
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2009

Efficient Implementation of RAID-6 Encoding and
Decoding on a Field Programmable Gate Array
(FPGA)
David Jacob
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Electrical and Computer Engineering Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/1981

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VCU Scholars Compass

https://core.ac.uk/display/51291378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1981?utm_source=scholarscompass.vcu.edu%2Fetd%2F1981&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Efficient Implementation of RAID-6 Encoding and Decoding on a
Field Programmable Gate Array (FPGA)

David Jacob

Director – Dr. James M. McCollum
Assistant Professor of Electrical & Computer Engineering

School of Engineering,
Virginia Commonwealth University,

Richmond, Virginia

December 10, 2009

Abstract

RAID-6 is a data encoding scheme used to provide single drive error detection and dual drive error correction for
data redundancy on an array of disks. Here we present a thorough study of efficient implementations of RAID-6 on
field programmable gate arrays (FPGAs). Since RAID-6 relies heavily on Galois Field Algebra (GFA), an efficient
implementation of a GFA FPGA library is also presented. Through rigorous performance analysis, this work shows
the most efficient ways to tradeoff FPGA resources and execution time when implementing GFA functions as well as
RAID-6 encoding and decoding.

Contents

1 Introduction 5
1.1 Redundant Array of Inexpensive Drives (RAID) . 5
1.2 Field Programmable Gate Array (FPGA) . 5
1.3 Motivation . 6
1.4 Organization . 6

2 Background Information and Prior Work 7
2.1 RAID-6 Overview . 7
2.2 Binary Galois Field Algebra . 8

2.2.1 GF Addition and Subtraction . 8
2.2.2 GF Multiplication . 8
2.2.3 GF Logarithm and Exponentiation . 10
2.2.4 GF Division . 10

2.3 RAID-6 Operations . 11
2.3.1 RAID-6 Encoding . 11
2.3.2 RAID-6 Double Error Correction . 12
2.3.3 RAID-6 Error Detection . 15

2.4 Prior Work In Hardware and Software Implementations of GF Algebra 16

3 Efficient Implementation of a GF Algebra FPGA library 18
3.1 GF Addition/Subtraction . 18
3.2 GF Logarithm and Exponentiation . 19
3.3 GF Multiplication . 19

3.3.1 Logarithm Table Method . 19
3.3.2 LFSR Method . 20
3.3.3 Bit-wise Parallel Multiplier . 21

3.4 GF Division and Inversion . 23
3.4.1 Table Method . 24
3.4.2 Multiplicative Inverse . 24

3.5 GF Multiplication by a Constant . 28
3.6 GF Division by a Constant . 29
3.7 GF Algebra Conclusions . 30

3.7.1 GF Addition/Subtraction . 30
3.7.2 GF Logarithm and Exponentiation . 30
3.7.3 GF Multiplication . 30
3.7.4 GF Division and Inversion . 30

4 Efficient Implementation of a RAID-6 FPGA library 31
4.1 RAID-6 Encoding . 31

4.1.1 Table-Based RAID-6 Encoding . 32
4.1.2 Combinational RAID-6 Encoding . 33
4.1.3 Summary . 33

4.2 RAID-6 Error Detection . 33

1

4.3 RAID-6 Error Correction . 34
4.3.1 Table-Based RAID-6 Error Correction . 35
4.3.2 Combinational RAID-6 Error Correction . 36
4.3.3 Summary . 36

4.4 RAID-6 Conclusions . 37
4.4.1 RAID-6 Encoding . 37
4.4.2 RAID-6 Error Detection . 37
4.4.3 RAID-6 Error Correction . 37

5 Conclusions and Future Work 39
5.1 Conclusions . 39
5.2 Future Work . 40

Bibliography 41

Appendix 43

A Definitions 43
A.1 Terms and Abreviations . 43
A.2 Symbols . 43

B GF Logarithm and Exponentiation Tables 45

C GF Algebra and RAID-6 Library Package 47

D GF Algebra and RAID-6 Library Components 67

2

List of Figures

2.1 Raid-6 Configuration Diagram . 7

3.1 Table-Based GF Multiplier . 20
3.2 LFSR GF Multiplier . 20
3.3 Bit Parallel Multiplier . 22
3.4 Combinational I ⊗ 2 . 22
3.5 Combinational I ⊗ 2p . 23
3.6 Table-Based GF Divider . 24
3.7 Serial Brute Force Inverse Search . 25
3.8 Computing Multiplicative Inverse by Computing y254 . 25

4.1 Table-based RAID-6 Encoding . 32
4.2 Combinational RAID-6 Encoder . 33
4.3 Block Diagram of RAIDf1 BRAM . 34
4.4 RAID-6 Error Correction Block Diagram . 35
4.5 Chart of FPGA LUT4 used in a RAID-6 system based on Storage Device Count 38

3

List of Tables

3.1 Logarithm and exponentiation Table Lookup Summary . 19
3.2 Transfer Functions for multiplying by 2x for x = 0− 7 . 22
3.3 Galois Field Multiplier Summary . 23
3.4 Galois Field Division Summary . 28
3.5 Galois Field Inversion Summary . 28
3.6 Galois Field Division Summary . 28

4.1 RAID-6 Encoding Summary . 33
4.2 RAID-6 Error Correction Summary . 34
4.3 RAID-6 Double Error Correction Summary . 36

B.1 GF Logarithm Table . 45
B.2 GF Exponentiation Table . 46

4

Chapter 1

Introduction

1.1 Redundant Array of Inexpensive Drives (RAID)
RAID is the concept of using an array of storage devices to function as one storage device[1]. This was motivated
by the fact that the same capacity and relaibility can be attained in an array of small, cheap hard drives as in a large,
expensive hard drive, but at a much lower price. There are 4 commonly used types of RAID: RAID-0, RAID-1, RAID-
5, and RAID-6. RAID-0 is a pure data striping scheme with no redundancy. This gives the maximum performance
and capacity to the array. RAID-1 is a pure data mirroring scheme. This provides maximum redundancy so that the
array can survive the failure of all but one device with no loss of data. This comes at the expense of array capacity
and write speed. RAID-5 uses striped data with a rotated parity. This allows near optimal capacity and performance
while allowing a single storage device to fail with no loss of data. RAID-6 uses striped parity with two rotated parities.
This system is similar to RAID-5 except two devices may be lost with no loss of data from the array. Implementing
RAID-6 encoding and decoding in an FPGA is the focus of this work.

1.2 Field Programmable Gate Array (FPGA)
Field Programmable Gate Arrays (FPGAs) are Integrated Circuits (ICs) with various types of reconfigurable hardware
blocks and interconnect. These hardware blocks are typically a 4-input look-up table (LUT4) and a flip-flop along
with some other logic[2][3]. A single LUT4 can implement any arbitrary 4-input logic function. This general-purpose
reconfigurable logic is called the FPGA “fabric”. Unless the size or speed constraints are problematic, any design
can be implemented by changing the look-up tables and interconnects in the fabric of a modern FPGA. Often, there
are also specialized hardware blocks included in the FPGA, such as adders, RAM/ROMs, or even entire hard-core
microprocessors[2][3]. These specialized hard-core blocks are generally referred to by their function (e.g. “RAM
block” or “adder block”) and are not considered “fabric”.

FPGAs differ from Application-Specific Integrated Circuits (ASICs) in several ways. ASICs are fabricated circuits
that have been designed to perform a specific task[4]. Because ASICs allow the designer more control over the specific
implementations, a well-crafted ASIC will almost always execute a task faster than an FPGA designed to do the same
task, while still requiring less power and hardware. In addition, because of the mask-based fabrication process, ASICs
are less expensive to mass-produce than an FPGA[4]. However, traditional ASICs cannot be changed, so new ASICs
would need to be created, along with creating new masks that are needed to fabricate them. This is an expensive and
time consuming process, which makes modifying an ASIC design very undesirable[4]. By contrast, many FPGAs do
not have this limitation. Though there are some FPGAs that are only programmable a single time (OTP), many FPGAs
can be freely reprogrammed whenever desired by simply downloading a different configuration into the FPGA[5]. This
reconfigurability allows much more flexibility in updating or improving the design, even after the distribution of the
design. Also, each FPGA does not have the start-up cost of the creation of fabrication masks; thus, for low-volume
production, it is typically less costly to produce FPGAs compared to ASICs.

FPGA designs also tend to have shorter time to market than ASIC designs. In both ASIC and FPGA development,
HDL simulators are used to debug and verify the initial design. After this, the place and route process is many times
automated, though in cutting-edge ASIC and FPGA designs, this will be done by hand. Then, an FPGA design can be

5

quickly tested in the actual hardware. ASIC designs must be fabricated to do the equivalent test, and this can take up
to 3 months in some cases. Then in either case, if any faults in the design are found, another iteration must be done of
the design process. For an FPGA, this can be done very quickly, even dozens of times a day if required. For an ASIC,
this is not possible. In addition, for every iteration of an ASIC that is sent to fabrication, there is an additional cost to
fabricate the integrated circuit. There is no associated reoccurring cost to reconfigure an FPGA.

1.3 Motivation
This work was inspired by a design needed by NASA. The design was required to be radiation tolerant, and no radiation
tolerant ASIC RAID-6 implementation exists. NASA asked that it be developed on a radiation tolerant FPGA. This
was primarily because the space-application market is very low volume, so it would not be cost efficient to design
and fabricate a radiation tolerant RAID-6 ASIC design. FPGAs are cost effective at this level of production because
the non-reoccurring costs are much lower. Also, radiation tolerant FPGAs already exist (of which the Virtex-4 is one
of), which mitigate the effects of the space environment. When developing ASICs for harsh environments (either
Industrial or Space), the designer needs to take into account environmental factors. FPGA designs require less special
consideration by the system designer, as the environmental consideration has already been partially addressed by the
FPGA producer.

This work develops and evaluates methods of implementing RAID-6 IP Cores. Galois Field Algebra, which is
instrumental in the efficient encoding and decoding of RAID-6 parity blocks, is also developed and evaluated. A
novel method of doing division by a constant is developed and used to optimize RAID-6 error correction. Also, a new
method for RAID-6 error detection is developed, which reduces hardware requirements for the operation. In addition,
an optimized IP Core library using lookup-table and combinational based Galois Field Algebra is created for Galois
Field Algebra, RAID-6 encoding, and using RAID-6 decoding to find a single error or correct two known errors.

1.4 Organization
An overview of RAID is given in Section 2.1. In Section 2.2, there is an overview of how mathematics in Galois Field
Algebra (which RAID-6 depends on) is calculated. Following this, in Section 2.3, an overview of how to encode a
RAID-6 stripe, and then how to use this encoded stripe to correct two errors, or detect a single error is discussed. Then
in Section 2.4, there is a brief overview of the prior work in hardware and software GF Algebra implementations.

In Chapter 3, prior work and implementations in Galois Field Algebra are explored in more detail. These im-
plementations are compiled into a VHDL Library of parts, which are evaluated in terms of both resource utilization
and speed. Then in Chapter 4, the prior work and implementations in various RAID-6 operations are discussed,
implemented in VHDL and evaluated. Also, several novel designs for combinational GF division by a constant, mul-
tiplication by a constant using logarithm tables, and RAID-6 error detection are explored and compared to existing
work. Finally, Chapter 5 presents the conclusions of this research.

6

Chapter 2

Background Information and Prior Work

2.1 RAID-6 Overview
RAID-6 can accommodate 257 storage devices, but 2 storage devices worth of capacity is used to store parity informa-
tion. RAID-6 was designed to be able to tolerate two storage device failures in the array without any corruption of the
data. To do this, it has two rotating parity blocks with each stripe, which are called “P” and “Q”. This is demonstrated
in Figure 2.1. The parity blocks (“P” and “Q”) are rotated within the stripe to even the wear on the storage devices
when the full stripe is not being read at once.

RAID-6 also has the ability to detect when a block of data is corrupted. RAID-6 can sense and correct one
erroneous block. Furthermore, RAID-6 can correct two erroneous blocks if an external source can identify which two

Figure 2.1: Raid-6 Configuration Diagram

7

blocks are corrupted. In exchange for these properties, RAID-6 loses two storage devices worth of performance and
capacity, as they are used to store the parity information.

For RAID-6 encoding, the first parity bock (P) is a simple exclusive-or parity across the data stripe. The second
parity block (Q) is encoded using a special form of Abstract Algebra called Galois Field Algebra. In Section 2.2 the
background of how Galois Field Algebra is computed will be reviewed. Then in Section 2.3, the different possible
operations of RAID-6 will be reviewed.

2.2 Binary Galois Field Algebra
RAID-6 uses a 8-bit Binary Galois Field, which is represented as GF (28). This field consists of 8-bit binary values,
or “bytes” of data. These bytes can be represented in hexadecimal or binary notation, just like the natural numbers.
The concept of fractions and negative numbers do not exist in GF algebra, and all mathematical operations result in
another value within this field. There are a number of mathematical operations that can be done in this field, and they
listed below with their associated symbol:

1. Addition/Subtraction – A⊕B

2. Multiplication – A⊗B

3. Logarithm – log(A)

4. Exponentiation – exp(A)

5. Division – A�B

2.2.1 GF Addition and Subtraction
GF addition can be computed as a bit-wise exclusive-or operation between the two values. Given two binary values,
which are called A and B:

A = 0x55 = 01010101
B = 0x0F = 00001111

(2.1)

These values can be added as shown in Equation 2.2, which is equivalent to a bit-wise exclusive-or operation.

A⊕B = 01010101⊕ 00001111
A⊕B = 01011010 = 0x5A (2.2)

GF subtraction is the inverse operation of GF addition. Since the exclusive-or operation is its own inverse, GF
addition and GF subtraction are equivalent.

2.2.2 GF Multiplication
Every Galois Field has a specific polynomial that is used to generate the field. This generating polynomial is referred
to as F. For the Galois Field that is used in this text:

F = x8 + x4 + x3 + x2 + 1→ 100011101 = 0x11D (2.3)

GF multiplication is the equivalent to using an LFSR with F as the feedback. Using traditional LFSR notation, this
is shown as:

A⊗B ≡ (A ∗B)mod F (2.4)

For example, when GF multiplying A by 2, it is done in the following manner:

A⊗ 2 = 0x55⊗ 0x02
A⊗ 2 = (0x55 ∗ 0x02)mod 0x11D (2.5)

8

Using standard multiplication, multiplying by 2 is a standard shift operation, which will be represented in the
following way:

A⊗ 2 = (0x55 << 1)mod 0x11D
A⊗ 2 = (0x0AA)mod 0x11D (2.6)

Since the most significant bit (MSb) is a zero, the feedback will not effect the value. So the result is:

A⊗ 2 = 0xAA (2.7)

This is equivalent to loading A in the LFSR and shifting once. When GF multiplying A by four, simply shift the
LFSR twice, which is the equivalent of multiplying by 2 twice. For example:

A⊗ 4 = 0x55⊗ 0x04
A⊗ 4 = ([(0x55 << 1)mod 0x11D] << 1)mod 0x11D
A⊗ 4 = (0xAA << 1) mod 0x11D
A⊗ 4 = (0x154)mod 0x11D

(2.8)

This time, the MSb is a one, so the feedback equation is exclusive-ored before the final output.

A⊗ 4 = (0x154)mod 0x11D
A⊗ 4 = 0x154⊕ 0x11D
A⊗ 4 = 0x048 = 0x48

(2.9)

This principle can be extended to multiplication by any value that is a power of 2 by simply continuing to shift and
apply the feedback until the desired power has been reached. When multiplying by a value that is not a multiple of 2,
the distributive property of Galois Fields can be used to compute the product. For example, if multiplying A and B:

A = 0x55
B = 0x06 (2.10)

Then

A⊗B = 0x55⊗ 0x06
A⊗B = (0x55⊗ 0x02)⊕ (0x55⊗ 0x04) (2.11)

From here, the multiplication values that have already been found in the prior two examples can be substituted in.

A⊗B = (0x55⊗ 0x02)⊕ (0x55⊗ 0x04)
A⊗B = 0xAA⊕ 0x48
A⊗B = 0xE2

(2.12)

This principle can be generalized to multiply any two values in the field by using the distributive property on each
bit of the multiplier:

A⊗B =

n−1∑
i=0

(A⊗ 2i ⊗Bi) (2.13)

So for each bit in B that is a one, that power of 2 is multiplied by A, and then all these products are exclusive-ored
together. A last example using this principle is multiplying A and B with the values:

A = 0x55
B = 0x0B (2.14)

So, A will be shifted three times, one time, and no times, then the results will be exclusive-ored together.

A⊗B = 0x55⊗ 0x0B
A⊗B = (0x55⊗ 0x08)⊕ (0x55⊗ 0x02)⊕ (0x55⊗ 0x01)
A⊗B = [(0x55 << 3)mod 0x11D]⊕ (0xAA⊕ 0x55)

(2.15)

9

where A needs to be shifted modulo F three times. The value of A shifted two times was already calculated, so
that can be substituted in:

A⊗B = [(0x48 << 1)mod 0x11D]⊕ 0xFF
A⊗B = [(0x090)mod 0x11D]⊕ 0xFF
A⊗B = 0x90⊕ 0xFF
A⊗B = 0x6F

(2.16)

2.2.3 GF Logarithm and Exponentiation
In GF (28), GF logarithm and exponentiation are computed with 2 as the base. Exponentiation is defined as repeated
multiplication of 0x02 and logarithms are defined as the inverse operation to exponentiation. For example:

0x020x03 = 0x02⊗ 0x02⊗ 0x02 = 0x08
0x020xFA = 0x02⊗ . . .⊗ 0x02 = 0x6C
log(0x08) = log(0x020x03) = 0x03
log(0x1D) = log(0x020x08) = 0x08

(2.17)

Both of these operations are typically found using a lookup table, as there is no simple way to calculate them. It
should be noted that GF multiplication can be computed using logarithm and exponentiation, as:

A⊗B = exp([log(A) + log(B)]mod 0xFF) (2.18)

2.2.4 GF Division
In GF (28), every number has a unique multiplicative inverse. Division is defined as multiplication by the multiplica-
tive inverse of the divisor:

A�B = A⊗B−1 (2.19)

The complication with this definition is that finding the GF multiplicative inverse is not easily computable. Alter-
nately, GF division can be calculated using logarithms and exponentiation:

A�B = exp[(log(A)− log(B))mod 0xFF] (2.20)

Using logarithm and exponentiation tables, like the ones shown in Appendix B, this becomes a simpler operation.
For example:

0x1D� 0x08 = exp[(log(0x1D)− log(0x08)) mod 255]
0x1D� 0x08 = exp[(8− 3)mod 255]
0x1D� 0x08 = exp[5 mod 255]
0x1D� 0x08 = exp[5] = exp[0x05]
0x1D� 0x08 = 0x20

(2.21)

In this example, the difference of the logarithms is still between 0 and 254, so no action needs to be done to enforce
the mod 255. If the dividend and divider are swapped:

0x08� 0x1D = exp[(log(0x08)− log(0x1D)) mod 255]
0x08� 0x1D = exp[(3− 8)mod 255]
0x08� 0x1D = exp[−5 mod 255]
0x08� 0x1D = exp[−5 + 255]
0x08� 0x1D = exp[250] = exp[0xFA]
0x08� 0x1D = 0x6C

(2.22)

In this example, the mod 255 needs to be enforced, so 255 is added to shift the result back into the range.

