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Abstract 

QUANTIFYING THE EFFECTS OF CORRELATED COVARIATES ON VARIABLE 

IMPORTANCE ESTIMATES FROM RANDOM FORESTS 

By Ryan Vincent Kinies 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: Kellie J. Archer, Ph.D. 
Assistant Professor, Department of Biostatistics 

Recent advances in computing technology have lead to the development of 

algorithmic modeling techniques. These methods can be used to analyze data which are 

difficult to analyze using traditional statistical models. This study examined the 

effectiveness of variable importance estimates from the random forest algorithm in 

identifying the true predictor among a large number of candidate predictors. A simulation 

study was conducted using twenty different levels of association among the independent 

variables and seven different levels of association between the true predictor and the 

. . . 
Vll l  
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response. We conclude that the random forest method is an effective classification tool 

when the goals of a study are to produce an accurate classifier and to provide insight 

regarding the discriminative ability of individual predictor variables. These goals are 

common in gene expression analysis, therefore we apply the random forest method for the 

purpose of estimating variable importance on a niicroarray data set. 



CHAPTER 1 Background 

1.1 Two Cultures 

In the field of statistics, there are two n~ethodological cultures statisticians adhere 

to when drawing conclusions from data. The dominant culture is that of statistical 

modeling. Statistical models are developed using mathematical theory and making 

distributional assumptions. The questionable nature of statistical models is whether we 

can really assume that natural phenomenon follow some specified distribution that can be 

described solely by its mean and variance. While the modeling approach can be effective, 

often it ignores reality; nature does not operate by parsimony nor abide by underlying 

model and distributional assumptions. 

As computing power has increased, a second statistical culture has emerged. 

Growl1 from the field of machine learning, algorithmic modeling has developed as an 

alternative to statistical modeling. Algorithmic models can answer the same statistical 

questioiis such as identifying important covariates and making inferences regarding 

responses, but does so with minimal assumptions and less focus on "model building" or 

parsinlony. In analyzing any given data set, a statistician's focus should always be on 

identifying the best solution, whether this comes from a statistical or algorithmic model. 

Moreover, the strategy for any data analysis task should be selected based on criteria such 

as predictive accuracy. 
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The data we observe from nature come from a mysterious and highly complex 

black-box. In the statistical modeling culture, data are assumed to arise from a specified 

distribution and therefore conclusions are often about the model's mechanism rather than 

nature's mechanism, which is what we are attempting to study. Therefore parametric 

models imposed on data originating from such complex systems result in a loss of 

accuracy and information. Models that best emulate nature in terms of predictive 

accuracy are the most complex and are difficult to dissect. Breiman (2001b) suggests that 

the statistician should not be deciding between accuracy and interpretability, but instead 

should be focusing on obtaining useful information. Algorithmic models focus on the 

strength of predictors, convergence, and good predictive accuracy. The only assumption 

made in algorithmic modeling is that the data are drawn independent and identically 

distributed (i.i.d) from some unknown multivariate distribution. 

Breiman's (2001b) focus on algorithmic models led to the development of the 

random forest methodology. Two key ideas in statistics form the basis for random forests, 

classification and regression trees (CART) and bootstrap aggregation (Breiman 1996). 

These topics are introduced in the following two sections. 

1.2 Classification Trees 

Classification methods are used to find a systematic method for predicting the 

class of an observation based on a given set of measurements. Binary tree structured 

classifiers, commonly known as classification trees, have been an intuitive method for 

describing relationships in data (Breiman 1998). The purpose of a classification tree is to 
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produce an accurate classifier that uncovers the predictive structure and nature of the 

data. The classifier is created by repeatedly splitting the data into two descendent subsets 

based on optimal cutpoints chosen for variables in the predictor space. A new observation 

is classified by following the decisions at each node down the tree until it reaches a 

terminal node. The predicted class for the terminal node is taken to be the predicted class 

of the new observation. More fornlally, suppose the data consist of n observations 

denoted L={(ol,xl),(02,x2), . . . , (c~)~,x~))  where oi is one of j=l ,  ..., Jclasses and xi is a 

vector o f p  covariates. All n observations start together in what is called the root node. 

The classification tree algorithm proceeds as follows: 

1) For node t, find the best split s for each of thep independent variables. There will 

b e p  best splits. 

2) Of thep best splits s, select s*, the best of the best splits. This variable and the 

identified cutpoint c,* is used as the primary split for the node. 

3) From the remaining variables find the k splits that are most similar to s*. These 

will be the surrogate splits for the node. 

4) Split the data at the node by sending all observations with x i s  c,* to the left 

descendent node and all observations with xi> c,* to the right descendent node. 

5) Continue steps 1-4 for all subsequent nodes of the tree until a stopping rule is 

achieved. 



The idea is to select each split of a subset so that ,the data in the descendent 

subsets are more homogeneous with respect to class than the data in the parent node. 

To determine the best split: 

1) Define the node proportions in node t to be p(wj I t) where j = 1, . . ., J. This is 

the proportion of cases in node t belonging to class wj , so 

p(w, I t) + ... + p(w, ( t) = 1.  

2) The impurity fuilction 4 is defined as a non-negative f~~nction of the proportions 

(P(w, I t), ...,p( w, I t))  . 4 can be any function that has the following properties: 4 

takes on a maximum when all classes are mixed equally together and a minimum 

when the node is composed of one class. Syn~bolically, 

1 1  1 4 -  - -) =maximum and 
J ' J y " ' y  J 

~(l,O,O,O ,..., 0) = ~(O,l,O,O ,..., 0) = ... = ~(O,O,O,O ,..., 1) = 0 . 

3) The impurity measure at each node is defined as i(t) = 4 .  

4) Consider a candidate split s that will split node t into left and right descendent 

nodes, t~ and t ~ .  Choose s to maximize the decrease in node impurity, defined as 

Ai(s, t) = i(t) - pLi(tL) - pRi(tR) 

where p~ andpR are the proporlions of observations in t~ and t~ respectively. 

5) The best split s * out of S possible splits is defined as: Ai(s*, t) = max(Ai(s, t)) . 
sss 



For observations having missing values for the best splitting variable, surrogate splits are 

used for determining descendent node assignment. Surrogate splits are also used in the 

estimation of variable importance which will be described later. 

The Gini criterioii is the most commonly used impurity function. Breiman (1 998) 

cites the Gini criterion as the preferred method to split classificatioi~ trees, having the 

form: i(t) = p(wj 1 t ) p ( q  1 t) . 
j t i  

The stopping rule is chosen to minimize bias and predictive accuracy. If the tree is 

grown too large, it will be biased and overfit the data. That is, growing an overly large 

tree is analogous to including increasingly more predictors in a linear model. On the other 

hand, if -the tree is not large enough, too much error will be induced. A balance between 

bias and error can be achieved by either using a strict stopping rule or by growing a full 

size tree, with no stopping rule, then pruning. A stopping rule designates a terminal node 

when no significant decrease in node impurity is possible. The stopping rule basically 

grows a tree until it reaches an acceptable purity level. Pruning works conversely. The 

tree is grown until all terminal nodes are 100% homogenous, some of which may contain 

only one observation. Nodes of the tree are then pruned off until a desired level of 

complexity is achieved, using, for example, the 1-SE rule (Breiman 1998). As 

recommended by Breiman (2001a), the classification trees in Random Forests will be 

grown to full size without any stopping rule or pruning. 

Classification trees call be very useful. They are easy to interpret and simple to 

apply. They work efficiently for large data sets and can handle a large number of 

predictors, both continuous and categorical. They feature automatic variable selection for 



6 

complexity reduction and generalization error can be estimated using cross-validation. 

The disadvantages of classification trees is that they can have somewhat high error rates 

and are not robust. Classification trees are very sensitive to small changes to the data in 

the leaming sample. 

1.3 Bootstrap Aggregating 

When modeling any sort of data the statistician always runs into a tradeoff 

between variance and bias. If a classification tree is grown to full size, its prediction error 

will be very low for the sample used to train, but it will be extremely biased. The tree will 

not be useful in making predictions on a new set of data from the same population. If a 

classification tree is grown to be very small, its prediction error will be high, but bias will 

be low. Theoretical knowledge of the data and subject matter information can help in 

choosing the correct model. If a large dataset is available, it can be partitioned into 

training and test datasets. The model is derived using the training data, and error is 

assessed using the test data. If a large sample is not available, cross-validation can also be 

used estimate the error rate. It would be of more help to have knowledge of the 

distribution that produced the learning set. Although this distribution is usually not 

known, it can be imitated. That is, new quasi-samples from the empirical distribution can 

be created by sampling with replacement from the original learning set. This is called 

bootstrapping (Hastie 2001). Unstable procedures such as classification trees can be 

stabilized by acquiring bootstrap samples of the leaming dataset, growing trees on each 

of the bootstrapped samples, and then averaging over the tree predictors. The process of 
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aggregating classifiers over multiple bootstrap resamples is called bootstrap aggregating, 

or bagging for brevity. 

The bagging classification tree algorithm is as follows: 

1) Take a sample of size n with replacement from the original dataset L. Call this 

bootstrapped sample Cb. 

