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Poly (ethylene glycol) (PEG) hydrogel based polymers are among the most widely used 

synthetic materials for biomedical applications. Because of their biocompatibility, and ease of 

fabrication, hydrogels are highly suitable for use as constructs to engineer tissues as well as for 

cell transplantation. A critical parameter of importance for PEG hydrogels is their mechanical 

properties which are highly dependent on the environmental conditions. Properties of PEG-based 

hydrogels can be engineered to resemble scaffolds composed of extracellular matrix molecules, 

which provide structural support, adhesive sites and mechanical as well as biomechanical signals 

to most cells. The mechanical properties of these synthetic scaffolds can affect the migration, 

proliferation and differentiation of the cells. Accordingly, it is important to investigate the 
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mechanical properties of these hydrogels and observe their effect on cell behavior as PEG-based 

scaffolds for example. In this research, the objective is to measure the mechanical properties 

such as the elastic modulus (Ec) and the stiffness (S) of polyethylene glycol diacrylate (PEGDA) 

hydrogel matrices at the nanoscale. The effect of varying parameters in the fabrication of 

PEGDA hydrogels including monomer molecular weight, initiator concentration and rates of 

hydration were investigated via nanoindentation using an atomic force microscope (AFM). Two 

different silicon nitride based cantilevers were used to study the effect of varying loading rates 

on the mechanical properties of these materials. Indentation parameters such as loads applied and 

indent depths were varied for each hydrogel sample. Different models were used to fit the 

experimental data to obtain the parameters of interest for the material (Ec and S). In particular, 

the data was best described using the model of Oliver-Pharr to analyze and fit the 

nanoindentation curves. Scanning electron microscope was used to image and confirm the 

geometry of the tip before and after the indentation experiments. Under high load and 

displacement modes, the indentation analysis was relatively easy and the elastic modulus and 

stiffness values were obtained for all dry PEGDA hydrogel sample. The variation of the initiator 

concentration has been analyzed as well.  The mechanical properties of the hydrogel increase as 

the amount of the initiator increase in the precursor. The degree of hydration dramatically affects 

the mechanical behavior of the PEGDA. The presence of water within the hydrogel network 

weakens the internal as well the external mechanical properties, leading to smaller values of 

elastic modulus and stiffness compared with the dry condition. The mechanical properties of the 

indenter (cantilever tips) have significant impact on the results. It is important to study carefully 

the indenter properties before and after the indentation experiments. Since little work has been 

done on investigating the mechanical properties of PEGDA hydrogels at the nanoscale via AFM, 
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the analysis of the mechanical behavior of this type of hydrogel using this strategy is of great 

importance.  
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Chapter 1: Hydrogels and their mechanical characteristics 

1.1 Introduction to hydrogels 

Hydrogels are crosslinked hydrophilic polymers that represent an important class of 

biomaterials in biotechnology and medicine because of their excellent biocompatibility, minimal 

tissue damage and inflammatory response [1, 2]. Considered as multifunctional polymers, they 

are used in a variety of applications including as scaffolds for tissue engineering, vehicles for 

drug delivery, contact lenses, cosmetic products and biosensing [3-9]. Hydrogels can also swell 

large quantities of water giving them physical characteristics similar to soft tissues. In addition, 

they have high permeability for oxygen, nutrients, and other water-soluble metabolites. The use 

of hydrogels has become widely prevalent in the bioengineering fields because of their 

viscoelastic characteristics, biocompatibility, ease of fabrication into specific shapes and their 

ability to allow transfer of gases and nutrients [10].  

Over the past three decades, a number of hydrogels differing in structure, composition, and 

properties have been developed [1]. They can be made from chains of natural polymers such as 

collagen or silk or from synthetic polymers such as poly (ethylene glycol), poly (vinyl alcohol) 

(PVA) or poly (ethylene oxide). There are three types of synthetic hydrogels that have shown 

satisfactory results when used in medical applications and specifically in tissue engineering. 

Double network hydrogels have shown high mechanical properties but no biocompatibility and 

small biodegradation once placed in vivo. Photopolymerizable hydrogels have shown interesting 

biocompatibility and biodegradability, in addition to their ease of fabrication and the ability to be 

applied in situ, but mechanically weak. Recently, nanocomposite hydrogels have been developed 



to target bioengineering applications. Table 1 presents the different types of hydrogel and their 

method of preparation.  

 

 Table 1 Different method of preparation for both physical and chemical hydrogels (adapted 

from Journal of Pharmaceutical Sciences, 96 9 2007)  

Many natural and synthetic polymer hydrogels are used in constructing engineered 

tissues, drug delivery systems, actuators, sensors, conducting polymers, cosmetics and food 

applications [11, 12]. These hydrogels include agarose, alginate, chitosan, collagen, fibrin and 

hyaluronic acid as natural polymers [13], and, poly (ethylene glycol) (PEG),  poly(acrylic acid) 

(PAA), poly(vinyl alcohol) (PVA) and poly (ethylene oxide) (PEO) as synthetic polymer [14]. 

By developing stronger and more versatile hydrogel networks (double networks, nanocomposite 

hydrogels) we can expect a much wider range of new applications, but at the same time more 

design models (theory) and techniques are required to measure and analyze their mechanical 

properties [11, 15].  
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1.2 Mechanical characteristics 

Hydrogels are 3-dimensional polymeric networks of hydrophilic polymers that are 

insoluble in water, where they swell to an equilibrium volume but retain their shapes [16]. They 

have interstitial spaces that can hold as much as 90-99% w/w water [8]. The presence of residues 

such as hydroxyl (–OH), carboxylic (–COOH), amidic (–CONH–), primary amide (–CONH2) 

and sulfonic acid (–SO3H) groups on the backbone or as lateral chains result in their high 

hydrophilicity [16]. In addition to their degree of flexibility analogous to natural tissue, 

hydrogels have two primary mechanical properties that account for the elasticity and 

viscoelasticity of the material– once hydrogels are swollen, they exhibit elastic criteria including 

high extensibility generated by low mechanical stress, complete recovery after deformation, and 

high extensibility and recovery that are driven by entropic rather than enthalpic changes [17]. At 

low temperatures, these hydrogels behave viscoelastically and the time dependence of the 

applied load (stress or strain) is as significant as the magnitude in predicting the material’s 

mechanical response [18]. Unlike normal rubber-like materials which depend on the light 

crosslinking and the large free volume, the mechanical behavior of hydrogels primarily depends 

on the architecture of the polymer network. Therefore analyzing the polymer structure, 

determining the effective molecular weights between cross-links, providing clear information 

about the number of elastically active chains and cyclization versus crosslinking tendencies 

within the polymer network, will help in understanding  the mechanical behavior of hydrogel 

[18]. This in turn, will help in the design of hydrogels for novel structural applications.  
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1.3 Applications and modification of the mechanical properties of hydrogels  

Engineering the mechanical properties of hydrogel has been of great interest, especially 

in tissue engineering applications [3, 10]. Early methods of biomaterials synthesis, including 

crosslinking and copolymerization of reactive polymer precursors and polymer-polymer reaction 

have limited the control of the hydrogel structure due to side reactions, unreacted pendant 

groups, and entanglements [14]. This has led to hydrogels generally having slow or delayed 

response times to external stimuli (such as temperature, solvent polarity or light) [19]. Several 

approaches have been examined in order to minimize these limitations. Hydrogels elasticity can 

be modified by changing the crosslinking densities and other properties such as swelling/collapse 

or solution-to-gel transitions [8].  

The most common examples where hydrogels are continuously modified and used in 

mechanical application are related to synthetic connective tissues such as articular cartilage, 

tendons and ligaments [15, 20]. PVA hydrogels have been investigated and serve as strong 

candidates for artificial articular cartilage because of their strong mechanical properties [21]. 

However numerous challenges remain in the development of products that can be applied in 

vivo. Hydrogel based materials require certain amount of strength, stiffness, elasticity and 

resistance. Consequently, engineering their properties for various applications requires 

measurement and analysis of the mechanical properties of hydrogels including viscoelasticity, 

stiffness and tensile strength. 

For example, prior attempts using hydrogel-based scaffolds in bone and cartilage 

produced tissues with significantly inferior mechanical strength than the real tissues [22-24]. To 

improve the mechanical behavior of hydrogels, many variations of methods of synthesizing 

hydrogel polymers have been developed. These include sliding crosslinking agents, double 
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network hydrogels, photopolymerizable hydrogels and nanocomposite hydrogels (i.e. poly(acryl 

amide) and poly(vinyl alcohol)–silicate nanoparticle) [19, 21, 25-27]. The concept of sliding 

crosslinking agents has shown exceptional mechanical properties with high degree of swelling as 

well as a high stretching ratio without fracture [14]. Double network hydrogels in turn, are 

combinations of two hydrophilic networks, both highly and loosely crosslinked polymers mixed 

together. An example hydrogel with outstanding mechanical properties is composed of two 

mechanically weak hydrophilic networks – poly (2-acrylamido-2-methylpropanesulfonic acid) 

and polyacrylamide. These hydrogels contain about 90% water and possess an elastic modulus of 

0.3MPa and fracture stress of 10MPa [14]. Nanocomposite hydrogels are a relatively new type of 

hydrogels which possess unique physical properties due to the presence of nanoparticles within 

the crosslinked polymer network. Work by  Mu and Zheng [28] crosslinking PNIPAM (Poly(N-

isopropylacrylamide)) hydrogels with hydrophobic polyhedral oligomeric silsesquioxane (POSS) 

exhibited remarkable  increase in the temperature swelling/de-swelling kinetics, in addition to  

the improvement of the mechanical strength of the hydrogels caused by the POSS cross-linkers 

[28].   

Paxton et al. have shown that the addition of hydroxyapatite (HA) to a PEG hydrogel 

increases its mechanical strength, capacity to bind cells, and the ability to interface with 

biological materials [29]. All these different types of hydrogels have been applied in several 

applications and analyzed with advanced techniques from the macro-level to much smaller 

scales. However, issues associated with biodegradability, biocompatibility and mechanical 

strength still remain. 

