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NOVEL STRATEGIES TO IMPROVE METABOLIC PARAMETERS AND 

PRECONDITION DIABETIC HEARTS AGAINST ISCHEMIA/REPERFUSION INJURY 
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Department of Internal Medicine, Division of Cardiology 

 
 
 

  Insulin resistance and chronic hyperglycemia promote vascular damage, 

increase circulating levels of inflammatory cytokines and lead to increased morbidity 

and mortality. MicroRNAs (miRs) -103/107 have been shown to negatively regulate 

insulin sensitivity and glucose homeostasis. Based on complimentary binding profiles, 

the downstream target gene of miR-103/107 is caveolin-1 (Cav-1). We hypothesized 

that daily administration of the phosphodiesterase-5 inhibitor tadalafil (TAD) ± the 



	
  

	
  

curcumin analogue (HO-3867) will attenuate inflammation, improve metabolic 

parameters and reduce infarct size after ischemia/reperfusion injury (IRI). Furthermore, 

we propose that TAD therapy will reduce myocardial expression of miR-103/107 and 

increase mRNA and protein levels of its target gene, Cav-1.  

Leptin receptor null mice were randomized to receive daily injections of TAD 

(1mg/kg), HO-3867 (25mg/Kg), combination therapy, or control for 12weeks with weight 

and fasting glucose monitored weekly. Upon completion, cardiomyocytes were isolated 

from each group and were subjected to simulated ischemia and reoxygenation (SI/RO) 

for cell viability and reactive oxygen species (ROS) measurement. Another set were 

subjected to IRI in a Langendorff model.  Plasma samples were taken to measure 

plasma concentrations of cytokines. For miR expression, total RNA was isolated from 

TAD and DMSO treated mice and was subjected to reverse transcription and real time 

PCR using miR assay probes to determine expression.   

TAD, HO-3867 and the combination of both attenuated fasting glucose levels, 

reduced myocardial infarct size after IRI and inflammatory cytokines when compared to 

control (p<0.05 for each vs. control). Cardiomyocytes isolated from each treatment 

groups and subjected to SI/RO demonstrated reduced necrosis as shown by trypan 

blue exclusion assay, ROS generation, and improved mitochondrial membrane potential 

as compared to DMSO (control). Likewise, both mRNA and protein expression of Cav-1 

were reduced in diabetic hearts but were significantly increased in TAD treated diabetic 



	
  

	
  

mice, which may be a mechanism to improve insulin signaling through downregulation 

of miR-103/107 and upregulation of Cav-1.   

These studies suggest that TAD alone or in combination may be a unique 

strategy to improve metabolic parameters and precondition diabetic hearts against IRI.  
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CHAPTER 1 

 

BACKGROUND AND SIGNIFICANCE 

 

A. Diabetes and Heart disease  

 The prevalence of diabetes in the United States is increasing at an astronomical 

rate and the American Diabetes Association currently estimates that 8.3% of the 

population has diabetes and nearly 79 million people have insulin resistance and are 

currently at risk for developing diabetes.1 Accelerated vascular injury and inflammation 

are intimately associated with the complications of insulin resistance and diabetes and 

can lead to a number of micro- and macro- vascular insults such as retinopathy, 

nephropathy and painful neuropathy. Eventually more adverse complications result as 

the pathophysiologic consequence of the chronic hyperglycemic state. Hyperglycemia 

increases the expression of genes in the vascular smooth muscle cells (VSMC), tissue 

macrophages and endothelium, promoting the attraction, adhesion and subsequent 

transmigration of monocytes into the sub-endothelial space. In addition, the perpetual 

exposure of lipids and proteins to elevated glucose concentrations generates the 

formation of advanced glycation end products (AGEs), inducing reactive oxygen species 

(ROS), binding to cell surface receptors, inhibiting endothelial nitric oxide (NO) 
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production and increasing oxidative stress. The enhanced oxidative stress has several 

effects at the molecular and cellular level, which eventually contributes to 

macrovascular disease such as coronary heart disease (CHD). The oxidation of low-

density lipoprotein (LDL) and glucose oxidation generate the formation of superoxide 

anions within the mitochondria, which generates hydroxyl radicals and nicotinamide 

adenine dinucleotide phosphate (NADPH) production within macrophages. This leads to 

significant endothelial dysfunction, impairing vasodilatation and promotes vascular 

injury, oxidative stress and AGE formation.  

  Unfortunately, data from clinical trials suggest that despite intensive control of 

hyperglycemia, the reduction of glycosylated hemoglobin levels to 6% does not prolong 

life or reduce vascular morbidity.2 This indicates that endothelial dysfunction is likely at 

the crux of the problem that leads to poor long-term outcomes and not the 

hyperglycemia itself. There is data to suggest that reduced levels of NO within the 

vascular endothelium contributes to impaired insulin utilization in patients with insulin 

resistance.3 Vascular NO is critical for normal vasodilatation and endothelial function 

and impairment of NO bioavailability and the NO-cyclic guanosine monophosphate 

(cGMP)--dependent protein kinase (PKG) signaling cascade is the central mediator of 

endothelial dysfunction.4 A number of clinical studies have shown that hyperglycemia 

and increased AGEs are key factors in potentiating vascular inflammation and 

increasing levels of ROS and oxidative stress.5, 6  
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      Figure 1.  Interconnected pathways in Insulin Resistance and CHD. 

	
  

The interconnected pathways in insulin resistance and heart disease reveal that 
endothelial dysfunction, insulin resistance, obesity, hyperglycemia, inflammation and 
oxidative stress are all interconnected with each perpetuating the next. This eventually 
leads to type II diabetes, which then further accentuates the vicious cycle. The common 
downstream event is the formation of atherosclerosis, peripheral vascular and coronary 
artery disease. This leads to the increased morbidity and mortality in this patient 
population.  
 

 This vascular milieu of elevated inflammation, impaired NO bioavailability, and 

oxidative stress plays an integral role in the progression of atherosclerosis and 
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subsequently acute coronary syndromes culminating in significant morbidity and 

mortality of the diabetic patient 7 (Figure 1).  

 Recent animal studies with NO synthase (NOS) inhibitors and genetically altered 

mice that lack the endothelial nitric oxide synthase (eNOS) gene, suggest that the NO 

signaling pathway may regulate and promote glucose uptake in myocytes.8-11 Moreover, 

when mice lack the eNOS gene, they were unable to catalyze the formation of NO in the 

endothelium, had decreased oxygen consumption, increased weight gain and were 

found to be insulin resistant.12 In addition, several studies have indicated that insulin 

resistance itself may impair NO release and damage the endothelium through 

mechanisms that are reciprocally interconnected.5,6 For example, chronic 

hyperglycemia increases circulating levels of inflammatory cytokines, chemokines, and 

expression of intracellular adhesion molecule-1 (ICAM-1), hence contributing further to 

this pathognomonic state.13  

 It was previously hypothesized that the vasodilatory action of a 

phosphodiesterase (PDE)-5 inhibitor would potentially release endogenous mediators 

from the endothelium such as bradykinin and adenosine and that this may trigger a 

signaling cascade that results in phosphorylation of eNOS and release of NO from the 

endothelium. The generation of NO activates soluble guanylate cyclase (sGC) resulting 

in enhanced formation of cGMP and subsequently downstream cGMP protein-

dependent kinases.  Within each cell, levels of cGMP are tightly regulated by PDEs, 

which cleave the 3’5’-cyclic-phosphate moiety of cGMP to produce the corresponding 5’ 
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nucleotide. PDE-5 selectively hydrolyzes cGMP and its inhibition increases the 

bioavailability of cGMP. The PDE-5 inhibitors, including sildenafil (Viagra™), vardenafil 

(Levitra™), tadalafil (Cialis™) and avanafil (Stendra), have been approved by the Food 

and Drug Administration for the treatment of erectile dysfunction (ED).14, 15 More 

recently, sildenafil and tadalafil (TAD) have been approved for the management of 

pulmonary arterial hypertension.16 TAD selectively inhibits PDE-5 hence increasing 

cGMP levels, however its effects can last up to 36 h, whereas the durations of action of 

sildenafil and vardenafil are generally 4 to 8 h.17 Moreover, TAD is a highly selective 

inhibitor of PDE with >10,000-fold selectivity for PDE-5 over PDE-1 to PDE-4 and 

approximately 700-fold selectivity for PDE-5 over PDE-6 17. TAD is also the only PDE-5 

inhibitor whose activity is unaffected by food and has a relatively short time to onset of 

action (16–17 min).17   

 Chronic administration of PDE-5 inhibitors has been associated with increased 

persistent vascular and endothelial function by increasing the level of endothelial cGMP 

generated by activation of eNOS.18 In streptozotocin-induced diabetic rats, long-term 

administration of the PDE-5 inhibitor DA-8159 prevented ED and preserved endothelial 

function.19 In a similar model, 14 days of treatment with sildenafil improved 

vasorelaxation through enhanced endogenous NO signaling.20 In addition, clinical 

studies have revealed a potential protective role of these compounds on endothelial 

function in short- and long-term assessments.21 In a large meta-analysis it was reported 

that endothelial dysfunction is a significant independent risk factor for cardiac death, 
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myocardial infarction (MI), stroke and the need for coronary revascularization.22 A study 

by Gazzaruso et al found that diabetic patients with ED were at increased risk for silent 

coronary artery disease and ED was a powerful predictor of cardiovascular (CV) 

morbidity and mortality.23 They went on to show that PDE-5 inhibitor use in type II 

diabetics was associated with a significant reduction of major adverse cardiac events. 

Likewise, a recent epidemiological study provided evidence of a strong correlation 

between the risk factors associated with metabolic syndrome (i.e. obesity, elevated 

fasting glucose levels, dyslipidemia, hypertension) and urinary cGMP excretion, 

suggesting that a reduction of NO bioactivity concurs with these CV risk factors.24 

Interestingly, one study found genetic variations of the eNOS gene influenced energy 

expenditure, severity of glucose intolerance, and risk of developing type II diabetes.25 In 

a clinical trial, chronic (alternate-day) administration of tadalafil in men with ED had 

improved endothelial function as indicated by marked changes in serum markers of 

endothelial function, increased insulin levels and a robust decrease in the inflammatory 

marker, high sensitivity C-reactive protein (hs-CRP).26 Similarly, both acute and chronic 

administration of sildenafil improved endothelial function in patients with type II diabetes 

as observed by improved flow-mediated dilatation of the brachial artery.27, 28 In this 

respect, the use of PDE-5 inhibitors are quite attractive for the long-term management 

of cardiovascular diseases. 

A number of studies from our laboratory have shown that PDE-5 inhibitors 

including sildenafil have a powerful protective effect against myocardial 
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ischemia/reperfusion (I/R) injury,29-33 doxorubicin and post-MI heart failure.34-38 

Mechanistically, we showed that sildenafil protects the heart against I/R injury through 

increased expression of inducible NOS (iNOS) / eNOS18, 39 activation of PKG,39, 40 

phosphorylation and inactivation of glycogen synthase kinase-β (GSK-3β),40 opening of 

mitochondrial KATP channels,29-31 and hydrogen sulfide (H2S) generation.33 Insulin 

resistant and type II diabetic patients have decreased expression of eNOS, iNOS and 

impaired NO synthesis, therefore the chronic use of PDE-5 inhibitors may be potentially 

therapeutic because these compounds improve ED, at least in part, by correcting 

damage to the vascular endothelium by upregulating eNOS and iNOS and increasing 

NO levels.27, 28, 41  

Currently there is an imperative need for understanding the molecular and 

biochemical mechanisms underlying diabetic vascular complications and a multifaceted 

therapeutic strategy that targets the problem on many levels would be optimal. 

Therefore based on this background information, we propose that PDE-5 inhibitors 

would be ideal candidates to treat endothelial dysfunction, insulin resistance, and 

inflammation while protecting the diabetic heart against I/R injury. 

According to WHO, ischemic heart disease (IHD) is the leading cause of 

morbidity and mortality in the world accounting for more than 7.2 million deaths each 

year and by the year 2030 over 26 million people will die from cardiovascular 

diseases.42 Prompt myocardial reperfusion of the infarct-related artery by either 

fibrinolysis or percutaneous coronary intervention (PCI) remains critical for reducing 
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infarct size. Recent advances in the field of cardiovascular medicine has led to new 

antiplatelet and antithrombotic drugs and novel anti-proliferative drug-eluting stents 

which represent a significant step forward in improving long term outcomes in patients 

presenting with acute coronary syndromes. Unfortunately despite intense research in 

the field of molecular cardiology, we have no definitive intervention nor approved 

pharmacological agent indicated to completely eliminate or reduce myocardial damage 

induced by reperfusion injury—a condition where ischemic myocardium is subjected to 

sudden intracellular metabolic and biological changes upon flow restoration.  With a 

monumental growth in the number of patients dying from IHD in both developed and 

underdeveloped countries, not only has it become imperative to reduce the time to 

reperfusion, but also to understand the fundamental pathological mechanisms of I/R 

injury so that safe and potent cardioprotective compounds can be developed that would 

render the myocardium resistant to reperfusion injury.  

 

B. Novel Pharmacological Agents in Cardioprotection and Insulin Resistance 

 

i. Phosphodieseterase-5 inhibitors 

 Phosphodiesterase-5 is an enzyme that catalyzes the degradation of cGMP 

and through inhibition with a PDE-5 inhibitor, leads to an increase in bioavailable cGMP. 

There have been 21 PDE genes identified and cloned, all of which can be further 
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classified into one of 11 PDE families based on homology and pharmacological and 

biochemical properties.43 PDEs are ubiquitous throughout the body and perform a 

number of functions.  PDE-5 is the predominant enzyme in the corpus cavernosum, and 

plays a crucial role in penile erection.  Likewise, immunohistochemical studies have 

demonstrated that PDE-5 is abundant in vascular and bronchial smooth muscle cells, 

renal tubules, lung tissue and platelets. Initially it was thought that PDE-5 was not 

expressed in the heart, but Shezaki et al provided the first evidence that PDE-5 was 

expressed in the canine myocardium and subsequently our laboratory showed its 

expression in the rodent heart.44, 45 It is known that PDE-5 inhibitors facilitate an erection 

by increasing NO signaling by preventing enzymatic hydrolysis of cGMP in endothelial 

cells. The PDE-5 isoenzyme is widely expressed in the vasculature and is found in other 

vascular beds other than the penis. The efficacy of PDE-5 inhibitors is much lower in 

diabetic patients with ED compared to those without it and similarly the endothelial 

effectiveness of drugs that improve endothelial function is lower in diabetics than non-

diabetics.14 However, it is quite possible that when part of a daily regimen, a PDE-5 

inhibitor improves the responsiveness of dysfunctional endothelium and ameliorates 

inflammation—which would make this a novel strategy for preventing the development 

and progression of atherosclerosis and CV diseases in the diabetic patient. 

In the last several decades, the overwhelming knowledge and understanding of 

the cardioprotective signaling pathways involved in protecting the heart from ischemic 

insult has laid the conceptual background for developing pharmacological agents that 
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target specific triggers and mediators which may provide similar effects.  In 2002, our 

laboratory was the first to show that the PDE-5 inhibitor sildenafil could induce a 

“preconditioning effect,” in which pre-treatment with the drug protected the heart against 

subsequent I/R injury. For example, in a rabbit model of I/R, the Kukreja laboratory 

found that opening of the mitochondrial adenosine triphosphate (ATP) sensitive 

potassium channel  (mitoKATP) was critical in the sildenafil-induced infarct-sparing 

effect.46 Using the mitoKATP blocker, 5-hydroxydecanoate (5-HD), the cardioprotection 

could be abolished, hence confirming a downstream signaling role of the adenosine 

triphosphate (ATP) sensitive potassium channel. We confirmed the findings in the 

rodent model, in the isolated perfused heart model, and in the in vitro cardiomyocyte cell 

culture model in which isolated cardiomyocytes were subjected to simulated ischemia 

and reoxygenation (SI/RO).45, 47 The results were consistent in that all PDE-5 inhibitors, 

whether sildenafil, vardenafil or tadalafil all had an infarct-sparing effect, could reduce 

cardiomyocyte necrosis and apoptosis, and on transthoracic echocardiography (TTE), 

could preserve post-ischemic left ventricular (LV) ejection fraction.47-50 Mechanistic 

studies revealed that the cardioprotective effects of PDE-5 inhibitors are largely 

dependent on: NO generation, opening of the mitoKATP channel, activation of Protein 

Kinase C (PKC), adenosine A1 receptor, and through inhibition of PDE-5 with 

subsequent accumulation of cGMP and activation of downstream PKG-dependent 

signaling.51 This includes PKG-dependent phosphorylation of extracellular signal-

regulated kinase (ERK)1/2 and GSK3β in conjunction with increasing B-cell lymphoma 
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protein (Bcl-2), which inhibits apoptosis through attenuating cytochrome c release and 

inhibiting opening of the mitochondrial permeability transition pore (mPTP)52 [Figure 2].  

Lastly, PKG has its own independent effect on I/R injury as it too can open the mitoKATP 

and limit infarct size through preserving ATP and decreasing the calcium (Ca2+) influx 

into the mitochondria.53 In a rabbit model of I/R injury we compared sildenafil and 

vardenafil with nitroglycerin (NTG) to evaluate their cardioprotective effect when 

administered immediately at the time of reperfusion.54 Animals were subjected to 30 min 

of ischemia followed by 3 h of reperfusion with intravenous (i.v.) sildenafil, vardenafil or 

NTG being given for 65 min, beginning 5 min before reperfusion. We found both PDE-5 

inhibitors had similar cardioprotective effects compared to control and the infarct-

sparing effect was mediated through the mitoKATP channel as the effect could be 

blocked by 5-HD. Surprisingly however, NTG failed to confer any cardioprotection.  

We hypothesized that this could be explained by either insufficient cGMP 

bioavailability relative to NO or a surge of free radicals at the time of reperfusion that 

could react with the NO derived from NTG forming peroxynitrite (ONOO-) that then 

could lead to protein nitration and myocardial damage.54  

PDE-5 inhibitors have also been shown to prevent adverse cardiac remodeling in 

the experimental arena of ischemic cardiomyopathy (ICM). In 2008, we showed for the 

first time in a murine model of ICM, that chronic sildenafil treatment can attenuate LV 

dysfunction.49 Recent evidence suggests that Rho Kinase (RhoK), which is activated by 
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the small GTPase RhoA, plays an important role in the development of cardiovascular 

disease and pulmonary hypertension. 

	
  

Figure 2.   PDE-5 inhibitors and sGC activators: Mechanisms of action in cardioprotection. 

 

Activation of soluble guanylate cyclase (sGC) by either nitric oxide (NO) or 
independently of an oxidized heme group within sGC by a sGC activator, leads to an 
increase in cyclic GMP (cGMP), and downstream protein kinase G (PKG). 
Cardioprotective effects by PKG are induced through opening of the mitochondrial KATP 
channel and phosphorylation of glycogen synthase kinase (GSK)-3β, which prevents 
opening of the mitochondrial permeability transition pore (mPTP).  
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Moreover, RhoK functions as a signal transducer in actin cytoskeletal 

organization, gene expression, and muscular contraction. Non-selective inhibitors of 

RhoK reduce infarct size and adverse remodeling of the LV. Likewise, in two different 

models of pulmonary arterial hypertension, sildenafil inhibited RhoK and improved 

pulmonary pressures.55,56 Therefore, we evaluated if sildenafil treatment could attenuate 

the progression of heart failure and whether the signaling could be attributed to 

inhibition of the RhoA/ Rho-Kinase pathway.57 In our model of ICM, mice were 

subjected to permanent left anterior descending occlusion and 3 days post-infarction, 

when fractional shortening was less than 25%, were started on either twice a day 

treatment with sildenafil or equivalent volume saline. Mice treated with sildenafil showed 

preservation of LV function and less end-diastolic dilatation compared to control at 7 

and 28 days post-MI. Similarly, fibrosis and apoptosis were significantly reduced in the 

sildenafil treated group. Western blot analysis of sildenafil treated homogenates 

revealed enhanced Bcl-2: Bcl-2 associated X protein (Bax) ratio, that RhoK was 

significantly inhibited, and this was directly associated with PKG activation. Moreover, 

RhoK inhibition was PKG-dependent as use of the PKG inhibitor KT-5823 completely 

abolished any RhoK inhibition.57  

Today, more than 100 clinical trials with PDE-5 inhibitors have been completed 

or are currently ongoing focusing on the drugs’ potential cardiovascular benefits.58 

These potent agents have shown promising results in patients with diastolic heart failure 
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and reactive pulmonary hypertension and intense research is ongoing in patients with 

valvular and congenital heart disease, diabetes mellitus, and systolic heart failure.58 

However, there have yet to be trials designed to evaluate its direct preconditioning 

effects. Future demonstration of the cardioprotective effects in patients with PDE-5 

inhibitors could have a considerable impact on post-MI morbidity and mortality by 

bringing the phenomenon of pharmacologic preconditioning from the bench to the 

bedside.  

 

ii. Soluble Guanylate Cyclase Activators 

The gaseous ligand NO is an important signaling molecule involved in regulating 

a variety of biological and physiological processes.  Intense research on NO in the past 

few decades has led to significant clinical evidence that reduced NO bioavailability or 

responsiveness to NO is a fundamental component in the pathogenesis of 

cardiovascular and endothelial diseases.  NO is a potent vasodilator, which prevents 

platelet adhesion and aggregation and inhibits vascular smooth muscle proliferation.59 

Currently there are a variety of cardiovascular diseases, including hypertension, IHD 

and congestive heart failure (CHF) that are treated by one of the many pharmacologic 

agents termed “NO-donors or nitrovasodilators.” These drugs mimic the action of 

endogenous NO by either bioconversion to NO and NO-associated compounds and 

activate its intracellular receptor sGC by nitrosylation of the heme moiety. This in turn, 
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increases by 200-fold the catalytic conversion of guanosine triphosphate (GTP) into the 

secondary messenger cGMP.60 Most often than not, the intracellular signal are then 

potentiated by activation of PKG. However, the use of these medications is quite limited 

secondary to the development of nitrate tolerance, insufficient bio-metabolism and non-

specific interactions of NO, including peroxynitrite (ONOO-) -mediated tyrosine 

nitration.60 Furthermore, ROS within the vasculature reacts with NO and inhibits NO 

signaling, creating a state of NO resistance and decreased NO bioavailability in the 

endothelium. To avoid these disadvantages of nitrate therapy and oxidant stress, a new 

class of compounds have been recently discovered which can activate sGC 

independently of NO and may have a significant advantage over current NO-donor 

therapeutics.  

Guanine nucleotidyl (guanylate) cyclases (GCs) are a widely distributed key 

signal transduction enzyme, which in response to various cellular stimuli, converts GTP 

to the secondary messenger cGMP. The transmembrane particulate GC (pGC) serves 

as a receptor for atrial (a-type), brain (b-type) and c-type natiuretic peptide and 

analogues of these peptides have become a mainstay for treating severely 

decompensated CHF.60 The cytosolic form of sGC is a heterodimer consisting of two α 

and two β subunits with the β subunit having a prosthetic heme group. The heme 

moiety is positioned in the heme-binding domain of the β subunit and has a length of 

about 200 residues.61 The ferrous iron of the prosthetic heme group is coordinated 
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between four heme nitrogens and the axial ligand histidine-105 and the anchoring 

residues of the heme propionates tyrosine135, serine137 and arginine139 all together 

constitute the heme-binding motif.61 NO can then bind to the heme and activate sGC, 

but only if the heme moiety is in its reduced form (ferrous state) (Figure 3).  In 

pathological conditions of excessive oxidative stress, there is perpetual endothelial and 

vascular damage that also promotes platelet aggregation. In these conditions, there is 

an abundance of ROS and NO is rapidly scavenged by superoxide (O2
-⋅) to form 

ONOO- and the heme moiety of sGC is quickly oxidized from ferrous heme to ferric 

heme, rendering NO ineffective as its ligand—making conventional NO donor 

pharmacologic agents futile.60 This has led many scientists to search for a way to 

directly activate sGC and restore the NO-sGC-cGMP pathway, whether under 

conditions of reduced NO availability, or in pathological states where sGC is largely in 

the oxidized form.  

The effects of cGMP are mediated by various cGMP effector systems such as 

cGMP-dependent protein kinases (PKG-1α, PKG-1β), cGMP-dependent ion channels 

(PKG-2) and PDEs.60 The substrates of PKG include inositol triphosphate receptor-

associated cGMP-kinase substrate (IRAG) and recognition of the substrates by the 

PKG-1 isozymes is mediated by the NH2-terminal leucine/isoleucine zipper (LZ) 

domain.62 Both PKG-1α and PKG-1β are derived from the same gene and differ only in 

the terminal NH2 LZ domain. Overall, PKG-1 substrates fulfill various cellular functions 
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such as intracellular Ca2+ and potassium concentration, Ca2+ sensitivity, and 

organization of the intracellular cytoskeleton. PKG-2 substrates are involved in chloride 

transport, sodium/proton transport and transcriptional regulation. The degradation of 

cGMP is catalyzed by one of several PDEs and this led to the discovery of specific PDE 

inhibitors, notably the PDE-5 inhibitors. PDE-5 inhibitors have been successfully used to 

treat disorders of endothelial dysfunction such as erectile dysfunction and pulmonary 

hypertension while attempting to the restore the NO-cGMP intracellular signaling by 

preventing cGMP breakdown60 (figure 3).   

Since in a majority of cardiovascular diseases such as atherosclerosis, 

hypercholesterolemia, and insulin resistance, insufficient NO-sGC-cGMP signaling and 

endothelial dysfunction is at the crux of the problem, two novel drug classes have 

recently been discovered—the sGC stimulators that can activate sGC independent of 

NO and the sGC activators that can activate sGC independent of NO and independent 

of the redox status of the prosthetic heme group.60 Therefore, these compounds could 

potentially allow for restoration of the NO-sGC-cGMP signaling cascade in these 

pathological states—which would have otherwise been lost due to NO scavenging 

and/or oxidation of sGC. 
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            Figure 3.  Nitric oxide signaling pathway. 

 

Illustration of the activation of sGC by nitric oxide, which increases cGMP and 
subsequently PKG formation. This leads to the favorable effects of vasodilatation, 
inhibition of apoptosis, platelet aggregation and inflammation. Likewise, the particulate 
guanylate cyclase (pGC) can be activated by one of the natriuretic peptides (atrial, b-
type, c-type) and activate the same pathway producing the same downstream effects.  

