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This dissertation describes a study utilizing bioinformatics to analyze homologues 

of a molecular chaperone, glucose-regulated protein 78 (grp 78), also known as BiP.   The 

selected homologous proteins originate from organisms of infinitely diverse genera.  

Comparisons of protein sequence yielded the first clues of a common ancestry among these 

proteins.   Furthermore, protein molecular weights, isoelectric points, N-terminal amino 

acids and half-lives of a known homolog and a non-homologous protein were examined.  

Additionally, electroporation, a state-of-the-art plasmid insertion technique, was explored 
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using Chlamydomonas reinhardtii, a green alga, as the recipient of a parent plasmid, 

pSP124S.  Distinctive hypertonic solutions and three separate field strengths were used in 

the plasmolysis of the cell wall of C. reinhardtii and subsequent electroporation, 

respectively.  The number of transformants was tallied to evaluate which electroporation 

condition would yield the most transformed colonies.   

We had two discrete hypotheses:  1) that a structurally and functionally similar 

protein to glucose-regulated protein 78 exists across a wide spectrum of organisms and 2) 

that Chlamydomonas reinhardtii could be successfully transformed with pSP124S under 

certain electroporation conditions.   

 The bioinformatics investigation revealed that analogous proteins to Human GRP 

78 existed in Mus musculus (mouse), Rattus norvegicus (rat), Gallus domesticus (chicken), 

Gallus domesticus (chicken), Mesocricetus auratus (golden hamster), Bos taurus (cow), 

Xenopus laevis (frog), and Spinacia oleracea (spinach).  Moreover, these homologous 

proteins more likely have a common evolutionary origin.   

 Additionally, we discovered that alteration of the hypertonic plasmolysis solution 

as well as electroporation field strength revealed differing rates of transformed colonies in 

C. reinhardtii.  Using sucrose, sorbitol, ultrapure water, and mannitol with three unique 

field strengths, led to the discovery that sucrose was the best hypertonic solution to use to 

achieve the highest transformation efficiency rate in conjunction with a field strength 

comprised of 10 uF capacitance and a voltage of 2.5 kV/cm.   
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BACKGROUND 

 

A.  Bioinformatics and Molecular Biology 

 The term, “Bioinformatics,” was coined by a Dutch theoretical biologist, Paulien 

Hogeweg and her colleague, Ben Hesper over three decades ago (Hogeweg and Hesper,  

1978) .  Essentially the term was applied to the mathematical, namely statistical, and 

computational approaches which were used to systematically collect and logically 

assemble information on innumerable biological processes (Hogeweg and Hesper, 1984).   

Later, the remarkable growth of shared databases and algorithms allowed these information 

technologies to be applied to the field of molecular biology.  This rapid advancement 

enabled researchers to solve problems pertaining to little known biological processes and 

to analyze an immense amount of biological data in a relatively short period of time.   

 Bioinformatics allows researchers to readily align and compare multiple 

deoxyribonucleic acid (DNA) and protein sequences.  Integration of information 

technology and molecular biology enables scientists to map and analyze sequences of 

DNA and proteins with the simple click of a keyboard.  Databases advantageously allow 

investigators to map genes, predict gene expression, uncover genome construction, and 

measure biodiversity using phylogenetic trees.   

Comparably for proteins, the information is just as ample.  Researchers can quickly 

ascertain three-dimensional (3-D) protein structures, predict hydrophilic or hydrophobic 

components, and protein-protein interactions using bioinformatics (Dandekar et al, 1998; 
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Enright et al, 1999; and Marcotte et al, 1999).  Analysis of phylogenetic trees can aid in 

the discovery of homologous proteins (Pazos and Valencia, 2001) and identify proteins 

that may have evolved simultaneously (Pellegrini, 1999 and Tan, 2004). 

Data can be input and analyzed using several formats.  The most well-known is the 

FASTA format.  In this format, non-DNA sequences have been removed from the final 

sequence.   The European Molecular Biology Laboratory (EMBL), GenBank, and DNA 

Data Bank of Japan (DDBJ), are world-renowned databases that comprise the International 

Nucleotide Sequence Database Collaboration.  This partnership allows the public sharing 

of genetic information and manipulation and updates its latest versions every other month.  

EMBL and GenBank produce information in formats which still contains non-DNA 

sequences that are removed prior to analyses.  Transferring between FASTA, EMBL, and 

GenBank formats takes mere seconds. 

The most commonly used bioinformatic tool is the Basic Local Alignment Search 

Tool, (BLAST).  BLAST enables investigators to rapidly compare sequences, either amino 

acids or nucleotides and is fifty times faster than dynamic programming, a proven method 

of using simpler steps to solve complex problems (Altschul et al, 1997).  BLAST is most 

useful in the discovery of new genes.  When a novel gene is revealed, its DNA sequence 

can be queried to see if a similar gene is known and carried by another organism, typically 

human.  Similarity in sequence would suggest an ancestral connection and analogous 

function (Altschul et al, 1990). 

The multiple sequence alignment tools give the percentage of identical amino acids, 

similar amino acids and the percentage of gaps.  BLAST database makes use of the Blocks 
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of amino acid Substitution Matrix 62 (BLOSUM 62).  This matrix considers every possible 

substitution and every possible identity of amino acids and assigns a score based on the 

frequencies of each as observed in alignments of related proteins.   The protein building 

blocks that are identical are assigned the most positive scores.  Substitutions that were 

observed to occur more frequently are also assigned positive scores; those occurring less 

often or rarely are assigned negative scores.  This process is referred to as the 

compositional matrix adjust (Altschul et al, 2005). 

 

B.  Genetically Modified Organisms - Bacteria 

 Slightly more than 25 years ago, genetic engineering birthed the first recombinant 

bacteria.  This genetically modified organism (GMO), also known as a genetically 

engineered organism (GEO), was the product of transferring genes from a species of 

Salmonella to produce a transgenic strain of Escherichia coli (Cohen, 1973).  Upon 

learning of the modified microbe, concerns were raised throughout the scientific 

community about potential risks of genetic engineering and the organisms produced from 

these processes.  The United States government soon had oversight over the research 

initiative (Berg, et al, 1975 and Federal Register, 1976).   

 Over time, scientists have modified various organisms’ genomes in search of more 

desirable traits being expressed.  Microbes, plants, and animals have all been experimented 

with in theory of creating microbes which can manufacture agents for gene therapy and 

immunotherapeutic compounds, plants that can resist pests and herbicides, and animals 

that can produce diagnostic and pharmaceutical substances. 
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 As microorganisms were the simplest to alter, investigators were able to manipulate 

their genomes without much difficulty.  A strain of Escherichia coli (E. coli) was 

manipulated to produce a structurally and functionally identical form of human insulin 

(Tof, 1994), now known as Humulin™.   E. coli successfully produced a form of the 

hormone that would not illicit an antibody response such as the bovine and porcine 

varieties did.  However, use of microbes has its limitations.  For instance, E. coli cannot be 

used to generate more complex proteins containing disulfide bonds nor those whose 

functionality and utility are dependent on post-translational modifications (Lee, 1996).  

 There are countless successes in modern medicine from the use of genetically-

altered microbes.  Sometimes it is more beneficial to remove genes to garner more 

desirable traits in an organism.  Pseudomonas syringae (P. syringae) is a stunning example 

of an organism with a deleted gene that has been used to assist in the proliferation of other 

organisms.  P. syringae lacks the gene that enables ice crystals to form.  When it is applied 

to crops, the crops survive cold weather and resist the formation of frost (Lee et al, 1995).  

However, over-use of this particular strain is thought to adversely affect ice formations in 

clouds and thereby negatively impacting rainfall. 

  Streptococcus mutans, a culprit in dental caries, has also been genetically mutated 

to construct a strain that fails to produce lactic acid, the chemical which initiates the 

breakdown of the hard tooth structures, thereby leading to dental cavities (Hillman, 2002).   
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C.  Genetically Modified Organisms – Plants 

 On the heels of transgenic microbes, experimentation led to genetically engineered 

plants.  Mainly to increase the yield of cash crops, the genomes of plants were genetically 

tailored to express resistance to insects by producing Bacillus thuringiensis toxin (Bt 

toxin), and resistance to herbicides, such as glyphosate, commonly known by the trade 

name of Roundup™.  Later, lengthening shelf-life of crops led to the creation of the   

FlavrSavr™ tomatoes (Martineau, 2001).  Soon, increasing quantities of certain vitamins, 

minerals, and/or proteins present in crops such as rice (Ye, 2000) and potatoes 

(Chakraborty et al, 2000), thereby boosting the nutritional value, became the priority.   

 Soybeans were the first plants custom-made to concomitantly tolerate glyphosate 

and to express resistance to the antibiotic, kanamycin (Hinchee et al, 1988).  Others 

quickly ensued.  Rice, corn, potato, and sweet potato plants (Choi, 2007) were soon 

followed by sugar cane and cotton.  Tobacco plants were genetically programmed to 

produce human growth hormone.  By far, the most lucrative and most documented venture 

was the creation of Bt maize, a corn which was genetically adapted to kill or sicken insects 

that try to devour it.  This feat was accomplished as a result of the Bt toxin introduction  

into the corn DNA from bacterial DNA.   This discovery allowed for an explosion in maize 

corn harvests and was thought to be the resolution to famine in Third World countries.  

However the corn, being genetically modified, was considered tainted and definitely not 

suitable for human consumption.  This led to the abandonment of the donated corn. 

 With so many advantages to reengineering plant genomes such as to maximize crop 

yields, improve shelf-life, enhance nutritional worth, and decrease the need for pesticides, 
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there were, and still remain, several detrimental aspects.  Insect populations, such as the 

monarch larvae are negatively impacted (Losey et al, 1999); cotton bollworms are 

exhibiting less sensitivity to the pesticide primarily due to integration of the Bt toxin 

(Tabashnik
 
and Carrière, 2003); there is a realized potential to develop “superweeds,” 

which are plants exhibiting multiple herbicide resistance (Gressel, 1992 and Beckie, 

2004); and possible allergens being expressed (Leary, 1996, and USDA website, 2002) in 

prior non-allergenic plants and/or foods due to gene transfers from one allergenic source to 

a non-allergenic source.  Hypothetically, a person, who has a known allergic response to 

ingesting tomatoes, could unknowingly eat soybeans that were genetically altered with 

genes from tomatoes.   Theoretically, that person could experience an allergic reaction.  Of 

all the negative elements ascribed to genetic reengineering of plants, the most inflexible 

one seems to be the lack of biodiversity, which could be attributable to the lack of genetic 

deviation in transgenic plants. 

 

D.  Genetically Modified Organisms - Animals 

 Varying the genomes of animals is undeniably more difficult when compared 

achieving the same with microbes and plants.  The recombinant gene methodology must 

contain not only the structural gene, but also additional sequences to allow for the correct 

incorporation to the host’s genome and sequences to allow for the gene to actually be 

expressed in that particular host. 

 Mice are usually the unsuspecting recipients of genetic manipulations.  However 

rats, sheep, goats, cows, horses, rabbits, etc have also been used.  Genes can be inserted 
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(knock-in) or deleted (knock-out) using straightforward technologies such as DNA 

microinjection, embryonic stem cell-mediated gene transfer, and retrovirus-mediated gene 

transfer (Gordon and Ruddle, 1981; Gossel et al, 1986; and Donnelly et al, 1994).   

Animals have achieved remarkable success in production of human proteins in 

massive quantities.  These proteins can be employed as immunotherapeutics for gene 

therapy and vaccine therapy, diagnostic agents useful in the determining if cancer or other 

debilitating disease processes are present, and pharmaceutics to treat hormone or vitamin 

deficiencies.   Human growth hormone has successfully been produced in nude rats 

(Bryant et al, 2007 and Baxter et al, 2007).  Goats have been genetically coaxed to 

produce an anticoagulant to treat patients suffering from antithrombin deficiency and to 

decrease the threat of clot formation in surgical patients (Heavey, 2009). 

Gene function has been explored through the use of genetically modified animals.  

Genetic disorders such as Tay-Sachs disease, sickle cell anemia, cystic fibrosis, and 

Huntington disease represent several diseases in which ongoing research is being 

performed to unearth the precise animal model to manipulate in hopes of finding cures 

and/or treatments for these life-altering ailments (Persons et al, 2003; Foster et al, 2006; 

and Rosenecker, 2006). 

 

E.  Molecular “Pharming” of Mammalian Proteins  

 As early as November 1989, Science News printed an article on the use of 

plants to produce antibodies, which could be used as therapeutic and diagnostic agents.   It 

was discovered that these Plantibodies™ were remarkably like the antibodies of an 
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animal’s immune system and could strongly and selectively bind to only one or a few types 

of molecules.  To encourage the production of foreign antibodies in plants, a group of 

scientists from the Research Institute of Scripps Clinic in La Jolla, California used a series 

of steps to shuttle two mouse genes, encoding an antibody molecule, into the nuclei of two 

different tobacco plant cells.  Once in their perspective cells, the foreign genes were 

inserted into the genome of tobacco plant cells.  Subsequently, the tobacco plant began 

producing the functional antibody.  This process of utilizing plants to manufacture 

antibodies came to be known as “molecular pharming” according to the article downloaded 

from a Science News (1989) article entitled, “Turning Plants into Antibody Factories”.  

Nearly a decade or so later, it was established that a variety of proteins can be 

expressed in plants (Blumenthal, 1999 and Borisjuk, 1999) and that these proteins can 

retain their native properties (van Engelen et al, 1994; Takeshi et al, 1997; Julian et al, 

1998; Tacket et al, 1998; Borisjuk, 1999; Fischer et al, 1999; and Holger et al, 1999).  

Secreted mammalian proteins such as functional interleukin-2 and interleukin-4 

(Magnuson, 1998), high affinity monoclonal antibodies (Julian et al, 1998), and human 

lactoferrin (Salmon, 1998) have been produced in transgenic plants.  In addition, antigenic 

proteins of bacterial or viral origin have been manufactured using the natural machinery of 

plants.  These antigenic proteins can be used to confer immunity in livestock and humans 

(Tacket et al, 1998).   

According to Bill Tuckey, “Tobacco, a plant responsible for the death of millions, 

is also the subject of experiments to produce antibodies, or “plantibodies”, against diseases 

including, ironically cancer.  The stakes are high, with the antibody drug market expected 
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to be worth some pounds 5bn [£5 billion] by 2004….” (Tuckey, 2002).  This is equivalent 

to approximately $9 billion US dollars. 

Tobacco has been used to create antibodies against dental caries and colon cancer 

(Daniell et al, 2001).  Nicotiana tobaccum, a species of tobacco, has been genetically 

modified to produce a chimeric IgG-IgA antibody against a surface protein of 

Streptococcus mutans (S. mutans), the major etiological agent in human dental caries.  This 

surface protein, a S. mutans glucosyltransferase, is used by the bacteria to attach and 

adhere to the tooth surface and begin the pathogenic process of tooth decay.  Once this 

gram-positive organism is affixed to the tooth, other organisms begin forming the biofilm 

that leads to the formation of plaque.  The antibody against the surface protein prevents 

colonization of the S. mutans, thereby preventing that initial, but crucial step of decay. 

Genetically-altered Nicotiana benthamiana, another tobacco plant, has produced an 

antibody against colorectal-cancer-associated-antigen, GA733-2 (Szala et al, 1990).  This 

antibody has shown remarkable localization and has effectively destroyed cancer cells 

displaying that particular tumor- associated surface antigen. 

