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Auto-PEEP is auto positive end-expiratory pressure due to excessive amounts of alveolar 

gas produced by sustained recurrent incomplete exhalation. Incomplete exhalation occurs when 

the exhaled breath never reaches a flow rate of 0 L/min.  The objective of this dissertation is to 

develop an automated detection system of auto-PEEP through incomplete exhalation as revealed 

by ventilator graphics for mechanically ventilated adults. Auto-PEEP can cause adverse effects if 

allowed to linger and if not quickly identified. An automated detection system will be 

instrumental in helping to quickly identify auto-PEEP. A computerized algorithm was developed 

to detect incomplete exhalation based on the following three parameters:1) Foi, was used to 

represent the value of the flow at the onset of inhalation, 2) ∆T, was used to represent the value 
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of time difference between onset inhalation to the 0 L/min mark, and 3) slope threshold, a value 

set for the slope of change of flow over ∆T. Optimum parameters of the algorithm were achieved 

for Foi = -3 L/min, ∆T = 0.2 s, and slope threshold = 90 L-s/min. A novel data set was introduced 

to validate the algorithm, yielding no significant difference in true positive rates (t = 1.5, df = 

12.402, p-value = 0.1408) and false positive rates (t = 1.9, df = 16.765, p-value = 0.0725) as 

outcomes for two-tailed t-tests comparing the novel and old data set. To determine the 

relationship between auto-PEEP and detection of sustained incomplete exhalation, a correlation 

of a linear model of the novel data set between auto-PEEP and the percentage of incomplete 

exhalation detection out of the existing breaths (index) was investigated. A linear model should 

interpret the index value that corresponds to significant auto-PEEP presence; unfortunately, no 

significant linear model was found between incomplete exhalation index and auto-PEEP (F1,62 = 

1.67, p-value = 0.2010). However, there was a relationship between the intrinsic PEEP values 

and the incomplete exhalation index as functions of time. The automated detection algorithm 

produced by this work provides a non-invasive method of automatically detecting auto-PEEP. 
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Chapter 1 Concerning Lungs and Artificial Ventilation 
 
 
 
 
Overview 

 This chapter provides an overview of relevant material pertaining to lung anatomy and 

physiology. Physiological measurements such as respiratory rate, functional residual capacity, 

and compliance will be introduced with relevant information pertaining to artificial ventilation 

included. The function of an invasive mechanical ventilator requiring intubation will be 

explained along with modes of ventilators and how breath is triggered, delivered and terminated 

in each different type. The chapter will also cover how asynchrony between patient and a 

mechanical ventilator occurs and finally auto-PEEP and its adverse effects will be defined. 

Anatomy and Physiology of the Lung 

 Lungs are an essential respiratory organ in humans whose primary function are to deliver 

oxygen to the blood and removes carbon dioxide. Air is delivered through the trachea into the 

lungs. Air passes through the trachea then divides into two bronchi that lead to the left lung and 

the right lung (see figure 1-1). On each side of the lungs, the bronchi divides further into 

branches of bronchioles and terminal bronchioles branching further into the respiratory zones of 

respiratory bronchioles, alveolar ducts, and alveoli. Gas exchange with blood occurs only in the 

respiratory zone. There is no gas exchange with blood in the conducting zone that includes the 
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trachea, the two bronchi and branches of bronchi. Any space in the lungs with no gas exchange is 

called the dead space.1 

Figure 1-1: Diagram of the human lungs2 

 

 Lung volume and lung capacity describe the different volumes of a given space in the 

lungs for a particular function (see figure 1-2). Lung volume can be directly measured but lung 

capacity must be derived. Lung volume includes tidal volume (TV), inspiratory reserve volume 

(IRV), expiratory reserve volume (ERV), and residual volume (RV). Lung capacity includes 
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total lung capacity (TLC), vital capacity (VC), and functional residual capacity (FRC). Tidal 

volume is the amount of air that is normally inhaled and exhaled without extra effort Inspiratory 

reserve volume is the maximum amount of air that can be inhaled beyond tidal volume 

inhalation. Expiratory reserve volume is the maximum amount of air that can be exhaled beyond 

tidal volume exhalation. Residual volume is the amount of air in the lungs left over after 

expiratory reserve volume is exhaled. Total lung capacity is the entire amount of air in the lungs 

when no more air can be inhaled (all lung volumes added together). Vital capacity is the volume 

of air exhaled when no more air can be exhaled (TLC – RV). Functional residual capacity is the 

volume of air in the lungs at the end of a tidal volume exhalation (IRV + RV).1  

Figure 1-2: Lung volumes and capacities3 

 

The lungs are a dynamic organ that uses diaphragm muscle contraction to produce 

enough pressure for air to flow into the lungs for inspiration. Expiration is usually a passive 
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process, although forced expiration can occur by contraction of the diaphragm muscles – this is 

how ERV is produced. The pressure and volume relationship is much like a hydraulic equivalent 

of Ohm’s Law, where flow is equal to the change in pressure over the equivalent resistance of 

gas flow through the airways.1  

𝐹 =  
∆𝑃
𝑅

 

The measure of ease in expanding the lungs is called compliance and is equal to the change in 

volume over the change in pressure.1 

𝐶 =  
∆𝑉
∆𝑃

 

Elastance is the inverse of compliance. Flow is the change in volume over time, or the first 

derivative of volume.1 

Pathologies such as asthma and chronic obstructive pulmonary disease (COPD) present 

obstruction in the airway passages. When asthma or COPD exacerbation worsens it may be 

necessary to provide respiratory support via artificial ventilation. Other serious conditions that 

may require artificial ventilation include acute respiratory distress syndrome (ARDS) which is a 

life-threatening reaction to an infection or injury of the lung.4  

Invasive Mechanical Ventilator 

 In most cases involving the critically ill, artificial ventilation is delivered using a positive 

pressure ventilation machine since approximately 40% of patients in critical care units are on 

mechanical ventilators. There are two types of positive-pressure mechanical ventilators, a mask 

delivery system that is noninvasive, and an intubation system that is orally or nasally attached via 

an endotracheal tube and is very invasive. This dissertation focuses on the invasive mechanical 

ventilator with an endotracheal tube. Patients require artificial ventilation for many reasons such 
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as respiratory support during and after a surgical procedure/operation or as a result of a traumatic 

injury. Respiratory support is often required due to pathologies such as asthma exacerbation and 

respiratory distress. Artificial ventilation provides adequate oxygenation, steady respiratory rate 

