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ABSTRACT 

 

ELUCIDATION OF MECHANISMS GENERATING 5-HYDROXYMETHYLCYTOSINE 

 (5hmC) IN MAMMALIAN MITOCHONDRIA 

Prashant V. Thakkar,

A dissertation submitted in partial fulfillments of the requirements for the degree of 

 Shirley M. Taylor, PhD 

 Doctor of Philosophy at Virginia Commonwealth University 

Department of Microbiology and Immunology, Virginia Commonwealth University, Massey 

Cancer Center, Richmond, Virginia – 23298. 

 

DNA methylation plays a pivotal role in governing cellular processes including genomic 

imprinting, gene expression, and development. Recently, the Tet family of methylcytosine 

dioxygenases(Tet1, Tet2 and Tet3) was found to catalyze the oxidation of 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC), an intermediate in the pathway of DNA 

demethylation. Tet enzymes catalyze this hydroxylation in a 2-oxoglutarate and Fe2+ dependent 

manner.  

We have recently reported significant levels of 5mC and 5hmC modification in 

immunoprecipitates of mammalian mitochondrial DNA(mtDNA). We provide the first evidence 

that a DNA Methyltransferase-1 isoform (mtDNMT1) translocates to the mitochondria using an 

N-terminal mitochondrial targeting sequence. mtDNMT1 expression is upregulated by NRF1 



xix 

 

and PGC1α, master regulators of mitochondrial biogenesis and function, as well as by loss of 

p53. Altered mtDNMT1 expression asymmetrically affects mtDNA transcription. We are now 

pursuing the role of Tet proteins in generating 5hmC in mtDNA. Using an in vitro enzyme assay, 

we have successfully detected Tet activity in crude and percoll purified mitochondrial fractions 

of HCT116 cells. Mitoprot analysis on Tet family predicts that Tet1 may be translocated to the 

mitochondria. Immunoblot analysis indicates that a band of expected size(235kDa) is present on 

immunoblots of mitochondrial fraction from mouse embryonic stem cells with an antibody 

directed against Tet1. This band, however, is not protected from trypsin treatment of 

mitochondria indicating that Tet1 may not be transported to the mitochondrial matrix. The 

putative Tet1 mitochondrial targeting sequence (MTS) fails to carry heterologous protein to the 

mitochondria. Knock out of Tet1 in mouse ES cells also does not alter 5hmC signal in 

hydroxyMeDIP assay. We now seek to determine if Tet2/Tet3 may be involved in 5hmC 

generation. In the nucleus, 5hmC serves as an intermediate in the process of DNA demethylation 

through the combined action of cytidine deaminases and the base excision repair pathway. We 

plan to investigate if 5hmC holds the same functional significance in the mitochondria as it does 

in the nucleus. Our overall goal is to understand epigenetic regulation of normal mitochondrial 

function and changes that occur in diseases involving mitochondrial dysfunction such as 

ischemic heart disease, neurodegenerative diseases like Parkinsons disease, and cancer. 
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Chapter 1: Introdution and Overview 

Epigenetic regulation of transcription in the nucleus 

 Epigenetics involves processes that cause heritable changes in gene expression without a 

change in DNA sequence 1. DNA methylation, histone modification and chromatin remodeling 

are the three key players involved in epigenetic regulation of cellular processes (Figure 1-1) 2, 3. 

DNA methylation entails methylation of cytosine residues present in the context of CpG 

dinucleotides. Histone modification involves a range of modifications on different amino acids 

present on the N-terminal tails of histones H3 and H4, including methylation, sumoylation, 

ubiquitination, acetylation and ADP-ribosylation and phosphorylation 4. Chromatin remodelers 

such as Swi/Snf and RSC complexes use energy from ATP hydrolysis to alter histone - DNA 

interactions and therefore bring about unwrapping of DNA from histones temporarily, 

facilitating binding of transcription factors and movement or eviction of nucleosomes from the 

transcriptional start sites 5, 6. Interplay between these three epigenetic players affect a wide 

variety of processes within the cell such as development, transcription, imprinting, DNA damage 

repair and chromatin condensation during cell cycle 2, 3. In each of these processes these players 

affect regulation by modulation of native chromatin structure.  

DNA in eukaryotic cells is packaged into higher order chromatin structure through 

interaction with various proteins. Approximately 147 bp of the DNA sequence wraps around a 

histone core, comprising two dimers of histone H2A and H2B and a molecule of H3 and H4 

each7. This basic unit of chromatin structure, nucleosome, interacts with neighboring histones to 

form a solenoid structure7. Genes with their regulatory sequences buried in the compact
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Figure 1-1: Interplay between DNA methylation, Histone modifications and Nucleosome 
remodeling factors. 

The three key players of epigenetic regulation, DNA methylation, Histone modifications and 
Nucleosome alter histone-DNA interaction to modify local chromatin structure and regulate gene 
expression at the transcriptional level. Figure adapted from Jones and Baylin, Cell, 2007. 
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solenoid structure are repressed for expression and are said to be ‘epigenetically silenced’. There 

has been a huge debate about the sequence of events involved in silencing of genes. One model 

proposes that, the process begins with methylation of the gene promoter by DNA 

methyltransferases (DNMT) 8. Methyl DNA binding proteins such as MeCP2 and MBD2, then 

bind to methylated cytosines and recruit histone deacetylases (HDAC) and histone 

methyltransferases (HMT), which remove acetyl groups and add methyl groups respectively, on 

tails of histones H3 and H4 9, 10. These modifications, in combination, alter the net charge on 

histones, which brings about chromatin compaction and hence gene silencing 8. The second 

theory dictates that histone modifications, at least in some cases, precedes DNA methylation 1, 11. 

Evidence for this was obtained from the fact that cells lacking H3K9 methyltransferase Suv39h 

show reduced CpG methylation at centromeric regions 12. The second model hypothesizes that 

histone modifications such as H3K9me are first laid on histone tails which in turn recruit 

DNMTs via heterochromatin protein 1 (HP1) 6, 11, 12.  DNMTs can then methylate cytosine in the 

DNA which then leads to recruitment of HDACs and thus brings about chromatin compaction 1, 

11, 12. Although the exact sequence of events needs to be elucidated, cues that underlie interplay 

between these three epigenetic players are more complex than initially perceived.  

DNA methylation and Cancer 

 Generation of 5-methylcytosine (5mC) in the nuclear DNA occurs by covalent addition 

of a methyl group at the 5’ position of cytosine present in the context of CpG dinucleotides in 

DNA. This reaction is catalyzed by a family of DNA methyltransferases (DNMTs) which uses S-

adenosyl methionine (SAM) as a methyl donor 13.  
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Mammalian DNA is characterized by the presence of CpG sparse regions, rich in satellite 

DNA repeats, and regions dense in CpG dinucleotide content, referred to as CpG islands, most 

abundantly found in promoter regions of house keeping genes 14. Somatic methylation patterns 

are established in the mammalian genome during early stages of development 15. But before this 

process can occur, parental methylation patterns need to be removed and thus the genome 

undergoes a wave of demethylation 16. Initial studies that assessed methylation patterns using 

methylation sensitive restriction enzymes indicated that, during development, mammalian DNA 

undergoes two stages of DNA demethylation, active demethylation of the paternal genome 

before formation of the zygote and passive loss of methylation through DNA replication post 

zygote formation until the morula stage 17, 18. Patterns of methylation are then established in 

embryos just before implantation by the action of de novo methyltransferases DNMT3a and 

DNMT3b, where CpG sparse regions are hypermethylated and CpG islands remain devoid of 

methylation 15. This distinct bimodal pattern of methylation is maintained in somatic cells by 

maintenance methylase, DNMT1. During cell division, DNMT1 maintains methylation patterns 

present on the parent strand by copying them on the newly synthesized daughter strand 19.  

The bimodal pattern of methylation undergoes a complete reversal in cancer cells. Cancer 

cells are characterized by global hypomethylation and hypermethylated CpG islands 20. This 

results in transcriptional repression of tumor suppressor genes and activation of oncogenes. For 

example, tumor suppressor genes such as p16, pRb often undergo silencing of one allele when 

the other is mutated 21. Loss of methylation from repetitive elements also causes microsatellite 

instability, which makes the mammalian genome more susceptible to mutations 22. Several genes 

involved in regulation of DNA repair and cell cyle often undergo promoter methylation e.g. RB, 

PTEN, MGMT, MLH1 etc. 21. Thus, cancer can no longer be looked upon as simply a disease 
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caused by accumulation of genetic mutations; clearly disruption of epigenetic mechanisms is a 

major contributing factor. 

Ten – Eleven translocation (Tet) family of enzymes and generation of 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) in 

the nucleus: 

Recently, three novel modifications of cytosine residues have been identified in vivo. These are 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) and 

their formation is catalyzed by the Ten – Eleven translocation (Tet) family of proteins. 

Identification of these modifications has added another level of fine tuning in epigenetic 

regulation of cellular processes. The Tet family was initially identified as enzymes containing 

dioxygenase type enzyme activity during a search for mammalian homologues of the JBP family 

of enzymes 23, 24. JBP enzymes are responsible for the synthesis of DNA base J (β-D-Glucosyl-

Hydroxymethyluracil) in Trypanosoma brucei in a two step process, one of which is the Fe2+ 

and 2-oxoglutarate dependent hydroxylation of thymidine by thymidine hydroxylase domains of 

JBP1 and JBP2 25-27. Sequence comparisons revealed that the three paralogous Tet proteins 

contain the conserved hydroxylase domains of the JBP family 24. The JBP/Tet family of enzymes 

is therefore classified as a family that can act on C-C bond present as a part of a side chain to an 

aromatic ring 23. Structurally, this family of hydroxylases is characterized by the presence of a 

CXXC domain that acts as a Zn chelating domain essential for binding to chromatin, a cysteine 

rich domain that potentially acts as a redox center and an α-helix followed by a series of β-strand 

regions, defined as the double stranded β-helix (DSBH) domain 23, 24, 28.  
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Figure 1-2:- Tet family of proteins catalyze conversion of 5mC to 5hmC, 5fC and 5caC. 

The Tet family of proteins, in mammals, contains three paralogs namely Tet1, Tet2 and Tet3. 
The numbers on the right indicate the number of amino acids in the respective proteins. Each of 
the proteins contain a cysteine rich domain and a dioxyegenase domain, which are highly 
conserved. The three proteins show variability at the N-terminal domain. B) Schematic of the 
reaction catalyzed by the Tet proteins. DNA Methyltransferases (DNMTs) catalyze addition of 
methyl group using S-Adenosyl Methionine (SAM) as co-factor. 5mC is then oxidized by the Tet 
enzymes using α-ketoglutarate (α-KG) and Fe2+ as co-factors to generate 5hmC and subsequently 
5fC and 5caC. Figure adopted from Ito et. al., Science, 2011.  
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Furthermore, sequence alignments showed that the DSBH domain in the Tet proteins had 

the following sequence characteristics conserved: a) HxD residues that help chelate Fe2+ b) the 

presence of a small residue like glycine downstream of the HxD motif that holds the active site 

arginine in place c) Hxs motif, where H helps chelate Fe2+ and s (s = small residue) interacts with 

α-ketoglutarate and d) A motif downsream of the Hxs motif, Rx5a, where R forms a salt bridge 

with α-ketoglutarate and a (a = aromatic residue) assists in proper positioning of the first iron 

chelating histidine 23, 24, 28. These sequence and structural features made a strong case for Tet 

enzymes acting as Fe2+ and α-ketoglutarate dependent hydroxylases. Using in vitro binding 

assays and in vitro and in vivo enzyme assays combined with mutational studies, another 

independent study proved that these structural characteristics are indispensible for hydroxylase 

activity of Tet proteins 29. 

 There are three mammalian paralogs within the Tet family, namely Tet1, Tet2 and Tet3 

(Figure 1-2). These three paralogs have a highly conserved C-terminal catalytic domain and 

show slight variability in the N-terminal DNA binding domain. All three of these enzymes, when 

expressed as either a full length enzyme or as only the C-terminal catalytic domain, can convert 

5mC to 5hmC in a Fe2+ and α-ketoglutarate dependent manner (Figure 1-2) 24, 29, 30. As opposed 

to methylation, hydroxylation by Tet proteins is primarily asymmetric in nature with only 21% 

of the 5hmCs showing symmetry, with 5mC on both strands modified to 5hmC 31. Also, it shows 

strand bias in that a strand containing a high local content of guanosine is more likely to be 

hydroxymethylated 31. Ito et. al. further proved that the Tet proteins, in addition to 5hmC, can 

also catalyze formation of 5fC and 5caC from 5mC (Figure 1-2). Purified Tet proteins were 

incubated with substrate containing 5mC or 5hmC and products analyzed using thin layer 

chromatography (TLC), were shown to contain 5fC and 5caC 32. Further analysis using HPLC-
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MS following hydrolysis of DNA revealed that an average of 3.0 x 104 5mC residues, 1.3 x 103 

5hmC residues, 20 5fC residues and 3 5caC are  present for every 106 cytosine residues in 

genomic DNA from mouse embryonic stem cells 32. So far the exact mechanism of action of 

these enzymes is not known and needs to be elucidated.  

Bisulphite sequencing does not distinguish between 5mC and 5hmC 

Generation of 5hmC from 5mC makes it essential that methods used to study cytosine 

modifications can differentiate between methyl and hydroxymethyl modifications. The use of 

bisulphite sequencing to identify site specific methylation status of CpG dinucleotides has been 

well established for several years.  Typically, the methylation status can be assessed by treating 

cytosine in the DNA with sodium bisulphite, which is then followed by PCR amplification and 

sequencing. Sodium bisulphite causes deamination of unmethylated cytosine thus converting it to 

uracil, which is then read as T (thymine) after PCR amplification 33. Methylated cytosine, on the 

other hand, is resistant to deamination by sodium bisulphite, owing to the presence of the methyl 

group at the 5’ position (Figure 1-3) 33. As a result, whereas unmethylated cytosines are read as 

‘T’s in a sequencing reaction, methylated ones are retained as ‘C’s. However, bisulphite 

sequencing cannot distinguish between 5mC and 5hmC (Figure 1-3) 34. 5hmC upon reaction with 

sodium bisulphite forms a cytosine methylenesulphonate (CMS) adduct which is equally 

refractory to deamination, and therefore does not undergo C to T transition (Figure 1-3) 34, 35. 

Thus, modified cytosines, both methylated and hydroxymethylated are indistinguishable in an 

ordinary bisluphite reaction. 

 Recently, a modified version of traditional bisulphite sequencing protocol has been 

employed to map 5hmC at a single nucleotide resolution. This method has been
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Figure 1-3: Bisulphite sequencing does not distinguish between 5mC and 5hmC. 

Bisulphite treatment of cytosine adds HSO3
- across double bond between carbons 5 and 6 of 

cytosine, which then undergoes deamination and desulfonation to form uracil. Conversion of 
5mC to thymine upon bisulphite treatment can occur but at a rate two order of magnitude slower 
than that of cytosine. Bisulphite can quickly convert 5hmC to cytosine 5-methylenesulfonate 
adduct which is resistant to deamination. Figure adapted from Huang et. al., PLoS ONE, 2009. 
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termed oxidative bisulphite sequencing 36. This method takes advantage of the fact that 5hmC, 

when treated with potassium perruthenate (KRuO4), is converted to 5-formylcytosine (5fC), 

which upon bisulphite treatment allows conversion to uracil 36. In an alternative method, 5hmC 

residues in the DNA are first protected by a glucosyltransferase reaction. This step is then 

followed by Tet mediated oxidation of 5mC to 5caC, which allows conversion of previously 

methylated residues to uracil upon bisulphite treatment, keeping glucosylated 5hmC residues 

protected from Tet mediated oxidation and subsequent bisulphite treatment 31. Thus, bisulphite 

vs oxidative bisulphite treatment in comparison with the original DNA sequence can accurately 

help determine cytosines that are unmethylated, methylated or hydroxymethylated 36. 

 A number of other techniques have been assessed for their ability to identify 5hmC 

residues. Methyl DNA binding proteins, including all five proteins of the MBD family and 

MeCP2, bind 5mC but are unable to bind 5hmC. Thus, although MBD/MeCP2 mediated 

precipitation of methylated DNA has been performed in the past, it cannot be used to precipitate 

5hmC containing DNA 37, 38. Methylation sensitive restriction enzymes, such as MspI, can cleave 

at the site CCGG, whether the internal cytosine is unmethylated, methylated or 

hydroxymethylated. This cleavage can be prevented by glucosylation of the 5hmC residue using 

β-glucosyltransferase in presence of UDPG 39. On the other hand, HpaII can cleave at that site 

only when the cytosine is unmethylated and that cleavage is completely blocked by either 

methylated, hydroxymethylated or glucosylated cytosine. Thus, using a number of individual 

treatments, this method can be modified to study either methylation or hydroxymethylation 

status of DNA of interest. Additional methods include analysis by HPLC-MS post-hydrolysis of 

DNA to single nucleoside level 24, 32, 40. This method is primarily used to study 5mC and 5hmC 

content in DNA. 
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Functional role of Tet proteins and 5hmC in the nucleus: 

The initial discovery of 5hmC as an endogenous base in the cell led to numerous 

speculations about the possible functions of this modification in the nuclear genome. Since then, 

although quite a few have been validated to be correct, there are still others that lack 

experimental evidence. It has been well established that gene expression inversely correlates 

with methylation status of a promoter 41. Considering 5hmC is generated from 5mC, it was 

obvious to test whether 5hmC counteracts the effects of methylation. It was shown that the 

Nanog promoter is a direct transcriptional target of Tet1 and knockdown of Tet1 in mouse 

embryonic stem cells reduced Nanog expression, leading to differentiation 30. Furthermore, Tet1 

acts to regulate gene transcription by preventing hypermethylation of the Nanog promoter, 

possibly by competing for the same site as DNMTs and converting 5mC to 5hmC 30. Thus, by 

keeping the expression of nanog active in embryonic stem cells, Tet1 plays an important role in 

ES cell renewal and maintenance of pluripotency, mediating its effects through 5hmC 30. Using a 

ChIP-Seq approach, it was found that Tet1 binds mainly to high to medium density CpG rich 

promoters and the majority of binding was detected at the TSS (transcription start site) of a gene 

and the gene body 42. This, in conjunction with the presence of high 5hmC density around CpG 

rich TSS and gene bodies, strengthens the hypothesis that Tet1 and 5hmC are involved in 

activation of gene expression by conversion of 5mC to 5hmC, thus preventing hypermethylation 

of genes. Methyl binding domain containing proteins such as MBD2 and MeCP2 bind to 5mC, 

recruit histone deacetylases (HDACs) and facilitate gene silencing through chromatin 

compaction. These methyl binding domain containing proteins bind 5mC but are unable to 

recognize 5hmC 37, 43. This highlights a possible mechanism of action wherein conversion of 
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5mC to 5hmC prevents binding of methyl binding domain protein, HDACs are not recruited 

downstream and chromatin compaction and gene silencing is prevented.  

 Tet1 also plays a role in transcriptional silencing of genes. Tet1 forms a part of sin3A co-

repressor complex and binds to a number of polycomb targeted genes important in regulation of 

development 42. Tet1-Sin3A co-repressor complex facilitates this repression through recruitment 

of the PRC2 complex, and these transcriptionally repressed genes are also enriched in the 

repressive H3K27me3 mark 44. In fact, more genes directly bound by Tet1 are up-regulated than 

are down-regulated upon Tet1 knockdown, emphasizing the role of Tet1 in transcriptional 

repression 42, 44.  

The process of DNA demethylation is critical not only to the process of development but 

also epigenetic reprogramming in somatic cells 17, 45. During development, once the zygote is 

formed, the entire paternal genome undergoes demethylation and methylation patterns are 

subsequently re-established 17. So far the mechanism of DNA demethylation was unknown. It 

has now been proposed that 5hmC serves as an important intermediate in the process of DNA 

demethylation, which can either be passive or active. As a mechanism of active demethylation 

process, it was shown that 5hmC, generated by the action of Tet proteins, acts as a substrate for 

components of the base excision repair (BER) pathway 37, 46. AID/APOBEC cytidine deaminases 

act on 5hmC to convert it to 5-hydroxyuracil (5-HU). 5-HU is then acted upon by DNA 

glycolases of the BER pathway, which excise it and replace it with unmethylated cytosine 37, 46. 

This transcription-dependent but replication-independent process was shown to be most active in 

adult brain and played a role in region specific DNA demethylation, causing reactivation of 

silenced genes 46.  Alternatively it was shown that 5hmC may be further converted to 5-
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carboxylcytosine (5-CaC) by the action of Tet enzymes, which can then be excised by thymine 

DNA glycosylases to replace it with unmethylated cytosine 32, 47. As a possible mechanism for 

passive demethylation, it was proposed that failure of DNMT1 to recognize 5hmC would cause 

failure of maintenance methylation on the daughter strand. This would result in an eventual loss 

of methylation in the entire nuclear genome through repeated cell division. The hypothesis was 

supported by the fact that DNMT1 shows over 60 fold preference towards hemi-methylated 

DNA over hemi-hydroxymethylated DNA 37. Furthermore, the oxidation of 5mC to 5hmC 

reduces DNMT1 selectivity for its substrate thereby preventing methylation of the target cytosine 

43.  

For a number of years it has been established that 85% of the CpGs in the mammalian 

genome are methylated and the other 15% of the genome that remains unmethylated comprises 

CpG islands. Several attempts were made to understand what keeps the CpG islands from being 

methylated by DNA methyltransferases. It has now come to be understood that Tet1 is enriched 

at CpG rich promoters or CpG islands keeping the DNMTs from methylating these regions 42. 

Therefore, Tet1 contributes to DNA methylation fidelity and prevents aberrant methylation in the 

nuclear genome.  

Thus, Tet proteins perform a wide variety of functions in the cell, some of which are 

mediated through 5hmC modifications while some others are mediated through protein – protein 

interactions of Tet proteins with their binding partners.  
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Mitochondria: Structure and Function 

Mitochondria are essential organelles that perform a wide variety of functions including 

apoptosis, thermogenesis, Ca2+ storage, carbohydrate, lipid and protein metabolism 48. Individual 

mitochondria are spherical or cylindrical in shape, depending on the tissue of origin, and are 

approximately 0.2 – 5 µm in diameter and 7-20 µm in length 49, 50. Mitochondria are often 

present in a reticular network surrounding the nucleus. Each mitochondrion comprises soluble 

matrix surrounded by the inner and outer mitochondrial membranes, both of which are composed 

of phospholipid bilayers interspersed with protein complexes (Figure 1-4). The outer 

mitochondrial membrane contains lipid and proteins in about equal proportion 51. It is permeable 

to ions and contains protein complexes such as the voltage dependent anion channel (VDAC) 

and the transporter of outer mitochondrial membrane (TOM) complexes. The inner 

mitochondrial membrane is composed of a protein to lipid ratio of 80:20 and protrudes into the 

mitochondrial matrix forming tubular structures called cristae 50, 51. The cristae are enriched in 

protein complexes required for ATP generation through the process of oxidative phosphorylation 

50. The inner mitochondrial membrane is impermeable to ions and hence contains a range of 

transporters which allow exchange of ions and other metabolites. For example, the adenine 

nucleotide translocase transports ATP in exchange for cytosolic ADP, tricarboxylate carrier 

transports citrate/isocitrate in exchange for malate, Na+/K+ transporter transports the cations in 

exchange for a proton, among others 50, 51. The outer and the inner membranes are separated by 

an inter-membrane space, which is aqueous in nature (Figure 1-4). The mitochondrial matrix is 

enriched in enzymes and substrates important for metabolic processes such as the citric acid 

cycle, lipid and amino acid oxidation, heme biosynthesis etc 51. It also contains mitochondrial 

DNA, components important for its replication and 
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Figure 1-4: Internal structure and organization of mitochondria. 

