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Abstract 

 

By Maria Laura Amaya, B.S, 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2013 

Major Director: Gordon D. Ginder  
Director, Massey Cancer Center, 

Professor, Departments of Internal Medicine, Human and Molecular Genetics and Microbiology 
and Immunology 

 

 

An understanding of the human fetal to adult hemoglobin switch offers the potential to 

ameliorate β-type globin gene disorders such as sickle cell anemia and β-thalassemia through 

activation of the fetal γ-globin gene. Chromatin modifying complexes, including MBD2-NuRD 

and GATA-1/FOG-1/NuRD play a role in γ-globin gene silencing, and Mi2β (CHD4) is a critical 

component of NuRD complexes. In the studies presented in Chapter 2, we observed that the 

absence of MBD2 in a sickle cell mouse model leads to a decrease in the number of sickled cells 

observed in the peripheral blood, and significantly increases survival in these mice. Although 

further studies will be necessary to fully understand the effect of MBD2 knockout in sickle cell 

disease mice, absence of MBD2 appears to partially ameliorate the sickle cell anemia phenotype 

in vivo.  

In the studies presented in Chapter 3, we observed that knockdown of Mi2β relieves γ-

globin gene silencing in β-YAC transgenic murine CID hematopoietic cells and in CD34+ 

progenitor derived human primary adult erythroid cells. We show that independent of MBD2-
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NuRD and GATA-1/FOG-1/NuRD, Mi2β binds directly to and positively regulates both the 

KLF1 and BCL11A genes, which encode transcription factors critical for γ-globin gene silencing 

during β-type globin gene switching. Remarkably, less than 50% knockdown of Mi2β is 

sufficient to significantly induce γ-globin gene expression without disrupting erythroid 

differentiation of primary human CD34+ progenitors. These results indicate that Mi2β is a 

potential target for therapeutic induction of fetal hemoglobin.  
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Chapter 1. Introduction 

 

 

 

I. Hemoglobin and the hemoglobin switch  

 

A. Hemoglobin 

Hemoglobin is the oxygen carrying metalloprotein in the body and the major component 

of red blood cells. Its main function is to carry oxygen from the lungs to tissues. Although there 

are different types of hemoglobin, each of them is a tetramer composed of four subunits 

including two α-like chains and two β-like globin chains. In humans, the genes coding α-chains 

are located on chromosome 16. The α-globin locus contains one functional embryonic ζ-globin 

gene and two adult α-globin genes. The genes coding for the β globin chains are located on 

chromosome 11, and they determine the type of hemoglobin produced at different stages of life. 

The β-type globin genes include ε- (embryonic) γ- (fetal) δ- and β-globin (adult), each expressed 

at their corresponding stage as named. The ε-globin gene is the most upstream gene in the β-

globin locus and the first one expressed during embryogenesis. The γ-chains come from two 

genes located in tandem, and their protein products only differ by one amino acid at position 

γ136, where the upstream gene contains a glycine and the downstream gene contains an alanine, 

GγAγ. The γ-globin genes are predominantly expressed in the fetal stages of development. The δ-

globin gene is a result of a duplication of the β-globin gene and its expression remains low 

throughout postnatal life. The β-globin gene is the most downstream gene of the β-locus and β- 
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globin chain synthesis predominates during adulthood (Nathan et al. 2003). All globin  

chains are relatively small peptides of roughly 150 amino acids (~16kDa). 

In human adults, the predominant hemoglobin (HbA) is composed two α- and two β-

globin chains, and it comprises ~96-98% of total hemoglobin. HbA2, composed of two α- and 

two δ-globin chains, comprises ~2.4% of total hemoglobin in adults. Fetal hemoglobin (HbF), 

composed of two α- and two γ-globin chains, comprises <2% of total hemoglobin in adults 

(Nathan et al. 2003).  

 

B. The β-globin locus and the hemoglobin switch 

In humans, the fetal γ-globin gene is located on the β-globin locus on chromosome 11. As 

described in section A, this locus consists of a family of genes placed in the sequence they are 

expressed during gestation and adulthood, and it is preceded by a locus control region (LCR-ε-

γGγA-δ-β) (Stamatoyannopoulos 2005; Sankaran, Xu & Orkin 2010) (Figure 1). During the first 6 

to 8 weeks of gestation or embryonic stage, ε-globin is highly expressed in the yolk sac and 

paired with ζ-globin chains. This is followed by high expression of γ-globin in the liver during 

most of gestation allowing 2 γ-globin chains to pair with 2 α-globin chains to form fetal 

hemoglobin (HbF). At birth, γ-globin expression begins to decline as the expression of β-globin 

increases in the bone marrow (Boyer et al. 1975; Peschle et al. 1985; Ley et al. 1989) (Figure 1). 

At this stage, 2 β-globin chains pair with 2 α-globin chains to form adult hemoglobin (HbA). 

This process if often referred to as the “hemoglobin switch” since it describes the “switch” that 

occurs between fetal γ-globin and adult β-globin expression.  
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Figure 1. The hemoglobin switch. The human globin locus on chromosome 11 is represented on 
the left. This locus is preceded by a locus control region (LCR), and the β-type globin genes are 
positioned in the order in which they are expressed during gestation and after birth. The top 
panel represents the body compartments in which each of the genes is expressed. On the right is 
a cartoon representing the hemoglobin switch in mice. Dotted lines represent the human β-type 
globin genes in transgenic mice undergoing a switch in a similar manner than do murine 
endogenous embryonic to adult globin genes. Adapted from: Sankaran, Xu & Orkin 2010. 
 

 

 

 

 

 

from the fetal liver, fetal haemoglobin production is markedly

increased (Peschle et al, 1985; Ley et al, 1989). Over the course

of gestation, the major b-like haemoglobin subunit that is

expressed is c-globin. c-Globin is assembled with the adult

a-globin subunits to form the fetal haemoglobin (HbF)

tetramer (a2c2). During primate evolution, the genes encoding

the fetal haemoglobin subunit were duplicated, such that there

are two fetal globin genes in humans, HBG1 (Ac) and HBG2

(Gc), which differ by only a single amino acid. As the newborn

period approaches, the fetal switch begins to take place from

HBG1 and HBG2 (c-globin) genes to the adult HBB (b-globin)

gene (Stamatoyannopoulos, 2005). This switch is normally

completed during infancy and typically lasts until approxi-

mately 6 months of age (Fig 1). Non-anaemic adults continue

to express a low level of HbF, which is largely concentrated in a

small percentage of erythrocytes referred to as F cells (Boyer

et al, 1975; Thein & Menzel, 2009). Occasionally, in the

context of certain pathological conditions or rare mutations,

the level of HbF can be elevated. The nature of this variation

and the genetics underlying part of this variation has been

discussed in a recent review in this journal (Thein & Menzel,

2009). The nature of this switch will be discussed in further

detail later in this review.

Haemoglobin switching of both the primitive to definitive

and the fetal to adult types has been studied as models for the

developmental control of gene expression. The b-globin loci of

mammals were among the first gene loci to be cloned and

sequenced, and have constituted an important model system

for the study of gene regulatory processes (Fritsch et al, 1980;

Leder et al, 1980). Following the cloning of these genes, many

advances were made in understanding how gene expression

from the b-globin loci is controlled. The function of a

powerful upstream enhancer of the b-globin loci, the locus

control region (LCR), was identified as essential for high level

expression of these genes (Tuan et al, 1985; Forrester et al,

1986; Grosveld et al, 1987; Bender et al, 2000) (Fig 1). Over

the ensuing years, many regulators of this gene locus were

identified (Cantor & Orkin, 2002). However, the control of the

developmental haemoglobin switches remained an enigma.

The importance of understanding the fetal to adult switch in

humans is underscored by the clinical relevance to the

b-haemoglobin disorders (Stamatoyannopoulos, 2005; Bank,

2006). Infants with sickle cell disease were postulated to be

protected from symptoms until several months of age because

of elevated HbF levels (Watson, 1948). This notion was

substantiated by observations of patients with compound

heterozygosity for sickle cell disease and hereditary persistence

of fetal haemoglobin (HPFH) mutations who were largely

asymptomatic (Weatherall & Clegg, 2001). Related observa-

tions were made in patients with b-thalassaemia mutations,

where higher levels of HbF correlate with a more asymptom-

atic clinical course (Weatherall, 2001). These observations in

patients with disorders of the b-haemoglobin subunit have

0 3 6 9 12 Adult

20

Age DPC (months)

60

100

G
lo

bi
n 

sy
nt

he
si

s 
(%

)

Bone marrowLiver

LCR

3’HS1Embryonic Fetal Adult

Human

9

20

Age DPC (days)

60

100

G
lo

bi
n 

sy
nt

he
si

s 
(%

)

11 13 1715 Adult

LCR

3’HS1Embryonic Adult

Mouse

HBE1

HBB

HBG1
HBG2

Hbb-y

Hbb-bh1

HBE1

HBB
HBD

Hbb-b1
Hbb-b2

HBG1
HBG2

HBE1
HBG2

HBG1

HBD
HBB

Hbb-y

Hbb-b
h1

Hbb-b
1

Hbb-b
2

HBD

Fig 1. A diagram illustrating the developmental switching of the b-like globin gene expression in human (left) and mouse (right). Organization of
human and murine b-globin loci, consisting of the linked b-like globin genes (coloured boxes), upstream DNaseI hypersensitive sites (HS, red boxes)
within the locus control regions (LCR), and downstream 3¢HS1, is displayed. Above the graph for the human locus the shifting sites of haematopoiesis
are indicated. In the graph for the mouse locus, the content of both endogenous mouse (black straight lines) and exogenous human b-like globins
(blue dashed lines) in transgenic b-globin locus mice are shown. This graph is adapted from (Noordermeer & de Laat, 2008).

Table I. Summary of the Human Gene Nomenclature (HUGO) or
Mouse Genome Informatics (MGI) nomenclature and the corre-
sponding conventional gene symbols for the human and mouse b-like
globin genes.

Conventional gene

symbols

HUGO or MGI

nomenclature

e HBE1

Ac HBG1

Gc HBG2

d HBD

b HBB

ey Hbb-y

bh1 Hbb-bh1

bmajor Hbb-b1

bminor Hbb-b2

Review
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The mouse globin locus greatly resembles the human β-locus. Mice have two embryonic 

globin genes (εy and βh1) and two adult globin genes (βmaj and βmin), but unlike humans they 

do not have fetal globin genes (Figure 1). Embryonic genes (εy and βh1) are mostly expressed in 

primitive (embryonic) erythroid cells and βmaj and βmin are strictly expressed in definitive 

(adult) erythroid cells (Trimborn et al. 1999). A transition begins at around day E11.5 in 

gestation when the definitive cells are first detected in the peripheral blood (Popp, D’Surney & 

Wawrzyniak 1987). In mice, the hemoglobin switch therefore occurs at the embryonic stage as 

depicted in Figure 1.  In transgenic mice containing the human β-globin locus, the human fetal 

globin genes (Aγ and Gγ) assume the regulation of the endogenous murine embryonic genes and 

the hemoglobin switch occurs during gestation as depicted with dotted lines in Figure 1.  

 

II. Erythrocytes and Erythropoiesis 

 

A. Erythrocytes 

Red blood cells, or erythrocytes, are oval cells characterized by being highly flexible, and 

hemoglobin makes up the majority of their protein content. Unlike other cells of the human 

body, erythrocytes lack a nucleus in order to accommodate a large amount of hemoglobin 

molecules. Their life span is about 120 days (Alison 1960). 

 

B. Erythropoiesis 

Erythropoiesis is the process by which erythroid precursors differentiate to give rise to 

mature erythroid cells. In humans there are two types of erythropoiesis, primitive (embryonic) 

erythropoiesis, and definitive (adult) erythropoiesis. Early in ontogeny primitive erythropoiesis 
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occurs in the yolk sac, where immature erythroid precursors are released into the bloodstream 

where they mature and enucleate (Palis 2008). Definitive, or adult erythropoiesis occurs at later 

stages of gestation in the fetal liver. Towards the last three months of gestation, definitive (adult) 

erythroipoiesis moves to the bone marrow, where erythropoiesis continues through adulthood 

(Palis 2008; Tsiftsoglou et al. 2009). Unlike primitive erythropoiesis where erythroid cells 

mature in the bloodstream, definitive erythroipoiesis is characterized by “blood islands” in which 

erythroid precursors are surrounded by macrophages and they enucleate before entering the 

bloodstream (Palis 2008). 

Erythrocytes differentiate through a series of stages in the bone marrow. Hematopoietic 

stem cells differentiate into a common myeloid progenitor followed by early erythroid 

progenitors (burst forming unit-erythroid and colony forming unit-erythroid). These give rise to 

proerythroblasts, followed by differentiation of these cells in the following order: basophilic 

erythroblast, polychromatic erythroblast, orthochromatic erythroblast, polychromatic erythrocyte 

(or reticulocyte) to finally a mature erythrocyte (Figure 2). Although this terminology refers to 

their appearance on a light microscope after Wright staining, each of these stages represents a 

different step in differentiation and is marked by expression of different genes and cell surface 

markers.  During mammalian erythropoiesis, there is a significant decrease in cell size and 

condensation of the nucleus until enucleation occurs at the orthochromatic erythroblast stage. 

Reticulocytes are then released into the circulation (Handlin, Lux & Stossel 2002). Reticulocytes 

contain abundant amount of RNA capable of specifying synthesis of hemoglobin. They comprise 

~ 0.5-1.5% of erythrocytes and circulate in the bloodstream for about 1 day before fully maturing 

into erythrocytes (Skadberg, Brun & Sandberg 2003). 
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Erythropoiesis is a highly regulated process in terms of cell proliferation, and preventing 

apoptosis and cell cycle arrest while approaching terminal differentiation. Changes in oxygen 

tension, iron homeostasis, and stress can affect this process (Tsiftsoglou et al. 2009). 

 

 

 

Figure 2. Stages of human erythropoiesis. In the bone marrow, hematopoiesis begins with 
pluripotent hematopoietic stem cells (HSC). These cells give rise to a common myeloid 
progenitor (CMP), followed by a megakaryocytic/erythroid pluripotent progenitor (MEP). 
Erythropoiesis (highlighted in the diagram) occurs in the following order: Burst forming unit-
erythroid (BFU-E) gives rise to colony forming unit-erythroid (CFU-E), followed by 
intermediate forms for Proerythroblasts (ProEB), which give rise to orthrochromatic normoblast 
(ON). Enucleation occurs at the normoblast stage and reticulocytes (RET) are released into the 
bloodstream where they eventually become mature red blood cells (RBCs). Adapted from 
Tsiftsoglou, Vizirianakis & Strouboulis 2009. 
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III. Hemoglobinopathies  

Hemoglobinopathies such as sickle cell anemia and β-thalassemia result from among the 

most common single gene defects worldwide and affect a significant amount of the population in 

the United Stated. It is estimated that about 300,000 children worldwide are born each year with 

either sickle cell anemia or thalassemia (Weatherall 2010). These genetic disorders result from 

mutations that affect hemoglobin. 

 

A. Sickle cell anemia.  

Sickle cell anemia is an autosomal recessive disorder. The first sickle cell anemia patient 

was described by James Herrick in 1910. In his report, he wrote “what especially attracted 

attention was the large number of thin, elongated, sickle-shaped and crescent-shaped forms” 

when describing a case of a patient with severe anemia (Herrik 1910). Sickle cell anemia was 

first described as a molecular disease in 1949 (Pauling & Itano 1949), and it results from a point 

mutation in the in the 6th position of the beta globin gene (A-to-T) that replaces a glutamic acid 

for a valine (Ingram 1956). This recessive disorder is most prevalent in some regions of Africa, 

where more than a quarter of the population carry the trait. The β-globin mutation became more 

prevalent in parts of the world where it conferred a survival advantage against malaria caused by 

Plasmodium falciparum, a parasite that infects erythrocytes (Livingstone 1958). It is also 

prevalent in parts of Saudi Arabia, Greece, India and Brazil, and about 8% of African Americans 

are also carriers (Steinberg 2008).  

 



   

8 
 

i. Pathophysiology.  

In sickle cell anemia, a point mutation in the β-globin gene causes a change from glutamic 

acid to valine. This valine, a hydrophobic amino acid, is exposed when hemoglobin assumes its 

deoxy conformation (under low oxygen conditions), and it clusters with hydrophobic pockets of 

other β-chains causing polymerization of hemoglobin molecules as shown in Figure 3B (Nathan 

et al. 2003). Polymers accumulate and contribute to an abnormally elongated shape in erythroid 

cells, preventing their deformability. Although polymerization is a reversible process, the shape 

change of erythroid cells is not always reversible. The lack of deformability of sickle-shaped 

cells makes their passage through the microvasculature difficult, therefore causing vaso-

occlusion (Figure 3C). Adhesion of sickle cell anemia erythrocytes to the vascular endothelium 

is also common, further contributing to vaso-occlusion (Ballas & Mohandas 1996; Nathan et al. 

2003).  
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Figure 3. Pathophysiology of sickle cell anemia. (A) The glutamic acid-to-valine mutation causes 
valine hydrophobic residues to become exposed and cause a conformational change in the 
hemoglobin tetramer under low oxygen conditions. (B) Hydrophobic interactions allow 
hemoglobin molecules to form polymers. (C) Polymers lead to a shape change of red blood cells 
that resembles a sickle. Sickle shaped erythrocytes cause occlusion in small vessels, resulting in 
ischemia and pain crises. Adapted from carnegiescience.edu (A) evolution.berkeley.edu (B) and 
www.nhlbi.nih.gov (C).  
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ii. Clinical manifestations of sickle cell anemia. 

Since polymer formation in carriers is very rare, heterozygote patients (also known as 

sickle cell trait) do not usually show any symptoms. Nonetheless, clinical findings such as 

urinary tract infections, hematuria and splenic infarct during strenuous exercise and low oxygen 

conditions are possible (Sears 1978; Kark & Ward 1994).  

Sickle cell anemia is largely characterized by chronic anemia. Vaso-occlusion caused by 

abnormally sickle shaped erythrocytes obstructing small vessels is responsible for most of the 

complications of this condition. Such complications include acute chest syndrome, strokes, 

retinopathy, priapism, and chronic nephropathy. Hemolysis (lysis of erythrocytes) not only 

contributes to severe anemia, but also to vaso-occlusive crisis through reduction of nitric oxide 

availability (Nathan 2003). 

Clinical manifestations can vary depending of the stage of life. In the early years of life, 

the most common manifestations include painful episodes, acute chest syndrome and stroke. 

Painful episodes are caused by vaso-occlusion and present as painful swelling of the hands and 

feet. Acute chest syndrome is characterized by fever, chest pain, wheezing, cough, hypoxia, and 

lung infiltrate. Later in life, chronic organ hypoxia leads to organ damage and failure. Renal 

disease oftentimes leads to renal failure in older patients (Nathan et al. 2003; Steinberg 2008). 

Loss of splenic function makes these patients more susceptible to bacterial infections, in 

particular pneumococci. Pneumococcal vaccines are therefore standard prevention for patients 

with sickle cell anemia. Acute chest syndrome is a common cause of death in adults with sickle 

cell anemia (Nathan et al. 2003).  
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B. β-thalassemia.  

Severe β-thalassemia was first described by Thomas Cooley in 1925, when studying 

Italian and Greek children with severe anemia. Aside from severe anemia, these children 

exhibited hepatosplenomegaly, growth retardation and bone deformities. β-thalassemia major is 

also termed Cooley’s anemia (Cooley & Lee 1925). 

There are about 23,000 children born with β-thalassemia each year and it is most 

prevalent in Mediterranean countries, the Middle East, India, North Africa and Central and 

Southeast Asia (Weatherall 2010).  

 

i. Pathophysiology  

The β-thalassemias are a group of disorders that result form either absence or a reduction 

in the expression of β-globin gene. Point mutations are the most common cause, although 

deletions can also result in absence of β-globin gene expression (Higgs, Thein & Woods 2001). 

Reduction or absence of β-globin chain synthesis results in an imbalance of the normal α-to-β-

globin chain ratio, leading to accumulation of excess α chains. This abnormal ratio results in 

ineffective erythropoiesis in the bone marrow (Figure 4) as well as hemolysis in the peripheral 

blood. In the case of ineffective erythropoiesis, apoptosis of erythroid precursors (Yuan et al. 

1993) is triggered by formation of hemichromes (α-globin chains/heme aggregates) (Figure 4). In 

mature red blood cells, intravascular hemolysis is also caused by α-globin chains’ inability to 

form tetramers and stay in solution. Excess α-globin chains therefore precipitate and the 

hemichromes interact with cell membrane proteins such as spectrin, causing cell damage and 
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hemolysis (Shinar , Rachmilewitz & Lux 1989).  

      

Figure 4. Ineffective erythropoiesis in β-thalassemia. In the bone marrow, excess α-chain 
deposition (hemichromes) leads to apoptosis of erythroid precursor cells. Adapted from Rund & 
Rachmilewitz 2005. 

 

 

ii. Clinical Manifestations of β-thalassemia.  

The clinical presentation of β-thalassemia patients can vary from no overt symptoms to 

severe anemia depending on the type of mutation and the level of β-globin gene expression. β-

thalassemias can therefore be classified into 1) β-thalassemia trait in which only one copy of the 

gene carries a mutation and patients show mild or no anemia. 2) β-thalassemia intermedia in 

which both copies of the gene carry a mutation but at least one mutation is mild and results in 

expression of β-globin gene. Patients show mild to moderate anemia and splenomegaly. 3) β-

thalassemia major in which both genes carry a severe mutation resulting in little or no expression 

of the β-globin gene. Patients show severe anemia and are transfusion dependent (Rund & 

Rachmilewitz 2005).    

Aside from severe anemia, β-thalassemia patients can also present with 

hypercoagulability (Eldor & Rachmilewitz 2001), pulmonary hypertension (Morris & Vichinsky 
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2011), bone expansion and extramedullary hematopoiesis. Patients who are transfusion 

dependent are prone to suffer from further complications due to excess iron deposit in organs. 

This is, in fact, the cause of most complications in patients with β-thalassemia. Although 

chelating therapy has improved the negative effects of excess iron, its side effects result in poor 

compliance. Most of the iron deposit occurs in the liver, heart and in endocrine glands. Chronic 

anemia and iron overload in these patients often results in endocrinopathies and impaired growth. 

Hypogonadism is also common (Cunningham et al. 2004; De Sanctis 2002; Raiola et al. 2003) 

and it is treated with hormonal therapy. In older patients, bone disease (including osteopenia and 

osteoporosis) is caused by bone expansion due to defective erythropoiesis as well as endocrine 

deficiencies. Although iron deposit affects various organs including the liver resulting in 

cirrhosis, and the pancreas resulting in diabetes mellitus, it has the most negative impact in the 

heart, as cardiac events are the most common cause of death in these patients (Rund & 

Rachmilewitz 2005).  
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Figure 5. Clinical manifestations of β-thalassemia. Depicted above are some of the clinical 
manifestations of β-thalassemia patients, which include bone expansion and organ damage due to 
iron deposit. Organ damage leads to cirrhosis, diabetes mellitus, and cardiomyopathy. Current 
therapy is mostly supportive, consisting of transfusions along with chelating agents, hormone 
replacement and vitamin D. The only curative therapy is bone marrow transplantation. Adapted 
from Rund & Rachmilewitz 2005. 
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Figure 1. Management of Thalassemia and Treatment-Related Complications. 

 

The anemia that is associated with thalassemia may be severe and is accompanied by ineffective erythropoiesis, with bone 
expansion and extramedullary hematopoiesis in the liver, spleen, and other sites, such as paravertebral masses. Transfu-
sion therapy, which is the mainstay of treatment, allows for normal growth and development and suppresses ineffective 
erythropoiesis. Transfusion-transmitted infections (primarily hepatitis B and C) are an important cause of death in coun-
tries where proper testing is not available. Iron overload results both from transfusional hemosiderosis and excess gas-
trointestinal iron absorption. Iron deposition in the heart, liver, and multiple endocrine glands results in severe damage 
to these organs, with variable endocrine organ failure. The endocrinopathies can be treated with hormone replacement. 
However, the most serious result of iron overload is life-threatening cardiotoxicity, for which chelation therapy is required. 
Thalassemia can be cured by bone marrow transplantation. Experimental therapies to ameliorate the anemia that have 
been or are currently under investigation include fetal hemoglobin modifiers and antioxidants. In the future, gene thera-
py or other molecular methods may be feasible.
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C. The role of fetal hemoglobin on β-type globin disorders 

It was first observed that infants with sickle cell anemia did not develop symptoms until 

several months after birth due to higher levels of fetal hemoglobin (HbF) during this period 

(Watson 1948). The idea of high HbF conferring protection against sickle cell anemia was later 

reinforced by the observation that West African sickle cell patients who co-inherited a condition 

known as hereditary persistence of fetal hemoglobin (HPFH) were highly asymptomatic 

(Edington & Lehmann 1955).  HPFH is a benign condition in which high levels of HbF are 

caused by either deletions or mutations. Thalassemia patients who co-inherited HPFH were also 

noted to be asymptomatic (Jacob & Raper 1958).   

The mechanism behind HbF’s protective role in sickle cell anemia became apparent years 

later when HbF was shown to prevent polymer formation. In sickle cell anemia, the tetramer 

α2βS2 forms polymers in its deoxygenated state. However, a hemoglobin molecule composed of 

the hybrid tetramer α2βSβA (one normal β-chain and one mutated β-chain) has only half the 

probability of polymerizing. Introducing one γ-globin chain forming a hybrid tetramer (α2βSγ) 

does not allow hemoglobin polymerization and therefore prevents sickling (Steinberg 2009). It 

was later demonstrated than an increase in HbF decreases mortality in sickle cell patients (Platt 

et al.1994). Of note, the hybrid (α2βSδ) has also been shown to decrease the polymerization in a 

similar manner as α2βSγ (Nagel et al.1979). 
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D. The need for new treatments for sickle cell anemia and β-thalassemia patients 

Early studies showed methylation plays an important role in the regulation of embryonic 

and fetal β-type globin expression and therefore HbF production (Mavilio et al. 1983; McGhee & 

Ginder 1979; Shen & Maniatis 1980; van der Ploeg & Flavell 1980). In attempts to find agents 

that would lead to an increase in HbF in patients with sickle cell anemia, studies were conducted 

using the hypomethylating agent, 5-azacytidine. Treatment of baboons, sickle cell anemia 

patients (De Simone et al. 1982; Charache et al. 1983) and β-thalassemia patients (Ley et 

al.1982) with 5-azacytidine successfully showed increases in HbF. Cytotoxicity and 

myelosuppression, however, were a great concern as potential side effects when using this agent 

(Ley et al. 1983). Decitabine, another demethylating agent, was also tried with better results and 

less cytotoxicity (Musallam et al. 2013). Long-term trials testing this agent remain to be 

conducted. 