 

GMP

a,	
  b,	
  c	
  
type	
  NP

L-­‐arginine

PDE-­‐5

NO	
  Synthases

PKG

Fe2+

Vasodilation,
Inhibition	
  of	
  platelet	
  
aggregation,
apoptosis	
  
and	
  inflammation

GTP

NO	
  Donors

cGMP

GTP cGMP

PKG



	
   	
   P a g e 	
   | 	
   1 9 	
  
	
  

	
  

	
  

           Figure 4.   BAY 58-2667 signaling pathway. 
 

Oxidation of sGC makes NO unable to bind this receptor given the Ferrous to Ferric 
state of the heme-moiety and hence is unable to form cGMP. One of the newest  sGC 
activators, BAY 58-2667, can bind independently of the heme-moiety, regardless of its 
oxidative state and still form cGMP and downstream PKG.  

 

Soluble GC stimulators target sGC independent of NO, but still require the heme 
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the sensitivity of the reduced enzyme to low levels of NO bioavailability. In 1994, after 

testing thousands of compounds, Ko and coworkers at Bayer Healthcare AG discovered 

that an indazole derivative, YC-1, could independently activate sGC by 10-fold and 

could synergistically activate sGC with submaximal NO up to 200-fold.63 YC-1 became 

known as the first “NO sensitizer” and was a major breakthrough in the ability to restore 

the NO signaling cascade even under conditions of decreased NO availability. YC-1 had 

shifted the EC50 for NO to the left by one order of magnitude and was shown to slow 

down the deactivation of NO stimulated sGC.63, 64 The next two compounds developed 

were BAY 41-2272 and 41-8543, both of which were synthesized based on YC-1 

structure.63 Both drugs have been shown to inhibit vascular smooth muscle proliferation 

and platelet aggregation and produce significant vasorelaxation of the coronary arteries 

and veins in rat hearts using a Langendorff isolated perfused heart model.65, 66 

In 2002, after nearly a decade of research, scientists at Bayer identified a 

completely new mechanism of enzyme activation, they had created a compound which 

could not only activate sGC independent of NO, but could even activate it after removal 

or oxidation of the heme and in fact, it preferred the oxidized or heme-free enzyme.65 

This exciting new compound was called BAY 58-2667 and it was the first NO- and 

heme-independent activator of sGC. BAY 58-2667 was found to activate sGC with EC50 

and Kd in the extremely low nanomolar range, making it the most potent NO-

independent activator to date.66 In addition, removal or oxidation of the heme group only 

seemed to potentiate sGC activation, making it quite the ideal compound for use in 
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cardiovascular diseases that are plagued with high oxidative stress, excessive amounts 

of ROS and low NO availability 66, 67. Further studies into the mechanistic action of this 

new drug show that BAY 58-2667 is able to mimic the spatial structure of the sGC 

porphyrin ligand and therefore binds into the empty heme binding pocket or replaces an 

oxidized, weakly bound heme66, 67 (figure 4). Therefore, these novel compounds which 

activate sGC independent of NO, the oxidation status or even presence of the heme 

moiety, represent a significant therapeutic potential for the treatment of various 

cardiovascular diseases.  

In the past several years, a number of key animal studies have demonstrated the 

robust cardioprotective effects of sGC activators. In 2009 Korkmaz et al used a model of 

isoproterenol-induced MI after preconditioning rats with cinaciguat (BAY 58-2667) for 4 

days and then subjected them to acute myocardial infarction (AMI). They then 

measured cardiac function by Millar catheter, gene expression, mRNA levels of 

transforming growth factor (TGF)-β and cyclooxygenase (COX)-2, and performed 

immunohistochemistry for cGMP and nitrotyrosine.68 They found cinaciguat treated rats 

had significantly higher cGMP levels in plasma, higher concentrations in the 

myocardium, decreased mRNA expression of COX-2 and TGF-β, and overall a lower 

mortality rate. During the post-infarction period, the treatment group had improved 

cardiac relaxation, contractility was restored to baseline, and there was no change in 

coronary blood flow after I/R, both of which were significantly reduced in the control 

group.68 Our lab recently evaluated the effects of cinaciguat on ischemic preconditioning 
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(IPC) and I/R injury by giving the drug prior to ischemia and immediately at the time of 

reperfusion in the rabbit and mouse model of AMI and then confirmed these findings in 

a primary adult cardiomyocyte cell culture model of SI/RO by determining the 

compound’s ability to reduce cell necrosis and apoptosis.69 We found that cinaciguat 

caused a 63 and 41% reduction in infarct size when given before I/R and at reperfusion 

in rabbits, respectively. In mice, cinaciguat pretreatment had an even more impressive 

80% reduction vs. 63% when given before I/R compared to at the time of reperfusion.69 

Treatment groups had preserved cardiac function as measured by TTE and likewise, 

cinaciguat reduced myocyte necrosis and apoptosis. Furthermore, using an inhibitor of 

the H2S generating enzyme, cystathionine-γ-lyase (CSE), or an inhibitor of PKG, these 

infarct-sparing and functional improvements were lost thus providing evidence that 

cinaciguat likely induces protection through PKG-mediated H2S generation.69 Recently, 

Radovitz et al used a canine model of hypothermic cardioplegic arrest and 

extracorporeal circulation of coronary artery bypass surgery (CABG) to evaluate if 

cinaciguat could precondition the myocardium and effect endothelial function.70 They 

found that treatment with a sGC activator led to higher myocardial ATP levels, improved 

contractility, improved coronary blood flow and endothelial function.  

Even though sGC activators have yet to be pursued for their infarct-sparing 

effects in the patient setting, ongoing research in various in vivo and in vitro models has 

been promising. However, given the recent termination of several major randomized 

controlled trials including: COMPOSE 1, COMPOSE 2 and COMPOSE EARLY using 
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cinaciguat for the treatment of congestive heart failure, it may be too early to explore 

clinical therapeutic options until the drug is thoroughly studied in various animal 

models.71 Conversely, the oral sGC activator Riociguat (BAY 63-2521), is actively being 

evaluated for the treatment of patients with pulmonary hypertension and thus far seems 

to be much more promising with at least a dozen clinical trials currently underway 72.  

 

iii. Curcumin 

Turmeric (curcuma longa) has been used by those practicing “Ayurvedic 

medicine” since its early discovery in 3000 b.c. in order to treat a variety of inflammatory 

conditions and ailments including obesity. Curcumin (diferuloymethane) is the yellow-

pigment, beta-diketone constituent of the spice turmeric derived from the rhizome of the 

curcuma long plant (Figure 5). It is a natural polyphenolic phytochemical compound that 

is cell-permeable and known to possess histone acetyltransferase (HAT) inhibitory 

activity with specificity for p300/cAMP response element binding protein (CBP).73 It has 

a diverse range of molecular targets; including transcription factors, cytokines, and 

enzymes and as a result it has potential anti-inflammatory, anti-oxidant, anti-thrombotic, 

and cardiovascular protective effects. In experimental studies, it has been shown to 

lower plasma cholesterol, fasting glucose levels and increases hepatic glycogen 

levels.74 Likewise, through inhibiting p300/CBP it ameliorates post-infarction LV 

remodeling and by activating pro-survival kinases, limits infarct size.75-77 However, one 
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major caveat is that it has poor bioavailability and potency.  Recently, a novel class of 

curcumin analogues have been synthesized, namely the diarylidenylpiperidones 

(DAPs), which have been chemically created to elude this problem. By incorporation of 

a piperidone ring in the β-diketone backbone structure and fluorinating the phenyl 

group, 4 DAPs have been synthesized by the Kuppusamy group—H-4073, HO-3867, 

HO-4318 and HO-4200.78 Of these compounds, HO-3867 (3,5-bis(4-fluorobenzylidene)-

1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxy-pyrrol-3-yl) methyl]piperidin-4-one)78, has 

been shown to be promising in a number of cancer studies, and a recent study has 

shown it to be cardioprotective against doxorubicin-induced cardiotoxicity.78,79 In 

general, when compared to curcumin, the DAP compounds are significantly more 

effective and exhibit potent anticancer efficacy in vitro against breast, colon and ovarian 

cancers.80-82  

The first report to show that curcumin could lower blood glucose in human 

diabetic subjects dates back to 1972 and since then, more than 3000 papers have been 

written on its effect on obesity and obesity-related complications. Likewise, numerous 

recent publications have confirmed that treatment with curcumin can modulate targets 

involved in metabolic diseases and prevent high-fat diet-induced diabetes in rat models 

and genetically induced diabetes in both mouse and rat models.83 
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Figure 5.   Curcumin – the natural turmeric powder extract 
 

From a mechanistic perspective, these beneficial effects are likely afforded by 

attenuation of insulin and leptin resistance, amelioration of inflammatory cytokine 

expression and by increasing fatty acid oxidation and antioxidant enzyme levels.84 One 

recent study showed that curcumin-treated diabetic rats had lower blood glucose levels 

and glycosylated hemoglobin levels in addition to oxidative stress levels.74 When 

looking at other metabolic parameters such as cholesterol in diabetic animals, dietary 

curcumin significantly lowered blood triglycerides, cholesterol, and inhibited lipid 

peroxidation in liver microsomes and mitochondria.85  
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C. Ischemia/Reperfusion Injury 

Numerous experimental studies over the past 25 years have demonstrated the 

importance of the mPTP as a critical determinant of cardiomyocyte injury and necrosis 

after coronary I/R.86 Under normal physiologic and ischemic conditions, the mPTP is 

closed and the inner mitochondrial membrane remains impermeable to nearly all ions 

and metabolites. However during reperfusion, Ca2+ overload and ROS accumulation 

within the mitochondria leads to formation of transition pores allowing molecules up to 

1.5 kDa to equilibrate across the membrane.86,87 Upon permeability transition, 

mitochondria lose their ability to maintain a pH gradient and produce ATP.  This leads to 

the loss of ionic and metabolic homeostasis. Similarly, due to newly created osmotic 

forces, the mitochondrial matrix swells and as a result, the outer membrane ruptures 

causing cytochrome c and other proapoptotic factors to be released into the cytosol.87,88 

Accordingly, opening of this inner mitochondrial membrane transition pore is strongly 

linked with lethal reperfusion injury which ultimately leads to cardiomyocyte necrosis 

and apoptosis.87 Griffiths et al demonstrated that opening of the mPTP does not occur 

during periods of non-lethal ischemia, but rather during the first few minutes of 

reperfusion.89 The opening of transition pore actually coincided with the rapid correction 

of the acidosis which occurred during the ischemic phase (figure 5).90  

The significance of the mPTP in I/R-induced cell death was first recognized by 

Hausenloy and Yellon with the use of the mPTP inhibitor—cyclosporine A (CsA).91 
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Despite the powerful immunosuppressive effects of CsA, it has potent inhibitory effects 

on the transition pore through modulating cyclophilin D (CypD), a key molecular 

component of the mPTP. Under the presence of high matrix Ca2+ concentrations, during 

reperfusion the CypD can modify the conformation of the inner mitochondrial membrane 

allowing for the formation of a large pore/channel and creating significant permeability 

transition.87, 92 Hausenloy et al demonstrated that CsA significantly reduced infarct size 

when given at the time of reperfusion in an isolated rat heart model.91 Similarly, using an 

in vivo rabbit model, a pharmacological ischemic postconditioning (IPOC) effect was 

demonstrated when CsA was given 1 min prior to reperfusion and a 50% reduction in 

infarct size was obtained.93 Additionally, the role of CypD-dependent mPTP in IPOC has 

been evaluated using transgenic mice lacking CypD.94 These mice developed smaller 

infarcts and could not be post-conditioned. This further suggests that lethal I/R injury is 

mediated by Ca2+ overload, conformational change of the transition pore by CypD and 

subsequent pore opening.  

 

D. Ischemic Preconditioning and Cardioprotection 

The search for infarct-sparing treatment spans nearly four decades when in 1971 

Braunwald and colleagues introduced a novel concept: measures designed to improve 

coronary perfusion or reduce oxygen demand as late as 3 h after an acute thrombosis 

might limit infarct size.95 
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Figure 6.  Reperfusion injury and mitochondrial-induced ROS production and apoptosis. 

	
  

During reperfusion, there is an acute overload of Ca2+ ions within the cell as the cell 
attempts to compensate for the build-up of H+ ions during the ischemic phase. This 
triggers formation transition pores and increases ROS formation. This leads to loss of 
the mitochondrial membrane potential and cytochrome c, which triggers activation of 
apoptosis.  

 

Over the next 15 years, angioplasty became the only reperfusion therapy proven 

successful at limiting infarct size despite intense pre-clinical research with a number of 
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pharmacological agents in a variety of animal models. It wasn’t until 1986 when Murry et 

al discovered the phenomenon of IPC in a canine model of I/R.96 They discovered that 

several brief periods of left circumflex coronary artery occlusion prior to prolonged 

ischemia reduced infarct size by 75% when compared to canines subjected only to the 

prolonged ischemia.96 These brief periods of sublethal ischemia induced protective 

signaling mechanisms by which the myocardium became preconditioned to the 

subsequent ischemic insult. Interestingly years leading up to the discovery of IPC, 

clinicians noticed that patients with CHD, particular those presenting with unstable 

angina or acute AMI and had at least one or more prior episodes of angina had less 

chest pain, less ST-segment deviation on electrocardiogram (ECG), and smaller infarct 

sizes despite an overall increase in ischemic time.97 This clinical paradox became aptly 

termed the “warm-up phenomenon.” The exact etiology is still unknown, but one of the 

speculated mechanisms is thought to be through triggered activation of the 

preconditioning signaling pathways in the “at risk” myocardium. 

The protective effects of IPC occur in two distinct phases: an “early phase” that 

rapidly develops after an ischemic insult and dissipates within 2-3 h and a “delayed 

phase” which reappears about 24 h and persists for nearly 72 h.98 The major difference 

between these two phases is that the early phase is effective at limiting I/R injury and 

less effective at preventing post-infarction myocardial “stunning” or contractile 

dysfunction.99 From a cellular level, early IPC results in activation of transcription factors 

and results in compartmentalization, modification and translocation of existing 
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molecules and proteins.100 The delayed phase is less effective at limiting infarct size but 

helps dampen ischemia-induced stunning. Furthermore, in this delayed phase the 

cardioprotective effects are largely exerted by newly synthesized proteins that were 

activated for de novo synthesis during the early phase.100  

In 1991 Downey and colleagues discovered that IPC was in fact a receptor-

mediated phenomenon by reporting the adenosine A1 receptor acted as a trigger to 

protect the rabbit heart.101 Further research led to the conclusion that activation of any 

Gi-coupled receptor can trigger a preconditioned state and can work in parallel. 

Interestingly, blockade of one of these receptor types does not abrogate IPC but rather 

increases the threshold needed to trigger the preconditioning.100 Therefore adenosine 

and other endogenous autacoids such as opioids and bradykinin, all activate their 

respective receptor G-protein coupled receptor and trigger downstream cardioprotective 

signaling pathways which include: ERK1/2, phosphatidylinositol-3-kinase (PI3K)/Akt, 

PKC and PKG which can ultimately lead to the phosphorylation and inactivation of 

GSK3β.102 This inactivated form of GSK3β inhibits the opening of the mPTP, which 

plays a critical role in cardiomyocyte death. Other key mediators of cardioprotection are 

the ATP-sensitive potassium channels of which there are two types—the sarcolemmal 

(surface KATP channel) and mitochondrial (mitoKATP channel). First described in cardiac 

ventricular myocytes, their significance in preconditioning was initially shown by Gross 

and colleagues.103 Pharmacological mimetics that could open the KATP channel would 

protect the myocardium, whereas blockers of the channel abolished the 
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cardioprotection. Subsequently, it was found that the mitoKATP channels played a more 

significant role in IPC than the surface channels.  However as years of research carried 

on, we learned both channel types likely have some role in preconditioning. In fact, the 

most convincing data demonstrates that transgenic mice without functioning 

sarcolemmal KATP channels could not be preconditioned despite having completely 

intact mitoKATP channels.104  

 

E. Endothelial dysfunction 

 Vascular endothelial cells form the vascular endothelial layer and healthy cells 

play an important physiological role.105 They respond to maintain vascular integrity, 

regulate vascular tone and permeability, vessel wall inflammation and 

thromboresistance.106 Likewise, they can secrete a variety of vasoactive substances 

including vasodilators such as NO, prostacyclin (PGI2), and endothelium-derived 

hyperpolarizing factor along with vasoconstrictors such as endothelin-1 (ET-1) and 

thromboxane A2 (TXA2).107 Endothelial dysfunction is characterized by various 

functional alterations in the vascular endothelium that include an imbalance in the 

release of vasoactive substances, that can lead to thrombosis, vasospasm or impaired 

vasodilator responses; enhanced ROS generation, inflammation, apoptosis and adverse 

remodeling.107 Several mechanisms are implicated in the pathogenesis of endothelial 

dysfunction of which impaired NO bioavailability plays a pivotal role and is likely the 
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result of reduced NO production and its increased inactivation by ROS.107 Although 

considered the earliest marker of impaired vascular health, endothelial dysfunction is 

initially asymptomatic and it often precedes the development of atherosclerosis.106 In 

the insulin resistant patient, the endothelium is exposed to hyperglycemic conditions 

that activates an apoptotic process and leads to intimal denudation. Initially β1-intergrin 

cascade acts as the initial sensor for programmed cell death and initiates the apoptotic 

process.107 Upon integrin activation, p38 mitogen activated protein kinase (MAPK) and 

C-jun N-terminal kinase (JNK) are activated downstream, which lead to endothelial cell 

apoptosis. Likewise, flow stress can also initiate apoptosis through activation of the 

endoplasmic reticulum (ER) stress response and downregulation of vascular 

endothelial-cadherin, both of which activate caspase proteins.107 The end result is loss 

and detachment of endothelial cells into the plasma.  Recently McClung et al have 

shown that diabetic patients, irrespective of glucose control, have significantly higher 

levels of circulating endothelial cells.108 Moreover, it has been shown that endothelial 

derived microparticle levels are predictive of coronary artery lesions, lipid levels, 

hypertension, and duration of diabetes.109 Accordingly, as endothelial cells have limited 

ability for self-repair with low proliferative potential, an effective means of endothelial 

repair is necessary to re-establish vessel integrity and attenuate the pro-atherosclerotic 

process.107  

 Endothelial repair is accomplished through the contribution of circulating 

endothelial progenitor cells (EPCs) in both physiological and pathological conditions. 
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EPCs are immature cells that can differentiate into mature endothelial cells and play a 

critical role in endothelial homeostasis and cardiovascular health.107 Recent data show 

that many different risk factors for CHD directly correlate with circulating EPCs and that 

higher EPCs portend a decrease in CV morbidity and mortality.110 Diabetic patients 

have less circulating EPCs than healthy controls and the progenitor cells they have 

display functional impairment such as reduced proliferation, adhesion, migration and 

incorporation into tubular structures.111 One explanation is the increased oxidative 

stress in diabetic patients that interferes with the interaction between the vascular wall 

and normal EPCs. In addition, angiogenic factors such as vascular endothelial growth 

factor (VEGF) and hypoxia inducible factor-1α (HIF-1α) are reduced in the diabetic 

patient whereas diabetic animal models have shown reduced mobilization of EPCs from 

the bone marrow after myocardial I/R injury.112 This data was supported as HIF-1α 

upregulation improved post-ischemic neovascularization in diabetes. Likewise, in an in 

vitro model, hyperglycemia through the production of ROS impaired proliferation, 

survival, and function of cultured EPCs with a concomitant decrease in NO production, 

however this could be corrected with insulin therapy.113  

 It is now well accepted that endothelial dysfunction is part of an interconnected 

pathological process of which long term vascular complications in the diabetic patient 

are often fatal. In the hyperglycemic setting, both reduced NO bioavailability and 

increased oxidative stress are key determinants compromising vascular health. 

Therefore therapeutics designed to improve both parameters would be an ideal dual 
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strategy. In addition, there is a remarkable amount of literature supporting EPCs central 

role in the development and progression of diabetic complications and data suggest the 

metabolic interventions that improve glucose homeostasis may also be able to improve 

vascular biology and EPC levels.  

 

i. Nitric oxide pathway and its dysfunction 

 

 Nitric oxide which has long been known as endothelium-derived relaxing factor 

was discovered in 1980s by Nobel laureates Ferid Murad, Louis Ignarro and Robert 

Gurchgott.114 Initially deemed a toxic air pollutant and pro-oxidant mediator, novel 

experiments and extensive studies carried out revealed NO to be one of the most 

ubiquitous biological substances within our physiological system. NO is known for its 

vital regulatory roles in vascular and metabolic health and in 1992 it was deemed 

“molecule of the year” by Science.115 Apart from its potent vasodilatory effects, it has 

powerful and important anti-thrombotic, anti-proliferative and anti-inflammatory features 

and today nitrate donor therapy is used for acute angina, CHF and pulmonary 

hypertension.116  

 Nitric oxide is produced by many different tissues through a five-step oxidation 

process of L-arginine to NO and L-citrulline by one of the 4 isoforms of NOS (iNOS, 

eNOS, neuronal NOS and mitochondrial NOS).117 The production of NO via eNOS can 

be manifested through two different pathways—either a receptor-dependent mechanism 
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or receptor-independent pathway which leads to elevated intracellular Ca2+ levels and 

Ca2+-calmodulin dependent activation of eNOS.118,119 Additionally, eNOS activity is 

increased upon phosphorylation at serine1177 mediated by the Akt pathway. More 

importantly, under basal conditions eNOS is kept in a tonic “inhibitory” state by being 

bound to caveolin-1 (Cav-1). Upon activation by stimuli, eNOS dissociates from Cav-1 

and efficient NO production occurs. Conversely, iNOS-mediated NO production can 

occur independent of a Ca2+-calmodulin mechanism and furthermore, iNOS expression 

has been shown to be upregulated in a number of cardiovascular diseases. Each NOS 

isoenzyme consists of two different domains, an oxygenase and reductase domain and 

coupling of the two domains is required for proper NO production.117 For NO synthesis, 

a number of co-factors are required such as O2, nicotinomide adenine dinucleotide 

phosphate (NADPH), tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD) and 

flavin mononucleotide (FMN).118,120 Following release from an endothelial cell, NO 

diffuses to vascular smooth muscle where it can bind to sGC and it can increase cGMP 

levels. This induces smooth muscle relaxation, vasodilatation, and increases blood 

flow.53 In conditions where NOS becomes “uncoupled,” thereby becoming a monomer, 

molecular O2, as opposed to L-arginine, becomes the substrate for the NOS, which 

generates superoxide (O2
-⋅) anion instead of NO and increases cellular oxidant 

stress.117 
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 Nitric oxide is a highly lipophilic free radical with a short half-life, readily forms 

nitrogen oxides, and is extremely reactive which limit its bioavailability. However, NO-

containing compounds can serve as reservoirs of bioactive NO and thus can not only 

participate in NO-related reactions, but also travel to remote tissue via the circulation.117 

NO signaling occurs via one of 3 different mechanisms—via sGC activation, S-

nitrosylation in which NO covalently and reversibly forms S-nitrosothiol groups with 

reactive cysteine thiols, and through formation of peroxynitrite, can activate MAPKs. 

Most of its effects are mediated through S-nitrosylation in a cGMP-independent 

mechanism.121  

 The most important determinant of NO generation is blood flow, shear stress and 

pulsatile stretch.122 The laminar shear stress and dragging force exerted by fluid over 

the endothelial surface is a critical stimuli for endothelial NO release. Acutely, this leads 

to activation of eNOS and NO release for vasodilatation, which reduces the shear stress 

and chronically upregulates eNOS expression.122 In contrast low shear stress, turbulent 

blood flow, local shear gradients, stasis of flow, and rapidly changing flow disrupt 

endothelial cell function and endothelial derived NO production.117 In addition, NO acts 

as a counter measure against basal vasoconstrictors such as sympathetics, angiotensin 

II and ET-1 123. Angiotensin II potently stimulates vascular and leucocyte nicotinomide 

adenine dinucleotide (NADH) /NADPH and PDE thereby increasing cGMP hydrolysis 

and attenuating PKG-dependent kinase activity. Likewise, ET-1 is not only a potent 

vasoconstrictor, but is highly inflammatory, stimulates endothelial NADH/NADPH, which 
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increases oxidant stress and decreases vascular NO production via ET-A receptor 

binding.117  

 The impairment of NO bioavailability has been implicated in a number of 

cardiovascular diseases including pathophysiological processes associated with insulin 

resistance, hyperlipidemia and hypertension. Under physiological conditions, insulin 

stimulates NO production in endothelial cells, and insulin resistance disturbs 

intracellular signal transduction, which results in an attenuated PI3K-Akt cascade, 

decreased eNOS activation and subsequently NO bioavailability.117 In fact, Insulin 

sensitivity is enhanced directly through NO-cGMP-PKG signaling through inhibition of 

the small GTPase Rho/Rho Kinase with insulin-receptor substrate-1 (IRS-1). In normal 

conditions, NO reacts and scavenges O2
-⋅anion, thus effectively protecting the vascular 

tissue from oxidative stress and dampening the inflammatory response. 