2) Grow a classification tree using Lb. 

3) Prune the tree using the original data set L. Save the predicted class for each 

observation. 

4) Repeat steps 1-3 B times. 

The bagged predicted class is the class with the majority vote from the B trees. It 

is important to note the difference in the learning and test sets for bagged trees compared 

to ordinary classification trees. Classification trees are usually grown on a portion of the 

original sample, called the learning set. The rest of .the sample is used as the test set. In 

bootstrap aggregation the learning sets are bootstrapped samples of the original data. The 

test set is the original data. The set of bagged trees has a much lower error rate than the 

ordinary classification tree (Breiman 1996). Opitz and Maclin (1 999) compared bagging 

to a single tree classifier on 23 datasets. They found that bagging performed better than a 

single classifier in almost all cases. The disadvantage of bagging is the loss of 

interpretability - a bagged tree is no longer a tree. 
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1.4 Random Forests 

Breiman (2001a) developed an extension of bagging classification trees, called 

random forests. Random forests are a special instance of bagging classification trees but 

with the additional characteristics of random feature selection at each node and no 

pruning or stopping rule. A group, or forest, of trees is grown and the aggregation of 

them is taken to be the classifier. Again, each tree is grown using a bootstrapped sample 

Cb from the original learning sample C. The difference is that at each node of the tree, m 

of the independent variables are randomly selected from which to choose to split. The 

random selection of features at each node decreases the correlation between .the trees in 

the forest thus decreasing the forest error rate. The smaller the value of m the less 

correlated the trees in the forest and the smaller the forest error rate. However m cannot 

be too small because as m decreases, the strength of the trees decreases. This is the only 

parameter to adjust in random forests. 

The random forest algorithm is as follows: 

1) Sample N observations with replacement from the learning dataset C. Call this the 

Bootstrap Sample Cb. 

2) For node t, take a sample of size m from thep independent variables, usually 

3) Find the best split s for each of these m variables using the observations in Cb. 
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4) Choose .the best of the m best splits to split the node, denote s*. This variable and 

the identified cutpoint cs* is used to split the node. 

5) Split the data at this node by sending all observations with xi< cs* to the left 

descendent node and all observations with xi> c,* to the right descendent. 

6) Repeat steps 2-5 procedure to grow a maximally sized tree. 

7) Repeat steps 1-6 B times. 

The Gini criterion is used to select the split with the lowest impurity at each node. 

For each tree in .the forest, the predicted class for each observation is saved. The class 

with the maximum number of votes among the B trees in the forest is the predicted class 

of an observation. 

There are two extremely useful byproducts of random forests, out-of-bag 

observations and variable importance measures. Since each tree is grown from a 

bootstrapped sample Cb, on average, about one-third of the observations in the data set 

will not be used to grow the tree. Each bootstrap sample Cb is sampled with replacement 

from the data. All observations in the learning sample C have an equal probability of 

being selected every time a new observation is added to Cb. The probability that an 

1 observation is selected at least once is 1 - (1 - - lN . For a large N this is approximately 
N 

1 
1 -- = 0.632 . Therefore only two-thirds of the observations in C will be used to build a 

e 

tree on Cb .The rest of the observations are considered the out-of-bag (oob) observations 
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for that tree. Each tree will vary with respect to the oob observations. These oob 

observations form a natural test set for each tree, rather than using the computational 

expensive cross validatioii method to estimate the error of the random forest. The oob 

observations will also be used to calculate variable importance. 

Random forests have a number of advantages over other machine learning 

methods. They have been shown to have some of the best accuracy among current 

algorithms (Breiman 2001b; Diaz-Uriarte and Alvarez de Andres 2006). Breiman 

(2001b) compared the performance of single trees to random forests oil a number of data 

sets. For most of the data sets the misclassification error was reduced by at least one-third 

and sometimes one-half for the forests compared to the trees. The Statlog Project 

(Breiman 2001b) compared 18 different classifiers including neural nets, CART, linear 

and quadratic discriminant analysis, nearest neighbor, and others. There were four data 

sets in the project that came with separate test sets. Random forests ranked number 1 in 

accuracy on all four data sets, the next best method averaged a rank of 7.3 on the data 

sets. They run efficiently on large data sets and can handle thousands of input variables. 

They also generate variable importance measures and ail internal estimate of error 

without cross-validation. They are not computationally intensive and can be saved for 

future use on other data. 

Random forests have the same drawbacks as bootstrap aggregation. The average 

person can look at a decision tree and understand the model, since the tree provides a 

visible structure illustrating the decisions made at each node on the tree, which can be 

easily interpreted. Random forests consist of B trees, where B is customarily at least 500. 
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One cannot synthesize the information presented in 500 trees. Moreover, the predicted 

class is the class having a maximum vote among the B trees making the predictive 

mechanism difficult to uncover. Therefore, the decisions are made in a "black-box," 

similar to the way that data are generated in nature. The predictive accuracy of random 

forests have beell demonstrated to be very good, but it becomes difficult to render an 

interpretation. 

1.5 Variable Importance (Tree and Forest) 

In situations where there are a large number of candidate predictors and a small 

number of observations, it becomes difficult to determine which variables are most 

important for accurate prediction. There are a number of statistical modeling approaches 

that can be used to find a better subset of the independent variables. Such approaches are 

often not estimatable when the number of covariates p is much larger than the sample 

size N, p > N. Moreover, most statistical modeling approaches assume independence 

among the p candidate predictors. With large p,  the analyst will likely find a multiplicity 

of models that can achieve a similar level of prediction error. Each model will provide a 

different interpretation of the underlying data generating mechanism. Situations where 

p > N call for an algorithmic approach to identify the important predictor variables. 

Variable importance can be calculated using classification trees. To motivate the 

method we must keep in mind that there will be situations where a variable xj is never 

chosen as a primary split in the classification tree, but when another variable xi is 

removed from the tree xj suddenly becomes the primary variable on which to split. This 
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motivates the use of surrogate splits in the calculation of variable importance. The sum of 

the change in Gini node impurity for all splits in the tree where x, is a primary or 

surrogate split is taken as an estimate of the importance of variable x,. When this sum is 

large, x, is interpreted as being an important variable in reducing node impurity and thus 

is an important predictor. When this sum is small, x, is interpreted not to substantially 

reduce node impurity; therefore, it is not an important predictor. It should be noted that 

the number of surrogate splits k that are saved at each primary node is a user-specified 

parameter. Therefore, choice of k may have some effect on variable importance 

estimates. The disadvantage of using classification trees to calculate variable importance 

is that small changes in a sample can drastically change which variables get selected to 

split the node, leading to false impressions based on variable importance estimates. 

Classification trees also run into the "multiplicity of good models" dilemma previously 

mentioned. With a large number of predictor variables, two different trees can be created 

that have almost the same prediction error but give two entirely different interpretations 

of the nature of the data. 

The use of surrogate splits for estimating variable importance is not plausible 

under the random forest framework since only m of the p predictors are examined for 

splitting at each node. However, random forests provide two robust measures of variable 

importance. The first measure of variable importance is based on the Gini criterion. This 

is calculated similarly to the classification tree variable importance. Specifically, at each 

split the decrease in the Gini node impurity is recorded for the variable xi that is split on. 

The average of all decreases in the Gini impurity in the forest where xi is used to split is 
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used to get the Gini importance estimate. Another method of variable importance uses the 

mean decrease in accuracy. To estimate variable importance using mean decrease in 

accuracy: 

For independent variables i=l ,...,p : 

1) For the bth tree in the random forest, identify the oob observations, Coob,b=C-Cb. 

2) Put the oob cases down the tree and sum the number of times the tree predicts the 

correct class. 

3) Next, "mess up" the values of the independent variable xi by randomly permuting 

them in the Coob,b sample. 

4) Put the "messed up" oob cases down the tree and sum the number of times the 

tree predicts the correct class. 

5) Subtract the number of votes for the correct class in "messed up" oob data from 

the number of votes for the correct class in the untouched oob data. 

6) Repeat steps 1-5 for b=1, ..., B. The average over the B trees is the importance 

score for variable xi. 

The mean decrease in accuracy importance scores are standardized. A large 

importance score indicates that a variable is commonly selected to be included in the 

trees in the forest and that generally the nodes that split on this variable are important for 

classification. Breiman (2004) recommends running a forest consisting of at least 2500 

trees when variable importance measures are estimated. 
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Variable importance measures are helpful for studying the mechanism that has 

produced the data. Rather than estimate a specific relationship between the independent 

variables and the response as in data modeling, the variable importance measures give 

robust estimates of which variables are most important to the random forest's emulation 

of the natural mechanism behind the data. 

