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Silica based sol-gel thin films have been extensively studied because of their 

advantages that include optical transparency, high biodegradability and low intrinsic 

fluorescence.
1
 However, one concern with silica based sol-gel derived materials is their 

long term stability in aqueous solutions.
2-4

 Another concern is their limited porosity. These 

two concerns limit the application of these materials in catalysis and separations. 

 The main objective of this study is to prepare porous, thin films using titanium 

alkoxides as precursors and evaluate their long term stability in aqueous solutions. 

Colloidal crystal templating will be used to introduce macrosized pores into the titania 



 

 xv 

network. The materials will be characterized using SEM and AFM. To prove that the 

templated films provide access to the underlying surface of the electrode, a conducting 

metal like copper was electrodeposited inside the nano-wells. The stability of titania and 

silica films will be evaluated over a two month period using cyclic voltammetry with three 

redox probes.  
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CHAPTER 1 Introduction 
 

 

1.1 Sol-Gel Processing: The sol-gel process is a versatile solution process for synthesizing 

a large variety of glass and ceramic oxide materials involving metals like Al, Zn, Si, Ti 

etc.
5, 6

 In general, conventional sol-gel synthesis for preparing inorganic materials involves 

hydrolysis of inorganic precursor molecules like metal salts or metal organic compounds 

(e.g. metal alkoxides). When mixed with an organic solvent and water, the metal precursor 

forms a sol (colloidal particles in solution), which after condensation and polymerization 

results in an interconnected network between colloidal particles. Subsequent aging and 

drying results in the evaporation of water and organic solvent from the sol forming a solid 

skeleton enclosing the liquid phase (gel).
5
 For example, silica hydrolyzes and condenses as 

shown in the following reactions.
2, 5, 6

 

Hydrolysis                   Si(OR)4 + nH2O       Si(OR)4-n (OH)n + nROH  

Condensation: when n =1; 

       (OR)3Si-OH + HO-Si(OR)3        (OR)3Si-O-Si(OR)3 + H2O (water condensation) 

       Si(OR)4 + HO-Si(OR)3        (OR)3Si-O-Si(OR)3 + ROH  (alcohol condensation)   

        An overview of the sol-gel process is represented in Figure 1. Various factors that 

affect this process include pH, temperature, time of reaction, reagent concentration, 

catalyst nature and concentration, aging temperature and time, H2O/precursor molar ratio 



 

 2 

and drying conditions. By controlling one or a combination of these parameters, ceramic 

materials with different properties (thickness, surface area, pore size and distribution etc.) 

can be fabricated.
5, 6

  

  

Figure 1: Schematic representation of sol-gel process. Adapted from Ref (5). 

 

                The sol-gel process is used widely in ceramic or glass industries to fabricate a 

wide variety of materials ranging from ultra-fine or spherical shaped powders, thin film 

coatings, ceramic fibers, microporous inorganic membranes, monolithic ceramics and 

glasses, or extremely porous aerogel materials.
5
 Ultra-fine and uniform spherical powders 

can be prepared by homogenous precipitation, phase transformation or aerosol techniques. 

Monoliths can be prepared by pouring the sol into a mold, which shrinks upon drying 
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converting the gel into a dense ceramic. If this drying is done under supercritical 

conditions, a very low density, highly porous material called an “aerogel” is obtained. Gel 

fibers drawn from the sol can be converted to glass fibers (application as optical fibers) by 

adjusting the viscosity and sintering at high temperatures. Thin films can be prepared by 

spin-coating, dip-coating or electrodepositing the sol on the substrate.
5, 7-10

 In spin coating, 

an excess amount of sol is placed on the substrate and rotated at a high speed. Due to the 

action of centrifugal force, the sol spreads, forming a thin film on the substrate.
7
 Dip 

coating involves immersing the substrate in the sol and removing it at a specific rate.
7, 11

 

While spin-coating and dip-coating are the traditional methods used to prepare thin films, 

electrochemical deposition was recently developed wherein inorganic materials can be 

deposited on a conducting substrate by applying an electric field.
8-10

 

        Inorganic-organic hybrid composites can also be prepared which exhibit superior 

physical-chemical properties like higher mechanical strength, good optical quality, 

chemical, photochemical and electrochemical stability compared to the materials prepared 

from simple organic polymers.
1, 12-14

 One method by which these materials can be prepared 

is by physically doping the organic species in the inorganic network.
1, 15, 16

 In another 

method, the inorganic silica framework is synthesized from precursor molecules containing 

a non-hydrolyzable Si-C bond as shown in Figure 2. Such materials are termed 

ORMOSILS (organically modified silicas).
12-14, 17

 By modifying the organic groups in the 

precursor molecule, composite materials with different properties like hydrophobicity, 

porosity, flexibility and stability can be prepared.
12, 13, 18, 19
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R = CH3, C6H5, CH2CH2CH2NH2, CH2CH2CH2SH  

R
’
 = CnH2n+1 (where n = 1, 2, 3,….) 

Figure 2: Preparation of organically modified silicas (ORMOSILS) 

 

1.1.1 Applications: Materials fabricated using the sol-gel process have a wide variety of 

applications, some of which include membranes for gas and liquid separations, adsorbents, 

protective coatings, energy storage (e.g. batteries, fuel cells, solar cells), sensors, 

laboratories on a chip and also in biomedical (micro-pumps, fluid transport systems) 

devices.
5
  

        In catalysis, active sites (like metal ions or metal oxides) are incorporated into the 

inorganic matrix at which catalytic reactions take place.
20, 21

 In sensing applications, 

reagents like chelating agents, proteins, crown ethers, dye molecules, enzymes and 

antibodies are entrapped into the inorganic matrix and then the external reagent reacts with 

the entrapped molecule generating a response.
1, 15, 16, 22

 So, it is important that the host 

inorganic matrix be porous enough for the external reagent to diffuse in and then react with 

ORMOSIL 

R-Si-(OR
’
)3 +   Si-(OR

’
)4 
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the entrapped molecule.
23

 The two most extensively used sol-gel derived configurations for 

both of these applications are monoliths and thin films. Thin films have an advantage that 

there is a short path for diffusion of reagents to the substrate surface, thus improving the 

response times and recovery rates.
13

 Sol-gel thin film materials have gained considerable 

attention in the field of catalysis and sensing.
1, 16, 21, 24-26

  

1.1.2 Advantages and disadvantages of sol-gel process compared to conventional 

techniques: Compared to conventional techniques like melting, chemical vapor deposition 

(CVD) and atomic layer deposition (ALD), sol-gel fabricated materials have improved 

homogeneity and purity.
5, 6

 The low temperature processing minimizes energy 

consumption, evaporation losses and air pollution. Also, during the preparation of these 

materials, the interactions between the chemicals and containers, phase separation and 

crystallization can be avoided.
27

 New materials with different chemical compositions (e.g. 

mixture of metals), configurations (fibers, powders, films etc.) and special properties can 

be made.
5, 22

 Along with the above mentioned advantages, the sol-gel process also provides 

an efficient way to incorporate heat sensitive materials like organic molecules and proteins 

into ceramic materials.
15, 28

 However, certain disadvantages like expensive raw materials, 

large shrinkage upon drying, uncontrollable pore morphology, formation of residual 

hydroxyls when in water (interaction with OH
-
), health hazards from materials used and 

time consumption need considerable attention.
27

 

1.2 Templating: The porosity of thin films prepared by spin coating the sol on a substrate 

is much less (60-70 %) when compared to monoliths due to the overlap of the 

gelation/drying phases.
29

 By improving the porosity of the films by using templates, these 
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materials can have wider applications in chemical sensing and separations and also as 

templates to grow nanostructures inside the nano-wells.
30-33

  

        The concept of templating has been widely employed to make porous materials. Both 

the type of porous matrix and the shape and size of the pores have been successfully 

tuned.
33-35

 In general, porosity is defined as the measure of void space in the material. 

Templated materials can be micro, meso or macroporous depending on the pore size. 

Materials that have pores with d < 2 nm are termed microporous while those with 2 nm < d 

< 50 nm are called mesoporous materials. Materials with pores having d > 50 nm are said 

to be macroporous. Dickey’s paper on preparing porous silica templated with dye is one of 

the pioneering works in the fabrication of molecular imprinted materials.
36

 The first step in 

the templating (imprinting) process involves incorporating foreign species (template) into 

the sol, which after condensation and polymerization gets embedded into the polymeric 

matrix. In the next step, the template is removed leaving a structured impression of the 

template in the gel matrix, as shown in Figure 3.
35

 Examples of such species are emulsion 

droplets,
37

 latex spheres,
33, 38

 surfactants,
32, 39-41

 dendrimers,
42-45

 sugars like D-glucose
46

 

and even biological materials like bacteria.
47-49

 An ideal template should be chemically and 

thermally stable/robust during the preparation process. Finally, the template should be 

easily removed leaving the structured impression in the film surface.
50

 Templating can be 

extended to the preparation of various types of materials including alloys,
51, 52

 metals and 

non metals,
53-56

 organo-metallic materials,
57

 polymers,
58-61

 simple oxides
56, 57, 62-65

 and 

ternary oxides.
57, 66
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       The concept of fabricating highly ordered porous structures was introduced in early 

1950’s with the synthesis of zeolites (microporous alumino-silicates). These materials 

became commercially very successful due to their unique properties like high surface area, 

crystalline structure, acidity, ion-exchange capacity and selectivity (shape).
67

 The diffusion 

of molecules through these crystalline solids is very limited because their pore size is 

confined to only a few nanometers (d < 2 nm).
67

 In the early 90’s, Kresge et. al. and Beck 

et al. reported the creation of ordered inorganic mesoporous materials using ionic 

surfactants as templates.
68, 69

 In addition to the advantages provided by the sol-gel process, 

these templated materials offer high surface area and defined porosity.
34, 35

 Since then there 

has been great progress in developing templated porous materials with tunable properties 

like pore structure, composition, pore size and texture.
33, 39, 57, 70

  

