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With the looming energy crisis compounded by the global economic downturn there is an 

urgent need to increase energy efficiency and to discover new energy sources. An approach to 

solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow 

control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption 

and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. 
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Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic 

jets by incorporating energy harvesting into actuator design using prestressed piezoelectric 

composites. 

Four state-of-the-art piezoelectric composites were chosen as active diaphragms in 

synthetic jet actuators. These composites not only overcome the inherent brittle and fragile 

nature of piezoelectric materials but also enhance domain movement which in turn enhances 

intrinsic contributions. With these varying characteristics among different types of composites, 

the intricacies of the synthetic jet design and its implementation increases. In addition the 

electrical power requirements of piezoelectric materials make the new SJA system a coupled 

multiphysics problem involving electro–mechanical and structural–fluid interactions.  

Due to the nature of this system, a design of experiments approach, a method of 

combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are 

investigated using a fractional factorial design with peak synthetic jet velocity as a response 

variable. Furthermore, energy generated by the system oscillations is harvested with a 

prestressed composite and a piezo-polymer. Using response surface methodology the process is 

optimized under different temperatures and pressures to simulate harsh environmental 

conditions.   

Results of the fractional factorial experimental design showed that cavity dimensions and 

type of signal used to drive the synthetic jet actuator were statistically significant factors when 

studying peak jet velocity. The Bimorph (~50m/s) and the prestressed metal composite (~45m/s) 

generated similar peak jet velocities but the later is the most robust of all tested actuators. In 

addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed 
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with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy 

harvesting process were identified as 237.6kPa, 3.7Hz, 1MΩ and 12°C and the power density 

measured at these conditions was 24.27µW/mm3.  

Finally, the SJA is integrated with an energy harvesting system and the power generated 

is stored into a large capacitor and a rechargeable battery. After approximately six hours of 

operation 5V of generated voltage is stored in a 330µF capacitor with the prestressed metal 

composite as the harvester. It is then demonstrated that energy harvested from the inherent 

vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not 

only improves on the efficiency of aerodynamic bodies, but also harvests energy that is 

otherwise wasted. 
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1 Introduction 

 
 
 
 

1.1 Motivation 

Modern civilization thrives on the abundance of oil. Oil is exceptionally versatile and can 

power almost all machines that move. In particular and of major impact are transportation 

machines such as airplanes and automobiles. Figure 1–1 (a) shows oil, coal and natural gas 

together supplying 85 percent of the world's energy supply in 2008 as published by the Energy 

Information Administration (EIA). 

At the current rate of production and consumption, the existing oil reserves are sufficient 

to last 42 years. That figure is 61 years for natural gas and 133 years for coal as shown in Figure 

1–1 (b). Oil and gas wells produce less as they become depleted which makes it impossible to 

keep production constant. Thus it is inevitable that oil and gas will become scarce and expensive 

within the life time of living humans. The two possible solutions to this problem are: 

1. Use existing energy supplies wisely and more efficiently to delay the problem as long as 

possible.  

2. Identify alternate and renewable energy sources which are fairly inexpensive and can 

sustain the needs of mankind. 
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39%

23%

23%

15%

Oil Coal Gas Nuclear, Hydro, Non Hydro Renewable

42 Years

133 Years

61 Years

This dissertation is focused on the study of an active flow control method which can 

increase the fuel efficiency of aerodynamic and automotive vehicles by reducing weight and 

complexity of the system. Using active flow control tools such as synthetic jet actuators could 

lead to saving millions of dollars in fuel costs.  

Another aspect of this dissertation presents an energy source which, until recently, has 

largely been ignored due to the very small amounts of power that is produced. Piezoelectric 

sensors can harvest energy from ambient sources such as vibrations and heat which are usually 

wasted. Although the amount of energy harvested by piezos is very small in comparison to solar 

or wind energy sources, piezoelectric sources can operate in any environment (day or night) and 

do not need complex and expensive installation procedures. Since vibrations exist in all 

dynamics systems can be used to harvest the kinetic energy to power small devices.  

Thus the motivation of this dissertation is to study synthetic jet active flow control 

actuators which can provide a potential solution towards solving the energy crisis. Further it is 

also shown that energy harvesting principles can be integrated into synthetic jets to generate 

enough energy to charge a large capacitor which in turn can be used to power other sensors 

Figure 1-1 (a) World Energy Supply 2008, (b) Years of energy supply left at constant 
production rate (Energy Information Administration EIA) 

(a) (b) 
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needed for optimal flow control. The following sections will provide more details about the 

mechanisms and advantages of using active flow control tools such as synthetic jet actuators.  

1.2 Active Flow Control 

Flow control refers to the idea of manipulating flow fields around and within structures in 

such a manner so as to improve efficiency and performance. In the case of aerodynamic vehicles 

the potential benefits of flow control include improved performance and maneuverability, 

affordability, increased range and payload, and environmental compliance. Thus flow control has 

become one of the leading areas of research for many scientists and engineers in industry as well 

as academia.  

The German engineer Ludwig Prandtl first introduced the world to flow control by 

publishing the boundary layer theory at the beginning of the 20th century. Flow control was 

extensively studied and applied mainly to military related flow system all throughout the cold 

war and also in the period before and during World War II. The 1961 paper by Lachman gives a 

complete review and analysis and more recently Gad-el-Hak has published papers on flow 

control history and eras (Lachman, 1961, Gad-el-Hak et al., 1998, Gal-el-Hak, 2000). Preceding 

the pioneering work of Schubauer and Skramstad in 1947, all the work on flow control used 

steady state passive tools and mechanisms for flow management (Schubauer and Skramstad, 

1947). Such passive flow control techniques have marginal power efficiency, and therefore limit 

the implementation in operational applications.  

Active flow control (AFC) methods however, are much more efficient. During the last 

decade, emphasis has been placed on the development of active control methods in which 

energy, or auxiliary power, is introduced into the flow. AFCs can adapt to the constantly 
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changing conditions by introducing small amounts of energy locally to achieve non-local 

changes in the flow field with large performance gains (Amitay et al., 1997, Amitay et al., 1998, 

Gad-el-Hak, 2000, Kral et al., 1997, Smith and Glezer, 1998). The feasibility of increasing the 

efficiency and simplifying fluid related systems is very appealing considering that one percent 

saving in world consumption of jet fuel is worth about 1.25 million dollars a day of direct 

operating costs (Collis et al., 2004). Likewise, such fuel savings would lead to reduced 

environmental impact, although such environmental effects are difficult to quantify. McLean et 

al. evaluated different AFC concepts and candidate applications were considered for civil jet 

transports (McLean et al., 1999). The simplification of conventional high lift systems by AFC 

was identified as a prime candidate, possibly providing 0.3% airplane cost reduction, up to 2% 

weight reduction and about 3% cruise drag reduction. Also, the advent of MEMS (Micro Electro 

Mechanical Systems) technology in the last two decades has provided a new impetus to the field 

of active control. The MEMS based actuators are easy to mass manufacture and they provide a 

unified framework for implementing flow control including actuation, power transmission, 

sensing and incorporation of control algorithms (Ho and Tai, 1996). 

In spite of all the advantages, using active flow control devices usually adds complexity 

in design, increases manufacturing and operation cost, which prevents their use. For this reason, 

many researchers have focused on designing better active flow control devices that are easy to 

manufacture, are small in size, require little power to operate and are highly reliable. A 

promising concept that has shown much potential during the last decade is synthetic jet actuators, 

a form of AFC. 
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1.3 Synthetic Jet Actuators (SJA) 

Synthetic jet actuators consist of a cavity with an oscillating diaphragm as shown in 

Figure 1-2. When the diaphragm oscillates air is pushed out an orifice forming a jet (Smith, 

1999). The interaction of the jets with an external flow leads to the formation of closed re-

circulating flow regime near the surface. This interaction can act as a "virtual surface" and 

consequently is an apparent modification of the flow boundary (Amitay et al., 1997). An array of 

such fabricated devices can produce a large jet velocity if the orifices are at the correct spacing 

and the driving signals are in phase. 

 

 

 

 

 

Synthetic jets are popular flow control devices capable of causing an apparent 

modification to the flow boundary through periodic oscillations. Their popularity stems from the 

self-contained design, lack of fluid source, and the fact that no ducting is required, only an 

applied voltage. The design of the micro scale synthetic jet actuator proposed by Glezer and his 

co-workers (Coe et al., 1994) has been adapted widely by a number of researchers. The design is 

very simple consisting of a diaphragm that is driven by an electric field, set within a cavity. The 

Figure 1-2 Synthetic Jet Actuator 
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diaphragm is made up of a piezo disk glued to a metal shim, a Unimorph.  An orifice in the lid of 

the device allows fluid to be drawn into, and forced out of the cavity. To obtain high velocities, 

the diaphragm has to be driven at its resonant frequency, which is in the kHz range.  

Smith and Glezer performed a detailed experimental investigation into the synthetic jet 

created by these devices (Smith and Glezer, 1997, 1998). It is claimed, that during the outflow 

cycle a vortex ring is formed at the orifice. This ring then travels away from the device under its 

own self-induced velocity. By the time the fluid is drawn into the cavity, the vortex ring has 

moved sufficiently far away so as to be relatively unaffected. Consequently, a train of vortices 

traveling away from the orifice is generated. In their experiments, the vortices rapidly undergo 

transition and lose their coherence. The resulting synthetic jet is turbulent.  The experimental 

findings of Smith and Glezer were supported by Kral et al. who performed a two dimensional 

numerical study of a laminar synthetic jet (Kral et al., 1997). 

Rathnasingham and Breuer drew attention away from the jet and instead focused on the 

physics within the cavity (Rathnasingham and Breuer, 1997 a and b).  It was demonstrated, by 

the use of experimental and simple numerical models, that there was significant fluid structure 

interaction between the resonant diaphragm and the fluid pressure in the cavity. Interest in the 

cavity was continued by Rizzetta et al. who solved the three-dimensional compressible Navier-

Stokes equations both inside and outside of the cavity (Rizetta et al., 1999). It was shown that 

significant vertical disturbances could be created in the cavity during the inflow cycle of the 

actuator. The cavity dimensions, such as cavity depth, also influenced the velocity profile of the 

jet at the orifice exit. 
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The effectiveness of oscillatory blowing in separation control has been established 

experimentally and numerically (Hasan, 1998, Donovan et al., 1998, Seifert et al., 1993, Seifert 

et al., 1996, Seifert and Pack, 1999). Active separation control was applied successfully for the 

first time at Reynolds numbers, corresponding to a jetliner at takeoff conditions. Oscillatory 

blowing proved to be an effective and efficient tool for the control of boundary-layer separation 

over a wide range of chord Reynolds numbers, representative of a micro-aerial-vehicle to 

commercial jetliners at takeoff. Using bench-top experiments accompanied by theoretical 

analysis, it was determined that for low amplitudes (velocity < 10m/s), the level of velocity 

fluctuations exiting the blowing slot was proportional to the cavity pressure fluctuations 

normalized by the density, whereas for high amplitudes it is proportional to the square root of the 

normalized pressure (Seifert et al., 1999). Based on these results, Seifert et al. proposed that a 

possible approach to closed-loop control of separation is to sense the trailing edge pressure and 

use that as an input to adjust the oscillatory blowing momentum coefficient to achieve the 

desired aerodynamic behavior, while maintaining effective frequency as 1 at all times. Effective 

frequency, as defined by Seifert and Pack, is the oscillation of the diaphragm divided by the free 

stream velocity multiplied by the location of the jet on a wing. 

These successful attempts in separation control encouraged the investigation of the effect 

of synthetic jet actuators on simple two dimensional cylinder flows. Amitay et al. controlled lift 

and drag forces successfully by installing a pair of synthetic jet actuators side by side radially on 

the cylinder shell (Amitay et al., 1997, 1998). Mallinson et al. investigated similar control on a 

cylinder but used a circular orifice instead of a rectangular orifice as in the previous case 

(Mallinson et al., 1999). Again, control over a cylinder was performed by Crook et al. and Wood 

et al., using a spanwise array of synthetic jet actuators to delay separation (Crook et al., 1999, 
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Wood et al., 2000). Crook et al. constructed a device, a piezoelectric disc bonded to a brass 

shim, based on preliminary analysis by Rathnasingham and Breuer that modeled a thin circular 

plate as a piston. Results showed the model provided a good prediction of the mean value of the 

velocity in the developed jet though the model did not predict the peak centerline jet velocity.  

The 2004 CFD validation workshop for synthetic jets and turbulent separation control 

held in Williamsburg, VA asked seventy five researchers representative of seven countries to 

attempt to model one of three cases experimentally tested at NASA Langley Research Center. 

These cases included: 1) synthetic jets in quiescent air, 2) synthetic jet in a turbulent boundary 

crossflow, and 3) flow over a hump model with no crossflow. Until this CFD workshop, most 

CFD validation efforts of experimental results have been and continue to be rather isolated 

making it difficult to accurately determine the reliability of synthetic jet CFD modeling (Rumsey 

et al., 2004, Schaeffler and Jenkins, 2004, Yao et al., 2004). 

For case one, synthetic jets in quiescent air, participants at the workshop were given the 

experimental jet velocity as a function of time near the center of the orifice exit and were granted 

the choice of applying arbitrary boundary conditions, grid, and method of solution to attempt to 

numerically reproduce the results. Since no guidelines were given regarding particular boundary 

conditions, grids or methods of solution to encourage broad participation it inevitably introduced 

a source of uncertainty when attempting to evaluate and compare the various CFD results against 

one another. 

For the quiescent flow case believed to be mostly laminar or transitional, there were eight 

participants that submitted twenty five separate numerical models that included large eddy 

simulation (LES), reduced order models, 2D blended RANS-LES, laminar Navier Stokes, and 

unsteady Reynolds Average Navier-Stokes (RANS). Most of the numerical cases were 2D with a 
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few 3D models that used periodicity in the direction aligned with the slot's long axis. The vast 

majority of participants simulated the diaphragm motion via a transpiration condition imposed on 

the diaphragms neutral surface. A transpiration condition is one that applies either an assumed 

oscillating fluid velocity profile or pressure oscillation to emulate the effects of the oscillating 

diaphragm within the cavity. Others participants further simplified the cavity by imposing a 

transpiration condition not at the neutral surface but at the bottom of the slit's neck or directly on 

the slit's exit, thus neglecting the effects of the cavity itself. Results of the workshop showed 

significant variation among the proposed CFD techniques and established that no one method in 

particular clearly excelled above the others.  

A more recent paper by Rumsey (2009) talks about the success and challenges of flow 

control simulations in the past decade. The paper states that the active flow control problem is 

very complex. Current models have coupled CFD tools with considerable experiments and such 

empirical designs are extremely expensive and time consuming. Current computational tools 

have inherent limitations and a generalized model for synthetic jet actuators does not exist. It was 

also established that there are still inconsistencies not only with the numerical models but also 

between the different experimental time-dependent flow measurement techniques, Particle Image 

Velocimetry (PIV), hot-wire probes, and Laser Doppler Velocimetry (LDV) (Yao et al., 2004). 

The greatest variation in the experimental measurements was mostly attributed to the 

piezoelectric diaphragms observed performance time degradation, which further complicated 

validation of the various CFD models. 

The oscillating diaphragm used in the synthetic jet cavity is usually driven using 

electrical or mechanical power. In the past, researchers have used mechanical shakers, 

compressed air, or regulated blowers as a means of supplying steady or oscillating flow (Seifert 
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et al., 1993, Seifert et al., 1996). This adds to the complexity and weight of the system. To 

overcome these drawbacks piezoelectric diaphragms are commonly used to increase efficiency. 

The diaphragms consist of a piezoelectric ceramic bonded to a metal shim. This arrangement 

reduces the number of moving parts prone to failure. Several investigators have adopted 

piezoelectric disks as oscillating diaphragms in synthetic jets to attempt to make the systems 

lighter, increase efficiency and save resources without the use of complex circuitry as compared 

to previously used methods (Crook et al., 1999, Rathnasingham and Breuer, 1997 a and b, Smith 

and Glezer, 1998). Synthetic jet actuators with piezoelectric discs need to be operated at very 

high resonant frequencies to achieve the desired output. This is a major disadvantage since at 

high frequencies debonding and degradation occurs leading to the failure of the actuator. 

The standard synthetic jet actuator cavity design proposed by Glezer et al. was further 

modified by Bryant et al. (Bryant et al., 1999) to demonstrate the potential benefits of high 

displacement piezoelectric composite actuators (HGA’s) such as Bimorph and Thunder® in 

synthetic jet actuation. These pre-stressed devices have the advantage of durability and being 

able to produce large deflections at non-resonant driving frequencies. Several studies conducted 

by Mossi (Mossi and Bryant, 2003, 2004, Mossi et al., 2005 a and b) have shown that the 

diaphragm used in the synthetic jet cavity has a significant effect on the jet velocity, yet its 

performance is highly dependent on geometrical, mechanical, and electrical parameters. 

An added advantage of using piezoelectric diaphragms is their sensing functionality. 

According to the direct piezoelectric effect, a charge develops on the surface of the material 

when a stress is applied. In the case of a synthetic jet actuator, the converse piezoelectric effect is 

in effect such that application of electric field causes a change in strain. While the jet is 

operational, the diaphragm is constantly vibrating, generating kinetic energy which is usually 
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wasted. Using the direct piezoelectric effect this energy can be harvested to charge a storage 

device or to run a low power device such as wireless sensors.  

1.4 Energy Harvesting 

Energy harvesting is a process in which energy which would otherwise be wasted is 

processed and stored for future use by an application. The use of harvested energy could extend 

the operational life of devices traditionally powered by batteries. This is particularly 

advantageous in systems with limited accessibility such as biomedical implants and structures 

with embedded micro and wireless sensors. It is feasible that such devices would have the ability 

to generate their own power from the ambient environment. This can either prolong the life of an 

existing battery or eliminate the battery. With advances in design and manufacturing as well as 

reduced power requirements, the use of energy harvesting methods has become practical and has 

gained significant popularity (Chandrakasan et al., 1998, Davis et al., 2002).  