 Both impaired NO bioavailability and dysfunctional NOS link vascular and 

metabolic disease and represent an early link between increased cardiovascular 

mortality in the diabetic patient. One theory for the overall decrease in NO in this patient 

population is the increased levels of the endogenous NOS inhibitor asymmetric 

dimethylarginine (ADMA).124 Similarly, given the overall increased oxidative stress in 

diabetics, BH4 is oxidized which uncouples NOS and leads to even higher levels of O2
-⋅ 

anion and reduces NO production by NOS.125 It has also been demonstrated that 

diabetic patients that have had an i.v. infusion of L-arginine had lower levels of NO 
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formation than did normal controls.126 In addition to the reduced bioavailability of NO, 

the diabetic milieu impairs the anti-proliferative properties of NO.120 This occurs 

primarily through cGMP-dependent and independent pathways. In the cGMP dependent 

manner, activation of cGMP also leads to an increase in cyclic adenosine 

monophosphate (cAMP) and its downstream effector, protein kinase A (PKA) which 

results in reduced intracellular Ca2+ flux and attenuation of the proliferative MAPK 

cascade.120 In the cGMP independent pathway, NO indirectly limits polyamine formation 

necessary for DNA synthesis by inhibiting arginase and ornithine decarboxylase while it 

also upregulates Fas expression in VSMC which induces apoptosis.120 With the 

attenuated NO bioavailability, this pathway is interrupted and leads to VSMC 

hypertrophy. Furthermore, VSMC proliferation has been linked to augmented 

stimulation of the MAPK pathway by insulin receptor activation.127  

 Nitric oxide also has potent anti-thrombogenic properties, can be released from 

the endothelium and platelets, limits activation and aggregation of platelets through 

inhibition of the PI3K cascade, and suppresses platelet expression of adhesion 

molecules.128 Similarly, NO can react with O2
-⋅anion to form ONOO-, which can block 

production of the thrombogenic metabolite TXA2. Moreover, NO regulates and inhibits 

the upregulation of adhesion molecules on endothelial cells which would otherwise lead 

to leucocyte recruitment, adhesion, and migration and the initiation of plaque 

formation.120 The diabetic is known to have upregulated adhesion molecule expression, 
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circulating inflammatory cytokine levels with enhanced response to vascular injury 

primarily associated with enhanced insulin signaling through MAPK, as this pathway 

has also been shown to increase adhesion molecule expression.129  

 

F. Insulin and Insulin resistance 

 Insulin is a key hormone with a critical role in growth and development of various 

tissues and for the homeostasis of plasma glucose levels. It is secreted as pre-

proinsulin by the β-pancreatic cells as an inactive single precursor that directs its 

passage into vesicle cells.130 The proteolytic removal of the signal sequence results in 

the formation of pro-insulin. During periods of elevated plasma glucose levels and 

increased amino acid concentration, pro-insulin is secreted and converted to its active 

form, insulin, by various proteases.131 The active insulin molecule consists of an A and 

B chain that are held together by two disulfide bonds.131 The primary function of insulin 

is to stimulate glucose uptake into skeletal muscle and adipose tissue through 

increasing glucose transport, while reducing hepatic glucose production (via 

glycogenolysis and gluconeogenesis). Furthermore, it regulates lipid metabolism by 

inhibiting lipolysis within adipose tissue and increasing hepatic lipid synthesis.130, 131  

 Type II diabetes is a complex disease state resulting from altered insulin 

secretion combined with the resistance of specific target tissue to the effects of insulin, 

most notably liver, adipose tissue, and skeletal muscle. Insulin resistance was first 

described in 1936 by Harold Himsworth, a preeminent clinician who concluded that 
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diabetes could be distinguished into two different types—insulin-sensitive which 

appears to be caused by a deficiency in insulin levels, and the insulin-insensitive type, 

which was not due to any deficiency in circulating insulin levels.132 Today, insulin 

sensitivity is synonymous with the ability of insulin to mediate disposal of an infused 

glucose load and the more efficient this process, the more insulin sensitive the person. 

Therefore, the inefficient person is deemed to be insulin insensitive and to maintain 

normal or near-normal glucose levels, the body must secrete higher than normal levels 

of insulin to compensate—a state of hyperinsulinemia.133 In 1988, it became evident 

that patients with compensatory hyperinsulinemia had associated complications and 

that this state contributed significantly to the development of CHD. Likewise, it was 

shown that many other abnormalities were persistently associated with insulin 

resistance in addition to glucose intolerance and hyperinsulinemia, such as decreased 

HDL, increased plasma triglyceride concentrations and hypertension.134 This cluster of 

pathologies became known as metabolic syndrome X and was associated with a 

significant risk of CHD. In adipose tissue, insulin decreases lipolysis thereby reducing 

free-fatty acid (FFA) efflux from adipocytes; in the liver, insulin inhibits gluconeogenesis 

by inhibiting key enzyme activities, while in the skeletal muscle it predominantly induces 

glucose uptake by stimulating glucose transporter 4 (GLUT4) translocation to the 

plasma membrane.135 In insulin resistance, FFA concentrations and the increase in fat 

accumulation significantly attenuate insulin-mediated glucose uptake in the skeletal 

muscle and glucose production within the liver. Together with impaired insulin secretion 
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and the resistance of peripheral tissue to the affects of insulin leads to type II diabetes 

mellitus.  

 The insulin signaling cascade is quite complex and upon insulin binding to the α 

subunit of its specific receptor, which belongs to a member of receptor tyrosine kinases, 

the inhibition of tyrosine autophosphorylation by the β subunit is released.136 

Accordingly, the receptor is autophosphorylated at specific tyrosine residues. The 

activated insulin receptor directly phosphorylates IRS-1 to -4 on specific tyrosine 

residues with IRS-1 and IRS-2 being the most important and crucial for glucose 

transport.137 The tyrosine phosphorylated IRS proteins then act as specific binding sites 

for molecules that contain the Src-2 homology-2 (SH-2) domain such as pyruvate 

dehydrogenase lipoamide kinase isoenzyme 1 (PDK1), SH2 domain containing protein 

tyrosine phosphatase (SHP2) and growth factor receptor bound protein-2 (GRB-2)/ 

mammalian Son of Sevenless homolog (mSOS), a guanine nucleotide exchange 

factor.138 Upon binding to the tyrosine phosphorylated-IRS, they form signaling 

complexes to mediate further downstream signaling of which the PI3K-Akt cascade is 

mostly responsible for the action of insulin, glucose uptake, and inhibition of 

gluconeogenesis.137, 138 PI3K is composed of a p85 regulatory subunit which binds to 

IRS proteins and a catalytic subunit, p110.138 This allows for phosphorylation of its 

substrate phosphatidylinositol(4,5)P2 (PIP2) on the 3’ position of the inositol ring to 

generate phosphatidylinositol(3,4,5)P3 (PIP3). Then the secondary messenger, PIP3, 

recruits serine kinases PDK1, Akt and PKC to the plasma membrane via their PH 
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domain and upon their activation results in GLUT4 translocation to the membrane, 

glycogen synthesis via GSK3 phosphorylation, and lipogenesis by upregulation of the 

fatty synthase gene.136 In addition to activating the PI3K-Akt pathway, insulin can also 

activate the MAPK ERK as means to regulate gene expression, control cell growth and 

cell differentiation.135 In contrast to activating tyrosine phosphorylation of IRS, the serine 

phosphorylation on critical serine sites will inhibit insulin signaling. Specific serine 

kinases that can phosphorylate IRS-1 include inhibitor of nuclear factor κ-B kinase β 

(IKK-β), JNK-1, and other members of the MAPK.139,140 Insulin is capable of activating 

JNK and other serine kinases and this is seen as a possible negative feedback 

mechanism for the signaling cascade. At the molecular level, there are many other 

mediators especially within the inflammatory system which may play a role in the 

inhibitory cross-talk for insulin signaling. These include suppressor of cytokine signaling 

(SOCS) 1 and 3, which during inflammation, are induced by interleukin (IL)-6 and lead 

to ubiquitinylation and degradation of the IRS proteins.141,142  

 The pathophysiological effects of insulin resistance are multifaceted and complex 

and can vary from tissue to tissue. Notably, once compensatory hyperinsulinemia is 

established to maintain near normal glucose levels, there is increased sodium retention 

and over-activation of the sympathetic nervous system.143 This phenomenon helps 

contribute to the increased prevalence of hypertension in this patient population.  

Furthermore, insulin signaling plays a role in both NOS and ET-1 expression as shown 

in isolated endothelial cells from mice lacking vascular endothelial insulin receptors. 
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While the exact relationship remains unclear, it is evident from the literature that insulin 

resistance plays a role in diabetic-induced endothelial dysfunction and remains an 

important predictor of CHD and stroke.  

 

i. Hypertriglyceridemia  

 

 In 1967, it was first demonstrated that there is a strong association between 

insulin resistance, the compensatory hyperinsulinemia and elevated fasting plasma 

triglyceride levels.144 Further research led to the discovery of the potential mechanism 

behind this relationship. Hyperinsulinemia was shown to trigger hepatic very low-density 

lipoprotein (VLDL)-triglyceride secretion, which in turn increases plasma triglyceride 

levels.145 It is postulated that in the insulin-resistant state, the liver is resistant to the 

effects of insulin with regard to lipoprotein metabolism and accordingly cannot inhibit 

VLDL-triglyceride secretion.146 In fact, acute infusion of insulin has been shown to 

directly suppress hepatic VLDL-triglyceride secretion in addition to causing a substantial 

decrease in adipose tissue lipolysis.147  

 

G. Obesity and Inflammation 

 According to WHO, obesity and metabolic syndrome is the fifth leading cause of 

death worldwide and as of 2008, there were approximately 1.4 billion overweight adults 

globally of whom at least 200 million are clinically obese.148 Diabetes and obesity have 
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been considered at least in part to be inflammatory conditions, with adipose tissue being 

the first organ to be affected.149 The primary etiology for obesity-induced inflammation is 

not completely understood, however one potential basis for the initiation of inflammation 

in obese individuals may be ER stress. Excess nutritional intake and obesity lead to ER 

stress within the liver and adipose tissue secondary to excess lipid accumulation and 

dysregulated energy metabolism.150 The ER stress activates the “stress response 

signaling network” known as unfolded protein response (UPR), which activates 

protective pathways such as apoptosis and inflammatory cascades and is an adaptive 

response of cells to a large metabolic load.151 The UPR occurs through three different 

transmembrane molecules which transmit the ER stress signal to the nucleus through a 

number of cytoplasmic signaling molecules and kinases with the downstream activation 

and transcription of pro-inflammatory genes.152 During ER stress, the protein 

kinase/endoribonuclease inositol requiring protein-1 (IRE1), a key transmembrane 

protein, initiates non-spliceosomal splicing of the mRNA transcription factor X-box 

binding protein-1 (XBP-1) that controls protective mechanisms to ER stress. 

Accordingly, IRE1 also can induce the inflammatory cascade by activating IKK-β, two 

different MAPKs—p38 and JNK, and the key inflammatory transcription factor, nuclear 

factor kappa B (NF-κB). The second molecule involved is the UPR is the membrane 

localized transcription factor, activating transcription factor-6, that is cleaved in response 

to ER stress and once cleaved, enters the nucleus to activate transcription of chaperone 

genes and further augment NF-κB transcription.153 The final molecule is PKR-like 
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eukaryotic initiation factor 2α kinase, which inhibits protein translation by 

phosphorylating transcription initiation factor eIF2α. This activates the alternative 

translation of activating transcription factor-4, which induces the production of 

inflammatory cytokines, stimulates NF-κB transcription, and inhibits translation of the 

NF-κB inhibitor, I kappa B alpha (IκBα).153 The ultimate goal of UPR is to re-establish 

ER homeostasis and facilitate proper protein folding with the assistance of chaperone 

proteins, arrest further protein synthesis and degrade mis-folded proteins. If the ER 

function does not recover, UPR will stimulate apoptosis signaling pathways for 

programmed cell death. Obesity-induced ER stress occurs secondary to metabolic flux, 

increased lipid stores, lipogenesis, increased insulin production from β pancreatic cells, 

and gluconeogenesis and all have a negative impact on cells causing ER stress. In β 

pancreatic cells, the excessive demand and ER stress for the cells to produce insulin in 

the insulin resistant state, ultimately leads to the decrease in insulin synthesis and β-cell 

apoptosis.152 In addition it leads to IRS serine phosphorylation and inhibition of insulin 

signaling. The ER stress hypothesis is supported by experiments using XBP-1+/- mice in 

which the protective effects towards ER stress are significantly attenuated and these 

mice are especially prone to insulin resistance.150 Moreover, use of chaperones to 

further reduce ER stress restores insulin sensitivity in obese mice.154 During in vitro 

experiments, ER stress was shown to downregulate expression of GLUT4 in cultured 

adipocytes 155 and these data support the notion that ER stress affects insulin signaling, 
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likely through activating inflammatory signaling pathways in target cells, particularly 

adipocytes, which contributes to insulin resistance.  

Inflammatory cytokines, chemokines and adhesion molecules have recently 

gained significant attention as potential therapeutic targets.156 Likewise, in obese 

individuals it is not only inflammation, but also oxidative stress within the adipose tissue 

the leads to insulin resistance.157,158 In addition, inflammation plays a central role in 

vascular disease, from plaque inception to progression and destabilization, which 

represents a significant paradigm shift from the old idea that vascular disease and 

atherosclerosis is a problem of lipid accumulation and oxidized cholesterol. The 

association of inflammation with obesity and insulin resistance dates back to 1993 when 

Hotamisligil et al found that adipocyte expression of the pro-inflammatory cytokine 

tumor necrosis factor (TNF)-α was significantly increased in db/db mice.159 TNF-α also 

effects insulin signaling through phosphorylation of S6K1 (p70S6K), which impairs the 

normal insulin response through serine phosphorylation of IRS-1 and inhibition of 

tyrosine kinase activity of the insulin receptor in adipocytes and hepatocytes.160 Another 

explanation that has recently emerged is that mice lacking a key phosphatase, 

phospho-tyrosine protein phosphatase 1B (PTP1B), were protected from TNF-α induced 

insulin resistance. This tyrosine phosphatase has been shown to tyrosine 

dephosphorylate and deactivate IRS-1 to balance the actions of the kinases involved in 

insulin signaling. Adipose tissue inflammation via high-fat diet and TNF-α, induced 

expression of PTP1B in adipose tissue, muscle, liver and hypothalamic arcuate nucleus 
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occurs through a mechanism involving NF-κB.161 Interestingly, sirtuin1 (SIRT1) was 

shown to inhibit PTP1B through repression at the chromatin level and improves insulin 

sensitivity whereas direct inhibition with a PTP1B inhibitor also improved insulin 

resistance and obesity-related complications162, 163 (figure 5).  

Recently, more and more evidence has emerged that obesity is associated with 

inflammation that is causally involved in the development of insulin resistance and 

diabetes. Obese patients have increased levels of hs-CRP, TNF-α, IL-6, monocyte 

chemotactic protein (MCP) -1 and IL-8 and leptin.164 Genetically altered mice lacking 

TNF-α, or the TNF-α receptor 1 gene were shown to be protected from insulin 

resistance both in diet induced obesity and a genetic obesity (ob/ob) model.165 

Experiments using cultured murine adipocytes confirmed that TNF-α stimulates IKK-β 

and SOCS3, both of which negatively affect the insulin signaling cascade. Likewise, the 

obesity-induced IL-1β, also plays an important negative role in the signaling pathway.   
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Figure 7.  Obesity-induced inflammation and disruption of the insulin-signaling cascade. 

	
  

Inflammation induced by obesity leads to downstream disruption of the insulin signaling 
pathway. Excess nutrition leads to elevated lipids, free-fatty acids (FFA), long-chain 
fatty acids (LCFA) and endoplasmic reticulum (ER) stress. This causes activation of 
(protein kinase C [PKC]-θ, c-Jun-N kinase [JNK], inhibitor of κ B α [IκBα]), which 
activate inflammation in adipose tissue. Likewise, obesity itself is an inflammatory 
disorder, which increases levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6. This 
leads to decreased phosphorylated Akt and increase in serine phosphorylation of the 
insulin receptor substrate-1 (IRS-1), which inhibits effective insulin signaling.  
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One study showed that obese individuals with detectable levels of IL-1β and 

elevated IL-6 concentration had an independent risk (3.3-fold increase) of developing 

type II diabetes as compared to those with only elevated IL-6 levels.166 In fact, treatment 

with an IL-1β antagonist improved blood glucose levels, pancreatic β cell function, and 

inflammatory markers IL-6 and TNF-α.167 Using 3T3-L1 and human adipocytes, chronic 

treatment with IL-1β, induced insulin resistance through IRS-1 downregulation and 

decreased IRS-1 tyrosine phosphorylation.168   

The signal transduction induced by endothelial derived NO involves the 

downstream activation of sGC and cGMP within the VSMC, which activates its effector, 

the cGMP-dependent kinase. This kinase can then phosphorylate vasodilatory 

stimulated phosphoprotein (VASP) at serine239. It has been recently shown that 

disruption of VASP phosphorylation or eNOS signaling in this pathway leads to adipose 

tissue inflammation, which can be attenuated by use of PDE-5 inhibitors and that this 

leads to an attenuated inflammatory response.169  

 

H. Oxidative Stress and Reactive Oxygen Species 

Oxidative stress is a major risk factor in the onset and progression of insulin 

resistance to diabetes mellitus.  Similarly, ROS and the cellular redox state have been 

increasingly shown to play a significant role in affecting a variety of biological signaling 
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pathways.170 ROS are formed by the reduction of molecular oxygen or oxidation of 

water to yield superoxide (O2
-⋅) anion, hydrogen peroxide (H2O2) and hydroxyl radical 

(⋅OH). Within various biological tissues, the primary source of ROS is derived from the 

mitochondria and NADPH oxidase (NOX).170 In some situations, moderate amounts of 

ROS are crucial for normal physiological processes, however in significant quantities 

they are capable of cellular damage to DNA, proteins, membranes and lipids. Despite 

many beneficial cardioprotective effects, NO can be potentially detrimental when 

contributing to the formation of reactive nitrogen species (RNS).170 The NO radical 

(NO⋅) is formed from NOS and can react with O2
-⋅ to form peroxynitrite (ONOO-) which 

is an extremely potent oxidizing agent and is capable of severe cellular damage and 

oxidative stress. When the cellular capacity and efficiency to scavenge and remove 

ROS or RNS is reduced and/or there is a gross overproduction, the end result is 

oxidative stress.  

The main redox buffer within the cell is glutathione and using the Nerst equation 

allows the intracellular redox potential to be determined. Increases in ROS leads to an 

imbalance of the cellular oxidation state thus altering the redox balance.171 Several 

studies have shown that the diabetic has extremely high levels of ROS and this 

abnormal state leads to the long term complications and progression associated with 

the disease.172 Both hyperglycemia and increased FFA intake are associated with 
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oxidative stress and activation of stress pathways such as NF-κB, JNK and p38 

MAPK.173 This leads to an alteration of insulin signaling and potentiation of the 

inflammatory cascade (figure 8).  

There are numerous studies which support that hyperglycemia in diabetic 

patients causes an increase in ROS production and a concomitant decrease in 

antioxidant defenses. Likewise, as a marker of oxidative stress it can cause membrane 

lipid peroxidation.174 In one study, investigators showed that blood glucose 

concentrations directly correlated with the degree of erythrocyte lipid peroxidation.174 

Moreover, the same group went on to show that control of the plasma glucose levels in 

streptozotocin-diabetes induced rats lead to a decrease in membrane lipid 

peroxidation.175 The key sources of ROS generation within the vasculature are the 

electron transport chain (ETC), NOX, and eNOS uncoupling. In 2001, Brownlee and 

colleagues developed the “unifying hypothesis” of which the major premise is that in the 

diabetic, ROS produced within the mitochondria initiates the development of nearly all 

diabetic complications.176 
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            Figure 8.  The effects of oxidative stress on insulin resistance. 

	
  

In obesity and conditions of hyperglycemia, there is a significant increase in oxidative 
stress. This leads to activation of serine/threonine (Ser/Thr) kinases, which 
phosphorylates the insulin receptor and prevents effective insulin signaling. Similarly, 
the mitochondria produce ROS, which leads to an increase in uncoupling protein-2 
(UCP-2). Mitochondrial dysfunction ensues which decreases ATP and fatty acid 
oxidation. Diacylglycerol (DAG) production increases, which can also activate the 
Ser/Thr kinases blocking insulin signaling at the IRS.    
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It further states that ROS generated within the mitochondria migrate to the 

nucleus, cause DNA damage that results in activation of poly (ADP-ribose) polymerase-

1 (PARP-1), and glyceraldehydes-3-phosphate dehydrogenase (GAPDH) which after 

undergoing ADP-ribosylation by PARP-1, is inactivated. The activation of PARP-1 by 

DNA damage promotes NADPH depletion and further ADP-ribosylation of other 

proteins.177 The polyol pathway is a mechanism in which glucose is reduced to sorbitol 

in an NADPH-dependent manner by the enzyme aldose reductase. Sorbitol is then 

oxidized to fructose by sorbitol dehydrogenase along with the reduction of NAD+ to 

NADH.176 Under normoglycemia, aldose reductase has a low affinity for glucose but 

under elevated glucose conditions, it has a higher than normal production of sorbitol 

and therefore an overall decrease in NADPH.176 

The subsequent decline in GAPDH activity leads to a rise in glycolytic 

intermediates and is the primary means of hyperglycemic-induced injury as these 

intermediates activate various pathways and mechanisms including: the polyol pathway 

flux, hexosamine pathway, activation of the PKC cascade, intracellular formation of 

AGEs, and through an overproduction of ROS via the mitochondrial ETC 176 (figure 9).  
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Figure 9.  Unifying hypothesis of ROS-induced diabetic complications. 

	
  

Brownlee’s unifying hypothesis of ROS-induced diabetic complications hinges around 
increased mitochondrial ROS production, which migrates to the nucleus to cause DNA 
damage. This causes PARP-1 activation and ADP-ribosylation of GAPDH and leads to 
an increase in glycolytic intermediates. This shuttles the intermediates into a number of 
pathways leading to hyperglycemic-induced injury.   
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groups of proteins.178 The Schiff’s base then forms a more stable ketoamine in the form 

of an Amadori product, which undergoes autoxidation to form reactive dicarbonyl 

intermediates such as 3-deoxyglucose, glyoxal and methylgloxyl.179 These 

intermediates undergo further chemical rearrangements until the final irreversible AGE 

is formed.179 The AGE is noted to signal through the receptor for AGE (RAGE). One of 

the primary consequences of ligand-RAGE binding is activation of the NOX system and 

generation of ROS which then activates the pleiotropic transcription factor NF-κB 

causing pathological changes in gene expression.176 AGEs also play a significant role in 

failure of adequate angiogenesis as hyperglycemic conditions induces a decrease in 

transactivation by the transcription factor HIF-1α which is responsible for mediating the 

hypoxia stimulated increase in VEGF and eNOS within endothelial precursor cells within 

the bone marrow.178 Likewise, AGE binding to its receptor within endothelial cells was 

shown to alter expression of several genes including thrombomodulin, tissue factor and 

vascular cell adhesion molecule (VCAM)-1 thus increasing adhesion of inflammatory 

mediators to endothelial cells and inducing a pro-coagulant state.176, 178  

Protein kinase C has various isoforms and is capable of phosphorylating a 

number of target tissues. Its function is largely dependent on Ca2+ ions and 

phosphotidylserine and its function can be enhanced by diacylglycerol (DAG).176 During 

hyperglycemia, DAG synthesis is significantly enhanced from glucose via triose 

phosphate secondary to the inhibition of the glycolytic enzyme GAPDH. The resulting 
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increase in PKC activity (β and γ isoforms) activates p38α MAPK and subsequently the 

protein tyrosine phosphatase, SH-2.180, 181 In addition, PKC signaling can induce 

oxidative stress through decreasing NO bioavailability and altering the prostanoid profile 

characterized by an increase in TXA2 and a reduction in PGI2.182 Further activation of 

NOX by TXA2 can uncouple eNOS leading to increases in intracellular ROS 

production.183 Likewise, elevated glucose can activate PKC inducing VEGF, TGF-β1, 

fibronectin and type IV collagen, which has been implicated with overexpression of 

plasminogen activator inhibitor-1 (PAI-1), a fibrinolytic inhibitor.184   

Fatty acid oxidation is another pathway that contributes to oxidative stress and 

vascular complications in hyperglycemia and insulin-resistance. Known as the 

hexosamine pathway flux, an influx of fructose into this cascade whereby fructose-6-

phosphate is diverted from glycolysis to provide the necessary substrate for the rate-

limiting step, glutamine:fructose-6-phosphate amidotransferase (GFAT).181,185 GFAT 

then converts fructose-6-phosphate into glucosamine-6-phosphate, which can be 

converted into uridine diphosphate (UDP)-N-acetylglucosamine.181 Then specific O-

linked aceytlglucosamine transferases use O-linked acetylglucosamine to modify, in a 

post-translational manner, serine/threonine residues on various proteins within the cell. 

The resultant increase flux through the hexosamine pathway leads to upregulation of 

key genes such as TGF-α, TGF-β1, and PAI-1.181,184 Additionally, this pathway may play 

a role in cardiomyocyte dysfunction and the development of cardiomyopathy as 
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increases in nuclear O-linked acetylglucosamine reduces sarcoplasmic reticulum Ca2+ 

ATPase 2a mRNA levels and protein expression and could impair β-agonist induced 

inotropy.186   

The majority of ROS within the physiological system is produced by the 

mitochondrial ETC.  In this process, electrons from NADH and FADH2 produced during 

glucose and fatty acid synthesis are used to create an electrochemical gradient 

sufficient for the production of ATP.187 The rate of oxidative phosphorylation is dictated 

by energy demands of the cell and as cellular demands increase, production of NADH 

and FADH2 must also increase for adequate ATP production. While normal function of 

the ETC is to produce ATP, it also serves as a source for O2
-⋅ formation.187 The primary 

sources for “electron leak” to oxygen occurs at complex I (NADH-CoQ reductase) and 

complex III (CoQH2-cytochrome c reductase) whereas in the heart and lung tissues, 

complex III appears to be the primary source of O2
-⋅ formation.181 

 The mitochondria however are equipped with an antioxidant defense mechanism 

to protect against the lethal effects of ROS. Within the intermembrane space is the 

cytosolic superoxide dismutase 1 (SOD1) also known as Zn,Cu-SOD and within the 

mitochondrial matrix is superoxide dismutase 2 (SOD2) also known as Mn-SOD, and 

both are capable of rapidly catalyzing the formation of O2
-⋅ to hydrogen peroxide 
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(H2O2).181 Hydrogen peroxide can readily diffuse across membranes and can be further 

degraded by antioxidants such as catalase, peroxiredoxins (Prx1, Prx2) and glutathione 

peroxidases (Gpx1-4).181   

Several studies have recently shown that mitochondrial dysfunction in genetic 

diseases correlates with a propensity to develop insulin resistance.188 Similarly, the 

oxidative capacity of a cell correlates with the number and density of mitochondria and 

relates to the reduction in expression of mitochondrial proteins involved in mitochondrial 

biogenesis and ATP production.189 A reduction in fatty acid oxidation by the 

mitochondria caused by either a decrease in mitochondrial biogenesis or dysfunction, 

leads to increased acyl-CoA and DAG. This in turn activates stress-induced 

serine/threonine kinase activity which inhibit glucose transport.189 According to 

Brownlee’s unifying hypothesis, hyperglycemia mediated increases in reducing 

equivalents NADH and FADH2 enhances flux through the ETC and increases the 

mitochondrial membrane potential (Δψm) which partially inhibits flux through complex 

III.176 This allows diversion of electrons from a reduced Coenzyme Q to O2 thus forming 

O2
-⋅ anion.  Rosca et al recently published data supporting this hypothesis in that 

hyperglycemia led to a ROS-dependent partial inactivation of complex III and 

downregulation of genes encoding for complex III.190 Likewise, oxidative stress can 

cause an increase in uncoupling protein-2 (UCP-2), a protein that upon activation, 

allows for protons to leak across the mitochondrial membrane hence contributing to the 
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dissipation of the Δψm.191 A number of animal and in vitro models have shown that 

UCP-2 is a negative regulator of glucose-stimulated insulin secretion.192 In a transgenic 

diabetic model, UCP-2-/- mice had improved pancreatic β-cell function with improved 

insulin secretion despite being on a high fat diet.193 Likewise, in vitro models have 

confirmed these findings as cells subjected to hyperglycemic conditions demonstrated 

significant elevations of UCP-2 expression.194 The elevated risk of developing CAD in 

obesity, insulin resistance is caused, at least in part, by mitochondrial ROS production 

from FFA and antioxidant inactivation by ROS. 