1.2.1 Colloidal crystal templating: One means to introduce defined macropores into sol-

gel derived materials utilizes colloidal crystals as templates. Colloidal crystals are often 

made from polymer spheres such as polystyrene, poly-(methyl methacrylate), or mono-

disperse silica.
33

 In this kind of templating, the colloidal spheres are arranged in a close-

pack arrangement and then the interstitial spaces are exposed to/filled with the precursor 

solution (i.e. sol) which, after gelation/drying forms a dense matrix. Removal of the 

template leaves well ordered pores in the matrix that have similar dimensions of the 

colloidal crystal.
33, 35, 38

 Figure 3 shows a pictorial representation of colloidal crystal 

templating in inorganic materials. Another approach to fabricate structured materials 

involves dual templating with colloidal crystals, wherein materials with bimodal porosity 

can be prepared.
57, 71-73

 For example, Wu et. al. used cationic cetyltrimethylammonium 
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(CTA
+
) micelles and microscale polystyrene (PS) latex as templates to prepare “raspberry-

like” inorganic SiO2 hierarchical nanostructures.
74

  

                                          

 

                                                                           

 

 

                                                                                                                       

                                                                         

 

Figure 3: Schematic showing colloidal crystal templating in inorganic materials using 

spin coating. 

Template removal 

Close-packed colloidal spheres 

filled with precursor solution 

Sol 

Nano-wells in film surface 
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         Colloidal crystals can easily be assembled on the substrate by techniques like dip 

coating,
11, 75

 spin coating
76, 77

 and electrophoretic deposition.
78

 For the colloidal spheres to 

assemble into a uniform closely packed monolayer on a substrate surface, it is important 

for the solution (of colloidal spheres) to wet the substrate surface completely.
38

 

Electrostatic forces between the surface and spheres are also important.
79

 This method of 

templating can be extended to fabricate materials using techniques other than sol-gel
35, 57, 

62-65, 80
 like electrochemical (electrodeposition),

81-83
 chemical vapor deposition,

84, 85
 

electroless deposition,
86, 87

 spraying,
88, 89

 oxide and salt reduction,
52, 56, 90

 patterning
91

 and 

inverse opal
92-94

 methods.  

        Many researchers have focused their attention on increasing the surface area of the 

inorganic materials by templating with colloidal crystals and using these materials in 

catalysis and sensing devices. In 2001, the Collinson group reported a convenient way of 

increasing the porosity of silica sol-gel derived materials using PS spheres.
95

 Later, the 

Collinson group fabricated macroporous silica sol-gel materials by forming a single 

continuous layer of PS spheres and finally removing the PS by a mild chemical treatment. 

Copper and polyaniline (PANI) were electrodeposited into the nano-wells to prove that 

nanostructures can be grown inside the nano-wells.
76

 Levy et al. showed that the templated 

inorganic materials can be used to make ion-exchange columns for use in chromatographic 

instruments. In this work, a quaternary ammonium salt called cetylpyridinium is trapped 

into a solid silica support and the columns produced from this are found to be particularly 

useful in the analysis of Cl
-
, Br

-
 and SO4

-2
.
96

 Tian et al. showed that when compared to the 

unpatterned films, PANI composite templated films showed a higher electrocatalytic 
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efficiency for oxidation of reduced β-nicotinamide adenine dinucleotide (NADH).
97

 Also, 

Song and co-workers showed that the templated films with platinum nano-particles showed 

a much more efficient detection of glucose compared to directly deposited platinum.
98

 

From the research cited above, it is clear that as a result of the large surface area of the 

templated films, they exhibit higher efficiency compared to ordinary modified electrodes.   

       Though sol-gel derived templated silica thin films have become very popular, one of 

the major drawbacks is that these films form surface hydroxyls on the film surface over a 

period of time in aqueous solutions.
2, 99, 100

 It has been experimentally shown by the 

Collinson group that as the silica films sit in water for 46 hrs, defects develop in the film, 

eventually resulting in the film falling off from the substrate.
101

 This can be attributed to 

the hydroxyl (Si-OH) formation that results in breaking of the polymeric gel structure, 

which could lead to decreased material performance and increased solution contamination. 

Research to improve the hydrolytic stability of mesoporous silica materials has led to the 

fabrication of alternate materials. Materials with various physicochemical properties were 

prepared by introducing various organic functional groups into the inorganic alkoxide 

precursor which then form organically modified silicas (ORMOSILS).
12-14

 Another way to 

improve stability is to add secondary metal oxides of Al,
100, 102-106

 Ti,
107, 108

 and La
109

 to 

pure silica materials during or after synthesis. However, both the above mentioned 

materials suffer from the disadvantages originating from siloxane backbones. As an 

alternative, pure inorganic materials derived from transition metal precursors by sol-gel 

process were thought to improve the stability to a very large extent.
110, 111

 The dissolution 

of the films in aqueous solutions is mainly dictated by the charge of the metal oxide in the 
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films, which show minimum solubility around its point of zero charge.
112, 113

 Using this 

concept, the preparation and characterization of stable macroporous materials using one 

such transition metal (titanium) has been investigated and is presented herein. 

 1.3 Titanium sol-gel chemistry: TiO2 films can be synthesized using sol–gel processing 

through the hydrolysis and condensation of corresponding alkoxides of the general formula 

Ti(OR)n, where R is an alkyl group.
114

 The first step in this process is the hydrolysis of the 

titanium precursor, which upon further water and alcohol condensation forms -Ti-O-Ti- 

bonds as shown in the reactions below. Further, a series of condensation reactions result in 

the linking of additional –Ti-OH that eventually results in the formation of TiO2 network.
5, 

114
 

Hydrolysis: The hydrolysis takes place in an alcohol medium with the addition of water. 

                                            Ti(OR)4 + nH2O           Ti(OR)4-n(OH) n + nROH 

Condensation: when n= 1; 

          Ti(OR)3(OH) + Ti(OR)3(OH)           (RO)3Ti-O-Ti(OR)3 + H2O (water condensation) 

           Ti(OR)3(OH) + Ti(OR)4         (RO)3Ti-O-Ti(OR)3 + ROH (alcohol condensation)   

Both the hydrolysis and condensation reactions occur via a SN2 mechanism. In a basic 

environment, hydrolysis involves a nuclephilic attack on the metal atom by a hydroxide 

ion followed by the displacement of an alkoxide ion whereas under acidic conditions, 

protonation of the alkoxide group occurs followed by the nucleophilic attack of water 

resulting in the formation of titanium intermediates.
5
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        However, titanium alkoxides are more challenging to work with, compared to silicon 

alkoxides because they hydrolyze very fast when exposed to H2O. This is explained by the 

higher electrophilic nature of titanium and it ability to increase its coordination number. 

Hence, titanium alkoxide precursors (e.g. Titanium n-butoxide) are complexed with agents 

like acetylacetone (ACAC) or diethanolamine (DEA) to decrease the rate of hydrolysis as 

shown by the following reactions:
114, 115

  

                               Ti(OBu
n
)4 + acacH              Ti(OBu

n
)3 (acac) + BuOH 

                         

                       Ti(OBu
n
)4  + HN(C2H4OH)2            Ti(OBu

n
)3 [HN(C2H4O)2]  + BuOH   

  

 Both acetylacetone and diethanolamine when added in a one to one molar ratio acts like a 

bidentate chelating agent forming an intermediate complex which is five coordinated. 

Acetylacetone forms a complex by chelation between its carbonyl oxygens and titanium 

metal center. When diethanolamine is used as a stabilizing agent, the intermediate complex 

is formed by chelation of its hydroxyl groups with the titanium metal center. Condensation 

takes place with the addition of water whereby the less electronegative groups (e.g. alkoxy 

groups) are easily and quickly replaced (by OH
-
) when compared to the more 

electronegative groups (acac, diethanolamine). Hence, the strongly bonded acac and amine 

groups in the above reactions are very difficult to hydrolyze when compared to the butoxy 

groups. This decreases the rate of hydrolysis of the intermediate complexed precursor and 

eventually condensation to form TiO2.
114, 116

  

       The titanium alkoxide precursor used in our study is titanium n-butoxide. The 

precursor is complexed with diethanolamine and the hydrolysis is initiated by adding 
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ethanol and water to the mixture. The sol is stirred for few hours and is left to age in a 

desiccator for two days.   

        Colloidal crystal templating has also been done in materials prepared using a titanium 

based precursor
117, 118

 because of its advantages like high thermal and aqueous stability, 

which can be important in applications like electrochemical sensing, catalysis and 

electronic devices. Many research groups have used the vertical deposition method to first 

assemble spheres on the substrate and then immerse the substrate into a titania sol. The 

voids between spheres were filled with the sol which after drying and calcination to 

remove PS spheres forms replicas in the TiO2 films.
119, 120

 A modified method was 

proposed by Li et al. in which mechanically robust TiO2 films were prepared by a gas-

phase surface sol-gel process (G-SSG), in which the pre-casted spheres on the glass 

substrate were exposed to titania vapor which condenses on top of the spheres to form a 

nm layer film.
121

 Until presently, most of the work done involved preparation and 

characterization of multilayered (3-D) or monolayer (2-D) templated titania films. Though 

the literature suggests that materials prepared from transition metals (e.g. titania, 

zirconium) have higher stability,
110, 111

 it is important to study and prove the hydrothermal 

stability of these films in water or any electrolyte solutions, which is one of the main 

objectives of the experimental study.  

