA sequence into pGEX 4T1, expressed in BL21 E.coli, and purified 

using glutathione sepharose 4 fast flow beads (GE Healthcare & Life sciences). Purified 

GST protein was generally given by Dr. Jessica Bell from Department of Biochemistry 

and Molecular biology of VCU. All FAs (decanoic acid C10:0, lauric acid C12:0, 

palmitic acid C16:0, palmitoleic acid C16:1, stearic acid C18:0, oleic acid C18:1, 

arachidic acid C20:0, cerotic acid C26:0) used in this study were obtained from Sigma-

Aldrich (St. Louis, MO). All FAs, except cerotic acid, were dissolved in DMSO, aliquot 

and stored in -20˚C. Cerotic acid was dissolved in chloroform and stored as other FAs. 

Adenylation activity for carboxylic acids were carried out as previously described 

with modification (169). Instead of 50nM of enzyme, 500nM of enzymes were used in 

our assay. Instead of 0.33µCi, 1.266µCi of [α-
32

P]ATP was utilized here. The TLC plates 

were developed in Chloroform/Acetone/Methonal/Acetic acid/H2O (5:4:3:2:1). The 

radioactivity of 
32

P-AMP was measured using a phosphoimager (Molecular Imager FX, 
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Bio-Rad, Hercules, CA) after exposing overnight.  Relative intensity of the radioactivity 

was obtained by subtracting the background value. The concentration of DMSO and 

chloroform at 2% in the reaction did not affect the activity (data not shown). 

 

3.2.4 Metabolic analysis by GC/LC-MS 

    Analyses were performed on clear-gut L3 larvae of w
1118

 and dERR
1
/dERR

2
animals. 

Larvae were washed twice in PBS pH 8.0 and immediately frozen at −80°C. The GC/LC-

MS analyses and the data analysis method were performed by Metabolon, Inc. (Durham, 

NC) and extensively described in Chapter 2 section 2.2.4. 

 

3.3 Results 

3.3.1 An uncharacterized acyl-CoA synthetase, CG4500, is down-regulated in dERR 

mutant animals. 

      Previously, it had been shown that dERR mutants are unable to initiate the 

metabolic transition toward aerobic glycolysis to drive biomass production for 

developmental growth of the larva (87). The phenotypes that were observed in dERR 

mutant mid-L2 larvae were overwhelmingly associated with defects in carbohydrate 

catabolism, shockingly with little effect on fat catabolism (data not shown and 87). As 

discussed repeatedly, Drosophila larvae need to accumulate fat before the wandering 

stage, which starts around 24 hours before pupariation. Although only about 48 hrs apart 
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from mid-L2 in developmental timing, late-L3 animals undergo a very different 

metabolic plan. We speculated that dERR is likely involved in transcription regulating 

the late larval-switch toward OXPHOS. To test this hypothesis, we performed microarray 

analyses on RNA from clear-gut L3 larvae of control (w
1118

) animals and dERR mutant 

(dERR
1
/dERR

2
). Clear-gut larvae are in a tight developmental window that is 0-4 hrs 

prior to pupariation. It takes 14-18 hrs of wandering for larvae to reach clear-gut status. 

They have been in developmental starvation for quite some time and are rely on fat-

derived ATP generation. Although the lipase expression is not changed in dERR mutant, 

encouragingly, we found the expression of several enzymes involved in LCFAs 

activation are altered significantly (Table 3.1). The most interesting transcript was an 

uncharacterized gene CG4500, which is predicted to be an acyl-CoA synthetase. The 

transcriptional expression of CG4500 is down-regulated 8 times in the dERR mutant, 

which is among the top ten most down-regulated genes in all transcripts tested (data not 

shown, Table 3.1). CG4500 encodes for an atypical bubblegum-like ACS in Drosophila, 

and is closely related to bubblegum protein in fly (44%), which is an ACS acting on 

VLCFAs (C22-26) and prevents their build-up (170). However, the human homolog of 

CG4500 is ACSBG2 that is an ACS acting on oleic acid (C18:1) and linoleic acid 

(C18:2) but not on other FAs tested (171). Interestingly, a human homolog of bubblegum 

(ACSBG1) can catalyze both LCFAs and VLCFAs (172).  
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Table 3.1 Transcriptional fold-changes measured by microarray in dERR mutants vs. 

w
1118

 control animals of LCFA metabolic transcripts at clear-gut L3 larvae 

 

