
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2006

Design and Development of Oligonucleotide
Microarrays and their Application in Diagnostic
and Prognostic Estimation of Human Gliomas
G. Scott Taylor
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Chemical Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/1459

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1459?utm_source=scholarscompass.vcu.edu%2Fetd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Design and Development of Oligonucleotide Microarrays and their Application in 

Diagnostic and Prognostic Estimation of Human Gliomas 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy, Engineering, at Virginia Commonwealth University 

 

 

 

 

 

 

By 

 

 

 

 

G. Scott Taylor 

B.S. Biology, Radford University 1997. 

M.S. Biology, Virginia Commonwealth University 2002. 

M.S. Engineering, Virginia Commonwealth University 2003. 

 

 

Director: Kenneth J. Wynne  

Professor, Department of Chemical Engineering 

 

 

Virginia Commonwealth University 

Richmond, Virginia  

May, 2006 



 ii

 

 

 

Acknowledgements 

I would like to thank the VCU School of Engineering for the wonderful learning 

environment and excellent intellectual experience. I would also like to thank the members 

of my committee, Dr. Windle, Dr. Archer, Dr. Bowlin and Dr. Wynne for their helpful 

advise and patient councel. I also thank Dr. Peters and Dr. Overby for their sincere 

support. I extend my appreciation to my family and many collegues for all their help and 

mentorship. I convey my gratitude to Dr. Guiseppi for his mentorship and tireless work 

on behalf of the entire C3B research group. Finally, I wish to thank Colleen Higgins for 

her support and devotion.



 iii

 

 

Table of Contents 

 

Acknowledgements............................................................................................................. ii 

Table of Contents............................................................................................................... iii 

List of Tables ..................................................................................................................... vi 

List of Figures ................................................................................................................... vii 

Abstract .............................................................................................................................. ix 

Chapter 1. Microarray Technology and Contemparary Data Analysis..............................11 

ABSTRACT ........................................................................................................11 

1.0 INTRODUCTION ...........................................................................................12 

1.1 DNA MICROARRAY TECHNOLOGY ........................................................14 

 1.1.1 Preliminaries .....................................................................................14 

 1.1.2 Microarray Design and Fabrication ..................................................16 

  1.1.3 Experimental Design for Microarrays ..............................................19 

  1.1.3.1 General Design Considerations and Sample Size..............19 

  1.1.3.2 The Reference Design........................................................25 

1.2 DATA ANALYSIS FOR DNA MICROARRAYS.........................................27 

 1.2.1 Data Normalization...........................................................................27 

 1.2.2 Differential Expression Analysis (Feature Selection).......................31 

 1.2.3 Class Prediction using Microarray Data ...........................................36 

  1.2.3.1 Signal-to-Noise Ratio.........................................................39 

  1.2.3.2 ICED Analysis ...................................................................40 

  1.2.3.3 Nearest Neighbor Classifiers .............................................43 

  1.2.3.4 Support Vector Machines ..................................................44 

  1.2.3.5 Gene Shaving .....................................................................46 

  1.2.3.6 Selection of Strong Feature Sets ........................................48 

1.2.3.7 Prediction Analysis For Microarrays .................................50 



 iv

1.3 GLIOMA BIOLOGY AND GENETICS.........................................................50 

1.4 CURRENT GLIOMA CLASSIFICATION METHODS ................................54 

1.5 DNA MICROARRAYS AND BRAIN TUMOR RESEARCH ......................56 

 1.5.1 Basic gene expression analysis .........................................................57 

 1.5.2 Histological classification demonstrated by microarray data ...........59 

 1.5.3 Survival classification demonstrated by microarray data .................61 

1.6 CHAPTER SUMMARY..................................................................................63 

CHAPTER 2. DESIGN AND DEVELOPMENT PARAMETERS FOR THE 10K 

HUMAN OLIGONUCLEOTIDE MICROARRAY..........................................................65 

2.0 Design of the Human Oligonucleotide Microarray .........................................65 

2.1 Fabrication methods.........................................................................................69 

2.2 Quality control features....................................................................................70 

CHAPTER 3. MALIGNANCY GRADE AND OUTCOME PREDICTION IN HUMAN 

GLIOMAS BY DNA MICROARRAY ANALYSIS ........................................................72 

 ABSTRACT...........................................................................................................72 

3.0 INTRODUCTION ...........................................................................................73 

3.1 METHODS AND MATERIALS.....................................................................75 

  3.1.1 Sample acquisition ............................................................................75 

3.1.2 Experimental design..........................................................................76 

  3.1.3 Reverse transcription, array hybridization, and labeling ..................76 

  3.1.4 Image acquisition and quantification ................................................79 

 3.2 ANALYTICAL METHODS ...........................................................................81 

  3.2.1 Quality control and data normalization.............................................81 

  3.2.2 Feature selection and class prediction...............................................83 

  3.2.2.1 Prediction analysis for microarrays ...............................................84 

  3.2.2.2 SAM censored survival..................................................................86 

  3.2.3 Analysis procedure for malignancy grade ........................................88 

  3.2.4 Analysis procedure for survival ........................................................89 

 3.3 RESULTS ........................................................................................................90 

  3.3.1 Initial cluster analysis .......................................................................90 



 v

  3.3.2 Class prediction of malignancy grade...............................................93 

   3.3.2.2.1 Classification of all classes .............................................93 

   3.3.2.2 Class prediction on selected pair-wise comparisons..........95 

  3.3.3 Class prediction of patient survival.................................................100 

 3.4 DISCUSSION................................................................................................104 

 3.5 FUTURE WORK...........................................................................................107 

REFERENCES ................................................................................................................109 

APPENDIX 1...................................................................................................................124 

APPENDIX 2...................................................................................................................125 

APPENDIX 3...................................................................................................................126 

APPENDIX 4...................................................................................................................128 

APPENDIX 5...................................................................................................................129 

APPENDIX 6...................................................................................................................130 

APPENDIX 7...................................................................................................................131 

 

 

 



 vi

 

 

 

List of Tables 

 

Table 1.1 Some examples of kernel functions taken from Muller et. al ............................45 

Table 3.1 Samples not included in survival analysis .........................................................89 

Table 3.2 v-fold-crossvalidation error rates for all classes ................................................94 

Table 3.3 Individual v-fold-cross validation error rates for selected pair-wise  

comparisons .......................................................................................................................95 

Table 3.4 Gene panel consiting of 22 genes ......................................................................99 

Table 3.5 LOOCV error rates as a function of gene panel and survival rule ..................102 

Table 3.6 LOOCV error rates as a function of gene panel and survival rule ..................103 

 

 

 



 vii

 

 

List of Figures 

 

 

Figure 1.1  Schematic of the microarray experimental process.........................................15 

Figure 1.2  Latin square design..........................................................................................21 

Figure 1.3  Loop design for microarrays ...........................................................................22 

Figure 1.4  The reference design........................................................................................25 

Figure 1.5  Box plots before and after print tip LOWESS normalization .........................30 

Figure 1.6  The effect of ANOVA normalization..............................................................31 

Figure 1.7  Volcano plot of the results of an F-Test ..........................................................34 

Figure 1.8  Depiction of a 2D data space re-mapped to a 3D space ..................................44 

Figure 1.9  Gene shaving cluster formation.......................................................................47 

Figure 1.10  Illustration of the sample spreading method for identification of strong 

feature sets .........................................................................................................................49 

Figure 2.1  Signal (intensity divided by background) of oligonucleotide DNA spotted on 

five surfaces .......................................................................................................................66 

Figure 2.2  Epoxide ring opening reaction and covalent bond formation .........................67 

Figure 2.3  The 10k human oligonucleotide microarray....................................................68 

Figure 2.4  Example graph for linear regression of BioD spots ........................................71 

Figure 3.1  Scatter plots of AlexaFluor 647 dye fading.....................................................80 

Figure 3.2  The effect of standard deviation regularization and LOWESS normalization82 

Figure 3.3  Illustration of class-wise gene expression centroid .........................................84 

Figure 3.4  Unsupervised clustering of 200 genes.............................................................91 

Figure 3.5  Misclassification rates and FDR curves for all five glioma classes. ..............93 

Figure 3.6  Misclassification rates and FDR curves for GM vs AO glioma specimines ...96 

Figure 3.7  Misclassification rates and FDR curves for GM vs AA glioma specimines ...97 

Figure 3.8  Misclassification rates and FDR curves for GM vs OL glioma specimines....98 



 viii

 

 

ABSTRACT 

 

 

DESIGN AND DEVELOPMENT OF OLIGONUCLEOTIDE MICROARRAYS 

AND THEIR APPLICATION IN DIAGNOSTIC AND PROGNOSTIC 

ESTIMATION OF HUMAN GLIOMAS 

 

By G. Scott Taylor 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth 

University, 2005 

 

Director: Kenneth J. Wynne  

 

 DNA microarrays represent an ultra-high throughput gene expression assay 

employed to study the transcriptomic profiles of biological tissues. These devices are 

increasingly being used to study many aspects of gene regulation, and there is growing 

interest in the biotechnology and pharmaceutical industries for developing such devices 

in efforts toward rational product/drug design. The DNA microarray also provides a 

unique and objective means for diagnosis and prognosis of human diseases based on 

patterns of gene expression. This is especially important in cancer research and the thrust 

toward personalized medicine. This dissertation details the design and development of 
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oligonucleotide microarrays and the design and execution of a gene expression study 

conducted using human glioma specimines. Chapter 2 details the design and development 

a ~10,000 gene human oligonucleotide microarray. This device consisted of a 21,168 

features, each composed of a particular human gene-probe and was applied to the 

challenge of diagnostic and prognostic estimation for human gliomas (chapter 3). 

Gliomas are the most frequent and deadly neoplasms of the human brain characterized by 

a high misdiagnosis rate and low survival. The study in chapter 3 demonstrated that the 

specified design and development parameters were appropriate for conducting gene 

expression analysis and that this platform can be used successfully to predict malignancy 

grade and survival for glioma patients.  



 

 

 

 

CHAPTER 1. MICROARRAY TECHNOLOGY AND CONTEMPORARY DATA 

ANALYSIS 

 
 
 
 

ABSTRACT 

 

 

 Gliomas are the most frequent and deadly neoplasms of the human brain. 

Although most glioma specimines can be histopathologically classified with a high 

degree of accuracy, atypical gliomas are often difficult to classify by histological features 

and outcome prediction error prone. Indeed, within highly characteristic glioma 

specimens, much variation has been observed with regard to invasiveness, response to 

therapy, and ultimately prognosis. Recent advances in transcriptomic profiling have 

raised the possibility that DNA based devices can be developed to greatly improve 

diagnostic and prognostic information aiding the clinician in planning treatment and 

helping tailor treatments based on molecular characteristics of individual tumors. DNA 

microarrays represent the current state of the art with respect to high-throughput 

transcriptomic profiling. This chapter details the most important elements of microarray 

technology, glioma genetics, and introduces how our efforts at technology development 

have addressed critical issues with regard to design, fabrication, and molecular insight. 

 1 
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1.0 INTRODUCTION 

 The DNA microarray has been in use as a research technology for about ten 

years1. The initial platform consisted of poly-L-lysine coated standard glass microscope 

slides with cloned DNA (cDNA) polymerase chain reaction (PCR) products immobilized 

by ionic / electrostatic interaction with the surface. Microarray technology has evolved 

and now exists in three common platforms; i) photolithographically fabricated arrays, ii) 

the cDNA array and iii) the oligonucleotide array. DNA microarrays have further evolved 

to contain internal calibration and control features in addition to genomic probes (e.g., 

DNA probes obtained from the genome of an organism). The advantage the DNA 

microarray holds over older techniques is in throughput and the ability to assess 

correlative information to identify coregulated-gene networks (i.e., networks of genes 

whose regulation is dependent on the other network members). The potential of this 

technology is that all of the genes in the genome of an organism can be arrayed and 

immobilized on a consistent single substrate in specific locations on the micrometer 

scale. This ultimately enables an instantaneous snapshot of the entire active 

transcriptomic profile (i.e., the profile of messenger RNA (mRNA) transcripts present in 

the cell) in any given cell population or tissue. The huge advantage in throughput allows 

the investigation of not only gene-wise and sample-wise differences in expression 

patterns, but also biological complexity.  

Microarrays have had a tremendous impact on cancer research allowing 

investigators to discern gene expression networks as revealed in comparative analyses of 
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tumor and normal tissue extracts and as diagnostic tools that essentially function by 

pattern recognition. It has been reported, for instance, that microarray data can be more 

accurate in predicting survival than histopathological grading for ambiguous samples2. 

Further, the concept that gene expression patterns can help define treatment options has 

been established widely 2-7, particularly lung cancer 8, colon5, breast9-11, and leukemia7,12. 

These advances provide impetus for the development of a new class of devices that 

utilize an empirically defined, targeted suite of genes to improve diagnostic resolution 

prognostic estimation, and maximize the effectiveness of treatment regimens. 

A major challenge faced by contemporary medicine is diagnostic and prognostic 

estimation for brain cancer. Malignant glial tumors of the central nervous system, 

collectively referred to as gliomas, present one outstanding example of the need for 

improvement in predicitive technologies to inform treatment. Glial tumors are the most 

frequent and deadly human neoplasms of the brain and kill and estimated 13,000 -17,000 

Americans per year13. Decades of research into the cellular and molecular biology of glial 

tumors (astrocytomas (AA) glioblastoma multiform (GM) and oligodendriogliomas 

(OL)), has revealed a more coherent picture of the biology of these deadly neoplasms. 

This effort has been aided and enhanced by the application of DNA microarrays, 

although patient survival has not improved in 25 years13. Nevertheless, such data has 

already yielded valuable insights into options for patient therapy. For example, the 

presence of DAP-3, a protein associated with cellular motility and radiation resistance4, 

was reported as over expressed in the invasive rim of a characteristic glioma. This protein 

notably belongs to an anti-apoptotic network, suggesting that therapies aimed at inducing 
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apoptosis, such as the chemotherapeutic cis-platin, or radiation therapy (whole brain and 

gamma knife), are unlikely to eliminate the disease4. Indeed, there is only marginal 

survival benefit correlated with the application of current treatments including 

chemotherapy, radiotherapy, and surgical debulking of the tumor14.  

Currently, the two most important factors in brain tumor survival are age at 

diagnosis and tumor type histology (grade of malignancy). It is commonly believed that 

DNA based devices will be integral in improving patient care and treatment while 

simultaneously contributing to the identification of genetic targets for novel therapeutics. 

This chapter is devoted to presenting DNA microarray technology, experimental design, 

data analysis, and glioma biology and contemporary microarray classification efforts.   

1.1 DNA MICROARRAY TECHNOLOGY 

1.1.1 Preliminaries 

DNA microarrays (MA) have emerged as a powerful technology for capturing the 

instantaneous profile of messenger RNA (mRNA) transcripts (transcriptome) within any 

given cell population3,4,6,11,12,15-20. A DNA microarray is composed of hundreds to 

thousands of individual genes (probes), immobilized in a grid of discrete spots. There are 

three commonly used platforms for DNA microarrays; i) in-situ photolithographically 

synthesized oligonucleotide microarrays (typified by Affymetrix and Protogene 

microarrays), ii) spotted cDNA microarrays, and iii) spotted oligonucleotide (oligo) 

microarrays21, the latter two platforms are produced by non-contact or contact deposition 

of the nucleic acids.  
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Post fabrication, neglecting experimental design, microarray experiments are 

conducted in five basic process steps i) harvesting of messenger RNA (mRNA) from 

biological cells or tissue, ii) enzymatic replication and fluorescent labeling of harvested 

mRNA, iii) hybridization of labeled target cDNA to immobilized probe on the array, and 

iv) scanning and v) data analysis. Each step in the process has an associated set of 

variables, and removing and/or standardizing variables in a process step is highly 

desirable as microarray data is strongly influenced by variation imposed by these 

variables.  

Microarrays have major application in cancer research but also in expression 

analysis (drug discovery, development, toxicology), single nucleotide polymorphism 

   

  
Figure 1.1 . Schematic of the microarray experimental process. 1. mRNA is harvested from  

biological cells. 2. Harvested mRNA is reverse transcribed and labeled. 3. This product is  

applied to the surface of the microarray for the hybridization reaction, 4. After hy bridization  

the microarray is scanned. 5. The scanned image is quantified and the data is analyzed.  

( F igure from  http://www.ambion.com/techlib/resources/microarray/basics1.html )     

1   

2   

3  

4  

5  
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1.1.2 Microarray Design and Fabrication 

 Microarray design takes into consideration the types and placement of features 

ty calibration, normalization, grid alignment, 

ositiv

b-

s22, gene discovery21, diagnostics23-25, genetic sub-typing10,15,26,27. While this is

an exhaustive list, it illustrates the range of biological questions being addressed throu

microarray analysis.   

Concomitant with development of microarray technology has been the 

investigation into meth

 the extremely large amounts of data generated. While there are many ty

analysis that can be performed on microarray data, and finding an appropriate analysis 

protocol can be challenging, there are guidelines to consider that aid in establishing 

effective analysis. For instance, the nature of the query relates to the ED, which in turn 

influences statistical precision. A loop design28 may be more effective for a drug vs. 

line interaction study since there are limited conditions and statistical precision is high f

measures of significance. On the other hand, a reference design28  may be more 

appropriate for a classification study where there could be hundreds of biological and 

technical replicates and clustering methods are used that would be convoluted by

complexity of a loop design.  

(DNA-probes) for such parameters as intensi

p e control for hybridization, uniformity of hybridization, fidelity of reverse 

transcription, and replication. By definition an array of gene-probes (features) is a 2D 

arrangement of rows and columns of spots. This array is further partitioned into su

arrays (subgrids) as a consequence of the utilization of multiple spotting pins during 
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fabrication. Subgrid rows and columns are often referred to as meta-rows and meta-

columns. Control and calibration features are typically embedded within the array to 

gauge assay preformance. 

Intensity calibration and normalization was traditionally performed through th

inclusion of so-called housekeeping control genes, random

e 

ly dispersed, throughout the 

array21,  

e 

 

ked-

 spiked into 

 

 

29, 30. However, this method had its drawbacks as the genes originally considered

to have stable expression were actually found to be quite variable. A somewhat more 

sophisticated method was the use of an “invariant set”, a set of constantly expressed 

genes that could be determined during a pre-analysis step31 Yang, et al., reported the 

inclusion of a ‘microarray sample pool’ feature composed of each probe present on th

microarray and deposited in a dilution series, to provide normalization parameters for

non-specific hybridization32. During image quantification, it is useful to have “land 

marks” placed on the microarray sub-grid corners, to aid in alignment of the 

segmentation grid. Such features can be genes known to have high abundance, or spi

in control probes that bind to pre-manufactured, labeled, complimentary DNA

the hybridization solution. Features such as these are also useful as positive controls for 

hybridization and uniformity of hybridization. They are typically represented by genes 

from an organism other than the one for which the bulk of the probes interrogate. Probes

that are complimentary for the 3´ and 5´ ends of a gene can be used to test for fidelity of

the reverse transcription and RNA integrity, the idea being that if reverse transcription 

was preformed efficiently and RNA integrity is acceptable, than the ratio of the intensity 
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from these spots should be close to one. Finally, it is useful to replicate each gene-probe 

on the microarray as this replication can improve sensitivity and statistical precision32,33. 