        In this work, a combination of transition metal oxide (titanium) as a precursor and 

colloidal crystal templating was employed to prepare macroporous thin films. First, a well-

packed monolayer of PS spheres in the titania matrix was undertaken. Second, the PS 

spheres were removed completely leaving bowl-shaped replicas in the film. Third, the 
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stability of the titania films in aqueous media (0.1 M KCl) was studied for a period of two 

months and compared to conventional silica templated films. 

1.4 Motivation: The main motivation of this work was to prepare better materials for 

applications like chemical or biological sensing. An ideal sensor should have the following 

properties: faster response times, good recovery rate and higher sensitivity. In addition, 

these sensors should exhibit long term stability and recyclability to be commercially 

successful.
28, 122, 123

  

       In general, a dopant (i.e. receptor) is embedded in the sol-gel derived inorganic matrix 

and interacts with the analyte molecule in solution to generate a measurable response.
15

 

Commonly used dopants include indicator dye molecules, chelating agents, biomolecules 

(enzymes, antibodies, and other proteins), crown ethers, and metal particles.
15, 20, 124, 125

 The 

response generated results from one of the following chemical reactions between the 

dopant and the analyte molecule: proton-transfer and redox reaction, complexation, ligand 

exchange or an enzymatic reaction.
15

 There have been numerous advances in preparing 

sensors using the sol-gel technique because the materials prepared from this process are 

chemically inert, have good optical transparency, higher surface area and porosity. Also, 

the dopant can be easily incorporated into the matrix since the initial steps in this process 

are in the liquid phase. Furthermore, since the process is carried out at ambient temperature 

conditions, even biomolecules like enzymes or proteins can be easily entrapped into the 

sol-gel matrix.
15, 28, 122, 123, 126-128

  

       Among the different material configurations prepared using sol-gel process, thin films 

have gathered considerable attention because of their shorter path for diffusion of the 
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analyte through the film to react with the dopant or to reach the substrate surface. 

However, the porosity of thin films prepared by spin coating the sol on the substrate is 

much less (60-70 %) when compared to monoliths due to the overlap of the gelation/drying 

phases.
29

 Hence, it is important to increase the porosity of the thin films (by templating) 

because this feature allows for analyte molecule in solution to more quickly reach and react 

with the dopant. Also, the templated materials provide greater surface area (see Figure 4) 

compared to bulk materials. Both these features (porosity and high surface area) improves 

the response time and recovery rate of the sensor material.
13, 30-33

 

 

  

Figure 4: Pictorial representation of a dopant embedded in a (a) titania thin film (b) 

templated titania film and its reaction with an analyte in solution. 

 

       One important drawback that needs to be addressed is the loss of the dopant that is 

embedded in the film when placed in aqueous solutions.
123

 This decreases the sensor 

performance, reduces recyclability and increases the solution contamination. One of the 

major reasons for this can be attributed to the disruption in gel structure of the films (e.g. 

silica film) when placed in aqueous solutions as shown in Figure 5. Hence it is important 

Analyte 

Analyte 

(a) 
(b) 
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that the films are stable when they are kept in aqueous solutions for a few days to months. 

A solution for this problem is to prepare thin films that are stable in aqueous media for 

longer periods. The hypothesis that forms the basis of this work is that titania sol-gel 

templated films will not only have controlled macroporosity and higher surface area but 

will also be more stable in aqueous solutions. 

 

 

Figure 5: Pictorial representation of a dopant embedded in a (a) silica thin film (b) titania 

thin film. 

 

 

 

(a) 
(b) 
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CHAPTER 2 Methods and Materials 

 

 

 The preliminary studies on the preparation of monolayer packed templated titania 

thin films and their characterization using AFM (Atomic Force Microscopy), SEM 

(Scanning Electron Microscopy) and CV (Cyclic Voltammetry) are presented here. 

Stability tests are also presented to verify the stability of TiO2 films compared to the more 

conventionally used silica thin films. 

2.1 Reagents and equipment: Titanium (IV) n-butoxide (99 %), tetramethoxysilane 

(TMOS, 99 %), ferrocene-methanol (FcCH2OH, 97 %) were purchased from ACROS 

Organics. Diethanolamine (DEA), chloroform, cupric sulfate, sulfuric acid, potassium 

chloride and 1-butanol were purchased from Fisher Scientific. Octyltrimethoxysilane 

(octyl-TMOS, 96 %), tris (2, 2’- bipyridyl) dichlororuthenium (II) hexahydrate 

([Ru(bypy)3] Cl2. 6H2O, 99.95 %), potassium ferricyanide (III) (K3Fe(CN)6, 99 %) were 

purchased from Aldrich. Acetylacetone (ACAC) was purchased from FLUKA. 200 proof-

absolute, anhydrous ethyl alcohol was purchased from PHARMCO- AAPER. Aqueous 

suspensions of polystyrene microspheres (PS) with a diameter of 0.47 μm were purchased 

from Invitrogen molecular probes (8 % w/v, sulfate latex). Water was purified to distilled 
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water using Milli-Q (Millipore) four-cartridge system. The ITO (indium tin oxide coated 

on glass) slides were purchased from Delta Technologies LTD.  

           AFM was performed with a Veeco Multimode
TM

 (version 5) scanning probe 

microscope (SPM) used in a tapping mode with high aspect ratio tips (Vista probes from 

Nanoscience instruments) at scan rates varying between 0.2-1 Hz. SEM images were 

obtained from Zeiss EVO 50 XVP scanning electron microscope. Prior to imaging, the 

samples were sputter coated with a thin layer of gold using an EMS 550X sputter coater to 

avoid charging effects. Electrochemical experiments were carried out using a CH 

instruments potentiostat. The cell consists of a single chamber with three electrodes 

wherein the reference and auxiliary electrodes were an Ag/AgCl (1 M KCl) and platinum 

wire respectively, and the working electrode was ITO coated on glass. 

2.2 Procedure: A monolayer of closely arranged spheres can be formed on the substrate 

by mixing latex spheres with sol and spin casting it on the substrate.
129

 Early work on 

preparing a stable titania sol was started by using ACAC as the complexing agent. In this 

recipe, 0.2 g of titanium n-butoxide, 0.5 mL butanol, 50 µL ACAC and 100 µL H2O were 

added in that order with continuous stirring and left aside in the desiccator for one day. The 

resulting titania sol was mixed with latex spheres and spun on a glass substrate. Visual 

observation by eye showed randomly distributed black particles in the sol mixture. AFM 

images of such samples showed areas with multi-layers of polystyrene spheres and some 

areas without any packing (see chapter 3). Various parameters like pH, complexing agent 

and cleaning of the substrate were considered in the preparation of well-packed titania 
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films. AFM and SEM imaging were done to characterize the titania films which provided 

more details about the effect of each parameter in synthesizing ordered materials.  

 2.2.1 Cleaning the Substrate: ITO / glass slides were cut into uniform pieces (1.5 cm x 

1.5 cm), washed in methanol 2-3 times followed by water 2-3 times and then soaked in 

soap solution for one day to impart a negative charge on the surface. Prior to casting the 

film on the substrate the slides were thoroughly rinsed several times leaving a clean, 

negatively charged surface. 

 2.2.2 Preparation of films: Titania sols were prepared by adding 0.3 g of diethanolamine 

(DEA) to 0.3 g of titanium  n-butoxide under continuous stirring. Then 0.6 g of ethanol 

was added to the complexed titanium mixture and stirred for 2 h. After 2 h, 0.2 mL of H2O 

was added and the stirring was continued for 2 h. Silica sols were prepared by stirring a 

mixture of 0.25 mL TMOS with 1.2 mL methanol, 1.15 mL H2O and 0.15 mL 0.1 M HCl 

for 30 min. Both sols were left in a desiccator for two days before spinning on soap 

cleaned ITO slides. Before spinning, the polystyrene latex spheres were sonicated for 5-10 

min and then mixed with either a titanium sol in a 2:1 (sphere: sol; v/v) ratio or a silica sol 

in a 3:2 (sphere: sol; v/v) ratio. The sol doped with PS spheres was then spin-cast on ITO 

(approx. 20 µL) using a G3-8 spin coater (from Cookson Electronics) at 2500 rpm for 25 

sec. The coated samples were dried at a constant temperature (30
o
C- 35

o
C) and humidity 

(approx. 35- 40 %) for two days in an Isotemp Oven (from Fisher Scientific).  

2.3 Blocking the defects in silica and titania films: After spin-casting, the films prepared 

from both the sols contain defects that need to be blocked. For films prepared from the 

titania sol, the defects were blocked by casting (2500 rpm, 25 sec) a dilute titania sol using 
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ACAC as complexing agent. This sol made for blocking was prepared by complexing 0.2 g 

of titanium n-butoxide with 20 µL ACAC and 3 mL butanol followed by continuously 

stirring for 2 h. For silica films blocking was done by soaking the films in a dilute solution 

of octyl-TMOS (7.5 % w/v in dry ethanol) for 4 h followed by rinsing with ethanol (4- 5 

times). Both titania and silica films were dried at a constant temperature (30
o
C - 35

o
C) and 

humidity (approx. 35- 40 %) for two days in an Isotemp Oven (from Fisher Scientific). 

       After drying, the titania films were calcined in a Thermolyne (type 1500) muffle 

furnace to remove the polystyrene spheres by increasing the temperature from 25
o
C to 

435
o
C at a ramp of 3

o
C. The temperature was then held at 435

o
C for 25 min followed by 

cooling back to 25
o
C. The calcined films were thoroughly rinsed with distilled water to 

remove any residual carbon on the films. For silica films, the PS spheres were removed by 

soaking in chloroform for one hour and then rinsed them 4-5 times with ethanol. Figure 6 

shows a cartoon of the steps carried in the preparation of templated porous titania and 

silica films. 