(amount of breaths per minute), and steady tidal volume.5,6 

Figure 1-3: Trigger, target, and termination sections of ventilator waveform 

 

Because there are many different types of invasive mechanical ventilator with each 

operating differently, understanding their functions can be simplified by classifying them into the 

3T’s of breath; trigger, target, and termination (see figure 1-3). The first of the 3T’s, trigger, can 

be defined as a breath that is initiated by patient (utilizing a flow or pressure threshold) or 

machine (timed). The second of the 3T’s, target, can be defined as air supply that can either be 

volume controlled or pressure controlled. The third of the 3T’s, termination can be defined as a 

breath that is ended by the machine setting or at the patient’s demand. Three different ventilator 



   

 6 

settings can be used to demonstrate how each of the 3T’s can be varied: assist/control (A/C) also 

known as mandatory breath, pressure support (PSV) also known as spontaneous breath, and 

synchronous intermittent mandatory ventilation (SIMV). Table 1-1 gives a further understanding 

of the different mechanical ventilator settings with hypothetical examples. 7 

Table 1-1: Hypothetical Examples of Varying the Drive to Breath, the Number of Patient Inspiratory Efforts, 
and Clinician-Selected Parameters on Breath Types and Characteristics in Principle Modes of Ventilation. 
Five examples of ventilator modes are presented. The rate is set at 10 breaths/min for all except the 
spontaneous mode. Five scenarios are presented in which different numbers of patient inspiratory efforts are 
made (A, B, and C), there is a reduction in the set rate to 2 breaths/min (D), or pulmonary edema develops €. 
For the first four scenarios, the expected effect on mandatory and spontaneous breaths is depicted. In 
scenario E, the effect on tidal volume, VT and peak airway pressure is illustrated.7 

 

A/C mode consists of two types of breath delivery: 1) an assisted breath in which the 

patient initiates the effort to draw a breath and a machine assists the patient by delivering a 

breath, and  2) a controlled breath in which a machine delivers the breath without patient effort 

while being determined by a minimum respiratory that is sey by a clinician or ventilator 

technician. The assisted portion of an A/C setting is patient triggered, volume or pressure 

targeted, and machine terminated. While the control portion of an A/C is setting is the same 
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except for the trigger which is machine triggered (time triggered). A/C setting is mainly used for 

stabilization of patient. A disadvantage of this setting is when a patient is tachypnic, as this can 

cause air trapping and respiratory alkalosis.7   

In the PSV setting the breath is triggered by a patient, air volume is targeted by pressure 

control and termination is controlled by the patient. This is known as the “comfortable” setting 

because the patient dictates initiation and termination; however, it is primarily used as an 

intermediate stage during the weaning of the patient from the ventilator since it requires a stable 

patient effort. PSV can be harmful to the patient if apnea or lung weakness is present.7  

 The SIMV setting is a combination of both PSV and A/C. The 3T’s control for the PSV 

or A/C in SIMV was mentioned above. A/C setting is set at a minimum respiratory rate with any 

additional breaths provided by PSV setting. This setting has many options for the patient to 

breathe but the non-regularity of the breathing pattern can cause discomfort.7  

Patient-Ventilator Asynchrony 

Patient-ventilator asynchrony occurs when any phase of breath is not perfectly matched 

between the pulmonary system of the patient and the ventilator mechanics of the machine. 

Asynchrony can occur in any of the 3 T’s. Adverse effects of patient-ventilator asynchrony 

includes the following: patient fighting the ventilator, increase in sedation, greater effort in 

breathing, muscle damage, ventilation-perfusion mismatching, dynamic hyperinflation, delayed 

or prolonged weaning, longer ICU stay, or higher healthcare costs. Forty percent of patients 

requiring intensive care in the US also require mechanical ventilation and nearly a quarter of 

them experience asynchrony in greater than 10% of respiratory efforts.6,8,9 The two types of 
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asynchrony that are the focus of this dissertation are trigger asynchrony and termination 

asynchrony.8,10   

Figure 1-4: Ineffective trigger8 

 
 
Figure 1-5: Double triggering11 
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Figure 1-6: Auto-PEEP detection due to premature termination asynchrony. Buildup of pressure (auto-
PEEP) is depicted in the pressure waveform (Paw). Incomplete exhalation is detected in the flow waveform 
indicated by the black arrows (�̇�). 10 

 
 

Trigger asynchrony occurs more frequently than any other type of asynchrony and is 

easier to identify. Two types of trigger asynchrony are ineffective triggering or failure to trigger 

and double triggering. Ineffective triggering occurs when a muscular effort to breathe is not 

followed by a ventilator trigger. This is traditionally shown by a convex flow wave form paired 

with a concave pressure waveform, as seen in figure 1-4. In double triggering (see figure 1-5) as 

the name suggests; two breaths that are triggered by the ventilator in close proximity with 

expiratory time between the two triggered breaths in less than one half of the inspiratory time.8,11 

 One type of termination asynchrony discussed here is premature termination asynchrony. 

Premature termination asynchrony occurs when the inspiratory time is ended prematurely and 

breath is not allowed to passively, fully exhale; in other words, there is incomplete exhalation 

(IE). When incomplete exhalation occurs successively and is sustained, a buildup of pressure 

called auto-PEEP emerges (see figure 1-6).10,12  

Origins of Auto-PEEP 

 The phenomenon of auto-PEEP was recorded as early as 1972 in the form of air trapping 

in the lungs during mechanical ventilation at rapid frequencies. Air trapping occurs when 
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inadequate time is given for exhalation due to rapid respirations. Increases in thoracic pressure 

compensate for the incomplete exhalation to permit expiration of larger volumes in a short time. 