Endothelial nitric oxide synthase is an enzyme made up of two separate 

domains, a reductase domain which contain co-factors FAD, FMN, and NADPH and an 

oxidase domain containing a heme-active site.195 It is a calcium-dependent flavoprotein 

which catalyzes the oxygen dependent oxidation of L-arginine to form NO. In normal 

conditions, NADPH oxidation generates an electron, which is transferred to FAD and 

then FMN and finally the oxidase domain for NO production.195 In eNOS uncoupling, 

NADPH oxidation becomes “uncoupled” from the oxidation of L-arginine and electrons 

flow directly from the flavoproteins to molecular oxygen to form O2
-⋅. The most common 

cause for is low levels of the cofactor BH4, as it serves to stabilize the dimeric structure 

of the enzyme and facilitates formation and stabilization of the Fe2+-O2 intermediate.196 

During hyperglycemia, higher than normal levels of ONOO- oxidizes BH4 to BH2. 

Likewise, eNOS uncoupling plays a key role in reducing vascular tone and leading to 
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the development of micro- and macro-vascular complications associated with 

diabetes.197  

Similar to NOX, xanthine oxidoreductase is another key enzyme capable of 

forming oxidative stress.  It is a ubiquitous enzyme and exists in two different forms—

xanthine dehydrogenase, which catalyzes the oxidation of hypoxanthine to xanthine 

using NAD+ as an electron acceptor, and xanthine oxidase, which is formed via 

oxidation of sulfhydryl residues or proteolytic cleavage of the parent enzyme.195 

Xanthine oxidase serves as an important source of oxidative stress during I/R injury and 

can also catalyze the oxidation of hypoxanthine to xanthine.198 In a study on diabetic 

animals, higher than normal levels of xanthine oxidase were found in the systemic 

circulation and ROS levels were significantly attenuated in aortic rings after treatment 

with the xanthine oxidase inhibitor, allopurinol.198,199  

In summary, ROS are involved in a number of pathological processes and the 

“unifying hypothesis of diabetes” provides an explanation and a link between ROS, 

mitochondrial dysfunction, oxidative stress and diabetic complications. Hyperglycemia-

induced glycolytic flux, which is inhibited, subsequently has its intermediates diverted to 

pathological pathways such as the PKC cascade, hexosamine pathway, AGE formation 

and polyol pathway all of which serve as critical mechanisms behind ROS and oxidative 

stress-induced vascular injury. Likewise, mitochondrial O2
-⋅ generation leads to cell 
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death, and PKC-γ activation by NOX upregulation—one of the critical mechanisms 

behind diabetic oxidative-stress induced complications.  

 

I. MicroRNAs  

MicroRNAs (miRs) are a large class of phylogenetically conserved, non-coding 

single-stranded RNA molecules of 19-25 nucleotides that negatively regulate gene 

expression by base pairing with the 3’ untranslated region (UTR) of messenger RNA 

(mRNA), and inducing mRNA degradation or translational inhibition.200 Once considered 

simple by-products of mRNA transcription, the first animal miR was described in 1993 

as a regulator of developmental timing in Caenorhabditis elagans.201 MiRs that bind to 

mRNA targets imperfectly regulate their target gene at the protein translation level 

whereas perfect miR-to-mRNA binding induces target mRNA cleavage. Based on new 

computational algorithms, approximately 60% of human transcripts are potentially 

regulated by miRs as they contain miR binding sites within their 3’ UTR.202 MiRs are 

transcribed as precursor mRNAs from intergenic, intronic or polycistronic genomic loci 

by either RNA polymerase II or RNA polymerase III. This forms the primary miRNA, also 

known as pri-miRNA, and subsequently forms a stem-loop structure that is cleaved and 

further processed by the enzyme Drosha and its cofactor Pasha.202 In the non-canonical 

pathway, miRs are generated directly through splicing of introns to form hairpin 

structures upon refolding. These pre-miRs are then transported out of the nucleus by 
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exportin 5 and a RAN-GTP-dependent process to the cytosol where they are processed 

further by Dicer and transactivation-response RNA binding protein RNAse III enzyme 

complex to form mature double-stranded 22-25 base pair miRNA. Argonaute proteins 

then facilitate the unwinding of the miR duplex to allow incorporation of the miR-

targeting strand into the argonaute-containing RNA-induced silencing complex (RISC). 

This subsequent complex, RISC-miR assembly, can then be guided to its target 

sequence in mRNA to become a “post-transcriptional regulator.” The recognition of the 

target is primarily driven by the Watson-Crick base-pairing of nucleotides 2-8 in the 

mature miR which is termed the seed sequence, to the target sequence within the 3’ 

UTR of the mRNA. Further base-pairing leads to additional affinity and efficiency.  A 

single miR can potentially bind to more than 100 target mRNAs and multiple miRs can 

cooperate to fine tune the expression of a single transcript. Although this area of 

research has only just begun, the deregulation of miR biogenesis and function has 

already shown to play a critical role in a variety of physiological and pathophysiological 

processes especially in cardiovascular diseases and the metabolic syndromes such as 

insulin resistance, lipid dysmetabolism and obesity.203  

 

i. MicroRNAs in Cardiovascular Diseases 

Microarray studies have identified specific miRs that are upregulated and/or 

downregulated in specific pathological conditions such as vascular inflammation and 
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include: miR-126, miR-17, miR-92a and miR-155. In a recent study, each of these 

inflammation-associated miRs were significantly downregulated in patients with IHD 

when compared to healthy controls, whereas the cardiac-muscle enriched miR-133a 

and miR-208a were both significantly higher in patients with CHD.203 

One of the first miRs identified to have a role in I/R was miR-1 because it is 

preferentially expressed in adult cardiomyocytes and skeletal muscle.  MicroRNA-1 is 

involved in cardiac development and heart disease and regulates a number of key 

functions.200 These include: apoptosis through targeting synthesis of HSP60, HSP70 

and Bcl-2, and arrhythmogenesis by targeting the KCNJ2 and GJA1 genes.204 The 

KCNJ2 gene encodes kir 2.1, a subunit of the potassium ion channel, whereas the 

GJA1 gene encodes connexin43, a major component of the gap junction. Moreover, 

decreased expression of kir2.1 and connexin-43 delays membrane repolarization and 

conduction, thereby increasing the risk of fatal arrhythmias.205-208 In two different rat 

models, miR-1 was found to be significantly upregulated in response to reperfusion 

injury and acute MI.207,209 Likewise, oxidative stress and subsequent miR-1 upregulation 

decreases cardioprotective HSPs including: HSP60 and HSP70. In H9c2 cells, 

overexpression of miR-1 augmented H2O2-induced apoptosis whereas inhibition of miR-

1 conferred resistance of cells to H2O2.
206  

MicroRNA-126 may play a critical role in AMI. The survival rate after in vivo I/R 

injury in miR-126-/- mice was significantly reduced as compared to the wild-type.210 Our 
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lab has previously evaluated the induction of miRs in response to IPC. We induced IPC 

with short bursts of global ischemia (2 bursts of 30 sec ischemia followed by 90 sec 

reperfusion) in a Langendorff isolated perfused heart model and found a significant 

induction miR-1, miR-21 and miR-24.211 To determine a causal relationship between 

IPC-induced endogenous miRs and cardioprotection, pools of extracted miRs were 

taken from non-preconditioned and preconditioned hearts and directly injected in vivo 

into the risk zone of the LV wall in mice. Forty-eight hours later, these mice were 

subjected to in vivo I/R injury. We demonstrated that the IPC-derived miR-injected 

group had a cardioprotective phenotype with significantly smaller infarcts compared to 

saline treated or non-IPC-derived miR injected group (18.8±2.5 vs. 37.5±2.2 vs. 

39.3±2.3%, p<0.05; n=6). It is also noteworthy that there was a significant upregulation 

of eNOS protein (92±8.1%), HSP transcription factor-1 (42.7±3.0%) and HSP70 (102.3± 

8.9%), 48 h after treatment with miR derived from IPC hearts.  

In a study by Dong et al, it was shown that miR-21 is upregulated in the risk-area 

after I/R injury and is downregulated within infarcted myocardium.202 They found that 

IPC abrogated the downregulation of miR-21 in the infarcted area whereas miR-21 

overexpression leads to reduced apoptosis, smaller infarct sizes, and improved LV 

remodeling at 2 weeks. The mechanism of miR-21 cardioprotection has recently been 

elucidated  and found to be downstream of the PI3K-Akt signaling cascade. Sayed et al 

have demonstrated that miR-21 is a downstream effector of Akt which upon 

phosphorylation, mitigates apoptosis.212 Transgenic mice lacking miR-21, showed Akt 
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mediated suppression of Fas ligand (a key activator in the apoptosis cascade) and 

abrogated caspase-8 activity. This provided direct evidence that Akt-mediated 

antiapoptotic effect on Fasl and caspase-8 may be directly mediated through miR-21.  

In a study by Zhang et al, showed that GATA-4, a key transcription factor in the 

heart, could activate miR-144/451. Using a cardiomyocyte model of SI/RO, they 

demonstrated that individual expression of miR-144 or miR-451 augmented cell 

survival, which then could be further improved upon by overexpression of either miR. 

Congruent with these findings, knock-out of either miR revealed attenuated cell 

survival.213 Conversely, miR-320 has been shown to be downregulated in mouse hearts 

after I/R Injury and overexpression enhances cell death and apoptosis in isolated 

cultured rat cardiomyocytes subjected to SI/RO.214 Moreover, genetically engineered 

mice with cardiac-specific overexpression of miR-320 have increased infarct size and 

apoptosis after I/R injury whereas knockdown of miR-320 with use of an antagomir led 

to a significant reduction in both infarct size and apoptosis. It is proposed that miR-320 

exerts its effect by downregulating HSP20, a protein known to protect the myocardium 

against I/R injury, thus indicating HSP20 as a possible putative target of miR-320.215 In 

a recent study by Wang et al, miR-499 was shown to inhibit apoptosis and infarct size 

induced by anoxia and coronary ischemia through mechanisms involving the apoptotic 

pathway including p53, cacineurin, and Drp1.216 They went on to show that an 

antagomir of miR-499 could produce the opposite effect and increase apoptosis and 

infarct size. Hullinger et al showed that miR-15 is significantly upregulated 24 h after 
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ischemic injury in the infarcted region and increased cardiomyocyte apoptosis.217 Using 

locked nucleic acid (LNA)-modified oligonucleotide modified anti-miR-15, inhibition of 

miR-15 caused a dose-dependent cardioprotective effect in both murine and porcine 

models of I/R injury.  

In the recently published prospective study by Zampetaki et al, baseline levels of 

19 candidate miRs were identified in 820 participants in the Bruneck population and 

over a 10 year period (1995-2005), they sought to explore if any association existed 

between circulating miRs and incident MI.218 In a multivariable Cox regression analysis, 

miR-126 showed a strong positive correlation with MI hazard ratio (HR) of 2.69 [(95% 

confidence interval (CI) of 1.45 to 5.01, p=0.002] and miR-223 and miR-197 had a 

strong negative association with MI [HR 0.47, 95% CI 0.29 to 0.75, p=0.002], and [HR 

0.56, 95% CI 0.32 to 0.96, p=0.036]. They further suggested upon further I/R analysis in 

healthy volunteers that these 3 miRs are all part of the same miR pool and that 

endothelial enriched miR-126 is part of a miR signature associated with the incidence of 

MI in the general population independent of previous cardiovascular disease, sex or 

cardiovascular risk factors.  

The exact mechanism behind individual miRs and their effect on preconditioning 

and other signaling pathways need to be fully elucidated before specific therapies to 

modulate expression are taken further. However once these intricacies have been 
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delineated, targeted miR or antagomir delivery may have tremendous therapeutic 

potential in reducing long-term complications associated with CHD.  

 

ii. MicroRNAs in Glucose Homeostasis and Insulin Resistance   

 Microarray studies have highlighted certain miRs that promote insulin resistance, 

regulate glucose metabolism and insulin sensitivity.219 Likewise, many have been 

directly implicated in the insulin signaling and glucose uptake pathways. For example, 

miR-375 is required for the maintenance of β- and α- pancreatic cells in mice and was 

found to decrease insulin exocytosis and secretion through repression of the myotrophin 

gene—a gene involved actin depolymerization and potentially vesicular fusion.220,221 

Additionally it affects downstream signaling through inhibition of PDK1, an intermediary 

in the insulin signaling pathway.222 MicroRNA-126 has been shown to inhibit IRS-1 and 

accordingly promote insulin resistance as another mechanism of insulin regulation.  

In a study by Lu et al, they found that in LV tissue samples taken from patients with 

and without type 2 diabetes and from patients with LV dysfunction, quantitative analyses 

of 155 miRs revealed that miR-223 was consistently upregulated in the diabetic 

hearts.223 They went on to evaluate the downstream physiological effects of miR-223 on 

glucose metabolism in a rat neonatal cardiomyocyte model using adenoviral-mediated 

overexpression of miR-223 and found that glucose uptake was significantly increased. 
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Next they looked at the effects on the insulin signaling pathway with miR-223 

overexpression and found that neither PI3K, nor AMPK activity increased, however 

GLUT4 protein expression did increase. These findings were confirmed in vivo using 

siRNA knockdown of GLUT4 and a synthetic inhibitor of miR-223.  

 Several miRs are preferentially expressed within the pancreas but the most 

notable and abundantly expressed in the islet cells is miR-375. This miR, under the 

control of transcription factors pancreatic and duodenal homeobox-1 (Pdx-1), also 

known as insulin promoter factor-1, and neurogenic differentiation-1 (NeuroD1), plays a 

negative role in glucose-induced insulin secretion.221 It affects the final step in the 

secretory pathway and this is partly attributed to expression of myotrophin, a gene 

involved in insulin-granule fusion. Additionally, miR-375 has also been shown to 

contribute to glucose homeostasis in genetically modified animal models lacking miR-

375 which became severely hyperglycemic, glucose intolerant yet in spite of normal 

insulin secretion and clearance.220, 221  

Evidence has also shown that prolonged hyperglycemia can lead to aberrant cellular 

signaling through the activation of pro-inflammatory pathways and fibrosis that 

eventually lead to long term cardiovascular morbidity and mortality.149, 224 Rat neonatal 

myocytes under conditions of hyperglycemia have elevated levels of miR-1 and miR-

206 and through modulation of MEK1/2, negatively regulate HSP60 and contribute 

hyperglycemia-induced cardiomyocyte apoptosis.225 Other miRs upregulated under 
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hyperglycemic conditions include: miR-124a, miR-107 and miR-30d whereas miR-296, 

miR-484 and miR-690 are downregulated. Specifically, miR-30d overexpression causes 

a reduction in insulin gene expression, hence suggesting that perhaps this miR may 

play a role in regulating key transcription factors for insulin biosynthesis. He et al 

showed that the miR-29 family is upregulated in the adipose tissue as well as the 

skeletal muscle of diabetic Goto-Kakzaki rats and that this elevation could be recreated 

by incubating 3T3-L1 adipocytes with insulin and subjecting them to chronic 

hyperglycemia.226  

 Let-7 was one of the miRs discovered and it is implicated in both malignancy and 

pluripotency.227 In the mouse, there are 12 genes that encode the Let-7 family which 

include nine different miRs [Let-7a, Let-c, Let-7f—which are encoded by two genes; Let-

7b, Let-7d, Let-7e, Let-7i, and miR-98—all encoded by one gene]. As all family 

members share a common seed sequence, they are believed to exert similar 

functions.227 In a recent study by Frost et al, transgenic mice were created with tissue-

specific overexpression of Let-7. Mice with global overexpression of Let-7 had lower 

body weight and size with impaired glucose tolerance secondary to diminished glucose-

induced insulin secretion.228 Using LNA-modified anti-miRs to inhibit Let-7 activity, they 

found improvements in blood glucose levels and insulin resistance in obese mice. In 

addition after anti-miR treatment, these obese mice were found to have an increase in 

lean body mass, increase in muscle mass, without an increase in fat mass or any 

ectopic fat deposition. They concluded that Let-7 may in fact regulate glucose 
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metabolism in a number of organs and in the future, Let-7 anti-miR therapy may be a 

feasible treatment option for obese diabetic patients.228   

MicroRNA-103 and miR-107 are introns located in the panthotenate kinase 1 

(PANK1), PANK2, and PANK3 genes. Bioinformatics analyses have shown that both of 

these miRs probably act synergistically with PANK in regulating Acetyl CoA and lipid 

metabolism. MiR-107 was first associated with glucose dysmetabolism and diabetes 

mellitus in 2003 by Tang et al when they showed that miR-107 was significantly 

upregulated in a β-pancreatic cell line under hyperglycemic conditions.229  

Recently, Trajkovski et al reported that Cav-1, which influences lipid raft signaling, is 

a regulator of the insulin receptor and is the key target of miR-103/107 as it was 

upregulated upon inactivation of both miRs using antagomir therapy. Moreover, this was 

concomitant with stabilization of the insulin receptor, enhancement of insulin signaling 

and improvement of insulin-stimulated glucose uptake.219 Using recombinant 

adenovirus to overexpress miR-103 and -107, they found a significant rise in random 

and fasting blood glucose levels and insulin levels. Similarly, glucose tolerance was 

decreased after i.p. glucose load and insulin sensitivity also decreased when compared 

to controls. In contrast, using antagomirs against miR-103 and -107, the found hepatic 

glucose production decreased and glucose uptake by adipose tissue increased. Hence, 

silencing of miR-103 and -107 through antagomirs enhanced hepatic insulin sensitivity 

and adipose tissue.219 Conversely, it is also possible the miR-103 and -107 only exert 
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some of their effects on insulin signaling and glucose homeostasis through negative 

regulation of Cav-1 as both miRs have recently been shown to also strongly inhibit the 

miR processing enzyme, Dicer.229 Some experiments using Dicer-/- mice have revealed 

that that this enzyme is necessary for the development and maintenance of pancreatic 

cells and insulin signaling.230   

Caveolin-1 is the primary protein of caveolae, which are lipid and cholesterol 

enriched vascular invaginations of the plasma membrane.231 Peptides within the 

scaffolding domain of Cav-1 have been shown to enhance insulin receptor kinase 

activity, whereas Cav-1-/- mice develop insulin resistance on a high fat diet.232 Data from 

Trajkovski et al supports that Cav-1 is a direct target of miR-103 and they showed that 

silencing of miR-103 and -107 resulted in a significant increase in Cav-1 levels within 

adipose and hepatic tissue but not skeletal muscle.219 This was supported by increases 

in insulin-stimulated phosphorylated Akt and insulin receptor-β. They concluded that 

miR-103 and -107 negatively regulate insulin sensitivity and one possible mechanism 

may be through downregulation of Cav-1, which diminishes the number of insulin 

receptors in caveolae-enriched plasma membrane and prevents effective downstream 

insulin signaling.  

In adipogenesis, miR-103 exhibits a nine-fold increase in expression in early 

3T3-L1 adipocytes and increases lipid droplet formation when ectopically expressed 233 

whereas the exact role of miR-107 in adipogenesis is still unclear. However, both miR-
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103 and miR-107 levels are significantly upregulated in adipogenesis, whereas they 

decrease in adipocytes taken from diet-induced obese animals.234 This was the first 

time miRs involved in adipogenesis were shown to have an inverse expression pattern 

in obesity.   

 

iii. MicroRNAs in Lipid Dysmetabolism  

  

 The maintenance of metabolic and energy homeostasis is critical for normal 

physiology and health; abnormalities and dysregulation have been shown to lead to 

obesity and insulin resistance. Likewise, defects in cholesterol and fatty acid synthesis 

and use are associated with the atherosclerotic process prevalent in type II diabetes 

mellitus. A number of recent novel studies have found that miRs play a pivotal 

regulatory role through post-translational repression of key energy homeostatic 

processes. Additionally, abnormal expression of miRs in response to intrinsic factors 

(genetic or epigenetic) or extrinsic factors (environmental cues or stress) may contribute 

to aberrant gene expression patterns and accordingly have been implicated in 

contributing to the development and progression of atherosclerotic disease, loss of 

endothelial integrity, and VSMC hyperplasia.235 Recently the direct regulation of insulin 

sensitivity and glucose homeostasis by miRs has been shown in obese, diabetic mice 

which have upregulated expression of miR-103 and miR-107.219 Moreover, miRs have 
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also been well characterized in their regulatory role in cholesterol and lipid homeostasis, 

especially the liver specific miRs, miR-122 and miR-33a and miR-33b with their host 

gene, sterol regulatory element binding protein (SREBP).  

 Lipids are the structural components of cell membranes and are critical for 

metabolism, energy storage, and even cellular signaling. Lipids such as cholesterol and 

FFAs are synthesized by the liver once taken up in the gastrointestinal tract and the 

regulation process is under strict control through feedback inhibition by end-products 

and transcription factors such as SREBPs.236 Cholesterol is transported within the 

plasma by various lipoproteins such as LDL, VLDL and high-density lipoprotein (HDL). 

Low-density lipoprotein transports cholesterol to the peripheral tissues where it can be 

taken up via the LDL receptor. HDL however removes cholesterol from the periphery 

and returns it to the liver for further metabolism in a process called reverse cholesterol 

transport (RCT). MicroRNA-122 was the first miR to be linked to hepatic and cholesterol 

metabolism. Two studies show that antisense targeting of miR-122 significantly 

(approximately 25-30%) reduces circulating plasma cholesterol levels by altering gene 

expression of 3-hydroxy-methyglutaryl-CoA-reductase.237,238 Likewise, using antisense 

based silencing of miR-122, shows decreased hepatic cholesterol and fatty acid 

biosynthesis in addition to increasing fatty acid β-oxidation.237 This lead to lower total 

circulating cholesterol and triglyceride levels in mice on a high-fat, Western diet. Given 

these promising results, LNA technology was utilized to antagonize miR-122 in non-

human primates and was found to be non-hepatotoxic and resulted in lower circulating 
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cholesterol.239 However, lower levels of LDL came at the expense of lower levels of the 

cardioprotective HDL.   

 One of the most extensively studied regulators of cholesterol and lipid 

metabolism is the SREBP family of basic helix-loop-helix leucine-zipper (LZ) 

transcription factors (SREBP-1a/c and SREBP-2). Together they regulate and influence 

the biosynthesis and trafficking of fatty acids, cholesterol, triacylglycerols and other lipid 

metabolites and co-factors such as acetyl-CoA.236 The SREBP-encoding genes were 

found to be host genes to highly conserved miRs that largely have overlapping target 

gene sets and only differ by two nucleotides—miR-33a (SREBP-2 gene) and miR-33b 

(SREBP-1 gene).240-242 Current data suggest that miR-33a/b regulate cholesterol and 

lipid homeostasis in cooperation with their host genes by targeting the ATP-binding 

cassette (ABC) A1 cholesterol efflux pump for translational repression/mRNA 

degradation, thus leading to increased levels of intracellular cholesterol.242 The ABCA1 

pump is a key mediator for cholesterol efflux from the liver to apoprotein A-1 for the 

generation of HDL.235,241 Likewise, it plays a significant role in the peripheral tissue by 

mediating HDL trafficking back, also known as RCT, to the liver for bile acid synthesis. 

Recently, Najafi-Shoushtari et al showed that injection of LNA-antisense 

oligonucleotides against miR-33a significantly increased HDL levels in mice on a 

Western-type diet. Similarly, other groups have showed that lentivirus mediated 

overexpression of miR-33a significantly reduced circulating HDL, whereas genetic 

deletion of miR-33a increased HDL levels.241,243  
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 MircoRNAs are critical regulators of normal physiology and the development of 

pathophysiology and recently their function in the metabolic homeostasis has emerged 

to the forefront in lipid research. To date, miR-122 and miR-33 are the best-

characterized miRNAs for the maintenance of normal cholesterol and lipid homeostasis. 

As this field continues to development, novel discoveries yield therapeutic concepts and 

strategies for the treatment of metabolic syndrome through targeted inhibition or 

overexpression of miRs, raising considerable excitement for both scientists and 

clinicians alike.  
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CHAPTER 2 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

Hypothesis # 1:  Chronic treatment with the long-acting PDE-5 inhibitor TAD and the 

synthetic curcumin analogue, HO-3867, will improve fasting glucose levels and insulin 

tolerance in leptin receptor null mice through increased cGMP dependent kinase 

signaling and downregulation of key inflammatory cytokines. Accordingly, there will be a 

potent anti-inflammatory effect seen which will improve glycemic parameters, 

determined by fasting glucose levels, glucose and insulin tolerance tests. Likewise 

when the two compounds are combined, given each compound works by different 

pathways, the potential benefit may be greater than when each agent is given 

individually. In addition, given data supports that curcumin upregulates antioxidant 

genes such as Nrf-2 and HO-1 and that PDE-5 therapy improves NO bioavailability 

through cGMP-dependent signaling, these potent agents together may significantly 

attenuate cellular oxidant stress. The glycemic improvements that we have already 

shown with TAD leads to an increase in cellular signaling through the PI3K-Akt pathway 

and AMPK activation.244 Accordingly, we will assess for protein expression of 

activated/phosphorylated Akt and AMPK in TAD treated groups. These two key proteins 

play a key role in insulin signaling, energy metabolism and in cardioprotection. 
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Specific Aim #1: Chronic treatment with TAD and HO-3867 will reduce fasting blood 

glucose levels, improve insulin and glucose tolerance, attenuate inflammation, cell 

necrosis, oxidative stress, ROS formation and accordingly preserve the mitochondrial 

membrane potential (Δψm) after I/R injury or SI/RO. 

