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Swelling-activated Cl− current (ICl,swell) is an outwardly-rectifying current that plays an important 

role in cardiac electrical activity, cellular volume regulation, apoptosis, and acts as a potential 

effector of mechanoelectrical feedback. Persistent activation of ICl,swell has been observed in 

models of cardiovascular disease. We previously suggested sphingosine-1-phosphate (S1P) 

activates volume-sensitive Cl- current (ICl,swell) by ROS-dependent signaling. S1P and its analog, 

FTY720 (fingolimod), primarily act via G-protein coupled receptors (S1PR; S1PR1-3 in heart), 

but several intracellular S1P ligands are known. We investigated how these agents regulate 

ICl,swell. ICl,swell was elicited by bath S1P (500 nM), FTY720 (S1PR1,3 agonist; 10 μM), and 

SEW2871 (S1PR1 agonist; 10 μM) and was fully inhibited by DCPIB, a specific blocker. These 

data suggested role of S1PR in activation of ICl,swell. Surprisingly, neither CAY10444 (S1PR3 

antagonist; 10 μM) nor VPC23019 (S1PR1,3 antagonist; 13 μM) blocked FTY720-induced 

ICl,swell. Also, gallein a pan Gβγ inhibitor, failed to block the S1P-induced current. Moreover, 

100 nM FTY720 applied via the pipette evoked a larger, faster activating current than 10 μM 

bath FTY720. Similarly, 500 nM S1P gave larger, faster activating ICl,swell when added to the 

pipette than when added in the bath. In contrast to FTY720, bath S1P-induced ICl,swell was 

blocked by CAY10444, but a 3-fold higher concentration failed to eliminate the response to 

pipette S1P, and VPC23019 failed to suppress bath and pipette S1P-induced currents. Taken 

together, inconsistencies in the responses to S1PR agents and the greater sensitivity to pipette 

than bath S1P and FTY720 support the notion that intracellular ligands rather than sarcolemmal 

S1PR activated ICl,swell. Next we tested if S1P and FTY720, like osmotic swelling, require both 

NADPH oxidase and mitochondrial ROS production to evoke ICl,swell. S1P- and FTY720-

induced ICl,swell were blocked by rotenone but were insensitive to gp91ds-tat, suggesting only 



 
 

xvii 
 

mitochondrial ROS production was needed. One possibility is that S1P and FTY720 elicit 

ICl,swell by binding to mitochondrial prohibitin-2, an S1P ligand whose knockdown augments 

mitochondrial ROS productions. These data suggest ICl,swell may be activated by S1P 

accumulation in ischemia-reperfusion and CHF. Understanding S1P-signaling that elicits ICl,swell 

may provide insight into electrophysiological mechanisms of cardiac pathology and help identify 

novel targets for therapy. 
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Chapter 1 Background 

 

 

 

 

1.1. Introduction of ICl,swell  

 The swelling-activated chloride current (ICl,swell), also referred to as the volume-sensitive 

chloride current (ICl,vol), volume-activated channel (VAC), or volume-sensitive organic osmolyte 

anion channel (VSOAC), is present in virtually all cell types and elicits an outwardly rectifying 

chloride current. ICl,swell can be differentiated from other chloride channels based on the several 

biophysical and pharmacological properties. The current is outwardly rectifying under 

physiological or symmetrical chloride gradient and partially inactivates at positive potentials. 

Also current is time-independent over the physiologic voltage range and is attenuated by osmotic 

shrinkage. The permeability sequence is I_≥NO>Br_>Cl_>Asp (Hume et al., 2000;Baumgarten 

& Clemo, 2003). Although the molecular identity is not yet determined, extensive 

pharmacological studies have been reported in various tissues. ICl,swell is inhibited by class of 

molecules including Cl-channel blockers, the antioestrogen such as tamoxifen, clomiphen, and 

nafoxidine at micro molar concentrations; antimalarials such as mefloquine, gossypol, 
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arachidonic acid, chromones, quinine, and quinidine, other compounds such as 9-Anthracene 

carboxylic acid (9-AC), nordihydroguaiaretic acid (NDGA), a dual inhibitor of cyclooxygenase 

and lipoxygenase, 1,9-dideoxyforskolin, the oxalon dye diBA-5-C4, niflumic acid, mibefradil, a 

T-type Ca2+ channel blocker, glibenclamide, a KATP and CFTR inhibitor, and by NPPB. It is also 

inhibited in voltage dependent manner at positive potentials by molecules such as calixarenes, 

DIDS, SITS (Nilius & Droogmans, 2003). The most selective blocker of ICl,swell identified so far 

is the indanone compound DCPIB, which works at micromolar concentrations and was 

characterized in detail for cardiac ICl,swell (Decher et al., 2001). Recent studies suggest, however, 

that DCPIB also blocks GIRK channels, although with lower potency (W Deng, R Mahajan, CM 

Baumgarten, and DE Logothetis, unpublished observation. 2011). 

1.1.1. Function of ICl,swell  

 As the name implicates ICl,swell is stimulated by an increase in cell volume or osmotic 

swelling, as well as other stimuli. Swelling-activated chloride channels are ubiquitously present 

in mammals, in all cell types (Nilius et al., 1994;Okada, 1997) including cardiac cells (Tseng, 

1992;Sorota, 1992) and are involved in cell volume regulation and many other functions. The 

molecular identity remains elusive. However various groups are actively involved in 

investigating and understanding its role in cell volume regulation, regulatory volume decrease 

(RVD) during apoptosis (Okada & Maeno, 2001;Shimizu et al., 2004), cell proliferation (Chen et 

al., 2007), and cell cycle progression and migration (Mao et al., 2009). ICl,swell is implicated in 

fluid and electrolyte transport; for instance in ciliary epithelium cells, regulates secretion of 

aqueous humor (Jacob, 1997). Cell proliferation in many cell types such as T lymphocytes, 

microglia, astrocytoma cells, endothelial cells, and liver cells is regulated by ICl,swell (Nilius & 
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Droogmans, 2003). ICl,swell is thought to be involved in cell cycle progression as well (Stutzin & 

Hoffmann, 2006). Additionally ICl,swell is important in apoptotic volume decrease (AVD), 

evidenced by decrease in AVD by blocking the channel (Okada & Maeno, 2001). AVD is known 

to be an upstream mediator of the events during apoptosis (Maeno et al., 2000). Since AVD is 

regulated by chloride channel, therefore interpretation of ICl,swell as a regulator of apoptosis seems 

reasonable. Depletion in cholesterol content activates ICl,swell, under isoosmotic conditions, 

however the relationship between ICl,swell and membrane cholesterol content remains unexplored 

(Stutzin & Hoffmann, 2006). Recent work from our lab suggests that a high cholesterol diet 

activated ICl,swell, in LDL receptor null control macrophages by increasing mitochondrial ROS 

production, and that depleting the cholesterol ester by macrophage-specific transgenic over 

expression of human cholesterol ester hydrolase inhibited ICl,swell (Deng et al., 2011). 

 In cardiac physiology the role of chloride channel is still unclear, but it is thought to be 

important in cell volume regulation (Hoffmann & Dunham, 1995), a modulator of electrical 

activity and protects against ischemic reperfusion injury (Mulvaney et al., 2000). Furthermore 

the channel plays diverse role such as altering resting membrane potential and the duration of 

action potential, hence acting as an important modulator in physiological and patho-

physiological condition (Hume et al., 2000). ICl,swell is known to regulate cardiac electrical 

activity, cell volume, apoptosis, cell proliferation and probably serves a role in ischemic 

preconditioning (Baumgarten et al., 2005;Duan et al., 2005;Hume et al., 2000). ICl,swell is 

activated by β1 integrin stretch, hydrostatic inflation, also it is found to be activated under 

isoosmotic environment in various models of cardiac diseases. The molecular identity of this 

channel remains controversial, as well as the volume sensing mechanism responsible for 

activation of channel. 
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1.2. Regulation of ICl,swell  

 Over the past few years the signaling molecules regulating the channel have been actively 

studied. Reactive oxygen species (ROS) seem to be an effective modulator of ICl,swell in cardio-

myocytes (Browe & Baumgarten, 2006;Browe & Baumgarten, 2004;Ren et al., 2008) and other 

cells (Haskew-Layton et al., 2005;Shimizu et al., 2004;Varela et al., 2004).  

1.2.1. Indirect evidence of regulation of ICl,swell by ROS in heart and other tissue 

 d’Anglemont de Tassigny et al. (2004) looked at the role of a Cl- current thought to be 

ICl,swell and AVD in doxorubicin-induced apoptotic cell death in adult rabbit ventricular 

cardiomyocytes. The observations included activation of an outwardly rectifying Cl- current 

upon exposure to doxorubicin and C2-ceramide. Also inhibition of chloride channel led to 

attenuation of programmed cell death by decreasing caspase activity and annexin V labeling (de 

Tassigny et al., 2008). However, identification of the current as ICl,swell was lacking. The anion 

channel inhibitors utilized were not selective for ICl,swell, the doxorubicin- and C2-ceramide-

induced currents were not shown to be volume-sensitive, and outward rectification in 

symmetrical Cl- was not verified. Doxorubicin is known as a proapototic agent, which induce 

oxidative stress in myocytes, but the role of ROS in current activation was not demonstrated. 

Current activation was blocked by inhibitors of PI3 kinase/AKT (de Tassigny et al., 2008), and 

we demonstrated activation of PI3 kinase by EGFR upregulated ICl,swell via ROS in response to 

osmotic swelling and mechanical stretch (Ren et al., 2008;Browe & Baumgarten, 2006). 

Xiaoming Wang et al. showed that activation of ICl,swell during the reperfusion period led to 

induction of apoptosis in neonatal mouse cardiomyocyte during ischemia-reperfusion. Elicitation 

of current was shown to be modulated by ROS. They demonstrated ROS production during 
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period of reperfusion, also application of non selective inhibitors of channel during the period of 

reperfusion but not ischemia reduced cell death by apoptosis. In addition ROS scavengers 

prevented apoptosis by reduction of caspase activation (Wang et al., 2005). Additionally they 

showed apoptosis and Cl- channel blockers act independent of the Cl-/HCO3 exchanger. Though 

direct evidence of ROS modulating chloride channel activation was not shown, it is clear from 

previous studies in endothelium cells that ICl,swell is involved in apoptosis and regulated by ROS 

(Shimizu et al., 2004). 

 Another group reported the importance of volume regulation via ICl,swell in ischemic 

preconditioning (IP). Ischemic preconditioning is known to activate ROS production. Though 

many controversies were reported, Baines et al. demonstrated production of ROS during 

ischemic preconditioning and their role in cardioprotection (Baines et al., 1997). Moreover in 

another study blockade of chloride channel during IP and pharmacological preconditioning 

(PPC) failed to offer cardioprotection. The players such as angiotensin II, AT receptors, 

adenosine, PKC which are involved in PPC are known to modulate chloride channel. Batthish et 

al. showed that chloride channels play an important physiological role in the cardioprotection of 

IPC and PPC acting downstream of PKC (Batthish et al., 2002;Diaz et al., 2001). From the 

above studies indirect involvement of ROS can be inferred. More precise experiments are needed 

to show involvement of ROS as a modualtor of ICl,swell. Many of these study fail to use specific 

inhibitor of ICl,swell, and therefore, evidence of the role of this channel may be questioned. 

Additionally linking of various upstream mediators of ROS production and how it modulates 

ICl,swell still poses a challenge. Also the source of ROS production upon stimulation by various 

upstream mediators is also elusive. 

1.2.2 Regulation of ICl,swell by ROS in heart 
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 Recently, reactive oxygen species (ROS) were identified as a downstream effector, and 

exogenous H2O2 elicits ICl,swell in cardiomyocytes (Ren et al., 2008;Browe & Baumgarten, 

2006;Browe & Baumgarten, 2004) and other cells (Haskew-Layton et al., 2005;Shimizu et al., 

2004;Varela et al., 2004). Baumgarten and coworkers, demonstrated β1 integrin stretch and 

osmotic swelling, activating volume sensitive chloride current in cardiac myocytes. Upstream 

signaling molecules include Src family kinases (Browe & Baumgarten, 2003;Du et al., 

2004;Walsh & Zhang, 2005), protein tyrosine kinase (Sorota, 1995), angiotensin II (Ang II) 

(Browe & Baumgarten, 2004;Ren et al., 2008), epidermal growth factor receptor (EGFR) kinase 

(Du et al., 2004), and phosphoinositide 3-kinase (PI-3K) (Browe & Baumgarten, 2006;Ren et al., 

2008). Protein kinase C (PKC) also is implicated, although its role is controversial because it 

appears to inhibit (Duan et al., 1999) or activate ICl,swell (Gong et al., 2004;Duan et al., 1999). 

Moreover ET-1-induced ICl,swell was abrogated by selective blockade of ETA receptor, EGFR 

kinase and PI-3K, suggesting that ET-1 activates (Deng et al., 2010a). ICl,swell via a signaling 

cascade involving ETA receptor, EGFR kinase and PI-3K. PI-3K is downstream from EGFR 

kinase because inhibition of PI-3K suppressed EGF-induced ICl,swell. All these signaling cascade 

indicated H2O2 as the most downstream modulator for ICl,swell. Scavenging H2O2 with catalase 

reverses the β-integrin stretch-induced activation of ICl,swell (Browe & Baumgarten, 2005). 

Moreover, the SOD mimetic MnTBAP that speeds conversion of superoxide (O2−•) to H2O2 

augments ACh-induced ICl,swell (Browe & Baumgarten, 2007). ICl,swell also is activated by 

exogenous H2O2 with an EC50 of ~8 μM (Browe & Baumgarten, 2004;Ren et al., 2008), and the 

site of action of H2O2 appears to be downstream from the volume-sensing mechanism because 

H2O2-induced current is insensitive to hyperosmotic shrinkage (Ren et al., 2008). Potential 

sources for ROS in cardiomyocytes include NADPH oxidase (NOX) and the mitochondrial 
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electron transport chain (ETC). Both have been implicated in activation of ICl,swell (Browe & 

Baumgarten, 2004;Browe & Baumgarten, 2007;Ren et al., 2008;Deng & Baumgarten, 2009). 

However H1V protease inhibitor ritonavir and lopinavir activated ICl,swell via mitochondrial ROS 

production that was independent of NADPH oxidase (Deng et al., 2010b). Furthermore SMase-

induced ICl,swell, inhibitor of NADPH oxidase partially reduced the S1P-induced Cl− current and 

inhibitor of mitochondrial ROS completely abolished SMase induced current (Raucci & 

Baumgarten, 2009). Although strong evidence is provided for the signaling pathway involved in 

modulation of the channel, the studies are based on use of pharmacological inhibitors. Though 

these have been implicated as specific inhibitors, their non-specific effect cannot be ruled out. 

There also may be additional players in the cascade which are not yet evident. Hence these 

studies can by no means present a complete understanding of the signaling molecules involved in 

activation of ICl,swell. 

1.3. Importance of sphingolipid signaling in modulation of ICl,swell 

 Many of the signaling cascades that activate ICl,swell overlap with those involved in 

sphingolipid signaling (Hannun & Obeid, 2008;Levade et al., 2001;Spiegel & Milstien, 2002) 

raising the possibility that certain sphingolipids might regulate ICl,swell. Sphingolipids are 

important bioactive lipid metabolites which play an important role in cell growth, apoptosis, 

motility, vasculogenesis, and immune function. Sphingolipid metabolism is altered in several 

cardiac diseases resulting in their accumulation (Chatterjee et al., 2006;Levade et al., 2001). 

Extensive studies in multiple tissues have focused on the sphingolipid metabolites sphingosine 1-

phosphate (S1P), sphingosine, and ceramide. The maintenance of a balance between ceramide 

and S1P levels is important in determining the fate of cells (Van Brocklyn & Williams, 2012). 

Enzymes such as sphingomyelinase and sphingosine kinase (SphK) play a key role in the 
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production of these metabolites. Sphingosine kinase (SphK)/S1P pathway acts as regulator of 

various cellular signaling cascades. Recently SphK/S1P was found to have a role in cardiac 

physiology and pathology including ischemic/reperfusion injury. Alterations in sphingolipid 

metabolism are implicated in cardiovascular diseases, including congestive heart failure, 

atherosclerosis, and ischemia/reperfusion injury (Levade et al., 2001;Chatterjee et al., 2006). 

S1P is known to act as a ligand for G-protein coupled S1P receptors to initiate signaling pathway 

regulating many cellular functions. Moreover S1P regulates cardiac ion channel activity. 

Recently our laboratory showed that exogenous and endogenous ceramide elicited ICl,swell in 

ventricular myocytes via ROS. Preliminary data suggests, however, that the ceramide metabolite 

S1P rather than ceramide itself was responsible for activating ICl,swell. Because of the well-

established role of G protein-coupled S1P receptors in transducing S1P signaling (Means & 

Brown, 2009), we hypothesized that SphK/S1P pathway and the three cardiac G protein coupled 

S1P receptors (S1PR1-3) were responsible for triggering activation of ICl,swell under isosmotic 

conditions  by ROS production by either NADPH oxidase, mitochondria or both. More recently, 

intracellular S1P binding sites also have been reported in cardiac and other cells (Hait et al., 

2013;Maceyka et al., 2012). Among these is prohibitin 2 (PHB2), a mitochondrial inner 

membrane protein that controls the assembly and function of cytochrome oxidase. This leads to 

an alternative hypothesis that S1P elicits ICl,swell via its binding to intracellular target(s) rather 

than plasmalemmal S1P receptors. 

1.4. Sphingolipds 

1.4.1. Role of Sphingolipds 
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 Until recently sphingolipids were considered merely as membrane structural components 

without further function. In the past two decades sphingolipids have been identified as important 

bioactive lipids that are involved in various functions ranging from pleiotropic effects on protein 

kinases, regulating the actin cytoskeleton, endocytosis, the cell cycle and apoptosis (Smith et al., 

2000). They are involved in forming specialized structures, mediate cell-cell and cell-substratum 

interactions, modulate the behavior of cellular proteins and receptors, and participate in signal 

transduction and the activation of downstream cascades. Sphingolipids are usually classified into 

two separate groups: sphingophospholipids, which include sphingomyelin, ceramide, 

sphingosine and the phosphorylated forms of these lipids, and glycosphingolipids, which include 

gangliosides. Amongst sphingolipid metabolites the most prominent are sphingosine 1-Phosphate 

(S1P), sphingosine, and ceramide. Ceramide mediates many cell-stress responses, including the 

regulation of apoptosis (Obeid et al., 1993) and cell senescence (Venable et al., 1995) , whereas 

S1P has crucial roles in cell survival, cell migration and inflammation (Spiegel & Milstien, 

2002). The maintenance of a balance between ceramide and S1P levels seems important in 

determining the fate of cells (Van Brocklyn & Williams, 2012).  

1.4.2. Biosynthesis and Metabolism  

 Sphingolipids are ubiquitous components of the lipid bilayer in all eukaryotic cells. 