10

2.3 RAID-6 Operations
The actual method of how to recover from two storage device failures is not in the specifications for RAID-6. Many
different ways have been developed and tried, but the most standard and prevalent way of recovering data is to use
Reed-Solomon Encoding[6]. This is the method of RAID-6 encoding which will be discussed throughout the rest of
this work.

RAID-6 has three possible operations to be designed. These are encoding of the data, detection of an erroneous
data block, and correction of two know data block errors.

2.3.1 RAID-6 Encoding
RAID-6 encoding uses two rotating parity blocks to create redundancy called “P” and “Q”. The first parity block (P)
uses a simple exclusive-or parity. Since exclusive-or is the same as GF addition, this can also be described as:

P =

ND−1∑
i=0

(Di) (2.23)

where Di is the ith data block in the data stripe that is being encoded and the number of data storage devices
in the RAID-6 array will be called ND. The second parity block (Q) is created in a similar manner, but uses a GF
multiplication to multiply a “index” of 2i to each data block:

Q =

ND−1∑
i=0

(2i ⊗Di) (2.24)

where Di is the ith data block in the data stripe that is being encoded. When the data blocks are encoded, each data
block is broken up into 8-bit binary words (bytes), and the correlating word in each data block is called a word stripe.
Each word stripe has a P and Q word calculated for it individually and is stored on the array in the same location of
the data block on the parity drives. For example, if the first word of each data block in an array with ND = 3 is:

0 1 2
0xAA 0x0F 0xFF

Then the P parity word can be calculated by simply using an exclusive-or operation.

P =

ND−1∑
i=0

(Di)

P = 0xAA⊕ 0x0F⊕ 0xFF
P = 0x5A

(2.25)

Similarly, the Q parity can be calculated, but the associated 2i is multiplied before the summation.

Q =

ND−1∑
i=0

(2i ⊗Di)

Q = (20 ⊗ 0xAA)⊕ (21 ⊗ 0x0F)⊕ (22 ⊗ 0xFF)
Q = (0x01⊗ 0xAA)⊕ (0x02⊗ 0x0F)⊕ (0x04⊗ 0xFF)
Q = 0xAA⊕ 0x1E⊕ 0xDB
Q = 0x6F

(2.26)

So the encoded word stripe that would be written to the disk would be:

0 1 2 P Q
0xAA 0x0F 0xFF 0x5A 0x6F

11

2.3.2 RAID-6 Double Error Correction
If there is an external method of detecting errors on the data blocks in a stripe, then two blocks may be recovered
with no loss of data by using the RAID-6 parity blocks. There are various ways to detect errors, either from the file
system detecting errors, or the hardware detecting storage device failure, or possibly even embedding a CRC or error
detecting code in the data before the RAID-6 encoding. When these errors are detected, there are 4 possible scenarios
which would have to be dealt with to fix all possible permutations of where two errors could be:

1. The P and Q blocks

2. The Q block and a Data block

3. The P block and a Data block

4. Two Data blocks

The P and Q blocks

If the two blocks that have been corrupted are the two parity blocks, then these can be regenerated from the original
data using the same method as they are normally generated.

The Q block and a Data block

If one of the errors is in a data block and the other is in the Q block, the corrupted data block can be found using the P
block and traditional normal exclusive-or parity. This is done in the following way.

P = D0 ⊕ . . .⊕DL−1 ⊕DL ⊕DL+1 ⊕ . . .⊕Dn

0 = P ⊕D0 ⊕ . . .⊕DL−1 ⊕DL ⊕DL+1 ⊕ . . .⊕Dn

DL = P ⊕D0 ⊕ . . .⊕DL−1 ⊕DL+1 ⊕ . . .⊕Dn

(2.27)

Alternately, this can be found by recomputing the P parity with the erroneous data block replaced with a zero. This
recomputed parity is called P’. If this value is GF subtracted from the original P, DL is the result.

P = D0 ⊕ . . .⊕DL−1 ⊕DL ⊕DL+1 ⊕ . . .⊕Dn

P ′ = D0 ⊕⊕DL−1 ⊕ 0⊕DL+1 ⊕ . . .⊕Dn

DL = P ⊕ P ′
(2.28)

After the data is repaired, the Q block can be regenerated normally. As an example, suppose that there are two
known errors in the data stripe that was just encoded in Section 2.3.1, which are marked as 0xXX.

0 1 2 P Q
0xAA 0xXX 0xFF 0x5A 0xXX

Using Equation 2.27, the erroneous data can be found.

D1 = P ⊕D0 ⊕D2

D1 = 0x5A⊕ 0xAA⊕ 0xFF
D1 = 0x0F

(2.29)

Using the second method, P’ is calculated first.

P ′ = D0 ⊕D2

P ′ = 0xAA⊕ 0xFF
P ′ = 0x55

(2.30)

Then this is substituted into Equation 2.28.

D2 = P ⊕ P ′

D2 = 0x5A⊕ 0x55
D2 = 0x0F

(2.31)

With both methods, the same correct data is found. After this, the Q block can be regenerated, just as it was
originally generated in Equation 2.26.

12

The P block and a Data block

If there is one error in a data block and an error in the P block, the data is found from the Q block by recomputing the
Q block (Q’) with the bad data block (DL) as all zeros. From this, the original data can be found in the following way:

Q = 20 ⊗D0 ⊕ . . .⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗DL ⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q′ = 20 ⊗D0 ⊕ . . .⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗ 0⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q⊕Q′ = 2L ⊗DL

DL = (Q⊕Q′)� 2L

(2.32)

Once the data block is found, the P block can be regenerated as usual. As an example, suppose that there are two
known errors in the data stripe that was encoded in Section 2.3.1, which are marked as 0xXX.

0 1 2 P Q
0xAA 0x0F 0xXX 0xXX 0x6F

To find the missing data, first Q’ is calculated.

Q =

ND−1∑
i=0

(2i ⊗Di)

Q′ = (20 ⊗ 0xAA)⊕ (21 ⊗ 0x0F)
Q′ = (0x01⊗ 0xAA)⊕ (0x02⊗ 0x0F)
Q′ = 0xAA⊕ 0x1E
Q′ = 0xB4

(2.33)

Then, using Equation 2.32, the data can be found.

D2 = (0x6F⊕ 0xB4)� 22

D2 = 0xDB� 0x04
D2 = exp([log(0xDB)− log(0x04)]mod 255)
D2 = exp([0xB1− 0x02]mod 255)
D2 = exp(0xAF mod 255)
D2 = exp(0xAF)
D2 = 0xFF

(2.34)

Now that the data is corrected, the P parity can be regenerated, just as it was originally generated in Equation 2.25.

Two Data blocks

The last and most complicated case is when both of the errors are data blocks. The two errors are at known locations,
defined as K and L, and it can be assumed (without loss of generality) that K < L. Given this, we compute new
parity blocks (P’ and Q’) with the erroneous blocks as zeros. From this we can isolate the original data by using GF
subtraction.

P = D0 ⊕ . . .⊕DK−1 ⊕DK ⊕DK+1 ⊕ . . .⊕DL−1 ⊕DL ⊕DL+1 ⊕ . . .⊕Dn

P ′ = D0 ⊕ . . .⊕DK−1 ⊕ 0⊕DK+1 ⊕ . . .⊕DL−1 ⊕ 0⊕DL+1 ⊕ . . .⊕Dn

P = P ′ ⊕DK ⊕DL

(2.35)

Q = 20 ⊗D0 ⊕ . . .⊕ 2K−1 ⊗DK−1 ⊕ 2K ⊗DK ⊕ 2K+1 ⊗DK+1 ⊕ . . .
⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗DL ⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q′ = 20 ⊗D0 ⊕ . . .⊕ 2K−1 ⊗DK−1 ⊕ 2K ⊗ 0⊕ 2K+1 ⊗DK+1 ⊕ . . .
⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗ 0⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q = Q′ ⊕ 2K ⊗DK ⊕ 2L ⊗DL

(2.36)

From here, we have a simple set of linear equations with two unknowns. Equation 2.35 is solved for DL and
Equation 2.36 is solved for DK .

P = P ′ ⊕DK ⊕DL

DL = P ⊕ P ′ ⊕DK
(2.37)

13

Q = Q′ ⊕ 2−K ⊗DK ⊕ 2L ⊗DL

DK = 2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗DL
(2.38)

Then, substituting Equation 2.38 into Equation 2.37 gives:

DK = 2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗ (P ⊕ P ′ ⊕DK)
DK ⊗ (2L−K ⊕ 1) = 2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗ (P ⊕ P ′)
DK = (2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗ (P ⊕ P ′))� (2L−K ⊕ 1)

(2.39)

This gives the solution for DK . Since K < L:

2L−K ⊕ 1 > 1 (2.40)

So there will never be the situation where dividing by 0 will need to be accounted for. Once the correct value of
DK is found, it can be substituted into Equation 2.37 to find DL. As an example, suppose that there are two known
errors in the data stripe that was encoded in Section 2.3.1, which are marked as 0xXX.

0 1 2 P Q
0xAA 0xXX 0xXX 0x5A 0x6F

For these two missing data words, K = 1 and L = 2. First, P’ and Q’ must be calculated.

P ′ = D0

P ′ = 0xAA (2.41)

Q′ = 20 ⊗D0

Q′ = 0xAA (2.42)

Now D1 can be found by using Equation 2.39.

DK = (2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗ (P ⊕ P ′))� (2L−K ⊕ 1)
D1 = (2−1 ⊗ (0x6F⊕ 0xAA)⊕ 22−1 ⊗ (0x5A⊕ 0xAA))� (22−1 ⊕ 1)
D1 = (2−1 ⊗ 0xC5⊕ 2⊗ 0xF0)� (2⊕ 1)

(2.43)

Since “2−1 ⊗X” is equivalent to “X � 2”:

D1 = (0xC5� 2⊕ 2⊗ 0xF0)� (2⊕ 1)
D1 = (0xEC⊕ 0xFD)� 0x03
D1 = 0x11� 0x03
D1 = exp([log(0x11)− log(0x03)] mod 0x11D)
D1 = exp([0x64− 0x19]mod 0x11D)
D1 = exp(0x4B mod 0x11D)
D1 = exp(0x4B)
D1 = 0x0F

(2.44)

Now that D1 has been found, D2 can be found by using Equation 2.37.

DL = P ⊕ P ′ ⊕DK

D2 = 0x5A⊕ 0xAA⊕ 0x0F
D2 = 0xFF

(2.45)

Thus both unknown data blocks are found.

14

2.3.3 RAID-6 Error Detection
RAID-6 can sense a single error in a word stripe of data by using the embedded parities alone[7]. This allows for
many errors in the data to be recognized and corrected, as long as there is only one error per word stripe. For typical
applications, the probability of having more than one word corrupted per word stripe is very low. If there is more than
one word corruption per word stripe, there is a chance of it being detectable, but there is also a chance of the multiple
errors being misdiagnosed as a single bit error. In this last case, using this method of detecting errors would introduce
an extra error to the word stripe by “correcting” the wrong problem.

If there are multiple errors in the word stripe, this will always look like a single error at a data location. Once
this method is used, the location indicated will be an indeterminate value in the range allowed by the word size. If
this value is outside the allowable range of the data, then this can be recognized as multiple errors. Otherwise, it is
misdiagnosed as a single bit error. The probability of this misdiagnosis occurring when there are multiple errors on a
stripe is:

P (undetected error) =
ND

2n − 1
(2.46)

where ND is the number of data drives in the system. For example, if an 8-bit word system with 6 drives has
multiple errors on a word stripe:

P (undetected error) = ND

2n−1
P (undetected error) = 6

255
P (undetected error) = 0.02353

(2.47)

So, in this example, there is a 2.35% chance of multiple errors going undetected.
Assume that a single word is corrupted after the stripe has been encoded. This corrupted word is at some unknown

location L, and the data word DL has been changed to some value X . This can be found in the following way[7].
First, the two parity values for the corrupted data would be calculated, just as shown in the former section. These new
parities will be called P’ and Q’. If the value of these are different than the P and Q values that were originally encoded
into the stripe, then this is proof that there is an error on the stripe. Then, the error must be isolated. This is done using
GF subtraction (which is the same as GF addition) on both the P and Q parity equations.

P = D0 ⊕ . . .⊕DL−1 ⊕DL ⊕DL+1 ⊕ . . .⊕Dn

P ′ = D0 ⊕ . . .⊕DL−1 ⊕X ⊕DL+1 ⊕ . . .⊕Dn

P ⊕ P ′ = DL ⊕X
(2.48)

Q = 20 ⊗D0 ⊕ . . .⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗DL ⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q′ = 20 ⊗D0 ⊕ . . .⊕ 2L−1 ⊗DL−1 ⊕ 2L ⊗X ⊕ 2L+1 ⊗DL+1 ⊕ . . .⊕ 2n ⊗Dn

Q⊕Q′ = 2L ⊗DL ⊕ 2L ⊗X = 2L ⊗ (DL ⊕X)
(2.49)

Then the value of L can be found by dividing Equation 2.49 by Equation 2.48 and then taking the logarithm:

(Q⊕Q′)� (P ⊕ P ′) = 2L

L = log((Q⊕Q′)� (P ⊕ P ′))
(2.50)

Once the value of L has been found, a corrected value can be found using exclusive-or parity correction using the
original P value, just as shown in Equation 2.27.

If the word in error is not in the data, but is in either the P or the Q block, then it is trivial to show that this parity
value will not pass the check against P’ or Q’, and the other parity will pass. Fixing this error is as simple as replacing
the erroneous parity word with the one that has just been calculated (either P’ or Q’ depending on which is in error).

Taking the data stripe that we just encoded in Section 2.3.1, what if D2 got corrupted in the following way:

0 1 2 P Q
0xAA 0x0F 0xEF 0x5A 0x6F

15

To detect this error, first the P’ and Q’ parity must be computed just like was described in Section 2.3.1.

P =

ND−1∑
i=0

(Di)

P ′ = 0xAA⊕ 0x0F⊕ 0xEF
P ′ = 0xDA

(2.51)

Q =

ND−1∑
i=0

(2i ⊗Di)

Q′ = (20 ⊗ 0xAA)⊕ (21 ⊗ 0x0F)⊕ (22 ⊗ 0xFF)
Q′ = (0x01⊗ 0xAA)⊕ (0x02⊗ 0x0F)⊕ (0x04⊗ 0xEF)
Q′ = 0xAA⊕ 0x1E⊕ 0xE1
Q′ = 0x55

(2.52)

Since P’ and Q’ are not equal to the P and Q that were stored with the stripe, the error is now detected. Now to
locate this error, Equation 2.50 is used.

L = log((Q⊕Q′)� (P ⊕ P ′))
L = log((0x6F⊕ 0x55)� (0x5A⊕ 0xDA))
L = log(0x3A� 0x80)
L = log(exp([log(0x3A)− log(0x80)]mod 255))

(2.53)

After substitution in for the division, it is easy to see that the outer logarithm and exponentiation cancel each other
out.

L = log(exp([log(0x3A)− log(0x80)]mod 255))
L = [log(0x3A)− log(0x80)]mod 255
L = [9− 7]mod 255
L = [2]mod 255
L = 2

(2.54)

So the location of the erroneous data was correctly found to be D2. Now the original data can be recovered using
Equation 2.27.

D2 = P ⊕D0 ⊕D1

D2 = 0x5A⊕ 0xAA⊕ 0x0F
D2 = 0xFF

(2.55)

2.4 Prior Work In Hardware and Software Implementations of GF Algebra
Most of the work done in hardware and software implementations of GF Algebra to date has been in the area of Galois
Field exponentiation algorithms and factoring of large numbers, as these have applications in public key cryptography.
Berlekamp developed an algorithm for doing polynomial factorization over a Galois Field using matrix reductions
and GCD calculations[8]. The concept of normal basis representation of GF elements was developed by Massey and
Omura[9]. This allows squaring to be done as a cyclic shift. Considerable work has also been done in quickly finding
the the multiplicative inverse with GF (2n) using normal basis[10][11]. These methods use the fact that exponentiation
is a simple cyclic shift in normal basis and are not nearly as efficient in polynomial basis where exponentiation is much
more difficult. Normal basis multiplication is more difficult to do than in polynomial basis, so this basis is typically
only used when exponentiation is a primary operation, as when doing elliptical-based public-key algorithms[12][13].
Because multiplication is essential to RAID-6 encoding and decoding, normal basis is outside the scope of this work.

Using polynomial basis, Wu proposed complexity bounds on doing GF multiplication based on using standard
methods and then reducing the results modulo the generating polynomial[14]. Unfortunately, he proposed no meth-
ods on how to obtain these bounds. Anvin showed ways of implementing basic GF arithmetic, with a focus on
software implementations[7]. Paar showed methods of developing a bit-parallel combinational multiplier[15]. The

16

concepts of both Anvin and Paar are very similar, but Anvin’s focus on software implementations leads the imple-
mentations in two different directions. Both of these implementations are implemented in hardware and are com-
pared in Section 3.3 . Guajardo et al. showed that Itoh and Tsujii’s method of quickly finding the multiplicative
inverse in normal basis can also be applied to polynomial basis, assuming the use of polynomial multiplication and
exponentiation[16]. Various methods of finding the multiplicative inverse using the extended Euclidean Algorithm
have also been developed[17][18]. Each of these methods will be discussed in the following chapter.

17

Chapter 3

Efficient Implementation of a GF Algebra
FPGA library

The purpose of this work was to create a fast, efficient implementation of RAID-6. Since any RAID-6 implementation
strongly relies on the underlying GF Algebra, first an efficient implementation of GF Algebra must be designed. As
discussed in Section 2.2, GF Algebra has a number of operations that are defined, as listed below. Multiplicative
Inversion is also included in this list, as it will be required for GF Division using some of the methods described here.