There are several types of ambient energy which exist in nature that can be harvested.  

Heat, electricity, solar, and biomass are forms of energy that are stored differently, but can be 

converted from one form to the other. Photocells convert light to electricity, thermocouples 

convert heat to electricity, and magneto-electric generators convert mechanical energy to 

electricity. These are all power generators and are frequently used in electricity generation. 

Similar to magneto-electric generators, piezoelectric materials can also convert mechanical 

energy from vibrations to electrical energy.  

Piezoelectric power generators can be advantageous for some systems over other 

conversion methods. Because of their simplicity, they can be made small enough to fit inside of 

micro electromechanical systems (MEMS) (Roundy et al., 2004). Another advantage of using 
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piezoelectric generators is that the life span of the system is increased if the applied force and 

external temperature are within the operational range of the material. The mechanical energy 

required for conversion can feasibly be obtained from the environment. However, because of the 

small electrical output, piezoelectric generators have been largely neglected for power 

generation. But with advances in integrated circuit technology this is no longer an issue. Other 

problems with piezoelectric generators are application specific so that a common solution does 

not exist. Hence, power requirements are different for a variety of modules, thus suitable 

circuitry is required to adapt to various applications. In the current study, relevant factors are 

identified and a process through which these parameters can be optimized is outlined.  

Piezoelectric materials are versatile because vibrations occur in most dynamic systems. 

These materials also have a wide dynamic range and low output noise. There are many 

piezoelectric materials from which to choose for designing a power conversion mechanism. 

Roundy et al. have shown that a power density of 70μW/cm3 is quite feasible from a PZT 

Bimorph beam mounted as a cantilever. Simulations by the same investigators show that an 

optimized design would be capable of 250μW/cm3 from a vibration source with input vibrations 

of 2.5m/s2 at 120Hz (Roundy, 2003, Roundy et al., 2003, Roundy et al., 2004). Erika et al. 

modeled and tested a Unimorph membrane consisting of PZT and brass encircled by an 

aluminum ring mounted on a mechanical shaker (2005). The excitation of the shaker was varied 

between 0–5g of acceleration. The electrical output of the membrane was connected to load 

resistors which varied from 100Ω to 1MΩ. It was found that a maximum power of 1.8mW was 

generated at an acceleration of 2g with a 56kΩ load resistance. Yoon, Washington, and Danak 

studied the charge generation properties of curved rectangular PZT Unimorph beams by 

optimizing geometric parameters such as length, width and thickness of the device (2005). A 
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shoe insert which was used in a previous study to harvest energy while walking, was modeled 

using the piezoelectric constitutive equations and the shallow, thin shell theory. An equation was 

derived that expressed charge generation of the PZT beam in terms of applied force, material 

properties and geometry. In a parametric study using the dimensions from nine samples, it was 

shown that geometry and material properties do affect charge production. Increasing the width, 

center height, and thickness of the substrate produces increased charge generations. During this 

study, an experiment was conducted by dropping a 5lb weight on a sample and determining its 

charge production. Another experiment was conducted by determining the charge production of 

a sample while a 100lb human stepped on it.  

An additional aspect of the energy harvesting process is signal conditioning, as the 

electrical charge generated by a piezoelectric generator is usually insufficient to power a 

commercial device.  By using circuitry the generated signal is processed such that a usable 

voltage is obtained which can be applied to the device directly or used to charge a battery (Elvin 

et al., 2003). The type of circuitry used to harvest the energy from a piezoelectric transducer is 

determined by the desired output to the load which most often needs to be rectified, filtered, and 

regulated (Park, 2001). To that end, a piezoelectric transducer can be modeled as an AC source 

in parallel with a capacitor. To convert this signal into a useful one, an AC―DC converter is 

used to rectify the AC signal. The output from this converter is then sent to a DC―DC converter 

where it is regulated to the desired voltage. Roundy et al. explored the possibility of scavenging 

low level vibrations as a power source for wireless sensor nodes. In this study, the geometry of 

the piezoelectric device was optimized while the load resistance of the circuitry, which consisted 

of a series inductor with an active bridge, was varied. A piezoelectric generator was modeled as 

an AC source in series with a capacitor and a resistance (Roundy, 2003, Roundy et al., 2003, 
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Roundy et al., 2004). Other approaches include the use of piezoelectric composites. Sodano, 

Lloyd, and Inman, for instance, compared the ability of three types of composites to convert 

mechanical strain into electrical energy by exciting them while attached to an aluminum beam. 

Their study concluded that impedance matching between the transducer and the circuit is critical 

when optimizing for power (Sodano et al., 2005, 2006). 

Mossi et al. performed an investigation of parameters that affect actuation and energy 

harvesting on rectangular pre-stressed piezoelectric Unimorphs (Mossi et al., 2005c). Parameters 

such as conductivity of the adhesive, composition, size, type, and thickness of the layers, were 

investigated using fractional factorial experimental design techniques. Statistical analyses of all 

the results were performed to determine the significance of the parameters tested. The study 

concluded that circuitry must be coupled with device geometry to optimize its performance. 

The vibration energy harvesting process described in this section can be integrated into a 

synthetic jet actuator to achieve multi–functionality. Actuation and sensing will be integrated 

into one system such that additional information can be obtained about the working of the 

synthetic jet and concurrently the harvested energy can be used for used for other applications. 

Limited work exists on the integration of sensing and actuation in piezoelectric materials as 

described in the following section.  

1.5 Integrated Energy Harvesting in Synthetic Jet Actuators 

Piezoelectric materials have been widely used as sensors and actuators owing to their 

excellent conversion properties between the electrical and mechanical strain energies. , and 

independent piezoelectric devices for the sensor and actuator are generally necessary. The 

process of concurrent actuation and sensing by a single transducer is described as self―sensing 
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(Simmers et al., 2004, Hanson and Levesley, 2004). Using such a technique leads to an 

immediate reduction in the number of sensing and actuation devices. Associated costs of power, 

wiring and interfacing are drastically reduced also making the system simpler. A self-sensed 

system can also offer increased robustness if an actuator can be used without sensors; it is 

generally noted when a failure occurs in a sensor―actuator system, the fault is far more 

frequently due to sensor failure (or failure of related interfacing or wiring) than actuator failure 

(Lorenz , 2001). 

The concept of self―sensing actuators was first developed and published by Dosch et al. 

(1992) and Anderson et al. (1992). The motivation behind the concept was to truly integrate 

sensors and actuators to have applications in active and intelligent structures. Dosch et al. 

verified the technique experimentally by mounting piezoceramic wafers to a cantilevered beam 

and using them to suppress the beam’s vibrations. Anderson et al. applied self-sensing to an 

active strut for vibration control. 

Subsequent to the work of Dosch et al., self―sensing piezoelectric actuators have been 

widely employed in vibration and control applications. Tzou and Hollkamp investigated the use 

of self sensing orthogonal model actuators to effectively control vibration in beam-like structures 

(1994). Frampton et al. (1995) and Dongi et al. (1995) investigated the feasibility of using a 

self―sensing actuator for active flutter suppression. Vallone successfully applied self―sensing 

actuators to control vibrations in large scale structures (Vallone, 1995). In addition, self―sensing 

actuation has been extended to active acoustic noise control and structutal health monitoring 

applications. While most studies use monolithic piezoceramic material for its d31 coupling 

coefficients, Jones et al. applied the self-sensing actuation concept to PZT stack actuators used as 
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a micropositioner (1994). The authors used a nonlinear element in the self―sensing circuit to 

negate any nonlinear effects, thus improving the signal to noise ratio. More recently, Sodano et 

al. investigated the feasibility of Micro Fiber Composites used in self―sensing actuation for 

vibration reduction in flexible structures, such as inflatable space devices (2004).  

A number of techniques are presently used to achieve integrated sensing and actuation 

with separate piezoelectric sensors and actuators. One existing method applicable to beams is to 

layer a piezoelectric sensor on top of a piezoelectric actuator (Cudney et al., 1990). If the sensor 

and actuator layers are thin compared to the thickness of the beam it can be said that strain in the 

sensor is the same as the strain in the actuator. A major challenge in this scheme is to minimize 

capacitive coupling between the sensor and actuator by electrically shielding. 

A second method for achieving integrated control on a beam is to place the sensor and 

actuator alongside each other (Fanson and Caughey, 1987). The arrangement tends to reduce the 

capacitive coupling between the sensor and actuator compared to the previous method. For a 

beam undergoing pure bending, and equal thickness sensor and actuator, the strain in the actuator 

will be equivalent to the strain in the sensor. A disadvantage of this method is that less area of 

the beam is available for the actuator, having been sacrificed to the sensor.  

A third method can be found in manufactured piezoelectric alarms and buzzers. One 

piezoelectric material is used and the sensor and actuator are separated by discontinuous 

electrode areas. On one electrode area the control voltage is applied and on the other electrode 

area the sensor voltage is measured. Because the electrode areas are alongside each other the 

capacitive coupling should be minimized. As with the previous method, part of the potential 

actuator area is sacrificed to the sensor. 
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The self-sensing piezoelectric actuator operation is based on the linear system principle 

that states that if two signals are added into a linear system and one of the signals is known, the 

second input can be determined. In this case, the two signals are the voltage from the controller 

and the voltage produced by piezoelectric material as it strains. In summary self–sensing is an 

expanding field and in this dissertation it is incorporates into flow control.  

1.6 Chapter Summary 

This chapter gives an overview of the research that has been performed on synthetic jet 

actuators and energy harvesting. A synthetic jet actuator is an active flow control tool used in 

automotive and aerodynamic industry. Although they have been studied extensively in the past 

decade, they have still not been implemented commercially in airplanes. Recently Ferrari and 

Renault automotives have integrated them in their new prototype models to reduce drag. 

Implementation in the aerospace industry is hindered by the limited results obtained using 

computational tools. In fact, CFD tools have proven insufficient in modeling these actuators 

accurately. It has been suggested that a coupling of experimental data and CFD tools is required 

to truly describe the physics of the problem. Furthermore a generalized model does not exist. 

One of the hurdles in the processes has been the implementation of an effective and reliable 

mechanism for generating the jets. Piezoelectric discs are commonly used in the implementation 

but further research is required in resolving the reduced lifetime issues. In the current study a 

type of prestressed piezoelectric composite is suggested as a possible solution due to its 

robustness and enhanced performance as compared to piezoelectric discs. 

Research into energy harvesting with piezoelectric materials has gained tremendous 

impetus in the last few years. This chapter provides a summary of the work that has been 

performed in the last few years. Comparisons between different piezoelectric harvesting systems 
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are discussed with both advantages and disadvantages of the technology. It is indicated that the 

circuitry used in converting the harvested AC voltage to DC is critical to preserving efficiency. 

The energy harvested with piezos is too small to directly power existing devices. Thus it is more 

feasible to collect the harvested energy in a storage device such as a battery or a large capacitor. 

A section in this chapter discusses the limited work that has been done on self–sensing 

actuators and sensors. In self–sensing devices a single device acts as both sensor and actuator. 

The motivation behind the concept is that such a sensor/actuator pair will be truly integrated and 

has applications in active and intelligent structures. The concept of self–sensing actuator was 

first developed and published by Dosch et al. (1992) and Anderson et al. (1992). In the current 

study sensing and actuation is integrated into synthetic jet actuators using prestressed 

piezoelectric composites.   
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2 Piezoelectric Materials 

 
 
 
 

Piezoelectricity is defined by Jaffe, Cook, and Jaffe as the “ability of certain crystalline 

materials to develop an electric charge proportional to a mechanical stress” (1971). The 

discovery of this phenomenon is attributed to two brothers, Jacque and Pierre Curie. In 1880, 

these two men presented their work, Development by pressure of polar electricity in hemihedral 

crystals with inclined faces, which stated: 

Those crystals having one or more axes whose ends are unlike, that is to say hemihedral 

crystals with oblique faces, have the special physical property of giving rise to two 

electrical poles of opposite signs at the extremities of these axes when they are subjected 

to a change in temperature: this is the phenomenon known under the name of 

pyroelectricity…We have found a new method for the development of polar electricity in 

these same crystals, consisting in subjecting them to variations in pressure along their 

hemihedral axes. 

       P. & J. Curie 

Not long after this discovery, a contemporary of the Curies’ by the name of Wilhelm 

Hankel suggested the name “piezoelectricity” based on the Greek―derived piezein, meaning “to 

squeeze” (Katzir, 2003). In 1881, Nobel Prize winner Gabriel Lippmann used the fundamentals 
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of thermodynamics to derive mathematical expressions that helped him formulate a prediction he 

named the “converse piezoelectric effect”: the development of a mechanical stress in response to 

an electrical charge. The Curie brothers quickly confirmed this prediction and proved that the 

coefficients in each of the mathematical models describing the direct and converse piezoelectric 

effects were, in fact, one and the same (Ballato, 1996, Katzir, 2003). The efforts of Lord Kelvin, 

Pierre-Maurice-Marie Duhem, Frederich Pockels, and Woldemar Voigt developed the laboratory 

curiosity demonstrated by the Curies into an emerging field of science before the end of the 

1800’s (Ballato, 1996, Katzir, 2003). 

Today we know that the piezoelectric effect that Jacque and Pierre Curie were able to 

demonstrate using Rochelle salt results from the inherent polarity the material derives from its 

crystalline structure. By the end of 1940’s, scientists and engineers discovered that such a 

polarity need not be inherent to a material's structure but that this property could be 

macroscopically induced in originally isotropic polycrystalline material by application of an 

electric field (Boyd, 1993). The process by which this is done is analogous to the magnetization 

of a permanent magnet and was thus termed “poling.” Figure 2.1 provides an illustration of the 

direct and converse piezoelectric effects (APC International). 
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Piezoelectricity is described mathematically within a material’s constitutive equation, 

which defines how the piezoelectric material’s stress (T), strain (S), charge density displacement 

(D) or dielectric displacement, and electric field (E) interact. T and S are tensor magnitudes 

(Jaffe et al., 1971). The equations can be written in matrix form as follows in Equation 2-1 and 

Equation 2-2: 

Figure 2-1 Piezoelectric effect (courtesy APC International) 
(a) direct effect, (b) converse effect 
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Equation 2-1 describes the direct and Equation 2-2 the converse piezoelectric effect. The 

matrix d contains the piezoelectric coefficients for the material and ε is the electric permittivity 

matrix. The four variables can be rearranged to give an additional three forms for a piezoelectric 

constitutive equation. It is possible to transform piezo constitutive data in one form to another 

form.  

While a number of naturally occurring crystalline materials possess the ability to function 

as active elements in piezoelectric based devices, many applications that look to exploit this 
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phenomena call for the higher electro―mechanical coupling coefficients found in ferroelectric 

ceramics. Materials such as Lead Titanate (PbTiO3), Lead Zirconium Titanate (PZT), and Lead 

Lanthanum Zirconate Titanate (PLZT) have substantially higher piezoelectric coefficients than 

naturally occurring materials (Boyd, 1993). 

Due to their excellent properties and easy availability the most widely used smart 

materials are piezoelectric ceramics. Although not as forceful as shape-memory alloys, 

piezoelectric ceramics respond much more quickly, making them ideal for precise, high speed 

actuation. Demand for these materials is being fueled largely by their application as device 

actuators and transducers in sonar and ultrasonic systems. They can also be used in optical 

tracking devices, magnetic heads, dot-matrix printers, computer keyboards, high frequency 

stereo speakers, accelerometers, microphones, pressure sensors, transducers, and igniters for gas 

grills. 

The most common piezoelectric ceramics used these days is lead zirconate titanate 

(PZT). Advanced piezoelectric materials such as these can be obtained in several forms including 

disk, plates, and rings, as well as custom molded designs from commercial vendors such as 

Morgan Matroc Inc., Kinetic Ceramics Inc., Piezo Systems Inc., and many others. Even the 

advanced compositions and geometries offered by the suppliers listed, however, can fall short of 

meeting the force and displacement requirements called for in certain applications  

For most piezoelectric actuators, the focus of research has been on an attempt to amplify 

the deflection of the material to cast it into a useful form. As a result, numerous novel, ingenious 

concepts have been created. Generally the deflection is amplified with one of three schemes; 

using external mechanical component, through the internal structure without the use of an 
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external mechanical component and on an alternating control signal to generate motion. This 

paper describes some of the leading actuator architectures in the following sections.  

Piezoelectric sensors and actuators have been modeling extensively for various 

applications. While these models work fairly well for ceramics and polymers they have some 

inherent limitations. Most of the modeling is conducted with the assumption that the 

piezoelectric coefficients vary linearly with changes in stimuli. This assumption does not hold 

true for the entire range. Figure 2-2 shows the effect of increasing and decreasing applied stress 

on the d33 coefficient for a EC-69, EDO corporation ceramic (Yang et al., 2000). The coefficient 

is linear at low stress levels in the beginning of the cycle and becomes non linear at larger values. 

Another characteristic of these materials that hinders the modeling efforts is the large hysteretic 

effort as seen in the figure. Also these effects increase in piezoelectric composites. Owing to 

Figure 2-2 Piezoelectric charge coefficient d33 at a function of applied stress T 
(Yang et al., 2000) 
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these properties modeling of piezoelectric ceramics and composites is a very complex effort 

which hasn’t been mastered thus far (Mukherjee et al., 2001).  

2.1 Stacks 

Stacks are the simplest form of amplification consists of thin piezoceramic layers 

connected in parallel. Thus their voltage requirement is low while the overall deflection is 

linearly increased. Figure 2-3 (a) shows a picture of a commercially sold stack actuator by Piezo 

systems and (b) shows a schematic of the linearly arranged piezoceramics.  The displacement of 

a stack actuator is proportional to the high of the element and the blocking force is proportional 

to the cross sectional area. Ramsay and Mugridge first constructed a stack actuator in 1962 

making relatively high strains feasible (Ramsay and Mugridge, 1962). Later they were studied 

more thoroughly by Bindal and Chandra for scientific applications (Bindal and Chandra, 1977).  