 A diagnostic tool to detect anti-human IgG has been created in alfalfa (Khoudi et 

al, 1999).  This genetically engineered antibody is commonly used as a blood banking 

reagent.  Prior to receiving a transfusion, the potential recipient and unit of blood unit must 

be tested for serum antibodies and red cell antigens, respectively.  The anti-human IgG is 

used in the final phase of that antibody/antigen testing.  Failure to detect these clinically 

significant proteins can lead to severe transfusion reactions and possibly cause the death of 

the recipient of the blood or blood products. 
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Researchers have discovered an agent which can be used to prevent transmission of 

vaginal Herpes Simplex Virus-2.  Genetically manipulated soybean plants have produced a 

humanized antibody which has successfully prevented transmission of the incurable 

infection in a mouse model (Daniell et al, 2001).  

B Cell Non-Hodgkins Lymphoma has been successfully treated with Rituxan®, an 

agent produced in corn (Davis et al, 1999).  Rituxan®, a true molecular pharming success, 

targets cells expressing CD20.  The CD20 antigen is a 33 – 37 kDa, non-glycosylated, 

transmembrane protein that is expressed on lineage B cells from the pre-B cell stage to the 

B cell lymphoblast stage and most malignant B cells. CD20 is not found on early B cell 

progenitors or plasma cells. Oligomers of CD20 form a Ca2+ channel and might have a 

function in regulating a local response during B cell activation. The first monoclonal 

antibody therapy approved in the United States for the treatment of cancer, Rituxan® has 

been used widely and studied extensively since its approval by the Food and Drug 

Administration in 1997 (Davis et al, 1999).   

The genomes of wheat and rice have been genetically altered to produce antibodies 

to treat cancer and detect a carcinoembryonic antigen (CEA) (Stoger et al, 2000).  CEA is 

a cell surface glycoprotein and the best characterized tumor associated antigen.  The best 

use of CEA is as a tumor marker, especially for cancers of the gastrointestinal tract.  

Cancers of the pancreas, stomach, breast, lung, and certain types of thyroid and ovarian 

cancer will have significantly elevated CEA levels.  Benign conditions, such as smoking, 

infections, inflammatory bowel disease, pancreatitis, cirrhosis of the liver, and some other 
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benign conditions may cause an increase of CEA also.   Chemotherapy and radiation 

therapy can cause a temporary rise in CEA due to the death of tumor cells and release of 

CEA into the blood stream. When the CEA level is abnormally high before surgery or 

other treatment, it is expected to fall to within normal range following successful surgery 

to remove the cancerous cells.   A rising CEA level indicates progression or recurrence of 

the cancer.  In addition, levels greater than 20 ng/ml before therapy are associated with 

metastasized cancer.  Anti-CEA antibodies are used as diagnostic and prognostic tools for 

in vivo imaging and immunotherapy (Stoger et al, 2000). 

Since its initial demonstration, the expression of functional antibodies in transgenic 

plants has been considered highly promising for potential disease control and manipulation 

of metabolic pathways (van Engelen et al, 1994).  The costs are significantly less as 

compared to production of these same antibodies in mammalian cell lines or livestock.  

Therapeutic and diagnostic agents produced in green tissue plants, such as tobacco, alfalfa, 

and soybeans, tend to be more advantageous due to the sheer levels of productivity.  The 

increase in productivity is due to the ability to have several crop cuttings per year.  This 

advantage is not realized in corn, wheat, or rice.   

Fifty dollars per gram is the cost expended to purify IgA which is needed for the S. 

mutans vaccine.  In a cell culture, one gram of this same antibody would require expending 

$1000.  Production in alfalfa is generally more expensive costing $500 - $600 to produce 

and purify of one gram of anti-human IgG.  Using a hybridoma system would cost nearly 

ten times that amount (Daniell et al, 2001).   
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The biggest expenditure with production of Plantibodies™ is undoubtedly the 

purification phase. To eliminate the expensive purification cost, the plant-produced 

antibodies can be expressed in seeds of certain grains.  Wheat, rice, and corn are examples 

of grains in which this has been accomplished.  This strategy opens up the possibility of 

oral administration of some therapeutic antibodies without the need for purification. 

 

F.  Introducing Mammalian Proteins into Plants 

 There is increasing awareness of the potential value of using transgenic plant 

systems for the inexpensive production of high-quality mammalian proteins.  These 

proteins can be manufactured for pharmaceutical and diagnostic purposes (Magnuson, 

1998).  Uncovering ways to mass-produce therapeutic agents, while minimizing the cost, is 

paramount in the process of making medicines more affordable and readily available to the 

general public and especially to developing nations.  Although most interest during the 

past 15 – 20 years has been focused on using microbial and animal cell cultures to produce 

biological agents (Doran, 2000), production systems based in vascular plants have been 

studied for their usefulness in making therapeutic proteins (Julian et al, 1998).   

As opposed to bacterial production systems, plants have several characteristics that 

make them ideal systems to inexpensively manufacture mammalian proteins.  Plants are 

easily transformed and cultivated, and are capable of carrying out post-translational 

modifications such as acetylation, phosphorylation, and glycosylation (Borisjuk, 1999).  

An important advantage is the fidelity with which plants can express, fold, assemble, and 

process foreign proteins.  Moreover, there is a potentially significant cost benefit in 
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growing bulk quantities of recombinant proteins in plants as opposed to bacteria, fungal, or 

animal based production systems (Julian et al, 1998).  Molecular pharming has been 

reported to be 10 – 50 times cheaper than Escherichia coli fermentation, even though 

overall product yield in bacteria is higher than those in plants.  Foreign protein production 

using greenhouse-cultivated plants is considerably more expensive than with field-grown 

crops due to the cost of maintaining the environment.  The expense for protein extraction 

and purification appears to be equivalent when comparing greenhouse cultivated plants and 

their field-grown counterparts (Doran, 2000 and Kusnadi et al, 1997).     

 

G.  Increasing Yield of Mammalian Proteins in Plants 

 Initially, plants were genetically modified with the simple goal in mind to increase 

the overall crop yield.  Genes for resistance to specific herbicides, insects, and viruses were 

introduced into several species of plants to increase their production.   Resistance to the 

herbicide, glyphosate, was a true breakthrough in the genetic engineering field.  This 

herbicide is sold under the trade name of “Roundup™”.  Agricultural fields are sprayed 

with this herbicide and the roots of plants absorb the glyphosate from the soil.  Glyphosate 

blocks the production of a key enzyme, 5-enolpyruvyl shikimate 3-phosphate synthase 

(EPSPS).  Glyphosate inhibits EPSPS which is required for plants to synthesize necessary 

aromatic amino acids, vitamins and lignin (Brake and Evenson, 2004).  Glyphosate kills 

plants by attacking the roots of most plants.  Only those plants, which have been 

genetically modified and successfully expressed the gene that encodes for glyphosate 

resistance, can survive after exposure to the herbicide.    
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Some tomato plants have also been genetically engineered to express resistance to 

insects, which otherwise would destroy the plant completely over time.  Genetically altered 

tomato plants expressing the gene for the protein toxin derived from Bacillus thuringiensis 

(Bt) are toxic to the larvae of some moth species, namely Plutella xylostella, the 

diamondback moth (Schuler et al, 2004).  This protein toxin has also been successfully 

incorporated into the genome of cotton, corn, potatoes, canola, and broccoli.  Healthier 

crops are produced and there is no apparent harm to humans, insects other than the targeted 

pests, fish, or animals that may ingest the vegetables or come into contact with the cotton 

fibers (Fox, 2003).   

 Viruses have also been thrust into the molecular pharming arena and have been 

responsible for some outstanding genetic breakthroughs.  Plants have developed resistance 

to certain viruses after the plants’ genomic material have been modified to produce an 

antibody against the coat protein of the infecting virus.  Plants react to a viral infection in 

the same way as humans.  Once the plants are encouraged to produce the antibody against 

the coat protein, the plants maintain protection against the virus, which is passed on to 

subsequent generations through the seeds.  A successful example of this has been observed 

in the protection of plants from the destructive Tobacco Mosaic Virus (Asurmendi et al, 

2004).  Tobacco and tomato plants are the benefactors of these breakthroughs. 

Even though increasing the overall crop yield was the initial goal of creating 

genetically modified plants, another goal was soon realized through actual molecular 

pharming.  If there was a way to increase the protein yield, then maybe that would decrease 

the number of plants needed to produce the required quantity of the protein to be used 
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therapeutically.  From this theory, many strategies were devised for maximizing protein 

yield.  Promoter sequences were altered to enhance their ability to drive expression of the 

coding sequence downstream (Wu et al, 2001).   For example, the cauliflower mosaic 

virus 35s promoter and its derivatives were and still are among the most commonly used 

constitutive expression promoters for plants.  The 35s promoter exhibits strong, 

constitutive expression in many different plant tissues and organs and it has been widely 

used to construct expression vectors for plant genetic engineering.   

Targeting of the foreign proteins to be produced in specific organelles has been 

studied to maximize protein yield.  For some recombinant proteins, highest accumulation 

is achieved by retention in the endoplasmic reticulum.  For example, the carboxy-terminal 

fusion of the Lysine-Aspartate-Glutamate-Leucine (KDEL) signal peptide to single-chain 

antibody variable-region fragments (scFvs) resulting in endoplasmic reticulum retention 

has been found to increase antibody levels 10 to 100 times compared with either 

extracellular secretion or expression in the cytosol (Conrad and Fiedler, 1998; Doran, 

2000; Fischer et al, 1999; and Jefferis and Lund, 1997). 

Additionally, antibodies can be engineered to specifically localize to tumors or 

other cell types (Kashmiri, 1995).  This localization is advantageous because the constant 

region of an antibody can be fused with a green, yellow, red, or blue fluorescent protein or 

even luciferase and then used in molecular, cellular, or medical diagnostics and imaging 

(Blumenthal, 1999; Gerdes and Kaether, 1996).   
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H.  Advantages of Using Green Algae 

 Waiting for vascular plants to grow from seedlings to flowering plants can 

markedly increase the time needed for the generation of a therapeutic or diagnostic agent.  

Perhaps if another organism very similar to plants, but with a shorter life cycle, could be 

used, the production time could be decreased from months to weeks.  Green algae appeared 

to be the most reasonable, reliable, and inexpensive substitute for this investigation. 

 Chlamydomonas reinhardtii is a unicellular, biflagellate eukaryote, which is 

typically oval-shaped and measures approximately 10 μm in length and 3 μm in width.  

These ubiquitous organisms have been discovered in soil, fresh water, oceans, and even 

more amazingly, in the snowcaps of mountains.  The cells of these green algae contain a 

single chloroplast that occupies nearly 40 percent of the total cell volume (Rochaix, 2001).  

The two anterior flagella are usually 10 μm in length and are used in a breaststroke motion 

to propel the algae toward or away from a particular stimulus.  Surprisingly, the green 

algae have an “eye” that actually perceives light.  The genome of this organism is 100 MB, 

and there are 17 chromosomes.   

 “Green Yeast”, as this alga is commonly referred, has been used to elucidate 

aspects of photosynthesis as well as to study the different processes of cell wall biogenesis, 

flagella assembly, gametogenesis, cell cycle events, and phototaxis.  C. reinhardtii has also 

been employed to investigate mating processes and nuclear-chloroplast interactions 

(Rochaix, 1995).  The advantages of using Chlamydomonas reinhardtii as a model 

eukaryotic system are numerous.   
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When compared to vascular plants, C. reinhardtii grows rapidly and has a doubling 

time of six to eight hours whereas vascular plants can take weeks to months to flower.  The 

medium, in which the green algae grow, Tris-Acetate-Phosphate (TAP), is inexpensive to 

acquire ingredients and prepare.  The algae can be easily cultured in liquid and/or solid 

media at room temperature, thereby eliminating the requirement for an incubator.  

However, growth in liquid medium is enhanced when placed on a shaker and aeration is 

added.  Ordinary fluorescent lights are enough to support photosynthesis in this organism 

(Lefebvre and Silflow, 1999).  These eukaryotes can be grown in a minimal medium with 

light and CO2 as its sole carbon source (phototrophically), without light (heterotrophically) 

or in an acetate-containing medium with light (mixotrophically).   

Another great advantage to using the “cockroach of the algae world” is that 

Chlamydomonas can be easily transformed.  Exogenous DNA can be introduced into the 

nuclear, mitochondrial, and chloroplast genomes (Boyton et al, 1988; Kindle et al, 1989; 

Newman et al, 1991; Sodeinde and Kindle, 1993; Schnell and Lefebvre, 1993; and 

Davies et al, 1994; and Davies et al, 1996).  Two direct gene transfer methods have 

proven to work rather well within this genus.  Electroporation and vortexing with glass 

beads have both yielded significantly positive transformation frequencies, but the former 

consistently yields higher results (about 10
6
 transformants per microgram of DNA) as seen 

in yeasts (Manivasakam, 1993).    In another experiment, the electroporation conditions 

for green algae had been optimized to yield approximately 6.6 x10
4
 transformants per 

microgram of DNA for a cell wall deficient mutant strain (Shimogawara et al, 1997).        
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 Chlamydomonas reinhardtii is a more sensible alternative to use in this study as 

compared to vascular plants.  The short life cycle, easy manipulation, worry-free 

cultivation, and minimal laboratory costs all culminate to make this single-celled eukaryote 

a reasonable substitute.  

 

I.  Plasmolysis and Electroporation 

The algal cell wall presents a slight obstacle for direct gene transfer into intact 

cells.  However, plasmolysis (the drawing away of the plasmalemma, or cell membrane, 

from the cell wall due to cell shrinkage) can be used to enable the passage of DNA and 

protein molecules through the cell walls.  These macromolecules accumulate between the 

cell wall and the plasma membrane once the cells are exposed to hypertonic solutions (Wu 

and Cahoon, 1994; Wu et al, 1995).  An electric pulse can then be applied to the cells 

creating more self-sealing pores in the cell membrane and cell wall.   

After discovering plasmolysis before electropulsation increases the efficiency of 

DNA uptake, many laboratories embraced this methodology to produce transgenic cereal 

crops and tobacco plants.  Now there are simpler procedures for development of 

genetically modified corn (Sabri et al, 1996), tobacco (Koscianska and Wypijewski, 

2001), rice, and wheat (Sorokin et al, 2000), to name a few.  This enabled the production 

of transient and stable genetic plant transformations to study gene expression and could 

possibly lead to discoveries of genetic manipulations that could increase the production 

and/or lifespan of these plants. 
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Electroporation immediately follows plasmolysis.  This method utilizes a high 

voltage, up to 10,000 volts per centimeter, which is applied to cells for as little as one 

millisecond to as many as 99 milliseconds.  When the target tissue experiences the high 

electrical pulses, plasmid DNA molecules are able to enter the cells by transient 

permeability of cell membrane.  The pores formed in this process are self-sealing.  

Therefore, most of the transformed cells are located at the surface layer of the tissue, which 

leads to mosaic phenotypes of the electroporated embryo tissue (Songstad et al, 1993).  

The plant cells, which have successfully taken up the plasmid DNA with the selectable 

marker, albeit an antibiotic resistance gene or a fluorescent fusion protein, will be 

recognized visually once plated on the selection media containing the antibiotic for the 

transformants with the former gene or under a fluorescent microscope for those 

transformed with the latter.   

Electroporation is simple, but yet highly efficient if performed under the correct 

conditions, which must be determined experimentally for each type of plant tissue.  

Biological and physical parameters affecting electroporation must be optimized to 

maximize efficiency.  Many cells can be transformed simultaneously in one electroporation 

experiment versus one cell at a time when using the microinjection technique.  When 

utilizing the electroporation method, some factors must be taken into consideration.  