1. Addition/Subtraction – A⊕B

2. Logarithm – log(A)

3. Exponentiation – exp(A)

4. Multiplication – A⊗B

5. Division – A�B

6. Inversion – A−1

This work compiles all accepted implementations for each of these operations in a VHDL library of parts and
evaluates each for use in an FPGA (specifically, the Virtex-4 FX60). This work also proposes, implements and evalu-
ates several improvements by using the simplifications that constants allow. To allow this library of parts to be more
flexible and readable, a number of constants and types were created in the package:

constant W: integer := 8;
constant F: std_logic_vector(W downto 0) := "100011101";
subtype word is std_logic_vector(W-1 downto 0);

The constant W is the order of the function F used to generate the Galois Field. By definition, this value is also
the number of bits in any binary number in the field. The subtype “word” is the type used to represent these numbers.
The constant F represents the function F . Other constants and types are also defined in the package. These will be
described when the function that uses them are introduced. As shown above, the IP Core Library was evaluated using
8-bit words, or bytes, as the basis of calculations and uses the same generating function, F, as used in the examples
above.

3.1 GF Addition/Subtraction
GF addition and subtraction, as discussed in the last chapter, may be computed by using a bit-wise exclusive-or
operation. In the Virtex-4, the fabric is made up of 4-input lookup tables. Because of this, the exclusive-or operation
can be implemented in a lookup table. No function was designed to do this operation, as VHDL already includes the
“xor” operation that computes the bit-wise exclusive-or.

18

3.2 GF Logarithm and Exponentiation
GF logarithm and exponentiation operations are most simply computed by creating lookup tables of these operations.
For this component, another custom VHDL type was created to represent these lookup tables:

type LUT is array ((2**W)-1 downto 0) of word;

Actually populating these lookup tables can be done in multiple ways. The first option is to generate the lookup
tables (by hand or with some external program) and insert them into the VHDL code as an array of values. A more
flexible and straightforward method would be to generate the tables from within the VHDL code. The exponentiation
table is the easier of the two tables to generate, while the logarithm table is much more difficult to generate.

Since exponentiation and logarithm are inverse operations, the exponentiation table can be generated first and
then used to generate the logarithm table by inverting the table. VHDL functions that accomplish this are shown in
Appendix C in the functions called Calc GFILOG and Calc GFLOG. In this code, exponentiation is referred to as
“ILog” which stands for “Inverse Logarithm”.

When these functions are synthesized, each implements a lookup table that consumes 64 slices. FPGAs in general,
and Virtex-4 FPGAs in particular, typically include hardcore RAM blocks that are dedicated to storing data called
”Block RAM” and can be used as either RAM or ROM memory. For the Virtex-4, these block RAMs may be dual
ported, which allows two simultaneous lookups in the same clock cycle from the same table. It would be desirable
to use these blocks for these lookup tables, which are dedicated for this purpose. There are several disadvantages to
this method. First, these block RAMs are very useful, so they can become a tightly constrained resource in a system
if there are multiple components competing for them. The second is that these block RAMs are synchronous devices,
so they require a clock cycle to calculate the results. The functions created are not synchronous, so a synchronous
system is created to use the lookup tables created above and load them each into a block RAM. This is accomplished
by giving the lookup table certain compiler attributes. The VHDL parts that implement this are shown in Appendix D
in the entities called GFILog BRAM and GFLog BRAM. “BRAM” is used to refer to a “block RAM”.

When these components are synthesized, they are implemented as 1 RAM block each. They have a propagation
delay of 2.46 ns. This is shown in Table 3.1.

Slices BRAMs Prop Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
Logarithm 0 1 2.46 1 1 406.504065 406.504065

Exponentiation 0 1 2.46 1 1 406.504065 406.504065

Table 3.1: Logarithm and exponentiation Table Lookup Summary

3.3 GF Multiplication
There are several accepted hardware implementations of GF multiplication in the literature today. These are:

1. Logarithm Table Method [19]

2. LFSR Method [7]

3. Bit-wise Parallel Method [20]

Also, GF Multiplication by a constant allows simplification to the hardware, which will be discussed in Section
3.5.

3.3.1 Logarithm Table Method
One method of calculating the GF product is the logarithm table based method. This uses Equation 2.18 shown in
the last chapter. Using this method, the logarithm of each input word is found and are summed modulo 2n − 1. The
exponentiation of this sum is the GF product of the two input values. This process is shown in Figure 3.1.

Since the RAM blocks each require a clock cycle delay, this system is very naturally pipelined with 3 clock cycle
latency. To generalize and simplify this block, a constant call “max” is defined as follows:

19

Figure 3.1: Table-Based GF Multiplier

constant max : integer := (2**W)-1;

This constant is used to do addition modulo 2n− 1. The VHDL entity to do this is called GFM BRAM and is shown
in Appendix D.

When synthesized, this entity uses 2 RAM blocks and 25 slices. This block has a 3-stage pipeline, so the result has
a 3 cycle latency. But once the pipeline is loaded, a calculation is finished each clock cycle. The maximum propagation
delay for a step this pipeline is 7.576 ns, which gives this block a maximum clock frequency of 132 MHz.

If we assume that we already know the logarithm of one of the inputs, which occurs frequently in the RAID-
6 calculations, a slightly modified version of this multiplier can be created that can compute two multiplications
simultaneously. This takes advantage of all of the possible bandwidth of the dual-ported RAM blocks in the Virtex-4.
This component is almost the same as the standard GF multiplication component above, but with the addition modulo
2n − 1 duplicated. This VHDL component is called GFM BRAM double and is also shown in Appendix D.

This component is almost the same as duplicating two of the GFM BRAM components. The main difference is that
rather then two arbitrary variables being passed into the component, you now have an arbitrary variable, and the log of
a value. This allows two multiplication operations to occur using only two RAM blocks and 49 slices. As before, the
multiplications have a latency of 3 cycles, but a calculation is completed each cycle once the pipeline is loaded. The
propagation delay is 7.514 ns, which gives a maximum clock frequency of 133 MHz. This is only two MHz slower
then the single arbitrary multiplication version.

3.3.2 LFSR Method
Another method discussed earlier is the use of a LFSR to compute the product. When translated into hardware, this
multiplier would successively multiply one input by 0x02 using a LFSR, and each time the value would be masked by
the associated bit of the other input. Then the masked value would be added to the running total. After 8 clock cycles,
the running total would be the product of the two numbers. A block diagram of this method is shown in Figure 3.2.

Figure 3.2: LFSR GF Multiplier

Because the LFSR is needed for each multiplication, the LFSR multiplier requires a full 8 clock cycles to compute
one product. The VHDL entity which uses this method is called GFM LFSR and is also shown in Appendix D.

The load signal is required for the multiplier to know when to start a new computation. The done signal is not
strictly required since the timing for this component is consistently 8 cycles after it is loaded. But the done signal is
already generated in the module and can simplify other components by not requiring them to implement their own 8

20

cycle counter. When synthesized, the LFSR multiplier requires only 14 slices and the propagation delay through the
part is only 3.121 ns, which would allow this part to be clocked at up to 320 MHz. This small size and speed is offset
by the fact that this component requires 8 clock cycles to complete a computation.

3.3.3 Bit-wise Parallel Multiplier
A third option on GF multiplication is an extension of the LFSR method, which was first presented by Mastrovito[21].
In the LFSR method, when multiplying by 2, the LFSR shift is the equivalent of applying the following transformations
to each bit of the input to find the product (assuming the F function given above):

2B7 ← B6

2B6 ← B5

2B5 ← B4

2B4 ← B3 ⊕B7

2B3 ← B2 ⊕B7

2B2 ← B1 ⊕B7

2B1 ← B0

2B0 ← B7

(3.1)

Where Bi is the ith bit of the input, and 2Bi is the ith bit of the the input GF multiplied by 2. This is very simple
combinational logic. To multiply by 4, the same transform is done twice, which becomes:

4B7 ← B5

4B6 ← B4

4B5 ← B3 ⊕B7

4B4 ← B2 ⊕B6 ⊕B7

4B3 ← B1 ⊕B6 ⊕B7

4B2 ← B0 ⊕B6

4B1 ← B7

4B0 ← B6

(3.2)

This multiplying can be repeated to find how to multiply by any power of 2. For multiplying two 8-bit numbers,
multiples up to 2n−1 or 128 are needed, which is the equivalent of shifting the LFSR 7 times, which is all that is
required to create a general-purpose multiply. In many cases these transfer functions can be simplified because:

A⊕A = 0 (3.3)

After simplification, the table of each multiplication by a power of 2 is shown in Table 3.2.
All of these transfer functions are combinational logic, and since no function contains more than 4 inputs, each

can be calculated using one slice. The output of each multiplication is then bit-wise ANDed with the associated bit of
A in parallel, and then the output of each of these can be routed into eight 8-input exclusive-or gates to calculate the
final product of A and B. Using this method reduces the entire process of multiplication down to combinational logic.
Because of this, no flip-flops or control logic are necessary, since the 8 bits of processing are done in parallel and are
completed in a single cycle. In theory, this method requires 41 exclusive-or gates that are 4-input or less (so each can
be calculated with one 4-input lookup table), eight 8-input AND gates, and eight 8-input exclusive-or gates. The block
diagram of this method is shown in Figure 3.3.

This bit-parallel component can be implemented directly into VHDL code by calculating the transfer functions
required for a particular generating function, and then transcribe these as VHDL code. This was implemented in the
GFMe entity shown in Appendix C. But a much less error-prone and more flexible method of doing this is to have the
compiler compute the transfer equations at compile time. Computing these functions in the VHDL code is done by
doing the equivalent of the LFSR method in a function using a for loop. The compiler will optimize the loop down to
the appropriate exclusive-or equations at compile time. For simplicity, this is coded as three separate functions. The
first function implements the GF Multiply by 2 functionality described in Equation 3.1. The VHDL function for this
is called GFM2w and is shown in Appendix C. A block diagram of this function is shown in Figure 3.4.

21

B B ⊗ 2 B ⊗ 4 B ⊗ 8 B ⊗ 16
B7 B6 B5 B4 B3 ⊕B7

B6 B5 B4 B3 ⊕B7 B2 ⊕B6 ⊕B7

B5 B4 B3 ⊕B7 B2 ⊕B6 ⊕B7 B1 ⊕B5 ⊕B6 ⊕B7

B4 B3 ⊕B7 B2 ⊕B6 ⊕B7 B1 ⊕B5 ⊕B6 ⊕B7 B0 ⊕B4 ⊕B5 ⊕B6

B3 B2 ⊕B7 B1 ⊕B6 ⊕B7 B0 ⊕B5 ⊕B6 B4 ⊕B5 ⊕B7

B2 B1 ⊕B7 B0 ⊕B6 B5 ⊕B7 B4 ⊕B6

B1 B0 B7 B6 B5

B0 B7 B6 B5 B4

B ⊗ 32 B ⊗ 64 B ⊗ 128
B2 ⊕B6 ⊕B7 B1 ⊕B5 ⊕B6 ⊕B7 B0 ⊕B4 ⊕B5 ⊕B6

B1 ⊕B5 ⊕B6 ⊕B7 B0 ⊕B4 ⊕B5 ⊕B6 B3 ⊕B4 ⊕B5

B0 ⊕B4 ⊕B5 ⊕B6 B3 ⊕B4 ⊕B5 B2 ⊕B3 ⊕B4

B3 ⊕B4 ⊕B5 B2 ⊕B3 ⊕B4 B1 ⊕B2 ⊕B3 ⊕B7

B3 ⊕B4 ⊕B6 ⊕B7 B2 ⊕B3 ⊕B5 ⊕B6 B1 ⊕B2 ⊕B4 ⊕B5

B3 ⊕B5 ⊕B7 B2 ⊕B4 ⊕B6 ⊕B7 B1 ⊕B3 ⊕B5 ⊕B6

B4 B3 ⊕B7 B2 ⊕B6 ⊕B7

B3 ⊕B7 B2 ⊕B6 ⊕B7 B1 ⊕B5 ⊕B6 ⊕B7

Table 3.2: Transfer Functions for multiplying by 2x for x = 0− 7

Figure 3.3: Bit Parallel Multiplier

Figure 3.4: Combinational I ⊗ 2

22

Figure 3.5: Combinational I ⊗ 2p

This function is then used in a function to multiply by 2 successively to calculate the input value multiplied by 2p.
The VHDL function for this is called GFM2p and is shown in Appendix C. A block diagram of this function is shown
in Figure 3.5.

When a constant value for p is passed into this function, the compiler unrolls and simplifies the calculations in
the for loop down to the same equations as found mathematically above. This function is then used to compute the
product by using another loop to pass it the required constants and exclusive-or the results together. The function to do
this is called GFMc and is shown in Appendix C. The block diagram for this is the same as Figure 3.3 shown above.

The for loop in this function is also unwrapped at compile time, which reduces this function down to the same
transfer functions as would be if the function was hardcoded and then manually exclusive-ored. This also allows much
greater flexibility. If the Galois Field needed to change size, or a different generating polynomial F was desirable, then
this method would allow everything to be changed by simply changing the global constants. The hardcoded version
would need to be completely rewritten with new transfer functions.

When synthesized, this function creates combinational logic that uses 38 slices and has a propagation delay of
6.515 ns. This means that this logic can be run at a maximum of 153.5 MHz. Since these functions simplify down to
combinational logic, the calculations are completed in a single clock cycle.

GF Multiplication Summary

A summary of the size and timing of the multipliers presented in this section is shown in Table 3.3. These results will
be discussed in detail in Section 3.7.

Slices BRAMs Prop Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
BRAM 25 2 7.576 1 3 131.9957761 131.9957761

BRAM(2x) 49 2 7.514 1 3 133.0849082 133.0849082
LFSR 14 0 3.121 8 8 320.410125 40.051265625

Bit-Parallel 38 0 6.515 1 1 153.4919417 153.4919417

Table 3.3: Galois Field Multiplier Summary

3.4 GF Division and Inversion
Division can be computed in one of two ways.

1. Logarithm Table Method

2. Multiplication by Inverse

23

The second method requires the creation of an inversion component, which will be discussed here. Also, GF
Division by a constant allows simplification of the hardware, which will be discussed in Section 3.6.

3.4.1 Table Method
Using logarithm tables, the quotient is computed as it was in the examples in Section 2.2.4. By taking the log of
the two input values, computing the difference modulo 2n − 1, and then the exponentiation of this difference is the
quotient. The block diagram of this component is shown in Figure 3.6.

Figure 3.6: Table-Based GF Divider

This component is almost identical to the Table-based multiplier component, except that the division uses subtrac-
tion rather than addition. Once again, the constant “max” is used to ease subtraction modulo 2n − 1. The entity to
implement this component is called GFD BRAM and is shown in Appendix D.

When synthesized, this component uses 2 RAM blocks and 19 slices. The max propagation delay through a
pipeline stage is 6.628 ns, which allows this component to be clocked at 150 MHz.

If we assume that we already know the logarithm of the divisor, which occurs sometimes in the RAID-6 calcula-
tions, a slightly modified version of this divider can be created that can compute two divisions simultaneously. This
takes advantage of all of the possible bandwidth of the RAM blocks.

This component is almost the same as the standard table-based division component, but with the subtraction mod-
ulo 2n − 1 duplicated. This VHDL component is called GFD BRAM double and is shown in Appendix D.

This component still only uses 2 RAM blocks, but uses 37 slices. The propagation delay, latency and speed are
identical to the standard division component.

3.4.2 Multiplicative Inverse
As discussed in Section 2.2.4, the other method of division utilizes a multiplicative inversion block in conjunction with
a multiplication block to circumvent doing actual division in hardware. To do this, only an inversion block needs to be
designed. There are several different methods to this:

1. Brute Force Search

2. Fermat’s Theorem

3. Modified Euclidean Algorithm

4. Lookup Table

Two of these methods can be done using serial and/or parallel methods. Using serial methods, fewer resources are
needed for the blocks, but the computations will require more clock cycles to complete. In the parallel methods, the
calculations will complete in a single clock cycle, but more resources will be required for the component.

Brute Force Search

The most simplistic implementation discussed is the brute force method of successively multiplying by each number
in the Galois Field and testing to see if the product is equal to one. If it is, then the inverse has been found. The serial
implementation would have only one multiply/compare operation, and then iterate through all the possible value, while
the parallel version would duplicate this by the number of possible values to allow the computation to complete in one
cycle. The parallel version was designed, but would not compile, as the resulting hardware was too large to fit in the

24

Figure 3.7: Serial Brute Force Inverse Search

largest target FPGA available. The serial version is feasible to implement, and the block diagram for it is shown in
Figure 3.7.

The VHDL component for this serial version is called GFI Brute and is shown in Appendix D. This entity uses
the load/done method of handshaking in the same way that the LFSR multiplier does. In this case, the done signal
really is necessary, as the component can take anywhere from 1 to 255 cycles to find the inverse, depending on the
input value. This component requires 57 slices and has a propagation delay of 5.264 ns which allows this component
to run at 190 MHz.

Fermat’s Theorem

An alternative way of finding the multiplicative inverse in GF(2) is derived from Fermat’s Little Theorem which was
originally stated by Fermat, and proved later by Euler. This can be stated as[17]:

Apn

= A (3.4)

for any element A in the field. If this is divided by A on both sides:

Apn−1 = 1 (3.5)

Then rewriting the previous equation, it turns into:

A ∗Apn−2 = 1 (3.6)

Therefore,

A−1 = Apn−2 (3.7)

As there is no established way to do exponentiation without a lookup table, the straightforward method would be
to cascade pn−2 multipliers that multiply the output of the last multiplier by A. This can be simplified in many ways,
but the method in this work uses addition chains as used by Itoh-Tsujii[10]. One method of doing this is shown in
Figure 3.8.

Figure 3.8: Computing Multiplicative Inverse by Computing y254

25

This translates directly into combinational logic very simply, but does not lend itself to serialization, as the com-
putations are different at each stage. This logic is defined as a VHDL function, which is called GFIc and is shown
in Appendix C. This compiles into a 123 slice component, with a propagation delay of 5.969 ns. This allows it to be
clocked at 168 MHz and compute an inverse in a single clock cycle.

Modified Euclidean Algorithm

Yet another method to implement the inverse function in GF Algebra is to use a modification of the Extended Euclidean
Algorithm. The full derivation of this method can be found from the original paper written by Brunner et al[18], but a
much abbreviated explanation is provided here.

