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ABSTRACT 

Lysophosphatidic acid (LPA) and transforming growth factor beta (TGFβ) are 

platelet-derived intercellular mediators of cell proliferation and motility. LPA is a general 

growth, survival and motility-stimulating factor in mammalian cells. TGFβ prevents 

proliferation of normal epithelial cells. However, the growth-inhibitory effect of TGFβ is 

lost or reduced in most malignant cells. Instead, TGFβ promotes migration and invasion 

of advanced cancer cells. Since LPA and TGFβ are both present in the blood and tumor 

microenvironments, we were interested in signal integration and functional outcomes in 

malignant epithelial cells in an LPA and TGFβ co-stimulatory context. In a subset of 

breast and ovarian cancer cell lines which remain sensitive to the cytostatic effect of 

TGFβ, we found that LPA up-regulated expression of the cyclin-dependent kinase 

inhibitor p21
Waf1

. But this up-regulation was not observed in TGFβ-resistant ones. We 

examined the possibility that LPA-induced p21 might contribute to the cytostatic 

response to TGFβ. Indeed, TGFβ alone induced p21 expression weakly in TGFβ-

sensitive cells. Serum or serum-borne LPA cooperated with TGFβ to elicit the maximal 

p21 induction. LPA stimulated p21 via LPA1 and LPA2 receptors and Erk-dependent 

activation of the CCAAT/enhancer-binding protein beta (C/EBPβ) transcription factor 

independent of p53. Loss or gain of p21 expression led to a shift between TGFβ sensitive 

and resistant phenotypes in breast and ovarian cancer cells, indicating that LPA-induced 
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p21 is a key determinant of the growth inhibitory activity of TGFβ. The p21-stimulatory 

action of LPA is absent from most breast and ovarian cancer cells, leading to their 

resistance to TGFβ. Therefore we reveal a novel crosstalk between LPA and TGFβ that 

underlies TGFβ sensitive and resistant phenotypes of breast and ovarian cancer cells.  

In the next part of our study, we examined the role of interactions between LPA 

and TGFβ in regulation of tumor cell motility. LPA and, to a much less extent, TGFβ 

stimulate chemotactic migration and invasion of breast and ovarian cancer cells. However, 

when combined together with LPA, TGFβ strongly attenuated LPA-driven migration and 

invasion of breast and ovarian cancer cells. This inhibitory effect was most likely 

mediated through TGFβ downregulation of expression of LPA1, the major receptor 

subtype responsible for LPA-regulated cell migration. Knockdown of Smad3 or Smad4 

with small hairpin RNA (shRNA) eliminated the inhibitory effects of TGFβ on the LPA1 

expression and LPA-dependent cell migration. There are two potential TGFβ inhibitory 

elements (TIE) (-40 bp and -401 bp) present in the human LPA1 gene promoter. Deletion 

or point mutation of the distal TIE at around -401 bp abolished the inhibitory effect of 

TGFβ on the LPA1 promoter activity as revealed by luciferase assays. A DNA pull-down 

assay showed that the -401-TIE-E2F4/5 sequence was capable of binding Samd3, Smad4, 

and E2F4/5 in TGFβ-treated cells. The binding of the Smad complex to the native TIE-

E2F4/5 sequences of the LPA1 gene promoter was further verified by chromatin 

immunoprecipitation assay. Our results identify a novel role of TGFβ in the control of 

LPA1 expression and LPA1-coupled biological activities, adding LPA1 to the list of 

TGFβ-repressed target genes. 
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CHAPTER 1 

 

INTRODUCTION 

1.0 Overview 

Breast cancer and ovarian cancer are leading causes of cancer-related death in 

women. An estimate of 288,130 new cases of breast cancer and 22,280 new cases of 

ovarian cancer are expected in the United States during 2012. Most breast cancers are 

derived from the epithelial cells that line the terminal ducts or lobules (Sainsbury et al 

1994). Breast cancer stages are expressed as a number on a scale of 0 through IV (Stage 0 

describing non-invasive cancers that remain within the original location and stage IV 

describing invasive cancers that have spread beyond the breast and near lymph nodes to 

other organs of the body, such as the lungs, distant lymph nodes, skin, bones, liver or 

brain). Pleural effusions may occur at any point of the clinical course of breast tumor 

progression and may be the sole manifestation of metastatic disease (Dieterich et al 1994). 

Approximately 10-20% breast cancers are triple-negative, the breast tumor type tested 

negative for estrogen receptors (ER
-
), progesterone receptor (PR

-
) and HER2 (HER2

-
). 

Therefore, the triple-negative breast cancer does not respond to hormonal therapy or 

target therapy against the HER2 receptor. The most common type of ovarian cancer is 
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ovarian epithelial carcinoma. Ovarian cancer is classified into four stages (Stages I-IV). 

At the advanced stages III and IV, it is often characterized by extensive intra-peritoneal 

distribution of tumors and formation of large volumes of ascites.  

Malignant pleural effusions of breast cancer and ascites of ovarian cancer 

represent tumor microenvironments enriched with a broad spectrum of intercellular 

mediators including lysophosphatidic acid (LPA) (Mills et al 1990, Moolenaar et al 1992, 

Xu et al 1995a) and transforming growth factor beta (TGFβ) (Hirte and Clark 1991). 

Both LPA and TGFβ are elevated in ovarian cancer ascites compared to non-malignant 

fluids (Ikubo et al 1995, Xu et al 1995b, Xu et al 1998). Previous studies of these 

coexisting factors have been restricted to analysis of the biological activities of individual 

ones without consideration of their simultaneous effects (Massague 2008, Mills and 

Moolenaar 2003). The results from these prior studies may not reflect their physiological 

roles in vivo. In the present study, we explored the potential crosstalk between LPA and 

TGFβ signaling in breast and ovarian carcinoma cells. Our results establish that such 

crosstalk indeed exists and operates to determine ultimate proliferative and migratory 

responses of breast and ovarian cancer cells. 

1.1 LPA 

1.1.1 Metabolism of LPA 

LPA (1-acyl-2-hydroxy-sn-glycero-3-phosphate) is the simplest natural 

phospholipid. LPA can be produced by multiple cell types, including activated platelet 
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(Eichholtz et al 1993), endothelial cells (Siess et al 1999), fibroblasts (van der Bend et al 

1992), adipocytes (Valet et al 1998), and cancer cells (Bektas et al 2005, Fang et al 

2000a). LPA is present in body fluids including plasma, saliva, hair follicles and 

malignant effusions (Aoki et al 2008, Sugiura et al 2002) and accounts for many 

biological properties of serum. In addition to 1-acyl LPA, other LPA species such as 

cyclic LPA, 1-alkyl and 1-alkenly-LPA are also found in serum and ovarian cancer 

patient ascites (Kobayashi et al 1999, Xiao et al 2001). 

Two main pathways are involved in endogenous generation of LPA from other 

phospholipids (Aoki et al 2002, Aoki 2004). Activated platelet, which is responsible for a 

major part of LPA production in vivo, generates LPA by sequential actions of 

phospholipases present in plasma or expressed by blood cells. Two phospholipases, 

secretory phospholipase A2 (sPLA2) and phospholipase A1 (PLA1) are involved in the 

production of lysophospholipids such as lysophosphatidylcholine (LPC), 

lysophosphatidylethanolamine (LPE), and lysophosphatidylserine (LPS). These 

lysophospholipids are converted to LPA by action of lysophospholipase D (lysoPLD) 

(Aoki et al 2002). The lysoPLD responsible for LPA production has been identified as 

autotaxin (ATX) (Umezu-Goto et al 2002), a previously enigmatic ecto-enzyme involved 

in tumor invasion, neovascularization and metastasis (Nam et al 2000, Ptaszynska et al 

2008, Yang et al 2002). With its intrinsic lysoPLD activity, ATX can hydrolyze LPC, a 

major phospholipid secreted by hepatocytes and therefore abundant in the blood, into 

LPA. The recently reported crystal structure of ATX suggests that the binding of ATX to 

integrins localizes LPA production to platelets and mammalian cells (Fulkerson et al 
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2011). Another potential pathway of LPA production independent of PLA and ATX is 

direct phosphorylation of monoacylglycerol (MAG) by acylglycerol kinase (AGK) 

(Bektas et al 2005). Overexpression of AGK is associated with increased production and 

secretion of LPA (Bektas et al 2005). 

The lipid phosphate phosphotases (LPPs) are a family of enzymes that remove the 

phosphate group from LPA and convert LPA to MAG (Pilquil et al 2001, Tomsig et al 

2009, Xu et al 2000). These LPPs are membrane-associated with extracellularly facing 

catalytic site for dephosphorylating LPA on the cell membrane. Expression of LPPs 

reduced endogenous LPA levels and attenuated LPA-mediated cellular functions (Tomsig 

et al 2009). Other than dephosphorylation, LPA can also be converted to phosphatidic 

acid (PA) by acylation through the action of LPA acyl transferases (LPAAT) (Eberhardt 

et al 1997, Leung 2001). 

1.1.2 LPA receptors and signal transduction 

LPA is a mediator of diverse biological processes including neurogenesis, 

angiogenesis, wound healing, immunity, and carcinogenesis (Panupinthu et al 2010). 

These biological functions of LPA are mediated through binding of LPA to its seven-

transmembrane G-protein coupled receptors (GPCRs). To date, six GPCRs have been 

identified as physiological LPA receptors. Based on their amino acid homology, the LPA 

receptors are classified into two different groups: LPA1/Edg2, LPA2/Edg4 and 

LPA3/Edg7 share more than 50% amino acid identity and belong to the endothelial 

differentiation gene (Edg) family, whereas GPR23/P2Y9/LPA4 of the purinergic receptor 
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family and the related GPR92/LPA5, and P2Y5/LPA6 and GPR87/LPA7 are non-Edg 

LPA receptors or novel subgroup of LPA receptors (Choi et al 2010) (Figure 1.1).  

 

 

 

LPA1 is the first high-affinity receptor identified for LPA (Hecht et al 1996). It is 

widely expressed in embryonic cells and adult tissues including brain, uterus, testis, lung, 

small intestine, heart, stomach, kidney, spleen, thymus, placenta, and skeletal muscle (An 

et al 1998, Contos et al 2000b). LPA1 is expressed in neoplastic cells as well. However, 

gene expression profiling studies failed to show any consensus increase in LPA1 

Figure 1.1. A representative phylogenetic tree of human GPCRs. Adapted from 

Keisuke Yanagida and Satoshi Ishii, “Non-Edg family LPA receptors: the cutting edge 

of LPA research”, J Biochem, (2011) 150 (3): 223-232. 
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expression between normal and malignant cells (Hendrix et al 2006, Radvanyi et al 2005, 

Sanchez-Carbayo et al 2006, Skrzypczak et al 2010, Su et al 2007). Instead, some 

expression profiling or array analyses suggest decreases in LPA1 mRNA expression in 

various malignancies (Hendrix et al 2006, Sanchez-Carbayo et al 2006, Shida et al 2004b, 

Skrzypczak et al 2010, Su et al 2007). 

Only minor abnormalities such as craniofacial dysmorphism and defective 

sucking behavior were found in LPA1-deficient mice (Contos et al 2000a). However, 

further analysis of these LPA1 knockout mice subjected to pathophysiological conditions 

has revealed that LPA1 is required for the initiation of neuropathic pain (Inoue et al 2004) 

and promotion of pulmonary and renal fibrosis (Pradere et al 2007, Tager et al 2008). 

More recent studies suggested the importance of LPA1 in neurogenesis (Matas-Rico et al 

2008), hippocampus synaptic function (Musazzi et al 2011), and bone development 

(Gennero et al 2011).  

LPA2 was identified from GenBank searches of orphan GPCRs. It exhibits about 

60% amino acid similarity to LPA1 (Contos and Chun 2000). The expression of LPA2 is 

relatively restricted. High expression of LPA2 is detected in testis and leukocytes, and 

moderate expression is found in prostate, spleen, thymus, and pancreas (An et al 1998). 

Our group is the first to report overexpression of LPA2 in early and late stages of ovarian 

cancer (Fang et al 2000a, Fang et al 2002). In breast cancer, LPA2 overexpression is 

observed in more than half (57%) of the most common invasive ductal carcinoma 

(Kitayama et al 2004). LPA2 is also commonly overexpressed in gastric cancer 



7 
 

(Yamashita et al 2006), differentiated thyroid cancer (Schulte et al 2001) and other 

human malignancies (Schulte et al 2001). Mice lacking LPA2 do not show any significant 

abnormalities in physiology (Contos et al 2002). However, compared to wild type mice, 

LPA2-deficient mice are more resistant to intestinal tumor formation induced by colitis or 

by ApcMin mutation (Lin et al 2009, Lin et al 2010). These studies together are 

consistent with an oncogenic role for LPA2.  

LPA3 was isolated as an orphan GPCR gene using degenerate PCR-based cloning 

and homology searches (Bandoh et al 1999, Im et al 2000). Expression of LPA3 is 

observed in heart, testis, prostate, pancreas, lung, ovary, and brain (Bandoh et al 1999, Im 

et al 2000). LPA3 is overexpressed in about 45% of ovarian cancers (Fang et al 2002) but 

not as commonly overexpressed as LPA2 in many other types of cancer. Homozygous 

deletion of LPA3 leads to identification of a specific function of this LPA receptor in 

female reproduction. LPA3 deficient female mice show a delayed implantation and 

defective embryo spacing, associated with reduced uterine expression of Cox-2 mRNA 

(Ye et al 2005). 

LPA4 is the first non-Edg LPA receptor identified through ligand screening 

(Noguchi et al 2003). Its mRNA is expressed in various human tissues with the highest 

abundance in the ovary (Noguchi et al 2003). Interestingly, LPA4 expression is 

undetectable or generally low in most tumor cell lines. Our lab generated LPA4 knockout 

mice. LPA4 null mice did not show apparent abnormalities compared to the wild type 

littermates. However, LPA4 seems to negatively regulate cell motility in that LPA4-
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deficient mouse embryo fibroblasts (MEFs) are more sensitive to LPA-induced migration 

(Lee et al 2008). Similarly, overexpression of LPA4 suppresses LPA1-mediated cell 

migration in cancer cell lines (Lee et al 2008). 

More recently, the orphan GPR92 was identified as another non-Edg LPA 

receptor, LPA5. It shares about 35% amino acid homology with LPA4 (Lee et al 2006). 

LPA5 is broadly expressed in murine tissues such as embryonic brain, small intestine, 

skin, spleen, stomach, thymus, lung, heart, liver and embryonic stem cells (Kotarsky et al 

2006, Lee et al 2006). Antagonists study of LPA5 suggests its role in activation of 

platelets (Williams et al 2009).  

P2Y5/LPA6 mRNA is expressed in spleen, thymus, leukocyte, prostate, ovary, 

testis, small intestine, and colon (Pasternack et al 2008). LPA6 is found to be mutated in 

hypotrichosis simplex and required for maintenance of human hair growth (Pasternack et 

al 2008). The LPA6 knockout mice have not been reported but would be expected to 

phenocopy the major function of the human receptor in regulating hair growth. 