Ceramide, which is a backbone for most of sphingolipids, is a precursor for formation of S1P, 

and key elements of the pathway regulating S1P production are illustrated in Figure 1. Ceramide 

can be synthesized by either a de novo pathway or a degradative pathway through the hydrolysis 

of complex lipids, especially sphingomyelin (SM). De novo synthesis of sphingolipids occurs at 

the cytosolic face of the endoplasmic reticulum (ER). The initiating reaction is the condensation 

of serine and palmitoyl-CoA catalyzed by serine palmitoyltransferase to form 3-ketosphinganine,  
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Figure 1: Schematic of S1P metabolism pathway (Bartke & Hannun, 2009). Key 
abbreviations include sphingomyelinase (SMase), sphingosine kinase (SK). 
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which is rapidly reduced to dihydrosphingosine and then N-acylated by ceramide synthase to 

form dihydroceramide. Finally, a trans double bond at C4–C5 is introduced by dihydroceramide 

desaturase, producing ceramide (Bartke & Hannun, 2009). Ceramide is then transported from the 

ER to Golgi where head groups are added forming sphingolipids. Later, ceramide is acted upon 

by ceremidase to yield sphingosine, the most common base for other sphingolipids. Finally, 

SphK catalyzes ATP-dependent phosphorylation of sphingosine to form S1P. S1P is converted 

back to sphingosine, which can be recycled, by sphingosine phosphatase. Alternatively, S1P can 

be irreversibly broken down by S1P lyases to hexadecanal and phosphoethanolamine which then 

can be incorporated into lipids (Spiegel & Milstien, 2003).  

 Although de novo synthesis is an important source of sphingosine in cells, much of the 

sphingosine present under physiological and several pathological conditions is generated by the 

catabolism of sphingomyelin and other sphingolipids, a process termed as the degradative 

pathway (Kitatani et al., 2008) . This pathway involves release of ceramide from sphingomyelin 

by sphingomyelinase, and in turn, ceramide is acted upon by ceramidases to generate 

sphingosine. Additionally, ceramide is produced through a salvage pathway that begins within 

acidic cellular compartments including late endosomes and lysosomes (Kitatani et al., 2008). 

Importantly sphingosine and dihydrosphingosine (sphinganine) are not produced by either the de 

novo pathway and or catabolism (Strub et al., 2010).  

 Sphingosine-1 phosphate (S1P) is produced by the action of sphingosine kinases. There 

are two primary isotypes of sphingosine kinase, denoted as SphK1 and SphK2, that produce S1P 

in the cytosol, and SphK are stimulated by various growth factors and other molecules. 

Interestingly, the best studied biological actions of S1P via G protein-coupled S1PR requires 

inside-out signaling (Takabe et al., 2008). Cytosolic S1P is transported out of the cell via ABC 
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transporters. Once in the extracellular space, S1P acts as a potent S1PR ligand and activates 

downstream intracellular signaling cascades in autocrine/paracrine manner (Takabe et al., 

2008;Alvarez et al., 2007;Spiegel & Milstien, 2000). In cardiovascular system three G protein-

coupled S1P receptors, S1P1-3, are expressed (Means & Brown, 2009). S1P1 receptor exclusively 

couples with Gi, whereas S1P2 S1P3 couple to Gi, Gq, and G12/13. 

1.4.3. Sphingosine Kinase (SphK)  

 SphK are lipid kinases that catalyze production of S1P from sphingosine by ATP-

dependent phosphorylation. Figure 2 shows the conversion of sphingosine to S1P and list the 

various downstream targets and potential functions of both sphingosine and S1P (Spiegel & 

Milstien, 2002). SphK is a key regulator that determines cell fate. SphK belong to a conserved 

lipid kinase family containing 5 conserved domains (Kohama et al., 1998). Two mammalian 

isoforms are known: SphK1 and SphK2. While both isoforms produce S1P, they exhibit different 

catalytic properties, subcellular locations, tissue distribution, and temporal expression patterns 

during development, suggesting unique and specific functions. For example, SphK1 and SphK2 

have opposing roles in regulation of ceramide biosynthesis (Maceyka et al., 2005). The genes 

encoding the isoform are located on different chromosomes. SphK1 has a broad tissue 

distribution with high levels in brain, heart, lungs and spleen. SphK1 displays specificity for the 

natural trans-isomer of D-erythrosphingosine. The second isoform, SphK2, shares five conserved 

domains with SphK1 (about 80% similarity and 50% identity), but it has an additional 200 amino 

acids. SphK2 phosphorylates wider range of sphingolipid base substrate (Hait et al., 

2006;Karliner, 2009b).  

 SphK is stimulated by various external stimuli. Activators include agonist of growth 

factor receptors, such as PDGF, VEGF, NGF, and EGF, ligands for GPCRs, TGFβ, the  



13 
 

 
 

  

 

 

Figure 2: Conversion of D-erythro-sphingosine to S1P by SPHKs, using 
ATP as the phosphate donor. Various downstream targets and potential 
functions of both sphingosine and S1P are mentioned (Spiegel & 
Milstien, 2002). 

 



14 
 

 
 

proinflammatory cytokine TNF-alpha, cross-linking of IgE and IgG receptor, interleukins, 

estrogen, and activators of PKCε. A variety of other interacting adaptor protein specifically 

stimulates SphK1 activation. The growth factors are responsible for translocation of SphK1 to 

the plasma membrane (Spiegel & Milstien, 2003). Thus, S1P produced by translocation of 

SphK1 to the plasma membrane has been implicated in transactivation of cell surface S1P 

receptors (Maceyka et al., 2005). In most cases, the importance of SphK1 activation and 

concomitant production of S1P in the regulation of many biologically responses was only 

indirectly inferred by the ability of pan SphK inhibitors to block agonist-induced effects (Hait et 

al., 2006;Spiegel & Milstien, 2002). In contrast to SphK1, SphK2 is mainly present in 

intracellular compartments, including the nucleus and mitochondria. Nuclear SphK2 regulates 

gene transcription at least in part by producing S1P, which acts as an endogenous inhibitor of 

histone deacetylases (Hait et al., 2009). In mitochondria the action(s) of SphK2 are required for 

correct assembly of the cytochrome oxidase complex. However, the exact ligand for the 

mitochondrial targeting signal is not known (Strub et al., 2011).  

 Relatively little is known about the signaling pathways that regulate SphK2 activity. 

Studies indicate that pro-survival protein Bcl-xL activates (Liu et al., 2003) SphK2. There is 

strong evidence that disordered or altered cell volume regulation is associated with apoptosis 

(Maeno et al., 2000;Okada & Maeno, 2001). ICl,swell is known to regulate the apoptotic cell 

volume (Okada et al., 2006). There is also a link between the apoptotic resistance, offered by 

survival protein Bcl-2 and the strengthening of RVD capability by upregulation of ICl,swell.(Shen 

et al., 2002;Lemonnier et al., 2004). Thus S1P produced by the action of SphK2 due to BCl-xl 

activation could be responsible to modulate the activity of ICl,swell. Similar to SphK1, SphK2 is 

upregulated by the Erk1/2 pathway. SphK 2 and SphK1 have opposing functions in ceramide 
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signaling (Spiegel & Milstien, 2003). The differences between the pro-survival and anti-survival 

effects of SphK are related to the distinct sub-cellular localization and spatially restricted 

production of S1P (Karliner, 2009b). But these differences are not yet demonstrated in cardiac 

cells or in vivo in any organs. 

1.5. Sphingosine-1 Phosphate: Important Signaling Biolipid 

 Sphingolipids have been extensively studied for the past two decades. The pathways in 

which sphingolipids work are enigmatic, however, various signaling cascades have been 

identified. The unprecedented complexities in sphingolipid biochemical interconnections enable 

cells to execute cellular responses by regulating sphingolipid inter-conversions. Therefore, it is 

important to determine which sphingolipid is responsible for orchestrating a particular signaling 

pathway. Amongst several sphingolipids, the S1P/ceramide rheostat plays a critical role in 

determining the fate of the cell (Van Brocklyn & Williams, 2012). This notion is supported by 

the fact that S1P and ceramide control the cell-cycle process (Spiegel & Milstien, 2002) and 

apoptotic (Obeid et al., 1993) pathway, respectively. Thus, S1P and ceramide have antagonistic 

effect on the cell. However, recently it has been shown that ceramide and S1P can have similar 

effects in certain circumstances. For example, both ceramide and S1P induced ROS generation in 

bovine coronary arteries (Zhang et al., 2003;Keller et al., 2006).  

 After establishing the role of S1P in cell growth (Olivera & Spiegel, 1993;Zhang et al., 

1991), studies have aimed at determining the role of SphK in setting the level of S1P in different 

cellular compartment, the compartment-specific actions of S1P, and more broadly, the signaling 

cascades triggered by plasmalemmal S1P receptors. The primary step in signal transduction is 
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inside-out S1P transport and binding to G-protein coupled S1P receptors (S1PR). However the 

importance and role of potential intracellular S1P binding targets remains unclear.  

1.5.1. Inside-out transport of S1P 

 S1P produced by the SphK can act in a paracrine-autocrine manner and bind 5 S1P 

receptors (S1P1-5) that are expressed in various tissues (Chun et al., 2002;Spiegel & Milstien, 

2000), although only S1P1-3 have been identified in cardiac myocytes (Means & Brown, 2009). 

Because S1P is synthesized in the cytosol and binds to G protein-coupled receptors facing the 

extracellular milieu, this bioactive lipid must be transported from the inside to the outside of cells 

to act. Inside-out transport of S1P and presumably its analog FTY720-P are mediated via several 

ATP-binding cassette (ABC) proteins known as ABC transporters, including ABCA1, ABCB1, 

ABCC1, and ABCG2 (Sato et al., 2007;Nieuwenhuis et al., 2009;Honig et al., 2003;Takabe et 

al., 2010). In mast cells, for example, the ABCC1 transporter is responsible for S1P export 

(Mitra et al., 2006). In astrocyte ABCA1 transports S1P out of the cells (Sato et al., 2007). 

Similarly, S1P secretion from platelets is also mediated by an ABC transporter, ABCA7 

(Kobayashi et al., 2006;Anada et al., 2007), and in breast cancer cells, stimulation with estradiol 

led to S1P release via ABCC1 and ABCG2  transporters (Takabe et al., 2010). However, the 

involvement of ABC transporters in the secretion of S1P in a number of other systems, including 

cardiac myocytes, is yet to be determined, and knock out of selected ABC transporters does not 

fully reproduce the expected phenotype. Recently human Spns2, a putative 12-transmembrane 

domain protein, was shown to transport S1P, dihydro-S1P, and FTY720-P in CHO cells (Hisano 

et al., 2011). Interestingly, Spns2 regulates the migration of myocardial precursors during 

Zebrafish development (Kawahara et al., 2009) by regulating S1P secretion from the 

extraembryonic yolk syncytial layer, and Spns2 mRNA is found in homogenates of human heart 
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(Hisano et al., 2011). In addition to its local autocrine/paracrine action, S1P is synthesized 

(Yatomi et al., 1997) and released from platelets in response to thrombin stimulation (Yatomi et 

al., 1995) and erythrocytes (Hanel et al., 1993). S1P levels in the extracellular fluids plasma 

(associated with albumin or lipoproteins (Aoki et al., 2005;Hla, 2005;Murata et al., 2000;Yatomi 

et al., 2000)) and lymph are generally high, with concentrations reported of 200 nM to 3 μM and 

up to 500 nM (Hla, 2005), respectively (Kihara & Igarashi, 2008). In our experiments we use 

500 nM S1P to match closely with the physiological concentration. 

1.5.2. Extracellular targets of S1P signaling  

 As mentioned above, S1P acts as a ligand for the family of five G protein-coupled 

receptors, termed S1PR1-5, formerly called endothelial differentiation gene (EDG) receptors. 

These receptors are differentially expressed across tissues and are coupled to different G proteins 

resulting in diverse signaling by S1P. Amongst the array of responses evoked upon S1P binding 

to the GPC receptors are Ca2+ mobilization, proliferation, cytoskeletal organization and 

migration, adherence- and tight junction assembly, and morphogenesis (Hla, 2004;Lee et al., 

1999). As mentioned previously, to date, five members of the S1PR family have been cloned 

including S1P1 (EDG-1), S1P2 (EDG- 5), S1P3 (EDG-3), S1P4 (EDG-6), and S1P5 (EDG-8) all 

of which bind and are activated specifically by S1P and dihydro-S1P (also known as sphinganine 

1-phosphate) (Chun et al., 2002), whose structure is identical to that of S1P but lacks the 4,5-

trans double bond). S1P thus is able to activate and regulate a diverse array of signal 

transduction pathways in different cell types, depending on the relative abundance of S1PRs and 

associated G proteins, and elicit a wide range of responses (Spiegel & Milstien, 2000;Pyne & 

Pyne, 2000). Localization and G protein coupling of each of the S1P receptors and their 

signaling upon activation will be described in the following sections. 
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1.5.3. S1PR1 

 S1PR1, historically known as EDG1, was the first receptor S1PR identified. It is 

ubiquitously expressed with high levels in brain, lung spleen, cardiovascular system and kidney 

and is coupled to Gi/o. Initially S1PR1 was thought to be an orphan GPCR receptor responsible 

for differentiation of endothelial cells (Brinkmann, 2007). Further studies confirmed S1PR1 

possessed high affinity for S1P (Kd 8.1 nM using radioligand binding assay in HEK293.(Lee et 

al., 1998) and 13.2 nM estimated by [3H]S1P in Chinese hamster ovary cells transfected with 

putative S1P receptor (Kon et al., 1999). Genetic deletion of S1P1 in mice indicates a key role in 

angiogenesis and neurogenesis. The observation that S1PR1 plays a critical role in directed cell 

motility suggests the underlying mechanism by which S1P acts as a regulator of angiogenesis 

(Liu et al., 2000). Additionally, S1PR1 plays a role in the regulation of immune cell trafficking, 

endothelial and epithelial barrier function and integrity (Singleton et al., 2005). Also it has a key 

role in angiogenesis, vascular maturation, increased vascular integrity (Singleton et al., 2005), 

and maintaining vascular tone (Sanna et al., 2004). The maintenance of vascular integrity is 

carried out by downstream activation of Akt and Rac upon S1PR1 activation (Singleton et al., 

2005). Additionally, binding of S1P to S1PR1 can transactivate various growth factor receptor 

tyrosine kinases (RTKs), such as VEGF receptor, EGF receptor, and PDGF receptor (Takabe et 

al., 2008). Forming a complex with VEGFR, it associates with PKC alpha and ERK1/2 (Bergelin 

et al., 2010). The signaling triggered by S1PR is summarized in Fig. 3 (Pyne & Pyne, 2000). 
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Figure 3: Signaling pathways activated by S1P binding to EDG/S1P 
receptors regulating mitogenesis, chemotaxis, differentiation and 
apoptosis. Differential coupling to G-proteins and effectors for S1PR1-3may 
be apparent for EDG1, EDG3 and EDG5. Abbreviations : AC, adenylate 
cyclase ; PIP2 , PtdIns(4,5)P2; IP3, Ins(1,4,5)P3 ; DG,diacylglcerol ; AP1, 
activator protein 1 (Pyne & Pyne, 2000). 
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S1PR1 is also involved in immune function of cell by modulating lymphocyte recirculation 

(Strub et al., 2010). This underlies the clinical utility of fingolimod (FTY720; Gilenya), an 

immunosupressor recently approved for the treatment of relapsing forms of multiple sclerosis. 

FTY720 is a sphingosine analog prodrug that is converted to its active form by phosphorylation 

by SphK and induces lymphopenia (Brinkmann et al., 2002;Mandala et al., 2002). 

1.5.4. S1PR2 

 S1PR2 was originally known as EDG5. Like S1PR1, S1PR2 is also widely distributed and 

is prominently expressed in vascular smooth muscle cells (Waeber et al., 2004). It is coupled to 

Gi/o, Gq, and G12/13, thereby imparting a wide range of actions. In contrast to S1PR1, S1PR2 

receptors inhibit migration and proliferation of endothelial and vascular smooth muscle cells, 

probably because of their unique stimulatory effect on a GTPase-activating protein that inhibits 

Rac activity (Waeber et al., 2004). S1PR2 also play an essential role in the proper functioning of 

the auditory and vestibular systems, as S1PR2 knockout mice exhibit deafness (Kono et al., 

2007). This S1P receptor is also required for degranulation of mast cells. Moreover, S1PR2 are 

important for pyramidal neuron development and the regulation of excitability, as their loss 

causes increased excitability and seizures that can be lethal (MacLennan et al., 2001). S1PR2 

activates Rho, PLC, c-Jun, JNK, p38 and inhibits Rac. Additionally, it inhibits tumor 

angiogenesis and growth (Yester et al., 2011). The affinity of S1PR2 for S1P is (Kd 20–27 nM) 

(Ishii et al., 2004).  

1.5.5. S1PR3 

 S1PR3, also known as EDG3, is coupled with Gi/o, Gq, and G12/13. Similar to S1PR1, it has 

a wide range of distribution throughout the body with predominant expression in heart, peri-
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vascular smooth muscle cells, lung, spleen, kidney, intestine, diaphragm, and cartilage. The 

signaling pathway activated are Rho, ERK, PLC, Rac. S1PR3 expression is localized to myocytes 

and perivascular smooth muscle cells, thus S1PR3 exhibits effects on the cardiovascular system, 

regulating bradycardia and hypertension (Strub et al., 2010). The rank order of compound 

potency for bradycardia is more closely aligned with the potency for activation of S1PR3 than the 

other S1P receptors (Forrest et al., 2004) The S1P3 receptor is the primary receptor coupling to 

PLC and the activation of this receptor also results in bradycardia (Means & Brown, 2009). 

1.5.6. S1PR4/S1PR5 

 S1PR4 and S1PR5 are also known as EDG6 and EDG8, respectively. As compared to 

other receptors, the localization of S1P4-5 is rather restricted, with predominant expression 

limited to human leukocytes, Natural Killer cells, airway smooth muscle cells and white matter 

of CNS tracts. S1P4 is primarily expressed in lymphoid tissues, including the thymus, spleen, 

bone marrow, appendix, and peripheral leukocytes (Strub et al., 2010) This expression pattern 

suggests potential roles of S1P4 in the immune system. In vivo roles and functions of S1P4 are 

still unknown (Ishii et al., 2004). Expression of S1P5 is restricted to specific tissues: brain, 

spleen, and peripheral blood leukocytes in human and brain, skin, and spleen in rat and mouse 

(Ishii et al., 2004). S1PR5 is highly expressed in oligodendrocytes suggesting its potential roles 

in maturation and myelination of oligodendrocytes S1PR4 couples with Gi/o, Gs, and G12/13, 

whereas S1PR5 couples with Gi/o and G12/13. 

