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Neisseria gonorrhoeae is an obligate human pathogen that requires iron for its 

survival within the host.  N. gonorrhoeae expresses high-affinity iron acquisition systems 

to acquire iron from host iron binding proteins.  The gonococcal transferrin-iron uptake 

system is composed of two transferrin binding proteins, TbpA and TbpB.  TbpA is a 

TonB-dependent, outer membrane transporter, while TbpB is a surface-exposed 

lipoprotein.  Unlike TbpA, TbpB is not required for transferrin utilization, but makes the 

process more efficient.  The precise mechanism by which TbpA and TbpB function to 

mediate transferrin-iron uptake has not been fully characterized.  However, the 



 xxii

mechanism of iron acquisition from transferrin is distinct from characterized TonB-

dependent ferric-siderophore uptake systems.  The transferrin-iron uptake system is 

unique in two ways: the involvement of the TbpB lipoprotein component and the process 

of iron acquisition and internalization.  Unlike siderophore transporters, the transferrin-

iron uptake system requires the removal of iron from transferrin for its subsequent 

internalization.  Based on analogy with characterized TonB-dependent transporters, 

TbpA is proposed to consist of two distinct domains: a β-barrel and plug domain.  

Previous studies suggest that the plug domain has a specific role in iron internalization 

and this study addresses the role of the plug domain in transferrin-iron acquisition.  It is 

thought that the TbpA plug domain facilitates iron removal from transferrin and 

subsequent iron binding and transport.  To analyze this, iron binding by the TbpA plug 

domain was performed and site-directed substitution mutagenesis of putative iron-

coordinating residues was carried out.  From these analyses, it can be concluded that the 

plug domain binds iron and likely plays an active role in the process of iron 

internalization.  Mutagenesis revealed specific residues of the plug domain critical for 

transferrin-iron uptake, but defects imparted by these mutations were compensated for by 

TbpB.  Thus, this study also attempts to characterize the compensatory function provided 

by TbpB.  Through mutagenesis, critical domains involved in the efficiency of 

transferrin-iron acquisition were identified.  One additional study describes and 

characterizes a novel mechanism of TonB-independent transferrin-iron acquisition.  

Overall, these studies further elucidate mechanisms utilized by Neisseria gonorrhoeae in 

the process of iron acquisition from human transferrin. 
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CHAPTER 1 – INTRODUCTION 
 

Neisseria gonorrhoeae and Neisseria meningitidis are both human pathogens in 

the Neisseriaceae family.  N. gonorrhoeae is the causative agent of the sexually 

transmitted disease gonorrhea.  The first documented observations of gonorrhea were 

made by Hippocrates (460 – 355 BC) (146), and the bacterium N. gonorrhoeae was first 

discovered in 1879 by Albert Neisser.  Although N. gonorrhoeae was not recognized 

until the nineteenth century, gonorrhea has been described since antiquity, with 

references made in biblical and other ancient texts (146).  Until the advent of antibiotics 

in the 1900s, gonorrhea was very difficult to treat and control.  To this day, gonorrhea has 

still proven difficult to control because of the increasing antibiotic resistance in isolates 

throughout the world (33, 34).  In addition to the high incidence of antibiotic resistance 

(33), the lack of protective immunity and increase in HIV transmission correlated with 

gonococcal infection (44, 128) point to the need for development of an effective vaccine 

against N. gonorrhoeae.   

 Neisseria meningitidis is closely related to N. gonorrhoeae and was first described 

by Anton Weichselbaum in 1887.  N. meningitidis is the causative agent of bacterial 

meningitis, which may lead to life threatening bacteremia.  Despite the differences in 

disease manifestations, the two pathogenic Neisseria share a close evolutionary 

relationship (217) and have a very similar repertoire of virulence factors.  Therefore, 
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experimental observations made in studying N. gonorrhoeae may be applied to N. 

meningitidis, and furthermore, the development of an effective vaccine against 

gonococcal infections may also provide protection against meningococcal disease.   

  

I. Genus Neisseria 

 The genus Neisseria belongs to the family Neisseriaceae, which is comprised of 

many genera, including Moraxella, Acinetobacter, and Kingella (83, 100).  Species 

belonging to the genus Neisseria include both obligate human pathogens and normal 

human flora.  The most well studied of the Neisseria species are the pathogens N. 

gonorrhoeae and N. meningitidis.  N. gonorrhoeae is the only true pathogen because it is 

always associated with the disease state (32), whereas N. meningitidis can be found 

among normal human flora.   

 Neisseria species are Gram-negative diplococci that have adjacent, flattened sides 

and range in size from 0.6 to 1.5 μm.  Neisseria are classified as either aerobes or 

facultative aerobes, with optimal growth conditions between 35oC and 37oC in the 

presence 5% CO2.  Neisseria species are fastidious microorganisms that require complex 

growth media with glucose provided as a carbon source.  Consistent with the fact that 

most Neisseria species rely on the human host for survival, all species have limited 

metabolic capabilities.  This limited metabolic potential provides a basis for species 

differentiation based on abilities to produce acid from carbohydrates, polysaccharide 

from sucrose, and the ability to reduce nitrate.  In addition, Neisseria produce a number 

of enzymes that allow for species differentiation (83, 100) (Table1).         
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II. Neisseria Infection 

 Both pathogenic Neisseria species are associated with human epithelial mucosa 

(136), and despite their close evolutionary relationship (217), meningococci colonize the 

nasopharynx, while gonococci primarily infect the urogenital tract.  The differences in 

disease states and the few differences in virulence factors are likely linked to the different 

modes of transmission utilized by N. gonorrhoeae and N. meningitidis.   

A. Meningococcal infection 

Neisseria meningitidis is a commensal that is spread by respiratory droplets and 

colonizes the oro- or nasopharynx of approximately 5 – 30% of the human population 

(71).  N. meningitidis, in some cases, can be classified as a member of the normal flora 

or, in others, can be associated with invasive meningococcal disease.  It has been shown 

through multilocus sequence typing (MLST) that disease is caused by hypervirulent 

lineages of N. meningitidis (123) and that these lineages are vastly underrepresented in 

asymptomatic meningococcal carriers (41).  Invasive meningococcal disease develops 

when meningococci cross the nasopharyngeal epithelium and enter the bloodstream, 

resulting in bacteremia.  In turn, meningitis results when meningococci cross the blood-

brain barrier, which can occur as a consequence of high level bacteremia (154).  Invasive 

meningococcal disease usually develops rapidly and has a high rate of fatality between 5 

– 15% (86).  The rapid disease progression makes prompt diagnosis and intervention 

critical for survival of meningococcemia and meningitis.   
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 Neisseria meningitidis can be classified into thirteen different serogroups, based 

on the polysaccharide capsule.  Serogroups A, B, C, Y, and W-135 are most commonly 

associated with invasive meningococcal disease, with A, B, and C accounting for 

approximately 90% of cases worldwide (168).  Currently there is an effective tetravalent 

vaccine against serogroups A, C, Y, and W-135; however, there is no vaccine against 

serogroup B because this capsular polysaccharide lacks immunogenicity.  The lack of 

immunogenicity occurs through the decoration of serogroup B capsule with host sialic 

acid, which is considered a form of molecular mimicry (203).  The need for an effective 

vaccine against all capsular serotypes is critical in eliminating meningococcal disease 

throughout the world. 

B. Meningococcal epidemiology 

The rate of meningococcal disease in the United States is relatively low, with 

approximately 0.9 – 1.5 cases per 100,000 people (189).  The rates of meningococcal 

disease are highest among infants, but rates drop following infancy and then rise again 

during adolescence and early adulthood (190).  In addition to fluctuations in disease rate 

among different age groups, fluctuations in rates are also observed during seasonal 

changes, with rates highest during the winter and early spring in the United States (190).  

Meningococcal disease is a much more serious problem in other parts of the world.  

Europe has slightly higher rates of disease than the United States, with approximately 0.3 

– 7.1 cases per 100,000 people (159).  Meningococcal disease occurs in major epidemics 

within the African meningitis belt, which includes many sub-Saharan countries.  The 

rates of disease during these epidemics are 500 – 1000 times the rates seen in the United 
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States, with approximately 500 – 1000 cases per 100,000 people (237).  Overall, 

meningococcal disease is serious and widespread throughout the world.  The various 

factors that contribute to meningococcal disease and epidemics are complex and not well 

understood. 

C. Gonococcal infection  

Neisseria gonorrhoeae is the causative agent of the sexually transmitted disease 

gonorrhea.  Gonorrhea is transmitted through sexual contact and causes a localized 

infection of the male and female lower urogenital mucosa.  In men, gonorrhea typically 

presents as an acute urethritis, and epididymitis is a common complication of untreated 

urethritis.  Although rare in males, other complications result from ascension of 

gonococci to the upper genital tract and include prostatitis, posterior urethritis, and 

seminal vesiculitis (68).  In women, gonococcal infection causes cervicitis and/or 

urethritis, but up to 80% of women are asymptomatic and do not seek proper medical 

attention (8, 129, 167).  It has been shown that 40% of women with localized gonococcal 

infection are also anorectally colonized with N. gonorrhoeae (99).  Ascension of 

gonococci to the upper genital tract can result in pelvic inflammatory disease (PID), 

which is seen in 10 – 20% of female infections (82, 236).  If left untreated, PID can cause 

fallopian tube scarring and can ultimately result in infertility and/or ectopic pregnancy 

(150, 202).  Disseminated gonococcal infection (DGI) can also occur, but at a relatively 

low frequency (0.5 – 3%) and most commonly in young women (68).  Classic symptoms 

of DGI include dermatitis, tenosynovitis, migratory polyarthritis, and even less common 

perihepatitis (120) and endocarditis (92).  Additional primary sites of gonococcal 
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infection include the rectum, pharynx, and conjunctiva.  Gonococcal conjunctivitis is a 

localized infection of the adult eye that can result in corneal scarring and without 

immediate treatment can lead to loss of vision (143, 221).  Gonococcal infection can be 

transferred from mother to neonate during vaginal childbirth, causing neonatal 

conjunctivitis.  Although not a significant problem in the United States, this infection 

remains a very common cause of blindness in developing countries (108).  The serious 

sequelae resulting from gonococcal infection, the lack of protective immunity, and the 

correlation with HIV transmission (44, 128), all point to the need for an effective vaccine 

against N. gonorrhoeae.   

D. Gonococcal epidemiology 

Infection by Neisseria gonorrhoeae is a major health concern throughout the 

world.  In 1998, the World Health Organization reported that there were 62.2 million 

cases of gonorrhea worldwide (238).  The estimated number of cases in the United States 

reached approximately 360,000 cases in 2006, making gonorrhea the second most 

frequently reported communicable disease following chlamydial infection (33).  

Although the rates of gonorrhea declined 74% from 1975 to 1997, the rates steadily 

increased again, with the number of cases reaching 121 per 100,000 people in 1998 (32).  

Reporting of gonococcal cases is typically lower than the actual incidence of disease 

particularly due to underreporting and asymptomatic gonococcal infection in women.   

The high rates of gonococcal infection seen throughout the world are a serious 

cause for concern.  Gonorrhea has huge health implications in regard to PID and the role 

gonococcal infection plays in facilitating HIV infection (44, 128).  The continuing 
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emergence of antibiotic resistant N. gonorrhoeae is of increasing concern for the control 

and prevention of gonorrhea.  Recent reports of antibiotic resistance in N. gonorrhoeae 

show that there is still a high prevalence of isolates resistant to both penicillin and 

tetracycline, presence of multi-drug resistant strains, and an emergence of 

fluoroquinolone resistance (33).  In addition, the Center for Disease Control and 

Prevention recommended in 2007 that fluoroquinolones should no longer be used for 

treatment of gonococcal infection (34).  Currently, third generation cephalosporins are 

the treatment of choice against gonorrhea, but decreased susceptibility has been observed 

(33), which suggests that it is only a matter of time before resistance develops to all 

currently available antibiotic therapies.  In addition to the health implications resulting 

from gonococcal infection, the increasing rates of resistance seen in N. gonorrhoeae 

again point to the need for the development of an effective vaccine.   

 

III. Neisseria Virulence Factors 

 Pathogenic Neisseria express a wide range of virulence factors that contribute to 

pathogenesis within the human host.  A number of these factors contribute to initial 

adherence to mucosal epithelium, while other adhesins facilitate more intimate adherence 

with specific host cell receptors.  These interactions facilitate invasion and transcytosis 

across epithelial cells, which allows for interaction with endothelial and various immune 

cells.  These interactions can ultimately lead to entry into the bloodstream and 

dissemination to distal sites.  During this process there are many virulence factors 

involved in immune evasion, extracellular and intracellular survival, and disease 
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progression.  These virulence determinants and their roles in gonococcal and 

meningococcal pathogenesis are discussed below.   

A. Capsule 

Polysaccharide capsule is one well-characterized virulence factor that is found in 

N. meningitidis, but absent in N. gonorrhoeae (68).  Thus, capsule is likely one of the 

main virulence determinant that facilitates the different mode of transmission, disease 

progression, and disease outcome observed with meningococcal infection.  N. 

meningitidis expresses 13 different capsule types, which differ in the polysaccharide 

composition.  Meningococcal capsule is subject to high-frequency phase variation and 

various sialic acid modifications, which have both been shown to be important in 

resistance to phagocytosis and complement-mediated killing (68).  The diversity of 

capsular polysaccharides in addition to the variations within each capsular serogroup 

make capsular polysaccharide a dynamic virulence factor in the pathogenesis of N. 

meningitidis. 

B. Pilus 

To initiate infection, pathogenic Neisseria must adhere to the mucosal epithelium 

in a step known as initial adherence.  Type IV pilus is critical for the colonization of the 

mucosal nasopharynx and urogenital tract.  In the absence of pili, gonococci are unable to 

initiate infection upon human challenge (95, 96).  Type IV pili are long filamentous 

structures that extend from the gonococcal and meningococcal cell surface and facilitate 

binding to host mucosal epithelium.  The long pili allow gonococci and meningococci to 
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overcome the negative electrostatic barrier that exists between bacterial and host cells to 

allow for initial attachment (80).   

The type IV pilus is composed of two subunits: monomeric pilin subunits (PilE) 

that form the pilus fiber and PilC, the pilus tip adhesin (191).  Pili have been shown to 

mediate many different cellular interactions with epithelial cells, endothelial cells, 

granulocytes, macrophages, and erythrocytes (101, 193, 196, 224, 227).  PilC has been 

shown to be an important factor in host cell interactions and facilitates interaction with 

both epithelial and endothelial cells (153).  PilC mutants are unable to interact with these 

cells, and purified PilC prevented piliated gonococci from interacting with epithelial cells 

in vitro (195).   

Type IV pili of pathogenic Neisseria are antigenic and produce a local antibody 

response that blocks attachment of bacteria to epithelial cells (90, 127, 219); however, 

expression of pilus is subject to both phase and antigenic variation, which makes it a poor 

vaccine candidate.  Phase variation of pilus results from RecA-independent frame shifting 

known as slipped-strand mispairing, while antigenic variation results from RecA-

dependent, non-reciprocal gene conversion (103).  Slipped-strand mispairing occurs 

during DNA replication, when DNA polymerase skips or adds bases in the poly cysteine 

tract of pilE, causing a frame shift and gene expression to be turned off (103).  Phase 

variation occurs at a relatively high frequency of 10-4 per cell generation (103, 245).  

Antigenic variation of pilus results from the non-reciprocal exchange of DNA sequences 

from one of several silent pilS loci into the pilE expression locus (73, 134, 135, 199).  In 

addition to phase and antigenic variation, pilin is also subject to posttranslational 
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modifications through phosphorylation and glycosylation (205, 227).  The receptor 

responsible for pilus interactions with host cells has not been identified and the only 

receptor (93) that has been implicated in this interaction is subject to much controversy 

(125). 

C. Opacity proteins 

The neisserial opacity proteins (Opa) were identified and named for the color and 

opacity that they impart on gonococcal colonies (87, 212).  Opacity proteins are integral 

outer membrane proteins that have been associated with Neisseria virulence and host cell 

interaction.  Opas are linked to N. gonorrhoeae virulence because gonococci recovered 

from urogenital, cervical, and rectal infections always express at least one Opa protein 

(213).  In addition, gonococcal strains, not expressing Opas, used in volunteer infection 

studies are always recovered following infection expressing these proteins (89).  These 

studies point to the fact that opacity proteins are required for survival and virulence in 

vivo.  Any single gonococcal strain can possess up to eleven distinct opa alleles that 

encode antigenically distinct Opa variants, while meningococcal strains only possess up 

to four distinct opa alleles (13, 106).  Opacity proteins from both N. meningitidis and N. 

gonorrhoeae are subject to high-frequency phase variation that in N. gonorrhoeae results 

in the expression of zero to four Opas at any one time (17).  This phase variation occurs 

via slipped-strand mispairing in which the number of CTCTT repeats in a poly CTCTT 

tract vary and cause frame shifts that result in differential expression of none, one, or 

multiple Opas at one time (152, 204).   
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Opacity proteins have also been characterized as factors involved in intimate 

attachment to host cells.  Opas have been shown to facilitate binding and invasion of host 

cells through interactions with surface heparan sulfate proteoglycans (HSPG) as well as 

carcinoembryonic antigen-related cell adhesion molecules (CEACAM) on various cell 

and tissue types (68).  Several of the eleven different Opas expressed by N. gonorrhoeae 

bind to HSPGs (39, 106, 223) and one in particular has been shown to mediate intimate 

adherence that results in receptor-mediated endocytosis into epithelial cells (106, 230, 

231).  This Opa protein has also been shown to mediate binding and promote invasion of 

endothelial cells and fibroblasts, although in a less efficient manner than seen with 

epithelial cells (67).   

CEACAMs are differentially expressed on a variety of cell types (9, 173, 216) 

and Opas have been shown to interact with a number of CEACAMs (19, 69).  Opa-

mediated binding and invasion has been observed in many cells, including epithelial, 

endothelial, and phagocytic cells and these events ultimately leads to CEACAM-

dependent intracellular signaling.  Although Opa-CEACAM interactions are important 

for gonococcal cell tropisms, this interaction is also important in the down regulation of 

the host immune response through the suppression of T-cell activation and proliferation, 

inhibition of antibody production, and induction of B-cell apoptosis (21, 164)     

D. Opc 

Opc is a neisserial outer membrane adhesin that is similar in size to the opacity 

proteins, but structurally and antigenically distinct.  Opc was originally identified as a 

meningococcal-specific protein, but is also found in N. gonorrhoeae (132).  The majority 



 12

of work done on Opc has been in the meningococcus, but its role in intimate adherence 

and invasion is important to consider for N. gonorrhoeae.  Opc has been shown to 

interact with epithelial and endothelial cells (54, 133, 225).  Opc interaction with 

endothelial cells occurs via αvβ3 integrin in a vitronectin-dependent fashion (226).  Opc 

likely serves as another adhesin and invasin important for Neisseria pathogenesis. 

E. Porins 

Porins are the most abundant proteins on the outer membrane of Neisseria.  They 

form hydrophilic pores that allow for the passive diffusion of small nutrients (molecular 

weight ≤ 600 daltons) across the outer membrane (158).  Porins have a variety of 

different cellular functions that contribute to the pathogenesis of Neisseria.  Porin has 

been shown to translocate into eukaryotic cytoplasmic and phagosomal membranes 

(230).  Once inserted in the eukaryotic membranes, porins are regulated by the host cell 

(192), which suggests that they have characteristics of voltage-dependent anion channels.  

Once porins form pores in eukaryotic membranes, they cause rapid calcium influx and 

ultimately induce cellular apoptosis (148, 149).  Porins also have effects on the host cell 

phagocytic response, by interference with PMN signaling, inhibition of degranulation, 

down regulation of opsonin receptor-mediated phagocytosis, and modulation of 

phagosomal maturation (16, 75, 147).   

N. meningitidis expresses two types of porin, PorA and PorB, while N. 

gonorrhoeae only expresses one porin, PorB.  PorB of both pathogenic Neisseria have 

two antigenically distinct serotypes, designated PIA and PIB.  Expression of PorBIA 

(PIA) is known to cause increased gonococcal serum resistance and is correlated with 
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disseminated gonococcal infection (142).  Serum resistance mediated by PIA is 

attributable to its ability to bind complement factors, Factor H and C4 binding protein, 

and thereby prevent complement-mediated killing (178, 179).  Thus, porins are important 

in basic nutrient acquisition as well as immune modulation and evasion in the pathogenic 

Neisseria.    

F. Lipooligosaccharide 

Lipopolysaccharide or LPS is a major component of the Gram-negative outer 

membrane.  LPS is comprised of three parts: lipid A, which is embedded in the outer 

membrane, the core polysaccharide, and the O-antigen side chains.  Neisserial LPS can 

be distinguished from enteric LPS because of its highly-branched core oligosaccharide 

structure and lack of repetitive O-antigen side chains.  Thus, LPS from Neisseria species 

is called lipooligosaccharide or LOS.  LOS is an endotoxin and a major virulence factor 

involved in the inflammatory response seen during Neisseria infection.  LOS, like many 

other virulence factors of pathogenic Neisseria, is subject to high-frequency variation.  

Variation in LOS occurs at the α side chains within the core polysaccharide, where sugar 

residues are added by various glycosyl transferases.  These enzymes are subject to 

slipped-strand mispairing at poly glycine tracts, which causes variations in expression 

patterns.  Differential expression of the glycosyl transferases, leads to overall changes in 

LOS size, structure, and carbohydrate composition (52, 241).   In addition, LOS is subject 

to post-translational modification in vivo, which is known to enhance Neisseria serum 

resistance.  Sialylation of LOS occurs in vivo by gonococcal and meningococcal 

sialyltransferases that utilize host derived cytidine 5’-mono-phospho-N-acetylneuraminic 
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acid (CMP-NANA) as a sialyl donor (124).  This modification enhances gonococcal and 

meningococcal survival in vivo through inhibition of complement deposition (180) and 

phagocytic killing (141).  Sialylation of LOS with host CMP-NANA represents another 

example of molecular mimicry that aids in survival of Neisseria in the human host.  

Additionally, LOS sialylation protects Neisseria against PorB-specific bactericidal 

antibodies (59).   

G. Reduction-modifiable protein 

Reduction-modifiable protein (Rmp) is a gonococcal outer membrane protein 

found in all gonococcal isolates and is named based on the observed molecular weight 

shift following reduction in SDS-PAGE (65).  Rmp, an OmpA homolog (66), is often 

found in association with LOS and PorB in the outer membrane (81, 130) and is highly 

conserved between strains (91, 239).  Rmp-specific antibodies serve as blocking 

antibodies that protect gonococci from LOS- and PorB-specific bactericidal antibodies 

(151, 185).  In fact, Rmp antibodies actually increase host susceptibility to gonococcal 

infection (171). 

H. IgA protease 

Pathogenic Neisseria secrete a serine IgA protease that has a high specificity for 

human IgAI antibodies.  IgAI is a specific subtype of IgA and is the most prominent IgA 

antibody found in mucosal secretions (194).  Therefore, gonococci and meningococci 

come in contact with IgAI antibodies during localized infection and are able to cleave the 

Fab antigen binding fragment from the Fc effector domain.  This cleavage event 

essentially decorates Neisseria with Fab, which aids in masking the immunodominant, 
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surface epitopes from host bactericidal antibodies (68).  Neisserial IgA protease also 

cleaves human lysosome/late endosome associated membrane protein 1 (LAMP-1) and 

this cleavage event is important for gonococcal survival and growth within epithelial cells 

(79, 116).  Not only does IgA protease aid in colonization at mucosal surfaces, but it also 

appears to have a significant role in intracellular survival.   

 

IV. Iron and Pathogenesis 

A. Iron 

Iron is one of the most abundant elements on the earth and is essential for the 

survival of virtually all organisms (25).  Iron has a versatile redox potential, and can exist 

in the reduced ferrous (Fe2+) form or the oxidized ferric (Fe3+) state.  Under aerobic 

conditions, ferrous iron (Fe2+) is highly unstable and through the Fenton reaction is 

converted to ferric iron (Fe3+) with the production of toxic, reactive oxygen species:  

Fe2+ + H2O2 → Fe3+ + OH· + OH− 

The reactivity and toxicity of iron creates an environment in which iron sequestration is 

critical within the human host.  Although iron is very abundant in nature, it exists in an 

inaccessible form due to its extreme insolubility.  This property of insolubility creates an 

iron-limiting environment in the human host, with a concentration of free, ferric iron 

(Fe3+) of 10-18 M (29), which is far below the nutrient requirement for survival of 

microorganisms (232).  Within the human host, this concentration is even lower as a 

result of host iron binding proteins sequestering free iron from the environment (182).  