 

Rationale  

 The goal of this aim is to show that chronic treatment with TAD and HO-3867 will 

improve glucose and insulin tolerance, attenuate inflammation by restoring NO 

signalling, and enhance glucose utilization. We further plan to show that this 

combination treatment will reduce oxidative stress, ROS formation, inflammation and 

preserve the Δψm after 40 min SI and 1 h or 18 h of RO. Curcumin has been shown to 

be a free radical scavenger and potent antioxidant and inhibitor of oxidative DNA 

damage. In one study, curcumin inhibited oxygen free radical production caused by high 

glucose concentrations and increased glucose utilization by erythrocytes. Our 

preliminary results supported the findings that TAD therapy for 4 weeks can ameliorate 

pro-inflammatory cytokines and reduce fasting glucose levels.244 We propose that TAD 

therapy will attenuate oxidative stress, ROS, and preserve the Δψm in addition to 

providing a potent anti-inflammatory effect and upon combining this with HO-3867 will 

be additive if not synergistic given the anti-oxidant and anti-inflammatory properties of 

curcumin. In our preliminary experiments, two groups (n=6/group) of leptin receptor null, 
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homozygous db/db mice (strain B6.Cg-m +/+Leprdb/J) were treated for 4 weeks and 

were assigned to either TAD (1mg/Kg) or 10% DMSO and similarly had weekly fasting 

blood glucose levels, body weight, and at the end of the treatment period were 

subjected to I/R in a Langendorff isolated perfused heart model. Blood samples were 

collected and tested for plasma levels of circulating inflammatory cytokines and 

triglyceride levels. As seen in figures 10, 12-13, TAD lead to a significant reduction in 

infarct size, fasting glucose levels, circulating levels of key inflammatory cytokines such 

as TNF-α, IL-1β, and IFN-γ. Likewise, chemokines MCP-1, MIP-1α and MIP-1β were 

also reduced. This hypothesis generating data led to the specific aim #1. The 

preliminary hypothesis generating results are given below and were recently 

published:244 
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                          Figure 10.   Fasting glucose levels after 4 weeks of TAD treatment. 

© PLoS ONE 2012 

 

The db/db mice treated with TAD showed a significant decrease in fasting plasma 
glucose levels (292±31.8 mg/dL vs. 511±19.3 mg/dL) compared to controls after the 
treatment period, n=6/group. 
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Figure 11.  Mean body weight after 4 weeks of TAD treatment. 

© PLoS ONE 2012 

 

Body weight remained unchanged between control db/db and TAD treated db/db mice 
41.4±1.2 g vs. 45.8±1.7 g, n=6/group.  
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Figure 12.  Infarct size after global I/R injury. 
© PLoS ONE 2012 

	
  

Following I/R, infarct size was reduced after chronic treatment with TAD as compared to 
vehicle (DMSO)-treated db/db mice, 23.2±1.5% vs. 47.8±3.7%, p<0.01; n=6/group.	
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Figure 13.  Reduction of cytokines and chemokines after TAD treatment. 

© PLoS ONE 2012	
  

 

Key inflammatory cytokines and chemokines such as IL-1β, TNF-α, and chemokines, 
MIP-1β, and MCP-1 were attenuated with chronic TAD treatment and there was an 
increase in IL-10 levels when compared to the control group.  
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                                  Figure 14. Rate-force product as % of pre-ischemia baseline. 

	
   © PLoS ONE 2012  

 

The post-ischemic rate-force product (expressed as % of pre-ischemic baseline 
compared to the control group) was not changed, 72.2±2.9% vs. 63.8±3.8%, p=0.10; 
n=6/group. 
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Figure 15.  Coronary flow rates as % of pre-ischemia baseline. 
© PLoS ONE 2012 

 

 

The coronary flow rate improved in the TAD treated db/db mice (147.4±3.2% of the pre-
ischemic baseline vs. 98.3±1.2% in the DMSO treated mice, p=0.005; n=6/group. 
Baseline and post-ischemic coronary flow rates ranged from 1.8 to 2.1 mL/min and 1.7 
to 1.9 mL/min in the TAD group, respectively and 1.7 to 2.0 mL/min and 1.5 to 1.6 
mL/min in the control group, respectively.   
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Figure 16.  Number of TUNEL positive (Apoptotic) cells after SI/RO. 
© PLoS ONE 2012 

 

After 18h of RO, apoptosis was also inhibited as indicated by reduced number of 
TUNEL-positive cells in TAD treated cardiomyocytes 23.4±1.9% vs. 8.8±1%, p<0.001. 
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Figure 17.  LDH assay to determine necrotic cells after SI/RO. 

© PLoS ONE 2012	
  

	
  

An LDH assay was also performed to determine the amount of necrosis after SI/RO. 
Isolated cardiomyocytes from TAD treated mice showed much lower LDH release into 
the cell medium than mice treated with DMSO.  
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Figure 18.  Number of Trypan Blue positive (necrotic) cells after SI/RO. 
© PLoS ONE 2012	
  

	
  

After 40 min of SI and 1 h of RO, the percent of trypan blue-positive (necrotic) 
cardiomyocytes was 59.8±1.5 in the control group. Treatment with TAD resulted in 
decrease of ~64% of trypan blue-positive cardiomyocytes, i.e., 21.3±1.5%; p<0.001 vs. 
control. 
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Figure 19.  PKG activity after TAD therapy 
© PLoS ONE 2012 

 

TAD treated cardiomyocytes had a 44.3±2.5 % increase in PKG activity compared to 
C57BL/6 non-treated controls whereas the DMSO treated group had a 16.7±1.8% 
decrease compared to the non-diabetic control, p <0.001; n=4. 
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Hypothesis #2:  Recent studies have shown that two related miRs, miR-103 and -107, 

negatively regulate insulin sensitivity and glucose metabolism and are upregulated in 

insulin resistance and obesity.219 In diabetic mice, silencing of both miRs improves 

insulin signaling and glucose homeostasis.219 Based on predicted miR targets, target 

downregulation scores, and observed expression patterns, it has been shown that miR-

103/107 has a complimentary sequence alignment with caveolin-1 (Cav-1), which is a 

key protein making up caveolae within plasma membranes.245-248 Cav-1 has been 

shown to play a critical role in stabilizing the insulin receptor and enhancing insulin 

signaling. Hence, we contemplated that downregulation of Cav-1 by increased miR-

103/107 expression in obese, diabetic mice may have in a role in preventing effective 

insulin signaling and glucose homeostasis. In addition, it is known that PDE-5 inhibitors 

effect eNOS expression and that eNOS itself temporally and spatially regulates caveolar 

microdomains that facilitate signal transduction. We therefore contemplated that 

downregulation of Cav-1 by increased miR-103/107 expression in obese, diabetic mice 

may have in a role in preventing effective insulin signaling and glucose homeostasis 

and that chronic daily treatment with TAD may decrease the expression of miR-

103/107. We further speculate that the mechanism for improving glucose regulation 

may be through increased expression of Cav-1 protein and that increased Cav-1 would 

lead to insulin receptor stabilization and improved insulin signaling.  
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Figure 20.  Complimentary sequence alignment between miR-103/107 and Cav-1. 

	
  

The above figure depicts the complimentary sequence alignment between both miR-103 
and miR-107 and Caveolin-1 thus making it, based on target downregulation scores and 
observed expression patterns, the likely downstream target gene.   

 

Specific Aim #2: To demonstrate that chronic treatment with TAD will decrease 

myocardial expression of miR-103/107, thus increasing mRNA and protein expression 

of its downstream target Cav-1. This may be one of the potential mechanisms by which 

TAD improves glucose homeostasis and insulin sensitivity in obese diabetic mice.  
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Rationale 

MicroRNAs are novel endogenous short single-stranded non-protein encoding 

RNA’s with 19-25 nucleotides in length and been shown to play a key regulatory role in 

post-transcriptional gene expression. In recent years miRs are being increasingly 

recognized as potential therapeutic targets for a variety of diseases in addition to 

possible biological markers for making early diagnoses in a number of diseases. Given 

that miRs -103 and -107 have been shown to play a role in glucose metabolism and 

insulin sensitivity, and cGMP-dependent signaling is a key signaling pathway that upon 

activation can improve glucose homeostasis, we proposed that TAD therapy would 

decrease myocardial expression of miR-103 and -107 and since recent data supports 

these miRs target Cav-1, would increase mRNA and protein Cav-1 expression.  
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CHAPTER 3 

 

METHODS 

 

 Thirty-two leptin receptor null, homozygous db/db mice (strain B6.Cg-m 

+/+Leprdb/J) were used for these experiments at a mean age of 12 weeks. All animals 

were purchased from The Jackson Laboratory (Bar Harbor, ME), and had the same 

genetic background.249 The animal experiment protocols were approved by the 

Institutional Animal Care and Use Committee of Virginia Commonwealth University. All 

animal experiments were conducted under the guidance on humane use and care of 

laboratory animals for biomedical research published by the National Institutes of Health 

(No. 85-23, Revised 1996).   

 

Specific Aim #1 

 The db/db mice were randomized to receive daily TAD (1 mg/Kg), HO-3867 (25 

mg/Kg) [kindly provided by Dr. Periannan Kuppusamy, Ohio State University], a 

combination of TAD and HO-3867, or control (an equal volume of 10% DMSO) for a 

total duration period of up to 12 weeks. Each had metabolic parameters monitored such 

as body weight and fasting glucose, and plasma samples taken for evaluating 

inflammation (n=6-8/group). Eight db/db mice (n=2/group) were used to measure 
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oxidative stress and isolated cardiomyocytes from the latter groups were used to 

evaluate for ROS formation and preservation of Δψm after 40 min SI and either 1h or 18 

h of RO (figure 21). 

 

	
  

     Figure 21.   Experimental protocol  
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Metabolic monitoring 

Each mouse had body weight and 12 h fasting blood glucose level at the start of 

all experiments and then weekly for the mean 12-week treatment period. Food and 

water intake was monitored throughout the study.  

 

Insulin and Glucose Tolerance tests 

Blood glucose concentrations were obtained using a handheld glucometer 

(Lifescan, Milpitas, CA). After 10 weeks of treatment, a glucose tolerance tests was 

performed after 12 h of fasting. After initial blood glucose determinations, 1.5 g/Kg of d-

glucose was administered, followed by glucose determinations at 30 min intervals for 

120 min. For the insulin tolerance test, human regular insulin (1.5 U/Kg) was injected 

into random-fed mice and tail vein samples for blood glucose levels were taken at 30 

min intervals for 120 min.  

 

Measurement of Cytokines, Chemokines and Triglyceride levels  

At the time of sacrifice, each mouse had blood collected by cardiac puncture into 

2 separate ethylenediaminetetraacetic acid (EDTA) tubes, stored immediately on ice 

and centrifuged at 4°C, 3,000 g for 10 minutes. The serum and plasma were separated 
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and stored at -80°C until analyzed. Plasma concentrations of representative cytokines: 

IL-1α, IL-1β, IL-2, IL-3, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, TNF-α, interferon (IFN)-

γ and chemokines: RANTES (Regulated upon Activation, Normal T-cell Expressed, and 

Secreted) also known as CCL (C-C chemokine ligand)-5, MIP-1α and -1β (macrophage 

inflammatory protein) which are also known as CCL-3 and CCL-4, Eotaxin (CCL-11 

family), was quantified using the Bio-Plex Pro magnetic cytokine assay (Bio-Rad, 

Hercules, CA) in the initial set of hypothesis generating experiments with TAD [70]. 

Subsequently, using the same Bio-Plex magnetic cytokine assay, all groups had 

cytokine and chemokine measurements of IL-1β, IL-6, IL-10, IFN-γ, MCP-1, MIP-1α and 

-1β, TNF-α, and RANTES. 

 

Langendorff Isolated Perfused Heart 

The methods for the isolated, perfused mouse heart preparation have been 

previously described in detail.18 In brief, each mouse (from each of the treatment 

groups) was anesthetized with pentobarbital sodium (100 mg/Kg) and the heart was 

quickly removed from the thorax and placed in a small dish containing ice-cold 

perfusate and heparin. In this case, heparin was not used in the peripheral circulation as 

its use would prevent miR analysis from the plasma at a later date. The aortic opening 

was rapidly cannulated and tied on a 20-gauge blunt needle that was connected to a 

Langendorff perfusion system. After cannulation, the heart was retrogradely perfused at 
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a constant pressure of 75 mm Hg with modified Krebs–Henseleit (K–H) solution 

containing (in mM) 115 NaCl, 4.0 KCl, 2.0 CaCl2, 25 NaHCO3, 1.1 MgSO4·H2O, 0.9 

KH2PO4, and 5.5 glucose. The perfusion solution was continuously gassed with 95% O2 

+ 5% CO2 (pH ∼ 7.4) and warmed by a heating/cooling bath. The heart temperature 

was continuously monitored and maintained at 37 °C throughout the experiment. 

Ventricular function was measured by a force-displacement transducer (model FT03, 

Grass) attached to the ventricular apex with a no. 5 surgical thread and a rigid metal 

hook. The resting tension of the isolated heart was adjusted to approximately 0.30 g. 

Ventricular developed force was continuously recorded with a PowerLab 8SP 

computerized data acquisition system connected to the force transducer (AD 

Instruments, Colorado Springs, CO) after daily calibration. Coronary effluent was 

collected by timed collection of the perfusate to determine flow rate. The hearts were 

not paced. All hearts were subjected to 20 min of stabilization, followed by 30 min of 

ischemia and 1 h of reperfusion. After the 1 h reperfusion period, hearts were collected, 

frozen at -20° C for infarct size assessment 24-48 h later using triphenyltetrazolium 

(TTC) staining method (figure 22).  
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      Figure 22.   Langendorff isolated perfused heart protocol. 
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pentobarbital sodium (100 mg/Kg, i.p.) and the heart was quickly removed. Within 

3 min, the aortic opening was cannulated onto a Langendorff perfusion system and the 

heart was retrogradely perfused (37 °C) at a constant pressure of 55 mmHg for 

approximately 5 min with a Ca2+-free bicarbonate-based buffer containing (in mM): 120 

NaCl, 5.4 KCl, 1.2 MgSO4, 1.2 NaH2PO4, 5.6 glucose, 20 NaHCO3, 10 2, 3-butanedione 

monoxime, and 5 taurine, which was continuously bubbled with 95% O2 + 5% CO2. The 

enzymatic digestion was commenced by adding collagenase type II (Worthington, 

0.5 mg/mL each) and protease type XIV (0.02 mg/mL) to the perfusion buffer and 

continued for ∼ 15 min. Fifty µM Ca2+ was then added in to the enzyme solution for 

perfusing the heart for another 10–15 min. The digested ventricular tissue was cut into 

chunks and gently aspirated with a transfer pipette for facilitating the cell dissociation. 

The cell pellet was resuspended for a 3-step Ca2+ restoration procedure (i.e., 125, 250, 

500 µM Ca2+). The freshly isolated cardiomyocytes were then suspended in minimal 

essential medium (Sigma catalogue# 6 M1018, pH 7.35–7.45) containing 1.2 mM Ca2+, 

12 mM NaHCO3, 2.5% fetal bovine serum, and 1% penicillin–streptomycin. The cells 

were then plated onto the 35 mm cell culture dishes, which were pre-coated with 

20 µg/ml mouse laminin in PBS + 1% penicillin–streptomycin for 1 h. The 

cardiomyocytes were cultured in the presence of 5% CO2 for 1 h in a humidified 

incubator at 37 °C, which allowed cardiomyocytes to attach to the dish surface prior to 

the experimental protocol. 
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Measurement of Reactive Oxygen Species 

Isolated myocytes were plated onto 96 well microplate and subjected to 40 min 

SI and 18 h RO. After plating, they were incubated with 50 µM of 

dichlorodihydrofluorescein diacetate (H2DCFDA) in growth medium for 30 min at 37°C. 

Cardiomyocytes were rinsed with PBS, and ROS levels were determined using a 

fluorescence microplate reader at an excitation of 485 nm and emission of 538 nm.   

 

Measurement of Mitochondrial Membrane Potential (Δψm)  

Isolated ventricular cardiomyocytes subjected to 40 min simulated ischemia and 

1h reoxygenation were stained with 5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazole-

carbocyanide iodine (JC-1; Biocarta) by incubating with 2 µg/mL JC-1 for 10 minutes at 

37°C. Fluorescence was analyzed with a Texas red–FITC filter cube using a Nikon 

Eclipse Ti inverted research microscope (Melville, NY). The ratio of mitochondrial 

aggregates (red) to the monomeric form of JC-1 (green) was analyzed with the use of Q-

Capture Professional image analysis software (QImaging). Myocytes were counted from 

8-10 separate fields per group and expressed as the ratio of mitochondrial aggregates 

to monomeric form of JC-1. 
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Western Blot 

The mouse heart samples were collected and the proteins were extracted in a 

buffer containing (in mmol/L): 50 potassium phosphate 1 EDTA, 1 EGTA, 0.2 PMSF, 5 

beta-glycerophosphate, 2 NaF, 2 Na3VO4 10 β-mercaptoethanol, 1µg/ml pepstatin, and 

0.5 µg/ml leupeptin, (pH 7.0) with a tissue homogenizer. The homogenate was 

centrifuged at 10,000 g for 15 min under 4°C and then supernatant was recovered. Fifty 

milligrams of protein from each sample were separated by SDS-polyacrylamide gel 

electrophoresis and transferred onto nitrocellulose membranes. The membrane was 

incubated with primary antibodies at a dilution of 1:1000 for each of the respective 

proteins, i.e. [PKG, actin (goat polyclonal), phosphorylated Akt (pAkt), Akt, pAMPK, 

AMPK, (rabbit polyclonal), pCav-1, and Cav-1 (Santa Cruz Biotechnology, Santa Cruz, 

CA). The membrane was then washed and incubated with horseradish peroxidase-

conjugated secondary antibody (1:2000 dilution, 1h at room temperature). Detection of 

the signals was performed using LumiPhosTM reagent (Pierce) and chemical 

luminescence was detected using X-omat Kodak film. The densitometry quantification 

was performed with Bioquant image analysis software.  

 

Evaluation of Cell Viability and Apoptosis  

Cell viability was assessed by trypan blue exclusion assay in the cell medium. At 

the end of protocol, 20 µL of 0.4% trypan blue (Sigma-Aldrich) was added into the 
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culture dish. After approximately 5 min of equilibration, the cells were counted under a 

Nikon Eclipse Ti inverted research microscope (Melville, NY). Cardiomyocyte apoptosis 

for the preliminary experiments was evaluated by using the ApoAlert DNA 

Fragmentation kit (ClonTech, Mountain View, CA) according to manufacturer’s 

specifications. The quantification of apoptosis was determined by counting the TUNEL-

positive myocyte nuclei from a mean of seven random fields per section and was 

expressed as percentage of total myocyte nuclei, as previously reported.40  

 

Infarct size assessment  

At the end of reperfusion, the heart was immediately removed from the 

Langendorff apparatus and frozen at -20 °C for 24-48 h. The frozen heart was cut into 

six to seven transverse slices, stained by 10% TTC for 30 min at room temperature 

(∼22 °C), and subsequently fixed with 10% formalin for 24 h. The infarct area was 

determined by computer morphometry by using ImageJ Software (National Institutes of 

Health, Bethesda, MD). The infarct size was presented as percentage of the total 

myocardium (at risk myocardium).  
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Protein Kinase G Activity  

PKG activity was examined after the preliminary hypothesis generating 

experiments using a commercially available PKG activity kit (Cyclex; MBL International, 

Japan) in ventricular cardiomyocytes isolated from each group (Activity was measured 

according to the manufacturer's instructions. Spectrophotometric absorbance was 

measured at 450 nm. Results were normalized as per milligram of protein. 

 

SPECIFIC AIM #2  

In recent years miRs are being increasingly recognized as potential therapeutic 

targets for a variety of diseases in addition to possible biological markers for making 

early diagnoses.218 MiR-103/107 was recently shown to be upregulated in obese mice 

and impair glucose tolerance and insulin sensitivity.219 Moreover, it is suggested that 

Cav-1, which is a critical regulator of the insulin receptor, is the direct target gene of 

miR-103/107. Likewise, given that PDE-5 inhibitors effects eNOS expression and since 

eNOS temporally and spatially regulates caveolar microdomains that facilitate signal 

transduction, we propose that TAD would decrease the myocardial expression of miR-

103 and -107 and that this may be one of the potential mechanisms by which TAD 

effects glucose regulation in diabetic mice. Furthermore, to confirm our findings, we will 

evaluate the expression of its downstream target gene, Cav-1.  
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Experimental Design 

  Mice were randomized to receive TAD (1 mg/Kg) or 10% DMSO for a mean of 5 

weeks. A third group of non-diabetic mice C57BL/6J mice (n=3) also received vehicle 

(DMSO). At the end of the treatment period, hearts were extracted to determine 

myocardial expression of microRNA-103/107, mRNA expression of Cav-1 and protein 

expression by Western blot analysis of Cav-1.   

 

MiRNA extraction and verification  

Total RNA including miRNA was isolated using miRNeasy Mini kit (Qiagen 

Sciences, MD, USA) according to manufacturer’s protocol. The concentration of RNA 

was measured using Agilent NanoDrop ND-1000 Spectrophotometer (Houston, Texas, 

USA). Complementary DNA (cDNA) was synthesized from either 10 ng or 2ug of total 

RNA using microRNA specific primer (TaqMan miRNA reverse-transcription kit, Applied 

Biosystems, USA) for microRNA profile and hexamer for mRNA expression 

 (High capacity cDNA synthesis kit (Applied Biosystems, USA). 

 

Real-time qPCR 

Real-time PCR was performed on an Applied Biosystems 7900HT Real-Time 

PCR System (Forest City, CA) using amplicon specific TaqMan microRNA or Gene 
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expression assay probes. The following are the details of the primer used: For the 

expression of microRNA 103/107 hsa-miR-103 – AGCAGCAUUGUACAGGGCUAUGA 

and hsa-miR-107-AGCAGCAUUGUACAGGGCUAUCA were used, respectively, and 

were normalized using small nucleolar RNA -202 (sno-202). Gene expression 

quantification for caveolin-1 mRNA expression was carried out using exon spanning 

primers and an amplicon specific gene assay probe. The mRNA expression of caveolin-

1 was normalized using GAPDH as the housekeeping gene.  The results were analyzed 

both by delta-delta cT and absolute quantification using a standard curve method. 

 

Western blot 

The mouse heart samples were collected and the proteins were extracted in a buffer 

containing (in mmol/L): 50 potassium phosphate 1 EDTA, 1 EGTA, 0.2 PMSF, 5 beta-

glycerophosphate, 2 NaF, 2 Na3VO4 10 β-mercaptoethanol, 1µg/ml pepstatin, and 0.5 

µg/ml leupeptin, (pH 7.0) with a tissue homogenizer. The homogenate was centrifuged 

at 10,000 g for 15 min under 4°C and then supernatant was recovered. Fifty milligrams 

of protein from each sample were separated by SDS-polyacrylamide gel electrophoresis 

and transferred onto nitrocellulose membranes. The membrane was incubated with 

primary antibodies at a dilution of 1:1000 for each of the respective proteins, i.e. [actin 

(goat polyclonal), Cav-1 (N-20) - sc-894, Santa Cruz biotechnology, CA, USA]. 
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The membrane was then washed and incubated with horseradish peroxidase-

conjugated secondary antibody (1:2000 dilution, 1 h at room temperature). Detection of 

the signals was performed using LumiPhosTM reagent (Pierce) and chemical 

luminescence was detected using X-omat Kodak film. The densitometry quantification 

was performed with Bioquant image analysis software.  
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CHAPTER 4 

 

STATISTICS 

 

Continuous variables are expressed as mean ± standard error. Two-way analysis 

of variance (ANOVA) was used to compare pre- and post-intervention values between 

the 2 groups. Student’s T test was used for comparison of unpaired data between 2 

groups and the one-way ANOVA to compare unpaired data between 3 or more groups 

followed by a Tukey or Bonferroni post-hoc analysis (Prism 5, GraphPad Software, 

LaJolla, CA). Discrete variables are expressed as percentage and the Chi-square or 

Fisher’s exact tests are used accordingly. Unadjusted two-tailed P values <0.05 are 

considered statistically significant. 
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CHAPTER 5 

 

 

EXPERIMENTAL LIMITATIONS 

 

The initial study design had experiments that included in vivo I/R protocols to 

simulate clinical scenarios and then analyze cardiac function by TTE after reperfusion. 

However, during our preliminary work we discovered that the db/db mouse is especially 

prone to mortality in the first 24 h after MI. This made post-MI follow-up extremely 

difficult albeit the ideal scenario for I/R injury. We abandoned this plan and decided to 

perform an ex vivo isolated perfused Langendorff model of I/R. This allowed us to 

assess cardiac function before and after ischemia as well as determine infarct size 

although in an ex vivo model.  

A second limitation was that given the large number of animals required for the 

study and that only 2-3 mouse hearts could be isolated for Langendorff per day, not all 

mice finished the study in the same week. This gave us a mean completion time of 11 

weeks 5 days for all mice.  Hence for all results, we selected an end or completion time 

of “12” weeks. Interestingly, the study was proposed to be 8 weeks in length but 

temporary limitations in resources, availability of materials, staff, etc., it was decided to 

expand the length of treatment to 12 full weeks.  
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During the cytokine analysis not all plasma sample values determined by the 

cytokine magnetic assay could be used. One or more were reported below the standard 

concentration curve and were not reported by the system. However, a mean of 4 per 

group was utilized in calculation.  

Utilizing a group of age-matched non-diabetic controls for all experiments 

throughout the 12 weeks would have been ideal. Instead only non-treated diabetic mice 

served as controls for most experiments. Having a non-treated, non-diabetic control 

would have provided valuable additional data and will be utilized for future experiments.  

 Finally, in the isolated cardiomyocytes experiments, myocytes were isolated from 

each group using one mouse per group. Although the results we found were significant 

and comparable to results we have previously published, we would need to repeat this 

portion of the aim with a larger “n” number. This was limited in part due to the number of 

mice and the ability to carry out the isolation of more myocytes in the prescribed 

treatment period without altering the “end time” for each group.  
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CHAPTER 6 

 

RESULTS 

 

The effects of TAD and HO-3867 on the basic metabolic characteristics of the 

diabetic mouse 

 

The health status of each mouse was evaluated in terms of body weight and 

fasting blood glucose over the 12-week period as shown in Table 1 and 2. The diabetic 

mouse showed significant increases in bodyweight and fasting glucose levels over the 

12 week period, however, each of the three treatment regimens: TAD alone, TAD with 

HO-3867 and HO-3867 alone, all lead to statistically significant reductions in fasting 

glucose levels with significant improvements in both insulin and glucose tolerance tests. 

The most robust improvements were seen in the treatment groups that included HO-

3867.  