2.4 Stability experiments:  Figure 7 gives a pictorial representation of the three electrode 

electrochemical cell used to collect the CV’s. Three different redox probes with different 

charges were chosen to evaluate the stability of the films by measuring the current flow 

through the films. They were (1) tris (2, 2’- bipyridyl) dichlororuthenium (II) hexahydrate 

114
, (2) potassium ferricyanide (III) [K3Fe(CN)6- negative], (3) ferrocene-methanol 

[FcCH2OH- neutral]. Stability studies were performed for samples soaked in 0.1 M KCl 

for a period up to two months for titania films and one week for silica films. The electrode 

area was approximately 2.0 cm
2
. A piece of copper tape was attached to each ITO 
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electrode (sample) and the samples were soaked in 0.1 M KCl solution. The samples were 

 

 

 

periodically taken out of the KCl solution and washed 2-3 times to remove any residual 

KCl on the films. The CV’s were then collected in a redox probe solution (1 mM in 0.1 M 

KCl) as shown in Figure 7. While collecting the CV’s, in order to minimize the movement 

of the electrode in the solution, the electrode was made more rigid by sandwiching the 

copper tape between two glass slides (see Figure 7). After collecting the CV’s, the samples 

Defects Defect

s 

Calcination 

Blocking 

Spin cast Spin cast 

Soak in CHCl3 

Soak in Octyl-TMOS 

Titanium thin films 

Spin Ti sol 

Silica thin films 

Figure 6: Schematic cartoon for titania and silica film preparation containing nano-

wells. Not drawn to scale. 
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were washed 2-3 times with water to remove any adsorbed redox probe on the surface and 

were finally transferred to the 0.1 M KCl solution. The only problem with this 

configuration was that the areas of the electrode immersed in the probe solution vary each 

time and with different samples. Since the current measured depends on area, this created 

problems when comparing CV results from two different electrodes. 

       AFM images were collected on titania samples taken from 0.1 M KCl after 15, 30 and 

60 days whereas for silica films, the images were taken after the 3
rd

 and 5
th

 day. These 

images were used to study any variations in surface morphology of the films. 

         

   

Figure 7: Cartoon showing the electrochemical cell that contains a Ag/AgCl (1 M KCl) 

reference electrode and a platinum wire as the counter electrode. The ITO working 

electrode was immersed in the solution by attaching it with a copper tape. Not drawn to 

scale.

Copper tape 

Frit 

Glass slide 

Counter electrode 

Reference electrode 

Working electrode 
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CHAPTER 3 Results and Discussion 

 

 

 Macroporous titania thin films were prepared after the template, physically 

entrapped in the sol,
76, 77, 129

 was removed after spin-coating on a clean substrate which 

leaves its impression in the TiO2 matrix. The macroporosity of the films can be tuned by 

controlling the size and shape of the template. An ideal template should be available in 

various sizes and/or shapes and easily removed leaving its “imprint” in the host structure.
35

 

PS spheres have all these properties and therefore were an ideal template to fabricate 

macroporous inorganic structures.  

        In this experimental study, an ordered layer of PS spheres in a titania film was first 

formed. In the next step, the spheres were removed either by chemical or heat methods. 

After the spheres were removed, electrochemical experiments were performed to verify 

that no residual material remained in the bottom of the nano-wells. The stability of the 

titania films was evaluated and compared to silica films by soaking in aqueous 0.1 M KCl 

for a set period of time. These stable titania nano-wells were then used as templates to 

grow copper inside them. 

3.1 Preparation of ordered monolayer of PS spheres in TiO2 matrix: Some of the 

important factors that play a role in preparation of close-packed array of PS spheres in 

titania films include the pH of the sol, complexing agent, cleaning of the substrate, sol-to-
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sphere ratio and precursor-to-complexing agent ratio. Titanium materials prepared from 

titanium n-butoxide often use acetylacetone as a complexing agent to slow the rate of 

hydrolysis.
130, 131

 However, when these traditional procedures were used in these 

experiments, the PS spheres formed several layers/clumps in the titania matrix as shown in 

Figure 8. One problem with this recipe was that the pH of the titania sol was less than the 

isoelectric pH of titanium which is 6.2.
132

 Colloidal sols of titanium above this point have a 

net negative charge and at a lower pH have a net positive charge. To form a monolayer of 

spheres on the surface, it is important that the charge on the latex sphere and the surface be 

the same.
38

 When the surface and the PS spheres have opposite charges, the PS spheres are 

forced to arrange on the surface that results in forming clumps or several layers in the film 

surface. However, the same charge on the PS spheres and the surface allow free movement 

of the PS spheres on the substrate surface to take place due to repulsive forces between 

them that helps in forming an ordered packed monolayer. In the experiments performed, 

since the charge of the PS spheres used was negative, a negative charge on the surface was 

needed to help achieve an ordered array of PS spheres. So, a basic complexing agent like 

diethanolamine (DEA) was used to increase the sol pH giving a stable sol with a net 

negative charge assisting in the formation of well-packed monolayers.  

        After a number of trials, a procedure to reproducibly fabricate templated porous 

titania films was determined. Though various compositions and combinations have been 

tried with the diethanolamine complexing agent, in most cases, the spheres arranged 

themselves in a hexagonally close packed array. The effect of the various parameters on 

packing of the PS spheres in the TiO2 matrix was evaluated from images taken using AFM. 
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Some of these varied parameters that showed an improvement in the preparation procedure 

are listed in Table 1.  

 

        

Figure 8: A 15 µm x 15 µm AFM image of TiO2 films with PS spheres prepared from 

using the recipe: 0.2 g of titanium n-butoxide, 0.5 mL butanol, 50 µL ACAC and 100 µL 

H2O. Image shows several layers of PS spheres in the TiO2 matrix. 

 

Table 1: Different procedures used to prepare titania sols for achieving a well-packed 

monolayer and the observations made visually by eye or from images obtained using 

AFM. 

  Procedure Varied parameter Observation(Visual/AFM) 

0.2 g Ti + 0.5 mL butanol + 

50 µL ACAC + 0.1 mL H2O. 

Substrate cleaned with water 

and ethanol. Sol:PS sphere 

ratio- 1:1 

 Visual: Black particles in 

the sol. 

AFM: Uneven distribution 

of multilayered PS spheres. 
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0.9 g Ti + 0.23 mL 6M HCl 

+ 1.2 mL ethanol + 0.75 mL 

H2O. Substrate cleaned with 

water and ethanol. Sol:PS 

sphere ratio- 1:1 

Complexing agent, pH: 2.0-

2.5, solvent 

AFM: Several layers of PS 

spheres. 

0.9 g Ti + 1.5 mL acetic acid 

+ 1.5 mL ethanol: stir for 15 

min. Substrate cleaned with 

water and ethanol. Sol:PS 

sphere ratio- 1:1 

Complexing agent, pH: 3.0-

3.5 

Visual: Sol gelled. 

0.7 g Ti + 0.6 mL acetic acid 

(12M) + 0.3 mL ethanol + 

0.15 mL NH3 (1M). 

Substrate cleaned with water 

and ethanol. Sol:PS sphere 

ratio- 1:1 

Complexing agent, pH: 5.0-

6.0 

AFM: Better packing with 

some multilayer formation. 

0.7 g Ti + 0.6 mL acetic acid 

(12M) + 0.3 mL ethanol + 

0.15 mL NH3 (1M). 

Sol:PS sphere ratio- 1:1 

Cleaning of the substrate: 

plasma cleaned 

AFM: No uniform packing. 

0.7 g Ti + 0.6 mL acetic acid 

(12M) + 0.3 mL ethanol + 

0.15 mL NH3 (1M). Sol:PS 

sphere ratio- 1:1 

Cleaning of the substrate: 

soap cleaned 

AFM: Better packing 

compared to plasma cleaned 

samples. 

0.7 g Ti + 0.6 mL acetic acid 

(12M) + 0.3 mL ethanol + 

0.15 mL NH3 (1M). Soap 

cleaned substrate. 

 

Varying sol:PS sphere ratio 

– 1:1.5 

AFM: Improved packing 

with little white areas not 

packed uniformly. 
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0.6 g Ti + 0.3 g di-

ethanolamine + 0.6 mL 

ethanol + 0.2 mL H2O. Soap 

cleaned substrate. Sol:PS 

sphere ratio- 1:1.5 

Complexing agent, pH: 6.0-

7.0 

AFM: Monolayer packed 

films with better distribution 

on the substrate. 

0.3 g Ti + 0.3 g di-

ethanolamine + 0.6 mL 

ethanol + 0.2 mL H2O. Soap 

cleaned substrate. Sol:PS 

sphere ratio- 1:1.5 

Ratio of precursor to 

complexing agent, pH: 6.0-

7.0 

AFM: Monolayer packed 

films with improved 

distribution on the substrate 

when compared to the 

earlier one. 

                

        Three different microscopic methods were used to evaluate how the spheres pack in 

the titania film coated on ITO: optical, AFM and SEM. Optical microscopy provides a 

cursory view of the surface as it is limited to the resolution of an optical microscope. SEM 

and tapping mode AFM are high resolution imaging techniques that reveal microscopic 

details of the sample surface. While AFM allows images to be acquired under room 

conditions, SEM is operated under vacuum conditions. In SEM, the electrons from the 

high energy electron beam interact with the atoms on the sample surface generating a 

signal which gives information on surface topography and in some cases composition. This 

type of imaging is quick for studying morphology for large areas of the sample. Figure 9 

shows a 30 µm x 30 µm SEM image of 2-D ordered monolayer of latex spheres. Slight 

disorders in the packing are seen, likely due to the imperfections and scratches from the 

cutting or cleaning of the ITO.
76

 Typically, the AFM utilizes a micro-cantilever with a 

sharp tip to scan the sample surface. In a tapping mode AFM, the Van der Waals forces 
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existing between the tip and the surface decrease the resonance frequency of the cantilever 

which is maintained by the feedback loop system by adjusting the average tip-to-sample 

distance. By measuring the tip-to-sample distance at each (x, y) data point, the topographic 

image of the sample surface can be obtained. The insets in Figure 9 (a) and 9 (b) show an 

AFM 3-D surface view of latex spheres in TiO2 films and the section analysis of such 

films, that resemble a chain of “mountains” one after the other.   