Paradoxically, it was later inferred that some of the positive effects of increased HbF seen 

with the use of 5-azacytidine were due to its cytotoxicity. Hydroxyurea, another drug conferring 

similar S-phase specific cytotoxicity was tested for HbF induction in monkeys with success 

(Letvin et al. 1984). Hydroxyurea, a ribonucleotide reductase inhibitor, proved to be a successful 

agent and is now the current treatment for sickle cell anemia. Although its therapeutic effect is 

not entirely understood, a possible mechanism of action is the induction of stress erythropoiesis 

(Mabaera et al. 2008). Despite hydroxyurea being a known inducer of HbF in patients, it has 

variable effects and a large number of patients do not respond to hydroxyurea treatments 

(Charache, et al. 1992; Steinberg et al. 1997; Ware et al. 2002). Another disadvantage of 

hydroxyurea use is its inability to induce HbF in a pancellular manner (Platt et al. 1984). Not all 
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erythrocytes, therefore, are spared of polymer formation. This drug is also completely ineffective 

in the treatment of β-thalassemia.   

Since hydroxyurea has variable effects on sickle cell patients, attempts to find other 

therapeutic drugs have been made with varying degrees of success. Short chain fatty acids, 

including butyrate, have been shown to increase HbF expression in animal systems as well as in 

patients with sickle cell anemia and β-thalassemia (Ginder et al. 1989; Perrine et al. 1993; 

Weinberg et al. 2005). Although butyrate has antiproliferative effects, intermittent dosage is well 

tolerated and shows sustained HbF induction (Atweh et al. 1999). Small molecules such as 

vanillin were developed to inhibit HbS polymerization and appeared promising (Abraham et al. 

1991), but later proved to be difficult to achieve high concentrations with low toxicity.   

The standard treatment for β-thalassemia major is life-long transfusions. Continued 

transfusions results in iron overload and iron deposit leading to organ damage. Chelation therapy 

with parenteral deferroxamine has proved to reduce tissue iron deposit, therefore diminishing the 

probability of iron overload (Giardina & Grady 2001). Parenteral administration of 

deferroxamine and its potential side effects, however, have resulted in lower compliance 

(Olivieri 1999). Transfusions also carry the risk of transfusion-transmitted infections.  

Stem cell transplantation is the only curable treatment for both sickle cell anemia and β-

thalassemia. A 5-10% mortality rate, high cost, and the difficulty in finding suitable donors 

makes this option difficult for some patients. Furthermore, stem cell transplantation has not been 

successful in patients with extensive disease from β-thalassemia.  β-thalassemia patients with 

significant liver damage from iron overload usually experience higher rates of graft rejection (up 

to 30%) (Lucarelli et al. 1996).   
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The lack of effective treatments for these conditions has sparked efforts to find new ways 

to treat these conditions. In order to find more effective and potentially less toxic targeted 

strategies to induce HbF production, it is important to fully understand the molecular basis of 

developmental repression of the fetal γ-globin gene.  

 

IV. Regulation of γ-globin gene expression 

 

A. The Locus Control Region (LCR) 

There are numerous sequence elements that play a role in the regulation of β-type globin 

genes, including cis-acting factors as well as trans-acting factors (Stamatoyannopoulos, 2005; 

Sankaran, Xu & Orkin 2010; Ginder, Gnanapragasam & Mian 2008). An important cis-acting 

factor that regulates the expression of β-globin genes is an upstream locus control region (LCR) 

(Tuan et al. 1985, Forrester et al. 1986, Grosveld et al. 1987). The locus control region is an 

enhancer-like region upstream of the β-locus. It consists of five DNase I hypersensitive sites that 

are located 6-20kb upstream of the embryonic ε-globin gene. It was originally discovered by a 

series of experiments searching for the presence of DNase I hypersensitive sites that were 

necessary for the expression of β-locus genes (Tuan et al. 1985; Forrester et al. 1986). The 

importance of this region was further confirmed by showing that only in the presence of the 

LCR, transgenic mice bearing the human β-globin locus were able to express human β-type 

globin genes at high levels (Grosveld et al. 1987). The DNase I hypersensitive sites found in the 

LCR have different functions. Some act as insulators (Bell, West & Felsenfeld 2001; Li et al. 

2001), while others act as activators (Navas et al. 1998).  
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Earlier studies focusing on the role of the LCR on globin gene expression, led to two 

non-exclusive theories about regulation of the genes located in the β-locus. The first was a 

competition model suggesting expression of globin genes is determined by which gene is closer 

to the LCR (chromosome looping). The second is an autonomous control model suggesting 

regulation of gene expression is mostly through sequences located in each globin gene promoter 

region as well as trans-acting factors regulating each promoter. The competition model was 

determined by developing transgenic mice with β-type globin genes placed at different distances 

from the LCR. When placed closer to the LCR relative to embryonic and fetal β-type globin 

genes, the β-globin gene is activated at earlier stages compared to its normal time of activation, 

while the γ-globin gene is silenced earlier in development when placed farther from the LCR 

(Hanscombe et al. 1991). Overall, the ε-globin gene appears to be highly regulated by 

autonomous control in definitive erythropoiesis (Raich et al. 1990, Dillon & Grosveld 1991), β-

globin gene appears to be largely regulated by chromosome looping during definitive 

erythropoiesis, and the γ-globin gene is regulated by both types of control (Tanimoto et al. 1999). 

Aside from distance, copy number and orientation are also important in the regulation of β-type 

globin genes by the LCR (Tanimoto et al. 1999). 

 

B. BCL11A and Sox6 

BCL11A (B cell lymphoma/leukemia 11A) is a zinc finger transcription factor that was 

first identified as being a common retroviral integration site in murine myeloid leukemia leading 

to high expression of this protein (Nakamura et al. 2000). Genome wide association studies 

(GWAS) searching for correlations between single nucleotide polymorphism and increased HbF 

levels first led to the discovery of BCL11A in relation to γ-globin regulation  (Menzel et al. 
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2007). Later studies confirmed BCL11A plays an essential role in hemoglobin switching, as 

BCL11A conditional knockout mice crossed with transgenic mice bearing the human β-locus 

show a delay in γ-to-β-globin gene switch between E14.5 and E18.5 in fetal liver cells (Sankaran 

et al. 2009). Absence of BCL11A also shows amelioration of the sickle cell phenotype in young 

adult mice (Xu et al. 2012). Despite the silencing delay of γ-globin expression during early life in 

BCL11A KO mice, γ-globin gene expression drastically diminishes between E18.5 and 4-5 

weeks of age (Esteghamat et al. 2013), suggesting BCL11A plays an important role in the 

hemoglobin switch during ontogeny but a less prominent role during adult regulation of γ-globin 

expression. 

In order to understand the mechanism by which BCL11A regulates γ-globin gene 

expression, BCL11A has been screened for potential binding partners. BCL11A interacts with 

many proteins including MBD3/NuRD complex components, GATA-1, FOG-1 and LSD-1 

(Sankaran et al. 2008; Xu et al. 2013). BCL11A binds to the β-globin locus at two sites, the 

hypersensitive site HS3 and the intragenic region between γ- and δ-globin genes (Sankaran et al. 

2008).  With the help of Sox6, BCL11A also contributes to the β-locus chromosome looping 

necessary for γ-globin gene silencing as shown by 3C assays (Xu et al. 2010). Although a 

potential candidate as a target in the re-expression of γ-globin, absence of BCL11A has 

devastating effects on other cell populations such as B-lymphocytes (Liu et al. 2003). 

Sox6 is a member of the Sry-related high-mobility group (HMG) box transcription 

factors. The sox family of transcription factors binds to the minor groove of the DNA and leads 

to DNA looping (Ferrari et al. 1992; Connor et al. 1994). Sox6 deficient mice show prolonged 

expression of murine εy-globin gene beyond the hemoglobin switch, since part of its function is 

to bind to and negatively regulate the εy-globin promoter (Yi et al. 2006). In the human β-locus, 
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Sox6 physically interacts with BCL11A and binds to several regions of the β-locus, most likely 

contributing to chromosome looping (Xu et al. 2010) (Figure 6).  

 

 

 

    

 

Figure 6. BCL11A regulates γ-globin expression through its interaction with the NuRD complex 
and contributes to long-range chromosomal interactions through Sox6. BCL11A interacts with 
Mi2/NuRD complex components as well as GATA-1 and FOG-1. Green dots represent Sox6 
binding sites within the globin locus, while purple dots represent BCL11A binding sites. 
Adapted from Xu et al. 2010. 
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C. The KLFs 

The Krüppel-like family of transcription factors (KLF) also plays an important role in the 

regulation of mouse and human globin genes. Krüppel-like factors are a family of DNA binding 

proteins, characterized by three Cys2 His2 zinc fingers, which bind to the consensus CACCC 

motifs (Bieker 2001). KLF1 (formerly known is EKLF) was the first Krüppel-like factor to be 

identified in erythroid cells (Miller & Bieker 1993). KLF1 plays a crucial role in erythroid 

development, and knockout mice die at day E14.5 of severe anemia due to failed fetal liver 

erythropoiesis (Perkins, Sharpe & Orkin et al. 1995; Perkins, Gaensler & Orkin et al. 1996). 

KLF1 binds to the CACCC motif of the β-globin gene where it acts as an activator, and mutating 

this motif results in β-thalassemia (Feng, Southwood & Bieker 1994). Recent studies have 

discovered yet a new mechanism by which KLF1 regulates the globin locus. KLF1 binds to and 

activates the BCL11A gene (Borg et al. 2010; Zhou et al. 2010), thereby indirectly inhibiting γ-

globin gene expression. Although mutations in the KLF1 DNA binding domain causing KLF1 

haploinsufficiency have been associated with HPFH (Borg et al. 2010), KLF1 also regulates 

other non-globin erythroid-specific genes. Thus, it is not surprising that other erythroid 

conditions have been associated with mutations of this transcription factor.  A dominant negative 

mutation in the zinc finger domain of KLF1 has been associated with hereditary spherocytosis 

and hemolytic anemia (Heruth et al. 2010; Siatecka et al. 2010).  

KLF1 is a very dynamic protein and is able to act as a transcriptional activator as well as 

a repressor (Bieker 2001). The different roles of KLF1 are tightly regulated by post-translational 

modifications and interactions with different cofactors. One of these post-translational 

modifications, SUMOylation at lysine 74, allows KLF1 to interact with Mi2β and act as a 

transcriptional repressor in order to inhibit megakaryopoiesis (Siatecka et al. 2007). 
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Given the high degree of homology in the KLF family of proteins, the study of KLF1 led 

to the screen of more Krüppel-like factors for a potential role in the γ-globin gene regulation. 

KLF2, 3, 4, 5, 8, 11, 12 and 13 are all expressed in erythroid cells  (Zhang et al. 2005). Of these 

factors, KLF2 plays an important activating role in mouse embryonic εy- and βh1-globin genes 

as well as human embryonic genes (Basu et al. 2005). KLF1, in conjunction with KLF2, 

regulates the expression of human embryonic ε- and human fetal γ-globin genes by binding to 

their promoter regions in transgenic mice during embryogenesis (Alhashem et al. 2011).  

 

D. TR2TR4 and LSD1 

A Direct Repeat Erythroid Definitive (DRED) complex was originally proposed to 

regulate the expression of human ε- γ-globin genes and murine εy- and βh1-globin genes through 

binding to direct repeats in their respective proximal promoter regions (Tanimoto et al. 2000). 

The direct repeats are analogous to binding sites for nonsteroidal nuclear receptors. DRED was 

later characterized as a large complex containing orphan nuclear receptors TR2 and TR4. 

Although mutations in the binding sites for this complex in βYAC transgenic mice caused a clear 

de-repression of embryonic and fetal globin genes (Omori et al. 2005; Tanimoto et al. 2000), 

studies attempted at understanding the mechanism of action of TR2/TR4 appeared paradoxical. 

TR2/TR4 null mice crossed with mice bearing the human β-locus showed delayed silencing of ε- 

and γ-globin genes in fetal livers, but forced expression of these receptors also led to an increase 

in γ-globin expression in definitive erythroid cells (Tanabe et al. 2007). 

TR2/TR4 was found to interact with co-repressors such as DNA methyltransferase 1 

(DNMT1), lysine-specific histone demethylase 1 (LSD1), as well as components of the 

nucleosome remodeling and histone deacetylase (NuRD) complex Mi2 and HDAC1/2 (Cui et al. 
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2011). In order to dissect the role of other proteins belonging to the DRED complex, recent 

studies have focused on LSD1 and its role in globin gene regulation. LSD1, a flavin-dependent 

monoamine oxidase, can demethylate mono- and di-methylated lysines, especially H3K4 (Shi et 

al. 2004). Recent reports have shown a knockdown of LSD1 increases fetal hemoglobin in 

human primary erythroid cells (Shi et al. 2013). Because nonselective monoamine oxidase 

(MAO) inhibitors have been shown to inhibit LSD1 (Lee et al. 2006), the use of MAO inhibitors 

to induce HbF was appealing as these drugs are FDA approved for the treatment of depression. 

An irreversible monoamine oxidase inhibitor, tranylcypromine, was recently shown to induce 

HbF expression on human primary erythroid cells (Shi et al. 2013). Although an FDA approved 

drug, tranylcypromine it is not widely used due to its significant side effects. In 1964 it was 

withdrawn from the market due to alarming side effects such as paradoxical hypertension and 

intracranial bleeding, resulting in the death of several patients. It was later reintroduced in the 

market with greater limitations for its use (Atchley 1964). Considering tranylcypromine only 

induces HbF by a 2-fold, its positive effect may not compensate for the drug’s potential negative 

side effects. Furthermore, recent reports have also shown that inhibiting LSD1 blocks erythroid 

differentiation, which may inacuratly appear as increased levels of HbF in adult human primary 

erythroid cells (Xu et al. 2013). 

 

E. HBS1L and MYB 

Genome wide association studies (GWAS) comparing populations with high vs. low HbF 

also identified SNPs in the region between HBS1L and MYB genes located on chromosome 6 

(Menzel et al. 2007; Thein et al. 2007; Lettre et al. 2008; Uda et al. 2008). Patients with elevated 

HbF showed a decrease in the expression of both HBS1L and MYB, but only forced expression 
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of MYB resulted in an inhibition of γ-globin gene expression in the human myelogenous 

leukemia line K562 (Jiang et al. 2006). An older observation that patients with partial trisomy 13 

show a delay in the hemoglobin switch (Huehns et al. 1964; Sankaran & Sapp 2012) was 

recently connected to the regulation of MYB. High expression of two microRNAs located on 

chromosome 13 (miR15a and miR16-1) is thought to be responsible for this mechanism 

(Sankaran et al. 2011). miR15a and miR16-1 target MYB, and forced expression of these two 

microRNAs have been shown to increase γ-globin gene expression (Sankaran et el 2011). 

Recently, MYB was also shown to positively regulate BCL11A and KLF1 in human primary 

erythroid cells (Suzuki et al. 2013).  

 

F. GATA-1 and FOG-1 

GATA-1 was one of the first factors identified as a regulator of globin gene expression. It 

is a zinc finger protein involved in the regulation of many erythroid specific genes (Evans, 

Reitman & Felsenfeld 1988; Pevny et al. 1991; Simon et al. 1992; Weiss, Keller & Orkin 1994; 

Fujiwara et al. 1996). It binds to the β-globin locus (Evans & Felsenfeld 1989; Martin, Tsai & 

Orkin 1989; Tsai et al. 1989), and facilitates chromosome looping of the β-locus (Vakoc et al. 

2005). Furthermore, GATA-1 binds to the distal promoter region of the γ-globin gene (Harju-

Baker et al. 2008), allowing recruitment of the nucleosome remodeling and histone deacetylase 

(NuRD) complex in a FOG-1 dependent manner (Fox et al. 1998; Hong et al. 2005). This 

contributes to γ-globin  silencing in definitive erythropoiesis. Friend of GATA-1 (FOG-1) is a 

hematopoietic specific zinc finger protein and an important co-factor of GATA-1. In fact, most 

of the functions of GATA-1 depend on binding to FOG-1 (Tsang et al. 1997). Importantly, FOG-

1 acts as a cofactor for GATA-1 in both its activating and repressive roles (Letting et al. 2004). 
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V. Epigenetics  

 Epigenetics involves the study of changes in gene expression that are not the result of a 

change in the DNA sequence (Berger et al. 2009). Epigenetic changes include DNA methylation 

and histone modifications, and they play an important role in developmental proceses such as 

inactive X chromosome, genetic imprinting, silencing of certain developmental genes and cell 

differentiation.  

 

A. DNA methylation and hydroxymethylation 

DNA methylation is a major form of epigenetic regulation in which cytosine residues are 

covalently modified at palindromic CpGs at their 5-position carbon (Figure 7). This modification 

is regulated by a family of DNA methyltransferase enzymes (DNMTs) which include DNMT1, 

DNMT2, DNMT3a, DNMT3b and DNMT3L (Bestor et al. 1988; Cheng & Blumenthal 2008; 

Yoder & Bestor 1998; Okano, Xie & Li 1998; Bestor 2000). DNMT1, the maintenance DNMT, 

methylates hemimethylated DNA, and is therefore in charge of methylating daughter strands 

during replication (Probst, Dunleavy & Almouzni 2009). DNMT3a and DNMT3b show a 

preference for unmethylated DNA and perform de novo methylation (Okano et al. 1999). CpGs 

throughout the genome are methylated at at rate of 60%-90% depending on the tissue (Ehrlich et 

al. 1982), yet clusters of CpGs (CpG islands) found in promoter regions are usually 

unmethylated. Methylation of CpG islands plays a regulatory role in a handful of genes during 

development, and aberrant methylation of CpG islands of tumor suppressor genes is known to 

contribute to cancer development (Gopalakrishnan, Van Emburgh & Robertson 2008).  
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Figure 7. DNA methylation in humans. DNA methyltransferases covalently modify the 5-C of 
cytosine by adding a methyl group. Adapted from Ginder, Gnanapragasam & Mian 2008. 

 

Although originally discovered in 1972 (Penn et al. 1972), 5-hydroxymethylation was 

recently recognized as another epigenetic mark (Kriaucionis & Heintz 2009; Tahiliani et al. 

2009). The Tet family of proteins are 2-oxoglutarate (2OG)-dependent and Fe(II)-dependent 

dioxygenases responsible for this DNA modification. Tet proteins can carry out oxidation 

reactions requiring Fe(II) and 2 (OG) to convert 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC) (Ito et al. 2010). 5hmC is thought to be an intermediate for 5mC 

demethylation (He et al. 2011; Ito et al. 2011; Guo et al. 2011; Inoue & Zhang 2011; Wossidlo et 

al. 2011; Iqbal et al. 2011), but its ability to hinder binding of 5mC binding proteins (Valinluck 

et al. 2004), and a plausible 5hmC binding protein (MBD3) make this a potential epigenetic 

mark. Based on recent publications, however, it is debatable whether MBD3 has higher affinity 

for 5hmC (Yildirim et al. 2011; Baubec et al. 2013).  

 

 

 

 

 

DNA methyltransferases 

Demethylases 

•  Only a small subset of genes expressed in adult tissue has 
methylated CpG islands  in promoter regions, which play a role 
in silencing the gene. 

•  In contrast to aberrant methylation that occurs in certain tumor 
suppressor genes in cancer.  
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B. Methyl binding domain proteins  

A largely conserved family of nuclear proteins, the methyl CpG binding domain (MBD) 

proteins, are known to be “readers” of DNA methylation. The role of MBD proteins is to 

translate DNA methylation into histone modifications by the recruitment of silencing complexes 

(Figure 8) (Jaenisch & Bird, 2003; Wade 2001). This family of proteins is composed of 5 known 

proteins, MeCP2, and methyl-binding domain proteins (MBD) 1-4. MeCP2 was the first protein 

to be identified, followed by a complex originally named MeCP1 (Meehan et al. 1989; Lewis et 

al. 1992). MeCP1 was later discovered to be either MBD2 or MBD3 along with a multisubunit 

complex (Ng et al. 1999; Cross et al. 1997; Feng & Zhang 2001; Feng et al. 2002). Subsequently, 

other MBD proteins were identified based on their common MBD domain (Hendrich & Bird 

1998; Hendrich et al. 1999a). MeCP2 as well as MBD1-3 act as transcriptional repressors, 

whereas MBD4 acts as a thymine DNA glycosylase (Hendrich et al. 1999b).  

 

C. MBD2 and MBD3, similar proteins? 

Aside from the structural resemblance of their methyl cytosine binding domains (MBD), 

members of the MBD family of proteins differ significantly in their structures. MBD2 and 

MBD3 are the exception, sharing ~71% homology (Hendrich & Bird 1998). Despite their 

structural similarities, however, functional differences between MBD2 and MBD3 have become 

apparent. Expression of MBD3 appears to be ubiquitous, as it is found in almost every mouse 

tissue including embryonic stem cells. MBD2, on the other hand, is selectively expressed in 

certain tissues such as spleen and testes (Hendrich & Bird 1998). The specificity of MBD2 

binding to its target genes comes not only from its tissue-specific expression but also adjacent 

base pairs surrounding the CpGs (Scarsdale et al. 2011). In contrast to MBD2 knockout mice, 
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which are healthy and viable, MBD3 knockout mice are embryonic lethal (Hendrich, et al. 2001). 

Although all MBD family members bind to methylated DNA, MBD3 appears to be the only 

member that non-specifically binds to methylated or unmethylated DNA (Hendrich & Bird 1998; 

Fraga et al. 2003). Recent studies have suggested a higher affinity of MBD3 for 

hydroxymethylated DNA, although further data supporting this view will be necessary to draw 

firm conclusions (Yildirim et al. 2011; Baubec et al. 2013). 
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Figure 8. The role of DNA methylation in gene silencing. During development, a number of CpG 
rich promoter regions are methylated by DNMT enzymes. DNA methylation hampers RNA Pol 
II from advancing. DNA methylation also recuirts methyl-binding domain proteins such as 
MBD2, and silencing complexes such as the NuRD complex, which in turn alter histone 
modification patterns further preventing gene expression. Adapted from Ginder, Gnanapragasam 
& Mian 2008. 
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Figure 8 DNA methylation: A) Methyl Cytosine is synthesized by DNA methyl 
transferases (DNMT1, 3a and 3b) using SAM acts as the methylation donor. Demthylases 
are still under investigation. B) The mechanism of DNA methylation mediated 
transcriptional silencing: The top strand represents a transcriptionaly active gene. The 
bottom strand is methylated at the CpG residues by the action of DNA methyltransferases 
(DNMT1, 3a and 3b). DNA methylation or the recruitment of methyl CpG binding 
proteins can directly inhibit recrutiment of RNA polymerase and transcription factors. The 
main mechanism of repression is by the recruitment of co-repressor complexes by the 
methyl CpG binding proteins. These complexes contain histone deacetylases and 
chromatin remodeling proteins. Adapted from (Ginder, Gnanapragasam & Mian 2008). 
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D. Histone modifications 

Histone proteins (H1, H2A, H2B and H3 and H4) function to package eukaryotic DNA 

into nucleosomes (Luger & Richmond 1998; Kornberg & Lorch 1999). Histone modifications 

are a dynamic system that allows for regulation of transcription. Histones undergo post-

translational modifications, which serve as a regulatory function to influence chromatin structure 

and accessibility of DNA to transcription factors and other transciptional regulators (Li, Carey & 

Workman 2007). N-tails from histones H3 and H4 protrude from the nucleosome, and can 

undergo covalent post-translational modifications such as methylation, phosphorylation, 

ubiquitination, sumoylation and acetylation (Strahl & Allis 2000). Of these modifications, 

histone acetylation and methylation are perhaps the best studied. Trimethylation of H3K4, 

H3K36 and H3K79 are associated with euchromatin and characteristic of transcriptional 

activation. This is also true of histone acetylation. On the other hand, trimethylation of H3K9, 

H3K27, and H4K20 have been associated with silenced genes. Histone deacetylation is also 

associated with gene silencing. (Strahl & Allis 2000; Bartova et al. 2008). 

This “histone code” of posttranslational modifications is then “read” by complexes which 

affect gene regulation. This process is complex and involves a large number of 

proteins/complexes involved in recognizing histone marks. (Yun et al. 2011). Histone binding 

proteins can help translate this “histone code” by exerting different effects on transcription, DNA 

repair and other processes (Figure 9).   
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Figure 9. Histone post-translational modifications result in different readouts by recruiting 
proteins or complexes. 1) Architectural proteins can recognize histone marks and spread through 
a region leading to chromatin condensation. 2) Through its ATPase function, chromatin 
remodelers can mobilize nucleosomes to make DNA more/less accessible. 3) Certain histone 
post-translational modifications recruit modifiers and their sole function is to further recruit 
secondary modifiers.  4) Histone post-translational modifications can also serve to recruit other 
machineries such as transcription factors, DNA repair machineries among others.  Adapted from 
Yun et al. 2011.  
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thereby localizing the Set9 methyltransferase to convert 
K20me1 into K20me3 [74]. KDM4a is guided by its 
Tudor domain to H3K4me3 and H4K20me3 regions to 
demethylate me2 and me3 on K9 and K36 [75]. More-
over,  PTM  recognition  also  directs  DNA  modifiers.  DNA  
methyltransferase, Dnmt3a, binds to K36me3 via its 
PWWP domain [76], and its partner, Dnmt3L, recognizes 
K4me0 [32]. Given the overlapping pattern of these two 
marks, DNA methylation could be precisely guided by 
histone PTM.

Recruitment of other machinery
PTM readers can serve as adaptors to recruit factors 

that are directly involved in DNA metabolism activities. 
Transcription: General transcription factor, TFIID, 

reads both AcK and H3K4me3 signals [17].
DNA damage repair: MDC1 binds to phosphorylated 

H2AX near double-strand break (DSB)-flanking chro-
matin and subsequently activates a cascade of phospho-
rylation events that lead to the recruitment of histone-Ub 
ligase, RNF8. Histone ubiquitination then either acts to 
recruit repair machinery or somehow exposes H4K20me 
and H3K79me for 53BP1 recruitment [77]. 