A number of papers have been written to show that random forests are effective 

classifiers, but very few have studied variable importance measures (Breiman 2001 a; 

Breiman 2001b; Svetnik et al. 2003; Diaz-Uriarte and Alvarez de Andres 2006). The 

focus of this thesis is to study how well random forests can identify the actual class 

predictor among a large number of possible independent variables using variable 

importance measures. We are specifically interested to see how well the actual predictor 

can be identified when a number of independent variables are correlated with it. An 

extensive simulation study was used to examine how well random forests identify the 

correct predictor variable with different levels of correlation (p) among the independent 

variables and different levels of association (P) between the actual predictor and the 

response. The simulation study is described in chapter 2 and the results of the simulation 

study are reported in section 2.2. Moreover, since microarray studies commonly produce 

datasets consisting of a large number of candidate predictors and a small number of 

observations, the random forest methodology is demonstrated on a microarray dataset 

presented in Chapter 3. 



CHAPTER 2 Simulation Study 

2.1 Simulation Study Description 

Simulation was used to examine how well random forests identify the correct 

predictor variable with different levels of correlation (p) among the independent variables 

and different levels of association (P) between the actual predictor and the response. 

One hundred observations having 800 covariates and one response class were 

simulated to resemble observations from a microarray study. A set of independent 

variables were randomly generated using randomly selected means ranging from 6 and 

12. This is a typical range for log2 transformed gene expression values measured on an 

absolute intensity scale. All variables were generated as having a variance of 1. The 

random variables were created in sets of 40, drawn from a multivariate normal 

distribution having specific internal-set correlations. For example, xl through ~ 4 0  were 

generated as having a correlation of 0.00, X41 through xgo were generated as having a 

correlation of 0.05, xg1 through xl20 were generated as having a correlation of 0.10, ..., X761 

through xgoo were generated as having a correlation of 0.95. Correlatioils range from 0.00 

to 0.95 by increments of 0.05. The data set contains 20 different correlations with 40 

variables per correlation for a total of 800 independent variables. 



Thus for i = 1,. . . ,20 the vectors x , ~ ( ~ - ~ ) + ~ ,  ..., are each random samples of size 

N = 100 where x ~ ~ ( ~ - ~ ) + ~ ,  . .., - N40(pi, X i )  . pi is a vector of length 40 randomly 

drawn from U[6,12] and 

The dichotomous response was artificially generated using one of the independent 

variables, XI ,  ..., xgoo. In each simulation, one variable of the 800 independent variables xi 

was chosen to be the actual predictor of the response. To generate the n=l, .  . ., 100 

dichotomous responses, the independent covariates were first mean centered and scaled. 

Then the probability of observation n in xi belonging to class 1, ~ ( x ~ , ~ )  was calculated 

using these standardized observations and tlie chosen value of P as 

Ci = 

Then, one hundred observations were generated from a uniform distribution on 

the interval [0, 11, denote c,. If  xi,^) was greater than its matching cutoff value then the 

observation was assigned to class 1, otherwise, it was assigned to class 0. Formally, the 

response y, was taken to be 

pi pi . pi 

Pi 1 Pi . Pi 

pi pi . . . 
i-1 , where pi = - and X u  = 040,40 for i # j. 
20 



This generated a classification response y, that has a specified relationship to the 

actual predictor based on the value of P, but with some random noise induced by the 

randomly uniform generated values. A drawback of this method is that a logistic 

regression would actually provide the best model for the data. However, as with 

microarray data, it is not feasible to fit a multiple logistic regression model using 800 

predictors and 100 observations, especially in the presence of high collinearity. Also, 

there is no obvious way to generate responses based on the modified classification trees 

foui~d in random forests. 

One of the 800 independent variables is chosen to be the actual predictor of the 

response for each simulation. A total of 140 simulations were done, one for each 

correlation value (0.00 to 0.95 by 0.05) and value of (0.25, 0.50, 0.75, 1.00, 1.25, 1 SO, 

1.75). The P values correspond to a range of odds ratios from approximately 1.28 to 5.76. 

For each correlated set, the first variable in the set of 40 was used to generate the 

response variable, or x,,(~-,,+, . For example, when studying a correlation of 0.00, X I  is the 

actual predictor of the response. When studying a correlation of 0.05, the actual predictor 

is X ~ I .  The variable importance measures for each of the 800 variables were estimated 

along with the out-of-bag error for each forest. 

Simulation Algorithm: 

1) Generate response variable y, using xi,, as the actual predictor, and the strength of 

the relationship between xi,, and the response is P. 

2) Build a large random forest of size B = 2500. 



3) Estimate the variable importance for all .the independent variables and record the 

out-of-bag error for the forest. 

4) Repeat steps 1 through 3, building R =I00 random forests. There will be 100 

random samples with the same predictor and value of P. Each variable will now 

have 100 variable importance estimates. There will also be 100 measurements of 

out-of-bag error. 

5) For each variable, take the average of variable importance estimates over the 

R =I00 RFs. Each variable will now have an average simulation variable 

importance. Also, average the out-of-bag errors for the 100 RFs. 

6) Repeat steps 1 through 5 with different values of p but with x i ,  remaining as the 

actual predictor. 

7 )  Now repeat steps 1 through 6 but replace xi,, with the predictor from the next 

correlation set. 

8) Continue this process until predictors from each correlation set have been used 

with all values ofp.  

Sinlulations were conducted using the R programming environment (R 

Development Core Team 2005) (see Appendix B). Software to implement the random 

forest algorithm was originally written in Fortran by Breiman (2004). The randomForest 

library for R was created by Liaw and Wiener (2002) based on the original Fortran code. 

The randomForest library was used with all default settings except that 2500 trees were 

specified to be grown. The value for m, the number of independent variables to choose 



from at each node, was set to the default of m = & . Breiman (2004) mentions this as the 

ideal value to use for classification. We note that other researchers have found RFs can be 

insensitive to the choice of m. For exaniple, Svetnik et al. (2003) used 5-fold cross- 

validation to assess the random forest error rate over a range of values of m. They found 

that the performance of random forests change very little over a large range of values of 

m, except when m is extremely small or large, m = 1 orp .  Diaz-Uriarte and Alvarez de 

Andres (2006) examined out-of-bag error using different values of m for nine microarray 

data sets. They found the out-of-bag error to be relatively stable and mention the default 

setting as a good choice for m. Therefore, the use of m = & is reasonable. The mean 

decrease in accuracy importance scores and the Gini importance scores were saved for 

each random forest in the simulation study for further examination. 

To provide a comparison between random forests and a standard data modeling 

technique, logistic regression was used to try to identify the actual predictor in the 

correlated set. Response variables were generated for P = 1.75 and p = 0.95 using the first 

variable in this correlated set from the simulation data set (x?~,) .  Univariable logistic 

regression models were fit to .the response using each of the 40 variables in the correlated 

set X761,. . .,x800 as the independent variables. The likelihood ratio statistics were 

calculated for each of the 40 models. To get a measure of importance, the likelihood ratio 

statistics were rank ordered. This was repeated 100 times and the proportion of times that 

the actual predictor was ranked first was recorded. In addition, we attempted to fit logistic 

regression models including all 40 variables in the correlated set, to determine if the 

algorithm could converge in the presence of higli degree of co-linearity. 



2.2 Simulation Study Results 

The average variable importance for all 800 variables for selected values of p {p = 

(0.25, 1.00, 1.75) ) and p {p = (0.20, 0.40, 0.60, 0.80, 0.95) ) are presented in Figures la- 

lc. These figures depict, for each simulation (that is, combination of p and p), the average 

variable importance estimate for the actual predictor displayed as a square, the average 

variable importance for those variables within the same correlated set as the true 

predictor displayed as open circles, and all other variables displayed as gray points. 

Clearly for p=0.25 the variable importance for the actual predictor is not clearly 

distinguishable for the remaining points. However, in all other cases the variable 

importance estimate for the actual predictor is clearly distinguished from those points not 

in its correlated set. For clarity, the remaining plots exclude the variable importance 

estimates for those variables that are not in the actual predictor's correlated set. 
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Figure la:  Plot of the average variable importance for each of the 800 predictors 
when p = 0.25 and p = (i) 0; (ii) 0.20; (iii) 0.40; (iv) 0.60; (v) 0.80; and (vi) 0.95 
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Figure lb:  Plot of the average variable importance for each of the 800 predictors 
when p = 1.00 and p = (i) 0; (ii) 0.20; (iii) 0.40; (iv) 0.60; (v) 0.80; and (vi) 0.95 
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A more concise summary of the entire simulation study is presented graphically in 

Figures 2a-2b. Each graph in these figures depicts a set of 20 simulations for a specific 

value of p and for all correlation values. The average variable importance estimate for the 

actual predictor is displayed as a square, the average variable importance for those 

variables within the same correlated set as the true predictor are displayed as open circles, 

the points are jittered so that the distribution of the points in the correlated set can be 

seen, and lines connect the means of the sets. When P = 0.25 .the actual predictor cannot 

be identified among the other correlated independent variables. There is no separation 

between the actual predictor variable importance estimates and the remaining variable 

importance estimates. When P = 0.50 the actual predictor can be identified even when the 

set correlation is as high as 0.75. When P = 0.75 the actual predictor can be identified in 

all instances except when the correlation is 0.90 and 0.95. For P values greater than 0.75, 

the actual predictor can be identified in all simulations for all correlation values. 
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Figure 2a: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of p when P = (i) 0.25; (ii) 0.50; (iii) 0.75; 
(iv) 1.00 
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Figure 2b: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of p when P = (i) 1.25; (ii) 1.50; (iii) 1.75 