 3.2 Removal of PS spheres: After achieving a monolayer of packed PS spheres in TiO2 

films, the template should ideally be easily removed without causing any damage to the 

TiO2 film matrix. The removal of the PS spheres can be evaluated via AFM and by 

electrochemical methods (discussed in section 3.3). In AFM, removal is indicated by the 

appearance of hemispherical nano-wells in the image that mimic the size and shape of the 

bottom half of the latex sphere. However, this approach may not provide the complete 

picture because the AFM tip may not be sharp enough to reach the bottom of the nano-

wells. Electrochemical methods, which are described later, provide a more accurate way to 

determine if the PS latex sphere is completely removed. If any residual material remains in 

the nano-well, the electrochemical properties will reflect this. 



 

 29 

           Length [µm]

0.0 0.5 1.0 1.5 2.0

H
ei

g
h

t 
[n

m
]

-300

-200

-100

0

100

200

300

 

          

 

Figure 9: A 30 µm x 30 µm SEM image of well-packed monolayer of 470 nm spheres in 

titania sol spun on an ITO substrate. Inset (a) 1 µm x 1 µm AFM 3D view of PS spheres in 

the titania matrix. (b) Section analysis of PS spheres in the titania matrix. 
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       The methods tried for removing PS spheres included chemical treatment (toluene, 

chloroform) and heat treatment (calcination). Chemical treatment is less harsh than heat 

treatment, and is advantageous to use. Chemical treatment, for example soaking in 

chloroform for a set period (2 h, 4 h, overnight and one day), resulted in an incomplete 

removal of the template from the inorganic polymeric matrix, as shown in Figure 10 and as 

judged by the electrochemical methods (see section 3.3). Heat treatment such as 

calcination, from room temperature to 435
o
C at 3

o
C ramp and held at 435

o
C for 25 min 

resulted in successful removal of PS spheres from the inorganic matrix. During calcination, 

the TiO2 will shrink due to the capillary stress at high temperature and also there is 

continual condensation and structural relaxation resulting in formation of a more dense 

matrix around the template which decreases pore dimensions. Calcination at higher 

temperatures (> 470
o
C) and/or ramping the temperature at a faster rate (> 5

o
C) caused 

some of the nano-wells to distort as shown in Figure 11. After calcining the PS spheres in a 

furnace, it is very important to wash the films with distilled water. This removes any 

residual carbon sticking to the surface and the nanowells in the TiO2 matrix as a result of 

incomplete combustion during calcination.  

        The cartoon in Figure 12 shows how the thickness of the films, diameter and depth of 

the nano-wells are acquired from the AFM images. While the diameter and depths were 

measured from areas with ordered arrangement of nano-wells, the thickness of the film 

were measured in an area where there are no nano-wells. Figure 13 shows a 2-D image of 

nanowells left  in the titania matrix after calcination from  room temperature to 435
o
C at 

3
o
C ramp and held at 435

o
C for 25 min. The inset shows a 3-D surface view of the holes 
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Figure 10: (a) A 5 µm x 5 µm AFM image of titania film showing nano-wells after 

soaking in chloroform for 4 h. (b) Section analysis of the nano-wells in the titania film. 

(b) 

(a) 
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Figure 11: A 5 µm x 5 µm AFM images of titania film after calcination from room 

temperature to (a) 470
o
C at 10

o
C ramp and held at 470

o
C for 40 min (b) 435

o
C at 25

o
C 

ramp and held at 435
o
C for 40 min (c) 470

o
C at 3

o
C ramp and held at 470

o
C for 40 min. At 

a faster ramp and higher temperature, distortions of the nano-wells were observed in the 

film as noted by arrows.  

  

 

 

        

(a) (b) 
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which resemble “wells”. The average film thickness, depth and diameter (N = 40) of the 

nano-wells in the TiO2 matrix after the calcination process were measured to be 28 ± 5 nm, 

210 ± 3 nm and 320 ± 10 nm respectively (shown in Figure 14). The average film 

thickness, depth and diameter (N = 15) of the nano-wells in the TiO2 matrix after soaking 

in chloroform for 4 h were measured to be 68 ± 4 nm, 321 ± 6 nm and 440 ± 9 nm 

respectively (shown in Figure 15). When compared to the chemical treatment, for example 

dissolving in chloroform for 4 h, removing the spheres by calcination resulted in a decrease 

in diameter, depths and also a change in morphology (as shown in Table 2 and Figure 14 

and 15) which is mainly attributed to the shrinking of the matrix due to capillary stress
5
 at 

such high temperatures.           

 

 

                                                                                                                          

 

Figure 12: Cartoon showing how the thickness of the films, the diameter and the depth of 

the nano-wells in the film were measured. 
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Table 2: Variations in the thickness of the film, the depth and the diameter of TiO2 nano-

wells depending on the methodology used for removing PS spheres. 

Method for removing 

PS spheres 

Depth of nano-wells 

(nm) 

Diameter of nano-

wells 

(nm) 

Thickness of the 

films 

(nm) 

Soak in chloroform 

for 4 h (N = 15) 

321 ± 6  390 ± 9 68 ± 4 

Calcination (N = 40)        210 ± 3         320 ± 10       28 ± 5 

 

 

   

                                                                                                                                                                                                                                             

Figure 13: A 10 µm x 10 µm AFM image of nano-wells in the titania matrix after 

calcination from room temperature to 435
o
C at 3

o
C ramp and held at 435

o
C for 25 

min. The inset shows a 1 µm x 1 µm AFM 3-D view of the nano-wells. 
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Figure 14: Determining the thickness of the TiO2 films, the depth and the diameter of the 

nano-wells in the titania matrix from a 2.5 µm x 2.5 µm AFM image. The sample was 

calcined from room temperature to 435
o
C at 3

o
C ramp and held at 435

o
C for 25 min. 

Film thickness: 24 nm 

Diameter: 326 nm 

Depth: 202 nm 

Area without nano-wells 
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Figure 15: Determining the thickness of the TiO2 films, the depth and the diameter of the 

nano-wells in the titania matrix from a 2.5 µm x 2.5 µm area of a sample after soaking in 

chloroform for 4 h. 

Thickness: 74 nm 

Diameter: 393 nm 

Depth: 314 nm 

Area without nano-wells 
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3.3 Removing defects in the titania films with nano-wells: When the latex sphere was 

removed from the film, the underlying electrode (ITO in this case) was exposed. For future 

experiments, it is important that there is no residual material at the bottom of the nano-

wells. Electrochemical techniques can be used to determine if the underlying electrode is 

exposed.
76

 If the nano-wells contain residual material, this can be noted by a change in 

current relative to control by oxidizing and reducing a redox couple in solution at a 

particular voltage. However, before these experiments can be done (as well as the future 

stability studies) it is important to block any defects in the films. Defects develop in the 

inorganic matrix due to improper packing of the spheres and other factors like 

imperfections, scratches etc., through which the redox species can reach the underlying 

substrate as shown in Figure 16 (a). As illustrated in the cartoon shown in Figure 16 (b) it 

is desirable to block the defects so that electrochemistry only takes place in the nano-wells. 

One such electrochemical technique wherein the compact nature of the films and the 

diffusion of redox molecules through the templated films can be studied is cyclic 

voltammetry (CV).
101

  

3.3.1 Cyclic voltammetry: CV is a versatile technique to study redox reactions occuring at 

an electrode surface. This method utilizes a three electrode system wherein the potential is 

varied between the reference and the working electrode and the current between the 

counter and the working electrode is measured. In these experiments, the potential at the 

working electrode is swept back and forth between two values which, when plotted against 

the current measured, gives the cyclic voltammogram. Figure 17 shows the voltammogram  
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Figure 16: (a) A 15 µm x 15 µm AFM image of titania films doped with PS spheres 

showing possible defects. (b) A cartoon showing effects before and after blocking defects 

on the electrochemical reactions at the film surface. Not drawn to scale. 

 

(a) 

(b) 
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for the reduction of [Ru(bypy)3]
2+

 in an 

unstirred solution of 0.1 M KCl using a 

conventional three-electrode system. The 

working electrode was an ITO electrode 

and the reference electrode was Ag/AgCl 

(1M KCl).  A platinum wire was used as 

a counter electrode. The peak that 

appears ~ 1.1 V in the forward scan is 

called the anodic peak and it corresponds 

to the oxidation of [Ru(bypy)3]
2+

 to 

[Ru(bypy)3]
3+

. The peak at ~ 1.0 V in the reverse scan is called the cathodic peak and it 

corresponds to the reduction of [Ru(bypy)3]
3+

 to [Ru(bypy)3]
2+

. During the forward scan, 

anodic current develops due to the oxidation of [Ru(bypy)3]
2+

 at the electrode surface due 

to the electrode reaction shown below, and continues to increase as the flux of 

[Ru(bypy)3]
3+

 increases at the electrode surface.   