These are followed by an increase in end-expiratory lung volume. This dynamic hyperinflation 

of lung volume leads to a pressurization of the alveoli that exceed the atmospheric pressure and 

hence the advent of auto-PEEP. Auto-PEEP is also known as intrinsic PEEP (PEEPi), and occult 

PEEP. Auto-PEEP is different from applied PEEP, which is a minimum PEEP value set by 

mechanical ventilation to open up airway passages. Auto-PEEP is different from total PEEP or 

global PEEP, which is the total value of applied PEEP and auto-PEEP. 12-14 

 Auto-PEEP can occur in the presence or absence of dynamic hyperinflation of the 

lungs.14 Blanch et. al suggest that auto-PEEP from dynamic hyperinflation originates from  the 

sequential emptying of slow hypercapnic units since there is a significant correlation between 

expired carbon dioxide slope, respiratory-system resistance, and auto-PEEP. In the presence of 

dynamic hyperinflation, auto-PEEP can occur with intrinsic or external factors.15  

 Auto-PEEP caused by intrinsic factor is when expiratory flow limitations/ compressions 

occur in smaller airways with air-trapping occurring deeper in the lungs. This is most often 

occurred in patients with chronic obstructive pulmonary disease (COPD). For patients 

experiencing COPD exacerbations from airflow obstruction and/or anatomical abnormalities, 

when expiratory effort increases, the results are increases in pleural and alveolar pressure without 

improving the exhalation flow. This can occur for both flow limitation and passive deflation. An 

applied PEEP delivered by the ventilator to the patient that matched the auto-PEEP value, as 

opposed to the usual default value of zero cmH20, allowed the patient to breathe without 

increasing the work of breathing. COPD patients are likely to develop auto-PEEP because they 
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are inclined to have increases in expiratory effort, but they are not the only sufferers from auto-

PEEP.12,14 Bernasconi et al. demonstrated that even for patients without COPD unexpected auto-

PEEP occurs up to 35%.16 

 Auto-PEEP caused by extrinsic factor occurs when high respiratory rate or a form of 

expiratory resistance from the mechanical ventilator equipment such as narrowing of 

endotracheal tube due to mucus thickening restricts exhalation. An applied PEEP by the 

ventilator would not help in this case because it would only add more pressure to the expiratory 

airflow, cascading pressure increase to the airway, thorax, and alveoli. 12,14 

 In the absence of dynamic hyperinflation, Mughal et al show that auto-PEEP occurs when 

there is strong expiratory muscle activity, often with normal or even low lung volumes. This was 

demonstrated by patients who were actively exhaling and causing pressure gradient between 

alveolar and central airway. It produced an auto-PEEP without lung distention. 14,17 

 Even though auto-PEEP arising in the absence of dynamic hyperinflation can occur, it is 

only auto-PEEP arising from dynamic hyperinflation that has been associated with adverse 

effects. 4,12,14,17 Auto-PEEP that arises from dynamic hyperinflation produces traces of 

incomplete exhalation that can be detected non-invasively using a mechanical ventilator monitor 

(ventilator graphic).12,14,18 On the other hand, auto-PEEP without dynamic hyperinflation would 

require detection beyond looking at ventilator graphic.14,17 For this reason, this dissertation will 

narrow its focus on auto-PEEP with the presence of dynamic hyperinflation.   

Auto-PEEP and Incomplete Exhalation 

Incomplete exhalation occurs when an exhaled breath is not fully emptied; leaving excess 

air volume above functional residual capacity that is trapped. On a flow waveform, this can be 



   

 12 

seen as the airway flow of exhaled breath not returning to its 0 L/min equilibrium. If incomplete 

exhalation occurs often and sustains a high percentage (index) of incomplete exhalation breaths 

during a ventilation treatment, auto-PEEP will occur. Figure 1-7 shows the ventilator graphic for 

auto-PEEP occurring from incomplete exhalation.  Bedside clinicians are typically not aware of 

the ventilator graphic characteristics that identify incomplete exhalation. Because they could not 

recognize incomplete exhalation, they cannot perform interventions to fix the incomplete 

exhalation before adverse effects from auto-PEEP significantly harm the patient. Automatic 

monitoring and detection of incomplete exhalation can help inform clinicians quickly before 

adverse effects take place.12 

Figure 1-7: Auto-PEEP occurring from incomplete exhalation. 12 

 

Auto-PEEP’s Adverse Effects  

 There are many adverse effects of auto-PEEP. These include increase in work of 

breathing, failure to wean from mechanical ventilation, worsening of alveolar gas exchange, 

hemodynamic compromise, and inappropriate treatment.12,14,19 Applied PEEP has been shown to 

reduce patient effort in place of auto-PEEP, which indicates that auto-PEEP unnecessarily 
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increases patient’s work of breathing. 20,21 The discomfort caused by increase in the work of 

breathing leads to patient-ventilator asynchrony and failure to wean a patient from a mechanical 

ventilator. 4,10,12,14  

Those with auto-PEEP would need to generate more negative intrapleural pressure than 

those without auto-PEEP and this eventually causes ineffective trigger. 18 An auto-PEEP sufferer 

who doesn’t have applied PEEP to compensate for the extra pressure would have to overcome a 

larger threshold to trigger the ventilator sensitivity level. When inspiratory effort cannot reach 

that threshold, the ventilator will not deliver a breath. If auto-PEEP is not recognized or is even 

mistaken for something else, the patient will continually have discomfort from ineffective trigger 

and adverse effects from the auto-PEEP. 18,21,22 

Patients experiencing auto-PEEP have been shown to have lower oxygen tension, 

suggesting that auto-PEEP contributes to the worsening of gas exchange due to an uneven 

distribution of inspired gases.23 The increase in intrathoracic pressure due to auto-PEEP reduces 

venous return which reduces preload to the right and left ventricles. Due to high pulmonary 

vascular resistance, decreases left ventricular compliance can lead to increase in right ventricular 

afterload. The inadequate venous return becomes a primary cause of low cardiac output which 

may cause hypotension in patients with auto-PEEP and can lead to subsequent administration of 

potent vasopressors.12,14 Auto-PEEP’s adverse hemodynamic effect is also considered the cause 

of cardiac electromechanical dissociation.24,25 Additionally, auto-PEEP manifests asynchronous 

breaths and is the underlying cause of respiratory function impairment related to patient-

ventilator asynchrony.12,18,26,27  
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Having determined the numerous potential adverse effects of auto-PEEP, it is important 

that an automated detection system of auto-PEEP through ventilator graphics for adults requiring 

mechanical ventilation be created. Using the experiential lessons and data from existing research 

on automated detection, the remainder of this dissertation will describe the development of a 

process for automated detection of auto-PEEP that may improve clinical outcomes of 

mechanically ventilated patients. 
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Chapter 2 Automated Detection and Calculation Derived from 
Ventilator Graphics 

 
 
 
 