Fabrication of spotted DNA microarrays in its most general form is the process of 

spottin

r silicon 

ion 

stom spotted microarrays are typically produced using a surface modified 

standar

h the 

ples of surface 

g single stranded (ssDNA) or double stranded DNA (dsDNA) on to the surface of 

a particular substrate. This substrate historically has been nitrocellulose, nylon, or boro-

silicate glass (microscope slide). The array is produced using high precision robotics to 

iteratively aspirate and dispense DNA fragments onto the substrate in a 2D grid 

arrangement. The spotting is done by simply dipping specialized stainless steel o

pins into a solution containing the DNA then contacting the substrate, thereby ejecting a 

tiny fraction of the aspirated DNA solution onto the surface of the substrate. Factors that 

influence the performance of the microarray include surface chemistry, spotting 

concentration, spotting buffer, type of printed DNA, type of printing pin, product

time, length of production time, ambient humidity, production batch, and the curing 

process.   

Cu

d microscope slide. Naturally, there are several surface modifications for 

microarrays which can be categorized with respect to their surface interaction wit

DNA as covalent, non-covalent, or hydrogel. Poly-L-lysine (PLL), γ-

aminopropyltrimethoxysilane (APS), and amino dendrimers, are exam

modifications that interact with DNA non-covalently (Figure 2.2). PLL was the first 

surface modification used for microarrays34, and is still commonly used. Generally 
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surfaces that present free amines interact with DNA non-covalently. These surfaces are 

most useful when printing unmodified PCR products.  

Epoxy-silane (3-glycidoxypropyltrimethoxysilane (GPS)) and aldehyde-silane 

surfaces are used in conjunction with 5'-NH2-C6 terminated oligos. A covalent bond is 

formed between the epoxide ring (or carboxylic acid) and the amine terminus of the 

oligonucleotide probe (Figure 2.2). These surfaces do not require a blocking step prior to 

hybridization with the sample and exhibit reduced background with respect to the amine 

surface35. The reason for this, we suggest, is a propensity for labeled cDNA to interact 

electrostatically with the amine surfaces, hence the perceived necessity for blocking. 

Notwithstanding, pre-hybridization blocking on GPS compared to amine surfaces is 

associated with lower background for the GPS surface (Chapter 2)  

 Spotting concentration for DNA microarrays has been studied in great detail. It 

has been reported that concentrations greater than ~6-10 µM do not significantly improve 

intensity35,36. Zammatteo, et at., reported a maximal density of the probe of 600 fmol/cm2 

which was reached a printing concentration of 0.5 µM37. We demonstrated that 

increasing the spotting concentration of oligonucleotides over four orders of magnitude 

(0.0001µg/µl –1µg/µl) resulted in only a marginal increase in signal intensity regardless 

of the surface chemistry35 (Chapter 2). 

1.1.3 Experimental Design for Microarrays 

1.1.3.1 General Design Considerations and Sample Size 

The practice of ED is traditionally coupled with the specific aims of the study 

while emphasizing the parsimonious use of resources. The specific objectives and study 
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design largely determine the statistical methods that will be used. When the purpose of 

the study is to determine which factor has the greatest influence on the response variable, 

analsis of variance (ANOVA) is the appropriate analytical method which models the 

response’s dependence on important explanatory factors 38. Experimental design is 

naturally, constrained by the goal of the study, the number of sample classes, desired 

statistical power, efficiency, sample availability, type and level of replication, and so on. 

However, the goal of ED is to maximize the information generated given the practical 

constraints. The EDs discussed in subsequent sections are limited to a two-dye sample 

labeling system. 

The basic question for which microarray technology was developed, is finding 

differential gene expression patterns among interesting biological comparisons. This is 

known as differential gene expression analysis (DGEA). Approaches to answering this 

question depend on the goals of the study. Methods for statistical inference such as the 

student's t-test, ANOVA, significance analysis of microarrays (SAM), and proportional 

hazards (regression) all have been successfully employed for DGEA on a gene-wise 

basis28 39-41. In addition, such algorithms can also be used for feature selection for class 

prediction investigations or for pathway studies28 39-41. 

There are several ED's that are particularly useful for microarray studies. For a 

two-dye system, each spot on a MA can be considered an experimental unit with block 

size = 2. In this situation experiments with more than two comparisons are by default an 

incomplete block design, which may be balanced or unbalanced. Due to differences in 

spot uniformity, probe concentration, and hybridization uniformity, the value of 
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hybridizing two samples to an array, is that the spot performance is “controlled”for by the 

relative comparison. Microarray experiments must be executed in such a way that all 

comparisons of interest are estimable a concept that underlies the ED approach.  

There is generally thought be a significant effect due to the labeling dye. Consider 

a situation where there are only two samples, one sample is labeled with dye 1, and the 

other with dye 2 and an MA is hybridized. A researcher might decide to control for the 

dye effect by switching the labeling assignments and performing another hybridization. 

This set up is known as a dye-swap design, Figure 1.2. This design is very efficient with 

respect to the estimation of statistical parameters, however it becomes impractical when 

there are more than two classes compared. Differential gene expression analysis is carried 

out by combining the per sample gene-wise intensity measures and fitting a one-way 

model such as in Eq.1.6.  

 

 S-1 
D-1

S-2 
D-2

S-2 
D-1

S-1 
D-2

 
Figure 1.2. Dye-swap design. Samples are denoted S, dyes are denoted D, each 

rectangle is an array 
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For larger numbers of sample classes, an alternative design is the loop design. 

Here, each sample is labeled with each dye and are paired on arrays as depicted in Figure 

1.3. This design is also more efficient than the reference design until sample types reach 

about ten42. This design is useful when there is only one factor (main effect). 

Investigations with greater numbers of factors (i.e.: two cell lines subjected to two 

different drugs) require another approach to ED.  

While a loop design may be more efficient and precise for differential gene 

expression analysis (DGEA), it is impractical for large sample sets. If one of the arrays is 

lost or performs poorly, the ability to perform comparsons breaks down. Further, if more 

samples are necessary in future analysis, it is difficult or impossible to integrate them. 

However, for small sample sets the, greater level of replication provides an advantage in 

terms of resource commitment over a replicated reference design42,43. 

 S-1

S-2

S-3

S-5

S-4  
Figure 1.3. Loop design for microarrays. Each arrow represents a microarray, the 

circular end denotes labeling with dye 1, and the pointed end represents labeling with 

dye 2.  

The reference design, depicted in Figure 1.4 is performed by co-hybridizing a 

reference sample to each array along with the sample of interest. Because the reference 

sample is always labeled with the same dye, a dye-swap design is not necessary. In 
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addition the design as the advantages that it is simple, easily extensible, and facilitates 

down stream analysis such as clustering easier than a loop design. A disadvantage of this 

design is that for small numbers of samples, it is not as efficient as the dye-swap or loop 

design. This translated into reduced precision in estimating DGE.  

The take home message of the above discussion is that because of the interplay 

between ED and the analysis procedures, researchers should carefully consider the down-

stream implications of selecting a design and whether the resources will be available to 

properly utilize the advantages of the selected design.  

  Sample size (or level of replication), as a function of desired statistical power for 

microarray data, can be estimated a-priori from preliminary data. These quantities also 

depend on the precision of model parameter estimates, which is in turn a function of 

design efficiency.  For instance, because a loop design is more efficient than a reference 

design, the level of replication in a loop design may be lower to achieve the same level of 

statistical power. Again, estimation of sample size should be considered in the context of 

the aim of the study.  

One simple method for estimating sample size was described by Simon44, et al., 

where statistical power, P = (1 - β), for a given value of β is indicated in Eq. 1.1,  

( ) ( )22
2/ //4 σδ+= βα zzn  [1.1] 

Here, n = number of samples, zα/2 = percentiles of standard normal distribution zβ = 

percentiles of standard normal distribution , δ = effect size σ = within class standard 

deviation, where σ is estimated from prior data. The values of α and β must be chosen 

with regard to multiple testing considerations. This is the general rule for specifying the 
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type I and II error rates for microarray data since there are so many individual tests being 

carried out during the analysis (equal to the number of genes or features on the array). 

Generally, researchers are more tolerant of a moderate value for β (0.05) than for α. 

 When the goal of the study is to develop prognostic models the following was 

also method reported by Simon, et al., to estimate sample size,  

( ) ( )22
2/ ln/ δτ+= βα zzD  [1.2] 

Where τ is the standard deviation of the gene-wise log ratio or intensity over all samples, 

δ denotes the hazard ratio related to a unit change in the log ratio44. 

This model takes into account that survival data are usually continuous and right 

censored, and that there are not discrete differences between sample types as in a cell line 

study.  

Finally, technical replication in the form of replicated spots on the array and 

hybridization of the same sample on multiple arrays provides estimates for measurement 

error. Biological replication provides information on the distribution of gene expression 

values for a given gene among individuals in the population. Thus, the amount and type 

of replication are dependent on the objectives of the study. If the study is of the response 

of a cell line to a type of drug, then technical replication improves sensitivity. On the 

other hand, a study of tumors aimed at novel class discovery relies heavily on estimating 

the variability across as many individuals as possible. The following discussion addresses 

the characteristics, merits and demerits of EDs for microarrays.  
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1.1.3.2 The Reference Design 

The simplest design choice is a direct comparison of two samples (e.g., tumor vs. 

normal) on one microarray. Experiments where there are more than two comparisons are 

most effectively understood as incomplete block designs where each array (or spot) 

constitutes a block of size d where d = number of dyes. If there more than two sample 

varieties (V), then we cannot assay all Vs on a single array and varieties must be assayed 

in an alternative way to make all relevant comparisons possible. Let Vi be the variety of 

sample being hybridized, where i = 1… n and for each array two varieties are applied. In 

a reference design Vi is co-hybridized with a standardized reference Vr, and for 

differential expression between varieties we are, in general, testing Ho: V1= V 2= …= V n. 

Note that the values of V are the measures of expression used to calculate significance 

and are ratios: generally, V g = I1/I2, where I is the estimated fluorescence intensity at 

wavelengths 1 and 2 respectively. Since each variety of interest is compared to the same 

reference the distance between any two samples is the same, which makes model fitting 

and subsequent analysis easy. This design also has an advantage when large numbers of 

samples are to be analyzed, it is extensible, and samples can be collected in a somewhat 
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Figure 1.4. A schematic of a reference design. Each box represents an array and each 

sample (Si) is compared to the same reference RNA.  
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haphazard fashion. However, due to the large degrees of freedom cost associated with the 

reference sample, it is less efficient and parameter estimates are less precise.  

This design is perhaps the simplest to execute and has the advantage of being 

extensible such that samples can be assayed somewhat haphazardly42,44. Downstream 

analysis such as clustering is also easy because the distance between samples is always 

the same45. One criticism of this approach is that dye effects are completely confounded 

with sample effects due to the fact that the reference is always labeled with the same dye. 

This precludes specifying the DG term in an ANOVA model. However, in practice this is 

of no consequence since researchers are not usually interested in the reference channel, 

which essentially serves to correct for differences in feature performance. Another 

criticism is that the reference design is inefficient compared to other designs. For large 

sample sizes the reference is perhaps the most parsimonious choice since loop and dye-

swap designs become impractically complex in execution and analysis.  

In summary, by far, the reference design is the most widely used design for two-

channel microarray hybridizations due to its simplicity of execution and intuitive nature. 

The statistical properties of the reference design are often overlooked by the researcher 

and can remain an afterthought due to its robustness. The biggest pitfall in utilizing this 

design is that it is inefficient and statistical inference can be imprecise for small effect 

sizes. One way to insulate against this is to design the microarray itself with replicate 

spots and include as many technical and biological replicates as possible.  
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1.2 DATA ANALYSIS FOR DNA MICROARRAYS 

When considering analysis, it is useful to group the workflow into three 

categories: i) pre-treatment, ii) normalization, iii) down stream analysis (i.e.: gene 

expression analysis, clustering, and so on). During pre-treatment, raw expression data are 

typically subjected various operations such as background subtraction, Log2 

transformation, intensity filtering or variance filtering. Normalization methods are meant 

to remove systematic noise from the data and can be applied within an array or across 

arrays and/or both. Down stream analysis seeks to extract the biologically relevant 

information contained in microarray data. Process such as differential gene expression 

analysis45-48, hierarchical clustering41,42 supervised learning7,26,39,49, are commonly 

performed to test hypotheses, discover gene interactions50, discover novel tissue sub-

types2, delineate sample groupings41, or predict class membership5,6,11,12,16,17,23,25,45,47,51. 

Since we are primarily interested in predicting class membership (i.e., histopathological 

class or survival) the following sections describe contemporary methods for DGEA and 

class prediction problems. 

1.2.1 Data Normalization 

Data transformation is the first step in the analysis process, and is applied to 

stabilize variance or rescale and remove distributional artifacts caused by systematic 

noise21,36. Data pre-treated in this way are then normalization by means of a number of 

algorithms, the choice is left to the discretion of the researcher. A common post-

normalization step is filtering, which can be done by intensity, variance, coefficient of 

variation, or some other statistic. Control features (spots) embedded in the array can 
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enable subsequent normalization and calibration. Common applications for within array 

and between array normalization include total-intensity, invariant set, mean or median 

centering, ANOVA, to standard deviation regularization, and scatter plot smoothers 

(LOWESS)21,28,32,45,52. 

Normalization of microarray data has been the subject of a growing body of 

literature; as with other data treatments related to microarrays, there is little consensus, 

and the community seems to be taking a situation specific approach. Nevertheless, certain 

trends have become established. For instance, most available MA analysis software has 

an implementation of LOWESS normalization (Biodiscovery, GeneSpring, TMeV) and 

many MA studies report using this normalization during the analysis26,32,53,54,55. Further, 

total-intensity normalization has been criticized due to its potential for over 

smoothing32,56, and normalization to so-called ‘housekeeping genes’ has been similarly 

debunked29.  

The LOWESS algorithm is probably the most widely used normalization and is 

essentially a scatter plot smoother developed for other applications57. It implicitly 

assumes that 95% of genes have no expression change. In practice, the rule of thumb is 

~70%. This algorithm fits a locally weighted polynomial to a neighborhood of points, 

determines the weighted least squares fit on intensity measurement, ssg and computes a 

fitted value ŝo = w(xo). The probe intensities are then adjusted by xnorm = 2A+ŝ/2. This 

algorithm proceeds through the following steps, i) on an MA plot, otherwise known as 

the ratio vs. intensity plot, transform the data such that A = ½ Log2(x*y) and M = 

Log2(x/y) where x denotes the cy5 intensity of gene (g) and y denotes the cy3 intensity 
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value of gene g, ii) take a point (xo) and find m nearest neighbors according to a specified 

observational space f, typically f ≈ 0.4. iii) Compute the Euclidean distance from xo, |xi – 

xo|, iv) compute the largest distance between xo and another point in the neighborhood, 

∆(xo) = max(|xi – xo|). v) Assign weights to each point in N(xo) using the tricube weight 

function: 

(|xi – xo|/ ∆(xo) = u , and  [1.3]  
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which basically assigns a smaller weight to points further from xo. vi) Calculate the 

weighted least squares fit on ysg on the neighborhood N(xo), and take the fitted value 

using w(u) as the weights. vii) Repeat this procedure for each xsg and adjust the probe 

intensities by xnorm = 2A+ŝ/2.  

 This type of normalization has been shown to improve gene expression 

measurements in self vs. self hybridizations for custom spotted microarray analysis32, and 

can be applied with respect print-tip to take into account variations produced by the 

individual printing pins. LOWESS normalization has the overall effect of re-centering the 

distribution of gene expression values around zero on the y-axis of an MA plot and the 

lower the value of f, the more aggressive the smoothing becomes.  

Normalization can be accomplished implicitly in an ANOVA setting by fitting a 

model such as Eq. 1.4 to the data. 

 yakghv =µ+Aa+Dk+Gg+ADak+VGig+DGkg+AGag+Sh(a)+ εakghv  [1.4] 
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where  a for m arrays,  k for o dyes, g for p genes, h for q spots, i for v 

treatments/classes/groups. 

Fitting this model to the data has the effect of partitioning the measured intensity 

yakghv into various sums of squares and removing their quantities from the error term, thus 

making the F-ratio larger (and more significant). Here µ is the overall mean of all 

expression values for all arrays, A is the effect of array (a), D is the effect of dye (k), G  

is the effect of gene (g), V is the effect of variety (i), and S is the effect of spot (h). 

Combinations of terms, i.e.: ADak, denotes the interaction of the ath array with the kth dye.  

 This approach was initially described for microarrays by Kerr et al., and 

Wolfinger, et al., and was demonstrated to produce a robust normalization that takes into 

account array and dye effects and any other source of systematic noise that can be 

encoded into the model. Examples include day of the week, experimenter, print tip, and 

 
Figure 1.5. Box plots before and after print tip LOWESS normalization. A. Before 

LOWESS. B. After LOWESS. 
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so on28,43. In practice, approach is taken in the context of statistical inference and 

normalized data from the model fitting step is not typically available for other analyses 

due to its limited software implementations.  

 
 

Figure 1.6. The effect of ANOVA normalization.  Ratio vs. intensity plots displaying 

the intensity values for a microarray before (left panel) and after (right panel) ANOVA 

normalization.  

1.2.2 Differential Expression Analysis (Feature Selection) 

Often, the initial question of microarray data is which genes are differentially 

expressed. Such DGEA is carried out by tests of inference including t-tests, ANOVA, 

significance analysis of microarrays (SAM)39, Mann-Whitney U test, and Wilcoxon’s 

matched pairs signed rank sum test28,43,46,47. Other than DGE, microarray data can be used 

to study genetic regulation, discover gene function, and classify tissue samples.  

For class comparisons, we are interested in whether the mean gene expression for 

a given gene is significantly different between populations. The student’s t-test is used for 
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two class comparisons. It can also be used to test against a constant such as two fold 

expression. The test statistic assuming equal variance in the two groups is, 
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where t ~ t(df), iy  is the mean for all y i= 1-2 and si is the sample standard deviation for 

each i. Here we are testing the null hypothesis H0: µ1 = µ2 vs. the alternative H1: µ1 ≠ µ2. 

For microarray data, the underlying distribution of gene expression values is often not 

normal, hence, the reference distribution is commonly estimated through permutation of 

the sample-wise gene expression values.  

When there are more than two classes to be compared ANOVA can be used to 

test significance of DGE. The most commonly implemented ANOVA model in 

microarray analysis software is,  

yig = µ + τig+ εig   [1.6] 

which is a fixed effects gene-wise one-way model. The model assumes the ε ~ N(0, σ2) 

and are independent, τ and ε are also independent, where i = 1, 2,…,t, indicates the level 

of τ, and g indicates the gene. More complicated models such as [1.4] have been 

employed that seek to model the known sources of variation. 

 Here the model parameters are estimated using the method of least squares58. 

Briefly, the quantity to be minimized by least squares estimation is, 

Q = ΣΣ(yig – igτ−µ )2   [1.7] 

The total variation associated with the data is given by the total sums of squares,  



 23

SSY = ΣΣ( yig – y..)2  [1.8] 

which can be further partitioned into sum of squares treatments (SST) [1.8] and sum of 

squares error (SSE) [1.9] 

SSY = SST +SSE  [1.9] 

SST = ΣΣ( yi. – y..)2  [1.10] 

SSE = ΣΣ( yig – yi.)2  [1.11] 

The test of significance is the F-statistic, which is given by 

F̂  = (SST/dfT)/(SSE/dfE) [1.12] 

that is, the ratio of the mean squares treatment, divided by mean squares error. A mean 

squares quantity is simply the SS divided by its degrees of freedom. Here ~ F F̂ i-1, E-1. 