1.5.6. Intracellular targets of S1P 

 For many years, the myriad of effects of S1P on cellular function have been attributed to 

downstream signaling elicited by the five well-known and extensively studied Gprotein-coupled 
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S1P receptors. However, a number of effects of S1P cannot be explained by this receptor family, 

raising the possibility that S1P also binds to and modulates the function of intracellular targets.. 

For example, organisms such as Dictyostelium discoideum, Sacharomyces cerevisiae and 

Arabidopsis thaliana do not express S1PR but display cellular responses to S1P (Yester et al., 

2011). Discrepancies are also found in mammalian systems. Dihydro-S1P and S1P bind and 

activate S1PRs with similar affinities (Chun et al., 2002), but dihydro-S1P, which is rapidly 

dephosphorylated in the cytosol, does not mimic all of the actions of S1P. For example dihydro-

S1P, although a good substrate for S1PR1 in situ, does not cause significant ceramide 

accumulation or increase apoptosis (Le Stunff et al., 2002) and, does not have any significant 

cytoprotective effect (Van Brocklyn et al., 1998). For example, S1P, but not dihydro-S1P, 

protects male germ cells from apoptosis, an effect that was linked to inhibition of NF-κB and 

activation of Akt (Suomalainen et al., 2005). On the contrary, S1P-phosphonate, which does not 

bind to S1PRs, still protects Swiss 3T3 fibroblasts cells from apoptosis (Van Brocklyn et al., 

1998). Furthermore, microinjection of S1P appears to increase DNA synthesis independent of G 

proteins (Van Brocklyn et al., 1998).  

 The identity of intracellular binding sites for S1P is only beginning to emerge. 

Cytoplasmic and subcellular targets identified to date include histone deacetylases (HDACs) 

(Hait et al., 2009) this study showed that, HDACs are direct intracellular targets of S1P and link 

nuclear S1P to epigenetic regulation of gene expression. S1P was shown to be a missing cofactor 

for the E3 ubiquitin ligase TRAF2 and that TRAF2 was a novel intracellular target of S1P  

Interestingly, only S1P, and not dihydro-S1P, which lacks the double bond in S1P, was shown to 

bind to and activate TRAF2 (Alvarez et al., 2010). β-site amyloid precursor protein cleaving 

enzyme-1 (BACE1) was shown to be another site in neurons to which S1P bound. S1P also 
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specifically bound to BACE1 in vitro and increased its proteolytic activity, suggesting that 

cellular S1P directly modulates BACE1 activity (Takasugi et al., 2011). In these studies 

inhibition or downregulation of SphK1 and SphK2, or overexpression of S1P-degrading enzymes 

all decreased BACE1 activity and Aβ production (Maceyka et al., 2012). These responses were 

mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. Also 

prohibitin 2 PHB2, a highly conserved protein that regulates mitochondrial assembly and 

function, was recently shown to bind S1P in vitro and in vivo (Maceyka et al., 2012;Strub et al., 

2011;Yester et al., 2011). PHB2 localizes predominantly to the inner mitochondrial membrane 

where it is thought to form a large, macromolecular complex with PHB1 that is involved in 

mitochondrial biogenesis and metabolism (Takasugi et al., 2011;rtal-Sanz & Tavernarakis, 2009) 

By targeting monomeric PHB2 (but not closely related PHB1), S1P is implicated in the 

regulation of proper assembly and function of cytochrome-c oxidase of the mitochondrial 

respiratory chain in cardiac myocytes (Strub et al., 2011). Moreover, PHB is reported to reduce 

mitochondrial free radical production and oxidative stress in brain injury models, perhaps by 

stabilizing the function of complex I (Zhou et al., 2012). Binding of S1P to PHB2 and its action 

on mitochondrial function represent a potential novel link between intracellular S1P binding and 

ICl,swell, an ion channel activated by ROS.  

1.6. FTY720, an S1PR agonist 

FTY720 is an immunomodulating drug, approved for treating multiple sclerosis. This 

agent modulates S1PR function and was highly effective in Phase II clinical trials for recurring 

multiple sclerosis (MS) (Kappos et al., 2006). FTY720 displays structural similarity to S1P and 

efficacy as an immunosuppressant in models of autoimmune disease and in solid organ 

http://en.wikipedia.org/wiki/Multiple_sclerosis�
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transplantation. However, this sphingosine analog is a prodrug that must be phosphorylated in 

vivo by SphK2 (Zemann et al., 2006) to form its active form, FTY720-phosphate (FTY720-P) 

(Albert et al., 2005;Brinkmann et al., 2002), that binds to four of the five G protein-coupled S1P 

receptor subtypes (Brinkmann, 2007). There are differences in the affinity of FTY720-P 

conformers for S1PRs. (S)-FTY720-P, but not (R)-FTY720-P or the parent FTY720, acts as a 

full agonist at S1PR1 (EC50 = 0.3 nM), S1PR4 (0.6 nM) and S1PR5 (0.3 nM), with ~10-fold lower 

affinity for S1PR3 (3.1 nM), but is inactive at S1P2 (>10,000 nM) (Albert et al., 2005;Brinkmann 

et al., 2002;Mandala et al., 2002). The differing receptor affinities and potencies of FTY720-P 

and S1P suggest they might induce distinct responses in vivo, either by G protein-coupled 

signaling or byfunctional antagonism upon internalization of S1P receptors (Brinkmann, 2009). 

FTY720 has shown to have effects on heart as well. FTY720 slows spontaneous heart 

rate due to activation of the G protein-gated K+ channel IK,ACh (GIRK) activation in mouse atrial 

myocytes (Koyrakh et al., 2005). Although FTY720 is well-tolerated in humans, it produces a 

transient mild to moderate bradycardia (Schmouder et al., 2006). This bradycardia may be due to 

FTY720-induced activation of IK,ACh in sino-atrial node, which would slow phase 4 

depolarization, shift maximum diastolic potential to a more negative voltage, and shift threshold 

potential to a more positive voltage. Furthermore, FTY720 prevents ischemia-reperfusion (I/R) 

injury and I/R-associated arrhythmias. This cardioprotective effect of FTY720 is thought to 

result from activation of the Pak1 pathway (Egom et al., 2010). Moreover, in diabetic heart up-

regulation of S1PR1 by FTY720 contributes to its agonist action, and FTY720 exerts functional 

antagonism by stimulating translocation of S1PR3 from the plasmalemmal to the kinase C (PKC) 

(Brinkmann et al., 2002). Furthermore, FTY720, preferentially distributes into HDL and inhibits 

the development of atherosclerotic lesions in LDLR-/- mice on a cholesterol-rich diet (Nofer et 
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al., 2007). These effect are mediated via S1PR. Although FTY720 did not change HDL or total 

cholesterol levels or the lipoprotein profile, it protected against the development of 

atherosclerosis (Nofer et al., 2007). In addition, FTY720 was shown to effectively reduce the 

progression of atherosclerosis in apolipoprotein E-deficient mice on a high-cholesterol diet (Yin 

et al., 2012;Tolle et al., 2007). 

1.7. Role of S1P in cardiac physiology and pathology 

 Heart disease is the leading cause of death in the United States. Alteration in lipid 

metabolism leading to pathological changes in cardiovascular system has been studied 

considerably, and lipid metabolites with beneficial effects on the heart also have been identified. 

The sphingolipid metabolites regulate the function of heart by acting as second messengers to 

activate various signaling pathway, and alterations in sphingolipid metabolism are implicated in 

many cardiovascular diseases, including congestive heart failure, atherosclerosis, and 

ischemia/reperfusion injury (Karliner & Brown, 2009).  

 Sphingolipid, especially ceramide and S1P are known to accumulate in various cardiac 

diseases (Chatterjee et al., 2006;Levade et al., 2001). Sphingolipids are implicated to have effect 

on cardiac function at the level of signal transduction. Both SphK1 and SphK2 are expressed in 

cardiac myocytes (Kohama et al., 1998). Also three of the five known GPC S1PR1-3 are 

expressed in heart. Figure 4 shows the action of the three S1P receptors in heart, with their 

respective Gprotein coupling and downstream effect on the heart function (Means & Brown, 

2009). The differential expression of these receptors may contribute to differential cellular 

responses (Anliker & Chun, 2004;Ishii et al., 2004). 
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Figure 4: S1P receptor signaling in the heart(Means & Brown, 2009). For 
cited references, see Means, 2009.  
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In cardiac myocytes, the expression pattern is: S1PR1 > S1PR3 >  S1PR2 (Zhang et al., 

2007;Means et al., 2008). The pattern is similar in vascular endothelial cells, but S1PR2 levels 

are very low: S1PR1 > S1PR3 ≫ S1PR2. In contrast, cardiac fibroblast S1PR3 expression is the 

highest and S1PR2 expression is minimal, whereas  aortic smooth muscle cells have the highest 

expression of S1PR2 (Means & Brown, 2009;Alewijnse et al., 2004). 

 The cardiovascular effects of S1P signaling include hypertrophy, cardioprotection 

(Karliner et al., 2001;Zhang et al., 2007), mobilization of calcium, and effects on ion channels 

and contractility (Sugiyama et al., 2000a;Sugiyama et al., 2000b). Acting on the fibroblast, S1P 

mediates migration and proliferation, which are required for fibrosis and important in remodeling 

(Gellings et al., 2009;Takuwa et al., 2013). Additionally S1P can modulate vascular 

permeability, angiogenesis, and vascular tone (Chae et al., 2004;Wymann & Schneiter, 

2008;Visentin et al., 2006). In the blood, S1P circulates bound to high density lipoprotein 

(HDL). S1P offers cardio-protective effects by inhibiting endothelial cell apoptosis, converging 

with the cardioprotective effects of HDL (Chatterjee et al., 2006;Keul et al., 2007). In contrast, 

pro-atherogenic properties of S1P have also been cited (Keul et al., 2007).  
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1.7.1. S1P and Cardioprotection 

S1P is known to be involved in cardioprotection in both the intact heart and isolated cardiac 

myocyte models of ischemia and hypoxia (Karliner et al., 2001). Exogenously applied S1P 

enhanced the nenonatal rat cardiomyocyte survival during hypoxia (Karliner et al., 2001). 

Similarly, S1P produced intracellularly by SphK in response to FM ganglioside had similar 

cardioprotection in response to hypoxia (Karliner et al., 2001). Identical effect is observed in 

adult mouse ventricular myocytes models, and various S1PR1 and S1PR3 agonist and antagonist 

elicited predictable protective effect from hypoxia. These actions are attributed to activation of 

the PI3K signaling pathway, leading to activation of Akt and inhibition of GSK-3β (Zhang et al., 

2007). Similar to pharmacological approaches, knockout of sphingosine kinase 1 suggested that 

S1P protects the heart against hypoxic injury during glucose deprivation (Tao et al., 2007). 

 Identical to studies in isolated cardiac myocytes, S1P was shown to be protective against 

I/R injury in intact heart. Both exogenous S1P and S1P generated by the stimulation of SphK 

activity offered cardioprotection against ischemic injury which was measured by cardiac 

function such as LVDP or creatine kinase release (Vessey et al., 2008). Whereas the protection 

afforded by exogenous S1P administration was demonstrated to occur through a PKCε 

independent pathway (based on studies with PKCε knockout mice), protection afforded by 

intracellularly generated S1P required PKCε (Jin et al., 2007). Levkau's group showed protection 

of heart against damage from 30 min ischaemia/24 h reperfusion following exogenous S1P 

administration (Keul et al., 2007). Although it has been argued that S1PR1 mediates 

cardioprotection against I/R injury (Karliner, 2004), based on studies with the specific S1PR1 

agonist SEW2871, however the role of other S1PR cannot be excluded (Tsukada et al., 2007). 

There have been contradicting data about which receptors are involved in offering 
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cardioprotection. Means et. al. claims that, S1PR2 and S1PR3-mediated Akt activation protects 

against in vivo myocardial ischemia-reperfusion injury (Means et al., 2007). This contradicts 

with Karliner's group which suggests the role of S1PR1 instead. 

1.7.2. S1P and Cardiac Electrophysiology 

 Sphingolipids are known to regulate the activity of several ion channels, both cation and 

anion channels, found in cardiac myocytes. For example, the voltage-dependent K+ (Kv) channel, 

Kv2.1, is activated by the action of SMase D, which splits off choline from sphingomyelin and 

shifts the voltage-dependence of Kv2.1 activation negative by about ~30 mV; in contrast, SMase 

C, which removes the negatively charged phosphodiester as well as choline, suppresses Kv2.1 

current by 90% in a voltage-independent fashion (Ramu et al., 2006). Both SMase C and D 

strongly suppress the anion current carried by CFTR (Ramu et al., 2007)). Ceramide a metabolite 

of sphingolipid, also modulates cardiac ion channels. The HERG (KCNH2) K+ channel that 

underlies the rapid component of the delayed rectifier current, IKr, is down regulated by 

ceramide, an effect attributed to reduction of surface expression following protein ubiquitylation 

and lysosomal degradation (Chapman et al., 2005)}. In contrast, membrane permeant C2-

ceramide inhibited HERG without altering membrane expression, but HERG inhibition was 

reversed by antioxidants and the superoxide dismutase mimetic MnTBAP, which converts O2
-• to 

H2O2 (Bai et al., 2007). Findings with C2-ceramide suggested O2
-• was responsible for inhibition 

of HERG in the experimental model. Also modulaton of gating HERG by C6-cermaide has been 

attributed by the translocation of the channel within lipid rafts (Ganapathi et al., 2010). Ceramide 

also suppresses L-type Ca2+ channel current in ventricular myocytes (Schreur & Liu, 1997). 

Furthermore, our laboratory found that ceramide activated ICl,swell in ventricular myocytes, but 

this was attributed to the metabolism of ceramide rather than this lipid itself (Raucci & 
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Baumgarten, 2009;Raucci & Baumgarten, 2010;Raucci et al., 2010). The metabolic product of 

ceramide, S1P is also known to modulate various ion channel. S1P mediates both chronotropic 

and inotropic effects in the heart. Very early studies suggested S1P stimulates muscarinic 

receptor-activated inward rectifier K+ current (IK,ACh). The S1P induced current was inhibited by 

pertusis toxin suggesting a role of S1PR (Bunemann et al., 1995). Furthermore, a different study 

in freshly isolated guinea pig, mouse, and human atrial myocytes suggested that S1P-induced 

IK,ACh activation by the S1PR3 (Himmel et al., 2000). This action is attributed to activation of 

S1PR3 receptors and, as the antagonist of the receptor suramin, blocked these effects. However 

suramin is a G protein inhibitor which acts by preventing nucleotide exchange (Beindl et al., 

1996;Keul et al., 2007;Nanoff et al., 2002). Thus the receptor subtype cannot be confirmed by 

the effects of suramin. Also activation of IK,ACh by S1PR3 is thought to explain S1P-induced in 

bradycardia in mice and humans (Sanna et al., 2004) .However work from Landeen et.al 

demonstrated that IK,ACh can contribute to the negative inotropy following S1P activation of 

S1PR1 (perhaps through Giβγ subunits in mice) (Landeen et al., 2008). Moreover, recent work 

utilizing heterologously expressed receptors, human atrial myocytes, and phase I clinical trial 

data also argues that S1PR1 rather than S1PR3 is largely responsible for S1P-induced activation 

of IK,ACh and bradycardia in man and attributes the discrepancy with previous analyses to 

species-specific effects (Gergely et al., 2012). FTY720, an S1PR agonist, mimics effects of S1P 

by activating IK,ACh (Koyrakh et al., 2005). S1P slows down the pacemaker activity of the 

sinoatrial node cells in vitro and in vivo in majority of models, including human (Ochi et al., 

2006;Guo et al., 1999). The chronotropic effects of S1P also are exhibited in mouse ventricular 

myocytes, where it causes cell shortening (Means et al., 2008). Recently studies in anesthetized 

and conscious rats administered with two clinically tested S1P agonists, FTY720 or BAF312, 
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suggest that S1PR1 mediates bradycardia while hypertension is mediated by S1PR3 activation 

(Fryer et al., 2012). 

S1P also antagonizes the effect of isoproterenol-induced increase in cAMP and positive 

inotropy (Landeen et al., 2008). These studies were done using the pharmacological agents 

SEW2871 agonist for S1PR1 and VPC23019 antagonist for S1PR1&3, S1PR1 receptor plays a 

predominant role in mediating the negative inotropic effects in mouse ventricular myocytes 

(Landeen et al., 2008). However, the role of other the two S1P receptors cannot be ruled out. 

 Sphingolipids have been implicated in regulation of chloride channel in cardiac muscle, 

(d'Anglemont de Tassigny et al., 2003). SMaseD induces inhibition of CFTR current, thereby 

modulating Cl− channel in chronic inflammatory diseases (Ramu et al., 2007). Furthermore it 

was demonstrated that ceramide inhibits CFTR-activity of the apical membrane (Ito et al., 2004). 

In cultured keratocytes isolated from wounded rabbit corneas, S1P activates a lysophosphatidic 

acid (LPA)-activated Cl− current that outwardly rectifies with a physiologic Cl− gradient (Wang 

et al., 2002). Although the authors claimed the current was the volume-sensitive Cl− current, they 

did not demonstrate volume-sensitivity nor provide the pharmacological or biophysical evidence 

necessary to distinguish between Cl− channels. In xenopus oocytes, both S1P and LPA activate 

an oscillatory Ca2+-activated Cl− current by receptor-dependent release of Ca2+ from an IP3-

sensitive site (Noh et al., 1998).  

1.8. S1P and ROS signaling 

 Sphingolipid signaling is known to produce ROS in response to various stimuli. S1P 

generates ROS production in response to elevated transmural pressure in ex vivo model of 

isolated resistance vessels, from skeletal muscle. The initial elevation in ROS was entirely 

dependent on the activation of NADPH oxidase,(Keller et al., 2006). Moreover S1PR1 protein 
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expression is increased in cultured bovine aortic endothelial cells response to exogenous H2O2 

without an alteration in mRNA levels (Igarashi et al., 2007). Hence there could be a possible 

feedback response modulating ROS production by S1P receptors. There have been reports of 

S1PR1 mediated activation of ROS signaling, that regulates the egress of both hematopoietic 

progenitors and BM stromal cells (Golan et al., 2012). There have been studies where SphK is 

responsible for NOX production in neutrophils. This NOX production is shown to be Ca2+ store 

depletion-dependent SphK activation (Schenten et al., 2011). Similarly in human leukemia cell 

line, inhibitor of SphK, DMPS, was responsible for apoptosis, and ROS were the critical 

regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells (Kim et al., 2009). 

 There is growing evidence that the sphingolipids also play a role in the cellular response 

to oxidative stress. I/R injury leads to ROS generation and apoptotic cell death, and ceramide 

generation has been implicated in mediating cell death in response to ROS in a variety of tissues, 

including liver (Llacuna et al., 2006), brain (Ohtani et al., 2004), and heart (Bielawska et al., 

1997). In the heart, I/R rapidly activates neutral sphingomyelinases in a ROS-dependent manner. 