The original Euclidean Algorithm was developed in order to find the Greatest Common Divisor (GCD) of two
different numbers (A and B). The Extended Euclidean Algorithm finds the values of X and Y as well as GCD(A,B),
which are defined as:

GCD(A,B) = A ·X +B · Y (3.8)

This algorithm is useful for finding the multiplicative inverse. The primitive generator function (F) is by definition
a “prime” in the field that it generates, so the GCD of any number in the field and F is 1. If this algorithm is done in
GF(2n):

A⊗X ⊕ F ⊗ Y = GCD(A,F)
A⊗X ⊕ F ⊗ Y = 1
A⊗X = F ⊗ Y ⊕ 1

(3.9)

Since GF multiplication is done modulo F , any multiple of F is equivalent to 0 mod F :

A⊗X = F ⊗ Y ⊕ 1
A⊗X = 0⊕ 1
A⊗X = 1

(3.10)

So the value X is the multiplicative inverse of A. Therefore, implementing the Extended GCD algorithm using
GF Algebra would find the GF multiplicative inverse of A. A problem with this method is that the Extended GCD
algorithm uses division. Since the purpose of finding the inverse is to use it to implement GF division, there is no
method for computing division in this algorithm. Brunner et al. developed a modification of the Extended Euclidean
Algorithm that avoids this issue[18]. For this algorithm, several functions are assumed to be available:

GFM2(A)→ A⊗ 2
GFD2(A)→ A� 2

(3.11)

Using these, the algorithm can be implemented in hardware using the following logic:

GF_Inversion(B)
Rn := F;
R := B;
Xn := 1;
X := 0;
delta := 0;

for i = 1 to 2*N
if R(N) = 1 and Rn(N) = 1 then

T := R xor Rn;
W := X xor Xn;

else
T := R;
W := X;

end if;

26

if R(N) = 0 then
R := R << 1;
Rn := T;
X := GFM2(X);
Xn := W;
delta := delta + 1;

else
if delta = 0 then

Rn := R;
R := T << 1;
Xn := X;
X := GFM2(W);
delta := delta + 1;

else
Rn := T << 1;
R := R;
Xn := W;
X := GFD2(X);
delta := delta - 1;

end if;
end if;

end loop;
return R;

GF_Inversion(B);

For our application, N = 8. The loop in this algorithm can either be done in serial or parallel. The serial imple-
mentation is called GFI Euclid and is shown in Appendix D. This component also uses the load/done method of
handshaking, though the component requires a consistent 16 cycles to compute the inverse. The component requires
64 slices and has a propagation delay of 3.252 ns, which allows this component to be clocked at 307 MHz.

The parallel version is almost exactly the same as the algorithm given above. Since this component is combina-
tional, it is defined as a VHDL function rather then an entity. The VHDL that defines the component is called GFIei
and is shown in Appendix C.

This component executes the same computations as GFI Euclid, but in a single cycle. The propagation delay
for this component is 5.750 ns, which equates to a 174 MHz clock frequency. This component requires 129 slices. It
would seem that this component should be 2 ·n (or in this case 16) times larger than the serial version. The reason this
is not the case is because the control logic in the serial version for looping and handshaking is complex compared to
the actual computing logic, which is simply exclusive-or and shift operations. Since this control logic can be omitted
in the parallel version, this balances out part of the duplication of the computing logic.

Lookup Table

Another straightforward method of finding the multiplicative inverse of a number is to implement a lookup table of
this function. The output of this would then be routed to the multiplier. Assuming a lookup-table based multiply is not
used, this method would use half the block RAM required for the pure lookup table division and use more hardware
in fabric for the multiplier. This may be an appropriate compromise if not enough block RAM is available for both
the logarithm and exponentiation tables. However if block RAM is tightly constrained in the system, then another
implementation must be found.

GF Division and Inversion Summary

The methods described in this section are summarized in Tables 3.4 and 3.5.
Table 3.6 summarizes all the methods of division. When the inverters are used to implement division, a bit-parallel

multiplier is used along with it.

27

GF Division Slices BRAMs Prop. Delay (ns) cycles/calc. latency max Freq (MHz)
BRAM 19 2 6.658 1 3 150.1952538

BRAM(2x) 37 2 6.658 1 3 150.1952538

Table 3.4: Galois Field Division Summary

GF Inversion Slices BRAMs Prop. Delay (ns) cycles/calc. latency max Freq (MHz)
Brute Force 57 0 5.264 Variable (1-255) Variable (1-255) 189.9696049

Euclid (serial) 64 0 3.252 16 16 307.503075
Itoh 123 0 5.969 1 1 167.53225

Euclid (Parallel) 129 0 5.75 1 1 173.9130435
BRAM 0 1 2.46 1 1 406.504065

Table 3.5: Galois Field Inversion Summary

Slices BRAMs Prop Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
BRAM 19 2 6.658 1 3 150.1952538 150.1952538

BRAM(2x) 37 2 6.658 1 3 150.1952538 150.1952538
BRAM (Inver) 38 1 6.515 1 2 153.4919417 153.4919417

Brute Force 95 0 6.515 2 - 256 2 - 256 153.4919417 153.49 - 0.60
Euclid (serial) 102 0 6.515 17 17 153.4919417 9.0289377

Itoh 161 0 6.515 1 2 153.4919417 153.4919417
Euclid (Parallel) 167 0 6.515 1 2 153.4919417 153.4919417

Table 3.6: Galois Field Division Summary

3.5 GF Multiplication by a Constant
There are many cases when GF multiplying when one of the values is a constant. In these cases, the hardware required
can be simplified to take advantage of this. These methods require computation of certain values or transfer functions
before runtime.

One of the most efficient ways of multiplying by a constant was introduced by Mastrovito[21]. His “Mastrovito
Multiplier” can be described in many different ways, but the logic behind it is simple. Since a Galois Field is by
definition a polynomial ring, any value in the field can be expressed as a power of 2. Because of this, if GF (2n)
multiplication by a constant (A) is all that is required, this is simply multiplying by a power of 2. The transfer function
for multiplying by 2 can be tiled log(A) times to find the transfer function for this particular multiplication. This
is the equivalent of “unrolling” the loops of the LFSR required to do these repeated multiplications by 2, similarly
as was done to create the general-purpose bit-parallel multiplier. Cascading this logic block log(A) times is not
very expensive in terms of hardware, but it can be simplified even further. Initially, the worst case scenario for this
calculation is when:

log(A) = 254 (3.12)

This would mean that the following number of exclusive-or gates would be required:

Gates = 3 · 254 = 762 (3.13)

But since they are exclusive-or gates that are being cascaded:

A⊕A = 0 (3.14)

This can be utilized to greatly simplify the circuit. The true worst case scenario would be when, after simplifying,
the function would require eight 8-input exclusive-or gates. An 8-input gate can be made from three 4-input lookup
tables (LUT4), so the worst case scenario would only require 24 LUT4. Also, for the only slightly better case of
7-input exclusive-ors being required, this reduces the LUT4 per gate down to 2, and any gate with 4 or less inputs can
be done with one LUT4. Because of this, the average case is only 10.7 LUT4. Comparing this to a full multiplier
which uses 38 slices, there is a large savings in hardware.

28

3.6 GF Division by a Constant
One method for division by a constant is to use the combinational division algorithm, with the inverse of the constant
pre-calculated. This method does not need to have the block to find the multiplicative inverse. A normal multiplication
circuit can be used for this, which greatly simplifies the circuit.

A further improvement on this is to use an unrolled LFSR as is done for multiplying by a constant, but the feedback
equation would be changed to do division by 2 modulo F . This can also be viewed as finding the equation that would
“undo” the multiplication by 2 modulo F . Looking at it from this point of view, it is easy to derive the transfer
function. For multiplying, the function used is:

2B7 ← B6

2B6 ← B5

2B5 ← B4

2B4 ← B3 ⊕B7

2B3 ← B2 ⊕B7

2B2 ← B1 ⊕B7

2B1 ← B0

2B0 ← B7

(3.15)

So for dividing, it would need to go the other direction:

B6 ← 2B7

B5 ← 2B6

B4 ← 2B5

B3 ← 2B4 ⊕B7

B2 ← 2B3 ⊕B7

B1 ← 2B2 ⊕B7

B0 ← 2B1

B7 ← 2B0

(3.16)

Since the function is being reversed, the value of B7 is one of the unknowns to be found. But B7 is equal to 2B0:

B6 ← 2B7

B5 ← 2B6

B4 ← 2B5

B3 ← 2B4 ⊕ 2B0

B2 ← 2B3 ⊕ 2B0

B1 ← 2B2 ⊕ 2B0

B0 ← 2B1

B7 ← 2B0

(3.17)

Now reorganizing so that they are in order:

B7 ← 2B0

B6 ← 2B7

B5 ← 2B6

B4 ← 2B5

B3 ← 2B4 ⊕ 2B0

B2 ← 2B3 ⊕ 2B0

B1 ← 2B2 ⊕ 2B0

B0 ← 2B1

(3.18)

Using this function, division by any power of 2 uses this transfer function tiled log(A) times and then simplified by
canceling exclusive-ors, just like in the case of multiplication by a constant. The worst and average cases are the same
as with multiplication by a constant. Comparing this to the combinational division circuit (which uses 161 slices),
there is a huge savings in the amount of hardware required.

29

3.7 GF Algebra Conclusions
The conclusions here are based off of the experimentally found results from the components shown using a 8-bit word
size.

3.7.1 GF Addition/Subtraction
As stated earlier, GF addition and subtraction are a bit-wise exclusive-or and do not require any special hardware to
calculate on a FPGA.

3.7.2 GF Logarithm and Exponentiation
Similarly, the only practical method of implementing GF logarithm and exponentiation is though lookup tables. The
lookup tables are typically stored in RAM blocks. The resource utilization and speed for these components are sum-
marized in Table 3.1 on page 19. The only drawback from this method is the use of block RAM.

3.7.3 GF Multiplication
When calculating GF multiplication, there are a number of established methods. A summary of resource utilization
and speed of the different methods is shown in Table 3.3 on page 23.

The LFSR method seems the least practical in real life applications, but if a high clock speed is required, and the
cycles required to do the calculations is not a factor, then this would be ideal. In most real world applications, it is
better to be able to do the calculations in as few cycles as possible, so for most applications, one of the other methods
would be preferable. Compared to the bit-parallel multiplier, using the lookup table method with block RAM will save
a few slices, but will slow down the clock and will add latency to the calculations. The bit-parallel multiplier’s high
speed, small size, and freedom from using block RAMs make it a good choice for most applications.

3.7.4 GF Division and Inversion
For GF Division, the application will determine which method will be optimal. If lookup tables are used, the division
can be done directly. Table 3.4 on page 28 shows the results of this method.

The other method of division is to first calculate the inverse of the divisor, and then multiply this by the dividend to
find the quotient. Various methods of finding the GF multiplicative inverse were discussed in Section 3.4.2, and their
results are summarized in Table 3.5 on page 28.

The inversion methods have a wide range of properties. Except under the most lax of requirements, the variable
computation time of the brute force inverse component, of which the worst case is 255 cycles, cannot be recommended,
despite the small size and relatively low propagation delay of the component. This component was included in the
comparison purely as a baseline to compare other components with. The other serial method requires a consistent 16
cycles to complete the computation and requires 64 slices, which is only 7 slices more them the brute force method.

The high speed inverters all require 1 clock cycle to compute a multiplicative inverse. Both the Itoh-Tsujii and
Modified Euclidean methods, despite having entirely different methods of arriving at the inverse, result in components
that are roughly the same size and speed. Either can be used for high-speed calculations in systems that are tightly
constrained in block RAM.

Under circumstances where there are plenty of RAM blocks available in the FPGA, the lookup table based division
seems to be the obvious choice for division. They require fewer slices then the combinational inversion methods and
does not require an additional multiplier to complete the division. They do require 3 cycles to complete and need 2
BRAMs per calculation. If RAM blocks are not abundant, then using inversion to do division may be preferable.

An inverter that only requires a single RAM block and is very fast can be created by mapping the iversion function
to a block RAM. This block RAM is dual-ported, so it can actually be used to compute two divisions at the same time.
If this is used in conjunction with either the combinational multiplication components discussed above, an interesting
compromise between the standard GF division component is found. If used along with the two Mastrovito multiplier,
two dividers with a latency of two cycles and high speed is created. If combined with two LFSR multipliers, the GF
divider with the highest clock rate is attained, though the calculation requires 17 cycles to complete.

30

Chapter 4

Efficient Implementation of a RAID-6
FPGA library

RAID-6 has three possible operations to be designed, as described in Section 2.3. These are encoding of data, de-
tection of an erroneous data block, and correction of two know data block errors. To ease and generalize the VHDL
implementation of RAID-6 operations, a new constant was created in the package:

constant N: integer := 6;

This constant simply represents the number of data words there are in a stripe, or ND up to this point in the text.
For this work, the constant was set to the value 6, but this could be changed to any positive, even value. Not allowing
this to be an odd value simplifies the design. Based off of this constant, several new data types were created to represent
the actual stripe when passed in and out of various functions:

type parity is array (1 downto 0) of word;
type stripe is array (N-1 downto 0) of word;
type stripewp is array (N+1 downto 0) of word;

The parity type represents the parity words of a word stripe. the P and Q parity words are word 0 and word 1,
respectively. The stripe type is the data stripe, and the stripewp is the data stripe with the parity concatenated
as the N and N+1 words. Once again, evaluation of all of the components was on the Virtex-4 FX60.

4.1 RAID-6 Encoding
As described in Section 2.3.1, RAID-6 encoding uses two rotating parity blocks to create redundancy. These parity
blocks (P and Q) are generated using GF algebra in the following manner.

P =

ND−1∑
i=0

(Di) (4.1)

Q =

ND−1∑
i=0

(2i ⊗Di) (4.2)

where Di is the ith data block in the data stripe that is being encoded.
It will be assumed that all of the data is arriving to the encoder block at the same time. If this is not the case, a

trivial finite state machine can be made that will pass the incoming data blocks to the appropriate location in a stripe-
sized register, so there is no loss of generality. The summation in these equations are simply exclusive-or operations.
The only part of this that allows for variation is the multiplication by 2i that is required when generating the Q parity.
Since RAID-6 is typically required to run at high speed, the LFSR method of multiplication was not considered for
this application. The two methods evaluated here are:

31

1. Table-based

2. Combinational (Mastrovito)

4.1.1 Table-Based RAID-6 Encoding
One way of generating the parity words are by using lookup-table based multiplication. Since the multiplication is by
a constant, only one logarithm lookup and one exponentiation lookup are required per multiplication. This allows use
of the GFM BRAM double component designed earlier, which reduces the block RAM requirements to ND. Using
this component, it is simple to generate the encoded parity for a given data stripe. The VHDL component to do this is
called RAID6en bram and is shown in Appendix D. A block diagram demonstrating this method is shown in Figure
4.1.

Figure 4.1: Table-based RAID-6 Encoding

This component uses a generate loop to generate the proper number of multiplication by constant components
based on the constant N defined in the package. This generate statement will not compile properly if the value of N is
not an even value, because it takes for granted that both sides of the multiplication component will be used. The result
of the multiplication is loaded into a stripe register called “multiplied”, which is then exclusive-ored together in the
process to calculate the Q parity word. Similarly, the P parity word is generated in the process by exclusively-oring
the incoming stripe. When this component is compiled with the previously mentioned N=6, the component uses 147
slices and 6 RAM blocks. The propagation delay through the component is 7.452 ns, which allows a clock frequency
of 134 MHz. The latency for this component is 4 cycles, and because the process needs to wait for the multiplication
to complete before the Q block can be calculated, the latency of the component is also 4 cycle. This could be changed
to a pipelined method, but this would further enlarge the component.

32

4.1.2 Combinational RAID-6 Encoding
The other method of doing the required multiplication by constants to encode the Q parity words is to use Mastrovito
multipliers as discussed earlier. Since this method results in an combinational component, the VHDL was done as a
function. The VHDL function is called RAID6en and is shown in Appendix C. A block diagram of this component
is shown in Figure 4.2.

Figure 4.2: Combinational RAID-6 Encoder

The function is very simple. The stripe is stored in the “sin” (which is short for “stripe input”), and the parity is
initialized. Then the input values are looped through and the multiplication and exclusive-or operations to generate the
parity words are done in this loop. Then the parity is returned. This function compiles into a component that uses only
30 slices. The propagation delay through it is only 3.043 ns, which allows the component to be clocked at 329 MHz.
Because the component is combinational, the latency and cycles required to complete the computation are 1 cycle.

4.1.3 Summary
The results of the compiled RAID-6 Encoding components are shown in Table 4.1.

Slices BRAMs Prop Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
BRAM 147 6 7.452 4 4 134.1921632 33.5480408

Bit-Parallel 30 0 3.043 1 1 328.6230693 328.6230693

Table 4.1: RAID-6 Encoding Summary

4.2 RAID-6 Error Detection
As shown in Section 2.3.3, a single corrupted word in a word stripe can be located by applying the following equation:

log((Q⊕Q′)� (P ⊕ P ′)) = L (4.3)

where P’ and Q’ are the recalculated parity words, and L is the location of the erroneous data. Because the
logarithm is required, it is most efficient to do the division using logarithm and exponentiation lookup tables. With
lookup tables, the division calculation is done in the following manner:

A�B = exp[(log(A)− log(B))mod (2n − 1)] (4.4)

33

where n is the number of bits in a word. If this is substituted into the error detection equation, this allows the
following simplification:

log(exp[(log(Q⊕Q′)− log(P ⊕ P ′)) mod (2n − 1)]) = L
(log(Q⊕Q′)− log(P ⊕ P ′))mod (2n − 1) = L

(4.5)

This simplification reduces the cost of the calculation down to a dual-ported lookup table, and a subtraction modulo
2n − 1 circuit. This is used in the VHDL component called RAIDf1 BRAM, which is shown in Appendix D.

This component receives a corrupted stripe with parity and outputs the corrected version of that stripe. The logic
to find the location of the error is fairly simple and follows Equation 4.5 logically. The first process calculates the
correct data for location L (datal) from the P parity word. The second process simply creates a new corrected stripe
that is the output of the component. A block diagram of this component is shown in Figure 4.3.

Figure 4.3: Block Diagram of RAIDf1 BRAM

The top part finds the location of the data error, and the bottom part uses the output of it to correct the error. This
component uses 95 slices and 1 RAM block. The latency for a computation is two cycles. The propagation delay
through the device is 7.452 ns, which allows for a clock speed of 103 MHz. This is summarized in Table 4.2. The
clock speed could easily be improved through deepening the pipeline, though it would enlarge the component and
increase latency.