GPR87/LPA7 is expressed at low levels in most tissues with the exception of 

prostate, placenta, head and neck. An interesting observation with GPR87 is its 

overexpression specifically in squamous cell carcinomas of the lung, cervix, skin, urinary 

bladder, testis, head and neck (Tabata et al 2007). Other orphan GPCRs such as P2Y10 

(Murakami et al 2008) and GPR35 (Oka et al 2010) have been also proposed to be 

additional LPA receptors. However, their identities as bona fide receptors for LPA are yet 

to be validated through independent studies.  
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Like other GPCRs, LPA receptor subtypes appear to couple to multiple 

heterotrimeric G proteins that in turn, activate diverse pathways including stimulation of 

phospholipase C and D, small GTPases, mitogen-activated protein kinases (MAPK), and 

phosphatidylinositol 3-kinase (PI3K) (Bandoh et al 1999, Contos et al 2002, Fukushima 

et al 2002, Im et al 2000, Lee et al 2006, Mills and Moolenaar 2003). Activation of these 

diverse G protein signaling cascades downstream of LPA receptors culminates in 

cytoskeleton remodeling, cell proliferation, survival and migration (Mills and Moolenaar 

2003). As depicted in Fig. 1. 2, a major difference in G protein coupling between the Edg 

LPA1-3 receptors and the novel non-Edg LPA4-6 receptors is that LPA1-3 couple to Gi but 

not Gs while LPA4-6 couple to Gs instead of Gi. Gs is linked to activation of adenylyl 

cyclase (AC) and intracellular cAMP. In contrast, Gi inhibits adenylyl AC and decreased 

cAMP and activates the Ras/MAPK cascade and the PI3K-Akt pathway through subunit 

released from Gi (Anliker and Chun 2004, Radeff-Huang et al 2004, Van Leeuwen et al 

2003). Gq is linked to activation of phospholipase C (PLC), which, in turn, catalyzes 

hydrolysis of phosphatidylinositol biphosphate (PIP2) to diacylglycerol (DAG) to 

activate protein kinase C (PKC) and inositol trisphosphate (IP3) to trigger intracellular 

calcium mobilization (Fukushima and Chun 2001). Activation of G12/13, which directly 

binds to the Rho-specific guanine nucleotide exchange factor p115RhoGEF, leads to 

activation of the Rho-ROCK pathway (Kranenburg et al 1999, Ren et al 1999) that 

regulates actomyosin-driven cytoskeleton contraction and cell shape changes (Bar-Sagi 

and Hall 2000).  
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1.1.3 LPA and cell proliferation 

The role of LPA as a growth factor was initially shown in fibroblasts. The 

mitogenic activity of LPA has now been demonstrated in several cell lineages including 

normal and transformed epithelial cells, endothelial cells, smooth muscle cells, 

astrocytes, and renal mesangial cells (Radeff-Huang et al 2004, Van Leeuwen et al 2003). 

The mitogenic activity of LPA is sensitive to pertussis toxin (Fang et al 2000b, Van 

Corven et al 1989, van Corven et al 1992), implicating a Gi-dependent mechanism in 

LPA-mediated cell proliferation. The Gi-induced inhibition of intracellular cAMP may be 

a partial but not the sole stimulus of LPA-induced cell proliferation (Van Corven et al 

1989). Similar to the mitogenesis driven by peptide growth factors, the Ras/ERK and 

Figure 1.2. LPA receptors and G protein signaling cascades. 
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PI3K/Akt pathways are essential for LPA-induced cell growth (Cook and McCormick 

1996, Fang et al 2000b, Kranenburg and Moolenaar 2001). Active Erk translocates to the 

nucleus to activate expression of proliferation-associated genes. The dependence on PI3K 

of LPA-induced cell proliferation may relate to the prominent anti-apoptotic activity of 

the PI3K-Akt pathway (Kennedy et al 1997). 

 

Due to the critical role of Gi-dependent signals in LPA-driven cell proliferation, 

the Edg LPA receptors seem to be major receptor subtypes to activate mitogenic program 

although the possibility of inputs from non-Edg LPA receptors cannot be excluded. 

However, most cell lines express more than one Edg LPA receptor, making it difficult to 

link a proliferative response to a specific receptor subtype. In a few earlier studies, 

ectopic expression of the LPA1 receptor supports LPA-dependent DNA synthesis in B103 

cells (Fukushima et al 1998) and cellular survival in Schwann cells (Li et al 2003, Weiner 

and Chun 1999). In MEFs, deletion of LPA1 or LPA2 does not significantly affect 

proliferative response to LPA. However, simultaneous disruption of LPA1 and LPA2 

strongly inhibited LPA-induced cell proliferation (Contos et al 2002), suggesting the 

functional redundancy between the two LPA receptors in mediating growth response of 

MEFs to LPA. In malignant cells particularly colon cancer cells, accumulating evidence 

indicate that LPA2 mediates mitogenic signals. LPA2 stimulates expression of a large 

number of cell cycle promoters or regulators such as c-Myc, cyclin D1, HIF1α, and 

Krüppel-like factor 5 (Fang et al 2004, Hu et al 2001, Mori et al 2009, Yang et al 2005). 

The ability of LPA2 to promote proliferation of malignant cells is consistent with its 

overexpression in many types of cancer and its recognized function as an oncogene. 
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The ultimate biological responses to LPA vary from one cell type to another, 

likely as a result of the types and expression levels of the LPA receptors as well as 

possible crosstalk with other families of cell surface receptors. LPA transactivation of 

receptor tyrosine kinases such as EGFR, PDGFR and c-met occurs in a panel of cancer 

cell lines (Goppelt-Struebe et al 2000, Oyesanya et al 2010, Zhao et al 2007). This cross-

communication may provide a permissive signal in combination with other G protein 

effectors to elicit cellular responses to LPA including cell proliferation.  

 

1.1.4 LPA and cell motility 

 LPA stimulation of tumor cell invasion was first shown in 1993 (Imamura et al 

1993). However, this biological activity of LPA was not well appreciated until the tumor 

cell motility-stimulating factor ATX was identified to be lysoPLD accounting for LPA 

production in the blood (Umezu-Goto et al 2002). ATX has long been known as a large 

protein secreted by melanoma and other cancer cells to enhance tumor cell migration and 

invasion through a GPCR-mediated mechanism (Stracke et al 1992). It is now well 

established that ATX stimulates tumor cell motility through formation and action of LPA.  

The migratory effect of LPA and the underlying mechanism of action have 

become a subject of extensive recent studies in the area of LPA biology. It is now well 

known that LPA activates cell motility through G12/13-mediated activation of RhoA and 

Gi-PI3K-mediated activation of Rac. These small Rho GTPases regulate cell detachment 

and forward movement in a coordinate manner (Etienne-Manneville and Hall 2002). 
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Precisely, RhoA mediates cell contraction through activation of ROCK which 

phosphorylates myosin light chain (MLC) and thereby induces actomyosin-based 

contractility and cell rounding (Kimura et al 1996). On the other hand, LPA activates Rac 

through a Gi, PI3K and guanine nucleotide exchange factor Tiam1 (Van Leeuwen et al 

2003) or SOS1/EPS8/ABl1 tri-complex (Chen et al 2010).  

Using LPA1
-/-

 skin fibroblasts, Hama et al provided compelling evidence that 

LPA1 is essential for both LPA- and ATX-induced cell migration of fibroblasts (Hama et 

al 2004). Independent studies in the Rh7777 hepatoma cells (Umezu-Goto et al 2002) and 

the B103 neuroblastoma cells (Van Leeuwen et al 2003) devoid of functional LPA 

receptors indicated that ectopic expression of LPA1 is sufficient to restore migratory 

responses to LPA. The importance of LPA1 in LPA-dependent cell migration has been 

further confirmed in cancer cells of colon, breast (Chen et al 2007, Shida et al 2003), and 

stomach (Shida et al 2004a). Despite the primary role of LPA1 in the migratory response 

to LPA, there has been also evidence for participation or auxiliary role of LPA2 and even 

LPA3 in LPA regulation of cell motility. However, it remains unknown whether LPA2 or 

LPA3 alone in the absence of LPA1 is sufficient to initiate the migratory response to LPA. 

It is possible that in certain cellular contexts, these other LPA receptors could cooperate 

with LPA1 to enhance or sustain migratory signals such as Rac activation. In contrast to 

the Edg LPA receptors, the non-Edg LPA receptors do not couple to Gi and Gi-dependent 

migratory signals. Instead, we have recently shown that using LPA4 wild type and null 

MEFs, the LPA4 receptor negatively regulates cell motility, likely through over-

activation of the G12/13-Rho pathway to deregulate the ratio of Rac and Rho (Lee et al 
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2008). Appropriate balance of Rac and Rho activities plays a pivotal role in coordinating 

cellular migratory responses to various motogens. 

 

1.2 TGFβ 

1.2.1 TGFβ production and activation 

 TGFβ (refers to TGFβ1 in TGFβ family), is a polypeptide member of the TGFβ 

super family of cytokines. It is ubiquitously expressed in human adult tissues, and 

dramatically increased in almost all cancer cell lines (Wu et al 2009). TGFβ expression is 

regulated at multiple levels, including transcription, mRNA stability, and 

posttranslational processing. Van Obberghen-Schilling et al have shown that TGFβ 

positively regulates its own expression in normal and transformed cells (Van Obberghen-

Schilling et al 1988). In cancer cells, v-src was reported to transcriptionally activate 

TGFβ through AP-1 (Birchenall-Roberts et al 1990). In tumor microenvironment, TGFβ 

is also produced by infiltrated immune cells including dendritic cells, natural killer cells 

and natural regulatory T cells (Flavell et al 2010). 

TGFβ is synthesized as a precursor molecule containing a propeptide region in 

addition to the TGFβ monomer (Derynck et al 1985). TGFβ is secreted to the 

extracellular matrix (ECM) in a latent complex consisting of the TGFβ dimer, latency 

associated peptide (LAP) dimer and latent TGFβ-binding protein (LTBP) (Rifkin 2005). 

This complex is called large latent complex (LLC). After its secretion, the LLC remains 
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in the ECM in the inactivated form. It will be further processed to release the active 

TGFβ homodimer (Annes et al 2003).  

 TGFβ can be activated in either integrin-dependent or integrin-independent 

manner. Matrix metalloproteinases (MMPs), such as MMP9 and MMP2 (Yu and 

Stamenkovic 2000), acidic pH (Lyons et al 1988), reactive oxygen species (ROS) 

(Barcellos-Hoff and Dix 1996) and thrombospondin-1 (TSP-1) (Schultz-Cherry and 

Murphy-Ullrich 1993) have all been shown to stimulate the release of TGFβ from the 

latent form. The αV integrins can activate TGFβ by binding to the RGD motif of LAP 

and induce a change in the conformation of the latent complex to liberate/activate TGFβ 

from its latent complex, thereby allowing access of the mature TGFβ to the TGFβ 

receptors (TβRs) and induction of classic TGFβ signaling (Munger et al 1999). On the 

other hand, αV integrins also can create a close connection between the latent TGFβ 

complex and MMPs (Mu et al 2002), a process similar to the mechanism for integrin 

interaction with ATX to localize LPA production from LPC in platelets (Fulkerson et al 

2011). 

1.2.2 TGFβ signaling 

 After release as a homodimer, TGFβ binds to type II receptor (TβRII), leading to 

formation of a receptor complex and phosphorylation of the TβRI. After being 

phosphorylated and activated, the type I receptor subsequently phosphorylates a receptor-

regulated SMAD (R-Smad), allowing complex formation of R-Smad with Smad4 (co-

Smad) and translocation to the nucleus where the Smad complex associates with a DNA-
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binding partner and binds to specific DNA region of TGFβ target genes to activate or 

repress transcription (Massague 1998).  

 TGFβ activation of TβRI and TβRII not only triggers activation of the Smad 

pathway as stated above but also induces activation of other Smad-independent signaling 

cascades by the kinase activities of the TβRs. Rapid activation of MAPK pathways, 

including Erk, JNK and p38 MAPK occurs in a Smad-independent manner in TGFβ 

challenged cells (Derynck and Zhang 2003). In addition, TGFβ treatment rapidly 

activates Rho GTPases, including RhoA, Cdc42, and Rac. As mentioned earlier, the 

activation of these small GTPases causes membrane ruffling and formation of stress 

fibers and lamellipodia. Thus TGFβ could induce changes in cell morphology, promotion 

of cell motility, and epithelial to mesenchymal transition (EMT) (Zavadil et al 2001).  

1.2.3 Complexity and regulation of the TGFβ-Smad pathway 

 Receptors of ligands of the TGFβ superfamily are characterized with a highly 

conserved intracellular serine-threonine kinase domain (Liu et al 2001). There are two 

functional classes of receptors for TGFβ superfamily ligands: type II and type I, which 

are encoded by five and seven genes in human genome, respectively (Schmierer and Hill 

2007). Binding of ligand recruits the pre-formed dimers of TβRII and TβRI to form 

heterotetrameric receptor complex (Sasaki et al 2003). The TβRII kinase is thought to be 

constitutively active and phosphorylates the TβRI at several serine and threonine residues 

in a glycine and serine rich domain (GS domain) which is strictly conserved in all type I 

TβRs. Phosphorylation of the GS-domain enables recruitment of R-Smads: Smad1, 
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Smad2, Smad3, Smad5 and Smad8. Smad2 and Smad3 are phosphorylated and activated 

by TGFβ while Smad1, Smad5 and Smad8 are phosphorylated/activated by bone 

morphogenetic protein (BMP) signal. R-Smads and Smad4 share two highly conserved 

domains, MH1 and MH2. Except for Smad2, which cannot bind DNA directly (Yagi et al 

1999), the MH1 domains of other R-Smads and Smad4 are capable of DNA binding. The 

MH2 domain mediates Smad-receptor interactions, Smad-Smad interactions and Smad 

interactions with other transcription factors, co-activators or co-repressors (Schmierer and 

Hill 2007). 

 Negative feedback in TGFβ signaling pathway is mediated by induction of the 

inhibitory Smads (I-Smads) Smad6 and Smad7. I-Smads also contain the MH2 domain 

which has been proposed to bind to R-Smads and form heterotrimmers to block their 

abilities to induce or repress expression of target genes (Zhang et al 2007). Other studies 

demonstrated the interaction of I-Smads with TβRI, causing competitive inhibition of R-

Smad binding (Hayashi et al 1997). As an indirect mechanisms, Smad7 interacts 

constitutively with the HECT-domain E3 ubiquitin ligases SMURF1 and SMURF2 and 

targets them to the activated receptors, which leads to degradation of the active TβRs 

(Ebisawa et al 2001, Kavsak et al 2000, Ogunjimi et al 2005). Smad7 also interacts with 

GADD34, a regulatory subunit of protein phosphtase-1 (PP1), therefore targeting the 

catalytic subunit of PP1 to activated TβR for dephosphorylation and inactivation (Shi et 

al 2004). 
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 The I-Smads are not the only inhibitory mediators of the TGFβ-Smad pathway. 

The Smad binding elements (SBEs) are not necessarily unoccupied in the absence of 

TGFβ signal. The proto-oncoproteins SKI and SKI-related novel protein N (SnoN) bind 

the same repeated elements (GTCTAGAC) as the Smad3/4 complex and are thought to 

bind in conjunction with Smad4 (Stroschein et al 1999). TGFβ signaling causes rapid 

degradation of SnoN, and to a lesser extent SKI, allowing the Smad3/4 complex to 

displace SKI and SnoN from SBEs (Stroschein et al 1999). SKI and SnoN have been 

shown to be overexpressed in multiple cancers. Therefore, the suppression of TGFβ 

signal transduction by overexpressed SKI and SnoN may contribute to tumorigenesis 

(Reed et al 2005). 

1.2.4 Cytostatic response genes of TGFβ  

 The role of TGFβ in inducing cytostasis in normal epithelial cells is well 

characterized. In TGFβ-treated cells, TGFβ induces rapid and sustained expression of two 

cyclin-dependent kinase (CDK) inhibitors, p21
Waf1

 and p15
Ink4b

. Moreover, TGFβ 

downregulates expression of c-Myc, Id1 and Id2, three transcription factors involved in 

promotion of proliferation and inhibition of differentiation (Siegel and Massague 2003). 