Recombination: Recombination-activating protein, 
RAG2, binds to H3K4me3 at transcribed genes while 
RAG1 recognizes the recombination signal sequence. 
Neither of them is sufficient to initiate recombination; 
however, when these two signals overlap, RAG1 and 

Figure 6 Models  for  the  functional  outcomes  of  reading  modified  histones.

RAG2 multimerize to start recombination [78]. 
RNA processing: MRG15 recognizes K36me3 at tran-

scribed regions via its chromo domain and recruits splic-
ing regulator PTB to control alternative splicing [79].

Replication: Both PTM patterns and genome acces-
sibility are important for replication timing [80, 81], 
implying that DNA replication machinery also has the 
capacity to recognize histone modifications. Recently, 
it is shown that an ORC-associated protein – LRWD1 – 
recognizes  both  DNA  methylation  and  histone  modifica-
tion, and is important for initiation of DNA replication 
[17, 18, 82].

Future  directions

Reading  histone  modification   is   a   highly   context-­de-
pendent process. A recent systematic protein-localization 
mapping reveals that the chromo domain-containing 
MRG15 is only recruited to a subset of K36me3-enriched 
genes [83], implying that there must be another uniden-
tified essential recruiting signal. Therefore, a general 
challenge   for   the  field   is   to   identify   the  preferred  PTM  
combinations for certain chromatin readers. In addition, 
little is known about readers that recognize PTM on his-
tone globular domains. Future screens using modified 
nucleosomal arrays might provide useful insights in this 
regard. 
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E. Epigenetics and globin gene regulation 

Epigenetic mechanisms including DNA methylation and histone modifications play an 

important role in developmental γ-globin gene silencing (Singal et al. 1997; Hsu et al. 2007; 

Mabaera et al. 2007; Forsberg et al. 2000; Gribnau et al. 2000). DNA methylation was first 

shown to play a role in globin regulation by several studies in different species, where an inverse 

correlation between DNA methylation and gene expression was found (Mavilio et al. 1983; 

McGhee & Ginder 1979; Shen & Maniatis 1980; van der Ploeg & Flavell 1980). Further studies 

demonstrated that treating both primates and patients with the demethylating agent 5-azacytidine 

resulted in increased expression of embryonic and fetal hemoglobins (DeSimone et al. 1982; 

Charache et al. 1983; Ley et al. 1982). Whether or not hydroxymethyl DNA plays a role in the 

regulation of these genes remains to be determined.  

 

F. The role of the MBD2/NuRD complex in globin gene switching 

MBD2 is known to bind to densely methylated CpGs (Meehan et al. 1989) and mediate 

the recruitment of a silencing complex (Nucleosome Remodeling and Histone Deacetylase 

Complex, NuRD). NuRD complexes includes at least one copy of each of the proteins Mi2α and 

–β, HDAC-1 and -2, MTA-1 and -2, RbAp46/48, and p66α and –β (Hendrich & Bird 1998; 

Hendrich & Tweedie 2003; Feng & Zhang 2001) as depicted in Figure 10. 

The first association between MBD2 and globin gene regulation came from studies in the 

avian systems, where DNA methylation was shown to have an inverse correlation to gene 

transcription (Burns, Glauber & Ginder 1988). Using nuclear extracts from avian primary 

erythroid cells, studies showed the MBD2/NuRD complex binds to the methylated DNA 

proximally transcribed region of the ρ-globin gene (the avian embryonic globin gene) (Singal et 
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al. 2002). Further purification and characterization of this complex showed MBD2 but not 

MBD3 was found in this complex (Kransdorf et al. 2006). These studies led to the first direct 

evidence of the MBD2/NuRD complex binding to, and regulating β-type globin genes during 

development. 

Studies crossing MBD2 knockout mice with transgenic mice bearing a yeast artificial 

chromosome with the human β-locus (βYAC) led to a ~20- to 40% increase in γ-globin gene 

expression (Rupon et al. 2006). Likely due to the lack of CpG rich nature of the human β-locus, 

MBD2 does not interact directly with the promoter region of the γ-globin gene, suggesting its 

regulatory function on this locus is via an indirect mechanism (Rupon et al. 2006). MBD2 is also 

an important regulator of ε-globin gene expression (Rupon et al. 2011). 
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Figure 10. The MBD2/NuRD complex. Densely methylated DNA is able to recruit methyl-
binding domain protein 2 (MBD2) as well as the NuRD (MeCP1) complex. Mi2α/β confers the 
chromatin remodeling function of the complex. MTA1/2 and p66α/β act as transcriptional 
repressors. The histone deacetylase activity is mediated by HDAC1/2, and RbAp46/48 are 
histone-binding proteins.  
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The potential of MBD2 as a therapeutic target for β-thalassemia and sickle cell anemia 

has led to many studies investigating its structure, ability to recognize methylated DNA, and 

potential ways of disrupting its association with the NuRD complex. The use of a small peptide 

that interferes with the coiled coil interaction between MBD2 and p66α leading to displacement 

of p66α and Mi2β from the NuRD complex, results in a significant increase in γ-globin gene 

expression in mouse erythroid cells bearing the human β-locus (CID cells) (Figure 11) 

(Gnanapragasam et al. 2011).  

 

 

 

Figure 11. A small peptide is able to target the MBD2/NuRD complex and relieve γ-globin gene 
silencing. (A) A small peptide comprising the p66α coiled coil domain is able to interact with 
MBD2 and displace key components of the NuRD complex (Mi2β and p66α), partially inhibiting 
its function and relieving γ-globin gene silencing. (B) Forced expression of p66α coiled coil 
domain leads to an ~3-fold increase in γ-globin expression in CID cells. Adapted from 
Gnanapragasam et al. 2011. 
 

These studies suggest small peptides are a feasible approach when targeting epigenetic 

complexes. Drug delivery and bioavailability of such peptides in an in vivo model remain to be 

determined. 

A" B"

detection using standard Western blot. Western dot blot, which
has been shown to have 4,000-fold higher sensitivity for small
peptides (22), was used as an alternative to detect expression. In
the presence of the p66α coiled-coil peptide, embryonic ρ-globin
gene expression was increased 2.5-fold compared with clones that
expressed the vector-derived Flag peptide alone (Fig. 3C). Thus,
the degree of ρ-globin gene de-repression in the presence of the
p66α coiled-coil domain peptide was equivalent to that in cells
in which MBD2 was stably knocked down by >90%.
To extend this observation to human γ-globin gene regulation,

similar studies were carried out in CID-dependent mouse bone
marrow cells carrying β-YAC (21). The human γ-globin gene is
highly repressed in these adult phenotype erythroid cells, which
express high levels of β-globin RNA. MBD2 siRNA treatment
reduced expression of MBD2 in CID cells by ∼80% (Fig. 3D)
accompanied by a sevenfold increase in human γ-globin RNA
expression (Fig. 3E), without affecting expression of the ery-
throid-specific α-globin, spectrin, and aminolevulinic acid dehy-
dratase (ALAD) genes (Fig. S5). Knockdown of MBD2 in
CD34+ precursor-derived primary human erythroid cells resul-
ted in an ∼fivefold increase in γ-globin gene expression (Fig. S5),
supporting the validity of the CID cell model and the importance
of the MBD2–NuRD complex in autonomous silencing of this
gene in normal adult erythroid cells. Transient expression of the
p66α coiled-coil domain, as monitored using semiquantitative
PCR and Western dot blot (Fig. S4), consistently yielded a 2.5-
to 3.0-fold increase in γ-globin expression, but expression of the
p66α coiled-coil triple-mutant peptide, which fails to bind
MBD2, did not augment expression of γ-globin (Fig. 3F, and Fig.
S5). Enforced expression of these same peptides does not ap-
preciably affect expression of the α-globin, β-globin, spectrin, or
ALAD erythroid-specific genes (Fig. S5). These results demon-
strate that the isolated p66α coiled-coil domain can disrupt
MBD2-mediated gene silencing in a model of developmental
human fetal γ-globin gene regulation.

Enforced Expression of the p66α Coiled-Coil Domain Disrupts the Re-
cruitment of Endogenous p66α and Mi-2 to the MBD2–NuRD Complex.
Studies, including our own (8), suggest that MBD2–NuRD com-

plexes exist as relatively stable preformed complexes in the cell
nucleus. To test for interactions of the p66α coiled-coil domain
with MBD2 and the other components of the MBD2–NuRD
complex in intact cells, the pCMV-Tag2B vector containing the
p66α coiled-coil sequence and an empty vector control were trans-
fected into high-transfection-efficiency 293T cells. Immunopre-
cipitation with anti-Flag antibody coprecipitated native MBD2a,
MTA2,HDAC2, andRbAp48, but neither p66α/β norMi-2α/βwas
detected by Western blot analysis (Fig. 4A). These results confirm
that the expressed p66α peptide stably interacts with native
MBD2a and select components of NuRD in vivo. Immunopre-
cipitation with anti-MBD2 antibody from untransfected 293T cells
was used as a positive control, and, as expected, all major com-
ponents of the MBD2–NuRD complex were detected by Western
blot analysis (Fig. 4A). Immunoprecipitation of the p66α coiled-
coil domain also coprecipitatedMBD3, as one would predict from
the high degree of homology and our binding studies (see above).
However, knockdown of MBD3 by ∼75% did not augment
γ-globin expression in CID-dependent β-YAC bone marrow pro-
genitor cells (Fig. S6), indicating that this interaction is not func-
tionally relevant to globin gene silencing in this model system. In
contrast, knockdown of p66α or Mi-2β augments expression of
human γ-globin mRNA in the CID-dependent β-YAC bone

Fig. 3. The p66α coiled-coil peptide augments fetal/embryonic globin
expression. (A–C) shMBD2 and shScramble pSuperior vector (n = 6), p66α-
pCMVTag2B plasmid (n = 3), and an empty vector control (n = 3) were stably
transfected into MEL-ρ cells. (D–F) Negative control (siNeg) or MBD2-specific
(siMBD2) siRNA, p66α-pCMVTag2B plasmid, and an empty vector control
(n = 3) were transiently transfected into CID β-YAC bone marrow progenitor
cells. (A and D) Western blot analysis shows efficient knockdown of MBD2.
qPCR-determined relative γ-globin mRNA levels show that MBD2 knockdown
(B and E) and enforced expression of p66α coiled-coil domain (C and F)
augment ρ-globin and γ-globin gene expression. Error bars indicate SE.

Fig. 4. The p66α coiled-coil domain disrupts recruitment of endogenous
p66α and Mi-2 to the MBD2–NuRD complex. The p66α-pCMVTag2B plasmid
and an empty vector control were transiently transfected into high-
transfection-efficiency 293T cells. (A) Immunoprecipitation and Western blot
analysis of transfected cells (anti-Flag, anti-MBD2, and IgG control antibodies)
show that native MBD2a, MTA2, HDAC2, and RbAp48 coprecipitate with the
Flag-p66α coiled-coil domain and MBD2, whereas p66α/β and Mi-2 copreci-
pitate with MBD2 but not with the Flag–p66α coiled-coil domain. (B–E)
Negative control (siNeg), p66α-specific (sip66α), and Mi-2β-specific (siMi-2β)
siRNA (n = 3) were transiently transfected into CID β-YAC bone marrow pro-
genitor cells. Western blot analyses show efficient knockdown of both p66α
(B) and Mi-2β (D) protein. qPCR analysis shows that p66α knockdown (C) and
Mi-2β knockdown (E) augment γ-globin mRNA levels. Error bars represent SE.
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G. The role of the MBD3/NuRD complex in globin gene switching 

Methyl-CpG binding domain protein 3 (MBD3), in contrast to other members of the 

MBD family, does not show a significantly higher binding affinity for methylated DNA 

(Hendrich & Bird 1998; Fraga et al. 2003). Similarly to MBD2, MBD3 is associated with a 

NuRD complex, although the MBD3/NuRD and MBD2/NuRD complexes have independent, 

non-overlapping functions (Le Guezennec et al. 2006; Hendrich et al. 2001). With respect to 

hemoglobin switching, the MBD3/NuRD complex has been shown to interact with and 

negatively regulate the globin locus through the association with two important transcription 

factors, GATA-1 and Friend of GATA-1 (FOG-1) (Rodriguez et al. 2005; Hong et al. 2005; 

Harju-Baker et al. 2008). The GATA-1/FOG-1/NuRD complex negatively regulates γ-globin 

gene expression in βYAC transgenic mice by binding to its distal promoter (Harju-Baker et al. 

2008). Of note, FOG-1 has also been shown to co-localize with GATA-1 in genes that are both 

positively as well as negatively regulated by GATA-1 (Wang et al. 2002; Letting et al. 2004; Pal 

et al. 2004; Jing et al. 2008), suggesting that GATA-1/FOG-1/NuRD complexes can be context 

dependent activators or repressors. Although the GATA-1/FOG-1/NuRD interactions have been 

well characterized in the mouse system, they remain to be elucidated in humans. The majority of 

the MBD3/NuRD complex components also associate with BCL11A in mouse erythroleukemia 

cells, suggesting a link between the regulatory function of BCL11A and the MBD3/NuRD 

complex (Xu et al. 2013). 

 

H. The complexity of the hemoglobin switch 

 The developmental switch of fetal γ-globin to adult β-globin gene expression is 

characterized by several layers of regulation, ranging from cis-acting regulatory factors such as 
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the LCR to trans-acting factors such as transcription factors and epigenetics. The hemoglobin 

switch appears to have several axes of regulation and some of the connecting links between 

different regulatory branches, if any, remain to be elucidated (Figure 12). Of note, the 

mechanisms behind γ-globin gene silencing during development may not completely parallel the 

mechanisms behind γ-globin gene silencing during adulthood.  
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Figure 12. Factors contributing to the hemoglobin switch. Depicted above 
are some of the factors that contribute to γ-globin gene silencing in adult 
erythroid cells. Chromosome looping allows the locus control region (LCR) 
to remain closer to β-globin gene. Sox6 along with BCL11A contribute to 
chromatin looping. KLF1 positively regulates the β-globin gene as well as 
BCL11A. MYB positively regulates KLF1 and BCL11A. The 
MBD3/NuRD complex interacts with BCL11A and it also binds to the 
distal promoter region of γ-globin via its interaction with GATA-1 and 
FOG-1. The MBD2/NuRD complex negatively regulates the γ-globin in an 
indirect fashion. Solid arrows indicate direct interactions, whereas dotted 
arrows indicate indirect interactions.  
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VI. Advances in techniques and animal models for the study of hemoglobin switching  

In humans, the hemoglobin switch begins during development, and soon after birth γ-

globin chain synthesis is replaced by β-globin chain synthesis. In the adult bone marrow, 

erythroid precursors also show elevated γ-globin expression that declines as cells differentiate 

(Papayannopoulou, Brice & Stamatoyannopoulos 1976). Over the years, many systems have 

been developed in order to study this complex process in vivo during development, and in vitro 

by culturing hematopoietic progenitor cells. Each method has provided insights into this highly 

regulated process, although proper regulation of globin genes has posed a challenge in all of the 

systems.  

 

A. Cell lines 

Although a number of erythroleukemia cell lines have been useful in the study of 

erythroid differentiation and γ-globin gene silencing, these lines have failed to show normal 

expression of the β-type globin genes. The most commonly used human erythroleukemia cell 

line is the brc-abl(+) chronic myelogenous leukemia line, K562 (Lozzio & Lozzio 1975). K562 

cells are able to be differentiate into erythroid cells using the proper stimuli, but they display 

high levels of γ-globin expression. The use of this particular cell line to find inducers of γ-globin 

expression may therefore be misleading since basal γ-globin levels are higher than normal 

human adult erythroid precursors. An adult mouse erythroleukemia line, MEL, has also been 

used due to its ability to recapitulate erythroid differentitation (Friend et al. 1971). This cell line 

expresses exclusively murine adult β-globins (βmaj and βmin) and no embryonic globin genes 

(βh1 and εy). Different human globin constructs have been stably transfected into these cells in 

order to study human globin regulation. However, γ-globin expression is not properly regulated 
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in MEL cells (Skarpidi et al. 1998; Vassilopoulos et al. 1999). Even though erythroleukemia cell 

lines have served as a good vehicle to study and understand erythroid differentiation, they are not 

appropriate cell lines for finding targets to relieve γ-globin gene silencing in adult erythroid cells. 

A new cell line was created in 2005 that resembles the adult hemoglobin expression 

pattern. Chemical Inducer of Dimerization (CID) cells are bone marrow cells isolated from mice 

bearing the human β-globin locus in a yeast artificial chromosome (βYAC). CID cells have been 

stably transfected with the thrombopoietin receptor which, upon introduction of a commercially 

available compound, is activated and signals these multipotential progenitor cells to differentiate 

into megakaryocytic cells, erythroid cells, neutrophils and monocytes (Blau et al. 2005). This 

cell line expresses high levels of murine alpha globin, which pairs with human β-globin to form 

adult hemoglobin. γ-globin gene expression is low in CID cells, greatly resembling the pattern of 

expression in human adult erythroid cells (Figure 13).  
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Figure 13. CID cells exhibit a human adult globin expression pattern. RNase protection assay 
showing WT βYAC CID cells (highlighted by the box) expressing low levels of human γ-globin 
(Hu γ) gene and high levels of human β-globin (Hu β) and mouse α-globin (Mo α). Adapted from 
Blau et al. 2005. 

 

 

 

GATCTCTGCCTCGTGTTGTCTGTTG-3! (forward), 5!-GATATA-
TAGAAGATCTTTACCCTTGGCTCAGATGAA-3! (reverse); FKLF,
5!-GAAGATCTCCTGCACGATGCACACG-3! (forward), 5!-AGAT-
CTAGGCAGAGGCTGGCAT-3! (reverse); and FGIF, 5!-GATACAA-
TAAAGATCTATGGAAAAAGAAAAAGGAAA-3! (forward), 5!-GA-
TATATAGAAGATCTTTAAGACTGAGGTGAAGAAT-3! (reverse).
The BglII sites are underlined. The 0.8-kb ApaI-HindIII gg1-VP64 frag-
ment described above was made blunt-ended and ligated into BglII-cut,
blunt-ended, and phosphatased p!!LCR-" pr-BglII-" int2-enh. These
constructs were lipofected into CID-dependent wild-type "-YAC
BMCs as described above.

Characterization of AP20187-dependent Cells—Bone marrow- and
fetal liver-derived cells were expanded and harvested at various times
during culture for analysis ofmurine and human globin gene expression
by RNase protection (24), RT-PCR, or antibody staining (21) to detect
globin chains. For antibody staining, cells were washed with PBS in
15-ml conical tubes and then fixed in 1 ml of freshly prepared 5%

paraformaldehyde/PBS, pH 7.2, for 1 h at 37 °C. After the addition of 10
ml of PBS/0.1% BSA (PBS/BSA), cells were centrifuged at 200 " g for 5
min, resuspended in 0.5 ml of methanol, and incubated at room tem-
perature for 5min. 10ml of PBS/BSAwere added; cells were centrifuged
andwashed oncemore in PBS/BSA. Cells were resuspended in 100!l of
PBS/BSA containing 0.1%TritonX-100 (PBT) and incubated for 30min
at room temperature with 1 !g of primary mouse anti-human #-globin
chain antibody (Cortex catalog number CR8115M1, San Leandro, CA)
diluted in PBT. 10 ml of PBS/BSA were added, and cells were centri-
fuged as above. This wash was repeated twice more. Cells were resus-
pended in 100 !l of PBT and incubated with 100 !l of secondary fluo-
rescein isothiocyanate-labeled goat anti-mouse IgG antibody (Jackson
ImmunoResearch Laboratories, catalog number 115-095-146, West
Grove, PA) diluted 1:750 in PBT at room temperature for 30 min. Cells
were washed in the same manner as for the primary antibody. Pellets
were resuspended in 50 !l of PBS; 5-!l aliquots were applied to slides.
Control samples were prepared similarly except that the fix only control

FIGURE 1. A, human "-globin transcripts are detected in CID-dependent cells derived from 155-kb wild-type "-YAC transgenic mice, and CID-dependent cells derived from 248-kb
#117 Greek HPFH "-YAC transgenic mice exhibit HPFH. The autoradiograph shows results of RNase protection analysis. Sample sources are illustrated above the panel; numbers
indicate samples collected from more than one cell population or animal. Protected fragments are shown to the right of the panel; pBR322 MspI molecular mass markers (MW markers)
are shown to the left. #/(#$") quantitative values are the averages of two separately established cell populations; if more than two populations were analyzed, standard deviations
are also shown. Hu ", human "-globin (205 bp); Hu #, human #-globin (170 bp); Mo $, mouse $-globin (128 bp); wt "-YAC, wild-type "-YAC transgenic mice; FL, fetal liver; Bl, blood.
B, fluorescent antibody staining of human #-globin protein chains in CID-dependent wild-type or #117 HPFH "-YAC BMCs. #-Globin chains are detected in #117 HPFH "-YAC
CID-dependent BMCs but not in wild-type "-YAC BMCs. Upper, non-transgenic BMCs. Middle, wild-type "-YAC BMCs. Lower, #117 HPFH "-YAC BMCs. Background staining in the
upper and middle panels is due to fixation and nonspecific staining with the secondary antibody. After background correction, 30% of the cells in the lower panel are positive for
#-globin chain staining.

CID-dependent !-YAC Bone Marrow Cells
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B. Stem cells 

Mouse embryonic stem (ES) cells have served as a suitable way to study hemoglobin 

switching. They can differentiate in vitro with the use of growth factors into erythroid cells, and 

primitive cells can be clearly distinguished from definitive erythroid cells (Olsen, Stachuar & 

Weiss 2006). Because erythropoiesis in the bone marrow takes place in a niche called 

erythroblastic island, in which erythroblasts surround a single macrophage that contributes to 

phagocytosis of the nuclei of erythroid cells (Bessis 1958), new culturing conditions have been 

designed to recapitulate the bone marrow environment. Reports have shown co-culture of ES 

cells along with stromal cells (OP9) help induce differentiation (Nakano 1996; Kitajima et al. 

2003). The use of human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPS) 

has also been of interest, as these could be used for mass production of hematopoietic 

progenitors in vitro and have also been used to study erythroid differentiation and γ-globin gene 

regulation. However, generating functional differentiated erythrocytes from hESCs and hiPS 

cells poses a challenge in vitro, as they tend to exhibit embryonic-like behavior (expressing high 

levels of embryonic globin genes). Co-culturing hESCs and hiPS cells with stromal cells has 

allowed these cells to properly differentiatiate (Ma et al. 2008).  

Attempts to use homogeneous, unilineage cells have led to recent advances by using 

human progenitor cells (CD34+) from either neonatal blood or adult bone marrow. A two-phase 

differentiation system allows high proliferation as well as synchronous differentiation of these 

cells (Migliaccio et al. 2002). The use CD34+ cells has become standard in the studies of 

hemoglobin switching. The major disadvantage of using stem cells for the study of globin gene 

regulation is their low viability in culture. These cells are not viable past their differentiation 

period. 
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C. Animal models  

In an attempt to understand human β-type globin gene regulation in vivo, several 

transgenic mouse models were created. Failed attempts to achieve high expression of human 

globin genes in transgenic mice (Costantini et al. 1985; Townes et al. 1985; Kollias et al. 1986; 

Chada, Magram & Costantini 1986) led to the discovery that flanking regions, particularly the 5’  

DNase I hypersensitive sites, in the β-globin locus are important for the regulation of β-type 

genes. The development of transgenic mice with the entire globin locus including its flanking 

regions was then achieved  (Behringer et al. 1990; Enver et al. 1990, Gaensler, Kitamura & Kan 

1993; Peterson et al. 1993), and these mice successfully recapitulated the hemoglobin switch. 

Because the mouse β-locus lacks fetal globin genes (it only contains embryonic and adult globin 

genes), human γ-globin assumes the embryonic pattern of gene regulation in transgenic mice as 

shown with dotted lines in Figure 1. The transgenic mouse model bearing the human β-locus and 

its flanking regions in a yeast artificial chromosome (βYAC) has become the most widely used 

among these mouse models (Peterson et al. 1993). 

Meanwhile, several attempts were made at creating a sickle cell anemia mouse model by 

using transgenic mice with human globin gene sequences including the β-globin mutation (Ryan 

et al. 1990; Greaves et al. 1990; Trudel et al. 1991; Rubin et al. 1991; Fabry et al. 1992). Several 

groups were successful at achieving cell sickling in these mice, but failed to recapitulate all of 

the pathophysiology seen in sickle cell patients including organ damage. Further studies using 

mice with additional mutations in the β-locus meant to increase polymerization showed sickling, 

spleen and lung disease but also failed to recapitulate all of the clinical manifestations seen in 

sickle cell patients (Trudel et al. 1994; Fabry et al. 1995). Thus, it became apparent that 

endogenous murine globin genes were preventing the sickling required to mimic a full sickle cell 
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disease phenotype. A successful sickle cell anemia mouse model was finally developed in 1997 

(Paszty et al. 1997). Three DNA fragments containing a miniLCR, the human α1-globin gene, 

and the human fetal and adult globin genes including mutated β-globin in place of wild type β-

globin (GγAγ,δ,βS) were coinjected into a fertilized egg to create the transgenic model. These 

mice were then bred with murine α-globin knockout mice (Paszty et al. 1995) and murine β-

globin (βmaj and βmin) knockout mice (Ciavatta et al. 1995). Sickle cell disease mice express 

exclusively human α- and human βS-globin genes and produce low HbF (α2γ2) during early life 

(Figure 14). This mouse model became known as the BERK mouse since it originated at the 

University of California, Berkeley. 

 

 

 

 

Figure 14. Sickle cell anemia mice express exclusively human sickle hemoglobin (HbS) in adult 
life. (A) High performance liquid chromatography (HPLC) showing globin chains from 
peripheral blood at the time of birth. These mice express mostly HbS (α2βS2) and a small 
percentage of HbF (α2γ2). (B) HPLC showing adult BERK mice globin chain composition. 
BERK mice express exclusively HbS (α2βS2). Adapted from Paszty et al. 1997  

 

 

polybed, sectioned, and stained with uranyl acetate
and lead citrate. Ultra-thin sections were examined
and photographed with the Hitachi-7000 transmis-
sion electron microscope.
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Transgenic Knockout Mice with
Exclusively Human Sickle Hemoglobin and

Sickle Cell Disease
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Narla Mohandas, Edward M. Rubin

To create mice expressing exclusively human sickle hemoglobin (HbS), transgenic mice
expressing human a-, g-, and bS-globin were generated and bred with knockout mice
that had deletions of the murine a- and b-globin genes. These sickle cell mice have the
major features (irreversibly sickled red cells, anemia, multiorgan pathology) found in
humans with sickle cell disease and, as such, represent a useful in vivo system to
accelerate the development of improved therapies for this common genetic disease.