                                   [Ru(bypy)3]
2+

  →  [Ru(bypy)3]
3+

    +  e 
-
                                                                       

 

When the surface concentration of [Ru(bypy)3]
2+

 at the electrode surface approaches zero, 

the anodic current reaches a maximum. The current then decays as the diffusion layer 

around the electrode surface becomes depleted of [Ru(bypy)3]
2+

.   When the scan is 

Figure 17: A typical cyclic voltammogram of 

1mM [Ru(bypy)3]
2+ 

in 0.1 M KCl using a 

conventional three electrode system with a 

scan rate 0.1 V/s. 

Epa 

ipc 

ipa 

Epc 

Epa 
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reversed at a particular voltage, the cathodic current is generated due to the reduction of 

[Ru(bypy)3]
3+

 by the following process at the electrode surface: 

 

                                  [Ru(bypy)3]
3+

 + e
-
   →    [Ru(bypy)3]

2+
                                                                        

 

The cathodic current continues to increase as the flux of [Ru(bypy)3]
3+

 increases to the 

electrode surface.  When the surface concentration of [Ru(bypy)3]
3+

 at the electrode 

surface approaches zero, the cathodic current reaches a maximum. The cathodic current 

then decays as the diffusion layer around the electrode surface becomes depleted of 

[Ru(bypy)3]
3+

. The current at the end of the reverse scan is not the same as the initial 

current in the forward scan because not all [Ru(bypy)3]
3+

 is reduced back to [Ru(bypy)3]
2+ 

because of diffusion. For an electrochemical reversible redox couple, such as 

[Ru(bypy)3]
3+/2+

, the peak current is directly related to the concentration of the analyte by 

Randles-Sevcik equation as shown in the following Equation:
133

  

 

                                ip =  2.69 x 10
5
 n

3/2
 A D

1/2 
C v

1/2
     

                                                                         

where ip is peak current, n is number of electrons, A is electrode area in (cm
2
), D is 

diffusion coefficient of the redox probe in (cm
2
/s), C is initial concentration of the redox 

probe in mol/cm
3
 and v is scan rate in V/s. The ratio of the anodic to cathodic peak current 

(ipa/ipc) for a simple reversible redox couple is unity. The peak currents are measured by 

extrapolating to the preceding baseline current. The anodic (Epa) and cathodic (Epc) peak 
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potentials are related to the formal potential (E
o
) of the redox process.  The formal 

potential for a reversible couple is the center of Epa and Epc:
133

 

                                         E° =   (Epa + Epc)/ 2                                                       

The difference between the anodic and cathodic peak potentials for a reversible redox 

couple is given by the equation below. Thus, the peak separation (Ep) can be used to 

determine the number of electrons transferred as long as the reaction is reversible. 

                                   Ep = Epa - Epc = 59 mV/n       

The characteristics of CV depend on a number of factors like the size of the electrode, 

voltage scan rate, rate of the electron transfer reaction and rate of mass transfer of the 

redox species to the electrode surface. For a totally reversible one-step, one-electron 

reaction process at the planar electrode surface, mass transport is generally assumed to be 

that of linear diffusion. The shape of the CV for such an electrode, show a peak shaped 

graph as shown in Figure 18 (a). At electrodes with smaller dimensions such as 

ultramicroelectrodes (UME), the electrode area is much smaller than the diffusion layer 

developed during mass transport. The mass transport to the ultramicroelectrode surface 

occurs via radial diffusion. At longer times, where the diffusion-layer thickness is large 

compared to the electrode dimension, steady state current is achieved and given by the 

following equation:      

                                                         iss = 4nFDCr      
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where iss is steady state current, n is number of electrons, D is diffusion coefficient of the 

redox probe in (cm
2
/s), C is the initial concentration of the redox probe in mol/cm

3
 and r is 

the radius of the UME.
133, 134

 The CV at an UME is sigmoidal shaped curve as shown in 

Figure 18 (b). 

               

 

           

 

 

Figure 18: A representative CV of a reversible electroactive species at a (a) planar 

electrode and an (b) ultramicroelectrode (UME) at slow sweep rates.
133

   

 

3.3.2 Chemically modified electrodes: To explain the voltammetry at the titania and 

silica films on ITO, it is important to understand the fundamentals of electrochemical 

processes at chemically modified electrodes.
135

 Electrodes that are either modified with an 

electroactive monolayer or a film are termed chemically modified electrodes. In our 

studies, we deal with thin titania films on a conducting ITO substrate. The presence of the 

TiO2 films on the ITO surface will influence the electrochemical behavior (shape and 

current) of a redox molecule in solution at an electrode surface. For example, if the 
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electrode is modified with a film with little to no porosity, the redox species will not be 

able to diffuse through the film and exchange electrons with the underlying substrate. As a 

result, no Faradic current would be measured as shown in Figure 19 (a). In another case, 

when a non-porous film on the electrode surface has many defects that are closely spaced 

together, the diffusion of the electroactive species would be similar to that of a planar 

electrode (linear diffusion) as shown in Figure 19 (b). The reason for the increase in 

Faradaic current is that the diffusion layer of the species at the numerous closely spaced 

defects overlaps resulting in electrochemical behavior that is similar to that observed at a 

large uncoated electrode. When the defects are far apart, each of the defects act like an 

ultra-microelectrode and the mass transport of the redox species to the electrode would be 

in a radial manner. The CV’s of such electrodes are sigmoidal in shape as the potential is 

swept back and forth between two values as shown in Figure 19 (c). 

3.3.3 Cyclic voltammetry before and after blocking the defects: To fully evaluate the 

electrochemistry on an electrode modified with templated TiO2 films, the defects formed 

during spin-coating should be blocked. Initially, before template removal, the CV of 

ferrocene methanol at the titania film with PS spheres is peak shaped due to the numerous 

defects present in the matrix as shown in Figure 20. If no defects are present, no Faradaic 

current would be observed. To study the voltammetry only in the nano-wells, these defects 

need to be blocked.  So, ideally after the defects are blocked, the CV of the film with well-

packed PS spheres should not give any Faradaic  current.   
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Figure 19: CV’s of 1 mM FcCH2OH at electrodes modified chemically with (a) a 

complete insulating non-porous film (b) non-porous film with numerous closely spaced 

defects (c) non-porous film with few defects that are far apart. 
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        To confine the electrochemistry to the nano-wells, two different methods were tested 

to block the defects. The first method was proposed by the Collinson group wherein the 

defects were blocked by soaking a silicate film doped with spheres in a solution of octyl-

trimethoxysilane for two hours.
76

 A similar procedure applied to PS spheres in titania films  

was unsuccessful. Figure 21 shows the CV’s of FcCH2OH at an electrode modified with a 

layer of PS spheres in titania film before and after blocking with octyl-TMOS. A 

considerable Faradaic current was noticed on the blocked films with PS spheres, and the 

current was comparable to films before blocking, indicative of the film not being blocked 

consistently.  

       As mentioned earlier, it is important to note that the absolute values of current from 

the CV’s cannot be compared because the areas of the electrode in the redox probe solution 

are different. However, the changes in shape and the shift in ∆Ep of different samples (or 

electrodes) can be compared. Another method tried for blocking the defects involved 

casting a dilute sol of TiO2 complexed with ACAC and this was successful. Figure 22 

shows the CV’s of 1 mM FcCH2OH at a bare ITO slide and an electrode modified with a 

film containing closely packed spheres before and after blocking the defects. The CV 

before blocking shows significant Faradaic curent and a traditional diffusion controlled 

peak shape that is similar to a bare electrode. In contrast, the CV after blocking showed no 

significant Faradaic current. The increase in Faradaic current at electrodes coated with 

films containing PS spheres before blocking is attributed to the presence of closely existing 

defects in titania films. The diffusion layer of the FcCH2OH at each defect overlaps 

resulting in a CV that resembles one obtained at a single large bare electrode. Whereas the 
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CV of the film blocked after spinning a dilute sol of TiO2 have no defects in the titania 

film so the redox species cannot diffuse through the film to the electrode surface.  
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Figure 20: CV’s of 1 mM FcCH2OH in 0.1 M KCl at the bare electrode (red) and 

titania films containing PS spheres before blocking (blue). Scan rate 0.1 V/s. 

Numerous defects are present as evidenced by the similarity in shape and peak current 

to the bare electrode. 
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Figure 21: CV’s of 1 mM FcCH2OH in 0.1 M KCl at the titania films with PS spheres 

blocked by soaking in octyl-TMOS (blue) compared to the titania films with PS spheres 

before blocking (red). Scan rate 0.1 V/s. Some defects are blocked as evidenced by the 

significantly smaller current and sigmoidal shape of the CV, but many defects remain. 
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Figure 22: CV’s of 1 mM FcCH2OH in 0.1M KCl at the bare electrode (red), titania films 

with PS spheres before blocking (blue) and films with PS spheres after blocking with a 

dilute titania sol (green). Scan rate 0.1 V/s. Most defects are blocked as evidenced by the 

significantly lower Faradaic current compared to the bare electrode or with the film 

containing spheres before blocking. 
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3.4 Stability studies: Some of the factors which play an important role in preparing stable 

films are sol sitting time, drying time and the drying conditions i.e., humidity. The effect of 

these parameters on the stability of the films can be evaluated using an electrochemical 

technique like cyclic voltammetry. Earlier work of Collinson and co-workers showed that 

the silica films dried at lower humidity for longer time resulted in more stable films. The 

CV’s of such films when placed in a supporting electrolyte solution containing a redox 

probe showed no Faradaic current on day one. As the silica film sat in the electrolyte 

solution for more time, defects developed resulting in a peak shaped CV. 
101

 

         Figure 23 shows a comparison of CV’s of sphere doped titanium films after drying at 

20 % (approx.) relative humidity (RH) for two hours and two days. The relative humidity 

was controlled by drying the films in an oven and the value ranges between 15-20 %.  A 

observed in this Figure, the voltammetric response of films dried for two hours shows 

sigmoidal shaped CV, attributed to the presence of few defects  in the films reulting from 

incomplete drying. Whereas titania films dried for two days at 20 % RH showed no 

Faradaic current indicative of no defects in the film matrix. 