 

 



1.3.1 PEG hydrogels 

One of the most remarkable and widely used hydrogels are poly (ethylene glycol) (PEG) 

based materials. PEG (Figure 1) is a water soluble and biocompatible polymer that has been used 

in wide ranging biomedical and biological applications [30-32] due to its hydrophilicity and non-

toxicity. It can be used and injected inside the human body which makes it ideal for clinical 

applications. An important property that this polymer holds its extraordinary resistance to protein 

adsorption which allows PEG-based hydrogels to act as blank slates for cell adhesion [33]  

Poly(ethylene glycol) diacrylate (Figure 2), is a three dimensional polymer network formed by 

substituting the hydroxyl groups of PEG with acrylate functionalities. Crosslinking the PEG 

polymer has been achieved by different methods [34, 35] - the most common and efficient 

method being photopolymerization. 

 

Figure 1 Structure of Poly(ethylene glycol) monomer      

 

 Figure 2 Structure of Poly(ethylene glycol) diacrylate monomer                                                                             

Photopolymerization has several advantages over conventional polymerization 

techniques, including spatial and temporal control, fast curing rates and most importantly 

polymerization in situ from aqueous precursors in a minimally invasive manner [1]. 
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Photopolymerization can be used to form crosslinked hydrogel networks by taking advantage of 

the pendant acrylate groups at the end of each PEGDA molecule. Acrylate monomers are widely 

used and among the most reactive systems that can be crosslinked by a free radical mechanism 

(Figure 3). The physical properties of these hydrogels vary not only with the initiator 

concentration, but also with the molecular weight of the monomer and its concentration. The 

initiator concentration can affect the degree of crosslinking of the polymeric chains and thereby 

alter its physical and chemical properties. The ability of these highly tunable hydrogels to 

provide a wide range of applications is due to specific mechanical properties and responsive 

behavior to external factors and environmental conditions.  

 

Figure 3 Schematic of a photoinitiated crosslinking polymerization of a diacrylate monomer in 

the presence a photocleavable aromatic ketone (photoinitiator such as Darocur 1173) [36]   
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Chapter 2: Measurement of mechanical behavior of hydrogels: bulk level to the nanoscale 

Quantitative analysis and study of the mechanical behavior of materials at the nanoscale 

has become increasingly practicable with the development of micromechanical contact models  

[37]. A number of different techniques have been developed that are capable of such 

measurements from the bulk scale to the micro/nano-scale.  

2.1 Bulk methods 

There are several methods used to define mechanical properties of any polymeric 

materials including hydrogels at the macroscale. The traditional tensile test consists of taking the 

sample material and stretching it using, for instance, an Instron (Instron, Norwood, MA) tensile 

machine [38]. This instrument clamps each end of the sample, stretches it, and measures the 

force (F) exerted. Such instruments can provide important information about such materials 

including percent-elongation, elasticity, elastic hysteresis and the modulus which measures the 

resistance of the material to deformation. Several commercial companies develop instruments for 

the measurement of such parameters including Instron (Norwood, MA), Sunteccorp (Novi, MI), 

Knight Mechanical Testing (KMT) (Fort Wayne, IN). The macroscale studies of the mechanical 

properties of polymers are well monitored, but further developments are needed for applications 

involving hydrogels, particularly for biomedical applications.  

In addition to tensile testing of materials, another strategy to determine mechanical 

properties is to deform the material of interest using an indenter. This consists of applying a 

normal force to the material of interest using a tip and measuring the changes in morphology of 

the surface and/or the motion of the tip. The indenter is driven by applying a load at a single 
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point to a known displacement depth or at a known load. The indentation process generates a 

load-depth curve (Figure 4) that is used to measure the mechanical properties of the material 

such as hardness and elastic modulus. Indenter geometry is important for this technique and 

plays a big role in measuring the mechanical properties as well. By applying the indenter to 

sample material for a fixed amount of time and at constant displacement, stress relaxation data 

can be obtained [24]. Indentation can be performed both at the macro as well as the nanoscale 

depending on the order of the forces applied and the displacements achieved. Because of the 

ability to perform indentation in real times and measure localized mechanical properties on the 

surface of the material of interest, indentation has become one of the most common techniques 

used to characterize the mechanical behavior of wide range of materials including metals, 

tissues, biomaterials as well as soft polymeric material (hydrogels).  

With this technology, the transition to micro-level has been relatively fast. Sophisticated 

instruments have been developed at this length scale including automatic microhardness indenter 

(Fischerscope H100C, Fischer, Germany) where both macro-mechanical (strength and modulus 

of elasticity) and micro-mechanical (hardness, modulus of elasticity and creep) properties can be 

determined [38]. Lin et al. have shown that once indentation is applied to soft materials including 

hydrogels at much smaller scale (micro to submicron), they undergo purely elastic deformation 

even at large indentation depths and the physics of this process becomes more complex and hard 

to analyze [56]. One example of an instrument that can perform indentation at the microscale is 

optical-coherence-tomography (OCT) based spherical microindentation technique [56]. This 

complexity consists of many manifestations and effects including the tip-sample interactions 

(adhesion), applied forces (too small with soft material: hydrogels) which makes it hard to 
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identify the point of contact and finally the unclear linearity transition (linear to non-linear) of 

the stress–strain behavior [56]. 

Novel multi-function tribological probe microscopes (TPM) can measure several 

properties - area mappings of topography, friction, Young’s modulus and nanohardness [39]. 

With the continuous increase in the development of nanotechnology and nanoscience in general, 

new concepts at the molecular and atomic level have been derived, leading to the need for 

sophisticated and versatile tools and procedures to investigate the mechanical properties and 

behaviors of the biomaterials as well as the synthetic material developed.  

2.2 Mechanical properties of polymers at the nanoscale 

Polymers consist of a wide range of properties that are strongly dependent upon their 

chemistry, molecular architecture, and processing history [40]. At the nanoscale, these properties 

become more significant, leading to a variety of complex analyses different from the bulk scale. 

The intermolecular forces are higher causing distinctive methods of control, introduction to 

statistical thermodynamics and understanding the quantum mechanics involved. On the other 

hand the structure analyzed at the molecular level is totally different from the macro-level (bulk). 

Therefore, we have to consider the processing and examine the different reactions involved to 

form the polymer used. All of the mentioned above come in play when using nanoindentation 

methods that account for the effects of viscoelasticity where behavior of the investigated 

polymers is obtained by analyzing the time-dependent deformation characteristics, adhesion 

forces interpreted in the context of differences in the surface chemistry and variations in the local 

microstructure [41], in addition to cantilever selection, hydration, and surface preparation 

considerations [42].  

http://ec.europa.eu/health/opinions2/glossary/mno/nanotechnology.htm
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While most mechanical measurements have been made at the macro and micro level [18, 

43] an increasing area of application of hydrogels is in the engineering of surfaces that are 

capable of modifying cellular function and morphology [20, 44]. Protein-protein interactions 

which guide cellular behavior appear to be guided by the nanoscale architecture of the surface 

they are tethered on. In particular, recent advances have shown that the behavior and lineage of 

cells is dictated by the stiffness and mechanical nature of the surfaces they are attached to [45-

47]. Since the control of surface properties is becoming significantly important in biology, 

biomaterials and tissue engineering, the need to characterize the mechanical properties of these 

materials at the nanoscale is of outstanding interest. 

For instance, with the development of new hydrogels, optimization would be advanced 

by “high-throughput” methods that enable rapid, automated measurements of the elastic 

modulus. Again, traditional tensile and compression tests are inadequate since they are based on 

a slow “one at a time” measurement paradigm. In these respects, local probe techniques, in 

particular nanoindentation, are attractive [48]. The methods mentioned above vary with the 

ability of measuring the mechanical properties of materials at smaller scales to the possibility of 

obtaining the elastic properties and hardness of very soft and thin polymer samples, since the 

displacement and the load of the indenter can be monitored with high precision and accuracy [49, 

50]. One of these relatively new techniques of characterizing polymers at the nanoscale is called 

nanoindentation. 
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2.3 Nanoindentation  

In the last decades, the extension of indentation experimentation from the macro to the 

nanometer range corresponded with the development of instruments capable of measuring load 

and displacement throughout a nanoindentation test [51]. Nanoindentation has been widely used 

to measure and analyze the material properties on the local scale of huge list of different 

materials including tissues and biomaterial such as bone and cartilage, biomolecules such as 

DNA-protein, cell membranes, composite materials and polymers such as hydrogel based 

materials [41, 52-56].  

The ability to investigate small loads on the order of several nanonewtons and 

displacement of about 1 nm has greatly encouraged the study of nanomechanical properties of 

materials including elastic modulus, hardness and stiffness (which can be measured from a load-

displacement curve).  

During a typical nanoindentation test, force and displacement are recorded as a three-

dimensional indenter tip is pressed into the test material’s surface with a prescribed loading and 

unloading profile. The response of interest is where the force F and penetration depth h are 

varied and measured by analyzing the loading – unloading curves generated (Figure 4) [57]. 



 

 

Figure 4 Schematic representation of indentation experiment associated with loading and 

unloading curves 

Instruments for nanoindentation require several essential components [58]. These include 

a loading unit (indenter), sensors to record the displacement of the indenter (usually attached to a 

controlled assembly), a two or three –coordinate stage for the sample displacement in x, y or z, a 

high resolution optical microscope to observe and choose the point of indentation and a computer 

with a software package to control the operations of the instrument including collection, analysis, 

and storage of the data [3]. Different indenter shapes have been used including spheres, cones 
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and pyramids. The most common indenter used in nanoindentation experiments is the Berkovich 

trihedral pyramidal indenter (Figure 5) [59] 

 

Figure 5 Berkovich trihedral pyramidal indenter  

Nanoindentation offers the ability to conduct direct mechanical tests at very light loads 

(on the order of a few nanonewtons) and small displacements (on the order of a few nanometers). 

In addition, it also provides the capability to separate the mechanical behavior of different 

material constituents, using depth sensing to detect phase transformation and investigate the 

plasticization of polymers [41]. Once soft polymeric surfaces such as hydrogels are indented, the 

complex viscoelastic –elastic responses induced result in several challenges. This is typical for 

polymers having strain and strain-rate dependent properties. Therefore, the visco-elastic response 

of these polymeric materials affects the measurement of the mechanical properties such as elastic 

modulus and hardness which are a function of the surface contact-indenter geometry, depth as 

well as the loading rate [60]. Various theoretical and empirical models have been developed to 

analyze the force-displacement curves generated to account for some of these parameters. These 

will be discussed in the next chapter.  
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Regardless of these challenges that can affect the accuracy of the result, nanoindentation 

remains one of the most powerful techniques used to study the mechanical properties of 

hydrogels [61] .  