A single base pair change in codon 6 of
the b-globin gene causes sickle cell ane-
mia in individuals who are homozygous for
the mutation (1). Sickle hemoglobin [HbS
(a2b

S
2)] undergoes polymerization upon

deoxygenation, thereby distorting erythro-
cytes into a variety of sickled shapes, dam-
aging the erythrocyte membrane, and ul-
timately causing anemia, ischemia, infarc-
tion, and progressive organ dysfunction.
Despite the impressive body of knowledge
that has accumulated (2), many aspects of
sickle cell disease are still poorly under-
stood and treatment options remain lim-
ited. Because of the inhibitory effects of
mouse a- and b-globin on sickling, trans-
genic mice expressing various sickle he-
moglobins (HbS, HbSAD, HbS-Antilles)
develop almost none of the clinical man-
ifestations of sickle cell disease (3). Some
sickle cell disease pathology has been re-
ported in transgenic mice bred to produce
higher concentrations of the “supersick-
ling” hemoglobins (HbSAD and HbS-An-
tilles) (4); however, these animals still
lack important features that are commonly
found in humans with sickle cell disease

(5). To overcome these limitations, we
have created mice that no longer express
mouse a- and b-globin; instead, they ex-
press exclusively human a- and bS-globin.

Three fragments of human DNA were
coinjected into fertilized mouse eggs to
generate transgenic founders expressing
human a- and bS-globin (6). Because g-
globin has antisickling properties, we in-
cluded the Gg- and Ag-globin genes to
decrease the likelihood that erythrocytes
would sickle during gestation and cause
fetal death. In the particular transgenic

line that was generated [Tg(Hu-
miniLCRa1GgAgdbS)], Gg- and Ag-globin
are expressed during the embryonic and
fetal stages of development and not in
adult mice (Fig. 1A) (7). Through succes-
sive rounds of breeding with knockout
mice heterozygous for deletions of the mu-
rine a- and b-globin genes, Hba0//1
Hbb0//1 (8, 9), mice homozygous for the
a- and b-globin deletions and containing
the sickle transgene were generated—
Tg(Hu-miniLCRa1GgAgdbS) Hba0//Hba0

Hbb0//Hbb0, hereafter called sickle cell
mice (10). Many of these mice turned purple
and died a few hours after birth; their death
was apparently a result of hypoxia brought
about by respiratory distress. Because g-glo-
bin concentrations are relatively low [range,
4 to 26% (g/g1bS)] in newborn sickle cell
mice (Fig. 1B) compared with newborn hu-
mans, it is likely that these deaths are caused
by the sickling of erythrocytes during the
critical period just after birth when the lungs
must begin the task of supplying oxygen.
Sickle cell mice that survived this early crit-
ical period were able to reach adulthood
(many are now more than 7 months old)
with normal appearance, activity, and fertil-
ity (11). Erythrocytes in adult sickle cell
mice contain exclusively human a- and bS-
globin (Fig. 1B). There is an excess of a-
globin chain synthesis (a/bS, 1.26 6 0.02;
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Fig. 1. Globin chains in transgenic and sickle cell
mice. (A) HPLC profiles showing globin-chain
composition of erythrocytes from wild-type (1//1)
and transgenic 12.5-day gestation fetuses and
from adult transgenic mice. (B) Globin-chain com-
position of erythrocytes from newborn and adult
sickle cell mice.
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polybed, sectioned, and stained with uranyl acetate
and lead citrate. Ultra-thin sections were examined
and photographed with the Hitachi-7000 transmis-
sion electron microscope.
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cluded the Gg- and Ag-globin genes to
decrease the likelihood that erythrocytes
would sickle during gestation and cause
fetal death. In the particular transgenic

line that was generated [Tg(Hu-
miniLCRa1GgAgdbS)], Gg- and Ag-globin
are expressed during the embryonic and
fetal stages of development and not in
adult mice (Fig. 1A) (7). Through succes-
sive rounds of breeding with knockout
mice heterozygous for deletions of the mu-
rine a- and b-globin genes, Hba0//1
Hbb0//1 (8, 9), mice homozygous for the
a- and b-globin deletions and containing
the sickle transgene were generated—
Tg(Hu-miniLCRa1GgAgdbS) Hba0//Hba0

Hbb0//Hbb0, hereafter called sickle cell
mice (10). Many of these mice turned purple
and died a few hours after birth; their death
was apparently a result of hypoxia brought
about by respiratory distress. Because g-glo-
bin concentrations are relatively low [range,
4 to 26% (g/g1bS)] in newborn sickle cell
mice (Fig. 1B) compared with newborn hu-
mans, it is likely that these deaths are caused
by the sickling of erythrocytes during the
critical period just after birth when the lungs
must begin the task of supplying oxygen.
Sickle cell mice that survived this early crit-
ical period were able to reach adulthood
(many are now more than 7 months old)
with normal appearance, activity, and fertil-
ity (11). Erythrocytes in adult sickle cell
mice contain exclusively human a- and bS-
globin (Fig. 1B). There is an excess of a-
globin chain synthesis (a/bS, 1.26 6 0.02;
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Fig. 1. Globin chains in transgenic and sickle cell
mice. (A) HPLC profiles showing globin-chain
composition of erythrocytes from wild-type (1//1)
and transgenic 12.5-day gestation fetuses and
from adult transgenic mice. (B) Globin-chain com-
position of erythrocytes from newborn and adult
sickle cell mice.
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BERK sickle cell disease mice show features similar to patients with sickle cell anemia 

such as low hemoglobin, low hematocrit, and a high reticulocyte count (Paszty et al. 1997). 

Some of the characteristic pathophysiology of sickle cell anemia such as large necrotic spleens, 

microinfarcts in the liver and kidneys are also present in this mouse model. 

A similar sickle cell disease mouse model was developed the same year using a construct 

containing the LCR, the γ- and the mutated β-globin genes linked to a fragment containing the α-

1 globin gene (Ryan, Ciavatta & Townes 1997). This transgenic mouse model was crossed with 

murine α- and β- knockout mice (Paszty et al. 1995; Ciavatta et al. 1995) in the same manner as 

the BERK mice. Similar to the BERK mouse model, they express exclusively α- and βS- chains 

as adults. This mouse model was also successful in recapitulating the sickle cell phenotype, 

showing sickled cells in the peripheral blood, spleens characterized by vascular occlusions and 

thrombosis, focal necrosis in the liver, and vascular occlusions in the kidney (Ryan, Ciavatta & 

Townes 1997).  

Although sickle cell anemia mice have offered a great model to study this condition in 

vivo, they have one disadvantage. They express very low expression of HbF as adults (<1%), 

which is lower than human adults with sickle cell anemia (2-8% HbF). Hence, in order to reach 

the minimum HbF threshold necessary to observe amelioration of the sickle cell disease 

phenotype, a higher level of γ-globin induction is necessary. 

 The use of baboons to study HbF synthesis began in the 1970s, when it was demonstrated 

that baboons exposed to acute hemolytic stress as well as hypoxia showed an increase HbF 

production (DeSimone, Biel & Heller 1978; DeSimone, Heller & Adams 1979). Baboons also 

served as a good model to study the effects of 5-aza on HbF production (DeSimone et al. 

1982).   
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VII. Scope of this thesis 

 Our laboratory has previously shown the importance of the MBD2/NuRD complex in the 

regulation of the β-globin locus genes. The work presented in Chapter 2 of this thesis details the 

study of the in vivo effect of absence of MBD2 in the context of a humanized sickle cell anemia 

mouse model. Importantly, the role of MBD2 in fetal hemoglobin regulation and its potential as 

a target in sickle cell anemia is assessed in this model.   

Two components of the MBD2/NuRD complex, MBD2 and p66α, play important roles in 

the regulation of γ-globin gene expression (Rupon et al. 2006; Gnanapragasam et al. 2011). In an 

attempt to explore the functions of other MBD2/NuRD components in γ-globin gene silencing, 

we have investigated the role of Mi2β in the regulation of β-type globin genes in Chapter 3. The 

independent function of Mi2β from the MBD2/NuRD complex and its dual function as a 

repressor and an activator are explored in this chapter.  

An insight into possible new therapeutic targets for hemoglobinopathies is also reviewed 

in Chapter 4. Recent discoveries about γ-globin gene regulation have led to new potential ways 

to treat β-type globin disorders such as sickle cell anemia and β-thalassemia. However, drug 

development and delivery methods pose a challenge and will need to be accounted for when 

considering such targets.  
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VIII. Significance 

Many factors contribute to the regulation of the developmental switch of fetal γ-globin 

expression to the adult β-globin gene expression, including a locus control region, transcription 

factors and epigenetics. The level of complexity of this process is augmented by the fact that γ-

globin gene regulation during development may not be completely analogous to the mechanism 

involved in suppression of this gene during adulthood. Advances in understanding the regulation 

of γ-globin gene expression will prove to be of upmost importance for patients with sickle cell 

anemia and β-thalassemia, where an increase in HbF has clinical benefit. Given the complexity 

and many pathways involved in the mechanisms behind silencing this gene, it is important to 

find efficient ways to relieve γ-globin silencing in adult erythroid cells. Considering these 

disorders are most prevalent in the developing world, the feasibility of drug delivery and 

affordability of treatment should be considered when attempting to find ways to re-express γ-

globin expression as a potential therapy. 

 

 

 

 

 

 

 

 

 

 



   

49 
 

 

Chapter 2: Absence of MBD2 ameliorates the phenotype of sickle cell mice. 

 

 

 

I. Introduction 

Sickle cell anemia is one of the most common single gene disorders worldwide, although 

it is most prevalent in Africa, South America, the Caribbean, and the Mediterranean countries. It 

is caused by a point mutation in the 6th position of the beta globin gene (A-to-T) that replaces a 

glutamic acid for a valine (Ingram 1956). This mutation leads to reversible polymerization of the 

affected hemoglobin (HbS) in deoxygenated states. These polymers injure the erythrocytes by 

damaging the membrane cytoskeleton causing hemolytic anemia (Lux, John & Karnovsky 1976).  

Furthermore, sickle-shaped erythrocytes cause a reduction in tissue perfusion by obstructing 

capillaries and further adhesion to the vascular endothelium (Hebbel, Osarogiagbon & Kaul 

2004).  

Sickle cell disease is characterized by extravascular hemolysis (uptake and degradation of 

erythrocytes by macrophages subsequently taken to the spleen), but a considerable amount of 

intravascular hemolysis (rupture of cells within the circulation) also occurs. Free plasma 

hemoglobin and arginase in the circulation affects the nitric oxide (NO) availability (Figure 15), 

which reduces the vessels’ ability to vasodilate as well as to inhibit platelet activation (Steinberg 

2009). It is well known that an increase in fetal hemoglobin (HbF) can ameliorate the phenotype 

of sickle cell anemia by decreasing the amount of fiber formation (Nathan et al. 2003). Although 

hydroxyurea, the current treatment for sickle cell anemia, is able to induce HbF, it has variable 
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effects on patients (Charache et al. 1992; Steimberg et al. 1997; Ware et al. 2002).  Current 

efforts are focused on finding new, more efficient targets to increase fetal hemoglobin in these 

patients. In order to conduct these studies, several transgenic mouse models that closely 

recapitulate sickle cell anemia have been established (Ryan et al.1990; Greaves et al. 1990; 

Trudel et al. 1991; Rubin et al. 1991; Fabry et al. 1992; Trudel et al. 1994; and Fabry et al. 

1995). 
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Figure 15. Intravascular hemolysis in sickle cell anemia leads to decreased nitric oxide (NO) 
availability. Intravascular hemolysis leads to release of arginase and hemoglobin. (A) On one 
end, hemoglobin inactivates NO, turning it into methemoglobin (metHb) and nitrate (NO3

-). (B) 
The released arginase also consumes L-Arginine, a substrate converted to NO by nitric oxide 
synthase (NOS). (C) NO availability is also decreased by reactions with reactive oxygen species. 
Decreased NO availability leads to pulmonary hypertension, leg ulcers, hypertension, priapism 
and strokes in patients with sickle cell disease. Adapted from Kato et al. 2007.  
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FIGURE 2. Intravascular hemolysis and NO bioactivity in sickle cell disease. Intravascular hemolysis releases hemoglobin, arginase, 
and LDH into the plasma. Hemoglobin inactivates NO, generating methemoglobin and inert nitrate. The NO synthases generate NO 
from the substrate L-arginine. Arginase consumes L-arginine. NO is also consumed by reactions with reactive oxygen species, 
producing oxygen radicals like peroxynitrite (ONOO-)(C). Decreased NO bioactivity in sickle cell disease is associated with pulmonary 
hypertension, priapism, leg ulceration, hypertension, and nonhemorrhagic stroke. (From Kato et al.[178].) 

This impairs the downstream homeostatic vascular functions of NO, such as inhibition of platelet 
activation, and aggregation and transcriptional repression of the cell adhesion molecules, VCAM-
1(vascular cell adhesion molecule-1), ICAM-1 (intercellular adhesion molecule-1), P-selectin, and E-
selectin.  

NO bioavailability is also challenged by the depletion of arginine, the substrate for the NO synthases, 
and by production of oxygen radicals via catalysis by hemoglobin and heme-causing superoxide-induced 
NO consumption. Lysed erythrocytes liberate arginase that destroys arginine, furthering endothelial NO 
deficiency[64,65,66,67,68,69]. For multiple reasons, hemoglobin sequestered in erythrocytes does not 
cause NO depletion. 

The aggregate effect of reduced NO bioavailability is to inhibit normal vasodilation and cause 
endothelial activation and proliferation. Both hemolysis and loss of splenic function, which is a feature of 
sickle cell anemia, are associated with red cell membrane damage with phosphatidylserine exposure, 
activation of tissue factor, and thrombosis. Chronic anemia and tissue ischemia could also contribute to a 
proliferative vasculopathy via activation of HIF1A (hypoxia inducible factor)–dependent factors like 
NOS2A (inducible nitric oxide synthase), erythropoietin, and vascular endothelial growth factor.  

Heme oxygenase (HMOX1) is an inducible enzyme that catabolizes heme and hemoglobin, and is 
expressed in the endothelium. In sickle transgenic mice, heme oxygenase reduces vascular inflammation 
and its induction inhibits reperfusion injury–induced stasis, leukocyte-endothelium interactions, and 
adherence molecule expression. Its inhibition increases vascular stasis. While clearly effecting 
vasoocclusion in sickle mice, the role of this enzyme in sickle vasoocclusion has yet to be reported in 
patients[70]. One might hypothesize that individuals who express the highest heme oxygenase activity, or 
have polymorphisms of HMOX1 that enhance its activity, could suffer fewer or milder vasoocclusive 
episodes. The converse might also be true. 
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The BERK mouse model is the most widely studied mouse model for sickle cell anemia 

(Paszty et al. 1997). These mice contain three DNA fragments: a 6.5-kb miniLCR, a 1.5-kb 

fragment containing the human α1-globin gene, and a 39-kb fragment containing the human fetal 

and adult globin genes including the mutated sickle β-globin in place of wild type β-globin 

(GγAγ,δ,βS). They also lack endogenous murine α-globin as well as endogenous adult β-globin 

genes (βmaj and βmin). BERK mice express exclusively the human α and human βS genes with 

minimal expression of HbF during adulthood (Paszty et al. 1997). The pathophysiology of the 

BERK mice greatly resembles that of sickle cell anemia patients. It is characterized by hemolytic 

anemia, low hematocrit and high reticulocyte counts. BERK mice also exhibit large necrotic 

spleens (~13-fold larger than WT mice) and micro-infarcts in the liver and kidneys. 

 In humans, the gene responsible for producing the β-subunits of fetal hemoglobin, γ-

globin, is located on the β-globin locus on chromosome 11. This locus consists of a locus control 

region and a tandem array of genes placed in the order they are expressed during gestation and 

adulthood (LCR-ε-γGγA-δ-β) (Stamatoyannopoulos 2005; Sankaran, Xu & Orkin 2010). In 

addition to the locus control region, other cis-acting factors, and trans-acting factors including 

epigenetics play an important role in the regulation of the genes encompassing the β-globin 

locus.  

Regarding the role of epigenetics in β-type globin gene regulation, DNA methylation has 

been inversely correlated with globin gene expression (Mavilio, et al. 1983; McGhee et al. 1979; 

Shen, et al. 1980; van der Ploeg Cell & Flavell, 1980). The methyl-binding domain protein 2 

(MBD2) is known to bind to densely methylated DNA and negatively regulate genes through its 

interaction with the nucleosome remodeling and histone deacetylase (NuRD) complex (Meehan 

et al. 1989; Hendrich & Bird 1998; Hendrich & Tweedie 2003; Feng & Zhang 2001). MBD2 
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plays a significant role in the regulation of human fetal γ-globin gene expression (Kransdorf et 

al. 2006; Rupon et al. 2006, Gnanapragasam et al. 2001).  Transgenic mice bearing the human 

beta locus (βYAC) crossed with MBD2 knockout mice show ~20-fold increase in γ-globin gene 

expression (Rupon et al. 2006), making MBD2 a potential therapeutic target in sickle cell anemia 

(Figure 16).  

 

 

                                                   

 

Figure 16. Absence of MBD2 leads to an increase in γ-globin gene expression in transgenic mice 
bearing a human β-globin gene locus. (A) RNase protection assay showing a significant increase 
in γ-globin expression in MBD2 knockout mice crossed with βYAC mice. Two lines of βYAC 
mice (depicted in black and gray) were used showing similar results. WT mice treated with 5-
azacytidine also lead to a similar increase in γ-globin expression suggesting MBD2 acts via DNA 
methylation. Adapted from Rupon, et al. 2006 
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In addition to its role in γ-globin gene regulation, MBD2 binds to and silences methylated 

promoter regions of the endothelial nitric oxide synthase (eNOS) and vascular endothelial 

growth factor receptor 2 (VEGF-R2) genes. Likely due to this function, MBD2 knockout mice 

are protected from hind-limb ischemia and endothelial cells are also protected from H2O2
- 

induced apoptosis (Rao et al. 2011).  MBD2 could therefore play an important role in the 

pathophysiology of sickle cell anemia via its regulation of endothelial genes involved in 

ischemic injury.  In this study, we sought out to determine whether absence of MBD2 could 

confer amelioration of the phenotype seen in sickle cell disease (SCD) mice.  
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II. Methods 

 

Mouse strains:  

MBD2 knockout mice were a kind gift from Dr. Adrian Bird. These mice are currently in 

a mixed genetic background (FVB/C57BL/6 BALB/C). MBD2 knockout mice are viable, and 

overall healthy. The only phenotype reported is a mildly abnormal nurturing behavior in mothers 

(Hendrich, et al. 2001). BERK sickle cell disease (SCD) mice were a kind gift from Dr. Ivo 

Torres. This strain, termed Hbatm1Paz Hbbtm1Tow Tg(HBA-HBBs)41Paz/J, is available from 

Jackson laboratories, and it has been well characterized and described in the literature (Paszty et 

al. 1997). BERK mice are transgenic for a human β-locus containing three constructs: a 6.5-kb 

miniLCR, a 1.5-kb human α1-globin gene, and 39-kb encompasing the human fetal and adult 

globin genes including the mutated sickle β-globin in place of wild type β-globin (GγAγ,δ,βS). 

Endogenous mouse adult globin genes have been knocked out. These mice recapitulate to a great 

extent the phenotype seen in sickle cell anemia patients.  

 

Mouse breeding and maintenance: 

Sickle cell disease (SCD) mice were mated and checked for vaginal plugs after 24 hours. 

Mice were weaned 20 days to 1 month after birth. At this time, mice were ear punched and the 

tissue was incubated for 4-5 hours at 55°C in the following digestion buffer: 50mM KCl, 10mM 

Tris at a pH of 8.5, 4mM MgCl2, 0.45% NP-40, and 0.45% Tween-20. Samples were boiled 

twice for 10 minutes, followed each time by a rapid spin in a mini centrifuge. Digested samples 

were then stored at -20°C until PCR reactions were carried out. SCD mice were fed a custom 
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made diet high in folic acid (Harlan, cat # TD. 120486, which consists of diet 7012 + 22mg Folic 

Acid) 

 

Breeding Genotypes and abbreviations: 

 

Genotype Abbreviation 

Wild Type Mice WT 

MBD2 knockout mice MBD2-/- 

Sickle cell disease (SCD) BERK mice 
(contains wildtype MBD2) 

SCDMBD2+/+  or SCD control mice 

Sickle cell disease (SCD) BERK mice crossed 
with heterozygote MBD2 knockout mice 

SCDMBD2+/- 

Sickle cell disease (SCD) BERK mice crossed 
with homozygote MBD2 knockout mice 

SCDMBD2-/- 

 

Table 1. List of abbreviations used in figure legends throughout chapter 2 

 

Experiment Genotypes Used Note 
Survival Rate SCDMBD2+/+ 

SCDMBD2+/- 
SCDMBD2-/- 

 

Globin RNA expression and 
hemoglobin chain synthesis 

SCDMBD2+/+ 
SCDMBD2+/- 
SCDMBD2-/- 

WT or MBD2-/- mice do not 
synthesize human globin 
genes and therefore could not 
be tested 

Blood Smears SCDMBD2+/+ 
SCDMBD2-/- 

 

Spleen size, H&E stains and 
histological grade scoring 

WT 
MBD2-/- 

SCDMBD2+/+ 
SCDMBD2+/- 
SCDMBD2-/- 

Organs from WT and MBD2-
/- mice were collected and 
considered normal controls for 
comparison 

 

Table 2. Mouse genotypes used for each experiment 
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Mice Screening: 

 Polymerase chain reaction samples included 0.5µM of each primer, 200µM dNTPs, 1 

unit of Taq polymerase, >1µg template DNA, 2.5µL of 10X reaction buffer (Invitrogen), and 

nuclease-free water totaling a 25µL reaction. The reaction was carried as follows: 94°C (3min), 

40 cycles of 94°C (30s), 58°C (30s), 72°C (1min) according to Paszty et al. 1998. Primers used 

are included in Table 3.  

 

Complete blood count and high performance liquid chromatography (HPLC):  

Prior to each experiment, a fresh solution of the anesthetic Avertin was prepared by 

adding 10mL of tert-amyl alcohol (Fisher) to 10g of 2-2-2 Tribromoethanol (Sigma). A working 

solution was then made by mixing 2.5mL of the above Avertin solution with 97.5mL of saline. 

Mice were anesthetized with an intraperitoneal injection of Avertin at a concentration of 

0.015ml/gm of body, and cardiac punctures were performed in order to collect ~500µL of blood. 

The blood was transferred to 1mL dipotassium EDTA blood collection tubes (BD Microtainer) 

and a drop was used for blood smears. Slides and blood samples were then taken to VCU 

hematology for further Giemsa staining and HPLC hemoglobin fractionation.  

 

Organ Collection:  

Mice spleen, liver and kidneys were collected from sacrificed mice. Organs were first 

rinsed in 1X PBS. Spleen weights were measured and all organs were placed on a 10% 

formaldehyde/1XPBS solution. Samples were taken to the VCU Department of Pathology for 

hematoxylin and eosin (H&E) staining. 
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Organ pathology scoring:  

Following H&E staining for each organ collected, Dr. David Williams (a certified 

pathologist) blindly scored each slide. The scores range on a scale of 0-3, with 0 representing no 

disease observed and 3 representing the highest grade of disease.   

 

 

Primer Table 
 

 Forward Reverse 
Murine MBD2 CCTCAGCTGGCAAGATACCT GGGGGTCATTCCGGAGTCT 
β-Geo Cassette GGTCAGGTCATGGATGAGC

AGA 
CGCGGATCATCGGTCAGACGATT 

Murine α-globin 
(Hba) 

AGTGGGCAGCTTCTAACTAT
GC 

GTCCCAGCGCATACCTTG 

Murine α-globin 
deletion 

ATAGATGGGTAGCCATTTAG
ATTCC 

CCGGGTTATAATTACCTCAGGTC 

Murine β-globin 
genes  

TTAGGTGGTCTTAAAACTTT
TGTGG 

ACTGGCACAGAGCATTGTTATG 

Murine β-globin 
genes deletion 

AGATGTTTTTTTCACATTCTT
GAGC 

AATGCCTGCTCTTTACTGAAGG 

Human β-globin 
transgene 

GTATGGGAGAGGCTCCAACT
C 

TCTGCCCAAATCTTAGACAAAAC 

 
 

Table 3. The table above incudes all the PCR primers used for mice screening.  
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III. Results 

 

A. Absence of MBD2 in sickle cell disease mice increases survival compared to control 

sickle cell disease mice 

The first difference noted while breeding MBD2 knockout mice with sickle cell disease 

mice was the survival rate between knockouts and control groups. Sickle cell disease mice 

(SCD) were noted to have small litters and females either took longer to impregnate or lost more 

litters compared to WT mice. Additionally, sickle cell disease pregnant females often delivered 

stillborn pups. In contrast to sickle cell disease mice (SCDMBD2+/+), SCD mice crossed with 

MBD2 heterozygote or homozygote knockouts (SCDMBD2-/- and SCDMBD2+/-) appeared to 

have an improvement in mating efficiency and delivered larger litters. In order to quantify our 

observation, we calculated the survival rates of the groups in question by comparing observed vs. 

expected values per group. To do this, we first calculated the observed number of desired 

genotypes obtained (SCDMBD2+/+, SCDMBD2+/- or SCDMBD2/-) per total number of mice 

in the litter (observed value). Only the mice that survived until at least 1 month of age, at the 

time of screening, were included in the total number. This was followed by calculating the 

probability of obtaining the desired genotype for each group (expected value). Comparing the 

“observed” category of mice to the “expected” category for each group (SCDMBD2+/+, 

SCDMBD2+/- and SCDMBD2-/-) allowed us to quantitatively compare experimental groups to 

the control. In normal survival rates, the observed/expected ratio should approach 1. As 

expected, table 4 shows that the only group that displayed a significant decrease in survival was 

the sickle cell disease control group (SCDMBD2+/+). Although not statistically significant, 

SCDMBD2+/- mice also show a slight decrease in survival rate with a 0.89 observed/expected 
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ratio, suggesting 50% deficiency of MBD2 does not fully rescue sickle cell disease mice. 