       As discussed earlier, after drying the films containing spheres (all defects blocked), the 

template was removed either by soaking in chloroform or calcination leaving nano-wells in 

the film surface. Figure 24 shows the CV’s of FcCH2OH at a (1) bare ITO electrode, (2) 

blocked TiO2 film containing PS spheres and (3) blocked TiO2 film after removing the 

spheres via soaking in chloroform for four hours. It is evident from the CV that soaking in 

chloroform for four hours did not completely remove the spheres as there is not much 

change in the Faradaic current nor shape when compared to the titania films that contain 
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spheres. This indicates that though the nano-wells are open (as observed via AFM) from 

the top, there is still residual material at the bottom, blocking electron transfer. Figure 25 

shows the CV’s of 1 mM FcCH2OH at a bare ITO electrode, blocked TiO2 film with 

spheres and blocked TiO2 film after the spheres are removed via calcination. As can be 

observed in Figure 25, the voltammetry of the film after template removal shows a similar 

peak shape as that obtained on a bare substrate, indicating a complete removal of the PS 

spheres. Faradaic current is observed due to the diffusion of redox species through the 

nano-wells to the substrate surface. The nano-wells being closely spaced causes the 

electrode to act as a single big electrode resulting in a peak shaped CV.
101
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Figure 23: CV’s of 1 mM FcCH2OH in 0.1 M KCl at TiO2 films with PS spheres blocked 

with dilute Ti sol and dried for two hours (blue) and two days in an oven maintained at 36
o
C 

(brown). Scan rate 0.1 V/s. It can be noticed from the sigmoidal shape of the CV that some 

defects arise due to incomplete drying of the film when dried for two hours whereas the film 

dried for longer period (two days) showed significantly lower Faradaic current. 
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Figure 24: CV’s of 1 mM FcCH2OH in 0.1 M KCl at a bare electrode (red), blocked 

titania films with PS spheres (green) and blocked titania films after removal of PS spheres 

via soaking in chloroform for 4 h (blue). Scan rate 0.1 V/s. It can be noticed from the CV 

that the films after soaking in chloroform shows no significant change in the Faradaic 

current indicating presence of residue at the bottom of nano-well. 
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Figure 25: CV’s of 1 mM FcCH2OH in 0.1 M KCl at a bare electrode (red), blocked 

titania films with PS spheres (green) and blocked titania films after removal of PS 

spheres via calcination (blue). Scan rate 0.1 V/s. The CV of the film after calcination 

shows a peak shaped graph similar to that observed at the bare electrode indicating that 

the nano-wells are open. 
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        To evaluate the stability of the TiO2 films, the blank ITO and the films containing 

spheres and nano-wells were soaked in 0.1 M KCl for a period of two months. Cyclic 

voltammetry was used to study the changes in Faradaic current of the redox probe in 

solution at the electrode surface. An ideal probe for the stability studies should have fast 

electron transfer kinetics and be chemically and electrochemically reversible. The redox 

molecule can reach the underlying surface either by diffusion or partitioning into the film.
9
 

To determine whether the transport of the redox species through the films to the underlying 

substrate will be affected by the type of charged species (cation, anion or neutral), the 

CV’s of the films were obtained using redox molecules having different charges. It was 

observed by Collinson and co-workers that when the charge of the film and the redox 

probe are the same, the redox probe cannot easily diffuse across the film resulting in very 

little Faradaic current. In another case, when the film and the redox probe have opposite 

charges, the redox probe ion-exchanges to some extent into the film due to which higher 

current when compared to neutral probe is observed.
9
 To study these charge dependent 

effects in the transport of redox species across the titania films, three redox probes, 

ferrocene methanol (FcCH2OH), potassium ferricyanide [Fe(CN)6
3-

] and tris (2,2’- 

bipyridyl) dichlororuthenium (II) hexahydrate ([Ru(bypy)3]
2+

) (different type of charged 

species) were used. However, in the preparation of titania films, the pH of the amine-

complexed sol is close to the isoelectric pH (net charge zero) of titania. As a result, films 

will have a neutral charge and hence it is expected that these charge dependent effects will 

not be observed. The oxidation reactions of these probes in solution when the potential is 

applied in a positive direction are given below: 
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                               FcCH2OH                        Fc
+
CH2OH + 1e

-
 

                               Fe(CN)6
4-

                       [Fe(CN)6]
3-

 + 1e
-
 

                               [Ru(bypy)3]
2+ 

                [Ru(bypy)3]
3+ 

+ 1e
- 
 

 

        The films placed in water have a probability of forming hydroxyl groups (from the 

interaction of OH
-
) by breaking the Ti-O-Ti bonds and forming Ti-OH bonds. These 

structural rearrangements in the films result in formation of intrinsic defects within the 

matrix that eventually result in the film falling off the substrate surface. Cyclic 

voltammetry can be used to study the formation of defects in the films after soaking in 0.1 

M KCl, which will be noticed as an increase in Faradaic current. Titania films containing 

nano-wells cannot be used for stability tests because the Faradaic current from the nano-

wells and the defects developed cannot be distinguished. However, titania films with 

spheres wherein all the defects are blocked can be used to study the stability of the films 

after soaking in 0.1 M KCl. Any changes in the structure of the titania films with spheres 

(leading to defects) can be reflected as an increase in current during the voltammetric 

experiments. The CV’s of FcCH2OH, Fe(CN)6
3-

 and [Ru(bypy)3]
2+

 (in solution) at the 

surface of TiO2 films containing spheres showed negligible Faradaic current on day 1, day 

15, day 30 and day 60 and they look similar over time (until 60 days) as shown in Figures 

26, 27 and 28. This indicates that the films have a stable, compact structure through which 

no electron transfer takes place. Also, the CV of the samples with nano-wells showed an 

increase in Faradaic current due to the linear diffusion of the redox probe to the substrate 

surface.  
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Figure 26: (a) CV’s of 1 mM FcCH2OH in 0.1 M KCl at bare electrode (red), “blocked” 

TiO2 film with PS spheres (green), “blocked” TiO2 film after template (PS) removal (brown) 

(b) Expansion of the CV’s of 1 mM FcCH2OH in 0.1 M KCl  at “blocked” TiO2 films with 

PS spheres after soaking in 0.1 M KCl for 1 (red), 15 (blue), 30 (pink) and 60 (green) days. 

Scan rate 0.1 V/s. As observed from the CV’s in(b) there is no significant change in 

Faradaic current over a period of 60 days indicating that no defects arise after soaking in 0.1 

M KCl. 
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Figure 27: (a) CV’s of 1 mM Fe(CN6)
3-

  in 0.1 M KCl at bare electrode (red), “blocked” 

TiO2 film with PS spheres (green), “blocked” TiO2 film after template (PS) removal 

(brown) (b) Expansion of the CV’s of 1 mM Fe(CN)6
3-

  in 0.1 M KCl  at “blocked” TiO2 

films with PS spheres after soaking in 0.1 M KCl for 1 (red), 15 (blue), 30 (pink) and 60 

(green) days. Scan rate 0.1 V/s. As observed from the CV’s in (b) there is no significant 

change in Faradaic current over a period of 60 days indicating that no defects arise after 

soaking in 0.1 M KCl. 
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Figure 28: (a) CV’s of 1 mM  [Ru(bypy)3]
2+

 in 0.1 M KCl at bare electrode (red), 

“blocked” TiO2 film with PS spheres (green), “blocked” TiO2 film after template (PS) 

removal (brown) (b) Expansion of the CV’s of 1 mM  [Ru(bypy)3]
2+

 in 0.1 M KCl  at 

“blocked” TiO2 films with PS spheres after soaking in 0.1 M KCl for 1 (red), 15 (blue), 

30 (pink) and 60 (green) days. Scan rate 0.1 V/s. As observed from the CV’s in (b) there 

is no significant change in Faradaic current over a period of 60 days indicating that no 

defects arise after soaking in 0.1 M KCl. 
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Figure 29: (a) 30 µm x 30 µm SEM images of titania film with PS spheres soaked in 0.1 

M KCl on first and 60
th

 day (b) 10 µm x 10 µm AFM images of titania film with PS 

spheres soaked in 0.1 M KCl on first day and 60
th

 day. 
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Figure 30: (a) A 10 µm x 10 µm AFM image of nano-wells in the titania film surface after 

60 days soaking in 0.1 M KCl. (b) Section analysis show that the depths and the heights 

are the same as on day 1.  

(a) 

Depth: 214 nm 

Diameter: 328 nm 

(b) 
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       It was also noticed that similar CV’s were obtained for films using the three redox 

probes indicating that there is no probe dependent effect on the stability studies. Surface 

characterization of films (with spheres) using AFM was done on the samples taken out on 

day 60 from 0.1 M KCl solution to confirm the compactness of the film. Similar AFM and 

SEM images as observed on day 1 were noticed on day 60 (Figure 29). At the blocked 

films with nano-wells, though the major part of the CV overlaps with that of the bare 

electrode, a small shift in the peak potential of the CV (compared to bare ITO)  was 

observed for all the redox probes (see Figures 26, 27 and 28) from the first day till the 60
th

 

day. To confirm that it was not due to the changes in nano-well surface morphology, AFM 

images were taken on day 1 and day 60. The AFM images on day 60 showed consistent 

packing with similar depth and height profiles when compared with the samples from the 

first day of the stability studies (see Figure 30).  