There are a few general trends in the simulations. The graphs in Figures 3a-3d use 

the same formatting as Figures 2a-2b except that they depict sets of 7 simulations for 

specific values of p and for all p. Looking at Figures 3a-3d we see that as the value o f p  

increases, the variable importance estimates for the actual predictor increases and the 

variable importance estimates for the variables in the set that are correlated with the 

predictor also increases. 
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Figure 3a: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of P when p = (i) 0.00; (ii) 0.05; (iii) 0.10; 
(iv) 0.15; (v) 0.20; (vi) 0.25 
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Figure 3b: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of P when p = (i) 0.30; (ii) 0.35; (iii) 0.40; 
(iv) 0.45 
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Figure 3c: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of P when p = (i) 0.50; (ii) 0.55; (iii) 0.60; 
(iv) 0.65; (v) 0.70; (vi) 0.75 

- 
8 

m 
0 

0 - 
0 



- p T z z z q  
Cwrelated Set Vales 

. _,. -- = 

Adral Predictor 
Cwrelated Set Values Cwreiated Set Vales 

0 - 

Figure 3d: Plot of the average variable importance for the actual predictor and the 
variables in the correlated set at all values of P when p = (i) 0.80; (ii) 0.85; (iii) 0.90; 
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As the set correlation increased, the variable importance for the variables in the 

set increased while the importance scores of the actual predictor decreased. Thus the 

variable importance of the actual predictor and those variables within its correlated set 

tend to coverge as the correlation increases. However, the actual predictor maintains an 

identifiably larger variable importance estimate with larger values ofp.  The variance of 

the importance estimates in the correlation sets increased as the correlation increased 

until the correlation was about 0.50, then the variance continued to decrease until the 

variance of the last correlation set is similar to that of the first set. In the 140 simulations, 

with different values of P and p, the importance score of the actual predictor was the 

maximum in all but 7 of these simulations. All 7 of those simulations had P = 0.25. The 

Gini variable importance estimates results were very similar to the mean decrease in 

accuracy importance score results. 

The out-of-bag error for all forests was high (see Table 1). As expected, as P 

increased the oob error decreased. As the set correlation increased, the oob error 

decreases. The oob error rates are greater than 40% for all simulations where P 5 1 .OO 

and/or the set correlation is less than 0.35. When P =1.25 and P =1.50, the oob error rates 

drop below 40% when the set correlation approaches 0.50. When P =1.75 the oob error 

rates drop below 40% when the set correlation is 0.35 and drop below 30% when the set 

correlation is 0.70. The best oob error rate is 26%, this is when P =1.75 and the set 

correlation is 0.95. The worst oob error rate is 52.1% when P =0.25 and the set 

correlation is 0.00. 



Table 1: Out-of Bag Error (Averaged over R = 100 random forests) 

In the logistic regression simulation we found that the actual predictor was 

selected as the most important variable only 35.1% of the time. When all 40 variables 

from the correlated set were included in the model the algorithm failed to converge on 8 

out of 10 attempts. 



2.3 Simulation Study Conclusion 

The simulation results were consistent with what was expected. As B increased, 

the relationship between the actual predictor and the response is stronger and therefore 

the variable importance estimates for the actual predictor increased. When the correlation 

between the actual predictor and the independent variables in its set increases, as 

expected, the importance estimates for those variables within the correlated set also 

increased. We also expected the importance estimates of the actual predictor to decrease 

as the correlation increases, since variables that are highly correlated with the actual 

predictor will do just as well at prediction as the actual predictor, thus lowering the 

importance of the actual predictor. 

The high oob error rates were not unusual since only rn variables are randomly 

selected at each node for splitting and the data were artificially generated to have only 

one actual predictor. The oob error rate decreased as P increased because the association 

between the response and the predictor was stronger. The oob error rate decreased as set 

correlation increased because, as previously mentioned, the variables that are highly 

correlated with the actual predictor became good predictors. When the actual predictor is 

missing from a tree, there is a higher chance that one of the variables that is highly 

correlated with it will get selected and do a good job of prediction. 

Using a modeling algorithm such as random forests is more effective in this type 

of data analysis situation than traditional modeling techniques such as logistic regression. 

With only 40 highly correlated variables, forward logistic regression could not 
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consistently identify the actual predictor and if all variables in the correlated set were 

included in the logistic model, the algorithm usually did not converge on parameter 

estimates. In many applications, such as in gene expression analysis, there will be 

thousaiids of variables, many of which will be highly correlated. This is where traditional 

modeling techniques, such as logistic regression, break down, and algorithmic models 

such as random forests may excel. 



CHAPTER 3 Random Forest Application to Microarray Data 

3.1 Random Forest Application Introduction 

Recent advances in microarray research have led to the development of an 

entirely new set of tools for statistical analysis. The size and scope of these gene 

expression data sets make them difficult to analyze using standard methods. A microarray 

chip can measure the presence of thousands of genes in one tissue sample. Typically a 

small sample of microarray chips will be collected to study classification, such as the 

difference in gene expression between cancerous and non-cancerous cells. The number of 

independent variables (genes) far exceeds the number of observations. Many of these 

variables will be highly correlated, so analytical methods must work in the presence of 

multicollinearity. Algorithmic modeling presents a viable solution to this difficult 

situation. We have shown that random forests is an effective tool for identifying a single 

predictor among a large number of independent variables. Now we will examine an 

application of random forests to a real microarray data set. 

Hepatocellular carcinoma (HCC), or liver cancer, is one of the most common and 

aggressive human cancers. Liver cancer most commonly occurs in Asia and Africa, but 

its prevalence is increasing in Europe and North America. The incidence of HCC is 

increasing because of the spread of hepatitis B (HBV) and hepatitis C (HCV) viruses. 

HBV and HCV are directly responsible for carcinogenesis in the majority of cases. 

The diagnosis for HCC is difficult and is usually diagnosed too late. Only a 

moderate improvement in long-term survival can be achieved through surgical 



3 6 

intervention and HCC has a high rate of recurrence after surgery. Despite recent surgical 

advances, about half of the patients with HCC die after hepatectomy. Research has been 

devoted to identifying the specific gene alterations associated with the disease but no 

predictive system has been developed to classify the morphology. Liver transplantation 

can be a curative treatment for small HCC but patients with potentially curable higher 

stage HCC are denied liver transplants because there is a lack of predictive progression 

and recurrence. 

Data was collected on 38 patients with HCV-HCC, all candidates for liver 

transplantation. Gene expression analysis was performed on tumor samples using 

Affymetrix high-density oligonucleotide gene chips. During the study, 20 patients 

underwent liver transplant, 13 had cancer progression, 4 were still waiting for transplant, 

and 1 patient died without progression. Of interest is .the ability to identify a suite of 

genes predictive of progression. In identifying these genes, the variable importance 

estimates from the random forest algorithms were successively examined to identify 

molecular markers associated with disease progression. 

3.2 Random Forest Application Methods 

Image analysis was perfomled using the Affymetrix software. For each probe, the 

perimeter pixel values are excluded and the probe intensity is calculated as the 75"' 

percentile of the interior pixels. Quality assessment was carried out by evaluating the 

3 ' 5 '  ratios for the GAPDH, B-actin, and ISGF probesets. After quality assessment 
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examinations, all control probe sets were removed and not considered in downstream 

analyses. 

The Robust MultiArray Average method (RMA) was used for background 

subtraction, normalization, and expression summaries. First, the PM intensities were 

background adjusted on a raw intensity scale. Irizarry et al. (2003) motivated a 

PM+ =sij,,+bg.. , i=l, . . . ,  I , j = l ,  ..., J , n = l ,  ..., N 
background plus signal model: y n  , 

where sun is the true signal and bgu, is the background signal for array i, probe j ,  and 

probe set n. The background corrected intensities, P M ,  = PM, -G,,  , are estimated by 

fitting a model assuming sun follows an exponential distribution and bgUn follows a 

normal distribution. 

Thereafter, quantile normalization was used to normalize the data, which assumes 

that the same underlying distribution is represented across all chips in an experiment. The 

motivation behind the quantile normalization method is the quantile-quantile plot, which 

observes a straight diagonal line if the distributions of two data vectors are the same. To 

enforce a set of vectors to have the same distribution in m dimensions, the points of the m 

dimensional quantile plot must project onto an m dimensional diagonal. (Bolstad et al. 

2003). Therefore the quantile normalization algorithm is as follows: 

1) Create a matrix X with i columns by combining the vectors of PM intensities for 

each chip. 

2) Sort each column of X to form X,. 



3 8 

3) Take the means across rows of matrix X,. Assign this mean to each element in the 

row to get X,* 

4) To get the normalized intensity values X,,,, rearrange each column of X,* to 

have the same ordering as the original matrix X. 

Now take the log2 of the normalized background corrected PM values to get the intensity 

values PM;:, = log, ( q n o r r n a l i z e d ( ~ ~ ; , ,  )) . 