CG Gene Name Fold Change in dERR mut 

Fat Mobilization (ATGL) 

CG5295 brummer lipase 1.00 

LCFA Activation (ACS) 

CG8732 ACS long-chain 1.67 

CG4501 bubblegum 4.05 

CG12512 --- 3.22 

CG18155 --- -1.52 

CG3961 --- -1.18 

CG4500 --- -8.03 

CG6178 --- 2.77 

CG9009 pudgy -1.37 

Carnitine Palmitoyltransferase (CPT) 

CG12891 CPT I -1.86 

CG2107 CPT II 1.19 

CG1041 --- 1.59 

Acyl Carnitine Transporter (CAT) 

CG3057 Colt 1.21 

CG3476 --- 1.29 

CG12201 --- -1.30 

CG3790 --- 1.16 

CG4630 --- 1.35 

CG6006 --- -1.11 

CG8925 --- -1.92 

 

 

3.3.2 dERR is critical in the programmed expression of Pfk and CG4500 

To further test the possibility that dERR turns on the early metabolic switch toward 

glycolysis during late embryogenesis, and later initiates a switch toward fatty acid 

oxidation before pupariation, we examed the expression profile of two representative 

metabolic enzymes through development. We collected RNA from control animals 
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and dERR mutants at 12 stages of development, including 6-12 hr AEL, 12-18 hr AEL, 

18-24 hr AEL, 0-6 hr L1, mid-L1, mid-L2, mid-L3, -4 to 0 hr RTP (relative to 

pupariation) L3, 6 hr RTP, +18 hr RTP, +72 hr RTP, and 1-day old males. qRT-PCR was 

used to assess the relative expression of two genes, Pfk and CG4500. Pfk is the rate-

limiting enzyme of glycolysis, and as the detector for glycolytic catabolism. CG4500, as 

shown earlier, is highly likely to be a LCFA ACS, and serves as the indicator for FAs 

oxidation. Strikingly, we see that the Pfk mRNA amounts dramatically increase from the 

embryonic stages through mid-L3, when its expression level reaches maximum, and is 

followed a sharp drop in expression at wandering onset. Thereafter, it is expressed at a 

low level until adulthood (Figure 3.3 A). In contrast, the CG4500 mRNA amounts is low 

from the embryonic stages through clear-gut L3, when its expression increases 

dramatically and reaches its peak at +18 hr RTP, which is followed by a gradual decrease 

in metamorphosis, where finally go back to the expression level of the late embryo in 

adult fly (Figure 3.3 A). Even more strikingly, the expression of Pfk and CG4500 are 

both almost completely abolished in dERR mutant at times, when their expression is still 

increasing (mid-L2 for Pfk and clear-gut L3 for CG4500). Collectively, these data 

suggest that dERR is likely instrumental in the late larval switch toward FAs oxidation, 

essentially countering its earlier pro-glycolytic activities.   
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Figure 3.3 qRT-PCR analysis reveals that Pfk and CG4500 exhibit dynamic 

expression through development (A). dERR is required for the pro-growth glycolytic 

program, represented by Pfk (B), and for the late-larval shift to FAs oxidation, 

represented by the long-chain fatty acid acyl-CoA synthetase, CG4500 (C). Collection 

times for B and C are noted by *. 

 

 

 

3.3.3 CG4500 is an ACS with catalytic specificity on MCFAs and unsaturated LCFAs.  

Each ACS has distinct substrate specificity, loading FAs of different lengths or 

saturation onto CoA. To determine the substrate specificity of CG4500, an acyl-CoA 

synthesis assay was performed using a series of FAs, including a variety of MCFAs, 

LCFAs, and VLCFA. Here, firefly luciferase is utilized as a positive control for the assay. 

It was previously shown that luciferase of P.pyralis and L.cruciata displayed significant 
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acyl-CoA synthetase activity on a variety of FAs, including saturated MCFAs (C10:0, 

C12:0), saturated LCFAs (C14:0), unsaturated LCFAs (C16:1, C18:2, C18:3n-3, C18:3n-

6, C20:4, and C20:5) (169). Purified GST protein was used as negative control. Since we 

use radioactive labeled [α
32

-P]ATP, recombinant enzymes purified by affinity column 

were employed in order to avoid high background associated with whole cell extract. 