Introduction 

Auto-PEEP can be identified in ventilator graphics where the ventilated adults exhibit an 

incomplete exhalation in the flow waveform; however, such knowledge is not commonly used in 

daily clinical care. Furthermore, since the incomplete exhalation detection requires continuous or 

frequent observation of real-time ventilator graphics, it is not pragmatic for clinicians to standby 

at all time at the patient’s bedside to continually evaluate ventilator graphics. Automated 

detection of incomplete exhalation would contribute greatly to the monitoring of ventilated 

patients and the prevention of ventilator related injuries or even death.10,12,18,28,29 

 Combing through the literature review, the following questions are kept in mind: 1) Can 

an automated detection of auto-PEEP through the readily available ventilator graphics be 

developed? 2) Can the expertise of the clinician’s detection of patient’s incomplete exhalation be 

translated into a task that a machine can perform? 3) How strong does the presence of sustained 

incomplete exhalation (index) need to be to alarm the presence of auto-PEEP? Answers to these 

questions are obtained by fulfilling the objective, which is to create an automated detection of 

auto-PEEP through ventilator graphics for mechanically ventilated adults.   

 Through literature review it was discovered that respiratory measurand detections from 

ventilator graphics coupled with clinician’s expertise formed plentiful automated detection of 
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various respiratory measurands. It can be seen that the path others took to automatically delineate 

breaths, calculate total PEEP, and automatically detect asynchrony, can be used to automatically 

detect incomplete exhalation and auto-PEEP. 

Literature Review 

Since the 2005 release of Nilsestuen and Hargett’s paper “Using ventilator graphics to 

identify patient-ventilator asynchrony”10 there has been interest in creating a method for the 

automated detection of patient-ventilator asynchrony. Since the first automatic asynchrony 

publications of Mulqueeny et al.and Chen et al., more authors have described various ways to 

automatically detect asynchrony.30,31 However , automation of detection and calculation of 

respiratory measurands from mechanical ventilation, prior to asynchrony, are just as varied.  

 The progression of instrumentation for measuring and recording of ventilator graphics 

from the original pen and ink pneumotachometer to the modern mechanical ventilator’s digital 

waveform have been essential in shaping the technology for artificial ventilation. Threshold 

based detection of airway pressure or volume has enabled the automation of breath triggers, 

volume targets, and many other ventilator related markings. Close-loop systems that govern the 

settings and modes of the ventilator use automatic detection of the waveform values based on set 

thresholds. Detecting when a waveform has reached or has not reached a threshold value for 

pressure, flow, or volume dictates whether the ventilator is to deliver more or less air.5 

Similarities in the early developments of automated detection from ventilator graphics and in the 

creation of automated detection methods of patient-ventilator asynchrony are described. 

Automated detection and calculation of respiratory measurands from mechanical ventilation have 

undergone complex and creative evolution of ventilator graphics. 
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 The original intent of automated detection of ventilator graphics was to make artificial 

ventilation easier and more effective than its manual data recording counterpart. Prior to the 

advent of automated detection of asynchronous breaths, automated detection of ventilator 

graphics of other respiratory measurand excluding asynchrony was used as part of mechanical 

ventilation control. Early development of computerized controls detected when a breath started 

and stopped. This detection occurred specifically at the starting and endpoints of inspiration, 

expiration, and end expiratory pause. This detection process led to the automation of reporting 

respiratory rate (numbers of breaths per minute) and is utilized in the more complex algorithms 

that have been developed since. 32 

Another value derived from waveforms is volume. Since pressure and flow are the 

signals acquired from sensors 33, to obtain volume information, the flow waveform is integrated 

over time through computerized automation and provides tidal and minute volumes. Automated 

detection is also applied to the airway pressure waveform to automatically obtain pressure 

information such as end-inspiratory pressure, end-expiratory pressure, the peak pressure and the 

mean.32 From the flow and pressure sensors along with an infrared CO2 analyzer, more variables 

of respiratory mechanics are automatically calculated. These provide instant information of 

PEEP, total compliance, inspiratory airway resistance, CO2 partial pressures, CO2 production, 

and airway dead space.32  

Govindarajan and Prakash concisely describe their algorithm for computerized automated 

detection of breath delineation as a form of choreographed dance of checking status of the rise 

and fall of the waveforms for flow and pressure. The beginning of inspiration is noted when flow 

becomes a positive value while the same time the pressure waveform is rising. Start of expiration 
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is defined as when flow waveform begins to fall at the same time pressure begins to drop (see 

figure 2-1).34  

Figure 2-1: Example of breath delineation. As proposed by Govindarajan and Prakash, delineation is marked 
by beginning of inhalation (BOI) or end of exhalation (EOE) and end of inhalation (EOI) or beginning of 
exhalation (BOE).34 

 

Baconnier et al. were able to automatically calculate global PEEP, resistance, elastance, 

and expiratory time constant from ventilator graphics. This is done by detecting one breath based 

on a left zero crossing (LZC) and right zero crossing (RZC) on the flow waveform (figure 2-2).35 

Figure 2-2: Example of breath delineation based on flow waveform alone using right and left zero crossings.  
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Baconnier et al. used every part or aspect, characteristic or distinguishing feature of the 

flow and pressure waveform of the ventilator graphics to calculate global PEEP, resistance, 

elastance, and expiratory time constant. They segmented each breath into three phases; inflation, 

pause, and expiration. The inflation phase occurs when the inspiratory valve starts to open until it 

begins to close, allowing a constant flow for inflation. Elastance is obtained during the inflation 

phase when flow is constant, by calculating the derivative of pressure divided by the value of 

flow. The pause phase is between the beginning of the inspiratory valve closing until the 

beginning of the expiratory valve opening. The immediate pressure drop of the inspiratory valve 

closure is used to calculate resistance by dividing it with the flow value before the valve closes. 

The pressure value during this pause phase is used to calculate global PEEP along with the 

maximum pressure during inflation and the pressure at the left zero crossing. The last phase, 

deflation, starts once the inspiratory valve is closed and the expiratory valve is opened. 

Expiratory time constant is calculated from this phase. 35 

The automated calculations for ventilator mechanics are not without their limitations. For 

example, the global PEEP resulting from the algorithmic method employed by Baconnier et al. is 

valid only for waveforms with constant flow.35 Whereas Govindarajan and Prakash’s method of 

automated detection from ventilator graphics produces only breath delineation, which works 

more robustly for more types of settings including volume control, pressure control, and SIMV. 