In cardiomyocytes, there are two primary sources of ROS: NADPH oxidase (NOX) and the 

mitochondrial electron transport chain (ETC). Evidence shows that S1P can activate ROS 

production via NOX and increases H2O2 production in murine fibroblasts (Catarzi et al., 2011). 

This response was PI-3K- and PKC-dependent and was similar to PDGF-induced NOX 

activation, and both S1PR1 and S1PR3 receptors and Gi signaling were involved. During hypoxia 

and pre-conditioning an increased mitochondrial ROS production is associated with 

sphingolipids, in experimental models in Fibroblastic L-cells (Lecour et al., 2006). Furthermore, 

a similar increase in mitochondrial ROS is observed in a heart failure model (Lecour et al., 

2006;Llacuna et al., 2006). Studies in SphK1 transgenic mice suggested that chronic activation 
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of SphK1-S1P signaling results in both pathological cardiac remodeling through ROS mediated 

by S1PR3 activation and favorable cardioprotective effects (Takuwa et al., 2010). 

 Furthermore, sphingolipid signaling cascades overlap significantly with modulators of 

ICl,swell. ICl,swell is known to be spontaneously activated in various model of heart diseases. Also 

ROS is the key regulator of ICl,swell. Thus sphingolipid signaling is likely to play an important 

role in stimulating ROS production and activating ICl,swell in a number of cardiovascular diseases. 

Thereby sphingolipid can act as effector molecules mediating cardiac function in 

pathophysiological conditions.  

1.9. HL-1 cells as a potential tool to investigate ICl,swell   

 HL-1 cells are an immortalized murine atrial cell line derived from a primary culture of 

SV40 large T antigen-induced atrial tumors. This cell line may be repeatedly passaged while 

maintaining its contractile, morphological and electrophysiological characteristics (Claycomb et 

al., 1998). Studies utilizing a variety of genetic, immunohistochemical, electrophysiological, and 

pharmacological techniques have demonstrated that HL-1 cells possess many of the features of 

adult atrial cardiomyocytes and are a useful experimental tool. For example, cardiac muscle cell 

structure and function have been assessed in HL-1 cells (McWhinney et al., 2000), and calcium 

handling was studied using the three ryanodine receptor (RyR) mutations associated with stress-

induced ventricular tachycardia in humans (George et al., 2003). Electrophysiological studies in 

HL-1 cells characterized the delayed rectifier K+ current (IKr), (Claycomb et al., 1998;Akhavan 

et al., 2003), L- and T-type Ca2+ currents (Xia et al., 2004), and pacemaker current (Sartiani et 

al., 2002). HL-1 cells also have been used to study the cardiac response to pathological states, 

including hypoxia (Nguyen & Claycomb, 1999;Cormier-Regard et al., 1998), 

ischemia/reperfusion injury (White et al., 2004;Ruiz-Meana et al., 2006), apoptosis (Kim et al., 
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2003;Carlson et al., 2002), and rapid pacing-induced electrical remodeling (Yang et al., 2005). 

The rennin-angiotensin system machinery is expressed in HL-1 cardiomyocytes, and exogenous 

Ang II modulates  L-type Ca2+ channels via a NOX-dependent pathway (Tsai et al., 2008;Tsai et 

al., 2007). Moreover, preliminary data from this laboratory demonstrates that ICl,swell is present in 

HL-1 myocytes and is regulated by ET-1 signaling and by ROS generated by NOX and 

mitochondria in a similar manner to native cardiomyocytes (Deng et al., 2010c). Furthermore, 

our preliminary studies showed that S1P activated ICl,swell in HL-1. Because this cell line would 

be amenable to molecular approaches initially considered, we decided to define the S1P 

signaling pathway responsible for the activation of ICl,swell in the HL-1 cell model. 

1.10. The objective of the present study 

 The objective of this study were the following (1) to determine the signaling mechanisms 

utilized by S1P to activate ICl,swell in heart either via GPC-S1PR or via intracellular binding site, 

and (2) whether S1P activates ICl,swell, a ROS-activated current, by triggering ROS production by 

NOX, mitochondria or both. This work extends earlier studies in the laboratory demonstrating 

that SMase C and ceramide activate ICl,swell (Raucci & Baumgarten, 2009). These studies 

demonstrated SMase-induced current is also suppressed by DCPIB, which under conditions that 

isolate anion currents is a specific inhibitor of ICl,swell. SMase-induced ICl,swell was inhibited by 

ebselen, a membrane permeant glutathione peroxidase mimetic that breakdowns H2O2 to H2O. 

Thus, the role of ROS was demonstrated as a modulator of SMase-induced activation of ICl,swell. 

Preliminary data from our laboratory using whole cell patch clamp recording showed that 

exogenous S1P (500 nM, 10 min) activated outwardly rectifying Cl- current with a reversal 

potential near ECl. This current was fully inhibited by addition of DCPIB (10 μM, 10 - 12 min) in 

the continued presence of S1P. Sphingosine is converted to S1P by the action of SphK. The 
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Sphingosine kinase inhibitor DL-threodihydrosphginosine (10 μM, 15 – 20 min) fully inhibited 

bacterial SMase-induced ICl,swell. Thus SMase induced production of sphingosine does not get 

converted to S1P due to the use of inhibitor of SphK. Thus, S1P rather than upstream 

sphingolipids must be responsible for the observed effects of SMase C and ceramide on ICl,swell. 

Moreover previously it is demonstrated that SMase-induced Cl− current is mediated by ROS 

(Raucci & Baumgarten, 2009). Furthermore, the source of ROS modulating ICl,swell in response to 

exogenous S1P application was tested. As found for the SMase-induced Cl− current, the 

activation of ICl,swell by S1P was completely inhibited by rotenone (10 μM, 15 – 20 min) a 

mitochondrial Complex I inhibitor. However, in contrast to SMase-induced ICl,swell, addition of 

apocynin (500 μM, 10 min) inhibitor of NADPH oxidase, in the continued presence of S1P 

partially reduced the S1P-induced Cl− current. The following aims were addressed in this study 

SphK/S1P pathway and cardiac G protein coupled S1P receptors (S1P1-3) modulate the activity 

of ICl,swell. S1P receptor signaling modulates ICl,swell by ROS production via either NADPH 

oxidase, mitochondria or both. Furthermore the aim of this study was to test if S1P elicits ICl,swell 

via its binding to intracellular target(s) or plasmalemmal S1P receptors. 
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2.1 Culture of HL-1 cardiomyocytes 

HL-1 cardiac myocytes passage 69-89, an immortalized mouse atrial cell line (Claycomb 

et al., 1998), were used for the studies. Tissue culture dishes were first coated with a gelatin 

(Becton-Dickinson 214340) (0.02%)/fibronectin (Sigma F1141 comes as 1 mg/ml) (0.5%) 

mixture (3 mL in 60 x 15 ml mm dishes) and incubated overnight at 37°C. HL-1 cells were 

cultured in pre-coated dishes using Claycomb medium (Sigma-Aldrich 51800C) supplemented 

with 10% fetal bovine serum (Sigma-Aldrich, F2442), 100 μg/mL penicillin/streptomycin 

(Cellgro 30-002-CI), 0.1 mM norepinephrine (Sigma-Aldrich A0937), and 2 mM L-glutamine 

(Invitrogen/Life Technologies, 25030-081). The cells were kept at 37°C in an atmosphere of 5% 

CO2 and 95% air at a relative humidity of approximately 95%. Once the cells reached 

confluence, they were passaged in a 1:3 split. To split the HL-1 cells, they were briefly rinsed 

with Dulbecco’s phosphate buffered saline without Ca2+ or Mg2+ (DPBS; Quality Biological 

QBI14057101) and then incubated with 0.05% trypsin/0.481 mM EDTA-Na2  
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(2 mL for 60 x 15 ml10 mm dish; Life Technologies, 25300120 & 25200056, respectively) at 

37°C for 2 min until the cells dissociated from the flask surface. Double the amount of soybean 

trypsin inhibitor (25 mg/100 mL DPBS; Life Technologies, 17075029) was added directly to 

flask, and then the contents were transferred to a 15 mL centrifuge tube. The cells were 

centrifuged at 1100 rpm for 5 min, the supernatant was removed by aspiration, and the pellet was 

gently resuspended in 3 mL of supplemented Claycomb medium and incubated for 1 hour. For 

culture preparation, the cells were transferred to gelatin/fibronectin-coated dishes. For 

electrophysiological studies, the cells were spun after an hour incubation, the supernatant media 

removed and the pellet re-suspended in 5 ml of 1T bath solution. 

2.2. Experimental solutions and drugs 

 Bath and pipette solutions were designed to isolate the Cl- current. Isosmotic bath 

solution (1T; 300 mOsm/kg; T, times isosmotic) contained (in mM): 90 N-methyl-Dglucamine-

Cl, 3 MgCl2, 10 HEPES, 10 glucose, 5 CsCl, 0.5 CdCl2, 70 mannitol (pH 7.4, adjusted CsOH). 

Hyperosmotic bath solution (1.5T, 450 mOsm/kg) had the same composition except for an 

additional 150 mM mannitol, and hypoosmotic bath solution (0.85T, 255 mOsm/kg) contained 

60 mannitol. Pipette solution contained (in mM): 110 Cs-Aspartate, 20 TEA-Cl, 5 Mg-ATP, 0.1 

Tris-GTP, 0.15 CaCl2, 8 Cs2-EGTA, 10 HEPES (pH 7.1, adjusted with CsOH). To make 

symmetrical Cl− pipette solution, 82 mM CsCl replaced an equal amount of Cs-aspartate. 

Osmolarity was verified by freezing-point depression. 

 Stock solutions of D-erythro-sphingosine-1 phosphate in methanol (S1P; 1 mM, 

Cayman), FTY720 in ethanol (FTY; 0.5 or 10 mM, Cayman), SEW2871 in DMSO (SEW; 10 

mM, Cayman), VPC23019 in DMSO (VPC; 130 nM or 13 µM, Tocris), CAY10444 or BML-

241 in DMSO (CAY; 1 or 10 mM, Tocris), and DCPIB (20 mM; Tocris) in DMSO purged under 
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argon were frozen (−20°C) in aliquots until use.  Gallein (10 mM, Tocris) in DMSO, stored at 

(−20°C) in alliquots until use, Rotenone (20 mM, Sigma-Aldrich). The NADPH oxidase 

inhibitor gp91ds-tat, a membrane permeant fusion peptide, was synthesized by the Tufts 

University Core Facility, and stocks  in 150 mM NaCl plus 10 mM acetic acid were frozen (–

20°C) in aliquots until use. 

2.3. Whole cell patch clamp and electrophysiological recordings 

HL-1 cells were scattered on a glass-bottomed chamber and placed on the stage of an 

inverted light microscope (Nikon) with Hoffman modulation optics, and a high resolution video 

camera (CCD72; Dage-MTI) was used to visualize individual cells. Cells were suprafused with 

bath solution at 2−3 mL/min, and recordings were made at room temperature (22–23°C). Pipettes 

were pulled from 7740 thin-walled borosilicate capillary tubing (Sutter) and were fire polished to 

a final tip diameter of approximately 3 µm with a resistance in bath solution of 2 – 4 MΩ. 

Membrane currents were recorded in the whole-cell configuration using an Axopatch 200B 

amplifier and Digidata 1322A data acquisition system (Axon). A 3-M KCl agar bridge served as 

the ground electrode. Seal resistances of 2 – 10 GΩ typically were obtained, and membrane 

capacitance routinely was measured. All membrane potential data were corrected for the 

measured liquid junction potential, and myocytes were dialyzed with pipette solution for 3-5 min 

prior to the start of recording. Voltage clamp protocols and data acquisition were controlled by 

pClamp 8.2 (Axon). Successive 500-ms voltage steps were implemented from a holding potential 

of −60 mV to test potentials ranging from −100 to +60 mV in +10 mV increments. Membrane 

currents were low-pass filtered at 2 kHz and digitized at 5 kHz. Representative current traces 

were low-pass filtered at 500 Hz for presentation, and the displayed I-V curves are from the 
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corresponding current traces. To minimize variability, experiments were designed to use cells as 

their own controls.  

2.3.1. Intracellular application of agents:  

 In some cases, S1P and FTY720 were delivered via the patch pipette. In these studies, 

pipettes first were dipped in drug-free solution for 60 s, taking up a ~1 mm column of solution 

by capillary action. Then, the pipettes were backfilled with drug-containing media, and whole 

cell recordings were begun within ~2 min. Therefore, the initial traces were obtained under 

control condition, and the cell served as its own control. 

 The claim that diffusion of S1P (MW 379.5 Da) and FTY720 (MW 343.9 Da) were slow 

enough for the cells to serve as its their control is supported by the fact that the current was 

stable before drug-induced current activation. This assertion is also supported by numerical 

estimates.  Einstein’s classic theory of diffusion arising from Brownian motion and the Stokes-

Einstein equation consider spherical solute particles that are much larger than their solvent (for 

detailed discussion, see (Hille, 2001;Crank, 1975)). Their analysis found that the diffusion 

coefficient, D, is inversely proportional to r3, where r is the radius of the solute, and that r is 

proportional to M, the solute’s molecular weight. Using glucose (MW 180 Da; observed D = 6.8 

× 10-6 cm2/s; (Finch, 1995).) as an index, the inverse cubic relationship between MW and D 

suggests that D for S1P and FTY720 should be 5.31 and 5.48 × 10-6 cm2/s, respectively, similar 

to the observed D of 5.2 × 10-6 cm2/s for cellobiose (MW 342 Da) (Finch, 1995). In a 1-

dimensional system, as approximated by the nearly parallel sides of the pipette tip, the root 

mean-square diffusion distance, rrms, equals (2Dt)1/2. Thus, the time required for S1P or FTY720 

to diffuse ~1 mm through the column of drug-free media is 942 and 912 s, or 15.7 and 15.2 min, 

respectively. These calculations should be regarded only as estimates, however. First, S1P and 
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FTY720 are not spherical and may remain associated with their hydrophobic solvent in pipette 

solution; both will alter D. Second, the height of the column is an estimate, and bulk flow during 

backfilling the pipette may have reduced the drug-free column height. Third, the time calculated 

here is for the rrms drug concentration, and the “leading edge” of diffusion is faster. Nevertheless, 

the calculations suggest that the diffusion time for these agents is likely to be long compared to 

the time require to make a seal and begin recording, confirming the idea that the cell can be used 

as its own control. 

2.4 Western Blots 

2.4.1 Protein extraction for western blots  

 HL-1 cells were grown to 90% confluence, and the media was removed by aspiration. 

The dish was then rinsed with 10 mL of ice-cold PBS. Next, ice-cold RIPA cell lysis buffer (200 

µL) was added [RIPA lysis buffer: 25 mM TRIS-HCl (pH 7.5), 150 mM NaCl, 1% NP-40 

(detergent solution), 1 mM Na3VO4, and 1× Protease Inhibitor Cocktail (Sigma-Aldrich; 

P2714)]. To dislodge and break the cells, RIPA lysis buffer was repeatedly pipetted slowly. The 

resulting lysate was transferred into 2 ml Eppendorf tube, and was again pipetted 15-times. The 

cell lysis solution was then sonicated on ice for 10 s to break the cells apart. Next, the lysate was 

subject to centrifugation at 12,000 × g in a pre-cooled centrifuge for 15 min. The supernatant was 

immediately transferred to a fresh centrifuge tube, and the pellet was discarded. Protein 

concentration as determined with a BCA protein assay kit (Thermo Scientific; 23227), and the 

sample was divided into aliquots and stored at -80OC for further use. 
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2.4.2 Immunoblotting for S1PRs 

 Total protein (30 μg) was loaded into 10% Bis-Tris polyacrylamide electrophoresis gels 

(Life Technologies) and after electrophoresis was subsequently transferred to a nitrocellulose 

membrane (Life Technologies). After the transfer, membranes were blocked for 2 h at room 

temperature in blocking buffer [Tris buffered saline plus Tween-20 (TBS-T); 10 mM Tris, 

150mM NaCl, 0.1 % Tween-20, pH 7.5 with 10 % instant non-fat dried milk. The membrane 

was then incubated overnight at 4ºC in the same buffer with antibody, polyclonal rabbit anti-

S1PR1-3 (1:500; Santa Cruz’ sc-25489, sc25491, sc-30024). The following day, membranes were 

washed four times for 10 min in TBS-T, blocked for 30 min, and subsequently incubated for 1 h 

in secondary antibodies using goat anti-mouse IgG-HRP (1:10,000; Santa Cruz; sc-2004). After 

four 10-min washes in TBS-T and two 10-min washes in TBS, immunodetection of S1PR 

protein was accomplished using an ECL system and X-ray film (exposure, 1-5 min). The 

following day, the membranes were stripped, blocked for 30 min at room temperature in Tris-

buffered saline plus TBS-T with 3% instant non-fat dried milk and incubated for 2.5 h at room 

temperature in the same buffer with polyclonal, rabbit, anti-cyclophilin A (1:5,000; Millipore, 

07-313). Membranes were then washed three-times for 10 min in TBS and subsequently 

incubated for 1 h in secondary antibodies using goat anti-rabbit IgG-HRP (1:5,000; Rockland, 

611-1302). After three 10-min washes in TBS-T and two ten-min washes in TBS, 

immunodetection of cyclophilin-A protein was accomplished using an ECL system (exposure, 1-

5 min).  

2.4.3. Densitometry:  
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 Densitometric analysis was used to quantify S1PR protein expression levels by 

determining the ratio of intensity of each band relative to that of goat anti-rabbit cyclophilin-A, 

which was used as a loading control. Analysis  was done using Quantity One software and the 

VersaDoc Imaging System (BioRad). 

2.5 Statistics 

 Summary patch clamp data are reported as mean ± SEM; n denotes the number of cells. 