The expression summaries are calculated by finding the RMA of these PM,~.:. This 

is accomplished by fitting the additive model 

** 
PMQl, = piJ1 + a;,, + E ~ , , ,  i  = 1, .. ., I ,  j = 1, ..., J ,  n  = 1, ..., N 

where pi represents the log scale expression level for chip i and aj is the probe affinity 

J 

effect. We assume Enj = 0 for all probe sets. This assumes that the probe intensities are 
;=I 

on average representative of the associated gene's expression. The model parameters are 

estimated using a median polish, which is a robust method similar to ANOVA. The 

median polish proceeds by initializing the column (chip) and row (probe affinity) effects 

to 0. Iteratively, row and column medians are estimated then subtracted from the data. 

The polished data is then used to estimate chip and probe affinity effects. Often only two 

iterations of row then column polishing are used to estimate the chip and probe affinity 

effects. The estimate of pin is the expression measure on chip i for probe set n.  

After probe set expression summaries were obtained, random forests were applied 

to the microarray data. The number of trees grown was B = 2500, based on Breiman's 
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(2004) recommendation. The value for m, the number of predictor variables to choose 

from at each node, was left at default ( m  = &) . When there are a large number of noise 

variables, Liaw and Weiner (2002) suggest that increasing the value of m may give better 

performance. The value of m was not modified, however, since the out-of-bag error 

actually increased when m increased. 

Inspired by methods suggested by Li et al. (2005) and Diaz Uriarte and Alvarez 

de Andres (2006), backwards elimination was used to narrow down the set of possible 

independent variables. A random forest was grown using the entire set of genes, Sari, 

which included p = 22,215 probe sets. The resulting variable importance estimates were 

used to reduce the dimensionality of the dataset, by eliminating variables that have Gini 

importance measures less than F +x to form a smaller subset of genes, SI. Here X 
& 

represents the mean variable importance over the 22,215 probe sets in Sari. The Gini 

importance measures were used because research suggests that the mean decrease in 

accuracy importance measures are not sensitive enough for applications with microarray 

data (Breiman 2004). If the predictive power of the individual variables is expected to be 

small and there are a large number of variables with a small number of observations, the 

Gini importance measures are more appropriate. This can be attributed to size of the out- 

of-bag sample Coob used to calculate mean decrease in accuracy importance. Since the 

number of out-of-bag observations is approximately one-third of the total number of 

observations (n) in the learning sample C, for small n, the importance measures will be 

granular. Gini importance measures are more appropriate for smaller sample sizes. 
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S1  was then used in growing a subsequent random forest. Again, unimportant 

variables were eliminated using the cutoff F +x . This process of eliminating 
f i  

unimportant variables was repeated until the set of predictor variables Si is a manageable 

size (n = 100) and the out-of-bag error rate stabilized. The final set of probe sets is 

denoted S*. 

Once a small set of important variables was identified, forward variable selection 

was employed. First, the variable importance estimates for probe sets in S* were sorted in 

descending order, providing a list of variables gl,. . .,g,, where gj is the variable (probe set) 

with iniportaiice rank j. Then for step I ,  a random forest using the variables gl and g2 was 

derived and the out-of-bag error rate estimated. At the k = 2 step, a random forest was 

derived after adding g3 to the previous forest and again tlie error rate was estimated. For 

k=l,. . . ,p, this procedure was repeated, adding gk+l at each step. The random forest model 

with the lowest out-of-bag error rate was chosen as the most parsimonious model. This 

parsimonious set of important variables is denoted Sfinal. 

The gene ontology (GO) database was used to lookup genes present in S* and in 

the full sample Sail and match those genes with designated molecular functions, biological 

processes, and cellular components (GO terms) determined by the GO database. The GO 

library in R features functions to compare the proportion of genes matching each GO 

term that are present in S* to the proportion in Sari. Note that the proportions in each gene 

set will not necessarily sum to one because the GO database may categorize a gene as 

being associated with more than one f~~nction or process. If the genes involved in a 

specific function are more common in S* this indicates that this function is most related 
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to the outcome. This may suggest further research into molecular functions and processes 

that may predict progression, rather than limiting the focus to specific genes that have 

been identified as important. The GO database and the Geiie Ontology Annotation 

(GOA) project are still under development. The specific genes associated with various 

functions and processes are continually updated and can be inaccurate. This type of 

analysis should be considered exploratory and coiiclusions should be considered 

tentative. 

3.3 Random Forest Application Results 

There was no evidence for lack of quality in the array sets. All 3':5' ratios were 

below 3, the tolerable threshold recommended by Affymetrix. Four rounds of elimination 

were used to narrow down the number of predictor variables to form S* (nsnal = 102). The 

names of the genes in the variable set S* are presented in order of importance in 

Appendix C. Figures 4a-b illustrate the importance measures of the predictors at each 

stage of elimination. For each of the backward elimination steps, the variable importance 

estimated for the genes included in the final set are designated by a different plotting 

symbol. 



Predictor Variables (n = 2221 5) 

Figure 4a: Gini Importance Estimates for each probe set when all probe sets 
(n=22,215) were included in the random forest. Probe sets in the final set S* are 
plotted using (+) whereas all other probe sets are designated with (0). 
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Figure 4b: Gini Importance Estimates for each probe set after backwards 
elimination steps (i) S1; (ii) Sz; (iii) Sf; (iv) S*;. Probe sets in the final set S* are 
plotted using (+) whereas all other probe sets are designated with (0). 

The mean plus three standard error cutoff values (X i%)  assume that the Gini 
JF; 

importance scores are normally distributed. The importance scores appeared to be 

exponentially distributed, but when the equivalent cutoff values assuming an exponential 

3X distribution (x+- ) were calculated, the values were almost exactly the same due to 
6 
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such a large sample size. Most of the variables in S* have the highest importance scores 

in all the random forests. This substantiates Liaw and Weiner's (2002) claim that the 

ranking of variable importance measures is quite stable. 

The out-of-bag error rates of the random forests decreased as variables were 

eliminated. This can be explained by the enormous complexity of the classification trees 

in the forests when thousands of variables are being used for prediction. As the number of 

variables decreases the noise variables are eliminated and the predictions stabilize. 

Forward selection proceeding with probe sets with the largest variable importance 

estimates suggested a final set of four probe sets, denoted Sfinal, having the lowest out-of- 

bag error rate, see Table 2. 

Table 2: Forest Out-of-Bag Error (Overall and Class-wise) including each probe set 
after backwards elimination and the final probe set from forward selection 

The out-of-bag class-specific error rate for patients without progression was 3.8% 

while the error rate for patients with progression was 9.4%, leading to an overall out-of- 

bag error of 5.7% for Sfinal. Details pertaining to the four probe sets can be found in Table 

3. 

S~II  

s1 

s 2  

s 3  

S *  

S f i n a ~  

Overall 

0.376 

0.345 

0.21 6 

0.188 

0.187 

0.057 

Number of Probe Sets 

222 15 

4047 

1098 

33 1 

102 

4 

No Progression 

0.122 

0.098 

0.048 

0.046 

0.045 

0.038 

Progression 

0.862 

0.82 

0.539 

0.462 

0.461 

0.094 



Table 3: Information on the Four Probe Sets in Sfinal 

The gene ontology of the set of genes S* is compared to the full set of genes Sall. 

Figures 5 and 6 illustrate a comparison of the proportions of genes present for various 

molecular functions. The bars represent the proportion of genes in S* and Sari that have 

been matched to particular molecular functions. Figure 5 features the proportions for all 

the GO molecular function terms. Figure 6 features only the GO molecular function tenns 

where the proportions in S* exceed those in Sari. 

GO Molecular Function 

Figure 5: GO Molecular Function Proportions for the probe sets in S* and in the 
entire gene chip SaII  



GO Molecular Function 

Figure 6: GO Molecular Function Proportions for the probe set S* and in the entire 
gene chip SaII  with S*:SaII Ratios Greater than 1 

The ratio of the proportion of genes present in S* is compared to SaI1 for each 

nlolecular function. A molecular function is important for predicting progression if 

S *  
- > 1 . There are 25 molecular functions that are more present in S*. In 13 of those 
Soll 

molecular functions the ratio is greater than 2. Genes involved in activin inhibitor activity 

and transcription initiation factor activity are much more present in S* than SaI1, with 



47 

ratios as high as 88.9 and 34.2, respectively. Table 4 lists the molecular functions and 

their ratios. 

Table 4: Molecular Functions with S*:SaIII Ratios Greater than 1 



Figure 7 illustrates a comparison of the proportions of genes present that are 

involved in different biological processes and cellular components. 

GO Biological Process GO Cellular Component 

Figure 7: GO Biological Process and GO Cellular Component Proportions for the 
probe sets in S* and in the entire gene chip SaII 

There are no biological processes where the genes are more present in S*. There 

are three cellular components with ratios greater than 1, but all are very close to 1. 