All microorganisms require iron, with the exception of only two known bacterial genera, 
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Lactobacillus (5) and Borrelia (172).  Iron is critically important as an electron carrier in 

microbial oxidative metabolism and as the catalytic center of a variety of essential 

enzymes.  As a result, pathogenic microorganisms have evolved mechanisms to acquire 

iron from host iron binding proteins to survive and persist within the human host.   

B. Pathogenic mechanisms for iron acquisition 

There are many mechanisms by which microorganisms acquire iron from the 

human host.  Many microorganisms produce and secrete siderophores, low-molecular-

weight iron-chelating molecules, during iron stress to scavenge iron from their 

environments (155, 156).  Siderophores function to specifically bind, solubilize, and 

deliver iron via bacterial ferric-siderophore uptake systems.  Some bacteria can obtain 

iron through the expression and secretion of ferric reductases, which reduce ferric iron 

(Fe3+) to the more soluble ferrous (Fe2+) form for utilization (51, 197).  These reductases 

have also been shown to remove iron from host iron binding proteins through this 

reduction event (51, 197).  Other bacteria have receptor-mediated mechanisms to 

scavenge and utilize iron from heme, hemoproteins, and other host serum proteins, such 

as lactoferrin and transferrin.  The human host goes to great lengths to sequester iron in 

an attempt to make free iron inaccessible, and pathogenic microorganisms have 

developed a variety of different mechanisms to bypass this iron sequestration for 

survival.  These mechanisms of host iron sequestration and the pathogenic mechanisms in 

which bacteria acquire iron from the human host are discussed in the next two sections. 
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V. Iron Sources in the Human Host 

A. Ferric and ferrous iron 

Ferric iron (Fe3+) is the major form available in aerobic environments, but is 

highly insoluble in the form of ferric hydroxides.  Ferrous iron (Fe2+), however, is the 

predominant form under anaerobic or reducing conditions.  Although not typically 

present in high concentrations within the human host, soluble, ferrous iron (Fe2+) can 

diffuse freely across Gram-negative outer membranes via porins.  Subsequently, iron is 

transported through the cytoplasmic membrane by ABC ferrous iron (Fe2+) transporters, 

which are conserved among many bacterial species (94).   

B. Ferritin 

Ferritin is the major cytoplasmic iron storage protein within the human host.  

Ferritins function intracellularly to provide iron during iron shortages and also protect the 

host from the toxic effects of iron accumulation.  Ferritin consists of 24 subunits that 

form a icosahedron structure (30) that has a capacity for harboring more than 4000 ferric 

iron (Fe3+) atoms (1, 2, 181).  Although ferritins have not been shown to be a substantial 

iron source for bacterial pathogens, they constitute a major intracellular iron source.   

C. Heme & heme binding proteins 

a. Heme 

Heme is an iron-containing porphyrin ring that is highly toxic to cells and as a 

result, is scarcely found free in the human host.  Despite its scarcity in the host 

environment, heme does serve as an iron source for a variety of bacterial pathogens.  

These microorganisms express specific, high-affinity uptake systems to acquire heme-
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iron from the human host.  However due to its toxicity, free heme exists at very low 

concentrations because it is sequestered by the host hemoproteins: hemoglobin, 

haptoglobin, and hemopexin.   

b. Hemoglobin 

Hemoglobin is found in red blood cells and functions as an oxygen carrier in the 

human host.  It is tetrameric in structure and each subunit binds heme.  Hemoglobin can 

exist in one of three states: (1) methemoglobin, which is oxidized and contains ferric iron 

(Fe3+); (2) oxyhemoglobin, which is the oxygen carrying form; or (3) 

carboxyhemoglobin, which is reduced and contains ferrous iron (Fe2+).  Many bacterial 

species express hemoglobin-specific heme uptake systems for the acquisition of heme-

iron complexes.   

c. Haptoglobin 

Haptoglobin is a host serum glycoprotein that binds hemoglobin when it is 

released into the serum following hemolysis.  The hemoglobin-haptoglobin interaction 

occurs at such a high affinity in the host that dissociation only occurs through degradation 

of the protein complex in the liver.  It has been shown that pathogenic Neisseria (112, 

115) and Haemophilus influenzae (122, 145) are able to utilize the hemoglobin-

haptoglobin complex as a heme-iron source through receptor-mediated events. 

d. Hemopexin 

Hemopexin is another host serum glycoprotein that binds heme with a high 

affinity (165).  Hemopexin functions to remove free heme from the serum and transport it 

to the liver, where apopexin is recycled following release of heme intracellularly.  To 
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date, Haemophilus influenzae has been the only bacterium shown to specifically bind and 

utilize hemopexin as a source of heme (78).   

D. Lactoferrin  

Lactoferrin is an iron binding glycoprotein found in mucosal secretions among 

many other places.  It is found in highest concentration in breast milk, but is also present 

in secondary granules of neutrophils and various other secretions (26).  The lactoferrin 

structure consists of two highly homologous lobes that both have deep binding clefts that 

function in ferric iron (Fe3+) coordination (3).  Lactoferrin is similar to transferrin, but has 

two features that make it distinct.  Those features include its higher affinity for iron and 

its higher isoelectric point (pI) (26).  Lactoferrin functions primarily in iron chelation to 

protect the host from the toxic effects of iron accumulation.  However, lactoferrin has 

also been attributed to a large number other functions unrelated to its iron binding 

capacity (26, 27).  One of importance is its antimicrobial properties mediated by both 

full-length lactoferrin as well as small, cleaved lactoferrin peptide fragments (26, 240).  

Lactoferrin plays an important role in the host through both its immunoregulatory 

functions (26) and iron sequestering ability.  Many bacterial pathogens have evolved 

specific and efficient mechanisms to acquire iron from lactoferrin within the human host.   

E. Transferrin 

Transferrin is the most abundant iron transport protein found in the human host.  

It is an 80 kDa glycoprotein found in high concentrations in serum, lymph, and seminal 

fluid.  Transferrin has two major functions in the host: (1) iron binding for transport 

throughout the human body and (2) protecting the host from iron-mediated toxicity.  
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Similar to lactoferrin, transferrin has a high affinity for iron, with an association constant 

that has been reported as high as 1031 M (2).  The structure of transferrin shows that it is 

bi-lobed and both lobes function in high-affinity iron coordination (88).  However, in 

vivo, transferrin is only about 30% saturated with iron (2).  Ferric iron (Fe3+) is 

hexacoordinated in the lobes of transferrin by two tyrosines, a histidine, an aspartic acid, 

a carbonate, coordinating anion, and a hydroxyl group from water (88).  Despite the high-

affinity coordination of iron, many bacterial pathogens are able to acquire iron from 

transferrin within the human host.   

 

VI. TonB-Dependent Iron Acquisition  

 The majority of pathogenic mechanisms to obtain iron from the human host are 

classified as TonB-dependent iron acquisition systems.  The components of TonB-

dependent iron uptake include, but are not limited to, an integral, outer membrane protein 

that transports iron/iron complexes through the outer membrane, a TonB protein complex 

that harnesses energy for the process of iron internalization, and a periplasmic iron 

binding protein (PBP) that shuttles iron/iron complexes to an ABC transporter within the 

cytoplasmic membrane.  Various mechanisms of TonB-dependent iron acquisition have 

been identified and these systems are discussed (Figure 1). 

A. Siderophore-mediated iron acquisition 

Siderophores are low-molecular-weight, high-affinity iron chelators of which 

more than 500 have been identified (181).  They are divided into three major classes 

based on the structure and chemical nature of iron coordination.  Siderophores are 
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classified as catecholates, hydroxamates, and carboxylates; however, this classification 

scheme is becoming more complex with new information on siderophores that have 

structural and chemical features from more than one class (182).  These molecules 

specifically bind ferric iron (Fe3+) with a high affinity and rarely bind the ferrous (Fe2+) 

form.  Ferric iron is complexed in a 1:1 ratio with each siderophore and is typically found 

in a hexacoordinated state, which forms an octahedral structure in aqueous solution (182).  

Interestingly, ferric-siderophores have a wide range of affinities for iron, with 

dissociation constants ranging from 1022 to 1050 (181), over 30 orders of magnitude 

differences between some (139).  These relative affinities for iron are sufficient for 

siderophore-mediated removal of iron from human ferritin, lactoferrin, and transferrin, 

but not the various hemoproteins (181). 

Siderophores are synthesized and secreted by microorganisms to scavenge iron 

from the environment (228).  Once ferric iron (Fe3+) is bound and mobilized by 

siderophores, it becomes accessible by one of two ways: (1) iron is released from the 

siderophore complex through a reduction at the bacterial cell surface, whereby iron is 

taken up by the cell (51) or (2) the entire ferric-siderophore complex is internalized by a 

TonB-dependent receptor-mediated event (139).  However, bacterial systems of 

reduction-mediated iron removal from siderophores are less well known and the receptor-

mediated events are considered the major route of siderophore-mediated iron acquisition 

(139).   

Ferric-siderophore uptake (Figure 1), like all TonB-dependent transporters, 

requires TonB energization and an outer membrane transporter to facilitate uptake 
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through the outer membrane.  The TonB complex is composed of three proteins: TonB, 

which is embedded in the cytoplasmic membrane and spans the periplasmic space and 

ExbB and ExbD, which are both embedded in the cytoplasmic membrane.  These 

proteins work together to harness the proton motive force of the cytoplasmic membrane 

to energize TonB, which is thought to promote its interaction with specific outer 

membrane transporters and facilitates ferric-siderophore uptake (139).  It also requires a 

periplasmic iron binding protein (PBP) and an ABC transporter for movement across the 

periplasm and through the cytoplasmic membrane, respectively.   

Many of these TonB-dependent, outer membrane transporters have been 

crystallized and their overall structures, shown in Figure 2, are very similar (28, 40, 42, 

43, 119, 244).  These structures show the presence of two distinct domains: (1) a C-

terminal β-barrel consisting of 22 β-strand transmembrane-spanning domains and (2) an 

N-terminal plug domain that folds up with the β-barrel.  Mutagenesis (35, 36) and 

disulfide tethering (58) of the plug domain, have revealed that the plug domain undergoes 

conformational rearrangement that allows for ferric-siderophore transport through the 

outer membrane.  This conformational change is thought to occur following interaction 

with TonB and results in siderophore translocation through the outer membrane (166, 

200).   

Following ABC-mediated transport through the cytoplasmic membrane, the 

ferric-siderophore gains access to the bacterial cytoplasm.  Within the cytoplasm, there 

are two known mechanisms that result in iron release from siderophore complexes.  The 

first involves the reduction of ferric iron (Fe3+) to ferrous iron (Fe2+) by cytoplasmic 
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ferric-siderophore reductases (139).  The second involves specialized enzymes that 

promote hydrolysis, resulting in destabilization of the siderophore and release of iron 

(139).  Overall, these mechanisms of TonB-dependent siderophore-mediated iron 

acquisition are utilized by many pathogenic microorganisms to meet their iron 

requirements in the midst of severe iron starvation within the human host.   

B. Non-siderophore-mediated iron acquisition 

a. Heme and hemoproteins 

Many pathogenic bacteria utilize heme as an iron source within the human host.  

Similar to iron, heme is cytotoxic and thus sequestered by host hemoproteins, 

hemoglobin, haptoglobin, and hemopexin.  One mechanism pathogens utilize to gain 

access to heme within the host is the secretion of exotoxins that cause cell lysis (109, 162, 

170, 201, 206), which results in the release of intracellular heme and hemoproteins.  Once 

heme and/or hemoproteins are accessible, pathogens utilize two mechanisms for 

acquiring heme (reviewed in (229)).  The first involves direct uptake of heme from host 

hemoproteins through TonB-dependent outer membrane transporters, as shown in Figure 

1 (169).  This process resembles the mechanism described for siderophore-mediated iron 

acquisition, requiring an outer membrane transporter, periplasmic binding protein (PBP), 

and cytoplasmic membrane-associated ABC transporter.  However, unlike ferric-

siderophore transporters these hemoprotein receptors consist of two proteins that are both 

required for heme acquisition and uptake.  Briefly, the hemoprotein is bound to the outer 

membrane receptor, heme is removed, and transported through the outer membrane in a 

TonB-dependent step.  Subsequently, heme is received and bound by a periplasmic heme 
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binding protein (PBP) and shuttled to the ABC transporter, which facilitates uptake into 

the bacterial cytoplasm.  Once heme reaches the cytoplasm, it is degraded and iron is 

released and utilized by the cell.   

The second mechanism by which bacteria utilize heme is through the secretion of 

hemophores, which scavenge heme from the environment and deliver it back to specific 

TonB-dependent receptors for internalization (reviewed in (55)).  Once the heme-

hemophore complex binds the receptor, the mechanism of heme uptake is essentially 

identical to that for the process involved in hemoprotein-heme acquisition described 

previously. 

b. Lactoferrin and transferrin 

Many pathogenic bacteria express high-affinity receptors for human lactoferrin 

and transferrin binding (70).  These receptors not only function in lactoferrin/transferrin 

binding, but also TonB-dependent iron transport.  Thus, both of these receptors have two 

ligand specificities, one for lactoferrin/transferrin and another for iron.  In contrast to the 

ferric-siderophore transporters, both lactoferrin- and transferrin-iron acquisition systems 

involve two protein components: an integral, outer membrane protein and a surface-

exposed lipoprotein.  In both systems, the outer membrane transporter (LbpA/TbpA) 

functions in lactoferrin or transferrin binding as well as iron transport, while the lipidated 

protein (LbpB/TbpB) functions only in ligand binding.  The process of lactoferrin- and 

transferrin-mediated iron acquisition is thought to be similar to the process described in 

siderophore-mediated iron acquisition (Figure 1).  However, there are two major 

differences in the lactoferrin- and transferrin-iron acquisition systems that make them 
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unique from characterized TonB-dependent siderophore transporters.  Firstly, the 

lipoprotein components are not present in siderophore-mediated iron acquisition systems.  

Secondly, the mechanism of iron internalization likely differs in that both lactoferrin and 

transferrin must be stripped of iron in the process of transport, whereas, ferric-

siderophore complexes are transported without this iron removal step.  Although the 

crystal structures of these integral, outer membrane proteins and the lipoproteins have not 

been solved, the outer membrane transporters are thought to look very similar to 

crystallized siderophore transporters (Figure 2), consisting of two distinct domains. 

  

VII. Iron Acquisition Systems in Pathogenic Neisseria 

A. Siderophore utilization  

Neisseria do not produce any known siderophores (6, 131, 235), but have been 

shown to utilize siderophores produced by other microorganisms (31, 234).  The 

receptors for utilization of these xenosiderophores have not been identified; however, a 

number of putative receptors have been, which have significant homology to 

characterized E. coli TonB-dependent siderophore transporters (220).  The possible role 

of these putative transporters in xenosiderophore utilization has yet to be determined.  To 

date, there has been only one siderophore receptor, FrpB/FetA, in N. gonorrhoeae linked 

to ferric-enterobactin binding, but its specific role in ferric-enterobactin uptake has not 

been shown (31).  Although ferric-siderophore utilization is a major mechanism of iron 

acquisition for many bacterial pathogens, it does not appear to play a significant role in 
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Neisseria iron acquisition.  As a result, pathogenic Neisseria express high-affinity iron 

acquisition systems to acquire iron from host iron binding proteins.   

B. Hemoprotein utilization 

Pathogenic Neisseria are not able to use hemopexin, myoglobin, or other heme 

sources, such as albumin, catalase, or cytochromes (23), but can utilize free heme in a 

TonB-independent mechanism (209).  Through TonB-dependent mechanisms, pathogenic 

Neisseria are able to utilize hemoglobin and haptoglobin as heme-iron sources through 

the expression of HpuA and HpuB (38, 112, 114, 115).  Similar to the lactoferrin- and 

transferrin-iron acquisition systems, the hemoglobin and haptoglobin utilization system 

has two components.  HpuB is the TonB-dependent, outer membrane heme transporter, 

while HpuA is the surface-exposed lipoprotein (114).  Unlike the lactoferrin and 

transferrin systems, both components are required for hemoglobin- and haptoglobin-

mediated heme uptake (115).  Also unlike the components of the lactoferrin and 

transferrin utilization systems, the hemoglobin and haptoglobin utilization components, 

HpuA and HpuB, are subject to high-frequency phase variation, which occurs through 

slipped-strand mispairing at a poly glycine tract within the hpuAB locus (113).   

N. meningitidis, but not N. gonorrhoeae, also expresses another TonB-dependent 

receptor, HmbR, which functions in only hemoglobin utilization (110, 207, 208).  This 

hemoglobin utilization system is comprised of only one outer membrane receptor, HmbR, 

unlike the two component system for hemoglobin and haptoglobin utilization (110, 207, 

208).  Similar to the components of the hemoglobin and haptoglobin utilization system, 
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HmbR is also subject to high-frequency phase variation though slipped-strand mispairing 

at a poly glycine tract in the hmbR locus (113, 186).   

C. Lactoferrin utilization  

Neisseria species are able to use lactoferrin as an iron source in the human host 

(6, 18, 111, 131, 137).  However, only about 50% of gonococcal isolates are able to 

utilize this iron source, which indicates that lactoferrin may not be required for survival 

of N. gonorrhoeae at mucosal surfaces or in disseminated infection (137).  Lactoferrin 

utilization is mediated by the lactoferrin binding proteins, LbpA and LbpB (14, 15, 198).  

LbpA is a TonB-dependent integral, outer membrane transporter, required for lactoferrin-

mediated iron acquisition.  However, LbpB is a lipid-modified, surface-exposed protein 

that is not essential for lactoferrin utilization.  This system is thought to function similarly 

to other TonB-dependent iron acquisition systems and is shown in Figure 1.         

D. Transferrin utilization  

Among the many iron acquisition systems of pathogenic Neisseria, the 

transferrin-iron acquisition system is likely important during most stages of Neisseria 

pathogenesis.  Although the transferrin- and lactoferrin-iron acquisition systems are very 

similar, they only function in specifically binding transferrin and lactoferrin, respectively.  

Unlike the lactoferrin utilization system, the transferrin-iron acquisition system is 

expressed by all clinical isolates (138), which implicates its importance in virulence.  In 

addition, the transferrin-iron uptake system is not subject to high-frequency phase 

variation as is seen in the hemoglobin, haptoglobin, and lactoferrin utilization system.  
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Similar to the other iron acquisition systems in Neisseria, the transferrin-iron acquisition 

system is composed of two transferrin binding proteins (TbpA and TbpB).   

The transferrin binding proteins are encoded by a bicistronic operon with tbpB 

upstream of tbpA (188).  The two genes are separated by an 86 base pair intergenic region 

that is thought to form a putative, secondary stem loop structure in the mRNA (188).  

This region is thought to be involved in the 2:1 ratio of tbpB and tbpA transcripts (188).  

Although there are likely many regulatory mechanisms involved, it has been shown that 

expression of the transferrin binding proteins is regulated by the ferric uptake regulator 

(Fur), whereby expression is repressed during iron replete conditions and derepressed 

under iron deplete conditions (188).   

TbpA and TbpB are maximally expressed under iron stress and can function 

specifically and independently in high-affinity transferrin binding.  TbpA is a TonB-

dependent, integral, outer membrane protein that is critical for transferrin-mediated iron 

acquisition.  TbpB, on the other hand, is a surface-exposed lipoprotein that is not 

essential for iron uptake.  TbpB not only binds transferrin but also discriminates between 

the apo and holo forms of transferrin, with a preference for holo-transferrin (20, 50, 183, 

184).  Although not required for transferrin-mediated iron acquisition, TbpB is known to 

make the process more efficient.   

Although the crystal structure has not been solved, TbpA has significant 

homology to characterized TonB-dependent siderophore transporters (48), of which the 

structures are known (Figure 2).  Based on these crystal structures, a TbpA two-

dimensional, topological model has been predicted (Figure 3), in which TbpA is thought 
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to look very similar to TonB-dependent transporters.  TbpA is proposed to have two 

distinct domains: (1) a C-terminal β-barrel pore comprised of 22 β-strand 

transmembrane-spanning domains and (2) an N-terminal globular plug that is predicted to 

fold up and occlude the β-barrel.  As mentioned, TbpA is required for transferrin-

mediated iron acquisition and functions not only in transferrin binding, but also iron 

transport.  Following TbpA-transferrin binding, it is hypothesized that TbpA removes 

iron from transferrin and transports iron through the outer membrane in a TonB-

dependent step (Figure 1).  It is known that TonB associates with TbpA via a TonB box 

of the plug domain (97).  This interaction is thought to promote a conformational change 

in TbpA that allows for iron removal from transferrin and transport through the TbpA β-

barrel.  Although TbpB is not required for this iron internalization event, it does make the 

process more efficient, for in its absence approximately 50% of wild-type is observed (4).           

There is much known about the mechanisms of TonB-dependent siderophore 

transport, but the mechanism of TonB-dependent transferrin-iron uptake is less well 

known.  This system represents a novel TonB-dependent transporter because the unique 

mechanism of iron acquisition and the involvement of a secondary, lipoprotein 

component.  Characterized siderophore transporters are known to bind and internalize 

ferric-siderophore complexes, whereas the transferrin-iron acquisition system must bind 

holo-transferrin, remove and transport iron through the outer membrane, and ultimately 

release apo-transferrin at the surface.  These two features make the mechanism of 

transferrin-mediated iron acquisition unique and thus important for investigation. 

 



 30

VIII. Objectives 

 The goal of the work described here was to further characterize the mechanism of 

transferrin-mediated iron acquisition by N. gonorrhoeae.  This was accomplished by 

three major objectives.  The first involved analysis of the TbpA plug domain in TonB-

dependent transferrin-iron acquisition and its overall contribution to iron binding and 

transport through the TbpA β-barrel.  The second objective included analysis of both 

TbpA and TbpB, with the goal of identifying specific regions of both proteins required 

for transferrin-mediated iron acquisition.  The third objective, although more distantly 

related to the first two, involved analysis of a TonB-independent mechanism of 

transferrin-mediated iron acquisition that required TbpA and TbpB.  Although different, 

each study addressed features of TbpA and TbpB and their specific involvement in iron 

acquisition from human transferrin and provided insight into the transferrin-iron 

acquisition system of Neisseria gonorrhoeae.  These studies are important in fully 

dissecting the mechanisms of transferrin utilization used by the pathogenic Neisseria and 

also shed light on the vaccine potential of the transferrin binding proteins, TbpA and 

TbpB.  
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Table 1.  Biochemical tests for differentiation of Neisseriaceae 
 

 
Species 

 
Acid from 

 
Polysaccharide 

 
Nitrate  

 
Oxidase 

 
Catalase 

 G M S F L from S reduction   
          
N. gonorrhoeae + − − − − − − + + 
N. meningitidis + + − − − − − + + 
N. lactamica + + − − + − − + + 
N. polysaccharea + + − − − + − + + 
N. cinerea − − − − − − − + + 
N. flavescens − − − − − + − + + 
N. mucosa + + + + − + + + + 
N. subflava + + +

− 
+ 
− 

− + 
− 

− + + 

N. sicca + + + + − + − + + 
N. elongata − − − − − + − + − 
M. catarrhalis − − − − − − + + + 
K. denitrificans + − − − − − + + − 
      

Table adapted from Center for Disease Control and Prevention website 
Abbreviations: G, glucose; M, maltose; S, sucrose; F, fructose; L, lactose 
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Figure 1.  Models of TonB-dependent transport in Gram-negative bacteria.  Various 
mechanisms of TonB-dependent transport in pathogenic microorganism are shown and 
distinguished by color.  The model of siderophore-mediated iron uptake is shown in 
yellow.  The model of lactoferrin (Lf)- and transferrin (Tf)-mediated iron acquisition is 
shown in blue.  The third system, shown in red, illustrates the mechanisms of heme-iron 
uptake from hemoglobin (Hb) and haptoglobin (Hg) in Neisseria.  Components of each 
system are labeled: integral, outer membrane transporters in the outer membrane, 
periplasmic binding proteins (PBP) in the periplasm, cytoplasmic membrane-associated 
TonB/ExbB/ExbD complexes and ABC transporters. 
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Figure 2.  Characterized TonB-dependent transporters.  Figure modified from K. D. 
Krewulak and H. J. Vogel review (104).  TonB-dependent transporters are represented as 
ribbon diagrams: (1) E. coli BtuB (40), vitamin B12 transporter; (2) E. coli FecA (61), 
ferric-citrate transporter; (3) E. coli FepA (28), ferric-enterobactin transporter; (4) E. coli 
FhuA (62, 119), ferrichrome transporter; (5) P. aeruginosa FptA (43), pyochelin 
transporter; and (6) P. aeruginosa FpvA (42), pyoverdine transporter.  The characteristic 
β-barrel domains, shown in blue, are each comprised of 22 β-stand transmembrane-
spanning domains.  The globular plug domains, shown in green, are folded up within the 
β-barrel domain and occlude the pore. 