34 

So far multiple types of automated detection and calculations to acquire various ventilator 

measurands have been seen. These are reflected in the various ventilator modes with the different 

ways to trigger breaths, deliver, and terminate them.5  
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Some forms of detections of breath trigger (trigger detection) are products of threshold 

based automated detection algorithms that evaluate ventilator pressure, flow, and volume 

waveforms. Breath trigger based on pressure (pressure trigger) starts inspiration via 

computerized algorithm that automatically delivers a breath when a preset pressure value is 

detected at the end of expiration. Flow and volume control, where a preset value is also 

automatically detected for breath trigger can be described the same way. A unique type of breath 

trigger using ventilator graphics without a threshold value would be flow waveform triggering. 

In this situation, the ventilator creates a shadow flow waveform 300 ms after the patient’s flow 

waveform that is offset by 15 L/min. When the shadow and original flow waveform cross each 

other, it would either cycle to expiration, or triggers inspiration. 5,11 

The determination of a breath’s adequacy is based on an automated detection of the 

ventilator’s waveform value. This in turn allows for immediate automatic adjustments to 

maintain preset parameter. For example on a dual control mode, when a breath does not reach a 

preset tidal volume during pressure control the mode would change to volume control to deliver 

the needed volume. Inversely, if a breath does not reach preset pressure value during volume 

control, the mode would change to pressure control to deliver the needed pressure. 5 

 The termination of inspiration, or the trigger of expiration, is controlled by automated 

detection of a preset threshold. This is a very similar threshold method to the one that is used for 

trigger of inspiration. For each pressure, volume, and flow, a preset value would be detected on 

the waveform to switch the breath to an expiratory phase from an inspiratory phase.  

 Ventilator based automated breath event detection is so prevalent today in respiratory 

care that it can easily be taken for granted unless the method of the development of this existing 
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technology is reviewed. The development of ventilator based automated breath detection started 

from trying to figure out how to automatically delineate breaths and evolved into deriving simple 

calculations from the waveforms, like an automatic respiratory rate report, eventually leading to 

more complex endeavors, such as detecting/calculating global PEEP value. Learning what 

different asynchronies look like on ventilator graphics is undergoing the same evolution. 

 In the days of the pneumotachometer, when the ink gave life to paper in terms of the 

sinusoidal waveforms of lung volumes showing tidal volume, what translates as inspiration and 

expiration is learned. As the artificial ventilator evolved, flow and pressure waveforms and how 

to understand them are learned from the outputs that evolved from printed paper to electronic 

graphs. Inspiration and expiration from those waveforms along with the pauses, points, and 

phases in between became distinguishable. No longer sinusoidal, the waveforms took on more 

distinct shapes such as rectangular, ramp, and exponential waveforms. Today, hidden 

information to better respiratory care in terms of detecting asynchronous breaths are embedded 

in these waveforms.  

 Before physicians assign a set tidal volume for a patient, they identify an acceptable 

range. Before respiratory therapists set an applied PEEP, they must know what value of pressure 

would be too much. They know the ranges, the means, the modes, and standard deviations of the 

values that are important in respiratory treatment. In terms of automated detection of trigger 

asynchrony, Chen et al. explored the characteristics of asynchrony to see whether it is feasible to 

automatically detect it using a computer algorithm. Chen et al. familiarized themselves to 

asynchrony characteristics much like physicians and respiratory therapists would do.31  
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 Thille et al. and Nilsestuen and Hargett previously defined ineffective triggering, when a 

patient triggers a breath that is not delivered by the ventilator. This is commonly viewed on the 

ventilator graphics as a convex flow waveform paired with a concave pressure waveform. Using 

this definition, Chen et. al compartmentalized the ineffective trigger data into a form that can be 

used in an algorithm for automated detection.8,10,31 They obtained 14 patients from the ICU who 

were on mechanical ventilator and exhibited ineffective triggering during the expiratory phase. 

They defined ineffective triggering as a drop in airway pressure and/or a change in flow with no 

inspiratory trigger coupled with an esophageal pressure drop of greater than 1 cmH2O. From this 

definition they recorded the deflection values of changes in the waveform of flow and pressure 

that would quantify the ineffective trigger. With 1,831 ineffectively triggered breaths from the 14 

patients, the deflection values for pressure had a mean of 1.91 ± 0.97 cmH20 and for pressure had 

a mean of 13.94 ± 8.0 L/min. 31 

 Chen et al. used the Youden index to optimize the receiver operating characteristics curve 

(ROC). ROC graph is a graph of true positive rates (sensitivity) vs. false positive rates (1 – 

specificity). It is used for selecting classifiers based on performance.36 The Youden index works 

by equally weighing the importance of sensitivity and specificity.37 The index that yields the 

highest value using the following formula yields the optimal condition: 

Youden index = sensitivity + specificity - 1 

They found that the optimal value for detecting ineffective trigger for pressure deflection is 0.45 

cmH2O and for flow deflection 5.45 L/min. These values correspond to a sensitivity of 93.3% 

and a specificity of 92.9%. 31 
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 What Chen et al. effectively demonstrated is that waveform graphics of ineffective 

trigger can be described quantitatively based on the deflection values of the flow and pressure 

waveform. In these quantitative studies, optimum threshold values for detecting ineffective 

trigger are also established. This is not the only way of creating pathways of automatic detection 

of certain features of ventilator graphics. Just as Govindarajan and Prakash along with Klingstedt 

et al. show various ways of automatically obtaining respiratory rates, Younes et al. and 

Mulqueeny et al. show a different way of automatically detecting ineffective trigger. 30,32,34,38  

 Younes et al. created a method for both monitoring and improving breath trigger for 

mechanically ventilated patient that would detect and prevent ineffective trigger. They did this 

by estimating when a patient wanted to trigger a breath by generating a signal representing 

muscle pressure output. A signal was produced in real time using equation of motion depicted as 

follows: 38 

Pmus = F*R + V*E – Paw +PEEP 

In this equation Pmus is muscle pressure output, F is flow, R is passive respiratory resistance, V is 

volume, E is passive respiratory system elastance, and PEEP is positive end-expiratory pressure. 