As a general mode of TGFβ regulation of gene expression, the Smad3-Smad4 complex 

binds to a DNA-binding cofactor which further lands on the gene promoter and regulates 

transcription. As illustrated in Figure 1.3, in the case of p21
Waf1

, upon stimulation with 

TGFβ, phosphorylated Smad3, Smad4 and transcription factor FoxO form an activator 

complex that binds to a specific region of the p21
Waf1

 gene promoter to initiate 
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transcription (Seoane et al 2004). In addition, the Smad complex can interact with the 

Sp1 transcription factor to activate the p21
Waf1

 gene promoter (Pardali et al 2000). 

Transcription of p15
Ink4b

 gene is also induced by binding of a Smad to the p15
Ink4b

 gene 

promoter. However, the co-factor(s) for p15
Ink4b

 induction by TGFβ has not been 

identified yet (Seoane et al 2001). TGFβ downregulation of c-Myc is mediated by a 

Smads-E2F4/5-p107 complex. Upon binding to the c-Myc promoter, the pocket protein 

p107 within the inhibitory complex recruits HDAC that functions as a transcriptional 

repressor (Chen et al 2002). The transcriptional repression of Id1 by TGFβ requires a 

Smads-ATF3 complex binding to the Id1 promoter (Kang et al 2003). The SBE site and 

ATF3 element on the Id1 promoter are not clustered but instead set apart by 18 base pairs. 

Among the target genes of TGFβ-mediated repression, Id2 is the only one not directly 

repressed by a Smad complex. Id2 is transcriptionally activated by c-Myc-Max, hence 

downregulation of c-Myc expression by TGFβ prevents Id2 transcription (Lasorella et al 

2000). 
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1.3 Crosstalk between LPA and TGFβ 

A number of previous studies suggest that LPA indirectly interacts with TGFβ 

signaling and functionality. For example, LPA induces expression and secretion of TGFβ 

in human corneal fibroblasts (Jeon et al 2012). In human mesenchymal stem cells, LPA 

induces their differentiation into myofibroblast-like cells in an autocrine TβR-Smad-

dependent manner (Jeon et al 2008). In keratinocytes, LPA acts as a growth inhibitor 

instead of stimulator. Sauer et al reported that LPA transactivates Samd3 of the TGFβ 

signaling pathway to exert such a cytostatic effect (Sauer et al 2004). Activation of latent 

Figure 1.3. The TGFβ cytostatic program in epithelial cells. Adapted from 

Seoane et al “Escaping from the TGFβ anti-proliferative control” 

Carcinogenesis (2006) 27 (11): 2148-2156. 
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TGFβ is the rate-limiting step in TGFβ bioavailability. Recent evidence suggests that 

LPA could also participate in the process of TGFβ activation from its latent precursor 

(Xu et al 2009). Xu et al. showed that LPA stimulates αVβ6 integrin dependent activation 

of TGFβ in epithelial cells via the LPA2 receptor, RhoA and ROCK (Xu et al 2009). In 

airway smooth muscle cells, LPA induces TGFβ activation via the integrin αVβ5 (Tatler 

et al 2011). Studies of genetic mouse models have implicated the LPA1 receptor in the 

development of lung and renal fibrosis (Pradere et al 2008, Tager et al 2008). 

Accumulating evidence suggests that LPA interacts with TGFβ signaling to stimulate 

expression of the pro-fibrotic connective tissue growth factor (CTGF) (Cabello-Verrugio 

et al 2011, Gan et al 2011, Pradere et al 2007, Vial et al 2008). Taken together, these 

investigations indicate that LPA regulates TGFβ expression, activation, secretion or 

signaling, which may be relevant to diverse physiological and pathophysiological 

processes in mammalian cells.  

On the other hand, there is little information on whether TGFβ may cross-

communicate with LPA signal transduction to influence cellular functions, especially in 

epithelial carcinoma cells. As stated earlier, TGFβ and LPA are co-present at elevated 

levels in tumor microenvironments. The known biological effects of TGFβ and LPA on 

carcinoma cells are opposite or overlapping. In this dissertation project, I utilized breast 

and ovarian cancer cells as model systems to study combinatory effects of TGFβ and 

LPA on two major cellular processes of cancer: growth and motility. These studies 

showed novel and interesting biological outcomes of LPA and TGFβ co-treatment of 

breast and ovarian cancer cells and the underlying mechanisms. As described in chapter 2, 
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we identified LPA-induced expression of the cyclin dependent kinase inhibitor p21 as an 

indispensable component of the TGFβ-mediated cytostasis. TGFβ alone induced p21 

expression weakly in TGFβ-sensitive cells. LPA cooperated with TGFβ to elicit the 

maximal p21 induction. Mechanistically, LPA stimulated p21 via LPA1 and LPA2 

receptors and Erk-dependent activation of the CCAAT/enhancer-binding protein beta 

(C/EBPβ) transcription factor. When we examined the simultaneous effects of TGFβ and 

LPA on tumor cell motility in Chapter 3, we found that TGFβ signaling via a Smad-

dependent pathway inhibits activity of the LPA1 gene promoter, LPA1 mRNA 

transcription and LPA1-dependent migration and invasion of breast and ovarian cancer 

cells. Further characterization using multiple molecular approaches showed that LPA1 is a 

physiological target gene of TGFβ-mediated repression involving a specific TBE element 

on the LPA1 promoter. The work represents the first detailed study of transcriptional 

regulation of an LPA receptor.  
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CHAPTER 2 

 

LYSOPHOSPHATIDIC ACID–INDUCED P21
WAF1

 EXPRESSION MEDIATES 

THE CYTOSTATIC RESPONSE OF BREAST AND OVARIAN CANCER CELLS 

TO TRANSFORMING GROWTH FACTOR BETA 

 

Part of the work presented in this Chapter has been published in Molecular Cancer 

Research 9(11): 1562-70, 2011 

 

2.0 Abstract 

Lysophosphatidic acid (LPA) is a multifunctional intercellular phospholipid 

mediator presents in blood and other biological fluids. In cancer cells, LPA stimulates 

expression or activity of inflammatory cytokines, angiogenic factors, matrix 

metalloproteinases, and other oncogenic proteins. In this study, we showed that LPA 

upregulated expression of the cyclin-dependent kinase inhibitor p21
Waf1

 in TGFβ-

sensitive breast and ovarian cancer cells, but not in TGFβ-resistant cells. We examined 

the possibility that LPA-induced p21 might contribute to the cytostatic response to TGFβ. 

In serum-free conditions, TGFβ alone induced p21 expression weakly in TGFβ-sensitive 

cells. Serum or serum-borne LPA cooperated with TGFβ to elicit the maximal p21 

induction. LPA stimulated p21 via LPA1 and LPA2 receptors and Erk-dependent 



24 
 

activation of the CCAAT/enhancer binding protein beta transcription factor independent 

of p53. Loss or gain of p21 expression led to a shift between TGFβ-sensitive and -

resistant phenotypes in breast and ovarian cancer cells, indicating that p21 is a key 

determinant of the growth inhibitory activity of TGFβ. Our results reveal a novel cross-

talk between LPA and TGFβ that underlies TGFβ-sensitive and -resistant phenotypes of 

breast and ovarian cancer cells. 

 

2.1 Introduction 

LPA is a naturally occurring intercellular mediator of diverse biological processes 

including neurogenesis, angiogenesis, would healing, immunity, and carcinogenesis 

(Panupinthu et al 2010). LPA is produced by activated platelets during coagulation and 

thus is a normal constituent of serum (Eichholtz et al 1993, Sano et al 2002). LPA is a 

ligand of at least six G protein-coupled receptors (GPCRs) (Choi et al 2010). The 

LPA1/Edg2, LPA2/Edg4 and LPA3/Edg7 receptors are members of the endothelial 

differentiation gene (Edg) family, sharing 50-57% homology in their amino acid 

sequences. GPR23/P2Y9/LPA4 of the purinergic receptor family and the related 

GPR92/LPA5 and P2Y5/LPA6 have been identified as additional LPA receptors, which 

are structurally distinct from the LPA1-3 receptors (Choi et al 2010). The LPA receptors 

couple to multiple G proteins, Gq, Gi, G12/13 and Gs, which, in turn, activate diverse 

pathways including Gq-mediated stimulation of phospholipase C (Fukushima and Chun 

2001), Gi-mediated activation of the Ras-MAPK and PI3K (Takeda et al 1999), and 
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G12/13-mediated activation of RhoA (Kranenburg et al 1999). Activation and integration 

of these signaling events downstream of LPA receptors leads to cytoskeleton remodeling, 

cell proliferation, survival, and migration (Mills and Moolenaar 2003). Recent studies 

demonstrated that LPA exerts its biological actions through transcriptional activation of 

multiple target genes involved in a wide range of physiological and pathophysiological 

processes (Teo et al 2009). 

TGFβ is also a platelet-derived factor that controls a multitude of biological 

activities including cell proliferation (Huang and Huang 2005), differentiation (Fei and 

Chen 2010), and apoptosis (Perlman et al 2001). The complicated role of TGFβ is 

mediated through the heteromeric complex of transmembrane serine/threonine kinases, 

the type I and type II receptors (TβRI and TβRII), and the Smad family of transcription 

factors and non-Smad signaling pathways (de Caestecker et al 2000, Derynck and Zhang 

2003). TGFβ inhibits proliferation of epithelial cells and thus plays a role in early tumor 

suppression. However, TGFβ frequently fails to induce growth arrest in transformed 

epithelial cells. On the other hand, TGFβ stimulates migration and invasion of neoplastic 

cells, thereby promoting the metastatic potentials of advanced cancer (Bierie and Moses 

2006, Massague 2008). 

The anti-proliferative effect of TGFβ is mediated by a complex signaling network 

involving TβRI and TβRII activation of Smad2/3 and ultimately transcriptional 

modulation of growth control genes such as induction of the cyclin-dependent kinase 

(CDK) inhibitors p21
Waf1

 and p15
Ink4b

, and suppression of the c-Myc, Id1 and Id2 
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transcription factors (Siegel and Massague 2003). Cancer cells tend to escape from the 

anti-proliferative effect of TGFβ through acquisition of mutations in components of the 

TGFβ signal transduction pathway or through deregulation of other signaling cascades 

interconnecting with the TGFβ pathway (Derynck et al 2001). Mutations in the TβRII 

receptor gene (Siegel and Massague 2003) as well as mis-sense mutation or deletion of 

Smad2 and Samd4 (Sjoblom et al 2006, Yang and Yang 2010) have been identified in 

different types of cancer. There is also evidence for overexpression of oncoproteins in 

inactivation of the cytostatic effect of TGFβ in cancer, such as Myc-Miz-1 complex 

(Seoane et al 2001), Evi-1 (Kim and Letterio 2003), FoxG1 (Seoane et al 2004), CDK 

(Matsuura et al 2004) and Ski and/or SnoN (Zhang et al 2003). However, these 

aberrations seen in only fractions of human tumors do not explain the generally altered 

responses to TGFβ in a wide spectrum of cancers.  

In the present study, we examined the potential crosstalk between LPA signaling 

and TGFβ in growth regulation of breast and ovarian cancer cells. We report that LPA 

up-regulates expression of the CDK inhibitor p21 in breast and ovarian cancer cells 

sensitive to TGFβ- induced growth arrest but not in TGFβ-resistant cancer cells. In 

TGFβ-sensitive cells, LPA cooperates with TGFβ to elicit the maximal induction of p21 

to mediate the cytostatic response to TGFβ. Loss or gain of p21 expression led to a shift 

between TGFβ sensitive and resistant phenotypes in these cells. Our results reveal a novel 

mechanism underlying the cytostatic program of TGFβ in breast and ovarian cancer cells.  
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2.2 Materials and Methods 

Materials Anti-phospho C/EBPβ, phospho-Erk1/2, tubulin α/β antibodies and PD98059 

were obtained from Cell Signaling (Danvers, MA). Anti-C/EBPβ, p21, and Erk 

antibodies were from Santa Cruz Biotech (Santa Cruz, CA). LPA (1-oleoly, 18:1) and 

S1P were obtained from Avanti Polar Lipids, Inc. (Alabaster, AL). Prior to use, LPA and 

S1P were dissolved in PBS containing 0.5% fatty acid-free bovine serum albumin (BSA) 

obtained from Roche (Indianapolis, IN). TGFβ was obtained from PeproTech Inc (Rocky 

Hill, NJ). TPA was from Sigma (St Louis, MI). Fetal bovine serum (FBS) was obtained 

from Atlanta Biological (Atlanta, GA). Oligonucleotides were synthesized by Operon 

Biotechnologies, Inc. (Huntsville, AL). TRIzol and cell culture reagents were obtained 

from Invitrogen Inc. (Carlsbad, CA). The transfection reagent Dharmafect 1 was obtained 

from Dharmacon (Lafayette, CO). Plasmid DNA was purified using the endo-free 

purification kit from Qiagen (Valencia, CA). 

 

Cell Culture MDA-MB-231 was provided by S Spiegel (Virginia Commonwealth 

University). SK-BR-3 and BT-549 were obtained from Dr. G. Mills (MD Anderson 

Cancer Center). MDA-MB-231 cells were maintained in Dulbecco modified Eagle 

medium (DMEM) with 10% FBS and antibiotics (100 U/ml penicillin and 100 µg/ml 

streptomycin). Other breast and ovarian cancer cell lines used in the study were cultured 

in RPMI 1640 supplemented with 10% FBS and antibiotics as we described previously 

(Fang et al 2004).  
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Western blotting Cells were lysed in SDS sample buffer or in ice-cold X-100 lysis 

buffer [1% Triton X-100, 50 mM HEPES (pH 7.4), 150 mM NaCl, 1.5 mM MgCl2, 1 

mM EGTA, 10% glycerol, 100 mM NaF, 10 mM Na PPi, and protease inhibitor cocktail]. 

Total cellular proteins were resolved by SDS-PAGE, transferred to Immun-Blot 

membrane [poly(vinylidene difluoride)] from BIO-RAD (Hercules, CA), and 

immunoblotted with antibodies following the protocols of manufacturers. 

Immunocomplexes were visualized with an enhanced chemiluminescence detection kit 

from Amersham (Piscataway, NJ). 

 

siRNA knockdown The siRNA oligos for LPA receptors (LPA1 #4050, LPA2 #44997, 

LPA3 #136436 and LPA5 #s32725), p21 (#S415) and C/EBPβ (#s2891) were obtained 

from Applied Biosystems (Carlsbad, CA). siRNA oligos for Erk (Erk1 #L-003592-00 and 

Erk2 #L-03555-00) were obtained from Dharmacon (Lafayette, CO). They were 

transfected into cells using Dharmafect 1 following the manufacturers’ protocol. In brief, 

cells were plated in 6-well plates to reach 50% confluence before transfection for 12-16 

hours with specific siRNA (100 pmole) and Dhamafect 1 (4 µL). The transfected cells 

were cultured in complete medium for approximately 48 hours before experiments.  
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Quantitative PCR Total cellular RNA was isolated using Trizol (Invitrogen). 

Complementary DNA (cDNA) was synthesized from RNA (1 µg, random primers) using 

the High-Capacity cDNA Reverse Transcription Kit from Applied Biosystems. The 

relative levels of individual LPA receptors were determined using gene specific probes, 

the TaqMan Universal PCR Master Mix and the 7900HT Fast Real-Time PCR System 

(Applied Biosystems). 