 35

 

 

FhuA

BtuB FecA

FepA 

FptA FpvA



 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Neisseria TbpA topology model.  This TbpA two-dimensional, topology 
model was generated based on the structures of characterized E. coli TonB-dependent 
siderophore transporters.  From these structures, it is predicted that TbpA has two distinct 
domains.  The C-terminal β-barrel domain is shown in blue with 22 putative β-strand 
transmembrane domains and eleven putative extracellular loops.  The loops labeled in 
blue indicate those that are known to be surface exposed (242).  The red circles indicate 
cysteine residues that likely participate in disulfide bond formation within the loops.  The 
N-terminal plug domain is shown in the periplasm, but is predicted to fold up within the 
β-barrel to occlude the pore.   
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CHAPTER 2 – MATERIALS AND METHODS 
 

I. Bacterial Growth Conditions 

Gonococcal strains were routinely propagated on GC medium base (Difco) with 

Kellogg’s supplement 1 (96) and 12 μM Fe(NO3)3.  For selection of gonococcal 

transformants, gonococci were grown on GC agar plates supplemented with 100 μg/ml of 

streptomycin (Sigma) for selection of lbpB::Ω, tonB::Ω, and pilQ::Ω mutations, 1 μg/ml 

of chloramphenicol (Sigma) for selection of the tbpA::mTn3cat mutation, or 1 μg/ml of 

erythromycin (Sigma) for selection of dsbC::ermC, traC::ermC, traH::ermC, and 

traN::ermC mutations.  For growth under iron-stressed conditions, which promotes 

maximal expression of the transferrin binding proteins, gonococci were cultured from GC 

agar plates into acid-washed glassware containing liquid, chelexed defined medium 

(CDM) (144, 234).  All gonococcal strains were cultivated at 37oC with 5% CO2.  CDM 

agarose plates were supplemented with 5%, 10%, 30%, 50%, or 80% iron-saturated 

human transferrin (Sigma) as needed to assess the ability of gonococcal mutants to utilize 

transferrin-bound iron (48).  Gonococcal growth on CDM-transferrin plates was 

monitored over 24 – 72 hours.  Plasmids were routinely propagated in TOP10 

(Invitrogen) or NovaBlue (Novagen) E. coli strains, grown at 37oC in LB media (10, 11) 
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supplemented with 50 μg/ml of kanamycin (Sigma) or 100 μg/ml of ampicillin (Sigma).  

Strains and plasmids described in this study are listed in Tables 2 and 3, respectively.   

 

II. Neisseria gonorrhoeae Mutagenesis 

A. Mutagenic oligonucleotide design 

 According to the method of Horton et al. (84), both gene specific and mutagenic 

oligonucleotides were designed to overlap for gene splicing by overlap extension or gene 

SOEing (Figure 4).  Oligonucleotides were designed to carry out site-directed alanine 

substitution mutagenesis of the tbpA plug-encoding domain and to incorporate unique 

restriction sites for subsequent screening of gonococcal mutants.  Mutagenic and gene 

specific oligonucleotides were synthesized by Integrated DNA Technologies and are 

listed in Tables 4 and 5, respectively. 

B. Site-directed alanine substitution mutagenesis 

Site-specific, alanine substitution mutagenesis of the tbpA plug-encoding domain 

was performed using gene splicing by overlap extension shown in Figure 4 (84).  Briefly, 

in the primary PCR step, two reactions were performed to amplify the upstream and 

downstream portions of the tbpA plug-encoding domain.  Mutagenic and non-mutagenic, 

gene specific oligonucleotides used in these reactions are listed in Table 4 and 5, 

respectively.  Each mutagenic oligonucleotide was designed to encode one or more 

alanines as well as novel restriction sites for subsequent screening of gonococcal mutants.  

The template used in these reactions was pUNCH411, which contains the entire coding 

region of tbpA (47) (Table 3).  For the secondary PCR, the two primary amplification 
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products were used as template with non-mutagenic oligonucleotides (Table 5).  In this 

reaction, the alanine-encoding sequences annealed to one another and served to prime the 

next polymerization step.  The final PCR product was gel extracted (Qiagen), purified, 

and cloned into pCR2.1 TOPO (Invitrogen).  The plasmids containing the various 

mutagenized tbpA fragments (pVCU250 – pVCU260) are listed in Table 3.  Mutagenized 

tbpA fragments were sequenced by the Nucleic Acids Research Facility at Virginia 

Commonwealth University to verify the expected sequences.   

C. E. coli transformation 

 PCR products generated by gene splicing by overlap extension (84) were inserted 

into pCR2.1 TOPO (Invitrogen) (Table 3) and these constructs were used to transform 

TOP10 (Invitrogen) E. coli (Table 2).  These plasmids were propagated in E. coli then 

isolated and purified using the Qiagen QIAprep Spin Miniprep Kit.  These plasmid 

constructs were sequenced to ensure proper gene sequence as well as the preservation of 

the reading frame by the Nucleic Acids Research Facilities of Virginia Commonwealth 

University.   

For subcloning into pHSS6-GCU (60) (Table 3), pCR2.1 TOPO constructs were 

digested with EcoRI (New England BioLabs) to remove the PCR product inserts.  EcoRI-

linearized pHSS6-GCU and inserts were purified (Qiagen) and pHSS6-GCU plasmids 

were treated with shrimp alkaline phosphatase (SAP) (Roche Molecular Biosciences).  

Linearized pHSS6-GCU and inserts were incubated with DNA ligase (Invitrogen) for one 

hour at 25oC.  Chemically competent TOP10 E. coli cells (Invitrogen) were transformed 

with pHSS6-GCU constructs (pVCU251 – pVCU261), containing tbpA encoding alanine 
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substitutions (Table 3).  The resulting E. coli strains (RIC250 – RIC261) are listed in 

Table 2. 

D. N. gonorrhoeae spot transformation 

Alanine-encoding tbpA fragments were subcloned into pHSS6-GCU (60) (Table 

3) to incorporate the gonococcal uptake (GCU) sequence necessary for transformation.  

Resulting plasmids (pVCU251 – pVCU261) were then used to transform gonococcal 

strains FA19 (TbpB+) and FA6905 (TbpB−) (Table 2).  Congression, described below, 

was used to provide a selectable marker for the transformation event.  Chromosomal 

DNA from MCV601 (14) (Table 2), which contains an Ω cassette inserted into lbpB 

(encoding lactoferrin binding protein B), was used in conjunction with the linearized 

pHSS6-GCU contructs.  These donor DNAs were combined and used to transform 

piliated FA19 (TbpB+) or FA6905 (TbpB−).  Approximately 10 CFU were spotted on a 

GC agar plate and both donor DNAs were applied on top of the piliated gonococci.  

Transformation mixtures were incubated on non-selective media for 24 hours at 37oC 

with 5% CO2.  Transformants were then selected on 100 μg/ml of streptomycin, 

resistance to which was encoded by the Ω cassette.  A subsequent PCR and restriction 

digest identified streptomycin-resistant transformants with the introduced restriction sites.  

This process yielded strains MCV250 – MCV261 (Table 2), which contained single, 

double, or triple alanine-encoding mutations within the tbpA plug-encoding domain.   

As previously described (57), when two mutations were combined, linearized 

plasmids containing each independent mutation were simultaneously added to piliated 

gonococci along with the streptomycin-resistant MCV601 chromosomal DNA.  These 
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combined mutants (MCV262 – MCV266) contain mutations in both tbpA and tbpB and 

are listed in Table 2.  Gonococcal tbpA and tbpB were sequenced by the Nucleic Acids 

Research Facility at Virginia Commonwealth University to verify mutations in both 

genes. 

E. N. gonorrhoeae liquid transformation 

For revertant analysis, various mutations were made in FA19, MCV511 (L3HA), 

and MCV267 (L3HA revertant) backgrounds.  Plasmids pUNCH290 (pilQ::Ω), pHH17 

(dsbC::ermC), pKS83 (traC::ermC), pJD1175 (traH::ermC), and pKS72 (traN::ermC) 

(Table 3) were used to generate PilQ and T4SS deletion mutants.  pUNCH290 and 

pHH17 were linearized to select for a double crossover insertion of the Ω cassette and 

ermC into pilQ and dsbC, respectively.  pSK83, pJD1175, and pKS72 were not linearized 

to select for a single crossover insertion of ermC into traC, traH, and traN, respectively.  

Gonococcal strains, suspended in GCB/MgCl2 media, were mixed with the plasmid 

DNAs and allowed to incubate for 30 minutes at 37°C with 5% CO2.  Following 

incubation, fresh GCB/MgCl2 media was added and gonococcal-plasmid DNA mixture 

was incubated at 37°C with 5% CO2 for five hours.  After five hour incubation, strains 

were plated on selective media (100 μg/ml streptomycin for Ω insertion and 1 μg/ml 

erythromycin for ermC insertions) and resulting transformants were selected (MCV270 – 

MCV286) and are listed in Table 2.   

 

III. Western Blot Analysis and Solid-Phase HA Binding 

A. SDS-PAGE and protein transfer 



 43
 Gonococcal strains were grown in liquid CDM to induce iron stress (234).  After 

four hours of growth, aliquots were removed and standardized to culture cell density.  

Cells were pelleted and lysed with Laemmli solubilizing buffer (107) and stored at 

−20oC.  Before use, 5% β-mercaptoethanol (Fisher Scientific) was added to the whole 

cell lysates; lysates were heated at 95oC for three minutes, and then drawn through a 28-

gauge syringe (Beckton Dickinson) to decrease viscosity of samples.  Whole cell lysates 

were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) on 7.5%, 12%, or 15% gels.  Proteins were subsequently transferred to 

nitrocellulose membranes (Schleicher and Schuell) in 20 mM Tris base, 150 mM glycine, 

and 20% methanol (218) within a submerged transfer apparatus (Bio-Rad) at 28 mAmp 

for 18 – 20 hours.  Prior to immunoblotting, nitrocellulose membranes were incubated in 

Ponceau S (Fisher) stain (0.1% w/v Ponceau S and 5% acetic acid) to ensure equal 

protein loading.  

B. TbpA, TbpB, and TonB detection 

For detection of TbpA, TbpB, and TonB, membranes were blocked with 5% 

bovine serum albumin (BSA) (Roche) in high salt Tris-buffered saline (HS TBS) plus 

0.05% Tween-20 (Sigma).  TbpA blots were then probed with a 1:1,000 dilution of 

primary anti-TbpA polyclonal antibodies (50), while TbpB and TonB blots were probed 

with a 1:5,000 dilution of primary anti-TbpB (215) or anti-TonB (97) polyclonal 

antibodies.  Blots were then washed with HS TBS plus 0.05% Tween-20, and probed 

with a 1:10,000 dilution of secondary goat anti-rabbit AP (alkaline phosphatase) antibody 

(Bio-Rad).  Western blots were developed using NBT/BCIP developing system (Sigma). 
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C. Hemagglutinin (HA) epitope detection 

For detection of the hemagglutinin (HA) epitope, membranes were blocked in 5% 

Western blocking reagent (Roche) in low salt Tris-buffered saline (LS TBS).  HA blots 

were then probed with a 1:500 dilution of anti-HA horseradish peroxidase high-affinity 

monoclonal antibody (HRP-HA) (Roche) and subsequently washed with LS TBS.  Blots 

were developed using Perkin Elmer Chemiluminescence (ECL) Plus and reactive bands 

were detected by exposure to film (Kodak).   

D. Solid-phase anti-HA binding assay 

Gonococcal strains were grown for four hours in liquid CDM to induce iron stress 

(234).  Aliquots were standardized to culture cell density and then spotted onto 

nitrocellulose membranes (Schleicher and Schuell).  Membranes were dried and then 

blocked with 5% Western blocking reagent (Roche) in LS TBS.  Dot blots were then 

probed with a 1:500 dilution of anti-HA horseradish peroxidase-conjugated monoclonal 

antibody (HRP-HA) (Roche) and subsequently washed with LS TBS.  Dot blots were 

developed using Opti-4CN (BioRad). 

 

IV. Surface Exposure and Transferrin Binding 

A. Solid-phase transferrin binding assay 

   Gonococcal strains were grown in liquid CDM for four hours to induce iron stress 

(234).  Aliquots were standardized to culture cell density and then spotted onto 

nitrocellulose membranes (Schleicher and Schuell).  Membranes were dried and blocked 

with 5% skim milk (BioRad) in LS TBS.  To assess solid-phase transferrin binding by 
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gonococcal cells, membranes were incubated with a 1:1,000 dilution of horseradish 

peroxidase-conjugated transferrin (HRP-Tf) (Jackson ImmunoResearch), washed with LS 

TBS, and then developed with Opti-4CN (BioRad). 

B. Solid-phase transferrin discrimination assay 

Gonococcal strains were grown in liquid CDM for four hours to induce iron stress 

(234).  Aliquots were standardized to culture cell density and then spotted onto 

nitrocellulose membranes (Schleicher and Schuell).  Membranes were dried and then 

blocked with 5% skim milk in LS TBS.  Ligand discrimination was determined by 

probing membranes with a mixture of unlabeled competitor (100% saturated human 

transferrin or apo-transferrin) (Sigma) and HRP-Tf.  Two-fold serial dilutions of 

unlabeled competitor, ranging from 0.05 – 6 μM, were mixed with 0.33 μg/ml of HRP-

Tf.  Following incubation with labeled and unlabeled transferrin, dot blots were washed 

with LS TBS and developed with Opti-4CN (BioRad). 

 

V. Quantitative Transferrin Binding 

A. Iodination of human transferrin 

 Approximately 200 μl of 100% saturated human transferrin (Calbiochem) was 

mixed with 10 μl (1 mCi) of Na125I (GE Biosciences) in an Iodogen-coated tube (Pierce).  

The iodination reaction was carried out for 15 minutes at room temperature.  The mixture 

was added to 200 μl of column loading dye (10% glycerol, 0.1% bromophenol blue, 

0.3% blue dextran) and transferred to a dextran desalting column (Pierce).  This column 

was equilibrated with 50 ml of PBS before the addition of 125I-transferrin.  The column 
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separated free 125I from the 125I-transferrin, which was collected in the flow through.  The 

concentration of 125I-transferrin was then determined by BCA assay (Pierce). 

B. Equilibrium-phase transferrin binding assay 

Equilibrium-phase transferrin binding assays were performed as previously 

described (50) to determine TbpA or TbpB transferrin binding affinity and capacity.  

Briefly, human transferrin (Calbiochem) was iodinated with 125I (GE Biosciences) and 

specific activity was determined by gamma counting.  Both iodinated transferrin and 

unlabeled competitor transferrin were quantitated using a BCA assay (Pierce).  

Gonococcal strains were grown in liquid CDM for three hours to induce iron stress (234).  

Following growth, 100 μl of each culture was added to a Millipore Multiscreen microtiter 

plate and incubated with various concentrations of 125I-labeled transferrin (0 – 100 nM) to 

determine total transferrin binding.  In addition, cultures were incubated with 125I-

transferrin and excess unlabeled transferrin to determine non-specific transferrin binding.  

Specific transferrin binding was determined by subtracting non-specific binding from 

total binding.  Specific transferrin bound (ng Tf) was standardized to micrograms of total 

cellular protein (μg TCP) in 100 μl of culture, as determined by BCA assays (Pierce).  

Each graph represents averages and standard deviations from at least three separate 

assays, each of which was performed in quadruplicate.  Kd (affinity) and capacity values 

as well as standard errors were calculated using Grafit software (Erithacus Software). 

 

VI. Transferrin-Iron Internalization 

A. Iron-saturation of human transferrin 
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 Apo-human transferrin (Calbiochem) was resuspended in ferration buffer, pH 8.4 

(100 mM Tris, 150 mM NaCl, 20 mM NaHCO3) to a concentration of 10 mg/ml.  Iron 

solution, pH 8.6 (100 mM Na3C6H5O7, 100 mM NaHCO3, 5 mM FeCl3 or 55FeCl3) was 

added to achieve the desired saturation level and saturation was allowed to proceed for 

one hour at room temperature.  Ferrated transferrin was then dialyzed overnight at 4oC in 

a 400-fold volume of dialysis buffer, pH 7.4 (400 mM Tris, 150 mM NaCl, 20 mM 

NaHCO3).  The buffer was then replaced with fresh dialysis buffer and dialysis was 

allowed to proceed for an additional four hours at room temperature.  Dialysis of 55Fe-

transferrin was performed similarly against a 1000-fold volume of dialysis buffer for four 

hours at room temperature without buffer exchange. 

 To verify the iron saturation level of the transferrin, ferrozine assays were 

performed.  A standard curve of iron concentrations was created in the range of 0.05 –1.0 

μg/ml and the transferrin-iron saturation was determined from this curve.  Acid reagent 

[0.01 M ferrozine (3-(2-puridyl)-5, 6 bis (4-phenlysulphonic acid) 1, 2, 3 triamine) in 

approximately 50% hydrochloric acid] was added to each sample and then allowed to 

boil for ten minutes.  Buffer reagent (5.2 M ammonium acetate in 35% acetic acid) was 

then added to each sample after cooling to room temperature.  Absorbance readings were 

taken at 562 nm.  The concentration of transferrin was determined using a BCA assay 

(Pierce) and the percent saturation was calculated based on the ability of transferrin to 

bind two atoms of iron.   

B. Transferrin-iron uptake assay 
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Transferrin-iron uptake assays were performed as previously described (4, 12, 

46).  Briefly, human transferrin (Calbiochem) was ferrated with 55FeCl3 (Perkin Elmer) to 

achieve 20% iron saturation.  Gonococcal strains were grown in liquid CDM for three 

hours to induce iron stress (234).  Following growth, 100 μl of each culture was added in 

quadruplicate sets to two Millipore multiscreen microtiter plates.  To one set of cultures 

40 μM potassium cyanide (KCN) (Sigma) was added to determine non-specific iron 

binding.  Approximately 0.9 μM 20% iron-saturated transferrin was added to each well 

and incubated at 37oC with 5% CO2 for 30 minutes to allow for iron internalization.  

Following incubation, plates were filtered to remove transferrin, washed with citrate 

buffer (100 mM Na3C6H5O7, 1.0 mM MgCl2, 0.25 mM CaCl2), dried, and counted using 

a Beckman LS6500 beta scintillation counter.  All counts were averaged and non-specific 

counts (KCN plate) were subtracted from total counts to obtain specific iron 

internalization.  Specific iron uptake, reported in picomoles, for each strain was 

standardized to micrograms of total cellular protein (TCP) in 100 μl of culture, as 

determined by BCA assay (Pierce).  Each graph represents the means and standard 

deviations from at least six separate assays, each of which was performed in 

quadruplicate.   

C. Modified transferrin-iron uptake assay with desferal 

Modified transferrin-iron uptake assays were performed similarly to what was 

previously described (4, 12, 46) with some modifications.  Briefly, human transferrin 

(Calbiochem) was ferrated with 55FeCl3 (Perkin Elmer) to achieve 20% iron saturation.  

Gonococcal strains were grown in liquid CDM for three hours to induce iron stress (234).  
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Following growth, 100 μl of each culture was added in quadruplicate sets to two 

Millipore multiscreen microtiter plates.  To one set of cultures 40 μM potassium cyanide 

(KCN) (Sigma) was added to determine non-specific iron binding.  Approximately 0.9 

μM 20% iron-saturated transferrin and 50 mM desferal (Sigma) were added to wells for 0 

– 40 minutes of incubation at room temperature.  Following incubation, plates were 

filtered to remove transferrin and desferal, washed with citrate buffer (100 mM 

Na3C6H5O7, 1.0 mM MgCl2, 0.25 mM CaCl2), dried, and counted using a Beckman 

LS6500 beta scintillation counter.  Counts were averaged at each time point and non-

specific counts (KCN plate) were subtracted from total counts to obtain specific iron 

internalization.  Specific iron uptake, reported in picomoles, for each strain was 

standardized to micrograms of total cellular protein (TCP) in 100 μl of culture, as 

determined by BCA assay (Pierce).  Each graph represents averages and standard 

deviations from three separate experiments, each of which was performed in 

quadruplicate.   

 

VII. Recombinant Protein Expression and Purification  

A. Construction of S-tag and His-tag protein expression plasmids 

 For S-tagged protein constructs, tbpA plug, fetA plug, fbpA, and tonB expression 

plasmids were constructed by PCR amplification of tbpA, fetA, fbpA, and tonB from 

gonococcal strain FA19 chromosomal DNA.  Primers were designed to amplify these 

genes and engineered with BglII and XhoI restriction sites at the 5’ and 3’ ends, 
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respectively (Table 4).  These restriction sites allowed for directional cloning into the 

pET-29b(+) expression vector (Novagen) (Table 3).   

For His-tagged protein constructs, tbpA plug, fbpA, and exbB expression plasmids 

were constructed by PCR amplification of tbpA, fbpA, and exbB from FA19 chromosomal 

DNA.  Primers were designed to amplify these genes and engineered with NdeI and XhoI 

restriction sites at the 5’ and 3’ ends, respectively (Table 4).  These restriction sites 

allowed for directional cloning into the pET-22b(+) expression vector (Novagen) (Table 

3).   

The resultant PCR products were ligated into pCR2.1 TOPO (Invitrogen) 

(pVCU262 – pVCU270) and propagated in E. coli TOP10 cells (Invitrogen) (RIC262 – 

RIC274) (Table 2).  Plasmids were then sequenced by the Nucleic Acids Research 

Facility at Virginia Commonwealth University to verify the expected sequences.  

Plasmids were digested with BglII or NdeI and XhoI enzymes (New England BioLabs) to 

excise inserts.  Following digestion, the gene products were isolated and purified using 

the Qiagen QIAprep Spin Miniprep Kit and ligated into linearized pET-29b(+) or pET-

22b(+) expression vectors (Novagen) (pVCU263 – pVCU271) (Table 3).  The resultant 

plasmids were propagated in E. coli NovaBlue cells (Novagen) (RIC263 – RIC275) 

(Table 2).  These plasmid constructs contained the gene of interest under the control of a 

T7 promoter, as well as a 5’ region encoding an S-tag or a 3’ region encoding a 6x His-

tag for purification.  For expression of these gene products, the E. coli expression strain 

BL21(DE3) (Novagen), which expressed T7 polymerase under the control of the lac 
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promoter, was transformed with these constructs.  These strains, RIC264 – RIC276, are 

described in Table 2. 

B. Recombinant protein expression 

 For expression of recombinant proteins, starter cultures of BL21(DE3) expression 

strains were grown for approximately six hours at 37oC, shaking at 225 rpm, in LB media 

containing 50 μg/ml of kanamycin (pET29b(+)) or 100 μg/ml of ampicillin (pET22b(+)).  

Following growth, cultures were stored at 4oC until use in large-scale growth and 

induction.  Prior to large-scale induction, starter cultures were subject to centrifugation at 

5000 x g for ten minutes and the supernatants were removed.  Fresh LB media with 50 

μg/ml of kanamycin or 100 μg/ml of ampicillin was added to resuspend the bacterial cell 

pellets.  The starter cultures were then used to inoculate 1L of LB broth containing 50 

μg/ml of kanamycin or 100 μg/ml of ampicillin.  The cultures were incubated at 37oC 

with shaking at 225 rpm until the OD600 reached 0.4 – 0.8.  After cultures reached the 

optimal cell density, 1 mM IPTG (isopropyl-B-D-thiogalactopyranoside) (Sigma) was 

added to induce protein expression.  Induction was allowed to proceed for four hours at 

37oC with shaking at 225 rpm.  Following four hour protein induction, cultures were 

subject to centrifugation at 10,000 x g for ten minutes and then supernatants were 

removed.  Pellets were dried and stored at −20oC overnight. 