Energy input, electroporation buffer, and different DNA forms must be evaluated to 

improve efficiency (Quecini et al, 2002).  Energy input as combinations of electric field 

strengths discharged by different capacitors has been investigated.  It has been determined 

that this sole factor has a critical influence on transgenic gene expression and achievement 
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of higher transformation efficiencies.  A study conducted by researchers at North Dakota 

State University also demonstrated that linear plasmid DNA, the absence of chloride, and 

the presence of calcium ions in the electroporation buffer, also increased transient gene 

expression in the plant transformants from protoplasts, (Tada et al, 1990) which are plant 

cells whose cell walls have been removed by enzymatic digestion.  However, it should be 

understood that the regenerated plants derived from these materials often showed various 

abnormalities and a reduced fertility rate due to difficulty in the mutation and/or 

regeneration caused by prolonged culture.   Generally speaking, in protoplast regeneration, 

the high electric field pulse of electroporation was found to be harmful to the plant 

material. Therefore, a lower field strength and longer pulse time were usually adopted to 

produce a successful outcome of these electroporation experiments. 

  Pulse time and increased field strengths were also investigated.  It was found that 

when the pulse time was about 13 milliseconds, along with increase of the field strength, 

the viability of plant tissue reduced gradually.  Testing various field strengths and pulse 

times is necessary to obtain maximum efficiency and viability of the particular plant 

material used.  Pollen, plant cells, protoplasts, tissue, proembryos, globular embryos, or 

mature embryos are different types of plant tissue that may be assessed to discover the 

optimal conditions to maximize cell viability and increase transformation efficiency. 

The disadvantages of using electroporation are several: (1) the prolonged opening 

of the pores results in cell death; (2) the cell, even after absorbing the initial electrical 

pulse, may remain selective as to the molecules it lets in; (3) this method is very costly 

method as the sterile, plastic cuvettes can only be used once; (4) plants must be able to be 
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regenerated prior to applying this methodology, and this leads to the issue of plant tissue 

culture.  That technique alone has its own disadvantages as it is challenging to maintain 

sterility; (5) plant tissue may require prior wounding, to remove the cell wall or make it 

permeable to larger macromolecules, before the tissue will uptake the DNA.  The 

wounding can be accomplished enzymatically or mechanically.   

Ke et al, (1996) discovered that electroporated maize embryos required prior 

wounding before the transient expression of two genes, beta-D-glucuronidase gene from E. 

coli and anthocyanin gene.  The maize proembryos were heat-shocked, mechanically 

pretreated by dissection, or enzymatically pretreated prior to submitting the tissue to 

electroporation.  In their experiments, the transformation frequency of enzymatic 

proembryos was approximately twice that of dissected proembryos, indicating that plasmid 

DNA molecules enter cells more easily after cell wall digestion by the enzyme.   

Even though many varieties of full-grown adult plants can be regenerated from a 

single protoplast, there is a certain disadvantage to this pretreatment.  When some species 

of plant cells are subjected to the removal of the cell wall by enzymatic treatment, they 

respond by synthesizing a new cell wall and eventually undergoing a series of cell 

divisions and developmental processes that result in the formation of a new adult plant. 

That adult plant is said to have been “cloned” from a single cell of the parent plant.  

 As for algae, the cell wall presents as much of a problem as in vascular plants. 

However, we hypothesized and subsequently showed (unpublished) that the algal cells can 

be plasmolysed with a hypertonic solution and pores can be introduced into the membrane 

with an electrical pulse.  There are cell wall deficient strains that can be used for 
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electroporation; however, the viability rate of these mutants is drastically lower than the 

wild type algae or mutants with intact cell walls.  Additionally regeneration in culture 

medium is also not a concern when using algae.  That is the most beneficial facet of 

choosing green algae versus the true, green, vascular plants. 

 Electroporation is a fantastic technology that allows foreign DNA to be transferred 

into many different cells simultaneously and into a variety of sources.  In plant cells there 

are several obstacles that must be overcome as compared to animal cells.  The efficiency of 

this process is dependent upon the parameters of the electroporation instrumentation, the 

type of plant tissue used, and the electroporation buffer ingredients.  Once maximum 

efficiency is obtained, the benefits of using this technology will far outweigh the 

disadvantages such as expense and sterility complications. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

 

PROTEINS ANALYZED IN THIS INVESTIGATION 

 

A.  Glucose Regulated Protein 78  

Glucose regulated protein 78 (GRP 78) is strikingly similar to the immunoglobulin 

heavy-chain binding protein (BiP), which associates with free immunoglobulin heavy 

chains in the endoplasmic reticulum (ER) until they are assembled with the light chains 

(Munro and Pelham, 1986).  The glucose regulated protein 78 is a member of the highly 

conserved family of heat shock proteins (Hsp70).  GRP78 is a 78 kDa mammalian 

molecular chaperone found to localize in endoplasmic reticulum via the carboxy-terminal 

sequence, Lysine-Aspartate-Glutamate-Leucine (KDEL) (Satoh 1993, and Holger et al, 

1999).  Phosphorylation of GRP78 is thought to be involved in the regulation of its binding 

function to immunoglobulin heavy chains (Satoh, 1993).   

It has been suggested that GRP78 is involved in several quality control mechanisms 

including recognizing, retaining, and degrading those secretory proteins within the 

endoplasmic reticulum that are misfolded and misassembled (Satoh, 1993).  GRP78 is 

hypothesized to be a molecular detergent, which shields the hydrophobic regions of folding 

proteins, and prevents them from aggregating (Magnuson, 1998).  It forms a stable 

association with some secretion-incompetent proteins, which suggests a role in retaining 

incorrectly folded proteins in the ER.  GRP 78 is induced during times of adverse cell 

survival conditions such as glucose starvation, low pH, and hypoxia (Mote et al, 1998 and 

Song et al, 2001). 
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There are innumerable journal articles written on this important molecular 

chaperone’s purported functions in yeast, mammalian cells, transgenic plants, and 

particularly in human cells, while the cells are undergoing some physiological stress 

condition.  Translocation of secretory proteins in yeast has been blocked when there is a 

loss of functional BiP/GRP78 (Vogel et al, 1990).  When BiP is upregulated in transgenic 

plants, the plants are more tolerant in drought conditions and during germination, these 

genetically altered plants are still able to tolerate tunicamycin, a glycosylation inhibitor 

(Alvim et al, 2001).  In mammalian cells the induction of GRP78 coincides with the G1 

cell cycle arrest.  In stressed cells, the epidermal growth factor receptor (EGFR) is 

underglycosylated and forms a more stable complex with GRP78 as compared to the 

mature form.  The underglycosylated EGFR could not be translocated to the cell surface.  

This resulted in the epidermal growth factor’s inability to induce the expression of cyclin 

D3, a G1 cyclin (Cai et al, 1998).  Overexpression of GRP 78 is also seen in malignant 

human breast lesions, which is primarily due to hypoxic conditions, low glucose, and low 

pH found in these tumors (Fernandez et al, 2000).  More recently, a study in China 

revealed that glucose regulated protein 78 along with another molecular chaperone, 

glucose regulated protein 94, could be used as prognostic indicators in gastric carcinomas.  

Both proteins were upregulated due to glucose starvation and the amount of expression of 

both correlated directly with tumor size, the degree of tumor metastasis especially when 

the lymphatic system was involved, and age of the tumor.  Marked expression objectively 

indicated aggressiveness of the tumor and a poor clinical outcome for patients affected 

with gastric carcinomas (Zheng et al, 2008). 
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We hypothesize that the presence of GRP78 in the Chlamydomonas reinhardtii 

cells will aid the mammalian protein production in two ways.  First, GRP78 may facilitate 

the association of the two chains of the antibody molecule.  Secondly, GRP78 may prevent 

the plant from recognizing and degrading the foreign antibody, thereby helping to 

maximize its yield.  With such assistance from GRP78, it is theorized that the antibody will 

be formed into its natural configuration as if it were made in mammalian cells, and this 

will result in normally folded, functional, and therapeutically valuable antibody.  Plasmid 

pA78H is the source of the grp 78 gene.  See a plasmid map of pA78H in Appendix A. 

 

B.  Humanized Anti-Carcinoma Antibody 49 

Humanized anti-carcinoma antibody 49 (HuCC49) is a derivative of CC49, a 

murine monoclonal antibody that is known to react with the Tumor-Associated 

glycoprotein 72 (TAG-72).  TAG-72 is a human pancarcinoma antigen (Kashmiri, 1995).  

CC49 has shown excellent tumor localization in clinical trials as it targets human colon 

carcinoma xenografts rather efficiently.  The ability to reduce the growth of the 

xenografted tumors in mice also displays its tumor localization ability (Kashmiri, 1995).  

HuCC49 is a single chain, humanized hybrid antibody created by grafting the mouse CC49 

hypervariable regions onto the variable light and variable heavy frameworks of the human 

monoclonal antibodies LEN and 21/28’CL (Kashmiri, 1995).  A deleted constant 1 region 

and a linker peptide that connect the variable light (VL), variable heavy (VH), constant 

region 2, and constant region 3 characterize single chain antibodies.  In Figure 1, the 
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differences in a typical IgG molecule (left) and a single chain IgG molecule, are depicted.  

The single chain IgG molecule has a deleted constant region one and a linker peptide that 

connects the VL and VH regions (Figure 1).   

Figure 1  Typical IgG molecule (left) and Single chain IgG molecule (right).  The single 

chain IgG molecule has a deleted constant region one (CH1) and a linker peptide that 

connect the VL and VH regions. 

 

 

www.bact.wisc.edu/ Bact303/IgG.jpeg    Shu, C-F., et al, Immunology, 1993  

 

A hybrid antibody was created to circumvent several problems involved in 

antibody-mediated therapy.  First, HuCC49 reduces the human anti-mouse antibody 

(HAMA) response directed against CC49.  Second, in humans, the immunogenic reaction 

to CC49 makes repeated treatments less effective due to more rapid clearance from serum, 

and CC49 also may elicit an allergic reaction in humans (Kashmiri, 1995 and Kashmiri 

et al, 2001).  HuCC49 was also created to bypass the difficulties in transfection and 

assembly of the heavy and light chains into a functional immunoglobulin, since in vivo the 
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genes coding the various domains of an antibody reside at different sites.  This complicates 

the expression of an exogenously transferred complement of antibody genes, because the 

domains of the antibody must be coordinately expressed and assembled.  Thus, the genes 

encoding the variable and constant regions of HuCC49 have been fused to form a single 

gene.  The single gene construct approach provides a way of generating an 

immunoglobulin-like molecule that retains the specificity, binding properties, and catalytic 

activity of wild type antibodies (Shu et al, 1993).  The ability to express the heavy and 

light chains within the same cell due to the single gene construct is by far the most 

important property of hucc49.  This property eliminates the need to design another 

experiment to incorporate and express both chains in a single algal cell.  See Appendix B 

for map of plasmid containing this gene.  

 

C.  Green Fluorescent Protein 

Green fluorescent protein (GFP) is a 27 kDa monomer protein, which 

autocatalytically forms a fluorescent pigment in the absence of additional proteins, 

substrates, or co-factors.  This spontaneously fluorescent protein is isolated from 

coelenterates, such as the Pacific jellyfish, Aequoria victoria (Morin and Hastings, 1971) 

or from the sea pansy, Renilla reniformis.  It has been expressed in bacteria, yeast, slime 

mold, plants, drosophila, zebrafish, and in mammalian cells.  As a noninvasive fluorescent 

marker in living cells, it allows for a wide range of applications where it may function as a 

cell lineage tracer, reporter of gene expression, or as a measure of protein-protein 
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interactions.  Its role is to transfer energy from the protein, aequorin, which is a blue 

chemiluminescent, into green fluorescent light (Ward, 1979).  

GFP is comprised of 238 amino acids.  Its wild-type absorbance/excitation peak is 

at 395 nm with a minor peak at 475 nm.  The emission peak is at 508 nm. The protein is in 

the shape of a cylinder, comprising 11 strands of β-sheet with an alpha helix inside and 

short helical segments on the ends of the cylinder (Figure 2).   

 

Figure 2  Computerized depiction  of the structure of the green fluorescent protein.  There 

are 11 β-sheet strands comprising the barrel of the protein and an alpha helix inside with 

short helical segments at the ends of the cylinder. 

 

 www.glue.umd.edu/ ~nsw/ench482/gfp.gif  

 

  

The fluorophores are protected inside the cylinder (red structure in the figure 

above).  The structure of the fluorophore is consistent with the formation of aromatic 

systems made up of Tyr
66

 with reduction of its carbon-carbon bond coupled with 

cyclization of the neighboring glycine and serine residues.  Studies of recombinant GFP 

expression in E. coli led to the discovery of the rapid cyclization between Ser
65

 and Gly
67

, 

which forms the green fluorescent color when excited with blue light (Heim et al, 1994).  
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Combinatorial mutagenesis suggests that the Gly
67

 is definitely required for formation of 

the fluorophores (Delagrave et al, 1995).  

Highly specific intracellular localization of this bioluminescent protein has been 

demonstrated in the nucleus, mitochondria (Rizzuto et al, 1996), secretory pathway 

(Kaether and Gerdes, 1995), plasma membrane (Marshall et al, 1995) and cytoskeleton 

(Kahana et al, 1995).  Visualization of this protein can be achieved repeatedly via fusions 

both to whole proteins and individual targeting sequences.  GFP has an enormous 

flexibility as a noninvasive marker in living cells and this property allows for numerous 

other applications such as a cell lineage tracer, reporter of gene expression, and as a 

potential measure of protein-protein interactions (Mitra et al, 1996).   

One notable disadvantage concerning the use of the green fluorescent protein is that 

it is thermosensitive.  The yield of fluorescently active protein decreases at temperatures 

greater than 30º C (Lim et al, 1995).  However, once produced GFP is quite thermostable.  

See Appendix B for map of plasmid p35S-49-GFP containing this gene. 

 

 

D.  Ble
R
 Gene 

 The ble gene originated from the Actinomycetes species, Streptoalloteichus 

hindustanus and encodes for a rather small protein of about 14 kDa and approximately 355 

amino acids.  It encodes for resistance to the drug, tallysomycin and related antibiotics 

including zeomycin, bleomycin, pepleomycin, and phleomycin.  These are glycopeptide 

antibiotics, which act by perturbing the plasma membrane and also by binding to DNA, 
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cleaving it, thereby causing cell death.  These drugs “complexed with metal ions such as 

copper and iron, intercalate the DNA base pairs and then catalyze the reduction of 

molecular oxygen to free radicals that can break DNA strands and inhibit further DNA 

synthesis,” according to Enrenfeld et al, 1987. 

 Bleomycin has proven to be a good candidate for treatment of cancer especially 

human liver cancer cells in vitro and in xenografts in nude mice.  In clinical trials, 

bleomycin has shown to be effective against cells not in the cell cycle and is most toxic to 

cells within the G2 phase of the cell cycle.  The manufacturers of each of these different 

versions of this drug have outlined the pros and cons of using only their product. For this 

investigation, our laboratory used Zeocin™ produced by Invitrogen (catalog # R250-01). 

The disadvantage to using this form of the drug is that it is irreversibly denatured in high 

and low pH or in the presence of a weak oxidant.  Therefore, it is usually added to media at 

a neutral pH. 