Overall, SCDMBD2-/- showed the greatest improvement in survival which was 5-fold higher 

than SCDMBD2+/+, suggesting this genotype confers a survival advantage to this group.  

 

Genotype Total # of mice obtained 
per group 

Observed/Expected 

SCDMBD2+/+ 5 0.27* 
 

SCDMBD2+/- 
 

14 0.89 

SCDMBD2-/- 25 1.37 
 

 
Table 4. SCDMBD2-/- mice exhibit a higher survival rate at 1 month of age compared to control 
sickle cell mice (SCDMBD2+/+). A Z-Test was performed after comparing the ratio of observed 
number of desired mice (SCDMBD2+/+, SCDMBD2+/-, SCDMBD2-/-) in each litter to the 
probability of obtaining the desired mice (SCDMBD2+/+, SCDMBD2+/-, SCDMBD2-/-) for 
each mating. Observed mice only included mice of at least 1 month of age at the time of 
screening, and the total number of mice obtained per group is listed. A minimum of 40 matings 
per group were included in the study. The Z-Test was performed making the null hypothesis H0: 
proportion = expected against an alternative hypothesis HA: proportion < expected. The null 
hypothesis was rejected for SCDMBD2+/+.   * signifies a p value < 0.001.  
 
 
 

Genotype # of mice alive vs. 
total number of mice 

(alive/total) 

% of genotyped 
mice surviving from 
1 month of age until 

3 months of age 
SCDMBD2+/+ 5/7 71.4% 

SCDMBD2+/- 12/14 85.7% 

SCDMBD2-/- 22/24 91.7% 

 
Table 5. A greater number of SCDMBD2-/- mice survive to adulthood compared to 
SCDMBD2+/- and SCDMBD2+/+ mice. Shown above are the percentage of mice that survived 
beyond 1 month of age until the time of sacrifice for experimentation (3 to 5 months of age). 
Although not significantly different by a chi square test, SCDMBD2-/- mice have the highest 
(91.7%) survival compared to SCDMBD2+/- (85.7%) and SCDMBD2+/+ (71.4%).  At least 7 
mice per group were included in this study. 
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Even though the critical survival stage for sickle cell mice has been reported to be within 

the first few days of life (Ryan et al. 1997), when the lungs begin to supply oxygen to the body, 

adult sickle cell mice are still at risk of dying from sickle cell disease-related complications. We 

therefore calculated the percentage of mice that survived between 1 month of age and the time of 

sacrifice for experimentation (2 to 5 months of age). SCDMBD2-/- mice show a 91.7% survival 

compared to SCDMBD2+/- (85.7%) and SCDMBD2+/+ (71.4%) (Table 5). 

 

B. Absence of MBD2 is able to induce γ-globin gene expression and results in higher HbF 

production 

We hypothesized that the increased survival of SCDMBD2-/- mice was due to increased 

γ-globin gene expression leading to an increase in HbF. We tested the γ-globin mRNA amounts 

in blood taken from 2-5 month old SCDMBD2+/+, SCDMBD2+/- and SCDMBD2-/- mice. 

SCDMBD2-/- mice express ~15-20% γ-globin mRNA calculated as γ/(γ+β)-globin mRNA ratio, 

compared to SCDMBD2+/+ mice which express ~0.8% γ/(γ+β)-globin (Figure 17A). 

SCDMBD2+/- mice also show a slight increase in γ/(γ+β)-globin mRNA (1.71%), correlating 

with the increased survival rate of this group (Figure 17A). In order to detect hemoglobin protein 

levels, blood was analyzed by high performance liquid chromatography (HPLC).  The HbF 

percentage levels of both SCDMBD2+/+ and SCDMBD2+/- were found to be undetected, 

whereas SCDMBD2-/- showed a ~4% HbF (Figure 17B). The discrepancy between γ/(γ+β) 

values detected by qPCR vs. protein levels detected by HPLC could be a result of the high 

sensitivity of qPCR and low sensitivity of HPLC (since low amounts of mRNA are detected by 

qPCR but appear undetected by HPLC in Figures 17A vs. 17B).  
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Interestingly, HbA2, which is composed of 2 δ-globin chains and 2 α-globin chains, is 

significantly elevated in the SCDMBD2+/+ control mice compared to normal values seen in 

SCDMBD2-/- mice (normal range = 1.2-3%) (Figure 17C). Since HbA2 is also known to be 

protective against sickle cell anemia (Nagel et al.1979) this could be attributed to a selective 

advantage, where only SCD control mice that express higher levels of HbA2 survive. Hence, we 

are only able to test control SCD mice with elevated HbA2 levels. A slight elevation of HbA2 in 

SCDMBD2+/- in combination with a slight increase in γ-globin gene expression (Figures 17A & 

17C) most likely accounts for the increase in survival in this group.  
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Figure 17. Absence of MBD2 results in an increase in γ-globin gene expression and HbF but no 
increase in HbA2. (A) qPCR showing SCD mice crossed with MBD2KO mice express 15.55% 
γ/(γ+β)-globin mRNA compared to 0.74% γ/(γ+β)-globin mRNA expression in control SCD 
mice. Heterozygote SCDMBD2+/- mice also show a slightly elevated γ/(γ+β)-globin ratio (1.71) 
(B) HPLC showing elevated HbF levels (~4.5%) in SCDMBD2-/- mice. SCDMBD2+/- and 
SCDMBD2+/+ show undetected HbF levels by HPLC. (C) HPLC showing hemoglobin HbA2 
was significantly elevated in SCDMBD2+/+ control mice compared to SCDMBD2-/- mice. 
**signifies p <0.02 and *** signifies p < 0.001 according to the students t-test. 
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C. Absence of MBD2 reduces the number of sickle cells in the peripheral blood of sickle cell 

mice 

A representative blood smear taken from peripheral blood of adult SCD control mice 

shows sickle cells admixed with target red blood cells and a high amount of polychromatic cells 

(Figure 18B). Although a representative blood smear taken from a SCDMBD2-/- mouse shows 

less sickling (Figure 18C), peripheral blood still shows a significant amount of polychromasia, 

suggesting a large number of immature red cells are found in the circulation (Figure 18C) 

compared to WT mice (Figure 18A). In order to quantify the amount of sickling, the number of 

sickle cells were counted in 10 different fields for each mouse blood smear. On average, WT 

mice showed 0 sickle cells per field, SCDMBD2+/+ mice showed 1.9 cells per field, and 

SCDMBD2-/- mice showed 1.1 sickle cells per field. This suggests a decrease in the amount of 

sickle cells in SCDMBD2-/- mice compared to SCDMBD2+/+ control mice. Since only one 

mouse per group has been tested thus far, a larger number of mice will be needed in order 

determine if this effect is significantly different between SCDMBD2-/- and SCDMBD2+/+ 

control mice.  
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Figure 18. Blood smears show a decrease in the number of sickle cells in SCDMBD2-/- mice 
compared to SCDMBD2+/+ mice. Giemsa stain showing representative blood smears from (A) 
WT (B) SCDMBD2+/+ and (C) SCDMBD2-/- mice. Arrows show sickle cells (black) and target 
cells (blue), characteristic of sickle cell anemia (B). The large portion of polychromatophillic 
cells (purple) is likely due to reticulocytosis (B & C). The numbers below represent number of 
sickle cells counted per field in a total of 10 fields for each mouse.   
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D. Absence of MBD2 does not result in a significant improvement of sickle cell disease 

organ damage 

Although SCDMBD2-/- showed a marked improvement in survival over SCD control 

mice likely due to an increase in HbF, pathophysiology characteristic of sickle cell anemia is still 

present in SCDMBD2-/- mice. In order to quantify the degree of organ damage observed in the 

groups tested, spleen weights were measured, and degree of damage was determined by scoring 

H&E stains from three different organs (spleen, liver and kidney). Due to increased extra-

medullary erythropoiesis in the spleen, sickle cell disease mice are characterized by having large 

necrotic spleens, usually ranging from 10- to 15-fold larger in size than WT mice (Ryan et al. 

1997). As shown in Figure 19A, SCDMBD2-/- and SCDMBD2+/- mice displayed large spleens, 

about 15 fold larger by percentage of body weight than WT and MBD2-/- control mice. This 

increase in spleen weight was no different than SCDMBD2+/+ control mice, suggesting a 

decrease in MBD2 expression does not alter the amount of extra-medullary erythropoiesis seen 

in sickle cell mice. 

To further determine whether MBD2 knockout confers protection of organs by 

decreasing sickling and protecting the endothelium, spleen, kidney and livers were dissected 

from mice post-mortem and cross sections were stained by hematoxylin and eosin (H&E). 

Following H&E staining, samples were scored on a histological grade scale ranging from 0-3, 

where 0 represents normal histology and 3 represents extensive organ damage and necrosis. WT 

and MBD2ko mice were used as controls and show 0 histological grade in all three organs 

(Figure 19B). WT and MBD2 knockout animals do show a small amount of extra-medullary 

erythropoiesis (EE) as marked with a 1 in the histological grading scale (Figure 19B). Regarding 

organ damage, no significant difference was seen between control SCD mice compared to 
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SCDMBD2+/- or SCDMBD2-/- mice. The most affected organ in these mice was the spleen, 

with a histological grade of 3 in all three groups (SCDMBD2+/-, SCDMBD2-/- and 

SCDMBD2+/+). Although not significantly different, a trend was observed in SCDMBD2-/- 

mice, in which the kidneys were spared from damage compared to SCDMBD2+/+ kidneys. 

However, the opposite trend was seen in the liver, where SCDMBD2-/- mice show greater liver 

necrosis than control mice (Figure 19B). This could be due to the difference in the amount of 

capillaries found in the kidney and the liver, although further studies will be necessary to 

determine this.  
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Figure 19. Absence of MBD2 in SCD mice does not result in a significant decrease in organ 
damage when compared to SCD control mice. (A) Spleen weights were measured as a 
percentage of body weight. Error bars represent at least three mice. (B) Histological grading 
scales from 0 to 3 (0 represents no damage or no extra-medullary erythropoiesis (EE), and 3 
represents most damage and highest amount of extra-medullary erythropoiesis). Error bars 
represent at least three mice as shown in the legend. No significant difference was found between 
the two experimental groups (SCDMBD2+/- SCDMBD2-/-) compared to sickle cell disease 
control mice (SCDMBD2+/+) in any of the tested parameters. NS = no significant difference 
between SCDMBD2+/+ control mice and SCDMBD2+/- and SCDMBD2-/- mice. 
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Representative H&E slides from spleen, kidney and livers dissected from either 

SCDMBD2+/+, SCDMBD2+/- and SCDMBD2-/- show extensive organ damage compared to 

WT and MBD2-/- controls (Figure 20). As shown by the arrows in Figure 20, all three groups 

(SCDMBD2+/+, SCDMBD2+/- and SCDMBD2-/-) show pathology characterized by ischemic 

infarcts and necrosis in the liver, increased hemorrhage and extra-medullary erythropoiesis in the 

spleen, and infarcts and coagulative necrosis in the kidneys compared to normal histology seen 

in WT or MBD2-/- control groups. 
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    Figure 20 Absence of MBD2 does not fully correct organ disease characteristic of sickle cell 
anemia. H&E slides showing spleen, liver and kidney taken from either healthy control mice 
(WT, MBD2-/-), or SCDMBD2+/+, SCDMBD2+/- and SCDMBD2-/- mice. Arrows show organ 
damage including: increased extra-medullary erythropoiesis, coagulative necrosis and 
hemorrhage in the spleen, ischemic infarcts and coagulative necrosis in the liver, and infarcts and 
coagulative necrosis in the kidneys as well as loss of glomeruli. 
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IV. Discussion 
 

The MBD2/NuRD complex has previously been shown to play an important role in the 

silencing of γ-globin gene expression. Selectively binding to CpG rich DNA, MBD2 is 

associated with the NuRD complex and exerts a negative regulatory function (Meehan et al. 

1998; Hendrich & Tweedie 2003; Feng & Zhang, 2001). The MBD2/NuRD complex does not 

bind to the γ-globin promoter region, but rather it indirectly plays a role in silencing this gene 

(Rupon et al. 2006). MBD2 Knockout mice bearing a yeast artificial chromosome with the 

human β-globin locus (βYAC) have a ~15-20-fold increase in the γ-globin gene expression 

(Rupon et al. 2006). Importantly, MBD2 knockout mice have a minimal phenotype affecting 

only maternal nurturing (Hendrich et al. 2001). This renders MBD2 a great candidate as a target 

in sickle cell anemia.  

The BERK sickle cell disease mouse model has served as a useful way of studying this 

condition. BERK mice exhibit a typical phenotype characterized by sickle-shaped erythroid 

cells, severe anemia and organ damage. The severity of their phenotype is perhaps greater than in 

humans because they express significantly lower amounts of HbF (<1%) and exhibit a greater 

amount of hemolytic anemia (Paszty et al. 1997).  

In our studies we have shown that knocking out MBD2 in sickle cell disease (SCD) mice 

results in an marked increase in survival rate (~5-fold) compared to control SCD mice. The 

increase in survival is likely due to an increase in γ-globin gene expression leading to higher HbF 

synthesis. This finding is consistent with studies reporting a decrease in mortality in sickle cell 

anemia patients with elevated HbF (Platt et al. 1994).  

Likely due to the lower basal expression of HbF in sickle cell mice (<1%), a large fold 

increase in γ-globin production upon knocking out MBD2 is not sufficient to completely correct 
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the pathophysiology associated with this condition. Spleen size and organ pathology show no 

significant difference between SCDMBD2+/+ and SCDMBD2-/- mice. Although it is apparent 

that absence of MBD2 does not render complete correction of the sickle cell phenotype, the lack 

of a difference between the pathophysiology of SCDMBD2+/+ and SCDMBD2-/- mice may be 

due in part to a survival selection in control SCDMBD2+/+ mice. Adult SCDMBD2+/+ mice 

display increased HbA2, a phenotype that confers protection against sickling (Nagel et al.1979).  

The lack of improvement of organ pathology in SCDMBD2-/- compared to 

SCDMBD2+/+ control mice may be attributed to the lack of a linear relationship between 

increased HbF and decreased morbidity. Instead, there is a threshold at which morbidity begins 

to decline (Powars et al. 1984). It is likely that SCDMBD2-/- mice produce sufficient HbF to 

decrease mortality, but they lack sufficient HbF to decrease complications and fully correct the 

phenotype of this disease.  

Although not statistically significant, a trend was seen in the pathology of the kidney, 

where both SCDMBD2+/- and SCDMBD2-/- mice showed less severity of kidney disease 

compared to SCDMBD2+/+ control mice. Because the absence of MBD2 is known to increase 

expression of eNOS and thus improve reperfusion injuries in mice (Rao et al. 2011), it is possible 

that reduced expression of MBD2 in sickle cell mice increases NO availability. This effect may 

reduce damage to the kidney, an organ with an extensive number of capillaries. This effect was 

not seen in the liver, which may reflect a difference in the amount of capillaries present in these 

two organs. Further studies such as measuring eNOS levels in vessels from these organs will be 

necessary to determine whether this is the case.  

Another factor that can potentially explain the lack of improvement in morbidity of 

SCDMBD2-/- mice is the transgene copy number. SCD mice can either have one or two copies 
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of the transgene. Due to the lack of information shared by the investigators who created the 

mouse model, the site of insertion is unknown. The lack of information on the transgene’s 

flanking regions has made it difficult to determine whether each mouse contains one or two 

copies of the transgene. Transgene copy number (1 vs. 2) could therefore play a role in the 

severity of the phenotype seen in each mouse. An increase in the number of mice tested to 

account for a possible bias in each group tested will be necessary.  

Another possible reason the absence of MBD2 did not result in greater phenotype 

improvement is the genetic background. Studies have shown genetic modifiers in different 

genetic backgrounds can account for a difference in phenotype seen in mice. A clear example of 

this was shown on a diabetes model, where the mutations for obesity (lepob) and diabetes (leprdb) 

results in obesity and mild diabetes in the C57BL/6 genetic background, whereas the same 

genotype results in obesity and overt diabetes in the C57BLKS/J genetic background (Coleman 

& Hummel 1973; Coleman, 1978). Genetic modifiers in different backgrounds must account for 

different phenotypes. Given that MBD2 knockout mice are in a mixed genetic background 

(FVB/C57BL/6 BALB/C), genetic modifiers could be contributing to the severity of the 

phenotype. Other groups have shown a greater improvement in the SCD phenotype with a 

similar increase in γ-globin expression in C57BL/6 mice (Xu et al. 2011). The mixed genetic 

background of our mouse model could explain why the large fold induction of γ-globin gene 

expression is insufficient to prevent disease progression in these mice. Studies on eNOS gene 

regulation by MBD2 were also conducted in C57BL/6 mice (Rao et al. 2011). Hence, a pure 

genetic background is needed to determine whether genetic modifiers affect the severity of the 

SCD phenotype. SCD control mice that have selectively survived show an increased HbA2, 

which is consistent with our hypothesis that a mixed genetic background has the potential to 
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affect particular genes. Because the BERK mice are on a mixed genetic background, the higher 

HbA2 levels could be associated with a particular genetic background. 

Although further work will be necessary to determine the level of improvement in the 

sickle cell phenotype in mice under a pure genetic background, the results obtained so far are 

promising. Survival of SCD mice increases significantly when MBD2 is knocked out likely due 

to an increase in HbF, and a decrease in the number of sickle cells seen in the periphery. 

Furthermore, the limitations when studying sickle cell anemia in transgenic mouse models 

suggests targeting MBD2 could be more beneficial in sickle cell anemia patients. Compared to 

sickle cell anemia adult patients, BERK mice express much lower basal levels of HbF. The 

significant fold induction of HbF seen in the SCDMBD2-/- mice compared to SCD control mice 

could have a greater impact on the morbidity of sickle cell adult patients compared to transgenic 

mouse models.  
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Chapter 3: Mi2β-mediated silencing of the fetal γ-globin gene in adult erythroid cells  

 

 

 

I. Introduction 

 

Sickle cell anemia and β-thalassemia are two of the most common single gene disorders 

worldwide. A need for a more effective treatment for these disorders has led to extensive studies 

on the regulation of globin genes, since an increase in fetal hemoglobin (HbF) is known to be 

beneficial for these patients. Hydroxyurea, currently part of the standard treatment for sickle cell 

anemia, increases HbF levels in sickle cell patients but its effects are variable and it is not 

effective in the treatment of most cases of β-thalassemia (Charache, et al 1992; Steinberg et al. 

1997; Ware et al. 2002).  

Development of effective and potentially less toxic targeted strategies to induce HbF 

production will require full understanding of the molecular basis of developmental repression of 

the fetal γ-globin gene. The γ-globin gene is located on chromosome 11 within the β-globin gene 

locus. The β-locus consists of a locus control region followed by a group of five β-type globin 

genes positioned in the order in which they are expressed during development (5’-LCR-ε-AγGγ-

δ-β-3’) (Stamatoyannopoulos 2005; Thein & Menzel 2009; Sankaran, Xu & Orkin 2010). During 

the embryonic stage of development, the ε-globin gene is expressed in the yolk sac, followed by 

expression of the γ-globin gene in the fetal liver during most of gestation. At birth, γ-globin 

expression declines as the expression of adult β-globin in bone marrow derived erythroid cells 
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predominates (Peschle et al. 1985; Ley et al. 1989). There are numerous trans-acting factors and 

associated complexes involved in γ-globin gene silencing. These include BCL11A, KLF1/EKLF, 

MBD2/NuRD, TR2/TR4, and GATA-1/FOG-1/NuRD (Sankaran, Xu & Orkin 2010; Ginder, 

Gnanapragasam & Mian 2008).
 
KLF1 (formerly known as EKLF) is a transcription factor 

belonging to the family of the krüppel-like factors and it is critical in the expression of many 

erythroid specific genes (Feng, Southwood & Bieker 1994; Perkins, Sharpe & Orkin 1995; Nuez 

et al. 1995).  It is C2H2 transcription factor that has a highly conserved DNA binding domain 

(Bierker 2001). KLF1/EKLF binds directly to, and positively regulates the β-globin gene in adult 

erythroid cells, whereas it negatively regulates the γ-globin gene indirectly through its role in 

competition between the γ- and β-globin promoters for the LCR and through its binding to and 

positive regulation of BCL11A, an important γ-globin gene silencer (Zhou et al. 2010; Borg et al. 

2010) (Figure 21).  
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Figure 21. KLF1/EKLF significantly contributes to the globin switch by directly regulating β-
globin expression and indirectly regulating γ-globin gene expression via BCL11A. During the 
embryonic/fetal stages KLF1 expression is low. This leads to lower expression of BCL11A and 
therefore high expression of γ-globin. Low levels of KLF1 also lead to low expresssion of β-
globin. This same effect is seen with KLF1 haploinsufficiency. In adult stages, KLF1 expression 
levels increase, leading to higher expression levels of BCL11A, and therefore low γ-globin 
expression. Higher KLF1 levels also lead to higher expression of β-globin gene via its role as an 
activator. Adapted from Siatecka & Bieker 2011.    
 

 

 

 

 

EKLF regulates globin switching.  
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Originally identified in a GWAS study (Menzel et al. 2007), BCL11A is a zinc finger 

transcription factor that acts as a dominant negative regulator of the embryonic to adult 

hemoglobin switch in murine development (Sankaran et al. 2009). It binds to the locus control 

region (HS3) as well as an intergenic region of the β locus, between γ-globin and the δ-globin 

regions (Sankaran et al. 2008). Absence of BCL11A during mice development results in a delay 

of the switch from embryonic β-type globin genes into adult globin genes (Sankaran et al. 2010). 

Knockout of BCL11A in humanized sickle cell transgenic mice greatly ameliorates their sickle 

cell disease pheynotype (Xu et al. 2011). Of note, BCL11A plays an important role in the 

regulation of B cells (Liu et al. 2003), and homozygous knockout mice are embryonic lethal (Liu 

et al. 2003).   

Epigenetic mechanisms, including DNA methylation and histone modifications, also play 

an important role in developmental globin gene silencing (Singal et al. 1997; Pikaart, Recillas-

Targa & Felsenfeld 1998; Forsberg et al. 2000; Hsu et al. 2007; Mabaera et al. 2007), and 

inhibitors of DNA methylation induce HbF levels in baboons and in humans (DeSimone et al. 

1982; Ley et al. 1982; Charache et al. 1983). The MBD2/NuRD complex, which selectively 

binds to methylated CpG-rich DNA, has been shown to play an important role in the silencing of 

the human embryonic ε- and fetal γ-globin genes (Rupon et al. 2006; Gnanapragasam et al. 2011; 

Rupon et al. 2011). NuRD co-repressor complexes include at least one copy of each of the 

proteins Mi2α and –β, HDAC-1 and -2, MTA-1 and -2, RbAp46/48, and p66α and p66β 

(Hendrich & Bird 1998; Feng & Zhang 2001). MBD2/NuRD does not appear to interact directly 

with promoters of human β-type globin genes, suggesting that its silencing effects occur through 

an indirect pathway (Rupon et al. 2006). The MBD3/NuRD complex, which is distinct from 

MBD2/NuRD (Le Guezennec et al. 2006), directly interacts with and regulates genes within the 
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β-globin locus through its association with the transcription factors GATA-1 and Friend of 

GATA-1 (FOG-1) (Hong et al. 2005; Rodriguez et al. 2005). In βYAC transgenic mice, the 

GATA-1/FOG-1/NuRD complex negatively regulates the γ-globin gene by binding to its distal 

promoter (Harju-Baker et al. 2008). This complex is associated with positive regulation of the 

adult β-globin gene (Miccio et al. 2010), suggesting that GATA-1/FOG-1/NuRD can act as 

either an activator or repressor complex. 

Mi2β (also known as CHD4) is the largest protein of the NuRD complex. It belongs to a 

family of proteins called chromatin organization modifier (Chd), a member of the SNF2 family 

of helicases (Eisen, Sweder & Hanawalt 1995), and confers the chromatin remodeling function 

of the NuRD complex. Mi2β contains tandem plant zinc finger homeodomains (tPHD) and 

tandem chromodomains (tCHD) (Woodage et al. 1997), which play an important role in 

modulating its ATPase activity (Morra et al. 2012; Watson et al. 2012). It was recently shown 

that the tandem PHDs are important for tCHD binding to dsDNA, and tPHDs also allow binding 

to nucleosomes (Morra et al. 2012). PHDs specifically recognize histone H3 tails (Musselman et 

al. 2012) (Figure 22).  
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Figure 22. Mi2β (CHD4) binds to histone 3 (H3) tails through interactions with plant 
homeodomains 1- and 2 (PHD1 and PHD2). Mi2β utilizes both PHD domains to recognize H3 
histone tails. Adapted from Musselman et al. 2012 
 

In addition to its negative regulatory role as part of the NuRD complex, Mi2β also acts as 

a co-activator in lymphocytes (CD4) (Williams et al. 2004) by interacting with p300 and the E 

box binding protein in the CD4 gene enhancer (Williams et al. 2004). Further evidence of its role 

as both an activator and a repressor came from studies in T helper (Th2) cells.  In these cells 

Mi2β and GATA-3, can form either a repressive NuRD complex with HDAC activity, or an 

independent activating complex with p300 (Hosokawa et al. 2013). The mechanism behind 

Mi2β’s switch from a repressor to an activator remains to be elucidated. 

Mi2β is highly expressed in tissues such as hematopoietic stem cells and in early 

lymphoid, myeloid and erythroid precursors (Kim et al. 1999). Mi2β knockout mice are 

embryonic lethal and conditional Mi2β knockout mice show a block in erythroid differentiation 

at the proerythroblast stage (Yoshida et al. 2008). However, recent studies with conditional 

knockout mice under an erythroid specific promoter have reported that a partial Mi2β knockout 

is able to induce γ-globin gene expression without affecting erythoid differentiation (Costa et al. 