C. Recombinant protein purification 

 For purification of S-tagged recombinant proteins, bacterial cell pellets were 

thawed and resuspended in BugBuster reagent (Novagen) according to manufacturer’s 

instructions.  After cells were completely resuspended, benzonase nuclease (Novagen), 
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protease inhibitors (Sigma), and lysozyme (Sigma) were added to the cultures and 

incubated for 30 minutes at room temperature.  Solubilized preparations were then 

subject to centrifugation at 16,000 x g at 4oC for 30 minutes to remove insoluble cellular 

debris.  Cleared lysates were then transferred to sterile tubes and incubated with S-protein 

agarose (Novagen) at room temperature for 30 minutes on an orbital shaker.  Samples 

were then subjected to centrifugation at 500 x g for ten minutes and supernatants were 

carefully removed.  S-protein agarose resin was then resuspended in 5 ml of 1x 

Bind/Wash Buffer (200 mM Tris-HCl pH 7.5, 1.5 M NaCl, and 1% Triton X-100), gently 

mixed, and pelleted at 500 x g three times.  Washed resin was then resuspended in 3 M 

MgCl2 elution buffer at a volume 1.5 times that of the settled resin and incubated for ten 

minutes at room temperature.  Resin was then applied to a disposable column and S-

tagged recombinant proteins were eluted.   

 For purification of His-tagged recombinant proteins, Qiagen protocols were 

followed.  Bacterial cell pellets were thawed on ice and resuspended in lysis buffer (50 

mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, final pH 8.0), benzonase nuclease 

(Novagen), protease inhibitors (Sigma) and lysozyme (Sigma) mixture.  Resuspended 

cells were incubated for 30 minutes on ice and then subjected to sonication.  Cellular 

debris was removed by centrifugation at 16,000 x g for 30 minutes at 4oC.  Cleared 

lysates were transferred to sterile tubes and incubated with 50% Ni-NTA slurry (Qiagen) 

at 4oC for one hour.  Lysate-Ni-NTA mixtures were then added to disposable columns 

and flow-through fractions were collected.  Resin was washed twice with wash buffer (50 

mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, final pH 8.0) and washed fractions 
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were collected.  His-tagged recombinant proteins were eluted from the column with 

elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, final pH 8.0).  

Purified proteins were dialyzed against a 1000-fold excess PBS. 

D. SDS-PAGE, protein transfer, and detection 

 Protein fractions were diluted with Laemmli solubilizing buffer (107) and stored 

at −20oC.  Before use, 5% β-mercaptoethanol (Fisher Scientific) was added to the 

samples and they were heated at 95oC for three minutes.  After boiling, samples were 

subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 

a 15% gel.  Proteins were subsequently transferred to nitrocellulose membranes 

(Schleicher and Schuell) in 20 mM Tris base, 150 mM glycine, and 20% methanol (218) 

within a submerged transfer apparatus (Bio-Rad) at 28 mAmp for 18-20 hours. 

For detection of S-tagged and His-tagged recombinant proteins, membranes were 

blocked with 5% skim milk in low salt Tris-buffered saline (LS TBS).  Blots were then 

probed with a 1:5,000 dilution of anti-S-tag monoclonal antibodies (Novagen) or a 

1:1,000 dilution of anti-His-tag monoclonal antibodies (Calbiochem) , washed with LS 

TBS, and then probed with a 1:10,000 (S-tag) or 1:5,000 (His-tag) dilution of a secondary 

goat anti-mouse IgG AP (BioRad).  Blots were developed using NBT/BCIP developing 

system (Sigma). 

E. Coomassie blue protein staining  

 SDS-PAGE gels were stained with Coomassie blue (0.25% Coomassie R-250, 

50% methanol, 10% glacial acetic acid) following electrophoresis.  Gels were incubated 

with Coomassie blue stain overnight at room temperature and then destained in 20% 
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methanol and 5% glacial acetic acid at room temperature until background staining was 

minimized.  Prior to drying, gels were incubated in gel drying buffer (40% methanol, 

10% glycerol, and 7.5% glacial acetic acid) for one hour.   

 

VIII. Recombinant Protein-Iron Binding Assay 

Recombinant iron binding assays were performed in Millipore Multiscreen 

microtiter plates.  To assess total iron binding, 50 μg of each S-tagged or His-tagged 

recombinant protein was incubated with 5% BSA in PBS, NaHCO3, 55FeCl3, and Ni-

NTA resin.  Phosphate and carbonate served as coordinating anions for iron binding in 

this assay.  To assess non-specific iron binding by recombinant proteins, proteins were 

treated the same as above, but incubated in the presence of 1000-fold excess cold FeCl3 

or Fe(NO3)3 competitor.  As an additional control for non-specific binding to the Ni-NTA 

resin, 5% BSA, NaHCO3, 55FeCl3, and Ni-NTA resin were incubated in the absence of 

recombinant protein.  Microtiter plates were incubated at room temperature for 30 

minutes on a platform shaker at 200 rpm.  Following incubation, wells were filtered and 

washed with citrate buffer (100 mM Na3C6H5O7, 1.0 mM MgCl2, 0.25 mM CaCl2).  Once 

dried, filters were removed and counted using a Beckman LS6500 beta scintillation 

counter.  Counts were averaged and specific iron binding was determined by subtracting 

both sets of non-specific counts from the total iron binding counts.  Each graph represents 

averages and standard deviations from three separate experiments, each performed in 

quadruplicate sets.   
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IX. Statistical Analysis 

Statistical significance of equilibrium-phase transferrin binding data, modified 

and standard transferrin-iron uptake data, and iron binding data was determined using a 

two-tailed equal variance Student’s t test.  Statistical significance is noted when P ≤ 0.05 

and specific values are shown with each data set. 
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Figure 4.  Schematic representation of mutagenesis by gene SOEing.  Non-mutagenic 
primers 1 and 4 were used to amplify the upstream (black) and downstream (gray) 
regions of the plug-encoding region of tbpA in primary PCR reactions.   Mutagenic 
primers 2 and 3 were also used to introduce sequences encoding altered amino acid 
residues and novel restriction sites (red) in the primary PCR reactions.  The primary PCR 
products were amplified with non-mutagenic primers 1 and 4 in the secondary PCR.  The 
primary PCR products served as template in this reaction and overlapping sequences 
served to prime the secondary PCR.  
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Table 2: Escherichia coli and Neisseria gonorrhoeae strains 
 
 
Strain 
 

 
Phenotype (genotype) 

 
Reference 

 E. coli  
   
TOP10 F− mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 

ΔlacX74 recA1 deoR araD139 Δ(ara-leu)7697 alU 
galK rpsL(StrR) endA1 nupG 

Invitrogen 

NovaBlue endA1 hsdR17 (rK12
– mK12

+) supE44 thi-1 recA1 
gyrA96 relA1 lac F′[proA+B+ lacIqZΔM15::Tn10] 
(TetR) 

Novagen 

BL21(DE3) F– ompT hsdSB (rB
– mB

–) gal dcm (DE3) Novagen 
RIC250 TOP10 transformed with  pVCU250 (tbpA E118A) This study 

(160) 
RIC251 TOP10 transformed with  pVCU251 (tbpA E118A) This study 

(160) 
RIC252 TOP10 transformed with  pVCU252 (tbpA E120A) This study 

(160) 
RIC253 TOP10 transformed with  pVCU253 (tbpA E120A) This study 

(160) 
RIC254 TOP10 transformed with  pVCU254 (tbpA Y121A) This study 

(160) 
RIC255 TOP10 transformed with  pVCU255 (tbpA Y121A) This study 

(160) 
RIC256 TOP10 transformed with  pVCU256 (tbpA E122A) This study 

(160) 
RIC257 TOP10 transformed with  pVCU257 (tbpA E122A) This study 

(160) 
RIC258 TOP10 transformed with  pVCU258 (tbpA 

EY120AA) 
This study 
(160) 

RIC259 TOP10 transformed with  pVCU259 (tbpA 
EY120AA) 

This study 
(160) 

RIC260 TOP10 transformed with  pVCU260 (tbpA 
EYE120AAA) 

This study 
(160) 

RIC261 TOP10 transformed with  pVCU261 (tbpA 
EYE120AAA) 

This study 
(160) 

RIC262 TOP10 transformed with  pVCU262 (tbpA plug) This study 
RIC263 NovaBlue transformed with pVCU263 (tbpA plug) This study 
RIC264 BL21(DE3) transformed with pVCU263 (tbpA 

plug) 
This study 
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RIC265 TOP10 transformed with  pVCU264 (tbpA plug) This study 
RIC266 NovaBlue transformed with pVCU265 (tbpA plug) This study 
RIC267 BL21(DE3) transformed with pVCU265 (tbpA 

plug) 
This study 

RIC268 TOP10 transformed with pVCU266 (fetA plug) This study 
RIC269 NovaBlue transformed with pVCU267 (fetA plug) This study 
RIC270 BL21(DE3) transformed with pVCU267 (fetA plug) This study 
RIC271 TOP10 transformed with pVCU268 (fbpA) This study 
RIC272 NovaBlue transformed with pVCU269 (fbpA) This study 
RIC273 BL21(DE3) transformed with pVCU269 (fbpA) This study 
RIC274 TOP10 transformed with pVCU270 (tonB) This study 
RIC275 NovaBlue transformed with pVCU271 (tonB) This study 
RIC276 BL21(DE3) transformed with pVCU271 (tonB) This study 
RIC277 TOP10 transformed with pVCU272 (tbpA plug 

EYE120AAA) 
This study 

RIC278 NovaBlue transformed with pVCU273 (tbpA plug 
EYE120AAA) 

This study 

RIC279 BL21(DE3) transformed with pVCU273 (tbpA plug 
EYE120AAA) 

This study 

   
 N. gonorrhoeae  
   
FA19 TbpA+, TbpB+ (138) 
FA6905 TbpA+, TbpB− (ΔtbpB) (50) 
FA6747 TbpA− (tbpA::mTn3cat), TbpB+ (48) 
FA6815 TbpA−, TbpB− (tbpB::Ω) (4) 
MCV601 FA19 derivative, LbpB− (lbpB::Ω) (14) 
MCV250 TbpA E118A, TbpB+ This study 

(160) 
MCV251 TbpA E118A, TbpB− (ΔtbpB) This study 

(160) 
MCV252 TbpA E120A, TbpB+ This study 

(160) 
MCV253 TbpA E120A, TbpB− (ΔtbpB) This study 

(160) 
MCV254 TbpA Y121A, TbpB+ This study 

(160) 
MCV255 TbpA Y121A, TbpB− (ΔtbpB) This study 

(160) 
MCV256 TbpA E122A, TbpB+ This study 

(160) 
MCV257 TbpA E122A, TbpB− (ΔtbpB)  This study 

(160) 
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MCV258 TbpA EY120AA, TbpB+ This study 

(160) 
MCV259 TbpA EY120AA, TbpB− (ΔtbpB) This study 

(160) 
MCV260 TbpA EYE120AAA, TbpB+ This study 

(160) 
MCV261 TbpA EYE120AAA, TbpB− (ΔtbpB) This study 

(160) 
MCV845 TbpA+, TbpB CC481AA  This study 

(56) 
MCV846 TbpA− (tbpA::mTn3cat), TbpB CC481AA This study 

(56) 
MCV812 TbpA+, TbpB HA3175 (tbpB∇HA) (57) 
MCV816 TbpA+, TbpB HA5327 (tbpB∇HA) (57) 
MCV824 TbpA+, TbpB HA9660 (tbpB∇HA) (57) 
MCV515 TbpA L9HA750 (tbpA∇HA), TbpB+ (243) 
MCV516 TbpA L9HA750 (tbpA∇HA), TbpB− (ΔtbpB) (243) 
MCV519 TbpA L11HA843 (tbpA∇HA), TbpB+ (243) 
MCV520 TbpA L11HA843 (tbpA∇HA), TbpB− (ΔtbpB) (243) 
MCV527 TbpA L2HA229 (tbpA∇HA), TbpB+ (243) 
MCV528 TbpA L2HA229 (tbpA∇HA), TbpB− (ΔtbpB) (243) 
MCV262 TbpA EYE120AAA, TbpB CC481AA This study 

(DeRocco 
unpublished) 

MCV263 TbpA EYE120AAA, TbpB HA3175 This study 
(DeRocco 
unpublished) 

MCV264 TbpA EYE120AAA, TbpB HA5327 This study 
(DeRocco 
unpublished) 

MCV265 TbpA EYE120AAA, TbpB HA9660 This study 
(DeRocco 
unpublished) 

MCV266 TbpA L9HA750, TbpB CC481AA This study 
(DeRocco 
unpublished) 

MCV828 TbpA L9HA750, TbpB HA3175 (57) 
MCV830 TbpA L9HA750, TbpB HA5327 (57) 
MCV834 TbpA L9HA750, TbpB HA9660 (57) 
   
 Pseudo-revertant gonococcal studies  
   
MCV511 TbpA L3HA343, TbpB+ (243) 
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MCV512 TbpA L3HA343, TbpB− (ΔtbpB) (243) 
MCV523 TbpA β16HA713, TbpB+ (243) 
MCV524 TbpA β16HA713, TbpB− (ΔtbpB) (243) 
MCV267 TbpA L3HA343, TbpB+ revertant This study 

(Yost-Daljev 
unpublished) 

MCV268 TbpA β16HA713, TbpB+ revertant This study 
(Yost-Daljev 
unpublished) 

   
 FA19 derived strains  
   
MCV269 TbpA+, TbpB+, TonB− (tonB::Ω) This study 
MCV270 TbpA+, TbpB+, PilQ− (pilQ::Ω) This study 
MCV271 TbpA+, TbpB+, DsbC− (dsbC::ermC) This study 
MCV272 TbpA+, TbpB+, TraC− (traC::ermC) This study 
MCV273 TbpA+, TbpB+, TraH− (traH::ermC) This study 
MCV274 TbpA+, TbpB+, TraN− (traN::ermC) This study 
MCV904 TbpA+, TbpB+, FbpA− (fbpA::ermClacIP) −RBS (211) 
MCV906 TbpA+, TbpB+, FbpA− (fbpA::ermClacIP) (211) 
   
 MCV511 (L3HA) derived strains  
   
MCV275 TbpA L3HA343, TbpB+, PilQ− (pilQ::Ω) This study 
MCV276 TbpA L3HA343, TbpB+, DsbC− (dsbC::ermC) This study 
MCV277 TbpA L3HA343, TbpB+, TraC− (traC::ermC) This study 
MCV278 TbpA L3HA343, TbpB+, TraH− (traH::ermC) This study 
MCV279 TbpA L3HA343, TbpB+, TraN− (traN::ermC) This study 
   
 MCV267 (pseudo-revertant) derived  strains  
   
MCV280 TbpA L3HA343, TbpA− (tbpA::mTn3cat), TbpB+ This study 
MCV281 TbpA L3HA343, TonB− (tonB::Ω) This study 
MCV282 TbpA L3HA343, TbpB+, PilQ− (pilQ::Ω) This study 
MCV283 TbpA L3HA343, TbpB+, DsbC− (dsbC::ermC) This study 
MCV284 TbpA L3HA343, TbpB+, TraC− (traC::ermC) This study 
MCV285 TbpA L3HA343, TbpB+, TraH− (traH::ermC) This study 
MCV286 TbpA L3HA343, TbpB+, TraN− (traN::ermC) This study 
MCV287 TbpA L3HA343, TbpB+, FbpA− (fbpA::ermClacIP) 

−RBS 
This study 

MCV288 TbpA L3HA343, TbpB+, FbpA− (fbpA::ermClacIP)  This study 
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Table 3: Plasmids 

 
Plasmid 
 

 
Description 

 
Reference 

 Constructs for generation of N. gonorrhoeae mutants  
   
pCR2.1 
TOPO 

KanR AmpR Invitrogen 

pHSS6-GCU Vector containing gonococcal uptake sequence (KanR) (60) 
pUNCH411 pBS-SK(+) containing entire tbpA gene (47) 
pUNCH403 Vector containing tbpA::mTn3cat (48) 
pVCU693 pCR2.1 TOPO containing tonB::Ω (74) 
pUNCH290 Vector containing pilQ::Ω (37) 
pHH17 pHSS6-GCU derivative containing dsbC::ermC (Hamilton 

unpublished)  
pKS83 pHSS6-GCU derivative containing traC::ermC (76) 
pJD1175 pHSS6-GCU derivative containing traH::ermC (77) 
pKS72 pHSS6-GCU derivative containing traN::ermC (76) 
pVCU912 pHSS6-GCU containing fbpA::ermClacIP (−RBS) (211) 
pVCU913 pHSS6-GCU containing fbpA::ermClacIP (211) 
pVCU250 pCR2.1 TOPO containing tbpA gene amplified with 

oVCU334 and oVCU335; E118A, PvuI restriction site 
This study 
(160) 

pVCU251 pHSS6-GCU containing EcoRI fragment from 
pVCU250 

This study 
(160) 

pVCU252 pCR2.1 TOPO containing tbpA gene amplified with 
oVCU334 and oVCU335; E120A, NdeI restriction site 

This study 
(160) 

pVCU253 pHSS6-GCU containing EcoRI fragment from 
pVCU252 

This study 
(160) 

pVCU254 pCR2.1 TOPO containing tbpA gene amplified with 
oVCU334 and oVCU335; Y121A, HaeIII restriction site 

This study 
(160) 

pVCU255 pHSS6-GCU containing EcoRI fragment from 
pVCU254 

This study 
(160) 

pVCU256 pCR2.1 TOPO containing tbpA gene amplified with 
oVCU334 and oVCU335; E122A, HpyCH4V restriction 
site 

This study 
(160) 

pVCU257 pHSS6-GCU containing EcoRI fragment from 
pVCU256 

This study 
(160) 

pVCU258 pCR2.1 TOPO containing tbpA gene amplified with 
oVCU334 and oVCU335; EY120AA, PstI restriction site 

This study 
(160) 

pVCU259 pHSS6-GCU containing EcoRI fragment from 
pVCU258 

This study 
(160) 

pVCU260 pCR2.1 TOPO containing tbpA gene amplified with 
oVCU334 and oVCU335; EYE120AAA, PstI and AluI 

This study 
(160) 
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restriction sites 

pVCU261 pHSS6-GCU containing EcoRI fragment from 
pVCU260 

This study 
(160) 

pVCU834 pCR2.1 TOPO containing tbpB encoding CC481AA This study 
(56) 

pCVU835 pHSS6-GCU containing tbpB encoding CC481AA This study 
(56) 

pVCU813 pCR2.1 TOPO containing tbpB encoding HA3175 This study 
(57) 

pVCU814 pHSS6-GCU containing tbpB encoding HA3175 This study 
(57) 

pVCU817 pCR2.1 TOPO containing tbpB encoding HA5327 This study 
(57) 

pVCU818 pHSS6-GCU containing tbpB encoding HA5327 This study 
(57) 

pVCU825 pCR2.1 TOPO containing tbpB encoding HA9660 This study 
(57) 

pVCU826 pHSS6-GCU containing tbpB encoding HA9660 This study 
(57) 

pVCU521 pCR2.1 TOPO containing tbpA encoding L9HA750 This study 
(243) 

   
 Constructs for expression of His-tag proteins  
   
pET-22b(+) AmpR Novagen 
pVCU911 pET22b(+) containing fbpA from gonococcal strain 

FA19 
(175) 

pVCU914 pET22b(+) containing exbB from gonococcal strain 
FA19 

This study 
(Strange 
unpublished) 

pVCU262 pCR2.1 TOPO containing tbpA plug-encoding region 
amplified with oVCU289 and oVCU290 

This study 

pVCU263 pET-22b(+) containing NdeI and XhoI fragment from 
pVCU262 

This study 

pVCU272 pCR2.1 TOPO containing tbpA plug-encoding region 
(EYE120AAA) amplified with oVCU289 and oVCU290 

This study 

pVCU273 pET-22b(+) containing NdeI and XhoI fragment from 
pVCU272 

This study 

   
 Constructs for expression of S-tag proteins  
   
pET-29b(+) KanR Novagen 
pVCU264 pCR2.1 TOPO containing tbpA plug-encoding region 

amplified with oVCU375 and oVCU376 
This study 
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pVCU265 pET-29b(+) containing BglII and XhoI fragment from 

pVCU264 
This study 

pVCU266 pCR2.1 TOPO containing fetA plug-encoding region 
amplified with oVCU377 and oVCU378 

This study 

pVCU267 pET-29b(+) containing BglII and XhoI fragment from 
pVCU266 

This study 

pVCU268 pCR2.1 TOPO containing fbpA gene amplified with 
oVCU379 and oVCU380 

This study 

pVCU269 pET-29b(+) containing BglII and XhoI fragment from 
pVCU268 

This study 

pVCU270 pCR2.1 TOPO containing tonB gene amplified with 
oVCU381 and oVCU382 

This study 

pVCU271 pET-29b(+) containing BglII and XhoI fragment from 
pVCU270 

This study 
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Table 4.  Mutagenic oligonucleotides 

 
Primer 
 

 
Oligonucleotide sequence (5’-3’) 

 
Target 

 Alanine-encoding tbpA oligonucleotidesa  
   
oVCU336 GGCGCAATCAATGCGATCGAGTATGAG  

(PvuI) 
tbpA 
E118A 

oVCU337 CTCATACTCGATCGCATTGATTGCGCC 
(PvuI) 

tbpA 
E118A 

oVCU338 ATCAATGAAATCGCATATGAGAACGTC 
(NdeI) 

tbpA 
E120A 

oVCU339 GACGTTCTCATATGCGATTTCATTGAT 
(NdeI) 

tbpA 
E120A 

oVCU340 AATGAAATCGAGGCCGAGAACGTCAAG 
(HaeIII) 

tbpA 
Y121A 

oVCU341 CTTGACGTTCTCGGCCTCGATTTCATT 
(HaeIII) 

tbpA 
Y121A 

oVCU342 GAAATCGAGTATGCAAACGTCAAGGCT 
(HpyCH4V) 

tbpA 
E122A 

oVCU343 AGCCTTGACGTTTGCATACTCGATTTC 
(HpyCH4V) 

tbpA 
E122A 

oVCU344 ATCAATGAAATCGCTGCAGAGAACGTCAAG 
(PstI) 

tbpA 
E120A 
Y121A 

oVCU345 CTTGACGTTCTCTGCAGCGATTTCATTGAT 
(PstI) 

tbpA 
E120A 
Y121A 

oVCU346 GCAATCAATGAAATCGCTGCAGCTAACGTCAAGGCTGTC 
(PstI, AluI) 

tbpA 
E120A 
Y121A 
E122A 

oVCU347 GACAGCCTTGACGTTAGCTGCAGCGATTTCATTGATTGC 
(PstI, AluI) 
 

tbpA 
E120A 
Y121A 
E122A 

   
 Restriction site incorporating oligonucleotidesb  
   
oVCU289 CATATGGAAAATGTGCAAGCCGGACAAGC  

(NdeI) 
tbpA 
plug 
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oVCU290 CTCGAGCCTGCCTTCCCCGATAACATCGTCG  

(XhoI) 
tbpA 
plug 

oVCU375 AGATCTGGAAAATGTGCAAGCCGGACAAGCA  
(BglII) 

tbpA 
plug 

oVCU376 CTCGAGTTACCTGCCTTCCCCGATAACATCGT  
(XhoI) 

tbpA 
plug 

oVCU377 AGATCTGGCAGAAAATAATGCCAATGTCGCA  
(BglII) 

fetA 
plug 

oVCU378 CTCGAGTTACCAGTTTTTATCCAAGCCTTTGAG  
(XhoI) 

fetA 
plug 

oVCU379 AGATCTGGACATTACCGTGTACAACGGCCAA  
(BglII) 

fbpA 

oVCU380 CTCGAGTTATTTCATACCGGCTTGCTCAAGCAG  
(XhoI) 

fbpA 

oVCU381 AGATCTGGTGATAGAGTCAGGAAATGTTATCGA  
(BglII) 

tonB 

oVCU382 CTCGAGTTAATTCAATTCAAACTTGACGGGGAC  
(XhoI) 

tonB 

   
a Underlined nucleotides indicate alanine-encoding sequences and novel restriction sites  
b Underlined nucleotides represent engineered restriction sites for directional subcloning 
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Table 5.  Gene specific oligonucleotides 
 
 
Primer 
 

 
Oligonucleotide sequence (5’-3’) 

 
Target 

 Non-mutagenic tbpA plug-specific primers  
   
oVCU334 AAGCTTGTGAAATAAGCACGGCTGCCG tbpA  
oVCU335 GAAGCGGTTGGGGCCCGTGTAGTCTCG tbpA 
   
 Revertant analysis – tbpB specific primers  
   
oVCU136 ATGAACAATCCATTGGTGAATC tbpB 

upstream 
oVCU141 GCCGCCGCTCAAAGAAGAC tbpB 

upstream 
oVCU265 GAATTGGGTTTCCGCTTTTTG tbpB middle 
oVCU266 GGAAGCCTTGCCGCTCCAGCT tbpB middle 
GC556 CACCGCAAATGGCAATG tbpB 

downsteam 
oVCU267 TCCATTGCCGGATTCAACTGTTGC tbpB 

downsteam 
   
 Revertant analysis – tbpA specific primers  
   
oVCU272 
 

GATTAGGGAAACACTATGCA tbpA 
upstream 

TfBP21 CCGATGTAGTGCCGTTTGTT tbpA 
upstream 

TfBP13 GGTCGTGGCTGTTCCGCCCG tbpA middle 
TfBP28 AAATCCAGCCAGTCGGCAGG tbpA middle 
TfBP16 GTACGGCTGGCGGTCGGGCG tbpA 

downstream 
oVCU291 CGCCGTCTGAAGCCTTTCAG tbpA 

downstream 
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CHAPTER 3 – ANALYSIS OF TBPA PLUG IRON BINDING AND 
IDENTIFICATION OF RESIDUES REQUIRED FOR 

TRANSFERRIN-IRON ACQUISITION BY NEISSERIA 
GONORRHOEAE 

 

I. Introduction 

Neisseria species do not produce or secrete siderophores (6, 131, 235).  Instead 

they have the ability to utilize human transferrin (6, 18, 111, 131, 138), lactoferrin (6, 18, 

111, 131), and hemoglobin (6, 138) through the expression of high-affinity receptors for 

these host iron-binding proteins.  Models of iron acquisition mediated by these high-

affinity receptors are based on the well-characterized TonB-dependent siderophore 

transporters (Figure 1) (28, 40, 42, 43, 61, 62, 119).   