Successful transformants, whether mammalian, bacterial, or algal, will express the 

BLE protein.  This protein prevents the breakdown of DNA by reversibly binding to the  

antibiotic with a very strong affinity and consequently preventing its cleavage of DNA 

(Umezawa, 1976).       
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ORIGINS of the PROTEINS ANALYZED in THIS STUDY  

 

 

A.  p35s-49-GFP and 35s Promoter 

 

The 35s promoter is active in a large number of plant species, including both 

monocots and dicots, but generally gives higher levels of transcription in dicots.  The 

regulatory elements, which reside within the region from –343 to –46 with the 

transcriptional start site designated at plus (+) 1, are responsible for the strong activity of 

this promoter within a wide spectrum of tissues and organs of evolutionary diverse species 

(Kyung-Tae et al, 1996). 

 This plasmid, p35s-49-GFP, was constructed by a previous student, Scott Taylor in 

Dr. Fang-Sheng Wu’s laboratory.   The hucc49 anticarcinoma antibody gene is fused to the 

reporter gene, gfp.  This fusion protein fluoresces when it is introduced into plant cells 

(Taylor, 2001).  See Table 1 for information on plasmid origin and the Appendix B for 

p35S-49-GFP plasmid map. 

 

B.  pSP124S and RBCS2 Promoter  

 The productivity of plants is governed by the efficiency with which they use their 

resources of light, water, nitrogen, and phosphate.   That efficiency depends considerably 

on the effectiveness of the plants’ CO2-fixing enzyme, D-ribulose-1,5-bisphosphate 
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carboxylase-oxygenase, also called RubisCO (Morell et al, 1992).  There are two major 

types of RubisCO, which are divided phylogenetically.  RubisCO Form I, found in plants, 

algae, some bacteria, and certain dinoflagellates, is a hexadecameric protein composed of 

eight large subunits, which are 50 - 55 kDa in size and bear the catalytic sites.  

Additionally, there are eight 12 - 18 kDa small subunits.   

RubisCO Form II is strictly found in some bacteria and dinoflagellates and has only 

large subunits that differ in degrees of oligomerization.  There are no small subunits in 

Form II (Roy et al, 2000).  Within Form I RubisCOs, there is a further evolutionary 

divergence between the “green” subclass found in bacteria, cyanobacteria, green algae, and 

higher plants and the “red” subclass found in bacteria and non-green algae (Read and 

Tabita, 1994; Delwiche and Palmer, 1996; Horken and Tabita, 1999).  In green algae 

and higher plants, the small subunits are nucleus-encoded.  

The rbcS gene family encodes the small subunit of ribulose-1,5-bisphosphate 

carboxylase-oxygenase. The plasmid pSP124S contains an rbcS2 promoter and terminator.  

The rbcS2 promoter drives the transgenic expression in Chlamydomonas reinhardtii.   This 

enzyme is known to be a strong, constitutive promoter in algae.  This plasmid also has the 

ble gene as the selectable marker (Figure 3). This figure shows the partial plasmid map of 

pSP124 RubisCO cassette containing the ble gene.  This is the portion of plasmid that will 

be used to introduce the genes of interest. This plasmid was provided to Dr. Wu by Dr. 

Don Weeks of the University of Nebraska (Table1).  See Appendix C for cartoon 



33 

 

depicting the vector which later underwent transgenic manipulation and formed the 

pSP124S plasmid. 

Figure 3  Illustration of the RubisCO cassette of plasmid pSP124S.  RubisCO cassette 

contains the ble gene that confers for resistance to Zeocin. Cartoon adapted from Saul 

Purton website at www.ucl.ac.uk/ biology/prg/ble1.jpg 

 

 

Table 1.  Source of Proteins Analyzed 

Plasmid 

Reconstructed 

in Dr. Wu’s 

Lab 

Original 

Plasmid 

Source of Original 

Plasmid 

Gene(s) 

Inserted 

Promoter 

p35S-49-GFP p35-GFP Jan Sheen, Harvard 

University 

hucc49-gfp 35S 

pA78H pA8H Academia Sinica, 

Taiwan 

grp 78 AMY8 
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METHODS and MATERIALS 

 

A.   The National Center for Biotechnology Information (NCBI) Database 

The Basic Local Alignment Search Tool (BLAST) located on the National Center for 

Biotechnology Information (NCBI) website was utilized to retrieve DNA sequences and 

protein sequences in FASTA format for eleven (11) potentially homologous Glucose 

Regulated Protein 78 (GRP 78), Heat Shock Protein 5 (HSP 5), HSP 70, and HSP 7C.   

The eleven homologues were randomly selected from eukaryotic organisms.  Evaluated 

sequence were from Mus musculus, the common house mouse; Rattus norvegicus, the 

Norway brown rat that was originally native to China; Plasmodium falciparum, a 

protozoan parasite that causes a deadly form of malaria in humans; Aspergillus fumigatus, 

a common fungal species to cause disease in immunocompromised patients; Gallus 

domesticus, the common domestic chicken; Entamoeba histolytica, a protozoan parasite 

that causes amoebic dysentery; Drosophilia melanogaster, the common fruit fly found 

primarily in the vicinity of unripened or rotted fruits;  Saccharomyces cerevisiae, a species 

of budding yeast used in brewing and baking; Mesocricetus auratus, generally known as 

the golden hamster or Syrian hamster; Bos Taurus, the domestic cow; and lastly, Xenopus 

laevis, the South African clawed frog .   
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Each protein was paired with the human GRP 78 protein sequence.  The protein 

sequences were then input into the query window and “BLASTed” to determine if the 

proteins were indeed homologues and if the protein potentially shared a similar ancestor; 

thereby concluding that the protein performed a similar function in the particular eukaryote 

from which it was derived.  

 

 

B.   Assessing Homology Using a Phylogeny Tree 

Biodiversity can be measured through the use of phylogeny trees.  These graphics 

     provide the reviewer with a quick snapshot of how closely chosen organisms are related.  

The shorter the distance between organisms, the more closely those organisms are related.  

The greater the distance between organisms, the less likely those organisms are related.  

Once the sequences of the proteins of interest are retrieved from a database, phylogeny 

trees are very simple to generate.  The HomoloGene function on the National Center for 

Biotechnology Information (NCBI) website is very user-friendly and the process to 

inputting the data is rather unsophisticated.  The FASTA formats of the amino acid 

sequences for human Glucose Regulated Protein 78 and for each potential homologue were 

entered into the database.   

 

C.  CLC Main Workbench 5.1 

CLC bio (http://www.clcbio.com/), a relatively young company, opened up its 

databases to the public in the Summer of 2005.  For now, it allows free access without the 

hassle of registering on the site.  A wealth of information is awaiting discovery.  The site is 



36 

 

rather user friendly and not demanding of an inordinate amount of time to process queries.  

Through trial and error, it was discovered the best way to get the largest pay load in the 

shortest duration, one should run the complete protein report.  The complete protein reports 

collate an abundance of information, far too much to use in this study, but yet good 

information to be familiar with for future investigations.   

  This bioinformatics database allows for the rapid analysis of both protein and DNA 

sequences.  The overwhelming quantity of data provided for each protein includes the 

sequence information, half-life estimation, weight, isoelectric point, atomic composition 

focusing on hydrogen, carbon, nitrogen, oxygen and sulfur, and number of hydrophilic and 

hydrophobic regions and approximate locations.  The count of charged residues, an amino 

acid residue table and histogram, number of di-peptides and how many of each 

combination present, are the other categories of information available on the website.  The 

electrical charge as a function of pH is also obtainable along with secondary structures and 

location regions.  Lastly, the database offers researchers information on the protein family 

to which each sequence belongs.   

  For the purpose of this investigation and using this bioinformatics database, human 

GRP 78 will be compared to one homologous protein, GRP 78 from Mesocricetus auratus 

(golden hamster) and a non-homologous protein, GRP 78 from Plasmodium falciparum 

(malarial parasite).  Weight, isoelectric point, half-life, and atomic composition features 

will be compared and contrasted.  Proteins most alike will have similarity in each of the 

observed characteristics.  Conversely and theoretically, those proteins which are vastly 

different and unrelated will be markedly dissimilar. 
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D.   Media and Growth Requirements for Algae 

 The wild type strain of Chlamydomonas reinhardtii, cc125 mt+, was used in this 

study and was grown mixotrophically on solid and liquid Tris-Acetate-Phosphate (TAP) 

media (Table 2).  The 100 ml liquid cultures grew under 200 μmol photons/m
 s 

sec from 

ordinary fluorescent tube lights as the sole light source.  The flasks were agitated on a 

gyratory shaker at a speed of 120 rpm at 26.5º C without aeration. 

 

Table 2.  Stock solutions for Preparation of TAP medium 

 

Solution A 

Component for 500 ml 

NH4Cl 20 g 

MgSO4·7H2O 5 g 

CaCl2·2H2O 2.5 g 

Phosphate Buffer II 

Component For 100 ml 

K2HPO4 10.8 g 

KH2PO4 5.6  

Stock Solution For 1 L 

1M Tris base 20 ml 

Phosphate Buffer II 1 ml 

Hutner's Trace Metals 1 ml 

Solution A 10 ml 

Glacial acetic acid 

(pH to 7.0) 
1 ml 
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E.  Electroporation Techniques Used for Algae  

 Dr. Fang-Sheng Wu developed this electroporation methodology (unpublished). 

One hundred microliters (100 μL) of cc125 mt+ cells were harvested by centrifugation for 

seven (7) minutes at 2500 rpm in the Hermle Z320 centrifuge.  The cells were resuspended 

in five (5) ml of TAP medium giving a final density of 2 – 8 x 10
8
 cells/ml.  100 μL of 

cells were dispensed into a 24-well plate utilizing the 1
st
, 2

nd
, 5

th
, and 6

th
 columns.  The 3

rd
 

and 4
th

 columns were left empty as it was noted that the cells did not spin down properly 

for the removal of the supernatant.  In Row A: 2.0 M sucrose was added for an overall 

molarity of 0.4 M; in Row B, 2.0 M sorbitol, for final molarity of 0.4 M; in Row C 

autoclaved, ultra pure water; in Row D, 1.2 M Mannitol, for a overall molarity of 0.4 M.  

Prior to the additions of the sugar solutions to the algae, plasmid DNA was mixed with the 

sugars for overall concentration of DNA concentration of 100μg/ml.   The hypertonic 

solutions allowed for the plasmolysis of the algae.  After a four (4) minute incubation at 

room temperature, the 24-well plate was vacuum filtrated for another four (4) minutes and 

then reopened in the hood.  The plate was then placed on ice for five (5) minutes prior to 

performance of electroporation. 

 Column 1 was electroporated with the BioRad Gene Pulser electroporation 

instrument under the following conditions:  For Column 1, the capacitance, the property of 

an electric conductor that characterizes its ability to store an electric charge, was set at 10 

μF, voltage of 2.5 kV/cm; Column 2 – 25 μF, 2.0 kV/cm; Column 5 was not electroporated 

and no plasmid added (negative control); Column 6 – 50 μF, 0.8 kV/cm.  Table 3 outlines 

the electroporation parameters used in this study.   
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Table 3.  Electroporation Parameters Used for Green Algae Experiments 

 

   10 μF, 2.5 kV/cm   25 μF, 2.0 kV/cm                Negative Control   50 μF, 0.8 kV/cm 

A1 

Sucrose 0.4M→ 

A2 

 

Not 

Used 

 

Not 

Used 

 

A5 

 

A6 

 

uB1 

Sorbitol 0.4M→ 

B2 Not 

Used 

Not 

Used 

B5 B6 

C1 

Water→ 

C2 Not 

Used 

Not 

Used 

C5 C6 

D1 

Mannitol 0.4M→ 

D2 Not 

Used 

Not 

Used 

D5 D6 

 

 

Each well received two pulses approximately two seconds apart and lasting for 

anywhere from 2 – 51 milliseconds.  After electroporation, the cells were allowed to 

remain on the ice for another five (5) minutes.  Then the algal cells were incubated at room 

temperature for five (5) minutes.  Every five (5) minute interval after then, 200μL of TAP 

were added to each well, including the wells in Column 5.  This was done until 1 ml of 

TAP had been added.  After the final five (5) minute incubation at room temperature, the 

24-well plate was covered and centrifuged at 3000 rpm for seven (7) minutes in the 

Beckman Coulter Allegra™ 21R centrifuge.  The supernatant was then removed under a 

laminar flow.  A final volume of 600 μL of TAP per well was added to resuspend the 
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electroporated algae.  The plate was incubated on a shaker overnight under previously 

described conditions. 

After 18 – 24 hours had elapsed, the algae were spread on plates with TAP and 

plates with TAPZ (10 μg/ml of Zeocin™) with the starch embedding technique.  

Transformants were visible within 5 to 6 days.   

 

F.  Starch-Embedding Method 

 It is well known that transformed algae, especially the cell wall deficient strains, 

will have a higher plating efficiency if starch is used.  Therefore, corn starch (10g) was 

washed sequentially with ultra pure water and then with 70 % ethanol. The washed starch 

was stored in 75 % ethanol to prevent bacterial contamination.  Before each experiment, 

the ethanol was replaced with TAP medium by repeated centrifugations and resuspensions.  

The starch was finally resuspended to 20% (w/v) in TAP medium and polyethylene glycol 

(PEG) 8000 to 0.4% (w/v).  PEG facilitates smooth and even spreading of the starch over 

the plate (Shimogawara et al, 1997).   

One milliliter (1ml) of starch was dispensed in the middle of each culture plate 

(TAP and TAPZ).  The TAP plates were used as a control to ensure that the algae were not 

being killed during the electroporation.  The TAPZ plates would help identify the positive 

transformants, the ones which had successfully taken up the DNA and expressed the BLE 

protein.  Ten microliters (10 μL) of algae were dispensed onto TAP plates along with the 

starch.  Two hundred microliters (200 μL) of algae were pipetted onto the TAPZ plates. 
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The plates were initially incubated in decreased light overnight, and then moved to the 

normal light conditions for the remaining growth period.  
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RESULTS 

 

A.   The National Center for Biotechnology Information (NCBI) Database 

          The BLAST bioinformatics tool on NCBI database was employed to rapidly compare 

the FASTA protein sequences for several proteins thought to be homologous to human 

Glucose Regulated Protein 78 (GRP 78).  Four factors were readily considered in the final 

determination: length of protein sequences as compared to the human GRP 78; identity 

percentages; percentages of gaps; and overall alignment score.  The following results were 

seen when human GRP 78 was paired with 11 potential homologues procured from a wide 

variety of eukaryotic organisms:  Mus musculus, mouse; Rattus norvegicus, rat; 

Plasmodium falciparum, malarial parasite; Aspergillus fumigatus, fungi; Gallus 

domesticus, chicken; Entamoeba histolytica, parasitic amoeba; Drosophilia melanogaster, 

fruit fly;  Saccharomyces cerevisiae, budding yeast; Mesocricetus auratus, golden hamster; 

Bos taurus, cow; Xenopus laevis, clawed frog, and finally, Spinacia oleracea, spinach, 

(Figures 5 to Figure 16).   

    Additionally the BLAST database was employed to construct a phylogenetic tree as a 

means to verify the numbers from the computational comparison (Figure 17).   The 

phylogenetic tree verified the conclusions reached in the BLAST queries: the higher the 

identical amino acid number, the closer the other GRP 78 proteins were to the human GRP 

78 on the phylogenic tree. 
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Table 4.  Lists eukaryotic organisms used in comparison to human Glucose Regulated 

Protein 78.  The Subject ID was assigned by BLAST and the length of the protein was 

determined from the FASTA amino acid sequence inserted in the program and retrieved 

from the NCBI database.  The greater variation in number of amino acids the less likely the 

proteins will be homologous.  The GRP78 from the malarial parasite, Plasmodium 

falciparum, is only 43% the length of the human GRP 78 which is 654 amino acids long.  