Some of the companies that manufacture piezoceramic patches and stacks include APC 

International Ltd. (Mackeyville, PA), Burleigh Instruments Inc. (Fishers, NY), EDO Corporation 

(Salt Lake City, UT), Etrema Products Inc. (Ames, IA), Keramos Inc. (Indianapolis, IN), Kinetic 

Ceramics Inc. (Hayward, CA), Morgan Matroc Inc. (Bedford, OH), Piezo Kinetics Inc. 

(Bellefonte, PA), Piezo Systems Inc. (Cambridge, MA), Polytec PI Inc. (Costa Mesa, CA), 

Sensor Technology Ltd. (Collingwood, Ontario, Canada), Staveley Sensors Inc. (East Hartford, 

CT), Tokin America Inc. (San Jose, CA), and TRS Ceramics Inc. 
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2.2 Bender Actuators 

The other most commonly employed amplification scheme is the bender. Internal 

piezoelectric strains are used to indirectly induce deflections in the actuator. Layers of 

piezoelectric material are arranged such that the neutral axis is in the center and the layers on 

either side have opposing strains. While one side contracts the other side expands. Figure 2-4 

shows the two commonly available bimorph bender arrangements: the two electrode serial 

arrangement which is commonly used in force sensor applications and the three electrode 

parallel arrangement.  

displacement 
output 

piezo patch
layer

conductive
epoxy

– + 

(a) (b) 

Figure 2-3 (a) Piezoceramic Stacks (courtesy of Piezo systems Inc. 
(b) Sketch of a Piezoceramic Stack (Niezrecki et al. 2001) 
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Figure 2-4 Bender Actuator (courtesy of Morgan Electro Ceramics) 

 

Bimorph benders operate similar to a bimetallic strip in a thermostat, an internal bending 

moment is created by the opposing strains which cause the entire bender to flex. Some benders 

have inactive substrate layers in the middle for structural stability. Most benders are either 

circular, square or rectangular accept for one that tapered bender that staggers the thickness of 

the material, with the thickest portion at the root. This tapered shape increases the material 

bending efficiency 1996; Prechtl and Hall, 1997).  

Bimorph benders were first developed in the early 1930s by Sawyer (1931) at the Brush 

Development Company. However, the performance of these actuators was understood only at a 

rudimentary level until much later, when research into smart structures became more detailed 

(Steel et al., 1978; Tzou, 1989). From a practical viewpoint, the primary difficulties with using 

raw piezoceramics as actuators include soldering, cracking owing to their brittle nature, and 

electrical isolation.  
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The QuickPack actuator, is another type of bender, manufactured by ACX Inc. 

(Cambridge, MA) (www.acx.com) that overcomes these difficulties (Figure 2-5 (a)). The 

QuickPack actuators contain two piezoceramic elements encapsulated in a protective polymide 

insulation material. The actuators can be used as patches (to induce in―plane strain, d31) or 

operated out of phase to act like a bimorph bending actuator. The construction of the QuickPack 

actuators eliminates the requirement of soldering leads to the piezoelectric material, significantly 

improves the durability of the actuator, and electrically isolates the actuator from the attached 

surface. 

Forming active fiber composites (AFCs) is another technique to improve the robustness 

of the actuator. AFCs consist of unidirectional piezoelectric fibers (CeraNova Corporation, 

Franklin, MA) embedded in a resin matrix with embedded interdigital electrodes as shown in 

Figure 2-5 (b) and (c). AFC actuators are extremely flexible and have a high in-plane deflection. 

The high in-plane actuation is attributed to the use of the fiber’s d33 (electromechanical strain 

coefficient) component instead of the d31 coefficient (Bent, 1999; Bent and Hagood, 1993, 1997). 

Similar actuation can be produced using a monolithic ceramic actuator, as shown in Figure 2-5 

(b) and (c). Interdigital electrode actuators are currently manufactured by MIDE Technology 

Corporation (Cambridge, MA) (www.mide.com) and ACX Inc.). 
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2.3 Flextensional Actuators 

Flextensional actuators typically use a piezoceramic stack and an external amplification 

mechanism to convert the motion generated by the stack to a usable output motion in the 

transverse direction. Flextensional devices were first developed in the late 1960s (“Flexural- 

Extensional,” 1967) and were used primarily in acoustic applications (Royster, 1970). 

Flextensional devices have been redesigned for enhanced deflection (Boucher, 1987). One 

flextensional actuator of this type is called the Moonie (Sugawara et al., 1992). This actuator 

sandwiches a piezoceramic stack between two end caps having shallow cavities. Displacement of 

the stack flexes the end caps, producing an increased deflection. The displacement output of the 

(b) (a) 

(c) 

Figure 2-5 (a) Quickpack, (b) Interdigital Electrode Actuator, (c) Active Fiber 
Composite (Courtesy of MIDE Technology Corporation) 
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actuator greatly increases with cavity diameter and depth. Multiple Moonie actuators can be 

stacked in series as shown in Figure 2-6 (Onitsuka et al., 1995; Dogan et al., 1994). Similar in 

operation to a Moonie actuator is the Cymbal actuator (Dogan et al., 1996). 

The Cymbal consists of an external piezoceramic stack with an external mechanism that 

generates a combination of flexural and rotational motion, as shown in Figure 2-7. The 

advantage of this actuator over a Moonie is that the displacement can be increased by a factor of 

two whereas the force output is increased by a factor of five (Dogan et al., 1997). In addition, the 

Cymbal is easier to manufacture than the Moonie. A variety of flextensional actuator designs 

have been created and are currently being used for proof mass actuation (Dosch et al., 1995), 

micropositioning (Pokines and Garcia, 1998; Le Letty et al., 1997), and active/passive vibration 

control (Bruneau et al., 1999). Flextensional actuators are currently being manufactured by 

Dynamic Structures and Materials LLC (http://www.dynamicstructures. com), EDO Corporation 

(http://www.edoceramic.com), and Cedrat (Meylan, France) (http://www.cedrat.com). 

Figure 2-6 Three Moonie actuators stacked in series (Onitsuka et al., 1995)
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2.4 Piezoelectric Polymers 

The existence of piezoelectric polymers was already known since 1924. However, the 

early known piezoelectric polymers did not receive much attention until the work by Fukada in 

the fifties and sixties (Fukada and Yasuda, 1964). Fukada and his co―workers discovered that 

rolled films of polypeptides and numerous other polymers induce surface charges when stressed. 

A major milestone in this field was recorded with the Kawai's discovery of the strong 

piezoelectric effect in polyvinylidene fluoride (PVDF or PVF2) in 1969 (Kawai, 1969). Later, 

other PVDF co―polymers were also reported, including P(VDF-TrFE) and P(VDF-TeFE) 

(Tasaka and Miyata, 1985) and others. 

Ferroelectric polymers are produced by a variety of techniques, where in the case of 

PVDF the material is mechanically drawn and polarized in order to form a useful transducer 

material. The drawing techniques include extrusion and stretching and while processing the film 

material is subjected to a strong electrical polarization field. Without drawing, PVDF shows a 

Figure 2-7 Cymbal actuator in original and deformed states (Dogan et al., 1996)
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very weak piezoelectric behavior and the higher the molecular orientation the stronger the 

resultant response of the polarized film. 

After polarization, PVDF exhibits considerably stronger piezoelectric response than most 

other known polymers (Kawai, 1969). The discovery of the piezoelectric and later of the 

pyroelectric properties of PVDF and the growing applications of this polymer (Tamura et al., 

1975) sparked extensive research and development activities. Some of the piezoelectric polymers 

that are known today include: polyparaxylene, poly-bischloromethyuloxetane (Penton), aromatic 

polyamides, polysulfone, polyvinyl fluoride, synthetic polypeptide and cyanoethul cellulose 

(Wang et al., 1988). 

2.5 Prestressed Piezoelectric Composites 

Two methods that have proven successful in enhancing the actuation and energy 

harvesting capabilities of elemental piezoelectric material are the inclusion of a substrate and the 

application of a prestress (Schwartz et al., 2000, Schwartz and Narayanan, 2002). Both of these 

methods are utilized in Reduced And INternally Biased Oxide Wafers or, RAINBOWTM. 

Introduced in 1997, RAINBOWTM style actuators use a thermal processing documented in the 

literature to render one side of a lanthanum zirconium titanate (PLZT) ceramic inactive. The 

resulting inactive portion of the wafer functions much like the metal shim utilized in Unimorph 

devices. However, due to a mismatch in the coefficients of thermal expansion found in the two 

sections of the wafer, the device develops internal thermal stresses which result in a domed form. 

This domed from produces a compressive prestress within the ceramic which enhances 

piezoelectric performance and protects the ceramic from developing excessive tensile stress 

during operation (Schwartz et al., 2000, Schwartz and Moon, 2001, Hyer and Jilani, 2002). 



 

33 
 

RAINBOWTM actuators were produced by Aura Ceramics Inc.; however, production of the 

devices has been discontinued (Niezrecki et al., 2001). 

While the development of a compressive thermal stress in RAINBOWTM style actuators 

offers great improvements over traditional composites, it was not the first actuator to incorporate 

this feature. THin layer Unimorph DrivER and sensor, or Thunder® actuators were developed at 

NASA Langley Research Center 1994 and are currently distributed by FACE International. Like 

RAINBOWTM, these devices rely on a mismatch between the thermal properties of the 

constitutive layers of the composite to produce an out of plane displacement resulting from the 

internal thermal stresses introduced in the device during processing. Thunder® devices consist of 

an elastic substrate, piezoelectric ceramic, and often a protective layer of knurled aluminum 

adhered with a soluble polyimide developed at NASA Langley Research Center (Bryant, 1996). 

A schematic of a typical Thunder® configuration is shown in Figure 2-8. 

 

Figure 2-8 Thunder layering sequence 

The manufacturing process and performance characteristics of Thunder®  have been well 

documented in the literature by a number of research groups (Mossi, 1998, Schwartz et al., 2000, 

Bryant, 1996, Fox et al., 1997, Usher and Sim, 2005, Ounaies et al., 2001). Thunder® devices 
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have been investigated for applications such as structural control, energy harvesting, water 

propulsion, robotics, flow control, and acoustical control, to name a few. Extensive analysis has 

been conducted regarding the thermal forces introduced in the device as a result of consolidating 

constitutive layers with various coefficients of thermal expansion at elevated temperatures 

(Schwartz et al., 2000, Aimmanee and Hyer, 2004). The effect these thermally induced forces 

have on device performance has been presented (Webber et al., 2006, Mossi et al., 2006). While 

these devices have been found to produce displacements on the order of several millimeters and 

forces greater than 4.5 N, there are inherent limitations on optimization of the design due to the 

coupling that exists between geometrical parameters such as layer thickness and post-

manufacturing form, e.g. radius of curvature (Mossi et al., 2005, Balakrishnan and Nierecki, 

2002).  

Given the wealth of information compiled on prestressed actuators following the 

introduction of Thunder®, a natural progression of the technology was sure to lead to refinements 

of concept. One such follow up to the Thunder® concept comes from a research group at Konkuk 

University in Seoul South Korea. Utilizing the same concepts on which Thunder® is based; 

researchers at Konkuk have developed a device which replaces the metallic and soluble 

polyimide layers found in the Thunder® device with prepreg fiber composites. The resulting 

device is referred to as a LIght weight Piezoelectric Composite Actuator or, LIPCA. Several 

configurations of LIPCA have been presented, and a detailed account of these devices, and their 

manufacturing process, has been presented in the literature (Mossi et al., 2005). A schematic of a 

typical LIPCA device is shown in Figure 2-9.  
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By utilizing fiber composites rather than a metal substrate, LIPCA devices are lighter and 

capable of producing greater displacements than Thunder® devices (Mossi et al., 2005). Work by 

Aimmanee has shown that, by utilizing various fiber materials and layering configurations, the 

neutral axis in LIPCA can be shifted (Aimmanee, 2004). This quality allows the device to be 

optimized for use in various applications. 

While LIPCA has been investigated by many of the same research groups that have 

evaluated Thunder® devices, LIPCA still lacks the commercial manufacturing methods that have 

been developed for the Thunder® devices. Other deterrents to widespread use arise from the 

materials used in LIPCA device. When compared with the stainless steel elements typically used 

to construct Thunder®  devices, the carbon and Kevlar fibers found in typical LIPCA devices 

result in a dramatic increase in material cost. 

2.6 Chapter Summary 

This chapter discusses the discovery and emergence of piezoelectric materials and their 

applications. An overview of their operating mechanism and constitutive equations is given. 

Piezoelectric materials have been studied extensively for their properties as sensors and 

actuators. The chapter talks about the most commonly used piezos such as PZT, BaTiO3. 

Figure 2-9 Lipca layering sequence 
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Methods are discussed which can enhance the properties of piezoelectric ceramics such as PZT. 

Amplification schemes such as stacks, benders, flextensional actuators and prestressed 

composites are discussed. Widely studied piezoelectric polymer PVDF is also discussed.  
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3 Objectives and Approach 

 
 
 
 

The goal of this dissertation is to increase fuel efficiency. Fuel efficiency is increased by 

integrating energy harvesting into an active flow control device using prestressed piezoelectric 

composites. Prestressed piezoelectric composites are used due to their robust nature and 

enhanced properties. The challenge on using these devices include, weight, fragility, power 

consumption, and size. These challenges are addressed as described in the objectives and the 

approach to fulfill these objectives is also discussed.  

3.1 Objectives 

The objectives of this work can be better understood by looking at Figure 3-1. The flow 

control device of choice is the synthetic jet actuator. Synthetic jet actuators consist of a cavity 

with an oscillating diaphragm and an orifice. As the diaphragm oscillates, a jet is formed through 

the orifice introducing small amounts of energy into the flow field to achieve non-local changes 

in the flow field with large performance gains.  

Synthetic jet actuators increase the efficiency and simplify fluid related systems by 

reducing the number of moving parts and making it lighter. This could lead to reduced fuel 

consumption, increased payload, noise reduction and shorter takeoff and landing. In spite of all 
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the advantages, using synthetic jet actuators usually adds complexity in design and increases 

manufacturing and operating cost, which prevents their use. 

Several parameters have been identified for this study that could affect operation of the 

synthetic jet. The main component of the actuator is the oscillating diaphragm. Selecting a 

suitable diaphragm can overcome of the problems faced in designing efficient synthetic jet 

actuators. The weight of the actuator can be reduced by using piezoelectric materials as active 

diaphragms. Piezoelectric materials are light weight and have a very fast response time making 

them suitable for synthetic jet actuators.  

Piezoelectric ceramics exhibit micro scale displacements and have low force properties. 

Although using piezoelectric ceramics will lead to a decrease in weight of the actuator their 

properties need to be amplified to generate synthetic jets with large velocities. This is achieved 

by prestressing piezoelectric ceramics into composites such that they have a dome shape in the 

resting position. Due to the shape the ceramic is under a constant stress enhancing the 

displacement and force of the device. With amplified properties the prestressed diaphragm will 

exhibit enhanced momentum injection leading to larger peak velocities.  

Another advantage of using prestressed composites is the increase in durability of the 

diaphragm. Due to the sandwich design of prestressed composites the ceramic is more robust and 

thus simpler to integrate into applications. They also exhibit larger force and have enhanced 

piezoelectric coefficients. 
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piezoelectric materials

prestressing

composites

alternate input waveform

geometry

integrate energy harvesting

1. reduce weight

2. increase momentum 
injection 

3. increase durability

4. reduce power 
consumption

5. reduce actuator size

6. provide power 
alternatives

The piezoelectric diaphragms is driven using electrical power. Typically bench top power 

supplies are poorly suited for driving piezoelectric actuators. Due to their high impedance, 

complex circuitry is required to provide adequate power for the desired functionality. This adds 

weight to the system thus reducing efficiency. A possible solution to this problem could be the 

use of alternate driving signals. Signal such as the sawtooth waveform, require considerable 

smaller electronics to create, compared to traditional sine waves. In the past, researchers have 

used sinusoid driving signals at very high frequencies leading to actuator damage. With alternate 

signals the same performance can be achieved at low frequencies thus requiring lower power 

consumption and increasing the life time of the actuator. 

Another objective of this study is to study the effects of actuator geometry on the 

synthetic jet performance. Parameters such as cavity height and orifice diameter are studied. By 

Figure 3-1 Dissertation objectives 
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optimizing these parameters the geometry can be designed such that the actuator size and weight 

is reduced.  

State of the art composites are selected for the study; Bimorph, Lipca, RFD and a 

prestressed piezoelectric metal composite. They are different in construction and have varying 

properties which are applied in synthetic jet actuators. Peak velocity magnitude is identified as 

the response variable. Large velocity values are required to have significant effects on the drag 

and SJA efficiency. 

The final objective of the study is to provide a power alternative by harvesting energy 

from synthetic jet actuators. With the recent surge of micro scale devices, piezoelectric power 

generation can provide a convenient alternative to traditional power sources used to operate 

certain types of sensors and actuators, telemetry, and MEMS devices. Piezoelectric materials can 

transform ambient vibrations into electrical energy. Since vibrations exist in most dynamic 

systems and with the larger goal of integrating energy harvesting in synthetic jet actuators 

piezoelectric energy harvesting from vibrations is studied. Vibrations are inducted into the 

diaphragm by pulsing pressure inside a cavity similar to the operation of a synthetic jet. The 

parameters that affect energy generation such as environmental temperature, pressure magnitude, 

driving frequency and circuitry parameters such as frequency are studied. The diaphragms 

selected for the study are a piezoelectric polymer PVDF and a prestressed metal composite. 

Using design of experiments theory, response surface models are developed that help in 

determining the optimal levels of the tested parameters. 