All gonococcal clinical isolates are able to utilize human transferrin (138) through 

expression of the transferrin-iron uptake system, composed of TbpA and TbpB.  TbpA is 

a TonB-dependent outer membrane transporter that is essential for iron uptake, while 

TbpB is a surface-exposed lipoprotein that discriminates between apo- and holo-

transferrin (20, 50, 183, 184).  Unlike TbpA, TbpB is not required for transferrin-iron 

acquisition but makes the process more efficient (4).  Although TbpA has not yet been 

crystallized, by analogy with characterized TonB-dependent transporters (Figure 2), 

TbpA is predicted to form two distinct domains (Figure 3).  The C-terminal β-barrel 

domain, comprised of 22 transmembrane-spanning β-strands, likely functions as a 
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channel for iron transport.  The N-terminal plug domain is predicted to fold up within the 

β-barrel domain to occlude the pore.   

Characterized TonB-dependent transporters (Figure 2) serve as a paradigm for the 

transferrin-iron uptake system, but the TbpB lipoprotein component and the requirement 

for iron removal from transferrin are unique to this system.  The precise mechanism by 

which TbpA mediates iron internalization has not been elucidated.  However, the 

mechanism of iron acquisition through TbpA is unique in that the transferrin receptor 

must bind holo-transferrin, remove iron from transferrin, transport iron across the outer 

membrane, and release apo-transferrin at the cell surface.  Thus, elucidation of the 

detailed mechanism of transferrin-iron acquisition through TbpA would represent a 

significant step towards characterization of a novel system for the acquisition of iron in 

Neisseria gonorrhoeae.   

 Previous studies suggested that the TbpA plug domain plays a role in iron 

internalization (243); however, the precise mechanism was not defined.  We hypothesize 

that the plug domain of TbpA functions in multiple steps of transferrin-iron uptake.  

Specifically, we hypothesize that iron coordination by the TbpA plug domain is critical 

for iron removal from transferrin, iron binding, and iron transport through the outer 

membrane.  The overall goal of this work was to demonstrate iron binding by the TbpA 

plug domain and determine the mechanism of iron acquisition through TbpA, specifically 

with respect to the contribution of the plug. 

 

II. Results 
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A.  Gonococcal TbpA plug binds iron in vitro 

To determine whether the neisserial TbpA plug domain binds iron, in vitro iron 

binding assays were carried out (Figure 5).  Recombinant, gonococcal FbpA, the 

characterized periplasmic iron binding protein, serves as the positive control for iron 

binding, while gonococcal ExbB, the cytoplasmic membrane protein of TonB complex, 

serves as the negative control for iron binding.  Recombinant gonococcal TbpA plug 

bound significant levels of iron compared to the ExbB negative control, as was observed 

for the FbpA positive control.  Interestingly, the TbpA plug domain bound significantly 

higher levels of iron than FbpA (P ≤ 0.02).  These data indicate that the gonococcal TbpA 

plug domain binds iron in vitro and likely plays a significant role in iron coordination and 

transport in vivo.  

B.  Site-directed alanine substitution mutagenesis  

Since the TbpA plug bound iron, putative iron-coordinating residues were 

identified throughout this domain.  The TbpA plug domain is highly conserved among 

bacteria expressing the transferrin-iron acquisition system (45).  An amino acid sequence 

alignment of the TbpA plug from a variety of bacterial pathogens is shown in Figure 6.  

The plug domain of TbpA contains several conserved sequence motifs, some of which 

have potential iron-coordinating residues similar to those that coordinate iron in human 

transferrin (88) and bacterial ferric binding protein A (FbpA) (214).  Having shown iron 

coordination by the plug, we hypothesize that potential iron-coordinating residues 

function to remove iron from transferrin and transport iron through the outer membrane.  

To test this hypothesis, site-directed, alanine substitution mutagenesis of conserved,  
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Figure 5.  Recombinant gonococcal TbpA plug binds iron in vitro.  His-tagged, 
recombinant FbpA (+), TbpA plug, and ExbB (−) proteins were expressed and purified.  
Standardized levels of recombinant protein were bound to Ni-NTA agarose resin, 
incubated with 55FeCl3 to determine total iron binding.  Non-specific counts were 
determined in two ways: (1) incubation in the presence excess cold Fe(NO3)3 competitor 
and (2) incubation in the absence of recombinant protein.  Levels of non-specific iron 
binding were subtracted from total iron binding to determine specific iron binding by 
recombinant proteins.  These data are reported as specific counts per minute (CPM) 
standardized to μg of recombinant proteins.  Each bar represents the average of at least 
three independent experiments, each performed in quadruplicate.  Standard deviation is 
represented by error bars.  *, P ≤ 0.005 indicates significance difference from 
recombinant ExbB(−) protein. 
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potential iron-coordinating residues within the TbpA plug domain was performed.  We 

selected the EIEYE conserved sequence motif, shown in Figure 6, for analysis because 

of the abundance of potential iron-coordinating residues, but more importantly, because 

the region immediately upstream was shown to be critical for transferrin utilization (243).  

We successfully generated six alanine substitution mutants: four single mutants at amino 

acids 118 (E), 120 (E), 121 (Y), and 122 (E), one double mutant at amino acids 120 (E) 

and 121 (Y), and one triple mutant at amino acids 120–122 (EYE).  These alanine 

substitution mutants are identified by their strain names (MCV250 – MCV261), but for 

clarity, are also identified by the amino acid substitutions (Table 2).   

C.  Alanine substitution mutants express full-length TbpA and TbpB and bind 

transferrin to the cell surface 

To determine if alanine mutagenesis of the TbpA plug domain disrupted TbpA 

protein expression and to ensure that TbpB expression was similar to the parental strain, 

Western blot analyses were carried out (Figure 7).  In panel A, expression of TbpA and 

TbpB by the alanine substitution mutants in the FA19 (TbpB+) background was 

evaluated.  All alanine substitution mutants in this background expressed wild-type levels 

of both TbpA and TbpB.  In panel B, expression of TbpA and TbpB by the alanine 

mutants in the FA6905 (TbpB−) background was evaluated.  Alanine substitution 

mutants in this background expressed wild-type levels of TbpA and did not express 

TbpB, as was detected in the FA6905 parental control.  We conclude that site-directed, 

alanine substitution mutagenesis does not disrupt TbpA protein expression in any of the 

mutants.   
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Figure 6.  Sequence alignment of TbpA plug domains from bacterial pathogens.  The 
first two letters preceding the amino acid sequences represent the genus and species name 
of the bacterial pathogen: Ng, Neisseria gonorrhoeae; Nm, Neisseria meningitidis; Hi, 
Haemophilus influenzae; Ap, Actinobacillus pleuropneumoniae; and Mc, Moraxella 
catarrhalis.  The subsequent numbers or letters represent the bacterial strain selected for 
analysis.  The sequences represent mature TbpA plug domains and the amino acids are 
numbered accordingly to the right of the sequence.  Dots indicate identical amino acids, 
dashes represent positions in which gaps were introduced in the alignment, and letters 
indicate the specific amino acid changes.  Amino acids, in bold type and underlined, 
represent potential iron-coordinating residues.  These amino acids coordinate iron in 
human transferrin (YHD) (88) and bacterial ferric binding protein A (YHE) (214).  The 
box indicates the conserved sequence motif selected for site-directed, alanine substitution 
mutagenesis at amino acids 118 (E), 120 (E), 121 (Y), and 122 (E). 
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Figure 7.  Alanine substitution mutants express wild-type levels of TbpA and TbpB 
by Western blot.  Iron-stressed gonococci were lysed and standardized to a constant cell 
density.  Whole-cell lysates were separated by SDS-PAGE and then transferred to 
nitrocellulose membranes.  Blots were probed with anti-TbpA (α-TbpA) or anti-TbpB 
(α-TbpB) polyclonal antibodies.  Each lane is labeled according to the strain name with 
amino acid substitutions in parentheses.  Panel A shows alanine substitution mutants in 
the FA19 (TbpB+) background, while panel B shows alanine substitution mutants in the 
FA6905 (TbpB−) background.  Controls include FA19 (positive control, TbpA+ TbpB+), 
FA6905 (TbpA+ TbpB−), and FA6815 (negative control, TbpA− TbpB−). 
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In addition to protein expression, TbpA surface exposure and transferrin binding 

were also evaluated.  To determine surface exposure and transferrin binding, solid-phase 

transferrin binding assays, in which whole gonococcal cells were spotted to a 

nitrocellulose membrane and probed with HRP-labeled transferrin, were performed 

(Figure 8).  In panel A, cell surface transferrin binding was evaluated for alanine 

substitution mutants in the FA19 (TbpB+) background.  Although not quantitative, it is 

clear that all alanine substitution mutants bound transferrin to the cell surface when 

compared to the positive and negative controls.  Similarly, panel B shows cell surface 

transferrin binding by alanine substitution mutants in the FA6905 (TbpB−) background.  

Again, all alanine substitution mutants in the TbpB− background maintained the ability to 

bind transferrin to the cell surface compared to the positive and negative controls.  

Overall, these results show that site-directed, alanine substitution mutagenesis does not 

affect TbpA expression levels, surface exposure, or the ability of TbpA to bind human 

transferrin to the cell surface.   

D.  Alanine substitution mutants bind transferrin with wild-type affinity and 

capacity   

Solid-phase transferrin binding assays are not quantitative; therefore, to determine 

the transferrin binding affinity of the mutated TbpA proteins, whole-cell, equilibrium-

phase transferrin binding assays were carried out (Figure 9).  Since both TbpA and TbpB 

function in high-affinity transferrin binding, these assays were performed with only 

alanine substitution mutants in the FA6905 (TbpB−) background.  In this manner, 

transferrin binding by TbpA, alone, could be assessed and quantitated.  Panel A shows  



 79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Alanine substitution mutants bind transferrin to the cell surface in solid-
phase transferrin binding assays.  Whole, iron-stressed gonococci, standardized to a 
constant cell density, were applied to nitrocellulose membranes and probed with HRP-
labeled transferrin.  Each lane is labeled according to the strain name with amino acid 
substitutions in parentheses.  Panel A shows the alanine substitution mutants in the FA19 
(TbpB+) background, while panel B shows the alanine substitution mutants in the 
FA6905 (TbpB−) background.  Controls include FA19 (positive control, TbpA+ TbpB+), 
FA6905 (TbpA+ TbpB−), and FA6815 (negative control, TbpA− TbpB−). 
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transferrin binding by the single alanine substitution mutants in the FA6905 (TbpB−) 

background, while panel B shows binding by the double and triple alanine substitution 

mutants in the FA6905 (TbpB−) background.  All the alanine substitution mutants bound 

similar levels of transferrin compared to the parental control FA6905.  Affinity and 

capacity measurements were calculated from the equilibrium transferrin binding data.  

These values, shown in Table 6, revealed that all alanine substitution mutants have 

similar transferrin binding affinities and capacities to the parental control FA6905.  

Overall these data support the solid-phase transferrin binding data, but specifically show 

that mutagenesis does not have a quantitative effect on transferrin binding affinity or on 

receptor capacity.   

E.  Double and triple alanine substitution mutants demonstrate decreased 

transferrin-iron internalization  

TbpA plays two major roles in the process of iron acquisition by the gonococcal 

cell: transferrin binding and iron internalization.  Transferrin binding was evaluated in the 

alanine substitution mutants and found to be at wild-type levels.  Iron acquisition, the 

other major step in transferrin-mediated iron uptake, was also evaluated.  This assay was 

performed by incubating gonococci with 20% iron-saturated human transferrin and 

specific iron uptake was measured (Figure 10).  Strain FA6815 (TbpA− TbpB−) was 

unable to internalize iron due to the absence of TbpA and therefore served as the negative 

control in this assay.  Although TbpB is not required for transferrin-iron uptake, it has 

been shown to make the process of iron internalization more efficient (4), and these data 

show that FA6905 (TbpB−) internalized iron around 50% of wild-type levels.  Alanine  
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Figure 9.  Alanine substitution mutants bind transferrin at wild-type levels in 
equilibrium-phase transferrin binding assays.  Whole, iron-stressed gonococci were 
mixed with various concentrations of 125I-labeled human transferrin (0-100 nM).  Specific 
transferrin binding was determined by subtracting nonspecific binding (with excess 
competing unlabeled human transferrin) from total binding.  Specific transferrin binding 
is reported on the y-axis as nanograms of transferrin bound per microgram of total cell 
protein (ng Tf/ μg TCP).  Only strains in the FA6905 (TbpB−) background are shown in 
order to evaluate specific transferrin binding attributable to TbpA.  Each curve is labeled 
according to the strain name with amino acid substitutions shown.  Each point represents 
an average and standard deviation of at least three independent experiments.  Panel A 
shows the single alanine substitution mutants, while panel B shows the double and triple 
alanine substitution mutants.  Controls include FA6905 (positive control, TbpA+ TbpB−) 
and FA6815 (negative control, TbpA− TbpB−).   
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Table 6.  Affinity and capacity measurements for alanine substitution mutants 
generated from equilibrium-phase transferrin binding assays 

 
 
Strains 
 

 
Phenotype 

 
Kd

a (nM) 
 
Capacity (# receptors/μg TCP)b 
 

    
FA6905 TbpA+, TbpB− 10.7 ± 2.9 1.67 × 108  
MCV251 TbpA E118A, TbpB− 9.2 ± 1.8 1.53 × 108  
MCV253  TbpA E120A, TbpB− 9.4 ± 1.4 2.37 × 108  
MCV255 TbpA E121A, TbpB− 6.8 ± 1.1 1.65 × 108  
MCV257 TbpA E122A, TbpB− 9.2 ± 2.1 1.32 × 108  
MCV259 TbpA EY120AA, TbpB− 11.2 ± 1.9 1.19 × 108  
MCV261 TbpA EYE120AAA, TbpB− 6.0 ± 1.2 1.10 × 108  
    

a Kd, capacity, and standard error calculated with Grafit software 
b TCP, total cell protein was determined by bicinchoninic acid (BCA) assay
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substitution mutants in the FA6905 (TbpB−) background were tested to determine the 

specific contribution of TbpA in the process of iron internalization (Figure 10, panel A).  

All single alanine substitution mutants in the FA6905 (TbpB−) background internalized 

similar amounts of iron compared to the FA6905 parental control.  However, the double 

and triple alanine substitution mutants had significantly decreased iron internalization (P 

≤ 0.01) when compared to the FA6905 parental control.  Specifically, the double alanine 

substitution mutant (MCV259) internalized approximately 50% less iron than FA6905, 

while the triple alanine substitution mutant (MCV261) internalized approximately 80% 

less iron than FA6905.  These data show that the single alanine substitution mutants bind 

transferrin with a wild-type affinity and internalize iron at a similar rate as wild-type.  

While the double and triple alanine substitution mutants had wild-type transferrin binding 

affinities, they demonstrated a significant decrease in iron internalization.  Alanine 

substitution mutants in the FA19 (TbpB+) background were evaluated in panel B.  All 

single alanine substitution mutants in the FA19 (TbpB+) background internalized similar 

amounts of iron compared to the FA19 parental control.  However, the double and triple 

alanine substitution mutants still demonstrated a significant decrease in iron 

internalization (P ≤ 0.01) when compared to the FA19 parental control, but the presence 

of TbpB resulted in increased iron uptake by about 50% in both mutants.  These results 

suggest that the wild-type sequence at residues 120–122 (EYE) facilitates efficient iron 

internalization.   
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Figure 10.  Double and triple alanine substitution mutants demonstrate decreased 
iron internalization in transferrin-iron uptake assays.  Iron-stressed gonococci were 
incubated with 55Fe-labeled human transferrin.  Specific iron uptake was measured in 
picomoles (pmols) of iron internalized after 30 minutes.  Each bar represents the mean of 
at least six independent experiments and is labeled according to the strain name with 
amino acid substitutions in parentheses.  Panel A shows the alanine substitution mutants 
in the FA6905 (TbpB−) background, while panel B shows the alanine substitution 
mutants in the FA19 (TbpB+) background.  Controls include FA19 (positive control, 
TbpA+ TbpB+), FA6905 (TbpA+ TbpB−), and FA6815 (negative control, TbpA− 
TbpB−).  Standard deviations are represented by error bars.  *, P ≤ 0.01 indicates 
significance from both FA19 and FA6905. 
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       F.  Triple alanine substitution mutant only utilizes transferrin as a sole iron 

source in the presence of TbpB  

Since the double and triple alanine substitution mutants had a significant decrease 

in iron internalization, the ability of these mutants to utilize human transferrin as a sole 

iron source was evaluated.  To test this, transferrin-iron utilization growth assays, in 

which gonococci were grown on CDM supplemented with 30% iron-saturated human 

transferrin as the sole iron source, were carried out (Figure 11).  Alanine substitution 

mutants in both the FA19 (TbpB+) and FA6905 (TbpB−) backgrounds were tested.  The 

single alanine substitution mutants in both backgrounds maintained the ability to utilize 

transferrin as a sole source of iron.  In addition, although the double alanine substitution 

mutants (MCV258 and MCV259) had significantly decreased iron internalization, these 

mutants were able to utilize transferrin-bound iron for growth in both the presence and 

absence of TbpB.  The triple alanine substitution mutant in the FA19 (TbpB+) 

background (MCV260), despite its decreased iron internalization, maintained the ability 

to utilize transferrin as a sole iron source.  However, consistent with the significant 

decrease in iron internalization, the triple alanine substitution mutant in the FA6905 

(TbpB−) background (MCV261) was unable to utilize transferrin, as shown in Figure 11.  

These results suggest that TbpB has the ability to compensate for the defect observed in 

the triple alanine substitution mutant.  Overall, these data suggest that residues 120–122 

(EYE) of the TbpA plug domain are critical for optimal iron internalization from 

transferrin, but the function provided by this conserved plug domain motif can be 

compensated for by the presence of TbpB.   
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Figure 11.  Triple alanine substitution mutant utilizes transferrin as a sole iron 
source in transferrin utilization growth assays only in the TbpB-positive 
background.  Gonococcal strains were grown on CDM agarose plates containing 30% 
iron-saturated human transferrin as a sole iron source.  The ability of mutants to utilize 
transferrin as a sole source of iron was evaluated by growth at 37oC with 5% CO2 for 24 
hours.  Strains are labeled according to the strain name with specific amino acid 
substitutions in parentheses.  Controls include FA19 (positive control, TbpA+ TbpB+), 
FA6905 (TbpA+ TbpB−), FA6747 (negative control, TbpA− TbpB+), and FA6815 
(negative control, TbpA− TbpB−). 
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          Since these assays were carried out using 30% iron-saturated transferrin, the 

growth phenotypes of the alanine substitution mutants in the presence of a variety of iron 

saturations ranging from 5% – 80% were determined (Table 7).  The single and double 

alanine substitution mutants in both backgrounds maintained the ability to utilize 

transferrin at all the transferrin-iron saturations tested.  Similar to the results in Figure 11, 

the triple alanine substitution mutant in the FA19 (TbpB+) background (MCV260) 

maintained the ability to utilize transferrin at all the transferrin-iron saturation levels.  

However, the triple alanine substitution mutant in the FA6905 (TbpB−) background 

(MCV261) was unable to utilize transferrin regardless of the level of iron saturation.  

These data suggest that TbpA with alanine substitutions at residues 120–122 (EYE) is 

completely unable to utilize transferrin and that the defect in transferrin utilization is not 

due to inefficiency at low iron saturation levels.  Furthermore, these data imply that the 

compensatory function provided by TbpB is not due solely to the ability of TbpB to 

specifically bind the ferrated form of transferrin. 

      G.  MCV261 is unable to utilize transferrin in the presence of exogenous TbpB 

In an attempt to characterize the compensatory function provided by TbpB, 

transferrin-iron uptake assays were carried out in the presence of recombinant, full-length 

TbpB (Figure 12) and FA6747 (TbpA− TbpB+) total membrane preparations (TMP) 

(data not shown).  We hypothesized that if the TbpA triple alanine substitution mutant 

had a defect in iron removal from transferrin that TbpB was able to compensate for, then 

perhaps exogenous TbpB could provide the stripping function thereby allowing MCV261  
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Table 7.  Phenotypes of alanine substitution mutants in transferrin-iron utilization 
growth assays 

 
 
Strain 

 
Amino acid substitution 

 
Iron-saturated transferrin* 

   
5% 

 
10%

 
30% 

 
50% 

 
80% 

       
FA19 TbpA+, TbpB+ + + + + + 
FA6905 TbpA+, TbpB− (ΔtbpB) + + + + + 
FA6747 TbpA− (tbpA::mTn3cat), TbpB+ − − − − − 
FA6815 TbpA−, TbpB− (tbpB::Ω) − − − − − 
MCV250 TbpA E118A, TbpB+ + + + + + 
MCV251 TbpA E118A, TbpB− (ΔtbpB) + + + + + 
MCV252 TbpA E120A, TbpB+ + + + + + 
MCV253 TbpA E120A, TbpB− (ΔtbpB) + + + + + 
MCV254 TbpA Y121A, TbpB+ + + + + + 
MCV255 TbpA Y121A, TbpB− (ΔtbpB) + + + + + 
MCV256 TbpA E122A, TbpB+ + + + + + 
MCV257 TbpA E122A, TbpB− (ΔtbpB) + + + + + 
MCV258 TbpA EY120AA, TbpB+ + + + + + 
MCV259 TbpA EY120AA, TbpB− (ΔtbpB) + + + + + 
MCV260 TbpA EYE120AAA, TbpB+ + + + + + 
MCV261 TbpA EYE120AAA, TbpB− (ΔtbpB) − − − − − 
       

*, Transferrin-iron utilization growth assays were carried out with CDM plates 
supplemented with 5%, 10%, 30%, 50%, or 80% iron-saturated human transferrin 
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(TbpB−) to function in transferrin-iron utilization.  However, if the triple alanine 

substitution mutant had a transport defect and maintained the ability to remove iron from 

transferrin, then exogenous TbpB would not facilitate transferrin-iron utilization by this 

mutant.  Transferrin-iron internalization assays were carried out with MCV261 (TbpB−) 

as described previously, but in the presence of recombinant TbpB or FA6747 (TbpA−, 

TbpB+) total membrane preparations (TMP) at concentrations equivalent to the amount 

of transferrin present.  Results from both assays showed that neither recombinant TbpB 

nor TbpB from total membrane preparations (TMP) were able to compensate for the 

TbpA plug domain mutant in transferrin-iron uptake.  It is likely that the function 

provided by TbpB requires expression of TbpB within the same membrane as TbpA.  

Thus, these data suggest that TbpA and TbpB function together to facilitate the removal 

of iron from transferrin and transport of iron through the outer membrane.   