Table 5: Cellular Components with S*:SaII Ratios Greater than 1 



3.4 Random Forest Application Conclusion 

The use of random forests on this HCV-HCC microarray data helped us gather 

useful information for predicting progression. Identifying four genes that can predict 

progression with such a low out-of-bag error rate (5.7%) should prove to be clinically 

relevant and useful. Such a small set of genes is advantageous because it facilitates 

further research using more focused techniques such as clinical assays. Clinical assays 

can be used to interrogate a small subset of genes that have strong predictive power. This 

can lead to simpler, less invasive testing techniques to predict progression. Microarray 

experiments are costly, complicated, and the tissue samples are usually obtained through 

biopsies or other invasive procedures. If progression can be predicted by testing for genes 

in a urine sample or blood test, this will save the patient a lot of pain and simplify the 

diagnosis process for the clinician. The larger set of variables S* may also be helpful in 

providing an area of focus for further research. There was no strong evidence of 

biological processes or cellular componeiits that predict disease progression, but 13 

nlolecular functions were proportionally at least two times over-represented in S* than in 

the full set of genes on the Genechip. Genes involved in inhibitor activity and 

transcription initiation factor activity had a very strong presence in S* and may play a 

vital role in tumor progression. We have been able to show that random forests can 

identify important variables in gene expression analysis where traditional modeling 

methods are unreliable. 



CHAPTER 4 Future Work 

Simulations were used to study the effectiveness of random forest importance 

measures at identifying one actual predictor among many independent variables. Most of 

the time there will be a number of predictors associated with a response. Additional 

simulations could be performed to study common models in which there is a complex 

association between the predictors and the response. The random forest algorithm was 

implemented using default settings based on suggestions in the literature (Breiman 

2001a; Svetnik 2003; Diaz-Uriarte and Alvarez de Andres 2006). The value of m, the 

number of independent variables sampled at each node, is considered one of the only 

adjustable parameters in random forests. It is noted, however, that the variable 

importance estimates and out-of-bag error rates may have been different for different 

values of m. 

Breiman (2004) suggested four methods for estimating variable importance 

measures using the random forest framework. We have studied the mean decrease in 

accuracy and the Gini importance measures and found them to give similar results. These 

are the only importance measures available for the randomForest library in R. Other 

measures of importance should be studied and could be added to this R package. A 

modification to the mean decrease in accuracy importance measure is suggested. Using 

the standard mean decrease in accuracy measure, if the actual predictor is not selected to 

be in a tree, permuting the out-of-bag values for the actual predictor will have 110 effect 

on the prediction accuracy. The actual predictor will not show up as important. Other 

5 0 



5 1 

variables that are highly correlated with .the predictor are masking its role. Instead of 

permuting the values of the out-of-bag observations one column at a time, cluster the 

independent variables and permute the row values of the entire cluster. 

Developments in the algorithmic modeling community have led to a number of 

competitors for random forests. Boosting is a modified version of bagging. Instead of 

using a simple bootstrap sample of the learning set to grow each tree, the algorithm 

iteratively weights observations in the learning set so that observations that were 

incorrectly predicted by previous classifiers have a higher probability of being selected ill 

the next sample. Therefore boosting attempts to improve the set of classification trees by 

producing new trees that are better able to predict observations for which the current set 

is doing a poor job. Boosting can greatly outperform bagging although there are cases 

where boosting can do worse than a single tree classifier. Opitz and Maclin (1 999) found 

that bagging is a stable procedure which is a good choice for most problems, but when 

appropriate, boosting can produce large gains in accuracy. 

Dettling and Buhlman (2003) used 6 real and simulated data sets to demonstrate 

the effectiveness of boosting for predicting gene expression data. Another study by 

Dettling (2004) developed a method using a mixture of bagging and boosting called 

BagBoosting. In the boosting algorithm reweighting is applied after each tree is grown. 

BagBoosting grows a set of classification trees, calculates the error, and reweights based 

on the bagged tree misclassification. A new set of bagged trees is grown to better predict 

observations that were misclassified in the last set of bagged trees. The classifier is thus a 

set of bagged tree sets. Real and simulated gene expression data were used to show that 



BagBoostiiig can compete with random forests and has consistently lower 

misclassification error compared with bagging and boosting. 

Hothoni (2005) describes a method of bundling classifiers. Bagged classification 

trees are grown and the out-of-bag observations are used to grow additional classifiers, 

such as linear discriminant analysis and k-nearest neighbors. All of the classifiers are 

combined to vote for predictions (Hothorn and Lausen 2003; Hothorn 2005). 

It is not yet clear as to whether random forests will emerge as a practical tool for 

gene expression analysis. Even with robust methods such as random forests, methods for 

estimating variable importance and methods of variable elimination are crucial areas of 

research that must be addressed. It remains to be seen whether modifications to current 

algorithms provide better variable importance measures. Variable selectioii in these 

microarray studies can be very difficult and proper gene selection is critical in making 

this type of research useful. Nevertheless, algorithmic models such as bagging and 

random forests appear to have a promising future. More research is needed to study the 

effectiveness of these algorithms, further refine them, and develop new ones. 
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APPENDIX A - Simulation Summary Tables 

Table I: Summary statistics of mean decrease in accuracy variable importance 
measures for all simulations (Averaged over R = 100 random forests) 

simulation 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 

p 
0.000.25 
0.000.50 
0.000.75 
0.00 
0.00 
0.00 
0.00 

0.05 
0.05 
0.05 

0.10 
0.10 
0.10 

0.15 
0.15 
0.15 
0.15 

p 

1 .OO 
1.25 
1.50 
1.75 

0.050.25 
0.050.50 
0.050.75 
0.051.00 

1.25 
1.50 
1.75 

0.100.25 
0.100.50 
0.100.75 
0.101.00 

1.25 
1.50 
1.75 

0.150.25 
0.150.50 
0.150.75 

1 .OO 
1.25 
1.50 
1.75 

Mean 
Overall Mean 

-0.032 
-0.032 
-0.030 
-0.030 
-0.032 
-0.034 
-0.030 

-0.029 
-0.027 
-0.028 
-0.024 
-0.025 
-0.021 
-0.020 

-0.033 
-0.028 
-0.031 
-0.026 
-0.023 
-0.018 
-0.017 

-0.031 
-0.030 
-0.031 
-0.031 
-0.032 
-0.031 
-0.033 

Decrease in 
Overall Std. 

0.020 
0.027 
0.035 
0.054 
0.069 
0.083 
0.089 

0.022 
0.027 
0.037 
0.059 
0.070 
0.083 
0.094 

0.021 
0.027 
0.039 
0.056 
0.074 
0.085 
0.096 

0.021 
0.026 
0.036 
0.052 
0.069 
0.084 
0.092 

Accuracy Variable 
Correlated Set Mean 

-0.035 
-0.033 
-0.034 
-0.029 
-0.038 
-0.035 
-0.030 

-0.035 
-0.032 
-0.037 
-0.032 
-0.032 
-0.031 
-0.029 

-0.034 
-0.036 
-0.041 
-0.031 
-0.033 
-0.029 
-0.030 

-0.032 
-0.029 
-0.019 
-0.018 
-0.012 
0.007 
0.006 

Importance 
Correlated Set Std. 

0.021 
0.024 
0.022 
0.025 
0.029 
0.024 
0.033 

0.022 
0.026 
0.026 
0.027 
0.038 
0.032 
0.039 

0.020 
0.020 
0.01 9 
0.025 
0.034 
0.039 
0.043 

0.022 
0.026 
0.024 
0.049 
0.063 
0.080 
0.085 

Actual Predictor 
0.036 
0.467 
0.741 
1.31 8 
1.719 
2.102 
2.235 

0.069 
0.388 
0.775 
1.415 
1.747 
2.081 
2.343 

0.076 
0.390 
0.783 
1.309 
1.771 
2.031 
2.230 

0.043 
0.454 
0.755 
1.221 
1.713 
2.083 
2.276 



simulation 

29 
30 
31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 

57 
58 
59 
60 
61 
62 
63 

64 
65 

p 

0.200.25 
0.200.50 
0.200.75 
0.201.00 
0.20 
0.20 
0.20 

0.250.25 
0.250.50 
0.250.75 
0.25 
0.25 
0.251.50 
0.251.75 

0.300.50 

0.30 
0.30 

0.30 

0.35 
0.35 
0.35 
0.35 

0.40 
0.40 
0.40 

p 

1.25 
1.50 
1.75 

1 .OO 
1.25 

0.300.25 

0.300.75 
1.00 
1.25 

0.301.50 
1.75 

0.350.25 
0.350.50 
0.350.75 

1.00 
1.25 
1.50 
1.75 

0.400.25 
0.400.50 
0.400.75 

1 .OO 
1.25 
1.50 

0.401.75 

0.450.25 
0.450.50 

Mean 
Overall Mean 

-0.029 
-0.029 
-0.031 
-0.025 
-0.027 
-0.023 
-0.024 

-0.029 
-0.031 
-0.030 
-0.028 
-0.029 
-0.029 
-0.027 

-0.031 
-0.029 
-0.027 
-0.027 
-0.025 
-0.024 
-0.023 

-0.032 
-0.029 
-0.025 
-0.021 
-0.020 
-0.019 
-0.012 

-0.031 
-0.027 
-0.025 
-0.021 
-0.018 
-0.012 
-0.013 

-0.029 
-0.026 

Decrease in 
Overall Std. 