Figure 3.4C showed that all three recombinant proteins are relatively pure with > 90% of 

purity, and, indeed, we see very low or almost no background. As expected, firefly 

luciferase of P. pyralis exhibits substrate specificity on C10:0, C12:0, C16:0, C16:1, 

C18:1, which is in accordance with the previous findings (Figure 3.4A and B, and 169). 

Furthermore, CG4500 acts on both saturated MCFAs and unsaturated LCFAs, including 

C10:0, C12:0, C16:1 and C18:1 (Figure 3.4A and B). The substrate specificity of 

CG4500 on C16:1 and C18:1 is encouraging, because its human homolog, ACSBG2, 

preferentially acts on unsaturated LCFAS (oleic acid (C18:1) and linoleic acid (C18:2)), 

but not on palmitic acid (C16:0) and linoceric acid (C24:0) (171), suggesting a conserved 

modality of preference is maintained from Drosophila to humans. However, 

unexpectedly, we observed that CG4500 has higher catalytic activity on MCFAs than on 

LCFAs. As we discussed in Section 3.3.1, CG4500 is most similar to enzymes that either 

ACS of LCFAs or VLCFAs; we did not expect it to act on MCFAs. Although CG4500 

prefers MCFAs over LCFAs as substrates, because the lipid content of the fat body is 

overwhelmingly long-chain-triglyceride, it likely still acts mostly on LCFAs. 



84 
 

 

 

 

Figure3.4 Substrate specificity of CG4500. A) and B) Fatty acyl-CoA synthetic activity 

was determined by the formation of acyl-adenylate from a series of FAs. Fatty acyl-

adenylate formation was monitored by detection of released 
32

P-AMP from [α-
32

P]ATP 

with TLC analysis. A) shows the TLC scan from Phosphoimager and B) shows the 

relative activity for each enzyme that is expressed as a percentage with respect to lauric 

acid. Assays for each FA independently repeated three times and the data represent the 

means ± SEM. C) Three recombinant protein purified by affinity column were separated 

by SDS-PAGE. 2.5mg of protein was run for each sample. Abbreviations are as follows: 

C10:0, decanoic acid; C12:0, lauric acid; C16:0, palmitic acid; C16:1, palmitoleic acid; 

C18:0 stearic acid; C18:1, oleic acid; C20:0, arachidic acid; C26:0, cerotic acid; Luc, 

luciferase protein; GST-CG4500, GST tagged CG4500 protein.) 
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3.3.4 CG4500 expression is induced by water starvation in a temporal-specific fashion. 

Next, we wanted to know whether CG4500 expression could be uncoupled from the 

developmentally orchestrated induction (Figure 3.3A) and induced by starving animals at 

developmental times that reach metabolic homeostasis, such as 1-day old males. And, 

was dERR required at other times? To begin, we tested two different time points, young 

larvae (at mid-L2) and young adult males (1 days post eclosion) by total nutrient 

deprivation (H2O) or through sugar-only feeding (20% sucrose) for an 8-hr period for 

mid-L2 and 24-hr period for adult fly, and we compared transcriptional responses to 

animals on a normal diet (yeast for mid-L2 and regular cornmeal-molasses-yeast media 

for adult males) by qRT-PCR. Because dERR mutants do not survive to adulthood we 

were only able to assay responses in the w
1118

 control. In addition to CG4500, we also 

looked at CPT-I responses, reasoning that CPT-I may have a similar profile, because it 

should be active at the same time as CG4500. We found that the expression of CG4500 is 

highly sensitive to starvation in young adults (Fig. 3.5A). Interestingly, this induction 

depends upon a depletion of sugar specifically, as the sucrose-supplemented animals 

remained unresponsive. We also found that, unlike CG4500, CPT-I was induced (albeit 

to a lesser extent) in animals fed only sugar, which was similar to the H2O response (Fig. 

3.5B). These results indicate that CG4500 and CPT-I are likely controlled through 

separate nutrient-sensing pathways. In contrast to young adults, young larvae down-

regulated CG4500 expression in response to limiting nutrient conditions, regardless of 
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genotype (Fig. 3.5C). This response was specific to CG4500, because CPT-I responded 

as it did at the later adult time, showing modest induction in the control animals (Fig. 

3.5D). However, in the dERR background CPT-I was not induced, but it did have a much 

elevated basal expression that was over 10-fold higher than control animals. This 

phenomenon suggests that dERR not only promotes glycolysis in early Drosophila 

developmental, but also might suppress oxidation of FAs at that time.  