There are many high precision indentation instruments that are used to determine the 

mechanical characterization of soft or hard materials. For instance, the CSM Indentation Tester 

(CSM Instruments Inc. Needham, MA ) is used to analyze hardness and elastic modulus as well 

as for characterizing coating adhesion, fracture and deformation at the nanoscale. The CSM 

Tribometer (CSM Instruments Inc. Needham, MA) can be used at different length scales (micro 

and nano) and has the ability to perform nanoindentation under extreme conditions such as high 

vacuum as well as high temperature environments. Another widely used instrument is the 

Hysitron UBi1 Nanoindenter (Hysitron Inc., Minneapolis, MN). The UBi1 is a versatile tool for 

in-situ imaging with nanoindentation and nanomechanical property measurement capabilities and 

can be used on a variety of materials including biological polymers, metals and thin films. It 

must be noted that most of the indentation experiments performed by the Hysitron instruments 

are destructive and can damage the sample. Mechanical properties are calculated by measuring 

the dimensions of the material after the destructive load is applied. In addition to these 

specialized nanoindentation instruments, a tool that is finding increasing application in 

nanomechanical characterization is the atomic force microscope (AFM). While primarily used 

for imaging and force spectroscopy, it has been adapted for such measurements as discussed in 

the next chapter.  
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Chapter 3: Nanoindentation of hydrogels using atomic force microscopy  

3.1 Atomic force microscopy 

Since the invention of the atomic force microscope (AFM) primarily as an imaging tool 

in the late 1980s [62], instrumental developments have vastly expanded the repertoire of novel 

applications of this instrument over the last two decades to include force spectroscopy, 

nanolithography and nanoindentation [63, 64]. Today, the AFM has become one of the most 

versatile tools to study local surface interactions by means of force-distance curves as well as 

providing an imaging platform to obtain surface morphology [63, 65, 66].  

The introduction of AFM-based depth sensing nanoindentation has allowed the analysis 

of local hardness and elastic properties at the submicron dimensions. One of the earliest works to 

use AFM to measure mechanical properties was performed by Domke et al. [67] who studied the 

elastic response of thin soft films of gelatin. Once nanoindentation is applied to soft materials 

that undergo purely elastic deformation even at large indentation depths, the physics of the 

process are inherently more complex [67, 68]. This problem has resulted in the push to develop 

better models and more appropriate approaches to analyze the data and describe the elastic 

behavior of soft biomaterials or polymer materials in general. In another joint effort, Ebenstein 

and his coworkers [42] have demonstrated the development of nanoindentation strategies to 

analyze soft hydrated materials. This method consisted of developing a sample hydration system, 

selecting the appropriate cantilever for soft material indentation, identify the substrate to be used 

for blunt tip alignment, and finally determine an appropriate control material for the development 

of future indentation protocols [42].  



In this research we measure of the mechanical properties of hydrogels using 

nanoindentation, via AFM. The primary advantage of this technique lies in its lateral spatial 

resolution which allows local testing of mechanical properties in materials that is not possible 

using macroscale techniques [69-71]. In addition, the AFM provides a real time investigation of 

materials under different environmental conditions such as in hydrated and dry conditions as 

well as an analysis of the dynamic mechanical properties such as the strain-rate sensitivity of the 

material strength [72]. Finally, the application of low loads and/or displacements allows us to 

interrogate the material of interest in a non-destructive fashion. 

3.2 Force-distance curves using AFM  

Nanomechanical properties of the polymer are measured by generating a force-distance 

curve using an AFM cantilever on a sample surface. A force-distance curve is a plot of tip- 

sample interaction forces vs. tip-sample distance. To obtain a force-distance plot, two 

simultaneous events are measured- the movement of the AFM cantilevers towards and away 

from the sample to obtain the cantilever deflection ∆Zc. The tip sample force is described by 

Hooke’s law (Equation (1)):  

cc ZkF Δ−=                                                                   (1) 

Where kc denotes the spring constant of the cantilever.  

 

These curves can reveal information about interactions between molecules that are attached to 

the surface and/or the cantilever (reference). For nanoindentation experiments, specifically, the 

cantilever is held at the surface and a constant load or displacement is applied.  

17 

 



The distance between the sample surface and the cantilever rest position Z, the tip-sample 

separation distance D, the cantilever deflection ∆Zc and the sample deformation ∆Zs [73] (See 

Figure 6) are related as: 

   )( sc ZZZD Δ+Δ−=                                                          (2) 

 

 

Figure 6 Schematic of the tip-sample system: Both Z and D distances differ due the cantilever 

deflection ∆Zc and the sample deformation ∆Zs                        
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Figure 7 Schematic of a typical force-distance curve obtained via AFM. The first graph (top) 

represents the interaction force and the elastic force of the cantilever (lines 1, 2 and 3). In the 

second graph (below), each distance corresponds to a cantilever bending until the elastic force 

equals the tip-sample interaction force and the system is in equilibrium, (f1, f2, f3 are given by a, 

b and c between lines 1, 2 and 3). The points A, B, B′, C, C′ in the lower graph correspond to a, 

b, b′, c, c′ in the upper graph respectively  

Figure 7 shows a typical force-displacement diagram as an AFM cantilever approaches 

and retracts from the surface. In nanoindentation experiments, a constant load or constant 

displacement is applied to the cantilever at position A resulting in a indentation curve as shown 
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in Figure 4. The indentation curve reveals two regimes – the loading and unloading of the 

cantilever as it performs a nanoindentation on the material of interest.  

Several theories have been developed to describe the elastic deformation of the sample 

and the indentation curve generated. The most well-known and applied theory in analyzing the 

mechanical properties of materials is the Hertz theory. An important approximation in this model 

is the absence of adhesion or surface forces. Therefore, while using AFM, the Hertz model only 

applies under high loads and low surface forces [74, 75]. A better approximation is obtained 

using the Oliver-Pharr model that is described below.  

 Horkay et al. focused on the theories and analytical models used in measuring the elastic 

properties of soft materials by conventional nanoindentation [68]. They offer a good 

interpretation of the Hertz contact mechanics theory which plays a big role in the 

nanoindentation field and tip–sample adhesive forces/repulsion. Recently, Harmon et al. have 

used AFM to study the mechanical properties of photo-cross-linked, temperature-responsive 

hydrogel layers in water [76]. They demonstrated that the elastic modulus differs as a function of 

the polymer volume fraction, in addition to the investigation on the effect of the cross-linking, 

density and degree of ionization on the modulus. They used Hertz model that predicts the 

indentation of a cone or sphere on an elastic sample, and the loading force (F) is a function of the 

indentation (δ) (Equation (3) and (4) [73]).  

2
2 )tan(
)1(2

δα
ν

π
−

=
EFcone                                                            (3) 

                2
3

2 )1(3
4 δ

ν
REFsphere −

=                                                              (4) 

20 

 



where E is the elastic modulus,  ν is the Poisson ratio of the soft material, δ is the indentation,  α 

is the opening angle of the cone, and R is the radius of the sphere (Figure 8) . 

 

 

Figure 8 Spherical indenter indenting a soft polymer 

 

The elastic modulus can be calculated from the slope of linear fits to the stress-strain 

curves [76]. Next, they provided a comparison of these results to rubber elasticity theory for a 

swollen network in order to study the hydrogel morphology. Through this AFM investigation of 

a photo-crosslinked type of hydrogel, interesting results showed the behavior of gels under 

different conditions such as temperature, swelling degree and composition. The elastic modulus 

values range from 4.5-29 kPa (swollen at 15ºC), and from 470-1300 kPa (collapsed at 42ºC) 

[76]. This study provided a basis for the development of experimental strategies to obtain results 

on different characteristics of hydrogels under various conditions (temperatures, compositions, 

degree of swelling). It also established the application of the AFM as a tool to directly observe 

the degree of swelling with imaging and simultaneously measure the temperature-dependent 

elastic modulus using force-distance curves.  
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3.2.1 Oliver- Pharr stiffness and elastic modulus calculation 

It has been shown that nanoindentation can discriminate between similar, low-modulus, 

hydrated samples [61]. A model that works well for such low-modulus (softer) materials is the 

theory proposed by Oliver and Pharr [77, 78]. Here it is assumed that during the unloading of the 

cantilever from the surface, only the elastic displacement is recovered. They estimated the gel 

elastic modulus using this assumption [78]. The stiffness is calculated by measuring the slope of 

the upper portion of the unloading curve and is defined as the measure of the resistance of an 

elastic body to the deformation under an applied load (Equation (6)) [71]. Figure 9 shows the 

schematic of an indenter as it applies a normal load to a surface.  

The unloading curve is usually fit by a power law relation: 

m
fhhP )( −=α                                                                        (5) 

where α and m are power law fitting constants that depend on the indenter geometry (for 

example, m ≈ 1 for a flat punch). The stiffness S is given by:  

dh
dPS =                                                                              (6) 

Where dP is the load difference and dh is the displacement difference. For example, using a flat 

punch indenter, the contact depth is calculated by: 

S
Phhhh sc

max
maxmax −=−=                                                            (7) 

where hmax and Pmax are the maximum displacement and maximum load, respectively [71].  
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The reduced elastic modulus can then be calculated using both the unloading stiffness and the 

contact area as given by:  

A
SEr 2

π
=                                                                       (8) 

where Er is the reduced modulus and A is the contact area [71]. 

 

Figure 9 Conical shape tips indenting a soft polymer surface  

Notice that both indenter and the hydrogel sample undergo elastic deformation. 

Therefore, this may affect the reduced modulus calculation, even though the indenter 

deformation is negligible compared with that of the polymer gel. Equation [73] shows the 

calculation of the reduced modulus, which is the elastic modulus of the hydrogel sample.  

s

i
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)1()1(1 νν −

+
−

=                                                            (9) 
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Where, νs and νi are the Poison’s ratio for the sample and the indenter respectively and Es and Ei 

are the reduced modulus of the sample and the indenter respectively. 