0.021 
0.026 
0.037 
0.054 
0.065 
0.080 
0.091 

0.022 
0.024 
0.038 
0.055 
0.073 
0.083 
0.093 

0.020 
0.025 
0.037 
0.054 
0.071 
0.081 
0.094 

0.021 
0.025 
0.041 
0.059 
0.082 
0.094 
0.1 10 

0.020 
0.029 
0.042 
0.063 
0.080 
0.095 
0.105 

0.021 
0.026 

Accuracy Variable 
Correlated Set Mean 

-0.032 
-0.021 
-0.029 
-0.019 
-0.008 
-0.003 
-0.002 

-0.031 
-0.029 
-0.024 
-0.01 1 
-0.006 
0.001 
0.006 

-0.027 
-0.01 0 
0.01 5 
0.023 
0.067 
0.079 
0.102 

-0.01 7 
0.001 
0.042 
0.102 
0.165 
0.171 
0.21 8 

-0.018 
0.023 
0.053 
0.1 16 
0.173 
0.214 
0.230 

-0.009 
0.028 

Importance 
Correlated Set Std. 

0.01 8 
0.022 
0.032 
0.033 
0.045 
0.058 
0.067 

0.023 
0.027 
0.029 
0.035 
0.056 
0.069 
0.069 

0.018 
0.026 
0.036 
0.046 
0.062 
0.076 
0.095 

0.020 
0.026 
0.041 
0.075 
0.093 
0.1 19 
0.1 54 

0.022 
0.027 
0.042 
0.068 
0.079 
0.102 
0.130 

0.020 
0.031 

Actual Predictor 

0.077 
0.399 
0.784 
1.289 
1.598 
1.971 
2.238 

0.1 17 
0.324 
0.836 
1.345 
1.820 
2.096 
2.347 

0.032 
0.31 8 
0.743 
1.265 
1.682 
1.925 
2.219 

0.083 
0.334 
0.820 
1.200 
1.732 
2.022 
2.306 

0.053 
0.475 
0.798 
1.272 
1.645 
1.962 
2.172 

0.103 
0.296 



ortance 

0.068 
0.098 
0.119 
0.134 

Mean Decrease in Accuracy Variable Imp 
Actual Predi 

0.737 
1.076 
1.425 
1.676 
1.981 

simulation 
66 
67 
68 
69 
70 

p 

0.45 
0.45 
0.45 

Overall Std. 
0.048 
0.063 
0.087 
0.100 
0.125 

p 
0.450.75 
0.451.00 

1.25 
1.50 
1.75 

Overall Mean 
-0.020 
-0.016 
-0.013 
-0.007 
0.000 

Correlated Set Mean 
0.1 18 
0.167 
0.256 
0.302 
0.41 5 

( 



simulation 
104 
105 

106 
107 
108 
109 
110 
111 
112 

113 
114 
115 
116 
117 
118 
119 

120 
121 
122 
123 
124 
125 
126 

127 
128 
129 
130 
131 
132 
133 

134 
135 
136 
137 
138 
139 
140 

p 
0.70 
0.70 

0.750.25 
0.750.50 
0.750.75 
0.75 

0.751.50 

0.80 
0.80 

0.80 

0.85 
0.85 
0.85 
0.85 

0.90 
0.90 
0.90 
0.90 

0.95 
0.95 
0.95 
0.95 

p 
1.50 
1.75 

1 .OO 
0.751.25 

0.751.75 

0.800.25 
0.800.50 
0.800.75 

1.00 
1.25 

0.801.50 
1.75 

0.850.25 
0.850.50 
0.850.75 

1 .OO 
1.25 
1.50 
1.75 

0.900.25 
0.900.50 
0.900.75 

1 .OO 
1.25 
1.50 
1.75 

0.950.25 
0.950.50 
0.950.75 

1 .OO 
1.25 
1.50 
1.75 

Mean 
Overall Mean 

0.018 
0.024 

-0.030 
-0.025 
-0.014 
-0.006 
0.003 
0.009 
0.016 

-0.026 
-0.021 
-0.012 
0.001 
0.010 
0.018 
0.024 

-0.030 
-0.019 
-0.008 
0.002 
0.013 
0.022 
0.023 

-0.029 
-0.021 
-0.006 
0.006 
0.014 
0.025 
0.026 

-0.028 
-0.018 
-0.006 
0.002 
0.010 
0.020 
0.025 

Decrease in 
Overall Std. 

0.172 
0.190 

0.023 
0.040 
0.072 
0.115 
0.147 
0.174 
0.200 

0.024 
0.044 
0.075 
0.1 18 
0.158 
0.179 
0.205 

0.023 
0.045 
0.083 
0.123 
0.160 
0.192 
0.208 

0.022 
0.046 
0.098 
0.141 
0.1 72 
0.202 
0.223 

0.025 
0.049 
0.106 
0.144 
0.182 
0.21 2 
0.236 

Actual Predictor 
1.493 
1.732 

0.039 
0.297 
0.601 
1.083 
1.365 
1.621 
1.802 

0.054 
0.21 7 
0.565 
0.926 
1.242 
1.41 1 
1.602 

0.033 
0.252 
0.590 
0.869 
1.166 
1.386 
1.533 

0.028 
0.254 
0.522 
0.884 
1.070 
1.301 
1.463 

0.058 
0.255 
0.544 
0.81 7 
1.01 3 
1 .I93 
1.375 

Accuracy Variable 
Correlated Set 

0.724 
0.795 

0.012 
0.1 14 
0.269 
0.453 
0.593 
0.71 5 
0.831 

0.027 
0.144 
0.290 
0.487 
0.665 
0.760 
0.876 

0.019 
0.151 
0.328 
0.514 
0.681 
0.828 
0.893 

0.006 
0.154 
0.405 
0.600 
0.741 
0.878 
0.969 

0.039 
0.171 
0.442 
0.612 
0.790 
0.929 
1.033 

Importance 
~ean l~or re la ted  Set Std. 

0.092 
0.1 11 

0.025 
0.027 
0.042 
0.076 
0.099 
0.110 
0.124 

0.022 
0.031 
0.036 
0.057 
0.082 
0.085 
0.107 

0.01 9 
0.026 
0.042 
0.039 
0.061 
0.072 
0.077 

0.016 
0.029 
0.030 
0.038 
0.053 
0.054 
0.071 

0.016 
0.024 
0.028 
0.038 
0.040 
0.042 
0.052 



Table 11: Summary statistics of Gini variable importance measures for all simulations 
(Averaged over R = 100 random forests) 

simulation 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 

29 
30 
31 
32 
33 

p 
0.000.25 
0.000.50 
0.000.75 
0.00 
0.00 
0.00 
0.00 

0.050.25 
0.050.50 
0.050.75 
0.051.00 

0.05 

0.10 

0.15 

0.20 
0.20 

p 

1.00 
1.25 
1.50 
1.75 

0.051.25 
1.50 

0.051.75 

0.100.25 
0.100.50 
0.100.75 
0.101.00 

1.25 
0.101.50 
0.101.75 

0.150.25 
0.150.50 
0.150.75 
0.151.00 
0.151.25 
0.151.50 

1.75 

0.200.25 
0.200.50 
0.200.75 

1 .OO 
1.25 

Overall Mean 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 
0.062 
0.061 

0.061 
0.061 
0.061 
0.061 
0.062 
0.062 
0.062 

0.061 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 

Gini 
Overall Std. 