 

 

Figure 3.5 The triggers for induced expression of CG4500 and CPT-I are different 

and temporal-specific. Induction of CG4500 in day-old control males (A) on water 

alone but not those fed 20% sucrose, while both conditions elicited similar responses for 

CPT-I (B), though water was not significant. In mid-L2, CG4500 was repressed in both 

control and dERR mutants (C), while control animals induced CPT-I in limiting nutrients 

and dERR mutants showed no change, but had elevated basal (D). Starvation challenges 

were carried out for 8 hrs for L2 and 24 hrs for adult. Responses measured by qPCR. * = 

p-value < 0.05. Error bars are ±SEM. 

 



87 
 

 

3.3.5 dERR mutant clear-gut L3 larvae are deranged in FAs metabolism. 

    We have shown that dERR regulates the expression of CG4500, which is an acyl-

CoA synthetase acting on MCFAs and unsaturated LCFAs, just prior to metamorphosis. 

We next wanted to test whether this regulation has an effect on metabolism in dERR 

mutant. To do this, we measured a host of metabolites by GC/MS and LC/MS/MS in 

control (w
1118

) animals and dERR mutants (dERR
1
/dERR

2
) in extracts that were prepared 

from clear-gut L3 larvae, the same stage of which our microarray analyses were 

performed. We found that dERR mutants are fully competent to mobilize stored fat from 

triacylglyceride (TAG) stores (Figure 3.6A). Furthermore, they have normal or elevated 

levels of all LCFAs surveyed, and have elevated levels of all medium-chain FAs 

measured, with particularly high levels of FAs in the C10-15 range (Figure 3.6A). These 

results suggested that TAG lipase activity was likely not affected in this background, 

especially since pre-wandering TAG levels were not significantly different in control and 

mutant animals (data not shown). These results also correspond to the unchanged 

expression of brummer lipase in dERR mutants. In contrast, carnitine conjugates of 

LCFAs were dramatically reduced altogether, despite having elevated levels of free 

carnitine available and a two-fold increase in deoxy-carnitine, a marker for carnitine 

synthesis (Figure 3.6B). These collective results indicated that dERR mutants are unable 

to process LCFAs for mβ-ox at the outer mitochondrial membrane.       
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Figure3.6 dERR mutants are disturbed in lipid metabolism in clear-gut L3 larvae. 
Altered free fatty acids levels A) and carnitine species B)  in dERR mutants as 

determined by GC/MS and LC/MS/MS. Dotted line shows levels for metabolites in 

control background. * = p-value < 0.05. Error bars are ±SEM. 

 

 

 

 

 

 

 

 



89 
 

 

3.4 Conclusions and Discussions 

Here, we identified an uncharacterized acyl-CoA synthetase CG4500, the expression 

of which is under regulation of dERR right before metamorphosis in Drosophila. We 

showed that CG4500 specifically catalyzes the activation of saturated MCFAs (decanoic 

acid C10:0 and lauric acid C12:0) and unsaturated LCFAs (palmitoleic acid C16:1 and 

stearic acid C18:1) (Figure 3.4). In addition, microarray analysis and qRT-PCR 

experiments both showed that dERR mutants have very low-level expression of CG4500 

transcripts in clear-gut L3 larvae (Table 3.1 and Figure 3.3). The regulation of dERR on 

CG4500 could be direct or indirect, however, our evidence favors that it is of a direct 

nature and that dERR binds to the promoter region to facilitate CG4500 transcription. 

Firstly, as a transcription factor mammalian ERRs are generally recruited to an ERR-

specific response element (ERRE), which is a consensus sequence of AGGTCA as the 

core motif preceded by a TNA flank (173). We have found multiple potential ERREs (the 

core element AGGTCA) located in 5 kb upstream of CG4500 translation start site. 

Furthermore, there is an ERRE with high fidelity to the consensus sequence 

(TCAAGGTCA) located in the second intron of CG4500, which is conserved in several 

Drosophila species. More importantly, although we have not examined direct binding 

between dERR and the CG4500 promoter in our lab, a consortium performed CHIP-Seq 

analysis, and their data suggests that ERR localizes with great enrichment to the CG4500 

prompter at three developmental times, including mid/late-embryos and early wandering 
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L3 (Figure 3.7). In addition, we are in the progress of completing directed CHIP 

experiments to test the interaction between dERR and the genomic region of CG4500, 

and identify the dERR regulatory sequence of CG4500 using luciferase reporter gene 

assay.  