With model [1.4] we are testing the null hypothesis: H0: All τi = 0 vs. HA: some (at least 

two) of τi ≠ 0. Finally, the calculated F-statistic can be referenced to the F distribution or, 

as with the t-test, to a distribution estimated by random permutations of the data28,38,43,58. 

Multifactor ANOVA can be preformed as described in28,43,54 utilizing the 

MAANOVA software by Wu, et al.. This R package provides an environment to 

construct fixed effects or mixed models. Tests of significance are carried out by 

computing F-ratios on model fitted residuals.  Significance is assessed relative to an 

estimated distribution based on sample or residual shuffling54. For a reference design 

experiment, a model such as Eq. 1.13 would be appropriate to test for an effect due to the 

variety (i) of sample (i.e., testing the hypothesis that at least two of the sample groups 

will have significant differences in mean gene expression levels). This model, Eq. 1.13, 
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estimates significance by taking into account systematic sources of noise due to the array, 

dye, spot, and so on. 

 

• Red indic

Ho: yakghj =µ+Aa+Dk+Gg+ADak+VGig+DGkg+AGag+Sh(a)+Vi+εakghj  [1.13] 

Here, µ is the mean of all spots on all arrays, A is the effect of array a, D is the 

effect of dye k, G is the effect of gene g, AD is the array times dye interaction, VG is the 

variety times gene interaction, DG is the dye times gene interaction, AG is the array 

times gene interaction, S is the effect of spot h, and Vi is the ith variety 
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Figure 1.7. Volcano plot of the results of an F-Test. Significantly differentially 

expressed genes are located in the upper right hand corner. Graphical features are noted 

on the Figure.  
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(treatment/class/group). The genes declared as significantly differentially expressed via 

F-tests of model comparisons are displayed in volcano plots (Figure 1.7). Significance is 

assessed by computing three F-tests developed specifically for microarray data54.  

 Perhaps the most versatile test of significance for microarray data is the so-called 

SAM39. This method can be employed for testing two classes, testing against a constant, 

testing for differences among multiple classes, or censored survival45. This method 

computes a value for d(g), which in the case of dichotomous inquiries, is a relative 

distance, but can be replace by other functions such as the Cox proportional hazards 

function Eq. 3.9 for survival analysis or for changes in expression between three or more 

classes, d(g) can be defined in term of Fishers linear discriminant39. 
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Where )g(x I and )(gxu  are the average levels of gene (g) expression in states I and U 

respectively, s(g) is the standard deviation of the repeated expression measurements, Σm 

and Σn are summations of the expression measurements in states I and U respectively, a = 

(1/m+n)/(m+n-2), and m and n are the numbers of measurements in states I and U. 

The t-test or pair-wise SAM were used for binary class comparisons, ANOVA 

and multifactor SAM were used for multiple class comparisons and SAM censored 

survival was used for survival analysis. 
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1.2.3 Class Prediction using Microarray Data 

Many class prediction scenarios have been considered using microarray 

data2,7,26,41,45,49,50,59-67 and essentially fall into the machine learning class of algorithms. A 

learning method is supervised if information regarding class labels or sample 

characteristics is supplied to the algorithm. Examples of these included k-nearest 

neighbors (k-NN), support vector machines (SVM), and Fisher’s discriminant analysis. It 

is often necessary to remove genes from the data that have low situational relevance. In 

such cases, differential gene expression analysis such as ANOVA, weighted voting, or 

proportional hazards regression, can be used to select features (genes) that are most 

relavent8,45,46,68, while other methods have been developed that effectively mine all of the 

data for strong predictors of relevant biological information67. Alternatively, 

unsupervised methods seek to find patterns in data without prior classification 

information. These methods include hierarchical clustering, terrain maps, principle 

components analysis (PCA), and the strong feature selection method by Kim et al.,67. 

Consider a gene expression data set containing g genes and n mRNA samples 

summarized as an n x p matrix X, where xsg ∈ X denotes the expression level of gene g in 

mRNA sample s. For each mRNA sample for which the class membership is known the 

data consists of the gene expression profile xs = (xs1,…,xsg) and a class label yl where l= 1 

to the number of tumor classes k. A class prediction algorithm ψ seeks to partition the 

space X in to k discrete subsets, Z1,…,Zk, such that for a sample with expression profile x 

= (x1,…, xg) ∈ Zk , k is the predicted class47,67,69. We ultimately seek a classifier that is 

consistent, meaning that the expectation of the cost of estimation, E(∆s) → 0 as s→ ∞, 
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where ∆s= εs - ε , that is, the error of the classifier εs of ψs minus the Bayes error (ε  ) for 

s samples70. In other words, we would like the classifier to be achieve low error for the 

entire real population given the limited training data.  

When sufficient data is available, prediction parameters may be specified from a 

training set (T) that contains known class distinctions such that T = {(x1,y1),…,(xs, ys)}. 

The prediction parameters (i.e.: weight, distance, similarity) can then be applied to a 

unknown set L such that L = {x1,…,xs} to predict the class (yk) of the observation xg in L 

set47.  

When yk is known, the prediction and true classes can be compared to estimate the 

error rate of the predictor47 by methods such as leave-one-out cross validation (LOOCV) 

or adding random error67. Here, the classifier is run on the data, but with one sample left 

out, the classification rule is calculated for the remaining samples and is used to predict 

the class of the omitted sample. Each sample xs is, in turn, left out and cross-validated. 

The resulting classification for each member in the training set is then compared to the 

true classification and an error rate is determined. This method works well for large 

sample sizes and is unbiased, but can be over optimistic when samples are limited due to 

increased error variance67.  

Algorithms such as the signal-to-noise ratio (S2N)2,7, the independently consistent 

expression discriminator (ICED)49, k-NN2,47, SVM49, gene shaving (GSH)50, and strong 

feature set determination (SFSD)67,71 have been used successfully in class prediction via 

gene expression. In the context of brain tumor research, k-NN and SFSD have been 
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applied to find a limited panel of genes capable of reclassifying histologically ambiguous 

tumors or distinguishing binary grade comparisons respectively7,67.  

One of the first published algorithms specifically developed for prediction using 

gene expression data was the S2N2,7. The ICED, inspired by the S2N, was demonstrated 

to be more accurate in finding a dichotomous classification rule compared to analysis by 

SVM and k-NN4. Both the S2N and ICED, however, have the disadvantage of being 

binary classifiers. The other predictors introduced above (k-NN, SVM, GSH, SFSD), can 

be used to address classification problems where there are greater than two classes 

although our current implementation of SVM and GSH are for binary classifications. 

Perhaps the most rigorous reported method was SFSD, an algorithm that finds feature 

sets by first increasing the variance of the expression measures then uses a heuristic 

guided random walk search algorithm to identify gene sets (three at most) that achieve a 

low error rate67. Because microarray data contains large numbers of features combined 

with multiple samples and sample classes, finding all optimal feature sets is 

computationally intractable. Thus, researchers must rely on sub-optimal feature sets, 

which may nevertheless perform very well by achieving an appreciably low error rate 

while keeping in mind Occam’s razor; it is preferable to utilize a simple function that 

explains most of the data than a complex one69. 

A caveat to class prediction based on histological stage is that classification of the 

samples used to train the model is subject the same histological classification error 

present during the original classification. Samples that are, as such, incorrectly classified 

are used to construct the classification parameters of the predictor, leading to bias. A way 
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to circumvent this pitfall is to reclassify the samples into some other meaningful way, 

such as by patient survival8 or in the case of GSH, set constraints that include class 

relevant information50. Despite the challenges, gene expression profiles undoubtedly 

contain information that can be used to construct prognostic estimates, and eventually 

may supplant histological classification as the standard for diagnostics.  

The following sections detail some common analysis and prediction techniques 

employed in the microarray field. In the case of S2N, gene shaving, SVM, and SFSD, 

feature sets are selected explicitly during the first stages of computation. For classifiers 

such as k-NN, feature sets are usually chosen by some ‘outside’ algorithm such as 

ANOVA or proportional hazards regression.  

1.2.3.1 Signal-to-Noise Ratio  

 One of the earliest and most cited reports attempting to identify genes most that 

are good predictors of class membership is the weighted voting algorithm developed by 

Golub et al., known subsequently as the S2N7. This algorithm was initially shown to 

predict class membership between two types of leukemia. Their measure of “correlation” 

Eq. 1.16 is a minor variant of a special case of sample maximum likelihood discrimination 

rule  

)]()(/[)]()([ 2121 ggggg xxxxP σ+σµ−µ=  [1.16] 
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which has also been referred to as the diagonal linear discriminant analysis rule47  

Eq. 1.17. This rule is evoked in when the class densities have the same diagonal 

covariance matrix ∆ = diag(σ2
1,...,σ2

n). For classes k = 2, the sample maximum likelihood 

rule classifies an observation x = (x1,…,xl) as 1 iff 

0
2

)(
ˆ

)( 21

1
2

2
21 ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−

σ
−∑

−=

gg
g

lg g

gg xxxxx  [1.18] 

which can be rewritten as Σgvg, where vg = ag(xg – bg), ag = 22
21 ˆ/)( ggg xx σ− . Here ag is 

almost the same function used by Golub, et al., Eq. 1.16 except that the denominator is 

the sum of the standard deviation of gene g instead of the variance47. 

 The correlation metric Pg= ag is used to weight the vote (v) function Eq. 1.18 

which is the weighted vote for gene g. Further, Σ|v+j| = Vclass 1, and Σ|v-j|= Vclass 2, such that 

the prediction strength for a sample under test is given as PS = Vclass1- Vclass2 / (Vclass1+ 

Vclass2). Significance was estimated by comparing the predicted classes to predictions 

made by random permutations of the sample labels.  

The S2N algorithm was initially applied to a leukemia data set that consisted of 

72 total leukemia samples, some ALL and others AML. After training the algorithm with 

38 samples, class membership was predicted among the remaining 34 samples. The 

authors reported greater than 85% accuracy in predictions with various numbers of the 

highest weighted genes7. 
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1.2.3.2 ICED Analysis 

Bijlani, et al., have recently (2003) developed an algorithm for distinguishing two 

classes of samples and a finding a minimum number of predictor genes49. The algorithm: 

Independently Consistent Expression Discriminator (ICED), is loosely based on a 

measure of correlation (Pearson’s) followed by calculation and ranking of weighted 

votes. It is inspired by the S2N ratio of Golub, et al., but was demonstrated to perform 

better in terms of accuracy of prediction for the leukemia data set. ICED also allows for 

the possibility of variable gene expression for a gene in one class but constant expression 

of the same gene in the other class, while the S2N ratio would not likely vote such as 

gene as a good discriminator. The equations for the algorithm are listed below Eqs. 1.19-

1.23. Here the subscripts m,n denote the number of samples in each class, g denotes gene 

(g), and g* indicates gene (g) in unknown sample g*.  

ICED can be summarized in four steps to train the algorithm and three steps to 

validate the predictors. The four training steps are: i) format data, ii) normalize (mean 

centering), iii) rank each gene by weight statistic Eqs. 1.19, 1.20, 
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to indicate its usefulness as a predictor, where m  is the number of samples in class 1, n is 

the number of samples in class 2, for gene g, iv) find optimal voters. Prediction consists 
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of i) format unknown sample data, ii) classify unknown samples using calculated votes 

Eqs. 1.21, 1.22,  
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and iii) assign class membership. The strength of prediction is given by Eq 1.23,  
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which falls in the interval [-1,1]. Large values of P(g) indicate greater prediction strength.  

It is easily seen from inspection of Eqs. 1.21, 1.22 that the weight of a gene in 

class-one is generated with respect to the standard deviation of the same gene in class-

two. The authors suggest that the voting equations are the same as those in Golub, et al., 

however, the equation vg = ag(xg – bg) is derived from the sample maximum likelihood 

discriminator47 where bg = (⎯xmg – ⎯xng)/2. In Eqs. 1.21,1.22, bg=µiTR,m(n), where µiTR,m(n) 

is simply the mean of gene (m or n) in class i. Nevertheless, the authors demonstrate 

remarkably accurate predictions using the Golub, et al., data set, as well as a much 

smaller data set based on a mouse model of Batten disease49.  

 This method was reported to have several advantages over the S2N statistic for 

binary classification. First, it can be used on a small number of samples. The authors 

were able to accurately predict biologically significant genes from a mouse model of 

Barrett’s disease with only eight total samples. Secondly, it was able to more accurately 
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predict tumor classification for the Golub et.al.data set than the S2N statistic, Support 

Vector Machines, and Neighborhood analysis. One drawback to this method is that it can 

only be used to distinguish two classes, and multi-class problems are out of the range of 

this approach. 

1.2.3.3 Nearest Neighbor Classifiers 

 Nearest neighbor classifiers are a simple and powerful class of algorithms that are 

based on a similarity (or distance) function between observations; in this case, class-

specific gene-wise average intensities. One of the most popular among these is k-NN. For 

expression profiles x = (x1,…,xg) and x’ =(x’1,…,x’g) the degree of correlation, for 

example, is based on a correlation coefficient47 such as given in Eq. 1.16. Where r is the 

correlation measure, xg is the expression level of the gth gene in class one, x’g is the 

expression level of the gth gene in class two, and x  ( 'x ) is the mean expression level of 

class one (two). The k nearest neighbor rule is computed as follows, (i) find the k closest 

observations in the training set, and (ii) predict the class that is most common among k 

neighbors47,59. The number of k neighbors can be specified by leave one out cross 

validation (LOOCV) by performing for a number of k’s and retaining the one (k) with the 

smallest error rate. The number of classes in T is specified a- priori. Finally k-NN 

classifier is universally consistent70 if k→∞ in such a way that k/n → 0 as n →∞.  

 This method was used by Nutt et al., predict membership of histologically 

ambiguous tumor specimens as either oligodendroglioma, a somewhat benign cancer 

with favorable prognosis, or astrocytoma, a lethal brain cancer with poor prognosis. They 

demonstrated a maximum accuracy of about 86% after constructing the classifier with 20 
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genes. It was concluded that the gene expression data predicted prognosis more 

accurately than histopathological classification.  

1.2.3.4 Support Vector Machines 

One class of modern techniques for data analysis are machine learning tools, such 

as support vector machines (SVM), that seek to find a linear discrimination rule for data 

with high dimension by non-linear re-mapping of the data into higher dimensional space.  

Φ: XN → F 

x → x := Φ(x)  

The algorithm seeks a function that can partition F into a dichotomous space:  

F → yi ∈ {±1} 

 XN is a input data space with dimension N and F  is the feature space. In F a simple 

(linear) discriminant rule (hyperplane) can be applied that would not have been 

 
 

Figure 1.8. Depiction of a 2D data space re-mapped to a 3D space. In the left example, 

the data are arranged in a 2D space and one class (red) is surrounded by the other 

(blue). On the right a hyperplane can be specified by a linear function to separate the 

classes.  
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successful in XN data space69. Consider the example in Figure 1.8. On the left is a 2D 

space that contains the data, clearly a linear discrimination rule would not be able to 

separate the classes in the data. However, if the data are re-mapped to a 3D space, then a 

linear discrimination rule can be applied to separate the two classes.   

One challenge with this approach is that the dimensionality of F can increase 

drastically as N increases, making computations intractable even for simple discriminant 

functions. For certain feature spaces however, kernel functions can be used to compute 

scalar products between data points. Some common kernel functions are listed in Table 

1.1. In the binary classification setting the decision rule is given by  

φ(x) = sign[f(x)] 

where for data and class labels (xi,yi), i= 1,…,n a function, f(x)= h(x) + b, is sought with h 

∈ HK (a reproducing kernel Hilbert space (RKHS)) and b a constant minimizing Eq.1.24 

where (x)+ = max (x,0),‖h‖2HK is the square norm of the function h  defined in the RKHS 
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Table 1.1: Some examples of kernel functions taken from Muller, et al.  
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with the reproducing kernel function K(•,•) which measures the complexity or 

smoothness of h. Finally, λ is a tuning parameter which balances the data fit and 

complexity of f(x)66. 

SVM is traditionally a binary classifier but it has been modified for prediction of 

multiple classes (multi-class support vector machines (MSVM)) and used successfully in 

class prediction problems with gene expression data66 using the data set of Golub, et al.. 

Lee, et al., achieved between 11% and 3% training error depending on the number of 

genes used, the choice of kernel function and the preprocessing steps for the input data. 

The authors also examined a data set with four classes of cancer. MSVMs correctly 

classified 100% of the test samples.  

Thus, SVMs and MSVMs are a viable choice for tackling the problem of using 

gene expression data for class prediction. Our current implementation of SVMs is as a 

binary classifier only.  

1.2.3.5 Gene Shaving  

A relatively simple and intuitive method of class prediction using gene expression 

data is so called gene shaving. The basic concept of this algorithm is to find k-subsets Sk 

of genes that maximize the variance of the gene average Eq. 1.25, 
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as well as genes that show high coherence50. 
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  As described in Hastie, et al., the algorithm consists of seven steps: i) beginning 

with the entire expression matrix X, each row is centered to have a zero mean ii) compute 

the leading principle component of the rows of X  iii) shave off the proportion α 

(typically 10%) of the gene having the smallest absolute inner-product with the leading 

principle component iv) repeat steps ii and iii until only one gene remains, v) this 

produces a nested sequence of gene clusters SN ⊃ Sk ⊃ Sk1 ⊃ Sk2 ⊃,…,⊃ S1 where Sk 

denotes a cluster of k genes for which the optimal cluster size is estimated using the gap 

statistic [18], vi) orthogonalize each row of X with respect to skx , the average gene in  

,and vii) repeat steps 1-5 with the orthogonalized data to find the second optimal cluster. 

This process is continued until a maximum of M clusters are found where M is chosen a 

priori

kŜ

50. 

 
 

Figure 1.9. Gene shaving cluster formation 
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The first paper to introduced this learning method was that of Hastie, et al.. In the 

manuscript, the authors describe the algorithm and assert that gene shaving can be 

preformed in an unsupervised, supervised or partially supervised manner. They go on to 

report the supervised approach for predicting survival in patients with large B-cell 

lymphoma.  

1.2.3.6 Selection of Strong Feature Sets 

 The goal of extracting genes that are strong predictors of a relevant biological 

class is the object of many classification algorithms. However, for microarray 

experiments, sample sets are often small and comprise only a few members of each 

relevant class. Kim, et al., employed the supercomputer facilities at the NIH and 

developed an algorithm based on a perceptron that finds strong feature sets for class 

prediction. Classifiers were designed from a probability distribution created from 

spreading the distribution of the expression measures in a circular fashion to increase the 

difficulty of classification. The algorithm was parameterized by the variance of the 

circular distribution and the goal is to find gene sets whose classification accuracy 

remains strong despite increased spreading of the sample data. In this case the error, as a 

function of the inflated variance, gives an indication of the strength of the feature  

set67,70,71. An example is given in Figure 1.10, taken from67. 
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Feature sets are identified by a heuristic search algorithm that proceeds through a 

guided random walk, and is of a class of algorithms known as preceptrons. If a feature is 

a member of an acceptable solution set containing a small number of features then it is 

more likely to be a part of an acceptable solution using a larger set. Such algorthims can 

be considered genetic search or stochastic67,70,71. In mathematical terms, identification of 

 
Figure 1.10. Illustration of the sample spreading method for identification of strong 

feature sets.  From A to D, sample variance is increased and a classification rule is 

computed. Note that if spreading causes the error to increase substantially, than the 

feature set is not regarded as strong.  
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the optimum set of genes to predict class membership would require an essentially 

infinite number of comparisons when n and g are both large. This method of finding 

strong feature sets is useful for finding many good solutions rather than finding a best 

solution70.  