Slices BRAMs Prop Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
BRAM 95 1 9.715 1 2 102.9336078 102.9336078

Table 4.2: RAID-6 Error Correction Summary

4.3 RAID-6 Error Correction
As shown in Section 2.3.2, if errors can be detected by some other means, two simultaneous errors can be corrected in
a stripe. To summarize the method described earlier, there are 4 possible error scenarios that need to be accounted for.

34

1. The P and Q blocks

2. The Q block and a Data block

3. The P block and a Data block

4. Two Data blocks

When creating hardware to do this, The first 3 cases are simple. The final case requires the following equations to
be implemented in hardware:

DK = (2−K ⊗ (Q⊕Q′)⊕ 2L−K ⊗ (P ⊕ P ′))� (2L−K ⊕ 1)
DL = P ⊕ P ′ ⊕DK

(4.6)

This case is challenging, as it requires division by a variable value that is not a power of 2. A block diagram of
the hardware required to make these calculations is shown in Figure 4.4. Once again, both a table-based version and a
combinational version are designed and evaluated here.

Figure 4.4: RAID-6 Error Correction Block Diagram

4.3.1 Table-Based RAID-6 Error Correction
Since general-purpose GF division is difficult to do efficiently without lookup tables, the lookup table based GFA
seems attractive. A VHDL code implementation of this is called RAID6c2 bram and is shown in Appendix D.

The first process simply copies over the good data from the input stripe “a” and zeros out the bad data. The second
process calculates 2L−K ⊕ 1 by using bit shifts to perform the exponentiation. This saves a table lookup. The P’
and Q’ parities are found using the good data, and the difference is calculated using exclusive-ors. The division and
multiplication in the dividend are calculated using the lookup table based multiplier and divider shown in 3.3.1 and
3.4.1. Some type-conversion is done to allow the integers to be passed into these pre-designed blocks. These values

35

are exclusive-ored together to form the dividend of the end division. Then the final division is formed, an exclusive-or
is done to correct the value of DK , and DL is calculated by a simple bit-wise exclusive-or.

When compiled, this component requires 12 RAM blocks and 289 slices. The propagation delay through the
component is 7.297 ns, which allows a clock frequency of 137 MHz. The calculation has a latency of 9 clock cycles.

4.3.2 Combinational RAID-6 Error Correction
The combinational version of this device is not nearly as straight forward. This calculation requires division by
2L−K ⊕ 1 which is a variable value that is not a power of 2, so the obvious method available is to use a full GF (28)
divider. A full divider requires an inversion circuit, which is very logic intensive. To avoid this, a simplification
is made. Rather than using a general-purpose division block, several division by a constant circuits are used, and
then the correct value is multiplexed into the circuit. Since division by a constant is many times more efficient than
general-purpose division, this saves slices and computing time for the circuit. But as the number of storage devices
increases, the possible values of L and K go up, which requires more multiplication by constant circuits. So with a
larger number of storage devices, using the general purpose division circuit will be more efficient. This division by
a constant circuit uses the techniques shown in 3.6 to calculate the transfer equations for all values of 2L−K ⊕ 1 for
ND ≤ 8, which means that L − K will be in the range 1 to 7. If more storage devices are used, simply finding the
correct transfer equations is all that is required to extend this function. The function is called divby 2pxor1 and is
shown in Appendix C.

This function is straight forward, but because each bit’s transfer equation is manually entered, it is not short. Each
division by a constant result is calculated in parallel and stored in an array, and the results are then multiplexed out
by means of the array reference in the return statement. Using this specialized division function, correcting two errors
becomes much simpler. The function to do the required calculations is called RAID6c2ecomb and is shown in
Appendix C.

This combinational version works very similarly to the table-based version. First, the data is copied into registers
for the output stripe (sout), and the good data is copied into a data stripe to compute P’ and Q’. Also, the original
parity is stored in Pi and Qi. Then P’ and Q’ are computed, and the difference between then and the original are
calculated. Also, the difference between L and K is computed. These values are then used along with the multiply and
divide by a power of 2 functions created earlier and the special divby 2pxor1 function to calculate DK . This value
is then used to calculate DL.

This component was compiled and required 273 slices. A calculation is computed each clock cycle. The propaga-
tion delay through this combinational circuit was 18.577 ns, which allows a maximum clock frequency of 53.8 MHz.
After analysis, 13.331 ns of this propagation delay was caused by the routing delay from the high fan-out of the input
word in the divby 2pxor1 function. This can be mitigated if the calculations are pipelined. Keeping this in mind,
an alternate implementation is designed. This implementation uses a 3 stage pipeline, but the pipeline could be deeper
or shallower if different clock speeds are required. The component for this is called RAID6c2e pipe and is shown
in Appendix D.

The calculations are partitioned so that the generation of the P’, Q’, and all the differences are done in the first
cycle, the GF calculations to find DK are done in the second cycle, and the exclusive-or (for DL) and all the output
registering is done in the third cycle. So the latency in this device is 3 cycles. After compilation, 255 slices are used,
and the new propagation delay is 6.724 ns, which allows a clock frequency of 149 MHz.

4.3.3 Summary
The results of the compiled RAID-6 Error Correction components are shown in Table 4.3.

Slices BRAMs P Delay (ns) cyc/calc latency max Freq (MHz) calc/sec (MHz)
BRAM 289 12 7.297 1 9 137.0426203 137.0426203

Bit-Parallel 273 0 18.577 1 1 53.83000484 53.8300048
Bit-Parallel (Pipe) 255 0 6.724 1 3 148.7209994 148.7209994

Table 4.3: RAID-6 Double Error Correction Summary

36

4.4 RAID-6 Conclusions
Chapter 4 discussed the three different operations to implement RAID-6 functionality. After data has been encoded
using RAID-6, it can be decoded to either find a single error, or correct two known errors. Each of these operations
can be done with or without BRAM, which lend themselves to different systems depending of the requirements. These
calculations are based on using a 6-word data stripe, as shown in Chapter 4. The conclusions here are based off of the
experimentally found results from the components shown up to this point in Chapters 3 and 4 using a 8-bit word size
and 6-word data stripe (or 8-word stripe with parity included).

4.4.1 RAID-6 Encoding
The two methods for encoding are summarized in Table 4.1 on page 33. It is plain that using lookup tables to calculate
the RAID-6 encoding is inferior in size and speed to using bit-parallel multipliers to do the calculations.

4.4.2 RAID-6 Error Detection
As discussed earlier, when finding a single corrupted data block in RAID-6 encoded data, the lookup-table based
method is the best method to use. Since the logarithm table is required for the calculation anyway, the simplified
calculations based on dividing using lookup tables greatly simplifies the calculations. The requirements for this com-
ponent is shown in Table 4.2 on page 34.

4.4.3 RAID-6 Error Correction
A summary of the different components to use RAID-6 to correct two known errors is shown in Table 4.3 on page 36.

The specialized bit-parallel RAID-6 error correction component uses fewer slices and has no block RAM require-
ments. It is much slower then any other components described up to this point. The pipelined version of this fixes that
shortcoming (and is actually faster than the table-based method) and still manages to be smaller than both of the other
components. It is theorized that the pipelining allowed the component to be simpler than its combinational counterpart,
because the pipelining allowed built-in registers within the slices to be used which reduced routing requirements in the
component.

The resource utilization of this specialized division is highly dependent on the system it is designed for. Unlike
methods that use a general-purpose divider, the specialized divider scales in size with ND, so the more storage devices
that are used in the system, the larger this component becomes. For the particular n and f(x) used up to this point, the
slices used based off ND can be approximated as shown in Figure 4.5.

The amount of logic used is relatively linear to the number of storage devices in the system. The variations
shown are because it is impossible to use only a fraction of a LUT4. It seems impossible to find a simple equation
that summarizes this behavior accurately, particularly at lower values of ND. However, an approximate relationship
between number of storage devices and number of LUT4 is:

No. LUT4 = 10.7 ·ND (4.7)

This relationship consistently overestimates the number of LUT4 that are necessary up until ND is over 170, so
this should be treated as an upper bound for most practical applications. But even taking this relationship as accurate,
the number of LUT4 need for most applications is reasonable. Until ND is in excess of 60, the special-purpose divider
will result in a smaller component then the general-purpose divider. However, for larger values of ND, the general
purpose divider should be considered.

37

Figure 4.5: Chart of FPGA LUT4 used in a RAID-6 system based on Storage Device Count

38

Chapter 5

Conclusions and Future Work

5.1 Conclusions
All of the performance and resource utilization in this text were examined with respect to a Virtex-4 FX60.

GF Algebra, which is essential to RAID-6, has various basic operations which have been evaluated here. GF
addition and subtraction are a bit-wise exclusive-or and do not require any special hardware to calculate on a FPGA.
The only practical method of computing GF logarithm and exponentiation is using lookup tables. Though many
different methods exist to calculate GF multiplication, it is best done using the bit-parallel method described in Section
3.3.3. For GF division, the application determines the preferred method, depending on how available block RAMs are
in the design, and the amount of time available to do the calculations. Inversion can be used to do GF division. It can
either be computed combinationally or with block RAM, but the combinational method is fairly large and significantly
slower.

When implementing RAID-6, the three operations are encoding, error detection, and error correction. The results
in this work are based off of a six data drive system, but some speculation to how it would scale is also included here.
RAID-6 encoding using bit-wise parallel multipliers is faster and consumes fewer fabric slices than the block RAM
approach and does not use any block RAM. For the table based method, each additionall 2 data drives added to the
system will require an additional double GF multiplier, so this will scale at a rate of about 25 slices and an additional
block RAM per drive added to the system. However, the bit-parallel method utilizes optimized transfer equations to
multiply by the required constants. As discussed earlier, multiplication by a constant can be predicted to be about
10.7 slices per multiplication. So when more drives are added to the system, the combinational version should always
require at least 57% fewer slices then the equivalent table-based version, and still have no block RAM consumption.
It is not expected that the speed of either component will significantly degrade as it scales, as the only calculation that
is not done in parallel is the final GF summation, which is simply an 8-bit exclusive-or. Because of this, it is expected
that the combinational method will maintain a significantly faster speed then it’s table-based counterpart.

The most efficient method to use RAID-6 double error correction depends on the size of the system. In general, the
effectiveness of using a combinational encoder to generate the P’ and Q’ parity required for the calculations has been
established. As before this will scale with ND. The rest of the calculations have different trade-offs as ND grows. This
is because both K and L in the calculations can have any value from within the range of 0 to ND. For ND < 8, the
combinational methods of multiplying or dividing by a power of 2 or the special-purpose divider will be much smaller
than the general-purpose versions used in the table-based error correction. However, the table-based versions will not
scale with the number of drives. They will still require the same 6 bock RAMs and associated slices, assuming all
the multiplications and logarithms are done in block RAMs (which is not true with the current incarnation; there are
some simplifications based on the current ND < 8). However, the combinational methods will need to account for the
larger range of K and L by adding more transfer equations as ND grows. These transfer equations are approximately
10.7 slices per bit, so the combinational calculations are expected to scale up at about roughly 240 slices per drive.
This estimate greatly over estimates at lower values of ND (as shown by ND = 6 only consuming 273 slices), but
instead shows the expected trend over all. Even so, it is estimated that, assumed that the calculations use the same
RAID-6 encoding method, when ND get past 16, the combinational version will consume significantly more slices
than the table-based version, and the trade-off between the 6 block RAMs of the table-based version and the number of
slices required by the combinational version will become much less one-sided. It is also expected that as ND gets past

39

50, the gain from consuming 9 block RAMs will outway the cost. These considerations do not take into account the
increased propigation delay that the combinational version would experience. It is difficult to predict how this would
scale from current data, but the table-based version would not have this degraded performance as ND grows.

The most efficient method of detecting a single error is to use the simplified logarithm table approach described
here. The caculations used to detect the error are independent of the number of drives in the system. The only thing
that would scale up is the generation of the P’ and Q’ parities for the calculations. Assuming the use of a combinational
RAID-6 encoder is used to generate the P’ and Q’ needed for the calculations, this scaling would also be at about 10.7
slices per drive added to the system. Of course, the subsequent correcting of the detected error would scale with the
number of drives in the system as well.

There are a number of hardware improvements made here, that have not been found in the current literature. One
of these is exploiting the dual-ported nature of Xilinx block RAM to compute 2 multiplication/divisions per hardware
block. This reduces the cost of multiplication and division down to one block RAM ber calculation, assuming the
log of one of the inputs is already know. The hardware simplifications possible when calculating GF division by a
constant does not seem to be address anywhere in the liturature. This allows division by a constant to be reduced down
to the same size as multiplication by a constant, despite the greater difficulty in dividing by a variable value. Also, the
mathematical simplifications used to simplify RAID-6 error detection down to a single dual-ported Block RAM and a
subtraction modulo F circuit seems novel as well. Finally, the use of a special-purpose divider to ease RAID-6 double
error correction has not been attempted up to this point.

In addition to this, a complete performance evaluation of both GF Algebra and RAID-6 was completed on the
Virtex-4 FX60, with ND = 6, using both established methods and those that were developed here. It is the hope of the
author that this work will motivate further study into high-performance hardware developments for GF Algebra and
RAID-6, as well as serve as a basis for further FPGA implementations.

5.2 Future Work
There are many avenues to explore based on this work. Exploring optimized solutions to RAID-6 with a larger ND

would be of great use to the field. While it is expected that the RAID-6 encoding and error detection predictions stated
here are accurate, they should be verified. Also, RAID-6 double error correction looks to be an interesting problem,
where it is projected that scaling will render solutions used here impractical. The table-based method used here takes
advantage of several simplifications that a small ND allows, but these are not expected to scale well with larger values
of ND and should be replaced with the traditional table methods. Another possible solution to this problem would be
a hybrid error correction unit that uses combinational methods for part of the calculations, and uses table methods for
places where the combinational methods will not scale well.

Also, all testing in this work has been on the Virtex-4 FX60, and these VHDL components may perform differently
on different FPGAs. Porting these designs to other Virtex-4 Xilinx FPGAs should be a simple task, assuming block
RAM is available. Porting to other Xilinx FPGAs would require slightly more deliberation, but should still be fairly
simple. However, porting these designs to the Altera platform may be more difficult than porting to other Xilinx
FPGAs because the block RAM may not be compatible to those used by Xilinx. Altera’s FPGAs have more options
for radiation tolerant and hardened designs, which is required for the space environment.

To take it a step further, future work would be to evaluate these designs for use in a radiation hardened VLSI design.
The VHDL components would need to be placed and routed. In addition, accounting for the space environment may
require a redesign to include radiation mitigation technologies and methods. This would allow for a true radiation
hardened version of this design, which would be beneficial for prolonged missions into space.

40

Bibliography

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” in the
1988 ACM SIGMOD international conference on Management of data, 1988.

[2] Altera, “Logic Elements and Logic Array Blocks in Cyclone III Devices.” http://www.altera.com/
literature/hb/cyc3/cyc3_ciii51002.pdf?GSA_pos=4&WT.oss_r=1&WT.oss=LE, 2008.
Product Specification.

[3] Xilinx, “Virtex-4 Family Overview.” http://www.xilinx.com/support/documentation/data_
sheets/ds112.pdf, 2007. Product Specification.

[4] M. J. S. Smith, Application-Specific Integrated Circuits. Addison-Wesley Longman Inc, 1997.

[5] Xilinx, “Getting Started with FPGAs.” http://www.xilinx.com/company/gettingstarted/
index.htm, 2009. Website.

[6] J. S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems.” http://www.
cs.utk.edu/˜plank/plank/papers/CS-96-332.html, 1996.

[7] H. P. Anvin, “The mathematics of RAID-6,” 2009. Linux RAID Implementation Documentation.

[8] E. R. Berlekamp, “Factoring Polynomials Over Finite Fields,” The Bell System Technical Journal, 1983.

[9] J. L. Massey and J. K. Omura, “Computational method and apparatus for finite field arithmetic,” 1981. U.S.
Patent Application.

[10] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in GF(2ˆm) Using Normal Bases,”
Information and Computation, vol. 78, no. 3, pp. 171–177, 1988.

[11] C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. R. Reed, “VLSI Architectures for Comput-
ing Multiplications and Inverses in GF(2ˆm),” IEEE Transactions on Computers, vol. C-34, no. 8, pp. 709–716,
1985.

[12] A. J. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing Elliptic Curve Logarithms to Logarithms in a Finite
Field,” IEEE Transactions on Information Theory, vol. 39, no. 5, pp. 1639–1646, 1993.

[13] D. V. Bailey and C. Paar, “Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms,” Lecture
Notes in Computer Science, vol. 1462, pp. 472–485, 1998.

[14] H. Wu, “Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis,” Lecture Notes in Com-
puter Science, p. 727, 1999.

[15] C. Paar and M. Rosner, “Comparison of arithmetic architectures for Reed-Solomon decoders in reconfigurable
hardware,” in The 5th Annual IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[16] J. Guajardo and C. Paar, “Itoh-Tsujii Inversion in Standard Basis and Its Application in Cryptography and Codes,”
Designs, Codes and Cryptography, vol. 25, no. 2, pp. 207–216, 2002.

[17] K. Araki, I. Fujita, and M. Morisue, “Fast inverters over finite field based on Euclid’s algorithm,” Transactions
IEICE, vol. E-72, no. 11, pp. 1230–1234, 1989.

41

[18] H. Brunner, A. Curiger, and M. Hofstetter, “On Computing Multiplicative Inverses in GF(2ˆm),” IEEE Transac-
tions on Computers, vol. 42, no. 8, pp. 1010–1015, 1993.

[19] M. DiPaolo, “Hardware Accelerator for RAID6 Parity Generation/Data Recovery Controller.” http://www.
xilinx.com/bvdocs/appnotes/xapp731.pdf, 2007. Xilinx Application Note for Virtex-4 Family.

[20] E. D. Mastrovito, “Vlsi designs for multiplication over finite fields GF(2m),” Lecture Notes in Computer Science,
vol. 357, pp. 297–309, 1989.

[21] E. Mastrovito, VLSI Architectures for Computaions in Galois Fields. PhD thesis, Linkoping Univiversity, 1991.

42

Appendix A

Definitions

A.1 Terms and Abreviations
Fabric The general-purpose portion of a FPGA’s logic (e.g. FPGA slices).

Bit A single Boolean digit with two states which may be represented as “1 or 0”, “True or False”, “High or Low”, etc.