    

III. Discussion 

In order for gonococci to utilize transferrin-bound iron, TbpA must carry out two 

major functions: iron removal from transferrin and iron transport through the outer 

membrane.  This study was designed to analyze the functional role of the TbpA plug 

domain in this process and to test the hypothesis that the plug functions in iron-

coordination and subsequent iron internalization.  In vitro studies indicated that the plug 

domain of TbpA functions in iron coordination.  Single, double, and triple alanine 

substitution mutagenesis of putative iron-coordinating residues within the TbpA plug  
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Figure 12.  Exogenous TbpB is unable to compensate for MCV261 (EYE120AAA) in 
transferrin-iron uptake assays.  Iron-stressed gonococci were incubated with 55Fe-
labeled human transferrin in the presence (+ rTbpB) or absence (− rTbpB) of equal molar 
amounts of recombinant TbpB (125μM).  Specific iron uptake was measured in 
picomoles (pmols) of iron internalized after 30 minutes.  Each bar represents the mean of 
three independent experiments and is labeled according to the strain name with amino 
acid substitutions in parentheses.  Controls include FA19 (positive control, TbpA+ 
TbpB+), FA6905 (TbpA+ TbpB−), and FA6815 (negative control, TbpA− TbpB−).  
Standard deviations are represented by error bars. 
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domain resulted in mutants that expressed wild-type levels of TbpA on the gonococcal 

cell surface and bound transferrin with wild-type affinity and capacity.  Furthermore, no 

growth abnormalities were observed with any of the alanine substitution mutants 

suggesting that the alanine mutagenesis had relatively little impact on the structure or 

function of gonococcal TbpA.  Previous studies, in which deletion and insertion 

mutagenesis of TbpA were performed (22, 243), are in agreement with these data and 

support the theory that gonococcal TbpA, like other TonB-dependent receptors (7, 24, 98, 

102, 117, 140, 157), is resilient to various types of mutagenesis. 

Analysis of the double and triple alanine substitution mutants in transferrin-iron 

uptake assays revealed a significant defect in iron internalization.  Furthermore, analysis 

of the triple alanine substitution mutant in transferrin-iron utilization growth assays 

revealed that this mutant was unable to utilize transferrin-bound iron in the absence of 

TbpB.  This suggests that the defect in the TbpA plug domain can be overcome by the 

presence of TbpB.  This phenomenon has been previously observed with insertion 

mutations in putative loops 2, 9, and 11 of TbpA (243), suggesting that TbpA and TbpB 

have redundant function(s).  Similar to the triple alanine substitution mutant, the loop 2, 

9, and 11 TbpA insertion mutants showed no defect in transferrin binding, but a defect in 

transferrin-iron utilization in the absence of TbpB (243).  Therefore, the function of TbpB 

is not limited to transferrin binding and holo/apo-transferrin discrimination (20, 50, 183, 

184), but also appears to play an additional role in the mechanism of transferrin-mediated 

iron uptake.  The compensatory function provided by TbpB suggests that TbpA and 

TbpB work together to accomplish transferrin-iron uptake.  Although not much is known 
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about the specific interactions between TbpA and TbpB, it has been shown that both 

gonococcal and meningococcal TbpB associate with TbpA (63, 64, 97, 210).  The defect 

in transferrin-iron uptake and utilization seen in the TbpA triple alanine substitution 

mutant could be attributed to either a defect in iron removal from transferrin, iron binding 

by the plug, and/or iron transport through the β-barrel.  Therefore TbpB may provide one 

or more of these functions in wild-type gonococci.  Since TbpB is a surface-exposed 

lipoprotein, it is not likely to compensate for iron transport through the TbpA β-barrel, 

but it may function in iron removal from transferrin by an unknown mechanism.   

As mentioned previously, gonococcal TbpB is not typically required for 

transferrin utilization, but in the case of the TbpA triple alanine substitution mutant, 

TbpB is required for iron acquisition from transferrin.  This dependence on TbpB 

function is also observed in Neisseria meningitidis strain B16B6, which expresses a low 

molecular weight class of the transferrin binding proteins.  In B16B6, iron acquisition 

from human transferrin requires TbpB (85), which is most likely due to the lack of 

critical regions in the TbpA from this strain.  Meningococcal TbpA from B16B6 shares 

only 75% identity to gonococcal TbpAs (45) and shows sequence and length diversity 

within the exposed loops (45, 163).  These data suggest that there are multiple domains 

within TbpA and TbpB that are important in transferrin-mediated iron acquisition.  

Cumulatively, our data (160, 243) demonstrate that disruption of one or more epitopes 

prevents TbpA function in the absence of TbpB.  These domains may similarly be 

lacking or nonfunctional in meningococcal strain B16B6.  
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Our data demonstrate that the TbpA plug domain binds iron and residues 120–122 

(EYE) of the TbpA plug domain are critical for transferrin-iron acquisition.  This may be 

due to alteration of an iron binding site, which may promote iron removal from 

transferrin, subsequent iron binding by the plug, and transport through the outer 

membrane.  It has been shown that the plug domain of the E. coli TonB-dependent 

transporter FepA binds directly to its ligand, ferric-enterobactin, in the absence of the β-

barrel domain (222), which suggests the importance of the plug in ligand binding and 

possibly transport.  Oke et al. found that the neisserial TbpA plug domain was unable to 

bind human transferrin (161).  However, the TbpA plug domain most likely has a ligand 

specificity for iron rather than transferrin.  Although TbpA is a characterized transferrin 

receptor, it is also an iron transporter.  Therefore, TbpA has two ligand specificities 

during the process of transferrin-mediated iron internalization.  It is important to note 

that, although residues 120–122 (EYE) of the TbpA plug domain are clearly involved in 

transferrin-mediated iron acquisition, others may be involved as well. 

Figure 13 shows a homology model for the gonococcal TbpA plug domain, which 

was derived from comparison with the known crystal structure of the homologous plug 

domain of the ferric-enterobactin transporter, FepA.  The positions of amino acids 120 

(E), 121 (Y), and 122 (E), mutated in the current study, are shown as ball and stick 

representations.  Interestingly, this conserved motif is located near the bottom of the plug 

in this model.  The position of this critical domain relative to the surface-exposed 

opening of the barrel (top) is consistent with the hypothesis that the plug coordinates iron 

via ligands from distant amino acid residues within the plug.  Alternatively, iron may be  
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Figure 13.  Predicted structural model of N. gonorrhoeae TbpA plug domain.  The 
mature N. gonorrhoeae TbpA plug domain (amino acids 1-162) was aligned with the 
homologous sequence of the E. coli FepA plug domain using the 3D-Jigsaw comparative 
modeling program.  The modeled region of TbpA spans from Thr25 (N-terminus) to 
Thr151 (C-terminus).  The resulting output file was visualized with First Glance in Jmol.  
The image shown was captured and imported into Adobe Photoshop.  The amino acids 
120 (E), 121 (Y), and 122 (E) are represented by balls and sticks.  Red indicates 
hydrophobic atoms, while blue indicates hydrophilic atoms.  Alpha helices and beta 
strands are shown as ribbons, with arrowheads pointing toward the C-terminus.  Random 
coils are shown as smooth backbone traces. 
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coordinated at multiple, different sites within the plug domain during transport through 

the β-barrel.  Our recombinant iron binding data may support this hypothesis in that the 

TbpA plug domain binds more iron than FbpA, which may indicate more than one site of 

iron coordination.  It is also possible that these substitution mutants resulted in indirect 

impacts within the plug domain leading to the plug’s inability to bind or transport iron.  

Thus, the results of this study support the hypothesis that the plug domain coordinates 

iron.  This iron coordination is likely critical for transferrin-mediated iron internalization, 

for mutations in possible coordination sites result in decreased iron uptake and losses in 

TbpA-mediated transferrin utilization. 

Overall, these studies provide insight into the mechanism of TbpA-mediated iron 

acquisition.  Further studies are necessary to determine the function of the TbpA plug 

domain in respect to the multiple steps of transferrin-iron uptake: iron removal from 

transferrin, iron binding and coordination, and iron transport through the outer 

membrane.  Further studies are also needed to address the function of TbpB in this 

process of iron acquisition from transferrin.  A better understanding of this mechanism 

may reveal new sites within TbpA to target for vaccine development or to exploit for 

treatment of gonococcal infection.   
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CHAPTER 4 – ANALYSIS OF TBPA AND TBPB COOPERATION IN 
TRANSFERRIN-IRON ACQUISITION BY NEISSERIA 

GONORRHOEAE 
 
I. Introduction 

 The gonococcal transferrin-iron acquisition system is composed of two dissimilar 

proteins, TbpA and TbpB.  TbpA is the TonB-dependent outer membrane iron transporter 

required for transferrin-iron acquisition.  However, the TbpB lipoprotein component is 

not required for transferrin-iron internalization, but has been shown to make the process 

more efficient (4).  There have been few studies to address the mechanism by which 

TbpB increases the efficiency of iron uptake; however, it has been shown that ligand 

discrimination and holo-transferrin binding are not sufficient for this TbpB-dependent 

increase in efficiency (56, 57).   

TbpB is a bi-lobed structure with a C-terminal and N-terminal domain that both 

function in transferrin binding (57).  This was recently determined in a structure and 

function analysis of mutants with hemagglutinin (HA) epitope insertions throughout the 

length of TbpB (57).  This study confirmed that TbpB was entirely surface-exposed and 

that there were two distinct domains that function in high-affinity transferrin binding 

(57).  These HA epitope insertion mutants in TbpB have been fully characterized and 

vary in their transferrin binding abilities (57).   
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Although TbpB is not required for transferrin-iron acquisition in the wild-type 

receptor, there have been a number of characterized TbpA mutants that require TbpB for 

function.  These include one site-directed substitution mutant in the TbpA plug domain 

(MCV260) (160) and HA epitope insertion mutants within the surface-exposed loops 2, 

9, and 11 of TbpA (MCV527, MCV515, MCV519) (242).  All of these mutants exhibited 

identical phenotypes, in which the mutagenized TbpA maintained wild-type transferrin 

binding, but was unable to utilize transferrin as a sole iron source in the absence of TbpB.  

To date, TbpB has been shown to only function in transferrin binding and discrimination 

(20, 50, 183, 184).  Therefore, the ability of TbpB to compensate for defects in iron 

internalization suggests that TbpB provides a novel function that does not directly pertain 

to transferrin binding and discrimination.  Thus, we hypothesize that specific domains of 

TbpB may function in iron removal from transferrin, allowing for iron uptake and thus 

restored function in transferrin utilization.   

To address which domains in TbpB were required for the compensatory function, 

TbpB was mutagenized in two gonococcal strains that require it for transferrin utilization 

(MCV260 – EYE and MCV515 – L9HA).  We hypothesized that these gonococcal 

strains that require TbpB for function, despite having similar phenotypes, might exhibit 

different defects in transferrin-iron acquisition.  In addition, we hypothesized that TbpB 

has various domains that are important for the observed compensatory functions.  

Therefore, by combining characterized TbpA and TbpB mutations, specific regions of 

TbpB required for TbpA-mediated transferrin utilization may be identified.  Also, using 

this approach, it may be possible to distinguish between phenotypically similar TbpA 
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mutants, in an effort to elucidate the specific TbpA defects in transferrin-mediated iron 

acquisition.   

  

II. Results 

A. Site-directed alanine substitution mutagenesis  

TbpB has an N-terminal and C-terminal lobe, which both contain high-affinity 

transferrin binding domains (57).  Other regions within TbpB are highly conserved at the 

amino acid sequence level (56, 57).  One unique region of conservation is in the C-

terminus and this region consists of two, adjacent cysteine residues (56, 57).  To 

investigate the role these residues play in transferrin-mediated iron acquisition, site-

directed alanine substitution mutagenesis was utilized to change the double cysteines to 

double alanines (56).  This mutation was generated in both FA19 (TbpA+) and FA6747 

(TbpA−) backgrounds for analysis and resulting strains MCV845 and MCV846 are listed 

in Table 2.  It has been shown that cysteine residues can coordinate metal ions (105), and 

therefore, these residues may play a role in the removal of iron from transferrin.  

Additionally, these residues may be important for the compensatory function provided by 

TbpB in either MCV260 (EYE120AAA) or MCV515 (L9HA).  Therefore, in addition to 

the previously characterized TbpB HA epitope insertion mutants (57), this cysteine 

mutant was used for TbpA and TbpB combined mutagenesis, discussed below. 

B. MCV845 expresses full-length TbpB that is capable of binding transferrin  

To determine if site-directed mutagenesis of the TbpB conserved cysteine 

residues disrupted TbpB protein expression levels or transferrin binding ability, Western 
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blot analyses were carried out (Figure 14).  Expression of TbpB and transferrin binding 

ability were assessed by immunoblotting with anti-TbpB antibodies and HRP-labeled 

transferrin, respectively.  MCV845 (CC481AA, TbpA+) expressed wild-type levels of 

TbpB and bound transferrin by Western blot.  Therefore, site-directed alanine substitution 

mutagenesis of cysteine residues does not disrupt TbpB protein expression.  In addition, 

TbpB is not subject to proteolytic degradation as a result of mutagenesis. 

C. MCV846 binds transferrin with wild-type affinity and capacity 

MCV845 (CC481AA, TbpA+) expressed wild-type levels of TbpB, but it was also 

necessary to determine if site-directed mutagenesis affected TbpB surface exposure and 

whole-cell transferrin binding ability.  Thus, solid-phase transferrin binding assays were 

used to assess surface expression of TbpB and transferrin binding to the gonococcal cell 

surface (Figure 15).  Whole-cell, iron-stressed gonococci were spotted to a nitrocellulose 

membrane and probed with HRP-labeled transferrin to assess transferrin-binding 

competent surface proteins.  Although not quantitative it was clear that MCV845 

(CC481AA, TbpA+) and MCV846 (CC481AA, TbpA−) expressed surface exposed and 

transferrin binding competent TbpA and TbpB.  Therefore, site-directed mutagenesis 

does not disrupt TbpB overall protein expression levels, protein expression on the 

gonococcal cell surface, or transferrin binding potential.   

Since solid-phase transferrin binding assays are not quantitative, equilibrium-

phase transferrin binding assays were carried out to quantitate specific transferrin binding 

affinity and capacity (Figure 16, Table 8).  Since both TbpA and TbpB function in 

transferrin binding, equilibrium-phase transferrin binding was assessed in the FA6747  



 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.  MCV845 expresses wild-type levels of TbpB and binds transferrin by 
Western blot.  Iron-stressed gonococci were lysed and standardized to a constant cell 
density.  Whole-cell lysates were separated by SDS-PAGE and then transferred to 
nitrocellulose membranes.  Blots were probed with anti-TbpB (α-TbpB) polyclonal 
antibody (panel A) or HRP-transferrin (panel B).  Each lane is labeled according to the 
strain name with amino acid substitutions in parentheses.  Controls include FA19 
(positive control, TbpA+ TbpB+) and FA6815 (negative control, TbpA− TbpB−).  
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Figure 15.  Double cysteine mutants bind transferrin to the cell surface in solid-
phase transferrin binding assays.  Whole, iron-stressed gonococci, standardized to a 
constant cell density, were applied to nitrocellulose membranes and probed with HRP-
labeled transferrin.  Each lane is labeled according to the strain name with amino acid 
substitutions shown below.  Controls include FA19 (positive control, TbpA+ TbpB+), 
FA6747 (TbpA− TbpB+), FA6905 (TbpA+ TbpB−), and FA6815 (negative control, 
TbpA− TbpB−). 
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(TbpA−) background (MCV846) to determine the transferrin binding ability of TbpB 

only.  From these studies it is clear that MCV846 (CC481AA, TbpA−) bound wild-type 

levels of transferrin as shown in Figure 16.  Affinity and capacity measurements 

calculated from these equilibrium-phase transferrin binding data show that MCV846 

exhibited wild-type transferrin binding affinity and capacity (Table 8). 

D. MCV845 demonstrates decreased transferrin-iron internalization 

Although TbpB is not required for transferrin-iron internalization, it does increase 

the efficiency of iron uptake (4).  Since the TbpB double cysteines may have a role in 

iron removal from transferrin, this mutant may exhibit decreased efficiency in iron 

internalization when compared to the wild-type.  Thus, transferrin-iron internalization 

assays were carried out in the FA19 (TbpA+) background (MCV845).  Iron-stressed 

gonococci were incubated with 20% iron-saturated human transferrin, and specific iron 

uptake is shown in Figure 17.  As mentioned previously, TbpB is known to increase the 

efficiency of iron internalization and that was apparent with the FA6905 (TbpB−) 

control, which internalized about 50% of wild-type FA19.  In support of our hypothesis, 

MCV845 (CC481AA, TbpA+) showed a significant decrease in iron uptake, 

approximately 60% of wild-type FA19.  Iron internalization by MCV845 was also 

significantly greater than that of FA6905 (TbpB−) control.  Thus, double cysteine 

residues in the C-terminus of TbpB play an important role in increasing the efficiency of 

transferrin-iron uptake, but replacement of the cysteine residues does not completely 

abolish TbpB function.  To further analyze the contribution these double cysteines play in 

transferrin-mediated iron uptake, MCV845 (CC481AA, TbpA+) as well as other  
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Figure 16.  MCV846 binds transferrin at wild-type levels in equilibrium-phase 
transferrin binding assays.  Whole, iron-stressed gonococci were mixed with various 
concentrations of 125I-labeled human transferrin (0-100 nM).  Specific transferrin binding 
was determined by subtracting nonspecific binding (with excess competing unlabeled 
human transferrin) from total binding.  Specific transferrin binding is reported on the y-
axis as nanograms of transferrin bound per microgram of total cell protein (ng Tf/μg 
TCP).  Only MCV846, the TbpA− strain, is shown in order to evaluate specific 
transferrin binding attributable to TbpB.  Each curve is labeled according to the strain 
name with amino acid substitutions shown.  Each point represents the average and 
standard deviation of at least three independent experiments.  Controls include FA6747 
(positive control, TbpA− TbpB+) and FA6815 (negative control, TbpA− TbpB−).   
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Table 8. Affinity and capacity measurements for MCV846 generated from 
equilibrium-phase transferrin binding assays 

 
 
Stain 

 
Phenotype 
 

 
Kda (nM) 

 
Capacityb (# receptors/μg TCP) 

    
FA6747 TbpA−, TbpB+ 12.6 ± 0.6 7.00 x 108 
MCV846 TbpA−, ΤbpB CC481AA  13.1 ± 0.4 7.19 x 108 
    

a Kd, capacity, and standard error calculated with Grafit software 
b TCP, total cell protein was determined by bicinchoninic acid (BCA) assay
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Figure 17.  MCV845 demonstrates decreased iron internalization in transferrin-iron 
uptake assays.  Iron-stressed gonococci were incubated with 55Fe-labeled human 
transferrin.  Specific iron uptake was measured in picomoles (pmols) of iron internalized 
after 30 minutes.  Each bar represents the mean of at least six independent experiments 
and is labeled according to the strain name with amino acid substitution in parentheses.  
Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ TbpB−), and 
FA6815 (negative control, TbpA− TbpB−).  Standard deviations are represented by error 
bars.  *, P ≤ 0.05 indicates significance from both FA19 and FA6905. 
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previously characterized TbpB HA-epitope insertion mutants were used for TbpA and 

TbpB combined mutagenesis and are discussed below.  All the single TbpA and TbpB 

mutations utilized for combined mutagenesis are described below.   

E. TbpA and TbpB single mutants express transferrin binding competent, full-

length TbpB 

To confirm previously described phenotypes, all single TbpA and TbpB mutants  

used in combined mutagenesis were subjected to Western blot analysis to evaluate TbpB 

protein expression and HRP-transferrin binding (Figure 18).  HRP-transferrin binding by 

Western blot assesses TbpB protein expression as well as transferrin binding ability.  

Following SDS-PAGE the N-terminal high-affinity transferrin binding domain of TbpB 

retains its transferrin binding ability.  Therefore, HRP-transferrin probes for transferrin 

binding by the N-terminus of TbpB.  As previously observed (57, 160, 243), this study 

confirmed that all single mutants expressed wild-type levels of TbpB.  In addition, 

transferrin binding phenotypes were also consistent with previous results (57, 243).  

Mutations in the TbpA plug domain (MCV260 – EYE120AAA) and loop 9 of TbpA 

(MCV515 – L9HA) were able to bind transferrin by Western blot, indicating the presence 

of a wild-type, transferrin-binding competent TbpB.  Similarly, MCV845 (CC481AA, 

TbpA+) bound wild-type levels of transferrin by Western blot.  TbpB HA epitope 

insertion mutants showed varying levels of transferrin binding.  HA epitope insertion into 

position 3 of TbpB (MCV812 – HA3) caused a decrease in transferrin binding, while HA 

epitope insertion into position 5 (MCV816 – HA5) abolished transferrin binding by 

Western blot.  These findings are consistent with previous studies and are not surprising  
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Figure 18.  Mutations in TbpA and TbpB do not affect TbpB protein expression or 
transferrin binding by Western blot.  Iron-stressed gonococci were lysed and 
standardized to a constant cell density.  Whole-cell lysates were separated by SDS-PAGE 
and then transferred to nitrocellulose membranes.  Blots were probed with anti-TbpB 
(TbpB) polyclonal antibodies (top panel) or HRP-labeled transferrin (bottom panel).  
Each lane is labeled according to the strain name and mutation.  Controls include FA19 
(positive control, TbpA+ TbpB+), FA6905 (TbpA+ TbpB−), and FA6815 (negative 
control, TbpA− TbpB−). 
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because positions 3 and 5 are both within the N-terminal high-affinity transferrin binding 

domain of TbpB.  As previously shown, HA epitope insertion into position 9 of TbpB 

(MCV824 – HA9) caused no defect and wild-type levels of transferrin binding were 

observed. 

F. TbpA and TbpB single mutants bind transferrin to the cell surface 

Transferrin binding and surface exposure were assessed by solid-phase transferrin 

binding assays (Figure 19).  HA epitope surface expression was also assessed by solid-

phase anti-HA antibody binding.  Whole-cell, iron-stressed gonococci were spotted to 

nitrocellulose membranes and probed with HRP-transferrin or an HRP-HA antibody.  Dot 

blot analysis confirmed HA epitope surface exposure; although, as previously shown, HA 

epitope insertions were not equally accessible by HA antibody (57, 243).  Unlike 

transferrin binding by Western, cell-surface transferrin binding detects both TbpA- and 

TbpB-mediated transferrin binding as well as transferrin binding by both domains of 

TbpB.  Thus, phenotypes observed by Western blot are masked in solid-phase assays by 

the ability of both TbpB N-terminal and C-terminal domains ability to bind transferrin to 

the cell surface.  These data show that all single mutants express TbpA and TbpB on the 

gonococcal cell surface and maintain the ability to bind transferrin.  These studies show 

that mutagenesis of TbpA or TbpB does not disrupt protein expression or transferrin  

binding ability to the gonococcal cell surface.   
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Figure 19.  TbpA and TbpB single mutants bind transferrin and express HA 
epitopes on the cell surface in solid-phase transferrin binding assays.  Whole, iron-
stressed gonococci, standardized to a constant cell density, were applied to nitrocellulose 
membranes and probed with HRP-labeled transferrin (top panel) or HRP-HA antibody 
(bottom panel).  Each lane is labeled according to the strain name with mutations shown 
below.  Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ 
TbpB−), and FA6815 (negative control, TbpA− TbpB−). 
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G. TbpA and TbpB single mutants vary in ability to internalize iron from 

transferrin 

To analyze the ability of each mutant to internalize iron, transferrin-iron uptake 

assays were carried out (Figure 20).  For this assay, iron-stressed gonococci were 

incubated with 20% iron-saturated human transferrin and specific iron uptake was 

measured.  As previously observed, FA6905 (TbpB−) was less efficient in iron uptake 

and internalized about 42% of wild-type FA19.  All of the mutants tested in iron uptake 

assays had significant defects in iron internalization.  As previously shown, MCV260 

(EYE120AAA) internalized iron at 60% of wild-type FA19.  The other TbpA mutant 

tested in this assay was the HA-encoding epitope insertion into loop 9 of TbpA (MCV515 

– L9HA).  Although MCV515 (L9HA) has been shown to have the same phenotype as 

the TbpA plug mutant, it is clear from the iron uptake data, that MCV515 (L9HA) has a 

much greater defect in transferrin-iron internalization, only internalizing 15% of wild-

type FA19.  Although these mutants have similar growth phenotypes, they clearly have 

different defects in transferrin-iron acquisition.   