2012).  
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In this study we have explored a novel role of Mi2β in the hemoglobin switch. We show 

here that Mi2β has an important role in the repression of γ-globin gene expression in mouse 

hematopoietic cells containing a transgenic human β-globin locus, and in adult human primary 

erythroid cells. While this repression is mediated in part by known negative regulatory activities 

of Mi2β-containing NuRD complexes, a major part of the γ-globin gene silencing effect of Mi2β 

is through direct positive regulation of the genes encoding the transcription factors KLF1/EKLF 

and BCL11A.   
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II. Methods 

 

Cell Lines and Growing Conditions: 

Chemical Inducer of Dimerization cells were a kind gift from Dr. Kenneth Peterson. 

Cells were grown on IMDM supplemented with 10% heat inactivated fetal bovine serum (FBS) 

and 2% Penicillin/Streptomycin. Cells were passaged at a concentration of 3-5 x 105 per mL 

every 2-3 days. The B/B Homodimerizer (AP20187, Clontech) was added at a concentration of 

0.1µM, and G418 at a concentration of 100-200µg/ml in every passage.  

 

siRNA knockdown: 

For each transfection group, 2.5 million CID cells at a density of 0.5 million cells/mL 

were plated a day before transfection in a T25 flask. The following day, 5 mL of media were 

placed on a T25 flask for each transfection group in order for the media to equilibrate. 

Meanwhile, cells were counted, and 5 x 106 cells per group were spun at 100g for 10 minutes at 

room temperature. Cells were then resuspended in 100µL/group of nucleofector solution 

(provided by the nucleofector kit) and mixed well by gentle pipetting. 10µL of a 10µM QIAGEN 

siRNA solution was placed in a sterile tube per group, and 5µg of GFP was used as control. 

100µL of the mixture of cells and solution was added to each of the tubes containing the siRNA 

in order to dilute the siRNA concentration to 1µM. CID cells were transferred to a cuvette 

supplied by the nucleofector kit (#VCA-1003, Lonza) and pulsed in the D-012 setting of the 

nucleofector machine (Amaxa, Nucleofector II). The cells were then transferred to the T25 flask 

with equilibrated media and incubated at 37°C, 5% CO2. After a 24hr incubation period, the 

control GFP sample was observed under the microscope to determine the transfection efficiency.  
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RNA Isolation and qPCR:  

RNA was isolated 72 hrs post-transfection by phenol-cholorform extractions (TRIzol, 

Invitrogen) according to the manufacturer’s protocol. Samples were then subjected to DNase I 

treatment as follows: 20µL reactions were made by adding 10µL of RNA at a concentration of 

200ng/µL, 0.5µL of Dnase I (Ambion, at a concentration of 2U/µL), 0.5µL SUPERase Inhibitor 

(Ambion, at a concentration of 20U/µL), 2µL of 10X Dnase Buffer (Ambion), and 7µL of DEPC 

treated water. Samples were incubated at 37°C for 30min followed by 97°C for 10 min. 1µg of 

RNA (5µL of above reaction) were then used for making cDNA in a 10µL reaction per sample 

also including 0.5µL of RTase, 2µL of RT mix and 2.5µL of DEPC RNase free water from the 

iScript cDNA synthesis kit (Bio Rad) according to the manufacturer’s protocol.    

  Gene expression was determined by performing qPCR, followed by analysis with the 2-

ΔΔCt method. q-PCR was performed using either Power Sybr green PCR master mix (ABI) or 

Taqman Fast Universal PCR master mix (ABI) in an ABIRT1900 instrument (1 cycle at 50°C for 

2 min and 95°C for 10 min, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min). Relative 

quantification was determined using the SDS 1000 software. The primers used for q-PCR, listed 

in Table 6, were designed to specifically bind to the cDNA of interest and not genomic DNA by 

crossing exon-exon boundaries. 

 

CD34+ cell isolation:  

De-identified CD34+ cells were isolated from 10 mL apharesis packs donated by the 

VCU bone marrow transplant unit. Cells were thawed quickly at 37°C in a water bath, and then 

poured on a 50mL tube. Cells were then mixed with 1 volume of 1X PBS containing 2% FBS. 

~30mL of volume of cells were added slowly to a 50mL tube containing 15mL of Ficoll-paque-
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plus (StemCell Technologies Inc #07907). The mix was spun at 400g for 30 minutes at room 

temperature with no break. The middle layer containing the mononuclear cells was extracted and 

placed on a fresh tube, where 40mL of 1X PBS with 2% FBS was subsequently added. 

Mononuclear cells were then filtered through a 70µM nylon filter (BD Biosciences #352350), 

and spun at 250g for 6 minutes at room temperature. The pellet was resuspended in 4-5mL of 

DNase I solution (StemCell Technologies Inc. #07900) and incubated at room temperature for 15 

minutes. Following DNase I incubation, 40mL of 1X PBS with 2% FBS and 1mM EDTA were 

used to dilute the solution, followed by spinning the cells at 250g for 6 minutes at room 

temperature. The cell pellet was re-suspended in 1X PBS with 2% FBS and 1mM EDTA at a 

density of 2 x 108 cells/ml. EasySep kit (StemCell Technologies) was used for positive selection 

of CD34+ cells according to the manufacturer’s protocol, and cells were subsequentely 

maintained in growth medium consisting of StemSpan SFEM Medium with 1X CC100 cytokine 

mix (StemCell Technologies Inc.), 40µg/mL of low density lipoprotein (Sigma) and 2% 

Penicillin/Streptomycin. 

 

Lentiviral Synthesis:  

shMBD2 (GGGTAAACCAGACTTGAA) and shMi2β (#1: 

CGGTGAGATCATCCTGTGTGATA, #2: GGACCTGAATGATGAGAAACAGA) sequences 

were cloned into a pRRL.H1.shRNA vector. The vectors were then packaged into a lentivirus by 

calcium phosphate transfections in 293T cells as follows: 6 million cells were evenly plated in 

10mL of DMEM (Gibco) containing 20% FBS (Hyclone) media in a 10cm dish and incubated on 

a 37°C, 5% CO2 incubator. The following day (at ~80% cell confluency) the medium was 

removed and 9 mL of fresh media were added and incubated for 1-2 hours. Meanwhile, 3.75µg 
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of PcmvR DNA (packaging plasmid), 1.5µg of PMD DNA (Envelop plasmid), 5µg of the 

pRRL.H1 vector, and sterile dH2O totaling a 437µl solution were mixed in a 2mL tube and 

vortexed. 63µl of 2M CaCl2 were then added drop wise. This 500µl solution was subsequently 

added drop wise to 500µl of 2X HBS. The resulting 1mL solution was distributed evenly, and 

drop-wise over the cells. After 5 minutes of incubation at room tempertature, cells were 

transferred to a 37°C, 5% CO2 incubator. Following 16-18 hours of incubation, the media was 

replaced with 9mL of fresh media and cells were once again placed in a 37°C, 5% CO2 

incubator. After a 24hr incubation period, the media (now containing the virus) was collected in 

a fresh tube and frozen quickly on dry ice, and later stored in -80°C. 

 

Lentiviral Infection:  

Three days following CD34+ isolation, 2 X 105 CD34+ cells per well were plated on a 12 

well plate with 50µl of growth medium while the frozen virus stored at -80°C was thawed. Once 

the cells were plated, 4µg/mL of polybrene were mixed with the lentiviral shRNA solution and 

500 - 600µl of this solution were immediately added per well. The 12 well plates were incubated 

at 37°C, 5% CO2 with slow shaking for 24hr. Growth medium was then added accordingly and 

the cells were transferred to a regular incubator at 37°C, 5% CO2. On day 5 of incubation, GFP+ 

cells were selected by flow cytometry on a BD FACSAria™ II High-Speed Cell Sorter and 

incubated on IMDM supplemented with 20% fetal bovine serum, 10ng/ml of SCF, 1u/ml EPO, 

1ng/ml IL-3, 1µM Dexamethasone, 1µM Estradiol, and 2% Penicillin/Streptomycin for three 

days. The cells were subsequently changed to a differentiation media consisting of IMDM 

supplemented with 20% fetal bovine serum, 1u/ml EPO, 10ng/ml Insulin, and 2% 
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Penicillin/Streptomycin and cultured for a period of 10 days. Cells were spun down and fresh 

media was added every other day.  

 

Fluorescence Activated Cell Sorting (FACS) on Human Adult Primary Erythroid Cells:  

1 x 106 cells were washed on 10-12mL of 1XPBS/10%FBS buffer and spun at 300g for 5 

minutes at room temperature. The cell pellet was then resuspended in 100µL of the same buffer 

and incubated with 0.06µg of CD71 and 0.015µg CD235a for 20 minutes. Cells were then 

washed twice with 1.5mL of buffer by spinning at 300g for 5 minutes and adding fresh buffer 

each time. The cell pellet was subsequently re-suspended on 400µL of buffer. Samples were then 

analyzed by flow cytometry in a BD FACSCanto™ II machine. Antibodies used include anti-

human CD71 (eBioscience #17-0719-42) and anti-human CD235a (eBioscience #12-9987-82).  

 

CD34+ cell High Performance Liquid Chromatography (HPLC):  

10 million of the above sorted differentiated human erythroid cells from either control 

shSCR group or shMi2β group were spun down at 300g for 5 minutes and cell pellets were taken 

to VCU hematology for further lysing and HPLC hemoglobin variant testing.  

 

Giemsa Staining Human Adult Primary Erythroid Cells:  

FACS sorted differentiated cells were spun in a cytocentrifuge for 10 min at 1000 rpm 

and subsequently stained with Giemsa.  

 

Chromatin Immunoprecipitation assays (ChIP):  

107 CID cells or CD34+ hematopoietic progenitor cells, the latter collected at day 2 of 
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erythroid differentiation, were crosslinked using 2.0 mM ethylene glycol-bis(succinimidyl 

succinate) (EGS) at room temperature for 30 min followed by formaldehyde for 10 min. ChIP 

assays were then be performed using the Millipore (EZ-Magna ChIP) kit per manufator’s 

protocol. Antibodies used at the concentration of 7µg include ChIP-grade Mi2β antibody 

(Abcam ab70469) and Normal Mouse IgG (Millipore #12-371). qPCR was performed as 

described above and primers used are listed in Table 6. 

 

Co-Immunoprecipitation Assays:  

10 million CID cells per group were collected and assays were carried out using Sigma’s 

kit manufacturer’s protocol (SIGMA, FLAG Immunoprecitipation kit cat# FLAGIPT1). rProtein 

G beads were purchased from Invitrogen (#15920-010). Prior to the experiment, the protein G 

beads were washed 4 times by spinning down at 500g for 30 seconds at 4°C, discarding the 

supernatant and adding equal volume of 1X washing buffer each time (40µL of beads were used 

per reaction).  1mL of lysis buffer with protease inhibitors was added to each group, and samples 

were vortexed and placed on a rotator for 30 minutes at 4°C. The samples were then spun down 

at 1300g for 10 minutes at 4°C, and the supernatant was transferred to a new tube. Pre-clearing 

was performed as follows: 40µL of protein-G beads were added to each 1mL of supernatant, and 

samples were placed on a rotator for 2 hours. Samples were subsequently spun at 5000g for 30 

seconds at 4°C. 30µL of supernatant were removed and stored in -80° as the input control. The 

remaining supernatant was divided into 2 tubes (480µL each). One tube was incubated with 15µg 

of MBD2 antibody (Santa Cruz) and the other was incubated with 15µg of normal goat IgG, and 

both samples were placed on a rotator overnight at 4°C. The following morning, 40µL of protein 

G beads were added to each sample and tubes were placed on a rotator for 2 hours at 4°C. 
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Following incubation with rProtein G beads, samples were washed 5 times by spinning at 5000g 

for 30 seconds 4°C, discarding the supernatant and adding 1mL of washing buffer each time. 

Once the supernatant was discarded from the last wash, gel loading tips were used to remove the 

excess liquid without disturbing the beads. 40µL of 2x western blot sample buffer was added to 

each sample and 30µL of buffer was added to the input control. All samples were then boiled for 

5 minutes, and subsequently cooled to room temperature. Samples were spun twice at 13000rpm 

for 30 seconds at room temperature, each time using a gel-loading tip to transfer the supernatant 

to a new tube to separate the supernatant from the rProtein G beads. The remaining supernatant 

was then used for western blotting. Antibodies used for western blotting include MBD2 (Santa 

Cruz sc-1244), p66α (Upstate #07-365), HDAC-2 (Millipore #05-814), RbAp48 (abcam 

ab79416) and MTA-2 (Santa Cruz sc-28731) 

 

Western Blotting:  

Whole cell lysates were made on 4% SDS and briefly sonicated. Samples were then 

mixed with 2x loading buffer containing beta-mercaptoethanol and 1% bromophenol blue, and 

subsequently ran on a 10% SDS gel. The protein was transferred onto a PDVF membrane for 1 

hour at 100V. The membrane was subsequently blocked for an hour in a blocking buffer 

consisting of 1X PBST in 5% milk. This was followed by 1-hour incubation with 5-10µg of the 

antibody of interest in 1X PBST in 5% milk. Three 5-minute washes with 1X PBST were carried 

out, followed by a 45 minute incubation of secondary antibody in a blocking buffer solution. The 

secondary antibody was removed by three, 5-minute washes, followed by incubation of the 

membrane with either West Pico Chemiluminescence substrate or Supersignal West Dura 

Extended duration substrate (Thermo Scienctific) according to the manufacturer’s protocol.  
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Antibodies used include MBD2 (Santa Cruz sc-1244), CHD4/Mi2β (Abcam ab54603), 

EKLF/KLF-1 (Abcam ab88417), FOG-1 (Santa Cruz sc-9361) and BCL11A (Abcam ab19487).  

 

Western Blots from Mouse erythrocytes:  

Hemolytic anemia was induced in both wild type and MBD2 knockout mice by treatment 

with two intra-peritonial injections of 1-acetyl-2-phenylhydrazine (10 mg/ml; Sigma) at a dose of 

0.4 mg/10g of body weight, 16 hours apart. In order to allow the spleen to become a prominent 

site of extramedullary erythropoiesis, mice were sacrificed 5 days after the second injection. At 

the time of sacrifice, the spleens were harvested and single cell suspensions were obtained by 

gentle brushing. Whole cell lysates were then made according to the Western Blot protocol 

described above.  
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 Forward Reverse Probe 
Human γ-globin GTG GAA GAT GCT GGA 

GGA GAA A 
TGC CAT GTG CCT TGA 
CTT TG 

FAM/AGG CTC CTG GTT GTC 
TAC CCA TGG ACC /BHQ 

Human β-globin GCA AGG TGA ACG TGG 
ATG AAG T 

TAA CAG CAT CAG GAG 
TGG ACA GA 

FAM/CA GGC TGC TGG TGG TCT 
ACC CTT GGA CCC 

Murine Alpha Globin  
 

AAT ATG GAG CTG AAG 
CCC TGG 

ACA TCA AAG TGA GGG 
AAG TAG GTC T 

 

Murine glycophorin A GCC GAA TGA CAA AGA 
AAA GTT CA 

TCA ATA GAA CTC AAA 
GGC ACA CTG T 

FAMTTGACATCCAATCTCCTGA 
GGGTGGTGA /BHQ 

Murine MBD2 TTT GAC TTC AGG ACC 
GGC AAG ATG 

ATT GCT CGG GTG GTT 
CGT GAA TTT 

 

Murine Mi2β GAA CCA CAG GGA GTT 
AAT GAG 

CTT ATA GAG GGA GTA 
GAG GAA GAC 

 

Murine Mi2α 
 

GAT GAA GAC TTT GAT 
GAG CGT 

ACA CAT AGG CCT TAA 
ACT CCT 

 

Murine α-1- spectrin TTA GCA CCA CAT ACA 
AAC AC 

AAA CAT ATC CTT TCC 
TCC CTG 

 

Murine aminolevulinate 
dehydratase (Alad) 

GAG TTC CCA AGG ATG 
AAC AG 

CTC CTC TGC TAG GAA 
TGC TC 

 

Murine Ferrochelatase GCG AGG TGG TCA TTC 
TGT TT 

ACT GGA CCA ACC TTG 
GAC TG 

 

Murine erythropoietin (EPO) 
Receptor 

CCC AAG TTT GAG AGC 
AAA GC 

TGC AGG CTA CAT GAC 
TTT CG 

 

Murine transferrin Receptor  ATA AGC TTT GGG TGG 
GAG GC 

CTT GCC GAG CAA GGC 
TAA AC 

 

Murine GATA-1 CTG GGA TCG CCT ACA 
ACC TC 

CTG CCA CAA GGT CAA 
GGC TA 

 

Murine glucose-6-phosphate 
dehydrogenase (G6PD) 

TCG AAA TTG TAG GGG 
CAG CG 

CCA TTT AAC GCA AGA 
GGG CG 

 

Murine uroporphyrinogen III 
synthase 

GCT GCC TCT TCT CTT 
TCC GT 

TGC ATG CTT TCC ATG 
GGG AT 

 

Murine α-globin AAT ATG GAG CTG AAG 
CCC TGG 

ACA TCA AAG TGA GGG 
AAG TAG GTC T 

 

Murine cyclophilin A GAG CTG TTT GCA GAC 
AAA GTT C 

CCC TGG CAC ATG AAT 
CCT GG 

 

Murine FOG-1  TTC TGG TGG ACT GCT 
ATA TGT G 

AAG ACG TCC TTG TTG 
ATG AC 

 

Human KLF1 GCA AGA GCT ACA CCA 
AGA G 

GTG TTT CCG GTA GTG GC  

Human γ promoter GCC TTG ACC AAT AGC 
CTT GAC A 

GAA ATG ACC CAT GGC 
GTC TG 

 

Human Mi2β ATA AAG ATA AGC CAT 
TGC CTC C 

GAC ATA TGC CTT GAA 
CTC TTT CTC 

 

Human BCL11A 
 

AAC CCC AGC ACT TAA 
GCA AA 

GGA GGT CAT GAT CCC 
CTT CT 

 

Human BCL11A Promoter TCC TTC TTT CTA ACC 
CGG CTC 

CTG CGC GCT CTC GTG 
ATT AT 

 

Human GAPDH Promoter TCC CCT TCC TGC AGA 
CAG CTC C 

AGG GAG GGC AGC ATA 
CCG GG 

 

Human KLF-1 Promoter GCC TGG GCC CCC ACC 
TGA TA 

GAC TTG GCA CGA GCT 
CCC CG 

 

 
 
 

Table 6. The table above lists the primers used for all the experiments described in the methods 
section. 
 

 

 



   

91 
 

III. Results 

 

A. Mi2β is an important developmental regulator of the human β-type globin genes and 

acts partially independently from the MBD2/NuRD complex  

To study the role of Mi2β in MBD2/NuRD mediated γ-globin gene silencing in adult 

erythroid cells, gene knockdown was carried out in chemical inducer of dimerization (CID) cells. 

These cells are hematopoietic precursor cells derived from adult mice bearing a yeast artificial 

chromosome containing the complete human β-globin gene locus (βYAC). CID cells have been 

stably transduced with a receptor which, upon introduction of a commercially available chemical 

ligand, triggers a signal transduction pathway allowing them to differentiate into erythroid cells 

that do not express the γ-globin gene (Blau et al. 2005). They display characteristics of adult 

erythroid cells and express mainly the β-globin gene with minimal γ-globin gene expression 

(Blau et al. 2005). 

Transient siRNA-mediated knockdown of Mi2β in CID cells resulted in a very large 

increase in expression of the γ-globin gene at 72-hours post-transfection (Figure 23A). This 

effect is ~900-fold greater than with knockdown of MBD2 (Figure 23B) which contrasts with the 

equivalent induction of γ-globin gene expression after knockdown of Mi2β, MBD2 and p66α for 

24-hours (Gnanapragasam et al. 2011). This led to a detailed study of Mi2β and its role in β-type 

globin gene regulation. Knockdown of Mi2β also resulted in a significant increase in human 

embryonic ε-globin gene expression in CID cells (Figure 23C), although the increase is ~8-10-

fold less than for γ-globin RNA. As shown in Figure 23D, simultaneous knockdown of Mi2β and 

MBD2 did not result in greater γ-globin gene expression than knockdown of Mi2β alone. 

Knockdown of MBD3 does not affect the expression of the γ-globin gene in CID cells 
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(Gnanapragasam et al. 2011). These data suggest that Mi2β silences the γ-globin gene in this cell 

line partially independently of MBD2/NuRD and MBD3/NuRD complexes. While β-globin gene 

expression is also induced by 30-fold following Mi2β knockdown, this effect is relatively small 

compared to the effect seen for the ε- or γ-globin genes, which are induced 350-fold and >3000-

fold respectively when normalized to glycophorin A expression (Figures 23C and 23A). In order 

to determine if Mi2β knockdown induces expression of other erythroid-specific genes, we 

measured expression of the mouse α-1 spectrin, Ferrochelatase, Epo receptor and Alad genes, as 

well as the transferrin, GATA-1, G6PD, and Uros genes. There was no significant increase in 

expression of any of these genes (Figure 23E), nor of the mouse α- globin gene (Figure 24C) 

after Mi2β knockdown. These results suggest that Mi2β knockdown preferentially induces 

expression of the human γ- and ε-globin genes rather than promoting further erythroid 

differentiation of CID cells. 
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Figure 23 Mi2β preferentially regulates human β-globin locus gene expression in CID cells. CID 
cells were transiently transfected with siRNA for either Mi2β, MBD2 or scramble control 
(siSCR) as indicated. (A) Transient knockdown of Mi2β by siRNA leads to a 3186.8-fold 
increase in the expression of human γ-globin (hγ) gene expression in CID cells, and a 31.3-fold 
increase in human β-globin (hβ) determined by qPCR. (B) Transient knockdown of MBD2 by 
siRNA leads to a 3.5-fold induction of γ-globin gene expression in CID cells, and a 1.8-fold 
induction of β-globin. (C) A 352.1-fold increase is seen in the expression of human ε-globin (hε) 
upon knocking down Mi2β, and a 31.3-fold increase in β-globin. (D) Combined knockdown of 
Mi2β and MBD2 leads to a 3210-fold increase in the γ-globin gene expression, and a 29.9-fold 
increase in β-globin, similar to Mi2β knockdown alone. Data are expressed as human γ-, β-, or ε-
globin RNA normalized to Glycophorin A RNA. (E) qPCR analysis showing the expression of 
six murine genes [alpha-1-spectrin, aminolevulinate dehydratase (Alad), erythropoietin (Epo) 
receptor, GATA-1, glucose-6-phosphate dehydrogenase (G6PD), and uroporphynogen III 
synthase (Uros)] was not altered upon Mi2β knockdown, while the mouse ferrochelatase and 
transferrin genes are slightly significantly down regulated. (F) Western blot showing the degree 
of Mi2β and MBD2 protein knockdown, respectively in the CID cells, used for the globin gene 
expression studies shown in both Figure 23 and Figure 24. (G) Absolute values of Glycophorin 
A/5ng of RNA determined by qPCR show no significant difference between siScramble control 
and siMi2β samples in CID cells therefore serving as an appropriate normalizing control. Error 
bars represent the standard deviation of three independent experiments. *signifies p < 0.05 and 
**signifies p <0.02 and *** signifies p < 0.001 according to the students t-test. 
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Figure S3 

Glycophorin A levels are unchanged in CID cells upon Mi2β knockdown and similar 

low levels of γ-globin mRNA are present in untreated and Scramble shRNA treated 

human primary erythroid cells.   

(A) Absolute values of Glycophorin A/5ng of RNA determined by qPCR show no 

significant difference between siScramble control and siMi2β samples in CID cells. (B) 

Untreated (no shRNA) cells show no significant difference than shSCR control in the 

expression of γ/γ+β after 10 days of erythroid differentiation in human primary erythroid 

cells. At this stage, cells show less than 1% γ-globin when normalized to γ+β-globin gene 

expression. NS = Not statistically significant. 
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Expression of the endogenous mouse εy and βh1 globin genes was measured in CID cells 

after Mi2β knockdown. As shown in Figure 24A & 24B, both genes are significantly 

upregulated, suggesting that Mi2β plays a silencing role in both the murine and human β-globin 

loci. Interestingly, upon Mi2β knockdown the murine εy gene is de-repressed to a much greater 

extent than βh1 (>100- fold versus ~3-fold), an observation similar to the relative effect on the 

human fetal and embryonic β-type globin genes, in which the γ-globin gene is up-regulated much 

more than the ε-globin gene (>3000-fold versus ~350-fold). These data are also consistent with 

the finding that the εy gene is activated later in murine erythroid development than βh1 

(Kingsley et al. 2006) and thus is more analogous to the human γ-globin gene than is βh1. The 

murine α-globin gene is not affected upon Mi2β knockdown, suggesting its effect is confined to 

the β-globin locus (Figure 24C).  
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Figure 24. Mi2β regulates the expression of endogenous mouse β-type globin genes. CID cells 
that were transiently transfected as described in Figure 23, were then assayed for endogenous εy-
, βh1-, and α-globin RNA levels by qPCR. (A) Transient knockdown of Mi2β in CID cells leads 
to increased expression of the murine εy (mεy) gene by 103-fold normalized to Glycophorin A. 
(B) Mi2β knockdown leads to a 3-fold increase in murine βh1 (mβh1) gene expression. (C) 
Murine α-globin (mα) RNA level is unchanged upon Mi2β knockdown. The data in Figure 24 
are expressed as εy-, βh1-, and α-globin RNA normalized to Glycophorin A, a murine erythroid- 
specific housekeeping gene. Error bars represent the standard deviation of three independent 
experiments. *signifies p < 0.05 and **signifies p <0.02 according to the students t-test. NS= 
Not statistically significant. 
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Because both Mi2β and its isoform, Mi2α (CHD3), have been shown to be incorporated 

into NuRD complexes (Tong et al. 1998; Wade et al. 1998; Zhang et al. 1998), we examined the 

role of Mi2α in γ-globin gene silencing. The level of Mi2α/CHD3 RNA was found to be ~10-15-

fold lower than Mi2β RNA by qPCR, and knockdown of Mi2α had only a minor (~1.5-fold) 

effect on γ-globin gene expression in CID cells (Figures 25A-B), suggesting that the great 

majority of γ-globin gene silencing requires only the Mi2β (CHD4) isoform. 
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Figure 25. Mi2α knockdown exerts only a small effect on γ-globin gene expression in CID cells. 
(A) Western blot showing Mi2α protein level knockdown in CID cells. (B) qPCR data showing 
Mi2α knockdown leads to a ~1.5-fold induction of γ-globin (hγ) gene expression and no 
significant increase in β-globin (hβ) gene expression. **signifies p < 0.02 according to the 
student’s t-test. 
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Figure S1 

Mi2α knockdown exerts only a small effect on γ-globin gene expression in CID cells. 