Mitochondria contain different compartments, outer membrane, inter-membrane space, inner 
membrane and mitochondrial matrix. Components in the mitochondrial matrix such as 
ribosomes, mtDNA and the respiratory chain complexes are shown. This figure is adapted from 
Perkins et. al, Micron, 2000. 
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Figure 1-5: Schematic of complexes involved in oxidative phosphorylation. 

Energy in mitochondria is generated by five protein complexes, Complex I, II, III, IV and V. 
Complex I, III and IV pump protons across the inner mitochondrial membrane during the process 
of electron transfer, which establishes an electrochemical gradient. Energy from the 
electrochemical gradient is then used by ATP synthase complex (Complex V) to synthesize ATP 
from ADP and Pi. This figure is adapted from Eng. et. al. Nature, 2003. 
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maintenance, and the transcription and translation machinery essential for expression of proteins 

encoded by the mitochondrial genome (Figure 1-4) 51.  

Mitochondria are referred as ‘power houses’ of the cell because of their major function in 

generating ATP in the cell, using five different complexes of the respiratory chain embedded in 

the inner mitochondrial membrane, complex I, II, III and IV and V (Figure 1-5) 52. These 

complexes bring about transfer of electrons from NADH and FADH to O2 in three steps 52. In the 

first step, electrons are transferred from NADH and FADH, generated during oxidation of 

carbohydrates and lipids, to co-enzyme Q (CoQ) via Complex I 51. In the second step, Complex 

III facilitates transfers of electrons from reduced CoQ to cytochrome c (cyt c). In the third and 

the final step, cyt c transfers electrons to Complex IV which in turn transfers it to O- radical, 

which is then reduced to water 51 (Figure 1-5). Each of these three steps of electron transfer are 

coupled to a proton pump, which transfer H+ ions from mitochondrial matrix to the inter-

membrane space. This process leads to formation of an electrochemical gradient across the inner 

mitochondrial membrane, owing to its ion impermeable nature 52. The free energy of electron 

transport conserved in this electrochemical gradient is then used by the ATP synthase complex V 

to generate ATP from ADP and inorganic phosphate (Pi) (Figure 1-5). Four out of five of the 

above mentioned complexes contain at least one protein encoded on the mitochondrial genome, 

while also containing other proteins that are encoded in the nucleus 53. This suggests that co-

ordinated transcription and translation of the mitochondrial proteins, that are nuclear and 

mitochondrially encoded, is an important phenomenon for the process of energy generation. 
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Structural organization and replication of mtDNA 

 The mitochondrion is the only organelle in a mammalian cell, apart from nucleus, that 

carries its own genetic material. Mitochondrial DNA (mtDNA) is a circular, double stranded 

piece of DNA which is ~ 16,300 bp in mouse and ~16,600 bp in humans (Figure 1-6) 54. It lacks 

introns and codes for 13 proteins, 22tRNAs and 2 rRNAs on both, the heavy and the light strand 

(Figure 1-6), called so due to difference in base composition and therefore their buoyant 

densities in CsCl gradient. Each mammalian cell contains approximately 1000 – 10,000 

molecules of mtDNA 55. One of the key differences between nuclear and mtDNA is that mtDNA 

is not wrapped around a histone core. However, mtDNA is packaged into higher order structures 

called nucleoids. Approximately 2-8 molecules of mtDNA are present in a sphere 70nm in 

diameter 56. mtDNA associates with DNA binding proteins, such as TFAM, to form a highly 

compact rosette like structure. TFAM is known to coat the entire mtDNA, binding every 15-20 

bp 57. Other proteins that bind to mtDNA and are involved in the formation of the nucleoid 

structure are mitochondrial single stranded binding proteins (mtSSB), mitochondrial RNA 

polymerase (POLRMT), mitochondrial DNA polymerase (POLG), chaperone protein HSP60 and 

prohibitin 58, 59.  

 Replication of mtDNA begins at the origin of replication present on the heavy strand 

(OH), using primers generated as a result of transcription from the light strand promoter (LSP) 

(Figure 1-7). There are three conserved sequence blocks, CSB I, CSB II and CSB III, present 

downstream of LSP (Figure 1-7). CSBII particularly acts to stabilize the RNA – DNA hybrid 

formed during initiation of mtDNA replication 55. DNA synthesis from the heavy strand proceeds 

in only one direction and often stops prematurely 700 bp downstream of OH forming 7S DNA 60. 
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At this point, a decision is made whether the replication of DNA should halt or proceed using as 

yet unknown mechanisms. Once replication on the heavy strand proceeds two-thirds of the way, 

another origin of replication on the light strand (OL) is revealed and replication then begins on 

the light strand in the other direction 60. Once replication has proceeded bidirectionally 

throughout the length of the mtDNA molecule, new mtDNA molecules are formed.  

Mitochondrial inheritance and diseases: 

Inheritance of mtDNA in mammals occurs uniparentally through the maternal germline. Oocyte 

contains 103- 104 times more mtDNA as compared to a mature sperm 61-63. In the mature oocyte, 

just prior to fertilization, there is rapid amplification of mtDNA which results in an identical 

population of mtDNA molecules. Thus, mtDNA transmitted to the daughter cells is homoplasmic 

in nature 64. To maintatin this homoplasmy mature sperm mtDNA is eliminated following 

fertilization. This is brought about by ubiquitination of sperm mitochondrial outer membrane, 

followed by recognition and digestion by the proteolytic enzymes in the oocyte 65. Maintenance 

of homoplasmy is important since heteroplasmy acquired through paternal leakage and 

recombination of mtDNA causes mitochondrial myopathy 66. Heteroplasmy can also result due 

to a 100 fold higher error rate of mitochondrial polymerase G and presence of limited DNA 

repair mechanisms in the mitochondria 67.  A mutated copy of mitochondrial DNA is tolerated in 

low copy number; however, upon segregation during meiosis homoplasmy can occur, where in 

only the mutated copy of mtDNA is present 68. This can in turn result in mitochondrial diseases 

in the offspring that shows either homoplasmy for the mutated copy of mtDNA or carries the 

mutated copy in a high proportion relative to the wild type copy of mtDNA68. 
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 A number of mitochondrial diseases are known to occur in humans that result from 

acquired mutations in mitochondrial DNA.  Leber’s hereditary optic neuropathy (LHON) is 

known to occur due point mutations in the coding region of NADH dehydrogenase subunit 4 

gene 69. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes 

(MELAS) is another example where the disease phenotype is associated with a point mutation in 

tRNA (Leu) gene of mtDNA 70. Mutation in tRNA (Leu) gene is also known to cause deafness 

and diabetes mellitus II 71. In each of these cases, the onset of phenotype is determined by the 

proportion of mutant versus wild type molecules of mtDNA present in the affected tissue. 

Transcription in Mitochondria: 

 Transcription in mitochondria occurs on both the Heavy (H) and the Light strand (L) 

encoding a total of 13 proteins, 2 ribosomal RNAs and 22 transfer RNAs 72. The promoter for 

each strand, the Heavy strand promoter (HSP) and Light strand promoter (LSP), is present in the 

D-loop control region and serves as the site of transcription initiation 72. Transcription of the 

heavy strand is initiated at two sites, HSP1 and HSP2, but only at one site (LSP) on the light 

strand promoter 73. Transcription from HSP2 and LSP promoters proceeds in two different 

directions, each generating polycistronic transcripts corresponding to the entire heavy and light 

strands 74. These polycistronic messages lack introns, and undergo processing by a mechanism 

known as the ‘tRNA punctuation model’ 75. The polycistronic messages contain mRNA and 

rRNA sequences where each is immediately flanked by a tRNA sequence. These tRNA 

sequences adapt a clover leaf-like structure which acts as a substrate for RNAseP and other 

RNAses 75. Processing by these RNAses then releases mRNAs and rRNA along with tRNAs. 

Transcription from HSP1 starts at a site located 16 bp upstream of the tRNAPhe and terminates at  
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Figure 1-6: Schematic representing organization of the mitochondrial genome. 

The mitochondrial genome comprises of the D-loop control region and contains 13 protein 
coding genes, 2 ribosomal rRNA genes and 22 tRNA genes. The transcription termination site is 
present downstream of the 16S rRNA genes. The figure is adapted from Falkenberg et. al. Ann 
Rev. Biochem 2007. 
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a site downstream of the 16S rRNA gene. This generates a transcript containing only 16S rRNA 

and 12S rRNA genes separated by tRNAV  74. The mitochondrial transcription machinery 

involves mitochondrial DNA dependent RNA polymerase (POLRMT), Transcription factor of 

mitochondria B1, B2 and A (TFB1M, TFB2M and TFAM) and mitochondrial termination factor 

(MTERF) and these factors are sufficient for in vitro transcription 76, 77. POLRMT is a 1230 

amino acid protein coded in the nucleus. The C-terminal portion of the protein is highly 

conserved with the T-odd bacteriophage polymerase 78. Similar to T7 polymerase, POLRMT 

contains a specificity loop that binds to the +10 to -4 region on the light strand. It forms a 

complex with TFB2M to form a two component core transcription machinery which is sufficient 

to initiate transcription from both strands 79. 

 TFB1M and TFAM serve as accessory proteins for POLRMT to perform its function. 

TFB1M, like TFB2M, forms a heterodimeric complex with POLRMT but functions less 

efficiently as a transcription factor when compared to TFB2M 80. TFAM contains two high 

mobility group (HMG) domains separated by a 27 residue linker region. It also contains a 25 

amino acid long C-terminal tail essential for specific DNA recognition and transcriptional 

activation 81, 82. TFAM can bind, unwind and bend DNA, a characteristic of HMG domain 

containing proteins. Combined with the sequence specificity of the C-terminal tail, this property 

allows TFAM to bind specifically to the region between HSP and LSP promoters where it can 

bend and unwind the D-loop regulatory region, thus facilitating transcription initiation 83. It was 

recently shown that transcription initiation requires only POLRMT and TFB2M and that in the 

presence of these two factors, transcription from HSP1 is more efficient than that from LSP 76. 

Upon addition of TFAM there is a switch, with transcription from LSP becoming far more 

efficient than from HSP1 76.  
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Figure 1-7: Architecture of the D-loop control region of the mitochondrial DNA.  

Promoter regions of the Heavy and the light strand of the mitochondrial DNA are depicted. 
Transcription on the heavy strand can begin at two sites, HSP1 and HSP2, whereas transcription 
on light strand begins only at LSP. CSB I, II and III indicate conserved sequence blocks. 
Sequences transcribed within CSB regions serve as RNA primers for mtDNA replication. TAS 
serves as the termination site for mtDNA replication. Figure adapted from Falkenberg et. al., 
Ann rev Biochem, 2007. 
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Transcription begins at the three known sites, HSP1, HSP2 and LSP, yet there is only one 

known transcription termination site. This site is located downstream of the 16S rRNA gene and 

acts bi-directionally to terminate transcription from both the strands. Transcription termination 

factor M (MTERF), a 39-kDa protein, binds to this 28 bp region in a sequence specific manner to 

terminate transcription starting at HSP1 and LSP promoters 84. Termination of transcription from 

HSP2 occurs at a site upstream of tRNAPhe, yielding the polycistronic mRNA. A second binding 

site for MTERF was found near HSP1 74. It has been proposed that MTERF regulates initiation 

of transcription from HSP1 promoter by binding at that site 74. It also regulates the rate of 

transcription from HSP1 promoter by binding at the two known binding sites, thus forming a 

transcription bubble 74. This allows efficient recycling of the transcription machinery resulting in 

increased production of 12S rRNA and16S rRNA transcripts 74.  

Import of proteins to the mitochondria: 

The mitochondrial proteome is comprised of approximately 1500 proteins but only 13 of 

them are encoded by the mitochondrial genome 85. The majority of mitochondrial proteins are 

encoded in the nucleus, synthesized by the free ribosomes present near the mitochondrial 

membrane and then transported to the mitochondria 86, 87. The protein import machinery consists 

of multiple components including the mitochondrial targeting sequence (MTS), cytosolic and 

mitochondrial chaperone proteins, translocases of the outer and inner membrane, matrix 

metalloproteases as well as other less well characterized components. 

Proteins that are destined for transport to the mitochondria carry sequences that serve as a 

code for their localization to the mitochondria. Proteins transported to the matrix usually contain 

MTSs that are 10 to 60 amino acids in length and form an amphipathic helix with one face 
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containing hydrophobic residues and the other containing positively charged residues 88. These 

sequences are usually devoid of negatively charged residues 89. The MTSs are usually N-terminal 

in position but proteins containing C-terminal MTSs, e.g. DNA helicase Hmi1 in yeast, or 

internal MTSs, e.g. BCS1, have also been described 90, 91.  

Translocation of proteins across the mitochondrial membrane is facilitated by the 

translocases of the outer and inner membranes, i.e. TOM and TIM complexes respectively, in a 

two step process. In the first step, the precursor protein is transported across the outer 

mitochondrial membrane into the inter membrane space, which is then further transported in to 

the mitochondrial matrix by the TIM complex 92. The TOM complex is composed of seven 

different subunits; Tom70, Tom40, Tom22, Tom20, Tom7, Tom6 and Tom5. Tom70 and Tom 

20 serve as the receptors of the TOM complex that are involved in recognition of MTSs of the 

nuclear encoded mitochondrial proteins 92. Proteins containing N-terminal MTSs are first 

recognized by AIP protein which then interacts with Tom20 receptor protein 93, 94. The precursor 

protein is then transported through the pore of the complex, which is formed by Tom40, Tom7, 

Tom6 and Tom5 and has a diameter of 20 ᴼA 95.  

Precursor protein from the TOM complex is then directed to the TIM23 complex, which 

represents the major translocase of the inner membrane. Its components can be divided into two 

major groups: the protein-conducting channel and the import motor. The protein conducting 

channel is comprised of three subunits namely, Tim50, Tim 23, Tim 21 and Tim17. Tim50 

interacts with the incoming precursor protein, thus acting as a receptor for the TIM complex 96. 

The precursor protein is then passed on to Tim23, which forms the channel of the complex. 

Tim23 contains a coiled-coiled domain that is essential for homodimerization and also for 
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interaction with the precursor protein 97. The protein conducting channel uses energy from the 

membrane potential to help transfer only the MTS of the precursor protein, after which point the 

process is take over by the import motor component of the Tim23 complex 98. The import motor 

component of the Tim23 complex consists of Tim44, Tim14 (Pam18), Tim 16 (Pam16), 

mtHsp70 and MgeI subunits 96. Tim44 first binds to the precursor protein and transfers it to 

mtHSP70, recruited with the help of two DnaJ-like proteins, Tim12 and Tim16 99. mtHSP70 

contains an ATP bound and an ADP bound form. In an ATP bound form, mtHSP70, which is in 

a complex with the precursor protein and Tim44, uses energy from hydrolysis of ATP to 

dissociate from Tim44 100. At this point, the protein moves further into the matrix. A series of 

such reactions ensure complete transport of precursor protein into the mitochondrial matrix 100. 

Once the protein is entirely in the mitochondria, the MTS is recognized and cleaved by the 

matrix metalloproteases. The rest of the protein undergoes folding into its native conformation 

and is now functionally active.  

Thus, using a series of complex and highly co-ordinated interactions, proteins are 

transported to the different compartments of the mitochondria.  

Nuclear mitochondrial cross-talk: 

 Cross-talk between nucleus and mitochondria depends on the PGC1 family of co-

activators which interact with transcriptional factors such as NRF1, ERR, PPARα, Sp1 etc. to 

regulate expression of genes involved in mitochondrial transcription, translation, replication and 

the respiratory chain complexes (Figure 1-8). Both NRF1 and PGC1α are involved in 

mitochondrial biogenesis in response to various environmental stimuli such as oxidative stress, 

reduced ATP levels, increased intracellular Ca2+ levels, exercise and growth factors 101-103. 
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PGC1α binds to NRF1 and activates nuclear genes that encode subunits that participate in the 

five complexes of the respiratory chain. They can also regulate the expression of TFAM, TFB1M 

and TFB2M mitochondrial transcription factors, thereby linking nuclear and mitochondrial 

regulatory networks (Figure 1-8). 

Nitric oxide is a normal component of mammalian cell, generated by the action of nitric 

oxide synthase enzymes (NOS), and serves as an important signaling molecule in facilitating 

oxygen sensing by cells 104. It was shown that in response to nitric oxide, PGC1α is upregulated 

along with NRF1, due to activation of guanylate cyclase and therefore increased cGMP 

dependent signaling, which in turn leads to increased mitochondrial biogenesis in various 

mammalian cells 101, 104 (Figure 1-8). Different tissues from NOS null mice displayed 

significantly reduced mtDNA content, low oxygen consumption and reduced ATP content. This 

suggested that NO induces mitochondrial biogenesis, primarily via PGC1α and NRF1 dependent 

activation of nuclear encoded mitochondrial protein expression 101, 104. Furthermore, PGC1α is 

regulated at a transcriptional level by the cAMP dependent pathway 105, 106. Elevated cAMP 

levels activate CREB via protein kinase A-mediated phosphorylation of CREB, which then binds 

to cAMP response element present in the PGC1α promoter 106. CREB is also activated by other 

kinases such as Ca2+/calmodulin-dependent protein kinase (CaMK) and MAPK, both of which 

cause activation of PGC1α expression in response to cytosolic calcium levels and exercise, 

respectively (Figure 1-8) 102, 105, 106. In response to increased cAMP signaling, MAPK also 

phosphorylates and activates activating transcription factor-2 (ATF-2) and PGC1α, which in turn 

induces mitochondrial biogenesis. cAMP dependent activation of mitochondrial biogenesis and 

regulation of thermogenesis is important for norepinephrine dependent response to cold. PGC1α 
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is also known to activate genes involved in fatty acid oxidation in the mitochondria via PPARα 

107. 

 Mitochondrial regulatory mechanisms feed back into the nuclear regulatory pathways 

through a retrograde pathway, as demonstrated in yeast 108. Although such a retrograde pathway 

is yet to be identified in mammalian mitochondria, Ca2+ dependent signaling has been thought to 

play a role in the flow of information from mitochondria to the nucleus (Figure 1-8) 109. Ca2+ is 

primarily stored in mitochondria and mitochondrial dysfunction or high nitric oxide content leads 

to increased cytosolic Ca2+ levels 109. This, in-turn, causes activation of CaMK and cAMP 

dependent pathways to increase PGC1α expression, which ultimately results in increased 

mitochondrial biogenesis 109. Thus, as described above, there are nuclear regulatory pathways, 

that regulate mitochondrial biogenesis and function, and mitochondrial regulatory pathways that 

feed back into the nucleus to communicate the functional state of mitochondria.  

Methylation of DNA in the mitochondria: History 

Several attempts have been made to prove the existence of methylation in mtDNA, with 

earliest reports dated as early as four decades ago. Nass et. al.,1973, reported the presence of 

5mC in mtDNA and reported DNA methylase activity in mitochondrial fractions from the 

different cells studied. They used four different approaches to detect 5mC in the mitochondrial 

DNA, all of which were based on growing cells in a medium containing different radioactive 

compounds and looking for incorporation of radioactivity in 5mC fraction of mtDNA 110. 

However, these studies were marred by a number of technical issues. Use of 3H- L- methionine 

lead to nonspecific radioactivity in thymine and adenine fractions apart from 5mC 110. Use of 3H-
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Figure 1-8: Different mechanisms underlying nuclear-mitochondrial cross-talk. 

Flow of information between nucleus and mitochondria is bidirectional in nature as depicted 
above. PGC1 family of co-activators, along with various transcription factors co-ordinate 
expression of genes involved in multiple mitochondrial processes. Expression of PGC1 co-
activators is regulated by different signaling pathways that respond to environmental stimuli. 
Signalling from mitochondria to the nucleus is mediated through Ca2+ dependent retrograde 
signaling. Figure adapted from Scarpulla et. al. Phys rev 2008. 
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deoxycytidine was complicated in that it mostly allowed detection of radioactivity in polymeric 

forms as opposed to nucleotide forms 110 . Even in vitro enzyme assays performed on the nuclear 

and mitochondrial fractions gave different activities based on whether heterologous or 

homologous DNA was used. The purity of the mitochondrial fractions used was determined 

simply on the basis of the differential reaction of nuclear and mitochondrial enzyme fractions to 

β-mercaptoethanol 110. Overall, this report of 5mC in mtDNA failed to be convincing. 

 Another study by Pollack et. al., 1984, used nearest neighbor analysis to report the 

presence of 5mC in mouse mitochondrial DNA at levels similar to that reported by Nass et. al. 

They reported that 5mC was present in the context of CpG dinucleotide at a frequency of 3-5% 

of mitochondrial CpGs 111. To gain an understanding of site specific methylation patterns in 

mitochondrial DNA, methylation sensitive restriction enzymes MspI and HpaII were employed 

111. This method looked at methylation status at only the MspI/HpaII restriction sites in mtDNA 

111. Also, no attempt was made to detect the presence of methylase activity in the mitochondria 

that might explain the mechanism generating 5mC nucleotide in mtDNA 111 .   

 In 1994, Cardon et al. analyzed mitochondrial DNA from different species in order to 

study the representation of different dinucleotides. Similar to nuclear DNA, it was found that 

CpG dinucleotides were under-represented in all mitochondrial DNAs studied 112. This suggested 

CpG suppression in mitochondrial DNA. CpG suppression is a phenomenon where the ratio of 

observed to the expected frequency of CpG dinucleotide in the genome is less than 1 112. The 

traditional explanation behind the occurrence of CpG suppression is the conversion of cytosine, 

present in the context of CpG dinucleotide, to 5-methylcytosine by the action of DNA 

methyltransferases 113. This 5mC can then undergo deamination, either spontaneously or by 
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enzymatic action of deaminases, to thymidine 113, 114. This changes the dinucleotide from CpG to 

TpG causing a mismatch with GpC present on the complementary strand. Through successive 

rounds of replication, TpG.GpC is changed to TpG.CpA causing a transition mutation in the 

genome 114. Considering CpG suppression occurs using the above mentioned mechanism, it has 

been considered as a sign for presence methylation either currently or that it existed in the 

genome at some point. CpG suppression in the mitochondrial DNA was seen to the same extent 

as in nuclear DNA (Observed/Expected frequency for CpG dinucleotide was found to be 0.53 for 

mitochondrial DNA and 0.42 for nuclear DNA) 112. This suggested that methylation was 

probably present in the mitochondrial DNA. CpG suppression is marked not only by under-

representation of the CpG dinucleotide but also by over representation of the TpG dinucleotide. 

However, in mitochondrial DNA, even though CpGs were under represented, over representation 

of TpGs did not follow. Instead, over abundance of CpC.GpG dinucleotides was seen. This 

probably was due to the asymmetric composition of the two strands of the mitochondrial DNA 

112. 

 Despite these early studies, the presence of 5mC in mtDNA has remained controversial. 

Summary and Objectives 

 DNA methyltransferases play a central role in regulating multiple processes in the cell 

including development, differentiation and transcription, mediated by conversion of C to 5mC. 