Energy is harvested from synthetic jet actuators by integrating a piezoelectric sensor into 

the synthetic jet actuator design. While the synthetic jet actuator is operational, vibration energy 
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is generated which is usually wasted. Piezoelectric sensors can be used to generate energy from 

the vibrations by using the direct piezoelectric effect. Two piezoelectric sensors are tested, 

polyvinylidene fluoride (PVDF) and a square shaped prestressed composite. PVDF is a 

piezoelectric polymer with the higher electromechanical conversion coefficient, making it an 

excellent sensor. However, the energy produced by piezoelectric materials is in many cases far 

too small to directly power an electrical device. Therefore, the research into energy harvesting is 

focused on methods of accumulating the energy until a sufficient amount is present, allowing the 

intended device to be powered. Since piezoelectric sensors are easy to integrate into devices, 

such methods could lead to self–powered systems that can operate in remote locations where 

regular maintenance is not feasible.  

3.2 Approach 

This dissertation uses a coupled approach which combines experiments and design of 

experiments theory. The block diagram in Figure 3-2 summarizes the approach used in the 

dissertation. Design of experiments theory is used in planning the experiments. Statistical design 

of experiments refers to the process of planning the experiment such that valid and objective 

conclusions can be drawn. An experimental study, which involves many parameters is time 

consuming and expensive. Using design of experiments, conclusions can be drawn by 

conducting a smaller number of experiments, saving resources and time. 
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A literature review of synthetic jet actuator studies has shown that computational fluid 

dynamic (CFD) tools are not sufficient to develop a generalized model for the complex active 

flow control mechanism. It is suggested by many researchers that a coupling with experiments is 

necessary. Design of experiments methods help in identifying factors which have a significant 

effect on the desired response. Once these factors are identified, further experiments can be 

conducted focusing on the selected factors while ignoring the remaining factors. Furthermore, 

using these methods optimization of the significant parameters can be conducted. Models can be 

developed which give the optimal levels of the factors to achieve a desired response. 

Within design of experiments, several theories exist and are used appropriately in the 

dissertation. For the synthetic jet actuator study a fractional factorial design is used to develop an 

experimental plan for the selected factors. Similarly for the integration part of the dissertation 
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actuator 

Design of 
Experiments
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Factorial Design
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Charging an 
energy storage 

medium

Figure 3-2 Approach of study 
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when sensing and actuation are integrated another fractional factorial design is adopted for the 

sensor parameters. These designs reduce the number of experiments required to make 

conclusions by half. Data obtained from the design is analyzed using regression analysis to 

identify the important factors. 

In the energy harvesting study, response surface methodology is used to optimize the 

power generation. A statistical model is developed relating the factors and a using this model the 

response surface is mapped for power generation. The stagnation point of the surface is the 

optimal response of the system. The factor levels at this point are the optimized parameters. 

The following chapters describe the design of experiments theory in detail. The design 

tables used in each part of the dissertation are shown and the steps involved in the design and 

analysis process are discussed.  
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4 Design of Experiments Theory 

 
 
 
 

Statistical design of experiments refers to the process of efficiently planning experiments 

which lead to valid and objective conclusions. The data obtained from design of experiments is 

analyzed using statistical tools. Depending on the size, nature of the dataset and the desired 

response, the type of experimental design to be used is determined. When the problem involves 

data that are subject to experimental errors, statistical methods are the only objective approach to 

analysis.  

Figure 4-1 shows a typical process which is affected by a number of factors indicated by 

xi.. The effect of varying the factors is seen on the desired response of the process. Using design 

of experiments an experimental plan can be developed such that  

• a small number of experiments are conducted to determine the significance of 

each factor (screening designs) 

• a model is developed relating the factors to the response (factorial designs) 

• individual factors are optimized to maximize the response (response surface 

methodology) 
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4.1 Screening Designs and Factorial Designs 

In an experiment, one or more variables or factors are deliberately changed in order to 

observe the effect the changes have on one or more response variables. Experimental data are 

used to derive an empirical (approximation) model linking the outputs and inputs. These 

empirical models generally contain first and second-order terms. This is called screening 

experiments. Screening designs are used to identify the few significant factors from a list of 

many potential ones. In short, screening designs are economical experimental plans that focus on 

determining the relative significance of many main effects (Montgomery, 2005). 

Factorial designs are formed following screening designs to economically investigate 

cause-and-effect relationships of significance in a given experimental setting and to develop a 

relationship between the variables. By using a full factorial design, each complete trial or 

process

factor1

factor2

..…..

factorn

response

xi

Figure 4-1 A system of experiments 
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replication of the experiment for all possible combinations of the levels of the factors are 

investigated. The effect of a factor is defined to be the change in response produced by a change 

in the level of the factor. This is called a main effect as it refers to the primary factors or interest 

in the experiment. For some experiments, it is seen that the difference in response between the 

levels of one factor is not the same at all levels of the other factors. When this occurs, there is an 

interaction between the factors.  

As the number of factors in a 2k factorial design increases, the number of runs required 

for a complete replicate of the design rapidly outgrows the resources of most experimenters. If 

the experimenter can reasonably assume that certain high-order interactions are negligible, 

information on the main effects and low-order interactions may be obtained by running only a 

fraction of the complete factorial experiment. Since we are able to choose fractions of a full 

design, the whole experimental research process is made more economical and efficient. These 

fractional factorial designs are among the most widely used types of designs for product and 

process design and for process improvement. 

Screening experiments are usually performed in the early stages of a project when many 

of the factors initially considered may have little or no effect on the response. The factors 

identified as important are then investigated more thoroughly in subsequent experiments. It is 

common to begin with several discrete or continuous input factors that can be controlled, that is, 

varied when desired by the experimenter and one or more measured output response variables 

which always are assumed to be continuous.  

A typical design of experiments table is shown in Table 4-1. The table represents a full 

factorial, two level design with three factors, x1, x2, x3 and the response is indicated by the 
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variable y. Since this is a full factorial design the total number of runs is 23 = 8. Each row 

represents an experiment with the factors set at the indicated levels. Each factor is assigned a low 

and high level indicated by ‘1’ and ‘-1’ respectively. To reduce error the levels have to be far 

apart in the lower and upper halves of the factor operational range. Column one in the table 

shows the patterns of each run with a ‘+’ for ‘1’ or ‘high’ level and a ‘-‘ for ‘-1’ or ‘low’ level. 

 

Table 4-1 A typical 23 full factorial design table 

Pattern x1 x2 x3 y 

+−− 1 -1 -1 y1 

+−− 1 -1 -1 y2 

−+− -1 1 -1 y3 

−+− -1 1 -1 y4 

−−+ -1 -1 1 y7 

−−+ -1 -1 1 y8 

+++ 1 1 1 y9 

+++ 1 1 1 y10 

 

The most common empirical models fit to the experimental data take either a linear form 

or a quadratic form. A linear model will contain the main effect terms and interaction effect 

terms. The model is of the form shown in Equation 4-1.  
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Equation 4-1 

i = 1,2,…,n; k = 1,2,…,n; z = 1,2,…,n; n is the number of factors 

Here, Y is the response for given levels of the main effects Xi and the XiXk term is 

included to account for a possible interaction effect between Xi and Xk. Depending on the number 

of factors considered, the interaction term could contain more than two factors. The constant µ 

represents the sample mean of the response; β’s are parameters whose values are determined 

represent the coefficients for the considered factors and ε is the experimental error. Statistical 

results are used to assess the validity and influence of the particular effect on the response. 

 

4.2 Response Surface Methodology 

The Response Surface Methodology (RSM) is a collection of mathematical and statistical 

techniques useful for analysis and modeling. A response of interest is influenced by several 

variables and the objective of this methodology is to optimize this response. Given a response 

variable Y and n continuous factors, x1, x2,…, xn, the main purpose of Response Surface 

Methodology (RSM), is to find the combination of factor levels to achieve the optimal response.  

The typical RSM procedure is described here as in many books such as Montgomery 

(Montgomery, 2005, Box and Graper, 1987). For computational convenience, the natural 

variables or factors are usually converted to coded or design variables, X1, X2, …, Xn, 
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standardized so that the design center is at the point 0. 

The first step in RSM is to find a suitable approximation for the true functional 

relationship between Y and the set of independent variables as indicated by Equation 4-2. 

1 2 3( , , ,...)=y f x x x  

Equation 4-2 

 The relation is usually approximated by a polynomial of first or second degree in the 

confined region R. When a first order model does not yield a model the order is increased in an 

iterative process. A second order polynomial is used in particular when the interest is focused on 

the location of the stationary point or the point of inflection of the response function. The method 

of least squares is used to estimate the parameters in the approximating polynomials. With the 

aim of finding the maximum stationary point of the desired response surface function, a second 

order polynomial model of the form shown in Equation 4-3 is used in the analysis. Models are 

developed using computer softwares such as JMP IN 7 and SigmaStat 3.1. 

 
n n

2
i i ii i ij i j0

i ji 1 i 1
y x x x xβ β β β ε

<= =
= + + + +∑ ∑ ∑∑

 

Equation 4-3 

i = 1, 2, …,n and  j = 1, 2, …,n 
 

Here y is the response variable, x1, x2, …, xn are the dependent factors, n is the number of 

factors, β0 is the intercept term and βi are the regression coefficients. ε is the random error which 

is assumed to be distributed as a normal distribution with zero mean and unknown variance. As 

the fitted surface is an adequate approximation of the true response surface, analysis of the fitted 

surface is approximately equivalent to analysis of the actual system. The surface represented by 
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Equation 4-3 is called the response surface. Response Surface plots and contour plots play a very 

important role in the study of the response surface. By generating these plots using computer 

software for response surface analysis, the shape of the surface can be characterized. Also, 

location of the optimum can be determined with reasonable precision. The dome shape of the 

response surface is result of the second order model fit. The optimal point is the peak of the 

dome; it can also be called the stationary point, saddle point or the maximum point.  

A stationary point represents the point of maximum response, to find the optimal levels 

of the independent variable for the predicted response. To obtain a mathematical solution for the 

location of the stationary point the fitted second order model is compactly written as shown in 

Equation 4-4. 

T T
0y x b x Bxβ ε= + + +

 

Equation 4-4 

Where x is a n x 1 vector of factor levels, b is a n x 1 vector of regression coefficients βi 

and B is a n x n symmetric matrix of regression coefficients with ith diagonal element equal to βii 

and the (ij)th off-diagonal element equal to (1/2)βij. For the stationary point to exist the partial 

derivative δy/δx=0. Thus from the fitted model, the estimated stationary point is computed using 

Equation 4-5 where xs is a n x 1 matrix which gives the optimal levels for the factors. 

 

1
s

1x B b2
−= −

 

Equation 4-5 
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By substituting Equation 4-5 into Equation 4-4 the predicted response at the stationary 

point can be found as shown in Equation 4-6. 

T
s s0

1y x b2β= +
 

Equation 4-6 

In this manner optimal parameters can be precisely identified.  
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5 Materials and Method 

 
 
 
 

5.1 Synthetic Jet Actuator Study 

From the point of view of actuator design, it is of interest to know how the geometry of 

the actuator can be improved so as to improve the performance of the jet. Synthetic jet flows are 

produced by the advection and interactions of trains of discrete vortical structures. However, a 

unique feature of synthetic jets is that they are formed entirely from the working fluid of the flow 

system in which they are deployed and, thus, can transfer linear momentum to the flow system 

without net mass injection across the flow boundary. The fluid that is necessary to synthesize the 

jet is typically supplied by intermittent suction through the same flow orifice between 

consecutive ejections. The impulse that is imparted to each vortex has to be large enough to 

overcome the influence of forces associated with the (reversed) suction flow such that time-

periodic roll-up and subsequent advection of discrete vortices occurs. Thus, the key performance 

parameter selected for this study which measures the strength of a synthetic jet may include the 

jet peak velocity. Optimizing the jet peak velocity in turn enhances the strength of the vortex 

rollup. Therefore a study of the behavior of synthetic jets in quiescent conditions is undertaken. 

A parametric study of synthetic jet actuators is conducted based on the electrical parameters of 

the piezoelectric diaphragm and the geometric parameters of the synthetic jet cavity.  
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5.1.1 Experimental Setup 

The synthetic jet velocity is characterized by studying several geometry and diaphragm 

properties. Geometric properties include the orifice diameter, Do and cavity height, CH, which 

controls the cavity volume. Oscillating diaphragm properties include the driving frequency, f, 

and displacement, δc. Another parameter of interest is the type of AC signal used to drive the 

actuator. This variable is also included in the study and is indicated by Fz. The standard driving 

signal used for synthetic jet actuators is sinusoidal. Synthetic jet actuators driven with a 

sinusoidal signal are operated at the resonant frequency of the diaphragm. At these high 

frequencies the diaphragm is prone to failure and power consumption is higher at these 

frequencies.  Thus using an alternative, sawtooth signal could provide a solution to these 

problems leading to an improvement in performance. The synthetic jet study is conducted using 

four types of piezoelectric composites, Bimorph, Prestressed Metal Composite, Lipca and RFD. 

These diaphragms vary in their construction and properties. Each of these diaphragms is 

described in the following section. 

5.1.2 Materials 

5.1.2.1 Bimorph 

Bimorphs consist of two thin ceramic sheets bonded together with their poling directions 

opposed and normal to the interface as shown in Figure 5-1 (a). When an electric field is applied 

to a bimorph, one of the plates expands while the other contracts. This mechanism creates a 

bending mode that mimics piston like displacement. Bimorphs are capable of generating large 

bending displacements of several hundred micrometers on center or edge, but the response time 

(1ms) and the generative force (1.0N) are low (Dogan et al., 2001). In the current study, the 

Bimorph used is model T216-A4NO-573X manufactured by Piezoelectric Systems Inc. It consists 
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(b) 

63.5 mm 

(a) 
–

+ 
Poled for series operation 

0.41 mm 

0.19 mm

of two nickel electroded PZT 5A discs with diameters of 63.5mm and a total thickness of 

0.41mm. They have a capacitance of 130nF at 1kHz and have been shown to produce 

displacements up to 0.3 mm at low frequencies (Mossi et al., 2005a). A schematic of the disc 

alignment along with the final shape is shown in Figure 5-1 a and b. 

 

 

 

 

 

 

 

 

 

5.1.2.2 Prestressed PZT Metal Composite Actuator 

The Prestressed PZT Metal Composite is similar in construction and properties to 

Thunder. THin layer composite UNimorph ferroelectric DrivER and Sensor (Thunder®) was 

developed at NASA Langley Research Center. It is an actuator that exploits the coefficients of 

thermal expansion mismatch between materials (Dausch and Wise 1998, Haertling 1994 a and b, 

Mossi et al., 1998, Wise 1998). The significant advantage that Thunder® actuators have over 

other Unimorph benders is their extremely rugged construction. This allows them to be more 

Figure 5-1 Bimorph (a) layer arrangement, (b) final shape 
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readily used in commercial applications, such as synthetic jets (Smith et al., 1999). The 

mechanical advantage of the Thunder® design is due to the increased flexibility of the device and 

the radial expansion created by the pairing of preselected thermally mismatched materials 

(Hellbaum et al., 1997). The Prestressed PZT Metal Composites used in the current study consist 

of an integrated sandwich of layers similar to Thunder® transducers. Prestressed metal layers 

make up the top and bottom and the piezoelectric layer is sandwich between them with a hot 

melt adhesive forming a thin bondline between the ceramic and metal layers. A schematic of the 

metal composite is shown in Figure 5-2. 

Prestressed PZT Metal Composite® actuators can be fabricated in virtually any size and 

thickness (Mossi et al., 1998). A circular device manufactured by Face International Inc. is used 

in the present study. It is composed of three main layers, with two additional being the thin 

bondline; a top chemically etched copper layer 0.0254mm thick, a middle piezoelectric layer of 

thickness 0.254mm, and a bottom 0.254mm thick layer of stainless steel. The copper and ceramic 

layers have diameters of 63.5mm and the steel layer, 68.58mm leaving a circular tab along the 

edge of 2.54mm. This additional tab is included in the design to facilitate clamping of the device. 

The layers are laminated with a high temperature polyimide adhesive (Bryant, 1996) through a 

layering high―temperature bonding process (Mossi et al., 1998). The resulting actuator is saddle 

shaped with a capacitance of 110nF as shown in Figure 5-2. The piezoelectric ceramic used in 

both these diaphragms is a soft PZT type 5A. The composite exhibits its highest displacement at 

the center of the dome, and displacement decreases drastically towards the edge of the actuator 

(Mossi and Bryant, 2004a). The maximum center displacement measured is approximately 

0.06mm with a sawtooth signal at 5Hz (Mossi et al., 2005a). 

 



 

56 
 

 

 

 

 

 

5.1.2.3 Lipca 

Lightweight Piezo-composite Curved Actuator (LIPCA) is a powerful actuator that can 

be used for adaptive structure applications. LIPCA is manufactured by co-curing layers at an 

elevated temperature: glass/epoxy layer, unidirectional carbon/epoxy layer, and ceramic layer 

(Park et al., 2001, Yoon et al., 2002, Yoon et al., 2003 a and b). Differences in coefficient of 

thermal expansion (CTE) of the layers result in the LIPCA’s post cure curvature. Based on the 

arrangement of the layers, the curvature and the displacement vary (Yoon et al., 2003a). The 

LIPCA shown in Figure 5-3(a) is made by Konkuk University, South Korea. It has a high CTE 

top layer of glass/epoxy with diameter 66.0mm and thickness 0.09 mm, a near zero CTE 

unidirectional carbon/epoxy layer with 66.0 X 1.0mm dimensions, a layer of PZT 5A ceramic 

50.0 X 0.18mm, and another glass/epoxy layer with the same dimensions in the bottom as shown 

by Figure 5-3(b).  