(A) Western blot showing Mi2α protein level knockdown in CID cells. (B) qPCR data 

showing Mi2α knockdown leads to a ~1.4-fold induction of γ-globin (hγ) gene expression 

and no significant increase in β-globin (hβ) gene expression. **signifies p < 0.02 

according to the student’s t-test. 
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Based on the observation that Mi2β knockdown had a larger effect on γ-globin 

expression than did MBD2 knockdown, we explored the possibility that loss of Mi2β, the largest 

component of the MBD2/NuRD complex, could lead to destabilization of the complex and 

reduce the levels of other components, thereby creating a larger effect than loss of an individual 

component. Western blot (Figure 26A) and MBD2 co-precipitation assays (Figure 26B-C) in 

cells in which Mi2β was knocked down by ~80-90%, showed that other components of the 

MBD2/NuRD complex are present in normal abundance and able to interact despite depletion of 

Mi2β. 
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Figure 26. Mi2β knockdown does not lead to destabilization of the MBD2/NuRD complex.  
(A) Western blot of CID cell extracts showing MBD2/NuRD complex components 72 hours 
after Mi2β knockdown. (B-C) Western blots showing MBD2/NuRD complex components 
following co-immunoprecipitation reactions with either MBD2 antibody or IgG control for 
samples transfected with either siMi2β or siSCR control. To account for the potential increased 
stability of preformed MBD2/NuRD complexes, experiments were carried out at both 24 hours 
(B) and 72 hours (C) post-transfection.  
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Figure S2 

Mi2β knockdown does not lead to destabilization of the MBD2/NuRD complex.  

(A) Western blot showing MBD2/NuRD complex components 72 hours after knocking 

down Mi2β. (B-C) Western blots showing MBD2/NuRD complex components following 

co-immunoprecipitation reactions with either MBD2 antibody or IgG control for samples 

transfected with either siMi2β or siSCR control. To account for the stability of preformed 

MBD2/NuRD complexes, experiments were carried out at both 24 hours (B) and 72 

hours (C) post-transfection.  
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B. Mi2β silences the γ-globin gene in human hematopoietic progenitor-derived primary 

erythroid cells 

To determine the role of Mi2β on γ-globin gene silencing in the context of primary adult 

human erythroid cells, we stably knocked down Mi2β in CD34+ human hematopoietic 

progenitor derived erythroid cells via lentivirus-mediated shRNA infection. Two different Mi2β 

shRNA constructs were tested. Both resulted in increased γ-globin gene expression at day 10 of 

erythroid differentiation, and the amount of increased γ-globin expression obtained was 

proportional to the degree of knockdown of Mi2β (Figure 27A). Mi2β knockdown with construct 

#2 resulted in a ~20-fold increase in γ/γ+β-globin mRNA expression compared to ~9-fold in the 

case of MBD2 knockdown (Figures 27B and 27C). Of note, at day 10 of differentiation, the level 

of γ/γ+β- globin gene expression is <1% in both untreated and scramble shRNA controls. High 

performance liquid chromatography peformed in a representative experiment showed a HbF 

level of 13.2% of total hemoglobin when Mi2β was knocked down by ~25-30% (Table 7). 

Because complete absence of Mi2β in the bone marrow of mice results in a block in 

erythroid differentiation at the pro-erythroblast stage (Yoshida et al. 2008), we sought to 

determine whether or not a partial knockdown of this protein would interfere with erythroid 

differentiation. Fluorescence-activated cell sorting using the transferrin receptor (CD71) and 

Glycophorin A (CD235a) surface markers showed that after Mi2β knockdown, erythroid 

differentiation proceeds similarly to scramble shRNA controls after 10 days of differentiation, as 

shown in Figure 27D. 
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Figure 27. Mi2β regulates the expression of the γ-globin gene in human primary erythroid cells. 
CD34+ human hematopoietic progenitor cells were infected with lentivirus vectors harboring 
shRNA either for scramble control, two different Mi2β constructs, or MBD2. (A) Knockdown 
with shMi2β #1 leads to a 7.2-fold induction of γ-globin gene expression determined by qPCR. 
Knockdown with shMi2β #2 leads to a ~20-fold increase in γ-globin expression and a slight 
decrease in β-globin gene expression. Shown below are the Mi2β expression levels of each 
construct that were determined before cells were differentiated. (B) Partial knockdown of Mi2β 
(construct #2) leads to a 20-fold increase in γ/γ+β-globin gene expression. (C) Knockdown of 
MBD2 leads to a 9-fold increase in expression of γ/γ+β-globin gene expression. (D) FACS 
analysis showing erythroid differentiation of 81.1% of CD34+ progenitor cells in which Mi2β is 
knocked down compared to 93.8% of scramble shRNA control cells and 92.9% of cells in which 
MBD2 is knocked down. ± signifies standard deviations for at least three independent 
experiments. Error bars represent the standard deviation of at least three independent 
experiments. *signifies p<0.05 and **signifies p<0.02 according to the students t-test.  
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shSCR 
 
Procedure: Ref Range: Units:  
Hemoglobin A [95.0-99.0] % 95.6 
Hemoglobin A2 [1.2-3.0] % 3.1 
Hemoglobin F [0.0-2.0] % 1.3 
Mi2β"mRNA  % 100 
 
 
shMi2β 
 
Procedure: Ref Range: Units:  
Hemoglobin A [95.0-99.0] % 84.8 
Hemoglobin A2 [1.2-3.0] % 2.0 
Hemoglobin F [0.0-2.0] % 13.2 
Mi2β"mRNA  % 74.8 
 
 
 

Table 7. Mi2β knockdown increases HbF levels in human primary erythroid cells. Results 
obtained by high performance liquid chromatography assay carried out in the VCUHS CLIA 
approved clinical hematology laboratory showing a >10-fold increase in HbF after Mi2β 
knockdown (shMi2β) compared to scramble control (shSCR). qPCR assay showed the level of 
knockdown in the shMi2β treated primary erythroid cells was ~25%. 
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Interestingly, as erythroid differentiation proceeds, two distinct populations of cells were 

observed by flow cytometry of both control and Mi2β-knockdown cell populations. The major 

population was differentiated down the erythroid pathway and expressed both transferrin 

receptor and Glycophorin A (Figure 28A, quadrant 2), while the minor population did not stain 

for either (Figure 28A, quadrant 3). When analyzed by morphology, the minor population was 

found to consist of normally differentiated myeloid cells (Figures 28D-F, Quadrant 3). The size 

of this myeloid cell population varied among different patient-specific CD34+ progenitor 

batches, suggesting that a variable fraction of CD34+ cells in each batch assayed was committed 

to myeloid differentiation before exposure to erythroid differentiation medium. The percentage 

of myeloid cells was generally higher in Mi2β knockdown samples but this was highly variable 

across experiments and there was overlap with controls (Figure 28A). 

The differentiated Mi2β knockdown erythroid cells in quadrant 2 were found to have 

~40% Mi2β knockdown (Figure 28B) and a very high γ/γ+β-globin gene expression level (15% - 

45% γ-globin RNA) (Figure 27B). In contrast, the myeloid cells in quadrant 3 showed a much 

higher Mi2β knockdown (~90%) (Figure 28C). Thus the difference may reflect more Lentiviral 

Mi2β shRNA expression in the myeloid compartment, which could impart a slight growth 

advantage. Overall, these results show that partial Mi2β knockdown does not inhibit terminal 

erythroid differentiation. These results differ sharply from the effect of conditional knockout of 

Mi2β in murine hematopoietic cells in which there is a complete block in erythroid 

differentiation at the proerythroblast stage (Yoshida et al. 2008). 
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Figure 28. Higher Mi2β knockdown imparts a slight growth advantage to myeloid cells. 
(A) FACS analysis showing erythroid differentiation of shSCR-, shMi2β-, and shMBD2-treated 
CD34+ cells (B) qPCR analysis showing a ~40% knockdown level of Mi2β RNA in double-
positive cells taken at the end of differentiation (Quadrant 2). (C) qPCR analysis showing a 90% 
knockdown of Mi2β RNA in double-negative cells taken at the end of differentiation (Quadrant 
3). (D-F) Wright- Giemsa stain of scramble control, Mi2β knockdown and, MBD2 knockdown 
cell populations. Photo micrographs were generated using an Olympus (Center Valley, PA) 
BX41 compound microscope and Olympus DP71 digital camera at 100x magnification. Images 
were acquired with Olympus DP Controller software. 

shMi2β'shSCR' shMBD2'

CD235a 

93.8'±'19.2'

4.1'±'3.9'

81.1'±'28.4'

15.8'±'23.8' 5.5'±'5.2'

A"
CD

71
%

B" C"Quadrant 2 

0 
20 
40 
60 
80 

100 
120 

shSCR shMi2β 

M
i2
β/

G
A

PD
H

 R
N

A
 Quadrant 3  

20.0µm 

shSCR Quadrant 2 (Q2) 

shSCR Quadrant 3 (Q3) 

20.0µm 

shMi2β Quadrant 2 (Q2) 

20.0µm 

shMi2β Quadrant 3 (Q3) 

20.0µm 

shMBD2 Quadrant 2 (Q2) 

20.0µm 

shMBD2 Quadrant 3 (Q3) 

D" E" F"

0 
20 
40 
60 
80 

100 
120 

shSCR shMi2β 

M
i2
β/

G
A

D
H

 R
N

A
 



   

106 
 

        The level of Mi2β knockdown in cells found in quadrant 2 and quadrant 3 of Figure 28A is 

consistent with the level of GFP expression from the lentiviral vector used to transfect Mi2β 

shRNA (Figure 29). Lower levels of Mi2β knockdown (Figure 28B) correlate with lower GFP 

expression levels (Figure 29B, magenta color). These double positive (CD71+CD235a+) 

differentiated erythroid cells are also smaller in size compared to double negative (CD71-

CD235a-) cells (Figure 29A, magenta color). In contrast, the cells that were negative for CD71 

and Glycophorin A were larger myeloid cells (Figure 29A, blue color) showing a much higher 

Mi2β knockdown (~90%) (Figure 28C), and a higher GFP level (Figure 29B, blue color).  

 

 

Figure 29. GFP expression in cells undergoing erythroid cell differentiation versus myeloid cell 
differentiation. (A) Forward scatter vs. side scatter plots showing that differentiated erythroid 
cells, depicted in magenta (Figure 28E, Quadrant 2), are smaller in size than cells lacking 
erythroid markers depicted in blue (Figure 28E, Quadrant 3). (B) GFP expression levels showing 
that the larger cells (blue) have higher GFP than differentiated erythroid cells (magenta). 
 
 

 

 
               
 
 
                                          

 
    
    
 
 
 
 
 
 
 
 
 
 

Supplemental Figure 4 

High level but not low level knockdown of Mi2β redirects erythroid cell differentiation to 

myeloid cell 

 (A) Forward scatter vs. side scatter plots show that differentiated erythroid cells depicted in 

magenta (Figure 3F) are smaller in size than cells lacking erythroid markers depicted in blue 

(Figure 3G). (B) GFP expression levels show that the larger cells (blue) have higher GFP than 

differentiated erythroid cells (magenta).  
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Interestingly, a small number of experiments showed a loss of Mi2β knockdown as the 

cells approached terminal erythroid differentiation (Figure 30). Fluorescence-activated cell 

sorting using CD71 and CD235a markers was conducted every 3-4 days of differentiation to 

isolate erythroid cells, and Mi2β knockdown was determined by qPCR at each stage of 

differentiation. A representative experiment shows the level of Mi2β knockdown decreases as 

the cells progress through differentiation (Figure 30A). At day 12 of erythroid differentiation, the 

same set of shMi2β-treated cells were tested for γ-globin gene expression and showed ~17% 

γ/(γ+β)-globin RNA ratio when compared to shSCR (~0.01% γ/(γ+β)-globin) (Figure 30B). This 

suggests Mi2β’s silencing effect on γ-globin gene expression occurs at early stages of 

differentiation and Mi2β knockdown does not appear to be essential during the later stages of 

differentiation to exert a significant effect. This event, however, did not occur in all experiments 

conducted, and perhaps the level of knockdown at the start of differentiation determines whether 

the cells are able to maintain a high level of Mi2β knockdown, or whether they are able to re-

express Mi2β.  
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Figure 30. The silencing effect of Mi2β on γ-globin gene regulation occurs during earlier stages 
of erythroid differentiation. (A). qPCR showing ~50% knockdown of Mi2β in CD34+ cells at 
day 3 of growth medium (GM3), but higher level of Mi2β expression at days 6 and 12 of 
differentiation (DM6 and DM12 respectively). Each value was normalized to shSCR controls on 
each of the days the cells were tested. (B) qPCR showing ~17% γ/(γ+β)-globin mRNA 
expression in shMi2β knockdown samples at day 12 of differentiation, compared to 0.01% 
γ/(γ+β)-globin expression in shSCR sample control.  
 
 

 

 

 

 

0 

50 

100 

150 

shSCR shMI2β 
GM3 

shMI2β 
DM6 

shMI2β 
DM12 

M
i2
β 

R
N

A
 N

or
m

al
iz

ed
 

to
 G

A
PD

H
 

A"

0 

5 

10 

15 

20 

shSCR& shMi2β&

%
 γ

/(γ
+β

)-G
lo

bi
n 

Ex
pr

es
si

on
 

B"



   

109 
 

C. Mi2β affects the levels of two important transcription factors involved in silencing 

embryonic and fetal β-type globin gene expression, BCL11A and KLF1/EKLF 

To further investigate the mechanism(s) through which Mi2β/CHD4 exerts such a large 

effect on γ-globin gene silencing, we studied its effect on KLF1/EKLF and BCL11A, two 

important regulators of γ-globin gene silencing. Knockdown of Mi2β in CID cells decreases both 

KLF1/EKLF and BCL11A protein levels as shown by western blot (Figure 31A).  Consistent 

with the hypothesis that the silencing effect of Mi2β is at least partially independent from the 

MBD2/NuRD complex, loss of MBD2 does not result in any decrease of KLF1 or BCL11A, in 

either CID cells (Figure 31B), or in primary erythroid cells of βYAC containing MBD2 knockout 

mice (Figure 31C). In fact, cells with MBD2 knockdown or knockout appear to express slightly 

increased levels of BCL11A and KLF1 (Figures 31B and 31C).  
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Figure 31. Mi2β positively regulates the expression of KLF1 and BCL11A in CID cells.          
(A) Western blot showing a decrease in murine KLF1 and murine BCL11A protein levels after 
Mi2β knockdown in CID cells. (B) Western blot showing no change in murine KLF1 and murine 
BCL11A protein levels after MBD2 knockdown in CID cells. (C) Western blot showing no 
change in murine KLF1 or murine BCL11A in primary adult mouse erythroblasts from MBD2 
knockout mice. 
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The effect of Mi2β knockdown on BCL11A and KLF1 expression was also observed in 

CD34+ human hematopoietic progenitor derived erythroid cells, where Mi2β knockdown 

downregulates both BCL11A and KLF1 mRNA and protein levels (Figure 32A & 32B 

respectively). Likewise, MBD2 knockdown does not decrease expression of either KLF1 or 

BCL11A in human primary erythroid cells (Figure 32C). Interestingly, these results suggest that 

Mi2β acts as a positive regulator of the BCL11A and KLF1 genes in contrast to its negative 

regulatory role as part of the MBD2/NuRD complex (Gananapragasam et al. 2011).  

In order to investigate whether or not Mi2β directly activates the BCL11A and/or KLF1 

genes through interactions at their promoter regions, we carried out chromatin 

immunoprecipitation (ChIP) assays to examine occupancy of Mi2β in their proximal promoter 

regions. As shown in Figure 33, Mi2β is significantly enriched at the proximal promoter region 

of both the BCL11A and KLF1 genes in human primary erythroid cells.  Thus Mi2β appears to 

interact directly with and induce expression of both the BCL11A and KLF1 genes. 
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Figure 32. Mi2β positively regulates the expression of KLF1 and BCL11A in human CD34+ 
hematopoietic progenitor derived primary erythroid cells.                                                            
(A) qPCR analysis showing mRNA levels of KLF1 and BCL11A following Mi2β knockdown 
are decreased by 70% and 40% respectively. (B) Western blot showing a decrease in the levels 
of BCL11A and KLF1 protein upon Mi2β knockdown in human primary erythroid cells. (C) The 
mRNA levels of KLF1 and BCL11A following MBD2 knockdown are not affected. (D) Western 
blot showing the level of MBD2 protein knockdown in human primary erythroid cells. Error bars 
represent the standard deviation of three or more independent experiments. *signifies p < 0.05 
and **signifies p <0.02 and *** signifies p < 0.001 according to the students t-test. 
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Figure 33. Mi2β binds to BCL11A and KLF1 promoter regions in human primary erythroid 
cells. Chromatin immunoprecipitation assay and subsequent qPCR showing significant 
enrichment in the BCL11A and KLF1 promoter/exon 1 regions after 2 days of differentiation of 
primary human erythroid cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used 
as a negative control and enrichment values are normalized to IgG. Error bars represent the 
standard deviation of at least three independent experiments. *signifies p<0.05. 
 

  

 

 

In order to confirm Mi2β’s effect on γ-globin expression is partially through activation of 

KLF1 expression, we co-transfected CID cells with siMi2β and a KLF1 expression vector. A 3-

fold over-expression of KLF1 24 hours post-transfection (Figure 34A) is able to diminish the 

increase in γ-globin gene expression in siMi2β treated samples at 72hours post-transfection 

compared to samples treated with siMi2β alone (Figure 34B). This confirms Mi2β acts, at least 

partially, by activating KLF1.  
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Figure 34. KLF1 overexpression significantly decreases γ/γ+β-globin gene expression after Mi2β 
knockdown in CID cells. (A) qPCR results showing that KLF1 RNA is expressed ~3-fold higher 
in samples transfected with Mi2β siRNA and KLF1 expression vector (siMi2β + KLF1 OE) than 
scramble control cells (siSCR) at 24 hours post-transfection. (B) qPCR data showing that forced 
KLF1 expression in Mi2β knockdown cells leads to a significant decrease in γ/(γ+β)-globin 
expression compared to Mi2β knockdown alone at 72 hours (62-fold induction vs. 89-fold 
induction). Error bars represent the standard deviation of three independent experiments. 
**signifies p < 0.02, and ***signifies p < 0.001 according to the student’s t-test. 

 

 

 

 

Figure S5 

                  
Figure S5 

KLF1 overexpression significantly decreases γ/γ+β gene expression after Mi2β 

knockdown in CID cells. 

(A) qPCR results showing that KLF1 RNA is expressed ~3-fold higher in samples 

transfected with Mi2β siRNA and KLF1 expression vector (siMi2β + KLF1 OE) than 

scramble control cells (siSCR) at 24 hours post-transfection. (B) qPCR data showing that 

enforced KLF1 expression in Mi2β knockdown cells leads to a significant decrease in 

γ/γ+β expression compared to Mi2β knockdown alone at 72 hours (62-fold induction vs. 

89-fold induction). **signifies p < 0.02, and ***signifies p < 0.001 according to the 

student’s t-test. 
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D. Mi2β affects γ-globin gene expression in a manner largely independent of the FOG-

1/GATA-1/NuRD complex 

Since GATA-1 and FOG-1 occupy the distal promoter region of the γ-globin gene and 

play a repressive role on its expression through the NuRD complex in βYAC mice (Harju-Baker 

et al. 2008), we explored the extent to which Mi2β acts through the FOG-1/GATA-1/NuRD 

complex to exert its silencing effect on the γ-globin gene. Chromatin immunoprecipitation assays 

in CID cells showed that Mi2β occupies the γ-globin gene promoter region in CID cells as shown 

in Figure 35A, consistent with reported results in βYAC transgenic mice (Bottardi et al. 2009). 

To determine the relative extent to which the silencing effect of Mi2β is mediated through the 

FOG-1/GATA-1/NuRD complex, FOG-1 was knocked down in CID cells. In contrast to the 

effect of Mi2β knockdown, this resulted in only a very small (~3-fold) increase in γ-globin gene 

expression (Compare Figure 35B to Figure 23A). This suggests that the strong silencing effect of 

Mi2β is mediated only in small part by the FOG-1/GATA-1/NuRD complex. In order to 

determine whether knockdown of Mi2β results in an additive or synergistic disruption of some 

type of cooperative effect mediated by interaction between the MBD2/NuRD and GATA-

1/FOG-1/NuRD complexes, we simultaneously knocked down MBD2 and FOG-1 in CID cells. 

Combined knockdown of these two proteins resulted in a ~7-fold induction of γ-globin mRNA, 

which is much lower than with Mi2β knockdown and only slightly different than the effect of 

MBD2 knockdown alone (Compare Figure 35C to Figure 23B). 
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Figure 35. Mi2β occupies the γ-globin gene promoter and acts in a partially independent manner 
from GATA-1/FOG-1/NuRD.                                                                                                        
(A) ChIP assays showing significant Mi2β enrichment at the γ-globin promoter region in CID 
cells. The mouse α-spectrin gene was used as a negative control. (B) qPCR results showing 
knockdown of FOG-1 leads to a ~3-fold induction of the human γ- globin (hγ) and a ~2.5-fold 
induction of the human β-globin (hβ) gene. (C) Simultaneous knockdown of MBD2 and FOG-1 
leads to a ~7-fold induction of γ-globin and a ~3-fold induction of β-globin. (D) Western blot 
showing both FOG-1 and MBD2 knockdown in CID cells. Error bars represent the standard 
deviation of three or more experiments. *signifies p < 0.05 and **signifies p <0.02 according to 
the students t-test. 
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E. Mi2β affects γ-globin gene expression independently of other MBD3/NuRD complexes 

Since Mi2β is part of both MBD2- and MBD3/NuRD complexes and it acts in part 

through the GATA-1/FOG-1/NuRD complex to repress γ-globin expression, we tested the 

hypothesis that Mi2β could be acting partially through an MBD3/NuRD complex. However, 

significant knockdown of MBD3 in CID cells (Figure 36A, shown by MBD3 mRNA levels due 

to a lack of an MBD3-specific antibody) shows no change in γ-globin expression and a slight but 

significant increase in β-globin expression (Figure 36B). MBD3 knockdown also leads to no 

change on KLF1 and BCL11A protein levels in contrast to Mi2β knockdown (Figure 36C). This 

suggests the effect of Mi2β on these transcription factors is independent of both the MBD2- and 

MBD3/NuRD complexes (Figure 36C). Simultaneous knockdown of both MBD2 and MBD3 

show a significant increase in both γ-globin as well as β-globin gene expression in a similar 

fashion than MBD2 knockdown alone (compare Figure 36D to Figure 23B). These data, along 

with previous studies (Gnanapragasam et al. 2011), suggests MBD3 does not have an effect on γ-

globin expression, and Mi2β’s silencing of γ-globin is largely independent of the MBD3/NuRD 

complex.  
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Figure 36. Mi2β acts independently of the MBD3/NuRD complex to exert its effect in γ-globin 
gene expression. 
(A) qPCR showing ~90% MBD3 knockdown in CID cells 24 hours after siRNA transfection. (B) 
qPCR showing knockdown of MBD3 does not affect the expression of γ-globin but leads to a 
slight increase in the expression of β-globin gene.  (C) Western blots showing no change in 
BCL11A and KLF1 protein levels following MBD3 knockdown in CID cells. (D) qPCR showing 
simultaneous knockdown of MBD2 and MBD3 leads to ~14-fold induction of γ-globin gene 
expression and ~7-fold induction of β-globin expression.  
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Figure 37. Working model of Mi2β-mediated developmental globin gene silencing through 
multiple mechanisms. Mi2β is a critical component of the MBD2/NuRD complex which 
regulates developmental globin gene silencing independently of BCL11A and KLF1-EKLF in an 
indirect manner. Mi2β binds to the distal promoter region of the γ-globin gene as part of the 
MBD3/NuRD/GATA-1/FOG-1 silencing complex. Mi2β binds to and activates expression of 
BCL11A and KLF1/EKLF, which in turn silence γ-globin gene expression. Solid arrows 
represent direct interactions and dotted arrows represent indirect interactions 
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IV. Discussion 

 

The developmental switch from the fetal γ-globin expression, to the adult β-globin gene 

expression, is regulated by multiple factors including DNA methylation, transcription factors 

such as KLF1, BCL11A, GATA-1, TR2/TR4 (Sankaran, Xu & Orkin 2010; Ginder, 

Gnanapragasam & Mian 2008), and epigenetic modifiers such as the MBD2/NuRD complex 

(Kransdorf et al. 2006; Rupon et al. 2006). 

As one of the major components of the MBD2/NuRD complex, Mi2β plays a critical 

functional role in this repression (Gnanapragasam et al. 2011). Disruption of the interaction 

between the MBD2 and p66α coiled coil domains results in a displacement of both p66α and 

Mi2β from the NuRD complex and leads to a significant de-repression of the γ-globin gene in 

CID cells (Gnanapragasam et al. 2011). In this study, we have found a novel role for Mi2β, 

which appears to be independent of its function in MBD2/NuRD and MBD3/NuRD complexes. 

We observed that knockdown of Mi2β has a greater effect in de-repressing γ-globin gene 

expression than does knockdown of MBD2 and MBD3. Although the GATA-1/FOG-1/NuRD 

complex is not essential for silencing human γ-globin expression in transgenic βYAC bearing 

adult erythroid cells (Miccio & Blobel 2010), it contributes to the silencing of the γ-globin gene 

through a direct interaction of GATA-1 in the distal promoter region (Harju-Baker et al. 2008). 

Here we show that knockdown of FOG-1 in CID cells induces a small increase in γ-globin gene 

expression, in contrast to Mi2β knockdown. Further, combined MBD2 and FOG-1 knockdown 

results in much less γ-globin gene induction than Mi2β knockdown alone. Given that knockdown 

of MBD3 in CID cells does not lead to an increase in γ-globin gene expression (Figure 36B), a 

major part of the silencing effect of Mi2β appears to be independent of both the MBD2/NuRD, 
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and MBD3/NuRD complexes. 