The fidelity of methylation patterns is maintained by the Tet family of enzymes that prevent 

hypermethylation of CpG islands through catalytic conversion of 5mC to 5hmC. Loss of DNMT 

or Tet activities causes aberrant methylation in the nuclear genome, characteristic of diseases 

such as cancer. Thus, the balance between the two family of enzymes is critical for efficient and 
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complex epigenetic regulation of cellular processes. Although the importance of DNA 

methylation and hydroxymethylation has been studied extensively in the context of nuclear 

genome, their importance in the mitochondria remains to be explored. Previous studies aimed at 

detecting methylation in mitochondria were viewed with skepticism. Studies described in this 

dissertation were aimed at addressing the long standing debate on the presence of methylation in 

mtDNA. We have rigorously pursued the identification of 5-methylcytosine in mtDNA and its 

role in mitochondrial function. We demonstrated the presence of 5-hydroxymethylcytosine in 

mtDNA and elucidate mechanisms involved in its generation in mammalian mitochondria. Our 

goal was to explore mitochondrial epigenetic mechanisms that govern normal function of 

mitochondria and which may be disrupted in diseases characterized by mitochondrial 

dysfunction. 



33 

 

Chapter 2: Functional significance of cytosine methylation by mtDNMT1 in 
mammalian mitochondria. 

Introduction 

The presence of cytosine methylation in mtDNA has been a matter of debate over the last 

three decades. Using nearest neighbor analysis and methyl-sensitive restriction enzymes, low 

levels of methylation were reported in mtDNA from different mammalian cells studied 110. The 

lack of knowledge of purity of mitochondrial fractions made these results unconvincing 110. In 

1984, another study reported that 3-5% of CpGs in mtDNA are methylated, although no attempt 

was made to detect methylase activity in these mitochondria 111. It was then reported that, similar 

to nuclear DNA, mtDNA shows CpG suppression, suggesting that 5mC can serve as a hot spot 

for mutations in mtDNA 112. Although the presence of 5mC has been described in mtDNA, 

mechanisms generating 5mC in mtDNA were not known. The lack of a mitochondrially encoded 

DNA methyltransferase led us to explore the possibility of a nuclear encoded DNA 

methyltransferase that might be translocated to the mitochondria, and thus generating 5mC in 

mtDNA.  

Mitochondrial DNA (mtDNA) is a circular, double stranded genome of ~ 16.5kb in 

mammals 54. It comprises two strands, the heavy and the light strand encoding a total of 13 

proteins, 2 ribosomal RNAs and 22 transfer RNAs 72. Transcription of the heavy strand is 

initiated at HSP1 and HSP2 and at LSP on the light strand 73. Transcription from HSP2 and LSP 

promoters proceeds in two different directions, each generating polycistronic transcripts 

corresponding to the entire heavy strand and most of the light strand 74. Transcription from the 

HSP1 promoter yields 16S rRNA and 12S rRNA transcripts and is terminated at the MTERF 



34 

 

binding site, present at 3’ end of 12SrRNA gene. All components essential for transcription of 

mtDNA, including POLRMT, TFAM, TFB1M and TFB2M are encoded in the nucleus and are 

transported to the mitochondria.  

Regulation of DNMT1 by p53 in the nucleus: 

 p53 is a known tumor suppressor gene that is frequently mutated in colon, lung, liver and 

prostate cancers. It performs a wide variety of functions in the cell including cell cycle 

regulation, gene expression, induction of apoptosis, development and differentiation. In most 

cases, p53 mediates its effect by controlling expression of the key molecular species involved in 

each of these mechanisms. It can act as a transcriptional activator or as a repressor. Some of the 

examples of genes activated by p53 are Bax, Bak, Puma etc. whereas those repressed are Bcl-2, 

Bcl-XL, MAP4 etc.  

Our lab showed that p53 acts as a transcriptional repressor and negatively regulates 

expression of DNMT1 115. This was deduced from the fact that deletion of p53 caused ~6-fold 

upregulation of DNMT1 in an immunoblot and a northern blot assay. The p53 binding site is 

characterized by the presence of two half sites with RRRCWWGYY N(0-13) RRRCWWGYYY 

as the consensus sequence. Sequence analysis of the DNMT1 promoter revealed three putative 

p53 binding sites, at -1196 to -1174, -553 to -533 and +30 to +56 at the DNMT1 promoter. 

EMSA assays demonstrated high affinity binding of p53 at DNMT1 promoter at the site labeled 

+30 to +56 115. ChIP experiments further revealed p53 binds at this site in vivo, and activation 

and stabilization of p53, following ionizing radiation or VP16 treatment, reduced p53 binding at 

that site in vivo, which leads to ~5 fold upregulation of DNMT1 115. Thus, p53 inhibits DNMT1 

at the transcriptional level, facilitated by direct binding of p53 at the DNMT1 promoter 115. This 
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explained, at a molecular level, the phenomenon of CpG hypermethylation that occurs in most 

cancers that are also associated with loss of p53. Another mechanism that also contributed to the 

above mentioned phenotype was regulation of DNMT1 by pRb/E2F pathway 116. 

Objectives: 

Several mechanisms are involved in the bidirectional flow of information between the nucleus 

and mitochondria. The PGC1 family of co-activators, along with other transcription factors, 

activates expression of nuclear encoded mitochondrial genes that are involved in a large number 

of processes in the mitochondria. Using Ca2+ dependent signaling and controlled flow of 

molecules such as S-adenosyl methionine, signals from mitochondria feed back into the nuclear 

regulatory mechanisms co-ordinating the two genomes. Identification of 5mC in mtDNA and a 

mitochondrial isoform of DNMT1, led us to investigate the functional significance of cytosine 

modification by mtDNMT1 in mammalian mitochondria. Our goal was to determine whether 

mitochondrial epigenetic mechanisms help to co-ordinate expression of nuclear and 

mitochondrially encoded genes and therefore contribute to the cross-talk between the nuclear and 

mitochondrial genomes. 

Materials and Methods: 

Cell Culture 

 HCT116 cells (ATCC – CCL 247) were grown in RPMI 1640 medium 

(Gibco/Invitrogen) supplemented with 10% FBS (Gemini) at 37 ᴼC in 5% CO2. Wild type and 

p53-/- mouse embryonic fibroblast cells (MEFs) were grown at 37 ᴼC in 10% CO2 in DMEM 

(Gibco/Invitrogen) supplemented with 10% FBS (Gemini). Owing to the cell cycle regulated 
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expression of DNMT1, cells were fed 24 hrs prior to replating them for experimental set up. 

Cells were harvested 24 hours after replating thus ensuring the majority of cells were in S-phase 

and therefore maximally expressing of DNMT-1. Maintaining this procedure for all the 

experiments helped with consistency and reproducibility of results. 

Preparation of lysates and Bradford assay to determine protein concentrations: 

Whole cell, mitochondrial or cytoplasmic pellets were resuspended in SDS lysis buffer (2.25 ml 

EDTA free protease inhibitor tablets (Roche) resuspended in sample buffer (62.5mM Tris-HCl, 

pH 7.5, 5% glycerol, 2% SDS), 2.025 ml water, 225 µl β-Mercaptoethanol). The lysates were 

then passed through 21 gauge needle approximately 15 times to sheer chromatin or, alternatively, 

sonicated in a bath sonicator (Diagenode, Bioruptor) for 10 mins on High for 30 sec ON and 30 

sec OFF. Lysates were stored at -80 ᴼC until further use. 

 Protein concentration of lysates was determined using the Bradford assay. A standard 

curve was generated using 0, 2, 4, 6, 8, 10 µg/ml concentrations of BSA (Fisher, Cat no. 23210). 

1 µl of SDS lysis buffer, from an aliquot saved after making lysates, was added to all the tubes 

containing standard. The final volume was adjusted to 800 µl with water. For sample lysates, 1 

µl of lysate was added to 799 µl water. 200 µl of Bradford reagent (Biorad, Cat no. 5000006) 

was added to all the standards and the samples. Absorbance was measured at 595 nm using a 

Spectrophotometer. 

Subcellular fractionation to isolate mitochondria from Cultured Cells 

Cells were plated in 150 mm dishes and harvested 24 hrs later for experimental consistency. 

Depending on the cell type and the downstream application, a varying number of dishes were set 
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up. Dishes (150 mm) that were approximately 90% confluent were rinsed twice with cold 1 X 

PBS, pH 7.4 and scraped into a pre-weighed 15 ml conical bottom centrifuge tube (BD Falcon, 

Cat no.:- 352096), making sure the dishes were on ice at all times. Cells were collected by 

centrifuging at 3000 rpm for 10 minutes at 4 ᴼC in a Beckman J6-MI centrifuge. The tubes were 

weighed to get an estimate of the whole cell pellet weight. For Immuno blot, Cells were 

resuspended in 5 ml cold 1 X PBS, pH 7.4 and 500 µl (~10%) was retained in a separate pre-

weighed 1.5 ml centrifuge tube for preparation of the whole cell lysate. Whole cell lysate was 

prepared by pelleting cells at 900 x g for 5 minutes at 4 ᴼC in a table top centrifuge, tubes were 

weighed to obtain the pellet weight and cells were resuspended in SDS lysis buffer (2.25 ml 

Protease Inhibitor solution, 2.025 ml water, 225 β-mercaptothanol) in a volume 10 times the 

amount of the pellet weight. The remaining 90% of the cells were centrifuged and resuspended in 

3.5 ml of mitochondrial homogenization buffer (0.25 M sucrose, 10mM Tris-HCl, pH 7.0, 1mM 

EDTA pH 6.8) containing EDTA –free Protease inhibitor tablets (PI) (Roche, Cat no:- 

11873580001, 1 tablet per 25 ml of homogenization buffer). The cells were transferred to a pre-

chilled 7 ml Dounce homogenizer and incubated on ice for 5 minutes. The cells were dounce 

homogenized for 15 strokes, centrifuged at 2200 rpm (1300 x g) for 5 minutes at 4 ᴼC in J6-MI 

centrifuge and the supernatant (Post-Nuclear supernatant, PNS) was collected in a separate 15 ml 

conical centrifuge tube. This Post-Nuclear supernatant contains the mitochondrial and the 

cytosolic fractions, while the nuclear and the unbroken cells form the pellet. The pellet was again 

resuspended in 3.5 ml of mitochondrial HB buffer and the above procedure was repeated a total 

of three times, collecting PNS each time. The post-nuclear supernatant, collected at the end of 

three rounds of douncing, was centrifuged at (2500 x g) 3000 rpm for 5 minutes at 4 ᴼC in J6-MI 

centrifuge to pellet the remaining unbroken cells. The supernatant was collected, leaving behind 
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2 ml to avoid contamination from unbroken cells,  and transferred to a 14 ml round bottom 

centrifuge tube (BD Falcon, Cat no:- 352059) and centrifuged at 9000 rpm (10,000 x g) for 15 

minutes at 4 ᴼC in a Beckman J2-HC centrifuge using a JA-17 rotor. The pellet is the 

mitochondrial fraction, which is then collected and washed twice with mitochondrial 

homogenization buffer with protease inhibitor tablets. 

Immunoblotting: 

To load equal cell equivalents, 75 µg of whole cell lysate, 25 µg of cytosplamic lysate and 18 µg 

of mitochondrial lysate was loaded. When loaded in these ratios, protein from lysates of these 

fractions gave an equal intensity of VDAC signal, used as a marker for the mitochondrial 

compartment. The protein concentration was determined by Bradford assay and volumes 

corresponding to the appropriate amount of protein were placed in a 1.5 ml eppendorf tube. An 

equal volume of sample buffer (475 µL laemulli sample buffer + 25 µl β-mercaptoethanol) was 

added to each of the samples. The final volume was adjusted using SDS lysis buffer to keep 

volume constant in all tubes. Samples were boiled for 5 mins and then loaded on to 4-15% 

gradient gel together with an aliquot of Precision plus dual colour protein ladder (Biorad- Cat no. 

1610374). The gels were run at 150V for 60 mins in 1X running buffer (25mM Tris, 250mM 

glycine, 0.1% SDS). 

For semi dry transfer, a sandwich was set up such that a gel was laid on top of 9 layers of 

whatman filter paper (Whatman 3mm Cat no. 3030917). Each sheet of whatmann paper was 

soaked in 1X towbin buffer (25mM Tris-HCl, pH 8.3, 192mM glycine, 10% methanol and 

0.04% SDS) and rolled to squeeze out the bubbles after laying it on top of the previous layer. A 

PVDF membrane (Millipore, Cat No. IPVH00010), soaked in 100 % methanol, was then laid on 
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top of the gel followed by another six layers of whatman paper also soaked in 1X transfer buffer. 

The transfer sandwich was assembled on the bottom portion of the semi dry transfer apparatus 

(Hoefer Cat. No. TE77)  and the lid was laid on top. Transfer was set up at a constant current of 

80mA for 4 hours and was left overnight in the transfer apparatus once the transfer was 

complete. The transfer sandwich was removed the next day and the membrane was reactivated in 

100% methanol before setting it up for blocking. Blocking of the PVDF membrane was 

performed in Starting block buffer (Thermo scientific, Cat no. 357543) for 1 hr at room 

temperature with shaking. The membrane was then washed thrice with 1X TBS (0.5M Tris-HCl, 

pH 7.5, 0.14M NaCl, 2.7mM KCl and 0.1% Tween 20)  containing 0.05% Tween20, for 5 mins 

each, with shaking at high speed. The membrane was then incubated with the appropriate 

primary and HRP-conjugated secondary antibodies for 1 hr each at room temperature with 

shaking. For Immuno blots containing cell fractionation markers, blots were cut horizontally at 

the 75kDa, 50kDa, and 37kDa mark and the four parts, from top to bottom, were probed for 

DNMT1, tubulin, VDAC and H3K4me3 antibodies respectively. The membrane was washed 

again thrice with 1X TBS between primary and secondary antibody incubations and also after 

secondary antibody incubation. The blot was developed using West Pico chemiluminescent 

substrate (Pierce, Cat no. 34080). In certain cases, West Dura (Pierce, Cat. No. 34075), a 

chemiluminescent substrate of higher sensitivity had to be used. Blots were then developed by 

exposing the membranes to X-ray films (ISC Bioexpress, Cat no. F9024-8X10).  A list of all the 

antibodies used and their optimized conditions are listed in table 2-1.  
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MeDIP/HydroxyMeDIP:- 

 Sonicated genomic/mitochondrial DNA (4 µg) was diluted with TE buffer to 450µl total 

volume, denatured for 10 minutes in boiling water and immediately cooled on ice for 10 minutes. 

To this mixture was added 51 μl of 10x IP buffer, followed by 2 μl (2 μg) of 5mC Antibody 

(Active Motif, Cat No. 39649)/ 5hmC Ab (Active Motif, Cat. No. 39791)/ Non-specific Mouse 

IgG (Millipore, Cat. No. 12-371)/ Non-specific Rabbit IgG (Santacruz, Cat. No. sc-2027) and 

samples were incubated overnight at 4 °C with end over end rotating. 

 In a separate tube, Protein G beads (20 µl per sample) were centrifuged at 4500 rpm for 5 

min to get rid of 70% ethanol solution. The supernatant was carefully discarded by pipetting. To 

the pellet of protein G beads, 400 µl of 0.1% BSA in 1X PBS, pH 7.4 (10 mg of BSA was 

dissolved in 1 ml water which was then added to 9 ml 1X PBS, pH 7.4) was added. It is 

important that beads are always resupended by flicking the tube and never by vortexing or 

pipetting up and down. The beads were rotated for 5 mins at 4 ᴼC and were later centrifuged at 

4500 rpm for 5 mins at 4 ᴼC. The supernatant was carefully discarded by pipetting. The wash 

with 0.1% BSA in PBS, pH 7.4 was performed for a total of three times. At the end of last wash, 

beads were resuspended in an equal volume of 1X IP buffer to make a 50% slurry and incubated 

with sonicated lambda DNA and BSA such that 5 µg of both were present per 30 µl of 50 % 

slurry. Beads were incubated for 3 hrs with rotation at 4 ᴼC.  At the end of 3 hrs, beads were 

collected by centrifugation and washed again thrice with 0.1% BSA in 1X PBS, pH 7.4 with 

rotation for 5 mins at 4 ᴼC and centrifugation at 4500 rpm for 5 mins at 4 ᴼC. At the end of the 

third wash, beads were resuspended in an equal volume of 1X IP buffer to form a 50% slurry. To 
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each sample, 20 µl of the 50% slurry was added and the mixture was incubated further for 2 hrs 

with rotation.  

 At the end of the 2 hr incubation, beads were collected by centrifugation and the 

supernatant was discarded. The beads were then washed by adding 500 µl 1X IP buffer and 

rotating the samples for 10 mins at 4 ᴼC.  The beads were centrifuged at 4500 rpm for 2 mins at 4 

ᴼC, to get rid of the unbound excess DNA which was present in the supernatant. The supernatant 

was discarded carefully by pipetting. The beads were such washed thrice. At the end of the third 

wash, the beads were resuspended in 250 ul of Proteinase K digestion buffer and 3.5 µl of 

Proteinase K (20 mg/ml) and incubated at 37 ᴼC for 3 hrs. The samples were then extracted with 

250 ul of Phenol – Chloroform – Isoamyl alcohol (25:24:1) and centrifuging the samples at 

13,000 rpm for 3 mins at 4 ᴼC in a table top centrifuge. This separates the sample into aqueous 

phase and organic phase. The aqueous phase, which contains the DNA, was collected in a 

separate tube. Chloroform (250 µl) was added to the collected aqueous phase, sample was 

vortexed and centrifuged at 13,000 rpm for 3 mins at 4 ᴼC in a table top centrifuge. This step 

ensures the removal of excess phenol from the first step. The aqueous layer from the second step 

was again collected in a separate tube and subjected to ethanol precipitation. Ethanol 

precipitation was performed by adding 25 µl of 3M sodium acetate pH 5.2, 20 units glycogen 

and 750 µl of 100% ethanol (3 volumes), mixed thoroughly and stored at -20 ᴼC overnight. The 

DNA was collected the next day by centrifugation at 10,000 rpm for 15 mins at 4 ᴼC. The 

supernatant was discarded and the DNA pellet was washed using 500 µl of 70% ethanol and 

spinning the samples at 10,000 rpm for 15 mins at 4 ᴼC.  The DNA was resuspended in 75 ul TE 

and analyzed by qPCR. Standard deviations (SDs) were calculated using the formula:  

SD = Avg(sample)/Avg(input) x (√((SD(sample)/Avg(sample))2+(SD(input)/Avg(input))2))). 
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Antigen 
Primary Ab 

obtained 
from 

Dilution 
used 

Blocking 
buffer 

Secondary 
Antibody 

used 

Secondary 
Antibody 

dilution used 

Expected 
protein 

size 

N-terminal 
DNMT1 

Abcam  

(Cat. No. 
ab16632) 

1:1000 Starting 
Block 

Goat anti-
rabbit 1:15,000 185kDa 

Tubulin A gift from 
Dr. Larner 1:10,000 

5% milk 
in 1X 
TBST 

Goat anti-
mouse 1:10,000 60kDa 

VDAC 
Calbiochem 

(Cat No. 
AP1059) 

1:4000 Starting 
block 

Goat anti-
rabbit 1:10,000 32kDa 

H3K4me3 
Upstate 

(Cat. No. 
07-463) 

1:1000 Starting 
block 

Goat anti-
rabbit 1:10,000 17kDa 

 

Table 2-1: List of antibodies used. 

Antibodies used for immunoblot experiemtns are listed along with their optimized conditions.  
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Species 
Primer 

Set 
Forward Reverse 

Mitochondrial gene expression 

Mouse 

ND1 5’- CAGGATGAGCCTCAAACTCCA-3’ 5’-CGGCTCGTAAAGCTCCGA-3’ 

ATP6 5’- ATTCCCATCCTCAAAACGCC – 3’ 5’- TGTTGGAAAGAATGGAGACGGT-3’ 

ND6 5’-GGTTATGTTAGAGGGAGGGATTGG-3’ 5’- TACCCGCAAACAAAGATCACCCAG-3’ 

Cox1 5’- TCGCAATTCCTACCGGTGTC-3’ 5’- CGTGTAGGGTTGCAAGTCAGC-3’ 

18S 
rRNA 

5’- GTCTGTGATGCCCTTAGATG -3’ 5’-AGCTTATGACCCGCACTTAC-3’ 

12S 
rRNA 

5’- ACACATGCAAACCTCCATAGACCG-3’ 5’- TGGCTGGCACGAAATTTACCAACC -3’ 

16S 
rRNA 

5’- TCTGTTAACCCAACACCGGAATGC -3’ 5’- TCGTTTAGCCGTTCATGCTAGTCC -3’ 

Methyl DNA Immunoprecipitation (Me-DIP)  and HydroxyMeDIP 

Human 

ATP6 5’-ATTCAACCAATAGCCCTGGCCG-3’ 5’-ACGTAGGCTTGGATTAAGGCGAC-3’ 

COX2 5’-ACAGATGCAATTCCCGGACGTC-3’ 5’-TGGGCATGAAACTGTGGTTTGCTC-3’ 

12S 
rRNA 

5’-AGTTCACCCTCTAAATCACCACG-3’ 5’-TGACTTGGGTTAATCGTGTGACC-3’ 

 

16S 
rRNA 

5’- ACCTTACTACCAGACAACCTTAGCC-3’ 5’-TAGCTGTTCTTAGGTAGCTCGTCTGG-3’ 

27 5’-GCATTTGGTATTTTCGTCTGGGGGG-3’ 5’-GACCAACCCTGGGGTTAGTATAGC-3’ 

 

Table 2-2: List of primers used. 

Primers designed against mitochondrial DNA used for the analysis of mitochondrial transcription 
and MeDIP analyses are shown. 
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Design of primers for analysis by MeDIP: 

Primers were designed across regions that defined the coding sequence for each of the 

genes. Multiple genes were selected for analysis, the two rRNA genes, three protein coding 

genes on the heavy strand and the only protein coding gene on the light strand, and the D-loop 

regulatory region. Mitochondrial genes lack introns and hence it was possible that amplification 

could result from psuedogenes present in genomic DNA. To overcome this problem, each of the 

primer sets were tested using an in silico PCR analysis tool on the UCSC database 

(http://genome.ucsc.edu/cgi-bin/hgPcr) for amplification of fragments from genomic DNA. 

Primer sets that amplified the same size fragments from both mitochondrial and genomic DNA 

were discarded. Only primer sets that amplified the expected size fragment from mitochondrial 

DNA exclusively were used for further analysis. Primers used are listed in table 2-2. 

Validation of specificity of 5mC and 5hmC antibodies towards their respective 

modifications: 

 Unmethylated, methylated and hydroxymethylated substrate (Active Motif Cat no. 