 

Statistics All numerical data were presented as mean ±
 
SD from at least 3 independent 

experiments. The statistical significance of differences was analyzed
 
using Student's t test 

where p<0.05 was considered statistically
 
significant. 

 

2.3 Results 

2.3.1 Induction of p21 by LPA in TGFβ-sensitive breast and ovarian cancer cells 

It has been well documented that LPA regulates expression of cytokines, 

angiogenic factors and many other proteins involved in tumorigenesis and cancer 

metastasis (Fang et al 2004, Oyesanya et al 2008, Song et al 2009). In contrast to these 

oncogenic mediators, we also found that in a subset of breast and ovarian cancer cell lines, 

LPA up-regulates expression of p21, an inducible inhibitor of CDKs. As shown in Fig. 

2.1A, in the MDA-MB-231 breast carcinoma cells and the Caov-3 ovarian carcinoma 

cells, LPA stimulated p21 expression in a time-dependent manner. Following addition of 



30 
 

10 µM LPA to serum-starved cells, p21 protein was induced at 1 hour. The p21 protein 

levels reached the maximum by 4 hours. Similarly, LPA also induced upregulation of p21 

mRNA in these two cell lines (Fig. 2.1B).  

 

 

 

 

 

The p21 protein inhibits activity of cyclin-CDK2 or cyclin-CDK4 complexes to 

block cell cycle progression at G1 phase (Brugarolas et al 1999). In addition, p21 can 

bind to proliferating cell nuclear antigen thereby blocking DNA synthesis (Waga et al 

Figure 2.1. LPA-induction of p21 in TGFβ-sensitive breast and ovarian cancer cells. 

A. MDA-MB-231 cells and Caov-3 cells were starved in serum-free medium and 

treated with LPA (10 µM) for the indicated periods of time. The cells were lysed with 

SDS sample buffer and expression of p21 protein was examined by immunoblotting. 

B. MDA-MB-231 cells and Caov-3 cells were treated with LPA (10 μM) for 1 hour. 

Cells were lysed with TRIzol and RNA was isolated as described in Materials and 

Methods. The p21 mRNA levels were normalized to the untreated sample (untreated 

sample as 1). In this and following figures, data is presented as mean ± SD, the 

statistical significances of the data were indicated with * if p<0.05, or ** if p<0.01.  
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1994). Paradoxically, p21 has been also reported to stabilize interactions between 

CDK4/CKD6 and D-cyclins thus promoting the formation of active complexes in a 

concentration-dependent manner (Giacinti and Giordano 2006). Although modest levels 

of p21 may promote assembly of active cyclin-CDK complex (Cheng et al 1999), 

excessive expression of p21 generally causes cell cycle arrest. In our hands, the induction 

of p21 by LPA was not associated with growth inhibition. Instead, LPA treatment led to 

increased proliferation in MDA-MB-231 and Caov-3 cells (see Fig. 2.8) as well as in 

other breast and ovarian cancer cell lines in which LPA did not trigger p21 expression 

(Fig. 2.2).  

 

 

 

 

Figure 2.2. Correlation between LPA-mediated p21 induction and sensitivity to TGFβ 

mediated cytostasis. Various breast and ovarian cancer cell lines in 6-well plates were 

incubated for 48 hours in complete medium with or without TGFβ (2.5 ng/ml). Cell 

numbers were quantified with a Coulter counter. The induction of p21 protein by LPA 

in these cell lines was examined by immunoblotting as described in Fig. 2.1. 
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In an effort to understand the biological significance of LPA-mediated p21 

induction, we noticed surprisingly that LPA stimulated p21 expression only in cell lines 

sensitive to the TGFβ-induced growth arrest but not in cells refractory to TGFβ. As 

demonstrated in Fig. 2.2, treatment of MDA-MB-231 and Caov-3 cells with TGFβ (2.5 

ng/ml) for 48 hours resulted in a significant decrease in cell numbers compared to control 

cells cultured in the absence of TGFβ. In contrast, TGFβ did not inhibit the growth of cell 

lines such as BT-549, SK-BR-3, OVCA-432 and SKOV-3 in which LPA did not induce 

p21 (Fig. 2.2). 

 

2.3.2 Correlation of LPA and TGFβ induction of p21  

We next explored the possibility that LPA-driven p21 expression modulates the 

sensitivity of breast and ovarian cancer cells to TGFβ. Coincidently, the effect of TGFβ 

on p21 expression was identical to that of LPA in these breast and ovarian cancer cells. 

As shown in Fig. 2.3, TGFβ induced p21 expression at significant levels only in MDA-

MB-231 and Caov-3 cells but not in TGFβ-resistant lines in which LPA failed to induce 

p21 (Fig. 2.3).  
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The loss of p21 inducibility by TGFβ could be due to abnormalities in TGFβ 

receptors or the TGFβ intracellular signaling through Smads. It is well known that TGFβ 

superfamily ligands bind to a TβRII, which recruits and phosphorylates a TβRI. TβRI 

then phosphorylates receptor-regulated Smads (R-Smad) such as Smad2 and Smad3, 

which then bind to the common mediator Smad (co-Smad). R-Smad forms heterodimeric 

complexes with co-Smads and accumulates in the nucleus where the complexes 

participate in regulation of TGFβ target genes involved in growth control (Siegel and 

Massague 2003). As shown in Fig. 2.3, TGFβ induced phosphorylation of Smad3 in all 

breast and ovarian cancer cell lines examined, irrespective of their status of TGFβ 

sensitivity. To further confirm the presence of the intact TGFβ signaling in these cells, we 

examined TGFβ induction of another TGFβ target gene Plasminogen activator inhibitor-1 

(PAI-1). Upon treatment of TGFβ, all cell lines showed increased expression of PAI-1 

Figure 2.3. p21 induction was only found in TGFβ sensitive cells. Breast and ovarian 

cancer cell lines in complete medium were treated for 6 hours with or without TGFβ 

(2.5 ng/ml) before lysis with SDS sample buffer. Expression of p21 protein and 

phosphorylated Smad3 was analyzed by immunoblotting. 
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mRNA (Fig. 2.4). This suggests that both TGFβ-sensitive and resistant cells maintain 

functional TGFβ receptors and the Smad3 signal transducer.  

 

 

 

2.3.3 Input of LPA signaling in TGFβ-induced p21 expression 

Because phosphorylation of Smad3 by TGFβ was observed in both TGFβ-

sensitive and resistant cells, p21 induction by TGFβ seems to involve signaling routes 

other than the canonical Smad pathway in these cells. In addition, both MDA-MB-231 

Figure 2.4. Induction of TGFβ target gene PAI-1 in resistant cells. 

Breast and ovarian cancer cell lines in complete medium were treated 

for 2 hours with or without TGFβ (2.5 ng/ml) before lysis with TRIzol. 

PAI-1 mRNA level was determined by qPCR using TaqMan probe. 
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and Caov-3 carry mutant p53 (Hui et al 2006, Yaginuma and Westphal 1992). TGFβ-

induced p21 expression in these cells is apparently mediated by a p53-independent 

process. We therefore examined the possibility that LPA contributes to TGFβ-induced 

p21 expression in the TGFβ-sensitive MDA-MB-231 and Caov-3 cells. When these cells 

were cultured in serum-free medium, TGFβ stimulated only weak to modest levels of p21 

(Fig. 2.5A). The maximal p21 induction by TGFβ was seen when the cells were 

incubated in complete medium containing FBS (Fig. 2.5A), a condition in which the 

effects of TGFβ on cell proliferation and p21 expression were assessed in earlier 

experiments (Fig. 2.2). Serum itself induced p21 expression in MDA-MB-231 and Caov-

3 cells. This suggests that induction of p21 by TGFβ that we had observed resulted from 

a combined action of TGFβ and a co-factor present in serum.  

LPA is a prominent serum-borne factor responsible for many biological activities 

of serum (Moolenaar 1999). To determine whether LPA reproduces the action of serum 

in concert with TGFβ to maximize p21 induction, we examined the effect of LPA and 

TGFβ on p21 expression in MDA-MB-231 and Caov-3 cells. Indeed, p21 induction was 

maximized when both LPA and TGFβ were present (Fig. 2.5B). We also assessed other 

serum factors such as sphingosine 1 phosphate (S1P) and insulin for their ability to 

regulate p21 expression (Hiromura et al 2002, Kim et al 2004). In contrast to LPA, S1P 

and insulin did not increase p21 expression. Nor did S1P and insulin potentiate the effect 

of TGFβ on p21. Taken together, these results suggest that a significant input of TGFβ-

induced p21 is attributable to the action of LPA, which likely underlies the sensitivity of 

breast and ovarian cancer cells to TGFβ. 
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2.3.4 Role of p21 in mediating the cytostatic response to TGFβ 

To confirm an essential role for p21 in mediating the TGFβ response, we used 

siRNA to knockdown p21 expression in the TGFβ sensitive MDA-MB-231 and Caov-3 

cells. As shown in Fig. 2.6A, suppression of p21 induction by siRNA converted these 

Figure 2.5. Input of LPA action in TGFβ-mediated p21 induction. A. MDA-MB-231 

and Caov-3 cells were serum starved and stimulated for 6 hours with TGFβ (2.5 

ng/ml), FBS (5%), or TGFβ+FBS. Expression of p21 in these cells was assessed by 

immunoblotting. B. MDA-MB-231 and Caov-3 cells were treated and analyzed as 

described in A except that FBS was replaced with LPA (10 µM).  
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cells into a resistant phenotype. The p21 knockdown cells became insensitive to the 

inhibitory effect of TGFβ, confirming that p21 induction is indeed a key component of 

TGFβ-induced cytostasis in breast and ovarian cancer cells.  

If the p21 inducibility distinguishes TGFβ-sensitive cells from resistant ones, we 

assume that the resistant cells could be rendered sensitive to TGFβ when p21 is induced 

somehow by other p21 stimuli. To test this possibility, we took advantage of the fact that 

phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA) induces expression of p21 in 

cancer cells (Salabat et al 2006). We treated the TGFβ-resistant cell lines with TGFβ 

alone or TGFβ and TPA (0.1 µM). The presence of TPA led to induction of high and 

sustained expression of p21 while the cells treated with TGFβ alone did not show p21 

expression (Fig.2.6B). Treatment with TPA was not associated with inhibition of cell 

proliferation as shown in Fig. 2.6B, suggesting that p21 induced by TPA was not 

sufficient to affect cell growth without TGFβ. However, the presence of TPA-induced 

p21 expression enables TGFβ to suppress growth of these otherwise TGFβ-resistant cells, 

consistent with the importance of p21 in mediating TGFβ sensitivity (Fig. 2.6B). To 

confirm that the growth inhibitory effect was due to the presence of p21 not the apoptotic 

effect of TPA, we performed annexin V staining on TGFβ or TGFβ+TPA treated BT-549 

and OVCA-432 cells. No significant increase of apoptosis was observed with the 

presence of TPA (Fig. 2.7). 

 

 



38 
 

 

 

 

 

 

 

Figure 2.6. Essential role of p21 in the cytostatic response to TGFβ. A. The TGFβ-

sensitive cells lost sensitivity to TGFβ following siRNA knockdown of p21 

expression. MDA-MB-231 and Caov-3 cells in 6-well plates were transfected with 

control or p21 siRNA. The cells were treated for 48 hours with or without TGFβ (2.5 

ng/ml) before quantification of cell numbers with a Coulter counter. Efficiency of p21 

siRNA knockdown was confirmed by immunoblotting. B. TGFβ resistant cell lines 

gained sensitivity to TGFβ following TPA induction of p21. BT-549 and OVCA-432 

in 6-well plates were treated for 48 hours with or without TGFβ in the presence of 

TPA (0.1 µM) or vehicle before quantification of cell numbers. Expression of p21 in 

these cells treated with TGFβ, TPA or TGFβ+TPA was analyzed by immunoblotting. 
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2.3.5 p21-dependent inhibition of LPA-driven cell proliferation by TGFβ  

LPA stimulated p21 expression in MDA-MB-231 and Caov-3 cells (Fig. 2.5B). 

However, in spite of the robust and sustained induction of p21, LPA is mitogenic towards 

these cells. To determine whether TGFβ is able to block the mitogenic effect of LPA, we 

compared the growth of MDA-MB-231 and Caov-3 cells incubated with LPA in the 

absence or presence of TGFβ. Fig. 2.8A shows that TGFβ effectively inhibits cell number 

increases stimulated by LPA. Moreover, siRNA knockdown of p21 expression resulted in 

resistance of these cells to TGFβ (Fig. 2.8B), confirming an essential role for p21 in 

TGFβ repression of LPA-induced cell proliferation. In TGFβ-resistant breast and ovarian 

Figure 2.7. TPA treatment has no effect in cell apoptosis. BT-549 and OVCA-432 

cells treated with TGFβ or TPA+TGFβ for 48 hours. Cells were analyzed for apoptosis 

using vibrant Apoptosis Kit #3 (Invitrogen) to stain apoptotic cells with fluorescence-

conjugated Annexin V. 
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cancer cell lines, LPA also acted as a mitogen. The mitogenic activity of LPA, however, 

was not affected by TGFβ, consistent with the lack of induction of p21 by LPA, TGFβ or 

LPA and TGFβ in these cells.  
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Figure 2.8. p21-dependent inhibition of LPA-induced cell proliferation by TGFβ. A. 

TGFβ inhibits LPA-afforded cell proliferation. MDA-MB-231 and Caov-3 cells in 6-

well plates were incubated with LPA (10 µM) or vehicle (BSA) in the presence or 

absence of TGFβ (2.5 ng/ml). B. The growth inhibitory effect of TGFβ depends on 

p21 induction. MDA-MB-231 and Caov-3 cells were transfected with control or p21 

siRNA as described in Figure 4. The cells were treated with LPA in the presence or 

absence of TGFβ. The cell numbers presented in both panels were determined after 48 

hours. Efficiency of p21 siRNA knockdown in transfected cells was analyzed by 

immunoblotting as shown in Fig. 2.5A. 
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2.3.6 Mechanisms for LPA induction of p21 

Ovarian and breast cancer cells express multiple LPA receptors including LPA1, 

LPA2, LPA3 and LPA5 as described previously (Fang et al 2002, Finak et al 2008, Liu et 

al 2009). Expression of the LPA4 and LPA6 receptors was very low in the breast and 

ovarian cancer lines. We thus used siRNA to knockdown expression of LPA1, LPA2, 

LPA3 or LPA5. The cells treated with LPA were then examined for p21 protein 

expression. LPA-induced p21 was drastically reduced by downregulation of LPA1 or 

LPA2 (Fig. 2.9). Knockdown of LPA3 or LPA5 did not attenuate the effect of LPA on p21 

expression. Therefore, we conclude that LPA-stimulated p21 expression in MDA-MB-

231 and Caov-3 cells occurs through the LPA1 and LPA2 receptors.  

 

 

 



43 
 

 

 

 

 

 

LPA induced strong and sustained activation of Erk in MDA-MB-231 and Caov-3 

cells (Fig. 2.10) (Du et al 2010, Oyesanya et al 2010). When Erk1 and Erk2 were silenced 

by siRNAs, LPA induction of p21 was blocked (Fig. 2.10A), indicating that the Erk 

pathway is linked to activation of p21 expression in response to LPA. In contrast to Erk, 

PI3K was dispensable for LPA-induced p21 induction because its inhibitor LY-294002 

did not attenuate the effect of LPA on p21 expression. 