However, by the end of the 12-weeks of treatment, mean body weight was 

reduced with HO-3867 and combination therapy but not TAD when compared to control 

(61.6±2.1g, 57.0±1.19g, 57.0±1.5g, vs. 65.5±1.5g, respectively [Figure 26]; P<0.05 for 

HO-3867 and combination groups vs. control). Both HO-3867 and combination 

treatment led to a dramatic decrease in body weight and fasting glucose, whereas TAD 
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therapy only led to improvements in glucose and not body weight. This is congruent with 

our preliminary study using TAD in diabetic mice (Figures 10-11) in which we were 

unable to show significant weight loss but did demonstrate slight improvements in 

fasting glucose levels over 4 weeks of treatment.244 

	
  

Figure 23. Mean fasting blood glucose levels of each group at the start of treatment. 
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As shown in figures 23 and 24, at the start of the study there was no significant 

difference between the groups in terms of mean body weight or fasting glucose levels.	
  

	
  

            Figure 24.  Mean body weight of each group at the start of treatment. 

 

Similar to fasting glucose levels, there was no significant difference in mean body 
weight between the 4 groups at the start of the study.  
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Table 1.  Mean weights over the 12 week treatment period 

 

Table 1 above shows the mean± standard error for each group during the 12 week 
course of treatment. During weeks 11 and 12, the “n” decreased in each group as we 
began the isolated perfused heart protocol and collected plasma samples for cytokine 
assay. The mean weight of the C57BL/6J mouse, which has the genetic background for 
the leptin receptor null mouse, is around 30 grams.    
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Table 2.  Mean glucose levels over the 12-week treatment period 

 

Table 2 above shows the weekly fasting glucose levels (mean ± standard error) for each 
group during the 12-week course of treatment. During weeks 11 and 12, the “n” 
decreased in each group as we began the isolated perfused heart protocol and 
collected plasma samples for cytokine assay.  
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Figure 25.  Mean fasting glucose levels of each group at the end of treatment. 

	
  

Mean fasting blood glucose values at the end of the study reveal that treatment with 
HO-3867 and TAD together provided the largest benefit in glucose reduction although 
the benefit of combination therapy did not provide any added benefit than either 
compound given individually. Similarly, drugs individually also led to statistically 
significant reductions in glucose levels. 
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Figure 26. Mean weight of each group at the end of treatment. 
	
  

Figure 26 depicts the mean weight of each group at the end of the 12 week treatment 
period. There was a significant reduction of weight in both the HO-3867 and 
combination treatment arms, however treatment with TAD alone did not significantly 
alter weight, albeit there was a trend towards reduction.  
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Figure 27.  Mean fasting glucose levels of each group plotted over the entire treatment period. 

	
  

In figure 27, mean fasting glucose levels in each treatment group are plotted over the 
entire treatment period. There was no significant difference in the initial levels and by 
week 5, treatment with HO-3867 and combination of TAD and HO-3867 show a 
statistically significant difference in glucose levels that persist until the end of the study. 
Likewise, TAD alone also improved glucose readings when compared to control over 
the treatment period after approximately the 6th week of treatment.   

 

W
ee

k 
0

W
ee

k 
1

W
ee

k 
2

W
ee

k 
3

W
ee

k 
4 

W
ee

k 
5

W
ee

k 
6

W
ee

k 
7

W
ee

k 
8

W
ee

k 
10

W
ee

k 
11

W
ee

k 
12

200

300

400

500

600

P
la

s
m

a
 g

lu
c

o
s

e
 l
e

v
e

l 
(m

g
/d

L
)

Control 
TAD
Combo
HO-3867

Mean fasting glucose over 12 weeks

 * p<0.001 vs Control

 ** p<0.001 vs TAD and control

*

** **

**
** ****

* * *
**

* *

**
****

** ** ****



	
   	
   P a g e 	
   | 	
   1 1 7 	
  
	
  

	
  

	
  

     Figure 28. Mean body weight of each group plotted over the entire treatment period. 

	
  

The mean body weight in each treatment group gradually increased over the 12 week 
treatment period with the exception of groups being treated with HO-3867. At 
approximately week 5, those two groups started to have decline from their mean 
starting weight, however at the end of the study period the starting and ending weights 
were nearly the same. Both the TAD and control groups had significant increases in 
weight during the 12-week period, although net weight gain was less in the TAD treated 
mice, this did not reach statistical significance.  
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Figure 29. Insulin tolerance test at the end of treatment. 
	
  

During the insulin tolerance test, random fed mice were fasted for 6 hours, given 1.5 
Units/Kg of regular insulin after baseline reading and then had blood glucose levels 
monitored over 120 min. Both HO-3867 and combination treated groups had improved 
insulin sensitivity with enhanced glucose homeostasis at 30 min onwards when 
compared to control. At 60 min and 90 min, both HO-3867 containing groups had 
improvements that were statistically significant when compared to TAD as well. 
Treatment with TAD alone led to only one point in time, at 30 min, in which insulin 
tolerance was statistically better than control.  
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Figure 30.   Glucose tolerance test at the end of treatment. 

	
  

There was a notable improvement in glucose tolerance in the treatment groups vs. 
control. This demonstrates the improved ability of the treated db/db mice to clear 
circulating glucose and utilize it for oxidation.  We were able to show that at all time 
points a significant difference existed between TAD, HO-3867 and combination groups 
vs. control, however no significant difference between the groups was found. 

 

TAD, HO-3867, and combination therapy protects against global I/R Injury 

After 12 weeks of chronic therapy with TAD, HO-3867 and combination treatment 

we found that following global I/R injury, myocardial infarct size (mean ±SEM) was 
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greater in the db/db mice treated with control (DMSO). Control mice had an infarct size 

of 43.14±10.5% vs. TAD, which had 20.7±6.0%, HO-3867 of 28.4±8.4% and 

combination therapy of 25.2±11.1%; p<0.05 for each group vs. control; Figure 31.  

	
  

Figure 31.  Infarct size after I/R injury. 

	
  

A total of 4-6 diabetic mice from each group were subjected to I/R injury in a 
Langendorff isolated perfused heart model. After 30 min ischemia and 60 min 
reperfusion, the mean infarct sizes in TAD, HO-3867 and the combination group were 
significantly smaller than in the control group.   
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The subsequent photographs (Figures 32-35) depict one example of the gross 

cardiac pathology after global I/R injury using the Langendorff isolated perfused heart 

model from each of the treatment arms.  

 

 Figure 32. TTC stained sections of myocardium after I/R injury from a control (DMSO) treated 

mouse. 

	
  

After I/R on the Langendorff apparatus, hearts were collected and immediately 

frozen at -20° C overnight. The following day, each heart was cut into 6-7 transverse 
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sections and stained with TTC for 30 min and then fixed with 10% formalin overnight. 

Using ImageJ software (National Institutes of Health, Bethesda, MD), we measured 

infarct size as the % of the total myocardium. 

	
  

Figure 33. TTC stained sections of myocardium after I/R injury from a HO-3867 treated mouse. 

 

Infarcted myocardium is depicted as white/beige tissue whereas healthy, viable 

myocardium is surrounding the infarcted area and is red/pink in color.  
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Figure 34.  TTC stained sections of myocardium after I/R injury from a combination treated mouse. 

	
  

After a 20 min stabilization period, each heart was subjected 30 min ischemia 

followed by 60 min of reperfusion. Hearts preconditioned with TAD, HO-3867 or the 

combination of the two had significantly smaller infarct sizes when compared to the 

control treated mice.  
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Figure 35.  TTC stained myocardium after I/R injury from a TAD treated mouse. 

	
  

	
  

	
  

Cardiac Hemodynamics and Contractile Force  

Coronary flow rates did improve in the HO-3867 and TAD treatment groups as 

the % change in coronary flow compared to the pre-ischemia baseline when compared 

to control.  As the percentage of pre-ischemia baseline, the TAD group was 
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130.2±16.2%; HO-3867 was 132.2±8.0%; 116.5±7.1% for combination treated and 

96.7±5.7% in the DMSO treated control mice, (p<0.05 for all groups vs. control; Figure 

36). There was no significant difference in the pre-ischemia basal functional parameters 

(i.e., developed force, rate-force product, and resting tension) between the treatment 

groups (n=4-6/group). There was no significant change in post-ischemic rate-force 

product as the % of pre-ischemic baseline compared to the control group with TAD +/- 

HO-3867 treatment [63.9±8.6% (TAD alone), 31.9±12.3% (HO-3867 alone) and 

39.7±12.9% for combination therapy vs. 47.7±4.8% for control; Figure 37].  

Similarly, the combination treatment did not lead to any improvement rate-force 

product when compared to control. Table 3 shows the baseline cardiac functional 

parameters for each of the treatment groups.  

 

Table 3.  Baseline Cardiac Functional Parameters  

Group Control TAD HO-3867 Combination 

HR (bpm) 310.0±60 350.0±14.1 430.0±36.7 388.3±38.3 

DF (g) 0.97±0.11 1.16±0.7 0.94±0.16 1.01±0.25 

RFP (g 

beats/min) 

583.5±142.43 814±171 802.1±152.2 605.4±194.6 

CF (mL/min) 2.2±0.2 2.4±0.3 2.3±0.2 2.1±0.2 

Mean ± SE; HR- heart rate; DF- developed force; RFP- rate force product; CF – coronary flow; g- grams;  
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Figure 36.  Coronary flow rates. 

	
  

Coronary effluent was collected over time during the stabilization period and then during 
reperfusion during each I/R heart protocol. Coronary flow rates (as the % of pre-
ischemia baseline) were improved in each of the treatment arms when compared to 
control.  
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Figure 37.  The Rate-Force product.  

	
  

The cardiac function is presented as the double product of the heart rate and ventricular 
developed force (% of the pre-ischemic baseline). There were no significant changes 
between the groups in terms of cardiac function. 
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TAD, HO-3867 and Combination treatment attenuates oxidative stress induced by 

diabetes 

Diabetes is usually accompanied by increased production of free radicals and 

impaired antioxidant mechanisms. Hence we measured ROS generation by staining 

isolated ventricular cardiomyocytes from each treatment group with indicator dye 

H2DCFDA after 1 h simulated ischemia and 18 h reoxygenation.  ROS formation was 

significantly increased in the db/db control group (DMSO) following SI/RO. TAD, HO-

3867 and combination treatment all significantly attenuated ROS generation in db/db 

mice as shown in Figure 38.  

 

ROS Generation after Simulated Ischemia/Reoxygenation  

After 40 min SI and 18 RO, isolated cardiomyocytes from each of the treatment 

groups were subjected to 10 µM H2DCFDA staining and then ROS generation was 

determined as % of total control by fluorescence using a microplate reader (excitation of 

485 nm and emission of 538 nm). Despite our preliminary data showing a significant 

decrease in ROS production after chronic TAD treatment, we only found a decrease in 

ROS after HO-3867 and combination HO-3867 with TAD therapy (Figure 38).  
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Figure 38.   ROS generation. 

	
  

 

Effects of Chronic Therapy on Mitochondrial Membrane Potential  

In the diabetic, ROS are involved in insulin resistance via its regulatory effects on 

mitochondrial function.252 Therefore we measured dissipation of Δψm of isolated 

ventricular cardiomyocytes following 40 min SI and 1 h RO by JC-1 staining. 

Cardiomyocytes from DMSO-treated diabetic mice exhibited a significant loss of Δψm 
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while myocytes isolated from those treated with TAD and/or HO-3867 demonstrated 

preserved Δψm and intact mitochondrial membranes (Figures 39-43). Hence, these drugs 

might preserve Δψm in diabetic hearts, at least in part, via mitochondrial activation.	
  	
  

	
  

	
  

Figure 39.  Ratio of JC-1 aggregate:monomer after SI/RO. 
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Figure 40.  JC-1 staining of cardiomyocytes from control (DMSO) treated mice. 
	
  

Isolated cardiomyocytes from DMSO (control) treated mice showed loss of the 
mitochondrial membrane potential after SI/RO after JC-1 staining. More JC-1 exists in 
monomer form than aggregates as the mitochondria have lost the positive motive force 
required for oxidative phosphorylation.  
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Figure 41.  JC-1 staining of cardiomyocytes from combo treated mice. 
 

Figure 41, shows JC-1 stained cardiomyocytes after SI/RO, and JC-1 stain has mostly 
formed aggregates within the inner mitochondrial membrane given maintenance of the 
mitochondrial membrane potential.  
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Figure 42.  JC-1 staining of cardiomyocytes from HO-3867 treated mice. 

	
  

After 12 weeks of treatment with TAD, cardiomyocytes subjected to SI/RO, showed a 
much higher level of JC-1 in aggregates when compared to myocytes isolated from 
control hearts.  
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Figure 43.  JC-1 staining of isolated myocytes from TAD treated mice after SI/RO 

 

As seen in Figures 40-43, isolated cardiomyocytes were subjected to 40 min SI 

and 1 h RO and then stained with JC-1 to evaluate for preservation of the mitochondrial 

membrane potential. Isolated cardiomyocytes from every treatment arm showed 

preservation of the Δψm by aggregate formation of JC-1 within the mitochondria as 

indicated by orange-red fluorescence. Control cardiomyocytes subjected to similar time 

period of SI and RO showed significant loss of the Δψm by a decrease in JC-1 
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aggregates (less accumulation within the inner membrane) and higher levels of JC-1 in 

monomer form as indicated by green fluorescence. Figure 39 shows the ratio of JC-1 of 

aggregate to monomer formation for each of the treatment groups. With maintenance of 

the membrane potential, the myocytes are still capable of oxidative phosphorylation and 

are less likely to create ROS.  

 

Role of AMPK-Akt signaling in Cardioprotection induced by TAD 

 

To confirm the NO-AMPK-Akt signaling pathway induction by TAD, myocardial 

protein levels of AMPK and Akt were assessed by Western blot analysis. Western blot 

showed that the phosphorylated forms of Akt and AMPK in db/db mice hearts were 

significantly lower than in non-diabetic C57BLKS/J control mice (n=3). Chronic 

treatment with TAD significantly enhanced phosphorylated Akt and phosphorylated 

AMPK, suggesting that TAD treatment increases NO-AMPK-Akt signaling in the diabetic 

hearts (Figure 44-45) and improved signaling through these pathways may be one of 

mechanisms for cardioprotection and increased glucose sensitivity.   
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Figure 44.  Western blot and densitometric results of Akt and AMPK. 

	
  

The figure above illustrates the decrease in phosphorylated Akt to total Akt expression 
in the diabetic mouse, which was restored after chronic TAD therapy. Likewise, the 
diabetic mouse has lower myocardial levels of phosphorylated AMPK, which was also 
restored to physiological levels after chronic TAD treatment, as shown in the lower half 
of the Western blot. This may be one of the mechanisms by which TAD provides 
cardioprotection in diabetic mice and further augments the insulin signaling pathway. 	
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Figure 45.  Densitometry results of phosphorylated AMPK:total AMPK 

 

The densitometry results show that the ratio of phosphorylated AMPK to total AMPK 
was significantly increased after chronic TAD therapy. The normal diabetic animal has 
been shown to have decreased levels of activated AMPK and reduced signaling via the 
critical metabolic regulator, AMPK. Treatment with TAD was able to restore AMPK in 
db/db mice by increasing activated AMPK to levels normally found in non-diabetic mice.  

 

Cardiomyocyte Necrosis  

Our method of cell preparation yielded at least 90% of the isolated 

cardiomyocytes with rod shape morphology. After 40 min of SI and 1 h of RO, the 

percent of trypan blue-positive (necrotic) cardiomyocytes was 79.8±1.5% in the control 

(DMSO) group. Treatment with TAD, HO-3867 and combination treatment resulted in a 

*p<0.05 vs. C57BLKS 

#p<0.05 vs. db/db 
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statistically significant decrease in the number of trypan-blue positive cardiomyocytes. 

The number of trypan-blue positive cells expressed as the % of total cells for each 

group was: 44.2±4.9% (TAD), 27.3±3.2% (HO-3867) and 34.9±3.9% (combination 

treatment), respectively; p<0.05 vs. 73.5±3.6% (control) for each group (Figure 46). In 

addition, we found a significant decrease of necrotic myocytes between the HO-3867 

treatment group and the TAD group as well (p<0.05).  
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Figure 46.  Number of trypan blue staining cardiomyocytes.  

	
  

The total number of trypan-blue positive cells was significantly reduced after chronic 
therapy with TAD, HO-3867 and combination therapy. Surprisingly, HO-3867 provided 
the most potent benefit in preventing necrosis after 40 min SI and 1 h RO whereas 
combining TAD and HO-3867 did not provide any synergistic benefit. However, the 
possibility of any additive benefit cannot be totally excluded. The synthetic curcumin 
analogue, HO-3867 not only had a significant reduction when compared to control, but 
also when used alone it had statistically significant reduction when compared to TAD 
alone. Hence, not seeing a dramatic reduction or statically significant reduction between 
combination therapy and TAD or HO-3867 alone, the difference seen with HO-3867 and 
the significant decline with combination therapy (vs. control) does provide some 
evidence that an additive benefit may exist. Future experiments using several mice for 
cardiomyocyte isolation may provide further supportive data.  
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Figure 47.  Trypan-blue staining of cardiomyocytes from control (DMSO) treated mice after SI/RO 

	
  

Trypan-blue exclusion of myocytes from control treated mice after 40 min SI and 

1 h RO reveals a significant number of necrotic cells with a very few number of 

preserved cells without trypan-blue staining and even fewer with rod-shaped 

morphology.  
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Figure 48.   Trypan-blue staining of cardiomyocytes from TAD treated mice after SI/RO. 

	
  

Diabetic mice subjected to chronic TAD treatment and then had hearts isolated 

for cardiomyoyte isolation and subsequent SI/RO, showed less necrotic cells and 

increased preservation of myocytes with less trypan-blue positive cells and more cells 

having a rod-shaped morphology when compared to control.  
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Figure 49.  Trypan-blue staining of cardiomyocytes from combo treated mice after SI/RO. 

	
  

	
   Isolated cardiomyocytes from mice treated with combination therapy had an 

increase in cell survival with less trypan-blue positive cells when compared to control.  
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Figure 50.  Trypan-blue staining of cardiomyocytes from HO-3867 treated mice after SI/RO. 

	
  

Figures 47-50, provide quantitative data of the in vitro effects of TAD, HO-3867, 

and combination therapy on isolated ventricular cardiomyocytes following 40 min SI and 

1h RO using a Nikon Eclipse Ti microscope (Melville, NY). After 1 h of RO, trypan-blue 

positive nuclei were counted in respect to the total number of cell nuclei seen. The TAD, 

HO-3867 and combination treated groups had significantly lower trypan-blue positive 

nuclei as compared with cardiomyocytes treated with control. In addition, myocytes 
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isolated from the HO-3867 group were much less necrotic when compared to myocytes 

isolated from TAD treated mice as well, p<0.05; Figure 46.   

 

Plasma Inflammatory Cytokine and Chemokine Levels  

There was a significant decrease in nearly all pro-inflammatory cytokines 

measured after 12 weeks of treatment with TAD, HO-3867 or combination therapy when 

compared to DMSO with the exception of IL-6 (Figures 51). Surprisingly, there was no 

decrease in the anti-inflammatory cytokine IL-10 in any of the treatment arms when 

compared to DMSO, (p=ns; Figure 55). There was however a trend towards an increase 

in IL-10 with combination therapy, but this did not achieve statistical significance.  

We found a significant reduction in circulating levels of the pro-inflammatory 

cytokines TNF-α and IL-1β (Figures 52 and 53).  Unfortunately, we did not find any 

additive or synergistic anti-inflammatory effect when combining the two therapies. 

Interestingly, we did not see a decrease in circulating IL-6 levels with any of the 

treatment therapies, in fact there was an increase in IL-6 with TAD therapy when 

compared to control and the other treatment arms (Figure 54). The other treatment 

groups had no significant decrease in IL-6 levels when compared to control. Currently 

there is an ongoing debate on whether IL-6 is beneficial or detrimental in diabetes and 

the use of leptin receptor null mice would only further complicate the cellular and 
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molecular dynamics. The chemokines MIP-1β (CCL-4), MCP-1 (CCL-2) and RANTES 

(CCL-5), were all significantly reduced with TAD, HO-3867 and combination therapy 

when compared with control (Figures 57-59). Plasma levels of the chemokine MIP-1α 

(CCL-3) however could not be interpreted as all levels measured using the Bio-Plex 

Magnetic beads assay were below the standardized concentration curve and could not 

be analysed.   

	
  

Figure 51. Reduction of inflammatory cytokines and chemokines vs. control (DMSO). 
	
  

The figure above shows the percent reduction of the eight assessed inflammatory 
cytokine and chemokines in the 3 treatment groups as compared to the DMSO treated 
mice.  There were notable reductions in the key pro-inflammatory cytokines, however 
given the increase in IL-6 in the TAD group; it is difficult to appreciate the changes. 	
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Figure 52.  Reduction in inflammatory cytokines and chemokines vs. control (DMSO) treated mice. 

	
  

Figure 52 also shows the percent reduction of the inflammatory cytokine and 
chemokines in the 3 treatment groups as compared to the DMSO treated mice although 
with the exclusion of IL-6, the reductions in each group is much easier to appreciate. 	
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Figure 53.  Plasma levels of TNF-α.  

	
  

After 12 weeks, circulating plasma levels of the inflammatory cytokine TNF-α was 
significantly reduced in each treatment group. There was a robust decline from control 
levels 264±12.8 pg/mL vs. 56.6±11.6 pg/mL for TAD, 60.3±10.9 pg/mL in the HO-3867 
group and 36.3±6.2 pg/mL for combination therapy (p<0.05 for all groups vs. control). 
The combination therapy group had the most profound reduction in TNF-α levels, 
although when compared to TAD and HO-3867 this reduction was not significant.  
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Figure 54.  Plasma levels of IL-1β. 
	
  

Plasma levels of the pro-inflammatory cytokine IL-1β were reduced after 12 weeks of 
treatment in every group when compared to control. The combination group did not 
have any additive benefit in attenuating IL-1β. The control levels of IL-1β after treatment 
was 81.7±5.7 pg/mL vs. 39.3±4.5 pg/mL for TAD, 32.7±5.6pg/mL in the HO-3867 group 
and 40.7±9.1 pg/mL for combination therapy (p<0.05 for all groups vs. control). 
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Figure 55.  Plasma levels of IL-6. 
	
  

Interestingly, no treatment group led to a decrease in IL-6 levels although there was not 
a statistically significant increase in either the HO-3867 (4.6± 1.2 pg/mL) or combination 
groups (2.8± 0.52 pg/mL) either. There was however, a dramatic increase in IL-6 after 
chronic TAD treatment (10.4± 3.5 pg/mL) as compared to control (2.6± 0.1 pg/mL).  
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Figure 56.  Plasma levels of IL-10.  
 

Plasma levels of anti-inflammatory cytokine IL-10 were not significantly different in the 
TAD (42.1±13.6 pg/mL) or HO-3867 (44.8±4.1 pg/mL) treatment groups when 
compared to control (64.6±2.6 pg/mL). We did find a trend towards an increase in IL-10 
levels after 12 weeks of combination treatment (71.8±8.0 pg/mL), however this did not 
reach statistical significance.  
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Figure 57.  Plasma levels of IFN-γ. 
	
  

The dimerized soluble cytokine IFN-γ is a key mediator of macrophage activation and 
plays a significant role in autoinflammatory and autoimmune diseases. It has been 
shown to be upregulated and associated with obesity-induced inflammation. After 12 
weeks of therapy, plasma levels of IFN-γ were dramatically reduced with TAD (2.9±0.7 
pg/mL), HO-3867 (2.7±0.1 pg/mL) and combination treatment (3.9±0.5 pg/mL) when 
compared to control (7.1±0.8pg/mL), p<0.05 vs. all groups.  
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Figure 58.  Plasma levels of MIP-1β. 

	
  

The chemokine MIP-1β or chemokine (C-C motif) ligand (CCL-4) is also a macrophage 
activator and helps recruit macrophages to adipose tissue which perpetuates the pro-
inflammatory cascade associated with insulin resistance and obesity. After treatment 
however, circulating levels of MIP-1β were reduced with TAD (12.0±0.9 pg/mL), HO-
3867 (10.9±2.9 pg/mL) and combination treatment (6.9±1.0 pg/mL when compared to 
control (24.8±2.3pg/mL), p<0.05 vs. all groups.  
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Figure 59.  Plasma levels of MCP-1. 

	
  

Monocyte chemoattractant protein-1 (MCP-1), also known as CCL2, is a chemokine that 
activates monocytes, memory T cells, and dendritic cells to the sites of infection or 
inflammation. More recently, MCP-1 was shown to induce amylin expression through 
ERK1/2, JNK-AP1 and NF-κB related signaling pathways independent of the MCP-1 
receptor. Amylin upregulation by MCP-1 is known to contribute to the elevation of 
plasma amylin and insulin resistance in obesity. We found that treatment with each 
compound significantly reduced levels of MCP-1. Circulating levels after treatment with 
TAD were 30.5±5.7 pg/mL, HO-3867 (37.3±3.4 pg/mL) and combination treatment 
(27.2±2.2 pg/mL) when compared to control (61.5±1.8 pg/mL), p<0.05 vs. all groups.  

 

MCP-1

Con
tro

l
TAD

HO-38
67

Com
bo

 
0

20

40

60

80

Pl
as

m
a 

Le
ve

ls
  (

pg
/m

L)

* p<0.05 vs. control

*
**



	
   	
   P a g e 	
   | 	
   1 5 4 	
  
	
  

	
  

	
  

Figure 60.  Plasma levels of RANTES. 

	
  

Regulated upon and normal T-cell expressed and secreted (RANTES), also known as 
CCL-5 is a chemokine that plays a significant role in recruiting various leucocytes to 
inflammatory sites. It is currently unknown what exact role RANTES plays in the 
obesity-induced inflammatory disorder but given its chemotactic ability, we can 
hypothesize that attenuation of its production would decrease the inflammatory 
response. Accordingly, we found treatment with TAD (30.5±5.7 pg/mL), HO-3867 
(37.3±3.4 pg/mL) and combination of both (27.1±2.3 pg/mL) all significant reduced 
circulating levels of RANTES when compared to control (61.5±1.8 pg/mL), p<0.05 vs. 
each group.  
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The Effects of TAD therapy on MicroRNA -103/107 and Cav-1 

As shown in Figures 60 and 61, db/db mice treated with DMSO had a dramatic 

rise in myocardial miR-103 and miR-107 expression when compared to non-diabetic 

controls.  