55008) (25 pg) was mixed with 500 ng of sonicated genomic DNA from HCT116 (ATCC CCL-

247) cells. All three DNA templates obtained from Active Motif contain the Human APC 

promoter sequence and only differed in the modification of cytosine present. MeDIP and 

HydroxyMeDIP were then performed to validate the antibodies as described above.  

http://genome.ucsc.edu/cgi-bin/hgPcr�
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Isolation of RNA:  

A 100 mm dish was set up for RNA isolation such that cell were 70-80% after 24 hrs. For 

experimental consistency, cells were harvested at 24 hrs for RNA isolation. RNA was isolated 

from different cell lines using the Trizol reagent (Invitrogen, Cat. No.15596-026). Cells were 

washed twice with ice cold (1X) PBS, pH 7.4 and lysed in 4 ml Trizol and incubated on ice for 

5mins to ensure complete lysis. The homogenate was then transferred to a 14 ml round bottomed 

falcon tube (BD, Cat. No.352059) and incubated at room temperature for 5 min to allow 

complete dissociation of the nucleoprotein complexes. Chloroform (0.2 ml) was added per ml of 

Trizol and tubes were shaken vigorously and incubated for another 2-3 mins at room 

temperature. The tubes were centrifuged at 12,000 x g for 15 mins in the Beckman J2 centrifuge 

(JA-17 rotor). This step causes the separation of aqueous phase and organic phase. The aqueous 

phase, which contains the RNA, was transferred to another 14 ml round bottomed tube. RNA 

was then further precipitated with 0.5 ml 100% isopropanol per ml of trizol, incubated for 10 

mins at room temperature and centrifuged at 12,000 x g for 10 mins at 4 ᴼC. A RNA pellet could 

be seen at the end of this step. The pellet was further washed with 1 ml of 75% ethanol per ml 

trizol and centrifuged at 7,500 x g for 5 mins at 4 ᴼC. The pellet was allowed to air dry for 5 

mins before resuspending in DEPC treated water. Concentration was measured using the 

nanodrop-1000 spectrophotometer. RNA was stored at -80 ᴼC in three volumes of ethanol until 

further use. 

cDNA synthesis and analysis of mitochondrial transcription using analysis by qPCR: 

Prior to reverse transcription, ~15 µg RNA was precipitated using 1/10th volume of 3M 

sodium acetate and 20 units of glycogen (Ambion, Cat no. AM9516) and centrifuging the tubes 
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at 10,000 x g for 10 mins at 4 ᴼC. A wash with 500 µl of 75% ethanol was performed by 

centrifugation at 10,000 x g for 10 mins before resuspending the pellet in DEPC treated water.  

For studies on mitochondrial transcription, 15 µg RNA was DNAseI treated in a total 

volume of 75 µl with 4 units of DNAseI (Ambion, Cat no. AM2222) and 1X DNAseI buffer 

(Ambion) at 37 ᴼC for 30 mins. At the end of 30 min incubation, EDTA was added to a final 

concentration of 5mM and samples were further incubated at 75 ᴼC for 10 mins to inactivate 

DNaseI. RNA was ethanol precipitated to remove DNAseI and was resuspended in 20 ul DEPC 

treated water for use in cDNA synthesis. Concentration was determined by nanodrop and 

integrity of RNA was checked on an agarose gel.   

cDNA was synthesized using First Strand Superscript III cDNA synthesis kit (Invitrogen, 

Cat no. 18080051) using 5 µg of total RNA. For synthesis using random hexamers, RNA was 

first incubated with 50 ng/µl random hexamers and 10mM dNTPs at 25 ᴼC for 10 mins to allow 

annealing of primers to the RNA strands. cDNA synthesis mix (5X RT buffer, 10mM MgCl2, 

0.02mM DTT, 40 Units RNAse OUT, 200 Units Superscript III reverse transcriptase enzyme) 

was added and samples were incubated for 50 mins at 50 ᴼC. The reaction was terminated at 85 

ᴼC for 5 min. cDNA was incubated with 2 units RNAseH (Ambion, Cat no. AM2292) at 37 ᴼC 

for 30 mins to degrade RNA. For each sample, a reverse transcriptase negative control (-RT) was 

set up to control for amplification from residual contaminating DNA. For cDNA synthesis using 

gene specific primers, 2 µM ATP6 sense or antisense primers was used to synthesize cDNA 

exclusively from Light and Heavy strands of mitochondrial DNA respectively using the protocol 

described above. cDNA was then further analyzed using Quantitect SYBR green (Qiagen, Cat 

no. 204145).  
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For analysis of mitochondrial transcription, RNA was isolated from wild type (wt) and 

p53 -/- MEFs and cDNA was synthesized using the procedure mentioned above using both 

random hexamers and gene specific primers in two different experiments. Statistical analyses 

involved random effects analysis of variance (ANOVA) test using JMP version 7.0. Least square 

means for each gene analyzed from wt and p53-/- cells was obtained with standard errors and 

data was normalized to that of 18S rRNA. Three sets of biological replicates were combined, 

where each set contained three technical repeats. The ANOVA model included technical repeats 

as nested effects and biological repeats as random effects. The corresponding 95% confidence 

intervals were obtained by using the statistical method for transformations. The primers used for 

analysis of mitochondrial gene transcription are listed in Table 2-2. The cycling conditions for 

the qPCR are as follows:- Step 1: Activation at 95 ᴼC for 15 mins, Step 2: Denaturation at 94 ᴼC 

for 30 secs, Step 3: Annealing at 55-60 ᴼC for 30 secs, Step 4: Extension at 72 ᴼC for 30 secs, 

Step 5:  Plate read, Step 6: Go to Step 2, 40 times, Step 7: Final extenstion at 72 ᴼC for 5 mins, 

Step 8: Melting curve, 40 ᴼC to 90 ᴼC, read every 1 ᴼC, hold 1 sec.  
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Results: 

An isoform of DNMT1 is present in the mitochondria: 

DNA methyltransferases are enzymes responsible for methylation of DNA in the nucleus. 

Sequence analysis of DNMT1, a member of DNA methyltransferase family, brought to light a 

sequence upstream of the known transcriptional start site that extended up to 303 bp in humans 

and 90 bp in mouse. This sequence contained two ATG codons that could potentially serve as the 

translational start codon and protein starting at any of these two ATGs would be in frame with 

the published translational start site for nuclear DNMT1, ATG3. We asked if this upstream 

sequence, present as a part of DNMT1 protein, would facilitate its translocation to an organelle 

other than the nucleus. Mitoprot analysis of the DNMT1 protein sequence containing this 

upstream portion indicated a high probability of transport to the mitochondria and suggested that 

this upstream sequence would serve as the mitochondrial targeting sequence (MTS) 117. Mitoprot 

analysis was also performed against DNMT1 sequences from various species including 

chimpanzee, rat and cow, and in each of the species one or more in-frame ATGs were found that 

would code for a peptide with a high probability of mitochondrial transport. Although these 

putative DNMT1 MTSs found in various species did not show sequence conservation, their 

functional conservation was demonstrated by their ability to operate across species 117. 

To provide experimental evidence for these analyses, we asked whether an isoform of 

DNMT1 was present in the mitochondria. Mitochondria were isolated from HCT116 neoS cells 

and lysates were prepared using SDS lysis buffer. Immunoblots containing whole cell, 

cytoplasmic and mitochondrial lysates were probed with an antibody directed against DNMT1. 

This antibody identifies amino acid 1-10 of nuclear DNMT1 sequence and should also 
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successfully detect an isoform of DNMT1 containing the upstream sequence. Immunoblot 

analysis revealed the presence of full length DNMT1 protein and a smaller band (~60 kDa) in the 

mitochondrial fraction from these cells (Figure 2-1). The mitochondrial isoform of DNMT1 

migrates at ~185kDa, similar to nuclear DNMT1, implying that the upstream sequence that 

serves as a putative MTS is cleaved upon migration of DNMT1 to the mitochondria. The 

presence of the 60 kDa band in the mitochondrial fractions indicates that full length mtDNMT1 

may be proteolytically processed in the mitochondria. VDAC (Voltage-dependent ion channel), 

an outer mitochondrial membrane protein, Tubulin and H3K4me3 (histone H3 carrying a tri-

methyl mark on lysine 4) serve as the mitochondrial, cytoplasmic and nuclear compartment 

specific markers respectively and demonstrate the purity of each of the fractions. Comparison of 

VDAC signal in whole cell and mitochondrial fractions indicates that equal amounts of protein 

have been loaded as per cell equivalents (Figure 2-1). The absence of H3K4me3 signal in the 

mitochondrial fraction indicates that our mitochondrial preparations are free from nuclear 

contamination, a primary site of localization for the DNA methyltransferases (Figure 2-1). These 

studies were performed by Erica Peterson and are mentioned here for the sake of completeness. 

p53 negatively regulates mitochondrial isoform of DNMT1: 

 As mentioned earlier, p53 can act as a transcriptional repressor and negatively 

regulates nuclear DNMT1 through direct binding to a p53 consensus sequence in the DNMT1 

promoter 115. Loss of p53 or activation of p53 by irradiation or VP16 treatment relieves this 

repression and increases expression of DNMT1 115. Lisa Shock, a former student in the lab, 

asked whether p53 could regulate expression of mtDNMT1. Lysates from mitochondrial 

fractions of wild type and p53-/- MEFs along with the respective whole cell and cytoplasmic
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Figure 2-1: Detection of DNMT1 in mitochondrial fractions of HCT116 neoS cells. 

Lysates from whole cell, cytoplasmic and mitochondrial fractions from HCT116 neoS cells were 
resolved on a 4-15% gradient and detected using an antibody against DNMT1. Band 
corresponding to ~185kDa, the expected size of DNMT1, could be detected in the mitochondrial 
fraction. This experiment was performed by Erica Peterson. 
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Figure 2-2: mtDNMT1 expression is regulated by p53: 

In order to analyze if mtDNMT1 is regulated by p53, lysates from whole cell (W), cytoplasmic 
(C) and mitochondrial (M) fractions from wild type and p53-/- mouse embryonic fibroblasts 
(MEFs) were analyzed by Immuno blot. An approximately 5 fold increase in signal for 
mtDNMT1 could be seen in mitochondrial fractions of p53-/- cells as compared to wild type. 
This experiment was performed by Lisa Shock. 
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fractions were resolved on a 4-15% gradient gel. The blot was probed using an antibody against 

DNMT1. Analogous to its effect on nuclear DNMT1, the loss of p53 led to an approximately 

five fold increase in mtDNMT1 expression as seen by signal in mitochondrial fraction from p53-

/- cells as compared to that in wild type (Figure 2-2). VDAC, Tubulin and H3K4me3 serve as the 

mitochondrial, cytoplasmic and nuclear compartment specific markers and signify the purity of 

each of the fractions (Figure 2-2). There is a predicted p53 binding site in the DNMT1 sequence 

upstream of ATG3 
117. Binding of p53 at this site has been shown by our lab 115. Further ChIP 

analysis might be required in wild type and p53-/- MEFs to prove relief of p53 binding with 

simultaneous increase in mtDNMT1 expression.  

Antibodies against 5mC and 5hmC are specific for respective modifications 

Since immunoblots performed in our lab indicated the presence of DNMT1 within the 

mitochondrial matrix, we sought to determine whether modified cytosine residues could be 

detected in mtDNA. While several assays are available to study the methylation status of DNA, 

very few have been useful to study 5hmC modification in DNA because of a limited ability to 

differentiate between 5mC and 5hmC modifications. However methylated DNA 

immunoprecipitation (MeDIP) and HydroxyMeDIP assay could in principle distinguish these 

modifications, provided the antibodies are specific for their respective modifications. It was 

therefore essential that we prove the specificity of antibodies against 5mC and 5hmC in order to 

use MeDIP and HydroxyMeDIP assay as a primary tool to assess methylation and 

hydroxymethylation status of mtDNA. We mixed 25pg of unmethylated, methylated or 

hydoxymethylated purified PCR templates (Active motif) with 500 ng of HCT116 neoS genomic 

DNA, sonicated to a size range of 200-700 bp, for immunoprecipitation with 5mC, 5hmC and
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Figure 2-3: Validation of antibodies for specificity against the respective modifications. 

5mC (A) and 5hmC (B) antibodies specifically pulldown methylated and hydroxymethylated 
substrate respectively. Data represents mean ± SD of three independent biological repeats. 
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IgG antibodies. Immunoprecipitated material was quanitated using qPCR and revealed that cross 

reactivity was less than 10% of the specific antigen- antibody pull-down (Figure 2-3). This 

degree of specificity was deemed sufficient to study the relative levels and types of cytosine 

modification in mtDNA. 

Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are present in 

mitochondrial DNA: 

Since earlier studies claiming to demonstrate the presence of 5mC in mtDNA had been 

met with skepticism due to technical limitations, we sought to assess the presence of modified 

cytosine in mtDNA using antibodies specific for 5mC and 5hmC. We isolated mtDNA from 

HCT116 neoS, sonicated it to a size range of 200-700 bp and subjected it to immunoprecipitation 

with 5mC antibody. The immunoprecipitated DNA was analyzed by qPCR using primer sets 

against different regions of mitochondrial DNA.  Significant pull down of mitochondrial DNA 

could be seen with 5mC antibody as compared to that of non-specific IgG (Figure 2-5, upper 

panel). Five different regions of mitochondrial DNA were analyzed and in each of them at least 

10-20 fold higher signal was obtained with 5mC antibody than IgG (Figure 2-5, upper panel). 

These studies demonstrated conclusively that 5mC is present in purified mtDNA. 

  Having established presence of 5mC in the mitochondrial DNA, we then asked whether 

5-hydroxymethylcytosine is present in mitochondrial DNA. HydroxyMeDIP was performed in a 

manner similar to that described above with 5hmC antibody along with its respective IgG 

control. Five different regions on mitochondrial DNA were analyzed for presence of 5hmC. 

They were mtIP27, representing the D – loop control region of mtDNA, 12S and 16S rDNA, 

encoding mitochondrial rRNAs, as well as Cox2 and ATP6, the two protein coding genes on the
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Figure 2-4: Representation of genes analyzed by Methyl DNA Immunoprecipitation 
(MeDIP) assay: 

Five different regions on the mitochondrial DNA were analyzed for end point analysis of MeDIP 
assay. The amplicons are indicated by the white dotted lines within the blue strands of 
mitochondrial DNA. The analyzed regions were mtIP27, 12S rRNA, 16S rRNA, Cox2 and 
ATP6. 
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Figure 2-5: Detection of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in 
imunoprecipitates of mitochondrial DNA. 

Mitochondrial DNA from HCT116 neoS cells were subject to MeDIP/HydroxyMeDIP assay 
using 5mC and 5hmC antibody. Significant pulldown could be seen in five different regions of 
mitochondrial DNA analyzed, with 5mC antibody (upper panel) and 5hmC antibody (lower 
panel) as compared to that of IgG control. Data represents mean ± SD of two independent 
biological repeats. 
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heavy strand of mtDNA (Figure 2-4). Figure 2-5 (lower panel) indicates that all of these regions 

showed significant enrichment of the mitochondrial DNA with 5hmC Ab as compared to IgG, 

ranging from 38-fold enrichment in the D-loop region to 580 fold in the 12S rDNA region. Thus, 

5hmC modification is present in the mitochondrial genome and its detection is not the result of 

contaminating nuclear DNA. This indicated that both 5mC and 5hmC modifications were present 

in the mtDNA. This assay, however, does not allow quantitation of the abundance of 5mC and 

5hmC in mitochondrial DNA (See discussion). 

DNMT1 regulates transcription of mitochondrial genome in a gene specific fashion: 

DNA methylation plays an important role in the regulation of transcription in the nucleus. 

Methylation of a promoter combined with action of HDACs and nucleosome remodeling factors 

causes silencing of the gene and results in the reduction in expression of its mRNA transcript 118. 

Analogous to its role in the nucleus, we wondered if modulating levels of mtDNMT1 altered 

transcription of the mitochondrial genome. We decided to take advantage of the system available 

to us that already expressed higher levels of DNMT1. Increased mtDNMT1, as a result of loss of 

p53, is seen in p53-/- MEFs cells as compared to wild type MEFs. RNA was isolated from both 

of these cell types and cDNA was synthesized from each using random hexamers. The cDNA 

was then subject to qPCR using primer sets designed to analyze expression of different 

mitochondrial genes. Expression of three different protein coding genes on the heavy strand, i.e. 

ND1, Cox1 and ATP6, and the only protein coding gene on light strand, ND6, were chosen for 

analysis. No change in expression was seen for the Cox1 and ATP6, while ND1 showed a 

significant increase in expression in p53-/- cells as compared to wild type cells (Figure 2-6). In
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Figure 2-6: Effect of increased expression of mtDNMT1 on transcription of mitochondrial 
genes exhibits gene specific changes.  

RNA isolated from wild type and p53-/- MEFs was converted to cDNA using random hexamers. 
The cDNA was analyzed for an effect on transcription by using primer sets against four different 
mitochondrial genes. An increase in ND1 gene expression in p53 -/- cells was siginificantly 
higher (mean = 1.73, SE = 0.18, 95% CI = 1.37, 2.09) in wt MEFs (mean = 0.95, SE = 0.09, 95% 
CI = 0.76, 1.15). ND6 expression in p53 -/- cells was siginificantly lower (mean = 0.75, SE = 
0.07, 95% CI = 0.59, 0.90) than in wt MEFs (mean = 1.14, SE = 0.11, 95% CI = 0.91, 1.38). The 
values represent mean ± SE of three independent biological repeats. 
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Figure 2-7: Careful analysis of effect of increased expression of mtDNMT1 on 
mitochondrial transcription reveals a strand specific effect. 

RNA was isolated from wild type and p53-/- MEFs and cDNA was synthesized using gene 
specific primers instead of random hexamers. On the heavy strand, the two protein coding genes 
ND1 and Cox1 showed an increase and effect was more dramatic in comparison to using random 
hexamers (Figure 2-8). A previous decrease seen on ND6 was lost in this analysis. These studies 
were performed in collaboration with Lisa Shock. The data represents mean ± SD and is 
representative of two independent biological repeats. 
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contrast, ND6 showed a modest decrease in p53-/- cells in comparison to wild type (Figure 2-6). 

Student’s t-test was applied to establish significance and the difference was found to be 

significant for ND1 and ND6 (p < 0.05). This result, an increase in ND1 with a simultaneous 

decrease in ND6 and no change in ATP6 and Cox1 expression levels, implied that the effect of 

increased mtDNMT1 on mitochondrial transcription occurs in a gene specific fashion. 

DNMT1 regulates mitochondrial transcription in a strand specific fashion: 

 Transcription of the mitochondrial genome occurs individually on the heavy and the light 

strand through their respective promoters. Once transcription begins, a polycystronic transcript is 

generated that mimics the composition of its coding strand along its entire length on the 

mitochondrial genome. The nature of mitochondrial transcription revealed a technical flaw in our 

previous study on effect of mtDNMT1 overexpression on mitochondrial transcription. In our 

previous study, we synthesized cDNA from RNA using random hexamers. Thus, both strands 

were equally represented in the cDNA. Subsequent qPCR thus yielded an average of 

transcription from the two strands. Hence, an opposite effect on the two strands or an effect on 

one strand with none on the other would either neutralize or minimize any differences in our 

study and small differences would be entirely eliminated. To overcome this issue, we modified 

our strategy to use gene specific primers to synthesize cDNA from RNA of the two cell lines. 

Sense and antisense primers against the ATP6 gene were used to synthesize cDNA from the light 

and heavy strand of the mitochondrial genomes respectively. cDNA was analyzed by qPCR 

using the same primer sets as before. As indicated in Figure 2-7, ND1 shows an increase in 

expression in p53 -/- cells as compared to wild type, that is much more dramatic than seen in the 

previous analyses (Figure 2-6).  Cox1, that failed to show any difference in earlier studies, also 

showed an increase in p53-/- cells as compared to wild type (Figure 2-7). It should be noted that 
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both ND1 and Cox1 are present downstream of the mitochondrial transcription terminator site, 

which is responsible for the production of high levels of rRNA synthesis required to support 

mitochondrial translation. No change was seen in ND6, a gene that showed reduction in 

expression in p53-/- cells in the previous studies (Figure 2-7). No change could be seen in either 

the 12S rRNA or the 16S rRNA gene. These results suggest a strand-specific effect of over 

expression of mtDNMT1 on mitochondrial transcription, perhaps due to altered promoter firing. 

Increased mtDNMT1 expression causes an increase in expression of protein coding genes on the 

heavy strand and does not appear affect the expression of genes on the light strand.  

Discussion: 

Previous studies might have under-estimated the methylation levels of 5mC in the 

mitochondrial DNA: 

 5-hydroxymethylcytosine (5hmC) is a new modification that has been identified in the 

nuclear genome. This modification is generated from 5mC by the action of Tet enzymes in the 

presence of α-ketoglutarate and Fe2+. The fact that this nucleotide represents a new form of 

modified base and is derived from 5mC, prompted us to ask whether this modifications is present 

in the mitochondrial genome. As shown in Figure 2-5 and 117, we have successfully detected 

5hmC in mitochondrial DNA. The presence of 5hmC as well as 5mC in mtDNA suggests that 

previous studies likely under-estimated the level of modified bases present in mitochondrial 

DNA. Previous studies using restriction enzyme digestion would not have distinguished 5mC 

from 5hmC, due of inability of restriction enzymes to differentially cleave sites that are either 

methylated or hydroxymethylated 111. Besides, using restriction enzyme digestion only analyses 

cytosine modification at the enzyme recognition sites, and thus would only capture a small 
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percentage of modifications present in mtDNA. Nearest neighbor analysis, which involves 

hydrolyzing DNA to a single nucleotide level and specifically analyzing spot corresponding to 

5mC on a TLC plate would not have identified presence of 5hmC in the mitochondrial DNA 

fraction because no standard was available for comparison at that time 110, 111. 

 Although both 5mC and 5hmC antibodies are highly specific, they likely display different 

affinities towards their antigens. As a result, the extent of pull down of mtDNA with each of the 

antibodies cannot be used at as a measure of relative abundances of the two modifications in the 

mitochondrial genome. In order to determine the abundance of each of the modifications in the 

mitochondrial DNA assays we plan to use LC-MS to quantitate the abundance of modified 

cytosine in mtDNA following hydrolysis to the single nucleoside level.  

At the time of this experiment, only 5hmC had been reported as a newly identified base 

in the genome. Later, two additional cytosine modifications, 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) were identified as being present in the nuclear genome. These 

modifications are formed by sequential conversion of 5hmC to 5fC and then to 5caC in a 

reaction catalyzed by Tet enzymes 32. It is yet to be determined if these are present in the 

mitochondrial DNA as well, but is likely since 5hmC was found in the mitochondrial fraction. 

Antibodies against 5fC and 5caC modifications have recently become commercially available 

(Active Motif). We plan to validate the specificity of these antibodies and then use them in a 

MeDIP type of assay to detect these modifications in the mitochondrial DNA. We hypothesize 

that 5mC is generated in the mitochondrial DNA by mtDNMT1, which then is further converted 

into 5hmC by as yet unknown mechanism. If Tet enzymes catalyze this conversion, then it is 

likely that 5fC and 5caC will also be present in mtDNA.  
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Role of mtDNMT1 in regulating mitochondrial transcription: 

p53 has been shown to have an isoform that translocates to the mitochondria. Hence, it 

can be argued that the effect seen on mitochondrial transcription in HCT116 p53 -/- cells could 

be a result of loss of p53 rather than an increase in mtDNMT1 expression. p53 is important in 

regulation of mitochondrial biogenesis and loss of p53 has been shown to cause a decrease in 

mitochondrial copy number 119, 120. Our lab has not been able to validate these results using wild 

type and p53-/- MEFs and we found a similar mitochondrial DNA copy number in both the cell 

lines (Lisa Shock, personal communication). Changes in mitochondrial transcription without 

changes in mitochondrial copy number in these two cell lines led us to believe that the changes 

are due to over-expression of mtDNMT1 rather than loss of p53. Furthermore, the effect of p53 

on transcription would have resulted in an increase or decrease alone in expression of all the 

protein coding genes studied, subject to its role as a transcriptional repressor or activator in 

mitochondria. There is a p53 binding site predicted in the D-loop regulatory region near the 

heavy and light strand promoters. Whether p53 binds at this site and regulates transcription of 

mitochondrial genes by direct binding remains to be determined. In order to further tease apart 

the role of p53 vs DNMT1 in regulation of mitochondrial transcription, DNMT1 will be over-

expressed in cells that maintain normal p53 levels.  