The circular LIPCA is not as curved as the circular prestressed metal composite but 

produces higher center displacement of approximately 0.075mm with a sawtooth driving signal 

Figure 5-2 Metal Composite (a) final shape (b) layer arrangement (Tt refers to 
the active layer thickness only) 

φt= 63.50mm 
Tt= 0.554mm

(b

Copper 
(0.025mm) 

PZT 
(0.25mm) 

Stainless 
Steel (0.25mm) 

SI 
Adhesive 

(0.0152mm) 

(a) (b) 
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at 25Hz (Mane 2005). The difference in curvature is due to the fact that the processing 

temperature used for the LIPCA is much lower (Yoon et al., 2003b). The capacitance is 

approximately the same as the metal composite, 100nF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

φt= 50.4 mm 
Tt=1.46 mm*

Figure 5-3 Lipca (a) final shape, (b) layer arrangement 
(Tt refers to the active layer thickness only) 

(b) 
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5.1.2.4 Radial Field Diaphragm (RFD) 

The Radial Field Diaphragm (RFD) was developed by NASA Langley Research Center. 

It is comprised of a thin circular piezoelectric ceramic disk sandwiched between two polyimide 

“PI” dielectric films with either copper-etched dual intercirculating spiral or circular 

interdigitated ring electrodes (Bryant et al., 2004). For the spiraled electrode pattern, positive and 

negative electrodes spiral inward to the center of the disk in a serpentine manner called 

Inter―Circulating Electrodes (ICE). As seen in Figure 5-4 this electrode pattern induces an 

electric field into the piezo ceramic that extends out radially from the center of the wafer (Bryant 

et al., 2004). The dielectric film serves as the electrode carrier and insulator. Because of its radial 

electric field, the ICE―RFD exhibit out of plane movement, when electrically stimulated, and 

does not transmit any substantial mechanical strain beyond the boundary of the ceramic element. 

This behavior is distinct from all other bender type actuators. The RFD in the current study has a 

diameter of 63.5mm and is based in the PZT 5A ceramic. It has a very low capacitance of 

approximately 4nF at 1kHz and can produce displacements up to 0.4mm (Mossi et al., 2005a).  

 

 

 

 

 

 

Figure 5-4 RFD Inter-Circulating Electrodes (ICE) (Bryant et al. 2004) 
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5.1.3 Synthetic Jet Cavity 

The synthetic jet cavity is constructed of two 88mm x 88mm Plexiglas™ pieces. The 

plastic pieces have a 60.5mm circular aperture in the center. A 5mm wide and 1mm deep groove 

is machined along the perimeter of the aperture. The actuators are placed between the two 

grooves reinforced with neoprene rubber on both sides to provide both a cushion and a seal as 

shown in Figure 5-5(a). The plastic pieces are sealed together along with a 1.6mm thick covering 

plate that provides an axisymmetric orifice in the center. Seven 4 mm screws with washers are 

used to clamp the cavity, while one screw hole is left empty to serve as a port for the actuator 

electrical leads and additional attachments to the cavity. Equal torque of 424Nmm is applied on 

each screw using a torque screwdriver to ensure constant pressure along the perimeter of the 

actuator. Once the assembled cavity is in place, the sealed synthetic jet cavity is mounted on a 

height gauge as shown in Figure 5-5(b). 

 

 

 

 

 

 

 Figure 5-5 Synthetic Jet Cavity (a) clamped actuator, (b) final assembly 
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The cavity setup utilized allows variations in cavity height and orifice dimensions. The 

two cavities have overall dimensions of 88.0 x 88.0 x 19.1mm and 88.0 x 88.0 x 11.0mm, which 

correspond to cavity heights of 9.55mm and 5.5mm respectively.  This cavity height, CH, is 

measured from the diaphragm to the orifice exit. Two cover plates with circular orifices have 

approximate diameters, Do, of 2.0mm (small) and 3.67 mm(large) are used. The cavity 

configurations are shown in Table 5-1. 

Table 5-1 Cavity Parameters 

  CH (mm) 

  5.50 9.55 

Do (mm)
2.00 cavity I cavity II 
3.67 cavity III cavity IV 

   

5.1.4 Instrumentation and Measurements 

The driving signal is applied at high voltages and varying frequencies for each device. 

This signal is applied using a signal generator, a Hewlett Packard model HP33120, connected to 

an amplifier, TREK model PZD700. The velocity and voltage signals are monitored and 

recorded using an oscilloscope, LeCroy model 350L, and a National Instruments data acquisition 

system as shown in Figure 5-6. The amplitude and frequency of the applied signal were kept 

below their allowable maximums in order to prevent electrical and mechanical failure of the 

diaphragms.  Specifically, the field for each diaphragm was kept at a maximum of 750V/mm. 

Two driving signals, sine and sawtooth, are used with all experiments.  
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Velocity is measured in quiescent air at a fixed distance of 1mm perpendicular to the 

orifice exit (z direction) for each actuator. All velocity measurements are performed using a 

hotwire anemometer. It is a single cylinder sensor used for one dimensional flow measurements. 

It has a diameter of 4 μm and a length of 3.2 mm. With the help of the IFA 100 flow analyzer the 

hotwire anemometer measures the flow in terms of voltage. Using a calibration this voltage is 

converted to velocity. The Mathcad program used for the velocity conversion is given in 

APPENDIX A.  

To obtain profiles along the length of the orifice, velocity is measured at various 

locations along the orifice. To study the effects of frequency on the jet, the velocity is measured 

at several frequencies up to 100Hz. These experiments are conducted on four synthetic jet cavity 

configurations. The differences in the cavities are the cavity height and the orifice diameter. 

Figure 5-6 Synthetic Jet Actuator Experimental Setup 
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5.1.5 Experimental Plan 

The jet peak velocity in quiescent flow is a function of these four variables and also a 

function of the driving signal as shown in Equation 5-1, where Upeak is the peak jet velocity. 

( , , , , )peak z co HU g F D C f δ=  

Equation 5-1 

Screening designs are used to identify the few significant factors from a list of many 

potential ones. Alternatively, a design is referred to as a screening design if its primary purpose 

is to identify significant main effects, rather than interaction effects, the latter being assumed an 

order of magnitude less important. Screening designs are economical experimental plans that 

focus on determining the relative significance of many main effects. This can be achieved using 

factorial designs (Montgomery, 2005). In the current study, five factors were considered for each 

actuator, driving waveform, voltage, frequency, cavity height, and orifice size. The peak velocity 

of the jet is used as the response variable. The diaphragms used in the study are Bimorph, 

Prestressed Metal Composite, Lipca and RFD. Each of these diaphragms is described in detail in 

the following section.  

Screening experiments are usually performed in the early stages of a project when many 

of the factors initially considered may have little or no effect on the response. The factors 

identified as important are then investigated more thoroughly in subsequent experiments. It is 

common to begin with several discrete or continuous input factors that can be controlled, that is, 

varied when desired by the experimenter and one or more measured output response variables 

which always are assumed to be continuous. In the current study, five factors were considered 

for each actuator, driving waveform, voltage, frequency, cavity height, and orifice size. The peak 

velocity of the jet is used as the response variable. A two level design is chosen due to the large 
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number of factors involved. In a two factor experimental design each factor has two levels. 

These levels “low” and “high” are denoted by “–” and “+” respectively. Experiments are 

conducted to measure the responses at the selected factor levels. The screening experimental plan 

is shown in the flowing sections. The factor levels are selected based on the properties of each 

diaphragm used in the study. 

The factor distribution showing the levels and the types of each factor is given in Table 4-

1. A full factorial design requires 25 = 32 runs without center points or repetitions. Instead, a 

fractional factorial design, 25-1, was utilized requiring a total of 16 observations. The resolution 

of this design is V, which indicates that no main effects are confounded with any 2-factor 

interactions or 3-factor interactions; main effects are confounded with four-factor interactions.  

The most common models utilized to fit experimental data take either a linear form or a 

quadratic form. In this case only linear models are considered and interactions are neglected. In 

order to consider higher order interactions, replications and a higher resolution experimental 

design is needed. The empirical model is of the form shown in Equation 5-2.  

0

n

i i
i

XY βμ ε
=

⋅= + +⋅⋅⋅+∑   

Equation 5-2 

where i=1, 2... n, n is the number of factors. Here, Y is the response for given levels of the main 

effects Xi. The constant µ represents the sample mean of the response; β’s are parameters whose 

values are determined represent the coefficients for the considered factors and ε is the 

experimental error. Statistical results are used to assess the validity and influence of the 

particular effect on the response.  
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Factor distributions for the devices are shown in Table 5-2. As stated earlier all factors 

have same levels except the voltage which varies due to the properties of the devices. However 

the electric field is approximately 750V/mm for each device. Electric field is determined by 

dividing the magnitude of the applied voltage by the thickness of the piezoelectric layer. 

The experiments table is made based on the factorial design theory. A full factorial 

design requires 25 = 32 runs without center points or repetitions. Instead, a fractional factorial 

design, 25-1, was utilized requiring a total of 16 observations. The factors, shown in Table 5-2, 

have a resolution V which indicates that no main effects are confounded with any 2-factor 

interactions or 3-factor interactions; main effects are confounded with four-factor interactions. A 

Fractional Factorial Design Matrix (design of experiments table) with 5 factors and 16 runs is 

shown in Table 5-3. 

 

 

 

 

Factors Symbols Low Level (-1) High Level (+1) Units Types
Driving Waveform Fz Sawtooth (-1) Sine (+1) None Discrete

Applied Voltage E 
125 (-1)
250 (-1) 
200 (-1)

150 (+1)
400 (+1) 
350 (+1)

Vpp  (Bimorph) 
Vpp  (Thunder) 
Vpp  (Lipca) 

Continuous 

Frequency f 25 (-1) 50 (+1) Hz Continuous
Orifice Size Do 2 (-1) 3.67 (+1) mm Continuous

Cavity Height CH 5.5 (-1) 9.5 (+1) mm Continuous
 

Table 5-2 Factor Distribution 
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5.2 Energy Harvesting Study 

Energy harvesting is a process in which energy which would otherwise be wasted is 

stored and then used to power a system. The use of harvested energy could extend the 

operational life of devices traditionally powered by batteries. This is particularly advantageous in 

systems with limited accessibility such as biomedical implants and structures with embedded 

micro and wireless sensors. It is feasible that such devices would have the ability to generate 

their own power from the ambient environment. This can either prolong the life of an existing 

battery or eliminate the battery. Energy can be harvested using piezoelectric materials from 

vibrations and heat. In this study the energy harvesting system is optimized using response 

surface models. Based on a literature review physical and environmental parameters of 

Table 5-3 Fractional Factorial Experimental Design 

Run No. Factors (Xi) Responsej 
j Fz E f Do CH Yj 
1 -1 -1 -1 -1 +1 y1
2 1 -1 -1 -1 -1 y2
3 -1 +1 -1 -1 -1 y3
4 +1 +1 -1 -1 +1 y4
5 -1 -1 1 -1 -1 y5
6 +1 -1 +1 -1 +1 y6
7 -1 +1 +1 -1 +1 y7
8 +1 +1 +1 -1 -1 y8
9 -1 -1 -1 +1 -1 y9
10 +1 -1 -1 +1 +1 y10
11 -1 +1 -1 +1 +1 y11
12 +1 +1 -1 +1 -1 y12
13 -1 -1 +1 +1 +1 y13
14 +1 -1 +1 +1 -1 y14
15 -1 +1 +1 +1 -1 y15
16 +1 +1 +1 +1 +1 y16
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temperature (T), pressure (P), frequency (f) and circuitry parameters of and resistance (R) are 

used in the study. The properties of piezoelectric materials are known to change when subjected 

to thermal and physical strains (Mukherjee et al., 2001, Sherrit et al., 1996 and 1999). In a study 

by Mossi et al the stiffness of a piezoelectric composite was shown to be temperature dependent 

(Mossi et al., 2005b). Changing composite stiffness affects the piezoelectric coefficients and in 

turn could affect the energy harvesting properties of the device. Also some of the possible 

applications where piezoelectrically harvested energy could be used operate in extreme 

environmental conditions making the effect of factors like temperature critical for 

implementation. Statistical methods are employed to explore this parameter. Using Response 

Surface Methodology modeling the point of inflection or the stationary point that optimizes 

power generation is calculated. The factor levels at the stationary point indicate the optimal 

parameter values.  

The sensor used in this study was a piezoelectric prestressed metal composite similar to 

Thunder diaphragms, but circular in shape with a perforated copper layer to reduce stiffness. In a 

preliminary study with two other piezoelectric materials PZT and PMN-PT, the power generated 

by the metal composite was studied (Green et al., 2005). The metal composite generated 

comparatively higher magnitudes of power. Thus the metal composite was selected for the 

vibration energy harvesting study. They were also chosen for their rugged construction and high 

performance when used as an actuator in synthetic jet actuators. The composition of the metal 

composite is described in the synthetic jet characterization chapter. It has an active PZT-5A layer 

sandwiched between a top and bottom layer of dissimilar metals bonded with a high temperature 

polyimide adhesive (SI). 



 

67 
 

5.2.1 Experimental Setup 

The diaphragm was dynamically pressure loaded using an air compressor such that the 

resultant vibrations produce a voltage. The device was clamped along its edges in a circular 

cavity which was pressurized using air on the copper side of the device while the steel side is left 

open to the ambient air. Figure 5-7 a and b show a schematic of the energy harvesting cavity 

with connection for pressurization. A block diagram of the complete experimental setup is shown 

in Figure 5-8. Clean dry air (CDA) was sent to a model 42K75 regulator/filter combination 

manufactured by SpeedAire with a 0-827.4kPa (0 - 120psi) pressure gauge. The regulated 

pressures used during this study are 138kPa (20psi), 206.85kPa 30psi), 275.8kPa (40psi), and 

344.75kPa (50psi). During initial testing it was found that the limits of the flow meter were 

reached at a dynamic pressure of 50psi (344.75kPa) thus this value is set as the experimental 

limit. The air is then sent through an Omega FMA 1609A flow meter which measured mass and 

volumetric flow rate, temperature, and absolute pressure of the air entering the pressure chamber. 

A three-way electric air valve routes air into the pressurized cavity. Using an adjustable timer 

manufactured by National Controls Corporation model TMM-0999M-461, the valve is switched 

on and off at desired frequencies. The frequencies (2.5Hz, 3.25Hz, and 5Hz) used in this study 

were determined by the dynamic limitations of the 3-way valve. The pressure housing was 

enclosed in an environmental chamber from Sun Systems Model EC1.3W capable of heating up 

to 350ºC. While in the chamber, the diaphragm can be heated to desired temperatures. 
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An additional aspect of the energy harvesting process is signal conditioning, as the 

electrical charge generated by a piezoelectric generator is usually insufficient to power a 

commercial device. By using circuitry the generated signal is processed such that a usable 

voltage is obtained which can be applied to the device directly or used to charge a battery 

(Sodano et al., 2005). The type of circuitry used to harvest the energy from a piezoelectric 

transducer is determined by the desired output to the load which most often needs to be rectified, 

filtered, and regulated (Ottoman, 2002 and 2003). 

 

 

 

Figure 5-7 Pressurized cavity design of synthetic jet actuator  
(a) cutaway schematic (b) assembly 
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5.2.2 Energy Harvesting Circuit 

The passive rectifier circuit was chosen as the energy harvesting circuit because of its 

simplicity and lack of active components which consume power. A schematic of the circuit is 

shown in Figure 5-9. The first stage of the circuit which is in parallel with the diaphragm is a 

RB114 Full Wave Bridge Rectifier. A Full Wave Bridge Rectifier converts AC to DC using a 

system of four diodes arranged such that the polarity in is the same as the polarity out. Each time 

a signal travels through the diode network; there is a voltage drop that depends on the 

characteristics of the diode. When attached to a load, marked at R in Figure 5-9, the negative part 

of an input sine wave is removed and the frequency is increased by a factor of two. The output 

DC voltage deviates from a constant DC voltage by a parameter called a ripple voltage. When a 

Figure 5-8 Vibration Energy Harvesting Experimental Setup 
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capacitor is added, as represented by C in Figure 5-9, ripples are smoothed and transients are 

filtered. 

 

 

 

In the first set of experiments the peak to peak AC voltages are measured without using 

the energy harvesting circuit. The experiments are conducted at four pressures, 138kPa, 

206.85kPa, 275.80kPa, 344.75kPa; three frequencies, 2.5Hz, 3.25Hz, 5Hz; and temperatures 

ranging from -60oC to 100oC at 10oC intervals. The data is acquired using Tektronix TDS2024 

oscilloscope and data acquisition software. The experimental parameters are shown in Table 5-4. 

Table 5-4 Energy harvesting experimental parameters 

Factor Parameters 

Frequency 
(f) 

2.5Hz 
3.25Hz 
5.0Hz 

Pressure 
(P) 

138kPa (20.0psi)  
206.85kPa (30.0psi)  
275.8kPa (40.0psi)  

344.75kPa (50.0psi) 

Temperature 
(T)

- 60°C  to 100°C  

Resistance 
(R) 

470kΩ 
1MΩ 
2MΩ 

Figure 5-9 Energy Harvesting Circuit 
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C R

VDC

C



 

71 
 

The second set of experiments was conducted using the energy harvesting AC―DC 

converter circuit. A standard 4.7μF capacitor is used while three loads of 470kΩ, 1MΩ and 

2MΩ. The output DC voltage of the energy harvesting circuit was measured over a time interval 

to observe the charging and discharging behavior of the circuit. The DC measurement 

experiments are also conducted under the same physical conditions used in the first set of 

experiments using a DMM data logger device. Table 5-5 lists a table of experiments conducted 

during the study. Data from the experiments is used in developing response surface models. 

Table 5-5 Table of experiments 
 

 

 

 

 

5.2.3 Response Surface Model 

Using response surface methodology the factors selected for this study are optimized. 

The typical RSM procedure is described here as in many books such as Montgomery 

(Montgomery 2005, Box and Graper 1987). For computational convenience, the natural variables 

or factors are usually converted to coded or design variables, X1, X2, …, Xn, standardized so that 

the design center is at the point 0. In the current design there are three levels are designated as 

shown in Table 5.3, -1, 0, 1, in a confined region R.  