 

Subject 

ID 

 

 
Description Length 

52959  gi|2506545|sp|P20029.3|GRP78_Mus musculus (mouse) 655 

52960  gi|25742763|ref|NP_037215.1| HSP 5 Rattus norvegicus (rat) 654 

52961  gi|121573|sp|P12794.1|GRP78_Plasmodium falciparum (malaria) 279 

52962  
gi|70989035|ref|XP_749367.1| HSP70 chaperone Aspergillus fumigatus 

(fungi) 
570 

52963  gi|4033392|sp|Q90593.1|GRP78_Gallus domesticus (chicken) 652 

52964  gi|67474975|ref|XP_653218.1| HSP70 family Entamoeba histolytica 660 

52965  gi|55584057|sp|P29844.2|HSP7C_Drosophilia melanogaster (fruit fly) 656 

52966  gi|121575|sp|P16474.1|GRP78_ Saccharomyces cerevisiae (yeast) 682 

52967  gi|121570|sp|P07823.1|GRP78_Mesocricetus auratus (golden hamster) 654 

52968  gi|122144501|sp|Q0VCX2.1|GRP78_Bos taurus (cow) 655 

52969  gi|4033394|sp|Q91883.1|GRP78_Xenopus laevis (frog) 658 

21051  gi|3913786|sp|Q42434.1|GRP78_Spinacia oleracea (spinach) 668 
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Figure 4.   Below is the graphic color key for alignment scores that is generated upon 

using BLAST.  The red lines represent the same organisms from Table 1 in the same 

order.  Notice the third line in the diagram represents the GRP78 extracted from the 

malarial parasite, Plasmodium falciparum.  The alignment score is very low at the amine 

(NH-2) end, but improves dramatically at the carboxyl terminus.  The scores for the other 

sequences were significantly higher suggesting, at first glance, a high probability of protein 

homology and similar evolutionary origin. 
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Table 5.  Data retrieved after inputting the protein sequences in BLAST in the FASTA 

format.  The scores were computed using the computational matrix adjust method.  The 

higher the score, the increased probability that the proteins are homologous to the 

comparison protein, human GRP 78. 

 

 

Sequences producing significant alignments: 

Score        

(Bits) 

lcl|52959  gi|2506545|sp|P20029.3|GRP78_ Mus musculus (mouse) 1310  

lcl|52960  gi|25742763|ref|NP_037215.1| HSP5 Rattus norvegicus (rat) 1308  

lcl|52961  gi|121573|sp|P12794.1|GRP78_ Plasmodium falciparum (malaria) 353  

lcl|52962  gi|70989035|ref|XP_749367.1| Hsp70 chaperone Aspergillus fumigatus 

      (fungi)     

217 

 

lcl|52963  gi|4033392|sp|Q90593.1|GRP78_Gallus domesticus (chicken) 1274 

lcl|52964  gi|67474975|ref|XP_653218.1| HSP70 family Entamoeba histolytica 748 

lcl|52965  gi|55584057|sp|P29844.2|HSP7C_Drosophilia melanogaster (fruit fly) 1061 

lcl|52966  gi|121575|sp|P16474.1|GRP78_Saccharomyces cerevisiae (yeast) 859 

lcl|52967  gi|121570|sp|P07823.1|GRP78_Mesocricetus auratus (golden hamster) 1312 

lcl|52968  gi|122144501|sp|Q0VCX2.1|GRP78_Bos taurus (cow) 1290   

lcl|52969  gi|4033394|sp|Q91883.1|GRP78_Xenopus laevis (frog) 1214   

lcl|21051  gi|3913786|sp|42434.1|GRP78_Spinacia oleracea (spinach) 922 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

Figure 5.  Protein sequences of Human GRP 78 and GRP 78 from Mus musculus (mouse) 

were aligned through the NCBI BLAST database.  The percent of identical amino acids is 

98% and there were no gaps in the sequences to adjust for a better alignment.  The score is 

very high which is indicative of a similarity.  From these data, it is concluded that these 

two proteins are homologous and very likely originated from the same ancestral lines. 

 

    
>lcl|52959 gi|2506545|sp|P20029.3|GRP78_ Mus musculus (mouse) 
Length=655 

 Score = 1310 bits (3391),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 645/654 (98%), Positives = 649/654 (99%), Gaps = 0/654 (0%) 

 

Query  1    MKLSLVAAMLLLLSAARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  60 

            MK ++VAA LLLL A RAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR 

Sbjct  2    MKFTVVAAALLLLGAVRAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  61 

 

Query  61   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  120 

            ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV 

Sbjct  62   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  121 

 

Query  121  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  180 

            EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ 

Sbjct  122  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  181 

 

Query  181  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  240 

            RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG 

Sbjct  182  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  241 

 

Query  241  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  300 

            VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS 

Sbjct  242  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  301 

 

Query  301  SQHQARIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  360 

            SQHQARIEIESF+EGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV 

Sbjct  302  SQHQARIEIESFFEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  361 

 

Query  361  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  420 

            LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC 

Sbjct  362  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  421 

 

Query  421  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  480 

            PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG 

Sbjct  422  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  481 

 

Query  481  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  540 

            TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER 

Sbjct  482  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  541 

 

Query  541  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE  600 

            MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE 

Sbjct  542  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE  601 

 

Query  601  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGEEDTAEKDEL  654 

            KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGS GPPPTGEEDT+EKDEL 

Sbjct  602  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSGGPPPTGEEDTSEKDEL  655 
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Figure 6.  Protein sequences of Human GRP 78 and Heat Shock Protein 5 from Rattus 

norvegicus (rat) were aligned through the NCBI BLAST database.  The percent of identical 

amino acids is 98% and there were no gaps in the sequences to adjust for a better 

alignment.  Again, the score was very high.  From these data, it is concluded that these two 

proteins are homologous and very likely originated from the same ancestor. 
 

 

>lcl|52960 gi|25742763|ref|NP_037215.1| HSP 5 Rattus norvegicus (rat) 

Length=654 

 Score = 1308 bits (3385),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 644/654 (98%), Positives = 648/654 (99%), Gaps = 0/654 (0%) 

 

Query  1    MKLSLVAAMLLLLSAARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  60 

            MK ++VAA LLLL A RAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR 

Sbjct  1    MKFTVVAAALLLLCAVRAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  60 

 

Query  61   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  120 

            ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV 

Sbjct  61   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  120 

 

Query  121  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  180 

            EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ 

Sbjct  121  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  180 

 

Query  181  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  240 

            RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG 

Sbjct  181  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  240 

 

Query  241  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  300 

            VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS 

Sbjct  241  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  300 

 

Query  301  SQHQARIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  360 

            SQHQARIEIESF+EGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV 

Sbjct  301  SQHQARIEIESFFEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  360 

 

Query  361  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  420 

            LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC 

Sbjct  361  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  420 

 

Query  421  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  480 

            PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG 

Sbjct  421  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  480 

 

Query  481  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  540 

            TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER 

Sbjct  481  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  540 

 

Query  541  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE  600 

            MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLS EDKETMEKAVEE 

Sbjct  541  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSPEDKETMEKAVEE  600 

 

Query  601  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGEEDTAEKDEL  654 

            KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGS GPPPTGEEDT+EKDEL 

Sbjct  601  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSGGPPPTGEEDTSEKDEL  654 
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Figure 7.  Protein sequences of Human GRP 78 and GRP 78 from Plasmodium falciparum 

(malaria causing parasite) were aligned through the NCBI BLAST database.  The variation 

in sequence length was remarkable, indicating the likelihood of these proteins being 

similar in composition and function was minute.  The percent of identical amino acids is 

rather low (62%) and there was 1% gap in the sequences to achieve a better alignment.  

The score was very low in comparison to the other proteins BLASTed.  From these data, it 

is concluded that these two proteins are not homologous and it is very unlikely that they 

have a common beginning.   
 

 

>lcl|52961 gi|121573|sp|P12794.1|GRP78_Plasmodium falciparum (malaria) 

Length=279 

 

 Score =  353 bits (907),  Expect = 1e-101, Method: Compositional matrix adjust. 

 Identities = 176/281 (62%), Positives = 221/281 (78%), Gaps = 5/281 (1%) 

 

Query  377  EFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKL  436 

            EFFNGKEP+RGINPDEAVAYGAA+QAG++ G++   D+VLLDV PLTLGIETVGG+MT+L 

Sbjct  1    EFFNGKEPNRGINPDEAVAYGAAIQAGIILGEE-LQDVVLLDVTPLTLGIETVGGIMTQL  59 

 

Query  437  IPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQ  496 

            I RNTV+PTKKSQ FST  DNQP V I+V+EGER LTKDNHLLG F+L+GIPPA RGVP+ 

Sbjct  60   IKRNTVIPTKKSQTFSTYQDNQPAVLIQVFEGERALTKDNHLLGKFELSGIPPAQRGVPK  119 

 

Query  497  IEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLK  556 

            IEVTF +D NGIL V AEDKGTG    ITITND+ RL+ E+IE+M+NDAEKFA+EDK L+ 

Sbjct  120  IEVTFTVDKNGILHVEAEDKGTGKSRGITITNDKGRLSKEQIEKMINDAEKFADEDKNLR  179 

 

Query  557  ERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIEDF  616 

            E+++ +N L++Y  S+K  + DK+KL  K+  EDK T+  AV++  +WL ++ +AD E   

Sbjct  180  EKVEAKNNLDNYIQSMKATVEDKDKLADKIEKEDKNTILSAVKDAEDWLNNNSNADSEAL  239 

 

Query  617  KAKKKELEEIVQPIISKLYGSAG---PPPTGEEDTAEKDEL  654 

            K K K+LE + QPII KLYG  G   P P+G+ED  + DEL 

Sbjct  240  KQKLKDLEAVCQPIIVKLYGQPGGPSPQPSGDEDV-DSDEL  279 
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Figure 8.  Protein sequences of Human GRP 78 and Heat Shock Protein 70 chaperone 

from Aspergillus fumigatus (an opportunistic fungi) were aligned through the NCBI 

BLAST database.  The variation in sequence length was slightly remarkable, indicating the 

likelihood of these proteins being similar in composition and function was not probable.  

The percent of identical amino acids was extremely low (33%) and there was 15% gap in 

the sequences to attempt to achieve a better alignment.  The score was very low in 

comparison to the other proteins BLASTed.  From this data, it is concluded that these two 

proteins are not homologous and did not evolve from a common source.  This is not 

surprising since a comparable protein with a similar function could not be located for 

Aspergillus fumigatus. *Note:  The NCBI BLAST analyses will not yield results for amino 

acids 473 – 570 because there were no significant similarities found when compared to 

Human GRP 78.  This protein did not have a HDEL/ KDEL C-terminus as seen in plants 

or mammalian homologues of GRP 78. 

 
>lcl|52962 gi|70989035|ref|XP_749367.1| Hsp70 chaperone Aspergillus 

fumigatus (fungi) 

Length=570 

 

 Score =  217 bits (552),  Expect = 1e-60, Method: Compositional matrix adjust. 

 Identities = 155/466 (33%), Positives = 244/466 (52%), Gaps = 36/466 (7%) 

 

Query  31   VGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLIGDAAKNQLTSNPEN  90 

            +GI  G + S +     G+ E+IAN++G+R  P+ +++  +GE   G  AK QL  NP+N 

Sbjct  17   IGISFGNSSSSIARLTPGKAEVIANEEGDRQIPTVLSYI-DGEEYHGTQAKAQLVRNPQN  75 

 

Query  91   TVFDAKRLIGRTWN--DPS-VQQDIKFLPFKVVEKKTKPYIQVDIGGGQTKTFAPEEISA  147 

            TV   +  +G+ +   DP+   Q     P +V    T  +   D       T    EI+  

Sbjct  76   TVAYFRDYVGKNFKSIDPTPCHQSAH--PQQV--DSTVAFTIRDTASETPNTVTVSEITT  131 

 

Query  148  MVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVMRIINEPTAAAI  207 

              L ++K++A  YLGK V  AV+TVP  F D QR+A   A   AGL V+++I+EP AA + 

Sbjct  132  RHLRRLKQSASDYLGKDVNAAVITVPTDFTDVQREALIAAAGAAGLEVLQLIHEPVAAVL  191 

 

Query  208  AYGLDKRE----GEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGEDFDQRVM  263 

            AY  D R      +K ++V D GG   D +++    G++ ++AT  D  LGG   DQ V+ 

Sbjct  192  AY--DARPEATVTDKLVVVADFGGTRSDAAVIACRGGMYTILATAHDYELGGASLDQIVI  249 

 

Query  264  EHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEGEDFSETLT  323 

            +HF K + KK   D R++ R + KL+ E E  +RALS    A + IES  +G DFS T+  

Sbjct  250  DHFAKEFIKKHKTDPRENARGLAKLKLEGEATRRALSLGTNASLSIESLADGIDFSSTIN  309 

 

Query  324  RAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVKEFFNGK-  382 

            R ++E L+  +F    + +++V++ ++L   DIDE++  GG++  PKI QL +  F+ K  

Sbjct  310  RTRYELLSGKVFAQFTRLIEQVVQKAELDVLDIDEVIFSGGTSHTPKIAQLARNMFSEKT  369 

 

Query  383  ---EPS---RGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPL---------TLGIE  427 

                PS     INP E    GAA+QA ++  + D  D +  ++ P+          +G+E 

Sbjct  370  KILAPSTSASAINPSELAPRGAAIQASLIQ-EFDKED-IEQNIHPMVTATPHLRNAIGVE  427 

 

Query  428  TVGGVMTKLIP---RNTVVPTKKSQIFSTASDNQPTVTIKVYEGER  470 

             V G   +  P     T +P ++   +S   D    V ++V EG R 

Sbjct  428  FVHGETVEFKPLLNAETALPARRVAQYSAPKDGG-DVLVRVCEGVR  472 
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Figure 9.  Protein sequences of Human GRP 78 and GRP 78 from Gallus domesticus 

(domestic chicken) were aligned through the NCBI BLAST database.  The variation in 

sequence length was unremarkable.  The percent of identical amino acids was extremely 

high (97%) and there was no added gaps in the sequences.  The score was very high which 

led to the conclusion that the proteins are homologous and probably were derived from a 

similar or quite possibly the same evolutionary source.   
 

 

>lcl|52963 gi|4033392|sp|Q90593.1|GRP78_Gallus domesticus (domestic chicken) 

Length=652 

 Score = 1274 bits (3298),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 623/638 (97%), Positives = 635/638 (99%), Gaps = 0/638 (0%) 

 

Query  17   RAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLI  76 

            RA++E+KKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLI 

Sbjct  15   RADDEEKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLI  74 

 

Query  77   GDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVDIGGGQ  136 

            GDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIK+LPFKVVEKK KP+IQVD+GGGQ 

Sbjct  75   GDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKYLPFKVVEKKAKPHIQVDVGGGQ  134 

 

Query  137  TKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVM  196 

            TKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVM 

Sbjct  135  TKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVM  194 

 

Query  197  RIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGE  256 

            RIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGE 

Sbjct  195  RIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGE  254 

 

Query  257  DFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEGE  316 

            DFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESF+EGE 

Sbjct  255  DFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFFEGE  314 

 

Query  317  DFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVK  376 

            DFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVK 

Sbjct  315  DFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVK  374 

 

Query  377  EFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKL  436 

            EFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKL 

Sbjct  375  EFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKL  434 

 

Query  437  IPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQ  496 

            IPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQ 

Sbjct  435  IPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQ  494 

 

Query  497  IEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLK  556 

            IEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLK 

Sbjct  495  IEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLK  554 

 

Query  557  ERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIEDF  616 

            ERID RNELESYAYSLKNQIGDKEKLGGKLSSEDKET+EKAVEEKIEWLESHQDADIEDF 

Sbjct  555  ERIDARNELESYAYSLKNQIGDKEKLGGKLSSEDKETIEKAVEEKIEWLESHQDADIEDF  614 

 

Query  617  KAKKKELEEIVQPIISKLYGSAGPPPTGEEDTAEKDEL  654 

            K+KKKELEE+VQPI+SKLYGSAGPPPTGEE+ AEKDEL 

Sbjct  615  KSKKKELEEVVQPIVSKLYGSAGPPPTGEEEAAEKDEL  652 
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Figure 10.  Protein sequences of Human GRP 78 and a protein from the HSP 70 family 

extracted from Entamoeba histolytica (amoeba) were aligned through the NCBI BLAST 

database.  The variation in sequence length was not remarkable.  The percent of identical 

amino acids was unsurprisingly low (59%) and number of gaps in the sequence was 

insignificant.  With such a low score, it is more than likely not homologous and could not 

have resulted from a similar ancestral origin.  *Note:  The NCBI BLAST analysis will not 

yield results for amino acids 625 – 660 because there were no significant similarities found 

when compared to Human GRP 78.  This C-terminus of the HSP 70 family protein 

extracted from E. histolytica is KDEL. 
 