 It has been speculated that there is cross-talk between the nuclear and the mitochondrial 

genomes, although it is not known whether epigenetics plays a role in this process. To account 

for such a possibility, it was important that we modulate levels of mtDNMT1 without change in 

nuclear DNMT1 expression. We have cloned full length DNMT1 cDNA carrying the upstream 

mitochondrial leader peptide. The ATG start codon for nuclear DNMT1 was then mutated to 
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ATC. Such a clone is expected express a mitochondrial form of DNMT1 without expressing the 

nuclear DNMT1. Our attempt at stably expressing this clone in different cells has thus far not 

been successful. We then further mutated the sequences around ATG1 and ATG2 to put them in 

the context of an ideal Kozak consensus sequence 121. This is expected to further enhance 

translation of mtDNMT1 from ATG1 and ATG2 giving us increased expression of the 

mitochondrial isoform without changing levels of nuclear DNMT1. We plan to use this clone to 

generate cell lines in which mtDNMT1 is stably over-expressed. Transcription patterns of 

different mitochondrial genes will be studied in these cells to elucidate the role of DNMT1 in 

mitochondrial transcription, in the absence of a change in p53 levels.  

Model for regulation of mitochondrial transcription by mtDNMT1: 

Our analysis on mitochondrial transcription was performed on cDNA synthesized using 

gene-specific primers (Figure 2-7). These studies represent steady-state levels of only the 

polycistronic transcripts, and fail to capture the contribution of mature processed mRNA 

molecules. To tease apart gene specific versus strand specific effects on mitochondrial 

transcription, we now plan to perform gene-specific and strand-specific transcription analyses. 

These studies will use gene-specific primers designed in every gene along both heavy and the 

light strand, to synthesize cDNA. The cDNA can then be analyzed for expression of the same 

gene as the one used for cDNA synthesis, using nested primers by qPCR. Such an analysis will 

account for steady state levels of both the mature mRNA molecules as well as the polycistronic 

transcripts. 

Our results from studies on mitochondrial transcription suggest several possible 

mechanisms for regulation of mitochondrial transcription by mtDNMT1, which are not mutually 
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exclusive. Our results indicate that genes downstream of the MTERF binding site, ND1 and 

Cox1, were upregulated upon overexpression of mtDNMT1 due to loss of p53. Such a result 

could indicate that transcription termination by MTERF was impaired by increased mtDNMT1 

expression, causing an increased read-through of the downstream genes by the transcription 

machinery. We hypothesize that mtDNMT1, either by methylating the MTERF binding sequence 

or through protein - protein interaction with MTERF, disrupts binding of MTERF at its 

recognition sequence (Figure 2-9). This would be expected to cause inefficient termination of 

HSP1 transcription but should also interfere with the formation of a transcription bubble (Figure 

2-9). MTERF binds at two sites of the mitochondrial genome, one downstream of 16S rRNA 

gene and the other adjacent to the HSP1 promoter, forming a transcription bubble (Figure 2-8). 

This allows efficient recycling of transcription machinery for expression of 16S rRNA and 12S 

rRNAs genes expected to be most abundantly required for translation 74. This efficient recycling 

machinery would be prevented and this might be expected to reduce 12S rRNA and 16S rRNA 

gene expression, while increasing read-through to downstream protein coding genes. 

Mitochondrial transcription is unique in its mechanisms for transcription inititation, 

regulation and termination, the details of which have been discussed earlier. This is the first 

demonstration that epigenetics may be involved in regulation of mitochondrial transcription. In 

the nucleus, gene silencing through DNA methylation entails binding of MBD domain-

containing proteins to methylated DNA, followed by recruitment of HDACs and chromatin 

remodeling factors to bring about compaction of chromatin. Such a mechanism takes advantage 

of the fact that DNA is wrapped around histones. Mitochondria, on the other hand, lack histones, 

although the genomes are complexed with a number of proteins including at least one HMG 

containing protein. Hence, DNA methylation might be expected to operate through mechanisms 
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different from those operating in the nucleus. One of the possible ways (discussed above) where 

binding of MTERF could be disrupted, bringing about lack of termination of transcription. 

Another possible mechanism would be to modify the way in which TFAM binds 

mitochondrial DNA. TFAM is known to coat mitochondrial DNA across its entire length with a 

stoichiometry of one TFAM molecule per 15-20 bp of mitochondrial DNA 57. This allows 

mitochondrial DNA to form the nucleoid structure. mtDNMT1 could potentially modify TFAM 

association with mitochondrial DNA, giving mtDNA a more relaxed conformation for more 

efficient transcription. Furthermore, TFAM has been shown to repress transcription from HSP2 

promoter by binding at the TFAM response element (TRE) present near the HSP2 promoter and 

therefore limiting the recruitment of POLRMT-TFB2M transcription initiation complex at the 

HSP2 promoter 76, 122. Methylation dependent disruption of TFAM binding at this site would thus 

be expected to cause increased recruitment of TFB2M-POLRMT complex at HSP2 promoter, 

resulting in higher levels of heavy strand protein coding genes, as seen in our studies (Figure 2-

7).  

The increased expression of heavy strand transcripts as seen in Figure 2-7, could also be 

the result of increased recruitment of the core transcription machinery, POLRMT and TFB2M, at 

the HSP2 promoter. The TFB2M homologue in yeast is involved in promoter recognition and 

transcription initiation along with RpoF1, the yeast homologue of POLRMT 123. Although 

TFB2M in mammals is not involved in promoter recognition, it helps stabilize POLRMT and 

activates it to promote transcription 80. It remains to be determined if the TFB2M-POLRMT 

heterodimer has higher affinity for methylated DNA as compared to unmethylated DNA. If so, 

increased expression of mtDNMT1 upon loss of p53 could result in promoter specific 
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methylation of HSP2 which in turn can cause increased recruitment of the initiation complex at 

the HSP2 promoter. 

DNMT1 is the only known catalytically active DNA methyltransferase that has an 

isoform present in the mitochondria. Traditionally DNMT3a and DNMT3b act as de novo 

methyltransferases which establish methylation patterns that are maintained by DNMT1. Since 

DNMT3a and DNMT3b were not found in the mitochondrial fraction, it can be speculated that 

DNMT1 may be responsible for both generating and maintaining the methylation patterns in the 

mitochondria. Thus, by methylating specific sites in the D-loop control region mtDNMT1 can 

exert control of mitochondrial transcription.  

Catalytic activity of mtDNMT1: 

 In studies performed by Lisa Shock, a cell line was created in which a Tandem Affinity 

Purification (TAP) tag was incorporated in one endogenous allele of DNMT1 at the C-terminal 

end. The site of incorporation was just before the stop codon allowing expression of full length 

DNMT1 containing a fusion TAP tag at its C-terminal. Use of the endogenous promoter allowed 

expression of protein at levels normally found in the cell. This cell line was created to allow 

efficient purification of DNMT1 protein under mild conditions which would essentially retain its 

catalytic activity. Using this particular cell line, Lisa performed a three step purification of 

DNMT1 exclusively from the mitochondrial compartment and found that mtDNMT1 associates 

with mtDNA. When subjected to an in vitro enzyme assay, she showed that mtDNMT1 is 

catalytically active even when purified from crude mitochondrial preparation treated with trypsin 

prior to lysis or pure mitochondrial fraction isolated using percoll gradient (Lisa Shock 



68 

 

Dissertation). These studies will further attest the role of mtDNMT1 in methylation of 

mitochondrial DNA and possible regulation of downstream processes.  
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Figure 2-8: Proposed model for MTERF-mediated transcription termination: 

Transcription from HSP1 is facilitated by formation of a transcription bubble as depicted in the 
diagram. This bubble is formed by MTERF binding at its two binding sites. This allows efficient 
recycling of the machinery to produce high levels of 12S rRNA and 16S rRNA transcripts 74. 
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Figure 2-9: Model for regulation of mitochondrial transcription termination by 
mtDNMT1: 

We speculate that mtDNMT1 may disrupt the formation of a transcription bubble (Figure2-8). It 
may either methylate MTERF binding site (A) or via protein – protein interaction with MTERF 
(B) and therefore prevent MTERF binding. This may allow increased read through of the 
downstream protein coding genes, ND1 and Cox1. 

A) 

B) 
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Chapter 3: Characterization of role of Tet enzymes in generation of 5hmC in 

mtDNA 

Introduction 

Recently a novel modification of cytosine, 5-hydroxymethylcytosine (5hmC), was identified 

in vivo, formation of which is catalyzed by Ten – Eleven translocation (Tet) family of proteins 24. 

There are three mammalian paralogs within the Tet family, namely Tet1, Tet2 and Tet3. All 

three of these enzymes, expressed as either a full length enzyme or merely the C-terminal 

catalytic domain, can convert 5mC to 5hmC in a Fe2+ and α-ketoglutarate dependent manner in 

vivo as well as in vitro 24, 30, 32.  

The mitochondrial proteome contains approximately 1500 proteins, only 13 of which are 

encoded by mtDNA. All other proteins are encoded by the nuclear genome and translocated to 

the mitochondrial using transport systems involving mitochondrial targeting sequences (MTS) 88 

. Proteins that are destined for transport to the mitochondria carry sequences that serve as a code 

for their localization to the mitochondria. Proteins transported to the matrix usually contain 

MTSs that are 10 to 60 amino acids in length and form an amphipathic helix with one face 

containing hydrophobic residues and the other containing positively charged residues 88. The 

MTSs are usually N-terminal in position but proteins containing C-terminal, e.g. DNA helicase 

Hmi1 in yeast, or internal MTSs, e.g. BCS1, have also been described 90, 91. These MTSs are 

recognized by proteins that are part of TOM and TIM translocases, which then facilitate 

transport of proteins to the mitochondrial matrix. 



72 

 

Objectives 

5hmC is among the newly identified cytosine modifications present in nuclear DNA. Similar 

to nuclear DNA, mtDNA contains 5mC and a nuclear encoded DNA methylase is responsible for 

its establishment and maintenance in the mitochondrial genome. Having validated the presence 

of 5mC, we explored the possibility that 5hmC was present in mtDNA. Here we describe our 

efforts to define the mechanisms involved in generation of 5hmC in mtDNA. We sought to 

explore the possibility that there is Tet mediated conversion of 5mC to 5hmC in mtDNA. Our 

overall goal is to identify mitochondrial epigenetic mechanisms, other than methylation, that 

either amplify or nullify effects of 5mC in mtDNA. These newly identified mechanisms will add 

another level of fine tuning to epigenetic regulation of mitochondrial processes and therefore 

mitochondrial function. 

Materials and Methods 

Cell Culture 

 HCT116 neoS cells were grown in RPMI 1640 medium (Gibco/Invitrogen) at 37 ᴼC in 

5% CO2. Wild type, DNMT1 +/- and DNMT1 -/- mouse ES cells were a kind gift of Masaki 

Okano and colleagues (Riken Center for Developmental Biology, Japan). Tet1+/- and Tet1 -/- ES 

cells were obtained from Rudolph Jaenisch and colleagues (Whitehead Institute of Technology, 

MA) 124. Mouse ES cells were maintained at 37 ᴼC in 10% CO2 on Feeder layers in a DMEM 

medium (Gibco/Invitrogen) containing 10% FBS (Gemini Biologicals), 2mM (1%) glutamine 

(Gibco/Invitrogen), 500 units/ml penicillin (1%) (Gibco/Invitrogen), 500 µg/ml streptomycin 

(1%) (Gibco/Invitrogen), 1mM (1%) sodium pyruvate (Gibco/Invitrogen), 1% non-essential 
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amino acids (Gibco/Invitrogen) and 0.2% β – mercaptoethanol. Leukemia inhibitory factor (LIF) 

was added to Mouse embryonic stem cells at a final concentration of 1 µg/ml, to maintain 

pluripotency. Feeder layers were made fresh every two weeks, by culturing wt MEFs in DMEM 

medium (Gibco/Invitrogen) containing 10% FBS at 37 ᴼC in 10% CO2, irradiated to 40 Gray and 

plated on collagen coated dishes at least 24 hours prior to use as feeders. To avoid interference 

from MEF feeder layers, mouse ES cells were cultured on feeder free collagen coated dishes for 

at least two passages before they were used for experiments.  Owing to cell cycle regulated 

expression of DNMT1 and possibly TETs, cells were fed 24 hrs prior to replating them for 

experimental set up. Cells were harvested 24 hours after replating thus ensuring the majority of 

cells were in S-phase and therefore maximally expressing DNMT-1. Maintaining this procedure 

for all the experiments ensured consistency and reproducibility of results. 

Subcellular fractionation to isolate mitochondria from cells: 

Mitochondria were isolated as described in Chapter 2. Depending on the downstream 

application, the mitochondrial pellet was treated differently as mentioned below:- 

a) Immunoblots:- After two washes with mitochondrial homogenization buffer containing  

PI tablets, the mitochondrial pellet was collected in a pre-weighed 1.5ml centrifuge tube. The 

tube was weighed to determine the mitochondrial pellet weight. The pellet was suspended in 

SDS lysis buffer with a volume five times the weight of the pellet. The lysate was passed through 

a 21 gauge needle, 15 times, to sheer DNA and make the lysate less viscous. For small volumes, 

lysate was sonicated using the Bioruptor bath sonicator on half water- half ice mixture for 7 mins 

on High, with a 30 sec ON and 30 sec OFF cycle. 



74 

 

b) Trypsin treatment of mitochondrial pellet prior to lysis, for enzyme assay and 

immunoblot:- After two washes with mitochondrial homogenization buffer containing PI tablets, 

the mitochondrial pellet was washed once with mitochondrial homogenization buffer without PI 

and divided into two equal fractions. Mitochondrial pellet weights were obtained and the pellets 

were resuspended in Trypsin Digestion buffer (10 mM Hepes–KOH (pH 7.4), 250 mM sucrose, 

0.5 mM EGTA, 2 mM EDTA, and 1 mM DTT), in a volume 20 times the weight of the pellet. 

Trypsin was added only to one fraction at a final concentration of 10 µg/ml, while the other 

fraction was treated as a control. Samples were incubated at room temperature for 20 minutes 

with occasional inversion to mix. At the end of the incubation, bovine trypsin inhibitor was 

added to both the control and the trypsin treated fraction to a final concentration of 10 µg/ml. 

Mitochondrial pellets were washed twice with trypsin digestion buffer containing protease 

inhibitors. For immunoblots, lysates were prepared as mentioned above by resuspending the 

mitochondrial pellet in SDS lysis buffer. For enzyme assays, mitochondrial pellet weights were 

recorded and pellets were resuspended in 25 µl Tet1 lysis buffer (20mM Tris, pH 8.0, 300mM 

NaCl, 0.1% Tween20, 5% Glycerol and Water. 1 tablet of EDTA free protease inhibitor (PI) 

tablets (Roche) was added for every 25 ml of lysis buffer. 2mM DTT was added freshly before 

use and stored at -20 ᴼC as 50% glycerol stocks by adding 25 ul glycerol. 

c) Percoll purification of mitochondria for enzyme assay:- The mitochondrial pellet 

obtained after trypsin treatment was washed twice with trypsin digestion buffer containing PI. 

For percoll purification, pellets were resuspended in 1 ml mitochondrial homogenization buffer 

containing PI. The resuspnded pellets were laid on top of a 10 ml percoll gradient, constructed by 

mixing 6.55 ml Percoll, 2.2 ml of 2.5 M sucrose, 12.25 ml of TE, pH 7.4 and using 10 ml of the 

mixture per gradient. After overlaying the mitochondrial pellet on the gradient, samples were 
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centrifuged at 60,000 x g for 1 hr at 4 ᴼC in a Beckman Ultracentrifuge using a fixed angle rotor. 

The mitochondria migrate to the center of the gradient and appear as a white band. Mitochondria 

were collected using a 21 gauge needle to pierce the tubes and using a syringe to collect the 

white band. The collected mitochondria were then transferred to 14ml round bottom falcon tubes 

and washed thrice using 3 ml mitochondrial homogenization buffer containing protease inhibitor 

tables by centrguation at 10,000 x g for 15 mins at 4 ᴼC in J2 centrifuge. After the final wash, the 

mitochondrial pellets were lysed in 25 µl of Tet1 lysis buffer (20mM Tris, pH 8.0, 300mM NaCl, 

0.1% Tween20, 5% Glycerol, 2mM DTT and protease inhibitor tables) and stored as 50% 

glycerol stocks. 

d) Isolation of mitochondrial DNA for MeDIP/HydroxyMeDIP:- The mitochondrial fraction 

was collected and washed twice with 1X PBS, pH7.4 with centrifugation at 10,000 x g in a table 

top centrifuge. At the end of the second wash, the mitochondrial pellet weights were noted and 

mitochondria were lysed in 200 µl mtIP lysis buffer (0.5% Triton X-100, 300mM NaCl, 50mM 

Tris-HCl, pH 7.4).  Mitochondrial lysates were subjected to phenol - chloroform extraction to 

isolate mtDNA, which was then treated with RNAseA (1 µl of 10 mg/ml stock) at 37 ᴼC for one 

hour followed by treatment with proteinase K (1 µl of 20 mg/ml stock and 0.25% SDS (final 

concentration)) at 37 ᴼC overnight to eliminate contaminating RNA and protein respectively. The 

DNA was further purified by another two rounds of phenol – chloroform extraction and one 

round of ethanol precipitation. Finally, the DNA was resuspended in TE buffer, pH 8.0, and 

sonicated using Bioruptor bath sonicator on half water- half ice mixture in cycles of 15 mins on 

High, with a 30 sec ON and 30 sec OFF cycle until size range of 200-700 bp was obtained. The 

DNA was then used for MeDIP/HydroxyMeDIP assay. 
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e) Isolation of mitochondrial DNA for analysis by HPLC:- Post-Nuclear supernatant, 

collected at the end of three rounds of dounce homogenization, was centrifuged at (2500 x g) 

3000 rpm for 10 minutes at 4 ᴼC in J6-MI centrifuge to pellet the remaining unbroken cells. The 

supernatant was collected, leaving behind 2 ml to avoid contamination from unbroken cells,  and 

transferred to a 14 ml round bottom centrifuge tube (BD Falcon, Cat no:- 352059) and 

centrifuged at (10,000 x g) 9000 rpm for 15 minutes at 4 ᴼC in Beckman J2-HC centrifuge. The 

mitochondrial fraction was then collected and washed twice with 1X PBS, pH7.4 with 

centrifugation at 10,000 x g in a table top centrifuge. At the end of the second wash, 

mitochondrial pellet weights were noted and pellets were resuspended in 400 µl 1X PBS, pH7.4, 

44 ul 10X DNAseI buffer (1X final conc.) and 8 ul DNAseI (16 units) to remove contaminating 

nuclear DNA. The reaction was incubated at room temperature for 30 mins and terminated by 

adding EDTA to a final concentration of 5mM. Thereafter, pellets were washed twice with IX 

PBS, pH 7.4 containing 25mM EDTA with centrifugation at 10,000 x g for 15 mins. At the end 

of the last wash, mitochondrial pellet weights were noted and mitochondria were lysed in 200 µl 

mtIP lysis buffer.  Mitochondrial lysates were subjected to phenol - chloroform extraction to 

isolate mtDNA, which was then RNAseA (1 µl of 10 mg/ml stock) and proteinase K (1 µl of 20 

mg/ml stock and 0.25% SDS (final concentration) treated to eliminate contaminating RNA and 

protein respectively. Samples were then further treated with 50 units of plasmid safe ATP 

dependent exonuclease (Epicenter Biotechnologies) in 250 µl total volume for 4 hrs to degrade 

contaminating genomic DNA. mtDNA was assessed for extent of contamination by nuclear 

DNA, by using qPCR to amplify intron 3 region of actin gene and normalizing it to 16S rDNA 

content. Only DNA containing less than 1% contaminating nuclear DNA was used further for 

hydrolysis and analysis by LC-MS. 
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β – Glucosyltransferase assay 

 β – Glucosyltransferase (β- GT) assay was performed using Quest 5-hmC detection kit 

(Zymo research Cat. No. D5410) as per the manufacturer’s instructions. Briefly, 150 ng of 

human mitochondrial DNA or 80 ng of mouse mitochondrial or genomic DNA was added to a 

reaction mixture containing 1 X β-GT buffer, 1 X UDPG, 32mM S-adenosyl methionine and 4 

units each of CpG  and GpC methyltransferases (NEB Cat nos. M0226S and M0227S). Two 

units of β – glucosyltransferase enzyme was added to each of the samples and the reaction was 

mixed by pipetting up and down. A corresponding negative β- GT control was set up for each of 

the samples. The entire reaction was assembled on ice. The reaction was then incubated at 30 ᴼC 

for 2 hrs in a thermocycler. At the end of the incubation, 1 unit of GlaI enzyme, diluted in GlaI-

enzyme buffer (10 mM Tris-HCl (pH 8,5 at 25°C); 5 mM MgCl2; 10 mM NaCl; 1 mM 2-

mercaptoethanol), was added to each of the samples including the negative controls and the 

reactions were further incubated at 30 ᴼC for 16 hrs. At the end of the 16 hr incubation, the 

extent of protection of mitochondrial DNA fragments were studied using end point PCR with 

primer sets designed agsinst different region of the mitochondrial DNA. DNA standards (Active 

Motif) were run alongside DNA samples from cells in each assay. The primers used are listed in 

Table 3-1. The cycling conditions for the qPCR are as follows:- Step 1: Activation at 95 ᴼC for 

15 mins, Step 2: Denaturation at 94 ᴼC for 30 secs, Step 3: Annealing at 55-60 ᴼC for 30 secs, 

Step 4: Extension at 72 ᴼC for 30 secs, Step 5:  Plate read, Step 6: Go to Step 2, 40 times, Step 7: 

Final extenstion at 72 ᴼC for 5 mins, Step 8: Melting curve, 40 ᴼC to 90 ᴼC, read every 1 ᴼC, 

hold 1 sec. 
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Tet Enzyme Assay 

Trypsin treated crude or percoll purified mitochondrial lysate (5 µl), containing 50% glycerol, 

was incubated with 100 ng of methylated DNA containing the human APC gene promoter 

sequence (Active Motif, Cat. No. 55008) in the presence of TET enzyme assay buffer (100mM 

HEPES, pH 6.8, 150 uM Fe(NH4)2(so4), 4mM Ascorbate, 2mM alpha-ketoglutarate and water) 

at 37 ᴼC for 1 hr in a PCR thermo cycler. The final volume of the reaction was adjusted to 25 µl 

using HPLC water.  No more than 5 ul of the lysate was used for the assay to limit glycerol 

content in the reaction to less than 10%. At the end of the 1 hr incubation, the reaction was 

terminated by quenching on ice for 5 mins. Boiling of samples to terminate the reaction or to kill 

the enzyme was not possible since non-specific heat-dependent oxidation of 5mC to 5hmC was 

seen. The reactions were then stored at -80 ᴼC until further use for end point analysis using 

immunodetection on slot blots. Purified recombinant C-terminal domain of Tet1 protein (1 µg), 

shown to have enzyme activity (Active Motif, Cat no. 31363) was used as a positive control. For 

the negative control, 5 ul of the respective mitochondrial lysates were boiled for 10 mins before 

use. All reactions were performed alongside a corresponding no substrate control to account for 

signal intrinsically obtained from mitochondrial lysates due to presence of mtDNA.  