Word A n-bit bit string

Storage Device Any digital device used to store many strings of binary data (e.g. Hard Drive, Flash Drive, RAID,
Tape Drive, etc.)

Capacity The amount of binary data that can be stored in the storage device

Sector The smallest subdivision of data on a storage device

RAID “Redundant Array of Independent/Inexpensive Drives”, refer to Section 2.1

Array A number of storage devices configured to act as a single storage device

Sector Stripe The string of N sectors that are (or intended to be) at the same location on each of the N storage devices
in the array

Word Stripe The string of N words that are (or intended to be) at the same location in the sector stripe

Redundancy The number of sectors in a sector stripe (or storage devices in an array) that may be lost without cor-
rupting the data on the array

GF see “Galois Field”

Galois Field A mathematical field which is of finite size

Galois Field Algebra A field of abstract algebra which uses Galois Fields (finite fields) to compute the results of
algebraic operations, refer to Section 2.2

A.2 Symbols
ND number of data words in the stripe

N number of words in the stripe/number of drives in the array

⊕ Exclusive-Or Binary Operator or Galois Field Addition/Subtraction

⊗ Galois Field Multiplication

43

(x << y)modF y LFSR shifts of x; equivalent to x is shifted left and reduced modulo F , y times

� Galois Field Division

+ Standard Addition

- Standard Subtraction

· Standard Multiplication

/ Standard Division

dxe Ceiling function – the smallest integer value that isn’t less than x

n−1∑
i=0

Di Sums array D from 0 to n− 1 using GF addition

44

Appendix B

GF Logarithm and Exponentiation Tables

GF log 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 X(1) 0 1 19 2 32 1A C6 3 DF 33 EE 1B 68 C7 4B
1 4 64 E0 0E 34 8D EF 81 1C C1 69 F8 C8 8 4C 71
2 5 8A 65 2F E1 24 0F 21 35 93 8E DA F0 12 82 45
3 1D B5 C2 7D 6A 27 F9 B9 C9 9A 9 78 4D E4 72 A6
4 6 BF 8B 62 66 DD 30 FD E2 98 25 B3 10 91 22 88
5 36 D0 94 CE 8F 96 DB BD F1 D2 13 5C 83 38 46 40
6 1E 42 B6 A3 C3 48 7E 6E 6B 3A 28 54 FA 85 BA 3D
7 CA 5E 9B 9F 0A 15 79 2B 4E D4 E5 AC 73 F3 A7 57
8 7 70 C0 F7 8C 80 63 0D 67 4A DE ED 31 C5 FE 18
9 E3 A5 99 77 26 B8 B4 7C 11 44 92 D9 23 20 89 2E
A 37 3F D1 5B 95 BC CF CD 90 87 97 B2 DC FC BE 61
B F2 56 D3 AB 14 2A 5D 9E 84 3C 39 53 47 6D 41 A2
C 1F 2D 43 D8 B7 7B A4 76 C4 17 49 EC 7F 0C 6F F6
D 6C A1 3B 52 29 9D 55 AA FB 60 86 B1 BB CC 3E 5A
E CB 59 5F B0 9C A9 A0 51 0B F5 16 EB 7A 75 2C D7
F 4F AE D5 E9 E6 E7 AD E8 74 D6 F4 EA A8 50 58 AF

Table B.1: GF Logarithm Table

(1) GF log(0x00) is not defined

45

GF exp 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 1 2 4 8 10 20 40 80 1D 3A 74 E8 CD 87 13 26
1 4C 98 2D 5A B4 75 EA C9 8F 3 6 0C 18 30 60 C0
2 9D 27 4E 9C 25 4A 94 35 6A D4 B5 77 EE C1 9F 23
3 46 8C 5 0A 14 28 50 A0 5D BA 69 D2 B9 6F DE A1
4 5F BE 61 C2 99 2F 5E BC 65 CA 89 0F 1E 3C 78 F0
5 FD E7 D3 BB 6B D6 B1 7F FE E1 DF A3 5B B6 71 E2
6 D9 AF 43 86 11 22 44 88 0D 1A 34 68 D0 BD 67 CE
7 81 1F 3E 7C F8 ED C7 93 3B 76 EC C5 97 33 66 CC
8 85 17 2E 5C B8 6D DA A9 4F 9E 21 42 84 15 2A 54
9 A8 4D 9A 29 52 A4 55 AA 49 92 39 72 E4 D5 B7 73
A E6 D1 BF 63 C6 91 3F 7E FC E5 D7 B3 7B F6 F1 FF
B E3 DB AB 4B 96 31 62 C4 95 37 6E DC A5 57 AE 41
C 82 19 32 64 C8 8D 7 0E 1C 38 70 E0 DD A7 53 A6
D 51 A2 59 B2 79 F2 F9 EF C3 9B 2B 56 AC 45 8A 9
E 12 24 48 90 3D 7A F4 F5 F7 F3 FB EB CB 8B 0B 16
F 2C 58 B0 7D FA E9 CF 83 1B 36 6C D8 AD 47 8E X(1)

Table B.2: GF Exponentiation Table

(1) GF exp(0xFF) is not defined

46

Appendix C

GF Algebra and RAID-6 Library Package

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

package pkg_RAID6 is
constant W: integer := 8;
constant N: integer := 6;
constant F: std_logic_vector(W downto 0) := "100011101";

constant WpDW: integer := 4;

subtype word is std_logic_vector(W-1 downto 0);
subtype DW is std_logic_vector((WpDW*W)-1 downto 0);

type parity is array (1 downto 0) of word;
type stripe is array (N-1 downto 0) of word;
type stripewp is array (N+1 downto 0) of word;
type LUT is array ((2**W)-1 downto 0) of word;

type DWparity is array (1 downto 0) of DW;
type DWstripe is array (N-1 downto 0) of DW;
type DWstripewp is array (N+1 downto 0) of DW;

type divfunc is array (7 downto 1) of word;

constant max : integer := (2**W)-1;
constant zero : word := (others => ’0’);
constant one : word := (0 => ’1’,others => ’0’);
constant hi : word := (others => ’1’);

function log2 (x : positive) return natural;
function highestBit(A: std_logic_vector) return integer;
function onlyBit(A: std_logic_vector;b: integer) return std_logic;

function Calc_GFILOG return LUT;
function Calc_GFLOG(ILOG : LUT) return LUT;
function GFLOGlut (A: std_logic_vector) return std_logic_vector;

47

function GFILOGlut (A: std_logic_vector) return std_logic_vector;

function GFM (A, B: std_logic_vector) return std_logic_vector;
function GFM2 (A: std_logic_vector) return std_logic_vector;
function GFM2p (A: std_logic_vector;p: integer range 0 to 7) return std_logic_vector;
function GFMc (A, B: std_logic_vector) return std_logic_vector;
function GFMe (A, B: std_logic_vector) return std_logic_vector;

function GFD (A, B: std_logic_vector) return std_logic_vector;
function GFD2 (A: std_logic_vector) return std_logic_vector;
function GFD2p (A: std_logic_vector;p: integer range 0 to 7) return std_logic_vector;
function GFMILOGs (A: std_logic_vector) return std_logic_vector;

function GFIc (A: std_logic_vector) return std_logic_vector;
function GFIl (A: std_logic_vector) return std_logic_vector;
function GFIei (A: std_logic_vector) return std_logic_vector;

function RAIDenc (A: stripe) return parity;
function RAID6CompC1 (c1,c2: integer range 0 to N-1) return word;
function RAID6CompC2 (c1,c2: integer range 0 to N-1) return word;
function RAID6c2e (A: stripewp;B,C: word;x,y: integer) return stripewp;
function RAID6c1 (A: stripewp) return stripewp;

function divby_2pxor1 (input: word; power:integer range 1 to 7) return word;
function RAID6c2ecomb (A: stripewp;x,y: integer) return stripewp;

function RAIDencDWstripe (A: DWstripe) return DWparity;

end pkg_RAID6;
package body pkg_RAID6 is

--Function: log2 - returns the base 2 logarithm of x
-- Input: x - positive integer
-- Returns: natural number
-- Ussage: Y = highestBit(X);

function log2 (x : positive) return natural is
variable temp, log: natural;

begin
temp := x / 2;
log := 0;
while (temp /= 0) loop

temp := temp/2;
log := log + 1;

end loop;
return log;

end function log2;

--Function: highestBit - returns the bit position of the highest order bit
-- Input: A - 8-bit standard logic vector
-- Returns: integer range 0 to 7.
-- Ussage: Y = highestBit(X);

48

function highestBit(A: std_logic_vector) return integer is

variable ret : integer range 0 to N+1;
variable ai : std_logic_vector(N+1 downto 0);

begin
ai := A;
for i in A’range loop

ret := i;
exit when ai(i) = ’1’;

end loop;
return ret;

end highestBit;

--Function: onlyBit - returns ’0’ if bit "b" is the only bit,
-- otherwise, returns ’1’
-- Input: A - 8-bit standard logic vector, b - integer range 0 to 7
-- Returns: std_logic
-- Ussage: Y = onlyBit(X,i);

function onlyBit(A: std_logic_vector;b: integer) return std_logic is
variable ret : std_logic;

begin
ret := ’0’;
for i in 7 downto 0 loop

if i = b then
ret := ret or not(A(i));

else
ret := ret or A(i);

end if;
end loop;
return ret;

end onlyBit;

--Function: Calc_GFILOG - creates the inverse log table for W bits
-- and generator F
-- Input: none
-- Returns: LUT
-- Ussage: GFILOG_LUT = Calc_GFILOG;

function Calc_GFILOG return LUT is
variable Temp : std_logic_vector(W downto 0);
variable ILOG : LUT;

begin
ILOG(0) := (0 => ’1’, others => ’0’);
for i in 1 to (2**W-1) loop

Temp := ILOG(i-1) & ’0’;
if (Temp(8) = ’1’) then

Temp := Temp xor F;
end if;
ILOG(i) := Temp(W-1 downto 0);

end loop;
return ILOG;

49

end function;

--Function: Calc_GFLOG - creates the log table from the inverse log table
-- Input: LUT
-- Returns: LUT
-- Ussage: GFLOG_LUT = Calc_GFLOG(Calc_GFILOG);

function Calc_GFLOG(ILOG : LUT) return LUT is
variable LOG : LUT;
begin

LOG(0) := (others => ’1’);
for i in 0 to (2**W-2) loop

LOG(conv_integer(ILOG(i))) := conv_std_logic_vector(i,W);
end loop;
return LOG;

end function;

--Function: GFLOGlut - returns the Galois Field LOG of the input
-- from a Look-Up Table
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFLOGlut(X);

function GFLOGlut (A: std_logic_vector) return std_logic_vector is
CONSTANT GFLOG: LUT := Calc_GFLOG(Calc_GFILOG);
variable ai : std_logic_vector(7 downto 0);

begin
ai := A;
return GFLOG(conv_integer(ai));

end GFLOGlut;

--Function: GFILOGlut - returns the Galois Field Inverse LOG of the input
-- from a Look-Up Table
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFILOGlut(X);

function GFILOGlut (A: std_logic_vector) return std_logic_vector is
CONSTANT GFILOG: LUT := Calc_GFILOG;
variable ai : std_logic_vector(7 downto 0);

begin
ai := A;
return GFILOG(conv_integer(ai));

end GFILOGlut;

--Function: GFM - Uses log and ilog lookup tables to compute Galois
-- Field product of X and Y.
-- Input: A, B - 8-bit standard logic vectors.

50

-- Returns: 8-bit standard logic vector
-- Ussage: Z = GFM(X, Y);

function GFM (A, B: std_logic_vector) return std_logic_vector is
variable ai, bi, ci :std_logic_vector(7 downto 0);
variable sum :integer range 0 to 511 := 0;
variable ret :std_logic_vector(7 downto 0);

begin
ai := A;
bi := B;

-- add the logs of the inputs
sum := conv_integer(GFLOGlut(ai)) + conv_integer(GFLOGlut(bi));

-- ci <= sum modulo 255
if sum >= hi then

ci := conv_std_logic_vector((sum - max),W);
else

ci := conv_std_logic_vector(sum,W);
end if;

-- if one of the inputs is 0 return 0, else return the inverse log of ci
if ai = 0 or bi = 0 then

ret := zero;
else

ret := GFILOGlut(ci);
end if;

return ret;
end GFM;

--Function: GFD - Uses log and ilog lookup tables to compute Galois
-- Field quotient of X and Y.
-- Input: A, B - 8-bit standard logic vectors.
-- Returns: 8-bit standard logic vector
-- Ussage: Z = GFD(X, Y);

function GFD (A, B: std_logic_vector) return std_logic_vector is
variable ai,bi,la,lb,ci :std_logic_vector(7 downto 0);
variable ret :std_logic_vector(7 downto 0);

begin
ai := A;
bi := B;

-- compute the logs of the inputs
la := GFLOGlut(ai);
lb := GFLOGlut(bi);

-- ci <= difference modulo 255
if la >= lb then

ci := la - lb;
else

51

ci := la + 255 - lb;
end if;

-- if one of the inputs is 0 return 0, else return the inverse log of ci
if ai = 0 or bi = 0 then

ret := x"00";
else

ret := GFILOGlut(ci);
end if;

return ret;
end GFD;

--Function: GFM2 - returns the GF product of A*2 using combinational logic
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFM2(X);

function GFM2 (A: std_logic_vector) return std_logic_vector is
variable ai,ret : word;

begin
ai := A;
ret(7) := ai(6);
ret(6) := ai(5);
ret(5) := ai(4);
ret(4) := ai(3) xor ai(7);
ret(3) := ai(2) xor ai(7);
ret(2) := ai(1) xor ai(7);
ret(1) := ai(0);
ret(0) := ai(7);

return ret;
end GFM2;

--Function: GFM2w - returns the GF product of A*2 using combinational logic
-- Input: A - word
-- Returns: word
-- Ussage: Y = GFM2w(X);

function GFM2w (A: word) return word is
variable ret : word;
variable ai : std_logic_vector(W downto 0);

begin
ai := A&’0’;
if (ai(W) = ’1’) then

ai := ai xor F;
end if;
ret := ai(W-1 downto 0);
return ret;

end GFM2w;

52

--Function: GFM2p - returns the GF product of A*2ˆp using combinational logic
-- Input: A - 8-bit standard logic vector; p - integer range 0 to 7
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFM2(X,i);

function GFM2p (A: std_logic_vector;p: integer range 0 to W-1)
return std_logic_vector is

variable ret : std_logic_vector(W-1 downto 0);
begin

ret := A;
for i in 1 to W-1 loop

exit when i>p;
ret := GFM2(ret);

end loop;

return ret;
end GFM2p;

--Function: GFMILOGs - returns the GF product of 2ˆA using combinational logic
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFMILOGs(X);

function GFMILOGs (A: std_logic_vector) return std_logic_vector is
variable ret : std_logic_vector(7 downto 0);
variable p : integer range 0 to 255;

begin
ret := x"01";
p := conv_integer(A);
for i in 1 to 255 loop

exit when i>p;
ret := GFM2(ret);

end loop;

return ret;
end GFMILOGs;

--Function: GFMc - Uses GFM2p to compute Galois Field product of X and Y.
-- Input: A, B - 8-bit standard logic vectors.
-- Returns: 8-bit standard logic vector
-- Ussage: Z = GFMc(X, Y);

function GFMc (A, B: std_logic_vector) return std_logic_vector is
variable ai, bi :std_logic_vector(7 downto 0);
variable ret :std_logic_vector(7 downto 0);

begin
ret := x"00";
ai := A;
bi := B;

53

for i in 0 to W-1 loop
if bi(i) = ’1’ then

ret := ret xor GFM2p(ai,i);
end if;

end loop;

return ret;
end GFMc;

--Function: GFM2pe - returns the GF product of A*2ˆp using combinational logic
-- Input: A - 8-bit standard logic vector; p - integer range 0 to 7
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFM2(X,i);

function GFM2pe (A: std_logic_vector;p: integer range 0 to 7)
return std_logic_vector is

type matrix is array (0 to 7) of std_logic_vector(7 downto 0);

variable t :matrix;
variable X :std_logic_vector(7 downto 0);
variable y :integer range 0 to 7;
variable ret :std_logic_vector(7 downto 0);

begin
X := A;
y := p;

t(0)(7) := X(7);
t(0)(6) := X(6);
t(0)(5) := X(5);
t(0)(4) := X(4);
t(0)(3) := X(3);
t(0)(2) := X(2);
t(0)(1) := X(1);
t(0)(0) := X(0);

t(1)(7) := X(6);
t(1)(6) := X(5);
t(1)(5) := X(4);
t(1)(4) := X(3) xor X(7);
t(1)(3) := X(2) xor X(7);
t(1)(2) := X(1) xor X(7);
t(1)(1) := X(0);
t(1)(0) := X(7);

t(2)(7) := X(5);
t(2)(6) := X(4);
t(2)(5) := X(3) xor X(7);
t(2)(4) := X(2) xor X(6) xor X(7);
t(2)(3) := X(1) xor X(6) xor X(7);
t(2)(2) := X(0) xor X(6);
t(2)(1) := X(7);
t(2)(0) := X(6);

54

t(3)(7) := X(4);
t(3)(6) := X(3) xor X(7);
t(3)(5) := X(2) xor X(6) xor X(7);
t(3)(4) := X(1) xor X(5) xor X(6) xor X(7);
t(3)(3) := X(0) xor X(5) xor X(6);
t(3)(2) := X(5) xor X(7);
t(3)(1) := X(6);
t(3)(0) := X(5);

t(4)(7) := X(3) xor X(7);
t(4)(6) := X(2) xor X(6) xor X(7);
t(4)(5) := X(1) xor X(5) xor X(6) xor X(7);
t(4)(4) := X(0) xor X(4) xor X(5) xor X(6);
t(4)(3) := X(4) xor X(5) xor X(7);
t(4)(2) := X(4) xor X(6);
t(4)(1) := X(5);
t(4)(0) := X(4);

t(5)(7) := X(2) xor X(6) xor X(7);
t(5)(6) := X(1) xor X(5) xor X(6) xor X(7);
t(5)(5) := X(0) xor X(4) xor X(5) xor X(6);
t(5)(4) := X(3) xor X(4) xor X(5);
t(5)(3) := X(3) xor X(4) xor X(6) xor X(7);
t(5)(2) := X(3) xor X(5) xor X(7);
t(5)(1) := X(4);
t(5)(0) := X(3) xor X(7);

t(6)(7) := X(1) xor X(5) xor X(6) xor X(7);
t(6)(6) := X(0) xor X(4) xor X(5) xor X(6);
t(6)(5) := X(3) xor X(4) xor X(5);
t(6)(4) := X(2) xor X(3) xor X(4);
t(6)(3) := X(2) xor X(3) xor X(5) xor X(6);
t(6)(2) := X(2) xor X(4) xor X(6) xor X(7);
t(6)(1) := X(3) xor X(7);
t(6)(0) := X(2) xor X(6) xor X(7);

t(7)(7) := X(0) xor X(4) xor X(5) xor X(6);
t(7)(6) := X(3) xor X(4) xor X(5);
t(7)(5) := X(2) xor X(3) xor X(4);
t(7)(4) := X(1) xor X(2) xor X(3) xor X(7);
t(7)(3) := X(1) xor X(2) xor X(4) xor X(5);
t(7)(2) := X(1) xor X(3) xor X(5) xor X(6);
t(7)(1) := X(2) xor X(6) xor X(7);
t(7)(0) := X(1) xor X(5) xor X(6) xor X(7);

ret := t(y);

return ret;
end GFM2pe;