       The hypothesis that titania films are more stable than conventional silica based sol-gel 

systems was evaluated by repeating the stability tests for silica films (with spheres) as 

previously reported by Collinson’s group.
101

 To prove this hypothesis, a procedure 

developed by Kanungo et al. for fabrication of well-packed, monolayer templated silica 

films was adopted.
76

 Calcination of SiO2 films with PS spheres cannot be used to remove 

the template because the silica film cracks and flakes off the surface at high temperatures 

(> 100
o
C).  Thus, the films were soaked in chloroform to remove PS template. The silica 

films with spheres and nano-wells were then immersed in 0.1 M KCl for 7 days. The 

samples were taken out of solution and CV’s were collected every two days. Figure 31 (a) 

shows the CV’s of 1 mM of FcCH2OH at the bare ITO, silica film with spheres and silica 
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film with nano-wells on day one. As can be noticed in Figure 31 (b), there was an increase 

in Faradaic current for silica films with spheres from day 1 to day 3 to day 6. Also, the 

shape of the CV’s changed from day 1 to day 5 (peak shaped). This can be due to the SiO2 

film (with spheres) falling off the substrate or development of defects in SiO2 matrix. In 

agreement with CV results, optical images and surface characterization by AFM for 

samples in 0.1 M KCl  on day 1 [see Figure 32 (a) and 32 (c)] and day 5 [see Figure 32 (b) 

and 32 (d)] confirm that the reason for the increase in current was because the films were 

falling off the substrate. From the comparison of the stability studies between silica and 

titania films containing PS template, it is shown that the titania films are stable for longer 

period of time in aqueous solutions (water, 0.1 M KCl). 

       Two different explanations can be attributed to the greater stability of amorphous TiO2 

films when compared to amorphous SiO2 films. While one explanation is based on the 

point of zero charge (pzc) of the oxide film, the other is based on the coordination number 

(CN) of the metal site in the amorphous film. Lobbus and co-workers stated that the 

dissolution of solid oxide materials mainly depend on the pH dependent charge state of the 

film. The oxides showed the least solubility in solutions that have pH around the point-of-

zero charge (pzc).
112, 113

 In the present study, the titania films prepared from amine-

complexed sol have a pH around the pzc of titanium which is approximately 6.0. Hence, 

the films when placed in aqueous solutions (0.1 M KCl is neutral) with pH 6-7, close to the 

pzc of titanium (6.5) showed the least solubility. Whereas silica films prepared from the 

acid-catalysed sol (pH = 4) are positively charged. Such SiO2 films when placed in neutral 



 

 63 

solutions having pH 7, exhibit greater dissolution since the pH of the solution (pH = 7) is 

much greater than pzc of silica (pH = 2).         

       Secondly, dissolution of silica materials in aqueous solutions is enhanced by OH
-
 ions 

that get chemisorbed at the tetrahedral Si site having non-bridging oxygens resulting in 

rearrangement into a five-coordinated intermediate. This weakens the oxygen bonds in the 

underlying silica surface, further breaking the Si-O-Si bonds.
2, 4, 136

 On the other hand, 

amorphous titania has a distorted octahedral network structure with the central titanium 

metal having a coordination number of 6.
137

 Hence when these films are placed in aqueous 

solutions, it is not possible for OH
-
 ions to catalyze the dissolution process (by increasing 

the coordination number) as the central titanium atom has already reached its maximum 

coordination number.          
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Figure 31: (a) CV’s of 1 mM FcCH2OH in 0.1M KCl at bare electrode (red), “blocked” 

SiO2 film with PS spheres (green), “blocked” SiO2 film after template (PS) removal 

(brown) (b) Expansion of the CV’s of 1 mM FcCH2OH in 0.1 M KCl  at “blocked” SiO2 

films with PS spheres after soaking in 0.1 M KCl for 1 (green), 3 (brown) and 5 (blue) 

days. 

(a) (b) 
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Figure 32: (a) A 10 µm x 10 µm AFM image of SiO2 film with PS spheres before soaking 

in 0.1 M KCl (b) A 6 µm x 6 µm AFM image of SiO2 film with PS spheres after soaking in 

0.1 M KCl for 3 days. (c) Optical image of SiO2 film with PS spheres before soaking in 0.1 

M KCl. (d) Optical image of SiO2 film with PS spheres after soaking in 0.1 M KCl for 3 

days. 
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3.5 Growing of nanostructures inside the templated films: The nano-wells in titania 

films can be used as templates to grow nanostructures inside them. In order to prove that 

the bottom of the cavity is accessible for growing nanostructures, copper was 

electrodeposited by reducing Cu
+2

 ions to Cu at a particular voltage. From the CV shown 

in Figure 34 (a), a reduction potential of -0.25 V for 60 sec was selected for the deposition 

of copper in the nanowells. The size of the copper deposited in the nano-wells will depend 

on potential as well as the deposition time. More negative potentials and longer deposition 

times should result in an increase in the amount of copper deposited. Application of 

negative potentials above -0.30 V resulted in over deposition of copper leading to surface 

contamination as shown in Figure 33. Hence, an optimal potential and deposition time 

needs to be selected to achieve reasonable growth. Figure 34 (b) shows the AFM image of 

nano-wells after electrodeposition of copper at -0.25 V. The section analysis shows that 

copper has been electrochemically reduced inside the nanowells and the height of copper 

deposited was measured to be 43.8 ± 8.2 nm (N = 10). However, the deposition of copper 

was not uniform thoughout the nanowells. About 60 % of the wells have copper 

deposition; while some have overdeposition and few are seen to have only a small 

deposition. To have an uniform deposition of copper in all the nano-wells, several 

conditions like cleaning of the nano-wells, appropriate potential and deposition time 

should be considered for further improvement. Also, the presence of copper in the nano-

wells should be confirmed by using elemental analysis techniques like energy dispersive 

X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). As shown from 
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this experiment, the templated titania films are accessible to grow nanostructures which 

can have future applications in designing “nano-electrodes” within the porous matrix.   

                   

                  

Figure 33: (a) A 5 µm x 5 µm AFM image of titania templated film after applying -0.35 V 

for 60 sec in 5 mM CuSO4 in 0.1 M H2SO4. (b) A 5 µm x 5 µm AFM image of titania 

templated film after applying -0.4 V for 60 sec in 5 mM CuSO4 in 0.1 M H2SO4. Both the 

AFM images show over deposition of copper in the nano-wells at more negative voltages.  

a 
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Figure 34: (a) CV of 5 mM CuSO4 in 0.1 M H2SO4 at the “blocked” templated film. (b) A 2 

µm x 2 µm AFM image of templated film after applying -0.25 V for 60 sec in 5 mM CuSO4 

in 0.1 M H2SO4. 
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CHAPTER 4 Conclusions 

 

 

 

     Polystyrene spheres were used as templates to create 2-D close packed arrays of nano-

wells inside the titania matrix. Initially, the titania sol containing PS spheres was spun on 

the ITO substrate. After achieving a monolayer of packed PS spheres in the TiO2 matrix, 

the PS spheres were removed completely by calcination which forms nano-wells inside the 

titania films. Cyclic voltammetry was used to confirm the complete removal of PS spheres 

from the titania films. Cyclic voltammetry results indicate that titania films soaked in 

aqueous solution did not show any defects over a period of two months. Also, the surface 

characterization of the films doped with PS spheres and films with nano-wells using AFM 

and SEM support the results obtained from CV’s. The surface morphology of the films in 

solution for 60 days looks similar to that of the films before soaking in solution. Whereas 

for silica, the results obtained from CV and AFM show that defects arise after 3 days in 0.1 

M KCl resulting in the film falling off from the substrate surface. Hence, templated titania 

films were more stable in aqueous solutions compared to the conventional silica sol-gel 

systems which tend to fall off within a week. 

        With the advantage of long-term stability in aqueous solutions, the templated titania 

films can be used to grow nanostructures inside the nano-wells. To prove that the nano-



 

 69 

glucose + O2 + GO(ox)  gluconolactone +GO(red) + H2O2 

 

Glucose 

molecule 

wells are accessible for growing nanostructures, copper was electrochemically deposited in 

them.  

Future directions: Future work on this project can include determining the accessibility of 

the nano-wells by doing conducting-AFM. Also, electrodeposition of copper inside the 

nano-wells can be improved so that uniform deposition is seen in all the nano-wells. Some 

of the factors which can improve the electrodeposition of copper include cleaning of the 

nano-wells, potential applied and deposition time. Further, the deposition of copper as a 

function of time and potential can be studied.  

       Another future direction of this project could be that these nano-wells in the titania 

films, being open to the substrate surface, can have applications in chemical sensing.
76

 In 

general, biomolecules such as enzymes have been immobilized in sol-gel materials, thus 

protecting the enzyme against extreme conditions such as high temperature, high pH and 

organic solvents. This stabilization enables such molecules to have application as chemical 

sensors in harsh environmental conditions.  

 

  

Figure 35: Example of an application of titania nano-materials in glucose sensing. 
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One good example for application of titania nano-materials is for measuring the blood 

glucose levels. The higher surface area and porosity of the templated titania materials 

enable the glucose molecule in solution to easily diffuse through the films to the 

underlying substrate surface. Also, the materials can be exposed to solutions for longer 

durations due to the stability of these materials in aqueous solutions. Hence this sol-gel 

derived TiO2 biological sensor will likely have faster response times, good sensitivity and 

better stability. Glucose oxidase (GO) could be easily entrapped into the films and this can 

be used to catalyze the oxidation of glucose in the presence of oxygen to form gluconic 

acid and hydrogen peroxide as shown in Figure 35.
123, 127, 128

 Detection of glucose is 

carried out using electrochemical techniques. From the amperometric response generated 

by the electrochemical oxidation of hydrogen peroxide at the electrode surface, the amount 

of glucose in the sample can be estimated.
127, 128
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