 

3.3 Elasticity and viscoelasticity 

Under small deformations, solids in general store energy and therefore act like a “spring” 

with an elastic response. Conversely, liquids disperse energy through viscous flow. Complex 

materials such as hydrogels display viscoelasticity behavior which is a combination of solid and 

fluid-like response [79]. Recently Yang et al. have used a method of determining the 

viscoelasticity of hydrogels by measuring the shear modulus as a function of frequency while 

applying a small amplitude oscillatory shear strain and measuring the resultant shear stress [79]. 

They also demonstrated that the modulus of the hydrogel (in this case poly (vinyl alcohol)) has 

significant frequency dependence such that at low frequency the storage modulus dominates the 

mechanical response while the loss modulus dominates at high frequency [79]. In another study, 

Tagit et al. [80] used AFM to probe the morphology and the nanomechanical properties of 

individual PNIPAM (Poly(N-isopropylacrylamide) microgels deposited on surfaces of silicon 

oxide. The elastic modulus is calculated using the Oliver-Pharr model (Equation (3) and (4)): 

Adh
dPE 1

2
)1( 2 πν−=                                                      (10)         

Where ν is the Poisson ratio, dP/dh is the slope of the retraction curve, and A is the contact area 

between the tip and the sample [80]. 

α22 tan33 phA =                                                                (11) 
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where α is the half angle of the indenter and hp is the effective penetration depth  determined 

from the force–indentation curve [80] . 

 The value of the elastic modulus obtained for dry PNIPAM spheres in air was reported to 

be 125.9±0.9 MPa, but when the swollen with water, the modulus of the spheres decreased 

dramatically to 1.8±0.2 MPa. Above the volume-phase transition temperature in water, the 

elastic modulus of the spheres increases by an order of magnitude to 12.8±3.6 MPa [80]. This 

study revealed changes in visco-elasticity of the microgel upon shrinking that cause the cross-

linked hydrogel particles to lose water and become stiffer.  

Several theoretical methods including the JKR (Johnson–Kendall–Roberts) and DMT 

(Derjaguin–Muller–Toporov) theory have been proposed to account for parameters such as 

adhesion between the indenter and the surface [81, 82] However, these methods only work well 

with rigid materials. In this thesis, the Oliver and Pharr approach has been primarily used as it 

can be adapted for the indentation of soft materials [18, 68].   

3.4 Important considerations 

There are several considerations in AFM nanoindentation measurements. These include 

contact in the “Hertzian” regime and the analytical approaches based on linear elasticity theory 

such as reference point dependence, methods for non-adhesive and adhesive contact [68]. In 

addition, hydrogels experience a purely elastic deformation which makes the physical 

interpretation of the process complicated. Data analysis is difficult due to tip-sample interactions 

such as adhesion that require the use of more complex models to identify contributions to the 

interactive forces. In addition, the applied forces for a given indentation depth are really small in 

soft materials which make the point of contact difficult to identify [68]  
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Although the elastic deformation range of hydrogels or soft materials in general, is 

normally larger than hard materials, the transition from linear to nonlinear stress–strain behavior 

may be vague and unclear. During the AFM experiment, hydrogel samples are subject to water 

loss, which can significantly influence the mechanical behavior and consequently affect the data 

collected [18].  

Regardless of the goal to improve the analysis of tip-surface interactions and the 

nonlinearity problem associated with soft material and hydrogel specifically, estimation of the tip 

geometry and structure remains a real challenge. Many experimental studies have shown 

reasonable improvement in test structures for SPM (scanning probe microscope) cantilever tip 

shape deconvolution [83]. While performing indentation experiments, the cross section of the tip 

and its apex radius of curvature also play a significant role in determining the mechanical 

properties of the hydrogel material. To better interpret the image data, it is important to 

determine the tip shape before scanning and check afterwards if it has been changed.  

These issues mentioned above can be minimized by the development of new models that 

extend beyond the Hertzian and linear elastic models to describe the elastic behavior of very thin 

films. Therefore more work can be done in this area to improve the accuracy for nanoindentation 

experiments and applications. Future studies will be more focused in the area of nonlinear elastic 

indentation modeling, which are required to match the fast growth of nanoindentation from 

polymer science to biology [68]. 
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Chapter 4: Experimental Section 

4.1 Materials and methods 

Poly (ethylene glycol) diacrylate (100ml), with reported molecular weights equal to 258, 

575 and 700 g/mol were purchased from Sigma-Aldrich Co. (St Louis, MO).  Photoinitiator 

Darocur 1173 (Hydroxy-2-methyl-1-phenyl-1-propanone) was obtained from Ciba Specialty 

Chemicals Corporation (Tarrytown, NY) (see Table 2 for more information). Deionized water 

(resistivity 18 mΩ.cm) was obtained from a MilliQ water purification system (Millipore 

Corporation, Danvers MA) and ethanol (200 proof, Absolute, Anhydrous, Shelbyville, KY) were 

used for experiments. Photopolymerization of the PEG polymer was performed in a UV chamber 

(Loctite® ZETA® 7401, Loctite Corporation, Rocky Hill, CT, wavelength 360-360nm).  

Atomic Force Microscope (AFM) (MFP-3D, Asylum Research, Santa Barbara, CA) was 

used to obtain images and perform nanoindentation on the PEGDA hydrogel samples.  AC 160 

TS cantilevers were purchased from Olympus Research (Tokyo, Japan) and PPP-ZEIHR 

cantilevers were purchased from NANOSENSORS™ (Lady's Island, SC). These two probes 

were used to image the topography of the PEGDA gel surfaces, as well as to for nanoindentation 

experiments. To confirm tip morphology, scanning electron microscopy (SEM) images (JEOL 

JSM-5610LV SEM (Tokyo Japan)) were obtained before and after nanoindentation experiments.  



 

Table 2 Darocur 1173 and its properties (Ciba Specialty Chemicals ,Tarrytown, NY) 

4.1.1 Fabrication of PEGDA hydrogels 

PEGDA hydrogel samples were prepared by a two step process – 

A) 2ml of the PEGDA was mixed with 10 μl of Darocur 1173 (0.5% photoinitiator) in a 15-mL 

plastic centrifuge tube and vortexed for 20 seconds to obtain a well mixed solution. The same 

procedure was repeated for the 1.0% and 1.5% initiator which corresponds to 20μl and 30μl of 

initiator added, respectively.  

In order to fabricate uniform slabs of hydrogels, four glass slides and a big size Petri-dish was 

used (Figure 10). The glass slides were put together to form a slab like mold where the precursor 

mixture was poured. The Petri-dish was then placed in the UV chamber for polymerization of the 

monomer. After the UV radiation and photopolymerization, a clear PEGDA hydrogel slab was 

obtained. 
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Figure 10 Process of the fabrication of PEGDA hydrogel samples  

B) The precursor solution was then exposed to UV radiation (360-370nm, 10 mW/cm2) (Figure 

10) for a controlled amount of time to obtain the polymerized hydrogel. Figure 11 shows the 

spectral distribution of the lamp used in these experiments. 

 

Figure 11 Spectral distribution of the wavelength emitted by the lamp in the UV chamber 

(Loctite 7401)  
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Table 3 presents the different conditions for the fabrication of PEGDA hydrogels used in 

these experiments. The compositions of the initiator and UV radiation time were optimized over 

several trials to obtain a relatively well shaped and uniform sample with a clear morphology (see 

Results).The amount of the PEGDA solution was always kept fixed with different amounts of 

initiator. The optimal time interval for photopolymerization was determined to be in the range of 

45-60 seconds. 

Trial 

 
PEGDA 
575 sol. 

(ml) 

Darocur 
1173  

sol. (μl) 

UV light 
time 
(sec) 

Drying time/swelling 

1 2.5 15 30 overnight oven 50˚C   
2 3 15 40 overnight oven 50˚C 
3 2 10 120 overnight oven 50˚C   
4 2 10 45, 40 At room temperature  
5 2 10 45 overnight oven 28˚C  

6 2 10 60, 70 
overnight oven 28˚C / At room 

temperature 
13 2 15 50,40 At room temperature  
14  

  (2 slides) 2 20 100 At room temperature  
16 2 30 40,60 At room temperature  

 

Table 3 Different trials and compositions of the mixtures, UV light timing and the drying 

conditions adopted in the fabrication of hydrogel films 

4.1.2 Hydration condition of the hydrogel samples 

Two main conditions of the hydrogel matrix were considered for these experiments - dry 

and wet. Wet samples were assessed on the basis of the final water content of the material. The 

different steps taken prior to formation of the final product are presented below.  
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After the hydrogel sample was photopolymerized, it was washed with water for 8 to 10 

minutes and dried. The drying times and methods varied from using a convection oven to drying 

at room temperature. It was observed that while using the oven, the rate of heating was higher 

that caused faster drying but resulted in breakage and cracking of the sample. On the other hand, 

letting the sample to dry in air (room temperature 20-25 ºC) resulted in samples that exhibited a 

clear surface morphology for nanoindentation experiments. Wet hydrogel samples were prepared 

by hydrating the sample in water and allowing it to swell to an equilibrated state (usually 24 

hours in water). The size and weight of the hydrogel increase confirming the swelling of the 

sample. Once the sample was removed from the water and weighed, the surface was blown in a 

gentle stream of air prior to nanoindentation experiments. After the nanoindentation, the sample 

was weighed again and the percent of water content in the hydrogel was calculated.  

Two cases are presented in the analysis 63% and 86% water (Table 4). Since typical 

applications involving hydrogels, require that the polymer is surrounded by a liquid environment 

(such as serum or water), it is important to measure the properties of the material in the fully 

hydrated state. To achieve this, the sample hydrogel was indented directly under water. In this 

case, the water content of the hydrogel was close to 100%.  

4.2 AFM-nanoindentation 

The nanoindentation was conducted on PEGDA samples using two different cantilevers 

AC160 and PPP-ZEIHR with spring constants varying from 30-40 N/m and 15-27 N/m 

respectively.  

The first set of experiments were performed on dry hydrogel samples PEGDA 575, 258 

and 700) with different initiator compositions. Only PEGDA 575 with 1% initiator was used for 



the wet condition. Table 4 presents the different parameters that were varied through the course 

of the research, to investigate of the mechanical properties of these poly (ethylene glycol) 

diacrylate hydrogel materials. 