 

	
  

Figure 61.  Myocardial miR-103 expression after TAD treatment. 
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Treatment with TAD caused a significant reduction in miR-103 levels (Figure 60) 

and miR-107 (Figure 61) as compared to the db/db DMSO-treated control, to levels that 

were similar to the non-diabetic control.  Since the downstream target gene of miR-

103/107 has been predicted to be caveolin-1 based on complimentary sequence 

alignment, we evaluated myocardial mRNA levels of Cav-1 and confirmed this by 

Western blot analysis.  

	
  

	
  

 Figure 62.  Myocardial miR-107 expression after TAD treatment.  
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Figure 63.  Cav-1 mRNA after TAD treatment.  

	
  

The total myocardial mRNA expression of Cav-1 was significantly reduced in the db/db 
mice, which correlated with the increased expression of myocardial miR-103 and -107. 
To further confirm the reduced mRNA levels of caveolin-1, we performed a Western blot 
analysis for protein expression and similarly found lower levels of CAv-1 protein in the 
diabetic controls. Conversely, after chronic TAD treatment, there was a significant 
increase in Cav-1 mRNA expression as well as protein levels (Figures 63 and 64).  
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Figure 64.  Western blot and densitometry data of Cav-1 protein. 

	
  

Given that both miRs negatively regulate Cav-1, we found a statistically significant 
increase in Cav-1 expression with chronic TAD treatment, which appropriately 
correlated with the decrease in miR 103/107. Likewise, the db/db group had significantly 
lower levels of Cav-1, which corresponded with the much higher levels of both miRs 
(Figures 62-63).  
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Evaluating total protein expression of Cav-1, we found a significant increase in 

the non-diabetic controls which significantly downregulated in the diabetic mice. This 

could have been related to the elevated miR-103 and miR-107 expression since it is 

speculated that the downstream target gene of miR-103/107 is Cav-1. Chronic TAD 

therapy attenuated this dramatic decline in Cav-1 levels and this may be one 

mechanism by which chronic TAD treatment improves insulin signaling as Cav-1 is 

known to improve insulin receptor stabilization and enhance insulin signaling.  
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CHAPTER 7 

 

DISCUSSION 

 

For the first time, we have demonstrated that chronic administration of a 

synthetic analogue of curcumin attenuates inflammation, significantly improves insulin 

sensitivity, reduces mean body weight and ameliorates infarct size after I/R injury both 

with and without the concomitant administration of the PDE-5 inhibitor TAD. The 

treatment regimens of TAD and HO-3867 exhibited beneficial effects on various 

systemic metabolic abnormalities induced by insulin resistance and obesity and 

together were effective in improving the metabolic status of obese mice as evidenced by 

improvements in body weight, fasting blood glucose and both insulin and glucose 

tolerance tests. The db/db mouse model is a model of severe type II diabetes in 

morbidly obese animals and we hypothesized that the moderate reductions in terms of 

body weight and blood glucose observed in our preliminary investigations could be 

further accelerated and potentiated if TAD treatment was coupled with another anti-

hyperglycemic drug.  Although clinical studies indicate that the incidence and severity of 

AMI are greater in the diabetic population compared to the non-diabetic 

populations,253,255 experimental data reveals conflicting data on the vulnerability of the 

diabetic heart to ischemia in diabetic animal models.256 These inconsistent results can 

be partially explained by different durations and severity of diabetes and interspecies 
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variability.257-259 Moreover, the severity and type of ischemic challenge can modify the 

response of the diabetic heart to injury.257 In this investigation, we challenged the 

diabetic hearts to 30 min global ischemia followed by 1 h reperfusion that resulted in 

increased sensitivity to ischemic insult as evidence by larger infarct sizes in the 

untreated diabetic mice hearts (Figures 31-35). Cardiac function did not significantly 

improve in the treatment group during isolated I/R, albeit significant variability between 

isolated hearts in the same treatment group quite possibly lead to this non-significant 

finding. We speculate that possible differences at the time of experimentation such as 

quality of buffer preparation (given the requirement for daily preparation), pH variability, 

and in our model, external temperature, which could not be stringently regulated to be 

maintained continuously at 37° C without any variance.  Each issue could potentially 

limit and/or hinder cardiac performance in the isolated perfused heart model. We did 

however find a difference in coronary flow rates with improvements in coronary flow in 

the treatment groups when compared to the DMSO treated controls (Figure 36).  

 Likewise, in vitro studies using isolated cardiomyocytes from each treatment 

arm yielded a reduction in necrotic cells after chronic administration with TAD both with 

and without HO-3867 after 40 min SI and 1 h RO. The cardioprotective effects of these 

drugs, specifically TAD, are consistent with our previous studies that demonstrate that 

PDE-5 inhibitors can induce powerful cardioprotective effects against in vivo myocardial 

I/R injury, yet in the normoglycemic mice.260 
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 A number of cellular signaling pathways have been demonstrated to be 

involved in the cardioprotective effects of TAD.  Previously we reported that TAD 

treatment enhances cGMP and PKG levels in murine models of I/R injury indicating that 

the cardioprotective effect of TAD is through the NO-cGMP-PKG signaling 

cascade.260,261 Likewise, we have shown that other PDE-5 inhibitors, such as sildenafil 

and vardenafil, upregulate PKGIα, eNOS/iNOS protein expression, open the 

mitochondrial KATP channel and through phosphorylation and inactivation of GSK-3β, 

prevent opening of the mPTP—all of which lead to cardioprotection (Figure 64).30, 32, 211, 

262, 263  

 The phosphorylation and activation of PI3K leads to activation and 

phosphorylation of Akt, which phosphorylates and inactivates GSK-3β. We evaluated 

the myocardial expression of phosphorylated Akt (pAkt) in non-treated db/db controls, 

non-diabetic controls, and db/db mice treated chronically with TAD. We found a 

significant decline in phosphorylated Akt in diabetic mice, which was restored after TAD 

treatment. Similarly, db/db mice are known to have lower than normal levels of 

activated/phosphorylated AMPK (pAMPK), a key regulator of metabolism, which were 

significantly lower in the diabetic mouse yet restored to basal non-diabetic levels with 

TAD therapy. These observations confirm previous studies that demonstrate the critical 

role of Akt and AMPK in mediating the cardioprotective effects in diabetic hearts.264    
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 PDE-5 inhibitors have also been shown to increase hydrogen sulfide (H2S) 

levels through PKG which upregulates the enzyme responsible for H2S production--- 

CSE. Recent data support a number of beneficial and cardioprotective effects of H2S. 

Through increased H2S levels, downstream effects include opening of the mitochondrial 

KATP channel, increased PKC which decreases intracellular calcium load and prevents 

opening of the mPTP. Likewise, through PI3K, Akt and PKC-θ signaling cascade it can 

increase expression of anti-apoptotic proteins, Bcl-2 and Bcl-XL. Another beneficial 

effect of H2S is that is a known activator of Nrf2, which allows its translocation to the 

nucleus for transcription of antioxidant genes such as heme oxygenase-1 (HO-1), 

glutathione peroxidase (GPX), catalase, and glutathione-S-transferase (GST) (figure 

64).  

 Oxidative stress mediated by hyperglycemia-induced generation of ROS 

contributes significantly to the development and progression of diabetes and related 

vascular damage.265 Impaired antioxidant defenses coupled with an increase in ROS, 

both contribute to oxidative stress and numerous studies have shown that ROS 

generation increases in both type I and type II diabetes.266-269 Moreover, ROS are 

involved in insulin resistance via its regulatory effects on mitochondrial function.270  
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Figure 65.   Possible mechanisms by which TAD attenuates inflammation, improves glucose levels 

and offers cardioprotection 

The illustration above represents the various pathways that TAD may affect signaling to 
attenuate inflammation, glucose levels, myocyte apoptosis and necrosis. TAD through 
inhibition of PDE-5 can increase cGMP leading to increases in phosphorylated PI3K 
and Akt. This can inactivate GSK-3β by phosphorylation, which will inhibit opening of 
the mPTP. Likewise, cGMP increase PKGIα levels, which phosphorylates and activates 
VASP. VASP has been shown to attenuate inflammation by blocking NF-κB. PKGIα also 
can directly open the mitoKATP channel, which further leads to cardioprotection. Through 
the insulin receptor substrate (IRS) and the increased Akt and PI3K from downstream 
PDE-5 inhibition, there can be an increase in GLUT4, which promotes glucose uptake.   
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In the present investigation we demonstrate that chronic treatment with TAD and HO-

3867 attenuates oxidative stress induced in an animal model of type II diabetes and 

likewise decreases the ROS production in isolated ventricular myocytes following SI/RO 

injury. In addition, increased ROS generation augments impairment of mitochondrial 

function in diabetic hearts.271 

As both pharmacological agents have shown the capability to attenuate ROS 

generation and reduce oxidative stress, we investigated whether the proposed 

treatment regimen would preserve the Δψm. Accordingly, JC-1 immunofluorescent 

staining revealed dissipation and loss of mitochondrial integrity following SI/RO in 

cardiomyocytes isolated from db/db mice treated with DMSO alone. However, TAD with 

and without HO-3867 significantly preserved the loss of Δψm. These findings 

demonstrate that the protective effects of TAD and HO-3867 in diabetes-induced 

oxidative damage may be due effective ROS scavenging and thus maintaining a 

delicate balance in oxidant-antioxidant status of the myocardium. This effectively 

suggests that either therapeutic compound may be a promising drug in avoiding the 

development of diabetes-induced oxidative cardiotoxicity. In addition, we recently 

published that chronic treatment with TAD in diabetes improves redox signaling by 

enhancing the antioxidant enzyme glutathione-S-transferase kappa-1 and 

downregulates redox regulatory chaperones, HSP8 and 75 kDa glucose regulatory 

protein.272 One of the proposed mechanisms, as shown in Figure 65, may be through 

upregulation of hydrogen sulfide producing enzyme, CSE. This effectively increases 
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H2S which upregulates Nrf2 and enhances its nuclear translocation. One of the 

downstream target genes of the Nrf2 transcription activator is glutathione-S-transferase.  

Chronic inflammation induces insulin resistance through upregulating metabolic 

alterations in blood pressure, blood glucose levels, and lipids. Thus, a deleterious cycle 

begins as adipose tissue release pro-inflammatory cytokines, which in turn leads to the 

development of insulin resistance and atherogenesis.224,273 At the cellular level, nutrient 

excess has been shown to activate the IKK-β/ NF-κB pathway within adipose tissue, 

which is associated with the infiltration of macrophages. It is through this mechanism 

TNF-α and IL-1β both directly impair the insulin-signaling cascade whereas 

macrophages are the main source of inflammatory mediators within both murine and 

human adipose tissue. A significant finding advancing the study of obesity-induced 

inflammation was the discovery that the marked increase in inflammatory adipokine 

production was directly related to the number of macrophages within the adipose tissue.   

We also showed for the first time that circulating levels of key pro-inflammatory 

cytokines, TNF-α and IL-1β, were significantly reduced after chronic TAD± HO-3867 

treatment. However, the combination of the two therapies did not lead to any further 

reduction in circulating cytokines.  This could be arriving at a maximum reduction or 

attenuation of circulating cytokines achieved and that combination of the two 

compounds could not lead to any further decrease. On the standard concentration 

curve, values for both TNF-α and IL-1β were on the lower end and values were often 
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omitted because they were well below the standard curve.  Nevertheless, each 

compound reduced both inflammatory markers either individually or in combination.  

The anti-inflammatory cytokine IL-10 however did not change between the 

groups, although in our preliminary experiments we saw a slight, but statistically 

significant, increase in IL-10 after 4 weeks of TAD treatment. Previously published data 

and known physiological pathways show that IL-10 levels are inversely proportional to 

adiposity.74 Adipose tissue of lean mice secretes an unusually high level of IL-1, which 

suppresses adipose tissue inflammation. Furthermore, the number of T cells that 

secrete IL-10 dramatically decrease in proportion to increasing obesity.274 After 12 

weeks of therapy, there was not a statistically significant difference in IL-10 levels 

between the groups. A non-diabetic control group would have been helpful in 

determining if the levels were higher in a treated group than in the DMSO treated 

diabetic group. Likewise, performing cytokine analysis both at the start of the study and 

repeating an analysis at the end could also provide additional data for these conflicting 

results.  

Surprisingly, we found that there was an increase in IL-6 after chronic TAD 

treatment, whereas there was no difference in IL-6 levels between control and the other 

treatment groups. This finding is also different than our preliminary findings with TAD 

and DMSO treatment for 4 weeks. In the preliminary work, there was a small and 

statistically insignificant decline in IL-6 with TAD therapy. Currently after 12 weeks, 
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there was a greater increase in circulating IL-6 levels with TAD treatment alone. The 

combination and HO-3867 groups were no different than control.  Currently, the exact 

role of IL-6 in the pathophysiology of insulin resistance remains controversial and to 

date there is no consensus although various experiments have provided some critical 

information on its effects on the insulin signaling cascade. In insulin-resistant 

individuals, IL-6 levels were found to be significantly elevated in adipose tissue.275 

Moreover, IL-6 acts both centrally and peripherally to induce energy expenditure and 

impair insulin signaling.276 However, both deficiency and overexpression of IL-6 lead to 

severe hepatic inflammation and insulin resistance. In cell culture models, hepatic and 

adipocyte insulin signaling can be inhibited by IL-6 through IRS-1 inhibition.277 Future 

experiments with tissue specific targeting of IL-6 will likely improve our understanding of 

IL-6 and its pathophysiological role in insulin resistance.  

The monocyte chemoattractant protein-1 (MCP-1) is produced by adipose tissue 

in response to dietary excess and is a key factor in recruiting the macrophage 

precursor, the monocyte. Studies in MCP-1-/- and mice overexpressing MCP-1 confirm 

the role of this chemokine in attracting macrophages to adipose tissue and in reducing 

insulin sensitivity in high-fat diet induced obesity.278 Mice lacking the receptor for MCP-1 

showed a lower macrophage content in visceral adipose tissue and improved insulin 

sensitivity after high-fat diet feeding.279 Likewise, the expression of a dominant negative 

mutant for MCP-1 in obese db/db mice significantly decreased their insulin 

resistance.280 In addition to MCP-1, human studies have confirmed the increase of 
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MCP-2, RANTES, and macrophage inflammatory protein (MIP)-1α in obese individuals 

when compared to lean cohorts. 281  

Macrophage inflammatory protein-1β (MIP-1β), MCP-1 and RANTES are three 

chemokines with the C-C ligand (CCL) motif and play a significant role in the activation 

and proliferation of the inflammatory cascade, especially in adipose tissue and the 

endothelium.282 Not surprisingly, TNF-α can activate both MCP-1 and MIP-1β which 

further recruit macrophages to the adipose tissue, hence potentiating the inflammatory 

response.283 This invariably leads to the chronic low-level state of inflammation found in 

obesity. We found that along with reduced levels of TNF-α, the chemokines MIP-1β, 

MCP-1 and RANTES were all significantly reduced with all three treatments as 

compared with control.  

Early in obesity-related insulin resistance there is a reduction in vascular NO 

content, which predisposes to increased vascular inflammation, thrombosis and 

vasoconstriction. This precedes the increase in hepatic NF-κB signaling and impaired 

insulin signaling through phosphorylated Akt. Nitric oxide signaling includes activation of 

PKG and one downstream target is vasodilator-stimulated phosphoprotein (VASP), a 

protein implicated in the control of cytoskeletal dynamics and cell migration.169 Several 

studies have shown that diet-induced obesity and genetically induced murine models of 

obesity, both reduce vascular NO content which precedes a dramatic increase in 

hepatic inflammation and hepatic insulin resistance (decrease in insulin stimulation of 
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the IRS-1/PI3K/Akt pathway). In addition, the decline in NO content precedes the 

inflammation, which is characterized by an increase in NF-κB signaling. Several dozen 

studies have established the role of curcumin in inhibiting NF-κB signaling through 

directly blocking the HAT p300/CBP. In a study by Handa et al, they found that reduced 

VASP directly correlated with adipose tissue inflammation (increased TNF-α, IL-6) and 

was also associated with significantly low levels of NO and phosphorylated eNOS.169 In 

addition, they found that phosphorylation of VASP by PKG was critical in the attenuation 

of hepatic inflammation and insulin resistance and VASP-/- mice were especially 

vulnerable. Moreover, restoration and/or augmentation of VASP signaling with use of a 

PDE-5 inhibitor attenuated insulin resistance, inflammation and improved insulin 

signaling. Endothelial NO levels were also increased as a result of elevated eNOS 

expression. Conversely, eNOS-/- mice were quick to develop vascular inflammation and 

insulin resistance regardless of low or high fat diets. In our study, use of the long acting 

PDE-5 inhibitor could have increased phosphorylated VASP levels as a potential 

mechanism for ameliorating inflammation, improving insulin resistance and endothelial 

NO.  

We believe that restoration of NO-sGC-PKG signalling following chronic 

treatment with TAD is the critical mechanism behind improving fasting blood glucose 

levels and targeting insulin resistance. With improved NO bioavailability and 

vasodilatation with PDE-5 inhibitors,284 there is increased blood flow for muscle glucose 

utilization and additionally, the decreased TNF-α in the circulation may potentially 
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attenuate the amount of IRS-1 receptor phosphorylation and improve insulin signalling. 

It has also been postulated that chronic PDE-5 inhibitor treatment may increase fatty 

acid oxidation and may also be a potential mechanism for preventing insulin resistance. 

In a mouse model of diet-induced obesity and insulin resistance, chronic sildenafil 

treatment was able to improve insulin action and decrease body mass.3 In addition, 

chronic therapy with both a PDE-5 inhibitor and synthetic curcumin, lead to a significant 

reduction in body weight, which directly correlated with levels of inflammation. We 

believe the overall reduced inflammatory drive stimulated by adiposity was critical in 

glucose homeostasis as improvements in fasting glucose correlated with reductions in 

mean body weight.  

Treatment with TAD in C2C12 myoblasts improves oxidative capacity as 

demonstrated by increase in fatty acid metabolism, including the activities of citrate 

synthase and 3-OH acylCoA dehydrogenase.285 One possible explanation is that PKG 

has been shown to affect insulin signaling and mitochondrial biogenesis in brown 

adipose tissue by inhibiting the activity of RhoA and Rho-associated kinase (ROCK), 

thereby relieving the inhibitory effects of ROCK on IRS-1.286 This allows the activation of 

the phosphotidyl-inositol-3-kinase (PI3K)-Akt signaling cascade downstream of the 

insulin receptor. In addition, Haas et al showed that PKG mediated the ability of NO and 

cGMP to induce mitochondrial biogenesis and increase the expression of UCP-1, a 

protein necessary in energy expenditure through thermogenesis 286. Similarly, NO and 

eNOS have been shown to directly correlate with mitochondrial biogenesis as the 
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abundance of peroxisome proliferator activated receptor-gamma (PPAR-γ) and cold-

induced mitochondrial biogenesis were completed abrogated in an eNOS knock-out 

model.287,288   

We found that 12 weeks of treatment with a synthetic analogue of curcumin (HO-

3867) provided significant metabolic benefits with improvements in insulin sensitivity 

and body weight. The anti-inflammatory effects, as demonstrated by reductions in key 

cytokines and chemokines seen with HO-3867 therapy, were associated with 

improvements in glycemic control as determined by blood glucose levels, glucose and 

insulin tolerance tests. Treatment was also associated with a small, but statistically 

significant, decline in body weight during the 3-month treatment period. Interestingly, a 

study by Weisberg et al also found a notable reduction in hepatic NF-kB activity and an 

overall decreased inflammatory profile in the ob/ob and diet-induced obese murine 

models after 6 weeks of curcumin therapy. Likewise, they found reductions in body 

weight and hemoglobin A1c, and improvements in insulin and glucose tolerance tests, 

and fasting glucose levels. They went on to show a dramatic increase in mRNA and 

serum protein levels of the insulin-sensitizing protein, adiponectin. In addition, they 

showed curcumin reduced ER stress and the downstream benefits were improvements 

in hyperglycemia. They found curcumin therapy upregulated heat shock protein (HSP) 

70, HSP90, and Sirt1, which all attenuate the ER stress response and increase 

adiponectin levels.83  
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Figure 66. The various potential mechanisms by which curcumin provides anti-inflammatory, anti-

oxidant, cardioprotective and insulin sensitizing effects. 

This figure illustrates the various pathways by which curcumin has been shown to have 
protective anti-oxidant, anti-inflammatory, insulin-sensitizing and cardioprotective 
effects. Curcumin is a cell-permeable compound with inherent histone acetyltransferase 
(HAT) inhibitory activity for p300/CBP, which attenuates activation of NF-kB. Likewise, 
through Nrf2 signaling, can upregulate anti-oxidant genes and by inhibition of PKC, will 
prevent NADPH oxidase from generating ROS. Through the upregulation of AMPK, Akt, 
PPAR-γ, and CD36 it increases free-fatty acid oxidation and glucose utilization. As 
discussed earlier, increases in PKG and eNOS also have cardioprotective features. The 
inhibition of p38 MAPK attenuates cardiac fibrosis and hypertrophy that prevents post-
MI induced heart failure, whereas the inhibition of p300/CBP has been shown to be a 
critical signaling molecule through which curcumin therapy reduces infarct size. 
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The limitation of the Weinberg study was that an extremely high dose of 1.5g/Kg of 

curcumin was used because of the compound’s poor oral bioavailability. Such extremely 

high doses would be impractical to use in human clinical studies, albeit unlikely toxic. 

However, having similar benefits to organic curcumin but 10 times the absorption rate 

and potency, HO-3867 may be a promising alternative for future study especially for 

cardiometabolic diseases.78 In figure 66, the numerous pathways that curcumin has 

been shown to provide anti-inflammatory, anti-oxidant and even cardioprotective effects 

are illustrated. Numerous data supports that curcumin treatment can upregulate 

glutathione S-transferase and lead to nuclear translocation of Nrf2, which results in an 

increase in anti-oxidant gene expression.289  

In addition, through inhibiting the HAT p300/CBP and its transcriptional activating 

ability, it can block downstream activation of NF-κB, a key regulator of inflammation. 

Curcumin has also been shown to inhibit specific subunits of NADPH oxidase via PKC, 

which accordingly attenuates ROS production. Similarly, its affect on metabolism and 

glucose homeostasis has been shown to be via the upregulation of a number of 

regulatory signalling molecules such as AMPK, Akt, CD36, PPAR-γ and eNOS.  

Like most oral diabetic drugs, curcumin activates PPAR-γ and improves blood 

glucose levels without having to increase pancreatic β cell secretion of insulin and even 

induces gene expression of PPAR-γ. Likewise, PPAR-γ is known to be downregulated 

by TNF-α of which both TAD and HO-3867 decrease circulating plasma levels. 
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Moreover, curcumin can activate AMPK by phosphorylating its α subunit and increasing 

fatty acid oxidation within adipocytes.83 In a study by Seo et al, db/db mice were fed 

curcumin 0.02% (wt/wt) for 6 weeks. Curcumin significantly lowered hepatic activities of 

fatty acid synthase, beta-oxidation, 3-hydroxy-2-methylglutaryl coenzyme reductase, 

lowered plasma FFA, cholesterol, triglyceride concentrations, and increased hepatic 

glycogen and skeletal muscle lipoprotein lipase (LPL).290 

Curcumin has been shown to improve insulin signaling and glucose disposal 

through mitigating oxidative stress within the mitochondria via upregulating the Nrf2 

signaling pathway.289 A recent study by Yu et al showed in an in vivo model that 

oltipraz, a compound which upregulates Nrf2 signaling, could prevent insulin resistance 

and obesity in C57BL/6J mice fed a high-fat diet. Within 3T3-L1 adipocytes, curcumin 

could increase insulin-stimulated glucose uptake through inhibition of NF-κB and JNK, 

and through inhibition of the pro-inflammatory response by inhibiting phorbol myristate 

acetate induced (PMA)-induced MCP-1 expression and TNF-α secretion.73  

Through inhibition of p38 MAPK signalling, SOCS3, and the p300/CBP HAT and 

via upregulation of the JAK2/STAT3 pathway, curcumin also has favourable effects on 

cardiac remodeling and cardiac hypertrophy.291,292 This abrogates unfavourable 

remodeling after AMI and reperfusion injury and prevents the development of heart 

failure.  
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We found that chronic treatment with TAD had an effect on myocardial 

expression of miR-103 and miR-107—two miRs that have been shown to play a role in 

glucose regulation and insulin sensitivity. Chronic TAD therapy attenuated the increase 

in both miR-103/107 seen in the diabetic controls (DMSO-treated), which was 

significantly higher than that seen in non-diabetic mice (Figures 60 and 61). Moreover, 

recent data has shown that the downstream target gene for these miRs include Cav-1, 

which is a key component of caveolae within the plasma membrane and helps stabilize 

the insulin receptor and improve insulin signaling.219 Given that both miRs negatively 

regulate Cav-1 expression, db/db controls had a significant rise in miR expression and a 

dramatic decline in Cav-1 expression, which may present one mechanism by which 

insulin sensitivity is decreased. In contrast, chronic TAD treatment in db/db mice 

lowered myocardial expression of both miRs to levels comparable to that seen in the 

non-diabetic control. This ultimately led to a significant increase in Cav-1 mRNA 

transcript levels and protein expression.   

The underlying mechanism behind the decreased expression of miR-103 and -

107 is still unknown but we speculate it may not be secondary to a single enzyme or 

signaling molecule but rather a complex system inherently designed to work in concert 

with the metabolic systems of the body. As hormone dysregulation occurs with over 

nutrition and obesity, there is upregulation of these miRs, which leads to downregulation 

of their target gene, Cav-1.  
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Figure 67.  Potential mechanisms by which TAD treatment effects miR-103/107 and Cav-1 

expression. 

The figure above depicts the possible mechanism through which miR-103 and -107 
effect insulin sensitivity and inflammation. Cav-1 provides stabilization of the insulin 
receptor and enhances insulin signaling, and increased expression of miR-103 and -107 
downregulates Cav-1 therefore destabilizing the insulin receptor. Likewise, recent data 
suggest that this augments inflammatory signaling through TLRs thus increasing 
inflammation, which further affects insulin signaling. PDE-5 inhibitors increase PKGIα 
and VASP, and VASP is a protein known to attenuate inflammation. Whether a direct or 
indirect effect of PKG signaling effects miR-103 and -107 expression has yet to be 
determined.  
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Cav-1, being a critical protein within caveolae and known to help stabilize the 

insulin receptor and enhance insulin signaling, it is only intuitive to realize that proper 

signaling will be disturbed with its downregulation. Whether treatment with TAD has a 

direct effect on Cav-1 expression or has an indirect effect as a result of targeting miR-

103/107, will take further experimentation most likely with the use of genetically 

engineered murine models.  