0.008 
0.012 
0.016 
0.027 
0.038 
0.050 
0.056 

0.008 
0.01 1 
0.01 7 
0.030 
0.038 
0.049 
0.060 

0.008 
0.010 
0.01 7 
0.027 
0.039 
0.048 
0.056 

0.007 
0.012 
0.01 7 
0.027 
0.038 
0.050 
0.058 

0.008 
0.01 0 
0.01 7 
0.027 
0.034 

Variable Importance 
Correlated Set Mean 

0.068 
0.068 
0.067 
0.068 
0.066 
0.066 
0.065 

0.068 
0.068 
0.066 
0.065 
0.067 
0.066 
0.065 

0.067 
0.067 
0.067 
0.066 
0.066 
0.063 
0.063 

0.069 
0.071 
0.073 
0.075 
0.077 
0.082 
0.084 

0.067 
0.070 
0.070 
0.072 
0.074 

Correlated Set Std. 
0.004 
0.005 
0.005 
0.007 
0.008 
0.009 
0.01 1 

0.004 
0.007 
0.006 
0.007 
0.01 1 
0.01 1 
0.014 

0.004 
0.005 
0.007 
0.008 
0.01 1 
0.01 3 
0.013 

0.005 
0.009 
0.01 1 
0.01 9 
0.025 
0.034 
0.036 

0.005 
0.006 
0.009 
0.012 
0.01 6 

Actual Predictor 
0.102 
0.287 
0.439 
0.778 
1.072 
1.429 
1.573 

0.105 
0.242 
0.464 
0.850 
1.099 
1.406 
1.693 

0.119 
0.241 
0.460 
0.765 
1.115 
1.368 
1.567 

0.1 10 
0.284 
0.451 
0.756 
1.061 
1.404 
1.621 

0.1 15 
0.252 
0.460 
0.781 
0.963 



simulation Overall Meal :orrelated Set Std 
0.019 
0.024 

.Actual Predictor 
1.301 
1.578 

0.132 
0.229 
0.489 
0.81 7 
1.184 
1.429 
1.71 8 

0.092 
0.229 
0.434 
0.729 
1.038 
1.248 
1.537 

0.105 
0.220 
0.450 
0.719 
1.084 
1.342 
1.666 

0.095 
0.282 
0.452 
0.734 
0.990 
1.263 
1.51 0 

0.105 1 0.181 1 



Gini Variable Importance 
simulation 

71 
72 
73 
74 
75 
76 
77 

p 

0.50 
0.50 
0.50 

p 
0.500.25 
0.500.50 
0.500.75 
0.501.00 

1.25 
1.50 
1.75 

Correlated Set Meal 
0.066 
0.086 
0.120 
0.144 
0.192 
0.212 
0.233 

Overall Mean 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 

Overall Std. 
0.008 
0.01 1 
0.020 
0.029 
0.046 
0.056 
0.067 



simulation 
109 
110 
111 
112 

113 
114 
115 
116 
117 
118 
119 

120 
121 
122 
123 
124 
125 
126 

127 
128 
129 
130 
131 
132 
133 

134 
135 
136 
137 
138 
139 
140 

p 
1 .OO 

1.25 
1.50 
1.75 

0.850.25 
0.850.50 
0.850.75 
0.851.00 
0.851.25 

1.50 
1.75 

0.900.25 
0.900.50 
0.900.75 

1 .OO 
1.25 

0.901.50 
1.75 

0.950.25 
0.950.50 
0.950.75 
0.951.00 

1.25 
0.951.50 

1.75 

p 
0.75 
0.751.25 
0.751.50 
0.751.75 

0.800.25 
0.800.50 
0.800.75 
0.801.00 
0.80 
0.80 
0.80 

0.85 
0.85 

0.90 
0.90 

0.90 

0.95 

0.95 

Overall Mean 
0.061 
0.061 
0.061 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 
0.062 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 
0.062 
0.061 

0.061 
0.061 
0.061 
0.061 
0.061 
0.061 
0.061 

Gini 
Overall Std. 

0.041 
0.054 
0.068 
0.080 

0.008 
0.013 
0.023 
0.039 
0.056 
0.066 
0.079 

0.008 
0.013 
0.025 
0.040 
0.055 
0.070 
0.079 

0.007 
0.012 
0.029 
0.045 
0.057 
0.072 
0.085 

0.007 
0.012 
0.030 
0.045 
0.060 
0.076 
0.091 

Variable Importance 
Correlated Set Mean 

0.21 8 
0.272 
0.323 
0.368 

0.070 
0.105 
0.152 
0.221 
0.287 
0.325 
0.377 

0.066 
0.105 
0.161 
0.223 
0.285 
0.346 
0.380 

0.060 
0.104 
0.180 
0.248 
0.301 
0.364 
0.414 

0.065 
0.104 
0.188 
0.250 
0.317 
0.384 
0.447 

Correlated Set Std. 
0.032 
0.044 
0.057 
0.064 

0.005 
0.008 
0.014 
0.024 
0.037 
0.045 
0.062 

0.004 
0.006 
0.01 5 
0.01 6 
0.028 
0.040 
0.045 

0.004 
0.007 
0.01 3 
0.019 
0.026 
0.031 
0.044 

0.003 
0.007 
0.01 0 
0.01 7 
0.020 
0.025 
0.032 

Actual Predictor 
0.545 
0.709 
0.922 
1.068 

0.083 
0.140 
0.279 
0.440 
0.614 
0.734 
0.883 

0.074 
0.1 56 
0.269 
0.41 0 
0.570 
0.71 1 
0.845 

0.075 
0.150 
0.251 
0.395 
0.491 
0.639 
0.777 

0.071 
0.140 
0.238 
0.353 
0.429 
0.553 
0.692 



APPENDIX B - R Code 

## Setting up dataset 

## make.S is a function that makes a correlation matrix 

Sigma 

## Creates the dataset 

## classmaker generates the dependent variable 
## (specify the column that the actual predictor conies from and 
##the value for Beta) 



## stimulation is the main function, this runs an entire simulation 
## of size="numU with the predictor variable "col" 
## for all values of Beta (b) 

## setting up matrices to store results 

## outer loop runs through values of Beta 

## inner loop runs through number of simulations "num" 

## creates dependent variable then runs random forest 

## saving both types of importance measures and out-of-bag error 



## calculating means of importance measures over simulations 

## summarizing results of siniulations 
## (means and std.dev. of all variable importance measures) 
## (means and std.dev. of correlated set variable importance measures) 
## (values of actual predictor importance measures) 

## listing output 

##th is  is the code to run all simulations 
## for all correlations and Beta values 

b<-~(.25,.5,.75,1,1.25~1.5,1.75) 
where.to.save<-"C:/Documents and Settings/rkimes/Desktop/hope2.RData" 

## record results after each call of stimulation function 
## into correlation specific vectors and matrices 



# continue for all predictors 



## Creating X matrix of expression summaries and response Y 

## Cliecking Microarray Quality 

#### Crowing random forest with all variables 

## Plotting importance values 

I.g<-importance(F)[,4] 
plot(l:ncol(X),l.g,xlab="Predictor Variables") 
plot(density(1.g)) 
hist(log(1.g)) 



## Calculating cutoff value 

## Creating new X matrix with unimportant variables eliminated 

#### Growing random forest after first elimination 

## Plotting importance values 

## Calculating cutoff value 

## Creating new X matrix with unimportant variables eliminated 

#### Growing random forest after second elimination 

## Plotting importance values 

## Calculating cutoff value 

## Creating new X matrix with unimportant variables eliminated 

#### Growing random forest after third elimination 



## Plotting importance values 

## Calculating cutoff value 

## Creating new X matrix with unimportant variables eliminated 

### Crowing final random forest 

## Plotting importance values 

#### Forward Selection #### 

##Adding one variable at a time the model 

## Plotting out-of-bag error 

#### Random forest with top 4 important variables 

## Calculating Out-of-bag error rates of the random forests 



## names of most important genes 

## setup for Gene Ontology comparison 

sig.genes<-Iist(Ll=best.n,L2=geneNames(both.rma.wo)) 
MFendnode <- CustomEndNodeList("GO:OOO3674", rank=2) 

## comparing molecular functions 

GO.mf<-ontoCompare(sig.genes, probeType="hgul33a2", endnode=MFendnode, 
goType="MF",plot=FALSE) 
xlabels<-gsub("activity","",dimnames(GO.mf)[[2]]) 
par(las =2) 
barplot(GO.mf,cex.names=0.6,beside=TRUE,names.arg=xlabeIs,legend.text=c("Final 
Variable Set","GeneChip"),main="CO Molecular Function") 

par(las=2) 
barplot(G0.mf[ratiol],cex.names=0.6,beside=TRUE,names.arg=xlabels[ratiol],legend.tex 
t=c("Final Variable Set","GeneChip"),main="CO Molecular Function") 

## comparing biological processes 

GO.bp<-ontoCompare(sig.genes, probeType="hgu133a2", goType="BPU,plot=FALSE) 
xlabels<-gsub("activity","",dimnames(GO.bp)[[2]]) 
par(las=2) 
barplot(GO.bp,cex.names=O.6,beside=TRUE,names.arg=xlabels,legend.text=c("Final 
Variable Set","GeneChip"),main="CO Biological Process") 

## comparing cellular components 



CO.cc<-ontoCompare(sig.genes, probeType="hgu133a2", goType="CC",plot=FALSE) 
xlabels<-gsu b("activity","",dimnames(CO.cc)[[2]]) 
par(las=2) 
barplot(C0.cc,cex.names=O.6,beside=TRUE,names.arg=xlabels,legend.text=c("Final 
Variable Set","CeneChip"),main="CO Cellular Component") 



APPENDIX C - List of Genes in S* 

10475 
8449 

88 
10681 

1 1 19 
9844 

203568 s at 
203694 s at 

88203861 s 
203862 s 
204000 at 

864204198 s at 
204266 s at 
20451 3 s at 

TRIM38 
DHXI 6 

atACTN2 
atACTN2 

GNB5 
RUNX3 
CHKA 
ELMO1 

Hs.202510 
Hs.485060 
Hs.498178 
Hs.498178 
Hs.155090 
Hs.170019 
Hs.77221 
Hs.304578 

6 
6 
1 
1 

15 
1 

11 
7 

6p21.3 
6p21.3 

I q42-q43 
I q42-q43 

15q21.2 
1 p36 

11q13.2 
7 ~ 1 4 . 1  
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