 

Table 4 Summary of the different experiments: Fabrication of the PEGDA hydrogel samples, the 

cantilever used to perform nanoindentation, and the state of the sample 

          

Figure 12 Master Panel and Force Panel in IGOR Pro software  
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4.2.1 Spring constant calculation 

AFM cantilevers can act as micromechanical sensors to determine viscosity, study 

electrochemistry and detect different gases and vapor [84]. Since all the applications depends on 

the accurate knowledge of the physical properties of the cantilever, it is very important to 

measure the spring constant to quantify the forces measured [75].   

The spring constant values of the cantilevers were typically provided by the 

manufacturer, but it is important to measure them before every nanoindentation experiment. To 

minimize the effect of tip-surface adhesion, for each cantilever used (AC160 TS and PPP-

ZEIHR), spring constants were measured on a hard and clean mica surface. The measurement of 

the spring constant was performed using the thermal fluctuation method [75]. The same 

procedure was repeated 5 to 6 times on different points of the mica surface. The average of these 

calculated spring constants was the value used for analysis.  

4.2.2 Imaging and nanoindentation experiments 

Following the measurement of the spring constant, the first step was to image the surface 

and determine the topography of the PEGDA hydrogel. The AFM was operated in both non-

contact and contact modes (Figure 12). Non-contact (AC) mode was used for imaging the 

hydrogel surface. It involves an AFM cantilever that is vibrating with a small amplitude 

oscillation (less than 10 nm) near the surface. The system monitors the vibrational amplitude of 

the cantilever and keeps it constant with the aid of a feedback system that adjusts the z-piezo in 

response to topographic information. It was important to use this mode while imaging, because it 

is capable of measuring the topography with minimal damage to the sample and the cantilever. 

Non-contact imaging is the best technique for measuring sample topography of soft biomaterial 



and polymers in general [85]. Figure 13 shows the non-contact height image of the PEGDA 

hydrogel surface. 

 

 

 

Figure 13 Height image of the PEGDA 575 surface 

 

On the other and hand, contact mode was used for nanoindentation experiments. The 

AFM cantilever tip was engaged on the surface of the hydrogel. The next step was to select the 

indenter mode (Figure 14), (two modes were chosen: load or displacement), select a loading rate 

and a maximum load that could be applied to the surface.  
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Figure 14 Indenter Panel in IGOR Pro 

Indentation experiments were performed under two distinct regimes – constant 

displacement and constant load. Table 5 shows the load and displacement values that were used 

for these experiments. For each material, we wished to perform the experiment at two distinct 

conditions – a high and low load and displacement. The high load was selected to be 150nN and 

the low load was selected to be 20nN. The high displacement was selected to be 100nm and the 

low displacement was selected to be 10nm. It is important to mention the choice of these values. 

Before collecting the data for the analysis of the mechanical properties (elastic modulus and 

stiffness) of the PEGDA hydrogels, several trials were performed by varying different 

experimental parameters and conditions in each mode. At these values, especially at high load 

and displacement, nanoindentation curves with a high signal to noise ratio that could be 

satisfactorily fit to the theoretical models were obtained. The low load and displacement values 

were chosen to compare the data collected with the high load and displacement result.  
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Table 5 Different modes and values associated with nanoindentation experiments 

 

4.2.3 Data analysis 

The nanoindentation curves were analyzed using standard routines in the technical 

graphing and data analysis software IgorPro (WaveMetrics, Inc., Portland, OR). In order to fit 

the data, two commonly used models (described in Chapter 3) were used.  

 

4.2.3.1 Models for the determination of mechanical properties from indentation data 

The most common model to fit data for indentation has been the Hertz model [76, 86]. In 

IGOR Pro, routines to fit data using both the Hertz and the Oliver-Pharr models are available and 

were used to analyze the data. Since the PEGDA hydrogel material is considered a soft material, 

it was better to use the Oliver-Pharr model over the Hertz model. The Hertz model is usually 

used to analyze hard surfaces and mostly for experiments that involve a destructive 

nanoindentation [59]. In this research, our experiments involved the indentation of the surface of 

the hydrogel with minimal damage and analyzing the purely elastic response of the material. 
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This information is contained in the unloading part (as the cantilever retracts from the surface) of 

the nanoindentation force-displacement curve (Figure 15). This allows simultaneous 

measurement of both the elastic modulus and the stiffness.  

Once the nanoindentation experiments were done, the curves were analyzed using either 

model (Figure 15 and Figure 16). For the Hertz model (Figure 15), the shape of the indenter 

(cantilever tip) is the most important parameter that needs to be accurately determined for each 

trial. This poses a big challenge since AFM tip shape deconvolution is typically not accurate 

enough to obtain a satisfactory fit of the data via this model [87], The nanoindentation curves 

obtained in these experiments were not well fit using this model, since any geometry could be 

selected (punch, cone or sphere) to give a fit. On the other hand, the Oliver-Pharr model (Figure 

16) was found to be more suitable for the investigation of the mechanical properties of the 

PEGDA samples. This model still requires the geometry of the tip and especially its contact area, 

but can be satisfactorily approximated using a standard tetrahedral Berkovich tip. Since both 

cantilever tips used in these experiments had tetrahedral geometries, the analysis was more 

accurate using this model. 

Finally, the Poisson ratio of both the tip and the sample need to be selected. Throughout 

this analysis the Poisson’s ratio ν1 of all the PEGDA samples was assumed to be 0.5. This 

number was estimated from the literature, where soft hydrogel-based polymers were found to 

have typical values around 0.45-0.5 [71, 88].   



 

Figure 15 Master Force Panel (IGOR Pro) showing the Hertz Model 

   The four parameters that are of importance in the Oliver-Pharr model are the Poisson 

ratio ν1 (0.5) of the sample, the type of the indenter material, the Poisson’s ratio ν2 of the 

cantilever material (0.25), and the elastic modulus of the indenter E2 (290 GPa) for the 

cantilever. The values used are for a silicon nitride cantilevers (both AC 160 and PPP-ZEIHR). 

In order to fit the parameters and estimate the elastic modulus of the material, the unloading 

curve is fit to the Oliver Pharr equation as shown in Figure 16. This results in determination of 

the reduced elastic modulus Ec and the stiffness S (Figure 16). 
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Figure 16 Master Force Panel (IGOR Pro) showing the Oliver-Pharr model 
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4.3 Scanning Electron Microscopy (SEM) imaging  

SEM images of the AC160 cantilever were taken before and after indentation 

experiments. The cantilever was placed inside the specimen chamber of the JEOL SEM in a 

position where the tip can be seen (about 40 degrees inclination). Then the vacuum is applied to 

evacuate the chamber. During this imaging procedure the accelerating voltage setting was 

initially fixed at 20kV and the Z position at 20 mm. Some images required to change these 

settings to 15kV in order to get high resolution images. The SEM images were helpful in 

confirming the tip geometry to calculate the mechanical properties of the PEGDA hydrogel 

samples. Images taken after nanoindentation allowed us observe any variation in the shape and 

geometry of the tip as a result of the experiments.  

4.4 Preliminary data analysis  

The nanoindentation experiments were performed on a 10x10 μm2 hydrogel surface. For 

every indentation test, 20 to 25 load depth curves were generated per surface area (20-25 

different indentations correspond to 20-25 different location on the surface). Four different areas 

on each PEGDA hydrogel sample were analyzed. Therefore, about 80 to 100 curves were 

analyzed per PEGDA slab. The number of samples for each of the PEGDA synthesis conditions 

is shown in Table 6. 

 

Table 6 Number of PEGDA slabs used for every condition 
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The Table below shows an example of 25 indentations performed on one area of the PEGDA 258 

and PEGDA 700 surfaces. The average value of the elastic modulus and stiffness were calculated 

from the analysis of all the curves for each condition. The standard deviation was obtained for 

each data set as well using Excel (Table 7).  

 

Table 7 Elastic modulus Ec and stiffness S measurements of both PEGDA 258 and 700 
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Chapter 5: Results and Discussion 

5.1 Results 

5.1.1 Fabrication of the PEGDA hydrogel samples 

Initially, several trials were performed to optimize the materials used for the indentation 

experiments. Some combinations of precursor, initiator and UV radiation times resulted in 

hydrogel samples that were cracked or discolored. Also several samples that were washed with 

deionized water and kept at room temperature started to show some cracks as well as 

deformations (Figure 17). In particular, PEGDA hydrogels with a molecular weight of 258 Da 

resulted in the largest fraction of defective samples.  

 

Figure 17 Examples of defective PEGDA samples 

On the other hand, PEGDA 575 and 700 hydrogel samples were easy to fabricate and 

showed a uniform and well shaped slabs. Variables including the amount of initiator added, the 

UV radiation time and the drying procedure, can all affect the final product for each molecular 
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weight used. After several trials optimizing these parameters, clear, uniform, and rectangular 

PEGDA hydrogel samples could be fabricated reproducibly. The final product consists of 

photopolymerized poly (ethylene glycol) diacrylate hydrogel film of 1mm to 1.5 mm thickness 

(Figure 18).   

 

Figure 18 PEGDA 575 Hydrogel sample made on a glass slide and ready for nanoindentation 

5.1.2 AFM Imaging 

AFM imaging was mostly done in non-contact mode. We used this imaging mode to 

minimize the chance of contaminating and damaging the cantilever tip as well as the sample 

surface. On the other hand, contact mode imaging was only used while performing the 

experiment under water.  Figure 19 presents two AFM images taken before (Left) and after (left) 

nanoindentation. These images were taken using AC160 cantilever under high loads, the small 

black spots that appeared in the right image (after indentation) in Figure 19, represent the 

indentation as well as the deformation of the material at these locations. These images reveal the 

topography of a hydrogel surface, which is a typical polymer surface. 
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Figure 19 AFM images in non-contact mode of a PEGDA surface before and after the 

nanoindentation experiment. The figure on the right shows distinct areas of damage (red circles) 

where the nanoindentation was applied  

5.1.3 AFM nanoindentation 

The nanoindentation experiments consist of taking force-displacement curves by 

indenting the surface of the PEGDA hydrogel as described in the previous chapter. Following the 

imaging of the surface, 25 different points were selected on the surface and the cantilever was 

moved to each point to obtain under four different indent modes (high and low load, high and 

low displacement). The AC 160 cantilever (Table 8) was used for all the PEGDA hydrogels, and 

the PPP-ZEIHR (Table 8) cantilever was used for only PEGDA 575. For example at high load, 

25 points at different locations of the hydrogel surface corresponded to 25 different indentations 

curves. The same procedure was repeated with the four indent modes for PEGDA hydrogels 258, 

575 and 700. The results of these experiments are shown in Figure 20, Figure 21 and Figure 22. 