The various TbpB single mutants were also tested to evaluate how the efficiency 

of iron uptake was affected.  Although some of these mutants had been previously tested 

and characterized, the studies presented here were performed and analyzed differently 

than what was previously reported (57).  Therefore, any differences observed in iron 

uptake phenotypes from this study in comparison to the previous study (57) are attributed 

to the way in which these assays were performed and these data were analyzed.  The 
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MCV845 (CC481AA, TbpA+) as previously shown only internalized 60% of iron 

compared to wild-type FA19.  HA epitope insertion mutants in the N-terminus of TbpB 

at positions 3 and 5 (HA3 and HA5) resulted in significantly decreased iron uptake.  

MCV812 (HA3) internalized about 40% of wild-type FA19, similar to the TbpB− 

(FA6905) control.  Overall, MCV812 (HA3) exhibited decreased transferrin binding and 

an iron uptake efficiency similar to that of a TbpB− strain (FA6905).  In contrast, 

MCV816 (HA5), which had abolished transferrin binding by Western blot, demonstrated 

iron uptake below that of a TbpB− (FA6905) strain, about 15% of wild-type FA19.  Iron 

uptake levels below 50% of wild-type were not expected as they suggest a defect in 

TbpA.  This mutant may express lower levels of TbpA, which could account for 

significant decrease in iron uptake below TbpB− (FA6905) levels.  The final TbpB HA 

epitope insertion mutant, MCV824 (HA9), had an identical phenotype to MCV845 

(CC481AA).  MCV824 (HA9) exhibited wild-type transferrin binding and demonstrated a 

decreased efficiency in transferrin-iron uptake, about 60% of wild-type FA19.  Thus, 

both mutations in the C-terminus of TbpB, CC481AA and HA9, caused similar defects 

whereby TbpB still functioned in transferrin binding and contributes to the efficiency of 

transferrin-iron uptake.  Overall, these data illustrate the phenotypic diversity that these 

mutations have on TbpA and TbpB function.  Combined TbpA and TbpB mutagenesis, 

discussed below, will allow us to determine specific domains in TbpB that are required 

for compensatory functions and will help elucidate the mechanism of transferrin-iron 

acquisition utilized by these mutants.    
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Figure 20.  TbpA and TbpB single mutants internalize varying levels of iron in 
transferrin-iron uptake assays.  Iron-stressed gonococci were incubated with 55Fe-
labeled human transferrin.  Specific iron uptake was measured in picomoles (pmols) of 
iron internalized after 30 minutes.  Each bar represents the mean of at least six 
independent experiments and is labeled according to the strain name with mutations in 
parentheses.  Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ 
TbpB−), and FA6815 (negative control, TbpA− TbpB−).  Standard deviations are 
represented by error bars.  *, P ≤ 0.05 indicates significance from FA19, while ** 
indicates significance from both FA19 and FA6905.  
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H. Combined TbpA and TbpB mutagenesis 

Combined TbpA and TbpB mutants were generated for the purpose of 

determining regions of TbpA and TbpB critical for iron acquisition from transferrin.  By 

utilizing specific TbpA mutants that require TbpB for function, our goal was to determine 

the functions required by TbpB for TbpA compensation.  TbpA mutants, MCV260 

(EYE120AAA) and MCV515 (L9HA), were both combined with MCV845 (CC481AA) to 

generate strains MCV262 (EYE/CC) and MCV266 (L9/CC), respectively.  Previous 

mutagenesis and analyses were carried out in which MCV515 (L9HA) was combined 

with various TbpB HA epitope insertion mutants (57).  In a similar fashion, MCV260 

(EYE120AAA) was combined with the various TbpB HA epitope insertion mutants: 

MCV812 (HA3), MCV816 (HA5), and MCV824 (HA9).  It was hypothesized that 

MCV816 (HA5), which phenotypically resembles the TbpB− strain (FA6905) should not 

compensate for either TbpA mutation.  However, the TbpB mutants that exhibit an 

intermediate phenotype, MCV845 (CC481AA), MCV812 (HA3), and MCV824 (HA9) 

may or may not compensate for TbpA, depending on the role these regions play in 

transferrin-mediated iron uptake.   

I. Combined mutants express full-length TbpA and TbpB  

Before determining the effects of mutagenesis on transferrin-iron acquisition, 

these mutants were characterized to ensure that they expressed wild-type levels of TbpA 

and TbpB.  Therefore, these strains were subjected to Western blot analyses, for detection 

of TbpA, TbpB, and HRP-transferrin binding (Figure 21).  All combined mutants 
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expressed wild-type levels of full-length TbpA and TbpB; therefore, combined 

mutagenesis does not disrupt the expression of either transferrin binding protein.  

Western blotting with HRP-transferrin, as mentioned previously, detects only transferrin 

binding by the N-terminus of TbpB.  Thus, these results only reflect transferrin binding 

by TbpB present in each strain.  These data show that combined mutagenesis does not 

alter the transferrin binding phenotypes observed for the single TbpB mutants in Western 

blot analysis.   

J. Combined mutants bind transferrin to the cell surface 

To ensure that these combined mutants expressed TbpA and TbpB on the 

gonococcal cell surface, solid-phase transferrin binding assays were carried out (Figure 

22).  Iron-stressed, whole-cell gonococci were spotted to nitrocellulose membrane and 

probed with HRP-labeled transferrin for detection of transferrin binding to the 

gonococcal cell surface.  Unlike Western blot analysis with HRP-transferrin, solid-phase 

dot blots represent transferrin binding by TbpA and both binding domains of TbpB.  

From this analysis, it was concluded that both TbpA and TbpB are surface exposed and 

transferrin binding competent.   

K. Combined mutants vary in ability to internalize iron from transferrin 

To determine the effects of combined mutagenesis on iron internalization, 

transferrin-iron uptake assays were performed, whereby gonococcal strains were 

incubated with 20% iron-saturated human transferrin and specific iron uptake was 

measured (Figure 23).  Each combined mutant exhibited significantly lower levels of iron 

internalization as compared to the parental control (FA19).  Many of the mutants  
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Figure 21.  TbpA and TbpB combined mutants express wild-type levels of TbpA 
and TbpB and bind transferrin by Western blot.  Iron-stressed gonococci were lysed 
and standardized to a constant cell density.  Whole-cell lysates were separated by SDS-
PAGE and then transferred to nitrocellulose membranes.  Blots were probed with anti-
TbpA (TbpA) (top panel), anti-TbpB (TbpB) (middle panel), or HRP-labeled transferrin 
(HRP-Tf) (bottom panel).  Each lane is labeled according to the strain name with 
mutation shown below.  Controls include FA19 (positive control, TbpA+ TbpB+), 
FA6905 (TbpA+ TbpB−), and FA6815 (negative control, TbpA− TbpB−). 
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Figure 22.  TbpA and TbpB combined mutants bind transferrin and express HA 
epitope on the cell surface in solid-phase transferrin binding assays.  Whole, iron-
stressed gonococci, standardized to a constant cell density, were applied to nitrocellulose 
membranes and probed with HRP-labeled transferrin (top panel) or HRP-HA antibody 
(bottom panel).  Each lane is labeled according to the strain name with mutations shown 
below.  Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ 
TbpB−), and FA6815 (negative control, TbpA− TbpB−). 
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exhibited even lower levels of iron uptake than the TbpB− control (FA6905).  Therefore, 

wild-type TbpA and TbpB are required for efficient iron uptake and the different TbpB 

defects cause variations in the levels of transferrin-iron internalization. 

L. Combined mutants utilize transferrin only when TbpB is transferrin-binding 

competent 

Transferrin-iron utilization growth assays were carried out to determine if these 

decreases in iron internalization were substantial enough to prevent utilization of 

transferrin as a sole iron source.  For these assays, gonococcal strains were grown on 

CDM supplemented with 30% iron-saturated transferrin as the sole iron source (Table 9).  

Growth phenotypes of the single and combined mutants are summarized in Table 9.  The 

TbpA single mutants, as shown previously (160, 243), were only able to utilize 

transferrin in the FA19 (TbpB+) background.  Thus, MCV260 (EYE120AAA) and 

MCV515 (L9HA) are dependent on TbpB for transferrin utilization.  The TbpB single 

mutants were able to utilize transferrin, as expected, because they express wild-type 

TbpA.  Despite the significantly low levels of iron internalization, all of the combined 

mutants, with the exception of MCV264 (EYE/HA5), were able to utilize transferrin as a 

sole iron source.  These data show that in order for TbpB to compensate for these TbpA 

defects, the function of the N-terminal transferrin binding domains of TbpB is required.   

Compensation, up to this point, has been defined as the ability of mutant 

gonococcal strains to grow, in the presence of TbpB, with transferrin provided as the sole 

iron source.  If, however, we look at the ability of TbpB to compensate in terms of iron  
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Figure 23.  TbpA and TbpB combined mutants internalize varying levels of iron in 
transferrin-iron uptake assays.  Iron-stressed gonococci were incubated with 55Fe-
labeled human transferrin.  Specific iron uptake was measured in picomoles (pmols) of 
iron internalized after 30 minutes.  Each bar represents the mean of at least six 
independent experiments and is labeled according to the strain name with mutations in 
parentheses.  Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ 
TbpB−), and FA6815 (negative control, TbpA− TbpB−).  Standard deviations are 
represented by error bars.  *, P ≤ 0.05 indicates significance from FA19, while ** 
indicates significance from both FA19 and FA6905.  
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Table 9. Phenotypes of TbpA and TbpB combined mutants in transferrin-iron 
utilization growth assays 

 
 
Strain 
 

 
Phenotype 

 
Growth 

phenotype 

 
Reference 

 Controls   
    
FA19 TbpA+, TbpB+ + This study 
FA6905 TbpA+, TbpB−  + This study 
FA6747 TbpA−, TbpB+ − This study 
FA6815 TbpA−, TbpB− − This study 
    
 Single mutations   
    
MCV260 TbpA EYE120AAA, TbpB+ + This study 

(160) 
MCV261 TbpA EYE120AAA, TbpB− − This study 

(160) 
MCV845 TbpA+, TbpB CC481AA + This study 

(56) 
MCV812 TbpA+, TbpB HA3175 + This study 

(57) 
MCV816 TbpA+, TbpB HA5327 + This study 

(57) 
MCV824 TbpA+, TbpB HA9660 + This study 

(57) 
MCV515 TbpA L9HA750, TbpB+ + This study 

(243) 
MCV516 TbpA L9HA750, TbpB− − This study 

(243) 
MCV519 TbpA L11HA843, TbpB+ + (243) 
MCV520 TbpA L11HA843, TbpB− − (243) 
MCV527 TbpA L2HA229, TbpB+ + (243) 
MCV528 TbpA L2HA229, TbpB− − (243) 
    
 Combined mutations   
    
MCV262 TbpA EYE120AAA, TbpB 

CC481AA 
+ This study 

(DeRocco 
unpublished) 

MCV263 TbpA EYE120AAA, TbpB HA3175 + This study 
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(DeRocco 

unpublished) 
MCV264 TbpA EYE120AAA, TbpB HA5327 − This study 

(DeRocco 
unpublished) 

MCV265 TbpA EYE120AAA, TbpB HA9660 + This study 
(DeRocco 

unpublished) 
MCV266  TbpA L9HA750, TbpB CC481AA + This study 

(DeRocco 
unpublished) 

MCV828 TbpA L9HA750, TbpB HA3175 + (57) 
MCV830 TbpA L9HA750, TbpB HA5327 − (57) 
MCV833 TbpA L9HA750, TbpB HA8607 − (57) 
MCV834 TbpA L9HA750, TbpB HA9660 + (57) 
    



 138
internalization, we observed that specific domains of TbpB were required for 

compensation of some TbpA mutants, but not others.  Figure 24 shows the relative levels 

of iron uptake by all the single and combined mutants.  Both TbpA mutations 

(EYE120AAA and L9HA) were combined with MCV845 (CC481AA).  Interestingly, 

MCV262 (EYE/CC) resulted in a decrease in iron internalization that was significantly 

greater than the additive effects of either single mutation alone (P ≤ 0.02).  However, 

MCV266 (L9/CC) did not exhibit a significant decrease in the efficiency of iron uptake 

when compared to each single mutation in isolation.  In contrast, the TbpB CC481AA 

mutation actually increased TbpA (L9HA)-mediated iron internalization (MCV266 – 

L9/CC).  Therefore, the double cysteine residues in TbpB are required for compensatory 

function in MCV260 (EYE120AAA), whereas, they play no role in compensation for the 

MCV515 (L9HA).  These data support the hypothesis that these TbpA mutants have 

different defects and specific domains of TbpB are required for different compensatory 

functions.  This is also supported by the data seen in comparing MCV262 (EYE/CC) and 

MCV265 (EYE/HA9).  Single mutants MCV845 (CC481AA) and MCV824 (HA9) have 

identical phenotypes; however, when these mutations are combined with the MCV260 

(EYE120AAA), they exhibit different levels of TbpB-mediated compensation.  Despite the 

fact that these mutations in TbpB cause identical defects, the compensatory functions 

differ, such that the CC481AA mutation in TbpB does not allow for compensation of the 

EYE120AAA mutation in TbpA (MCV262 – EYE/CC), but the HA9 mutation in TbpB 

does (MCV265 – L9/CC).  Although the specific mechanism by which TbpB 

compensates for TbpA defects has not been determined, we have identified specific  
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Figure 24.  Comparative analysis of transferrin-iron uptake by single and combined 
TbpA and TbpB mutants.  Iron-stressed gonococci were incubated with 55Fe-labeled 
human transferrin.  Specific iron uptake was measured in picomoles (pmols) of iron 
internalized after 30 minutes.  Each bar represents the mean of at least six independent 
experiments and is labeled according to the strain name with mutations in parentheses.  
Controls include FA19 (positive control, TbpA+ TbpB+), FA6905 (TbpA+ TbpB−), and 
FA6815 (negative control, TbpA− TbpB−).  Standard deviations are represented by error 
bars.  *, P ≤ 0.02 indicates significance from both single mutants. 
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 regions of TbpB that are critical for TbpA compensation. 

 

III. Discussion 

Transferrin-iron acquisition by Neisseria gonorrhoeae is mediated by the 

transferrin binding proteins, TbpA and TbpB.  In the wild-type gonococcus, TbpA is 

required for transferrin-iron acquisition, while TbpB is not essential (4).  However, there 

have been a number of TbpA mutants that require TbpB for transferrin utilization (160, 

243), suggesting that TbpB can compensate for selected TbpA defects and plays an active 

role in the process of transferrin-iron acquisition.  This study was designed to analyze the 

compensatory role of TbpB in transferrin-iron acquisition and to identify regions critical 

for its compensatory functions.  Our approach involved the combination of various TbpB 

mutations with TbpA mutations, which resulted in TbpA that required TbpB for 

transferrin utilization.  The results presented here suggest that combined mutagenesis 

does not significantly impact the structure or surface localization of the transferrin 

binding proteins.  This study is in agreement with other studies in which gonococcal 

TbpA and TbpB were subjected to substitution (160), insertion (57, 243), deletion (22), 

and combined mutagenesis (57) and shows that the transferrin binding proteins are 

resilient to many types of mutagenesis. 

 All TbpA and TbpB combined mutations caused a significant decrease in 

transferrin-iron internalization by gonococcal mutant strains.  Despite the decreased iron 

internalization, most combined mutants maintained the ability to utilize transferrin as a 

sole source of iron.  Although unexpected, these data suggest that wild-type gonococci 
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acquire iron from transferrin at levels that exceed their need for growth under laboratory 

conditions, and mutants capable of acquiring iron at 12% of wild-type strains are still 

capable of growth in vitro.  Analysis and quantitation of specific iron uptake by each 

mutant revealed subtle differences in phenotypes and compensatory functions attributable 

to TbpB.  Full compensation of TbpA-transferrin utilization required the function of both 

high-affinity transferrin binding domains of TbpB.  However, iron uptake data revealed 

different domains of TbpB that compensate for specific defects in TbpA.  Specifically, 

the TbpB C-terminal double cysteines play a role in compensation for TbpA plug domain 

defects (MCV262 – EYE/CC), while they have no role in compensating for TbpA L9HA 

defects (MCV266 – L9/CC).  Although MCV527 (L2HA) and MCV519 (L11HA) were 

not tested in these combined mutagenesis studies, we would hypothesize that they would 

be phenotypically similar to MCV515 (L9HA) in regard to TbpB compensation. 

These findings support the hypothesis that the TbpA and TbpB interaction is 

complex and multiple domains of these proteins cooperate in transferrin-iron acquisition.  

Although the specific interaction between TbpA and TbpB is difficult to address in these 

studies, these proteins have been shown to interact in various other studies (63, 64, 97, 

210).  The major function provided by TbpB that is critical for TbpA compensation is the 

ability of the N-terminal and C-terminal domains to cooperate in high-affinity transferrin 

binding.  If the N-terminal high-affinity binding domain is not functional as observed in 

MCV264 (EYE/HA5) and MCV830 (L9/HA5) (57), TbpB cannot compensate for TbpA.  

The same is true if C-terminal transferrin binding is disrupted (MCV833 – L9/HA8) (57).  

From these studies, another region of TbpB identified as important for compensation of 
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TbpA-defective mutants is the two highly conserved C-terminal cysteine residues.  These 

double cysteines are conserved within TbpB among many bacterial pathogens (57), 

suggesting their importance in transferrin-mediated iron acquisition.  It has been shown 

that cysteines in close proximity can coordinate metal ions (105) and even solubilize 

insoluble metal complexes in solution (118).  In wild-type TbpB, it is possible that the 

double cysteines function in iron coordination or even in solubilizing iron, which may 

contribute to the compensatory function observed with MCV260 (EYE120AAA).  

Therefore, these double cysteines in TbpB may also contribute to the increased efficiency 

provided by TbpB in the wild-type transferrin-iron acquisition system.  Furthermore, if 

the TbpA plug domain mutation (EYE120AAA) prevents iron coordination and therefore 

iron removal and internalization, the double cysteines of TbpB may compensate for either 

of these functions.  Although the specific function that the TbpB double cysteines play in 

the compensation of TbpA defects has not been determined, it is clear that they do 

contribute to the efficiency of transferrin-iron acquisition as well as TbpB compensatory 

function.   

Overall these studies provide insight into the cooperation of TbpA and TbpB in 

the mechanism of transferrin-iron acquisition.  However, future studies are necessary to 

determine the specific mechanism by which TbpB compensates for TbpA.  This study has 

identified regions in TbpB important in the efficient functioning of the wild-type 

receptor, but also in TbpA compensation in defective receptors.  Understanding the 

mechanism of transferrin utilization and the critical components of the transferrin binding 
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proteins could provide greater insight into development of novel antimicrobials as well as 

identification of new vaccine targets.   
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CHAPTER 5 – ANALYSIS OF A TONB-INDEPENDENT 
MECHANISM OF TRANSFERRIN-IRON UTILIZATION BY 

NEISSERIA GONORRHOEAE  
 

I. Introduction 

The transferrin binding proteins (TbpA and TbpB) of Neisseria gonorrhoeae 

promote the efficient acquisition of iron from human transferrin.  Characterization of 

various site-directed and insertion mutations in these receptors have aided the 

understanding of the mechanisms of transferrin-iron acquisition (22, 57, 126, 160, 243).  

TbpA mutants that require TbpB for transferrin utilization have been discussed in the 

previous chapters.  These phenotypes highlight the importance of TbpB in the process of 

transferrin-iron acquisition.  Additionally, there are a number of TbpA mutants that are 

unable to utilize transferrin even in the presence of TbpB (243).  A subset of these 

mutants regain the ability to utilize transferrin after 72 hours of incubation with human 

transferrin provided as the sole iron source.  The two mutants that exhibited this 

phenotype contained HA epitope insertions within β-strand 16 (MCV523 – β16HA, 

TbpB+) and loop 3 (MCV511 – L3HA, TbpB+) of TbpA (242, 243).  Both MCV511 

(L3HA) and MCV523 (β16HA) expressed wild-type levels of TbpA (243).  MCV511 

(L3HA) but not MCV523 (β16HA) expressed the HA epitope on the gonococcal cell 

surface, indicating that loop 3 was surface exposed, while β-strand 16 was not (243).  
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TbpA of MCV511 (L3HA) was unable to bind human transferrin, while MCV523 

(β16HA) bound transferrin with wild-type affinity and capacity (243).  Both of these 

mutants were unable to utilize transferrin in either FA19 (TbpB+) (MCV511 and 

MCV523) or FA6905 (TbpB−) (MCV512 and MCV524) backgrounds (243).  However, 

upon 72 hours of incubation, both of these mutants in the FA19 background regained the 

ability to utilize transferrin as a sole iron source.  This reversion was specific to MCV511 

(L3HA) and MCV523 (β16HA) as it did not occur in other mutants that were unable to 

utilize transferrin.  Furthermore, this phenotype was not transient, but allowed for 

continued use of transferrin as the sole iron source over multiple generations.   

The objective of this study was to determine the mechanism by which these 

mutants reverted to a transferrin-positive growth phenotype.  It is important to consider 

this reversion mechanism in looking at TbpA and TbpB as vaccine candidates.  It has 

been shown that TbpA and TbpB are expressed by all clinical isolates of N. gonorrhoeae 

(138), which implicates their importance in virulence.  In addition, the gonococcal 

transferrin-iron acquisition system is required to initiate infection in human challenge 

experiments (49).  Thus far, the components of the transferrin utilization system, TbpA 

and TbpB, of N. gonorrhoeae have been identified as possible vaccine candidates.  

However, if Neisseria have the ability to utilize transferrin through an alternative 

mechanism this has negative implications for the vaccine potential of TbpA and TbpB. 

 

II. Results 
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A. MCV511 and MCV523 revert to a transferrin-positive growth phenotype at a 

high frequency and only in the presence of TbpB 

The frequency of spontaneous base pair changes that result in a reversion event is 

approximately 10-7 to 10-8 (174).  Quantifying the frequency with which MCV511 

(L3HA) and MCV523 (β16HA) reverted to a transferrin-positive growth phenotype was 

complicated by the fact that colonies continued to arise with increasing incubation time.  

However, the rate of reversion for these strains, which was calculated to be around 10-5, 

was considerably higher than the rate of spontaneous reversion.  These isolates were 

designated “pseudo-revertants” because the frequency with which they occur was higher 

than that expected from a typical mutational reversion.  However, the rate with which 

MCV523 (β16HA) reverted to a transferrin-positive growth phenotype was slower than 

that of MCV511 (L3HA), suggesting that these events occur through different 

mechanisms.  Interestingly, pseudo-reversion to a transferrin-positive growth phenotype 

only occurred in the FA19 (TbpB+) background, as MCV512 (L3HA, TbpB−) and 

MCV524 (β16HA, TbpB−) were never able to utilize transferrin as a sole iron source.  

Based on these findings, we conclude that reversion does not occur through spontaneous 

base pair changes and occurs in a TbpB-dependent manner.  Since MCV511 (L3HA) and 

MCV523 (β16HA) likely revert via different mechanisms, the mechanism by which 

MCV511 (L3HA) reverted to a transferrin-positive growth phenotype was investigated as 

described below.   

B. Pseudo-revertants retain HA-encoding epitope in tbpA 
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To ensure that MCV511 (L3HA) pseudo-reversion to a transferrin-positive 

growth phenotype did not occur through the loss of the HA-encoding epitope, PCR 

amplification of tbpA was carried out on a number of individually isolated pseudo-

revertants (Figure 25).  FA19 served as the negative control for it contains no HA-

encoding epitope insertion.  However, MCV511 (L3HA) and the various pseudo-

revertants clearly retained the HA-encoding epitope as indicated by the increased DNA 

fragment size.  Sequence analysis of tbpA from two individually isolated pseudo-

revertants was also performed.  Both PCR amplification and sequence analysis confirmed 

the presence of the HA-encoding epitope in these pseudo-revertant isolates.  Therefore, 

the MCV511 (L3HA) pseudo-reversion to a transferrin-positive growth phenotype is not 

due to the loss of the HA-insertion and may occur through some other change. 

C. Pseudo-revertants have no sequence changes within the tbp locus 

Although the frequency of reversion was much higher than that expected for a 

spontaneous base pair change, sequence analysis of tbpA and tbpB was performed with 

MCV511 (L3HA) to determine if a sequence change caused the reversion to a transferrin-

positive growth phenotype.  Sequencing of the tbpA and tbpB coding regions was 

performed using a number of tbpA- and tbpB-specific primers listed in Table 4.  