Psignal is generated to estimate the timing of Pmus, where the magnitude does not have to 

be precise, because Psignal is used to look at trigger effort timing E and R change to become 

coefficients of flow and volume (KF and KV) for the Psignal equation. They are derived from two 

equations of Psignal from two safe points, points a and b, where they are a safe distance away from 

negative flow transients in the expiratory phase of a qualifying breath and are separated by at 

least 40% of the exhaled volume, depicted by the following formulas: 

Psignal(a) = F(a)* KF + V(a)* KV – Paw(a) +PEEP 
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Psignal(b) = F(b)* KF + V(b)* KV – Paw(b) +PEEP 

KF and KV are determined in the immediately preceding 10 qualifying breaths to generate Psignal in 

current breaths. Breath efforts are determined by Psignal and are confirmed with diaphragmatic 

pressure, although the generation of Psignal itself does not require diaphragmatic pressure. The 

automatic monitoring device using Psignal, identifies 80% of ineffective trigger from the ones 

identified via diaphragmatic pressure.38 

 Mulqueeny et al in 2007 created an automated detection for ineffective trigger and double 

triggering. A flowchart of the algorithm is shown in figure 2-3. For ineffective trigger, they 

calculated the first and second derivatives in the expiratory phase of flow to detect the 

deflections that are signature of the convex of flow indicative of ineffective trigger. The first 

derivative of flow, Q’, is used to find a local maximum. It is defined by having Q’i < 0 with 

having Q’i-1 > 0, or when Q’i = 0. The flow at the local maximum is stored as Qa. The algorithm 

loops to establish the local maximum until a decline is detected. A significant decline is noted 

when the second derivate of flow, or Q”, shows a slowing down of the change of flow, denoted 

by Q” = 0 and if the value of Q’ is greater than a negative threshold. The negative threshold is 

determined from α = -1/3 of the standard deviation of Q’ evaluated over a 10 second window. 

The local minimum is then determined by the following condition Q’i > 0 and Q’i-1 < 0. If the 

local minimum occurs less than 500 ms after the local maximum, the local minimum is stored as 

Qb. Otherwise the feature set is not considered to be ineffective trigger.30  
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Figure 2-3: Mulqueeny's flowchart for automated detection of ineffective effort.30 

 

To differentiate between ineffective trigger deflections as oppose to cardiogenic 

oscillations, secretions, leaks, or other noises, a threshold of 0.1 L/s was used so that if the 
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difference between Qa and Qb is less than this, it will be considered noise. Furthermore, a 

minimum time of 100 ms is mandated between each affirmed ineffective trigger. As for double 

triggering, pressure waveform was used to determine this. When a breath cycle occurs less than 

500 ms after another occurs, and when the expired volume is less than 40% of the average 

expired tidal volume of the past five breaths, this breath cycle is considered a double trigger.30 

So far Chen et al., Younes et al. and Mulqueeny et al. have looked at deflections to 

determine trigger asynchrony. Chen et al. used an algorithm on both pressure and flow 

deflections to determine ineffective trigger.31 Mulqueeny et al. uses a set of algorithm on flow 

alone to determine ineffective trigger and a different set of algorithm on pressure to determine 

double triggering.30 Younes et al. looked at the changes of a derived Psignal waveform.38 Shortly 

after this, a 2009 publication of Mulqueeny et al. embarked on a different pathway of solving 

automated detection of ineffective trigger. 39 

 Mulqueeny et al. used Parzen Window Estimation, which is a classifier model for a 

morphologically based feature approach. They took data from 23 patients and had a physician 

determine ineffective trigger and breath demarcation to compare with their classifier model’s 

detection. From these 23 subjects they also extracted features from expiratory flow that 

correspond to normal and asynchronous breaths based on identification by a physician 

specialized in mechanical ventilation. Features from 22 subjects were used to train the classifier 

model. The withheld subject was used to test the features for the classifier. Overall specificity for 

the model was high, 98.7%, but sensitivity was low, 58.7 %. The low sensitivity is speculated to 

be caused from having training data where the mode of pressure support breaths is a common 

occurrence. Pressure support mode ignores normal efforts by patient, preferring timed trigger, 



   

 27 

causing flow swings with no pressure support. The authors excused this classification of 

ineffective trigger since it was not one influenced by intrinsic PEEP.39 

 Gutierrez et al. also came up with a detection method beyond measuring deflections. 

They created the automatic detection of asynchrony by spectral analysis of airflow. The idea 

behind this methodology is that a waveform can be displayed in the time domain, where values 

of airway flow and pressure are presented with dependence to time (as displayed on ventilator 

graphics), or in the frequency domain which partitions the waveforms into the different cyclical 

by their frequency. Smooth waveforms are dense with low frequency signal, whereas the sharp 

turns and changes on waveforms contain high frequency content. The frequency spectrum of the 

waveforms shows as peaks of varying amplitudes at different frequencies. The amplitude shown 

at zero frequency is called the DC value, after that there’s amplitude at first harmonic frequency, 

second harmonic, and so on depending on the frequency content of the signal. Gutierrez et al. 

looked at the frequency spectrum of the expiratory phase of a flow waveform that was calculated 

with the Cooley-Tukey Fast Fourier Transform. Gutierrez et al. used Lorentzian Peak Analysis in 

their algorithm to find the first harmonic peak. A ratio of the amplitudes of first harmonic and the 

DC component of the spectra was calculated. They discovered that a ratio of less than 43% 

represented an asynchrony index greater than 10%. This ratio threshold was the optimum 

detection value that yielded sensitivity and specificity of 83%. The algorithm was tested against 

three trained, blinded observers on 110 adult subjects.40 

 Looking at a different population, Cuvelier et al. developed ineffective trigger automated 

detection for children receiving noninvasive ventilation.41 Based on nonlinear dynamical system 

theory, they traced the trajectory of flow at time t, Q(t), and flow at a delayed time, Q(t + τ). The 
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curve shapes representing flow would be different depending on the patient-ventilator 

interaction. Normal expiratory phase produced larger loops than those of ineffective trigger. The 

tracings were analyzed by an algorithm that detected ineffective trigger from the rate of change 

of flow which corresponded to maximal airway pressure. The use of esophageal pressure was for 

confirmation only by visual observers for the presence of ineffective trigger and not part of the 

algorithm. From 14 subjects, the algorithm was successful in detecting 53 ineffective triggering 

out of 56 that were identified by the visual observers. 