1.2.3.7 Prediction Analysis For Microarrays 

This method, developed by Tibshirani, et al., performs automatic feature selection 

by shrinking the class specific centroids72. Classification is similar to k-NN except that 

class membership is determined by distance to the class specific centroid. Cross-

validation is used for generalization error estimation. Prediction Analysis of Microarrays 

(PAM) will be discussed in greater detail in Chapter 3. 

1.3 GLIOMA BIOLOGY AND GENETICS  

The central nervous system (CNS) is comprised of two classes of cells: neurons 

and neuroglia (glial cells). Neurons can be further categorized by function into motor, 

sensory, and interneurons73, and are the information processing cells of the nervous 

system. Glial cells outnumber neurons in the central nervous system 10 to 50 times74 but 

they do not conduct nerve impulses or have a direct information processing role, rather 

they play a support role for neurons73. Glial cells can be divided into macroglia 

(astrocytes, oligodendrocytes, and ependymal cells) and microglia which are sometimes 

phagocytic74. 

Generally star shaped, astrocytes (astro= star) (cytes = cells) are the most 

numerous of glial cells filling almost all of the extraneuronal space73,75. Astrocytes have 

many functions including regulation and storage of potassium (K++) and removal of 
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neurotransmitters such as γ−aminobutyric acid and serotonin from the local 

environment74,75. Astrocytes can be subdivided as protoplasmic or fibrous depending on 

the presence or absence of cytoplasmic fibers75. Protoplasmic astrocytes are 

predominately found in the gray matter while fibrous astrocytes are primarily found in 

the white matter75. Oligodendrocytes produce the myelin sheaths that surround axons in 

the CNS. A single oligodendrocyte can myelinate between 10-15 axons doing so by 

spiraling around the axon during neural development75.  

 Astrocytomas (ASTs) and oligodendrogliomas (ODGs) are neoplasms that stem 

from astrocytes and oligodendrocytes respectively. For World Health Organization 

(WHO) tumor grading occurs on a malignancy scale from one to four. In the case of 

glioblastoma multiforme (GBM), (WHO grade IV), specimens have been collected that 

have features of both AST and ODG tumors. In terms of prognosis, the ODGs is more 

favorable than ASTs2,76, so accurate classification of histologically ambiguous tumor 

specimens is of paramount importance. Gliomas generally cause symptoms (e.g. seizures) 

by perturbing cerebral function, elevating intracranial pressure  by either mass effect or 

obstructing cerebrospinal fluid (i.e. hydrocephalus), or causing neurologic (and 

sometimes endocrine) abnormalities (e.g. paralysis, sensory deficits, aberrant behavior, 

headaches)77-79. 

A hallmark of AST tumors is resistance to apoptosis, and by extension to most 

current chemotherapeutics and radiation14 and rapid progression. If patients with resistant 

tumors are given standard therapies, they suffer ineffective treatment, lower quality of 

life, and sometimes devastating economic losses. There is ample evidence that surgery 
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confers little if any survival benefit and adjuvant therapies have been similarly 

unsuccessful14 .Microarray technologies provide a powerful way to understand two 

crucial pieces of information necessary to improve treatment of this disease: objective 

classification, and the ability to obtain provide a genetic signature that can be correlated 

with treatment response.  

Oligodendrogliomas are associated with WHO malignancy grades II and III, the 

latter being anaplastic oligodendroglioma (AOD). This tumor mainly occur in adults and 

OGDs are relatively benign, however, progression to AOD can occur which carries a less 

favorable prognosis. Classic ODG tumors are characterized by moderate cellularity, little 

mitosis, no necrosis, and have a ‘chicken wire’ capillary morphology76. (Appendix A1). 

They are usually not invasive and recurrence occurs at the primary site. The more 

advanced AOD is characterized by increased nuclear pleomorphism, hyperchromatism, 

hypercellularity, prominent microvascular proliferation and necrosis. Genetic lesions 

include gene deletions from chromosomes 1p and 19p, over expression of EGFR, PDGF, 

and PDGFR76. 

Astrocytoma tumorigenesis has been proposed occur via two genetic pathways i) 

a de novo pathway in which a high-grade astrocytoma develops without a previous tumor, 

and ii) a progression pathway during which a high-grade tumor develops from a low-

grade precursor (II, or III). Glioblastomas can also arise de novo or from a progression 

from a lower grade80. Some GBMs show predominately astrocytic features while others 

show more mixed AST and OGD features76, which begs the philosophical question of 
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cellular origin and / or, whether certain cells in the neoplasm re-differentiate to produce a 

different glial phenotype? 

Primary ASTs can be characterized by a high frequency of EGFR-gene 

amplification and a low frequency of p53-gene mutation.  EGFR gene amplification 

occurs most frequently in glioblastomas associated with loss of a complete copy of 

chromosome 1013,80. Indeed, WHO subdivisions of high-grade astrocytomas (III and IV) 

have been made on the basis of frequently found genetic changes such as, p53-gene 

mutation, loss of heterozygosity on chromosome arm 17p (LOH 17p), LOH 10 and 

EGFR-gene amplification. Secondary / progressive tumors show a high incidence of p53 

mutation, a low incidence of EGFR amplification and eventually LOH 1013. Further, p53 

mutations have been identified in 60–80% (or more) of low-grade astrocytomas. This 

mutation appears to have higher incidence in young patients (ages 18-40)13 IGFBP-2 has 

consistently been found to be over-expressed in GBMs, and six genes, including TIMP3, 

EGFR, and GDNPF, have been found to be over-expressed in 64–100% of grade II 

tumors41. Seven genes, including PDGFR-α, PTN, LRP, and SPARC, were up-regulated 

by at least 2-fold in 20–60% of grade II tumors41. Elevated expression of the EGFR, 

MDM2, CDK4, CD44, IGFBP2, DAP-3, and  laminins  is well described by microarray 

studies of gliomas 2,4,15,41,48,81.  Leenstra, et al., utilized molecular techniques to sub-type 

AST tumors (63 GBM 12 AA), for loss of heterozygosity on chromosome 10 and p53, 

and EGFR amplification. They reported the results of Cox proportional hazards modeling 

revealed that age and genetic subtype were significant prognostic indicators while 

histological grade was not.  
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Mariani, et at., demonstrate that DAP-3 was induced in the invasive rim of 

Glioblastomas, and that there is considerable heterogeneity of gene expression across the 

GBM tumor mass4. 

The evolution of this reductionism is in utilization of high throughput 

technologies such as the DNA microarray where the application of machine learning can 

take advantage of the massive amounts of data. In contemporary terms, DNA (and 

protein) based molecular profiling devices are poised to significantly impact the way 

medicine is developed and administered.  

1.4 CURRENT GLIOMA CLASSIFICATION METHODS 

 The Kernohan, St. Anne/Mayo (SAM-A), World Health Organization (WHO) and 

TESTAST 268 protocols are the most commonly used 4-tier grading systems for 

classifying grade and stage of astrocytomas, none of which is universally accepted82. This 

situation has obvious inadequacies, hindering prognostic assessment, comparative 

evaluation of tumors, and inter-center data comparison, while contributing to 

generalization of therapy, subjective diagnosis, misdiagnosis, unnecessary medical costs, 

and procedures. Survival curves generated by Karak, et al., for each of these grading 

protocols were similar suggesting that results obtained by any one of the protocols can be 

generalized to the others82. Interestingly, intra-classification grade-wise survival analysis 

revealed differences between grades 2 and 3 or 4 but not between 3 and 4. Despite this 

reported correlation between classification methods themselves, estimates of error rates 

as high as 30% have been demonstrated in the literature82, decrying a need for improved 

classification methods based on parameters that can be objectively defined.  
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 The World Health Organization (WHO) scheme is based on the appearance of 

certain characteristics: atypia, mitoses, endothelial proliferation, and necrosis. These 

features reflect the malignant potential of the tumor in terms of invasion and growth rate. 

Tumors without any of these features are grade I (pilocytic astrocytoma), and those with 

one of these features (usually atypia) are grade II (low grade astrocytoma). Tumors with 

2 criteria and tumors with 3 or 4 criteria are WHO grades III (anaplastic astrocytoma) and 

IV (GBM), respectively. Thus, grades I and II are the low-grade group of 

astrocytomas78,79,83,84,85. Example images of the most common gliomas are shown in 

appendix 1 (Table A1). 

Glioblastomas are known to occur predominantly throughout the cerebrum with 

infiltrative processes that can extend to the contralateral hemisphere14.  Infiltrating low-

grade astrocytomas tend to occur in the lobes of the cerebral hemispheres, especially in 

the frontal lobe. Pilocytic astrocytomas may occur in the frontal, temporal, and parietal 

lobes and cerebellum, but they are also common in locations closer to the midline, such 

as the hypothalamus, thalamus, optic chiasm, and brain stem77,79,85. In children, pilocytic 

astrocytomas have a tendency to occur in the mesial structures of the cerebellum14,77,79,85. 

 Due to their remarkable pathology, a subset of astrocytomas comprised of 

juvenile pilocytic astrocytoma (JPA), pleomorphic xanthoastrocytoma (PXA), and 

subependymal giant-cell astrocytoma (SGCA), are not effectively classified by a 4-tiered 

grading system such as the WHO. These tumors can have endothelial proliferation as 

well as cellular atypia. Fortunately, they are slow growing and well-defined making 

surgery curative in most cases14,77,79,85.  
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1.5 DNA MICROARRAYS AND BRAIN TUMOR RESEARCH 

Initial microarray studies of gene expression in gliomas identified differentially 

expressed genes and established gene panels that were distinctive relative to 

histopathological class2,23,67. Later studies focused on finding genes that could predict 

tumor class2,23,67. Two reports have related gene expression patterns with survival in 

gliomas2,23. Genetic correlates with survival have been described in other genetic (non-

microarray) studies involving gliomas81. In all, eleven reports have been published 

detailing brain tumor genetics through microarray analysis. These findings validate the 

hypothesis that gene expression can be used to identify new tumor subclasses, yield novel 

therapeutic targets and provide highly accurate diagnostic and prognostic 

information2,6,13,14, 23,25,77,79,81,85,86. An important area left for consideration is how gene 

expression relates to survival and other outcomes. Nutt et al., addressed this question 

from the important standpoint of classifying ambiguous tumors into more appropriate 

histological categories that were more accurate predictors of patient survival, but they did 

not relate gene expression patterns directly to length of survival2. The question at hand is, 

given a particular gene expression pattern, how long is the patient likely to survive, and 

which genes can most reliably answer this question. This information will promote three 

advances, i) design of DNA based diagnostic devices, ii) indication of novel 

pharmaceutical targets for improved therapy, and iii) enhancement of the ability of the 

clinician to plan and manage personalized treatment. 
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1.5.1 Basic gene expression analysis 

 Three studies involving glioma genetics made histological comparisons and found 

differential expressed genes simply by calculating mean expression ratios and reporting 

those that were beyond a given threshold. One of the first microarray studies of glioma 

genetics was conducted by Ljubimova, et al., They studied a total of 12 tissue samples 

that included 5 GBMs, 2 AAII, 1 meningioma, and 2 normal brain tissues. One of the key 

findings was the identification of expression patterns of laminin-8 and laminin-9 that 

could be correlated with time to tumor recurrence for GBMs. In addition they detected 

2345 genes with increased expression and 719 genes with decreased expression 

compared to normal brain. Of these 14 were up regulated > 2-fold in all 5 GBMs. They 

further demonstrated that tissue adjacent to GBM had only slight differences compared to 

normal brain but that Laminin α 4 chain, keratin18, and Desmoplakin were all up 

regulated compared to the GBM tumors. 

Sallinen, et al., utilized microarrays and tissue chips to identify differentially 

expressed genes in seven astrocytomas, three GBMs, and two specimens that represented 

a primary and recurrent grade III astrocytoma20.  The microarrays, from Clontech  

consisted of 588 genes and were hybridized with [α-33P]dCTP labeled RT product. The 

authors also prepared a tissue microarray composed of 418 individual tumor samples 

(364 gliomas and 54 other types of brain tumor). They reported prominent changes in 

expression fold change but did not perform any statistical tests of significance. Notable 

genes reported induced in GBM vs. normal brain included SPARC, Timp-1, Timp-2, c-

myc, vimentin, VEGF, and TGF-β. In addition the authors reported 10 genes 
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differentially expressed between primary vs. the recurrent sample. Tissue chip analysis 

revealed that ISGFBP-2 status was significantly inversely correlated to patient survival20. 

ISGFBP-2 and vimentin expression characteristics as reported by the microarray analysis 

were corroborated by the tissue chip immunohistochemical staining data indicating that 

comparison of large average fold changes was sufficient to reveal true differences in gene 

expression.  

Markert, et al., demonstrated patterns of differential gene expression between four 

GBMs and three normal brain specimens15. Analysis was conducted by determining 

genes that were induced or repressed above a fivefold expression threshold. Using an 

Affymetrix GeneChip, they identified 34 of ~7,000 transcripts that were fivefold induced 

in all GBMs relative to normal brain. These genes included p53-associated protein, 

MDM2, ISGFBP-5, and ISGFBP-6. They also investigated the functional manifestations 

of the gene found to be differentially expressed by whole cell patch clamp. The 

microarray data generated the hypotheses that voltage-gated K+ channel β3 subunit and 

NMDA receptor-activated currents would be down regulated in GBMs compared to 

normal brains. The authors demonstrated that the electrophysiological characteristics 

were consistent with the microarray findings validating the conclusions of the microarray 

analysis.  

These studies demonstrate that simple fold-change analysis is an effective tool for 

identifying differentially expressed genes. However, they have the disadvantage that 

there is no way, outside of testing each observation, of determining the number of false 

positives, similarly there are undoubtedly many genes that are regulated below the fold-
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change threshold that may be nonetheless significant. Further, this type of analysis does 

not take into account that patterns of gene expression may identify important regulatory 

networks, pathways, and molecular signatures.  

1.5.2 Histological classification using microarray data 

 Histopathology has a long and successful history identifying many disease 

subtypes and relating them to therapeutic strategies and clinical outcomes. Thus, most 

microarray reports dealing with gliomas based their analysis on identification of 

differences between defined histological classes. The methods for this type of analysis 

include statistical inference, and supervised and unsupervised learning. A few groups 

have developed custom algorithms to circumvent challenges posed by the inadequacies of 

contemporary analytical techniques.  

Huang et al., used cDNA Clonetech microarrays from identify differentially 

expressed genes in 11 low grade astrocytomas relative to normal tissue6. A students 

unpaired t-test was used to assess significant differential expression. Of the 1176 probes 

represented on the array they found 24 genes to be differentially expressed relative to 

normal tissue.  These genes included tissue inhibitor of metalloproteinase (TIMP3), 

epidermal growth factor receptor (EGFR), c-myc oncogene, Glia derived neurite 

promoting factor (GDNPF), nm23-H4, AAD14, 60S ribosomal protein LS (rpLS), Low 

density lipoprotein receptor related protein (LRP), SPARC, hBAP, pleitrophin precursor 

(PTN), PDGFR-α, interferon-inducible protein 9-17 (IFI 9-27), protein kinase CLK, 

teratocarcinoma-derived growth factor (TDGF1), GRB associated binder-1 (GAB1), box-

dependent myc-interacting protein 1 (BINI), Tyrosine protein kinase SKY (TYRO3) , 
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lactate –dehydrogenase-A (LDH-A), Adducin 3 , guanylate kinase (Guk1), keratin type II 

cytoskeletal 8 (KRT8), and CDC10 protein homologue (CDC10)6. 

 Rickman, et al., found 360 genes to be differentially expressed between grade IV 

and grade I tumors by at least 1.5-fold in mean intensity (P < 0.01), 167 had increased 

and 193 had decreased expression levels in grade IV tumors vs. to grade I tumors, 183 

genes were expressed at a higher level in grade IV relative to 5 grade II astrocytomas, 

and 703 genes were over expressed in glioblastomas compared with normal brain. Five 

genes (ZYX, SDC1, FLN1, FOXM1, and FOXGB1) were characterized that had not been 

previously associated with glioblastoma41. Significant differences between the mean 

normalized intensities was determined by one-way ANOVA Hierarchical clustering as 

preformed to visualize the differences in expression as a function of tumor 

histopathology.  

Kim, et al., developed an algorithm for selecting histological class predictor genes 

in groups containing one to three members. The aim was to use a small sample set ( 25 

tumors (10 GBM, 4 AA, 5 AO, 6 OGD)) and achieve superior classification error rate. 

This challenge was executed by a novel process of spreading the variance of the 

expression measurements for a given set of genes (3 at most)67. The algorithm they 

employed is detailed in section 1.2.3.6. They demonstrated classification rules for 

separating one class, say OGD, form the remaining classes, thus 4 classifiers were 

developed for each set of predictor genes. While not all gene panels were reported, it is 

interesting to note that there were fewer GBM discriminating genes panels, perhaps 

reflecting the large degree gene expression variability in this group of  
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astrocytomas23,42,48. 

Van den bloom, et al., tested for genes relevant to tumor progress in 8 samples of 

primary (grade II) vs. recurrent astrocytomas (grade III or IV)86.  Sixty six genes were 

reported significantly different for P < 0.01, and ≥ 2-fold change in expression. A total of 

nine of these were corroborated by further analysis which included COL4A2, FOXM1, 

MGP, TOP2A CENPF, IGFBP4, VEGFA, ADD3, and CAMK2G. It was suggested that 

these gene play a role in tumor progression. Statistical inference was preformed by paired 

t-tests between sample. The population distribution was estimated by permutations. 

Interestingly, they reported RT-PCR fold change data and microarray fold change data 

for 15 genes. Fold change measurement form these technologies corroborated well in 

magnitude, contrary to reports suggesting DNA microarrays underestimate fold change 

87,88,89. 

1.5.3 Survival Classification using Microarray Data  

Prediction of patient survival by gene expression profiling represents a powerful 

and important use of microarray technology. Currently, three glioma microarray studies 

have reported gene panels that related in some way to survival. Methods used for this 

type of analysis include, S2N, unsupervised clustering and class prediction. Shai et. al 

reported the identification of molecular subtypes of gliomas by analysis with Affymetrix 

GeneChips. They surveyed 35 glioma samples including ASTs, GBMs and OGDs. The 

authors used the Affymetrix U95Av2 chip and conducted multiple analyses using the 

S2N, t-test, multidimensional scaling, k-means and hierarchical clustering analysis and 

were able to find genes that partitioned the samples into all relevant comparisons 
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(primary vs. recurrent; astrocytoma vs. oligodendroglioma, 1yr survival vs. 3 yrs survival, 

and so on)23. For survival analysis, the authors preformed a t-test on samples that 

survived 1 year or less vs. survivors of greater than three years and coupled this data with 

the S2N algorithm to find predictor genes. Error was estimated by cross validation, and 

an error rate of 22% was reported for the survival comparison. 