In future studies, we will likely include several additional methods to further 

understand the intricacies of metabolic disease, the NO-cGMP signaling cascade, 

inflammation and the use of novel pharmacological therapies.  The use of nuclear 

magnetic resonance for body fat composition analysis will be a better method than basic 

weight measurements to identify fat loss between treatment groups as opposed to 

simply global weight loss which can include lean muscle mass loss as well. Assessing 

inflammatory cytokines both pre- and post pharmacological intervention would also be 

valuable. We would also plan to include a large control set of non-diabetic mice for all 

experiments. Additionally, given that we did not see a change in IL-6 levels we would 

pursue the assessment of IL-6 in various tissue samples, especially hepatic and 

adipose tissue.  

Interestingly, a newer device used in human clinical studies called a Dexcom 

could possibly be used in animal studies. This would dramatically accuracy of blood 

glucose recordings and furthermore allow for continuous monitoring. The small 
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implantable device could be implanted under the skin, which would continuously report 

interstitial glucose levels. The only caveat is that it requires venous glucose samples 

twice a day to be put into the wireless monitoring device for calibration.  

We found that miR-103 and -107 are elevated in the obese, diabetic model and 

that TAD therapy reduced these levels. Whether a direct correlation to PKG signaling 

can be made at this time is not possible. In the future, using a PKG viral knockdown 

model or drug inhibitor and LNA-antagomir therapy/overexpression, whether or not PKG 

is directly involved or is part of the signaling can begin to be sorted out.  

In summary, these studies provide new insight into the potential role of TAD and 

curcumin-induced cardioprotection, anti-oxidant and anti-inflammatory effects in type 2 

diabetes.  In particular, we demonstrated that both TAD and HO-3867 attenuated ROS 

formation induced in the diabetic myocardium following I/R injury and improves 

mitochondrial integrity while providing cardioprotective effects via Akt-AMPK signaling. 

In addition, we showed profound effects on insulin sensitivity and glucose homeostasis 

with both compounds and specifically that TAD may impact the metabolic system 

through attenuation of key microRNAs (miR-103/107) and their downstream target, Cav-

1.  

Overall our investigation is unique and may have significant implications for the 

management and treatment of insulin resistance, oxidative stress and obesity-induced 

inflammation—three conditions that co-exist long before CV disease clinically manifests. 
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PDE-5 inhibitors are a promising class of compounds already approved for the 

treatment of pulmonary arterial hypertension and erectile dysfunction, and curcumin is a 

natural compound with potent anti-inflammatory, anti-thrombotic, anti-oxidant and 

cardioprotective effects.73, 292 However in its natural form, curcumin is poorly absorbed, 

has low bioavailability and potency. HO-3867 is a synthetic analogue of curcumin and 

has been shown to have a 10-fold greater cellular uptake than natural curcumin thus 

making it an extremely effective, potent and powerful alternative.78 Therefore as we 

move forward, therapeutics designed to target vascular inflammation, improve insulin 

sensitivity via restoring critical signaling pathways such as the NO-cGMP-PKG pathway 

and target specific miRs, may prove to be extremely promising in the field of 

cardiometabolic medicine.  
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CHAPTER 9 

 

APPENDICES 

 

Appendix A 

Based on the results of the basic science conducted, a translational clinical trial has 

been initiated using the FDA approved drug TADALAFIL for inflammation, endothelial 

dysfunction and cardioprotection: 

 

CHRONIC TADALAFIL TREATMENT FOR THE ATTENUATION OF INFLAMMATION 

AND ENDOTHELIAL DYSFUNCTION IN THE TYPE II DIABETIC PATIENT: A 

RANDOMIZED DOUBLE-BLIND, PLACEBO-CONTROLLED PILOT STUDY (THE 

VCU T3 STUDY) 

 

HYPOTHESIS 

Insulin resistance and type II diabetes trigger a number of mechanisms and signaling 

pathways that all lead to tissue injury and functional damage to the cardiovascular 

system. The exact pathophysiological significance remains to be fully understood, but 

inflammation and oxidative stress are imperative to the development of vascular 
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dysfunction. In addition, inflammation plays a central role in vascular disease, from 

plaque inception to progression and destabilization, which represents a significant 

paradigm shift from the old idea that vascular disease and atherosclerosis is a problem 

of lipid accumulation and oxidized cholesterol. This study is unique and may have 

significant implications for the management and treatment of type II diabetes, insulin 

resistance and endothelial dysfunction—conditions that exist long before cardiovascular 

disease clinically manifests itself. Therefore, studying these conditions is extremely 

relevant since one of our goals is to effectively target and treat the underlying pathology 

of atherosclerosis in diabetic patients.  

 

a) Type II obese diabetic patients have increased levels of circulating inflammatory 

cytokines and oxidative stress and as a result of vascular inflammation have 

endothelial damage and poor nitric oxide availability. This leads to poor blood flow 

and is at the crux of atherosclerosis.   

b) Phosphodiesterase-5 inhibitors have been shown in a number of pre-clinical studies 

and a few short-term clinical studies to reduce fasting blood sugar values, reduce 

hemoglobin A1c and improve the amount of microalbuminuria. We propose the 

chronic daily treatment may also help the diabetic patient improve plasma glucose 

levels and reduce microalbuminuria through restoring the nitric oxide-cyclic GMP 

pathway.	
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SPECIFIC AIMS 

Chronic daily treatment for 8 weeks with Tadalafil 5mg for type II diabetic patient 

will: 

• Attenuate cytokines and inflammatory markers (TNF-alpha, IL-1β, IL-6), hs-CRP 

and homocysteine  

• Decrease blood levels of microRNA 103/107 (possible regulators of insulin 

sensitivity) 

• Ameliorate oxidative stress by decreasing levels of 8-isoprostane (a known 

marker of oxidative stress) 

• Increase circulating levels of nitric oxide and urinary cyclic GMP (both indirect 

measurements of endothelial health) 

• Not change urinary cyclic AMP levels thus showing that the primary effects have 

been mediated through PDE-5 inhibition and not through other PDE inhibition 

that may result in increased levels of cyclic AMP 

• Improve the following commonly followed clinical parameters in diabetic patients:  

o Fructosamine, microalbuminuria and hemoglobin A1c 

• Decrease left ventricular volumes (LV end-diastolic and end-systolic volume) 

• Reduce pulsed-wave Doppler-derived (PWD) transmitral filling indices (E- and A- 

wave velocities, E/A ratio) on transthoracic echocardiogram  
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• Increase left ventricular ejection fraction (LVEF) as measured by the Simpson’s 

rule, deceleration time [DT], diastolic filling time [DFT], and isovolumetric 

relaxation time [IVRT] on transthoracic echocardiogram. 

• Improve brachial artery flow-mediated dilatation  

 

 

RESEARCH DESIGN AND METHODS 

The purpose of this research study is to evaluate whether a medication called 

Tadalafil (Cialis™) can decrease vascular inflammation, oxidative stress and two insulin 

sensitivity regulators (microRNA 103/107); improve blood flow (as measured by urinary 

cGMP and cAMP, serum nitric oxide levels, and brachial artery flow mediated 

dilatation); decrease hemoglobin A1c, microalbuminuria and decrease left ventricular 

volumes (LV end-diastolic and end-systolic volume), reduce pulsed-wave Doppler-

derived (PWD) transmitral filling indices (E- and A- wave velocities, E/A ratio), increase 

left ventricular ejection fraction (LVEF) as measured by the Simpson’s rule, deceleration 

time [DT], diastolic filling time [DFT], and isovolumetric relaxation time [IVRT] on 

transthoracic echocardiogram.  

Tadalafil has been approved by the FDA for the use in erectile dysfunction, 

pulmonary hypertension (high pressure in the arteries going to the lungs), and an 

enlarged prostate causing urinary symptoms.  In this study, tadalafil will be compared to 

placebo (a look-alike, inactive substance). Tadalafil has not been approved to lower 
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inflammation in the body, lower blood glucose levels, or improve heart function—these 

parameters are being studied in this trial.  

The total participation time for each study subject will last up to 12 to 14 weeks.  

Approximately 40 individuals will participate in this study.  

At the first study visit (Visit 1), a comprehensive medical history will be taken and 

a physical exam will be performed.  This exam will include measurements of height, 

weight and vital signs (pulse, blood pressure and temperature).  Blood and urine 

samples will be collected for routine lab tests.  Approximately 2 tablespoons of blood 

(30mL) will be collected to measure blood levels of inflammation, hemoglobin A1c and 

nitric oxide. Women of childbearing potential will have a urine pregnancy test done and 

if positive for pregnancy cannot be enrolled in the study.  At the end of the enrollment 

and procedures (visit 1 and 2), the patient will be randomized by the VCUHS 

investigational drug pharmacy services and be provided with a 30-day supply of study 

drug (Tadalafil vs. placebo).  

After this initial assessment and blood work, a transthoracic echocardiogram 

(TTE) will be performed as part of the initial visit of the study (during visit 1), which will 

be repeated again at end of the study (at 12-14 weeks). This will take place 4 weeks 

after taking the last dose of the study drug. Various parameters will be recorded from 

the TTE including: left ventricular volumes (LV end-diastolic and end-systolic volume), 

pulsed-wave Doppler-derived (PWD) transmitral filling indices (E- and A- wave 
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velocities, E/A ratio), left ventricular ejection fraction (LVEF) as measured by the 

Simpson’s rule, deceleration time [DT], diastolic filling time [DFT], and isovolumetric 

relaxation time [IVRT].  

During the same week, the study patient will come for visit 2 after fasting for 6 

hours and have a brachial-flow mediated dilatation test. This will measure how well 

blood is flowing in the artery in the arm which is an accepted marker of endothelial 

function. This test will be performed at the start of the study and again at the end of the 

study (at 12-14 weeks). This is a test that measures how well blood is flowing in the 

brachial artery in using ultrasound to measure flow and dilatation. To perform this test 

the patient will be asked to come in fasting for at least 6 hours. Lying supine they will 

have a standard sphygomomanometer cuff applied to the right arm. This will monitor 

blood pressure and pulse throughout the examination at 5 min intervals. After resting for 

5 min, another blood pressure cuff will be applied to your left arm just below the 

antecubital fossa and inflated 50 mmHg above the measured systolic pressure and stay 

inflated for 5 min. Baseline images of the left brachial artery will be taken with an linear 

array multifrequency transducer operating at 9 MHz (GE Logiq 700 devices) just above 

the cuff for 30 seconds before inflation and then for 2 minutes immediately before 

deflation to document vasodilator response.	
  	
  

Within 3-4 weeks after Visit 2, the patient will come in for Visit 3.  The patient will 

be asked about his or her health since the last visit and about their overall experience 
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with the study drug, then have a repeat physical exam, which will include 

measurements of height, weight and vital signs (pulse, blood pressure and 

temperature). You will have a small amount of blood drawn (5mL or 1 teaspoon) to 

check your kidney and liver function as well as fructosamine (to give a estimate of blood 

sugar values of the past several weeks). If no issues have arisen in the interim, 

participants will receive a new supply of study drug. 

Approximately 7-8 weeks after Visit 2, the patient will come in for Visit 4.  The 

patient will have another physical exam with vital signs documented and again have 

blood and urine samples collected for testing.  Approximately 2 tablespoons of blood 

(30mL) will be collected to measure blood levels of inflammation, oxidative stress (8-

isoprostane), microRNA 103/107, fructosamine and nitric oxide. A urine sample will be 

collected to measure levels of cGMP, cAMP and microalbumin. Upon completion of a 

total of 8 weeks of treatment the patient will have completed the drug treatment phase 

of the study.  

Visit 5 will be scheduled at 12-14 weeks from visit 2.  At this time a repeat 

echocardiogram to see if there has been any change in left ventricular ejection fraction 

and brachial-flow mediated dilatation test to see if there has been any change in 

flow-mediated dilatation compared with measurements take from the start of the study.	
  	
  

The patient will have the last physical exam and vital signs with blood and urine 

samples collected for testing.  Approximately 2 tablespoons of blood (30mL) will be 
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collected to measure blood levels of inflammation, oxidative stress (8-isoprostane), 

microRNA 103/107, hemoglobin A1c and nitric oxide. A urine sample will be collected to 

measure levels of cGMP, cAMP and microalbumin. 

 

DATA ANALYSIS AND PLAN 

The plan is to enroll a total of 40 patients with 20 patients in each arm of the 

study.  The analyses planned include an assessment of blood for markers of 

inflammation (TNF-alpha, IL-1β, IL-6, hs-CRP), homocysteine, hemoglobin A1c, 

fructosamine, microRNA 103/107, 8-isoprostane (marker of oxidative stress), urinary 

cGMP and cAMP, improvement of various parameters on echocardiography and 

brachial artery flow-mediated dilatation. Standard descriptive statistical analysis will be 

applied to the data when patient enrollment is completed.   

 

The primary endpoint: Attenuation of the following: inflammatory markers (TNF, IL-1β, 

IL-6), hs-CRP, homocysteine, microRNA 103/107 levels (possible regulators of insulin 

sensitivity), 8-isoprostane (marker of oxidative stress); improvement in the following 

commonly followed clinical parameters for diabetic patients: hemoglobin A1c levels, 

fructosamine and microalbuminuria. We also propose an improvement in circulating 

levels of NO and urinary cGMP without significant changes in urinary cAMP. 
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The secondary endpoint: We propose a decrease in left ventricular volumes (LV end-

diastolic and end-systolic volume), reduction in pulsed-wave Doppler-derived (PWD) 

transmitral filling indices (E- and A- wave velocities, E/A ratio) with increase in left 

ventricular ejection fraction (LVEF) as measured by the Simpson’s rule, increase in 

deceleration time [DT], diastolic filling time [DFT], isovolumetric relaxation time [IVRT] 

on transthoracic echocardiogram. The TTE will be performed and read by same 

investigator. Furthermore, we propose an improvement in brachial artery flow mediated 

dilatation from the start to end of the study as a result in improved nitric oxide 

bioavailability.   

Categorical variables (such as tobacco user) will be reported as absolute and 

percent values.  Continuous variables (such as stage of hypertension) will be expressed 

as median and interquartile ranges.  Chi-square and Mann-Whitney tests will be used to 

compare categorical and continuous variables among the different groups using the 

SPSS 11.0 Software for Windows. 

 

HUMAN SUBJECTS PARTICIPATION 

Participation in the study will require blood samples (approximately 30 mL) at 

study visit 1, visit 4 and visit 5, and 5mL at visit 3 for a total of 95mL of blood per patient 

during the entire study period of 12-14 weeks. The blood samples will be analyzed for 

inflammatory cytokines including TNF-alpha, IL-1β, IL-6, hs-CRP; homocysteine, 
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hemoglobin A1c, fructosamine, microRNA 103/107, 8-isoprostane, nitric oxide and urine 

sample will be taken for urine cGMP, cAMP and microalbumin and a urine pregnancy 

test for women at visit 1 only.  A complete metabolic profile will be checked at visit 3, to 

ensure renal and hepatic function has not changed significantly since the start of the 

study (one teaspoon or 5mL of blood will be drawn at this visit). Transthoracic 

echocardiogram and brachial artery flow-mediated dilatation results will be recorded 

from visits 1, 2, and 5 and will be documented in patient chart, Cerner.  

The study will also collect data available in the patient medical record: medical 

history, prior medications, body weight, vital signs, blood chemistry, hematology, and 

12-lead electrocardiogram. If there is no complete metabolic profile and hematology 

profile available from 60 days prior to visit 1, one will be done prior to start of the study 

as part of routine care (at visit 1). 

 

INCLUSION AND EXCLUSION CRITERIA 

INCLUSION CRITERIA FOR TADALAFIL TREATMENT FOR TYPE II DIABETICS STUDY (THE VCU T3 

STUDY) 

Section 1.01 To be eligible to participate in this study, candidates must have met the 

following eligibility criteria at the time of enrollment either at the time of enrollment: 

1. Age ≥18 or ≤65 
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2. Currently diagnosed type II Diabetic with current Hemoglobin A1c ≥6.5% AND 

taking one or more oral hypoglycemic agents and/or stable insulin therapy (no 

changes to insulin regimen during 12 weeks of treatment) 

3. Known diagnosis of hypertension on at least one anti-hypertensive agent; Stage I 

or II Hypertension - but ≤180/110 at the time of enrollment  

4. Dyslipidemia (must have at least 3 of 4); (LDL≥100, Total Cholesterol ≥200, 

Triglycerides ≥150, HDL≤40 or Non-LDL ≥100) or on medical therapy for 

dyslipidemia (statin, fibrates, niacin, or ezetimibe)  

5. Obesity with BMI ≥30 or waist circumference ≥102cm (40in) for men and 88cm 

(35in) for women or waist:hip ratio >0.9 for men and >0.85 for women   

EXCLUSION CRITERIA FOR TADALAFIL TREATMENT FOR TYPE II DIABETICS STUDY (THE VCU T3 

STUDY) 

Section 1.02 Unless otherwise specified, candidates will be excluded from study entry if 

any of the following exclusion criteria exist at the time of enrollment:   

	
  

1. Age <18 or >65 

2. Concomitant use of nitrates, alpha blockers, CYP 3A4 inhibitors (including anti-

retrovirals for HIV and ketoconazole) 
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3. Known chronic inflammatory disease (Rheumatoid arthritis, Systemic Lupus 

Erythematosus, Inflammatory bowel disease, etc.) requiring immunosuppressant 

therapy including steroids  

4. Chronic kidney disease with creatinine clearance ≤ 50 ml/min 

5. Liver Disease defined by Childs-Pugh Stage C or D  

6. Raynaud’s phenomenon  

7. Known hereditary retinal degenerative disorders including retinitis pigmentosa  

8. Predisposition to priapism such as those with sickle cell anemia, leukemia and 

multiple myeloma 

9. Prior history of priapism 

10. Penile deformity (angulation, cavernosal fibrosis, or Peyronie’s disease) 

11. Prior myocardial infarction within the past 90 day 

12. Unstable angina 

13. Uncontrolled hypertension (>180/110) 

14. Uncontrolled arrhythmias  

15. Systolic dysfunction with left ventricular ejection fraction <40% 

16. Stroke within the last 6 months 

17. History of seizure disorder 

18. Hypotension with blood pressure ≤90/60 

19. Patients with New York Heart Association Class III or greater heart failure 

exacerbation within the last 6 months 
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20. Patients with left ventricular outflow obstruction, aortic stenosis, idiopathic 

hypertrophic subaortic stenosis, mitral stenosis 

21. Hypersensitivity to phosphodiesterase-5 or phosphodiesterase-3 inhibitors  

22. Excessive alcohol intake (≥5 drinks daily)  

23. Patients with severe anemia (hemoglobin ≤7 g/dL) 

24. Patients with active malignancy or receiving cancer treatment 

25. Prisoners 

26. Nursing mothers, pregnant women or women planning to become pregnant 

27. Prior radical mastectomy on either side (contraindication for brachial artery flow 

mediated dilatation) 

28. Congenital abnormality of either arm or hand (contraindication for brachial artery 

flow mediated 

 

RECRUITMENT PLAN 

Patients presenting to the general internal medicine clinic, the cardiovascular 

medicine clinic or the endocrinology clinic that meet the inclusion criteria will be 

recruited for this study. Initial contact will be made by one of the co-investigators or the 

research coordinator who will explain the details of the study and provide the initial 

information and consent form for patient review. The patient will have up to 3 days to 

decide after discussing with family, other health professionals, etc. whether or not they 

wish to participate in the study. If a patient agrees to enroll, contact will be made by the 
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research coordinator who will ensure inclusion criteria is met and perform an intake 

evaluation over the phone. She will schedule visit 1 and 2 for the patient at a time when 

lab-work, echocardiogram and brachial-artery flow mediated dilatation testing (visit 2) 

can all be conducted and the patient can pick up the investigational drug (after visit 2) 

from the VCUHS investigational drug pharmacy services for a 4 week supply. The 

coordinator will also ensure a follow-up appointment within the 3-4 week time period has 

been made. No vulnerable populations (i.e. children, pregnant women, human fetuses, 

neonates, prisoners) will be enrolled. 

 

POTENTIAL RISKS 

The risks of participation in this study are primarily those resulting from the study 

drug, Tadalafil. There are some side effects associated with this drug that were 

documented in phase II and phase III clinical trials where tadalafil was compared to 

placebo for the treatment of erectile dysfunction or pulmonary hypertension. In 

clinical trials for once daily use of tadalafil, discontinuation rate was similar to 

placebo and was less than 1%. The most common side effects (which occurred 

≥2%) across all tadalafil trials are: 	
  

• Headache 

• Flushing 
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• Heartburn 

• Nasal congestion 

• Muscle aches 

• Back pain 

• Limb pain  

Rare but dangerous adverse effects that may occur: 

• Hypotension: when taken with alpha blockers or nitrates (both of which are 

contraindicated)  

• Priapism (an erection last greater than 4-6 hours that becomes painful)  

 

Extremely rare adverse effects identified in the post-marketing period that were shown 

to possibly have a causal relationship to tadalafil use include:  

• Sudden vision loss in one or both eyes (Non-arteritic anterior ischemic optic 

neuropathy – NAION) 

• Sudden hearing loss or tinnitus  

 

More serious side effects from rare allergic reaction include:  

• Stevens-Johnsons Syndrome  

• Exfoliative dermatitis  
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The risk of an allergic reaction such as Stevens-Johnson syndrome or exfoliative 

dermatitis is extremely rare <1% across all trials conducted. Sudden vision loss, NAION 

and hearing loss were documented during post-marketing surveillance and tadalafil use 

and these clinical findings may have had a temporal relationship however it was not 

possible to determine if a direct relationship existed.  

 

There is some risk with the blood draws that will be taken on 4 visits (visit 1, 3, 4, 5). 

The total volume of blood is not expected to significantly contribute to overall patient 

health with 20mL of blood taken at visit 1, 4 and 5 and 5mL taken at visit 3. The 

transthoracic echocardiogram should not cause any discomfort as the patient will be 

required to lay comfortably, supine for about 20 min and will have gel placed on the 

chest wall. An ultrasound probe will be placed on top of the gel to obtain images in 

various views to visualize the chambers and valves of the heart. There may be 

discomfort during the brachial artery flow mediated dilatation test during inflation of the 

blood pressure cuff, which requires the cuff to stay inflated for 5 min. This may cause 

some pain, sensation of pins/needles or tingling in the arm that will resolve upon 

deflation of the cuff. 
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RISK REDUCTION 

Throughout the study, several measures will be taken to monitor the safety of the 

patients. After the patient enrolls in the study, he or she will again be explained all the 

major adverse side effects and potential life threatening complications. A physician 

(medically-responsible investigator or a physician co-investigator) will remain on-call 

and available via pager through the telepage system for research patients at all times 

throughout the study period. A special virtual pager number for this research study will 

be created and will be covered at all times. A complete history and physical examination 

along with comprehensive metabolic panel will be performed at the time of visit one in 

the event patients will need to be excluded based on most up to date clinical data 

available.   Subjects will be under the observation of VCUHS medical staff during 

procedures including the transthoracic echocardiogram and brachial artery mediated 

dilatation study. Furthermore, to minimize potential complications from blood draws 

such as bruising, pain, irritation, swelling, infection, all blood draws will be performed by 

skilled nurses from VCUHS.  

 

A steering committee of investigators not involved in the design or execution of 

the study will be responsible for the monitoring of safety and the evaluation of potential 

drug-related adverse effects, without breaking the randomization code unless strictly 

necessary for patient safety. The first interim analysis will be performed after the first 10 
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patients, and then after half of the patients have been enrolled (20 patients) and at the 

end of the study (40 patients). 

 

RISK/BENEFIT 

This study may provide benefit to the patients enrolled given that an 

improvement in serum inflammatory cytokine and mediator levels (TNF-α, IL-1β, IL-6) 

and NO, cGMP has been seen with tadalafil use in pre-clinical animal studies. Needless 

to say, patients randomized to tadalafil may experience no benefit when compared to 

placebo. The potential benefits of being enrolled include improvement in endothelial 

function since a dysfunctional endothelium is at the crux of cardiovascular 

pathophysiology in insulin resistant patients and improvement in endothelial function 

with chronic PDE-5 inhibitor use has been shown both pre-clinically and in several small 

clinical studies with sildenafil. We plan to show this by checking urinary levels of cyclic 

GMP, cAMP, and serum levels of nitric oxide before and after 8 weeks of treatment. 

Several pilot clinical studies with the use of sildenafil, a shorter-acting PDE-5 inhibitor, 

showed improvements in endothelial function by measuring urinary cGMP and brachial 

artery flow-mediated dilatation. The potential knowledge that may come from this study 

may result in therapies that benefit future type II diabetics and in slowing the 

progression and development of atherosclerosis along with reducing CV morbidity and 

mortality in this patient population. The risks associated with the drug are small and 
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were not significantly different than placebo in the randomized clinical trials conducted 

with tadalafil for erectile dysfunction and pulmonary hypertension. Furthermore, the 

more major adverse effects are extremely rare. Nevertheless, we plan to set up a data 

safety monitoring board and will have a study physician (medically responsible 

investigator or physician co-investigator) available 24 hours a day/7 days a week 

throughout the study period. 
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APPENDIX B 

 

The Effects of Soluble Guanylate Cyclase (BAY 58-2667) in db/db mice after I/R 
injury 

 

	
  

Figure 6866.  The infarct-sparing effects of chronic BAY therapy in diabetic mice. 

Two separate groups of mice (n=6/group) were treated with 10 mcg/Kg daily for 4 
weeks with BAY 58-2667 or an equal volume of 10% DMSO to evaluate the effects of 
the heme- and NO-independent soluble guanylate cyclase activator on I/R injury. We 
found a significant reduction of infarct size with BAY 58-2667 treatment (16.6±3.42% vs. 
44.7±10.42%, P<0.001) when compared to DMSO.  
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The Effects of BAY 58-2667 on Circulating Inflammatory Cytokines and 

Chemokines 

 

	
  

Figure 69. The % reduction of circulating cytokines and chemokines after chronic BAY treatment 

in diabetic mice. 

In figure 70, treatment with BAY lead to a dramatic reduction in inflammatory cytokines 
and chemokines, specifically IL-1β, TNF-α, MIP-1β, and MCP-1. The promising results 
found with use of BAY 58-2667 in db/db mice should lead to further investigations with 
this promising compound on its effect on inflammation and various metabolic 
parameters.  
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