Figure 2.9. LPA1 and LPA2 are responsible for LPA stimulation of p21. MDA-MB-

231 and Caov-3 cells were transfected with specific siRNA for LPA1-3, LPA5 or non-

target control siRNA. The cells were serum starved and stimulated with LPA (10 µM) 

before immunoblotting analysis of p21 protein expression. The efficiency of 

knockdown of individual LPA receptors was examined by RT and quantitative PCR as 

described in Materials and Methods. The mRNA levels of LPA receptors were 

presented as percentages relative to those in the control siRNA-transfected cells 

(defined as 100%). 
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Erk couples directly or indirectly to diverse downstream effectors and 

transcription factors that could culminate in p21 expression. We used siRNA to screen for 

transcription factors required for LPA-induced p21 expression including AP-1, Sp1, NF-

κB and C/EBPβ. In this group of transcription factors, C/EBPβ was found to be critical to 

the p21 induction. Knockdown of C/EBPβ expression prevented LPA-induced p21 

expression (Fig. 2.10B). Finally, inhibition of Erk activity with the MEK inhibitor 

PD98059 prevented C/EBPβ phosphorylation and the subsequent p21 induction in LPA-

treated MDA-MB-231 and Caov-3 cells (Fig. 2.10C). These findings demonstrate that 

LPA stimulates p21 expression through the LPA1/2-Erk-C/EBPβ signaling network.  
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Figure 2.10. Induction of p21 by LPA through the LPA1/LPA2-Erk-C/EBPβ pathway. 

A. Knockdown of Erk1/2 blocks LPA induction of p21. MDA-MB-231 and Caov-3 

cells were transfected with Erk siRNAs or non-target control siRNA. The cells were 

stimulated for 6 hours with LPA (10 µM) followed by immunoblotting analysis of 

p21, Erk and tubulin proteins. B. C/EBPβ was critical for LPA induction of p21. 

MDA-MB-231 and Caov-3 cells were transfected with control or C/EBPβ siRNA. The 

transfected cells were treated for 6 hours with LPA and analyzed for p21 and C/EBPβ 

protein expression. C. MDA-MB-231 and Caov-3 cells were serum starved and then 

treated with LPA (10 µM) in the presence of PD98059 (30 µM) or vehicle (DMSO). 

PD98059 was added 1 hour before LPA. Cells were then lysed at indicated time 

points. Levels of phospho-Erk1/2, p21 and phospho-C/EBPβ were examined by 

immunoblotting.  
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2.4 Discussion 

TGFβ-mediated cytostasis is induced, at least in part by Smad-dependent 

activation of TGFβ target genes involved in cell cycle control, primarily CDK inhibitors 

p15, p21 and p27. In addition, TGFβ activation of Smad represses expression of proteins 

that promotes cell cycle progression including c-Myc, Id1, Id2, E2F, and Sp-1 (Feng et al 

2000, Massague 2004). These TGFβ-induced cytostatic transcriptional programs, 

however, are subverted in a majority of cancers, leading to cytostatic resistance to TGFβ 

(Barcellos-Hoff and Ewan 2000). In addition to genetic and epigenetic aberrations in 

TGFβ receptors or Smad proteins, emerging data suggests that in most malignancies, 

abrogation of TGFβ-induced growth arrest is mediated by abnormal expression or 

function of intracellular proteins implicated in Smad regulation of its target genes 

(Massague 2008). In theory, environmental cues that influence expression or activity of 

Smad, Smad regulatory circuits or Smad responsive genes could also alter cellular 

responses to TGFβ. However, there have been few studies to analyze potential crosstalk 

between extracellular factors such as LPA and TGFβ-Smad to regulate the 

responsiveness of cancer cells to TGFβ.  

Using breast and ovarian cancer cells as a model system, we demonstrated that 

LPA upregulates expression of the prototype Smad target gene p21, contributing to the 

TGFβ-mediated growth inhibition. The conclusions were summarized as a model shown 

in Fig. 2.11. In these cells, the ability of LPA to stimulate p21 expression correlated well 

with TGFβ induction of p21 and the cytostatic effect of TGFβ. By means of induction 

and suppression of p21 expression in TGFβ-resistant and sensitive cells, we could reverse 



47 
 

the cellular responses to TGFβ confirming an essential role of p21 in mediating the 

cytostatic response to TGFβ. Previous studies in breast and ovarian cancer cells also 

supported the involvement of p21 as a key mediator of TGFβ-induced growth inhibition 

(Massague 2004). 

  

 

Figure 2.11. Working model: LPA induced p21 mediates response of breast and 

ovarian cancer cells to TGFβ. Induction of p21 from the LPA1/2-ERK-C/EBPβ 

pathway is required for cells to respond to TGFβ mediated cytostasis. P: phosphate, 

yellow oval: Smad3, blue oval: Smad4. 
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Another observation in ovarian cancer indicates that abrogation of TGFβ induced 

growth arrest is associated with overexpression of FoxG1, a negative regulator of p21 

expression (Chan et al 2008). Therefore, p21 seems to be a general mediator of TGFβ-

induced growth arrest in multiple types of cancer cells. The findings of the present work 

highlight the possibility that the sensitivity to TGFβ in breast and ovarian cancer cells 

could be reconstituted through upregulation of p21 expression. It will be of interest to 

develop and test agents that can specifically activate p21 expression or stabilize p21 

protein in cancer cells.  

An interesting finding in the current study is that p21 induction in TGFβ sensitive 

cells is accomplished through cooperative effects of TGFβ and the serum-borne factor 

LPA. A significant input of p21 expression is evoked from LPA activation of its 

receptors, namely LPA1 and LPA2. Using molecular and pharmacological approaches, we 

further demonstrated that LPA upregulates p21 expression in TGFβ responsive cells 

through the Erk-C/EBPβ signaling pathway. We have previously shown that C/EBPβ is a 

transcription factor activated by LPA which accounts for LPA-induced expression of 

Cox-2 and sphingosine kinase 1 in various cancer cells (Oyesanya et al 2008, 

Ramachandran et al 2010). The results in the present work links C/EBPβ to the induction 

of p21 by LPA in TGFβ growth arrest program in breast and ovarian cancer cells, 

suggesting a general role for this transcription factor in regulation of LPA target genes. 

Consistent with their resistance to TGFβ, the stimulatory effect of LPA on p21 was not 

seen in most breast and ovarian cancer cell lines. The differential effects of LPA on p21 

in different cell lines are not fully understood but could be due to distinct expression 
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patterns of LPA receptors in these cells. The receptor knockdown experiments in the 

TGFβ-sensitive MDA-MB-231 and Caov-3 cells indicated that both LPA1 and LPA2 

receptors are required for induction of p21 by LPA. Among the TGFβ-resistant cell lines, 

SKOV-3 and BT-549 express low levels of LPA2 (Chen et al 2007, Fang et al 2004) and 

OVCA-432 exhibits elevated LPA3 (Fang et al 2004). It is conceivable that co-expression 

of two or more receptors at appropriate levels is important for optimal induction of p21 

by LPA. Alternatively, it is also possible that certain LPA receptors including the 

conventional LPA3, novel LPA receptor subtypes and other unknown LPA receptors 

could be present in the resistant cells and function as negative regulators of certain 

biological functions of LPA.  
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CHAPTER 3 

 

THE LYSOPHOSPHATIDIC ACID RECEPTOR 1 IS A NOVEL TARGET GENE 

OF TRANSFORMING GROWTH FACTOR BETA 

 

 

3.0 Abstract 

LPA1/Edg2 is the first identified LPA receptor. Although its wide tissue 

distribution and biological functions have been well studied, little is known about how 

LPA1 is transcriptionally regulated. In this part of my dissertation, I showed that LPA1 is a 

physiological target of transforming growth factor beta (TGFβ)-mediated repression. In 

both normal and neoplastic cells, TGFβ inhibits LPA1 promoter activity, LPA1 mRNA 

expression, and LPA1-dependent chemotaxis and tumor cell invasion. Knockdown of the 

TGFβ intracellular effector Smad3 or Smad4 with lentivirally transduced shRNA relieved 

these inhibitory effects of TGFβ. Interestingly, the LPA1 promoter contains two potential 

TGFβ inhibitory elements (TIEs), each consisting of a Smad binding site and an adjacent 

E2F4/5 element, structurally similar to the TIE found on the promoter of the well-defined 

TGFβ target gene c-Myc. Deletion and point mutation analysis indicate that the distal TIE 
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located at 401 bp from the transcription initiation site, is required for TGFβ repression of 

the LPA1 promoter. A DNA pull-down assay showed that the -401 TIE was capable of 

binding Samd3 and E2F4/5 in TGFβ-treated cells. The binding of the Smad complex to 

the native -401 TIE sequence of the LPA1 gene promoter was further verified by 

chromatin immunoprecipitation assays. We therefore identified a novel role of TGFβ in 

the control of LPA1 expression and LPA1-coupled biological functions, adding LPA1 to 

the list of TGFβ-repressed target genes. 

 

3.1 Introduction 

LPA is a naturally occurring intercellular mediator of diverse biological processes 

including neurogenesis, angiogenesis, wound healing, immunity, and carcinogenesis 

(Panupinthu et al 2010). LPA is produced by activated platelets during coagulation and 

thus is a normal constituent of serum (Sano et al 2002). LPA is a ligand of multiple G 

protein-coupled receptors (GPCRs) (Fukushima and Chun 2001). The LPA1/Edg2, 

LPA2/Edg4 and LPA3/Edg7 receptors are members of the endothelial differentiation gene 

(Edg) family, sharing 50-57% homology in their amino acid sequences. In addition to the 

Edg LPA1-3 receptors, GPR23/P2Y9/LPA4 of the purinergic receptor family, the related 

GPR92/LPA5, and P2Y5/LPA6 have been reported to be additional LPA receptors 

(Fukushima and Chun 2001).  

LPA1 is expressed in most adult tissues and in embryonic cells. Only minor 

abnormalities such as craniofacial dysmorphism and defective sucking behavior were 
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found in lpa1-deficient mice (Contos et al 2000a). However, more recent studies of lpa1 

null mice subjected to various pathophysiological conditions revealed that LPA1 is 

involved in initiation of neuropathic pain (Inoue et al 2004), embryonic and adult 

neurogenesis and promotion of pulmonary and renal fibrosis (Pradere et al 2007, Tager et 

al 2008). Some of these biological functions of LPA1 are attributed to the motility-

stimulating activity of LPA in mammalian cells. Substantial evidence indicates that LPA1 

is the primary LPA receptor subtype to mediate LPA-dependent chemotaxis and tumor 

cell invasion. In contrast to the LPA2 receptor that is commonly overexpressed in various 

cancers, gene expression profiling studies failed to show any consensus increase in LPA1 

expression between normal and malignant cells (Hendrix et al 2006, Radvanyi et al 2005, 

Sanchez-Carbayo et al 2006, Skrzypczak et al 2010, Su et al 2007). Instead, some 

expression profiling or array analyses suggest decreases in LPA1 mRNA expression in 

various malignancies (Hendrix et al 2006, Sanchez-Carbayo et al 2006, Shida et al 2004b, 

Skrzypczak et al 2010, Su et al 2007).  

More intriguingly, several groups recently reported that LPA1 expression is 

repressed by Nm23 (Horak et al 2007b, Marshall et al 2010). Nm23 is the first identified 

metastasis suppressor gene that, by definition, inhibits the process of metastasis but not 

growth of primary tumors (Marshall et al 2010). In human breast carcinomas, LPA1 

expression inversely correlated with that of Nm23 (Horak et al 2007b). However, little is 

known about how Nm23 represses LPA1. Furthermore, there is no evidence that LPA1 

expression is elevated in metastatic cancer compared to primary tumors. Thus, LPA1 

expression is apparently controlled by complex regulatory mechanisms involving other 
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unrecognized activators or repressors. In the present study, we showed for the first time 

that TGFβ, a platelet-derived cytokine co-present with LPA in the circulation and tumor 

microenvironments, represses LPA1 gene transcription and LPA1-dependent motility-

stimulating activity via a TGFβ inhibitory element (TIE) containing both Smad and 

E2F4/5 binding sites on the LPA1 gene promoter. These results represent a novel form of 

crosstalk between TGFβ and LPA signaling. 

 

3.2 Materials and Methods 

Materials LPA (1-oleoly, 18:1) was obtained from Avanti Polar Lipids, Inc. (Alabaster, 

AL). Prior to use, LPA was dissolved in PBS containing 0.5% fatty acid-free bovine 

serum albumin (BSA) obtained from Roche (Indianapolis, IN). TGFβ was obtained from 

PeproTech Inc (Rocky Hill, NJ). Anti-Smad3 and Smad4 antibodies were from Abcam 

(Cambridge, MA). Tubulin α/β antibody was obtained from Cell Signaling (Danvers, 

MA). Anti-E2F4 antibody was from Santa Cruz Biotech (Santa Cruz, CA). FBS was 

obtained from Atlanta Biological (Atlanta, GA). All primers were synthesized by Operon 

Biotechnologies, Inc. (Huntsville, AL). Biotinylated dsDNA were synthesized by IDT 

(Coralville, IA). TRIzol and cell culture reagents were obtained from Invitrogen Inc. 

(Carlsbad, CA). Reverse transcription kit, TaqMan gene expression assays, SYBR Green 

PCR mix and QPCR master mix were obtained from Applied Biosystems (Carlsbad, CA). 

The transfection reagent LT1 was obtained from Mirus (Madison, WI). Plasmid DNA 

was purified using the endo-free purification kit from Qiagen (Valencia, CA). 
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Cell Culture MDA-MB-231 was provided by Dr. S Spiegel (Virginia Commonwealth 

University) and was maintained in Dulbecco modified Eagle medium (DMEM) with 10% 

FBS and 100 U/ml penicillin and 100 µg/ml streptomycin). IOSE-29 was originally 

obtained from Dr. N. Auersperg (University of British Columbia, Canada) and cultured 

as described previously (Auersperg et al 1994). Primary Mammary epithelial cells (1001-

8) and primary ovarian epithelial cells (NOE-71) were provided by Dr. Y. Yu (MD 

Anderson Cancer Center) and were cultured in HuMEC Ready Medium (Invitrogen) and 

50:50 M199/F12 medium with 10% FBS, 20 ng/ml EGF and gentamicin (10 µg/ml), 

respectively. MCF-10A was provided by Dr. D. Gewirtz (Virginia Commonwealth 

University) and kept in DMEM/F12 medium with 5% horse serum, 10 μg/ml insulin, 20 

ng/ml EGF, 100 ng/ml cholera toxin and 0.5 μg/ml hydrocortisone. Other cancer cell 

lines used in the study were cultured in RPMI 1640 supplemented with 10% FBS and 

antibiotics as we described previously (Fang et al 2004).  

 

Migration and invasion assays Cell migration was measured using the Transwell 

chambers (Costar, Corning, NY). Transwell were coated with 10 µg/ml Type I collagen 

and placed in the lower chamber containing serum-free medium supplemented with 

vehicle, TGFβ, LPA or LPA+TGFβ. Cells suspended in serum-free medium containing 

0.01% fatty acid-free BSA were added to the upper chamber at 2 × 10
4
 cells/well. Cells 

were allowed to migrate for 6 hours at 37°C. Non-migrated cells were removed from the 

top filter surface with a cotton swab. Migrated cells attached to the underside of the 

Transwell were washed with PBS and stained with crystal violet and counted under a 



55 
 

microscope. The invasion of tumor cell lines was measured using the growth factor–

reduced Matrigel invasion chambers (BD Biosciences, San Jose, CA). The assays were 

performed as migration assays except that the cells were incubated for 20 hours.  