55

--Function: GFMe - Uses direct combinational logic to compute the Galois
-- Field product of X and Y.
-- Input: A, B - 8-bit standard logic vectors.
-- Returns: 8-bit standard logic vector
-- Ussage: Z = GFMe(X, Y);

function GFMe (A, B: std_logic_vector) return std_logic_vector is
type matrix is array (0 to 7) of std_logic_vector(7 downto 0);

variable y :matrix;
variable X, bi :std_logic_vector(7 downto 0);
variable ret :std_logic_vector(7 downto 0);

begin
ret := x"00";
X := A;
bi := B;

y(0)(7) := X(7);
y(0)(6) := X(6);
y(0)(5) := X(5);
y(0)(4) := X(4);
y(0)(3) := X(3);
y(0)(2) := X(2);
y(0)(1) := X(1);
y(0)(0) := X(0);

y(1)(7) := X(6);
y(1)(6) := X(5);
y(1)(5) := X(4);
y(1)(4) := X(3) xor X(7);
y(1)(3) := X(2) xor X(7);
y(1)(2) := X(1) xor X(7);
y(1)(1) := X(0);
y(1)(0) := X(7);

y(2)(7) := X(5);
y(2)(6) := X(4);
y(2)(5) := X(3) xor X(7);
y(2)(4) := X(2) xor X(6) xor X(7);
y(2)(3) := X(1) xor X(6) xor X(7);
y(2)(2) := X(0) xor X(6);
y(2)(1) := X(7);
y(2)(0) := X(6);

y(3)(7) := X(4);
y(3)(6) := X(3) xor X(7);
y(3)(5) := X(2) xor X(6) xor X(7);
y(3)(4) := X(1) xor X(5) xor X(6) xor X(7);
y(3)(3) := X(0) xor X(5) xor X(6);
y(3)(2) := X(5) xor X(7);
y(3)(1) := X(6);
y(3)(0) := X(5);

y(4)(7) := X(3) xor X(7);

56

y(4)(6) := X(2) xor X(6) xor X(7);
y(4)(5) := X(1) xor X(5) xor X(6) xor X(7);
y(4)(4) := X(0) xor X(4) xor X(5) xor X(6);
y(4)(3) := X(4) xor X(5) xor X(7);
y(4)(2) := X(4) xor X(6);
y(4)(1) := X(5);
y(4)(0) := X(4);

y(5)(7) := X(2) xor X(6) xor X(7);
y(5)(6) := X(1) xor X(5) xor X(6) xor X(7);
y(5)(5) := X(0) xor X(4) xor X(5) xor X(6);
y(5)(4) := X(3) xor X(4) xor X(5);
y(5)(3) := X(3) xor X(4) xor X(6) xor X(7);
y(5)(2) := X(3) xor X(5) xor X(7);
y(5)(1) := X(4);
y(5)(0) := X(3) xor X(7);

y(6)(7) := X(1) xor X(5) xor X(6) xor X(7);
y(6)(6) := X(0) xor X(4) xor X(5) xor X(6);
y(6)(5) := X(3) xor X(4) xor X(5);
y(6)(4) := X(2) xor X(3) xor X(4);
y(6)(3) := X(2) xor X(3) xor X(5) xor X(6);
y(6)(2) := X(2) xor X(4) xor X(6) xor X(7);
y(6)(1) := X(3) xor X(7);
y(6)(0) := X(2) xor X(6) xor X(7);

y(7)(7) := X(0) xor X(4) xor X(5) xor X(6);
y(7)(6) := X(3) xor X(4) xor X(5);
y(7)(5) := X(2) xor X(3) xor X(4);
y(7)(4) := X(1) xor X(2) xor X(3) xor X(7);
y(7)(3) := X(1) xor X(2) xor X(4) xor X(5);
y(7)(2) := X(1) xor X(3) xor X(5) xor X(6);
y(7)(1) := X(2) xor X(6) xor X(7);
y(7)(0) := X(1) xor X(5) xor X(6) xor X(7);

for i in 0 to 7 loop
if bi(i) = ’1’ then

ret := ret xor y(i);
else

ret := ret xor x"00";
end if;

end loop;

return ret;
end GFMe;

--Function: GFD2 - returns the GF quotient of A/2 using combinational logic
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFD2(X);

57

function GFD2 (A: std_logic_vector) return std_logic_vector is

variable ai,ret : std_logic_vector(7 downto 0);
begin

ai := A;
ret(7) := ai(0);
ret(6) := ai(7);
ret(5) := ai(6);
ret(4) := ai(5);
ret(3) := ai(4) xor ai(0);
ret(2) := ai(3) xor ai(0);
ret(1) := ai(2) xor ai(0);
ret(0) := ai(1);

return ret;
end GFD2;

--Function: GFD2p - returns the GF quotient of A/2ˆp using combinational logic
-- Input: A - 8-bit standard logic vector; p - integer range 0 to 7
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFD2p(X,i);

function GFD2p (A: std_logic_vector;p: integer range 0 to 7)
return std_logic_vector is

variable ret : std_logic_vector(7 downto 0);
begin

ret := A;
for i in 1 to 7 loop

exit when i>p;
ret := GFD2(ret);

end loop;

return ret;
end GFD2p;

--Function: GFIc - returns the GF Multiplicative Inverse using combinational logic
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFIc(X);

function GFIc (A: std_logic_vector) return std_logic_vector is
variable ret,p1,p2,p3,p6 : std_logic_vector(7 downto 0);
variable p12,p14,p15,p240 : std_logic_vector(7 downto 0);

begin
p1 := A;
p2 := GFMe(p1,p1);
p3 := GFMe(p2,p1);
p6 := GFMe(p3,p3);
p12 := GFMe(p6,p6);
p14 := GFMe(p12,p2);
p15 := GFMe(p12,p3);

58

p240 := p15;
for i in 1 to 4 loop

p240 := GFMe(p240,p240);
end loop;

ret := GFMe(p240,p14);
return ret;

end GFIc;

--Function: GFIl - returns the GF Multiplicative Inverse using table lookups
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFI(X);

function GFIl (A: std_logic_vector) return std_logic_vector is
variable ret : std_logic_vector(7 downto 0);

begin
ret := GFD(X"01",A);
return ret;

end GFIl;

--Function: GFIei - returns the GF Multiplicative Inverse using Euclidean Alg
-- Input: A - 8-bit standard logic vector
-- Returns: 8-bit standard logic vector
-- Ussage: Y = GFIe(X);

function GFIei (A: std_logic_vector) return std_logic_vector is
constant M : integer := 8;
constant F : std_logic_vector(8 downto 0) := "100011101";
variable s,r,t : std_logic_vector(8 downto 0);
variable v,u,w : std_logic_vector(7 downto 0);
variable d : integer range -8 to 8;

begin
s := F;
r := ’0’&A;
v := (others => ’0’);
u := (0 => ’1’,others => ’0’);
d := 0;
for i in 1 to 2*M loop

if r(8) = ’1’ and s(8) = ’1’ then
t := s xor r;
w := v xor u;

else
t := s;
w := v;

end if;

if r(8) = ’0’ then
s := t;
r := r(7 downto 0)&’0’;

59

v := w;
u := GFM2(u);
d := d+1;

else
if d = 0 then

s := r;
r := t(7 downto 0)&’0’;
v := u;
u := GFM2(w);
d := d+1;

else
s := t(7 downto 0)&’0’;
r := r;
v := w;
u := GFD2(u);
d := d-1;

end if;
end if;

end loop;
return u;

end GFIei;

--Function: RAID6CompC1 - Precomputes constant 1 for RAID error correction
-- Input: x,y - integer range 0 to 7
-- Returns: word
-- Usage: Y = RAID6CompC1(a,b);

function RAID6CompC1 (c1,c2: integer range 0 to N-1) return word is
variable x,y : integer range 0 to N-1;
variable a,c,d : word;

begin
x := c1;
y := c2;
a := x"01";
a := GFM2p(a,y-x);
c := a xor x"01";
d := GFD(a,c);

return d;
end RAID6CompC1;

--Function: RAID6CompC2 - Precomputes constant 2 for RAID error correction
-- Input: x,y - integer range 0 to 7
-- Returns: word
-- Usage: Y = RAID6CompC2(a,b);

function RAID6CompC2 (c1,c2: integer range 0 to N-1) return word is
variable x,y : integer range 0 to N-1;
variable a,b,c,d : word;

begin
x := c1;

60

y := c2;
a := x"01";
a := GFM2p(a,y-x);
c := a xor x"01";
b := x"01";
b := GFD2p(b,x);
d := GFD(b,c);

return d;
end RAID6CompC2;

--Function: RAID6c2e - uses the parity information and precomputed constants
-- to correct 2 known data errors
-- Input: A - stripe w/ parity; B,C - W-bit word;
-- x,y - integer range 0 to 7
-- Returns: stripe w/ parity
-- Usage: Y = RAID6c2e(X,A,B,l,k);

function RAID6c2e (A: stripewp;B,C: word;x,y: integer) return stripewp is

variable sout : stripewp;
variable data : stripe;
variable Pi,Qi,c1,c2 : word;
variable Px,Qx : word;
variable PQ : parity;
variable p1,p2 : integer range 0 to N+1;

begin
c1 := B;
c2 := C;

p1 := x;
p2 := y;

sout := A;
for i in data’range loop

data(i) := sout(i);
end loop;
Pi := A(N); -- get initial P
Qi := A(N+1); -- get initial Q

data(p1) := (others => ’0’); -- clear out bad data byte
data(p2) := (others => ’0’); -- clear out bad data byte
PQ := RAIDenc(data); -- compute new P and Q

-- use new P and Q to compute difference from original P and Q
Qx := PQ(1) xor Qi;
Px := PQ(0) xor Pi;

-- find correct data values
sout(p1) := GFMe(c1,Px) xor GFMe(c2,Qx);
sout(p2) := Px xor sout(p1);

61

return sout;
end RAID6c2e;

--Function: divby_2pxor1 - returns input/(2ˆpower xor 1)
-- Input: input - W-bit word, power - integer range 1 to 7
-- Returns: W-bit word
-- Ussage: Y = divby_2pxor1(X,a);

function divby_2pxor1 (input: word; power:integer range 1 to 7) return word is
type divfunc is array (7 downto 1) of word;
variable func : divfunc;
variable a : word;
variable p : integer range 1 to 7;

begin
a := input;
p := power;

func(1)(0) := a(1) xor a(2) xor a(3) xor a(4) xor
a(5) xor a(6) xor a(7);

func(1)(1) := a(2) xor a(3) xor a(4) xor a(5) xor
a(6) xor a(7);

func(1)(2) := a(0) xor a(1) xor a(2);
func(1)(3) := a(4) xor a(5) xor a(6) xor a(7);
func(1)(4) := a(0) xor a(1) xor a(2) xor a(3) xor a(4);
func(1)(5) := a(0) xor a(1) xor a(2) xor a(3) xor

a(4) xor a(5);
func(1)(6) := a(0) xor a(1) xor a(2) xor a(3) xor

a(4) xor a(5) xor a(6);
func(1)(7) := a(0) xor a(1) xor a(2) xor a(3) xor

a(4) xor a(5) xor a(6) xor a(7);

func(2)(0) := a(0) xor a(1) xor a(3) xor a(5) xor a(7);
func(2)(1) := a(0) xor a(1) xor a(2) xor a(4) xor a(6);
func(2)(2) := a(0) xor a(2);
func(2)(3) := a(5) xor a(7);
func(2)(4) := a(1) xor a(3) xor a(5) xor a(6) xor a(7);
func(2)(5) := a(0) xor a(2) xor a(4) xor a(6) xor a(7);
func(2)(6) := a(1) xor a(3) xor a(5) xor a(7);
func(2)(7) := a(0) xor a(2) xor a(4) xor a(6);

func(3)(0) := a(0) xor a(1) xor a(4) xor a(7);
func(3)(1) := a(1) xor a(2) xor a(5);
func(3)(2) := a(0) xor a(1) xor a(2) xor a(3) xor

a(4) xor a(6) xor a(7);
func(3)(3) := a(0) xor a(2) xor a(3) xor a(5);
func(3)(4) := a(0) xor a(3) xor a(6) xor a(7);
func(3)(5) := a(1) xor a(4) xor a(7);
func(3)(6) := a(2) xor a(5);
func(3)(7) := a(0) xor a(3) xor a(6);

func(4)(0) := a(2) xor a(3) xor a(4) xor a(6) xor a(7);

62

func(4)(1) := a(0) xor a(3) xor a(4) xor a(5) xor a(7);
func(4)(2) := a(1) xor a(2) xor a(3) xor a(5) xor a(7);
func(4)(3) := a(7);
func(4)(4) := a(0) xor a(2) xor a(3) xor a(4) xor a(6) xor a(7);
func(4)(5) := a(0) xor a(1) xor a(3) xor a(4) xor a(5) xor a(7);
func(4)(6) := a(0) xor a(1) xor a(2) xor a(4) xor a(5) xor a(6);
func(4)(7) := a(1) xor a(2) xor a(3) xor a(5) xor a(6) xor a(7);

func(5)(0) := a(0) xor a(1) xor a(2) xor a(3) xor a(6) xor a(7);
func(5)(1) := a(1) xor a(2) xor a(3) xor a(4) xor a(7);
func(5)(2) := a(0) xor a(1) xor a(4) xor a(5) xor a(6) xor a(7);
func(5)(3) := a(0) xor a(3) xor a(5);
func(5)(4) := a(2) xor a(3) xor a(4) xor a(7);
func(5)(5) := a(0) xor a(3) xor a(4) xor a(5);
func(5)(6) := a(0) xor a(1) xor a(4) xor a(5) xor a(6);
func(5)(7) := a(0) xor a(1) xor a(2) xor a(5) xor a(6) xor a(7);

func(6)(0) := a(0) xor a(2) xor a(4) xor a(5);
func(6)(1) := a(0) xor a(1) xor a(3) xor a(5) xor a(6);
func(6)(2) := a(0) xor a(1) xor a(5) xor a(6) xor a(7);
func(6)(3) := a(0) xor a(1) xor a(4) xor a(5) xor a(6) xor a(7);
func(6)(4) := a(0) xor a(1) xor a(4) xor a(6) xor a(7);
func(6)(5) := a(1) xor a(2) xor a(5) xor a(7);
func(6)(6) := a(0) xor a(2) xor a(3) xor a(6);
func(6)(7) := a(1) xor a(3) xor a(4) xor a(7);

func(7)(0) := a(2) xor a(4) xor a(7);
func(7)(1) := a(3) xor a(5);
func(7)(2) := a(0) xor a(2) xor a(6) xor a(7);
func(7)(3) := a(1) xor a(2) xor a(3) xor a(4);
func(7)(4) := a(0) xor a(3) xor a(5) xor a(7);
func(7)(5) := a(1) xor a(4) xor a(6);
func(7)(6) := a(0) xor a(2) xor a(5) xor a(7);
func(7)(7) := a(1) xor a(3) xor a(6);

return func(p);

end divby_2pxor1;

--Function: RAIDenc - returns the RAID6 parity of the byte stripe
-- Input: A - stripe
-- Returns: parity (2 words)
-- Ussage: Y = GFIe(X);

function RAIDenc (A: stripe) return parity is
variable sin : stripe;
variable PQ : parity;

begin
sin := A;
PQ(1) := (others => ’0’);
PQ(0) := (others => ’0’);

63

for i in 0 to N-1 loop
PQ(0) := PQ(0) xor sin(i);
PQ(1) := PQ(1) xor GFM2pe(sin(i),i);

end loop;
return PQ;

end RAIDenc;

--Function: RAID6c2ecomb - uses the parity information
-- to correct 2 known data errors
-- Input: A - stripe w/ parity; x,y - integer range 0 to 7
-- Returns: stripe w/ parity
-- Usage: Y = RAID6c2ecomb(X,l,k);

function RAID6c2ecomb (A: stripewp;x,y: integer) return stripewp is

variable sout : stripewp;
variable data : stripe;
variable Pi,Qi : word;
variable Px,Qx : word;
variable PQ : parity;
variable p1,p2,diff : integer range 0 to N+1;

begin
p1 := x;
p2 := y;

sout := A;
for i in data’range loop

data(i) := sout(i);
end loop;
Pi := A(N); -- get initial P
Qi := A(N+1); -- get initial Q

data(p1) := (others => ’0’); -- clear out bad data byte
data(p2) := (others => ’0’); -- clear out bad data byte
PQ := RAIDenc(data); -- compute new P and Q

-- use new P and Q to compute difference from original P and Q
Qx := PQ(1) xor Qi;
Px := PQ(0) xor Pi;

-- find correct data values
diff := p2-p1;
sout(p1) := divby_2pxor1(GFD2p(Qx,p1) xor GFM2p(Px,diff),diff);
sout(p2) := Px xor sout(p1);

return sout;
end RAID6c2ecomb;

--Function: RAID6c1 - uses the parity information find and

64

-- correct 1 unknown data error
-- Input: A - (N+2)-byte standard logic vector,
-- B - (N+2)-bit standard logic vector
-- Returns: N-byte standard logic vector
-- Ussage: Y = GFIe(X,Y);

function RAID6c1 (A: stripewp) return stripewp is

variable sout : stripewp;
variable data : stripe;
variable Pi,Qi : word;
variable Px,Qx,Pd,Qd : word;
variable PQ : parity;
variable z : integer range 0 to 2**W-1;

begin
sout := A;
for i in data’range loop

data(i) := sout(i);
end loop;
Pi := A(N); -- get initial P
Qi := A(N+1); -- get initial Q