Each figure shows the overlay of several different indentation curves that were normalized to the 

same starting point.  
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In the high load and displacement modes, the curves have a high signal to noise ratio and 

were easier to fit via the Oliver-Pharr model to determine the elastic modulus and the stiffness. 

On the other hand, at a low load and especially for the low displacement modes, the curves were 

generally indistinct and blurry as seen in Figure 21. This high noise is to be expected for such 

low loads and displacements. Therefore, it was difficult to reliably fit all the data with the Oliver-

Pharr model. 

               

Table 8 Properties of AC 160 and PPP-ZEIHR cantilever tips 

 

Figure 20 Indentation curves of PEGDA 575 (1% initiator) under High and Low load indent 

modes using AC 160 cantilever 
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Figure 21 Indentation curves of PEGDA 700 (1% initiator) under High and Low displacement 

indent modes using AC 160 cantilever 

 

Figure 22 Indentation curves of PEGDA 258 (1% initiator) under High and Low load indent 

modes using AC 160 cantilever 
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Under high and low load (150 nN and 20 nN respectively), the depth or displacement 

cannot be fixed or known before the indentation occurs. This mode only controlled the force 

pushing the tip into the surface thereby deforming the material. In Figure 20, the maximum depth 

was around 300 nm into the PEGDA 575 hydrogel sample. Under high and low displacement 

(100nm and 10 nm) indent modes, the depth is controlled and known. In this mode, the 

cantilever tip travels a fixed depth into the surface (100nm or 10nm).  In Figure 21 the maximum 

depth was around 100 nm for high load indent mode which corresponded to ~50 nN in load and 

at a 10 nm for low displacement indent mode, the force corresponded to ~10nN load. All these 

parameters are important in the measurement and the analysis of the mechanical properties of 

these sample polymer gels.    

In the elastic tab under the master force panel of IGOR Pro, both Hertz and Oliver-Pharr 

models were included. Since it is a soft material, we used the Oliver-Pharr model to analyze 

every single curve and obtained the elastic modulus and stiffness data for all three molecular 

weights of PEG hydrogels. Considering only the unloading part of each curve, both elastic 

modulus Ec (in circled with blue (Figure 23)) and stiffness S (in circled with red (Figure 23)) of 

the hydrogel surfaces were calculated. For instance, in the Figures shown, two values 

corresponding to the elastic modulus and the stiffness of the sample material were obtained for 

each indentation curve. This data is presented in Table 9.  



 

Figure 23 Calculation of the elastic modulus Ec and stiffness S with Oliver-Pharr model 

 

Table 9 Elastic modulus and stiffness average values of the three PEGDA hydrogels at high and 

low loads  

From Table 9, it can be seen that the elastic modulus of PEGDA 575 polymer gel was the 

highest at around 3.19±0.38 and 3.17±0.15 MPa, as well as the stiffness with 2.83±0.11 and 

1.00±0.08 N/m in the high and low indent modes respectively. On the other hand, PEGDA 258 

had the lowest elastic modulus of around 1.33±0.04 and 1.58±0.08 MPa and stiffness with only 

0.92±0.03and 0.78±0.05 N/m under high and low loads respectively.  
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Table 10 Elastic modulus and stiffness average values of the three PEGDA hydrogels at high 

and low displacements 

Table 10 presents the experimental data obtained in the high and low displacement 

modes. It can be seen that the PEGDA 700 hydrogel had the highest elastic modulus value of 

5.23±0.22 MPa, whereas PEGDA 575 was slightly lower in value of 5.07±0.1 MPa. The PEGDA 

258 had the lowest values of the elastic modulus at 3.30±0.11 MPa. For the stiffness, PEGDA 

575 had the highest value of 1.69±0.06 N/m, followed by PEGDA 700 at 1.52±0.11 N/m and 

finally PEGDA 258 at 1.33±0.07 N/m. Under low displacement indent mode the elastic modulus 

values were extremely high, but still PEGDA 575 was on top with 43.45±11 MPa, PEGDA 700 

with 43.41±6 MPa and then PEGDA 258 with 40.5±13.33 MPa. The stiffness, in this case 

showed the opposite trend to the elastic modulus with PEGDA 258 at 2.03±0.99 N/m, PEGDA 

575 at 1.68±0.88 N/m and finally PEGDA 700 at 1.48±0.53 N/m. 

5.1.3.1 PPP-ZEIHR Cantilever 

Most of the work was performed using the AC160 cantilever (k = ~40 N/m). Therefore, it 

was essential to the use of another cantilever is important for comparison. Nanoindentation 

experiments were therefore conducted using a softer cantilever with a nominal force constant ~ 
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20 N/m (PPP-ZEIHR.  Each cantilever was calibrated to obtain the precise values of the spring 

constants associated with each cantilever. To confirm the values provided by the manufacturer 

we measured the spring constant of every cantilever on a hard and clean mica surface as 

described earlier. It is important to note that the thermal fluctuation method used to calibrate the 

cantilever has a significant error associated with it that also propagates in calculation of the 

mechanical properties of the material of interest [75]  

 

Table 11 Elastic modulus and stiffness of PEGDA 575 using two different cantilevers 

Table 11 shows the calculated elastic modulus for the PEGDA 575 samples using PPP-

ZEIHR cantilever (k = 18.1 N/m (high load) and 17.4 N/m (high displacement)). It may be noted 

that the value was slightly different from the one using the AC 160 cantilevers (k = 31.7 N/m for 

both high load and displacement). Under both high load and high displacement indent modes, the 

elastic modulus values of the PEGDA 575 using PPP-ZEIHR were higher in value 

(1.61±0.10MPa, 1.83±0.03MPa) as well as the stiffness (1.18±0.01 N/m, 1.11±0.06 N/m). On the 

other hand using AC160, the values were lower 0.81±0.02 MPa and 1.46±0.07 MPa for the 

elastic modulus, 0.82±0.04 N/m and 0.60±0.06 N/m for the stiffness (Table 11). Due to the 

inherent inaccuracy in determination of the spring constant, these values are not considerably 

different. While attempts were made to use this cantilever in under low loads and low 

displacement, the extremely high noise in the data precluded any meaningful analysis. This may 
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be attributed to the softer nature of the cantilever. In Figure 24 both graphs representing high 

load and displacement indent mode respectively are shown. Since the curves were normal and 

clear with minimal noise, it was easy to fit the Oliver-Pharr model and data was obtained.  

 

Figure 24 Indentation curves using PPP-ZEIHR cantilever under high load and displacement for 

PEGDA 575 hydrogel 

5.1.3.2 Variation of the initiator composition  

As mentioned earlier, three different PEGDA 575 hydrogels were fabricated with varying 

amounts of initiator, and then tested. The objective of these experiments was to determine the 

effect of the initiator in determining the final crosslinking of the diacrylate monomer (Figure 3). 

The hydrogel samples were tested using 0.5 %, 1% and 1.5 % initiator v/v. The nanoindentation 

experiments were all performed in dry condition with only using the AC160 cantilevers. Table 

12 summarizes the elastic modulus and stiffness average values obtained after fitting the 

unloading part of the curves with Oliver-Pharr model. The elastic modulus of the three PEGDA 
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575 hydrogels increased in value (from 3.66 MPa (1% initiator) to 12.12 MPa (1.5% initiator)) 

with increasing the amount of the initiator in the PEGDA mixtures. The same behavior was 

observed for the stiffness as well (from 1.95 N/m (1% initiator) to 4.85 N/m (1.5% initiator)).  

 

 

Table 12 Elastic modulus and stiffness average values for the different PEGDA hydrogels (dry 

condition) 

5.1.4 Wet condition 

Performing nanoindentation experiments on hydrated hydrogel surfaces is of great 

interest. Two cases were investigated with 63% and 86% partially hydrated PEGDA 575 

samples. A few curves that could be fit with the Oliver-Pharr model were obtained and analyzed. 

Figure 25 show the indentation curves that were obtained with 86% water and Figure 26 shows 

the indent curves obtained with 63% water.  
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Figure 25 Nanoindentation curves of the PEGDA 575 with 86% water that were analyzed 

 

Figure 26 Nanoindentation curves of the PEGDA 575 with 63% water that were analyzed 
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Table 13 Elastic modulus Ec and stiffness S average values in partially wet conditions 

Under high load indent, the PEGDA 575 sample with less water content 63% had a 

higher elastic modulus 4.33±0.28 MPa and a higher stiffness of 2.48±0.27 N/m. However, with 

86% water, the PEGDA 575 elastic modulus dropped to 2.85±0.35 MPa, while the stiffness 

increased to 4.32±0.12 N/m. Since the values for elastic modulus and stiffness are exactly the 

same for PEGDA 575 (1% initiator) in dry condition as well as in 63% water condition (4.33 

MPa and 2.48 N/m), it is likely that the indentation was performed on a dry surface. While the 

bulk water content is ~63%, blowing the surface with air might have resulted in a dry layer of the 

hyrogel sample (several hundred nanometers deep).  
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To minimize such errors in hydration and also since a fully hydrated hydrogel mimics a 

real-life application, it was important to measure the nanomechanical properties of the hydrogel 

in a fully hydrated state. This was attempted by performing the nanoindentation experiments 

under water. This experiment was particularly challenging given the limited control of the 

experimental parameters when the indenter is used under water. Notice that only PEGDA 575 

with 1% initiator was used under wet condition. After several unsuccessful trials, it was observed 

that data was only obtainable using the AC160 cantilever due to its high spring constant and 

stiffness. The softer PPP-ZEIHR was not well suited for such complicated and challenging 

experiments. It was also extremely difficult to obtain a well attached hydrogel sample that could 

be investigated. Furthermore, higher thermal fluctuations in the water result in higher drift in the 



x, y and z directions making the experimental data extremely noisy. Consequently, data was 

obtained only for high displacement and high loading for this condition. In the Table 14 below, 

the summary of indentation experiments under high load and displacement indent modes, using 

two different AC160 cantilevers with different spring constants 43.57 N/m (high load ) and 31.7 

N/m (high displacement) is presented,. Under high load indent mode, the elastic modulus was 

1.04±0.09 MPa, but under high displacement indent mode the elastic modulus is almost 8 times 

higher at 8.32±0.71 MPa. The stiffness values in both modes were not far apart with 2.83±0.07 

N/m (high load) and 2.55±0.71 N/m (high displacement). 