 Pressure Frequency Temperature Load 
Resistance Output 

Experiment 1 X X X  ACV 

Experiment 2 
(measured over 

time) 
X X X X DCV 

X : indicates that the factor was varied during the experiment 
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The first step in RSM is to find a suitable approximation for the true functional 

relationship between Y and the set of independent variables as indicated by Equation 5-3. 

( , , , )y F R P T f=  

Equation 5-3 

The relation will be approximated by a polynomial of first or second degree in the 

confined region R shown at Equation 5-4. The surface represented by this fit is the response 

surface for the experiment. The stagnation point of the surface is the optimized response and the 

factor levels will be the optimized system. 

n n
2

i i ii i ij i j0
i ji 1 i 1

y x x x xβ β β β ε
<= =

= + + + +∑ ∑ ∑∑
 

Equation 5-4 

i = 1, 2, …,n and  j = 1, 2, …,n 

Here y is the response variable, x1, x2, …, xn are the dependent factors, n is the number of 

factors, β0 is the intercept term and βi are the regression coefficients. ε is the random error which 

is assumed to be distributed as a normal distribution with zero mean and unknown variance.  

Table 5-6 Enegy harvesting coded factor levels 

 

 

Levels R(Ω) P(kPa) T(oC) f(Hz) 
-1 470000 138 -40 2.5 
0 1000000 275 20 3.25 
1 2000000 350 80 5 
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5.3 Integration of Energy Harvesting in Synthetic Jet Actuators Study 

In this part of the dissertation sensing and actuation is integrated into the synthetic jet 

actuator. Integration of sensors in the synthetic jet actuator will allow the harvesting of ambient 

energy from vibrations generated while the jet is on. This is achieved through the integration of 

piezoelectric sensors in the jet design. The design has weight limitations such that the synthetic 

jet operation is not affected. Sensors have to be carefully selected to achieve this purpose 

effectively. The entire sensor selection, integration and experimental plan is described in the 

following sections. 

5.3.1 Piezoelectric Sensors Used in Integrating Actuation and Sensing 

The piezoelectric sensors selected for this study were polyvinylidene fluoride (PVDF) and 

a square shaped prestressed PZT metal composite sensor with an aluminum substrate layer. The 

sensors are required to a high piezoelectric response to efficiently harvest energy from the 

system. In addition they need to be lightweight, reliable and easily integrate able.  

5.3.1.1 Polyvinylidene Fluoride (PVDF) 

PVDF is a piezoelectric polymer with high mechanical properties and strength. Due to its 

chemical inertness it is capable of performing in harsh chemical environments. They have higher 

piezoelectric properties in comparison with other polymers. They are available in a variety of 

different sizes and thicknesses. A PVDF film as a transducer can be cut to very small size and 

are very affordable at around 50 cents per sensor.  

As they are very flexible they can be easily integrated into structures. When a stress is 

applied they generate voltages due to the movement of electrons within the PVDF film, and 
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voltage can vary with different stresses. PVDF film can be bonded to a variety of substrates 

including itself and metals with bond strengths ranging from 50-800 psi.  

In the current study PVDF films of varying thickness from 28µm to 110µm purchased 

from Measurement Specialties are tested. PVDF is encapsulated in lamination layers of Mylar 

for insulation from electrical noise. Mylar was selected for lamination as it is readily available, it 

has good bond strength, ease of use and it is very cheap. A picture of a laminated PVDF sample 

is shown in Figure 5-10. The film has layers of silver electrodes sputtered on either surface. Flat 

nickel wires are attached on the surfaces to measure through the thickness of the sample. The 

sensor integration into a synthetic jet actuator is described in the following section. 

 

 

 

5.3.1.2 Prestressed PZT Metal Composite Sensor 

The Prestressed PZT Metal Composite sensor is similar in construction to the prestressed 

metal diaphragm used in synthetic jet actuators. The sensor selected for the integration process is 

square shaped and has a different layering arrangement. The bottom layer is stainless steel (39 x 

45 x 0.2 mm), the middle layer PZT ceramic (38 x 38 x 0.254 mm), and aluminum (37.5 x 37.5 x 

0.1 mm) the top layer; LaRC™-SI adhesive is applied between the layers. The entire assembly is 

placed into an autoclave for processing. A mismatch in coefficients of thermal expansion cause 

the metal and ceramic layers to contract at different rates, and they begin to work against one 

another, putting the ceramic in a prestressed compression at room temperature and resulting in a 

Figure 5-10 PVDF sensor incased in Mylar packaging 
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characteristic curvature of the finished product. A schematic of the end shape is shown in Figure 

5-11. Due to the shape of the sensor integration in a synthetic jet actuator cavity is difficult. 

However this sensor was selected due to large power generation potential of prestressed 

composites.  

 

 

 

 

 

5.3.2 Sensor Integration and Experimental Setup 

To integrate energy harvesting into synthetic jet actuators, piezoelectric sensors are 

incorporated into the design of the actuator such that vibration energy can be harvested. The 

synthetic jet actuator formed with a circular prestressed metal diaphragm is used in this study. 

The sensors are attached to the middle of the steel surface of the actuator diaphragm using a 

pressure sensitive FT 1122 HLP insulating adhesive as shown in Figure 5-12. As stated earlier 

the steel surface faces the orifice in the synthetic jet cavity. Thus sensor is exposed to the 

pressure changes in the cavity. As the synthetic jet diaphragm oscillates, the attached sensor also 

oscillates inducing vibrations. The vibrations and pressure changes in the actuator create stresses 

on the sensor exciting voltage generation by the sensor.  

Figure 5-11 Square shaped Prestressed PZT Metal Composite Sensor 



 

76 
 

Thunder (actuator)

insulating adhesive 
Thunder (sensor)

As the PVDF sensor is very flexible it is uniformly attached to the surface of the 

diaphragm. However, in case of metal composite sensor the unique shape does not allow for the 

complete surface area to be attached. The edges of the sensor are free and the arrangement is like 

a balanced seesaw with the sensor attached along a central band. As shown in Figure 5-13. This 

type of an arrangement is inconsistent as perfect bonding is difficult to achieve.  

 

 

 

 

For testing the integrated design the harvested sensor voltage is measured simultaneously 

along with the synthetic jet velocity. The experimental setup used in testing is shown in Figure 5-

14. The same synthetic jet cavity design is used here as well. The jet velocity is measured using a 

SJ diaphragm

PVDF/
Thunder
sensor

actuator
(SJ diaphragm)

+

PZT composite

Applied voltage–

Harvested voltage 

Figure 5-12 Sensor integration into a synthetic jet actuator 

Figure 5-13 Metal composite sensor attached to synthetic jet diaphragm 

Metal composite sensor 

circular metal 
composite actuator 

insulating adhesive  
(FT 1122 HLP) 
square metal  
composite sensor 
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hotwire anemometer. The sensor voltage is monitored using a data logger which records one 

reading per second. The applied voltage marked in schematic is the voltage used to drive the 

synthetic jet diaphragm and the sensor voltage is the voltage generated by the piezoelectric 

velocity sensor. Tests are conducted on various diaphragm driving voltages and frequencies. AC 

voltages are measured for both the sensors. The energy harvesting circuit shown in Figure 5-9 is 

used in the AC to DC voltage conversion. The effects on sensor generated voltages can be 

quantified by comparing the effects on peak velocities. The experimental plan is given in the 

following section. 

 

 

 

 

 

 

Figure 5-14 Experimental setup for testing the integration of sensing and actuation in 
Synthetic Jet Actuators 

5.3.3 Experimental Plan  

A design of experiments study is conducted using fractional factorial analysis. A two 

level fractional factorial analysis with one replication is conducted. The voltage generated by the 

sensor is related to the area and thickness of the sample these two factors are selected for the 
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study. Also, as energy is being harvested from vibrations the shape could have an effect on the 

output as each shapes has different vibration modes. Except for shape the other two factors are 

continuous with shape being a discrete factor. The dimensions of the shapes are selected in such 

a manner that the net area of the sample is constant for each shape. The DOE study is conducted 

only with the PVDF sensor as the composite sensor attachment mechanism is inconsistent thus 

affecting the results. The experimental design also includes center points to increase the accuracy 

of the model. Table 5-7 shows the factors and each assigned level. ‘-1’ indicates the low level, 

‘0’ is the center point and ‘+1’ is the high level as shown in the table. In case of the shape factor 

the variable is  

Including center points and replications the number of runs required to conduct the 

analysis is 10. Table 5-8 shows the design table for the experiment. The response variable of DC 

power (P) is selected for the analysis. A simple linear regression fit is conducted as shown by 

Equation 5-5.  

1 2 3P s a tμ β β β ε= + ⋅ + ⋅ + ⋅ +
  

Equation 5-5 

Table 5-7 Factor levels 

 Factor Levels  
factors  -1  0  1  

shape (s)  square  rectangle  circle  
areas (a)  5cm

2
  10cm

2
  15cm

2
  

thickness (t)  28µm  50µm 110µm 



 

79 
 

 

 

Table 5-8 23-1 Fractional Factorial Design 

Pattern s a t P 

+−− 1 -1 -1 P1 

+−− 1 -1 -1 P2 

−+− -1 1 -1 P3 

−+− -1 1 -1 P4 

000 0 0 0 P5 

000 0 0 0 P6 

−−+ -1 -1 1 P7 

−−+ -1 -1 1 P8 

+++ 1 1 1 P9 

+++ 1 1 1 P10 

 

5.3.4 Energy Storage Mechanism 

The AC harvested energy is converted to DC using a simple rectifier circuit shown in 

Figure 5-9. A mechanism is required to store the harvested energy into a medium. This requires 

efficient energy transfer to the medium. A commercially available energy harvesting module 

EH301 EPAD® (Figure 5-15) from Advanced Linear Devices is tested with the aim of increasing 

efficiency. These modules are designed to continuously and actively operate to capture, 

accumulate and conserve energy from an external energy source. The output from the source is 

directly connected to the module and it collects the energy in an inbuilt 1000 µF capacitor. As 
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the sensor generates voltage the energy is continuously collects in the capacitor. The operational 

details of the device along with the specifications are given in APPENDIX C. 

Another method of storing the energy is by connecting the output of the circuit shown in 

Figure 5-9 to a medium such as a capacitor or a rechargeable battery. Two large capacitors of 

330µF and 1000µF are tested using the rectifier circuit. Also a battery pack of rechargeable AA, 

NiCd batteries are charged using the same circuit. 

 

 

 

 

 

 

  

Figure 5-15 ALD EH301 EPAD® Energy Harvesting Module courtesy 
Advanced Linear Devices (a) picture of module, (b) pin diagram 

(a) (b) 
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6 Results 

 
 
 
 

6.1 Synthetic Jet Actuator Results 

6.1.1 Driving Signal and Frequency Effects 

Previous studies on synthetic jets have used the sine wave as the driving input signal. A 

sine wave as the driving input requires relatively high frequencies to match the actuators 

resonance frequency to enable a synthetic jet formation with significant velocity magnitude. 

High frequencies however, consume more power and also reduce the lifetime of the piezo. In this 

study the jets are driven using a sine and a sawtooth signal. A sawtooth signal provides the force 

required to produce large velocities at low frequencies thus requiring less power. 

A typical velocity curve formed with a sine wave is shown in Figure 6-1. Two jets are 

observed with the second jet smaller in magnitude. The first jet (larger jet) follows the leading 

edge of the input signal and the second jet (smaller jet) follows the trailing edge. The larger jet is 

believed to occur during the expulsion cycle, while the smaller jet is believed to occur during the 

ingestion cycle. Previous studied on the synthetic jet flow fields by Smith have indicated that 

during the ingestion cycle the flow reenters the cavity from the sides of the orifice (Smith and 

Glezer, 1998, Smith, 1999).Thus the second jet may be due to the nonparallel direction of the 

flow, relative to the hotwire, entering the cavity. At lower frequencies, only one jet is formed 
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indicating that at lower frequencies the flow during ingestion cycle is nearly parallel to the 

hotwire anemometer and hence cannot be detected. 

In the case of the sawtooth signal a single velocity jet is formed. As shown in Figure 6-2, 

the jet follows the leading edge of the input signal, with series of smaller jets immediately 

following the first jet. These jets may be caused by vibrations of the clamped actuator. The jets 

formed using sawtooth driving signals are larger in magnitude as compared to the ones formed 

with a sine wave. 

The amplitude of the driving signal has an effect on the maximum jet velocity as seen in 

Figure 6-3 for cavity IV. An increase in the input voltage produces greater velocities. This effect 

is seen in all the cavities and frequencies for both the driving signals. 

Figure 6-1 Typical Velocity Curve with Sine Driving Voltage with Cavity IV for a
Bimorph Diaphragm at 100Hz and 150Vpp 

expulsion 
ingestion 
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To test the effects of frequency on velocity, the synthetic jet actuator is operated at 

various frequencies up to 100Hz. As seen in Figure 6-4 with a sine wave input signal the velocity 

increases as frequency increases. In case of a sawtooth input, the velocity stays constant after 

approximately 10Hz. This behavior is observed at all voltages and for all the cavities tested. The 

Appendix section at the end of this document gives all the detailed results with each diaphragm. 
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Figure 6-2 Typical Velocity Curve with Sawtooth Driving Voltage with Cavity 
IV for a Bimorph Diaphragm at 25Hz and 150Vpp 
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Figure 6-4 Frequency Effects on Bimorph Diaphragm Peak Velocities for Cavity 
IV at 150Vpp 

Figure 6-3 Effects of voltage on velocity magnitude with cavity IV for 
a prestressed metal composite diaphragm at 50Hz with a Sine Signal 
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6.1.2 Cavity Height and Orifice Size Effects 

In order to test the effects of changes in cavity height, the profiles obtained from the four 

cavities were compared. Since cavity III and cavity IV have the same orifice diameter but 

different cavity heights their profile comparison will show the effects of changes in cavity height 

or cavity volume on the velocity magnitudes. Profiles for cavity III (smaller) and cavity IV 

(larger) are shown in Figure 6-5. In the case of a sine driving signal, a difference of 

approximately 30% is observed between the maximum velocities of the two cavities with the 

smaller height/volume cavity producing the higher velocity. Similarly, cavity I (smaller) and 

cavity II (larger) are also compared as they have the same orifice diameter, a difference of 33% is 

observed. 

With a sawtooth driving signal the differences in velocities are smaller as shown in 

Figure 6-6. A comparison of cavity I and II profiles at 50Hz shows a difference of 25% and 

between cavity III and IV of only 13%. Similar to the sine signal, the cavity with the smaller 

volume produces higher velocities. The large difference between cavities I and II could be due to 

the relatively larger orifice of cavities III and IV.  
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Figure 6-5 Cavity Height Effects using a Sine Driving Signal for a Bimorph 
Diaphragm at 50Hz and 150 Vpp 

Figure 6-6 Cavity Height Effects using a Sawtooth Driving Signal for a Bimorph 
Diaphragm at 50Hz and 150Vpp 
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Next the effects of orifice size on jet velocity are studied. Figure 6-7 shows the sine wave 

driven profiles for cavities I (smaller) and III (larger) that have the same cavity height (smaller 

CH) but different orifice diameters. It is observed that the smaller orifice diameter (smaller Do), 

cavity I, produces 63% higher velocities than cavity III, larger Do. This result is expected since to 

maintain a constant mass flow rate, the velocity through the smaller orifice has to be higher than 

the larger orifice. Similar trends are observed in the comparison between cavities II and IV with 

differences of 61%. In case of the sawtooth driven profiles, the differences in velocities are much 

smaller as shown in Figure 6-8 for cavities I and III (different CH). Differences between cavity I 

and III peak velocities are 17% and between cavity II and IV are only 4%. These results indicate 

that the synthetic jet velocity is dependent on the type of driving signal used. 

 

 

 

 

 

 

 

 

 

 

Figure 6-7 Orifice Size Effects using a Sine Driving Signal for a Bimorph 
Diaphragm at 50Hz and 150 Vpp 
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6.1.3 Design of Experiments Results 

The regression analysis for the 25-1 fractional factorial experimental design discussed in 

the materials and methods chapter is shown in Table 6-1 for a Bimorph actuator. The first part of 

the table shows a summary output of the regression. The R-square value is the relative predictive 

power of a model. The model shown has an R-square value of 0.97 and an adjusted R-square of 

0.96 indicating that 97% of the data can be predicted using the model. The adjusted R-square 

value is a better estimate of the model as it accounts for the size of the model as well.  This is 

unlike the R-square value, which increases as the number of factors increase even though they 

might not have an effect on the experiment (Montgomery, 2005, Wheeler and Ganji, 2003).  

 

Figure 6-8 Orifice Size Effects using a Sawtooth Driving Signal for a Bimorph 
Diaphragm at 50 Hz and 150Vpp 
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Multiple R 0.98
R Square 0.97

Adjusted R 
Square

0.96

Standard 
Error

3.38

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 3 4471.34 1490.45 130.19 2.03E-09

Residual 12 137.38 11.45
Total 15 4608.72

Coeffs.
Standard 

Error
t Stat P-value

Lower 
95%

Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 23.08 0.85 27.29 3.62E-12 21.24 24.92 21.24 24.92
F z -16.05 0.85 -18.97 2.58E-10 -17.89 -14.21 -17.89 -14.21
D o -3.47 0.85 -4.10 1.48E-03 -5.31 -1.62 -5.31 -1.62
C H -3.13 0.85 -3.71 3.01E-03 -4.98 -1.29 -4.98 -1.29

Regression Statistics

Table 6-1 Regression Table for Bimorph diaphragm 

Following the summary is the Analysis of Variances (ANOVA). The ANOVA is 

sometimes called the F-test, and it helps determine the validity of the experimental design by 

testing the difference between two or more groups. When the F-value is larger than the 

Significance F-value, the experiment design is considered to be valid, indicating that at least one 

of factors have an effect on the response variable. The F-value shown in Table 6-1 is computed 

from the mean square values, and Significance F-value is selected from the F-distribution tables 

based on the size of the sample, the number of factors, and the significance level selected which 

is 95% in this case. As the F-value is larger than the Significance F-value as seen in Table 6-1, 

the experiment design is considered to be valid and further analysis of the design can continue.  
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The ANOVA only shows that the experimental design as a whole is valid but all the 

factors considered in the design may not be relevant. The analysis following the ANOVA helps 

in determining the importance of all factors. The factors are analyzed on the basis of the 

corresponding p-value generated in the table. The p-value or calculated probability is the 

estimated probability of rejecting the null hypothesis of a study question when that hypothesis is 

true. If the p-value is less than the chosen significance level then the null hypothesis is rejected. 