Immunodetection of 5hmC using a slot blot 

 Slot blotting was used as the method for end point analysis of enzyme assay. DNA from 

enzyme assay reaction sample (20ng/5ul) was mixed with 30 ul of 20 X SSC (175.3g of NaCl, 

88.2g of sodium citrate in 1L water, adjusted pH 7.0 with HCl). The final volume was adjusted 

to 100 µl with water, giving a final concentration of 6X SCC. The samples were boiled for 
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Mouse 

16S-2 5’-AAAAGAGGGACAGCTCTTCTGGAACG-3’ 5’-TCGTTTAGCCGTTCATGCTAGTCC-3’ 

16S-3 5’-CGGTTTCTATCTATTTACGATTTCTCCC-3’ 5’-GCCACCCTAATAACCTTCTCTAGG-3’ 

ATP6/
COX3 5’-CCCACCAACAGCTACCATTAC-3’ 5’-CTAGACCTGATGTTAGAAGGAGGG-3’ 

Human 

ATP6 5’-ATTCAACCAATAGCCCTGGCCG-3’ 5’-ACGTAGGCTTGGATTAAGGCGAC-3’ 

12S 
rRNA 5’-AGTTCACCCTCTAAATCACCACG-3’ 5’-TGACTTGGGTTAATCGTGTGACC-3’ 

2 5’-GAGACAAGTCGTAACATGGTAAG-3’ 5′-GGGTAAGGTTTGCCGAGTTCCT-3’ 

 

 

Table 3-1: Sequences of primers used for detection of 5hmC in mitochondrial DNA 
fragments from human and mouse.  

These primers were used for end point analysis of β – Glucosyltransferase assay 
performed on human and mouse mitochondrial DNA samples.  
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10 mins and immediately quenched on ice for 10 mins. An equal volume (100 µl) of 20 X SSC 

solution was added to each of the samples. A nitrocellulose membrane, 3.5 cm x 12 cm in size, 

was first rinsed in water for 10 mins followed by incubation in 10 X SSC solution for 10 mins. A 

3mm whatman paper was cut to the same dimensions as the membrane, soaked in 10X SSC and 

used as a support underneath the membrane to keep it from tearing under vacuum. The entire 

apparatus was assembled as per the manufacturer’s instructions. All the bubbles were rolled out 

to avoid improper loading of samples. All the wells were rinsed with 500 µl of 20 X SSC and 

suction was applied slowly to drain all the SSC buffer. Samples were loaded on the membrane, 

with the vacuum closed, and again suction was applied slowly to immobilize the sample on the 

membrane. Precautions were taken to ensure that the membrane did not run dry. Once all the 

samples were spotted on the membrane, the apparatus was disassembled and membrane was 

rinsed in 2X SSC for 5 mins with slow shaking and then UV cross linked. The membrane was 

blocked using 5% milk for 1 hr. Primary Antibody (1:500 of anti-5hmC) (Active Motif, Cat. No. 

39791), resuspended in 5% milk, and 1:15,000 of Goat anti-Rabbit secondary antibody was used. 

Chemiluminescent substrate (Thermo scientific) was used to develop the blot. 

MeDIP/HydroxyMeDIP analysis of DNA from mouse embryonic stem cells:  

 MeDIP/HydroxyMeDIP assays were performed as described in Chapter 2. Total DNA 

was isolated from different mouse embryonic stem cells including wild type, DNMT1 +/-, 

DNMT1 -/-, Tet1 +/-, Tet1 -/- cells using Qiagen DNAeasy kit. DNA was sonicated to 200-700 

bp size range and subjected to MeDIP/HydroxyMeDIP assay.  
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Cloning of Tet1 MTS- GFP fusion constructs:- 

 Total RNA was isolated from wild type mouse ES cells and cDNA was synthesized using 

random hexamers, which was then used for PCR amplification of different putative mouse Tet1 

MTSs starting at ATG1, ATG3 and ATG4. The PCR products were separated on a 1% 

TAE/EtBr agarose gel, visualized using UV and the desired bands were excised from the gel 

using a clean razor blade. The bands were then gel-purified using a gel extraction kit (Qiagen). 

pLEGFP vector (Addgene) as well as gel-extracted PCR products were subjected to restriction 

enyme digestion using BglII and BamHI to generate sticky ends for ligation. After the digest, the 

desired bands were gel-purified as described above and ligation reactions were set up using 

purified linear fragments of vector and individual PCR products using T4 DNA ligase. The 

ligation reactions were transformed into TOP10 cells and selected on media containing 

appropriate antibiotics. DNA from different colonies was screened for presence and orientation 

of appropriate insert in pLFEGP vector using restriction enzyme digestion. Positive clones were 

further verified for correct insert using DNA sequencing. A total of three mouse Tet1-GFP 

fusion constructs were generated, including MTSs starting at ATG1 (F1R3 construct), ATG3 

(F3R2 construct) and ATG4 (F4R3 construct) (Figure3-13), which were transfected into NIH3T3 

cells for analysis using confocal microscopy. 

Confocal Microscopy of GFP fusion proteins:- 

Coverslips were prepared for confocal microscopy by incubating them in 1M Nitric acid 

at room temperature overnight with shaking. The next day, the coverslips were rinsed with water 

five to six times adding fresh water for each wash and letting them sit for approximately 45 mins 

to 1 hr with shaking. The coverslips were then sterilized by immersing them in 70% ethanol 
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before placing them in 35 mm dishes. The coverslips were then allowed to dry in the hood 

overnight and in presence of UV to keep them sterile. The coverslips could now be used for 

growth of cells. 

NIH3T3 cells were plated in a 60 mm dish such that cells were ~70-80% confluent at the 

time of transfection. Cells were transfected with F1R3-GFP, F4R3-GFP and F3R2-GFP fusion 

constructs using Poly Jet transfection reagent (Signagen Cat no. SL100688) as per 

manufacturer’s instructions. 24 hours post transfection cells were trypsinized and ~50,000 – 

75,000 cells were plated on a 18 mm x 18 mm poly lysine coated coverslip. 48 hrs post-

transfection cells were rinsed twice with 1X PBS, pH 7.4 and then fixed using 3.7% 

formaldehyde for 15 mins at 37 ᴼC. Cells were again rinsed twice with 1X PBS, pH 7.4  and then 

stained with 25nM Mitotracker red dye by incubating the cells at 37 ᴼC for 45 mins. Cells were 

rinsed thrice with 1X PBS, pH 7.4 before mounting them on slides using vectashield containing 

DAPI stain. The cover slips were sealed on the slides using clear nail polish. Samples were then 

analyzed using confocal microscopy on LSM-510 Meta laser scanning microscope. 

Immunofluorescence:- 

 HeLa cells (50,000-75,000) were plated on a 18 mm x 18 mm poly lysine coated 

coverslip and grown in DMEM containing 10 % FBS overnight at 37 ᴼC. The next day, cells 

were rinsed twice with 1X PBS, pH 7.4 and then fixed using 4% paraformaldehyde for 15 mins 

at 37 ᴼC. Cells were rinsed twice with 1X PBS, pH 7.4  and the cell membrane was 

permeabilized by incubating cells with cold methanol – acetone mixture (1:1) for 15 mins at -20 

ᴼ C. The cells were then rinsed again twice with 1X PBS, pH 7.4 and blocked with starting block 

buffer for 1 hr at room temperature. Following blocking, cells were incubated with Tet1 antibody 
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at 1:2000 and FITC conjugated Goat anti-Rabbit secondary antibody at 1:500 dilution for 1 hr 

each. Cells were washed thrice with 1X PBS, pH 7.4 then stained with 25nM Mitotracker red 

dye by incubating the cells at 37 ᴼC for 45 mins. Cells were washed three times with 1X PBS, 

pH 7.4. and fixed again with 4% paraformaldehyde by incubating the coverslips for 15 mins at 

37 ᴼC. The cells were further washed with 1 X PBS, pH 7.4 twice and the coverslips were then 

mounted using vectashield containing DAPI stain. The coverslips were sealed on the slides using 

clear nail polish. The samples were analyzed using confocal microscopy on a LSM-510 Meta 

laser scanning microscope, using a 63x objective. 
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Results 

I. 5-hydroxymethylcytosine is present in mtDNA: 

The successful detection of 5hmC in immunoprecipitates of mitochondrial DNA using 5hmC 

antibody was demonstrated earlier in Chapter 2. In order to confirm the presence of 5hmC in 

mtDNA, an independent β-glucosyltransferase assay was performed by Dr. Shirley M. Taylor. 

This assay takes advantage of a viral enzyme, β-glucosyltransferase (β-GT), which adds glucose 

moiety specifically on 5-hydroxymethylcytosine residue in the DNA using Uridine 

diphosphoglucose (UDPG) as a substrate (Figure 3-1 A). Following the β-glucosyltransferase 

reaction, DNA is treated with CpG and GpC methyltransferases to methylate all the 

unmethylated CpG and GpC sites respectively in the DNA. DNA is then incubated with 

restriction enzyme GlaI, which cleaves at Pu(5mC)↑GPy (indicated by an arrow) only when 

cytosine present at the cleavage site is either fully methylated or hydroxymethylated. GlaI cannot 

cleave at its target site when cytosine is protected by the glucose moiety (Figure 3-1 B). DNA 

protected from GlaI digest is then analyzed by qPCR. This assay is best used to analyse site-

specific hydroxymethylation of cytosine residues in the DNA. 

As a proof of principle, DNA standards containing either unmethylated, methylated and 

hydroxymethylated cytosines (Active Motif) were subjected to the assay. Only the 

hydroxymethylated DNA reaction containing β-glucosyltransferase enzyme was protected as 

compared to the ‘no β-GT enzyme’ control, which showed no protection of hydroxymethylated 

DNA towards digestion by GlaI (Figure 3-1 C). Template DNA containing either methylated 

cytosines or that containing unmethylated cytosines, treated with methylases, template was also 

completely digested by GlaI.  
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Figure 3-1: Overview of β-glucosyltransferase assay to detect presence of 5hmC.  

A) β – glucosyltransferase enzume catalyzes transfer of glucose moeity from UDPG to 
exclusively to 5hmC. B) Schematic of β-glucosyltransferase assay. Transfer of glucose moiety to 
5hmC protects 5hmC containing DNA from cleavage by GlaI as opposed to the sample not 
containing βGT enzyme. The protected DNA can then be analyzed by PCR. C) β-
gluosyltranferase assay performed on unmethylated, methylated and hydroxymethylated 
substrates provide validate the use of this assay to detect 5hmC in DNA.  

A) 

B) 

C) 



86 

 

 

 

 

Figure 3-2: Agarose gel displaying results of β- glucosyltransferase assay as performed on 
Human and Mouse DNA. 

Human mitochondrial DNA (A) or Mouse mitochondrial and genomic DNA (B), show 
protection of 5hmC-containing mitochondrial DNA fragments after protection by β-GT 
containing samples (Lane 3 for each amplicon) vsersus samples not treated with β-GT enzyme 
(Lane 2 for each amplicon). Lane 1 for each amplicon represents input DNA. ATP6/COX3 
amplicon in mouse does not show any difference in the +β-GT and –βGT lanes. This region was 
shown to contain a mutation in GlaI cleavage site upon sequencing of the fragment. This 
experiment was performed by Dr. Shirley M. Taylor. 

B) 

A) 
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 Protection of unmethylated susbtrate in the absence of CpG and GpC methyltransferases proves 

that GlaI can only act on substrates containing 5mC/5hmC in its cleavage site (Figure 3-1C).  

Using this assay, we could successfully detect 5hmC in human and mouse mitochondrial 

DNA (Figure 3-2) using different amplicons containing the GlaI cleavage site. As shown in 

figure 3-2, three human mtDNA amplicons (amplicons ATP6, 12S and 2) and three mouse 

amplicons (amplicons 16S-2, 16S-3 and ATP6/Cox3) were studied. In each of the amplicons 

studied, a higher signal could be seen in +β-GT samples as compared to the – β-GT controls 

(compare lane 2 (-βGT) vs lane 3 (+ βGT) for each amplicon). Moreover, 5hmC could also be 

detected in mitochondrial DNA fragments using as little as 80 ng of total DNA from cells. This 

eliminates the need to purify mitochondrial DNA for use in this assay. APT6/COX3 amplicon in 

mouse failed to show any difference in the +β-GT and –βGT lanes. This fragment serves as an 

internal control since careful analysis of this fragment using DNA sequencing revealed a point 

mutation polymorphism in the GlaI cleavage site in wt MEF cells, which explains protection of 

DNA from GlaI cleavage in the absence of β-GT.  

DNA Methyltransferase 1 (DNMT1) is not responsible for generating 5hmC in the 

mitochondria: 

Cytosine methyltransferases, including DNMT1, can reversibly form 5-

hydroxymethylcytosine from cytosine in presence of formaldehyde (Figure 3-3) 125. This reaction 

has been shown to occur only under in vitro conditions and the physiological relevance of such a 

mechanism still needs to be investigated. However, since DNMT1, the only member of 

catalytically active methyltransferases, is transported to the mitochondria 117, it was important
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Figure 3-3: Schematic of a proposed mechanism for formation of 5hmC from C by 
DNMTs. 

Liutkeviciute et al. proposed that DNMTs can catalyze in vitro formation of 5hmC from C in the 
presence of formaldehyde as a co-factor. Existence of this reaction under physiological 
conditions is yet to be proven. Figure adapted from Liutkeviciute et al., Nature Chemical 
Biology, 2009. 
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Figure 3-4: MeDIP/hydroxyMeDIP assay on wild type, DNMT1 +/- and DNMT1 -/- mouse 
embryonic stem cells. 

MeDIP (A) and hydroxyMeDIP (B) assay on total DNA from wild type, DNMT1+/- and 
DNMT1 -/- mouse embryonic stem cells reveal decrease in 5mC and a simultaneous increase in 
5hmC in DNMT1-/- cells as compared to wild type cells. The 5mC and 5hmC signal obtained 
from each of the three cell lines were normalized to their respective IgG controls Data represents 
mean ± SD of two independent biological repeats. 

B) 

A) 
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we consider the possibility of mtDNMT1 generating 5hmC in the mitochondria. In support of 

this hypothesis, to date, no member of the Tet enzyme family has been found in the 

mitochondria. To test this hypothesis, genomic DNA was isolated from Wild type, DNMT1 +/- 

and DNMT1 -/- mouse embryonic stem cells (MES), sonicated to a size range of 200-700 bp and 

subjected to MeDIP/HydroxyMeDIP assay. The 5mC and 5hmC signal obtained from each of the 

three cell lines were normalized to their respective IgG controls. Figure 3-4A shows that 

DNMT1 +/- cells show a reduced signal with 5mC antibody, 50% to that seen in wild type cells. 

No further reduction in 5mC content could be seen in DNMT1 -/- cells compared to DNMT1+/- 

cells which could be attributed to the limit of detection of the assay. If DNMT1 was responsible 

for the generation of 5hmC in the mtDNA, a decrease in 5hmC content would be expected in 

cells partially or completely lacking DNMT1 compared to that of wild type cells. On the 

contrary, a modest increase in 5hmC content could be seen in DNMT1 -/- cells as compared to 

wild type cells (Figure 3-4 B).  

Tet activity is present in trypsin treated crude and percoll purified fractions of 

mitochondria 

Before setting out on a quest to determine which member of Tet enzyme family is present 

in the mitochondria, the detection of Tet enzyme activity in the mitochondrial fraction was 

essential. Mitochondria were isolated from HCT116 neoS cells, treated with trypsin and were 

either used as a crude preparation or were further purified using Percoll gradient. Trypsin 

treatment of mitochondrial fractions, prior to lysis, was done to prevent contamination resulting 

from nuclear or cytosolic Tet enzymes fraction adhering to the mitochondrial membrane. Lysates 

containing 50% glycerol were made from both crude and percoll purified mitochondria and used 
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in an in vitro Tet enzyme assay. The assay comprises DNA template containing methylated 

cytosines as the substrate, Fe2+ containing salt, a co-factor essential for activity of Tet enzymes, 

and crude or percoll purified mitochondrial lysate. This assay was set up with the premise that 

Tet enzyme, if present in the mitochondrial fraction, would act on the methylated cytosines in the 

substrate and convert it to a 5-hydroxymethylated form. The newly formed hydroxymethylated 

cytosines in the DNA could then be detected by spotting DNA on a slot blot and probing it with 

5hmC antibody.  

To explore the sensitivity of detection of hydroxymethylated DNA using 5hmC antibody 

on a slot blot, different amounts of hydroxymethylated substrate was spotted on a nitrocellulose 

membrane and probed with 5hmC Ab. (Figure 3-5) As little as 80 pg of hydroxymethylated 

substrate could be detected without any cross reactivity from 50 ng of either methylated or 

unmethylated substrate. This indicated that 5hmC Ab is highly specific, eliminating the 

possibility of false positive results. It also speaks to the sensitivity of the assay in that, by loading 

20 ng of the substrate from the assay and obtaining a signal equivalent to 80 pg of 

hydroxymethylated substrate (Figure 3-5), only 1 in 200 cytosine residues need to be converted 

from methylated to the hydroxymethylated form.  Thus, the assay will allow us to detect very 

small amounts of enzyme activity.  

Optimal conditions for the assay were examined by incubating 200 ng methylated 

substrate with 1 µg of Tet1 recombinant protein (Active Motif) at 37 ᴼC under two different pH 

conditions, pH 6.8 and pH 8, for reaction times of 5, 30, 60 and 180 mins. 20 ng of DNA from 

the reaction was spotted on a slot blot and probed with 5hmC antibody for end-point analysis. No 

generation of 5hmC in template DNA could be detected at pH 8.0 until the reaction was
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Figure 3-5: Optimization of 5hmC antibody for use in a slot blot assay. 

Different amounts of 5hmC containing DNA were spotted on a Nitrocellulose membrane to test 
the sensitivity and the specificity of 5hmC antibody. As little as 80 pg of 5hmC containing DNA 
(Active Motif) could be detected without any cross reactivity against 50 ng of methylated 
(Active Motif) or unmethylated DNA (Active Motif). 
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Figure 3-6: Optimization of in vitro Tet enzyme assay 

1 ug of purified recombinant C-terminal domain of Tet1 enzyme was incubated with 200 ng of 
methylated DNA (Active Motif) at pH6.8 or pH8.0 for the indicated incubation times. Incubation 
at pH6.8 for 1 hr were considered as optimal conditions for the assay. No signal could be 
detected using 5hmC antibody in ‘-ve’ control either at pH 6.8 or at pH 8.0. 0.4ng of 
unmethylated, methylated and hydroxymethylated DNA were spotted as positive controls to 
asses reactivity of the 5hmC antibody.  
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Figure 3-7: In vitro enzyme assay performed on trypsin treated crude mitochondrial 
lysates from HCT116neoS cells. 

A) Immunoblot indicating VDAC and H3K4me3 signals on Whole cells (W), mock treated (M) 
and trypsin treated (T) mitochondrial fractions. The mitochondtial fractions are free of nuclear 
contamination as indicated by lack of H3K4me3 signal B) 0.4 ng of unmethylated, methylated 
and hydroxymethylated DNA spotted on the nitrocellulose membrane acts as positive controls 
for the specificity of the 5hmC antibody. C)  1 µg of recombinant C-terminal domain of Tet1 
(Active Motif) incubated with 100 ng of methylated DNA, serve as positive control for the in 
vitro Tet enzyme assay. D) Mock and trypsin treated mitochondrial fractions on incubation with 
100 ng of methylated DNA indicate Tet activity when compared to corresponding ‘no substrate’ 
controls. 

A) 

B) 

C) 

D) 
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Figure 3-8: In vitro enzyme assay performed on trypsin treated, and percoll purified  
mitochondrial lysates from HCT116neoS cells. 

A) Immuno blot indicating VDAC and H3K4me3 signals on Whole cells (W) and trypsin treated 
percoll purified (M) mitochondrial fractions. The mitochondrial fraction is free of nuclear 
contamination as indicated by H3K4me3 signal B) 0.4 ng of unmethylated, methylated and 
hydroxymethylated DNA spotted on the nitrocellulose membrane acts as positive controls for the 
specificity of the 5hmC antibody. C)  1 µg of recombinant C-terminal domain of Tet1 (Active 
Motif) incubated with 100 ng of methylated DNA, serve as positive control for the in vitro Tet 
enzyme assay. D) Percoll purified mitochondrial fractions on incubation with 100 ng of 
methylated DNA indicate Tet activity when compared to corresponding ‘no substrate’ controls. 

A) 

C) 

B) 

D) 
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incubated for 60 mins, and the signal was lost when the incubation time was extended to 180 

mins (Figure 3-6). However, at pH 6.8, signal could be detected as early as 5 mins which 

increased at 30 mins and further increased at 60 mins (Figure 3-6). However, the signal 

decreased at 180 mins even at pH 6.8 which could be because of further conversion of 5hmC to 

the formylated and carboxylated forms 32. No signal could be detected with 5hmC antibody in 

the no enzyme (-ve) control either at pH 6.8 or pH 8.0. It was evident that incubating the enzyme 

assay reaction at 37 ᴼC for 60 mins at pH 6.8 is optimum for the enzyme assay reaction (Figure 

3-6) and these conditions were chosen for all further experiments.  

Initially, crude mitochondrial preparations from HCT116neoS were tested for 

contamination from the nuclear fraction. Lysates from whole cell, mock and trypsin treated 

mitochondrial fractions were resolved on a 4-15% gradient gel and probed for antibodies against 

compartment-specific markers, VDAC (mitochondrial) and H3K4me3 (nuclear). Equal loading of 

fractions as per cell equivalents is indicated by the VDAC signal (Figure 3-7A). Absence of 

H3K4me3 signals in the mock and trypsin treated mitochondrial fractions indicates lack of 

nuclear contamination, the primary site of localization of Tet family of enzymes (Figure 3-7A). 

Thus, enzyme activity detected in the mock and trypsin treated mitochondrial fractions is 

expected to be the result of Tet enzyme present in the mitochondria rather than carryover of 

nuclear components.  

5 ul of mock and trypsin treated crude mitochondrial fractions were incubated with 100 

ng of methylated DNA substrate in the presence of Tet enzyme assay buffer under optimized 

conditions. 20 ng of DNA substrate from the enzyme assay was spotted on a nitrocellulose 

membrane and probed with 5hmC antibody. Figure 3-7 D shows a signal with 5hmC antibody in 
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lanes containing mock and trypsin treated mitochondrial lysates that was higher than that 

obtained in their corresponding ‘no substrate’ or ‘boiled enzyme’ controls. This suggests that Tet 

enzyme activity in present in both, mock and trypsin treated mitochondrial fractions and this 

activity is lost upon thermal denaturation. An assay performed with Tet1 recombinant protein for 

60 mins acts as a positive control, which shows 5hmC signal higher than that of the 0 hr time 

point or the ‘no enzyme’ control (Figure 3-7C).  Unmethylated, methylated and 

hydroxymethylated substrate (0.4 ng of each) serve as positive controls for the slot blot and for 

the specificity of the Ab (Figure 3-7B).  

An experiment performed using percoll purified mitochondrial preparation also showed a 

similar result, confirming the presence of Tet activity in the mitochondria (Figure 3-8). 

Mitoprot algorithm predicts with a high probability of Tet1 export to the mitochondria. 

There are three members of the Ten- Eleven translocation (Tet) family of enzymes, all of 

which are capable of converting 5mC to 5hmC 24, 30.  Thus, all three of them could possibly 

generate 5hmC in mtDNA, provided they are translocated to the mitochondria. Initial prediction 

of mitochondrial transport was made using Mitoprot software using full length amino acid 

sequence for all three members of the Tet family. Analysis was also performed on amino acid 

sequences starting at each of the ATGs present downstream of the published translation start site. 