 

Table 14 Elastic modulus Ec and stiffness S average values of PEGDA hydrogel under water 

 5.1.5 SEM imaging of the AFM cantilever:  

Since one of the key parameters in determining the accuracy of our fit is the tip geometry, 

it was important to confirm the morphology of the cantilever prior to and after the indentation 

experiments. The purpose of the latter step is to determine the effect of the indentation on the 

geometry of the tip as a result of these experiments. A scanning electron microscope was used to 

obtain images of the AFM cantilever tip. The first set of images was taken before the 

nanoindentation experiments. Figure 27 shows a clean AC160 cantilever with no surface 

impurities or imperfections. It is important to notice the sharpness of the edges and the geometry 

of the tip; tetrahedral shape. After the nanoindentation experiments were done, another set of 

SEM images were obtained of the cantilevers used to determine if the experiments resulted in 
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any tip damage. Figure 28 shows that cantilever tip picked up some of the hydrogel debris. In 

Figure 28 (right image), the probe appears to have lost its sharpness resulting in a slightly curved 

edge. It is important to note that these irregularities in the geometry of the tip can affect the 

spring constant calculations and also the parameters used in the analysis of the nanoindentation 

curves. These sources of error may result in a wide variation in our fit and are discussed in the 

next section.  

  

Figure 27 AC 160 cantilever before the nanoindentation experiments 

  

Figure 28 AC 160 cantilever after the nanoindentation experiments 
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5.2 Discussion 

5.2.1 Problems with formation of polymer  

After the PEGDA samples were polymerized, they were washed and then dried. During 

this last procedure, some irregularities were noticed within the samples. Cracks and deformations 

were observed, especially after the drying step. In water, the polymer network swells causing the 

conformation of the polymer chains to change resulting in molecular stretching and disorder 

within the polymer. At a higher level of hydration the hydrogel materials become more sensitive 

to defects and crack propagation and possibly mask molecular level phenomena [89]. Once these 

samples were placed in the oven for drying, the rate of heating was fast, causing the molecules to 

re-orient and based on extensive fracture of their chemical bonds, cracks were observed (Figure 

29).  

 

Figure 29 A deformed PEGDA hydrogel sample showing crack propagation 
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5.2.2 Nanoindentation using the Hysitron® instrument  

Initially, to compare our results obtained using AFM-based nanoindentation, we tried to 

investigate the mechanical properties of PEGDA hydrogels using another instrument, the 

Hysitron® Ubi1 Nanoindenter. The main difference with this machine compared to an AFM is 

that the nanoindentation performed is in a destructive fashion. This instrument uses a standard 

diamond coated Berkovich indenter with a much higher modulus compared to the sample of 

interest. In contrast, our AFM experiments used a softer silicon nitride cantilever to probe the 

surface non-destructively. Therefore, the comparison of the mechanical properties of PEGDA 

under both approaches is of great interest. The primary challenge with the Ubi1 instrument was 

its calibration. It is imperative to perform the necessary calibrations in order to maintain the 

precision and accuracy of the instrument while performing imaging and data analysis. 

However, these initial attempts proved to be unsuccessful. The problem consisted mainly 

in the form of vibrational noise in the surrounding environment caused by the ventilation system 

in the room. This resulted in a high perturbation within the system and an even higher noise in 

the calibration procedure. Figure 30 presents an actual trial of the calibration. In the upper right 

corner of the figure, ESF (Electrostatic force) vs. Displacement graph shows unstable and noisy 

plot, compared to the usual ESF vs. Displacement plot with a reasonable fit provided by the 

Hysitron® manufacturer (see Figure 31). Figure 31 represents the case where the calibration was 

complete and the system ready for operation. Because of these calibration issues, we did not 

perform any further experiments using this instrument   



 

Figure 30 Calibration of the Ubi1 nanoindenter in air (the Advanced Z-Axis Calibration) 

 

Figure 31 Normal ESF vs. Displacement plot (Hysitron®) 

5.2.3 Nanoindentation via AFM  

As mentioned in the sections above, nanoindentation was performed in four different 

modes – high and low load and displacement. The high load indent mode was the most used 
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mode throughout the course of this research and resulted in the highest signal to noise ratio for 

the force-displacement curves analyzed. The low indent mode was used but only in the dry 

condition and with the stiffer AC160 cantilever. Under low displacement indent mode, the tip 

interaction with the PEGDA surface became significant (the force applied is around 50 nN and 

depth traveled around 100nm or less) which made the softer cantilever with small spring constant 

values (PPP-ZEIHR) incapable or not well suited to perform indentation tests. For example in 

Figure 32 the unloading trace of the load-displacement curves at low displacement using an 

AC160 cantilever are shown. The high noise made the analysis more challenging and the results 

difficult to interpret and fit via the models discussed.  

 

Figure 32 Unloading part of the nanoindentation curve 

5.2.3.1 Load indent mode 

Elastic modulus and stiffness of the PEGDA hydrogels  

Nanoindentation results obtained for the hydrogel samples were presented in the previous 

chapter. All the PEGDA in the subsequent discussion were made with 1% initiator v/v. 
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Figure 33 PEGDA Elastic modulus Ec under load indent mode 

With higher molecular weight, the PEGDA hydrogel has shown in increase in elastic 

modulus. Under high load the PEGDA 575 shows higher elastic modulus as well as under low 

load indent mode. The standard deviation was a marginally higher for the high load. The 

variation in the values of the modulus at different points on the hydrogel surface was low 

indicating that the surface was uniform. The PEGDA 700 elastic modulus did not show a 

difference in either mode. The PEGDA 258 hydrogel has the lowest elastic modulus with only 

1.33 and 1.58 MPa under high and low modes respectively. Here, the molecular weight 

difference is observed to affect the performance of the hydrogel. In Figure 33, the average elastic 

modulus distribution was about the same in both indent modes (high and load). This is 

reasonable, because in the case of PEGDA 258 for example, by applying a load of 150 nN, the 

tip traveled around 60 nm more than for a 20nN force. The same situation was observed for the 

stiffness values. PEGDA 575 and 700 hydrogels had a higher stiffness value in comparison to 

PEGDA 258, which may represent a weaker material.  

Under higher load indent, the PEGDA 700 hydrogel had a higher stiffness value. Figure 

34 shows that the stiffness dropped by half under low load indent mode. When a load of 200 nN 
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is applied, the tip travels ~300 nm into the surface. On the other hand, at a low load of 20 nN, the 

tip travels ~200 nm into the surface. This implies that a tenfold increase of load does not result in 

a proportional increase in penetration.  

 

Figure 34 PEGDA stiffness S under load indent mode 

Wet condition 

Experiments to conduct nanoindentation in liquid were extremely challenging. The first 

problem consisted of fixing the PEGDA hydrogel sample on the glass slide, by keeping it under 

water for long time to attain its maximum swelling and to ensure thermal equilibration with the 

AFM cantilever. During this long process under water, the PEGDA sample started to detach 

from the glass slide, and floated away in the liquid cell, making the nanoindentation impossible. 

Several trials later, limited data was obtained for analysis because of this problem. In addition, 

the PPP-ZEIHR cantilever was too soft to accurately image the surface or perform indentations 

owing to the strong tip-surface adhesion. In order to obtain indentation data under water, it was 

necessary to use the stiffer AC160 cantilever (k=~40 N/m). Under high load conditions, the 63% 

PEGDA 575 elastic modulus was the highest, followed by 86% and 100%. Therefore by 
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increasing the water content in PEGDA 575, the elastic modulus decreases as expected. Figure 

35 shows clearly the drop in elastic modulus with increasing the percent hydration.  

 

Figure 35 Partially and fully hydrated PEGDA elastic modulus Ec and stiffness S measurements 

under load indent mode  

5.2.3.2 Displacement indent mode 

Controlling the displacement while indenting on the PEGDA surfaces, was more 

challenging than controlling the load, especially at low displacements. Performing 

nanoindentation under water using the low displacement mode was difficult and no data was 

recorded. As observed with load indent, the use of the PPP-ZEIHR cantilever under water was 

not possible since the force interaction and the thermal fluctuation within the liquid was 

significant. On the other hand, this cantilever was useful for experiments in the dry condition and 

under high displacement indent mode.  

The elastic modulus measurements under high displacement indent mode were slightly 

different from the high load experimental values (Figure 36). An identical trend of the elastic 

modulus to molecular weight relation was observed. The higher molecular weight corresponds to 
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a higher elastic modulus in both high load and displacement indent mode. However, the low 

displacement measurements of the elastic modulus were observed to have extremely high noise 

levels. This was expected because the tip penetration into the sample was only ~ 10 nm. The 

elastic modulus values were above 40MPa as shown in Figure 36 (right), the same trend about 

the molecular weight and the elastic modulus relation is observed as well. But the higher values 

may be because of large errors in fitting the data, as discussed further below.  

 

Figure 36 PEGDA elastic modulus Ec under displacement indent mode 

The stiffness measurements of the different PEGDA were almost the same under high 

displacement. PEGDA 575 was the stiffest material while the PEGDA 258 was the least stiff 

among these three hydrogels (Figure 37, left diagram). On the other hand, the low displacement 

in Figure 37 (right) showed practically the opposite trend. PEGDA 258 was stiffer among other 

PEGDA hydrogels but the PEGDA 575 and 700 stiffness values remained about the same in both 

displacements mode. Here, again the low displacement indent mode showed difference in the 

stiffness measurements as well. This can be related to the chain confirmation of the polymer at 

the surface of PEGDA 258. 
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Figure 37 PEGDA stiffness S under displacement indent mode  

5.2.4 Hydrogel mechanical properties in comparison to other materials of biological 

significance 

Since PEGDA 575 was the most stable throughout the fabrication procedure and the 

indentation experiments, it was chosen to be compared with other materials. The average elastic 

modulus varied between 2 to 5 MPa under different conditions. Table 15, shows the measured 

elastic modulus of PEGDA under different condition and methods, tabulated from Gäbler et al. 