Mean currents are expressed as current density (pA/pF) to account for differences in myocyte 

surface membrane area, and selected paired comparisons are expressed as a percentage or as the 

intervention-induced difference current. Statistical analysis was executed using SigmaStat 3.11 

(Systat). For multiple comparisons, a One-Way or a One-Way Repeated Measures ANOVA was 

performed followed by a Holm-Sidak test for all pair wise comparison. Non-linear curve fits 

were done in SigmaPlot 10.0 (Systat) using the Hill equation. In case of comparing the current 

densities of two independent groups, unpaired t test were used. In all case, P < 0.05 was taken as 

significant. 
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Chapter 3 Results 

 

 

 

 

3.1. Exogenous sphingosine-1-phosphate activates a Cl− current resembling ICl,swell in HL-1 

cardiac myocytes 

As shown in Figure 5, sphingosine-1-phosphate (S1P; 500 μM, 5 – 10 min), a bioactive 

sphingolipid molecule, activated an outwardly-rectifying Cl− current with a reversal potential 

near the Cl− equilibrium potential (ECl), −43 mV , under isosmotic conditions. S1P increased 

current at +60 mV by 3.84 ± 0.87 pA/pF (n = 17, P <0.001), from 1.48 ± 0.18 to 5.32 ± 1.06 

pA/pF, and a S1P-induced current was observed in >60% of the cells tested. Addition of DCPIB 

(10 μM, 5-10 min), a highly selective ICl,swell blocker (Decher et al., 2001), inhibited the S1P-

induced Cl− current by 113 ± 8% (n = 5, P < 0.001) in the continued presence of S1P, and there 

was no significant difference between the DCPIB-inhibited and control currents (n = 5). The 

greater than 100% block of S1P-induced current by DCPIB suggests that there may have been a 

small amount of basal activation of the current under control condition, as previously reported in 

adult myocytes (Baumgarten & Clemo, 2003;Sorota, 1992).One of the characteristic property of 

ICl,swell is that it is outwardly rectifying under both physiological as well as symmetrical chloride 

gradients, distinguishing it from other Cl- currents, such as CFTR, that exhibit linear current 
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voltage relationships with a symmetrical chloride gradient (Hume et al., 2000). S1P-induced 

current was outwardly rectifying under symmetrical as well as physiological chloride solutions.  
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Figure 5: Sphingosine-1 phosphate (S1P) elicited a Cl− current in HL-1 atrial cardiac 
myocytes that resembled ICl,swell. (A) Families of currents under control conditions (Ctrl), and 

after treatment with 500 nM [S1P]out for 10 min, and after addition of DCPIB (+DCPIB; 10 μM, 

5 min) in the continued presence of S1P. Each cell was used as its own control; holding 

potential, −60 mV; test potentials, −100 to +60 mV. (B) Current-voltage (I-V) relationships for A; 

cell capacitance, 15.8 pF. (C) Current densities at +60 mV. S1P increased Cl− current by 3.84 ± 

0.87 pA/pF (n = 14, P < 0.001). The S1P-induced current was inhibited by 113 ± 8% (n = 5, P < 

0.001) by the ICl,swell-specific inhibitor DCPIB. One-way repeated measures ANOVA and Holm-

Sidak test were used for all pairwise comparison. 
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Figure. 6 shows the response to exogenous S1P when Cl- was 100 mM in both bath and 

pipette solutions (i.e., symmetrical). The Cl- current elicited by S1P (500 nM) continued to 

outwardly rectify. Thus, the S1P-induced current showed both outward rectification under 

physiological and symmetrical Cl- conditions and block by DCPIB. These features are diagnostic 

for ICl,swell.   
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Figure 6: Sphingosine-1-phosphate (S1P) elicited a Cl− current in HL-1 atrial 
cardiac myocytes in symmetrical chloride solution. (A) Families of currents under 
control conditions (Ctrl), and after treatment with 500 nM [S1P]out for 10 min, and after 
addition of DCPIB (+DCPIB; 10 μM, 5 min) in the continued presence of S1P. Cl− 
concentrations: bath, 100 mM; pipette, 100 mM. (B) I-V relationships for A. (C) Current 
densities at +60 mV. S1P increased Cl− current by 12.01 ± 2.21 pA/pF (n = 4, P < 0.001). 
The S1P-induced current was inhibited by 104 ± 18% (n = 4, P < 0.001) by DCPIB. The 
mean current shown in C represents the unpaired comparison of the data. However the 
percent values of inhibition by DCPIB is derived from paired analysis, where the cell is 
used as its own control.  
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3.2. Role of G protein coupled-S1P receptors  

 Most of the actions of S1P are mediated by its binding to G protein-coupled S1P 

receptors (Means & Brown, 2009;Karliner & Brown, 2009). S1P is produced inside cells by the 

action of sphingosine kinases, and it is transported out of cells via ABC cassette binding proteins 

known as ABC transporters. S1P then acts as a ligand for a family of five G protein-coupled 

receptors, termed S1PR1-5, formerly called endothelial differentiation gene (EDG) receptors. 

Three (S1P1-3) out of the five receptors are present in heart (Means & Brown, 2009).  

3.2.1 S1P receptor agonists elicit ICl,swell  

 Previous work in our laboratory demonstrated that the G protein-coupled angiotensin II 

AT1 receptor, the endothelin ETA receptor, and the epidermal growth factor EGF receptor 

activate ICl,swell in response to osmotic swelling and mechanical stretch (Browe & Baumgarten, 

2004;Ren et al., 2005;Browe & Baumgarten, 2005;Browe & Baumgarten, 2006). To test the 

hypothesis that S1P also activated ICl,swell via G protein coupled receptors, we initially made use 

of receptor agonists. SEW2871, a small heterocyclic compound, and FTY720, an S1P analog, are 

agonists of the S1PR1 (Tsukada et al., 2007) and S1PR1&3 (Brinkmann et al., 2002;Brinkmann, 

2009), respectively. If S1P1 and/or S1P3 are involved in the activation of ICl,swell, by S1P, these 

compounds should act as mimetics and also activate the current As shown in Figure 7, SEW2871 

(SEW; 1 μM, 5 – 10 min), activated an outwardly-rectifying Cl− current with a reversal potential 

near ECl under isosmotic conditions. Current at +60 mV increased by 2.69 ± 0.62 pA/pF (n = 5, P 

<0.001), from 1.98 ± 0.38 to 4.66 ± 0.1 pA/pF.  
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Figure 7 SEW2871, a selective agonist for S1PR1, elicited ICl,swell. (A) Families of 
currents under control conditions (Ctrl), and after treatment with 1 µM exogenous 
SEW2871 (SEW) for 10 min, and after addition of DCPIB (+DCPIB; 10 μM) in the 
continued presence of SEW. (B) I-V relationships for A. (C) Current densities at +60 
mV. SEW increased Cl− current from 1.98 ± 0.38 to 4.66 ± 0.1 pA/pF (n = 5, P < 
0.001). DCPIB inhibited SEW-induced current by 103 ± 12%.  
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Addition of DCPIB (10 μM, 5-10 min), a highly selective ICl,swell blocker, inhibited the 

SEW-induced Cl− current by 103 ± 12 % (n = 5, P < 0.001) in the continued presence of SEW, 

and there was no significant difference between the DCPIB-inhibited and control currents. 

Because SEW2871 is a selective S1PR1 agonist (Tsukada et al., 2007), these data are consistent 

with the idea that G protein-coupled S1PR and specifically S1PR1 was responsible for the 

activation of ICl,swell by exogenous S1P. 

FTY720 (FTY), an S1PR1&3 agonist, is used as an immunosupressor in the treatment of 

multiple sclerosis (Kappos et al., 2006). Based on the response to exogenous SEW2871, an 

S1PR1 agonist, we predicted that exogenous FTY720 also would activate ICl,swell. The literature 

indicates that 100 nM exogenous FTY720 ([FTY]out) is sufficient to activate S1PR1&3 and their 

downstream signaling targets (Egom et al., 2010;Forrest et al., 2004;Yin et al., 2012), including 

IK,ACh in cardiac myocytes (Fryer et al., 2012;Koyrakh et al., 2005). As shown in Figure 8, 

however, 100 nM [FTY]out (10 min) failed to activate ICl,swell under isoosmotic condition. To 

verify that the channels responsible for ICl,swell were present, 100 µM H2O2, was added to the 

same cells in the continued presence of FTY. H2O2 previously was shown by our lab to activate 

ICl,swell under isoosmotic conditions and acts downstream in the signaling cascade (Ren et al., 

2008;Deng et al., 2010c). Despite their insensitivity to 100 nM [FTY]out, ICl,swell in the same 

cells was activated by 100 µM H2O2, confirming the expression of the channels underlying this 

current. Moreover, increasing the applied concentration 10-fold to 1 μM [FTY]out also failed to 

significantly evoke ICl,swell (n = 3, P = 0.338 data not shown). 
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Figure 8: Exogenous FTY720, an agonist for S1PR1&3, failed to activate ICl,swell 
(A) Families of currents under control conditions (Ctrl), and after treatment with 100 
nM [FTY]out for 10 min, and after addition of H2O2 (100 μM) in the continued 
presence of FTY. (B) I-V relationships for A. (C) Current densities at +60 mV. FTY 
failed to activate significant current under isosmotic conditions. In the same cells, 
H2O2 (100 µM) increased Cl− current from 1.72 to 5.15 ± 1.71 pA/pF (n = 4, P < 
0.001) demonstrating that the ICl,swell was expressed and could be activated by a 
downstream effector. 
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 Figure 9 illustrates the response to 10 μM [FTY]out, a 100-fold higher concentration 

than that nominally required to activate G protein receptor-coupled signaling. At this very high 

concentration, [FTY]out increased ICl,swell, from 0.93 to 4.30 ± 0.39 pA/pF at + 60 mV (n = 4, P 

< 0.001), and the FTY-induced current was completely blocked by DCPIB (101 ± 8%). Thus, 

although exogenous FTY720 was able to elicit ICl,swell, the action of this agent appeared to have 

an exceptionally low potency compared to other published measures of FTY720-induced S1P1&3 

signaling. 

FTY720 is a prodrug and must be taken up, phosphorylated by intracellular SphK2 to its 

active phosphorylated form, FTY720-P, and then exported via an ABC transporter before it can 

reach plasmalemmal S1PR that face the extracellular environment (Brinkmann, 2007). Once 

phosphorylated and exported, FTY720-P can bind to and activate all of the G protein-coupled 

S1PR except S1PR2. This raised the possibility that uptake, phosphorylation or export of 

FTY720 were defective. When exogenous FTY720 was applied, such defects might substantially 

lower the concentration of FTY720-P at the cell membrane surface and, thereby, both might 

significantly reduce the G protein receptor-dependent signaling necessary to evoke ICl,swell and 

the potency of exogenous FTY720. If this was the case, exogenous application of FTY720-P 

should bypass the postulated defects and should potently elicit ICl,swell under isosmotic 

conditions, as was observed with both exogenous S1P and the S1PR1 agonist SEW2871. To the 

contrary, 100 nM [FTY-P]out also failed to significantly activate ICl,swell. (n = 3, P = 0.104 data 

not shown). Moreover, Figure 10 shows a comparison of FTY-P 100 nM vs. FTY-P 10 µM. 

FTY-P (100 nM) activated significantly less current, 1.90 ± 0.34 pA/pF, than FTY-P (10 µM), 

4.92 ± 0.97 pA/pF. There was no statistical difference between current activated at Ctrl 

conditions vs. [FTY-P]out (100 nM)-induced current (not shown). However there was statistical  
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Figure 9: FTY720, a selective agonist for S1PR1&3, elicited ICl,swell. (A) Families of currents 
under control conditions (Ctrl), and after treatment with 10 µM [FTY]out for 10 min, and after 
addition of DCPIB (+DCPIB; 10 μM) in the continued presence of FTY. (B) I-V relationships 
for A. (C) Current densities at +60 mV. FTY increased Cl− current from 0.93 to 4.30 ± 0.39 
pA/pF (n = 14, P < 0.001). DCPIB inhibited FTY-induced current by 101 ± 8% (n = 4). 
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difference between the current activated by [FTY-P]out (10 µM).vs. control as shown in Figure 

13. where FTY-P (10 µM) increased the current from 1.77 to 4.92 ± 0.61 pA/pF (n = 5, P < 

0.001). This argues that failure of the uptake, phosphorylation of FTY720 or export of FTY720-

P are not sufficient to explain the observed insensitivity to FTY720 and FTY720-P. 
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Figure 10: Extracellular FTY-P- (100 nM) vs. FTY-P (10 µM)- induced 
current. Comparison of ICl,swell current density with FTY-P (10 µM, 10 min) (n 
= 5) applied outside of myocytes elicited significantly greater ICl,swell than 
FTY-P (100 nM) (n = 5) in the two groups of cells (P = 0.036). FTY-P (100 
nM) activated significantly less current, 1.90 ± 0.34 pA/pF, than FTY-P (10 
µM), 4.92 ± 0.97 pA/pF. Mann-Whitney Rank Sum Test was utilized for 
statistical analysis. There was no statistical difference between current 
activated at Ctrl conditions vs. [FTY-P]out (100 nM)-induced current (not 
shown). However there was statistical difference between the current 
activated by [FTY-P]out (10 µM).vs. control as shown in Figure 13. Where 
FTY-P (10 µM) increased the current from 1.77 to 4.92 ± 0.61 pA/pF (n = 5, 
P < 0.001). 
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3.2.2 Inconsistencies in block of S1P- and FTY720-induced activation of ICl,swell by 

nominally specific S1P receptor antagonists. 

The ability of exogenous S1P and a high concentration of exogenous FTY720 to activate 

ICl,swell under isosmotic conditions raised the possibility that S1PR are involved in signaling 

pathway that evoked channel activation but could not simply explain the low potency of FTY720 

nor the insensitivity to FTY720-P. To further explore the role of S1PR, we determined whether 

well-defined SIPR antagonists had their expected effects on S1P- and FTY720-induced ICl,swell 

activation. Exogenous S1P is expected to stimulate all three cardiac S1PR (S1PR1-3), whereas 

exogenous FTY720 is expected to stimulate only S1PR1&3.  

First, we examined the action of CAY10444 (CAY), a selective antagonist for S1PR3 in 

the presence of [S1P]out. CAY10444 is a selective antagonist of S1P binding to the S1PR3 

receptor. For example, CAY strongly suppresses reduced S1PR3-dependent S1P-induced calcium 

increase in HeLa cells (Pyne & Pyne, 2011). Also CAY inhibits, increase in intracellular calcium 

mediated by P2 receptor or α1A-adrenoceptor stimulation in CHO cells and reduces α1A-

adrenoceptor stimulated contraction of mesenteric artery by acting on S1PR3.(Jongsma et al., 

2006). As seen in Figure 11, in the presence of 500 nM extracellular S1P, CAY (10 µM, 10 min) 

inhibited the S1P-induced current by 90 ± 10%. These data are consistent with the notion that 

S1P elicits ICl,swell by acting a ligand for S1PR3 and, thereby, triggering a signaling pathway that 

is responsible for fully activating the current. On the other hand, we expect that S1P also will 

have activated S1PR1, and previously we showed that an S1PR1 agonist, SEW, activated ICl,swell. 

Such effects via S1PR1, should not have been abrogated by a CAY, a selective S1PR3 antagonist.  
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Figure 11: CAY10444, a selective antagonist for S1PR3, blocked S1P-induced 
ICl,swell. (A) Families of currents under control conditions (Ctrl), and after treatment with 
500 nM [S1P]out for 10 min, and after addition of CAY10444 (+CAY; 10 μM) in the 
continued presence of extracellular S1P. (B) I-V relationships for A. (C) Current 
densities at +60 mV.  S1P increased the current from 1.46 to 5.43 ± 0.67 pA/pF (n = 5, 
P < 0.001). S1P-induced current was blocked 90 ± 10% by CAY, and current after 
block was not significantly different than the Ctrl.  
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To further test whether S1PR1 and/or S1PR3 modulate ICl,swell, we utilized VPC23019 

(VPC), an antagonist for S1PR1&3 (Davis et al., 2005). Contrary to the expectation, VPC (13 µM, 

10 min) failed to block the S1P-induced current. Figure 12 shows that [S1P]out-activated 

outwardly rectifying chloride current under isoosmotic conditions and that  VPC had no effect on 

ICl,swell in the continued presence of S1P. Nevertheless, the S1P-induced current was completely 

blocked by DCPIB in the presence of VPC, confirming that the current activated by S1P was 

ICl,swell.  

The next step was to test the role of these antagonists in the presence of the agonist 

S1PR1&3 , FTY720. CAY which blocked the [S1P]out-induced current, failed to block the current 

activated by FTY720. These inconsistencies could be attributed to the conformational change 

imparted by FTY on the receptors and therefore inability of CAY to block the current. 

Nonetheless other site of action of FTY could not be excluded.  

Next we tested whether the action of antagonists on FTY720-P induced current was 

consistent with S1PR actions. As seen in Figure 13, FTY720-P (10 µM, 10 min) activated ICl,swell 

under isoosmotic condition. CAY10444 (10 µM, 10 min), a selective antagonist for S1PR3, 

failed to block the FTY-elicited current despite the fact that CAY10444 fully inhibited the S1P-

induced current (see Fig. 11). The FTY-P-induced current was completely blocked by DCPIB in 

the presence of CAY, however, showing it was ICl,swell. In addition, we tested whether the 

S1PR1&3 antagonist. VPC23019 (13 µM, 10 min) affected the response to extracellular FTY 

(Figure 14). As seen with CAY (in response to [FTY-P]out) (Fig. 13), VPC also failed to inhibit 

the [FTY]out induced current. 
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Figure 12: VPC23019, a selective antagonist for S1PR1&3, failed to block S1P-induced 
ICl,swell (A) Families of currents under control conditions (Ctrl), and after treatment with 500 
nM [S1P]out for 10 min, and after addition of VPC23019 (+VPC; 13 μM) in the continued 
presence of extracellular S1P. (B) I-V relationships for A. (C) Current densities at +60 mV. 
S1P increased the current from 1.55 to 9.34 ± 1.48 pA/pF (n = 4, P < 0.001). VPC failed to 
block S1P-induced current. S1P-indcued current was inhibited 102 ± 11%, by DCPIB. 
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Figure 13: CAY10444, a selective antagonist for S1PR3, failed to block [FTY-P]out-
induced ICl,swell. (A) Families of currents under control conditions (Ctrl), and after 
treatment with 10 µM [FTY-P]out for 10 min, and after addition of CAY10444 (+CAY; 10 
μM) in the continued presence of FTY-P. (B) I-V relationships for A. (C) Current densities 
at +60 mV.  FTY-P increased the current from 1.77 to 4.92 ± 0.61 pA/pF (n = 5, P < 0.001). 
CAY failed to block FTY-P-induced current, whereas the FTY-P-induced current was 
inhibited 81 ± 16%, by DCPIB. 
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Figure 14: VPC23019, a selective antagonist for S1PR1&3, failed to block [FTY]out-
induced ICl,swell. (A) Families of currents under control conditions (Ctrl), and after treatment 
with 10 µM [FTY]out for 10 min, and after addition of VPC23019 (+VPC; 10 μM) in the 
continued presence of FTY. (B) I-V relationships for A. (C) Current densities at +60 mV. FTY 
increased the current from 1.70 to 13.73 ± 2.64 pA/pF (n = 4, P < 0.001). VPC failed to block 
FTY-induced current.  
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Taken together, the effects of putative S1PR agonists and antagonists cannot be explained 

by their nominal actions on S1PR and instead raise the possibility that the target(s) of S1P, 

FTY720, SEW and CAY that modulate ICl,swell are not the G protein-coupled S1P receptor family 

but rather distinct binding site(s). Alternatively, it has been proposed that S1PR might exist in 

different conformational states that regulate the affinity, potency, or efficacy of S1PR and 

thereby explain the unusual pharmacology of receptor ligands that could otherwise be interpreted 

as “off-target” effects (Pyne & Pyne, 2011). We have not tested the possibility that S1PR exist in 

alternative conformational states in HL-1 cardiomyocytes. 
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3.3. Intracellular vs. Extracellular S1P-induced current  

Most of the biological effects of S1P are explained by its action as a ligand for 

plasmalemmal G protein-coupled S1PR and the resulting activation of downstream signaling 

pathways. More recently, however, various intracellular binding targets for S1P have been 

recognized (Maceyka et al., 2012;Strub et al., 2011;Yester et al., 2011). Based on the observed 

inconsistencies in the regulation of ICl,swell by nominally S1PR selective agonists and antagonists, 

we considered the possibility that intracellular target(s) of S1P and its mimetics were responsible 

in modulating ICl,swell. To test this idea, we introduced S1P inside ([S1P]in). HL-1 myocytes via 

open tip of the patch pipette. Because the pipette contains a much larger volume than that of the 

myocyte, it effectively dialyze the cell, and as found for other mobile species, we expect that S1P 

in the pipette and cytosol will equilibrate As before, selected S1PR antagonists were utilized 

after exposure to S1P. Failure of S1PR antagonists to suppress current activation by [S1P]in 

would add support to the idea that S1P acted at intracellular targets rather than at extracellular 

S1PR after ABC transporter-mediated export.  