 The most recent ineffective triggering automated detection system came from Blanch et 

al. who used continuous monitoring of airway flow and pressure to compare the expiratory 

phases of regular breaths and ineffective triggering breaths by calculating the deviations between 

the two.42 They developed a software system, BetterCare® , to detect ineffective trigger efforts 

during expiratory phase. Theoretical expiratory flow curves are estimated by the software, where 

no ineffective trigger occurs. These curves are averaged to produce an ideal curve. This ideal 

curve is then compared with a patient’s actual flow curve that has ineffective trigger. Four 

deviations between the ideal and the ineffective effort are weighed and converted into a 

percentage deviation. The authors find that the optimum cutoff percentage deviation is 42%, 

meaning if the level of deviation is equal or greater than that value ineffective effort is detected. 

Comparing the system’s detection to five experts who independently analyzed the breaths, the 

software has a sensitivity of 91.5% and specificity of 91.7%. Comparing the software with 

diaphragm electrical activity, it yields 65.2% sensitivity and 99.3% specificity. 

 The only known publication that claims a working algorithm for automated detection of 

auto-PEEP is by Nguyen and Pastor. This paper bases the concept of auto-PEEP presence due to 



   

 29 

the non-equilibration of flow at end of exhalation, in other words, during an incomplete 

exhalation. The automated detection uses the Signal Norm Testing, SNT, on the flow signal to 

detect said incomplete exhalation. Though the authors have demonstrated the effectiveness of the 

application of SNT to automatically detect incomplete exhalation, they prematurely established 

the relationship between incomplete exhalation and auto-PEEP as being the same. Although they 

are related, they are in fact not the same. The detection that Nguyen and Pastor use and claim to 

be auto-PEEP is being done in flow waveform in flow units, when in fact auto-PEEP is a 

pressure measurand. This effort is to be applauded for being the first of its kind; however the 

authors shouldn’t jump to conclusion that they have in fact detected auto-PEEP. 43 

 It is definitely fascinating to explore all the available methodologies in terms of utilizing 

ventilator waveform to further detect different measurement technique for improved ventilated 

patients. This dissertation will certainly draw conclusions from the past and examine the results 

of others to further its potential. 

Research Objectives 

 In creating an automated detection of auto-PEEP through ventilator graphics for 

mechanically ventilated adults, several specific aims have been developed: 

1. Develop an algorithm for the automatic detection on incomplete exhalation. 

2. Validate the robustness of the algorithm for automated detection of incomplete 

exhalation. 

3. Analyze the relationship between the index of incomplete exhalation with quantitative 

values of auto-PEEP. 
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The approach to fulfill the specific aims was inspired from the literature review.  The first 

specific aim of developing automated detection of incomplete exhalation was fulfilled by 

studying flow and pressure waveform curves of incomplete exhalation just as Baconnier et al. 

and Govindarajan & Prakash developed an automated detection of various ventilator 

measurand.34,35 Statistical tools like the Youden index employed by Chen et al. were used to 

optimize the algorithm that fulfilled the first specific aim.31The second specific aim explored the 

validation of incomplete exhalation automated detection algorithm just as past researchers have 

done validation, such as the validation  Blanch et al. did with BetterCare®.42 Unlike Nguyen and 

Pastor, the third specific aim made the connection between incomplete exhalation and auto-

PEEP presence by comparing incomplete exhalation occurrence and pressure values of auto-

PEEP.43 
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Chapter 3 Auto-PEEP Breath Signal Characteristics and How it is 
Acquired and Modeled 

 
 
 
 

Overview 

 This chapter is a compilation of the technical details pertaining to the acquisition of 

breath signals and preliminary studies of the breath signals toward achieving the dissertation’s 

objective. The hardware and software used in this study will be described including a description 

of the signal characteristics of the breath waveform for both normal and incomplete exhalation 

will be explored both in time and frequency domains. This will result in modeling of the breath 

signals and the development of the automated detection algorithm.  

Signal Characteristics of Incomplete Exhalation 

 Incomplete exhalation (IE) occurs when an exhaled breath is not fully emptied, resulting 

in excess air volume above the normal functional residual capacity. On the flow waveform, this 

can be seen as exhaled breath not returning to its 0 L/min equilibrium (figure 3-1).  

Digital recording of airway flow and pressure waveform from ventilators are pseudo-

periodic signals with respiratory rates ranging from 10 – 30 breaths per minute, yielding a breath 

period of 1.5 – 6 seconds. Frequencies associated with breath signals are mostly in the 0 to 5 Hz 

range. 
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Figure 3-1: Auto-PEEP air trapping 

 

 Incomplete exhalation breaths are embedded in a series of normal, synchronous breath 

signals. Both signals have characteristics in frequency domain and time domain. Figure 3-1 

shows the clear distinction between normal breath and incomplete breath in the time domain. 

 In the frequency domain, signals generated by normal breaths and incompletely exhaled 

breaths are dense in low frequencies. Figure 3-2 shows periodograms of the discrete Fourier 

transform (DFT) using fast Fourier transform (FFT) algorithm via MatLab. The frequency 

spectrum of the bad breath to be detected overlaps with the normal breath. Visual inspection of 

the periodogram reveals no clear distinguisher in frequency content between incomplete and 

normal breath. This shows that detecting IE breaths for auto-PEEP based on frequency domain 

will be challenging. So far, differences between the two types of breath are more obvious in the 

time domain. 

-50

0

50

Fl
ow

 (L
/m

in
) 

time (sec) 

Normal Breath

Incomplete Exhalation

Auto-PEEP air trapping 



   

 33 

Figure 3-2: Periodogram of normal and incomplete exhalation breaths 

 

Ventilator Waveform Acquisition 

 The waveform data were acquired using NICO® cardiopulmonary management system, 

an FDA approved medical monitoring device by Philips Respironics, Carlsbad, CA. Airway flow 

and pressure were measured from inline pressure and airflow sensors of the NICO® device 

connected to the patient ventilator line through medical grade tubing. Continuous analog voltage 

signals corresponding to pressure and flow values from the patient ventilator were sampled at a 

rate of 250 samples per second or every 4 milliseconds and stored on a notebook computer via 

AcqKnowledge® BIOPAC Systems (Goleta, CA) data acquisition system. Frequency content 

from the periodogram shows amplitude tapering off past 20 Hz. Sampling the breath signal at 

250 Hz is well above the assumed Nyquist Rate of 40 Hz. Figure 3-3 shows the data acquisition 

setup. 
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Figure 3-3: Data acquisition setup 

 

 The sensor used to acquire the signal is very much like a Fleisch or Lily type 

pneumotachometer that is made up of a piezoresistive material. A piezoresistive material is an 

electrical resistor that changes its resistance due to stress, strain, and/or deformation. 