 

 

Figure 3.7 ERR-GFP is highly enriched at the CG4500 promoter in mid/late-embryo 

and early wandering L3. ERRE is indicated by the marked blue line. 

 

 

Studies of the regulation of FA oxidation has been focused on the step of free FAs 

liberation (lipase) and the activity and expression of CPT-I considered as the rate-limiting 

step in lipid oxidation. Nevertheless, emerging evidence has revealed steps other than 

lipolysis and the carnitine cycle is important regulated events in the fatty acid catabolic 

pathway. For example, a recent report demonstrated that PGC-1/ERRα axis is involved in 
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the transcriptional regulation of CAT (carnitine/acylcarnitine translocase), which could 

be induced by fasting in mouse skeletal muscle (174). Another study which shares great 

similarity with our study here revealed that the coupling event of fatty acids to CoA via 

ACSs is an additional important regulated step in lipid catabolism in both fly and 

mammals (165). Intriguingly, the ACS (pudgy) identified in the study performed by Xie 

et al. is an unconserved gene that is only expressed in Drosophila. They observed pudgy 

is transcriptionally regulated by insulin/IGF. Interestingly, they found that the regulatory 

relationship between insulin/IGF and ACSs is preserved in mammalian cells, even though 

the regulated ACS is not conserved (165). The mammalian homolog of the ACS CG4500 

we identified is called acyl-CoA synthetase bubblegum family member 2 (ACSBG2). 

ACSBG2 is primarily expressed in brainstem and testis (171), but not in adipose tissue, 

liver and muscle. This may raise the concern that the regulation of dERR in lipid 

oxidation at the level of CoA activation is not applicable to the mammalian system. 

However, there are two considerations to ease this concern. Firstly, although we did not 

demonstrate whether the lipid metabolism is disturbed or not in CG4500 mutant animals 

due to the availability of the animals, we showed that CG4500 expression is potently 

induced by starvation, either developmental or applied (Figure 3.3 and Figure 3.5). 

Additionally, data posted online at flyatlas.org done by Dow et al. shows tremendous 

enrichment of CG4500 expression in the late-L3 fat body relative to any other tissue 

sampled (175). Fat body is considered as adipose tissue and liver counterpart for flies. 
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These data suggest that the expression of CG4500 is subject to regulation of nutrition 

status. Secondly, as mentioned earlier in this paragraph, the regulation relationship rather 

than the specific molecules seems to be preserved cross spices. We plan to perform 

starvation experiments in a mammalian adipocyte cell line (3T3-L1) with or without 

ERRs inhibitor, and examine mRNA level of multiple ACSs, including ACSBG2, by 

qRT-PCR. Hopefully, these experiments will firmly establish the regulatory role of ERRs 

on lipid oxidation at the level of fatty acid activation. This new link may be a potential 

target for drug development for variety of metabolic syndromes.  

  We observed that dERR mutants have imbalanced lipid profile. In clear-gut L2 

larvae, they have depleted levels of carnitine conjugated LCFAs (acetyl-carnitine, 

myristoyl carnitine, palmitoyl-carnitine, stearoyl-carnitine, oleoyl-carnitine), but elevated 

MCFAs (nonanoic acid C9:0, decanoic acid C10:0, lauric acid C12:0, lauroleic acid 

C12:1) and LCFAs with carbon between 14 and 20 (myristic acid C14:0, myristoleic acid 

C14:1, pentadecanoic acid C15:0, 10-heptadecanoic acid C17:1, 10-nonadecanoic acid 

C19:1) (Figure 3.6). One phenomenon that draws my attention is the much increased 

MCFAs level in dERR mutant animals. As we know, MCFAs can freely penetrate the 

mitochondria (153). They do not need activation of ACSs or carnitine conjugation as for 

mβ-ox. If CG4500 is the only lipid metabolic enzyme greatly affected in dERR mutant, 

then MCFAs should not be significantly altered due to the fact that they can still travel 

into the mitochondria. So this data really suggests that other than CG4500 dERR 
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probably regulates other enzymes involved in lipid oxidation pathways. Indeed, a 

mammalian study showed that ERRα transcriptionally regulates the human medium-

chain acyl CoA dehydrogenase, which is the enzyme catalyzes the first step of MCFA β-

oxidation (173). So without this enzyme, MCFAs cannot be break down through β-

oxidation to generate energy. Interestingly, our preliminary result from the microarray 

analysis done on wild type and dERR mutant of the clear-gut L3 exhibits decreased 

expression level of CG12262, which is a probable medium-chain specific acyl-CoA 

dehydrogenase (data not shown). As the master regulator of metabolic network, in my 

opinion, it is not shocking that ERR has multiple gene targets no matter in flies or 

mammals. These findings encouraged us to perform careful analysis on other metabolic 

enzymes that might be under the control of ERRs, which may provide insights to research 

performed in other organisms.  