Nutt, et al., demonstrated that tumors with ambiguous histological features could 

be accurately re-classified into a histological class for improved prognostic accuracy 

(survival). Gene candidates for prediction modeling were determined by the S2N 

algorithm of Golub, et al.. k-NN prediction models were constructed using different gene 

panel numbers (10, 20, 50, 100, 250) derived from S2N analysis of 21 tumors that were 

unambiguously classified. The model was then used to predict the membership of the 

remaining histologically nonclassical specimens. Error rates determine by LOOCV were 

achieve as low as 14% were reported for a gene panel consisting of 20 genes2. 

Interesting, vimentin was reported as a member of the 20 gene panel.  

 Godard, et at., (2003) conducted cDNA-array analysis of 53 biopsy samples 

comprising 24 low grade astrocytomas, 8 secondary glioblastomas, and 20 primary 

Glioblastomas25. They demonstrated the application of a novel unsupervised clustering 

algorithm coupled two-way clustering (CTWC)90, that finds stable clusters of genes and 

samples.  Clusters that were identified that were able to distinguish recurrent vs. primary 

gliomas. They reported that a cluster comprised of angiogenesis genes could be used to 

delineate the tumor specimens into primary versus recurrent classes and thus may 

indicate survival.  
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1.6 CHAPTER SUMMARY 

In summary, microarray technology has evolved beyond simple differential gene 

expression analysis. It now serves as a platform for multiple types of investigations 

ranging from sequencing, single nucleotide polymorphism analysis (SNPS), high 

throughput ligand-DNA interaction screening, and disease diagnosis.  

Contemporary knowledge concerning glioma genetics has converged on some 

important issues. Gene expression patterns can distinguish histological classes of gliomas 

with an appreciable degree of accuracy. Gene expression in GBMs is highly variable, 

which may reflect considerable within specimen heterogeneity. Gene expression can be 

used to reclassify ambiguous tumor specimens more accurately into histological classes 

that better reflect survival. Several important genes have been consistently identified 

including genes related to invasion, motility, angiogenesis (IGFBP-2), and anti-apoptosis 

(DAP-3). In fact, IGFBPs 1 – 7 have been reported differentially expressed in  

gliomas2,23,41,86. 

In terms of data analysis for microarrays, this body of work has been 

characterized by increasing sophistication. There have been multiple, disparate, 

approaches each aimed at extracting particular modes of information. Initially researchers 

reported simple observations of mean fold changes, which naturally was improved upon 

by performing statistical tests of significance (t-test, ANOVA). The S2N algorithm of 

Golub, et al., has been employed in many studies seeking to find genes predictive of 

binary classification2,23 and clustering has been used extensively.  

The following chapters describe the fulfillment of the specific aims outlined in the 

dissertation proposal and detail the development and validation of our biochip platforms. 
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These specific aims were: i) development, ii) production, iii) validation of the C3B 10K 

oligonucleotide microarray (10KO), and iv) use of this microarray to conduct a gene 

expression study aimed at identifying genes predictive of astrocytoma classification. This 

dissertation tells the story of how our microarray platforms were designed, fabricated, 

utilized, and convey our novel contributions to the field of biochip engineering. Chapters 

2 details the design and development of the 10k human oligonucleotide microarray and 

makes reference to our published manuscript. Chapter 3 describes the brain tumor class 

prediction study, including the design and production of our custom spotted 10K human 

oligonucleotide microarray. It is widely expected that future DNA devices will be 

indispensable in biotechnology and pharmaceutical research as well as disease diagnosis 

and prognostic estimation.  



 

 

 

 

CHAPTER 2. DESIGN AND DEVELOPMENT PARAMETERS FOR THE 10K 

HUMAN OLIGONUCLEOTIDE MICROARRAY 

 

 

  

2.0 Design of the Human Oligonucleotide Microarray 

The surface chemistry was selected using parameters identified from an initial 

fabrication experiment35. Although microarrays have been fabricated on many types of 

surfaces22,31,35,37,91,92,93 we demonstrated that 3-glycidoxypropyltrimethoxysilane (GPS) 

surface provided higher signal (foreground intensity divided by background) than other 

common surfaces (Figure 2.1). 
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Figure 2.1 Signal (intensity divided by background) of oligonucleotide DNA 

spotted on five surfaces. The top panel is a line graph showing signal as a function 

of spotting concentration. The bottom panel is a bar graph with error bars for 

standard deviation. The data shows that the epoxy silane surface gave the highest 

signal while spotting concentration leveled off after 0.01 µg/µl.  Surface 

abbreviations: DAB; amino dendrimer, PLL; poly-L-lysine, APS; 

γ−aminopropaltrimethoxysilane, TEB; tris-EDTA buffer, GPS; 

glycidoxypropaltrimethoxysilane. (Figure taken from35) 
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The GPS surface used in conjunction with amine modified oligonucleotide probes 

represented a method for covalent attachment of the oligos to the surface 22,l36,91. Because 

the pH of the spotting solution was determined to be 5.2, we suggest the covalent 

attachment of the oligonucleotide to the GPS was considered to proceed through an acid 

catalyzed epoxide ring opening reaction. A simple schematic of the reaction of an amine-

modified oligo with the epoxide ring of a GPS molecule is depicted in Figure 2.2. Thus 

the GPS surface was chosen as the substrate for immobilization of the C3B human 

oligonucleotide library to 1in x 3in Goldseal (Cat# 3010, Gold Seal Products) microscope 

slides. Spotting was preformed using a Cartesian PixSys 5500 microarrayer.  

 
 

Figure 2.2. Epoxide ring opening reaction and covalent bond formation. Amine 

terminated oligonucleotide, denoted by R, is covalently attached to the 

glycidoxysilane molecule.  
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The 10k human oligonucleotide microarray was designed using the MWG 10kA 

human oligonucleotide library (Cat # 2190-000000, MWG) as the base gene library. 

Seventeen additional “housekeeping” gene-probes and eleven probes that are also found 

on the Affymetrix Hu133A chip, listed in appendix A2 (Table A2), were added to the 

9,984 5’-C6-amine-terminated and HPLC purified 50-mer oligonucleotides in the MWG 

set. These additional gene-probes served as internal control features and for future inter-

platform data comparisons; an on-going project of the C3B. Seventy-eight additional 

gene-probes, which were identified though a literature search as being relevant to glioma 

genetics, were also added to the MWG library. These probes were also purchased from 

MWG and are listed in appendix A3 and these features are depicted in Figure 2.3.  

 

 
Figure 2.3. The 10k human oligonucleotide microarray. Housekeeping genes are 

denoted by colored boxes in the corners of the sub-grids. Nonspecific hybridization 

controls are denoted by aqua rectangles. 3’/5’ and bacterial “spiked-in” controls are 

denoted by magenta rectangles. The features are colored to show location and are not 

drawn to scale. 
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2.1 Fabrication methods 

To functionalize the surface of the microscope slides, the slides were first solvent 

cleaned in isopropanol for 1 min at 56oC followed by 1 min in acetone at 56oC. 

Subsequently the arrays were dried in an Eppendorf 5804 refrigerated centrifuge by 

spinning for 3 mins at room temperature then placed in a UV ozone cleaner (Model 

135500, Boekel) for 10 min. The slides were then sonicated (Model 1510, Branson) in 

isopropanol at room temperature for 1 min, rinsed in flowing ultrapure water, followed 

by immersion in RCA (5:1:1, diH20: hydrogen peroxide: ammonium hydrioxide) 

solution at 60oC for 1 min, rinsed again in ultra-pure water, and dried by centrifugation. 

The cleaned, dried slides were placed in a 0.1% v/v solution of toluene and GPS for 

surface modification at 40oC for 30 min. After this incubation, the slides were washed in 

anhydrous toluene, and cured at room temperature for 48 hrs.  

The printing script, executed by the Cartesian software, was custom written in 

house exclusively for the production of the 10KO such that the base library, including the 

78 supplemental oligos was printed first followed by placement of the control features.  

Contact printing was performed under 50 % relative humidity using eight silicon 

spotting quills (Parallel Synthesis). Oligos were spotted at 25 mM in a spotting buffer 

(pH = 5.2) of 0.75 M betaine and 1.5 X SSC as reported in Diehl et al.. The spotting 

concentration was specified by the MWG protocol as 50 mM, but was reduced to the 25 

mM concentration on the basis of information gleaned from the initial microarray 

fabrication experiment35 (Figure 2.1). The primary array was printed in duplicate on each 

slide yielding 21,168 total features. The primary and replicate sub-arrays were divided 

into 4 x 12 (48) sub-grids of 21 x 21 (441) spots each (Figure 2.3).  



 60

2.2 Quality control features 

The quality control features enabled quality prescreening of the hybridized 

microarrays. These features were analyzed using the NQC R script written specifically 

for the 10KO. At the time the 10KO was designed, the housekeeping genes were thought 

to be useful for normalization of microarray data, this notion has been largely 

debunked29,56. Currently, these probes primarily serve to align the quantification grid of 

the Quantarray software.  

The probes for the bacterial genes BioB, BioC, PheB, and ThrC (Table A2), are 

implemented for positive control and uniformity of the hybridization event. They are 

spotted at a concentration of 25 mM in row 21, columns 1-4 of each sub-grid, and Cy3 

(MWG) labeled complimentary targets were spiked into the hybridization solution at the 

final concentrations of 500pM, 250pM, 125pM, and 75pM respectively such that it was 

expected to observe a linearly decreasing foreground intensity from these spots. To test 

for this, a lack-of-fit test61 was applied to the Log2 intensity values of these spots. A p-

value < 0.01 was considered as evidence against the appropriateness of the regression 

model i.e., lack of fit.  

The BioD series of 10 spots, printed at concentrations in a two fold dilution 

starting at 200mM were used to obtain a value for data filtering based on the linear 

regression at the intensity on the y-axis corresponding to the graphical intersection at 

25mM (Figure 2.4). This information was used to remove spots that displayed intensity at 

the non-specific hybridization intensity threshold.  
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Finally, there were six spots that probe for 3’ and 5’ ends of the transcripts for 

GAPDH, ISGF, and Beta Actin. These spots report the fidelity of the RT reaction by 

indicating that the distal (5’) ends of mRNA transcript are copied with the same 

abundance as the 3’ end. For these spots the I3’/I5’ = IR is 0 ≤ IR ≤ 3.0, where I is the 

foreground intensity from the spot. Arrays with poor IRs are typically discarded from 

further analysis.  

 
Figure 2.4 Example graph for linear regression of BioD spots. The intersection 

of Log2 intensity and spotting concentration (25µM) was used to determine the 

value at which to filter the data for nonspecific hybridization. 

 

  

 



 

 

 

 

 

CHAPTER 3. MALIGNANCY GRADE AND OUTCOME PREDICTION IN 

HUMAN GLIOMAS BY DNA MICROARRAY ANALYSIS 

 

 

ABSTRACT 

 

 

We report the identification of predictive gene panels for tumor grade and 

survival by microarray analysis of 64 glioma samples including WHO grades I, II, and IV 

for astrocytomas, and grades II and III for oligodendrogliomas. We demonstrate that 

transcriptomic profiles are able to distinguish tumor grade and predict survival class in a 

comprehensive set of human gliomas. Prediction analysis of microarrays (PAM) 

identified a 22 gene panel capable of distinguishing glioblastoma multiforme (GM) 

tumors from oligodendrogliomas (OL) SAM censored survival followed by k-nearest 

neighbors (k-NN) class prediction revealed simple survival classes for gliomas. Analysis 

using PAM identified 22 genes with a false discovery rate (FDR) = 0.0 that achieved 94% 

classification accuracy among GMs and OLs. Survival analysis followed by k-NN class 

prediction achieved ~84% classification accuracy for a 3yr simple survival rule with a 50 

gene panel, FDR = 0.24. This study supports the use of microarrays in molecular 
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diagnosis and prognostic estimation for human gliomas for the purposes of patient 

counseling and treatment planning. 

3.0 INTRODUCTION 

The instantaneous transcript abundance profile data captured by the DNA 

microarray has been shown to accurately predict histological class and survival in 

multiple cancers2,8,50,62,64,65. We applied this technology to investigate gene expression in 

a comprehensive set of human gliomas. Gliomas are a devastating form of brain cancer, 

leading to >17,000 deaths per year in the United States80. Patients diagnosed with 

glioblastoma multiforme (GM) have a mean survival of ~52 weeks13,94 and brain cancers 

are one of the leading causes of death in children80. Histologically ambiguous explants 

are associated with a 30% misclassification rate2,82,95, and current treatments for gliomas 

have failed to significantly increase quality of life or survival for the past 25 years13.  

Efforts to understand the molecular etiology of this disease have been facilitated 

by use of DNA microarrays6,4,15,17,20,23,41,48. Initial work identified differential gene 

expression by a mean Log2 fold-change (FC) threshold (i.e., FC = 2). This revealed genes 

such as ISGFBP-2, laminin-8,9 SPARC, TIMP-1,2, c-myc, vimentin, VEGF, PDGFR, and 

TGF-β, and  ISGFBP-1,2,5,6 to be differentially expressed in gliomas relative to normal 

brain15,20,48. More sophisticated analysis has revealed distinct patterns of gene expression 

in gliomas, high variability in GMs, and demonstrated clusters of genes involved in 

angiogenesis, cell motility, and progression6,,41,67,86. Class prediction and survival analysis 

has revealed gene panels that are capable of reclassifying previously ambiguous gliomas 

into a more appropriate survival class. Novel clustering methods have identified gene 
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expression differences in primary vs. recurrent gliomas which may indicate therapeutic 

targets for treatment2,41,65.  

 A major future application of DNA microarray technology is the development of 

a targeted, low density, DNA based diagnostic/prognostic devices. Development of such 

devices will depend on delineation of an adequate panel of genes that relate to molecular 

subtype for diagnostics, and outcomes for prognosis96. We seek to identify such gene 

panels for diagnosis of malignancy and prognosis of glioma patients through microarray 

analysis of glioma samples.  

In the current investigation, 62 human glioma samples representing 5 WHO 

malignancy grades were analyzed using the custom spotted C3B 10K oligonucleotide 

microarray (10KO). To identify gene panels that were predictive of malignancy grade 

and survival, feature selection, based on gene expression values, was preformed using 

methods implemented in prediction analysis for microarrays (PAM)72 (malignancy grade) 

and univariate Cox proportional hazards modeling (survival) using censored survival 

data. Class prediction models were built for malignancy grade (shrunken centroids)72 and 

simple survival rules (k-NN). It is broadly anticipated that transcriptomic information 

about disease etiology will enable the development of personalized treatments and 

drastically improved therapeutic quality2,25,61,67. 
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3.1 METHODS AND MATERIALS 

3.1.1 Sample acquisition 
‡Tumor tissue was prospectively collected in the operating room in accordance 

with VCU IRB-approved protocols (VCU IRB#3031). Samples were snap-frozen in 

liquid nitrogen within 5 minutes of excision and stored at -86ºC until ready for sectioning 

and extraction. IRB approved glioma samples were acquired from the VCU medical 

center campus Broaddus/ Filmore tumor bank and transported to the C3B laboratory on 

dry ice. Received samples had associated sample ID, histopathological category, and 

mortality time/ time to censor. For total RNA extraction, tissues were pulverized to a fine 

powder in pre-cooled nuclease-free mortar and pestle, and pulverized tissue placed 

directly in TRIzol reagent (Invitrogen, 15596-026) and processed according to 

manufacturers specifications. Total RNA extraction was followed by clean up by RNeasy 

columns (Qiagen Inc., Valencia, CA) according to the manufacturer’s protocols. Samples 

were stored at –80oC until removed for reverse transcription. 

The quality of the total RNA sample was assessed using a 2100 Bioanalyzer and 

RNA 6000 LabChips® (Agilent, Palo Alto, CA) such that the measured 28s to18s 

ribosomal quantity ratio ≥ 1.1.  The sample set was comprised of six histopathological 

classes: 25 glioblastomas (GM), 9 anaplastic astrocytomas (AA), 10 pliocytic 

astrocytomas (PA), 10 oligodendrogliomas (OL), and 10 anaplastic oligodendrogliomas 

(AO). These samples are listed in appendix 5. 

                                                 
‡ The work described in this paragraph was preformed by our collaborators: Dr. Tim Van Meter, and the 
Dr. William Broaddus and Helen Filmore research group. 
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3.1.2 Experimental design 

The hypothesis that a subpopulation of genes within the C3B gene library can be 

used delineate glioma stage, grade, and patient outcome (survival) was tested using data 

derived from a standard reference design (Figure 1.3). This design gives several 

advantages: it allows for open ended data collection (extensible), it enables statistical 

estimation of all main effects and higher order interactions with the same precision, it 

allows for large numbers of samples without increasing the complexity of analysis, and 

down stream clustering analysis is greatly simplified over designs such as a  

loop design45,67,97. This design can also be thought of as a randomized block design99 

where each array represents a block, and arrays are randomized with respect to sample.  

For this design, a reference sample (r = 1) and a tumor sample (t = 62) are co-

hybridized to each array such that each array is interrogated by the same reference but a 

different tumor sample. Stratagene Human Reference total RNA was used as reference 

total-RNA and was labeled with Alexafluor 647. Each tumor sample was labeled with 

Alexafluor 555.  

3.1.3 Reverse transcription, array hybridization, and labeling 

 Tumor total-RNA was reverse transcribed according to standard protocols. The 

Genisphere labeling kit (Genisphere Cat # H500100 and H500110) was used to 

fluorescently label the reverse transcribed and hybridized oligonucleotide targets. This 

labeling method utilizes a two-step approach. The first step was the hybridization (for 16 

hr) of the reverse transcription (RT) product to the oligonucleotide probes on the surface 

of the array. The RT product, was synthesized using Genisphere primers that contain a 
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linker region that binds to the labeling dendrimer in the second hybridization step (4 hr). 

The labeling dendrimer consisted of a third generation DNA dendrimer that contained 

~950 Alexafluor molecules, and the relatively large amount of fluorescent molecules on 

the dendrimer molecule allowed for the use of extremely small amounts starting material. 

For the Genisphere labeling method, 0.5 – 2.0 µg/µl of total-RNA are recommended and 

by comparison, alternative labeling methods such as aminoallyl or dyeconjugated 

nucleotide labeling require 15 –25 µg/µl of total-RNA.  Thus, the Genisphere reagents 

were chosen for this experiment chiefly because of limited tumor sample total-RNA 

availability. It has been noted that earlier generation Genisphere products have been 

associated with a more limited ability to detect fold changes (sensitivity) compared to 

aminoallyl or dye conjugated nucleotides, however, the current generation products used 

in this experiment have not been evaluated for their sensitivity. 