In this report we show that knockdown of Mi2β results in down regulation of both 

BCL11A and KLF1/EKLF, which exert strong γ-globin gene silencing effects in transgenic 

βYAC mice and primary human erythroid cells (Lee et al. 2000; Sankaran et al. 2008; Sankaran 

et al. 2009; Xu et al. 2010; Zhou et al. 2010; Borg et al. 2010; Xu et al. 2011). The similar effect 

of Mi2β knockdown in both murine CID cells and human primary erythroid cells shows that 

Mi2β acts as an activator of the BCL11A and KLF1 genes in both murine and human 

hematopoietic cells. As MBD2 knockdown results in slightly increased levels of BCL11A 

expression, and MBD3 knockdown results in no change in either of these transcription factors, 

these results confirm that Mi2β regulates the BCL11A and KLF1/EKLF genes independently of 

the MBD2/NuRD and MBD3/NuRD complexes. Mi2β occupies the proximal promoter regions 

of both BCL11A and KLF1, a result consistent with a direct positive regulatory effect. 

Mi2β’s silencing effect in γ-globin regulation appears to be critical during the early 

stages of CD34+ cell differentiation, since loss of Mi2β knockdown during the first 6 days of 

culture allows a significant increase of γ-globin expression at day 12 of differentiation. These 

data are consistent with the pattern of expression seen with BCL11A and KLF1, where the level 

of expression of these two genes begins to increase during the early stages of differentiation (Xu 

et al. 2010; Siatecka & Bieker 2011). Mi2β occupies the promoter regions of BCL11A and 

KLF1 at day 2 of erythroid differentiation, and therefore low expression or absence of Mi2β 

during the beginning stages of erythroid differentiation most likely diminishes the activating role 

of Mi2β on BCL11A and KLF1, resulting in an increase in γ-globin expression. Other 

mechanisms of action cannot be ruled out.  
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The concept of Mi2β as a gene activator is supported by previous reports for the CD4 

gene in T-cells (Williams et al. 2004), T helper 2 cell identity (Hosokawa et al. 2013) and the 

adult β-globin gene in mice (Miccio & Blobel 2010). We have shown previously 

(Gnanapragasam et al. 2011) as well as in this report (Figure 36B) that a partial knockdown of 

MBD3 in CID cells has little effect on the expression of the γ-globin gene (Gnanapragasam et al. 

2011). Therefore, it seems unlikely that the role of Mi2β as an activator of the BCL11A and 

KLF1/EKLF genes is mediated through the GATA-1/FOG-1/NuRD or the MBD3/NuRD 

complex. 

How Mi2β switches its function from a repressor to an activator remains to be 

determined. One possibility lies on post-translational modifications of Mi2β or its binding 

partners. In drosophila, the Mi2β’s homologue (dMi2) is known to be a phosphoprotein in which 

the ATPase activity is regulated via phosphorylation (Bouazoune & Bhrem 2005). In mice, other 

transcription factors involved in globin gene regulation undergo post-translational modifications 

allowing them to switch from transcriptional activators to repressors (Bierker 2001). 

Interestingly, in addition to a marked increase in γ-globin and ε-globin expression after 

Mi2β knockdown in CID cells, a small increase in β-globin RNA was observed, but expression 

of no other tested erythroid-specific genes was increased (Figures 23E and 24C). Together these 

results suggest that the silencing effect of Mi2β on erythroid-specific genes in CID cells may be 

restricted to the β-globin locus. In contrast to the results in CID cells, we observed a decrease in 

β-globin gene expression in primary human erythroid cells with ~50% Mi2β knockdown, 

consistent with the predicted effect of decreased KLF1 expression. 

Based on the results presented in this report in conjunction with the literature, we propose 

a testable working model in which Mi2β acts through multiple pathways to silence γ-globin gene 
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expression, as shown in Figure 37. Mi2β is an important component of the MBD2/NuRD 

complex which acts as a repressor of γ-globin expression in adult erythroid cells. It also is a 

component of the GATA-1/FOG-1/MBD3/NuRD complex which binds upstream of the γ-globin 

promoter region and exerts a negative regulatory effect. A third and previously unreported 

function of Mi2β described here is through its positive regulation of the KLF1 and BCL11A 

genes. In murine erythroid cells, the latter appears to be responsible for the great majority of the 

silencing effect of Mi2β while in the primary human erythroid model this effect is less 

pronounced. An intriguing observation is that knockdown of Mi2β by less than 50% in primary 

erythroid cells exerts a large effect on γ-globin gene expression. This suggests that full γ-globin 

gene silencing is dependent on maintaining a tightly controlled level of Mi2β. 

There are a large number of potential molecular targets for therapeutically increasing 

fetal hemoglobin levels in patients with β-globin gene disorders. In this report we focus on the 

chromatin remodeling complex component, Mi2β, as a potential target. Chromatin remodeling 

complexes could prove to be good targets for therapeutic induction of fetal hemoglobin 

expression because even partial disruption of a complex component could affect expression of 

multiple genes that are involved in γ-globin gene silencing. Indeed, Mi2β appears to silence γ- 

globin gene expression through multiple pathways and, as shown in this report, its partial 

depletion relieves silencing in human erythroid cells. Complete depletion of Mi2β might have 

catastrophic consequences, through blocking erythroid differentiation, as shown in conditional 

knockout mice (Yoshida et al. 2008). Knockdown of Mi2β in human primary erythroid cells at 

times showed a loss of knockdown as differentiation proceeded. A possible reason behind this 

finding is that cells with higher levels of Mi2β knockdown are detrimental for the cells, and 

therefore cells develop ways to silence the lentiviral vector expression and regulate Mi2β 
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expression. Consistent with a partial Mi2β knockdown sparing a block in erythroid 

differentiation, a very recent report showed a partial Mi2β knockout in βYAC transgenic mice 

resulted in increased γ-globin gene expression without adversely affecting erythropoiesis (Costa 

et al. 2012). Since Mi2β exerts its chromatin remodeling and helicase functions through its 

ATPase enzymatic activity, targeting its ATPase function is certainly appealing. Small molecules 

capable of targeting the ATPase domain of Mi2β are a possible approach. Other possible targets 

are Mi2β’s tPHD domains, which have been shown to be vital to the function of the ATPase 

activity of this protein (Morra et al. 2012; Watson et al. 2012). As shown in Figure 22, disrupting 

the interaction of the PHD domains with histone 3 tails could prove to be a successful target.   

In summary, identifying specific epigenetic mechanisms of γ-globin gene silencing as 

potential therapeutic targets seems promising. Indeed DNA methylation inhibitors and histone 

deacetylase inhibitors induce embryonic/fetal globin gene expression and have shown clinical 

efficacy (DeSimone et al. 1982; Ley et al. 1982; Ginder, Whitters & Pohlman 1984; Perrine et al. 

1993). We have extended previous work that identified the chromatin remodeling protein, Mi2β, 

as an important factor in developmental β-type globin gene silencing through its role in NuRD 

complexes. Importantly, we show here that a major mechanism for its silencing effect is through 

a direct positive regulation of KLF1/EKLF and BCL11A. The striking finding that as little as 

50% reduction in Mi2β expression results in a large increase in γ-globin gene expression in 

primary human erythroid cells suggests that it may serve as a useful molecular target for 

therapeutic induction of HbF in patients with β-globin gene disorders. 
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Chapter 4: Summary, Future Directions and Perspectives 

 

 

 

Sickle cell anemia and β-thalassemia are among the most common single gene disorders 

worldwide. Sickle cell anemia is characterized by abnormally “sickle” shaped red blood cells, 

which cause vaso-occlusion and ischemia in small vessels leading to painful crises. Auto 

infarction and necrosis of the spleen, kidney failure, strokes and acute chest syndrome are among 

possible complications (Nathan et al. 2003). Hydroxyurea is the standard treatment for sickle cell 

anemia but it has highly variable effects on patients (Charache, et al 1992; Steinberg et al. 1997; 

Ware et al. 2002). The most severe form of β-thalassemia (β-thalassemia major) is caused by a 

complete absence of expression of the β-globin gene and it is characterized by severe anemia. 

The standard treatment for patients with β-thalassemia major is life-long transfusions.  Iron 

accumulation due to transfusions results in iron deposit in several organs, leading to damage 

(Rund & Rachmilewitz 2005). Sickle cell anemia and β-thalassemia benefit from an increase in 

fetal hemoglobin, which is composed of two fetal γ-globin and two α-globin chains. 

Understanding the molecular mechanisms behind the silencing of γ-globin gene expression will 

therefore prove to be important when attempting to develop new therapies for these conditions.  

Advances in the field have led to a better understanding of the regulatory functions 

leading to γ-globin gene silencing. Among the many regulatory mechanisms leading to this 

process, DNA methylation is known to play a role in the regulation of embryonic and fetal 
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globin gene expression (Mavilio et al. 1983; McGhee & Ginder 1979; Shen & Maniatis 1980; 

van der Ploeg & Flavell 1980; DeSimone et al. 1982; Charache et al. 1983; Ley et al. 1982). The 

methyl-CpG-binding domain protein 2 (MBD2), along with its remodeling complex (NuRD) 

binds to and negatively regulates the ρ-globin gene in avian systems, and it indirectly regulates 

the expression of γ-globin gene in humans (Singal et al. 2002; Kransdorf et al. 2006; Rupon et al. 

2006; Gnanapragasam et al. 2011). Adult MBD2 knockout mice crossed bearing the human β-

locus (βYAC) exhibit a significant increase in γ-globin gene expression (Rupon et al. 2006). 

Among other important factors that regulate the expression of globin genes, KLF1 is a critical 

regulator of the β-locus. KLF1 binds to, and positively regulates the expression of β-globin gene 

as well as BCL11A (Zhou et al. 2010; Borg et al. 2010). BCL11A, a transcription factor known 

to bind to the β-globin locus, plays a significant role in the regulation of γ-globin gene 

expression (Sankaran et al. 2008; Sankaran et al. 2009; Xu et al. 2010). BCL11A knockout mice 

show a delay in the γ- to β-globin switch (Sankaran et al. 2009), and crossing BCL11A KO mice 

with sickle cell mice results in a drastic amelioration of the sickle cell disease phenotype (Xu et 

al. 2011). The delay in γ-globin gene silencing seen in the BCL11A knockout mice early in life, 

however, is not fully maintained through adulthood (Esteghama et al. 2013). This suggests 

BCL11A plays a more significant role during the embryonic switch in mice, but further layers of 

repression may play a role in silencing γ-globin expression throughout adulthood.   

In the studies presented in Chapter 2, we investigated whether targeting MBD2 in vivo 

could lead to amelioration of the sickle cell anemia phenotype in mice. Knocking out MBD2 in a 

sickle cell anemia mouse model showed promising results by significantly increasing survival 

compared to sickle cell disease (SCD) control mice. Blood smears of SCD mice crossed with 

MBD2ko mice also showed a lower number of sickle cells present in the peripheral blood. 
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Despite an increase in survival, some of the phenotype typical of sickle cell anemia including 

splenomegaly, liver and kidney damage were still present in SCDMBD2-/- mice. Perhaps the 

greatest disadvantage in using the BERK sickle cell mouse model is their low fetal hemoglobin 

base line (less than 1%), which is significantly less than in adult humans with sickle cell anemia 

(2-8%). A greater level of induction in γ-globin gene expression is therefore needed in order to 

fully correct the symptoms of these mice. SCD mice also show a more severe phenotype 

compared to sickle cell disease patients including greater liver necrosis and higher levels of 

hemolytic anemia. In order to overcome this challenge, we will first determine whether genetic 

modifiers play a role in the expression of γ-globin gene. The MBD2 KO mouse model used in 

our laboratory is on a FVB/C57BL/6 BALB/C mixed genetic background. Because other studies 

have reported higher baseline levels of γ-globin gene expression on BERK mice under a 

C57BL/6 background (Xu et al, 2011), our approach will be to back-cross our mice at least three 

generations into a ~90% C57BL/6 genetic background. Following the backcrosses, we will 

measure HbF and harvest organs in order to determine whether there is a more drastic 

improvement on the pathology of these mice. On the event that the genetic background does not 

affect γ-globin gene expression, a different mouse model will be considered (Ryan et al. 1997).   

Once in a pure genetic background, the role of MBD2 on endothelial nitric oxide 

synthase (eNOS) will be investigated in BERK mice. MBD2 binds to, and negatively regulates 

the expression of the eNOS gene. Absence of MBD2 in mice has been shown to confer 

protection from hind-limb ischemic injury (Rao et al. 2011). Endothelial cells from large vessels 

of SCDMBD2+/+ and SCDMBD2-/- mice will be tested for eNOS levels by 

immunohistochemistry. Microcirculation studies will also be carried out to compare sickling and 

blood flow in the two groups of mice. The effects of Mi2β on SCD mice will also be explored. In 
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chapter 3, we have shown that ~50% Mi2β knockdown causes a significant increase in HbF 

production without disrupting erythroid differentiation of human primary erythroid cells. In order 

to determine whether Mi2β happloinsufficiency is able to ameliorate the symptoms of sickle cell 

anemia, mice heterozygous for Mi2β will be crossed with BERK SCD mice. Similar experiments 

will be conducted with this mouse model as shown in Chapter 2.  

Given the limitations of the transgenic mouse models discussed in the introduction of this 

thesis, there is a need for whole animal models in order to study human erythropoiesis. An 

interesting study will therefore be to investigate the effects of knocking down MBD2 and/or 

Mi2β in a “humanized” mouse model of hematopoiesis.  Previous studies have shown that 

stromal cells appear to regulate survival, migration and differentiation of hematopoietic stems 

cells via transcription factors and cell cycle regulators (Dazzi et al. 2006). Osteoblasts in the 

bone marrow also appear to play a role in hematopoiesis (Wilson & Trumpp 2006). This is 

supported by the observation that CD34+ cells are not viable after differentiation in culture. A 

more humanized in vivo model will allow us to determine whether the bone marrow environment 

affects gene expression pattern and viability of these cells. This will be accomplished by the 

engraftment of human hematopoietic progenitor cells treated with shMBD2 or shMi2β in the 

bone marrow of immunocompromised mice. A tetracycline-inducible shRNA system will also be 

used to control knockdown levels. The mouse strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, available 

in the Jackson Laboratories, has a severe combined immune deficiency mutation (scid) and show 

greater engraftment of human hematopoietic stem cells compared to other strains previously 

studied.  Aside from gene expression analysis to determine the effect of knocking down NuRD 

complex components on γ-globin expression, we will also be able to determine any detrimental 

effects of targeting NuRD complex components on the bone marrow in vivo. Prior studies with 
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MBD2-/- mice have shown changes in Th1 and Th2 gene regulation (Hutchins et al. 2002), and 

ablation of Mi2β hinders proper myeloid differentiation of mouse bone marrow cells (Yoshida et 

al. 2008). In order to determine whether targeting MBD2 or Mi2β has detrimental effects in bone 

marrow cells, myeloid markers will be used to monitor proper myeloid differentiation.  

Further studies with the NOD/SCID mouse model will be conducted. CD34+ cells from 

sickle cell anemia patients will be used instead of healthy donors in order to knockdown MBD2 

or Mi2β and engraft them in NOD/SCID mice as described above. These experiments will allow 

us to understand better whether targeting these proteins will alleviate the pathophysiologic 

effects of sickle cell anemia in human cells in vivo.  

In the studies presented in Chapter 3 we discovered a novel role for Mi2β, the chromatin 

remodeling protein of the NuRD complex. In addition to its role as a negative regulator of γ-

globin gene expression through the MBD2/NuRD complex, Mi2β also acts as an activator of 

BCL11A and KLF1, further contributing to the silencing effect on the γ-globin gene. It will be 

important to confirm that Mi2β exerts its effect on γ-globin largely through its regulation of 

KLF1 and BCL11A. In order to accomplish this, experiments with forced expression of BCL11A 

and KLF1 in siMi2β-treated cells will be carried out to determine if the substantial increase in γ-

globin gene expression is diminished. Transient forced expression of KLF1 in siMi2β-treated 

CID cells results in a partial decrease in γ-globin gene expression when compared to siMi2β 

treated CID cells (Figure 34). Further experiments must be carried out with forced expression of 

both KLF1 and BCL11A in CID cells as well as in human primary erythroid cells. In particular, 

stable expression systems must be used in human primary erythroid cells in order to determine 

the effect of over expressing KLF1 and BCL11A in shMi2β-treated cells. It is expected that 

KLF1 and BCL11A mediate a large portion of the effect carried out by the knockdown of Mi2β, 
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although the involvement of other factors in this process cannot be ruled out. In the event that 

forced expression of KLF1 and BCL11A in a Mi2β knockdown setting does not ablate Mi2β’s 

effect on γ-globin expression, the role of other factors acting through Mi2β will be investigated. 

In order to do this, a microarray comparing WT primary human erythroid cells and shMi2β 

treated cells will give rise to potential candidates. Erythroid-specific candidates will then be 

investigated and validated.  

The mechanism by which Mi2β acts as an activator rather than a repressor remains to be 

determined. A plausible hypothesis is that the majority of Mi2β remains tightly bound to NuRD 

complexes. A minor pool of free-floating Mi2β is able to interact with other proteins or co-

factors that allow Mi2β to act as an activator. This idea is supported by experiments conducted in 

CID cells showing that Mi2β knockdown does not affect the composition of the NuRD complex 

(Figure 26). To further support this hypothesis, we will perform ChIP assays of other NuRD 

complex components on the γ-globin or Ugt8 (a known target of the MBD2/NuRD complex) 

promoter regions after Mi2β knockdown. This will allow us to determine if partial absence of 

Mi2β affects other NuRD complex components’ ability to bind to these genes.  

Post-translational modifications could also play a role in allowing Mi2β to change from a 

repressor to an activator. In humans, Mi2β is known to be phosphorylated at Ser-1349 by the 

kinase Ataxia telangiectasia mutated (ATM) following double strand breaks (Urquhart et al. 

2011). In drosophila, dMi-2 has been shown to be a phosphoprotein, and its ATPase and 

nucleosome remodeling activity are enhanced when phosphorylated. In order to test whether 

post-translational modifications play a role in Mi2β’s activating/repressing role, we will first 

look for potential post-translational modification consensus sites. In the case of phosphorylation, 

kinase inhibitors could be used to block phosphorylation. Binding of Mi2β to the γ-globin 
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promoter region (repressive role) as well as binding of Mi2β to BCL11A/KLF1 (activating role) 

could then be measured to determine if binding affinity is affected.  γ-globin and BCL11A/KLF1 

gene expression can also be measured following the kinase inhibitor treatment to determine 

potential changes. Ultimately, mapping other post-translational modifications could be achieved 

by mass spectrometry.  

Further studies will be carried out to investigate whether Mi2β interacts with other 

partners in order to exert its effect as an activator. Recent studies have shown Mi2β interacts 

with p300 and GATA-3 in Th2 T helper cells when acting as a transcriptional activator, 

suggesting its ability to form complexes independently of the NuRD complex (Hokosawa et al. 

2013). In order to determine whether or not Mi2β interacts with other NuRD complex 

components while acting as an activator, ChIP assays will be conducted to test if other NuRD 

complex components show enrichment in the BCL11A and/or KLF1 promoter regions. In the 

event that no other NuRD components are present supporting the view of Mi2β acting 

independently of the NuRD complex in its role as an activator, we will search for other potential 

Mi2β binding factors. We will first conduct ChIP assays to determine enrichment of GATA 

factors and p300 in the BCLL1A and KLF1 promoter regions since they are known to interact 

with Mi2β in other systems. In order to investigate whether other factors also interact with Mi2β, 

Mi2β will be tagged in order to conduct a tandem affinity purification (TAP) assay. Since Mi2β 

interacts with the MBD2- and MBD3-NuRD complex, the proteins belonging to these complexes 

will need to be pre-cleared by conducting consecutive immunoprecipitation reactions. The 

purification product will then be subjected to mass spectrometry in order to identify potential 

partners of Mi2β.  
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In order to determine whether targeting Mi2β induces γ-globin gene expression in vivo, 

we will screen for small molecules that will inhibit the ATPase catalytic domain of Mi2β. In 

order to do this, the ATPase domain must be cloned in an expression vector and the expressed 

domain must be purified. High throughput screening will then be carried out in which molecules 

with favorable chemical properties such as solubility, decreased toxicity and stability are tested. 

Potential small molecule candidates will be tested in vitro in human CD34+ hematopoietic 

progenitor cells for effective inhibition of Mi2β. In the event we find a candidate(s) that 

effectively inhibits Mi2β, leading to an increase in γ-globin expression without disrupting 

erythroid differentiation in human primary erythoid cells, these molecules will be further tested 

in sickle cell disease mice.  

 

Perspectives: 

 

Due to the need for more effective treatments for hemoglobinopathies such as sickle cell 

anemia and β-thalassemia, there has been a long-standing search for understanding the molecular 

mechanisms behind the fetal γ-globin gene silencing. The main challenges in finding a target to 

successfully de-repress γ-globin expression in humans are 1) the complexity of how this locus is 

regulated, in which many factors play a combinatorial effect on gene expression 2) finding 

potential targets that will not have negative systemic effects 3) finding “targetable” proteins that 

will provide easier ways for drug development and delivery. 

The first challenge when attempting to find ways to relieve γ-globin silencing is the 

complexity of its regulation. As reviewed in the introduction of this thesis, many layers of 

repression lead to successful silencing of γ-globin gene expression. As it appears, many 
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regulatory factors contribute to an overall global effect on the regulation of γ-globin gene 

expression. In fact, individually knocking down several of these factors in human primary 

erythroid cells appears to de-repress γ-globin gene expression in a similar manner (Xu et al. 

2013). Finding a link between different branches of regulation is therefore imperative in order to 

find a target that will have a therapeutic effect of a larger magnitude. Epigenetic mechanisms 

offer the advantage of having broader effects, since epigenetic factors and their chromatin 

remodeling functions regulate many genes.  Our studies emphasize the role of the MBD2/NuRD 

complex, which indirectly regulates γ-globin gene expression. Mi2β, a major component of the 

NuRD complex contributes to the β-locus gene regulation through multiple pathways, including 

its repressive functions via the GATA-1/FOG-1/MBD3/NuRD complex, the MBD2/NuRD 

complex, its association with BCL11A, as well as its activating role in BCL11A and KLF1 gene 

expression (shown in Figure 12). The role of Mi2β on γ-globin regulation through different 

mechanisms makes this molecule a very promising therapeutic target.  

The second challenge in finding potential therapeutic targets for β-globin disorders is 

avoiding systemic detrimental effects. Two important transcription factors, BCL11A and KLF1, 

are thought to play a particularly important role in the regulation of γ-globin expression. 

BCL11A was shown to have a rather significant role in γ-globin gene silencing during mouse 

embryogenesis (Sankaran et al. 2009). However, BCL11A is also an important factor in other 

tissues and in regulating B-cell function (Liu et al. 2003). KLF1 is also known to play a 

significant role in both β- and γ-globin expression but complete absence of this transcription 

factor leads to β-thalassemia. Complete absence of KLF1 may also result in detrimental effects 

in erythropoiesis, since KLF1 is important for the regulation of many erythroid-specific genes. In 

fact, a dominant negative mutation in its zinc finger domain (“neonatal anemia” or nan) is known 
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to cause hereditary spherocytosis characterized by hemolytic anemia (Heruth et al. 2010). 

Targeting MBD2 offers the advantage of achieving an increase in γ-globin expression without 

resulting in detrimental systemic effects. Apart from globin genes, MBD2 only regulates a small 

group of genes such as murine IL-4 and gut genes (Hutchins et al. 2002; Berger et al. 2007). 

Aside from a mild nurturing phenotype, MBD2 knockout mice appear to behave normally. We 

have shown that Mi2β plays a significant role in γ-globin gene silencing, although a potential 

disadvantage of targeting this protein is that complete absence of Mi2β can affect erythroid 

differentiation, or other processes in tissues not included in this study. However, we have shown 

that a partial Mi2β knockdown is able to increase γ-globin gene expression to a large extent 

without affecting erythroid differentiation. The fact that complete absence of Mi2β is not 

necessary to achieve an increase in HbF may prove to be beneficial, because it is difficult to 

completely eliminate the expression of genes in an in vivo setting.  

Another challenge in finding a potential new treatment for β-globin disorders is drug 

development and delivery. As reviewed in the introduction of this thesis, a handful of 

transcription factors play an important role in the repression of γ-globin but their lack of 

enzymatic activity poses a challenge to find ways to target them. Using RNAi to target these 

transcription factors through a lentiviral system is plausible. However, difficulties similar to the 

ones encountered with gene therapy treatments attempted at introducing the β-globin gene in β-

thalassemia patients make this a difficult option. The vectors must be erythoid specific, and 

prolonged expression is needed. Silencing of the integrated gene/RNAi sequence after an 

extended period of time has been a long-standing challenge for gene therapy treatments. New 

vectors have proved to be more efficient at stable expression and have shown success in patients 

(Payen & Leboulch 2012), but long-term studies will be needed to assess this problem. The use 
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of insulators and the integration of these genes within cellular promoters rather than using viral 

promoters has decreased the risk of activating proto-oncogenes, yet insertion of these vectors in 

intronic regions can lead to disruption of genes (Payen & Leboulch 2012). Although gene 

therapy or the use of RNAi to target transcription factors may prove to be efficacious in the 

treatment of β-thalassemia or sickle cell anemia, it may be difficult to bring such technology to 

the developing world, in areas where this condition is most prevalent.  The use of small 

molecules has become an area of interest in the past few years. They have proved to be 

successful in the treatment of cancer, and many small molecule drugs are already FDA approved 

and a few are in clinical trials. Imatinib (Gleevec), a small molecule currently used for chronic 

myelogenous leukemia is an example of such success (Fausel 2007). Because using an effective 

small molecule could provide an easier delivery method (could be given orally), small molecules 

may be an effective way to treat sickle cell anemia or β-thalassemia in the developing countries. 

Considering Mi2β has an ATPase domain that could be targeted by a small molecule, it is a great 

candidate as a possible therapeutic target for β-type globin gene disorders. MBD2 has a methyl-

binding domain (MBD), which could also be targeted by a small molecule. Although small 

molecule inhibitors for DNA-protein interactions have been developed in the past (Ng et al. 

2007), they are conventionally thought to be more difficult to target. A small peptide disrupting 

the MBD2 interaction with other NuRD complex components may be a more effective way to 

target this protein.  
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