 Last but not the least, currently we have not been able to measure the level of 

malonyl-CoA, which can inhibit CPT-I and have the same effect as CG4500 depletion. 

We want to rule out the possibility that the decreased levels of carnitine-conjugated FAs 

in dERR mutant is a consequence of abnormally high level of malonyl-CoA. We plan to 

reduce the level of malonyl-CoA by reducing the level of acetyl-CoA carboxylase (ACC) 

that converts acetyl-CoA to malonyl-CoA using an available RNAi construct. We 

consider elevated ACC activity highly unlikely, because we saw that AMPK, which is a 

potent inhibitor of ACC activity (176), is constitutively activated in dERR mutants (data 
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not shown). If knockdown of ACC does not affect the LCFA metabolites in dERR 

mutants, than almost for sure malonyl-CoA is not the problem. 
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Chapter 4 Conclusions and Future Directions 

 

Metabolic homeostasis is strictly regulated and subject to instant changes under many 

physiological and pathological conditions, including normal development, where 

metabolism undergoes approximately series of physiologic changes, in cancer, where a 

pathological metabolic profile drives physiology, and in hypoxia, as both physiological 

and pathological conditions control outcomes. Normally, multicellular organisms have 

limited nutritional uptake, and in that way they need to employ a strategy to produce ATP 

efficiently. However, in some situations, such as development or hypoxia, cells rely on 

atypical metabolic strategies that are not necessarily efficient. For example, hypoxic 

metabolism heavily leans on glycolysis and converts pyruvate to lactate. Interestingly, 

proliferating cells also shift metabolism from mitochondrial OXPHOS toward glycolysis 

and lactate generation too, but for a different reason. They need to generate building 

blocks to provide all the materials for growth as we discussed in Chapter 1.  

Our primary goal was to better understand the triggers cells employ and the 

consequences for different strategies of bioenergetic metabolism, using Drosophila as a 

model. Drosophila can respond robustly to hypoxia, and they also experience two 

programmed metabolic transitions through their development, making them a good 

model for our studies. Here, we also found that hypoxia-induced adaptation is stage 

dependent. We saw that hypoxic transcriptional induction is most apparent at the late-L3 
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time for all genes assayed. Our findings are consistent with previous observation that 

transient hypoxic exposures during the late larval and early pupal stages had the 

maximum effects on adult size compared to treatment performed during other stages 

(177). Altogether, eventually we want to understand the regulatory mechanism that 

control inducible and programmed metabolic transitions in flies. 

First, we find that the molecular mechanisms that control the hypoxic adaptation are 

more complex than the conventional ideas suggest. We show that hypoxic-induced 

transcriptional adaptation response is subject to HIF-dependent and HIF-independent 

regulation. dERR can interact with dHIFα, and transcriptionally modulate hypoxic 

responses either together with dHIF or alone. Surprisingly, hypoxic responses 

contributing glycolytic genes are not controlled by the HIF-dependent pathways, but 

rather are regulated by dERR-dependent mechanisms. Also, a large portion of the 

hypoxic response cannot be attribute to either dHIF or dERR action. These results 

demonstrate that unknown pathways modulate hypoxic adaptation. Actually, we have 

designed a genetic screen to identify those potential pathways, which could provide ideas 

and perspectives for studying non-HIF hypoxic regulations in mammals. We plan to carry 

out the recessive EMS screen to identify HIF-independent pathways. We will use the 

well-established GAL4-UAS system, as well as the antagonizing effect of GAL80 on the 

activity of GAL4 protein (178, 179). We will generate transgenic flies that express GAL4 

in a HIF-dependent fashion by putting GAL4 gene under the control of HIF-dependent 
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promoter (HD>GAL4), and flies that express GAL80 in a HIF-independent way by 

controlling GAL80 gene by HIF-independent promoter (HI>GAL80). We will detect the 

GAL4 protein using UAS-GFP strains. So, HD>GAL4 flies will express low GFP signal 

in normoxia, but light up in hypoxia. Then when we combine the HD>GAL4 

chromosome together with the HI>GAL80 chromosome in the same strain by crossing, 

the new HD>GAL4, HD>GAL80 strain will express low GFP or no GFP signal in both 

normoxia and hypoxia. Then we chemically mutate the HD>GAL4, HD>GAL80 stain 

with EMS, and select those gain the ability to express GFP signal in hypoxic treatment, 

which are those loss the expression of GAL80 (loss the HIF-independence pathway). 