 

shRNA short hairpin RNA (shRNA)-expressing lentivirus constructs were generated 

using pLV-RNAi vector (Biosettia, San Diego, CA). The Smad3 target sequences 

(Smad3sh1 GTGA-CCACCAGATGAACCA (Blount et al 2008), Smad3sh2 

GGATTGAGCTGCACCTGAATG (Jazag et al 2005) and Smad4 target sequences 

(Smad4sh1 GCAGGTGGCTGGTCGGAAA (Giampieri et al 2009), Smad4sh2 

GCCAGCTACTTACCATCATA (Deckers et al 2006)) were inserted to the pLV-RNAi 

plasmid following the manufacturer’s protocol. The LPA1 shRNA plasmids were 

obtained from Dr. S. Huang (Medical College of Georgia). The shRNA lentiviruses were 

propagated in 293FT cells. The culture supernatants were used to infect cancer cell lines. 

The GFP-positive cells were sorted out using flow cytometer proximately a week after 

virus infection.  

 

Quantitative PCR (qPCR) Total cellular RNA was isolated using Trizol (Invitrogen). 

Complementary DNA (cDNA) was synthesized from RNA (1 µg, random primers) using 

the High-Capacity cDNA Reverse Transcription Kit from Applied Biosystems. The 

relative levels of individual LPA receptors were determined using gene specific probes, 

the TaqMan Universal PCR Master Mix and the 7900HT Prism Real-Time PCR System 
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(Applied Biosystems). 

 

Luciferase vectors, deletion, and site-directed mutagenesis The luciferase reporter 

vector pGL2-LPA1-Luc containing -1156 to +86 was generated by PCR amplification of 

the LPA1 promoter sequence (forward 5’-GCACTCGAGTGCAAAGCT-

ACACTGGGAAA-3’, reverse 5’-GCAAAGCTTCACACTCTCACTGGCACTCG-3’). 

The PCR product was inserted into pGL2-Basic-Luc at XhoI and HindIII sites. The 

deletion mutant (-366 to +86) was made by PCR amplification of the fragment from 

pGL2-LPA1-Luc (forward 5’-GCACTCGAGCTGACGCTCCCTGAGTGG-3’, reverse 

5’-GCAAAGCTTCACACTCTC-ACTGGCACTCG-3’) and re-inserted into the pGL2-

Basic-Luc at the XhoI and HindIII sites. The promoter sequences in these plasmids were 

verified by automatic sequencing. The -401 and -40 TIE consensus sites within pGL-

LPA1-Luc were converted into inactive sequences by site-directed mutagenesis. The wild 

type -401 TIE 5’-GGCTTTGGCGCG and wide type -40 TIE 5’-GGCTTCGCGC were 

converted into 5’-GGCTAATTCGCGC and 5’-GGCAATTCGCC, respectively. For 

luciferase assays, MDA-MB-231 and SKOV-3 were transfected with luciferase vectors 

using TransIT-LT1 (Mirus Bio). About 48 to 60 hours after transfection, the cells were 

treated with TGFβ or vehicle for 16-20 hours. Cell extracts were prepared and assayed 

for luciferase activity using the luciferase assay kit from Promega. 

 

DNA pull-down assay Lysates of MDA-MB-231 and SKOV-3 cells were prepared by 
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brief sonication in the HKMG buffer (10 mM, Tris-HCl, pH 7.9, 100 mM KCl, 5 mM 

MgCl2, 10% glycerol, 1 mM DTT, 0.1% NP40 and protease inhibitors) using the Fisher 

Scientific Sonic Dismembrator Model 100, followed by 10 minutes of centrifugation at 

12,000 × g at 4 °C. Cellular proteins (400 µg) were incubated with 4 µg of biotinylated 

double-stranded oligonucleotides (5’-CCCTACTGCCCGGCTTTGGCGCGCTGG-

CAGGAGGAG–biotin) for 16 hours at 4 °C. The M-280 Streptavidin Dynabeads 

(Invitrogen) (30 µl) were added to each sample and incubated for another hour at 4 °C. 

The Dynabeads were washed three times with PBS before western analysis of Smad3 or 

E2F4.  

 

Chromatin immunoprecipitation (ChIP) assay TGFβ or vehicle-treated MDA-MB-231 

and SKOV-3 cells were cross-linked with 1% formaldehyde for 10 minutes at room 

temperature. The cells were lysed for 10 minutes in ice-cold lysis buffer (5 mM HEPES, 

pH 8.0, 80 mM KCl, 1% NP40 and protease inhibitors). The nuclear fraction that was 

recovered by centrifugation (5 minutes at 5000 × g) was resuspended in a ChIP assay 

buffer (50 mM HEPES, pH 8.0, 10 mM EDTA, 1% SDS, and protease inhibitors) and 

sonicated on ice to achieve an average chromatin length of 200-1000 bp. The sonicated 

samples were pre-cleared by incubation with Protein G Dynabeads (Invitrogen). The 

material recovered from the equivalent of 10
6
 cells was incubated for 16 hours at 4 °C 

with 2 μg of either normal rabbit IgG (Santa Cruz), anti-Smad3, Smad4 or E2F4 

antibodies. Protein G Dynabeads were added and incubated for 2 hours. The DNA-
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protein-beads mixes were washed sequentially once with a low salt buffer (20 mM Tris, 

pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton 100), once with a high salt 

buffer (20 mM Tris, pH 8.0, 500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton 100), 

once with LiCl buffer (10 mM Tris-HCl, pH 8.0, 0,25 M LiCl, 1 mM EDTA, 1% 

deoxycholate, 1% NP-40), and finally twice with TE buffer (10 mM Tris-HCl, pH 8, 1 

mM EDTA). The specifically bound complexes were eluted from the Protein G 

Dynabeads by incubation twice for 15 minutes at 65 °C with TE elution buffer (10 

mM Tris-HCl, pH 8, 1 mM EDTA, 1% SDS). The immunoprecipitated complexes and 

the starting material (input) were incubated overnight at 65 °C to reverse crosslinking, 

then treated with RNase A followed by proteinase K and purified using the QIAquick 

Spin Columns (Qiagen, Valencia, CA). The DNA samples were recovered in 100 μL H2O, 

and analyzed by qPCR using SYBR Green. Details of the primer used for qPCR were 

listed in Table 3.1. 

Table 3.1. Primers used in ChIP assays 

-401 Forward 5’-GTGCTACGTGGAACAAGCAG-3’ 

-401 Reverse 5’-GGCGGGACAGTGTGAGC-3’ 

-40 Forward 5’-AGCGAGCGCAGGTAAGG-3’ 

-40 Reverse 5’-GCACCCACACTCTCACTGG-3’ 

c-Myc TIE Forward 5’-TTATAATGCGAGGGTCTGGA-3’ 

c-Myc TIE Reverse 5’-TGCCTCTCGCTGGAATTACT-3’ 

 

Statistics All numerical data were presented as mean ±
 
SD from at least 3 independent 

experiments. The statistical significance of differences was analyzed
 
using Student's t test 

where p<0.05 was considered statistically
 
significant.  

http://www.jbc.org/cgi/redirect-inline?ad=Qiagen
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3.3 Results 

3.3.1 TGFβ inhibits expression of LPA1  

Previous studies showed that LPA stimulates production and release of TGFβ (Xu 

et al 2009), transactivates the intracellular effectors of TGFβ (Sauer et al 2004) or 

cooperates with TGFβ to regulate gene expression (Wu et al 2011). However, little is 

known about whether TGFβ communicates with LPA signal transduction to modify 

cellular responses to the multi-functional LPA. To explore this possibility, we treated the 

MDA-MB-231 breast carcinoma cell line and the SKOV-3 ovarian carcinoma cell line 

with TGFβ for 3 or 6 hours, and monitored changes in mRNA expression of LPA 

signaling molecules including various LPA receptors. Interestingly, the treatment resulted 

in 67% and 48% decreases in LPA1 mRNA levels in MDA-MB-231 and SKOV-3, 

respectively, as analyzed by RT and qPCR (Fig. 3.1A). TGFβ did not decrease expression 

of other known LPA receptors in these cells (Fig. 3.1B)  
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To generalize the observation of the inhibitory effect of TGFβ on LPA1, we 

examined a panel of breast, ovarian and other cancer cell lines, including BT-549, Caov-3 

and DOV-13. Treatment with TGFβ induced 30-67% decreases in LPA1 mRNA levels in 

these cell lines (Fig. 3.2A). Most of the cancer cell lines such as SK-BR-3, BT-549, 

SKOV-3 and DOV-13 were resistant to the growth inhibitory effect of TGFβ as we 

reported recently (Wu et al 2011). Thus, the inhibition of LPA1 expression by TGFβ was 

independent of the cytostatic program of TGFβ. In addition, TGFβ also downregulated 

expression of LPA1 in normal primary and immortalized epithelial cells such as primary 

Figure 3.1. TGFβ inhibits expression of LPA1 mRNA. A. MDA-MB-231 and SKOV-

3 cells were cultured with TGFβ (2.5 ng/ml) for 3 and 6 hours. LPA1 mRNA levels 

were examined by RT and qPCR as described in Materials and Methods. The mRNA 

levels of LPA1 in TGFβ treated cells were presented as percentages relative to those in 

untreated control cells (defined as 100%). B. MDA-MB-231 and SKOV-3 cells were 

treated with TGFβ (2.5 ng/ml) for 6 hours, LPA1, LPA2 and LPA3 mRNA levels were 

examined using specific TaqMan probes as described in A. 
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mammary epithelial cells (1001-8), primary ovarian epithelial cells (NOE-71), 

immortalized breast epithelial cell line MCF-10A, and immortalized ovarian surface 

epithelial cell line IOSE-29 (Fig. 3.2A). The only exception to the negative regulation by 

TGFβ was the DLD1 colon cell line. DLD1 was deficient in TβRII as reported previously 

(Markowitz et al 1995) and as evidenced by the inability of TGFβ to induce Smad3 

phosphorylation in this particular line (Fig. 3.2B). It is also worth noting that LPA1 was 

highly expressed in DLD1 cells (Lee et al 2008, Shida et al 2003), likely as a result of the 

absence of TGFβ-mediated repression. 

 

 

 

Figure 3.2. TGFβ inhibits expression of LPA1 mRNA in all cancer cells with intact 

TGFβ pathway. A. Multiple cancer cell lines, immortalized breast (MCF-10A) and 

ovarian (IOSE-29) epithelial cell lines, primary mammary (1001-8) and ovarian 

(NOE71) epithelial cells were treated for 6 hours with TGFβ (2.5 ng/ml) and analyzed 

for LPA1 mRNA expression as in Fig.3.1. C. All cell lines and primary cells were 

treated with TGFβ (2.5 ng/ml) for 1 hour before lysis with SDS sample buffer and 

immunoblotting analysis of Smad3 phosphorylated at Ser423/425.  
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3.3.2 TGFβ attenuates LPA1-dependent cell migration and invasion 

Since TGFβ represses LPA1 expression, we anticipated that TGFβ would 

attenuate LPA1-dependent actions of LPA. Although each of the Edg-family LPA 

receptors may contribute to promoting cell motility in certain cellular contexts, 

substantial evidence supports an essential and probably sufficient role for LPA1 in driving 

random migration, chemotaxis and tumor cell invasion (Hama et al 2004, Shida et al 

2003, Van Leeuwen et al 2003). In breast and ovarian cancer cell lines that we examined 

(MDA-MB-231, SKOV-3, and DOV-13), LPA stimulated a robust chemotactic response 

as analyzed by the transwell assay (Fig. 3.3A). LPA also promoted invasion of these cells 

through Matrigel (Fig. 3.3B).  
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Figure 3.3. TGFβ attenuates LPA1-dependent cell migration and invasion. A. The 

chemotactic responses to TGFβ (2.5 ng/ml), LPA (5 μM), or LPA+TGFβ in the breast 

cancer cell line MDA-MB-231, and the ovarian cancer cell lines SKOV-3 and DOV-

13 were measured by transwell chambers. The cells (2 x 10
4
 cells/well) were loaded to 

the upper wells and allowed to migrate for 6 hours. The migrated cells on the 

underside of the Transwell were stained with crystal violet, counted under a 

microscope and presented as numbers of cells/well. B. Cell invasion induced by TGFβ 

(2.5 ng/ml), LPA (5 μM), or LPA+TGFβ in MDA-MB-231, SKOV-3 and DOV-13 

cells was measured with the growth factor–reduced Matrigel invasion chambers. The 

experiment was performed as the migration assay in A except that the cells were 

allowed to invade for 20 hours. 
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In agreement with the crucial role of LPA1 in stimulation of cell motility, shRNA 

knockdown of the LPA1 receptor expression or pharmacological inhibition of LPA1 with 

Ki16425 blocked LPA-induced chemotaxis (Fig. 3.4A and B). On the other hand, TGFβ 

only weakly increased migration of MDA-MB-231, SKOV-3 and DOV-13 cells (Fig. 

3.3). This trend of increase in chemotactic migration towards TGFβ was not statistically 

significant. However, TGFβ was capable of stimulating modest but significant increases 

in invasion of SKOV-3 and DOV-13 cells (Fig. 3.3B). The ability of TGFβ to stimulate 

invasion of breast and ovarian cancer cell lines was much weaker than that of the potent 

motogen LPA.  
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Figure 3.4. Important role of LPA1 in mediating LPA induced cell migration. A. 

Expression of LPA1 in MDA-MB-231 and SKOV-3 cells was silenced with 

lentivirally transduced shRNA. The chemotactic migration of these stable knockdown 

cells and control cells induced by LPA (5 μM) was analyzed as described in Figure 

3.3A. D. LPA-induced migration of MDA-MB-231 and SKOV-3 cells was analyzed in 

the presence or absence of the LPA1/LPA3 specific antagonist Ki16425 (Ki) (10 μM).  
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When MDA-MB-231, SKOV-3 and Dov-13 cells were co-stimulated with both 

LPA and TGFβ, TGFβ significantly inhibited LPA stimulation of migration and invasion. 

We observed 30-50% decreases in migration and 60-80% decreases in invasion in the 

presence of LPA and TGFβ compared to the effects of LPA alone. Moreover, when pre-

treated MDA-MB-231 and SKOV-3 cells with 2.5 ng/ml TGFβ for 6 hours to achieve the 

downregulation of LPA1, followed by migration (Fig. 3.5A) and invasion (Fig. 3.5B) 

assay only using LPA as motogen, we observed similar reductions in cell migration and 

invasion comparing with vehicle treated control cells. In all cell lines we examined, the 

TGFβ mediated inhibition of invasion was more prominent than the effect of TGFβ on 

migration. This was likely due to the longer incubation of the cells with TGFβ during the 

invasion experiments. These data demonstrated that TGFβ repression of LPA1 expression 

was sufficient to impair LPA1-dependent cell migration and invasion. 
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Figure 3.5. TGFβ pre-treatment attenuates LPA1-dependent cell migration and 

invasion. A. MDA-MB-231 and SKOV-3 cells were treated with TGFβ (2.5 ng/ml) for 

6 hours. LPA (5 μM) was used to induce migration. Migration assays were performed 

as described in Figure 3.3. B. TGFβ (2.5 ng/ml) pre-treated cell invasion induced by 

LPA (5 μM) in MDA-MB-231 and SKOV-3 was measured with the growth factor–

reduced Matrigel invasion chambers. The experiment was performed as the migration 

assay in A except that the cells were allowed to invade for 20 hours. 
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3.3.3 TGFβ represses LPA1 expression and LPA1-dependent cell migration and 

invasion in a Smad-dependent manner 

Upon binding of TGFβ to its receptors, both Smad-dependent and Smad-

independent pathways are activated by the kinase activity of TβRs (Derynck and Zhang 

2003). Regulatory Smads (RSmads), such as Smad2 and Smad3, are phosphorylated by 

TβRs, and form heterodimers with the co-Smad, Smad4, to translocate to the nucleus 

where the Smad complex regulates transcription of target genes (Massague et al 2005). In 

addition, TGFβ activates TβR-associated proteins and other intracellular signaling 

pathways such as MAPK, PP2A/p70S6K, RhoA and TAK1/MEKK1 to elicit Smad-

independent responses to TGFβ (Seoane 2006). To elucidate the mechanism underlying 

TGFβ repression of LPA1, we examined the possibility for the participation of the Smad-

dependent pathway in the process. To this end, we first knocked down Smad3 expression 

in MDA-MB-231 and SKOV-3 cells using lentivirally transduced shRNA. Smad3, but 

not Smad2, was reported to be the R-Smad involved in binding to TIE to downregulate 

TGFβ target genes, most notably c-Myc (Chen et al 2002). Expression of Smad3 protein 

was efficiently silenced by Smad3 shRNA in these cell lines (Fig. 3.6A). The silencing of 

Smad3 expression eliminated the inhibitory effect of TGFβ on expression of LPA1 (Fig. 