Performing the analysis in such a fashion would allow us to predict MTSs that are present 

internally or in the C-terminal region of the protein and help account for isoforms starting at 

ATGs downstream of the published translation start site. Mitoprot analysis on Tet1, Tet2 and 

Tet3 sequence revealed that Tet1 protein starting at ATG3 in human and ATG4 in mouse has a 

high probability of mitochondrial transport. The software also predicted a putative MTS 
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Species ATG number Probability of export to the 
mitochondria 

Human 

ATG 1 0.1793 

ATG 2 0.0076 

ATG 3 0.9541 

Mouse 

ATG 1 0.8294 

ATG 2 0.7732 

ATG 3 0.0079 

ATG 4 0.9300 

 

 

Figure 3-9: Mitoprot analysis of Tet1 enzyme predicts mitochondrial localization. 

Mitoprot analysis was performed on Tet1/2 and 3 proteins to predict the probability of 
mitochondrial transport. The probabilities of mitochondrial transport for Tet1 protein starting at 
different ATGs are shown. Highlighted in green is the Tet1 protein starting at ATG3 in human 
and ATG4 in mouse, showing highest probabilities of mitochondrial transport.  
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expected to facilitate its transport, the sequence of which is highly conserved in both human and 

mouse (Figure 3-9). Such an analysis performed for Tet2 or Tet3 did not yield a high probability 

of mitochondrial transport for any of the sequences analyzed.  

Tet1 may be present in the mitochondria: 

The high probability of mitochondrial transport predicted for Tet1 made it a prime 

candidate for the enzyme responsible for generating 5hmC in mtDNA. To study the presence of 

Tet1 in the mitochondria, mitochondria were isolated from wild type, DNMT1 +/- and DNMT1 -

/- mouse embryonic stem cells and lysates were prepared using SDS lysis buffer. Mouse 

embryonic stem cells were our system of choice because they express high levels of Tet1 mRNA 

when compared to that in different somatic tissues (Figure 3-10) 30. Whole cell and 

mitochondrial lysates from all three cell lines were resolved on an immunoblot and probed with 

antibodies against Tet1, VDAC or H3K4me3.Figure 3-11 shows that immunoreactive material 

(~235 kDa), corresponding to the size of a full length Tet1protein, could be detected using Tet1 

antibody in the mitochondrial fractions from all three cell lines. Levels of VDAC, which serves 

as a mitochondrial marker, indicate that cell equivalent amounts of lysate were loaded. Lack of 

H3K4me3 signal in any of the mitochondrial fractions indicates that mitochondrial fractions are 

free from contamination by nuclear material (Figure 3-11). This result suggested that Tet1 may 

be present in the mitochondria, consistent with published results by another group that showed 

that both Tet1 and Tet2 are present in the mitochondrial fractions of brain mitochondria 126.  

 mtDNA is organized in the mitochondrial matrix in the form of nucleoids 56. This makes 

it essential for the enzyme acting on mtDNA to be transported to the mitochondrial matrix. 

Presence of the Tet1 enzyme in trypsin treated mitochondrial fractions was expected to firmly 



100 

 

establish its localization to the mitochondrial matrix. The rationale is that, if present in the 

mitochondrial matrix, Tet1 enzyme should be protected from cleavage by trypsin. On the 

contrary, any contaminating nuclear or cytosolic Tet1 enzyme adhering to the outer 

mitochondrial membrane, and therefore resulting in a false positive signal on the immunoblot, 

should be degraded by trypsin. Mitochondria isolated from wild type, DNMT1+/- and DNMT1 -

/- mouse embryonic stem cells were treated with trypsin under hypotonic conditions and then 

lysed in SDS buffer. Whole cell, mock and trypsin treated mitochondrial lysates from the three 

cell lines were run on a polyacrylamide gel and probed with Tet1, VDAC or H3K4me3 

antibodies. As previously mentioned, VDAC and H3K4me3 antibodies serve as appropriate 

loading and fractionation controls respectively (Figure 3-12). Full length Tet1 (~235kDa) could 

be detected using the Tet1 antibody whole cell lysates and mock treated mitochondrial fractions 

of wild type, DNMT1+/- and DNMT1 -/- cells (Figure 3-12).  However, this immunoreactive 

material was absent in trypsin treated mitochondrial fractions from all three cell lines (Figure 3-

12). This suggests that Tet1 protein might not be present in the mitochondrial matrix and the 

signal obtained with Tet1 antibody in the previous blot may be a result of carryover from the 

nuclear/cytosolic fraction (Figure 3-12) (see discussion). Absence of Tet1 immunoreactive 

material in trypsin treated mitochondrial fractions was not a result of mitochondrial lysis during 

trypsin treatment. The presence of mtDNMT1 in both mock and trypsin treated mitochondrial 

fractions (data not shown) serve as a control to prove that no lysis of mitochondria occurs during 

trypsin treatment, which would otherwise result in a false negative. 
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Figure 3-10: mRNA expression levels of Tet1/2 and 3 in different cells and tissue type from 
mouse. 

Ito et. al. performed the mRNA expression analysis in different cells and tissue type from mouse. 
As indicated above, highest Tet1 expression levels are seen in mouse embryonic stem cells. This 
made mouse embryonic stem cells our system of choice for studies on Tet1. Figure obtained 
from Ito et. al. Nature 2010.  
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Figure 3-11: Immunoblot of whole cell and mitochondrial lysates from wild type, DNMT1 
+/- and DNMT1 -/- cells.  

Whole cell (W) and Mitochondrial (M) lysates from wild type, DNMT1 +/- and DNMT1 -/- 
mouse embryonic stem cells were run on a 4-15% gradient gel and probed for Tet1, VDAC and 
H3K4me3 antibodies. Absence of H3K4me3 signal in mitochondrial samples (lanes labelled M) 
indicates that mitochondrial fractions from all three cell lines are free from nuclear 
contamination. The presence of immunoreactive material in the lanes indicated ‘M’ suggests 
Tet1 may be present in the mitochondria from all three cell lines. 
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Figure 3-12: Trypsin treatment of mitochondrial lysates from wild type, DNMT1 +/- and 
DNMT1 -/- cells.  

Whole cell (W) and Untreated (U) or trypsin treated mitochondrial (T) lysates from wild type, 
DNMT1 +/- and DNMT1 -/- mouse embryonic stem cells were probed for Tet1, VDAC and 
H3K4me3 antibodies. Absence of H3K4me3 signal in mitochondrial fractions (lanes labelled U 
and T) indicates that mitochondrial fractions from all three cell lines are free from nuclear 
contamination. Presence of a band corresponding to Tet1 in mitochondrial fractions untreated 
with trypsin (U) but its absence in trypsin treated mitochondrial fractions (T) indicated Tet1 is 
not transported to the mitochondrial matrix.  
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The putative mitochondrial leader sequence of Tet1 does not carry heterologous protein 

GFP to the mitochondria 

If sequences predicted by the mitoprot algorithm serve as true MTSs, they should 

facilitate transport of any heterologous protein including GFP to the mitochondria. As a proof of 

principle, MTS from mtDNMT1 when fused to GFP and transfected into cells, localizes GFP to 

the mitochondria. 117.  We cloned putative murine Tet1 MTSs starting at ATG1, ATG3 and 

ATG4 fused in-frame with C-terminal GFP tag in pLEGFP vector (Figure 3-13) and constructs 

were transfected in NIH3T3 cells. The cells were stained with mitotracker red dye and nucleus 

specific DAPI stain and analyzed using confocal microscopy. Only sequences starting at either 

ATG1 or ATG4 were expected to translocate GFP to the mitochondria, as predicted by the 

mitoprot algorithm. No localization of GFP to the mitochondria was observed for any of the 

constructs, seen by the lack of convergence between GFP and mitotracker red dye (Figure 3-14). 

ATG1-GFP was exclusively localized in the nucleus as seen by overlap of green fluorescence 

with DAPI. ATG4-GFP construct was also localized to the nucleus but displayed green 

fluorescence in areas surrounding the nucleus (Figure 3-14). However, all of the green 

perinuclear stain failed to show overlap with mitotracker red dye, which otherwise results in a 

yellow merge. These results indicate that the sequences predicted for Tet1 protein by Mitoprot 

software do not serve as MTSs. 

Immunofluorescence using Ab against Tet1 does not show co-localization of Tet1 with 

Mitotracker red. 

In a different approach to establish presence of Tet1 in the mitochondria, immunostaining using 

Tet1 antibody was performed on Hela cells. Hela cells were grown on coverslips, fixed with 
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paraformaldehyde and permeabilized using cold methanol. These were then incubated with Tet1 

antibody followed by FITC conjugated secondary antibody, stained with mitotracker red and 

visualized using confocal microscopy. Tet1 antibody bound primarily to the nucleus, as seen by 

overlap with nucleus specific DAPI stain (Figure 3-15). The reaction with Tet1 Ab surrounding 

the nucleus is punctate in nature but fails to show overlap with mitochondrial specific stain 

Mitotracker red (Figure 3-15). The presence of Tet1 in the mitochondria would be marked by 

Tet1 staining marked by green fluorescence combined with red staining of the mitotracker red 

dye giving a yellow merge. No such yellow colored merge could be seen. These results 

combined with absence of immunoreactive material in the trypsin treated mitochondrial fraction 

(Figure 3-12), made it difficult for us to convincingly demonstrate presence of Tet1 in the 

mitochondria.  

Knockout of Tet1 does not alter hydroxymethylation of mtDNA  

As an alternative approach to prove the presence of Tet1 in the mitochondria, we asked if altered 

levels of Tet1 change 5hmC levels in mtDNA. With this objective, we decided to look at 5hmC 

levels in cells that contain either heterozygous or homozygous knockout of Tet1. These cells 

were a gift of Dr. Rudolph Jaenisch at Whitehead Institute of Technology, MA. Tet1 was 

knocked-out in these cells using gene targeting by homologous recombination 124. This strategy 

resulted in targeted deletion of exon 4 in the Tet1 gene and introduced a frame shift, such that a 

Tet1 transcript would express a truncated protein lacking the entire C-terminal catalytic domain 

124. Figure 3-16 shows validation of Tet1 knock-out in these cells. Tet1 +/- cells show 50% 

reduction in Tet1 protein expression compared to wild type cells, whereas Tet -/- cells 

completely lack immunoreactive material. Total DNA was isolated from V6.5 wild type,
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Figure 3-13:  Design and construction of MuTet1-GFP fusion constructs for analysis by 
confocal microscopy. 

A) Nucleic acid sequence for the partial coding region of Tet1 from mouse is shown. Different 
mitochondrial leader sequences starting at different ATGs namely, ATG1 (highlighted in blue), 
ATG3 (highlighted in red) and ATG4 (highlighted in Green), predicted by the Mitoprot software 
are indicated. Also shown are the positions of the different primer sets used for amplification and 
cloning of each of the indicated MLSs. B) Different MLSs amplified in (A) were cloned in front 
of GFP to generate fusion constructs. Probabilities of mitochondrial transport for each of the 
constructs are indicated.  

 

B) 

A) 
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 Figure 3-14: Confocal Microscopy of Tet1 MTS –GFP fusion constructs. 

Confocal images of cell transfected with either Tet1F4R3 or Tet1F1R3- GFP fusion constructs 
are shown. Channels’ showing specific stains: DAPI (A); GFP (B); Mitotracker Red (C); and 
merge (D); are shown. Neither Tet1F4R3 nor Tet1F1R3 carry heterologous protein GFP to the 
mitochondria. 

B) C) D) A) 
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Figure 3-15: Immunofluorescence using Tet1 antibody as performed on HeLa cells.  

Confocal images of immunofluorescence performed on HeLa cells are shown. Channels’ 
showing specific stains: DAPI (A); GFP (B); Mitotracker Red (C); and merge (D) are 
indicated.Tet1 antibody failed to co-localize with mitochondrial specific stain mitotracker red, as 
seen in merge.  

C) D) A) B) 
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Figure 3-16: Immunoblots proving partial and complete knockouts of Tet1 in mouse 
embryonic stem cells. 

Immunoblots of whole cell lysates from wild type, Tet1 +/- and Tet1 -/- cells using anti-Tet1 
antibody (Millipore). Blots indicate 50% reduction in Tet1 protein in Tet1 heterozygous 
knockout cells and complete absence of Tet1 protein in Tet1 homozygous knockout cells, as 
compared to wild type. 
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Figure 3-17: HydroxyMeDIP assay on wild type, Tet1 +/- and Tet1 -/- mouse embryonic 
stem cells. 

HydroxyMeDIP assay on total DNA from wild type, Tet 1+/- and Tet1 -/- mouse embryonic 
stem cells reveal no change in 5hmC in Tet1-/- cells as compared to wild type cells. Data 
represents mean ± SD of two independent biological repeats. 
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Tet1 +/- and Tet1 -/- cells, sonicated to a size range of 200-700 bp and subjected to a 

HydroxyMeDIP assay. 16S rDNA and 12 rDNA regions from the mitochondrial DNA were 

analyzed by qPCR. Figure 3-17 shows that cells containing heterozygous knockout of Tet1 show 

no change in enrichment of mitochondrial by 5hmC Ab as compared to that of wild type. Even in 

Tet1 -/- cells, there was no change in 5hmC content as compared to Tet1 +/- or wild type cells 

(Figure 3-17). The signal obtained with 5hmC antibody was expected to reduce from wild type to 

Tet1 +/- cells, marked by further reduction in Tet1 -/- cells. We saw no such decrease in either 

Tet +/- or Tet1 -/- cells as compared to wild type. This suggested that Tet1 is not responsible for 

generation of 5hmC in mtDNA. 

Discussion: 

Having discovered the presence of 5mC in mtDNA and the underlying mechanism 

responsible for its generation 117, we first sought to determine if 5hmC, a product of oxidation of 

5mC, was present in mtDNA. Just like 5mC, 5hmC has been described as a normal component 

of human genomic DNA 40. At the time, the only assays that allowed successful and 

unambiguous detection of 5hmC in DNA were HydroxyMeDIP, β-glucosyltransferase assay and 

analysis by HPLC-MS assay after hydrolyzing DNA to single nucleoside level. Due to relative 

technical ease, we used the first two assays to establish beyond doubt that 5hmC is present in 

mitochondrial DNA.  

Generation of 5hmC in mtDNA using mechanisms independent of 5mC: 

 The presence of 5hmC in mtDNA prompted us to investigate the mechanism responsible 

for its generation. Prior to detection of 5hmC in mtDNA, we had demonstrated that an isoform of 
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DNMT1 was translocated to the mitochondria. Other studies had shown that DNMT1 can 

generate 5hmC from C in DNA in the presence of formaldehyde in vitro 125. We asked if 

mtDNMT1 might be responsible for direct generation of 5hmC in mtDNA. We used the 

HydroxyMeDIP assay to answer this question and we observed a modest increase in 5hmC 

containing DNA levels in cells lacking DNMT1-/- as compared to wild type. This suggested that 

DNMT1 was not responsible for direct generation of 5hmC from C.  

These results raise the possibility of a DNA methyltransferase enzyme other than 

DNMT1, being present in the mitochondria. This enzyme would compensate for loss of 

mtDNMT1 by increasing 5mC content in the mtDNA which in turn could result in increased 

levels of 5hmC possibly by the action of Tet enzymes or an otherwise unknown mechanism.  We 

have extensively looked for the presence of DNMT3a and DNMT3b in the mitochondria. To the 

best our knowledge, DNMT1 is the only member of catalytically active DNA methyltransferases 

that is present in the mitochondria 117. An alternate explanation for our observation could be that 

5hmC is incorporated in mtDNA as a pre-modified base and that its generation is independent of 

5mC. Such a pathway has been described in the T-even bacteriophages 127. As demonstrated in 

Figure 3-18, dCMP is acted upon by dCMP hydroxymethylase to form d5hmCMP, which is then 

directly incorporated into DNA. The reaction uses 5, 10 – methylene tetrahydrofolate as the 1-

carbon group donor. This essentially makes the process of 5hmC generation independent of 5mC 

but dependent on mitochondrial folate metabolism. Both dCMP and 5,10-methylene 

tetrahydrofolate are present in mammalian mitochondria 128. If an enzyme homologous to dCMP 

hydroxymethylase were to be found, the existence of such a pathway in mammalian 

mitochondria is not impossible. Mammalian mitochondria are known to contain enzymes that are 

homologous to those in bacteriophages. For example, mitochondrial 
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Figure 3-18: Schematic of the pathway generating 5hmC in T-even bacteriophages. 
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polymerase γ (POLG), the enzyme responsible for replication of mtDNA, is homologous to 

DNA polymerase in T-odd bacteriophages. It will be interesting to know if an enzyme 

homologous to viral dCMP hydroxymethylase is present mammalian mitochondria.  

To test if 5hmC generation in the mitochondria was folate dependent and therefore was 

generated independent of 5mC, we analyzed 5hmC content in wild type chinese hamster ovary 

cells (CHO), the GlyB mutant CHO cells, which specifically contains a mutant and hence a non-

functional form of mitochondrial folate transporter (MFT), and the GlyB-huMFT CHO cells, in 

which wild type form of human MFT was restored. We isolated total DNA from the three cell 

lines and performed a hydroxyMeDIP assay. Dependence of 5hmC generation in mammalian 

mitochondria would be indicated by a reduction in 5hmC signal in a hydroxyMeDIP assay in 

GlyB cells when compared to that in wild type CHO cells. Furthermore, restoring the wild type 

form of human MFT in GlyB cells would then be expected to bring 5hmC levels in these cells 

similar to that of wild type CHO cells. Although, the 5hmC signal in GlyB-huMFT cells was 

similar to that of the wild type, we did not see the expected reduction in 5hmC signal in GlyB 

cells compared to the wild type cells in the 12S rDNA region analyzed (Figure 3-19). We plan to 

extend our analysis to other regions of mtDNA from these cells; however, these results suggested 

that 5hmC generation in mtDNA is not folate dependent and that an enzyme catalyzing a 

reaction similar to dCMP hydroxymethylase may not be present in mammalian mitochondria. 

Mitoprot algorithm failed to accurately predict translocation of Tet1 to the mitochondria: 

Around the time of our discovery of 5hmC in mammalian mitochondrial DNA, there 

were three reports in the literature showing that Tet enzymes generate 5hmC in the nucleus 24, 29, 

30. As obvious candidates for generation of 5hmC in mtDNA, we asked
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Figure 3-19: HydroxyMeDIP assay on wild type, GlyB and GlyB-huMFT chinese hamster 
ovary (CHO) cells. 

HydroxyMeDIP assay on total DNA from wild type, GlyB and GlyB-huMFT Chinese hamster 
ovary (CHO) cells reveal no change in 5hmC in GlyB cells as well as GlyB-huMFT cells when 
compared to wild type cells. Data represents mean ± SD of two independent biological repeats. 
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if any member of the Tet family of dioxygenases is present in the mitochondria. Similar to our 

analysis for DNMT1 117, we performed mitoprot analysis on all three Tet enzymes. The software 

performs a discriminant functional analysis using approximately 47 parameters 129. Some of the 

parameters used by the software to predict a potential localization to the mitochondria are a) 

ZoneTo, which is the maximum number of amino acid residues located at the N-terminal that can 

be considered for putative mitochondrial leader sequence. Only the sequence N-terminal of the 

first acidic residue present in the sequence is considered. This is due to the fact that MTSs are 

comprised of hydrophobic and positively charged residues which form an amphipathic helix and 

are devoid of negatively charged residues 129 b) Coef20, which indicates whether abundance of 

particular residues in first 20 amino acids is in accordance with that seen for MTSs. c) Cleavsite, 

which defines the last putative cleavage site for mitochondrial peptidase in a region defined by 

ZoneTo. d) The number of positively charged residues in a region defined by ZoneTo 129. The 

use of such parameters limits the prediction of mitochondrial transport to those proteins that 

contain an N-terminal MTS. The authors acknowledge that accuracy of prediction of 

mitochondrial transport reduces drastically for proteins lacking the N-terminal leader peptide 129. 

Thus, any proteins carrying an internal or a C-terminal MTS would be missed. Furthermore, it 

does not take into account any isoforms that do not carry the traditional N-terminal end as the 

full length protein. To overcome this problem, we inititally performed analysis on the full length 

sequence of Tet proteins. We also performed analysis using amino acid sequence starting at each 

of the ATGs downstream of the published translation start site, while maintaining the C-terminal 

end.  Such an analysis predicted a high probability of mitochondrial transport for Tet1, starting at 

ATG3 in human and ATG4 in mouse. However, neither Tet2 nor Tet3 showed any probability of 

mitochondrial transport. Similar to the scenario for mtDNMT1, we have examined the genomic 
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sequences upstream of the published transcriptional start site, to determine whether sequence in-

frame with Tet protein coding sequence could encode a MTS. No such sequences were found for 

any of the Tet proteins. Unless there were an upstream exon that remains to be discovered for 

any of the Tet proteins, the Tet family of proteins appear to lack an N-terminal MTS. 5’ RACE 

experiments will need to be performed in order to determine the true 5’ start site for all the Tet 

enzymes. 

Mitoprot software, unlike the analysis of mtDNMT1, failed to accurately predict 

mitochondrial transport of Tet1. Our analysis of the putative Tet1 MTS fused to GFP showed 

that the predicted MTS did not carry heterologous protein GFP to the mitochondria (Figure 3-

14). MTSs are characterized by formation of an amphipathic helix that shows clustering of 

positively charged residues on one face and hydrophobic residues on the other. To determine 

whether putative Tet1 MTS formed such an amphipathic helix, we performed helical wheel 

analysis. In comparison with the MTSs of the known mitochondrial proteins, Tet1 MTS formed a 

very poor amphipathic helix implying that the prediction by mitoprot was possibly a false 

positive. There are many nuclear encoded mitochondrial proteins that lack MTS but are 

transported to the mitochondria with the help of chaperone proteins. Thus, if no MTS can be 

found for Tet proteins, its association with chaperones will need to be investigated by performing 

co-immunoprecipitation experiments.  

Tet1 may not be transported to the mitochondrial matrix:  

Based on mitoprot analysis, we elected to pursue the possibility of transport of Tet1 to the 

mitochondria. As a first measure, we decided to look for Tet1 in mitochondrial fractions from 

mouse embryonic stem cells using immunoblots. Immunoreactive material was found using Tet1 
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antibody in mitochondrial fractions from wild type, DNMT1+/- and DNMT1-/- cells (Figure 3-

11). 

 Our initial finding was in agreement with another independent study, that showed bands 

corresponding to Tet1 and Tet2 on immunoblots containing mitochondrial fractions from the 

brain, using anti-Tet1 and anti-Tet2 antibodies (Santacruz) 126. However, we found that our 

immunoreactive material was not protected from trypsin treatment of intact mitochondria (Figure 

3-12). Dzitoyeva and colleagues did not perform this rigorous test for intramitochondrial 

localization. Mitochondrial DNA is present in the mitochondrial matrix arranged as nucleoids 56. 

For an enzyme to be able to act on mtDNA, it must be transported into the mitochondrial matrix. 

Our results suggest that Tet1 enzyme may not be present in the mitochondrial matrix. Even in an 

immunofluorescence assay, antibody directed against Tet1 failed to show co-localization with 

mitotracker red dye. Thus, our conclusions do not agree with the published results 126.  