 

>lcl|52964 gi|67474975|ref|XP_653218.1| HSP70 family Entamoeba histolytica 

Length=660 

 Score =  748 bits (1930),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 363/608 (59%), Positives = 479/608 (78%), Gaps = 2/608 (0%) 

 

Query  29   TVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLIGDAAKNQLTSNP  88 

             ++GIDLGTT+S VG++++  VEIIANDQGNRITPS VAFT + + L+G+AA+NQ+T NP 

Sbjct  19   VIIGIDLGTTFSAVGIYRDSGVEIIANDQGNRITPSVVAFT-DHDILVGEAARNQITENP  77 

 

Query  89   ENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVDIGGGQTKTFAPEEISAM  148 

            +NT+F+ KRLIGRT++D  VQ+D+   PF ++ +  KP+I+V + G + K ++PEEISAM 

Sbjct  78   KNTIFEIKRLIGRTYDDKEVQRDLHIFPFNIINQDNKPFIKVTLKG-EEKIYSPEEISAM  136 

 

Query  149  VLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVMRIINEPTAAAIA  208 

            ++ KM +TA  YLGK+V  AV+TVPAYFNDAQRQATKDAGTIAGL V+RI+NEPTAA++A 

Sbjct  137  IIHKMAKTASDYLGKEVKKAVITVPAYFNDAQRQATKDAGTIAGLEVLRIVNEPTAASMA  196 

 

Query  209  YGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGEDFDQRVMEHFIK  268 

            +GL+  +GEK ILVFDLGGGTFDVSLL I+N VFEV+AT+GDTHLGG DFDQR+    ++ 

Sbjct  197  FGLNSFKGEKQILVFDLGGGTFDVSLLNIENNVFEVIATSGDTHLGGSDFDQRIALFLVE  256 

 

Query  269  LYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEGEDFSETLTRAKFE  328 

            + K+K  KD   + RA+ KLR+E EKAK ALSS+ Q +IEIE   EG DFS  LTRA+F  

Sbjct  257  ICKRKFKKDPSDNPRAMSKLRKEAEKAKIALSSEEQTKIEIEGLMEGLDFSFVLTRARFN  316 

 

Query  329  ELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVKEFFNGKEPSRGI  388 

            ELN+DLF+ T+ PV+ VL D+ L K D+DEIVLVGGSTRIPK+Q+L++EFFNGKEP++ + 

Sbjct  317  ELNLDLFKKTLGPVRMVLSDAKLDKKDVDEIVLVGGSTRIPKVQELLQEFFNGKEPNKDV  376 

 

Query  389  NPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKLIPRNTVVPTKKS  448 

            NPDEAVAYGAA+Q  VL+  + T D+VL+D  PLTLGI T GGVM  +IPR T VPTKKS 

Sbjct  377  NPDEAVAYGAAIQGAVLNNSEGTNDVVLVDATPLTLGIMTAGGVMASIIPRGTHVPTKKS  436 

 

Query  449  QIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQIEVTFEIDVNGI  508 

            QIF+T +DNQ  V I+V+EGER LTKDNHLLG F L GI  APRG+P+IEVTF++DVNGI 

Sbjct  437  QIFTTHADNQEQVEIQVFEGERSLTKDNHLLGKFMLEGIKRAPRGIPKIEVTFDVDVNGI  496 

 

Query  509  LRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLKERIDTRNELESY  568 

            LRV+A+DK +G K +ITIT+++ RLT E+I+RMV +A++ + ED K K+ I++RNELE+Y 

Sbjct  497  LRVSAQDKKSGKKEEITITSEKGRLTEEQIQRMVKEAQERSGEDNKAKKMIESRNELENY  556 

 

Query  569  AYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIEDFKAKKKELEEIVQ  628 

            AY +++++ DK+KL  KL   DK+T+   V+E +++LE      IE  +   K+LE+IV  

Sbjct  557  AYKVRDEVIDKDKLADKLQEGDKKTILDGVDEVLDFLEREMHPSIEKCEEMYKKLEQIVH  616 
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Query  629  PIISKLYG  636 

            PI+ +  G 

Sbjct  617  PILRRYGG  624 

 

 

 

 

Figure 11.  Protein sequences of Human GRP 78 and a purified protein, HSP 70 Cognate 

3, from Drosophilia melanogaster (fruit fly) were aligned through the NCBI BLAST 

database.  The variation in sequence length was not remarkable.  The percent of identical 

amino acids was moderate (80%) and there were an insignificant number of gaps needed to 

achieve better sequence alignment.  With a mediocre score, it is difficult to concretely 

conclude that these proteins are homologous and/or originated from the same or very 

similar source. 
  

>lcl|52965 gi|55584057|sp|P29844.2|HSP7C_Drosophilia melanogaster 

Length=656 

 Score = 1061 bits (2745),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 529/657 (80%), Positives = 593/657 (90%), Gaps = 4/657 (0%) 

 

Query  1    MKLSLVAAMLLLLSAARAEEEDKKED-VGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGN  59 

            MKL ++ A++  +  +  EE+ +K+  +GTV+GIDLGTTYSCVGV+KNGRVEIIANDQGN 

Sbjct  1    MKLCILLAVVAFVGLSLGEEKKEKDKELGTVIGIDLGTTYSCVGVYKNGRVEIIANDQGN  60 

 

Query  60   RITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKV  119 

            RITPSYVAFT +GERLIGDAAKNQLT+NPENTVFDAKRLIGR W+D +VQ DIKF PFKV 

Sbjct  61   RITPSYVAFTADGERLIGDAAKNQLTTNPENTVFDAKRLIGREWSDTNVQHDIKFFPFKV  120 

 

Query  120  VEKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDA  179 

            VEK +KP+I VD   G  K FAPEEISAMVL KMKETAEAYLGKKVTHAVVTVPAYFNDA 

Sbjct  121  VEKNSKPHISVDTSQG-AKVFAPEEISAMVLGKMKETAEAYLGKKVTHAVVTVPAYFNDA  179 

 

Query  180  QRQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDN  239 

            QRQATKDAG IAGL VMRIINEPTAAAIAYGLDK+EGEKN+LVFDLGGGTFDVSLLTIDN 

Sbjct  180  QRQATKDAGVIAGLQVMRIINEPTAAAIAYGLDKKEGEKNVLVFDLGGGTFDVSLLTIDN  239 

 

Query  240  GVFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRAL  299 

            GVFEVVATNGDTHLGGEDFDQRVM+HFIKLYKKK GKD+RKDNRAVQKLRREVEKAKRAL 

Sbjct  240  GVFEVVATNGDTHLGGEDFDQRVMDHFIKLYKKKKGKDIRKDNRAVQKLRREVEKAKRAL  299 

 

Query  300  SSQHQARIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEI  359 

            S  HQ RIEIESF+EG+DFSETLTRAKFEELN+DLFRST+KPVQKVLED+D+ K D+ EI 

Sbjct  300  SGSHQVRIEIESFFEGDDFSETLTRAKFEELNLDLFRSTLKPVQKVLEDADMNKKDVHEI  359 

 

Query  360  VLVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDV  419 

            VLVGGSTRIPK+QQLVK+FF GKEPSRGINPDEAVAYGAAVQAGVLSG+QDT  +VLLDV 

Sbjct  360  VLVGGSTRIPKVQQLVKDFFGGKEPSRGINPDEAVAYGAAVQAGVLSGEQDTDAIVLLDV  419 

 

Query  420  CPLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLL  479 

             PLT+GIETVGGVMTKLIPRNTV+PTKKSQ+FSTASDNQ TVTI+VYEGERP+TKDNHLL 

Sbjct  420  NPLTMGIETVGGVMTKLIPRNTVIPTKKSQVFSTASDNQHTVTIQVYEGERPMTKDNHLL  479 

 

Query  480  GTFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIE  539 

            G FDLTGIPPAPRG+PQIEV+FEID NGIL+V+AEDKGTGNK KI ITNDQNRLTPE+I+ 

Sbjct  480  GKFDLTGIPPAPRGIPQIEVSFEIDANGILQVSAEDKGTGNKEKIVITNDQNRLTPEDID  539 



53 

 
 

Query  540  RMVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVE  599 

            RM+ DAEKFA+EDKKLKER+++RNELESYAYSLKNQIGDK+KLG KLS ++K  +E A++ 

Sbjct  540  RMIRDAEKFADEDKKLKERVESRNELESYAYSLKNQIGDKDKLGAKLSDDEKNKLESAID  599 

 

Query  600  EKIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAG--PPPTGEEDTAEKDEL  654 

            E I+WLE + DAD E++K +KK+LE IVQP+I+KLY  AG  PPP G +D   KDEL 

Sbjct  600  ESIKWLEQNPDADPEEYKKQKKDLEAIVQPVIAKLYQGAGGAPPPEGGDDADLKDEL  656 

 

 

 

 

Figure 12.  Protein sequences of Human GRP 78 and a GRP 78 derived from the budding 

yeast, Saccharomyces cerevisiae were aligned through the NCBI BLAST database.  The 

variation in sequence length was not remarkable.  The percent of identical amino acids was 

moderately remarkable (68%) and there was a typical number of gaps added to achieve 

better sequence alignment.  With this low score, it is concluded that the probability of these 

two proteins being homologous and having descent from the same source in very unlikely.  

*Note:  The NCBI BLAST analyses will not yield results for amino acids 658 – 682 

because there were no significant similarities found when compared to Human GRP 78.  

This protein of S. cerevisiae has an HDEL C-terminus.   

 
 

>lcl|52966 gi|121575|sp|P16474.1|GRP78_Saccharomyces cerevisiae (yeast) 

Length=682 

 

 Score =  859 bits (2219),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 426/619 (68%), Positives = 509/619 (82%), Gaps = 7/619 (1%) 

 

Query  22   DKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERLIGDAAK  81 

            D  E+ GTV+GIDLGTTYSCV V KNG+ EI+AN+QGNRITPSYVAFT + ERLIGDAAK 

Sbjct  44   DDVENYGTVIGIDLGTTYSCVAVMKNGKTEILANEQGNRITPSYVAFTDD-ERLIGDAAK  102 

 

Query  82   NQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVDIGGGQTKTFA  141 

            NQ+ +NP+NT+FD KRLIG  +ND SVQ+DIK LPF VV K  KP ++V + G + K F  

Sbjct  103  NQVAANPQNTIFDIKRLIGLKYNDRSVQKDIKHLPFNVVNKDGKPAVEVSVKG-EKKVFT  161 

 

Query  142  PEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVMRIINE  201 

            PEEIS M+L KMK+ AE YLG KVTHAVVTVPAYFNDAQRQATKDAGTIAGLNV+RI+NE 

Sbjct  162  PEEISGMILGKMKQIAEDYLGTKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVLRIVNE  221 

 

Query  202  PTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGGEDFDQR  261 

            PTAAAIAYGLDK + E  I+V+DLGGGTFDVSLL+I+NGVFEV AT+GDTHLGGEDFD + 

Sbjct  222  PTAAAIAYGLDKSDKEHQIIVYDLGGGTFDVSLLSIENGVFEVQATSGDTHLGGEDFDYK  281 

 

Query  262  VMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEGEDFSET  321 

            ++   IK +KKK G DV  +N+A+ KL+RE EKAKRALSSQ   RIEI+SF +G D SET 

Sbjct  282  IVRQLIKAFKKKHGIDVSDNNKALAKLKREAEKAKRALSSQMSTRIEIDSFVDGIDLSET  341 

 

Query  322  LTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLVKEFFNG  381 

            LTRAKFEELN+DLF+ T+KPV+KVL+DS L+K D+D+IVLVGGSTRIPK+QQL++ +F+G 

Sbjct  342  LTRAKFEELNLDLFKKTLKPVEKVLQDSGLEKKDVDDIVLVGGSTRIPKVQQLLESYFDG  401 

 

Query  382  KEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTKLIPRNT  441 

            K+ S+GINPDEAVAYGAAVQAGVLSG++   D+VLLDV  LTLGIET GGVMT LI RNT 
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Sbjct  402  KKASKGINPDEAVAYGAAVQAGVLSGEEGVEDIVLLDVNALTLGIETTGGVMTPLIKRNT  461 

Query  442  VVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVPQIEVTF  501 

             +PTKKSQIFSTA DNQPTV IKVYEGER ++KDN+LLG F+LTGIPPAPRGVPQIEVTF 

Sbjct  462  AIPTKKSQIFSTAVDNQPTVMIKVYEGERAMSKDNNLLGKFELTGIPPAPRGVPQIEVTF  521 

 

Query  502  EIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKLKERIDT  561 

             +D NGIL+V+A DKGTG    ITITND+ RLT EEI+RMV +AEKFA ED  +K ++++ 

Sbjct  522  ALDANGILKVSATDKGTGKSESITITNDKGRLTQEEIDRMVEEAEKFASEDASIKAKVES  581 

 

Query  562  RNELESYAYSLKNQI-GDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADI-EDFKAK  619 

            RN+LE+YA+SLKNQ+ GD   LG KL  EDKET+  A  + +EWL+ + +  I EDF  K 

Sbjct  582  RNKLENYAHSLKNQVNGD---LGEKLEEEDKETLLDAANDVLEWLDDNFETAIAEDFDEK  638 

 

Query  620  KKELEEIVQPIISKLYGSA  638 

             + L ++  PI SKLYG A 

Sbjct  639  FESLSKVAYPITSKLYGGA  657  

 
 

 

Figure 13.  Protein sequences of Human GRP 78 and a GRP 78 purified from 

Mesocricetus auratus (golden hamster) were aligned through the NCBI BLAST database.  

The variation in sequence length was not remarkable.  The percent of identical amino acids 

was exceptionally high (98%) and there were absolutely no gaps added to achieve better 

sequence alignment.  This exceedingly high score cements the conclusion that these two 

proteins are indeed homologous and have descended from a common ancestor.   
 