3.6B).  
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To determine the role of Smad3 in TGFβ repression of LPA-driven cell motility, 

we performed migration and invasion assays in these cells. In Smad3 knockdown cells, 

TGFβ no longer inhibited LPA-driven cell migration (Fig. 3.7A) or invasion (Fig. 3.7B). 

These results suggest a Smad3-dependent mechanism to control LPA1 expression and 

LPA1-linked migration and invasion. In further support of this, Smad3 knockdown was 

accompanied by considerable increases in basal LPA1 mRNA levels (Fig. 3.6B) as well 

as in basal and LPA-induced cell migration and invasion (Fig. 3.7A and B). Likewise, 

shRNA knockdown of the co-Smad, Smad4 in these cells abrogated the inhibitory effects 

of TGFβ on LPA1 mRNA expression and LPA1-dependent cell migration (Fig. 3.8).  

Figure 3.6. TGFβ represses LPA1 in a Smad3-dependent manner. A. Expression of 

Smad3 in MDA-MB-231 and SKOV-3 cells was silenced with lentivirally transduced 

shRNA. The Smad3 protein levels in shRNA knockdown cells and control shRNA 

transduced cells were examined by immunoblotting. B. Smad3 shRNA and control 

shRNA-transduced MDA-MB-231 and SKOV-3 cells were treated with or without 

TGFβ (2.5 ng/ml) for 6 hours prior to RT and qPCR analysis of LPA1 mRNA levels.  
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Figure 3.7. Knockdown of Smad3 abolished the inhibitory effect of TGFβ in LPA-

induced cell motility. LPA-mediated chemotactic migration (A) and invasion (B) of 

control and Smad3 knockdown MDA-MB-231 and SKOV-3 cells were analyzed in 

the absence or presence of TGFβ (2.5 ng/ml). Data was presented as described in Fig 

3.3. 
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3.3.4 The LPA1 gene promoter contains two potential TIEs 

 The TGFβ-Smad pathway both activates and represses gene transcription. There 

is a long list of TGFβ activated targets such as type I collagen and the cyclin-dependent 

kinase inhibitors p21
Waf1

 and p15
Ink4b

. Conversely, only a few TGFβ-repressed genes 

have been well defined with c-Myc and Id1 being the best characterized. As mentioned in 

Figure 3.8. Knockdown of Smad4 abolished the inhibitory effect of TGFβ in LPA-

induced cell motility. A. Smad4 knockdown efficiency was analyzed with 

immunoblotting. B. Smad4 shRNA and control shRNA-transduced cells were treated 

with or without TGFβ (2.5 ng/ml) for 6 hours prior to RT and qPCR analysis of LPA1 

mRNA levels. C. LPA-mediated chemotactic migration of control and Smad4 

knockdown cells were analyzed in the absence or presence of TGFβ (2.5 ng/ml). Data 

was presented as described in Fig 3.3. 
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Chapter 1, the co-repressors for two TGFβ target genes c-Myc and Id1 have been 

identified. In the case of c-Myc, Smad3 forms a complex with E2F4/5-p107 in the cytosol 

and translocates into nucleus with Smad4 when Smad3 is phosphorylated by the active 

TβRs (Chen et al 2002). The complex binds to a Smad binding element right next to an 

E2F binding site. For inhibition of Id1, the co-repressor ATF3 binds with Smads in the 

nucleus, consequently the repressor complex binds to a Smad binding element adjacent to 

a CREB binding site (Kang et al 2003).  

Analysis of the human LPA1 gene promoter sequences revealed the presence of 

two potential TIEs, one located at -401 (designated -401 TIE) and the other at -40 

(designated -40 TIE) from the transcription initiation site (see sequence details in Fig. 

3.9A). The composite TIE consisting of Smad and E2F4/5 binding sites was present only 

in the LPA1 gene promoter but not in the promoters of other LPA receptors (LPA2-6). 

Between these two TIEs, there are also an SBE (-324 GTCT -321) and a possible ATF 

site (-348 TGACGCTC -341) with 5 out of 8 nucleotides matching with the ATF 

consensus sequence (TGACGTCA).  

3.3.4 TGFβ represses the transcriptional activity of the LPA1 gene promoter  

In an effort to identify the co-repressor for the TGFβ-Smad pathway to control 

LPA1 expression, we cloned a 1242-bp fragment of the LPA1 gene promoter (-1156 to 

+86) into pGL2-Basic-Luc vector to construct pGL2-LPA1-Luc. MDA-MB-231 and 

SKOV-3 cells were transfected with pGL2-LPA1-Luc and cultured with or without TGFβ 

for 16 hours before measurement of luciferase activity in cell lysates. TGFβ treatment 
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resulted in a modest but consistent decrease in luciferase activity (Fig. 3.9B). Deletion of 

the proximal -401 TIE (named del in Fig. 3.9B) at -366 abolished the negative effect of 

TGFβ on the LPA1 promoter-driven luciferase activity (Fig. 3.9B), suggesting that the 

deleted sequence containing the -401 TIE rather than the potential SBE-ATF3 or the 

further downstream -40 TIE is the major site for TGFβ repression of LPA1 transcription. 

Indeed, similar to the deletion mutant, point mutation of the -401 TIE 

(GGCTTTGGCGCG to GGCTAATTCGCGC) also eliminated the repressive effect of 

TGFβ on the LPA1 promoter activity. However, mutation of the -40 TIE 

(GGCTTCGCGCC to GGCAATTCGCC) only slightly reduced the effect of TGFβ, 

which was statistically insignificant. Taken together, these experiments indicate that the -

401 TIE site is required for TGFβ-Smad mediated repression of the LPA1 gene. 
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Figure 3.9. TGFβ represses the transcriptional activity of the LPA1 gene promoter 

containing TIEs. A. DNA sequences of two potential TIEs of the human LPA1 

promoter were compared with that of the c-myc TIE (A, upper panel). The potential 

Smad and E2F4/5 binding sites are underlined. Lower case in the TIE consensus 

sequence suggests for preferred nucleotide. The LPA1 promoter (-1156 to +86) was 

cloned into pGL2-Basic-Luc to constructed the pGL2-LPA1-Luc luciferase reporter 

(WT) (A, lower panel). The deletion (del) and point mutations of each TIE (-401 Mut 

and -40 Mut) were made as described in Materials and Methods. B. MDA-MB-231 

and SKOV-3 cells were transfected with the indicated plasmids and cultured with or 

without TGFβ for 16 hours before luciferase activities were determined. The results 

were presented as percentages relative to the values of the cells cultured without TGFβ 

(defined as 100%). 
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3.3.5 Smad complex binds to the -401 TIE of the LPA1 promoter 

To determine whether the Smad complex binds to the LPA1 promoter at the -401 

TIE, we performed a DNA pull-down assay using biotinylated double-stranded 

oligonucleotides corresponding to the sequences between -413 and -378 that included the 

-401 TIE of the LPA1 promoter. MDA-MB-231 and SKOV-3 cells were treated for 1 

hour with TGFβ or vehicle. The 36-bp DNA fragment was incubated with cell lysates to 

allow binding and precipitating Smad3, Smad4 and E2F4 as detailed in Materials and 

Methods. As demonstrated in Fig. 3.10, co-precipitated Smad3, Smad4 and E2F4 were 

detected from TGFβ-treated cells but not from vehicle-treated control cells, suggesting 

that the 36-bp DNA fragment is capable of binding active Smad3 and E2F4.  

 

 

 

Figure 3.10. TGFβ induces occupancy of the Smad complex to the LPA1 gene 

promoter. Cell extracts from MDA-MB-231 and SKOV-3 cells untreated or treated 

with TGFβ (2.5 ng/ml) for 1 hour were incubated with biotinylated DNA fragment 

containing the -401 TIE and strepatavidin beads. The DNA precipitates (DNAP) were 

subjected to western blot analysis for Smad3 and E2F4. Whole cell lysates was 

included in western blots (WCL) as input.  
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To determine if TGFβ induces Smad3, Smad4 and E2F4 binding to the native -

401 TIE region of the LPA1 promoter, we performed ChIP assays in MDA-MB-231 and 

SKOV-3 cells. The efficiency of anti-Smad3, anti-Smad4 or anti-E2F4 antibody to 

precipitate cellular Smad3, Smad4 or E2F4 was illustrated in Fig. 3.11A. qPCR analysis 

of Smad3 immunoprecipitates from MDA-MB-231 and SKOV-3 cells showed that TGFβ 

induced 3.8- and 3.7-fold increases in Smad3 binding as well as 21.3-fold and 3.9-fold 

increase inSmad4 binding to the -401 TIE (Fig. 3.11B). We also observed increases (2.0 

and 1.8 fold) in Smad3 binding to the -40 TIE in MDA-MB-231 and SKOV-3, 

respectively, however there was no significant increase of Smad4 binding to -40 TIE. 

Thus TGFβ induced physical binding of activated Smad3 and Smad4 to the -401 TIE and 

to a lesser extent, to the -40 TIE of the LPA1 promoter. The binding of E2F4, another 

partner of the Smad complex, to the -401 TIE also increased to 2.5 and 2.7 fold following 

TGFβ treatment of MDA-MB-231 and SKOV-3 cells. However, no significant increase 

in binding of E2F4 to the -40 TIE in TGFβ-treated MDA-MB-231 cells was observed. In 

these ChIP experiments, the binding of Smad3, Smad4 and E2F4 to the c-Myc TIE 

sequences in SKOV-3 cells was included as internal positive controls. It has been 

reported no TGFβ-mediated repression of c-Myc was found in MDA-MB-231 cells 

(Chen et al 2001); therefore, we used binding of Smad3 and Smad4 to PAI-1 SBE as the 

positive control. In summary, these experiments provide mechanistic insight into the 

TGFβ-mediated repression of LPA1 transcription and LPA1-linked biological activities.  
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Figure 3.11. TGFβ induces occupancy of the Smad complex to the LPA1 gene 

promoter. ChIP assays were performed to examine the binding of Smad3 and E2F4 to 

the -40 and -401 TIEs of the LPA1 promoter and to the c-myc TIE (positive controls). 

The immunoprecipitation of Smad3 and E2F4 was verified by western blotting 

analysis of immunoprecipitates (IP) and cell lysates (WCL). The binding was 

quantitated by qPCR using SYBR Green and the specific primers listed in Table 1. 

The results were normalized to the Ct values of inputs and presented as percentages of 

inputs. Blank: not detectable.  
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3.4 Discussion 

In the present study, we showed that the LPA1 gene is a target of TGFβ-mediated 

repression. This inhibitory effect of TGFβ on LPA1 expression is detected in both normal 

and neoplastic cells with intact TβRs and Smad signaling. Importantly, the inhibition of 

LPA1 by TGFβ is sufficient to suppress the LPA1-dependent migratory response to LPA. 

The detailed analysis of the underlying mechanism indicates that TGFβ triggers 

downregulation of LPA1 through activation of Smad and binding of the Smads-E2F4 

complex to the -401 TIE of the LPA1 gene promoter, a process analogous to the well-

defined mode of repression of c-Myc by TGFβ (Chen et al 2002). 

Among the multiple LPA receptors, LPA1 is the only receptor subtype 

transcriptionally repressed by the TGFβ-Smad signaling. In TGFβ-challenged cells, 

Smad3 forms a large complex with E2F4/5-p107 and Smad4 in the cytoplasm, 

translocates to the nucleus and binds to the TIE motif where the complex recruits HDAC 

and silences gene expression (Li et al 1997). Hence both Smad binding site and the 

conjugated E2F4/5 element are instrumental to TGFβ repression of target genes (Chen et 

al 2002). Extensive analysis of the promoter sequences of other LPA receptors does not 

reveal TIE consensus sequence or SBEs in the LPA4 and LPA5 promoters. There are 

putative SBEs in the LPA2, LPA3, and LPA6 promoter sequences. However, none of these 

SBEs is closely linked to a nearby E2F4/5 binding site or to an ATF3 site. It is intriguing 

that the two TIE sites of the LPA1 gene promoter do not function equally. The -401 TIE 

was identified to be the major one for Smad-mediated repression of LPA1 while the 

contribution of the -40 TIE was negligible. This difference could be attributed to the fact 
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that only 4 out of 11 nucleotides match with the consensus E2F4/5 sequence at the -40 

TIE while the -401 TIE matches the consensus at 9 out of 11 nucleotides. Alternatively, 

the TIE location relative to the transcriptional initiation site or other regulatory sequences 

beyond the TIE sites could influence the interaction with the Smad complex and the 

transcriptional repression. These possibilities could also explain the irrelevance of the 

possible SBE-ATF3 between the two TIEs. 

The biological function of LPA1 has been a subject of extensive studies in both in 

vitro cell culture and genetic animal models (Santin et al 2009, Shida et al 2003). 

Compared to other LPA receptors, LPA1 is most widely expressed (Matas-Rico et al 

2008). The nearly ubiquitous distribution of LPA1 has led to the assumption that LPA1 is 

constitutively expressed. However, a few recent studies have hinted at the regulation of 

LPA1 by intracellular and extracellular cues (Horak et al 2007a, Stadler et al 2006, Xing 

et al 2004). The most exciting observation is that LPA1 is one of the target genes 

repressed by the metastatic tumor suppressor Nm23 (Marshall et al 2010). Another study 

showed that germline polymorphism of fibroblast growth factor receptor 4 (FGFR4) at 

residue 388 (G388R) correlates with enhancement of LPA1 expression and more 

aggressive migratory and invasive responses to LPA in tumors carrying R388 FGFR4 

(Sugiyama et al 2010). Although LPA1 expression may indeed be regulated by Nm23 and 

FGFR4, it is not known whether or how these modulators affect transcription, stability or 

translation of LPA1. The results from the current study represent the first example that an 

endogenous factor transcriptionally restrains expression of LPA1 and LPA1-dependent 

cellular effects. 
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The roles of LPA and LPA receptors in cancer have drawn considerable attention 

in recent years. The LPA2 receptor is overexpressed in ovarian, breast, thyroid and rectal 

colon cancers (Hendrix et al 2006, Radvanyi et al 2005, Sanchez-Carbayo et al 2006, 

Skrzypczak et al 2010, Su et al 2007). The transgenic and knockout mouse models further 

support an oncogenic role of LPA2 (Huang et al 2004, Lin et al 2009). Expression of 

LPA1, on the other hand, does not show consensus increases from normal to malignant 

phenotypes. Instead, several independent groups have reported a tendency of 

downregulation of LPA1 in diverse cancers (Hendrix et al 2006, Murph et al 2008, 

Sanchez-Carbayo et al 2006, Shida et al 2004b, Skrzypczak et al 2010, Su et al 2007) in 

sharp contrast to the upregulation of LPA2 in malignant diseases. The findings of the 

current study offer a plausible explanation to this phenomenon. The enhanced TGFβ 

signaling during cancer development and progression may serve as a repressor of 

expression of LPA1 but not other LPA receptors. 