The choice of significance level at which the hypothesis is rejected is arbitrary. In the current 

study, the null hypothesis is that none of the factors considered in the study are significant 

enough such that they may affect the jet velocity. The alternate hypothesis is that one or more 

factors are significant and to identify these factors the corresponding p-values are considered. 

Conventionally for this analysis the 5% (less than 1 in 20 chance of being wrong) levels or the 

95% confidence internal mark has be chosen such that the p-value has to be less than 0.05 

(Montgomery, 2005). 

The p-values for Fz, Do and CH are found to be below the 0.05 mark at 2.58E-10, 1.48E-

03 and 3.00E-03 respectively. The remaining factors of E and f, did not appear to be significant. 

This does not indicate that these factors can be ignored completely. Interaction with main effects 

may be present but as the focus is only on linear models any additional effects are not taken into 

account in this study. From these results, a model is obtained as shown in Equation 6.1 such that 

Y is the velocity in m/s. This equation shows that Fz, Do and CH, the main effects can be linearly 

related to each other by Equation 6-1. 

023.08 16.05 3.47 3.13z HY F D C= − ⋅ − ⋅ − ⋅   

Equation 6-1 
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Plots of all the effects showing the average responses are shown in Figure 6-9. The main 

effects, FZ, Do, and CH have a large slope as seen in the plots and the remaining factors have a 

very small slope indicating that they do not have a significant effect on the jet velocity. The 

regression tables and charts for each diaphragm are shown in APPENDIX B. 

 

6.2 Energy Harvesting Results 

The energy harvesting experimental parameters listed in Table 5-4 are tested using the 

described test setup. The ultimate goal of the experiments is optimization of harvested energy 

from a prestressed piezoelectric diaphragm. The diaphragm was mechanically actuated using air 

Figure 6-9 Average factor effects for a Bimorph 
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in a pressurized chamber and the electrical energy converted was measured. The optimizing 

parameters were temperature (T), pressure (P), frequency (f) and resistant (R).  

The AC voltages generated during diaphragm oscillations are measured directly without 

the use of a circuit. Figure 6-10 shows typical voltage curves measured with the Metal composite 

sensor. The figure shows curves with two temperatures and at 206.85kPa of cavity pressure. The 

graph clearly indicates that temperature affects the magnitude of the generated sensor voltage. 

For clarity the other tested temperatures have been omitted from the graph. 

 

 

 

 

 

 

 

 

Although not shown in the figure analysis of the AC data indicates that voltages are also 

dependent on applied pressure. To show the dependence of temperature and pressure on AC 

voltage generation, a typical contour plot of the AC voltage is shown in Figure 6-11, for 5Hz 

frequency experiments. The high and low voltage regions are clearly visible in the figure. High 

Figure 6-10 Typical vibration energy harvesting AC voltage curve 
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voltages were measured at pressures between 250kPa to 300kPa and at higher pressures the 

voltage decreases. Thus, indicating that the optimal pressure is in this range. Similar temperature 

ranges are difficult to identify although two regions about 20oC and -30oC show high voltages. 

The piezoelectric diaphragm was driven at three different frequencies. Figure 6-12 shows 

the effect of frequency on the peak to peak AC voltage measured at 344.75kPa. As seen in 

Figure 6-12, the three curves are almost identical indicating that frequency does not have any 

effect on the generated voltage. An ANOVA of the frequency levels was also conducted and the 

F < Fcritical condition was in agreement with the conclusions drawn from the graphs. Also the p–

value of 0.5 was too large to consider frequency an important factor. These results are valid only 

at tested frequencies. At high excitation frequencies such as in the piezo resonance region this 

factor could become important. For the scope of this study, frequency is ruled out as a significant 

factor. Another observation from Figure 6-12 is the peak in voltage seen at 20oC. This is seen at 

all frequencies and can help in identifying the optimal energy harvesting temperature. Further 

analysis of this temperature and pressure dependence was conducted using DC measurements. 
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Figure 6-11 Contour plot of AC voltage region 



 

95 
 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 DC Voltage Measurement Results 

To utilize the harvested signal to power any device, the signal needs to be rectified to 

match the requirements of the device. Also most devices are powered with a DC voltage. To 

measure DC voltage an AC―DC converter circuit or energy harvesting circuit shown in Figure 

5-9, is added to the setup and the DC voltage is measured across a 4.7μF capacitor. In these 

experiments an additional factor of R is included in the study simulating a load in the circuit. By 

varying the resistance impedance matching is achieved with different devices. Impedance 

matching between the source and the device maximizes power transfer to the device making the 
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Figure 6-12 Frequency effect on vibration energy harvesting 
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system more efficient. Measurements are taken at different frequencies, resistances, temperatures 

and pressures. 

Typical DC voltage curves are shown in Figure 6-13. The figure shows curves for 

3.25Hz, 0oC and 344.75kPa measurements. The maximum voltage is measured at 2MΩ and the 

lowest at 470kΩ. Similar results are seen at other temperatures and pressures. This indicates that 

maximum voltage is transferred to the load at 2MΩ. Thus there is greater impedance matching 

between the source and the load at this resistance. When the harvested voltage will be used to 

charge a battery or other storage devices high impedance matching will be required to ensure 

efficient transfer of energy. An ANOVA of the dc data also indicates that resistance is an 

important factor with a p–value of 0.00048 and the F–value of 89.43. It can be concluded that 

resistance is an important factor during energy harvesting and is dependent on the end 

application. However, a load of 2MΩ is not necessarily the optimal resistance for impedance 

Figure 6-13 Typical DC voltage curve 
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matching. The optimal value can be obtained from response surface models described in the 

following sections. 

Using the measured voltage and the available resistance values, instantaneous power is 

calculated using Equation 6-2 shown below.  

=
2VP

R  

Equation 6-2 

Here V is the measured voltage in volts, R is the resistance in ohms and P is the power in 

Watts. The maximum calculated power was 18.44mW and using ceramic volume the maximum 

power density was found to be 24.27µW/mm3. These values were obtained at 20oC, 344.75kPa 

and 5Hz. A typical power graph is shown in Figure 6-14.  

Calculating area under the power curve gives the energy harvested from the system as 

indicated by Equation 6-3. P(t) is the instantaneous power and E is the total energy harvested by 

the device in Joules. The maximum total energy calculated was 3.05J at -60oC, 206.85kPa and 

2.5Hz. The area of the shaded portion of curve gives the energy as stated in Equation 6-3.
  

( )= ∫
2

i

t

t

E P t dt

 

Equation 6-3 

Visual analysis of the AC voltage data indicates that temperature and pressure are 

important factors which need to be studied in detail. Figure 6-15 shows the effect of pressure on 

DC voltage measurements. The graph shows the peak DC voltages measured at several positive 
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and negative temperatures at four increasing pressures. The temperatures follow a similar trend 

in which the voltage peaks at 275kPa. This pressure can be identified as the optimal pressure for 

this energy harvesting setup.  

As discussed earlier the experimental measurements have identified trends in the energy 

harvesting process. In the following sections statistical methods are used to develop models 

which relate the variables under study. These relationships will further justify the experimental 

results. Furthermore such models can also be used in identifying optimal levels of the experiment 

indicating trends in the study. 
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Figure 6-14 Typical Vibration Energy Harvesting Power Curve 
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6.2.2 Response Surface Model Results 

The response surface methodology is applied to the vibration energy harvesting study. 

The response variable (Y) is DC voltage and the factors or dependent variables modeled are 

resistant (R), pressure (P), temperature (T) and frequency (f). Using this analysis approach 

surface maps are developed which help in optimizing the system. 

A regression analysis and model fit of the DC voltage data gives a second order 

polynomial model given in Equation 6-4. The model fit has an R2 value of 90%. All the first 

order models resulted in low R2 values which are not acceptable. Thus a second order model was 

attempted. 
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Figure 6-15 Pressure effects on DC voltage 
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Equation 6-4 

As the fitted surface is an adequate approximation of the true response surface, analysis 

of the fitted surface is approximately equivalent to analysis of the actual system. The surface 

represented by the equation for VDC (response) shown in Equation 6-4 is called the response 

surface. Response Surface plots and contour plots play a very important role in the study of the 

response surface. By generating these plots using computer software for response surface 

analysis, the shape of the surface can be characterized. Also, location of the optimum can be 

determined with reasonable precision. Figure 6-16 (a) and (b) show the response surface and the 

contour plot of response surface. The lines of constant response are drawn in the T, P plane. The 

dome shape of the response surface is result of the second order model fit. The optimal point is 

the peak of the dome; it can also be called the stationary point, saddle point or the maximum 

point. 

A stationary point represents the point of maximum response, to find the levels of R, P, T, 

and f that optimize the predicted response. The location of the stationary point can be determined 

using the DC measurements data. Performing the analysis discussed previously results in a xs 

matrix with coded and natural factor values as shown in Table 6-2. Experimental results from 

previous section indicate that the optimal pressure level is approximately 250kPa which is in 

agreement with the predicted optimal level in the statistical analysis. Similarly 20oC was 
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identified as the optimal temperature level in the experimental results. The model predicts the 

optimal temperature at approximately 12oC.  
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Figure 6-16 (a) 3D Response Surface showing the predicted DC voltage as a function of 
pressure (P) and temperature (T), (b) Contour plot of the response surface 

 

 

 

 

 

 

 

 

 

 

Table 6-2 Coded factor levels 

Factors Coded 
variables 

Natural 
variables 

R 0.692 1MΩ 

P -0.158 237.6kPa 

T -0.132 12oC 

f 0.097 3.7Hz 

 

(b) 
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A surface map was plotted using optimal resistance and frequency values of 1MΩ and 

3.7Hz respectively. The surface as shown in Figure 6-17 has similar results of peak voltage at 

12oC and 237.6kPa. Similarly voltages can be predicted for intermediate factor levels not tested 

in the experiments within the tested ranges. 

Although PZT is a pyroelectric material, this effect is not directly involved in the study. 

For the pyroelectric effect to be significant the material has to be heated at a fast heating rate i.e. 

constant temperature should not provoke a response (Whatmore, 1986). Since the study has a 

very small heating and cooling rate (almost zero) the pyroelectric effect is zero and does not 

affect the outcome. The magnitudes of piezoelectric properties are dependent on piezoelectric 

coefficients of the material. The application of temperature and stress affects the coefficients and 

the functioning of the piezoelectric device. These stimuli are considered extrinsic contributions 

from the environment (Mukherjee et al., 2001). Under the application of a periodic stress, a near 

instantaneous charge is generated due to 180o
 domain changes and some 90o

 domain changes thus 

increasing the extrinsic contribution. As studied by Mukherjee et al. these effects are more 

prominent on soft ceramics such as PZT 5A due to more domain mobility. In another study it 

was shown that the response of a piezoelectric material to the application of stress is a non linear 

function of stress, time and temperature (Sherrit et al., 1996). Thus there is a combined coupling 

effect which is also indicated in the regression model of Equation 6-4. Along with having 

individual effects of the outcome each factor also affects the outcome coupled with the other 

factors. The piezoelectric response can also be affected by multiple heating (Sherrit et al., 1999). 
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In the current study the temperature is set and the device is allowed to heat until that 

temperature. Upon reaching a steady state condition at the temperature measurements are taken. 

In this manner the device is heated to various temperatures. These conditions could help in 

understanding the median values predicted by the regression models as the optimal conditions of 

the system. In a practical environment the conditions that the system will operate in will not be 

as varying as used in the current study. This study demonstrates that pre―stressed piezoelectric 

composites can be efficiently used to power devices and the efficiency is dependent on the 

operating conditions. 

 

Figure 6-17 Response Surface using optimal factor level predicted in Table 5-4
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6.3 Integration of Energy Harvesting in Synthetic Jet Actuator Results 

Sensing and actuation is integrated into a synthetic jet actuator using piezoelectric 

materials. The PVDF and Metal composite sensors are attached to the diaphragm of the actuator 

to harvest vibration energy from the oscillations. Only the prestressed diaphragm synthetic jet 

actuator is considered in this study. The diaphragm is driven using three driving signals, sine, 

sawtooth and square at 400Vpp and the AC voltage generated by the sensor is recorded. The AC 

voltage is then converted to DC using a standard rectifier circuit shown in Figure 5-9. 

The voltage applied to the actuator or the oscillating diaphragm is referred to as the 

actuator voltage or the applied voltage and the voltage measured across the sensor is called the 

sensor voltage or the generated voltage. A typical graph showing the sensor voltage measured 

with a PVDF sensor at the diaphragm oscillating frequency of 10Hz with a square signal is 

shown in Figure 6-18. As expected the generated voltage follows the diaphragm applied voltage 

as the dynamics from the actuator are transferred to the sensor. For actuator applied voltage of 

400Vpp almost 10Vpp sensor voltage is generated. Similar results are seen with the metal 

composite sensor but the magnitude of generated voltage is higher. 

Similar tests are conducted at different frequencies in the low frequency range used in the 

synthetic jet actuator study of 5 - 100Hz. Figure 6-19 shows the effects of frequency and driving 

signal on the sensor energy generation. With the metal composite sensor the peak to peak 

generated sensor voltage is not affected by the frequency for the sine and square driving signals. 

But with the sawtooth signal the voltage increases with frequency. The prestressed metal 

composite attachment mechanism is unstable and thus the results are also inconsistent. Thus 

analysis is require to develop a more stable and consistent design. 
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With the PVDF sensor the results are different such as the voltage increases at higher 

frequencies with a sine signal. However the voltage decreases slightly (almost constant) with the 

sawtooth and square signals. Also in this case large peak voltages are generated with a sawtooth 

signal although the differences with square are very small (less than 5%). Results with the PVDF 

sensor are more consistent with the synthetic jet velocity measurements presented earlier wherein 

the synthetic jet velocity increases at higher frequencies with a sine signal. In general the results 

with the PVDF are more consistent compared to the metal composite although the magnitudes of 

the generated voltages are approximately 30% small while comparing the peak voltages with a 

square signal. Table 6-3 gives a comparison of the peak to peak voltages measured with the two 

sensors. The maximum voltage of 12.16 Vpp is generated by the metal composite sensor with a 

square driving signal. 

 

Figure 6-18 PVDF sensor voltage 
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(b) 

Figure 6-19 Peak to peak sensor generated voltage summary 
(a) Metal composite sensor (b) PVDF sensor 

(a) 
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Table 6-3 Comparison of Sensor Voltage 

 
Peak to Peak Harvested Voltage 

(Vpp) 

 PVDF PZT 
Composite 

Sine 6.72 4.16 

Sawtooth 6.16 8.96 

Square 7.12 12.16 

 

Due to integration of the sensor the performance of the synthetic jet actuator could be 

affected. The sensor adds mass to the system and more work is required which could hamper the 

jet output. To study the effect of sensor integration, synthetic jet velocity and sensor voltage are 

measured simultaneously. The peak velocities formed by the actuator are compared with results 

with no sensor attached. Figure 6-20 shows such a result where the jet velocity and sensor 

voltage are shown with the PVDF sensor and sawtooth driving signal. The peak jet velocities are 

in comparison with previous synthetic jet actuator results and also the characteristics of the curve 

are similar. Such as, the long and short velocity jets representing the expulsion and ingestion 

parts of the actuator cycle. The sensor voltage also follows a similar trend with unequal sized 

peaks following the diaphragm movement in conjunction with the jet velocity peaks. 
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The voltage directly measured from the sensor is converted to DC by using the full wave 

rectifier bridge circuit shown in Figure 5-9. Power can then be calculated using Ohm’s law with 

the resistance in the circuit. A typical power curve is shown in Figure 6-21. Energy is the area 

under the power curve as indicated by the shaded part of the graph. Maximum power density of 

0.167µW/m3 was measured with the PVDF sensor and peak energy of 0.407mJ was harvested. 

Figure 6-20 Effect of sensor integration on jet velocity with a PVDF sensor
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6.3.1 Screening Design Results 

For the screening design of experiments power (P) is selected as the response variable. A 

two level fractional factorial experimental design is conducted with one replication and one 

center point as represented by Table 5-8. Three factors and their levels are identified as indicated 

in Table 5-7. The results of a linear regression analysis are shown in Table 6-4. 

The R-square value of the regression is 0.919. Only main factor effects are considered 

ignoring interaction effects. Since this analysis was conducted with a 95% confidence interval, 

factors with p-values under 0.05 are considered significant. Thus area and thickness are clearly 

important factors which have a direct effect on the power generation. Since shape is a discrete 

variable each level of the factor is considered separately. The p-value for ‘-1’ level is significant 

Figure 6-21 Typical power graph showing energy generation with a PVDF sensor  
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which is the square shaped sample. Since one of the levels is significant the entire factor is 

considered important and included in the linear model. The prediction expression is shown below 

in Equation 6-5. Depending on the driving signal being used the coefficient will be different as 

indicated in the equation. 

Table 6-4 Regression analysis results with a PVDF sensor integrated into a SJA 

Term Scaled 
Estimate p―value 

Intercept 2.054 0.0010
*
 

s[0] 0.363 0.4735 

s[1] 0.973 0.0558 

s[-1] -1.336 0.0191
* 

a 1.433 0.0061
*
 

t 1.472 0.0054
*
 

 

 

 

 

In the regression analysis it is also seen that the regression coefficients or scales estimates 

for the two important factors of area and thickness have a positive value. This indicates that the 

response increases as the factor levels increase. Thus with a sensor of larger area and thickness 

the energy harvested will be larger. Similar conclusions are difficult to draw when the variables 

are not continuous. Contour plots of the prediction expression are shown in Figure 6-22. As 

expected the contour lines have a negative slope with area and thickness as the X and Y 

variables. 