 

>lcl|52967 gi|121570|sp|P07823.1|GRP78_Mesocricetus auratus (golden hamster) 

Length=654 

 Score = 1312 bits (3395),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 646/654 (98%), Positives = 649/654 (99%), Gaps = 0/654 (0%) 

 

Query  1    MKLSLVAAMLLLLSAARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  60 

            MK  +VAA LLLL A RAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR 

Sbjct  1    MKFPMVAAALLLLCAVRAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNR  60 

 

Query  61   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  120 

            ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV 

Sbjct  61   ITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVV  120 

 

Query  121  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  180 

            EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ 

Sbjct  121  EKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQ  180 

 

Query  181  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  240 

            RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG 

Sbjct  181  RQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNG  240 

 

Query  241  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  300 

            VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS 

Sbjct  241  VFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALS  300 

 

Query  301  SQHQARIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  360 

            SQHQARIEIESF+EGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV 

Sbjct  301  SQHQARIEIESFFEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIV  360 
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Query  361  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  420 

            LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC 

Sbjct  361  LVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVC  420 

 

Query  421  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  480 

            PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG 

Sbjct  421  PLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG  480 

 

Query  481  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  540 

            TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER 

Sbjct  481  TFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIER  540 

 

Query  541  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE  600 

            MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE 

Sbjct  541  MVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEE  600 

 

Query  601  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGEEDTAEKDEL  654 

            KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGEEDT+EKDEL 

Sbjct  601  KIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGEEDTSEKDEL  654 

 

 

 

 

Figure 14.  Protein sequences of Human GRP 78 and a GRP 78 extracted from Bos taurus 

(cow) were aligned through the NCBI BLAST database.  The variation in sequence length 

was not remarkable.  The percent of identical amino acids was exceptionally high (99%) 

and there were absolutely no gaps added to achieve better sequence alignment.  This 

exceedingly high score strengthens the conclusion that these two proteins are homologues 

and were derived from a common antecedent. 
 

 

>lcl|52968 gi|122144501|sp|Q0VCX2.1|GRP78_Bos taurus (cow) 

Length=655 

 Score = 1290 bits (3337),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 634/639 (99%), Positives = 637/639 (99%), Gaps = 0/639 (0%) 

 

Query  16   ARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERL  75 

            ARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERL 

Sbjct  17   ARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSYVAFTPEGERL  76 

 

Query  76   IGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVDIGGG  135 

            IGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVD+GGG 

Sbjct  77   IGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTKPYIQVDVGGG  136 

 

Query  136  QTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNV  195 

            QTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNV 

Sbjct  137  QTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNV  196 

 

Query  196  MRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGG  255 

            MRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGG 

Sbjct  197  MRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVVATNGDTHLGG  256 

 

Query  256  EDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEG  315 

            EDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEG 

Sbjct  257  EDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQARIEIESFYEG  316 
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Query  316  EDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLV  375 

            EDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLV 

Sbjct  317  EDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGSTRIPKIQQLV  376 

 

Query  376  KEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTK  435 

            KEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTK 

Sbjct  377  KEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLGIETVGGVMTK  436 

 

Query  436  LIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVP  495 

            LIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVP 

Sbjct  437  LIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLTGIPPAPRGVP  496 

 

Query  496  QIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKL  555 

            QIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKL 

Sbjct  497  QIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDAEKFAEEDKKL  556 

 

Query  556  KERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIED  615 

            KERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIED 

Sbjct  557  KERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWLESHQDADIED  616 

 

Query  616  FKAKKKELEEIVQPIISKLYGSAGPPPTGEEDTAEKDEL  654 

            FKAKKKELEEIVQPIISKLYGSAGPPPT EE+ A+KDEL 

Sbjct  617  FKAKKKELEEIVQPIISKLYGSAGPPPTSEEEAADKDEL  655 

 

 

 

 

 

Figure 15.  Protein sequences of Human GRP 78 and a GRP 78 recovered from Xenopus 

laevis (frog) were aligned through the NCBI BLAST database.  The variation in sequence 

length was not remarkable.  The percent of identical amino acids was high (94%) and there 

were an insignificant number of gaps added to achieve better sequence alignment.  This 

high score lends credence to the conclusion that these two proteins are quite possibly 

homologues and evolved from the same ancestral beginning.  *Note:  The NCBI BLAST 

analyses will not yield results for amino acids 644 – 658 because there were no significant 

similarities found when compared to Human GRP 78.  The C-terminal sequence is KDEL.  
 

>lcl|52969 gi|4033394|sp|Q91883.1|GRP78_Xenopus laevis (frog) 

Length=658 

 Score = 1214 bits (3142),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 602/637 (94%), Positives = 623/637 (97%), Gaps = 3/637 (0%) 

 

Query  8    AMLLLLSAA--RAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSY  65 

            A++LL+SA+   ++++DKK+D+GTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSY 

Sbjct  8    ALVLLVSASVFASDDDDKKDDIGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGNRITPSY  67 

 

Query  66   VAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKVVEKKTK  125 

            VAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIK+LPFKV+EKKTK 

Sbjct  68   VAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKYLPFKVIEKKTK  127 

 

Query  126  PYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDAQRQATK  185 

            PYI+VDIG  Q KTFAPEEISAMVL KMKETAEAYLG+KVTHAVVTVPAYFNDAQRQATK 

Sbjct  128  PYIEVDIGD-QMKTFAPEEISAMVLVKMKETAEAYLGRKVTHAVVTVPAYFNDAQRQATK  186 
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Query  186  DAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDNGVFEVV  245 

            DAGTIAGLNVMRIINEPTAAAIAYGLDK+EGEKNILVFDLGGGTFDVSLLTIDNGVFEVV 

Sbjct  187  DAGTIAGLNVMRIINEPTAAAIAYGLDKKEGEKNILVFDLGGGTFDVSLLTIDNGVFEVV  246 

 

Query  246  ATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRALSSQHQA  305 

            ATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVR D RAVQKLRREVEKAKRALS+QHQ+ 

Sbjct  247  ATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRADKRAVQKLRREVEKAKRALSAQHQS  306 

 

Query  306  RIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVGGS  365 

            RIEIESF+EGEDFSETLTRAKFEELNMDLFRSTMKPVQKVL+DSDLKKSDIDEIVLVGGS 

Sbjct  307  RIEIESFFEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLDDSDLKKSDIDEIVLVGGS  366 

 

Query  366  TRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLG  425 

            TRIPKIQQLVKE FNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLG 

Sbjct  367  TRIPKIQQLVKELFNGKEPSRGINPDEAVAYGAAVQAGVLSGDQDTGDLVLLDVCPLTLG  426 

 

Query  426  IETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLT  485 

            IETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLT 

Sbjct  427  IETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLGTFDLT  486 

 

Query  486  GIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVNDA  545 

            GIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMV DA 

Sbjct  487  GIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEEIERMVTDA  546 

 

Query  546  EKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKAVEEKIEWL  605 

            EKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKET+EKAVEEKIEWL 

Sbjct  547  EKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETIEKAVEEKIEWL  606 

 

Query  606  ESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPP  642 

            ESHQDADIEDFKAKKKELEEIVQPI+ KLYG AG PP 

Sbjct  607  ESHQDADIEDFKAKKKELEEIVQPIVGKLYGGAGAPP  643 

 

 

 

Figure 16.  Protein sequences of Human GRP 78 and a GRP 78 isolated from Spinacia 

oleracea (spinach) were aligned through the NCBI BLAST database.  The miniscule 

variation in sequence length was not remarkable.  The percent of positive amino acids was 

moderately high (82%) and there were an insignificant number of gaps added to achieve 

better sequence alignment.  This score allows the conclusion that human GRP 78 and GRP 

78 of spinach may in fact have similar evolutionary beginnings. 

 

 
>lcl|21051 gi|3913786|sp|Q42434.1|GRP78_Spinacia oleracea (spinach) 

Length=668 

 Score =  922 bits (2384),  Expect = 0.0, Method: Compositional matrix adjust. 

 Identities = 458/663 (69%), Positives = 550/663 (82%), Gaps = 12/663 (1%) 

 

Query  2    KLSLVAAMLLLLSA--ARAEEEDKKEDVGTVVGIDLGTTYSCVGVFKNGRVEIIANDQGN  

59          + S +A  ++LL +  A    +D+   +GTV+GIDLGTTYSCVGV+K+G+VEIIANDQGN 

Sbjct  8    RASSIAFGIVLLGSLFAFVSAKDEAPKLGTVIGIDLGTTYSCVGVYKDGKVEIIANDQGN  

67 

 

Query  60   RITPSYVAFTPEGERLIGDAAKNQLTSNPENTVFDAKRLIGRTWNDPSVQQDIKFLPFKV  

119         RITPS+VAFT + ERLIG+AAKNQ  +NPE T+FD KRLIGR + D  VQ+D+K +P+K+ 
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Sbjct  68   RITPSWVAFTND-ERLIGEAAKNQAAANPERTIFDVKRLIGRKFEDKEVQKDMKLVPYKI  

126 

 

Query  120  VEKKTKPYIQVDIGGGQTKTFAPEEISAMVLTKMKETAEAYLGKKVTHAVVTVPAYFNDA  

179         V +  KPYIQV +  G+TK F+PEEISAM+LTKMKETAE +LGKK+  AVVTVPAYFNDA 

Sbjct  127  VNRDGKPYIQVKVQEGETKVFSPEEISAMILTKMKETAETFLGKKIKDAVVTVPAYFNDA  

186 

 

Query  180  QRQATKDAGTIAGLNVMRIINEPTAAAIAYGLDKREGEKNILVFDLGGGTFDVSLLTIDN  

239         QRQATKDAG IAGLNV RIINEPTAAAIAYGLDKR GEKNILVFDLGGGTFDVS+LTIDN 

Sbjct  187  QRQATKDAGVIAGLNVARIINEPTAAAIAYGLDKRGGEKNILVFDLGGGTFDVSVLTIDN  

246 

 

Query  240  GVFEVVATNGDTHLGGEDFDQRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRAL  

299         GVFEV+ATNGDTHLGGEDFDQR+ME+FIKL KKK  KD+ KDNRA+ KLRRE E+AKRAL 

Sbjct  247  GVFEVLATNGDTHLGGEDFDQRLMEYFIKLIKKKHTKDISKDNRALGKLRRECERAKRAL  

306 

 

Query  300  SSQHQARIEIESFYEGEDFSETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEI  

359         SSQHQ R+EIES ++G DFSE LTRA+FEELN DLFR TM PV+K ++D+ L+K+ IDEI 

Sbjct  307  SSQHQVRVEIESLFDGVDFSEPLTRARFEELNNDLFRKTMGPVKKAMDDAGLEKNQIDEI  

366 

 

Query  360  VLVGGSTRIPKIQQLVKEFFNGKEPSRGINPDEAVAYGAAVQAGVLSGD--QDTGDLVLL  

417         VLVGGSTRIPK+QQL+KEFFNGKEPS+G+NPDEAVA+GAAVQ  +LSG+  ++T +++LL 

Sbjct  367  VLVGGSTRIPKVQQLLKEFFNGKEPSKGVNPDEAVAFGAAVQGSILSGEGGEETKEILLL  

426 

 

Query  418  DVCPLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNH  

477         DV PLTLGIETVGGVMTKLIPRNTV+PTKKSQ+F+T  D Q TVTI+V+EGER LTKD   

Sbjct  427  DVAPLTLGIETVGGVMTKLIPRNTVIPTKKSQVFTTYQDQQTTVTIQVFEGERSLTKDCR  

486 

 

Query  478  LLGTFDLTGIPPAPRGVPQIEVTFEIDVNGILRVTAEDKGTGNKNKITITNDQNRLTPEE  

537         LLG FDLTGI PAPRG PQIEVTFE+D NGIL V AEDK +G   KITITND+ RL+ EE 

Sbjct  487  LLGKFDLTGIAPAPRGTPQIEVTFEVDANGILNVKAEDKASGKSEKITITNDKGRLSQEE  

546 

 

Query  538  IERMVNDAEKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETMEKA  

597         IERMV +AE+FAEEDKK+KE+ID RN LE+Y Y++KNQI D +KL  KL S++KE +E A 

Sbjct  547  IERMVREAEEFAEEDKKVKEKIDARNSLETYIYNMKNQISDADKLADKLESDEKEKIEGA  

606 

 

Query  598  VEEKIEWLESHQDADIEDFKAKKKELEEIVQPIISKLYGSAGPPPTGE-----EDTAE-K  

651         V+E +EWL+ +Q A+ ED+  K KE+E +  PII+ +Y  +G  P+GE     ED+ E   

Sbjct  607  VKEALEWLDDNQSAEKEDYDEKLKEVEAVCNPIITAVYQRSG-GPSGESGADSEDSEEGH  

665 

 

Query  652  DEL  654 

            DEL 

Sbjct  666  DEL  668 
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 In summary, from analyses of the data garnered from NCBI’s BLAST database, 

we discovered which proteins were closely related to human GRP 78.  This assessment 

was accomplished by comparing the identities percentages and the overall alignment score.  

This study revealed and confirmed the following proteins are homologous to, and most 

likely have an evolutionary link, to Human Glucose Regulated Protein 78:  

1) GRP 78 from  Mus musculus (mouse),  

2) Heat Shock Protein 5 (HSP 5) from Rattus norvegicus (rat),  

3) GRP 78 from Gallus domesticus (chicken); 

4) GRP 78 from Mesocricetus auratus (golden hamster) 

5) GRP 78 from Bos taurus (cow) 

6) GRP 78 from Xenopus laevis (frog) 

7) GRP 78 from Spinacia oleracea (spinach) 

 

 Contrarily and also from the analyses of the data gathered from the BLAST 

database, the following proteins did not appear to be homologous or have an ancestral 

linkage to Human Glucose Regulated Protein 78: 

1) GRP 78 from Plasmodium falciparum (malaria)   

2) Heat Shock Protein 70 chaperone from Aspergillus fumigatus (fungi) 

3) Heat Shock Protein 70 family from Entamoeba histolytica (amoeba) 

4) GRP78 from Saccharomyces cerevisiae (yeast) 
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 Four of the selected proteins did not have results that included the C-terminal 

ending of either KDEL as seen in mammalian cells or HDEL as seen in plants and lower 

organisms.  This is a limitation of the NCBI BLAST program in that if no significant 

similarities are found, the output ends at the last group of significantly comparable amino 

acids.  The protein evaluation ranges were changed to try and elicit some statistical 

response from the program, but no manipulation of the parameters would yield the 

complete protein sequence analyzed.  Each sequence in which this occurred, A. fumigatus, 

E. histolytica, S. cerevisiae and X. laevis, was verified and the C-terminus was added to the 

corresponding figure’s annotation. 

 Lastly, as every investigation would have, there is one outlier or one 

indeterminable variable, Heat Shock Protein 7C purified from Drosophilia melanogaster, 

(fruit fly).  With the other proteins evaluated in this study, it was relatively simple to 

decide on homology and possible relationship between the proteins.  In the case of HSP7C 

from the fruit fly, it is virtually impossible to look at the data generated and make a 

definitive decision.  Even though the score was moderately high for identical amino acids 

in the protein sequence at 80%, it could not be determined with reasonable certainty and 

accuracy that this particular protein was indeed homologous to human GRP 78 or shared 

any common ancestry. 

 

B.   Assessing Homology Using a Phylogeny Tree 

 A phylogeny tree was generated from the HomoloGene portion of the NCBI 

website.  The FASTA format of the protein sequences was submitted for each of the eleven 
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homologous proteins.  The phylogeny tree would provide a graphical representation of 

ancestry, versus a calculated one as in sequence alignment analyses (Figure 17).   