TGFβ controls a multitude of biological activities in mammalian cells. It inhibits 

proliferation of epithelial cells and thus plays a part in early tumor suppression. However, 

TGFβ frequently fails to induce growth arrest in transformed epithelial cells. Instead, 

TGFβ stimulates migration and invasion of cancer cells, thereby promoting the metastatic 

potential in advanced cancer (Bierie and Moses 2006). This presumed effect of TGFβ on 

tumor cell invasion and metastasis is largely based on in vitro assays involving only 

TGFβ as a motogen (Seton-Rogers et al 2004, Yang et al 2008). The conclusion may not 

truly reflect the physiological role of TGFβ in in vivo conditions where tumor cells are 

exposed to a complex mix of multiple chemokines, cytokines, nutrients and growth 
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factors. We found in the current study that the effects of TGFβ on cell motility could be 

opposite under different conditions. In the cancer cell lines we tested, TGFβ itself was a 

weak stimulus of tumor cell invasion. In the presence of LPA, however, the role of TGFβ 

was reversed, counteracting the strong motogenic activity of LPA. Since both TGFβ and 

LPA are present in the circulation and malignant effusions, TGFβ probably acts as a 

negative regulator of cell motility in physiological and pathophysiological conditions. By 

extension, the findings of the current work underscore the importance of crosstalk 

between LPA and other coexisting factors in coordination of the overall cellular 

responses. 
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CHAPTER 4 

 

GENERAL DISCCUSION 

 

Uncontrolled cell proliferation is a hallmark of cancer. A major drive behind the 

uncontrolled proliferation of cancer cells is the activation of growth factor pathways. 

Activation of oncogenes and inactivation of tumor suppressors could also sensitize cells 

to growth stimuli. A prototype growth factor pathway involved in promotion of 

mammalian cell growth is the EGF-EGFR system (Paez et al 2004). Substantial evidence 

suggests overexpression or genetic mutations of EGFR in significant percentages of 

human malignancies, 69% in nonsmall cell lung cancer NSCLC (da Cunha Santos et al 

2011), 50% in breast cancer (Teng et al 2011) and 55%-98% in advanced ovarian 

carcinoma (Mustea 2006). In breast and ovarian cancers, HER2, another member of the 

EGFR family, is also abnormally overexpressed or activated in up to 30% breast and 

ovarian cancers, resulting in more aggressive tumor behaviors and poor prognosis (Tan 

and Yu 2007). Recently, the anti-EGFR or HER2 small inhibitors and antibodies have 

been used alone or in combination with chemotherapies for treatment of a variety of solid 

tumors with significant improvement of patient survivals, confirming the importance of 
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the EGFR family in maintaining cancer cell growth and survival (Ciardiello and Tortora 

2008).  

In contrast to these receptor tyrosine kinases (RTKs), the significance of GPCR, 

the largest family of cell surface receptors, in regulation of cancer cells has not been as 

well appreciated although significant evidence exists that many GPCR/ligand systems 

stimulate proliferation of normal and neoplastic cells. The lysophospholipid mediators 

LPA and S1P represent the most characterized and important growth-promoting ligands 

acting through GPCRs. Our group was the first to describe overexpression of the LPA2 

and LPA3 receptors in ovarian cancer (Fang et al 2004). The overexpression of LPA2 has 

since been extended by independent studies to many other types of malignant diseases 

including breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, and 

differentiated thyroid cancer (Hendrix et al 2006, Radvanyi et al 2005, Sanchez-Carbayo 

et al 2006, Skrzypczak et al 2010, Su et al 2007). However, it remains unknown how 

LPA mediates oncogenic processes. Substantial studies suggest that crosstalk between 

LPA and EGFR or other RTKs plays a role in eliciting the proliferative effect of LPA. 

Specifically, LPA transactivates EGFR through production or release of EGFR ligands or 

through EGFR ligand-independent interactions between EGFR and GPCR signals. Thus 

activation of LPA receptor signal transduction could partially contribute to the 

constitutive activity of EGFR to promote proliferation and aggressiveness of cancer cells. 

However, this possibility does not exclude EGFR-independent contribution of LPA as 

many oncogenic actions of LPA are more robust than those emanating from direct ligand 

activation of EGFR as we reported recently (Oyesanya et al 2010, Wu et al 2011). 
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In addition to the highly proliferative potential driven by signals from RTKs or 

GPCRs, cancer cells may evade growth inhibitory action of TGFβ and the TGFβ family 

members (e.g. BMPs, activin). In normal epithelial cells, TGFβ exerts its cytostatic action 

through TβR and TβR-activated Smad pathways to induce expression of CDK inhibitors 

such as p21, p15 and p27 and to suppress expression of the growth-promoting c-Myc. 

However, the cytostatic response to TGFβ is reduced or lost in most malignancies. 

Previous studies have identified partial mechanisms for the aberrant TGFβ responses in 

cancer, such as genetic mutation or deletion of components of the TGFβ-Smad pathway, 

and abnormal expression or functionality of negative regulators of the TGFβ-Smad 

pathway and critical transcription factors involved in TGFβ regulation of gene expression. 

However, these genetic and epigenetic defects are not common in diverse human tumors 

and cannot explain the general compromise of TGFβ growth inhibitory response, 

particularly in breast and ovarian cancer cells.  

In order to identify the common mechanism underlying the defective TGFβ 

responses in breast and ovarian cancer cells, the first part of this dissertation study was 

designed to determine whether the cellular response to TGFβ was influenced by other 

extracellular factors co-present with TGFβ in tumor microenvironments. LPA is a 

ubiquitous growth factor present in serum, could be replenished in serum through serum-

borne enzyme autotaxin or produced by tumor cells in culture. Our original hypothesis 

was that the abnormally active LPA signaling might confer overwhelmingly strong 

proliferative cues beyond the capacity of the TGFβ to overcome. However, our data 

demonstrates that the mitogenic activity of LPA does not contribute to the resistance of 
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breast and ovarian cancer cells to TGFβ. LPA shows a general mitogenic activity towards 

both TGFβ-sensitive and resistant breast and ovarian cancer cells. Instead, we observed a 

correlation of TGFβ responsiveness with LPA induction of p21 in breast and ovarian 

cancer cell lines. The CDK inhibitor p21 is a well-known TGFβ cytostatic response gene. 

Surprisingly, TGFβ alone only weakly induces p21 expression even in the TGFβ-

responsive breast and ovarian cancer cell lines. Only in the presence of serum or serum-

borne LPA, a full-magnitude elevation of p21 expression is observed. We further 

confirmed that LPA acts in concert with TGFβ in inducing p21 expression. 

Downregulation of p21 induction by p21 siRNA in TGFβ-responsive cells or induction of 

p21 with other known stimuli such as TPA in TGFβ-resistant cells leads to reversal of 

responsiveness to TGFβ. Hence, the combined effect of LPA and TGFβ on p21 induction 

is critical to TGFβ-mediated growth inhibition in TGFβ-sensitive breast and ovarian 

cancer cells. On the contrary, in the TGFβ-resistant cells, LPA does not stimulate p21 

expression or cooperates with TGFβ to induce p21. Therefore, lack of p21 inducibility by 

LPA is potentially linked to the loss or impairment of the cytostatic response to TGFβ 

seen in many breast and ovarian cancers.  

It remains to be determined how LPA induction of p21 is differentially regulated 

between TGFβ-sensitive and resistant cells. In our experiments, LPA induces p21 

expression through LPA1 and LPA2 receptors. Knockdown of LPA1 or LPA2 partially 

compromises p21 expression induced by LPA. Since both of these receptors are present 

in most breast and ovarian cancer cell lines irrespective of their TGFβ response statuses, 

it is unlikely LPA1 and LPA2 levels are primary determinants of the differential p21 
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induction in these cells. The Erk activation is also a generic response to LPA among 

breast and ovarian cancer cell lines. In our study, we further demonstrate that the C/EBPβ 

transcription factor downstream of Erk mediates p21 induction by LPA. Coincidently, 

C/EBPβ is a transcription factor crucial to induction of another TGFβ cytostatic gene p15 

(Gartel and Tyner 1999). In metastatic breast cancer cells, the transcriptional activity of 

C/EBPβ is inhibited by an excess of LIP (liver inhibitory protein), an inhibitory, 

truncated form of C/EBPβ. It is possible that the presence of high levels of endogenous 

LIP could prevent LPA-induced p21 expression and TGFβ cytostatic response. It will be 

of interest to examine expression of LIP in TGFβ-resistant versus sensitive breast and 

ovarian cancer cells. 

Another important observation made from the first part of my study is that p21 is 

essential but not sufficient to render breast and ovarian cancer cells sensitive to TGFβ. 

LPA alone induces significant expression of p21 in TGFβ-sensitive MBA-MB-231 and 

Caov-3 cells, which is associated with growth promotion rather than inhibition. In TGFβ-

resistant breast and ovarian cancer cell lines, TPA by itself induces p21 expression but 

does not affect proliferation of these cells. These results suggest that another TGFβ-

mediated effector cooperates with increased p21 to halt cell cycle progression. This is 

consistent with the fact that the TGFβ-resistant breast and ovarian cancer cell lines we 

examined also possess functional TβRs and Smad3 signaling. In these otherwise TGFβ-

resistant cells, the cytostatic sensitivity to TGFβ could be reconstituted through TGFβ-

independent induction or activation of p21. Therefore, in the future, p21 activating or 
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inducing agents could be pursued in conjunction with TGFβ to develop new therapies 

against breast and ovarian cancer.  

In the second part of this study, we extended to examine the crosstalk between 

LPA and TGFβ in modulation of cell migration and invasion. Activation of tumor cell 

motility is one of the critical steps leading to tumor invasion and distant metastasis. 

Different from the cooperative effects of LPA and TGFβ on p21 induction to control cell 

proliferation, TGFβ dramatically antagonizes LPA-induced migration and invasion of 

breast and ovarian cancer cells. A 30-50% decrease in migration and 60-80% reduction in 

invasion are observed in the presence of TGFβ although TGFβ alone weakly promotes 

cell migration and invasion of breast and ovarian cancer cell lines. The inhibitory effect 

of TGFβ on LPA-dependent cell migration and invasion is manifest in all cancer cell 

lines with functional TβRs and Smad3 including those resistant to cytostatic effect of 

TGFβ, suggesting that TGFβ down-regulates the motogenic activity of LPA via a 

mechanism independent of the cytostatic effectors of TGFβ. 

LPA stimulates cell motility through activation of Rac and Rho in a coordinate 

manner. Rac promotes lamellipodia protrusion and forward movement, whereas RhoA 

regulates actomyosin-driven cytoskeleton contraction and detachment of the rear of 

migrating cells. Since LPA1 plays a primary role in LPA stimulation of Rac and Rho and 

the subsequent migration and invasion (Van Leeuwen et al 2003), we tested the 

possibility that TGFβ may repress expression of LPA1 to inhibit LPA-induced cell 

motility. The qPCR analysis of multiple breast and ovarian cancer cell lines as well as 
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their normal and immortalized epithelial counterparts show that TGFβ treatment induces 

30-70% decreases in LPA1 mRNA. The TGFβ-induced downregulation of LPA1 is 

further supported by a coincident finding of microarray analysis from our collaborator Dr. 

Deborah Lebman that LPA1 mRNA is inhibited by TGFβ treatment of the OE33 

esophageal cancer cell line. In the literature, a microarray study of TGFβ transcriptome in 

human pituitary cells also revealed that LPA1 is one of 109 genes repressed by TGFβ 

although the finding was not validated or pursued by individual gene expression and 

function analyses (Ruebel et al 2008).  

We next explored how TGFβ represses LPA1 expression. In contrast to well-

studied SBE-dependent gene activation by TGFβ, the molecular mechanism for TGFβ-

mediated gene repression is only partially understood through studies of two prototype 

genes repressed by TGFβ, namely c-Myc and Id1. The c-Myc gene p1 promoter contains 

TIE element made of an SBE and a closely linked E2F4/5 cis element that allows binding 

of the Smad3/4-E2F4/5-p107 complex to limit transcription of c-Myc. TGFβ inhibition of 

Id1 is executed through binding of the Smad-ATF3 complex to an SBE site and a nearby 

CREB element on the Id1 promoter. Interestingly, the LPA1 gene promoter contains two 

putative TIE sites (-401 TIE and -40 TIE), each consisting of an SBE site and a flanking 

E2F4/5 element, analogous to TIE present on the c-Myc gene promoter. As described in 

detail in Chapter 3, we demonstrated that TGFβ represses LPA1 transcription through 

binding of the Smad3/4-E2F4/5-p107 complex to the -401 TIE of the LPA1 gene 

promoter. The proximal -40 TIE does not seem to be involved in TGFβ repression of 

LPA1 transcription. The conclusion is drawn from substantial evidence from multiple 
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molecular approaches including luciferase reporter assay, site-directed mutagenesis of the 

TIEs, TIE DNA precipitation of cellular Smads and E2F4 protein, ChIP assays of TGFβ-

induced recruitment of the Smad3/4-E2F4 complex to the native -401 TIE sequence of 

the LPA1 promoter, and shRNA knockdown of Smads.  

The identification of LPA1 as a novel physiological target of TGFβ-mediated 

repression is a significant advance in LPA biology. Little is known about how LPA1 is 

transcriptionally regulated. Our results provide the first mechanistic insight into 

transcriptional control of LPA1. Different from LPA2 that is generally overexpressed in 

cancer, LPA1 is down-regulated in a variety of cancer lineages including ovarian, bladder, 

colorectal and breast cancers (Hendrix et al 2006, Murph et al 2008, Sanchez-Carbayo et 

al 2006, Shida et al 2004b, Skrzypczak et al 2010, Su et al 2007). The TGFβ repression 

of LPA1 may offer a plausible explanation of the cancer-associated downregulation of 

LPA1. Despite the common loss of the cytostatic response to TGFβ, most cancer cells 

exhibit intact TβRs and Smad signaling, which could lead to transcriptional repression of 

LPA1, in particular when TGFβ levels are elevated in advanced cancers. 

Furthermore, TGFβ repression of LPA1 is functionally sufficient to inhibit LPA1-

dependent cell migration and invasion. This observation sheds new light on the 

physiological role of TGFβ in regulation of tumor cell invasion and metastasis. TGFβ has 

been shown to positively regulate tumor cell motility. In our hands, we detected a weak 

and sometimes statistically insignificant migratory activity of TGFβ in breast and ovarian 

cancer cell lines. However, the activity of TGFβ is minimal compared to that of LPA. 
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Given the fact that these two factors are elevated and co-present in tumor 

microenvironments, TGFβ most likely neutralizes the robust migratory activity of LPA 

and therefore may function to prevent tumor cell invasion and metastasis in vivo. This 

argument, however, is contrary to the current dogma in the field of TGFβ biology. The 

evidence for the pro-metastatic role of TGFβ has been largely derived from analysis of 

TGFβ alone in in vitro migration and invasion assays. The results of the present study 

underscore the need to revisit these effects of TGFβ in more physiologically relevant 

conditions or using in vivo models. As a general rule, the interactions among coexisting 

chemokines, cytokines, growth factors and nutrients should be taken into consideration 

during functional analysis of biological factors. 
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