[90]. It was of interest to note that the typically calculated value of 3.5 MPa was in the range of 

the interval values provided in the table below.   

The elastic modulus is one of the most common properties used to characterize the 

mechanical behavior and describe the material. For example, by measuring the modulus of soft 

hydrogel polymers, Wilder et al. have found that by varying the crosslinking concentration in the 

Poly (HEMA) hydrogel the elastic modulus increased from 0.56±0.06 MPa (0.5% initiator) to 

2.6±0.51 MPa (8% initiator) [91]. In a review of elastic moduli of several soft biological 

materials by Levental et al. [46], the elastic modulus measurements of a variety of tissues such as 

animal and human tissue were given. For example, using a tensile method, the elastic modulus of 
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an Achilles’ tendon of a rat was around 310 MPa, which is a much higher than our PEGDA 

samples. Typical values for soft mammalian tissues ranged from ~ 100 Pa for brain tissue to 

several thousand for muscle tissue. The elastic modulus of a mouse skeletal muscle using AFM 

was ~13 KPa, which is a lot smaller than the PEGDA elastic modulus. The elastic modulus of a 

human breast tumor tissue using compression was about 4 KPa, which is even smaller than the 

mouse’s skeleton muscle elastic modulus.  

 

Table 15 Summary of the elastic moduli of PEG-DA hydrogels as measured with different 

measuring methods (adapted from [90]) 

In order to apply these hydrogels for tissue engineering and scaffolding, it is necessary to 

control the mechanical properties hydrogel matrix. Here we show that by varying parameters 

such as molecular weight, initiator concentrations and hydration rates, it is possible to control 

properties such as the elastic modulus at the nanoscale. This is particularly significant, to achieve 

properties similar to biological tissues and mimic the mechanical behavior of real tissues in vivo, 

thereby controlling cell behavior and fate.  

5.2.5 Sources of error:  

It must be noted that the values reported in this research are subject to a lot of variation 

and significant sources of error. These sources are discussed below:   
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5.2.5.1 Accuracy in measuring the spring constant 

Most AFM experiments require accurate knowledge of cantilever spring constants in 

order to image or measure both force-distance and indentation curves. Due to the challenges 

faced while controlling the thickness, the structural defects and deviations in geometry, the 

manufacturers of AFM cantilevers use wide tolerances in their specified values of the spring 

constant [92]. Therefore, re-calibration of the cantilever tips is mandatory before usage.  

There are several method designed to measure the spring constant, including using the 

actual geometry of the tip. Here, again many approximations were taken into account due to the 

difficulty of obtaining the exact dimensions of the indenter. Thermal fluctuation is a another 

method that has been used throughout this research, it consists of calibrating the cantilever with 

thermal noise which is affected by several factors including the laser intensity and spot position 

on the cantilever, in addition to its size [75]. That is why it is important to repeat the spring 

constant calibration of the cantilever several times to finally obtain an average value. This might 

minimize the error experimentally as well as in the data analysis. However, these and other 

methods to estimate the spring constant of the cantilever are subject to large variations, 

sometimes on the order of 50% in the calibration values. These variations may result in wide 

ranges for the forces and therefore the elastic moduli and stiffness values calculated. 

5.2.5.2 Tip geometry  

In nanoindentation experiments, the geometry of the indenter plays a big role in 

measuring the mechanical properties of the material of interest. The change in the tip radius of 

curvature, for instance, can significantly affect the experimental results (imaging and force-

distance analysis) [93]. It can also affect the indentation and penetration process as well as the 
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analysis since the indenter will deform the sample with different geometry. In the case of the 

AC160 cantilever used throughout the nanoindentation experiments, a tetrahedral geometry was 

assumed as discussed below. Our calculations implicitly assume that the tip geometry is not 

altered as a result of the indentation experiments. As shown in the SEM images (Figure 28) in 

several cases, the cantilever loses its initial sharpness as expected, becoming a little blunt and 

contaminated with the hydrogel as well. These factors may result in a further loss of accuracy in 

our experiments.  

 

5.2.5.3 Tip surface interaction  

Tip surface interaction and especially the non-specific interactions (circled in green in 

Figure 38) provide another important source of error. At the nanoscale, the Van der Waals forces 

become more significant, resulting in adhesion between the cantilever and the surface 

investigated.  This is manifested in the retraction trace of the force-displacement curve that can 

be seen in Figure 38.   

 



 

Figure 38 Indent view of a force-distance curve showing a high degree of non-specific tip-

surface interaction (green circle). The red circle represents vibrational noise as the cantilever 

retracted away from the surface. However, the indent portion of the curve was not affected as the 

tip traveled at the surface under the high load  

Even though the tip-surface interactions were significant in some cases, the tip did not 

stick to the sample during the nanoindentation step, resulting in reasonable curves that were well 

fit with the Oliver-Pharr model, especially at high load and displacement. However, to reduce 

any possible errors, it is important to investigate strategies to try and minimize non-specific 

adhesion between the tip and the surface.  

Finally, we look at the inherent assumptions in the models associated with the fitting of the 

experimental that may also result in some error.  
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5.2.5.4 Hertz model fit  

Despite the fact that it is best used for rigid materials, the Hertz model was initially used 

to fit the nanoindentation curves of the PEGDA samples. However, it was really challenging to 

estimate the geometry of the indenter. The closest shape available to a tetrahedral structure is a 

cone geometry. In addition the half cone angle needed to be determined prior to analysis. In 

Figure 39, an attempt to fit a PEGDA indentation curve to the Hertz model is presented. By 

using the estimated value of the half cone angle, the model could not fit the data provided.  To 

actually fit the curve, we had to keep changing the half angle contact values until a reasonable fit 

was obtained. It was observed that the fit was somewhat arbitrary since changing the half-angle 

resulted in better fits of the data. However, this value did not reflect the actual geometry of the 

tip. 

 

Figure 39 Hertz model fit of a nanoindentation force curve 
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After several trials, we were convinced that without the exact dimensions and the shape of the tip 

the analysis would be full of error. We then used Oliver-Pharr as the primary model to fit the 

nanoindentation curves of the PEGDA hydrogel.  

5.2.5.5 Inherent errors in measurement using the Oliver Pharr model  

Oliver-Pharr model was the best model to fit our nanoindentation data. However, there 

are several sources of inaccuracy in the determination of the elastic modulus using this model as 

well. The main problem consisted of attempting the fit from the unloading trace of the 

nanoindentation curve. This was typically significant while analyzing under low displacement 

indent mode data (Figure 40). By slightly changing the positions of the cursors used to fit the 

data, a large difference in the elastic modulus value could be observed. It is important to note the 

difference in value of the elastic modulus (from 704.77 kPa to 17.4 MPa) could be obtained from 

the same curve as shown in Figure 40 This degree of subjectivity may have resulted in some 

error in our calculations. It must be noted, that the differences were not as significant in the 

higher displacement or load experiments. In addition, the contact area Ac used for calculating the 

elastic modulus in the Oliver-Pharr model is for a Berkovich tip which has a tetrahedral 

geometry and described by:   

Ac = 24.5 * H²c

where Hc is the contact height (Figure 9).  

From the SEM images of the AC160 tip, it was observed that contamination as well as a 

change in geometry of the contact area may occur as a result of these experiments. These 



inherent sources of error indicate that the tip geometry must be accurately quantified prior to 

analysis of the force-displacement curves measured.  

 

Figure 40 The influence of the position of the cursors on a low displacement nanoindentation 

curve using the Oliver-Pharr model. By slightly changing the positions of the cursors in the red 

circles (left curve) to a slightly different positions in the yellow rectangles (right curve) to fit the 

data, a large difference in the elastic modulus value was observed 
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Chapter 6: Conclusion and Future Work 

While the mechanical behavior of hydrogels has been estimated at the bulk scale, there 

have been limited studies at the nanoscale. In this research, we investigated the mechanical 

properties of PEGDA hydrogels at the nanoscale by measuring the elastic modulus as well as 

stiffness via nanoindentation using an AFM. We showed that the silicon nitride cantilevers can 

be used to perform nanoindentation, particularly at higher loads and displacements. The 

mechanical behavior of PEGDA hydrogels was observed to depend on many parameters 

including the water content, monomer molecular weight, photoinitiator concentration and 

photopolymerization procedure.  

By increasing the amount of the crosslinking agent, the elastic modulus as well as 

stiffness increased in value. It was observed that the higher the molecular weight of the hydrogel, 

the higher is the value of the elastic modulus. These experimental and analysis parts were studied 

under high load and displacement indent modes. At lower displacement indent mode (~10nm) 

and load indents, the tip-surface interaction forces were predominant led to high error, which 

made analysis difficult. Stiffer cantilevers with a higher spring constant were found to work 

better to get force-displacement curves that could be easily analyzed. 

Two models were compared to fit the data- Hertz and Oliver-Pharr. The classical Hertz 

model was used first since it is the most prevalent. The analysis using this model is mostly based 

on accurately determining the geometry of the indenter (cantilever tip). In addition, the Hertz 

theory is based on performing the indentation on rigid surfaces. The PEGDA hydrogels, as soft 

materials required the Oliver-Pharr model as best suited for our experiments. Scanning electron 

microscopy was introduced in the scope of the research to confirm the geometry of the tip before 

and after the indentation. Some images taken of the cantilever revealed that cantilever geometry 
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does indeed change as a result of nanoindentation and tips are also likely to be contaminated with 

the sample. 

Since most application of hydrogels are in biomedical fields such as drug delivery and 

tissue engineering, calculating and controlling the mechanical properties of a hydrated polymer 

is of great interest. Therefore investigating the mechanical properties of PEGDA hydrogel in 

liquids is the next important step. Even though it has been done in this research, further studies 

are encouraged to confirm the results obtained. The determination of the indenter structural 

shape and physical properties is really important in the characterization of the material of 

interest. In addition, the choice of the material of the indenter (cantilever tips) is important as 

well, to minimize the non-specific interaction with the surface indented. In future studies, better 

models and methods should be developed to identify the mechanical properties of soft material 

via nanoindentation experiments. The development consists of studying and confronting the 

challenges faced with indenter properties and geometry as well as minimizing the error obtained 

from the non-specific force interaction,  in addition to determine the indentation material 

parameters for contact modeling, stress/strain analysis and load bearing.  
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