Sequencing of two pseudo-revertants revealed no intragenic (tbpA) or intergenic (tbpB) 

sequence changes.  Therefore, MCV511 (L3HA) pseudo-reversion to a transferrin-

positive growth phenotype does not involve spontaneous sequence changes in the coding 

regions of either tbpA or tbpB. 
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Figure 25.  HA-encoding epitope is present in tbpA of pseudo-revertants.  tbpA was 
PCR amplified using tbpA specific oligonucleotides for detection of HA-encoding 
epitopes.  The shift in size indicates the presence of the HA-encoding epitope in tbpA.  
Controls include MCV511 (positive control, L3HA) and FA19 (negative control). 
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D. Pseudo-revertants express wild-type levels of TbpA, TbpB, and TonB 

To determine if MCV511 (L3HA) reverted to a transferrin-positive growth 

phenotype through changes in protein expression levels, Western blot analyses were 

carried out.  To assess changes in the transferrin-iron uptake system, antibodies were 

used for the detection of TbpA, TbpB, and TonB (Figure 26).  FA19 and MCV511 

(L3HA) were used as positive controls for wild-type expression levels of TbpA, TbpB, 

and TonB proteins.  A number of MCV511 (L3HA) pseudo-revertants were analyzed by 

Western blot and all expressed wild-type levels of TbpA, TbpB, and TonB proteins.  

Therefore, MCV511 (L3HA) pseudo-reversion does not occur through sequence changes 

or any changes in the expression of TonB or the transferrin binding proteins.  In addition, 

these data suggest that regulatory events that control protein expression of TbpA, TbpB, 

and TonB are not involved in the mechanism of MCV511 (L3HA) pseudo-reversion.   

E. Pseudo-revertant growth is TbpA-dependent and TonB-independent 

Since MCV511 (L3HA) pseudo-reversion occurred in a TbpB-dependent manner, 

we sought to determine if this mechanism was also dependent on TbpA and TonB.  

Therefore, TbpA and TonB mutants were constructed in a L3HA pseudo-revertant strain, 

MCV267.  The TbpA knockout strain, MCV280, was generated through insertion of a 

mini transposon, encoding chloramphenicol resistance, into tbpA (tbpA::mTn3cat) (Table 

2 and 3).  Similarly, the TonB knockout strain, MCV281, was generated through the 

insertion of an omega cassette, encoding streptomycin resistance, into tonB (tonB::Ω) 

(Table 2 and 3).  To assess if either TbpA or TonB were required for reversion to a  
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Figure 26.  Pseudo-revertants express wild-type levels of TbpA, TbpB, and TonB by 
Western blot.  Iron-stressed gonococci were lysed and standardized to a constant cell 
density.  Whole-cell lysates were separated by SDS-PAGE and then transferred to 
nitrocellulose membranes.  Blots were probed with anti-TbpA (α-TbpA) polyclonal 
antibodies (top panel), anti-TbpB (α-TbpB) polyclonal antibodies (middle panel), or anti-
TonB (α-TonB) polyclonal antibodies (bottom panel).  Each lane is labeled according to 
the strain name.  Controls include FA19 (positive control, TbpA+ TbpB+) and MCV511 
(positive control, L3HA, TbpB+). 
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transferrin-positive growth phenotype, MCV280 (TbpA−) and MCV281 (TonB−) were 

tested in transferrin-iron utilization growth assays and the phenotypes are listed in Table 

10.  This assay measures the ability of gonococcal strains to grow on CDM supplemented 

with 30% saturated human transferrin as the sole iron source.  The ability to grow 

indicates an ability to utilize transferrin as a sole iron source and for this analysis 

measures whether pseudo-revertant growth was dependent on TbpA or TonB.  Since 

MCV511 (L3HA) pseudo-reversion was dependent on TbpB, it was not surprising that 

pseudo-revertant growth was also dependent on TbpA.  However, it was surprising that 

pseudo-revertant growth was TonB-independent (Table 10).  These data suggest that 

MCV511 (L3HA) reverts to a transferrin-positive growth phenotype via a TbpB- and 

TbpA-dependent mechanism that bypasses the need for TonB-derived energy.  This 

represents the first account of a novel TonB-independent mechanism of transferrin-

mediated iron acquisition and suggests that N. gonorrhoeae has the ability to bypass 

TonB-dependent transferrin utilization.   

F. Pseudo-revertants may release a soluble factor involved in transferrin 

utilization 

It has been previously shown that MCV267 (L3HA pseudo-revertant) has the 

ability to promote the growth of MCV512 (L3HA, TbpB−) (Yost-Daljev, unpublished 

data) (Figure 27).  MCV512 (L3HA, TbpB−) was incapable of growth on CDM 

supplemented with 30% iron-saturated human transferrin as the sole source of iron 

(CDM-Tf) and was unable to revert, presumably due to the lack of TbpB.  However, 

when MCV512 (L3HA, TbpB−) was plated on CDM-Tf in close proximity to MCV267 
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(L3HA pseudo-revertant), as shown in Figure 27, numerous colonies arose within 24 

hours.  The ability of MCV512 (L3HA, TbpB−) to utilize transferrin increased over time 

and colonies that arose were not pseudo-revertants in that the phenotype was not 

maintained following passage.  Consequently, when MCV512 (L3HA, TbpB−) colonies 

were patched to CDM-Tf in the absence of MCV267 (L3HA pseudo-revertant), MCV512 

was no longer able to grow, indicating that this strain did not retain the ability to utilize 

transferrin as a sole iron source.  Therefore, the ability of MCV512 (L3HA, TbpB−) to 

utilize human transferrin was a transient phenotype, dependent upon the presence of 

MCV267 (L3HA pseudo-revertant) for growth.  From these data, we conclude that 

MCV267 (L3HA pseudo-revertant) may secrete a soluble factor that allows MCV512 

(L3HA, TbpB−) to transiently utilize human transferrin as a sole iron source.   

G. Pseudo-revertant growth is PilQ- and T4SS-independent 

Since the previous results suggest that MCV267 (L3HA pseudo-revertant) utilizes 

transferrin through a TonB-independent mechanism and may secrete a soluble iron 

chelating factor, we sought to determine the mechanism by which these events may 

occur.  The mechanism of TbpA-dependent, TonB-independent transferrin utilization 

suggests that transferrin-derived iron is not transported through TbpA because TonB-

derived energy would be required.  Therefore, TbpA and TbpB are likely required for 

only transferrin binding, while another unidentified component participates in TonB-

independent iron internalization.  PilQ, the pore for pilus extrusion, or the type IV 

secretion system may be involved in this mechanism of TonB-independent transferrin-

iron acquisition.  It was previously shown in N. gonorrhoeae that PilQ served as a pore  
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Figure 27.  Pseudo-revertants promote growth of MCV512 (L3HA, TbpB−) in 
transferrin-iron utilization growth assays.  Gonococcal strains were patched on CDM 
agarose plates containing 30% iron-saturated human transferrin as a sole iron source.  
Strains are labeled according to the strain name.  The thick black line indicates the 
boundary that separates MCV267 (L3HA pseudo-revertant) and MCV512 (L3HA, 
TbpB−).  The bottom and top panels are representative of the results observed using 
different isolates of the L3HA pseudo-revertant, MCV267. 
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through which heme could be internalized (37); therefore, it is possible that PilQ may 

allow for transferrin-mediated iron uptake as well.  In addition, the type IV secretion 

system (T4SS) of many pathogens has been shown to be important for the secretion of 

protein effectors and various other factors.  Therefore, the neisserial T4SS may be 

involved in secretion of an iron chelating molecule or iron binding protein to allow for 

TonB-independent transferrin utilization.  PilQ and various T4SS mutants were generated 

in wild-type FA19, MCV511 (L3HA), and MCV267 (L3HA pseudo-revertant) to assess 

if either the reversion event or pseudo-revertant growth were dependent on these systems 

for transferrin utilization (Table 10).  In transferrin-iron utilization growth assays, 

MCV511 (L3HA) pseudo-reversion and MCV267 (L3HA pseudo-revertant) transferrin 

utilization were not dependent on either PilQ or the T4SS components.  Therefore the 

mechanism of TbpA- and TbpB-dependent, TonB-independent transferrin-iron 

acquisition does not require the PilQ pore for iron internalization or the T4SS for release 

or uptake of possible soluble iron-chelating factors.   

 

III. Discussion 

 N. gonorrhoeae does not produce any known siderophores and therefore utilizes 

high-affinity, TonB-dependent iron acquisition systems to acquire iron from host iron-

binding proteins.  The gonococcal transferrin-iron acquisition system is important for in 

vivo iron acquisition and has been linked to virulence, as it is required to initiate infection 

in the human host (49).  This study represents the first account of a means by which N. 

gonorrhoeae bypasses TonB-dependent transferrin-iron acquisition.  Interestingly, this  
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Table 10. Growth phenotypes of MCV511 (L3HA) and MCV267 (L3HA pseudo-

revertant) derived mutants in transferrin-iron utilization assays 
 

 
Strain 
 

 
Phenotype 

 
Growth phenotype 

 Controls  
   
FA19 TbpA+, TbpB+ + 
FA6905 TbpA+, TbpB− (ΔtbpB) + 
FA6815 TbpA−, TbpB− (tbpB::Ω) − 
   
 FA19 derived strains   
   
MCV269 TbpA+, TbpB+, TonB− (tonB::Ω) − 
MCV270 TbpA+, TbpB+, PilQ− (pilQ::Ω) + 
MCV271 TbpA+, TbpB+, DsbC− (dsbC::ermC) + 
MCV272 TbpA+, TbpB+, TraC− (traC::ermC) + 
MCV273 TbpA+, TbpB+, TraH− (traH::ermC) + 
MCV274 TbpA+, TbpB+, TraN− (traN::ermC) + 
MCV904 TbpA+, TbpB+, FbpA− (fbpA::ermClacIP) −RBS − 
MCV906 TbpA+, TbpB+, FbpA− (fbpA::ermClacIP)  + 
   
 MCV511 (L3HA) derived strains  
   
MCV511 TbpA L3HA343, TbpB+ − 
MCV512 TbpA L3HA343, TbpB− (ΔtbpB) − 
MCV275 TbpA L3HA343, TbpB+, PilQ− (pilQ::Ω) + 
MCV276 TbpA L3HA343, TbpB+, DsbC− (dsbC::ermC) + 
MCV277 TbpA L3HA343, TbpB+, TraC− (traC::ermC) + 
MCV278 TbpA L3HA343, TbpB+, TraH− (traH::ermC) + 
MCV279 TbpA L3HA343, TbpB+, TraN− (traN::ermC) + 
   
 MCV267 (L3HA revertant) derived  strains  
   
MCV267 TbpA L3HA343, TbpB+ revertant + 
MCV280 L3HA343, TbpB+, TbpA− (tbpA::mTn3cat) − 
MCV281 TbpA L3HA343, TonB− (tonB::Ω) + 
MCV282 TbpA L3HA343, TbpB+, PilQ− (pilQ::Ω) + 
MCV283 TbpA L3HA343, TbpB+, DsbC− (dsbC::ermC) + 
MCV284 TbpA L3HA343, TbpB+, TraC− (traC::ermC) + 
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MCV285 TbpA L3HA343, TbpB+, TraH− (traH::ermC) + 
MCV286 TbpA L3HA343, TbpB+, TraN− (traN::ermC) + 
MCV287 TbpA L3HA343, TbpB+, FbpA− (fbpA::ermClacIP) 

−RBS 
− 

MCV288 TbpA L3HA343, TbpB+, FbpA− (fbpA::ermClacIP)  + 
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TonB-independent mechanism of transferrin-iron utilization requires TbpA and TbpB.  

The wild-type transferrin-iron acquisition system functions in two major steps: transferrin 

binding and iron internalization.  TonB provides the energy for iron internalization but is 

not necessary for transferrin binding.  Therefore, in MCV267 (L3HA pseudo-revertant), 

TbpA and TbpB are likely only required for transferrin binding and are unlikely to play a 

role in iron uptake, for this process requires TonB-derived energy.  However, HA epitope 

insertion into loop 3 of TbpA prevented transferrin binding (243).  Therefore, it is likely 

that TbpA expressed by MCV267 (L3HA pseudo-revertant) is also unable to bind human 

transferrin.  Thus, these data suggest that TbpA and TbpB form a complex that is 

required for transferrin utilization in a TonB-independent mechanism.  As addressed in 

previous chapters, wild-type TbpA and TbpB association have been demonstrated (63, 

64, 97, 210), but the extent of this complex interaction has not been characterized.  It 

appears that even this TonB-independent mechanism requires the formation or 

association of the TbpA and TbpB complex.   

Although most mechanisms of iron acquisition are dependent on TonB, there have 

been various TonB-independent mechanisms described.  N. gonorrhoeae has been shown 

to bypass TonB-dependent, HpuAB-mediated heme acquisition from hemoglobin through 

a TonB-independent, PilQ-dependent mechanism (37).  In addition, N. gonorrhoeae can 

utilize heme in a TonB-independent process (209).  Furthermore, many mechanisms of 

xenosiderophore utilization have been shown to occur in a TonB-independent manner 

(74, 211).  The TonB-independent mechanism of xenosiderophore utilization depended 

on gonococcal ferric binding protein A (FbpA) (211).  FbpA has been characterized as a 
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periplasmic high-affinity iron binding protein, but has also been identified in gonococcal 

culture supernatants (211), which suggests that it may play a role in iron binding at the 

gonococcal cell surface.  Thus, TonB-independent transferrin-iron utilization observed by 

MCV267 (L3HA pseudo-revertants) may involve an FbpA-dependent mechanism of 

acquiring iron from human transferrin.  Furthermore, although the type IV secretion 

system (T4SS) does not appear to be involved, it is possible that TbpB may be released 

from the gonococcal cell surface and promote growth of MCV512 (L3HA, TbpB−) or 

TbpB itself may promote iron release from transferrin.  In vitro, TbpB has been shown to 

promote the transfer of iron from human transferrin to FbpA, which suggests that TbpB 

has the ability to remove iron from transferrin, thus making it accessible (Crumbliss 

unpublished data).  Additionally, iron removal from transferrin may occur independent of 

TbpB through an unidentified extracellular reductase.  Although the specific mechanism 

by which FbpA or TbpB may promote transferrin-utilization has not been determined, it 

is of great importance to understand this bypass mechanism in the context of pathogenic 

mechanisms of iron acquisition. 
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CHAPTER 6 – SUMMARY & PERSPECTIVES 
 
 

The precise mechanism by which Neisseria gonorrhoeae acquires iron from 

human transferrin has not been elucidated, but these studies have provided greater insight 

into this process.  It has been shown that transferrin-iron acquisition system is composed 

of two transferrin binding proteins, TbpA and TbpB.  It has also been shown that the 

TonB-dependent, outer-membrane iron transporter, TbpA, is required for transferrin 

utilization, while the lipoprotein TbpB is not (4).  Furthermore, it has been shown that 

TbpB makes the process of iron acquisition from human transferrin more efficient (4).  

TbpB is known to function in transferrin binding and discrimination (20, 50, 183, 184), 

but these roles are not solely responsible for increasing the efficiency of iron uptake 

through TbpA (57).  The specific mechanism by which TbpA mediates iron 

internalization and the involvement of TbpB in this process has not yet been determined.  

The studies presented here were designed to address many of these questions and have 

aided in the understanding of this complex mechanism of transferrin-iron utilization by 

N. gonorrhoeae. 

  Models of TonB-dependent, transferrin-iron acquisition system have been 

proposed and resemble TonB-dependent siderophore transporters (28, 40, 42, 43, 119, 

244).  However, TonB-dependent transferrin-iron acquisition differs from that of 

characterized siderophore-iron acquisition for two reasons.  Firstly, the siderophore 
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systems transport ferric-siderophore complexes, whereas the transferrin system transports 

only iron.  Therefore the transferrin-iron acquisition system requires multiple steps in the 

process of iron internalization: (1) transferrin binding; (2) iron removal from transferrin; 

(3) iron transport across the outer membrane; and (4) apo-transferrin release.  Therefore 

one objective of the studies presented here was to elucidate the mechanism by which the 

TbpA plug facilitates iron binding and uptake.  The second major difference between 

siderophore transporters and the transferrin-iron acquisition system is the involvement of 

the transferrin binding lipoprotein, TbpB.  Ferric-siderophore transporters do not possess 

a second component for iron acquisition.  The studies presented here attempt to elucidate 

the involvement of TbpB in the process of transferrin-iron utilization.  Taken together, 

these studies have allowed us to further characterize TbpA and TbpB in the mechanism 

of transferrin-iron utilization and have identified specific regions in both proteins that are 

required for efficient transferrin-mediated iron uptake by Neisseria gonorrhoeae.  

Additionally, a novel TonB-independent mechanism of transferrin-iron acquisition has 

been described. 

 Analogous to TonB-dependent transporters, TbpA consists of two distinct 

domains: a C-terminal β-barrel domain and an N-terminal, globular plug domain.  

Previous studies have suggested that the TbpA plug domain is critical in transferrin 

utilization (243); however, the specific contribution of the plug domain had not been 

shown up to this point.  The analyses presented here confirm that the plug domain is 

critical for transferrin-iron acquisition and specifically functions in iron binding and 

uptake.  Mutagenesis of specific iron-coordinating residues suggests that iron is 
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coordinated by the plug domain, and disruption of iron binding sites results in the 

inability of gonococci to internalize iron from human transferrin.  Although these 

residues are critical for iron acquisition, we hypothesize that there are additional residues 

involved in this process of iron internalization.  Similar to the mechanism described for 

TonB-dependent, BtuB-mediated vitamin B12 uptake (72), we hypothesize that TonB 

interaction with the TbpA plug domain facilitates unraveling of this domain.  This partial 

denaturation of the globular, plug domain opens the iron binding site or sites and 

facilitates traversal of iron through the outer membrane.  Through this process we 

propose that iron is coordinated at multiple sites and the sequential unraveling of the plug 

promotes the movement of iron from one coordination site to another until iron is passed 

to ferric binding protein A (FbpA) in the periplasm.  This hypothesis is supported by the 

in vitro recombinant protein iron binding data, whereby the TbpA plug domain binds 

more iron than FbpA, which only has one iron coordination site, suggesting that the plug 

binds iron in more than one site.  Furthermore, the TbpA plug structural model predicts 

that residues 120–122 (EYE) are positioned at the base of the plug, which supports the 

idea that iron is coordinated at multiple sites and unraveling of the plug domain allows 

for the traversal of iron through the β-barrel of TbpA.  

Mutagenesis studies in siderophore transporters have shown that the N-terminal 

plug domain is expelled from the β-barrel during siderophore transport (121), while 

others have shown that it merely undergoes a rearrangement (36).  If the plug domain is 

tethered to the β-barrel domain and therefore unable to undergo rearrangement, 

siderophore transport cannot occur (58).  In the case of transferrin-iron acquisition, the 
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conformational change in the TbpA plug domain is critically important and we propose 

this allows for the sequential coordination of iron at multiple sites within the TbpA plug 

domain.  In these studies we show that disruption of one potential iron coordination site 

within the TbpA plug domain prevents iron internalization from transferrin.  This work 

has provided further insight into the mechanism of transferrin-iron internalization and 

represents the first study to demonstrate the involvement of the plug domain in iron 

binding.  Further mutagenesis studies are necessary to identify additional iron 

coordination sites with the TbpA plug domain.  In addition, iron binding studies will be 

performed with recombinant TbpA plug proteins encoding mutagenized iron-

coordination sites, particularly at residues 120–122 (EYE).  The controversy regarding 

conformational changes that occur within the plug domain needs to be addressed in the 

Neisseria transferrin-iron acquisition system.  Furthermore, a crystal structure of full-

length TbpA or the TbpA plug domain would greatly assist in characterizing the 

mechanism of transferrin-iron acquisition mediated by TbpA. 

 The data presented in this work show that TbpB is also important in the 

mechanism of iron acquisition from transferrin and new functional domains within this 

protein have been identified.  It has been shown that TbpB specifically and independently 

binds human transferrin.  This lipoprotein also has the ability to discriminate between 

apo- and holo-transferrin, with a preference for the iron-loaded form.  TbpB increases the 

efficiency of iron acquisition, but the mechanism by which it does so has not been 

characterized.  The studies presented here have identified a specific domain in TbpB that 

contributes to increasing the efficiency of transferrin-mediated iron acquisition.  This C-
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terminal double cysteine region may be important in destabilization and subsequent 

removal of iron from transferrin.  It has been demonstrated that wild-type TbpB, in the 

absence of TbpA, can promote in vitro destabilization of human transferrin that results in 

iron release (Crumbliss unpublished data) and the double cysteines may play a role in this 

process.  The ability of TbpB to preferentially bind holo-transferrin and the proposed 

ability to remove iron from transferrin may be the qualities that allow for increased 

efficiency in transferrin-mediated iron internalization.  Further studies are necessary to 

identify the specific function of these residues and their contributions in transferrin-

mediated iron acquisition by the wild-type, neisserial transferrin receptor of N. 

gonorrhoeae.   

 Combined mutagenesis of the neisserial transferrin binding proteins has revealed 

the complexity of interactions and cooperation between TbpA and TbpB in the process of 

transferrin-iron internalization.  From these studies, it is clear that specific domains of 

TbpA and TbpB provide different functions in the internalization of iron from transferrin.  

The ability of TbpB to compensate for TbpA-defective mutants has allowed us the 

opportunity to investigate the domains of TbpB that share some functional redundancy 

with TbpA.  The TbpA and TbpB combined mutagenesis presented here has provided 

insight into the compensatory functions provided by TbpB, and further investigation may 

reveal additional functional properties of TbpB. 

Many studies, including those presented here, have revolved around defining the 

mechanism of TonB-dependent transport in Gram-negative bacteria.  As described in the 

introduction, bacterial pathogens depend on a large number of TonB-dependent systems 
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for nutrient and iron acquisition during infection.  TbpA and TbpB are the characterized 

neisserial transferrin binding proteins and mediate TonB-dependent iron acquisition from 

human transferrin.  The studies presented here are the first to describe a TonB-

independent mechanism of transferrin-iron uptake mediated by gonococcal TbpA and 

TbpB.  The ability of gonococci to bypass the need for TonB-derived energy in 

transferrin-mediated iron transport is important in the context of all mechanisms of 

TonB-dependent transport utilized by N. gonorrhoeae.  Furthermore, the ability of 

pathogenic bacteria to bypass TonB-dependent systems of iron acquisition is significant 

in understanding the evolution of bacterial pathogens as they continue to compete for iron 

within the human host.   

Overall, investigation of the mechanism of transferrin-iron acquisition mediated 

by TbpA and TbpB is important because it represents a novel mechanism of TonB-

dependent iron acquisition.  Further investigation is necessary to fully characterize each 

step in this process of TonB-dependent transferrin-iron acquisition.  Additionally, the 

novel mechanism of TonB-independent transferrin utilization needs to be further 

characterized and is currently being evaluated in regard to the contribution of FbpA in 

this process.   

TbpA and TbpB are prospective vaccine candidates because these proteins are 

expressed by all gonococcal isolates (138).  In addition TbpA and TbpB are not subject to 

phase or antigenic variation like many of the other virulence factors of N. gonorrhoeae.  

Most importantly, TbpA and TbpB are required to initiate infection in male volunteers 

(49).  Therefore, characterization of TbpA and TbpB is important in looking at these 
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proteins as potential vaccine candidates.  It has been shown in the closely related N. 

meningitidis, antibodies raised against the transferrin binding proteins are cross-reactive, 

bactericidal, and have the ability to block transferrin binding (53, 187, 233).  

Furthermore, it was recently shown that antibodies raised against recombinant 

gonococcal transferrin binding proteins are also cross-reactive and bactericidal (176, 

177).  Taken together these data suggest that the components of the neisserial transferrin-

iron uptake system are promising candidates for an effective vaccine against Neisseria 

infections.  Therefore identification of novel targets within TbpA and TbpB could aid in 

the future development of vaccines and new antimicrobials.   

The plug domain of TbpA is of particular interest due to the important role it 

plays in transferrin-iron acquisition.  This domain has been shown to be surface exposed 

(243) and antigenic.  Additionally, it is highly conserved among bacterial pathogens, 

expressing the transferrin binding proteins.  Thus, the plug domain of TbpA could serve 

as a new target for antimicrobial or vaccine development, and due to the high 

conservation of the plug domain, treatments may be cross protective for a number of 

bacterial pathogens. 
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