PQ := RAIDenc(data); -- compute new P and Q

-- use new P and Q to compute difference from original P and Q
Qx := PQ(1) xor Qi;
Px := PQ(0) xor Pi;

Pd := Px xor Pi;
Qd := Qx xor Qi;

z := conv_integer(GFLOGlut(GFD(Qx,Px)));

if Pd = zero and Qd >= one then
sout(N+1) := Qx;

elsif Qd = zero and not(Pd = zero) then
sout(N) := Px;

elsif not(Qd = zero) and not(Pd = zero) then
if z >=0 and z < N then

data(z) := (others => ’0’);
PQ := RAIDenc(data); -- compute new P and Q
Px := PQ(0) xor Pi;
sout(z) := Pi xor Px;

end if;
end if;

return sout;
end RAID6c1;

--Function: RAIDencDWstripe - returns the RAID6 parity of
-- the Double Word stripe
-- Input: A - DWstripe

65

-- Returns: DWparity (2 words)
-- Ussage: Y = GFIe(X);

function RAIDencDWstripe (A: DWstripe) return DWparity is
variable sin : DWstripe;
variable PQ : DWparity;
variable bytestripe : stripe;
variable byteparity : parity;

begin
sin := A;
for i in 0 to WpDW-1 loop

for j in 0 to N-1 loop
bytestripe(j) := sin(j)(((i*W)+(W-1)) downto (i*W));

end loop;
byteparity := RAIDenc(bytestripe);
PQ(0)(((i*W)+(W-1)) downto (i*W)) := byteparity(0);
PQ(1)(((i*W)+(W-1)) downto (i*W)) := byteparity(1);

end loop;
return PQ;

end RAIDencDWstripe;

end pkg_RAID6;

66

Appendix D

GF Algebra and RAID-6 Library
Components

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFILog_BRAM - computes GF Inverse Log (exponentiation) of inputs

entity GFILog_BRAM is

port (
clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end GFILog_BRAM;

architecture arch of GFILog_BRAM is
CONSTANT GFILOG: LUT := Calc_GFILOG;
attribute ROM_STYLE : string;
attribute ROM_STYLE of GFILOG: constant is "BLOCK";

begin
process(clk)
begin

if clk’event and clk = ’1’ then
O1 <= GFILOG(conv_integer(I1));
O2 <= GFILOG(conv_integer(I2));

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

67

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFLog_BRAM - computes GF Log of inputs

entity GFLog_BRAM is

port (
clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end GFLog_BRAM;

architecture arch of GFLog_BRAM is
CONSTANT GFLOG: LUT := Calc_GFLOG(Calc_GFILOG);
attribute ROM_STYLE : string;
attribute ROM_STYLE of GFLOG: constant is "BLOCK";

begin
process(clk)
begin

if clk’event and clk = ’1’ then
O1 <= GFLOG(conv_integer(I1));
O2 <= GFLOG(conv_integer(I2));

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFM_BRAM - computes prod, the GF product of a and b

entity GFM_BRAM is

port (
clk : in std_logic;
a : in word;
b : in word;
prod : out word

);
end GFM_BRAM;

architecture arch of GFM_BRAM is

component GFLog_BRAM is
port (

clk : in std_logic;

68

I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

component GFILog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal loga,logb,c : word;

begin
u1: GFLog_BRAM port map(clk,a,loga,b,logb);
u2: GFILog_BRAM port map(clk,c,prod,(others => ’0’), open);

process(clk)
variable sum :integer range 0 to 2**(W+1)-1;

begin
if clk’event and clk = ’1’ then

-- add the logs of the inputs
sum := conv_integer(loga) + conv_integer(logb);

-- c <= sum modulo (2ˆw)-1
if sum >= max then

c <= conv_std_logic_vector((sum - max),W);
else

c <= conv_std_logic_vector(sum,W);
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFD_BRAM - computes quot, the GF quotient of a and b

entity GFD_BRAM is

port (
clk : in std_logic;

69

a : in word;
b : in word;
quot : out word

);
end GFD_BRAM;

architecture arch of GFD_BRAM is

component GFLog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

component GFILog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal loga,logb,c : word;

begin
u1: GFLog_BRAM port map(clk,a,loga,b,logb);
u2: GFILog_BRAM port map(clk,c,quot,(others => ’0’), open);

process(clk)
begin

if clk’event and clk = ’1’ then
-- ci <= difference modulo 255
if loga >= logb then

c <= loga - logb;
else

c <= loga + max - logb;
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;

70

use pkg_RAID6.all;

-- Entity: GFI_BRAM - computes inv, the GF multiplicative inverse of a

entity GFI_BRAM is

port (
clk : in std_logic;
a : in word;
inv : out word

);
end GFI_BRAM;

architecture arch of GFI_BRAM is

component GFLog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

component GFILog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal loga, c : word;

begin
u1: GFLog_BRAM port map(clk,a,loga,(others => ’0’), open);
u2: GFILog_BRAM port map(clk,c,inv,(others => ’0’), open);

process(clk)
begin

if clk’event and clk = ’1’ then
c <= hi - loga;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

71

use work.all;
use pkg_RAID6.all;

-- Entity: GFM_LFSR - multiplies a times 2 ˆ logb
-- load - loads in a and logb when high, starts calculations when goes low
-- done - signals that the product is valid

entity GFM_LFSR is

port (
clk : in std_logic;
load : in std_logic;
a : in word;
b : in word;
done : out std_logic;
prod : out word := (others => ’0’)

);
end GFM_LFSR;

architecture arch of GFM_LFSR is
signal lfsr,p : word := (others => ’0’);
signal d : std_logic := ’0’;
signal c : integer range 0 to W := 0;

begin
d <= ’1’ when c >= W else ’0’;
done <= d;
prod <= p;
process(clk)
begin

if clk’event and clk = ’1’ then
if load = ’1’ then

lfsr <= a;
c <= 0;
p <= (others => ’0’);

elsif d = ’0’ then
lfsr <= GFM2(lfsr);
c <= c + 1;
if b(c) = ’1’ then
p <= p xor lfsr;

end if;
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFI_Brute - finds multiplicative inverse of a by brute force search
-- load - loads in a and logb when high, starts calculations when goes low
-- done - signals that the output is valid

72

entity GFI_Brute is

port (
clk : in std_logic;
load : in std_logic;
a : in word;
done : out std_logic;
inv : out word := (others => ’0’)

);
end GFI_Brute;

architecture arch of GFI_Brute is
signal p,i : word := (others => ’0’);
signal d : std_logic := ’0’;

begin
p <= GFMe(a,i);
d <= ’1’ when conv_integer(p) = 1 else ’0’;
done <= d;
inv <= i;
process(clk)
begin

if clk’event and clk = ’1’ then
if load = ’1’ then

i <= (others => ’0’);
elsif d = ’0’ then

i <= i + 1;
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFI_Euclid - finds multiplicative inverse of a using
-- Modified Euclidean Algorithm
-- load - loads in a and logb when high, starts calculations when goes low
-- done - signals that the output is valid

entity GFI_Euclid is

port (
clk : in std_logic;
load : in std_logic;
a : in word;
done : out std_logic;
inv : out word := (others => ’0’)

);
end GFI_Euclid;

architecture arch of GFI_Euclid is

73

signal X,Xn : word;
signal R,Rn : std_logic_vector(W downto 0);
signal delta : integer range 0 to W-1 := 0;
signal cnt : integer range 0 to 2*W := 0;

begin
process(clk)

variable V : word;
variable T : std_logic_vector(W downto 0);

begin
if clk’event and clk = ’1’ then

if load = ’1’ then
Rn <= F;
R <= ’0’ &a;
Xn <= (others => ’0’);
X <= (0 => ’1’, others => ’0’);
delta <= 0;
cnt <= 2*W;

elsif cnt >= 1 then
cnt <= cnt - 1;
if R(W) = ’1’ and Rn(W) = ’1’ then
T := R xor Rn;
V := X xor Xn;

else
T := Rn;
V := Xn;

end if;

if R(W) = ’0’ then
Rn <= T;
R <= R(W-1 downto 0)&’0’;
Xn <= V;
X <= GFM2(X);
delta <= delta + 1;

else
if delta = 0 then

Rn <= R;
R <= T(W-1 downto 0)&’0’;
Xn <= X;
X <= GFM2(V);
delta <= delta + 1;

else
Rn <= T(W-1 downto 0)&’0’;
R <= R;
Xn <= V;
X <= GFD2(X);
delta <= delta - 1;

end if;
end if;

end if;
end if;

end process;

inv <= X;
done <= ’1’ when cnt = 0 else ’0’;

74

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFM_BRAM_double - computes 2 prod, the GF product of a and b with
-- one lookup table

entity GFM_BRAM_double is

port (
clk : in std_logic;
a1 : in word;
logb1 : in word;
prod1 : out word;
a2 : in word;
logb2 : in word;
prod2 : out word

);
end GFM_BRAM_double;

architecture arch of GFM_BRAM_double is

component GFLog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

component GFILog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal loga1,loga2,c1,c2 : word;

begin
u1: GFLog_BRAM port map(clk,a1,loga1,a2,loga2);
u2: GFILog_BRAM port map(clk,c1,prod1,c2,prod2);

process(clk)

75

variable sum1, sum2 :integer range 0 to 2**(W+1)-1;
begin

if clk’event and clk = ’1’ then
-- add the logs of the inputs
sum1 := conv_integer(loga1) + conv_integer(logb1);

-- c <= sum modulo (2ˆw)-1
if sum1 >= max then

c1 <= conv_std_logic_vector((sum1 - max),W);
else

c1 <= conv_std_logic_vector(sum1,W);
end if;

-- add the logs of the inputs
sum2 := conv_integer(loga2) + conv_integer(logb2);

-- c <= sum modulo (2ˆw)-1
if sum2 >= max then

c2 <= conv_std_logic_vector((sum2 - max),W);
else

c2 <= conv_std_logic_vector(sum2,W);
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: GFD_BRAM_double - computes quot, the GF quotient of a and b twice
-- using one table

entity GFD_BRAM_double is

port (
clk : in std_logic;
a1 : in word;
logb1 : in word;
quot1 : out word;
a2 : in word;
logb2 : in word;
quot2 : out word

);
end GFD_BRAM_double;

architecture arch of GFD_BRAM_double is

component GFLog_BRAM is
port (

clk : in std_logic;

76

I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

component GFILog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal loga1,loga2,c1,c2 : word;

begin
u1: GFLog_BRAM port map(clk,a1,loga1,a2,loga2);
u2: GFILog_BRAM port map(clk,c1,quot1,c2,quot2);

process(clk)
begin

if clk’event and clk = ’1’ then
-- ci <= difference modulo 255
if loga1 >= logb1 then

c1 <= loga1 - logb1;
else

c1 <= loga1 + max - logb1;
end if;

-- ci <= difference modulo 255
if loga2 >= logb2 then

c2 <= loga2 - logb2;
else

c2 <= loga2 + max - logb2;
end if;

end if;
end process;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: RAID6en_bram - finds the P and Q values of stripe a

entity RAID6en_bram is

77

port (
clk : in std_logic;
a : in stripe;
P : out word;
Q : out word

);
end RAID6en_bram;

architecture arch of RAID6en_bram is
component GFM_BRAM_double is

port (
clk : in std_logic;
a1 : in word;
logb1 : in word;
prod1 : out word;
a2 : in word;
logb2 : in word;
prod2 : out word

);
end component;

signal multiplied : stripe;
begin

multiplying: for i in 0 to (N-1)/2 generate
multiplier: GFM_BRAM_double

port map(
clk => clk,
a1 => a(2*i),
logb1 => conv_std_logic_vector(2*i,W),
prod1 => multiplied(2*i),
a2 => a(2*i+1),
logb2 => conv_std_logic_vector(2*i+1,W),
prod2 => multiplied(2*i+1)

);
end generate multiplying;

process(multiplied,a)
variable temp_p,temp_q : word;

begin
temp_p := (others => ’0’);
temp_q := (others => ’0’);
for i in a’range loop

temp_p := temp_p xor a(i);
temp_q := temp_q xor multiplied(i);

end loop;
P <= temp_p;
Q <= temp_q;

end process;
end architecture;

library IEEE;

78

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: RAID6c2_bram - fixes errors at locations l and k (assumes l>k)
--D_L = {(P oplus P’) oplus 2ˆK times (Q oplus Q’)} over {2ˆ{L-K} oplus 1} newline
--D_K = P oplus P’ oplus D_L

entity RAID6c2_bram is

port (
clk : in std_logic;
a : in stripe;
P : in word;
Q : in word;
l : in integer;
k : in integer;
fixed : out stripe

);
end RAID6c2_bram;

architecture arch of RAID6c2_bram is
component RAID6en_bram is

port (
clk : in std_logic;
a : in stripe;
P : out word;
Q : out word

);
end component;

component GFM_BRAM_double is
port (

clk : in std_logic;
a1 : in word;
logb1 : in word;
prod1 : out word;
a2 : in word;
logb2 : in word;
prod2 : out word

);
end component;

component GFD_BRAM_double is
port (

clk : in std_logic;
a1 : in word;
logb1 : in word;
quot1 : out word;
a2 : in word;
logb2 : in word;
quot2 : out word

79

);
end component;

component GFD_BRAM is
port (

clk : in std_logic;
a : in word;
b : in word;
quot : out word

);
end component;

signal good : stripe;
signal dividend,divider : word;
signal Pt,Qt,Pd,Qd : word;
signal mult1,mult2 : word;
signal diff : integer range 0 to N;
signal dl,dk,kword,diffword : word;
signal temp : word;

begin
process(k,l,a)
begin

for i in a’range loop
if i = l or i = k then

good(i) <= (others => ’0’);
else

good(i) <= a(i);
end if;

end loop;
end process;

diff <= l-k;
process(diff)

variable t : word;
begin

for i in t’range loop
if i = diff then

t(i) := ’1’;
else

t(i) := ’0’;
end if;

end loop;
t(0) := ’1’;
divider <= t;

end process;

testEncode: RAID6en_bram
port map (

clk => clk,
a => good,
P => Pt,
Q => Qt

);
Pd <= Pt xor P;

80

Qd <= Qt xor Q;

kword <= conv_std_logic_vector(k,W);
diffword <= conv_std_logic_vector(diff,W);

dividemult: GFD_BRAM_double
port map(

clk => clk,
a1 => Qd,
logb1 => kword,
quot1 => mult2,
a2 => (others => ’0’),
logb2 => (others => ’0’),
quot2 => open

);

multiply: GFM_BRAM_double
port map(

clk => clk,
a1 => Pd,
logb1 => diffword,
prod1 => mult1,
a2 => (others => ’0’),
logb2 => (others => ’0’),
prod2 => open

);
dividend <= mult1 xor mult2;

divide: GFD_BRAM
port map (

clk => clk,
a => dividend,
b => divider,
quot => temp

);

dk <= temp xor one;
dl <= dk xor Pd;

process(dk,dl,a)
begin

for i in a’range loop
if i = l then

fixed(i) <= dl;
elsif i = k then

fixed(i) <= dk;
else

fixed(i) <= a(i);
end if;

end loop;
end process;

end architecture;

81

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: RAIDf1_BRAM - finds 1 error and corrects it

entity RAIDf1_BRAM is

port (
clk : in std_logic;
a : in stripewp;
fixed : out stripewp

);
end RAIDf1_BRAM;

architecture arch of RAIDf1_BRAM is

component GFLog_BRAM is
port (

clk : in std_logic;
I1 : in word;
O1 : out word;
I2 : in word;
O2 : out word

);
end component;

signal PQ,PQ2 : parity;
signal pd,qd : word;
signal logpd,logqd : word;
signal l : word;
signal datain,data : stripe;
signal dl : word;

begin
copyin: for i in datain’range generate

datain(i) <= a(i);
end generate copyin;

PQ <= RAIDenc(datain);
pd <= PQ(0) xor a(N);
qd <= PQ(1) xor a(N+1);

u1: GFLog_BRAM port map(clk,pd,logpd,qd,logqd);

l <= logqd - logpd;

process(datain,l)

82

variable s, t : word;
begin

t := a(N);
for i in datain’range loop

if i = l then
s := (others => ’0’);

else
s := datain(i);

end if;
t := t xor s;

end loop;
dl <= t;

end process;

process(a,dl,l)
begin

for i in fixed’range loop
if i = l then

fixed(i) <= dl;
else

fixed(i) <= a(i);
end if;

end loop;

end process;
end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;
use pkg_RAID6.all;

-- Entity: RAID6c2e_pipe - fixes 2 known data errors using pipelined
-- combinational circuit
-- fixed(0) <= correct value of a(x)
-- fixed(1) <= correct value of a(y)

entity RAID6c2e_pipe is

port (
clk : in std_logic;
a : in stripewp;
x,y : in integer range 0 to N+1;
fixed : out stripewp

);
end RAID6c2e_pipe;

architecture arch of RAID6c2e_pipe is

signal PQin,PQ : parity := (others => (others => ’0’));
signal Px,Qx,Px1,Px2 : word := (others => ’0’);
signal numerator : word := (others => ’0’);
signal fixedx, fixedy : word := (others => ’0’);

83

signal goodData : stripe := (others => (others => ’0’));
signal diff, diff2, x1 : integer range 0 to N+1:= 1;

begin
copyin: for i in goodData’range generate

goodData(i) <= (others => ’0’) when (i=x or i=y) else a(i);
end generate copyin;
PQin(0) <= a(N);
PQin(1) <= a(N+1);
PQ <= RAIDenc(goodData);

process(clk)
begin

if clk’event and clk = ’1’ then
Px <= PQin(0) xor PQ(0);
Qx <= PQin(1) xor PQ(1);
diff <= y-x;
x1 <= x;

fixedx <= divby_2pxor1(GFD2p(Qx,x1) xor GFM2p(Px,diff),diff);
Px2 <= Px;

fixedy <= fixedx xor Px2;
end if;

end process;

copyout: for i in a’range generate
fixed(i) <= fixedx when i=x else

fixedy when i=y
else a(i);

end generate copyout;

end architecture;

84

	Virginia Commonwealth University
	VCU Scholars Compass
	2009

	Efficient Implementation of RAID-6 Encoding and Decoding on a Field Programmable Gate Array (FPGA)
	David Jacob
	Downloaded from

	tmp.1404866539.pdf.DkVQK