 Stratagene Human Reference total-RNA (Cat # 740000) was chosen as the 

reference RNA used to hybridize against the sample cDNA and was always labeled with 

Alexafluor 647. The reference cDNA was reversed transcribed in paired-with-

sample10µL reactions then pooled before aliquoting into microcentrifuge tubes 

containing the tumor RT product. A total of 1µg of tumor total-RNA and reference total-

RNA was used for each RT reaction. The RT reactions were preformed in a Scigene heat 

block with heated bonnet at 52oC using Superscript III (Invitrogen, Cat# 18080-044) 

reverse transcriptase in a volume of 10µL. Hydrolysis of RNA and neutralization were 

preformed according to the Genisphere protocol.  
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Hybridization and labeling took place in Telechem hybridization cassettes using 

Lifterslips (Erie Scientific, Cat# 25x60I-2-4789). Sealed cassettes were incubated for 16 

hrs in an oven at 520C for the cDNA hybridization step. The hybridization buffer 

consisted of 30µl of 2X Enhanced hybridization buffer (Genispere Cat # CW31200S25), 

14 µl each of sample and reference RT product solution, in a total volume of 60 µl. 

Spiked-in probes (2µl of 100X Cy3 labeled oligonucleotides) complementary to the 

control features BioB, BioC, ThrC, and PheB was included in the hybridization solution 

at 500pM, 250pM, 125pM, 67.25pM respectively. The cDNA hybridization solution was 

pipetted under a Lifterslip that was placed over the array and wrapped in parafilm prior to 

preparation of the hybridization solution. Post hybridization, arrays were washed for 10 

min in medium stringency wash buffer (2X SSC and 0.1% SDS) at room temperature 

then rinsed 10 times in 2X SSC buffer according to the Genisphere protocol. The arrays 

were then dried in an eppendorf centrifuge at 1300 RPM for 3 minutes. 

Dried arrays were covered with a Lifterslip, wrapped in parafilm and placed back 

into the hybridization cassette for the labeling step (3DNA hybridization). The 3DNA 

labeling solution consisted of 30 µl of 2X SDS based hybridization, 3 µl of Alexafluor 

555 labeling reagent (Genisphere kit component), 3 µl of Alexafluor 647 labeling reagent 

(Genisphere kit component), 1 µl of anti-fade reagent, and 23 µl ultrapure water. The 

labeling solution was pipetted under a Lifterslip and the sealed hybridization cassette was 

placed in a lab oven 52oC for 4 hours. Washing and drying procedures were carried out in 

the same manner as in the cDNA hybridization with the exception that the initial wash 

was 5 mins with 100 µM dithiothreitol (DTT) (Invitrogen, Cat # Y00147) added to the 
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wash buffers to protect against Alexafluor 647 dye fading (Figure 3.1). All washes were 

preformed according to Genisphere protocols. 

3.1.4 Image acquisition and quantification 

 Hybridization times were staggered such that arrays completed their labeling 

hybridization period in 15 min intervals. This was done to minimize AlexaFluor 647 dye 

fading99 (Figure 3.1) and arrays were scanned immediately after drying by centrifugation.  
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Hybridized microarrays were scanned in a ScanArray Express microarray scanner 

under 90% laser power, 80% PMT gain and 10µm scan resolution. Scanned images were 

saved as *.tif files for image quantification. Acquired images were quantified using the 

QuantArray software from Perkin Elmer. The adaptive circle method of foreground 

intensity pixel segmentation was used to define the margins of the spots and spots were 

located using the nominal location feature, i.e., spots were not located using the 

 

Figure 3.1. Scatter plots of AlexaFluor 647 dye fading. Intensity data from the 

AlexaFluor 647 channel from the initial scan plotted against data from the same array 

scanned after 10 minutes (left panel), and after 30 minutes (right panel) of dark 

storage under ambient conditions. The initial scan data were plotted on the x-axis and 

the subsequent scan data were plotted on the y-axis. Notice, as time progressed, the 

intensity distribution shifted toward the initial scan data. Red dots indicate a two-fold 

difference. 
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automatic algorithm. The resulting quantification output was saved as ANSI tab delimited 

text files.  

3.2 ANALYTICAL METHODS 

3.2.1 Quality control and data normalization 

 Prior to the analysis of the raw data files were modified in two ways, i) the text 

files were deconstructed such that two files were created from each initial data file 

(decon), and ii) the primary and replicate gene intensity values were averaged (gene-

averaged). Recall that the 10KO contained a primary and secondary array yielding two 

measurements for each gene (Figure 2.3), 10584 measurements from the primary array, 

and 10584 measurements from the replicate array. For the deconstructed (decon) files, 

this translates into two columns (vectors) in the expression matrix Xdecon for each sample. 

This essentially increases the number of measurements by two, and was done to increase 

the sensitivity of the feature selection for the survival analysis. This paradigm was chosen 

based on statistical theory33. Malignancy classification was preformed on gene-averaged 

data.  

Pre-analytical data treatment proceeded in four steps, two quality control steps 

and two normalization steps. First, the data were prescreened by NQC (2.3) to detect 

arrays that performed poorly. This data is given in Appendix 4. Correlation among all 

pairs of arrays was calculated on a per channel basis, this data is given in Table A6 in 

(Appendix 6). The correlation metric used was,  

yX
yx

YX
σσ

ρ
⋅

=
),cov(

,  [3.1] 
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where σ = the sample standard deviation. 

Prior to normalization the log2 ratio of sample / reference was calculated which 

serves to control for differences in immobilized probe concentration and spatial effects. 

The data were then normalized in two steps. First arrays were regularized by standard 

deviation45. This normalization is preformed based on the assumption that all spots within 

each subgrid on an individual microarray and all spots within each microarray in a set of 

microarrays should have the same standard deviation for log2 Iis/ Iir, where I is the 

measured intensity for spot i in the sample channel (s) and the reference channel (r). 

Standard deviation regularization scales the sample and reference channel intensities for 

  
Figure 3.2. The effect of standard deviation regularization and LOWESS 

normalization. Ratio (log2[Is/Ir]) (y-axis) vs. intensity (log10[Is-Ir]) (x-axis) plots of 

array 12-40, sample aa9. Blue dots indicate intensity distribution of spots before 

normalization, red dots indicate the intensity distribution after normalization. Left 

plot is of standard deviation normalization and the right plot is of LOWESS 

normalization. 
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each spot such that the spots within each sub-grid or all spots within each microarray in 

an experimental set will have the same standard deviation for log2 Iis/ Iir. This adjustment 

was applied to sub-grids within an array to adjust for uneven hybridization and between 

arrays to normalize for array-to-array differences (i.e., production lot).  

Finally, the data were normalized by sub-grid LOWESS normalization32 with f = 

0.4.  This normalization was applied to correct curvature in the ratio vs. intensity (RI) 

plot (Figure 3.2), and to shift the intensity distribution to center around zero on the RI 

plot. Curvature in the RI plot indicates a dependency of log2 Iis/ Iir ratio distribution on the 

measured intensity value. Shifting the intensity distribution toward zero on the RI plot 

helps remove the dye dependent intensity bias of the distribution. Data normalized in this 

way were used in all subsequent analyses. These normalizations were preformed using 

the MIDAS program45. 

3.2.2 Feature selection and class prediction 

Feature selection is a general term used here to indicate the method by which 

features (genes) are selected for further analysis. In the context of microarray data, many 

genes provide little information about a particular biological condition so it is necessary 

to develop a means for selecting genes that are relevant to the question at hand. Some of 

these methods previously employed by the microarray community are described in 

chapter 1. The methods used for the study described in this chapter are PAM, (for 

malignancy grade), SAM Cox proportional hazards modeling followed by k-NN 

classification (for survival).  
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3.2.2.1 Prediction analysis for microarrays 

 Prediction analysis for microrrays performs automatic a feature selection via 

shrinking the class specific centroid. This removes genes that fall within the limits of the 

threshold parameter (∆)72 which controls the amount of shrinkage. Classification is 

preformed by calling unknown sample xn
* a member of class i by computing the distance 

to each class specific centroid and giving membership to the nearest centroid. For 

convenience, the method described below is taken from Tibshirani et al. For a more 

verbose treatment refer to the manuscript72. 

Briefly, the centroid for gene expression data can be calculated for each class and 

is illustrated in Figure 3.3. If xgs is the expression value for the gth gene where g = 

 

∆1 ∆2 ∆1 ∆1 

  

G ene    1   

G ene    2   

G ene    3   

Fold Change   

Class   1 Centroid   Class 2 Centroid Class 3   Centroid   

Fold Change Fold Change   

∆2 ∆2 

 
Figure 3.3. Illustration of class-wise gene expression centroid. Each class has a centroid 

based on gene expression values. The values of ∆ control the amount of centroid 

shrinkage. Here, two values of ∆ are depicted, and for ∆2 (in class 3) the amount of 

shrinkage excludes gene 2 from consideration. This removal is the feature selection step. 
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1,2,…,l and sth sample where s = 1,2,…, n, and there are 1,2,…,c  classes such that the 

class labels are denoted by ic for the n samples in class i, then the gth component of the 

centroid for class i is igsCisgi nxx /∈Σ= .  

Given 

)( ogk

ggi
gi qqm
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−⋅
−

=   [ 3.2] 
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and ssm ii /1/1 +=  makes mi·qg equal to the estimated standard error of the numerator 

in dgi. The value for qo is set such that it is equal to the median value of qg over the set of 

genes to remove large values of dgi that arise from chance by low expression levels as in 

the SAM algorithm39. Thus, dgi is essentially a t-statistic and the PAM method shrinks 

each dgi toward zero ( by specifying the ∆ parameter) giving d’
gi and yielding the 

shrunken centriods. This can be expressed as,  

⋅′++=′ giogiggi dqqmxx )(  [3.4] 

This method of shrinkage can be described as soft thresholding and is described in the 

following equation,  

+∆−=′ ))(( gigigi ddsignd  [3.5] 
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where the + indicates to take the positive part (t+ = t if t>0 and zero otherwise)72. It can be 

seen in Eq. 3.5 and Figure 3.3 that the value of ∆ sets the threshold for the amount of 

centroid shrinkage. 

The ith discriminant score δi is calculated relative to the ith shrunken centroid and 

is corrected by the class prior probability72. The classification rule specifies the class 

membership choosing the discriminant score that minimizes the distance of the gth test 

observation to the shrunken centroid.  

The latter is a type of classification algorithm that is similar to k-NN with the 

exception that class membership is determined as a function of the class specific centroid, 

rather than the k nearest distances to individual class members. 

3.1.2.2 SAM censored survival  

 Survival analysis is a class of methods used for time-to-event or failure time 

analysis.  In engineering these methods are used to estimate such quantities as product 

life expectancies. In the medical field, they are used to estimate survival time of 

individuals given data such as stage of disease.  The survivor function at time t is the 

proportion of units in the population for whom T > t. For instance, the proportion of 

individuals still alive at age t = 95 years. This function can be denoted S(t) 

S(t) = P(T>t) = 1-P(T≤t)  [3.6] 

The most widely used survival model is the Cox proportional hazards model100,101 

whose general form is given in Eq. 3.7. 

h(t) = [h0(t)] e(βX) [3.7] 

or equivalently 

h(t) = [h0(t)] exp( β1X1+ β2X2 + … βnXn) [3.8] 
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This is a semi-parametric exponential regression function for the hazard at time t, h(t). 

The value of the βs are estimated using partial likelihood. It can be seen from Eq. 

3.7 that when X= 0 the hazard h(t) equals the baseline hazard h0(t). For a single 

dichotomous independent variable such as 0 for a censored observation and 1 for death, 

dividing each side by h0(t) gives the hazard ratio, which indicates the expected change in 

the risk of the event when X1 changes from 0 to 1. 

 The Cox model has been conveniently implemented in the TIGR MeV software 

SAM module where the SAM distance metric d(g) of Eq. 1.14 for the Cox model is  

d0(g) = h(t)g = [h0(t)g] exp( β1gX1g )  [3.9] 

This software accepts as input time-to-death, time-to-censor and gene intensity xig 

and finds genes that are significantly related to survival according to the value of 

∆ selected. Once a list of genes significantly related to survival is determined, any value 

of t (days) can be selected for defining a classification rule. Ideally, we would like to find 

the minimum number of genes that achieves the lowest classification error rate. 

We chose four biologically arbitrary classification rules (i.e. +/-1 yr survival) to 

select a list of genes that could classify samples with a low error rate. This, of course, 

throws out information but is nevertheless useful for giving glioma patients and clinicians 

information for personal and treatment planning. The k-NN classifier that was used to test 

the ability of the genes selected using the survival model was described in detail in 

section 1.2.3.3, and its error rate was estimated using LOOCV.  
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3.1.3 Analysis procedure for malignancy grade 

 Gene-averaged files were formatted for input into the PAM software package. 

This package operates in the R environment103 and allows estimation of generalization 

(classification) error (ε) by v-fold cross validation, for all analyses v = 10.  

The v-fold procedure involves partitioning the sample set in to v fractions, 

calculating the classification error rate with v – 1 fractions, as a function of the threshold 

parameter ∆, and repeating this procedure for all v fractions. The error rates are averaged 

and the variance, due to the differences in error estimates among the v iterations, is also 

calculated.  

Plots for cross validation error, and the false discovery rate (FDR) were 

constructed, and gene lists were generated for selected values of ∆ (Figure 3.5). The 22 

gene list of GM vs. OLs was reported in the results section and was the gene list 

associated with the lowest FDR and ε.  

 Analysis was initially conducted on all sample types, and then preformed for 

selected pairings. The pair-wise comparisons were preformed to select genes from 

commonly misclassified gliomas. For instance, a histopathologist is unlikely to confuse a 

PA from a GM, but an AA to GM comparison is more prone to subjective diagnostic 

error. The specific pair-wise comparisons were GM vs. AA, GM vs. AO, and GM vs. OL. 

3.1.4 Analysis procedure for survival  

 The MeV software package45 was used for survival analysis. Survival was 

modeled using only 80% (49) of the samples, the samples not included are listed in Table 

3.1. Class prediction models were built using a k-nearest neighbors (k-NN) classifier 
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using 100% (62) of the available samples. Several classification rules (i.e., survival times: 

+/- 365 days, 740 days, 1080 days) were applied to genes panels of 100, 50, 20, and 10 

genes. Genes were selected for panel inclusion as ranked by the value of do  (Eq. 4.9). 

This was done to determine if a reduced suite of genes, fewer than detected significant 

could be used to build a class predictor. The reduced gene panels were evaluated 

according to their LOOCV classification error. 

This analysis was conducted twice, once with gene-averaged files, and a second 

time with decon files. This approach was adopted due to the high observed FDR rate after 

Table 3.1. Samples not included in survival analysis. 
Index Sample HistologyA Survival TimeB 

1 AA 69 d 

2 AA 735 c 

3 AO 83 d 

4 AO 1739 c 

5 GM 70 d 

6 GM 1103 c 

7 GM 421 d 

8 OL 1511 d 

9 OL 300 d 

10 PA 1008 c 

11 PA 2402 c 

12 PA 1851 c 

A Sample histology, AA = anaplastic astrocytoma, AO = anaplastic 

oligodendroglioma, GM= glioblastoma multiforme, OL = 

oligodendroglioma, and PA = pilocytic astrocytoma.  

BSurvival time is reported for each sample with letter codes: d = dead , c = 

censored. 
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gene-averaged survival analysis (Section 3.1.1) because it was expected that the 

additional data would increase the sensitivity to detect expression differences that were 

significantly related to survival. After each model fitting and validation step, the genes 

common to our data and the SMD data set were used make predictions of class 

membership on the SMD data set. This was done to check the accuracy of our predictive 

gene panels against a published data set104. We were able to obtain 20 GM samples and 

associated survival data. Since these data were limited in terms of their survival time 

distribution, only the +/- 1yr survival rule was tested. The arrays used to assay these 

tumors consisted of ~40,000 cDNAs, with some gene replications. 

 

3.3 RESULTS 

3.3.1 Initial cluster analysis 

To determine if sample and gene clusters relating to biological variation in the 

data could be identified through hierarchical clustering, the data were filtered by low 

intensity resulting in ~1400 genes, then the top 200 (~ 2% of genes) remaining genes 

with the highest variance were retained. The intensity filter was applied such that spots 

with intensity lower than a specified cutoff were removed. The number of genes removed 

was determined by iteratively filtering genes by intensity then filtering the resulting genes 

by retaining those with the highest variance, then constructing the cluster map. For most 

iterations, the resulting clustering result failed to indicate biologically relevant clusters 

(i.e., by sample class). Only after drastic reduction in the genes by first applying the 

intensity filter, were relevant clusters obtained. Others have performed clustering on the 
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bulk (i.e., > 200) of the genes present on their microarrays and obtained results that 

followed expectation (i.e., clusters formed according to sample class or subsets within 

class)20,23,41,104.  

For the data presented here, the average linkage method used to produce sample 

Figure 3.4. Unsupervised clustering of 200 genes after low intensity and variance 

filtration (top 200 genes (2%)). Clusters were generated by Pearson correlation and 

average linkage. Classes are color coded; green = NB, dark blue = GM, soft blue = 

AA, aqua = PA, Dark red = AO, and pink = OL. Low-grade malignancies clustered 

predominately on the right, high-grade malignancies in the middle, and the normal 

brain specimens occupy a cluster on the left.  
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and gene clusters, and Pearson’s correlation was used as the similarity metric.  Clusters 

formed somewhat according to malignancy grade as shown in Figure 3.4. As expected, 

the NB samples clustered together.  
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3.3.2 Class prediction of malignancy grade 

3.3.2.1 Classification of all classes 

To determine if gene panels could be identified that could distinguish all five 

malignancy grades from one another, the microarray data was analyzed using PAM. As a 

Figure 3.5. Misclassification rates and FDR curves for all five glioma classes. The 

top left plot shows the average misclassification rate (y-axis) of the 5 glioma classes 

with variance bars. The bottom left plot shows individual mis-classification rates as 

a function of number of genes and ∆ for each of the glioma classes. The number of 

genes is given on the top x-axis and ∆ is given on the bottom x-axis. The right panel 

is a plot of the FDR (y-axis) as a function of the number of genes (bottom x-axis), 

and the value ∆ (top x-axis). Line colors in the left bottom plot indicate the 

following: dark red = GM, green = OL, blue = PA, black = AO, and grey = AA 

 



 84

definition, the overall error rate (ε) is the average of each class-wise error rate. The 

class-wise error rate is the number of times a member of a particular class was classified 

into an alternate class. This analysis did not indicate a single suite of genes capable of 

distinguishing all tumor classes with a low ε (i.e., > 30%).  

However, this analysis did provide the first indication that the best classification 

was achieved between GM and OL tumors. Specimens for PA, AA, and AO were not 

easily distinguishable. The feature selection step was associated with a high FDR, for 

instance, at ∆ ∼ 0.9 (Figure 3.5 top x-axis, right panel), the median FDR was ~ 75% 

(Figure 3.5 y-axis, right panel), for ~ 1900 genes (Figure 3.5 bottom x-axis, right panel). 

The lack of sensitivity for feature selection can also be observed in the high 

misclassification error rate, which achieved its optimum overall misclassification error, ε 

= 0.48, for ∆ = 1.0 and ~2500 genes. Individual error rates are summarized in Table 3.2, 

Table 3.2. v-fold-crossvalidation error rates for all classes. For the contents of this 

Table, ε = 0.5, for ∆ = 1.0 and ~2300 genes. 

Class AAA AOA GMA OLA PAA Class-wise εB 

AAA 5 3 0 1 0 0.44 

AOA 0 1 4 4 1 0.9 

GMA 2 2 14 2 4 0.42 

OLA 0 3 0 5 1 0.44 

PAA 0 0 4 1 5 0.5 

Overall εC 0.48 
ATumor class designations.  