 

Figure 17.  Below is a phylogeny tree generated through the use of the HomoloGene 

function of the NCBI database.  As suspected from the sequence alignment data performed 

previously, human Glucose Regulated Protein 78 is most closely related to GRP78 from 

Mesocricetus auratus (golden hamster), Bos taurus (cow), Rattus norvegicus (Norway rat), 

and Mus musculus (common mouse).  Additionally, as determined from the sequence 

alignment data, similar proteins from Entamoeba histolytica and Plasmodium falciparum 

are not structurally similar and are at best, distantly related to human GRP 78. 
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 As reported from the protein sequence alignment data, human GRP 78 is most 

closely related to corresponding proteins in the common house mouse, the Norway rat, the 

cow, and the golden hamster.  Its ancestral relationship with similar proteins in chickens is 

hinted at from this phylogenetic tree.  Unsurprisingly, human GRP 78 is not very closely 

related to either of the protozoan parasites, Entamoeba histolytica or Plasmodium 

falciparum.  There appears to be no relationship whatsoever with the fungi, Aspergillus 

fumigatus, which is so far away, it almost failed to be pictured on the phylogeny tree.  Its 

placement is at the top far right corner of the graphic representation in Figure 17.  

Spinacia oleracea was appended to this study and according to the bioinformatics data 

obtained in the BLAST analyses, spinach would be very close to Saccharomyces 

cerevisiae on the phylogeny tree. 

 

C.  CLC Main Workbench 5.1  

  Human GRP 78 was compared to one homologous protein, GRP 78 from 

Mesocricetus auratus (golden hamster) and one non-homologous protein, GRP 78 from 

Plasmodium falciparum (malarial parasite).  The protein molecular weight, isoelectric 

point, half-life, atomic composition and frequency features were evaluated.  Proteins most 

alike will have similar characteristics in each of these areas; whereas those which are 

vastly different will be markedly dissimilar (Table 6). 
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Table 6.  Comparison and contrast of a few selected biochemical difference between 

human GRP78 in a protein, GRP 78 from Mesocricetus auratus (golden hamster), a known 

homologue and a non-homologous protein, GRP 78 from Plasmodium falciparum 

(malarial parasite).  Human GRP 78, hamster GRP 78, and spinach GRP 78 are 

comparable in molecular weight, isoelectric point, N-terminal residues, and differ slightly 

in half-life. Whereas the non-homologous GRP 78 from the malarial parasite is very 

different in that it has only half of the molecular weigh of the other two compounds; 0.5 

pH units different making it soluble in more acidic solutions.  Human and hamster GRP 78 

would have net positive charges at the isoelectric point of the Malarial GRP78.  Its net 

charge would be zero. 

 

 Human 

GRP78 

Hamster 

GRP78 

Malarial 

GRP78 

Spinach 

GRP78 

Molecular Weight 72.332 kDa 72.378 kDa 30.657 kDa 73.600 kDa 

Isoelectric Point 5.31 5.31 5.00 4.76 

N-Terminal Amino 

Acid 

Methionine Methionine Glutamic 

acid 

Methionine 

Half-life 30 hours 30 hours 1 hour 10-20 hours 

           

 Human GRP 78, hamster GRP 78, and spinach GRP 78 are nearly identical when 

molecular weight, isoelctric point, N-terminal amino acid and half-life of the compounds 

are compared.  This is what is expected with homologous proteins.  If these proteins were 

subject to polyacrylamide gel analysis, one would expect to find them in close vicinity of 

each other.  The opposite holds true for the malarial parasite GRP 78.   
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Human GRP 78 and hamster GRP 78 are nearly identical when atomic composition 

and atom count frequency are compared.  Again, this is the expectation for homologous 

proteins.  The more closely related the proteins are the more similar they react 

biochemically and biologically.  On the contrary, when a comparable assessment is done 

with the malarial GRP 78 with the same variables, atomic composition and atom count 

frequency, again are numerous differentiations among the atoms reviewed.  The malarial 

protein contains 1/3 to ½ of the atomic compositions. 

 

Table 7.  Comparison and contrast of the Atomic Composition and Count Frequency by 

analyzing hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S).  As 

expected, there are negligible differences between human GRP78 and an evolutionary 

relative, GRP 78 from Mesocricetus auratus (golden hamster). When comparing and 

contrasting GRP 78 from Plasmodium falciparum (malarial parasite), it is readily noted the 

difference in count and frequency of the selected atoms.  Human GRP78 and hamster GRP 

78 are comparable in atomic composition and count frequency.  Conversely, GRP 78 from 

the malarial parasite is very different in that it has  

 

ATOMIC COMPOSITION AND ATOM COUNT FREQUENCY 

Protein H H 

freq 

C C 

freq 

N N 

freq 

O O 

freq 

S S    

freq 

Human  

GRP78 

5,153 0.503 3,189 0.311 865 0.084 1,019 0.100 13 0.001 

Hamster  

GRP 78 

5,151 0.503 3,193 0.312 865 0.084 

 

1,017 0.099 14 0.001 

Malarial  

GRP 78 

2,177 0.503 1,342 0.310 365 0.084 

 

444 

 

0.102 

 

4 

 

0.001  
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D.   Electroporation Techniques Used for Algae   

           The wild type strain of Chlamydomonas reinhardtii, cc125 mt+, was used in this 

study and was successfully grown mixotrophically on solid and liquid Tris-Acetate- 

Phosphate (TAP) media.   

Several different electroporation conditions were used in this study until the 

optimal conditions were discovered.  Initially, we varied the hypertonic solutions and then 

the field strengths and only used the parent plasmid pSP124S as our electroporation DNA.  

After seven experiments, the results were computed (Figures 18, 19, 20 and 21) and we 

concluded that the best results without question were obtained when we used  0.4 M 

Sucrose in our electroporation media and had a field strength with a total capacitance of 

10μF and a voltage of 2.5 kV/cm. 
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Figure 18.  Effect of Field Strength on Transformation Efficiency in 0.4 M Sucrose.  A 

100-ml culture Chlamydomonas reinhardtii cells were centrifuged at 3000 rpm for seven 

minutes.  The supernatant TAP was decanted and the pellet was resuspended in 5 ml of 

fresh TAP solution.  The green algae cells (100 µL) were aliquoted into a 24-well plate. 

The specified concentration of sucrose was used as the hypertonic solution to produce 

plasmolysis in algae and allow the pSP124S plasmid DNA to enter the cells.  Each aliquot 

of algal cells was electroporated with two pulses at the designated voltage.  The results 

from seven experiments were totaled.  At least a four-fold increase of transformed colonies 

was obtained with the use of sucrose for plasmolysis as compared to the other hypertonic 

solutions or ultra pure water. 
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Figure 19.   Effect of Field Strength on Transformation Efficiency in 0.4 M Sorbitol.  The 

same procedure from the previous figure was used and sucrose was replaced with sorbitol.  

The results from seven experiments were totaled.  Sorbitol is an effective plamolysis agent, 

however not as efficient as sucrose when transformation efficiency is compared.  We 

obtained a total of 1/3 the number of transformed colonies as compared with the number of 

transformed colonies submerged in sucrose.  Variation in the field strengths did prove to 

produce slightly higher transformation efficiency among the cells exposed to sorbitol. 

Overall, this sugar did not produce as many transformed colonies as sucrose.                                     

. 
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Figure 20.  Effect of Field Strength on Transformation Efficiency in Ultra Pure Water.  A 

100-ml culture Chlamydomonas reinhardtii cells were centrifuged at 3000 rpm for seven 

minutes.  The supernatant TAP was decanted and the pellet was resuspended in 5 ml of 

fresh TAP solution.  100 µL of algal cells were pipetted into a 24-well plate.  The pSP124S 

plasmid DNA was mixed with ultra pure water.  Each aliquot of algal cells was exposed to 

the indicated field strengths and electroporated with two pulses at the designated voltage.  

The sums of colonies from seven experiments were graphed.  The use of ultra pure water 

allowed us to successfully transform colonies, but not nearly as many when compared to 

sucrose or sorbitol.  It appears that the change in field strengths did not affect the number 

of colonies successfully transformed. 
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Figure 21.  Effect of Field Strength on Transformation Efficiency in 0.4 M Mannitol.  A 

100-ml culture Chlamydomonas reinhardtii cells were centrifuged at 3000 rpm for seven 

minutes.  The supernatant TAP was decanted and the pellet was resuspended in 5 ml of 

fresh TAP solution.  The green algae cells (100 µL) were aliquoted into a 24-well plate. 

Mannitol in the concentration of 0.4 M was used as the hypertonic solution to produce 

plasmolysis in algae and allow the pSP124S plasmid DNA to enter the cells.  Each aliquot 

of algal cells was electroporated with two pulses at the designated field strength.  The 

results from seven experiments were totaled.  The use of 0.4 M Mannitol was not a feasible 

option as compared to sucrose, sorbitol or ultra pure water.  The worse transformation 

efficiencies were received with this sugar.  
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DISCUSSION 

 

Bacteria, plants, and animals have been genetically modified for several decades 

now.  These genetically modified organisms (GMOs) have been used to mass-produce 

mammalian proteins.  The proteins can be purified and employed as immunotherapeutic, 

diagnostic, pharmaceutic, and prognostic agents in the treatment of several forms of 

adenocarcinoma, hormone deficiencies, and vaccine therapy.  

Glucose Regulated Protein 78, a molecular chaperone, which has the primary of 

function of associating with free immunoglobulin heavy chains in the endoplasmic 

reticulum until they are assembled with the light chains, has been the focus of this study.   

There are innumerable homologues of this protein among eukaryotes, but not all of them 

originated from the same source or common ancestor.  Human GRP 78 is nearly identical 

to the same protein expressed in Mus musculus, the ordinary house mouse, and in the 

golden hamster, also called the Syrian hamster, Mesocricetus auratus. When comparing 

the glucose regulated protein 78 of spinach, it was remarkably similar to the human 

homolog.  Human GRP 78 was most dissimilar to the opportunistic fungi, Aspergillus 

fumigatus or the budding yeast, Saccharomyces cerevisae. 

 The phylogenetic tree generated reiterated the same fact, but by using 

graphics rather that computational studies.  The distance between the human GRP 78 and 
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that of the mouse and hamster were very close and this was as expected.  Farther away 

were the fungi and budding yeast.   However, this study was unable to determine exactly, if 

at all the GRP 78 from the Drosophilia melanogaster, the pesky fruit fly, was actually a 

homologue or no.  The computational analyses suggest it may be, but the phylogenetic tree 

hints otherwise.  The bioinformatics databases are unbelievable in the amount of work they 

can perform in little time.  There is a wealth of information at the seekers fingertips.  The 

databases used in this study were extremely user friendly and took a very time-consuming 

task and made them quick and easy.  NCBI, CLC bio and STRING 8.1 had free access to 

their databases and only required that credit be given for their use.  These sites can only be 

improved by incorporating more protein-protein interaction data.  The data are abundant, 

but lacking in the ability to compare proteins across various genera.   As much research as 

has been completed on Chlamydomonas reinhardtii, very little, if any, was accessible to 

compare with organisms that were vastly different from the green alga.  The biggest 

challenge was realized when trying to complete protein-protein interaction studies.  The 

bioinformatics databases and search engines were unable to successfully analyze protein 

sequences that originated from genera.  The sites did include information stating that this 

information would be readily available in the future, but was a work in progress.    NCBI, 

by far, led the others in this arena.  However, none of the programs were able to ascertain, 

even theoretically, how any of the studied proteins would interact once introduced within 

C. reinhardtii.  That was a true disappointment. 

Bacteria, plants, and animals have been genetically modified for several decades 

now.  These genetically modified organisms (GMOs) have been used to mass-produce 
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mammalian proteins.  The proteins can be purified and employed as immunotherapeutic, 

diagnostic, pharmaceutical, and prognostic agents in the treatment of several forms of 

adenocarcinoma, hormone deficiencies, and vaccine therapy. 

Chlamydomonas reinhardtii, a unicellular eukaryote, is easily maintained in the 

laboratory environment.  This member of the family Chlorophyta, was easily transformed 

by electroporation with the parent pSP124S as detailed in this study.  Once the conditions 

and parameters for electroporation, a direct gene transfer method, were revealed, the 

chloroplast, nuclear, and mitochondrial genomes could be easily modified.  In this study, 

we attempted to modify the nuclear genome only.  However, further testing must be 

accomplished to ensure that is where the DNA was transferred to after subjecting the algae 

to plasmolysis and electroporation. 

Using 0.4 M sucrose in the electroporation media enabled the most remarkable 

increase in the final number of transformants.  This result reflects the increase in survival 

of the cells and increased efficiency of introducing exogenous DNA into the cells.  

Incorporating the starch-embedding technique during plating also may have contributed to 

the dramatic increase in survival of the algae post electropulsation.  Previously, this 

technique was usually applied strictly to cell wall deficient mutants. 

To attain the highest transformation frequency, three different field strength 

parameters were studied.  The capacitance and voltage were varied and the results were 

nearly the same for 10uF, and 2.5 kV/cm, 25uF, 2.0 kV/cm.  However, more experienced 

scientists were able to obtain their best results using the third parameter, 50uF, 0.8 kV/cm.  

The efficiency in which we were able to introduce foreign DNA into the green algae is still 
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lower than what is expected for yeast.  Further experiments may be conducted to 

investigate the differences that may be due to varying the amount of exogenous DNA, 

utilizing linear DNA versus plasmid DNA, adding carrier DNA, or using another method, 

such as the glass beads vortexing method, to introduce the foreign DNA.   

Once the electroporation conditions and the field strength parameters that worked 

best for Chlamydomonas reinhardtii wild type strain, cc125 mt+, were discovered, 

introduction of the mammalian molecular chaperone (grp 78) and/or the humanized 

pancarcinoma antibody (hucc 49) could be investigated.  We hypothesize that the glucose 

regulated protein 78 would shield the HuCC49 from degradation until the antibody could 

be properly folded, thereby increasing the production of this mammalian protein.  The 

grp78 gene could be extracted from the pA78H plasmid; the hucc49-gfp from the p35S-49-

GRP plasmid. Both of these genes could, in separate experiments be inserted into a 

duplicated RubisCO cassette of pSP124S, thereby leaving the ble
r
 gene, as a selectable 

marker.  Upon success of those experiments, the “cockroach of the algae world” could take 

the Plantibody® industry by storm and produce exceedingly more antibodies in a mere 

fraction of the time it takes true, green vascular plants to produce the same agent.  The 

pharmaceutical world and medical community could be inundated with a variety of 

immunotherapeutic, diagnostic, and prognostic agents from which to choose for modern 

day diagnoses and treatments. 

  Further studies would need to be performed to analyze the functionality of the 

anticarcinoma antibody once it is produced in the algae.  Further down the road, binding, 

specificity, and cytotoxicity assays would be the next logical steps to take to ensure that 
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the antibody produced in Chlamydomonas reinhardtii is comparable in functionality as the 

original humanized mouse monoclonal antibodies is.   
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APPENDIX A 

 

pA78H

8300 bps
2000

4000

6000

8000 EcoRI

NotI
SacII
SacI

EcoRI
HindIII

BamHI
SmaI
XbaI

SmaI
BamHI
SacI

SacI

EcoRV

NcoI

HindIII
EcoRV
EcoRI

PstI
SmaI

BamHI
SpeI
XbaI
EagI
NotI

GRP78

NOS

35s

HgH

tmlT7
AMP

Ori

AMY8

spMCS'

 

Originally constructed by Scott Taylor, 2001, Dr. Wu’s Laboratory 

 

 

 

 

 

 



89 

 

 

 

APPENDIX B 
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APPENDIX C 

 

 

 

From:  Stratagene.com Vector restriction map of pBluescript II SK.  The cassette 

containing the RubisCO promoter followed by the ble gene was inserted into this vector at 

the SacI and KpnI sites to become pSP124S plasmid.
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