Figure 15 illustrates the results of applying 500 nM S1P inside the cell via the patch 

pipette. Because the first ~1 mm of the pipette tip was filled with S1P-free media and diffusion 

over this distance is slow (see Methods), control current was recorded immediately after 

breaking into the cell, and then, the current elicited by [S1P]in was obtained. [S1P]in activated 

an outwardly rectifying Cl- current that reversed near ECl. Addition of CAY (10 or 30 µM) to the 

bathing media during continued dialysis of the cytosol did not inhibit the [S1P]in-induced 

current. However, DCPIB blocked 94 ± 5% of the [S1P]in-induced current, implying the current 

was ICl,swell.  
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Figure 15: CAY10444, a selective antagonist for S1PR3, failed to block [S1P]in-
induced ICl,swell. (A) Families of currents under control conditions (Ctrl), and after 
treatment with 500 nM [S1P]in for 10 min, and after addition of CAY10444 (+CAY; 10 or 
30 μM) in the continued presence of [S1P]in. (B) I-V relationships for A. (Ctrl; filled circle, 
[S1P]in; open square, CAY 10 μM; open triangle, CAY 30 μM; inverted open triangle, 
DCPIB; filled diamond.) (C) Current densities at +60 mV. [S1P]in increased the current 
from 1.20 to 10.33 ± 1.75 pA/pF (n = 4, P < 0.001). The [S1P]in-induced current was not 
significantly blocked by 10 or 30 μM CAY (ns), but was blocked by DCPIB by 94.18 ± 
5.20% ( P < 0.001). Insensitivity of [S1P]in-induced current contrasts with its block of 
[S1P]out-induced current (see Fig. 10). DCPIB blocked current was significantly different 
from [S1P]in-induced current († ), but not different than control condition.  
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Figure 16: VPC23019, a selective antagonist for S1PR1&3, failed to inhibit [S1P]in-
induced ICl,swell. (A) Families of currents under control conditions (Ctrl), and after 
treatment with 500 nM [S1P]in for 10 min, and after addition of VPC23019 (+VPC; 13 μM) 
in the continued presence of S1P. (B) I-V relationships for A. (C) Current densities at +60 
mV.  S1P increased the current from 0.60 to 35.99 ± 11.99 pA/pF (n = 4, P < 0.001). VPC 
failed to block [S1P]in-induced current (ns).  
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The response to intracellular S1P application was contrary to findings with its extracellular 

application, where 10 µM CAY fully blocked the [S1P]out-induced current (see Fig. 11). The 

observation that CAY blocked the response to extracellular but not intracellular S1P excludes the 

possibility that pipette S1P acts on S1PR after its inside-out transport but is consistent with the 

notion that S1P elicits ICl,swell by acting on an intracellular target. Additionally, VPC23019, an 

S1PR1&3 antagonist, was unsuccessful in blocking the [S1P]in-induced ICl,swell (Fig. 16). This 

parallels the insensitivity of ICl,swell to VPC when S1P was applied in the bathing media (see Fig. 

14). Nevertheless, these data are also inconsistent with activation of ICl,swell via inside-out S1P 

transport and S1PR signaling. 

Compared to [S1P]out, [S1P]in activated a higher ICl,swell current density (pA/pF) when 

both were applied at 500 nM. Figure 17A shows that the S1P-induced current was 6.86 ± 1.27 

pA/pF for [S1P]out and 18.47 ± 4.42 pA/pF for [S1P]in (n = 14 each group, unpaired t test P = 

0.018). The greater response to [S1P]in than [S1P]out is contrary to expectations for S1P binding 

to extracellular facing S1PR. S1P applied via the patch pipette would need to equilibrate with the 

cytosol and then undergo inside-out transport to reach its presumed target, G protein-coupled 

S1PR. Therefore, one would predict a reduced response to [S1P]in or, if equilibration and inside-

out transport were very efficient, equal responses. 

It might be argued that [S1P]in or [S1P]out altered the ability of the cell to generate 

ICl,swell and, therefore current density, by a mechanism unrelated to binding the target responsible 

for S1P-induced current activation. To rule out this possibility, Figure 17B compares the 

responses of a subset of cells that underwent osmotic swelling (0.85T) in the presence of 500 nM 

[S1P]in or [S1P]out. In both cases, the current after osmotic swelling plus S1P was much larger 

than that after S1P alone (n = 5 for each group, P < 0.001 for each group) but was not  
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Figure 17: Intracellular vs. extracellular S1P and osmotic swelling-induced current.(A) 
Comparison of ICl,swell current density with S1P (500 nM, 10 min) applied inside or outside of 
myocytes. [S1P]in (n = 14) elicited significantly greater ICl,swell than [S1P]out (n = 14) in the 
two groups of cells (P = 0.018). [S1P]out (500 nM) activated significantly less current, 6.85± 
1.27 pA/pF, than [S1P]in, 16.55 ±4.42pA/pF, at same S1P concentration (B) Comparison of 
ICl,swell activated by osmotic swelling in 0.85T bath solution in the presence of S1P (subset of 
myocytes) in A. Currents after osmotic swelling were not significantly different (n = 6, for 
each group, ns). Note, change in scale for current density.  
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significantly affected by the location of S1P application (P = ns). This suggests that the number 

of functional ICl,swell channels and the components of signaling cascade that are activated by 

osmotic swelling were not differentially affected by intracellular versus extracellular S1P 

application. The very high ICl,swell current density after osmotic swelling recorded here is 

consistent with previous observations by our laboratory in HL-1 cardiomyocytes (Deng et al., 

2010c). 

In addition to evoking a higher ICl,swell current densities, [S1P]in activated the current with 

faster kinetics than [SIP]out, depicted in Figure 18. Typically, there was a lag of 3-4 min after 

switching the bath solution using a rapid flow system before ICl,swell activation by [S1P]out was 

apparent. With [S1P]in inside the pipette, the lag before ICl,swell activation began was only 1-2 

min. Similar differences in activation kinetics were observed in n = 6 [S1P]in and n = 10  

[S1P]out experiments. Furthermore the dose response relationship of [S1P]in as seen in Fig 19 

exhibits an half maximal current at 240 nM with Hill coefficient of 1.68. To avoid the variability 

from different passage number of cells, the dose response relationship was done in a subset of 

cells (cells grown on the same plate) for concentrations (30 nM, 100 nm, and 500 nM) [S1P]in. 

Based on the above results, this suggests S1P is more potent when applied inside the pipette vs. 

the extracellular application in the bath. 

The differences in activation kinetics and current density are opposite to that expected if 

S1P elicited ICl,swell via binding to G protein-coupled S1PR facing the bath solution. Bulk flow of 

the bath solution should result in the rapid delivery of S1P at its final concentration to S1PR. In 

contrast, S1P delivered via the patch pipette needs to be exported via the ABC transporters and 

then act in autocrine/paracrine manner on the plasmalemmal G protein-coupled S1PR. To the 

extent exported S1P diffuses across the unstirred layer at the plasmalemmal surface, it will be  
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Figure 18: Representative time course of activation of ICl,swell  by [S1P]out and [S1P]in. 
Intracellular application of S1P acted more rapidly and elicited a larger ICl,swell than 
extracellular application of S1P (500 nM for both). This is contrary to expectations if inside-
out transport of S1P and S1PR activation is required to evoke ICl,swell but is consistent with 
intracellular site(s) of action. Similar differences in kinetics were noted in n = 10  [S1P]in and 
n = 6 [S1P]out experiments.  
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Figure 19: Concentration-response relationship for [S1P]in. Current elicited by [S1P]in 
was measured at 30 (n = 3), 100 (n = 3), 225 (n = 3) and 500 nM (n = 6). Data were fit (solid 
line) with a sigmoidal curve with an EC50 of 240 nM, Hill coefficient of 1.68, and maximum 
current density of 15.4 pA/pF. The dose response relationship was done in a subset of cells 
(from same plate) for concentration (30 nM, 100 nm, and 500 nM). 
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washed away by bulk flow of S1P-free bath solution. This suggests that inside-out export of S1P 

during [S1P]in application will result in a lower S1P concentration at the receptors that achieved 

during [S1P]out application of the same concentration of S1P. Thus, if binding to plasmalemmal 

S1PR was responsible for the activation of ICl,swell, it seems likely that the current activated by 

500 nM [S1P]out would have faster activation kinetics and greater current density than that 

elicited by 500 nM [S1P]in.  

 To directly investigate the participation of G protein-coupled S1PR the activation of 

ICl,swell, we tested whether gallein, a pan Gβγ inhibitor. gallein, a cell-permeable xanthene 

compound that binds to Gβγ with high affinity (Kd ~400 nM derived from a surface plasma 

resonance binding study using Gβ1γ2) and blocks Gβγ-dependent cellular activities (Lehmann et 

al., 2008), affected the response to [S1P]out. The [S1P]out-induced current was not inhibited by 

gallein As seen in Figure 20, gallein (10 µM, 10  min) did not inhibit the [S1P]out-induced 

current. However, DCPIB blocked 115 ± 10% of the S1P-induced current verifying it was 

ICl,swell. These data argue that G protein-coupled receptors probably are not involved for the 

activation of ICl,swell by S1P but are consistent with the idea that S1P acts on intracellular binding 

site(s) and initiates a signaling pathway ultimately responsible for activating ICl,swell.  
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Figure 20: Gallein, a pan Gβγ inhibitor, failed to suppress [S1P]out-induced ICl,swell. (A) 
Families of currents under control conditions (Ctrl), and after treatment with 500 nM [S1P]out 
for 10 min, and after addition of gallein (+Gal; 10 μM, 10 min ) in the continued presence of 
S1P. (B) I-V relationships for A. (C) Current densities at +60 mV. S1P increased the current 
from 1.55 to 6.59 ± 1.0 pA/pF (n = 5, P < 0.001). Gal failed to block [S1P]out-induced 
current, but it was blocked by 115 ± 10% by DCPIB. 
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3.4. Intracellular vs. Extracellular FTY720  

FTY is identified as an agonist for plasmalemmal G protein-coupled S1PR1&3 and 

activates downstream signaling pathway at a concentration of 100 nM (Hofmann et al., 2009). 

However, we observed that a 100-fold higher concentration was required to activate ICl,swell (see 

Fig.10). Even the phosphorylated form, FTY720-P, required a 100-fold higher concentration that 

what is known to activate the S1PR (Hofmann et al., 2009) (see Fig.10 & 13). In addition, the 

S1PR antagonists VPC and CAY failed to block the [FTY]out-induced current (see Fig.13 & 14). 

Taken together, these data suggested that FTY720 acts on intracellular target(s) similar to S1P.  

To test the possibility that an intracellular target for FTY720 was responsible for eliciting 

ICl,swell, we introduced FTY720 inside the patch pipette ([FTY]in). Figure 21 compares the 

response of 100 nM [FTY]in to a 100-fold greater concentration, 10 µM, applied in bath solution 

([FTY]out). Although [FTY]in was at a 100-fold lower concentration, it evoked a 2-fold greater 

current (n = 20 for each group, unpaired t test P = 0.010). Furthermore, the kinetics of activation 

of ICl,swell was much faster with [FTY]in than [FTY]out, as depicted in Figure 22. Activation of 

current was not obvious for more than 4 min after applying FTY via the bath solution. With FTY 

inside the pipette, the lag before current activation was about 1 min, and a much larger current as 

turned on. Thus, the greater potency and faster time course of activation with [FTY]in than 

[FTY]out was even more striking than for [S1P]in and [S1P]out. These data argue that FTY is 

likely to elicit ICl,swell by binding to intracellular targets rather than to plasmalemmal S1PR.  
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Figure 21: Intracellular application of FTY activates a larger ICl,swell than extracellular 
application. (A) Comparison of current densities with 10 µM FTY (10 min) added to the bath 
solution ([FTY]out) and a 100-fold lower concentration, 100 nM (5 min),  included in the 
pipette solution ([FTY]in). [FTY]in elicited a significantly larger current (n for each = 20, P = 
0.010, unpaired t-test). As noted in section 3.2.1, 100 nM and 1 µM [FTY]out failed to evoke 
significant activation of ICl,swell. 
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Figure 22: Representative time course of activation of ICl,swell by [FTY]out and 
[FTY]in. Inclusion of 100 nM FTY in the patch pipette ([FTY]in) caused activation of 
ICl,swell to begin within 1 min of recording, whereas 10 μM FTY in the bath solution 
([FTY]out) turned on a smaller current more slowly. Similar results were observed with 
n = 12 [FTY]in and n = 8 [FTY]out experiments.  
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To test whether intracellular FTY was phosphorylated in the cytosol, underwent inside-out 

transport, and then bound to plasmalemmal S1PR, we used S1PR antagonists. As shown  in 

Figure 23, [FTY]in (100 nM, 10 min) strongly activated ICl,swell, but CAY did not inhibit the 

[FTY]in-induced current at either 10 or 30 µM. Nevertheless, the [FTY]in-induced current was 

blocked by 100 ± 21% by DCPIB, implying the current was ICl,swell. Furthermore, the S1PR1&3 

antagonist VPC23019 (13 µM, 10 min) also was unable to block the [FTY]in-induced current, as 

shown in Figure 24. Thus neither CAY nor VPC23019 suppressed the response to [FTY]in.  
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Figure 23: CAY10444, a selective antagonist for S1PR3, failed to block [FTY]in-induced 
ICl,swell. (A) Families of currents under control conditions (Ctrl), and after treatment with 100 
nM [FTY]in for 10 min, and after addition of CAY10444 (+CAY; 10 or 30 μM) in the continued 
presence of [FTY]in. (B) I-V relationships for A. (Ctrl; filled circle, [FTY]in; open squares, CAY 
10 μM; open triangle, CAY 30 μM; inverted open triangle, DCPIB; filled diamond.)(C) Current 
densities at +60 mV. [FTY]in increased the current from 1.46 to 9.42 ± 2.44 pA/pF (n = 4, P < 
0.001). Whereas CAY failed to inhibit the FTY-induced current, DCPIB reduced the current 
by 100 ± 21%.(P < 0.001). 
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Figure 24: VPC23019, a selective antagonist for S1PR1&3, failed to inhibit [FTY]in-
induced ICl,swell. (A) Families of currents under control conditions (Ctrl), and after treatment 
with 100 nM [FTY]in for 10 min, after addition of VPC23019 (+VPC; 13 μM, 10 min) in the 
continued presence of FTY, and after addition of rotenone (Rot; 10 µM, 20 min ), a 
mitochondrial complex I inhibitor.  (B) I-V relationships for A. (C) Current densities at +60 
mV. [FTY]in increased the current from 1.65 ±  to 7.32 ± 0.89 pA/pF (n = 4, P < 0.001). VPC 
failed to block [S1P]in-induced current, but rotenone (Rot)blocked FTY-induced current by 
109 ± 12% (P < 0.001).  
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3.5. Western Blot Analysis  

As mentioned previously S1PR are differentially expressed in different tissues, and 

studies in heart show that only S1PR1, S1PR2 and S1PR3 are expressed (Zhang et al., 

2007;Means et al., 2008). Hl-1 cells are an immortalized mouse atrial cell line. As discussed 

above, studies utilizing a variety of genetic, immunohistochemical, electrophysiological, and 

pharmacological techniques have demonstrated that HL-1 cells possess many of the features of 

adult atrial cardiomyocytes and are a useful experimental tool. However S1P receptors are not 

reported to date in this cell line. Given the inconsistencies in the action of the S1PR antagonist 

and lower potency of FTY720, we verified by immunoblotting that S1PR1-3 proteins were 

expressed in HL-1 cardiomyocytes, a point not previously established in the literature. Figure 25 

shows the expression of S1PR1-3 in HL-1 cardiomyocyte whole cell lysate and cyclophilin A 

used as control. On WB, the reaction products were seen with a molecular mass of about 42–47 

kDa in the whole cell lysate, which was consistent with the findings of S1PRs. Total protein (30 

μg) was loaded into 10% Bis-Tris polyacrylamide electrophoresis gels. Antibodies to S1PR1-3 

were used at a dilution of 1:500 (S1P1, rabbit polyclonal IgG Ab sc-25489; S1P2, rabbit 

polyclonal IgG Ab sc25491; S1P3, rabbit polyclonal IgG Ab sc-30024; Santa Cruz), and for 

cyclophilin A, at a dilution of 1:5,000 (rabbit polyclonal IgG Ab  07-313; Millipore). Detail of 

the western blot procedure is given in the Methods section. Various controls were implemented 

for this study including loading control to ensure equal loading of protein in each lane; 

cyclophilin A was used as the house keeping protein. Some extra bands were observed in 

addition to the band for S1PR1. One of the possible reasons for the multiple bands is non-specific 

binding of primary and secondary antibody. To rule out this possibility following controls were 

done. "No primary" control, the primary antibody was not added to one strip of membrane, and 
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only secondary antibody was added. The "no primary" indicates if any non specific binding or 

false positives bands due to non specific binding of the secondary antibody. This was done by 

using antibody dilution buffer containing no primary antibody. The secondary antibody was 

incubated on the sample in the same way as usual. Under these condition no bands were 

observed (data not shown), suggesting that there were no unspecific binding. One other control 

involved lowering the quantity of primary antibody concentration and increasing the number of 

washes. These intervention still showed extra band in addition to the band for S1PR1 (data not 

shown). The other possibility for extra band is presence of post-translational modifications with 

higher molecular weight proteins. This would require investigating the possibility of 

phosphorylation, glycosylation, acetylation, methylation or myristylation. For the 

immunoblotting studies we utilized polyclonal antibody, the polyclonal antibodies recognize 

several epitopes, and thereby show several bands.  
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Figure 25: Identification of S1PR1-3 protein expression in HL-1 myocytes. 
Representative Western blots for expression of S1PR1-3 and cyclophilin A were 
obtained from cell lysates under control condition. Antibodies to S1PR1-3 were used at 
a dilution of 1:500 (S1P1, rabbit polyclonal IgG Ab sc-25489; S1P2, rabbit polyclonal 
IgG Ab sc25491; S1P3, rabbit polyclonal IgG Ab sc-30024; Santa Cruz'), and for 
cyclophilin A, at a dilution of 1:5,000 (rabbit polyclonal IgG Ab  07-313; Millipore). 
Blots were done on 10% Bis-Tris polyacrylamide gels. For quantitative analysis, 
densities of the protein and for S1PR1-3 were normalized by their respective 
cyclophilin densities.  