BThe error rate is reported in the far right column.  

CThe over-all error rate is the average of the values for each individual class-wise 

error rate.  
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and it can be seen that the tumor classes most likely to be classified correctly were the 

GMs and the OLs. The AO tumors were most likely to be misclassified followed by the 

AAs.  

3.3.2.2 Class prediction on selected pair-wise comparisons 

 In a clinical setting, the most relevant need of improving classification occurs 

among malignancies that are most likely to be misclassified and also have an appreciable 

disparity in prognosis. Three such comparisons were defined as GM vs. AO (Figure 3.6), 

GM vs. AA (Figure 3.7), and GM vs. OL (Figure 3.8). In practice, lower grade 

malignancies are often given elevated status as a conservative measure to ensure the 

patient is not denied aggressive treatment2.  

The misclassification and FDR plots for these comparisons are given in figs 3.6 – 

3.8, and the individual misclassification rates are given in Table 3.3. It can be seen from 

this data that the comparisons of GM vs. AA, and GM vs. AO were not as reliable given 

Table 3.3. Individual v-fold-cross validation error rates for selected pair-wise 

comparisons. 
Comparison AThreshold BOverall ε  GM ε COther Class ε # Genes Median FDR 

GM vs. AA 1.2 0.24 0.08 0.66 ~420 0.5 

GM vs. AO 1.4 0.33 0.22 0.60 ~150 0.5 

GM vs. OL 2.0 0.09 0.13 0.0 ~22 0.0 

AThe value of ∆ is specified and all other parameters are given as a function of ∆.  

BThe overall ε is the average of the individual ε’s from the binary classification.  

CThe “Other Class” column gives the ε for the other member of each comparison (i.e., 

AA, AO, or OL). 
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the high FDR and class-wise error rates. The comparison of GM to OL did yield a set of 

genes that were capable of classifying the tumors with a low ε and was associated with a 

low FDR. These genes are listed in Table 3.4.  

  
Figure 3.6. Misclassification rates and FDR curves for GM vs AO glioma 

specimines. The top left plot shows the average misclassification rate (y-axis) of the 5 

glioma classes with variance bars. The bottom left plot shows individual mis-

classification rates as a function of number of genes and ∆ for each of the glioma 

classes. The number of genes is given on the top x-axis and ∆ is given on the bottom 

x-axis. The right panel is a plot of the FDR (y-axis) as a function of the number of 

genes (bottom x-axis), and the value ∆ (top x-axis). Line colors in the left bottom plot 

indicate the following: green = GM, and red = AO.  
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Figure 3.7. Misclassification rates and FDR curves for GM vs. AA glioma 

specimines. The top left plot shows the average misclassification rate (y-axis) of the 

5 glioma classes with variance bars. The bottom left plot shows individual mis-

classification rates as a function of number of genes and ∆ for each of the glioma 

classes. The number of genes is given on the top x-axis and ∆ is given on the bottom 

x-axis. The right panel is a plot of the FDR (y-axis) as a function of the number of 

genes (bottom x-axis), and the value ∆ (top x-axis). Line colors in the left bottom 

plot indicate the following: green = GM, and red = AA 
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Figure 3.8. Misclassification rates and FDR curves for GM vs. OL glioma 

specimines. The top left plot shows the average misclassification rate (y-axis) of the 

5 glioma classes with variance bars. The bottom left plot shows individual mis-

classification rates as a function of number of genes and ∆ for each of the glioma 

classes. The number of genes is given on the top x-axis and ∆ is given on the bottom 

x-axis. The right panel is a plot of the FDR (y-axis) as a function of the number of 

genes (bottom x-axis), and the value ∆ (top x-axis). Line colors in the left bottom 

plot indicate the following: red = GM, and green = OL. 

 

 These results indicate that the gene expression data collected during this 

experiment is well suited for predicting class membership among GM and OL tumors. 
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However, the data does not appear as adequate for predictions of class membership 

among the other two comparisons.  

Table 3.4. Gene panel consisting of 22 genes. Top 22 genes yielding a low v-fold-

crossvalidation error rate between GM and OL tumors. Here ∆ = 2.2. 

 Gene Name 

1 NM_003380_1 vimentin  VIM 

2 NM_000582_1 secreted phosphoprotein 1  osteopontin  bone sialoprotein I   

3 NM_001553_1 insulin like growth factor binding protein 7  IGFBP7 

4 NM_021103_1 thymosin  beta 10  TMSB10   mRNA 

5 NM_004202_1 thymosin  beta 4  Y chromosome  TMSB4Y 

6 NM_000146_1 hypothetical gene supported by BC002991  NM_000146   

7 NM_021025_1 homeo box 11 like 2  TLX3   mRNA 

8 NM_004048_1 beta 2 microglobulin  B2M 

9 NM_001276_1 chitinase 3 like 1  cartilage glycoprotein 39   CHI3L1 

10 NM_025126_1 hypothetical protein FLJ21786   

11 NM_004203_1 membrane associated tyrosine and threonine specific cdc2 inhibitory kinase   

12 NM_025024_1 hypothetical protein FLJ14082   

13 NM_016610_1 Toll like receptor 8  LOC51311 

14 NM_004355_1 CD74 antigen  invariant polypeptide of major histocompatibility complex 

15 NM_001444_1 similar to fatty acid binding protein 5  psoriasis associated    

16 AB061838 ribosomal protein S3   2 

17 Transcription elongation factor A  SII   3 

18 NM_003254_1 tissue inhibitor of metalloproteinase 1, TIMP1 

19 NM_001780_1 CD63 antigen  melanoma 1 antigen   CD63 
20 NM_002045_1 growth associated protein 43  GAP43   

21 NM_018601_1 hypothetical protein PRO1446   

22 NM_003927_1 methyl CpG binding domain protein 2  MBD2 
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3.3.3 Class prediction of patient survival 

Genes whose expression related to survival were identified using SAM censored 

survival available in the TIGR MeV software package. A unique feature of SAM is that it 

allows the user to select the FDR by setting the value of ∆ (the difference between 

observed and expected values of d(g)) according to what the researcher considers 

tolerable. In addition, the user must select a value for the permutations B, to compute 

significance.  Initially, this analysis was conducted with gene-averaged files with 20% of 

the samples left out (see Table 5.1). The results of the model fitting step with B = 250, 

indicated an unusually high FDR = ~0.74 for 162 genes, meaning that ~74% of the genes 

were falsely declared significant.  

We temporarily ignored the high FDR and built a k-NN prediction model, with k 

= 5, to test each gene panel for three dichotomous survival rules (+/- 1yr, 2yr, 3yr). 

Samples that were censored before the decision cut off were excluded from the LOOCV 

estimator. For instance if the survival rule was +/- 1yr and a sample was censored at 280 

days, it was excluded (Table 3.5). The gene panels (10, 20, 50 and 100 genes) were 

nevertheless capable of producing LOOCV error rates ranging from 9 to 28 % depending 

on the gene panel and survival rule. The classifier achieved its optimum ε  = 0.09 (9%) 

for k = 5 with the gene panel consisting of 100 genes and the survival rules for +/- 2 and 

+/- 3 yrs. Earlier survival times were associated with higher values for ε but none were 

above 28%. One-year survival was associated with 23-28% ε depending on the gene 

panel. The two-year survival had a slightly broader range for ε (8 -20 %). Three-year 

survival had a similar profile (ε =8-21%) to the 2yr rule. Error rates for all gene panels 
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and classification rules are listed in Table 3.5. In general the 50 gene panel preformed the 

best regardless of the decision rule, while the 10 gene panel preformed the worst.  

The genes that resulted from this initial analysis were tested against the SMD data 

set for their ability to predict a +/- 1year survival rule. It can be seen from Table 4.5 that 

there was not good agreement between the two data sets with the 38 gene panel 

predicting +/- 1yr survival with an ε of 47% 

The survival analysis was then repeated with the decon files. For B = 250, an FDR 

of 0.24 was achieved for 104 genes. These 104 genes are listed in appendix 7 and the 

LOOCV results are listed in Table 3.6. The k-NN model was built with 100% of the 

samples with the exception that censored observations were withheld if the censoring 

occurred before the survival rule. For this analysis k = 7.  

Generally, the error rates went up compared to the gene-averaged analysis, with 

the lowest being 16% for the 3yr survival rule and the 50 gene panel. The 2yr survival 

rule was associated with the lowest range of error rates and while the 1 and 3 yr rules 

were associated with the lowest rate. For this analysis, the error rates were closer to the 

error rates observed by applying common genes to prediction in the SMD data set. This 

and the observed decrease in the FDR seems to indicate that this data is more accurate 

than the gene-averaged data even though some of the same genes were called significant 

in the survival analysis as in the decon analysis. Finally, the performance of a given gene 

panel seemed to be affected by the survival rule such that a given gene panel did not 

necessarily perform the same for all survival rules.  
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Table 3.5. LOOCV error rates as a function of gene panel and survival rule. 
Gene Panel Survival 

Rule 

LOOCV Error % AClass 1 Error % AClass 2 Error % Sample Total 

10 +/- 1yr 17/60 = 28 6/37= 16 11/23=48 23+37=60 

20  13/6 = 22 5/37 = 13 8/23=35  

50  14/60 = 23  5/37 =13 9/23=39  

100  15/60 = 25  4/37= 10 11/23=48  

10 +/- 2yr 12/60 = 20  5/31=16 7/29=24 31+29 =60 

20  11/60 = 18  4/31=13 7/29=24  

50  12/60 = 20 5/31=16 7/29=24  

100  5/60 = 8 1/31=3 4/29=14  

10 +/- 3yr 12/56 = 21 4/31=13 7/23=30 33 +23 = 56 

20  9/56 = 16 3/33=9 6/23=26  

50  8/56 = 14 2/33=6 6/23=26  

100  5/56 = 8  1 /33=3 4 /23=17  

SMD Data      

4 of 10 +/- 1yr 16 / 19 = 84 8/11=73 8/8=100 11 + 8 = 20 

7 of 20   12 / 19 = 63 5/11=45 7/8=88  

17 of 50  15 / 19 = 78 7/11=64 8/8=100  

38 of 100  9 / 19 =  47 4 /11=36 5 /8=63  
AClass 1 error and class 2 error reflect the number of samples that were assigned to the 

wrong class. For instance, for the 10 gene panel and +/- 1yr survival rule, 6 of the 37 

samples that had less than 1 year survival were misclassified, while 11 of the 23 

samples that had greater than 1 year survival were misclassified. This information 

indicates whether one class is misclassified at a higer rate than the other class. The gene 

panels for the SMD data were composed of only those genes that were in common 

between the two array platforms (C3B and SMD).  
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Table 3.6. LOOCV error rates as a function of gene panel and survival rule.  
Gene Panel Survival 

Rule 

LOOCV Error % AClass 1 Error 

% 

AClass 2 Error 

% 

Sample Total 

10 +/- 1yr 30/122 = 24 19/44=43 11/78=14 44+78=122 

20  35/122= 28  21/44=47 14/78=18  

50  40/122 =32 23/44=52 17/78=22  

100  29/122 = 18 13/56=23 16/54=29  

10 +/- 2yr 33/118 = 28 18/62=29 15/56=26 62+56 =118 

20  32/118 = 27 17/62=27 15/56=26  

50  27/118 = 23 15/62=24 12/78=15  

100  28/118 = 24 15/62=24 12/78=15  

10 +/- 3yr 35/110 = 32 18/56=32 17/54=31 56+54=110 

20  31/110 = 28 15/56=27 16/54=29  

50  18/110 = 16 9/56=16 9 /54=17  

100  29/110 = 26 13/56=23 16/54=29  

SMD Data      

2 of 10 +/- 1yr 9/19 = 47 (37) 5/11=45 4/8=50 11+8=19 

5 of 20   13/19 = 68 (34) 7/11=63 6/8=75  

19 of 50  8/19 =42 (38) 4/11=36 4/8=50  
AClass 1 error and class 2 error reflect the number of samples that were assigned to the 

wrong class. For instance, for the 10 gene panel and +/- 1yr survival rule, 6 of the 37 

samples that had less than 1 year survival were misclassified, while 11 of the 23 samples 

that had greater than 1 year survival were misclassified. This information indicates 

whether one class is misclassified at a higer rate than the other class. The gene panels for 

the SMD data were composed of only those genes that were in common between the two 

array platforms (C3B and SMD). 
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3.4 DISCUSSION  

Unsupervised clustering revealed that the data derived from this set of 

hybridizations do not generally form biologically meaningful clusters with out extensive 

intensity and variance filtering. As a first step in data analysis, clustering can be used to 

subjectively ascertain the level of noise present in the data. This analysis seems to 

indicate that there is sufficient noise in the data as to mask the variation strictly due to 

gene expression. This does not preclude the ability to use tests of significance to uncover 

differential gene expression, however, it does indicate that low level regulation may be 

difficult to identify with a high degree of certainty. 

The analysis of malignancy grade indicated the data that we collected was not 

especially capable of predicting class membership among most classes assayed. There 

may be several reasons for this. It is known that histologically similar tumors (such as 

GMs vs. AAs) are most likely to be histologically misclassified, and total-RNA samples 

taken from these specimens may have been affected by this likelihood. Further, the AA 

specimens are grade III malignancies and are highly likely to progress to GM tumors 

even after treatment13,14,80 thus a large degree of biological similarity may also partially 

account for our inability to find substantial differences in gene expression among these 

tumors. The sample set we assayed was characterized by a large number of classes with a 

relatively small number of specimens from each class. This too may have limited our 

ability to detect stark difference among the tumors. Finally, it has been reported that the 

Genisphere labeling technique is not as efficient at reproducing fold changes as other 

labeling strategies (i.e., aminoallyl or dye conjugated nucleotides). However the fact that 
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it is useful when sample amounts are limited (i.e., < 2 µg) dominated our decision when 

selecting the labeling technique. 

However, good feature selection and prediction results were achieved for the 

comparison of GMs to OLs. This part of the analysis revealed 22 genes that were 

significantly different between these two classes. Two genes identified, vimentin and 

CD74, have been reported elsewhere to be important in distinguishing these two grades 

of malignancy2, and because there is such a disparity in the survival between these 

classes, these genes have been shown to be useful prognostic indicators. Further, 

thymosin β10 has been implicated in anti-angiogenesis, tumor progression, and 

neuroblastoma development105-107. This gene suppresses Ras function, which inhibits 

angiogenesis and tumor growth108. In our study it was unregulated in OLs vs. GMs, 

indicating that it may be a factor in the slow growing nature of OL neoplasms. These 

results lend confidence in the accuracy of our findings with respect to classification of 

GMs vs. OLs. Finally this analysis identified insulin-like growth factor binding protein 7 

(IGFBP-7) as being a good distinguishing indicator of GMs and OLs. While many 

IGFBPs have been implicated in glioma genetics, this is the first observation of IGFBP-7 

as being a factor in diagnosis of the malignancy grade of gliomas.  

Survival analysis of decon data revealed 104 genes significantly related to 

survival with an FDR = 0.24. Genes that were common to the C3B and SMD platforms 

showed marginal agreement with regard to the 1yr survival rule. This may be due to 

several factors including small sample size, limited common genes between data sets and 

gene panels, differences in platform performance, and large numbers of censored 
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observations in our data set. Therefore follow up on these subjects may prove useful in a 

subsequent analysis. The data was internally consistent, meaning that genes found in the 

80% of tumors analyzed generalized well to the full 100% of samples we assayed. 

However, it did not seem to be universally consistent, meaning that it did not predict 1yr 

survival as well with the SMD data set.  

The gene cysteine rich angiogenic inducer was identified to be significantly 

related to survival and was generally over expressed in the GM specimens relative to the 

lower grade malignancies particularly the PAs. This may indicate the increased level of 

angiogenesis common to these tumors. This gene has been shown to be involved in 

recurrence and metastasis in hepatocellular carcinomas109. The gene sarcoma amplified 

sequence has been reported to be involved in growth and motility in osteosarcomas110  

and was generally unregulated in the high grade tumors in our data.  

Overall the findings of this study seem to have been limited by low sensitivity. 

Several features of the analysis seemed to indicate this. Initial clustering based on the 

majority of the genes failed to show significant clusters. Only after drastic reduction in 

the number of genes were reasonable clusters obtained (Figure 3.4). Calculated FDRs for 

most analyses were observed to be higher than expected.  

Finally, class prediction error rates were also higher than initially expected. With 

regard to the last point however, it has been noted elsewhere that classification error rates 

are higher for brain tumor microarray data than for other neoplasms (i.e., lung, leukemia, 

colon, and prostate)111, and it has been reported a 29.7% misclassification was observed 

for brain tumor microarray data suggesting that our data, while it did not agree well with 

the SMD data set, may not be that far off111. It may be that brain tumors represent a 
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particularly challenging prediction problem and this may stem from the observed high 

variability of gene expression in gliomas and GMs in particular.  

Finally, from a gene expression point of view, the survival rules chosen may seem 

arbitrary, but from a clinical standpoint they represent important knowledge on how 

aggressive to be with treatment. For instance, if a histologically classified 

oligodendroglioma patient has a gene expression profile that predicts less than one-year 

survival than the clinician would be prudent to counsel a more aggressive therapy than 

would be typical for this disease. In summary, the data presented did indicate several 

interesting genes that may serve well as diagnostic and prognostic indicators. It also 

demonstrated that care must be taken to avoid over optimism as even noisy data can be 

internally consistent. It is therefore important to design experiments around several 

corroborating techniques to demonstrate the accuracy of the findings.   

3.4 FUTURE WORK 

 For the investigation described in chapter 3, there are several analyses that can be 

conducted in the future to make more conclusive arguments with regard to survival. The 

sensitivity for survival analysis may have been limited by the lack of covariates such as 

patient age, prior health, or histological class in the model specification. A multivariate 

Cox model may improve the FDR by accounting for covariates, such as age, that are 

known to have significant prognostic value in patients with brain tumors. In our analysis, 

all the PA tumors represented patients that were juvenile, and this particular grade of 

malignancy is most likely to have a favorable prognosis. Detection of genes that are 

significantly related to survival would also be improved by a larger sample size. In this 
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case we ran only 50 (80%) tumors for survival analysis and this may have limited our 

ability to detect genes related to survival. Even so, the SMD data were effectively 

modeled without the presence of covariates in the model and achieved a low FDR (data 

not presented) suggesting that this data was more robust to the effects of covariates. 

For the prediction step, the error rates may be more accurately represented if use 

was made of v-fold cross validation as opposed to leave-one-out cross validation. While 

both types are known to be unbiased, the latter is associated with a higher variance and 

thus may be over optimistic67,70. Together these suggestions may improve agreement of 

our data to independent data sets.  