Hopefully, this strategy will provide us candidacy pathways for the puzzle of hypoxic 

adaptation response.  

Additionally, we also find that loss of dHIFα greatly disturbs all aspects of 

carbohydrate catabolism under normoxia. This observation suggests that dHIFα might 

have a role in regulation of metabolic transitions induced by larvae in development. Since 

dHIFα is regulated in a post-transcriptional way, our wish to exam HIFα protein 

expression in a series of developmental stages in flies has been hampered by the 

availability of a good antibody. We made some effort to generate a dHIFα antibody with 

little success. It is possible that we could conquer this by redesign the part of dHIFα 

serving as antigen. But protein purification and design strategy for making antibody are 

not our turf. We plan to collaborate with either another lab or a company to make an 
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excellent antibody for us. But, overall, because dHIFα is a humongous protein with a 

molecular weight of 170kD, it will be a hard western to do anyway even with a widely 

used and commercially available antibody. 

  Previously, it is been shown that dERR is required to turn on an anabolic program 

that utilizes aerobic glycolysis (Warburg metabolism) to drive rapid growth at late 

embryogesis (87). Here, we demonstrate the role of dERR in turning off this aerobic 

glycolysis and switching on fatty acid oxidation. We find that dERR is essential for the 

transcriptional expression of CG4500, a previously uncharacterized LCFA acyl-CoA 

synthetase. We found that the transcription of CG4500 is temporally induced by 

starvation, and this induction is sugar sensitive. We saw that mid-L2 larvae actually 

express less amount of CG4500 mRNA under starvation. But the transcription of 

CG4500 is robustly induced by 24 hours starvation in one-day old male. This result is in 

accordance with another study done in two wild-derived inbred strains of Drosophila. 

They showed that the expression of CG4500 is induced about 3.5 times after 24 hours 

starvation in the head by microarray analysis (180). However, we were not able to test 

whether the starvation induction effect of CG4500 is dependent on dERR, due to the fact 

that dERR mutants do not survive to adulthood. We plan to employ dERR RNAi strains 

and take advantage of the heat-shock induction line, to only knock down dERR in adult 

fly or other stages desired. Using this system, we could study the function of dERR in 

adult flies. Because dERR greatly affects sugar metabolism in the earlier stages of larva 
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development, using the temporal knock down strategy will eliminate the cumulative 

effects of dERR through development.  

    Furthermore, we find that the transcription of CG4500 cannot be induced by 

treatment with 20% sucrose in one-day old males. This is a really interesting finding, 

because it gives us a hint that sugar metabolites or the products of sugar catabolism might 

be the signals activating dERR action. ERRα was the first orphan NRs ever found (4). 

However, even after many years, the signaling pathways that activate ERRs remain 

elusive. In mammals, co-activators, like PGC-1 or co-repressors, like RIP140, are viewed 

as protein ligands for ERRs. However, only one PGC-1α-like protein has been found in 

Drosophila (Spargel) but even it is not well conserved (181), and likely does not perform 

similar functions based on its sequence. Furthermore, there is indeed no evidence to show 

whether it interacts with or works together with dERR. We would like to study potential 

binding partners for dERR. Our yeast-two hybrid study has provided several other 

interesting candidates that may open avenues of investigation. So, our finding that 

CG4500 induction is sugar sensitive makes us speculate that dERR is activated by 

molecules involved in sugar catabolism. We plan to take advantage of available genetic 

tools to knock down major steps in sugar metabolism to see which pathway can block the 

sugar sensitive phenomenon. Then, we will test whether the metabolites involved in those 

pathways can activate dERR activity using ERRE reporter. Hopefully, those efforts will 



100 
 

 

lead us to new that signals stimulate ERR activities, and provide a molecular context for 

understanding the ERR activation pathways in mammals.        
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the data, and performed statistical analysis. Leon Avery performed the 

principle component analysis. Contributed reagents/materials/analysis 
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