        S1PR1                          S1PR2             S1PR3                

Cyclophilin A 

~45 KD 
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3.6. ROS mediates S1P and FTY720-induced activation of ICl,swell   

Previously the laboratory demonstrated that ROS are necessary downstream modulators 

in the regulation of ICl,swell by stretch, osmotic swelling, and other agents such as HIV protease 

inhibitors and ceramide (Browe & Baumgarten, 2004;Browe & Baumgarten, 2006;Ren et al., 

2008;Deng et al., 2010b;Raucci & Baumgarten, 2009). Osmotic swelling triggers ICl,swell via a 

signaling cascade that requires ROS production by NADPH oxidase followed by mitochondrial 

ROS production. In contrast, HIV protease inhibitors and, for example, inhibition of the 

mitochondrial electron transport chain at complex III by antimycin A, which causes ROS leakage 

to the cytosol, activate ICl,swell independent of NADPH oxidase. Therefore, we examined the role 

and source of ROS in S1P and FTY720-induced activation of ICl,swell.  

 As shown in Figure 24, 100 nM [FTY]in activated ICl,swell but VPC23019 failed to block 

the current. We next tested whether mitochondrial ROS production was required by blocking the 

electron transport chain at complex I with rotenone. Rotenone precludes electron transport to 

ROS leakage from complex III (Chen et al., 2003), and our laboratory previously showed that 

rotenone inhibits activation of ICl,swell by swelling, HIV protease inhibitors, antimycin A, and 

other interventions. Rotenone (10 µM, 20 min) blocked the FTY-induced current by 109 ± 12% 

(n = 4, P < 0.001) This suggests that [FTY]in triggers ICl,swell by stimulating mitochondrial ROS 

production and its leakage to the cytosol. To test whether ROS production by NOX was an 

upstream to mito ROS production, as found for swelling, stretch, and the G protein-coupled AT1 

and ETA receptors for angiotensin II and endothelin, respectively. And also to rule out the 

possibility that the presence of VPC affected the result for rotenone. In the presence of [FTY]in, 

we tested gp91ds-tat followed by rotenone. As seen in Figure 27, In the continued presence of 

FTY in the patch pipette, addition of gp91ds-tat (500 nM, 5 min) did not significantly affect 
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ICl,swell, but in contrast, addition of rotenone (10 µM, 20 min) abolished 86 ± 5 % of the current (n 

= 4, P < 0.001). Although the studies illustrated in Figures 24 and 27 demonstrate that 100 nM 

FTY720 applied inside the myocyte activate ICl,swell by augmenting mitochondrial ROS 

production, presumably from complex III, independent of NADPH oxidase ROS production, it is 

unclear whether the physiological effector, S1P, acts by the same mechanism. Figure 26 shows 

the effect of gp91ds-tat and rotenone, inhibitors of NADPH oxidase and mitochondrial ROS 

production, respectively, on the response to [S1P]in. First, myocytes were exposed to [S1P]in 

(500 nM, 5 min) to activate ICl,swell. In the continued presence of S1P in the patch pipette, 

addition of gp91ds-tat (500 nM, 5 min) did not significantly affect ICl,swell, but in contrast, 

addition of rotenone (10 µM, 20 min) abolished 96 ± 5 %. of the current (n = 5, P < 0.001) as 

seen in Figure 26. These data suggest that ROS production from mitochondria, independent of 

NADPH oxidase, is sufficient to activate S1P- and FTY720-induced ICl,swell.  
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Figure 26: S1P activated ICl,swell via mitochondrial ROS and, contrary to ICl,swell evoked 
by swelling or stretch, did not require ROS production by NADPH oxidase. ICl,swell 
elicited by pipette S1P (500 nM, 5 min) was blocked by suppressing mitochondrial complex I 
with rotenone (10 μM, 20 min), but not by gp91ds-tat (500 nM, 5 min), a fusion peptide 
inhibitor of NADPH oxidase. (A) Families of currents before and after treatment with S1P 
(500 nM, 5 min) and, then, after addition of gp91ds-tat and rotenone; (B) I-V relationships for 
A; (C) Current densities at +60 mV after S1P exposure and addition of gp91ds-tat and then 
rotenone in the continued presence of S1P (n = 5, P < 0.001). In contrast, the laboratory 
previously showed that osmotic swelling- and stretch-induced ICl,swell, which signal via AT1, 
ETa and EGF receptors, are fully blocked by both gp91ds-tat and rotenone, and 
mitochondrial ROS production is downstream from NADPH oxidase ROS production.  In 
contrast, S1P-induced ICl,swell, was not inhibited by gp91ds-tat but still was fully blocked by 
rotenone. 
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Figure 27: Intracellular FTY720 activated ICl,swell via mitochondrial ROS and, contrary to 
ICl,swell evoked by swelling or stretch, did not require ROS production by NADPH 
oxidase. ICl,swell elicited by pipette (100 nM, 5 min) FTY was blocked by suppressing 
mitochondrial complex I with rotenone (10 μM, 20 min) but not by gp91ds-tat (500 nM, 5 
min), an inhibitor of NADPH oxidase. (A) Families of currents before and after treatment with 
FTY720 and after addition of gp91ds-tat and rotenone. (B) I-V relationships for A. (C) Current 
densities at +60 mV after FTY exposure and addition of gp91ds-tat (n = 5, P < 0.01), and 
rotenone (n = 4, P < 0.001) in the continued presence of FTY. 
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This study demonstrated for the first time that both S1P and FTY720, a prodrug mimetic 

of S1P and agonist for S1PR1&3, activates a Cl− current with the biophysical and pharmacological 

properties of ICl,swell in immortalized HL-1 atrial myocytes. Furthermore, the selective S1PR1 

agonist SEW2871 also elicited ICl,swell. Rather than directly interacting with the channel, S1P and 

FTY720 evoke ICl,swell by augmenting mitochondrial ROS production. S1P- and FTY720-induced 

currents were fully suppressed by rotenone, a blocker of the mitochondrial electron transport 

chain at complex I, suggesting ROS generated by the Qo cite of complex III was responsible. 

Contrary to the signaling underlying activation of ICl,swell in cardiomyocytes in response to 

osmotic swelling, integrin stretch, angiotensin II, endothelin, and epithelial growth factor, ROS 

production by NADPH oxidase was not a required upstream effector. Moreover, based on 

inconsistencies in the responses to S1P agonists and antagonists and differences in the potency 

and kinetics of ICl,swell activation by intracellular and extracellular S1P, FTY720, and FTY-P, we 

propose that activation of mitochondrial ROS production and ICl,swell by these agents is due to 

binding to an intracellular ligand rather than to the well-known G protein-coupled S1PR that are 

expressed in cardiomyocytes, including HL-1 cells. Nevertheless, we cannot rigorously exclude a 
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role of S1PR in modulating the current. The proposed signaling pathway responsible for the 

activation of ICl,swell by S1P and FTY720 is shown in Figure 28. 
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Figure 28: Proposed model of ICl,swell regulation by S1P and FTY720. S1P and FTY720 
binding to intracellular site(s), perhaps mitochondrial prohibitin 2 (PHB2), triggers 
mitochondrial ROS production independent of NADPH oxidase and, thereby, activates ICl,swell. 
This model can explain the observed greater potency and faster kinetics of ICl,swell activation 
by S1P and FTY720 delivered to the cytosol via the patch pipette than via the bath  solution, 
insensitivity to FTY720-P, and apparent inconsistencies in the actions of well-described 
S1PR agonists and antagonists. S1P and FTY applied extracellularly can reach their 
intracellular ligands after uptake by ABC transporters (ABC). It seems likely that at least 
some nominally S1PR-specific agonists and antagonists also bind to intracellular S1P 
ligands that modulate ICl,swell with selectivity and affinities that have not yet been 
characterized. The possibility that S1PR also can modulate ICl,swell cannot be rigorously 
excluded, however. 
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4.1 Properties of S1P-, FTY720-, and SEW2871-induced Cl– current 

Sarcolemmal Cl– channels expressed in the heart include the cystic fibrosis 

transmembrane conductance regulator (CFTR) Cl− channel (ICFTR), Ca2+-activated Cl− channels 

(ICl,Ca), and ICl,swell (Hume et al., 2000), as well as an inwardly rectifying Cl− current attributed to 

ClC-2 (Duan, 2009). In the present study, we showed that S1P, FTY720, FTY720-P, and 

SEW2871 activated an outwardly rectifying Cl– current with properties that distinguish ICl,swell 

from other cardiac Cl– channels. We demonstrated that the Cl– current elicited by all four of 

these S1PR agonists was blocked by DCPIB. This ethacrynic acid derivative is the most selective 

anion channel inhibitor identified to date; DCPIB fully suppresses ICl,swell at 10 μM, the 

concentration used here, whereas CFTR, Ca2+-activated Cl− channels, and cardiac cation currents 

are insensitive to this agent (Decher et al., 2001). Another fundamental distinguishing 

characteristic of ICl,swell is its outward rectification with both physiological and symmetrical Cl– 

gradients (Hume et al., 2000;Baumgarten & Clemo, 2003;Sorota, 1994). In contrast, although 

ICFTR and ICl,Ca outwardly rectify with a physiological Cl– gradient, their I-V relationships are 

linear in symmetrical Cl– (Hume et al., 2000), and the ClC2 Cl– current inwardly rectifies in 

physiological Cl– (Duan, 2009). Thus, outward rectification of the S1P- and FTY720-induced 

current with both physiological and symmetrical Cl– gradients is strong biophysical evidence 

supporting the conclusion; the current is ICl,swell. In addition, as previously demonstrated for 

ICl,swell (Deng et al., 2010c;Baumgarten et al., 2011), the S1P- and FTY720-induced currents 

were triggered by mitochondrial ROS production, a regulatory pathway not reported for other 

cardiac anion channels. Finally, we focus here only on how these agents modulate Cl– channels 

because the experimental pipette and bath solutions were designed to suppress cation currents 

and the observed currents reversed at the expected Cl– equilibrium potential. Thus, the present 
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study demonstrated that S1P and its analogue FTY720 elicit ICl,swell under isosmotic conditions 

via production of mitochondrial ROS. Nevertheless, the molecular identity of ICl,swell remains 

elusive, and the mechanisms of ICl,swell inhibition by DCPIB is not understood.  

Sphingolipids have been shown to exert effects on cardiac ion channel function 

previously. For example, S1P mediates both a chronotropic as well as inotropic effects on the 

heart. S1P stimulates the muscarinic receptor-activated inward rectifier K+ current, IK,ACh, and 

this is attributed to the activation of S1PR3 receptors, as the antagonist of the receptor suramin, 

blocked these effects (Alewijnse et al., 2004;Himmel et al., 2000;Peters & Alewijnse, 2007). 

However suramin is a G protein inhibitor which acts by preventing nucleotide exchange rather 

than S1PR3 antagonist (Beindl et al., 1996;Nanoff et al., 2002;Yester et al., 2011). In addition, 

sphingolipids were implicated in the regulation of a Cl– channel in cardiac muscle, but the 

channel responsible was not identified (d'Anglemont de Tassigny et al., 2003). Previously our 

laboratory demonstrated that exposure to neutral Mg2+-dependent SMase C, which generates 

ceramide and phosphocholine by breaking down sarcolemmal sphingomyelinase, and exogenous 

C2-ceramide both activate ICl,swell in ventricular myocytes and suggested the response was due to 

S1P production and involved ROS (Raucci & Baumgarten, 2010). However, neither the 

signaling cascade activated by these sphingolipids nor the source of ROS were identified. CFTR 

also is regulated by sphingolipids. SMase D, which generates ceramide-1-P and choline, causes 

inhibition of CFTR current in whole oocytes injected with the CFTR cDNAs (Ramu et al., 

2007), and ceramide inhibits CFTR-activity of the apical membrane of Calu-3 cells (Ito et al., 

2004). Work on Kv channels showed gating is modified by direct interactions between 

membrane lipids and channel proteins (Ramu et al., 2006;Milescu et al., 2007). In addition, 

prolonged exposure to either C2-ceramide and SMase (>10 h) downregulates the hERG channel 
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by mechanisms involving ROS and ubiquitin-mediated degradation (Bai et al., 2007;Chapman et 

al., 2005). 

Although it is clear that S1PR agonists turned on ICl,swell, they did not fully activate the 

current. It previously was observed that osmotic swelling in 0.7T (T; times-isosmotic bath 

solution) gives full activation of ICl,swell in adult rabbit ventricular myocytes (Clemo et al., 1999), 

and 0.8T produces full activation in HL-1 cells myocytes (Deng et al., 2010c). We found, 

however, the magnitude of the current elicited by extracellular (~6.85 pA/pF) or intracellular 

S1P (~16.55  pA/pF) was much smaller than that observed after osmotically swelling HL-1 

myocytes with 0.85T bathing media (35-40 pA/pF). These differences may reflect a more modest 

stimulation of myocyte ROS production compared to that achieved with osmotic swelling or the 

participation of different signaling pathway. We did not directly measure HL-1 cell ROS 

production in the present studies.  

4.2 Do G protein-coupled S1PR elicit ICl,swell? 

S1P acts as a ligand for a family of five G protein-coupled receptors, S1PR1-5, which 

formerly were called endothelial differentiation gene (EDG) receptors (Chun et al., 2002). S1PR 

are differentially expressed in different tissues, and studies in heart show that only S1PR1, S1PR2 

and S1PR3 are expressed (Zhang et al., 2007;Means et al., 2008). The binding of S1P and 

FTY720-P to G protein-coupled receptors and the resultant downstream signaling pathways are 

thought to be largely responsible for the observed cardiac effects of both molecules (Means & 

Brown, 2009;Brinkmann et al., 2002); cf.,(Pyne & Pyne, 2011;Strub et al., 2010;Strub et al., 

2011). We verified by immunoblotting that S1PR1-3 proteins also were expressed in HL-1 

cardiomyocytes, a point not previously established in the literature.  
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 In addition to S1P, several other S1PR ligands turned on ICl,swell in HL-1 cardiomyocytes. 

We observed that ICl,swell was activated by SEW2871, a novel selective agonist for S1PR1 that is 

structurally unrelated to S1P (Sanna et al., 2004). Unlike S1P and FTY720, SEW2871 is a small 

heterocyclic lipophilic molecule that does not have a charged head-group. Activation of ICl,swell 

by a selective S1PR1 agonist lead to the prediction that FTY720, a sphingosine analog and 

S1PR1&3 agonist (Brinkmann, 2007) also would elicit ICl,swell. To the contrary, addition of 100 

nM FTY720 to the bathing media was ineffective, but exogenous H2O2 elicited ICl,swell in the 

same myocytes providing a positive control. Increasing the bath concentration of FTY720 to 1 

μM also failed to stimulate the current, but 10 μM was found to activate ICl,swell. This FTY720 

concentration is 100-fold greater than the 100 nM normally sufficient to fully activate S1PR1&3 

(Koyrakh et al., 2005).  

FTY720 is a prodrug that must be imported into cells by an ABC transporter, 

phosphorylated in situ by SphK2 (Zemann et al., 2006) to yield its active form, FTY720-P 

(Albert et al., 2005;Brinkmann et al., 2002), and then exported before it can bind to G protein-

coupled S1PR at the extracellular face of the cell membrane (Brinkmann, 2007). To exclude the 

possibility that defects in one or more of required steps explained the insensitivity to FTY720, 

we directly challenged the S1PR in HL-1 myocytes by adding FTY720-P to the bathing solution. 

Whereas 100 nM FTY720-P failed to activate current, ICl,swell was turned on by 10 μM FTY720-

P. Thus, like FTY720, the active phosphorylated form, FTY720-P, also had much lower than 

expected potency. In contrast, previous studies established (S)-FTY720-P [but not (R)-FTY720-P 

or parent FTY720] acts as a full agonist at S1PR1 (0.3 nM), S1PR4 (0.6 nM; not found in 

myocytes) and S1PR5 (0.3 nM; not found in myocytes) and with approximately a 10-fold lower 

potency at S1PR3 (3.1 nM), but it has no activity at S1P2 (>10,000 nM) (Albert et al., 
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2005;Brinkmann et al., 2002;Mandala et al., 2002). Therefore, 100 nM FTY720-P added to the 

bath should have fully activated both S1PR1&3 even if 100 nM and 1 μM FTY720 failed to 

generate and export sufficient FTY720-P in the present experimental system. Thus, although S1P 

and SEW2871 activated current at bath concentrations consistent with S1PR1 signaling, the 

exceptionally low potency of S1PR1&3 agonists FTY720 and FTY720-P argue against the idea 

that S1PR trigger ICl,swell. 

Studies with the S1PR antagonists CAY10444 (also known as, BML-241) and 

VPC23019 also raised doubts regarding the role of S1PR. CAY10444 is a selective and effective 

S1PR3 antagonist and in multiple cell line suppresses a variety of downstream effects (Waeber & 

Salomone, 2011). For example, 10 μM CAY10444 inhibits the prosurvival effect of HDL in a 

mouse cardiomyocyte hypoxia-reoxygenation model interfering with the PI3K-AKT signaling 

pathway, an effect attributed to block of S1PR3 (Tao et al., 2010). We observed a striking 

inconsistency with the action of CAY10444. First, the positive response to SEW2871, a selective 

S1PR1 agonist, suggests CAY10444 should fail to inhibit current. To the contrary, bath S1P-

induced current was fully blocked by 10 μM CAY10444, but bath FTY720-induced current was 

not affected, even after raising the CAY10444 concentration 3-fold. One might argue that full 

current activation can be evoked by either S1PR1 or S1PR3 signaling and that the failure of even 

high concentrations of CAY10444 to block the action of FTY720 was due to an inability to 

compete with the high bath FTY720 concentration (10 μM) needed to elicit the current. On the 

other hand, VPC23019, a potent S1PR1&3 antagonist, failed to suppress ICl,swell activated by both 

bath S1P (500 nM) and bath FTY720 (10 μM). If, in fact, stimulation of either S1PR1 or S1PR3 

signaling was sufficient to elicit ICl,swell, VPC23109 (13 μM) should have blocked the response to 

500 nM S1P; its Ki for displacing 32P-S1P is 7.86 and 5.98 for S1PR1 and S1PR3, respectively, in 
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HEK293T cells (Davis et al., 2005). To confirm the presence of ICl,swell in the antagonist-

insensitive myocytes, we demonstrated that DCPIB suppress the current in the same cells. Taken 

together, the response to these agonists and antagonists was inconsistent with the idea that S1P 

and FTY720 elicit ICl,swell simply by binding to G protein-coupled S1PR and evoking their 

signaling pathways.  