Finally, it may be useful to run the same samples on Affymetrix (or other 

commercial products) arrays to get an independent indication of the correlation among 

C3B arrays. In addition, a completely independent set of samples could be assayed on 

both platforms which would be helpful in determining how accurate the results are from 

each single platform. 
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APPENDIX 1 

WHO Malignancy 

Grade 

Histological 

Classification 

Histology 

Grade I Pilocystic astrocytoma,  

 

Grade II Low grade astrocytoma 

 
Grade III Anaplastic astrocytoma  

 
Grade IV Glioblastoma Multiforme  

 
Grade II  Oligodendroglioma 

 
Grade III Anaplastic 

oligodendroglioma 

 
Table A1. Astrocytoma grades and histological examples of each grade. 
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APPENDIX 2 

Table A2. Control genes added to the MWG 10k A Pan human oligo set 

Accession Number  Control Genes 
M33197  GAPDH 5’ 

M33197  GAPDH 3’ 

X00351  Beta Actin 5’ 

X00351  Beta Actin 3’ 

M97935  ISGF 5’ 

M97935  ISGF 3’ 

J04422 Bio B 

J04423 Bio C 

J04424 BioD 

X04603  ThrC 

M24537  Phe B 

M64784  phosphofructokinase, platelet 

M27396  asparagine synthetase 

M11560  aldolase A, fructose-bisphosphate 

XM_083842  phosphoglycerate mutase 1 (brain) 

M12996  glucose-6-phosphate dehydrogenase 

AB061838  ribosomal protein S3 

XM_088688 non-POU-domain-containing, octamer-binding 

NM_002954 ribosomal protein S27a 

NM_005566 lactate dehydrogenase A 

NM_000291 phosphoglycerate kinase 1 G 

NM_014763 mitochondrial ribosomal protein L19 

AA453756  Rho GDP dissociation inhibitor (GDI) alpha 

NM_005566 lactate dehydrogenase A 

NM_004048 beta-2-microglobulin 

M64784  phosphofructokinase, platelet 

M11560  aldolase A, fructose-bisphosphate 

NM_002954 ribosomal protein S27a 

. 
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APPENDIX 3 

Table A3. Brain tumor related genes added to the 10KO Table 
1 NM_004341_1 carbamoylphosphate synthetase 2/aspartate transcarbamylase/dihydroorotase 

2 X86098_1 BS69 protein 

3 K01396_1 H alpha-1-antitrypsin mRNA. 11/1994" 

4 NM_022111_1 claspin; CLSPN 

5 X95735_1 zyxin. 

6 BC010577_1 granulin, mRNA (cDNA clone MGC:9342 IMAGE:3457813) 

7 U67963_1 lysophospholipase homolog (HU-K5) 

8 J05243_1 nonerythroid alpha-spectrin (SPTAN1) 

9 J02611_1 apolipoprotein D mRNA 

10 J04599_1 hPGI mRNA encoding bone small proteoglycan I (biglycan) 

11 M17783_1 glia-derived nexin (GDN) mRNA, 5' end. 4/1993" 

12 U20498_1 p19 protein mRNA, complete cds. 1/1996" 

13 NM_001878_1 cellular retinoic acid binding protein 2; CRABP2 

14 M10905_1 cellular fibronectin mRNA. 11/1994 

15 L07493_1 replication protein A 14kDa subunit (RPA) 

16 NM_020349_1 ankyrin repeat domain 2; ANKRD2 

17 NM_018659_1 cytokine-like 1; CYTL1 

18 M34458_1 lamin B mRNA 

19 M87339_1 replication factor C, 37-kDa subunit mRNA, complete cds. 10/1996" 

20 X77584_1 ATL-derived factor/thiredoxin. 9/2004 

21 M28215_1 GTP-binding protein (RAB5) mRNA, complete cds. 1/1995 

22 D00632_1 glutathione peroxidase, complete cds. 3/1998 

23 Z21507_1 EF-1delta gene encoding human elongation factor-1-delta. 1/1994 

24 NM_052951_1 terminal deoxynucleotidyltransferase interacting factor 1; DNTTIP1 

25 X74794_1 P1-Cdc21 mRNA. 9/1996 

26 NM_001810_1 centromere protein B; CENPB 

27 J04164_1 interferon-inducible protein 9-27 mRNA, complete cds. 4/1993" 

28 X77588_1 TE2 mRNA for ARD-1 N-acetyltransferase homologue. 7/1994 

29 X62534_1 HMG-2 mRNA. 11/1991 

30 M61764_1 gamma-tubulin mRNA, complete cds. 11/1994 

31 U51477_1 diacylglycerol kinase zeta mRNA, complete cds. 5/1996 

32 M23178_1 homologue-1 of gene encoding alpha subunit of murine cytokine (MIP1/SCI), 

33 NM_016382_1 CD244 natural killer cell receptor 2B4; CD244 

34 L29222_1 clk1 

35 U90551_1 histone 2A-like protein (H2A/l) 
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Table A3. continued. Brain tumor related genes added to the 10KO 
 Accession # Gene Name 

36 NM_032493_1 adaptor-related protein complex 1, mu 1 subunit; AP1M1 

37 U52828_1 delta-catenin mRNA, 

38 U33632_1 two P-domain K+ channel TWIK-1 

39 X53793_1 ADE2H1 mRNA showing homologies to SAICAR synthetase 

40 X60486_1 H4/g gene for H4 histone. 

41 NM_032545_1 cryptic; CFC1 

42 NM_033259_1 CaM-KII inhibitory protein; CAM-KIIN 

43 U52100_1 XMP 

44 NM_004244_1 CD163 antigen isoform a; CD163 

45 NM_001826_1 CDC28 protein kinase 1B; CKS1B 

46 X51405_1 for carboxypeptidase E (EC 3.4.17.10). 3/1995 

47 NM_001645_1 apolipoprotein C-I precursor; APOC1 

48 AF010314_1 Pig10 (PIG10) mRNA, complete cds. 1/1998" 

49 X97324_1 adipophilin. 3/1997 

50 NM_138455_1 collagen triple helix repeat containing 1; CTHRC1 

51 NM_001323_1 cystatin M precursor; CST6 

52 U73379_1 cyclin-selective ubiquitin carrier protein mRNA 

53 X69838_1 G9a. 

54 X82434_1 emerin. 

55 M36711_1 sequence-specific DNA-binding protein (AP-2) mRNA, 

56 L14542_1 lectin-like type II integral membrane protein (NKG2-E) mRNA, 

57 NM_052842_1 BCL2-like 12 isoform 2; BCL2L12 

58 U07358_1 protein kinase (zpk) mRNA, complete cds. 5/1995 

59 U21090_1 DNA polymerase delta small subunit mRNA, complete cds. 10/1995 

60 D89667_1 mRNA for c-myc binding protein, complete cds. 2/1999" 

61 U33267_1 glycine receptor beta subunit (GLRB) mRNA, complete cds. 12/1996 

62 NM_130468_1 dermatan 4 sulfotransferase 1; D4ST1 

63 X54942_1 ckshs2 mRNA for Cks1 protein homologue. 4/1992 

64 NM_005209_1 crystallin, beta A2; CRYBA2" 

65 M91670_1 ubiquitin carrier protein (E2-EPF) mRNA, complete cds. 12/1994 

66 M55542_1 guanylate binding protein isoform I (GBP-2) mRNA, complete cds. 4/1993 

67 M94345_1 macrophage capping protein mRNA, complete cds. 1/1995" 

68 U46744_1 dystrobrevin-alpha mRNA, complete cds. 4/1996 

69 U65932_1 extracellular matrix protein 1 (ECM1) mRNA, complete cds. 8/1996 

70 U79299_1 neuronal olfactomedin-related ER localized protein mRNA 

71 U28386_1 nuclear localization sequence receptor hSRP1alpha 

72 NM_052999_1 chemokine-like factor superfamily 1 isoform 13; CKLFSF1 

73 X16841_1 for a nontransmembrane isoform of N-CAM from skeletal muscle. 9/2004 

74 X78565_1 for tenascin-C, 7560bp. 5/1995" 

75 X66360_1 PCTAIRE-2 for serine/threonine protein kinase. 1/1993 

76 L37936_1 nuclear-encoded mitochondrial elongation factor Ts (EF-Ts) 

77 NM_080603_1 zinc finger, SWIM domain containing 1; ZSWIM1 

78 U43885_1 Grb2-associated binder-1 
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 Table A4. NQC data for arrays hybridized in the brain tumor study. 
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APPENDIX 5 

Table A5. Sample distrubution and survival times for brain tumors assayed.  
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APPENDIX 6

Figure A6. Correlation averages for Alexafluor 647 (top) and Alexafluor 546 

(bottom) channels for C3B arrays. Alexafluor 647 channel was the reference channel, 

and the Alexafluor 546 channel was the sample channel. The x-axis represents 

individual arrays and the y-axis represents calculated correlation averages for all pair-

wise array correlations. Error bars represent the standard deviation among the pair-

wise correlation calculations.  
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APPENDIX 7 

Table A7 Significant gene related to survival. 
AGene 

Panel Gene d0 Exptected

d0 

Observed 

  NM_005981_1 sarcoma amplified sequence  SAS -0.023879 -3.242619

  NM_004172_1 solute carrier family 1  glial high affinity glutamate transporter     0.8284317 -3.022238

  NM_014699_1 KIAA0296 gene product  KIAA0296  0.1773652 -2.924185

  XM_071619_1 similar to Ser Arg related nuclear matrix protein  plenty of prolines 101   0.5690327 -2.75241

  NM_000582_1 secreted phosphoprotein 1   0.0380829 -2.734897

  NM_004059_1 cysteine conjugate beta lyase   0.0224218 -2.656671

  NM_001885_1 crystallin  alpha B  CRYAB  0.2697162 -2.490686

  NM_022082_1 hypothetical protein FLJ23412  FLJ23412  -0.642498 -2.297341

  NM_018299_1 hypothetical protein FLJ11011  FLJ11011 0.3351757 -2.27485

  NM_002489_1 similar to NADH dehydrogenase  ubiquinone  1 alpha subcomplex   -0.516387 -2.2423

  NM_000773_1 cytochrome P450  subfamily IIE  ethanol inducible   CYP2E 0.0147565 -2.225285

  XM_038988_1 basement membrane induced gene  ICB 1 0.6088045 -2.221171

  XM_011281_1 hypothetical protein PRO1580  PRO1580  0.0369406 -2.217762

  NM_018340_1 similar to hypothetical protein FLJ11151  -0.523155 -2.214486

  NM_021126_1 mercaptopyruvate sulfurtransferase  MPST  -0.581941 -2.210816

  NM_052842_1 BCL2-like 12 isoform 2; BCL2L12   1 1.8954514 -2.202491

  BC014644_1 similar to high mobility group  nonhistone chromosomal  protein 17 -1.153229 -2.196156

  NM_000272_1 nephronophthisis 1  juvenile   NPHP1  0.4966613 -2.176307

  NM_002433_1 myelin oligodendrocyte glycoprotein  MOG  -0.241989 -2.156389

  NM_053036_1 neuropeptide G protein coupled receptor  neuropeptide  0.0450747 -2.154447

  NM_003884_1 p300 CBP associated factor  PCAF 0.0466943 -2.152312

  NM_001586_1 chromosome X open reading frame 2  CXORF2  0.0877754 -2.134287

  NM_016610_1 Toll like receptor 8  LOC51311 -0.644839 -2.13223

  NM_020162_1 hypothetical protein DKFZp762F2011  DKFZp762F2011  0.1585426 -2.124117

  NM_005166_1 amyloid beta  A4  precursor like protein 1  APLP1  -0.145051 -2.108784
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  NM_006574_1 chondroitin sulfate proteoglycan 5  neuroglycan C   CSPG5  0.4493752 -2.10041

  XM_017093_1 hypothetical protein FLJ23537  FLJ23537 1.2634244 -2.099067

  NM_018351_1 hypothetical protein FLJ11183  FLJ11183  0.0017572 -2.066803

  NM_016941_1 delta  Drosophila  like 3  DLL3 0.1262889 -2.063305

  NM_004765_1 B cell CLL lymphoma 7C  BCL7C  0.1735181 -2.055361

  NM_001446_1 similar to fatty acid binding protein 7  brain  0.3582606 -2.049895

  NM_006812_1 amplified in osteosarcoma  OS 9  -0.020539 -2.048796

  NM_000788_1 deoxycytidine kinase  DCK  0.430469 -2.046858

  NM_002519_1 similar to nuclear protein  ataxia telangiectasia locus  -0.269328 -2.045158

  NM_022783_1 hypothetical protein FLJ12428  FLJ12428  -0.341256 -2.043382

  NM_001828_1 Charot Leyden crystal protein  CLC  -0.560267 -2.042737

  XM_007370_1 estrogen receptor 2  ER beta   ESR2 -0.045282 -2.031634

  NM_004808_1 N myristoyltransferase 2  NMT2 0.3063358 -2.022434

  NM_019052_1 HCR  a helix coiled coil rod homologue   HCR  0.7611428 -2.002306

  NM_003671_1 CDC14  cell division cycle 14  S  cerevisiae  homolog B   -0.242518 -2.002179

  NM_016282_1 adenylate kinase 3 alpha like  AKL3L  0.6670356 -1.978206

  NM_004717_1 diacylglycerol kinase  iota  DGKI  0.0243335 -1.977256

  XM_071577_1 acid fibroblast growth factor like protein  GLIO703 1.488031 -1.961508

  NM_025150_1 hypothetical protein FLJ12528  FLJ12528  -0.387669 -1.955981

  NM_001683_1 ATPase  Ca++ transporting  plasma membrane 2  ATP2B2  -0.227049 -1.948935

  NM_000533_1 proteolipid protein  P 0.0752973 -1.936391

  NM_013364_1 paraneoplastic cancer testis brain antigen  MA5 0.085064 -1.930121

  NM_024700_1 hypothetical protein FLJ12553  FLJ12553  -0.360248 -1.92869

  NM_002612_1 pyruvate dehydrogenase kinase  isoenzyme 4  PDK4  0.3506014 -1.922289

  NM_016376_1 ANKHZN protein  ANKHZN  -0.63335 -1.92225

  XM_009122_1 selenoprotein W  1  SEPW1 1.5054079 -1.92169

  NM_018962_1 Down syndrome critical region gene 6  DSCR6 0.0990775 -1.916915

  NM_004877_1 glia maturation factor  gamma  GMFG 0.123034 -1.90938

  NM_002734_1 protein kinase  cAMP dependent  regulatory  type I  -0.096815 -1.904077

  NM_017821_1 hypothetical protein FLJ20435  FLJ20435  0.070982 -1.902981

  NM_006454_1 Mad4 homolog  MAD4  0.0414242 -1.888498

  NM_002928_1 regulator of G protein signalling 16  RGS16 0.5035423 -1.87524

  NM_024654_1 hypothetical protein FLJ23323  FLJ23323  -0.351743 -1.873864

  NM_016185_1 hematological and neurological expressed 1  HN1  -0.428936 -1.869245
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  NM_006359_1 solute carrier family 9  sodium hydrogen exchanger   isoform 6   -0.202375 -1.862702

  NM_004738_1 VAMP  vesicle associated membrane protein  associated protein B and C -0.143195 -1.859751

  NM_000898_1 monoamine oxidase B  MAOB -0.183845 -1.848203

  NM_006991_1 similar to ADP ribosylation factor like 4  -0.462676 -1.845542

  NM_006770_1 macrophage receptor with collagenous structure  MARCO  0.0468516 -1.843902

  NM_016415_1 clone FLB3816  LOC51216  -0.898242 -1.814268

  XM_071571_1 similar to clone FLB3816  H  sapiens   LOC82147 0.56164 -1.81148

  NM_021927_1 hypothetical protein FLJ13220  FLJ13220 -0.224213 -1.807185

  NM_024330_1 hypothetical protein MGC4365  MGC4365  -0.428338 -1.805333

  NM_021784_1 hepatocyte nuclear factor 3  beta  HNF3B  -0.654358 -1.802306

  NM_000083_1 chloride channel 1   skeletal muscle   0.3619369 -1.801662

  NM_017601_1 similar to hypothetical protein DKFZp761H221   -0.444022 -1.797454

  NM_000744_1 cholinergic receptor  nicotinic  alpha polypeptide 4  CHRNA4  -0.14302 -1.797368

  NM_001648_1 kallikrein 3   prostate specific antigen   KLK3 -1.001829 -1.793426

  NM_005178_1 B cell CLL lymphoma 3  BCL3  -0.574258 -1.79341

  NM_004268_1 cofactor required for Sp1 transcriptional activation   0.6405076 -1.786783

  NM_000090_1 collagen  type III  alpha 1  E 0.494296 -1.783971

  NM_001672_1 agouti  mouse  signaling protein  ASIP  0.1130363 -1.783246

  NM_022552_1 DNA  cytosine 5   methyltransferase 3 alpha  DNMT3A -0.383603 -1.779418

  NM_004666_1 vanin 1  VNN1  0.3738589 -1.772467

  BC009026_1 ligase III  DNA  ATP dependent  LIG3  -0.599535 -1.771561

  NM_001160_1 apoptotic protease activating factor  APAF1  -0.573522 -1.765291

  NM_025105_1 hypothetical protein FLJ12409  FLJ12409 -0.339748 -1.762865

  NM_006716_1 hypothetical gene supported by NM_006716  LOC82512  -0.527153 -1.762787

  NM_001902_1 similar to cystathionase  cystathionine gamma lyase   0.5262126 -1.75797

  NM_021098_1 similar to calcium channel  voltage dependent  alpha 1H subunit  -0.423837 2.079795

  NM_006293_1 TYRO3 protein tyrosine kinase  TYRO3  0.2080335 2.0850642

  NM_004270_1 cofactor required for Sp1 transcriptional activation  subunit 9  33kD    0.7962818 2.1021187

  NM_000342_1 solute carrier family 4  anion exchanger  member 1   0.1673858 2.1021528

  NM_005688_1 ATP binding cassette  sub family C  CFTR MRP   member 5  0.9328213 2.1118648

  NM_025134_1 hypothetical protein FLJ12178  FLJ12178  -0.31455 2.119763

  NM_000852_1 glutathione S transferase pi  GSTP1 0.2686803 2.1588387

  NM_014588_1 visual system homeobox 1  zebrafish  homolog  CHX10 like   -0.296528 2.1772947

  NM_018496_1 similar to hypothetical protein PRO0889  -1.230039 2.218164
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  NM_018358_1 hypothetical protein FLJ11198  FLJ11198 0.9563472 2.2672145

  NM_022473_1 zinc finger protein 106  ZFP106  -0.747348 2.2685475

  NM_005500_1 SUMO 1 activating enzyme subunit 1  SAE1 -0.580502 2.3193085

  NM_004341_1 carbamoylphosphate synthetase 2 0.6151074 2.359525

  NM_025098_1 hypothetical protein FLJ22644  FLJ22644  -0.3233 2.3829834

  NM_001554_1 cysteine rich  angiogenic inducer  61  CYR61 0.5356279 2.452571

  NM_017818_1 hypothetical protein FLJ20430  FLJ20430  0.5403622 2.5232244

  NM_024663_1 hypothetical protein FLJ11583  FLJ11583  -0.323477 2.6286561

  NM_006636_1 methylene tetrahydrofolate dehydrogenase  NAD+ dependent    0.5007502 2.6340063

  NM_004537_1 nucleosome assembly protein 1 like 1  NAP1L1  0.2572645 2.7493677
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AGreen rows were genes that made up the 10 gene panel, red the 20 gene panel, blue the 

50 gene panel, and pink the 100 gene panel such that each increasing gene panel 

contained genes from the reduced panels, for example, the 20 gene panel contained 10 

green gene rows and 10 red gene rows. The white rows were excluded from the analysis. 

Cells highlighted in grey are genes that were common betweent the C3B and SMD 

arrays. 
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