Disagreement with the published results of Dzitoyeva et. al. could be attributed to certain 

technical differences in the experiments performed. During mitochondrial lysate preparation, 

proteins in the mitochondrial fraction are concentrated. To reflect the proportion of protein 

present in the organelle in vivo in comparison to the whole cell and therefore to make a true 

comparison between them, we load 75 µg of whole cell lysate while loading only 18 µg of 

mitochondrial lysate. As seen by equal VDAC signal in the mitochondrial and the whole cell 

fraction, our protein loading reflects equal amounts of protein loaded as per cell equivalence. On 

the contrary, Dzitoyeva et al. (2012) have loaded 30 µg of protein for the nuclear as well as the 

mitochondrial fractions. Thus, in their case, equal amounts of protein loaded do not reflect the 

equal amounts of proteins calculated from cell equivalents and their mitochondrial fraction is 
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likely to be overloaded, causing a false positive. Furthermore, the authors fail to determine 

whether Tet1 and Tet2 were protected from trypsin/proteinase K digestion of intact 

mitochondria. Their immunofluorescence data also shows very little, if any, co-localization with 

the mitochondria specific mitotracker red dye. Hence, it is uncertain whether Tet enzymes are 

translocated to the mitochondrial matrix. Based on our results and considering the technical 

shortcomings of the experiments performed in the referenced publication, the published results 

are unconvincing and need careful re-examination.  

Further experiments are needed to explore the role of Tet2 and Tet3 in generation of 5hmC 

in mtDNA: 

Our search for Tet2 in the mitochondria was hindered by the lack of success in 

optimization of the Tet2 antibody used by Dzitoyeva et al.. Our attempt at optimizing this 

antibody had preceeded the publication. The authors used mitochondria from mouse brain as 

opposed to wild type mouse embryonic fibroblasts used by us. In hindsight, the choice of 

tissue/cells may have made the difference. It is known that 5hmC is abundant in the brain 40 and 

therefore it might be expected that Tet expression levels are higher in the brain as opposed to 

other tissue/cell types. We plan to re-optimize the antibody and explore the possibility of Tet2 in 

the mitochondria.  

 Complete knockout of Tet1 did not show any change in 5hmC abundance in 

immunoprecipitates of mitochondrial DNA (Figure 3-17). If Tet1 were responsible for 5hmC 

generation in the mitochondria, it would be expected that knockout of Tet1 would result in a 

decrease in 5hmC content. Thus, the results we obtained indicate that Tet1 may not be involved 

in generating 5hmC in mtDNA. Dawalty et al. showed that complete knockout of Tet1 in mouse 
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embryonic stem cells resulted only in 35% decrease in the 5hmC content in the regions analyzed 

in nuclear DNA. All the mitochondrial DNA fragments analyzed for MeDIP/hydroxyMeDIP 

assay contain 6-8 CpGs that could be potentially methylated or hydroxymethylated. Even at 35% 

loss in hydroxylation, there could still be a significant proportion of CpGs that would retain 

5hmC modification, which will be precipitated in a MeDIP/hydroxyMeDIP, thus, undermining 

small differences. Taking this into consideration, an alternative method of analysis should be 

used to confirm the results obtained in the MeDIP assay. We have optimized analysis of 5mC 

and 5hmC content in the mitochondrial DNA using HPLC-MS. This assay will be more 

informative since it provides a quantitative measure of each nucleosides, including cytosines 

modified to 5mC and 5hmC in mitochondrial DNA of various cells. We plan to use this assay for 

a comprehensive and quantitative analysis of the role of Tet proteins in 5hmC generation in the 

mitochondria.  

Tet1 and Tet2 knock out mouse models and cells have been generated 124, 130. These 

systems containing Tet1/2 knockouts have been requested from the authors and they have kindly 

agreed to provide it to us. Mitochondria from Tet1/2 knockout cells and also from tissues from 

Tet1/2 knockout mice can be isolated and 5hmC content can be studied using HPLC-MS. We 

have successfully cloned full length MuTet1, starting at both ATG1 and ATG4, MuTet2 and C-

terminal domain of HuTet3 in a pInducer22 lentiviral expression vector. Studies on knockout 

mice/cells will be complemented by studies utilizing cells overexpressing each of these enzymes 

in HCT116 cells. mtDNA from these cells over expressing Tet enzymes will be analyzed for 

change in 5hmC content using HPLC-MS analysis. 
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Thus, overall we conclude that current data is insufficient to define the mechanism 

responsible for 5hmC generation in the mitochondria. With the above set of well-defined 

experiments we plan to continue this pursuit.  
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Chapter 4: Perspectives 

Model for epigenetic regulation of transcription in mitochondria. 

As presented in Chapter 2, altered levels of mtDNMT1 due to loss of p53 alters 

mitochondrial transcription. Our initial analysis using cDNA synthesized using random 

hexamers indicated up-regulation of ND1 on heavy strand and down-regulation of ND6 on the 

light strand in p53-/- cells compared to wild type (Figure 2-6). We then refined our studies by 

using cDNA synthesized using gene-specific primers which revealed a more pronounced 

upregulation of ND1, similar upregulation of Cox1 but no change in ND6 expression in p53-/- 

cells compared to wild type (Figure 2-7). These two sets of analyses have led us to question 

whether mtDNMT1 affects mitochondrial transcription in a gene-specific (Figure 2-6) or a 

strand-specific manner (Figure 2-7). Furthermore, analyses performed on cDNA synthesized 

using gene-specific primers (Figure 2-7) represents steady-state levels of only the polycistronic 

transcript, and fails to capture the contribution of mature processed mRNA molecules. To gain 

insight, we now plan to perform gene-specific and strand-specific transcription analyses. These 

studies will use gene-specific primers designed in every gene along both heavy and the light 

strand, to synthesize cDNA. The cDNA can then be analyzed for expression of the same gene as 

the one used for cDNA synthesis, using nested primers by qPCR. Such an analysis will account 

for steady state levels of both the mature mRNA molecules and the polycistronic transcript and 

hopefully help us tease apart gene specific versus strand specific effects on mitochondrial 

transcription.  

The effect on mitochondrial transcription, due to up-regulation of mtDNMT1, potentially 

involves a number of different mechanisms and we plan to test each of these individually. 
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Firstly, an increase in expression of the heavy strand genes (Figure 2-7) could be due to 

disruption of MTERF binding at the terminator site. We would expect that disruption of MTERF 

binding at the terminator site would result in inefficient termination of HSP1 transcription, 

therefore allowing increased read-through to heavy strand genes located downstream of the 

terminator site by POLRMT. This would result in an increase in expression of heavy strand 

genes, similar to the result observed in our studies (Figure 2-7). It would also be expected to 

cause disruption of the transcription bubble and therefore might cause reduction in 12SrRNA and 

16SrRNA levels. It is possible that MTERF binding at its terminator site is disrupted via protein-

protein interaction with mtDNMT1, which could be tested by co-immunopreciptation studies. 

MTERF binding may also be disrupted due to increased methylation at the terminator site by 

upregulated mtDNMT1 in p53-/- cells. In such a case, the methylation status at the terminator 

site could be analyzed initially by either MeDIP or bisulphite sequencing. We would predict to 

see higher methylation at the terminator site in p53 -/- cells compared to wild type. Next, we 

could test if methylation of DNA alters affinity of MTERF binding at its site. For this, we plan to 

purify recombinant MTERF and test its affinity with unmethylated or methylated oligonucleotide 

substrates, containing the terminator site sequence, using Biacore or isothermal titration 

calorimetry (ITC). Laura Burton, a current Ph.D. student in the lab, is now actively pursuing 

these studies. 

A second possibility is that TFAM, which binds to the region between the HSP2 and LSP 

promoters, is no longer able to bind because of increased methylation by mtDNMT1 in the 

region between the two promoters. TFAM has been shown to repress transcription from HSP2 

promoter by binding at the TFAM response element (TRE) present near the HSP2 promoter 76, 

122. This repression of HSP2 transcription by TFAM can be overcome by increasing 
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concentrations of POLRMT and TFB2M, implying that binding of TFAM to the TRE element 

limits the recruitment of POLRMT-TFB2M transcription initiation complex at the HSP2 

promoter in a competitive manner 122. Methylation dependent interference of TFAM binding at 

this site would thus be expected to cause increased recruitment of TFB2M-POLRMT complex at 

HSP2 promoter. This would in turn cause increased expression of heavy strand protein coding 

genes, an effect observed in our studies on mitochondrial transcription (Figure 2-7). ChIP 

analysis using purified mitochondrial lysates should help us determine relative TFAM binding in 

the D-loop region in wild type versus p53 -/- cells which can then be correlated to the 

methylation status of the binding site in the two cells.  

 A third possibility might be the increased recruitment of TFB2M-POLRMT initiation 

complex in a methylation dependent manner at the HSP2 promoter, which would also explain 

increased expression of heavy strand protein coding genes seen in our analysis (Figure 2-7). We 

have yet to determine if POLRMT-TFB2M complex has a higher affinity towards methylated or 

DNA relative to unmethylated DNA. Alternatively, relative occupancy of core transcription 

machinery TFB2M and POLRMT, can be determined at the two promoters to answer the 

possibility of efficient promoter firing from HSP2 promoter as compared to LSP in cells 

overexpressing mtDNMT1.   

It remains to be confirmed whether the effect seen on mitochondrial transcription is a result 

of loss of p53 or upregulation of mtDNMT1. To unambiguously answer this question, we plan to 

use genetic approaches to over-express and knockout the mitochondrial specific isoform of 

DNMT1. The 5’ region of DNMT1, upstream of the translational start site for the nuclear 

isoform (ATG3), codes for the mitochondrial leader peptide. Two stop codons can be inserted 
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upstream of ATG3 by homologous recombination using targeting constructs containing 

antibiotic resistance cassettes. Using two different antibiotic resistance cassettes, e.g: neomycin 

and hygromycin, both alleles can be targeted to completely eliminate expression of mtDNMT1, 

while keeping nuclear DNMT1 expression unchanged. A similar strategy has been used by 

others to completely knock out DNMT1 in HCT116 cells, which results in a distinct phenotype 

where cells undergo G2 arrest and eventual cell death due to mitotic catastrophy 131. It remains to 

be seen if complete loss of mtDNMT1 yields a similar response. If so, it would provide evidence 

that mtDNMT1, similar to nuclear DNMT1, plays an essential role in cell survival. A conditional 

knockout strategy would then be used to elucidate role of mtDNMT1 on mitochondrial 

transcription.  

To over-express the mtDNMT1 specific isoform, we have cloned full-length DNMT1 cDNA 

carrying the upstream mitochondrial leader peptide in an expression vector. Furthermore, ATG3 

has been mutated to ATC and sequence around ATG1 and ATG2 has been modified to put them 

in a context of an ideal Kozak consensus sequence 121, thus allowing over-expression of 

mtDNMT1 exclusively. This construct can be transfected or transduced to generate cell lines 

stably over-expressing mtDNMT1. Using both these cell lines and by performing gene-specific 

and strand-specific transcription studies we hope to definitively establish role of mtDNMT1 in 

regulating mitochondrial transcription.   

IDH mutants and disruption of Tet function. 

Mutations in the IDH family were first found in brain tumors such as astrocytomas and 

glioblastomas, with almost 70% of the patients showing lesions in IDH1 and IDH2 genes 132-134. 

These mutations were also found in several myeloid malignancies such as acute myeloid 
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leukemias (AML), myelodysplastic syndrome and myeloproliferative neoplasms 135. The most 

commonly found mutations, R132 of IDH1 and R140 and R172 of IDH2, are heterozygous in 

nature implying a gain of function in these mutant enzymes. The normal function of these 

enzymes is the NADP+ dependent conversion of isocitrate to α-ketoglutarate (α-KG). The novel 

enzymatic property of IDH1 and IDH2, as a result of mutations, allows them to convert α-KG to 

2-hydroxyglutarate (2-HG) in a NADPH dependent fashion 136, 137. 2-HG is a structural analog of 

α-KG, differing in the presence of a hydroxyl group for a keto group, and thus can act as an 

inhibitor of Tet1 and Tet2 enzymes, both of which use α-KG as a substrate for conversion of 

5mC to 5hmC 138. Indeed, AML patients characterized with IDH1/IDH2 mutations, exhibit 

reduced Tet2 enzyme activity combined with low 5hmC levels in their nuclear genome and 

display a hypermethylator phenotype 139, 140. Loss of function genetic mutations have also been 

identified in the Tet2 gene in AML and other myeloid malignancies 141. Interestingly, these 

mutations are mutually exclusive to the IDH1/2 mutations 140. These results indicate that IDH1/2 

mutations and Tet2 mutations have redundant roles in AML disease phenotype.  

IDH1/IDH2 mutants can be used to verify the role of Tet enzymes in 5hmC generation in the 

mitochondria. 2-HG is generated in both mitochondria and the cytosplasm, and has been shown 

to affect 5hmC generation in the nucleus 140. Whether it can affect 5hmC in mtDNA in a similar 

fashion remains to be seen. Hannah Gardner, a former summer student in the lab, has 

successfully over-expressed wild type and mutant forms of IDH1 and IDH2 in HCT116 cells. 

mtDNA will be isolated from these cells and analyzed for 5hmC content using MeDIP and 

HPLC-MS. Reduction in 5hmC content in mtDNA, with simultaneous accumulation of 2-HG in 

mitochondria of cells expressing the mutant versus wild type forms, will indicate inhibition of 

Tet-catalyzed generation of 5hmC in the mitochondria. This inhibitory effect can then be rescued 
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by co-expressing L-2-Hydroxyglutarate dehydrogenase (L2HGDH) and D-2-hydroxyglutarate 

dehydrogenase (D2HGDH) genes, known to convert 2-HG back to α-KG. Both IDH2 and 

D2HGDH primarily localize to the mitochondria and thus the effect of mutant IDH2 of 5hmC in 

mtDNA and its rescue by D2HGDH will be most crucial.  

The fact that mutations in IDH2, the mitochondrial homolog, and Tet2 are mutually 

exclusive in AML patient samples with no such mutations found in either Tet1 or Tet3 genes, 

hints at potential role of Tet2 in 5hmC generation in the mitochondria. However, the effect of 2-

HG accumulation on the activity of Tet1 or Tet3 cannot be excluded. The above mentioned 

experiments will only prove that 5hmC generation in mtDNA is Tet mediated. Therefore, to 

define the specific Tet enzyme involved, analysis of 5hmC content in mtDNA from Tet1, Tet2 or 

Tet3 null cells will need to be performed. It is also possible that more than one Tet enzyme may 

be translocated to the mitochondria and therefore may be involved in conversion to 5hmC. These 

studies are now being actively pursued by John Strang, a current graduate student in the lab.  

Potential roles of 5hmC in the mitochondria: 

There has been no evidence as yet about the functional role of 5hmC in mtDNA. Hence, one 

can only speculate about the potential roles of 5hmC in mtDNA. As mentioned in Chapter 1, 

5hmC can form an important intermediate in the process of demethylation. Upon conversion of 

5mC to 5hmC/5fC/5caC by Tet enzymes, modified cytosines undergo demethylation following 

deamination and base excision repair. Mitochondria are characterized by high ROS production, 

which in turn induces damage in both free nucleotides and double stranded mtDNA. In addition, 

POLG is intrinsically error prone with an approximately 10 fold higher error rate than nuclear 

DNA polymerase. Mitochondria utilize a base excision repair pathway, similar to the nucleus, to 
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remove ROS-induced DNA damage as well as POLG-induced errors from mtDNA. If 5hmC is 

generated in mtDNA from 5mC, it could serve as an intermediate in the mitochondrial base 

excision repair mechanism and thus, would be expected to play an important role in mtDNA 

demethylation. This can, in effect, minimize effects of ROS induced DNA damage and will help 

maintain integrity of mtDNA sequence. 

Nuclear chromatin is characterized by CpG islands and CpG sparse regions, both of which 

show contrasting patterns of methylation and hydroxymethylation. CpG islands are enriched for 

cytosine hydroxymethylation with low amounts of cytosine methylation with the opposite being 

true for CpG sparse regions 15, 42. Thus, it seems like hydroxymethylation of cytosine residues at 

CpG islands prevents hypermethylation of the promoter regions and thereby maintains DNA 

methylation fidelity. In contrast to the nucleus, mtDNA lacks CpG islands and therefore 

methylation or hydroxymethylation at specific residues is likely to be more important in the 

functional role of these cytosine modifications. Site specific hydroxymethylation could play a 

role in maintaining fidelity of methylation in mtDNA, which in turn might be crucial for 

maintaining normal function of mitochondrial processes. Using oxidative bisulphite sequencing, 

methylation versus hydroxymethylation of specific sites in mtDNA could be determined which 

can then be tested for their functional significance. Proteins that bind to 5mC do not bind to 

5hmC 43. Identification of proteins that differentially bind methylated versus hydroxymethylated 

cytosine residues in mammalian mitochondria will give us insights into significance of site 

specific modification of cytosine residues. 

Site specific hydroxymethylation in the D-loop region could be important for regulation of 

transcription of mitochondrial genes. 5hmC may affect recruitment of core transcription 
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machinery, TFB2M and POLRMT, and binding of other transcription factors such as TFAM 

towards methylated versus hydroxymethylated D-loop region. It may even simply act to prevent 

the effects of 5mC on mitochondrial transcription, as has been shown for the nanog promoter in 

the nucleus 30. Once we understand how methylation affects mitochondrial transcription, as 

proposed before, in vitro transcription studies using defined modified substrates can be 

performed to understand the role of 5hmC in regulation of mitochondrial transcription. 

We have yet to prove whether 5hmC is generated from 5mC and if Tet enzymes play a role 

in this conversion. If any of the Tet enzyme family members are found to generate 5hmC in 

mtDNA, it will be interesting to determine if mtDNMT1 and the putative mitochondrial Tet 

enzyme interact with each other and therefore, act in concert to maintain a balance between 5mC 

and 5hmC in mtDNA. In contrast, they may also compete for the same recognition sites to bring 

about modification of cytosines, which will prevent hypermethylation of mtDNA. 

5hmC levels as a potential biomarker: 

Tet enzymes have been associated with different types of leukemia in the past. Tet1 was 

identified as a MLL fusion partner, resulting from translocation between chromosomes 10 and 

11, in acute myeloid and lymphocytic leukemias (AML and ALL) 142, 143. As described 

previously, Tet2 is often mutated in AML, myelodysplastic and myeloproliferative leukemia. 

IDH1/2 mutations in AML mediate their effect by inhibiting the activity of Tet enzymes 140, 144. 

This implies that Tet enzymes act as tumor suppressors and that disruption of Tet function leads 

to oncogenesis. Since then numerous studies have been directed towards quantitation of 5hmC 

levels in various normal versus cancer tissues and cells. It was found that cancer cells/tissues 

show reduced Tet activity and therefore have low levels of 5hmC compared to normal 
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counterparts 145-147. It was also shown that 5hmC levels are reduced in melanoma 148. This 

implies that reduced 5hmC levels can correspond to type and severity of various tumors and can 

serve as a potential biomarker for cancer prognosis. 

 Various neurodegenerative diseases such as Parkinsons’s and Alzheimer’s disease as well as 

other ischemic heart disease, diabetes and cancer are all characterized by mitochondrial 

dysfunction combined with increased ROS production 149, 150. It is not yet known if 

mitochondrial epigenetics play a causative role in these diseases. However, tissue samples from 

these patients can be compared to tissues from normal age-matched controls by quantitation of 

nuclear as well as mitochondrial 5hmC levels. These studies can help establish a correlation 

between 5hmC and various disease states, thus allowing the use of 5hmC levels as a potential 

biomarker for diagnosis and prognosis. Further studies need to be performed to elucidate 

mechanisms inhibiting Tet activity in cancer cells. Inhibitors/drugs can then be designed to 

restore Tet activity and therefore 5hmC levels in cancer cells which in turn might restore the 

normal phenotype. 

Summary and Conclusions: 

Mitochondria are essential organelles that perform a wide variety of functions including ATP 

production, apoptosis, thermogenesis, Ca2+ storage, carbohydrate, lipid and protein metabolism 

48. Mitochondria contain their own genetic material, but encode only a small fraction of proteins 

present in the mitochondria 85. Most of the proteins essential for a variety of mitochondrial 

functions are coded in the nucleus and are transported to the mitochondria 86. Studies performed 

decades ago detected the presence of cytosine modification in the mitochondria. Our studies 

were aimed at validating presence of cytosine modification, 5mC in mtDNA, identifying the 
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mechanism involved in its generation and establishing its functional role in mammalian 

mitochondria. We demonstrated that the newly identified epigenetic modification, 5hmC, was 

present in mtDNA. We further attempted to define nuclear enzymes that may be transported to 

the mitochondrial and hence may be responsible for generation of 5hmC in mtDNA.  

Studies performed decades ago identified the presence of 5-methylcytosine but failed to 

detect any DNA methylase activity in mitochondrial fraction. Our laboratory pursued the 

possibility that a nuclear enzyme is responsible for mitochondrial DNA methylation. Cell 

fractionation combined with immunoblotting, identified a DNMT1 isoform that is translocated to 

the mitochondria. Using the MeDIP assays, we validated the presence of 5mC in mtDNA, 

obtaining 10-20 fold enrichment of mtDNA with 5mC antibody over IgG. Analogous to its role 

in the nucleus, we studied the effect of altered mtDNMT1 levels on mitochondrial transcription 

and found that upregulation of mtDNMT1, due to loss of p53, altered mitochondrial 

transcription. These studies have established the functional significance of mtDNMT1 in the 

mitochondria. 

Using a hydroxy-MeDIP assay, we show for the first time that 5hmC is present in mtDNA, as 

evidenced by 38-580 fold higher enrichment of mtDNA with 5hmC antibody over that of IgG. 

This finding was confirmed using an alternative site specific assay for 5hmC. We next asked 

how the 5hmC modification was generated in mtDNA. Tet enzymes have been shown to catalyze 

the formation of 5hmC from 5mC in the nucleus. We considered the possibility that at least one 

of the three Tet enzymes was present in the mitochondria. We optimized an in vitro Tet enzyme 

assay to detect Tet-like enzyme activity in crude as well as percoll purified, trypsin treated 

mitochondrial fractions from HCT116 cells. Mitoprot analysis predicted that, Tet1 enzyme 
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starting at ATG3 in human and ATG4 in mouse would be translocated to the mitochondria. Upon 

further investigation, we found a band corresponding to full length Tet1 in immunoblots 

containing mitochondrial fractions from mouse embryonic stem cells. This band, however, was 

not protected from trypsin treatment of intact mitochondria indicating that Tet1 was not 

transported to the mitochondrial matrix. The MTS predicted for Tet1 by Mitoprot software, 

although conserved in human and mouse, did not carry heterologous protein GFP to the 

mitochondria. Immunofluorescence using Tet1 antibody also failed to show localization with 

mitotracker red dye. We attempted to study the role of Tet1in 5hmC generation at a functional 

level, by performing hydroxyl-MeDIP assay on cells containing either partial or complete knock-

out of Tet1. Knock-out of Tet1 did not alter 5hmC signal in mtDNA. Overall, these results did 

not allow us to ascertain the role of Tet1 in 5hmC generation in mtDNA. 

Overall, our data has identified some of the key players and epigenetic mechanisms that exist 

in mammalian mitochondria. We propose that these mitochondrial epigenetic mechanisms are 

one of the many processes that underlie nuclear-mitochondrial cross talk. Furthermore, these 

mechanisms are involved in regulation of several mitochondrial processes including 

mitochondrial transcription, disruption of which may cause mitochondrial dysfunction in a broad 

spectrum of disorders such as neurodegerative diseases, auto immune diseases, ischemic heart 

disease, diabetes and cancer. Estimation of nuclear and mitochondrial 5hmC levels, in each of 

the disease samples in comparison to normal, will allow use of 5hmC as a biomarker in diagnosis 

and prognosis. 
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