It is difficult, however, to rigorously exclude the possibility that "off target effects" and 

complex pharmacology might contribute to the discrepancy (Pyne & Pyne, 2011). In addition, 

VPC23019 is a phosphorylated lipid and is a potential substrate for lipid phosphate 

ectophosphatases (Pyne et al., 2005). Therefore, degradation of VPC23019 might have prevented 

its inhibitory action at S1P receptors. We did not test whether VPC23019 was hydrolyzed in the 

present experimental system. There also are reports of the internalization of the S1PR in 

response to the agonist (Gergely et al., 2012). If internalized S1PR are inaccessible to 

antagonists but continue to signal and support the activation of ICl,swell, receptor internalization 

might explain the failure of certain antagonist to block the response to agonists acting on S1PR.  

Signaling by heterotrimeric G proteins requires GDP/GTP exchange and the dissociation 

its α and βγ subunits upon ligand binding to the G protein-coupled receptor. The process is 

terminated by the hydrolysis of Gα-bound GTP by small GTPases, and then, the heterotrimeric 

complex reassembles. Therefore, S1PR-induced G protein signaling can be blocked by 

interrupting the G protein cycle or downstream pathways. We found, however, that 10 μM 

gallein, a pan βγ inhibitor failed to suppress the response to bath S1P. On the other hand, gallein 

binding to βγ (Kd, 422 nM; IC50, 241 nM) suppresses G-protein signaling-induced PI-3K and 

RAC1 activation and ROS production in HL6 cells and primary human neutrophils (Lehmann et 

al., 2008). This argues against the involvement of G protein-coupled S1PR in ROS-dependent 
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activation of ICl,swell. Nevertheless, to confirm the conclusion that G protein signaling does not 

play a role in ICl,swell activation by S1PR agonists, it would be useful to suppress signaling with 

additional small molecule inhibitors or molecular methods.  

4.3 Intracellular targets of S1P : Potential role in activating ICl,swell.  

 Rather than acting at S1PR, an alternative possibility is that S1P, FTY720, its 

phosphorylated analogue FTY720-P, and other S1PR agonists such as SEW activate ICl,swell by 

binding to intracellular ligands. Recently identified intracellular targets include HDACs, E3 

ubiquitin ligases, and prohibitin-2 (PHB2). One of the study showed that, HDACs are direct 

intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression (Hait 

et al., 2009). S1P was shown to be a missing cofactor for the E3 ubiquitin ligase TRAF2 and that 

TRAF2 was a novel intracellular target of S1P. Interestingly, only S1P, and not dihydro-S1P, 

which lacks the double bond in S1P, was shown to bind and activates TRAF2.(Alvarez et al., 

2010). β-site amyloid precursor protein cleaving enzyme-1 (BACE1) was shown to be another 

site in neurons to which S1P binds. S1P also specifically bound to BACE1 in vitro and increased 

its proteolytic activity, suggesting that cellular S1P directly modulates BACE1 activity (Takasugi 

et al., 2011). In these studies inhibition or downregulation of SphK1 and SphK2, or 

overexpression of S1P-degrading enzymes all decreased BACE1 activity and Aβ production 

(Maceyka et al., 2012). These responses were mediated by intracellular S1P independently of its 

cell surface G-protein-coupled receptors. Also prohibitin 2 PHB2, a highly conserved protein 

that regulates mitochondrial assembly and function, was recently shown to bind S1P in vitro and 

in vivo (Maceyka et al., 2012;Strub et al., 2011;Yester et al., 2011). PHB2 localizes 

predominantly to the inner mitochondrial membrane where it is thought to form a large, 

macromolecular complex with PHB1 that is involved in mitochondrial biogenesis and 
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metabolism (rtal-Sanz & Tavernarakis, 2009;Takasugi et al., 2011) By targeting monomeric 

PHB2 (but not closely related PHB1), S1P is implicated in the regulation of proper assembly and 

function of cytochrome-c oxidase of the mitochondrial respiratory chain in cardiac myocytes 

(Strub et al., 2011). Moreover, PHB is reported to reduce mitochondrial free radical production 

and oxidative stress in brain injury models, perhaps by stabilizing the function of complex I 

(Zhou et al., 2012). Binding of S1P to PHB2 and its action on mitochondrial function represent a 

potential novel link between intracellular S1P binding and ICl,swell, an ion channel activated by 

ROS.  

Several lines of evidence support the possibility that ICl,swell is activated by intracellular 

targets rather than extracellular-facing G protein-coupled S1PR. Intracellular application of both 

S1P and FTY720 elicited larger amplitude currents with a faster time course of activation and 

greater potency than extracellular application. In the case of FTY720, the difference in potency 

was more than 100-fold. These findings are consistent with the notion that S1P and FTY720 

delivered directly to the cytosol via the patch pipette reach their presumed intracellular site of 

action more rapidly and at higher concentration than when the same agents are delivered via 

suprafusion by bath solution. Inclusion in the patch pipette avoids the need for outside-in 

transport via ABC transporters and, perhaps, phosphorylation of FTY720 to FTY720-P by 

SphK2. As a result, the cytoplasmic concentration of ligand is likely to increase more rapidly 

with intra- than extracellular exposure, and if the access of ligand to its intracellular target is rate 

limiting, faster current activation is expected, as was observed.   

The idea that S1P and FTY720 act on intracellular binding sites also may explain the 

inconsistent responses of nominally specific S1PR inhibitors. The ability of these agents to 

inhibit binding of S1P and FTY720 or FTY720-P to intracellular ligands has not been 
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characterized. Nevertheless, our results argue that the putative intracellular binding site is not 

effectively blocked by CAY1044 and VPC23109 or these S1PR antagonists may fail to reach  

intracellular targets. Competitive inhibitors of agonist binding to S1PR presumably possess 

structural features that mimic those of S1P. This raises the possibility that S1PR antagonists 

might compete for binding sites on ABC transporters. Thus, for example, CAY10444 might 

block the action of 500 nM extracellular S1P on ICl,swell by preventing its import, but not suppress 

the response to intracellular S1P because CAY10444 fails to recognize or reach the intracellular 

S1P binding site. On the other hand, CAY10444 also failed to prevent activation of ICl,swell by 10 

μM extracellular FTY720, which must be imported and phosphorylated. The requirements for 

uptake of S1P and FTY720 might be different. Alternatively, CAY10444 might be ineffective in 

competing with a high concentration (10 μM) of FTY720 but still block the uptake of a lower 

concentration (500 nM) S1P by the same transport mechanism. Of particular interest, CAY10444 

and VPC29019 both were ineffective in blocking the response to both S1P and FTY720 applied 

via the patch pipette. Taken together, these data suggest that that the S1PR inhibitors failed to 

recognize or failed to gain access to the intracellular ligand that triggers ICl,swell activation.  

An intracellular ligand model also must explain the ability of SEW2871 to elicit ICl,swell. 

This small molecule heterocyclic S1PR1 agonist is uncharged and lipophilic; its octanol:water 

partition coefficient calculated by XLogP3-AA is 6.6 (see Pubchem Compound 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4077460#x27 accessed 30 March 

2013). This suggests SEW2871 will partition into the plasma membrane, but distribution into the 

cytoplasm has not been studied.  

 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4077460#x27�
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4.4 ROS mediated activation of ICl,swell.  

In the present studies we found that intracellular application of 500 nM S1P or 100 nM 

FTY720-P elicited ICl,swell that was insensitive to inhibition of NADPH oxidase by the fusion 

peptide inhibitor gp91ds-tat but was fully suppressed by inhibition of mitochondrial electron 

transport by rotenone in the continued presence of S1P or FTY720-P.  These data argue that S1P 

and FTY720-P augment mitochondrial ROS production and thereby activate ICl,swell by signaling 

that is independent of NADPH oxidase. 

In contrast to this conclusion, previous work by our laboratory established that  ROS 

produced by both NADPH oxidase and mitochondria are essential for eliciting  ICl,swell in 

cardiomyocytes in response to multiple stimuli (Ren et al., 2008;Deng & Baumgarten, 

2009;Browe & Baumgarten, 2007;Browe & Baumgarten, 2006;Browe & Baumgarten, 2004). 

Blockade of NADPH oxidase by gp91ds-tat, apocynin or other agents is sufficient to inhibit 

ICl,swell activated by Ang II binding AT1 receptors, ET-1 to ETA receptors, EGF to EGFR, integrin 

stretch, and osmotic swelling. Nevertheless, these stimuli also increase  mitochondrial ROS 

production in series with NADPH oxidase, and rotenone-sensitive mitochondrial ROS 

production is a required upstream effector for current activation (Deng et al., 2010b;Deng et al., 

2009). On the other hand, as found in the present study, interventions that directly affect 

mitochondrial function are capable of eliciting ICl,swell via mitochondrial ROS production 

(blocked by rotenone) that is independent of NADPH oxidase (insensitive to gp91ds-tat and 

apocynin) (Deng et al., 2010b;Deng et al., 2009;Raucci Jr. & Baumgarten, 2010). Among these 

interventions are: antimycin A, which blocks the electron transport chain distal to the complex 

III Qo site; diazoxide, which is thought to act by opening mitochondrial KATP channels; and the 

HIV protease inhibitors ritonavir and lopinavir. In parallel studies with these agents, ROS 
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production was measured in intact HL-1 cardiomyocytes using C-H2DCFDA-AM fluorescence 

and was fully suppressed by rotenone but not gp91ds-tat. Moreover, effects on mitochondrial 

membrane potential (Δψm) were confirmed with JC-1 in some cases.  

 Our findings that S1P and FTY720-P bind to an intracellular ligand, rather than S1PR, 

and thereby elicit ICl,swell via mitochondrial ROS production S1PR raises an important  question 

that we have not addressed experimentally: What is the intracellular binding site responsible for 

augmenting mitochondrial ROS production? One possibility is Phb2. a highly conserved protein 

that regulates mitochondrial assembly and function, was recently shown to bind S1P in vitro and 

in vivo (MacLennan et al., 2001;Strub et al., 2011;Yester et al., 2011). PHB2 has been shown to 

act as a chaperone in the assembly of subunits of mitochondrial respiratory chain complexes 

(Nijtmans et al., 2002). Moreover, PHB is reported to reduce mitochondrial free radical 

production and oxidative stress in brain injury models, perhaps by stabilizing the function of 

complex I (Zhou et al., 2012). Also, PHB1 downregulation in endothelial cells increases 

mitochondrial ROS production and promotes a senescent phenotype (Schleicher et al., 2008). 

Binding of S1P to PHB2 and its action on mitochondrial function represent a potential novel link 

between intracellular S1P binding and ICl,swell, an ion channel activated by ROS. 

It is unclear whether S1P and FTY720-P will augment mitochondrial ROS production 

independent of NADPH oxidase via an intracellular ligand rather than S1PR and thereby 

stimulate ICl,swell in cells from other tissues. S1P was recently found to increase in H2O2 

production in murine NIH3T3 fibroblasts through NADPH oxidase activation (Catarzi et al., 

2011). This response was PI-3K- and PKC dependent, was similar to PDGF-induced NADPH 

oxidase activation, and was mediated via Gi signaling by S1PR1 and S1PR3. The others did not 
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consider whether mitochondrial ROS production was upregulated by these interventions nor 

whether ICl,swell was activated 

4.5. Implications 

ICl,swell is known to regulate cardiac action potential duration (Kawata et al., 

1974;Vandenberg et al., 1997;EHARA & HASEGAWA, 1983) and cell volume regulation 

(Okada & Maeno, 2001;Shimizu et al., 2004;Hoffmann & Dunham, 1995), and the current is 

persistently turned on under isosmotic conditions in models of dilated cardiomyopathy (Clemo et 

al., 1998); (Baumgarten et al., 2005). Moreover, ICl,swell also has been implicated in apoptotic or 

regulatory volume decrease (Rasola et al., 1999;Okada & Maeno, 2001) that precedes apoptotic 

cell death. To the extent that S1P is elevated during cardiac disease, its effect on ICl,swell may 

contribute to the observed responses. Sphingolipid metabolites are known to regulate the 

function of heart by acting as second messengers to activate various signaling pathway (Karliner 

& Brown, 2009). Ceramide  and S1P accumulate in various cardiac diseases (Chatterjee et al., 

2006;Levade et al., 2001). Furthermore, the sphingomyelin/ceramide pathway is activated in 

vivo during ischemia/reperfusion and heart failure (Karliner, 2009a;Means & Brown, 2009), and 

the oxidation of sphingolipids is implicated in atherosclerotic plaque formation (Holland & 

Summers, 2008). Also during hypoxia and pre-conditioning an increased mitochondrial ROS 

production is associated with sphingolipids in experimental models (Lecour et al., 2006). 

Furthermore, a similar increase in mitochondrial ROS is observed in heart failure model (Sawyer 

& Colucci, 2000). In the present study, we demonstrate the evidence that , S1P and FTY720-

induced current is independent of ROS production from NADPH oxidase, and require only ROS 

production from mitochondria. In addition, one needs to consider the consequences of 

mitochondrial ROS production on other ion channels, transporters and signaling pathways. ROS 
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have multiple targets (for review, see (Thannickal & Fanburg, 2000;D'Autreaux & Toledano, 

2007) ), and one or more of these may contribute to the effects of S1P and FTY720-P in the heart 

and other tissues. S1P has long been known to offer cardioprotection during ischemia-

reperfusion injury (Karliner, 2009a;Karliner, 2009b). Multiple factors may contribute. First, 

interventions that stimulate mitochondrial ROS production can be protective in ischemia-

reperfusion models (Pain et al., 2000;Vanden Hoek et al., 1998;Carroll et al., 2001;Halestrap et 

al., 2004). Nevertheless, the effects activation of ICl,swell by S1P, including regulation of cell 

volume and action potential duration, may also contribute. In particular, we would expect 

activation of ICl,swell and the outwardly rectifying current it generates would lessen the occurrence 

of ventricular arrhythmias associated with action potential prolongation. On the other hand, 

abbreviation of action potential duration shortens the minimum length of the conducting pathway 

required to sustain re-entrant tachyarrhythmia's that can lead to fibrillation. The above 

predictions of the effects of S1P and FTY720-P on arrhythmogenesis based on their modulation 

of ICl,swell are likely to be too simplistic, however. As already noted, ROS production by these 

agents has multiple targets and the response of all the targets must be integrated to fully 

appreciate the consequences for cardiac function.  

4.6 Future Directions 

One of the important direction is to elucidate role of Sphingosine kinase (SphK) in 

production of S1P and modulation of ICl,swell SphK are lipid kinase that catalyzes production of 

S1P from sphingosine by ATP dependent phosphorylation. SphK is stimulated by a variety of 

agonist. Two mammalian cardiac isoforms are known SphK1 and SphK2. The two isoforms 

show different temporal, spatial, and tissue distribution. Though they are responsible for 

production of S1P, due to differences in their expression, S1P produced by action of different 
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isoforms might play different roles and may be involved in different signaling pathway. Both the 

isoforms are expressed in heart. In contrast to SphK1, SphK2 is mainly present in intracellular 

compartments, including the nucleus and mitochondria. Nuclear SphK2 regulates gene 

transcription at least in part by producing S1P, which acts as an endogenous inhibitor of histone 

deacetylases (Hait et al., 2009). In mitochondria the action(s) of SphK are required for correct 

assembly of the cytochrome oxidase complex. However, the exact ligand for the mitochondrial 

targeting signal is not known (Strub et al., 2011). Thus it would be important to understand how 

S1P produced by each isoform affect the modulation of ICl,swell. In order to test this hypothesis, 

we could provide an enzyme which stimulates S1P production by the action of kinase on 

sphingosine. SMase acts on sphingomyelin to produce ceramide, which in turn is converted to 

sphingosine. Sphingosine, upon the action of SphK is converted to S1P. Pharmacological 

blockers of SphK could be used to determine the role of SphK and specifically which isoform is 

involved in modulation of ICl,swell. An experiment design would include the use of SMase in 

control bath solutions. Subsequently a SphK inhibitor N,N-dimethylsphingosine (DMS) and 

D,Lthreo- dihydrosphingosine (DHS), which inhibits both SphK1 and SphK2 could be utilized in 

presence of SMase. Failure to see SMase induced activation of current would demonstrate either 

SphK1or SphK2 or both kinases were required in formation of S1P and thereby in regulation of 

ICl,swell. Furthermore to test which isoform is important (2R,3S,4E)-N-methyl-5-(4'-

pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), a potent, water-

soluble, isoenzyme-specific inhibitor of SphK1 (Paugh et al., 2008) applied in the presence of 

SMase. Attenuation of current from control would suggest that SphK1 is the required isoform for 

S1P production in cardiac myocytes and thereby modulates ICl,swell. On the other hand failure to 

inhibit SMase induced current precludes the role of SphK1 would suggest SphK2 as the required 
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isoform. Moreover ABC294640 selective inhibitor of SphK 2 (Becker et al., 1992) be utilized in 

the presence of SMase to confirm the role of SphK2. If the SMase induced current is inhibited 

then it would confirm the role of SphK2 in S1P production in heart. Thus the aforementioned 

experiments would help identify the isoform(s) required for S1P production in heart. Similar 

experiments could be done in presence of ceramide and sphingosine instead of SMase. Ceramide 

and Sphingosine are downstream metabolites of SMase, observation of similar behavior with 

their use will support the metabolic pathway in production of S1P as suggested and corroborate 

the role of SphK in modulating ICl,swell. 

Genetic approach also would be promising in determining the role of SphK and 

identifying the specific isoform involved in modulation of ICl,swell. Knockout mice for SphK 

(SphK1-/-), SphK2 (SphK2-/-) can be used to characterize the role of SphK in regulating ICl,swell. If 

both the isoforms modulate ICl,swell, then the aim would be to identify, if there are difference in 

the regulation of ICl,swell by a specific isoform. To do these experiments isolated cardiac myocytes 

from knockout mice and wild type mice of the same strain would be used. Whole cell patch 

clamp will be used to record the current. SMase will be applied to the cells and the current 

recorded under isosmotic solutions. Failure to see SMase induced current in cells from SphK1 

knockout mice as compared to wild type mice would suggest SphK1 to be a required isoform for 

formation of S1P and thereby activation of ICl,swell. On the other hand failure to observe SMase 

induced current in SphK2 knockout mice as compared with wild type mice would implicate 

SphK2 as the isoform necessary for generation of S1P and modulation of current. As a positive 

control exogenous S1P and intracellular S1P to be utilized in both the knockout mice as well as 

wild type mice. The activation of current by exogenous S1P in all three types of mice would 
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implicate that indeed lack of particular iso-forms of SphK in the K/O mice fails to generate S1P 

upon SMase treatment and hence unable to activate the current. 

 In the present study, we observed that, some intracellular target for S1P is responsible for 

activating the current rather than the GPCS1PR. Hence the next daunting question is to identify 

the intracellular binding site for S1P. 
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