"0" 0.363
2.054 ( ) "1" 0.973 1.433 1.472

" 1" 1.336
P Match s a t

⇒⎧ ⎫
⎪ ⎪= + ⇒ + +⎨ ⎬
⎪ ⎪− ⇒ −⎩ ⎭ Equation 6-5 
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6.3.2 Energy Collection in a Storage Medium 

As the power harvested by the piezoelectric sensors is very small (µW) it not possible to 

directly charge an application. However, if the energy is stored in a medium it can be eventually 

used to power a device such as a wireless sensor. With the PVDF and metal composite sensors 

the energy generated while the synthetic jet actuator is operational is accumulated in the EH301 

energy harvesting module shown in Figure 5-15. Figure 6-23 shows the charging of the capacitor 

integrated in the module over time. The capacitor was charged while the synthetic jet actuator 

was operated using a square signal at 50Hz. Peak voltage of almost 5V was observed with the 

metal composite sensor. 

In another set of tests the rectifier circuit shown in Figure 5-9 was used to charge two 

large capacitors of 300µF and 1000µF. Figure 6-24 shows the charging of the capacitors using a 

Figure 6-22 Contours of the response variable Power (P) with the significant factors of 
area (a) and thickness (t) 
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PVDF sensor. In this case as well a 50Hz square driving signal was used. Using the circuit the 

voltage collected was very small for the same duration as tested with the module. Thus indicating 

that the module is more efficient compared to the circuit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-23 Charging of the EH301 energy harvesting module 
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Experiments were conducted to recharge a NiCd, AA battery pack. The source was 

connected to the rectifier circuit used in previous testing and the DC output was directly fed into 

the battery pack. The battery charging is shown in Figure 6-25 using a metal composite sensor. 

Thus it was successfully demonstrated that energy harvesting can be integrated into synthetic jet 

actuators and generated power can be collected in a storage device.  
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Figure 6-24 Charging of capacitors using PVDF sensor 
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Figure 6-25 Charging of an Energizer AA NiCd battery pack using a 
prestressed metal composite sensor 
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7 Conclusions 

Four diaphragms, Bimorph, Prestressed PZT Metal Composite, Lipca and RFD are 

studied as synthetic jet diaphragms. Using statistical analysis tools such as screening designs and 

fractional factorial models, an analysis of significance is performed on several variables with 

peak jet velocity as the objective function. The factors studied were the driving signal used to 

excite the diaphragms, the magnitude and frequency of the signal, the volume of the cavity 

described by the cavity height, and the size of the exit or orifice.  A 25-1 fractional factorial 

design with regression analysis showed that three factors were statistically significant in all 

piezoelectric diaphragms; driving signal, orifice diameter, and cavity height. In contrast, 

frequency was found a non-significant factor in all. A comparison of the regression coefficient 

sizes for each actuator suggests the possibility of a larger model that could include the diaphragm 

as a factor. This study indicates that to optimize performance of a synthetic jet, diaphragm and 

driving signal should be included in any design of a piezoelectric synthetic jet actuator.  

Comparing the peak jet velocity magnitudes the Bimorph diaphragm generated the 

largest velocities followed by the metal composite diaphragm. Due to the uniform drum like 

deflection of the Bimorph diaphragm the effective volumetric displacement inside the cavity is 

higher thus leading to larger peak velocities. On the other hand with its uneven prestressed shape 

the metal composite displays lower volumetric displacement. Although Bimorphs generate large 

velocities they are very brittle and also have very small force capabilities. In comparison the 

metal composite is very robust and can operate in harsh environments. 
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A prestressed piezoelectric diaphragm was dynamically pressure loaded to harvest energy 

and to assess the devices performance under harsh environments. Parameters involved in the 

energy harvesting process such as temperature, pressure, resistance and frequency are optimized 

using statistical techniques. Response surface methodology is used to develop models to identify 

optimal parameter ranges and also to predict power generation for specific parameter levels. The 

model predicted optimal levels of 12oC, 237kPa, 1MΩ and 3.7Hz. These levels were in 

agreement with the experimental results. Maximum power densities of approximately 

24.27µW/mm3 are measured at optimal conditions. The results can be explained by studying the 

combined effect the factors have on the piezoelectric response of the material. Piezoelectric 

coefficients are affected by stress and temperature and repeated heating and cooling cycles 

further introduce thermal hysteresis effects into the system.  

The study demonstrates that prestressed piezoelectric composites can be used to power 

devices and response surface methodology can be utilized to optimize a system efficiently. In 

future studies the harvested energy can be collected in storage mediums to power small devices 

such as wireless sensors which are getting miniaturized with advances in technology. As 

piezoelectric energy harvesting is operating conditions dependent using a storage medium could 

act as an interface between different applications. 

PVDF and metal prestressed piezoelectric devices are integrated into the synthetic jet 

actuator for energy harvesting. These devices are attached to the oscillating diaphragm of the 

synthetic jet actuator. As the diaphragm oscillates, the devices generate energy which is then 

measured. Effects of oscillation frequency and driving signal on the device voltage are studied. 

The metal prestressed piezoelectric devices generate larger peak to peak voltages with a square 

driving signal than a sinusoidal waveform. However, its high stiffness and due to its unique 
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shape, this device is difficult to incorporate into the synthetic jet design. PVDF on the other hand 

is very flexible and conforms to surfaces fairly easily. Peak power density of 0.167µW/m3 was 

harvested with a PVDF sensor. 

A fractional factorial analysis is conducted on three variables; sensor shape, area and 

thickness; with power as the response variable using the PVDF experimental data. A linear 

regression analysis indicated that area and thickness are important factors that significantly affect 

the power generated by the sensor. Such that as the area and thickness increases the power 

increases. As shape is not a continuous factor each level is considered separately. For the tested 

shapes, square was identified as important although the other shapes cannot be ignored. 

The energy harvested by the two sensors; Metal composite and PVDF can be stored in 

mediums such as large capacitors and batteries. The charging of both these mediums is 

demonstrated in this study. A commercially available energy harvesting module is also used 

which has embedded circuitry to accumulate and store the energy in a capacitor included in the 

package. With the PVDF sensor maximum voltage of approximately 0.8V could be accumulated 

in a 330µF capacitor using the rectifying circuit. However, with the metal composite sensor 

almost 5V could be stored in a similar rating capacitor by using the energy harvesting module, 

indicating that the module has much higher efficiency. Within four hours the Energizer AA NiCd 

battery pack was recharged as demonstrated with a Thunder sensor. Thus in this dissertation the 

synthetic jet actuator efficiency was increased using a prestressed metal composite and energy 

harvesting was incorporated into the design of the actuator to successfully generate enough 

power to recharge a battery and to store in a large capacitor. This energy can then be used to 

power small devices such as wireless sensors.   



 

119 
 

 
 
 
 

8 Dissertation Contributions 

This dissertation makes significant contributions to active flow control and energy 

harvesting hence addressing the global need for energy. An active flow control tool called 

synthetic jet actuator is designed and tested using an interdisciplinary approach combining 

experiments and statistics. 

The synthetic jet actuator is formed using prestressed piezoelectric composites which 

have never been used for this application. This is a very significant contribution to active flow 

control as using these composites increases the efficiency of the actuator as demonstrated in this 

dissertation. This dissertation also suggests the possibility of using alternate driving signals other 

than sine; such that the actuator can be operate at low off resonance frequencies in turn increases 

the life time of the actuator. Also, the complexity of the electronics for designing piezoelectric 

power supplies is diminished making its implementation easier. 

Another aspect of this dissertation is the harvesting of energy from ambient vibrations. 

Prestressed composites are used to harvest energy from vibrations induced using pulsating 

pressures. The power densities generated by the composite are larger than previously published 

literature. Response surface methodology is used to model the energy harvesting system and 

optimal conditions are identified for power generation. Such an approach is unique to this 

dissertation and is effective in developing an understanding of the system. 
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The most important contribution of this dissertation is the integration of energy 

harvesting into synthetic jet actuators. In other words sensing and actuation is integrated such 

that a piezoelectric sensor harvests energy while the actuator is operational. It is also 

demonstrated that the energy harvested from the sensor can be stored in a medium such as a 

large capacitor and a rechargeable battery.  

A summary of the dissertation contributions are as follows: 

1. Prestressed piezoelectric composites are used as diaphragms in a synthetic jet actuator as 

they provide robustness, and enhanced durability. 

2. Nontraditional waveforms are investigated to provide an insight onto the issue of 

powering piezoelectric diaphragms.  

3. Prestressed composites are used as energy conversion devices and produce higher power 

densities as compared to previously published literature. 

4. In the current project actuation and sensing is integrated into the same application by 

harvesting energy from synthetic jet actuators.  

5. Energy harvested from synthetic jet actuators is used in charging a large storage 

capacitor. 
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9 Future Work 

This dissertation demonstrated the use of prestressed composites in synthetic jet actuators 

using an interdisciplinary experimental and statistical approach. Current CFD tools are 

insufficient in modeling synthetic jet actuators thus a coupled approach combining experiments, 

statistics and numerical techniques could be more successful. Also further research is required 

into incorporating synthetic jet actuators in automotive and aerospace applications. 

Although extensive research has gone into harvesting energy with piezoelectrics, still 

many issues remain such as energy efficiency. Further work needs to look in to means of 

increasing the efficiency of piezoelectric energy harvesting systems. Also, not much work has 

gone into the energy management issues which deal with energy conversion and transfer to 

devices requiring power.  

Integration of sensing and actuation into one device could lead to self powered systems. 

Very little research has been done on this topic and the scope is tremendous. Further research is 

required into integration without the loss of efficiency. This concept can be used in structural and 

biological health monitoring. For use in biological systems an insulating mechanism needs to be 

developed for piezoelectric as they are non bio degradable.  
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Appendix A 

Hotwire Calibration 

Mathcad Program for Converting Hotwire Voltages to Velocities 
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Velocity determined from the bridge voltage is: 
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Calibration Setup 

The calibration setup consisted of a standard pipe flow, with a pitot tube and an electronic 

pressure transducer as the calibration standard. As fully developed flow is required for 

calibration, the pipe had to be sufficiently long. In order to reduce turbulence, flow straightening 

devices were distributed along the length of the pipe that consisted of honeycombed PVC pipe 

distributed in several sections was used. Various experiments were conducted with different 

combinations of length and number of the honeycombs until fully developed flow was achieved. 

Different types of nozzles and diffusers were considered in finding the desired flow condition, 

fully-developed flow. The nozzle used at the mouth of the wind tunnel was a 9.53 mm male 

quick release fitting, mounted onto an aluminum bracket that is fixed into a 187.33 mm diameter 

coupler.  The coupler was reduced to an 88.9 mm outside diameter pipe that was 2.52 m in 

length.  The nozzle was situated in the wind tunnel pipe, which was fitted into the 88.9 mm 

diameter PVC pipe. Foam was used around the pipe to dampen the oscillations that the tunnel 

would produce during operation as they could have a significant effect on the pressure.  The 

actual wind tunnel pipe that would become the calibration diameter was 19.05 mm diameter. 

This section of pipe was cut to a length of 2.65 m and measurements were taken at 2.48 m from 

the nozzle at the tunnel inlet. The hotwire was calibrated for use in airflows having velocities 

ranging from 0 to 60 m/sec. A picture of the nozzle flow coupler is shown in Figure A-1 (a) and 

(b). The calibration facility along with the air supply assembly is shown in Figure A-1 (b). 
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(a) (b) 

Figure A–1 Hotwire Calibration Facility, (a) nozzle flow 
coupler, (b) calibration pipe and air supply assembly 
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Appendix B 

 

Additional Results from Synthetic Jet Actuator Study 

 

Bimorph Results 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1 Effect of Voltage on Velocity Magnitude with Cavity IV for a 
Bimorph Diaphragm at 50 Hz using a Sawtooth Signal 
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Figure B-2 Typical Velocity Curve with Sine Driving Voltage with Cavity IV 
for a Prestressed Metal composite Diaphragm at 25 Hz and 400 Vpp 

Figure B-3 Typical Velocity Curve with Sawtooth Driving Voltage with Cavity 
IV for a Prestressed Metal composite Diaphragm at 25 Hz and 400 Vpp 



 

154 
 

Frequency (Hz)

0 20 40 60 80 100

V
el

oc
ity

 (m
/s

)

0

5

25

30

35

Sine
Sawtooth

ro/Do

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

V
el

oc
ity

 (m
/s

)

0

2

4

6

8

Cavity I
Cavity II

V
elocity (m

/s)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-4 Frequency Effects on Prestressed Metal composite 
Diaphragm Peak Velocities for Cavity IV at 400 Vpp 

Figure B-5 Cavity Height Effects shown using Cavities I and II for a Prestressed 
Metal composite Diaphragm at 32 Hz and 400 Vpp with a Sine Driving Signal 
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Figure B-6 Cavity Height Effects shown using Cavities III and IV for a Prestressed 
Metal composite Diaphragm at 32 Hz and 400 Vpp with a Sine Driving Signal 

Figure B-7 Cavity Height Effects using a Sawtooth Driving Signal for a 
Prestressed Metal composite Diaphragm at 32 Hz and 400 Vpp 



 

156 
 

ro/Do

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

V
el

oc
ity

 (m
/s

)

0

2

4

6

8

Cavity I
Cavity III 

V
elocity (m

/s)

ro/Do

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

V
el

oc
ity

 (m
/s

)

0

10

20

30

40

50

Cavity I
Cavity III

V
elocity (m

/s)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-8 Orifice Size Effects using a Sine Driving Signal for a 
Prestressed Metal composite Diaphragm at 32 Hz and 400 Vpp 

Figure B-9 Orifice Size Effects using a Sawtooth Driving Signal for a 
Prestressed Metal composite Diaphragm at 32 Hz and 400 Vpp 
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Multiple R 0.96921
R Square 0.93936

Adjusted R 
Square 0.91732

Standard 
Error 4.54818

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 4 3525.13489 881.28372 42.60305 1.245E-06
Residual 11 227.54521 20.68593

Total 15 3752.68010

Coeffs. Standard 
Error t Stat P-value Lower 95% Upper 

95%
Lower 
95.0%

Upper 
95.0%

Intercept 18.28700 1.13704 16.08292 5.460E-09 15.78438 20.78962 15.78438 20.78962
F z -13.91638 1.13704 -12.23908 9.495E-08 -16.41899 -11.41376 -16.41899 -11.41376
E 2.69675 1.13704 2.37172 0.03704 0.19413 5.19937 0.19413 5.19937

D o -3.15625 1.13704 -2.77584 0.01804 -5.65887 -0.65363 -5.65887 -0.65363
C H -3.06938 1.13704 -2.69943 0.02068 -5.57199 -0.56676 -5.57199 -0.56676

Regression Statistics

SUMMARY 

 

 

 

 

 

 

 

 

Table B-1 Regression Analysis for a Prestressed Metal composite Device 
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Figure B-10 Average factor effect size 
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Figure B-11 Typical Velocity Curve with Sine Driving Voltage with 
Cavity I for a Lipca Diaphragm at 25 Hz and 350 Vpp 

Figure B-12 Typical Velocity Curve with Sawtooth Driving Voltage with 
Cavity IV for a Lipca Diaphragm at 25 Hz and 350 Vpp 
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Figure B-13 Effect of Voltage on Velocity Magnitude with Cavity IV for 
a Lipca Diaphragm at 25 Hz with a Sawtooth Signal 

Figure B-14 Frequency Effects on Lipca Diaphragm Peak Velocities for 
Cavity IV at 350 Vpp 
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Figure B-15 Cavity Height Effects using a Sine Driving Signal for a 
Lipca Diaphragm at 50 Hz and 350 Vpp 

Figure B-16 Cavity Height Effects using a Sawtooth Driving Signal for a 
Lipca Diaphragm at 50 Hz and 350 Vpp 
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Figure B-17 Orifice Size Effects using a Sine Driving Signal for a Lipca 
Diaphragm at 32 Hz and 350 Vpp 

Figure B-18 Orifice Size Effects using a Sawtooth Driving Signal for a 
Lipca Diaphragm at 32Hz and 350 Vpp 
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Multiple R 0.97008
R Square 0.94106

Adjusted R 
Square 0.91963

Standard 
Error 4.32153

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 4 3279.90553 819.97638 43.90633 1.067E-06

Residual 11 205.43142 18.67558
Total 15 3485.33694

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 17.61694 1.08038 16.30622 4.718E-09 15.23903 19.99484 15.23903 19.99484
F z -13.40644 1.08038 -12.40899 8.237E-08 -15.78434 -11.02853 -15.78434 -11.02853
E 2.79056 1.08038 2.58294 0.02546 0.41266 5.16847 0.41266 5.16847

D o -2.78031 1.08038 -2.57345 0.02589 -5.15822 -0.40241 -5.15822 -0.40241
C H -3.12156 1.08038 -2.88932 0.01472 -5.49947 -0.74366 -5.49947 -0.74366

SUMMARY

Regression Statistics

 

 

 

 

 

 

 

Table B-2 Regression Analysis for a Lipca Device 
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Figure B-19 Average factor effects for a Lipca device 
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Figure B-20 Typical Velocity Curve with a Sine Driving Signal with 
Cavity IV for a RFD Diaphragm at 50 Hz and 800 Vpp 

Figure B-21 Typical Velocity Curve with a Sawtooth Driving Signal with 
Cavity IV for a RFD Diaphragm at 50 Hz and 800 Vpp 
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Figure B-22 Velocity Profile with Cavity IV using a Sine Driving Signal 
for a RFD Diaphragm at 32 Hz and 800 Vpp 
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Appendix C  

Datasheet EH300/EH301 EPAD® Energy Harvesting™ Modules 
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