Piezoresistive materials are known to be used for pressure and flow sensors. 44-46 The most 

common method of acquiring voltage signals from piezoresistor is with a Wheatstone bridge 

circuit, shown in figure 3-4.47 
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Figure 3-4: Wheatstone bridge circuit 

 

Where 

 Rs = R + ∆R 

and 

 Vout = � −∆𝑅
2𝑅+ ∆𝑅

� Vin 

The pneumotachometer from the NICO® monitor converts air pressure and air flow 

derived from the pressure into an electrical signal. The electrical signal is then fed into the 

BIOPAC system. If the signal is too noisy, an intermediate low-pass filter can be used between 

the NICO®’s output and the input to the BIOPAC system. Figure 3-5 shows a circuit schematic 

for a passive 1st order low pass filter. 

Figure 3-5: Passive low-pass filter 

 



   

 36 

Where the cutoff frequency fc is determined as follows: 

 𝑓𝑐 =  1
2𝜋𝑅𝐶

 

 After the BIOPAC receives inputs from the NICO® device, they are displayed through 

the AcqKnowledgeTM software. The NICO®’s manual provides the specification for flow and 

pressure as follows: airway flow has a range of –125 L/min to 125 L/min at a conversion ratio of 

4 mV per L/min, and airway pressure has a range of – 20 cmH2O to 105 cmH2O at a ratio of 8 

mV per cmH2O. Assuming linearity, conversion from voltage to units of ventilator measurand, 

the following conversion equations can be used to convert flow and pressure back into L/min and 

cmH2O 

𝐹𝑙𝑜𝑤𝐿/𝑚𝑖𝑛 = 250𝐹𝑙𝑜𝑤𝑉 − 125 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑐𝑚𝐻2𝑂 = 125𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑉 − 20 

To adjust for the changes in gain, G, the following set of equations can be used: 

𝐹𝑙𝑜𝑤𝐿/𝑚𝑖𝑛 =
250𝐹𝑙𝑜𝑤𝑉

𝐺
− 125 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑐𝑚𝐻2𝑂 =
125𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑉

𝐺
− 20 

 After the storage and conversion of the voltage signal into the proper units they originally 

reflect, certain oscillatory noises still made through that did not reflect the original signal as first 

reported by Baconnier et al.35 To further refine the data a digital infinite impulse response (IIR) 

low-pass filter with a cutoff frequency of 5 Hz were applied to each input via a function provided 

by the AcqKnowledgeTM program.  

 For determining the auto-PEEP values, expiratory hold maneuver is the best option being 

that it is readily available, fairly reliable, and does not impose extra invasive procedures. In this 
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method end-expiratory occlusion is applied allowing equilibration of alveolar and airway 

pressure. The static auto-PEEP is measured by subtracting the applied PEEP (or previous airway 

pressure before occlusion) from the total PEEP (or the airway pressure at end-expiratory 

occlusion).4,12,14,48 The Puritan Bennet 840 mechanical ventilator was the most commonly used 

ventilator in the Virginia Commonwealth University Health System’s Intensive Care Units 

where data were collected. This ventilator has a button for expiratory hold maneuver that result 

in the display of the output value of intrinsic PEEP (auto-PEEP) and the total PEEP. Figure 3-6 

shows the chart of data acquisition. 

Figure 3-6. Chart of Data Acquisition 

 

Modeling Ventilator Waveform Breaths 

Signal estimation has been used to isolate the signal that is desired to be detected. The 

reason for this is if a signal can be estimated, then the estimation, or model, can be used as 

template for detection.  



   

 38 

Respiratory experts observe waveforms of breath signal in the time domain to identify 

breaths that are not normal. Partitioning the signal into trigger, target, and termination identifies 

incomplete breaths from normal breaths, depending on the region of origin (see figure 1-3).7 

From the published literature, normal breaths and incompletely exhaled breaths are 

distinguishable based on incomplete exhalation breath not reaching equilibrium at the trigger 

region (see figure 3-1).12,14,18  

The combination of trigger, target, and termination, along with a priori information about 

the breath signal forms the basis for time-domain modeling as depicted in figure 3-7. 

Figure 3-7: Flowchart for the process of modeling synchronous and asynchronous or auto-PEEP breaths 
based on time-domain signal characteristics 
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In ventilated patients, parts of their flow waveform resemble sawtooth-like waveform 

characteristics, which can be combined as a base model. Inhalation waveform (trigger and target) 

usually appears as a sharp intake of breath, which then decelerates, resembling the inverse 

sawtooth signal. The exhalation waveform (termination) appears as a fast breath exit that also 

decelerates, resembling a sawtooth signal. Both signals combined to represent one breath period 

consisting of an inhalation and an exhalation. They are then filtered through a low pass filter to 

attenuate the sharp characteristics. Breath models to depict any incomplete exhalation, auto-

PEEP, and trigger asynchrony, would have those characteristics added to the modified saw-tooth 

signal before filtering. The resulting model as well as the original signal is shown in figure 3-8. 

Figure 3-8: Excerpt of original signal (top) and its model (bottom) based on characteristics visible in the time 
domain 

 

In terms of frequency domain-based modeling, parametric power spectral density (PSD) 

estimation is a popular method for estimating signals with a priori characteristics like breath 

waveforms. Since ventilator graphics are pseudo-periodic signals that are considered to be 
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composed of sinusoidal harmonics, use of a complex sinusoidal parametric PSD estimator rather 

than autoregressive (AR), moving average (MA), or autoregressive moving average (ARMA) 

parametric PSD estimator is appropriate. Pisarenko harmonic decomposition, as a complex 

sinusoidal parametric PSD estimator was employed in an attempt to model the signal. The 

Pisarenko method works by using the harmonic decomposition of an assumed signal x(n) 

consisting of p complex exponentials (harmonics) in the presence of white noise. It estimates an 

autocorrelation matrix R of dimension (p+1) by (p+1) and evaluates the minimum eigenvalue, λ, 

of R and its eigenvector v. The resulting frequencies are the minima of the discrete-time Fourier 

transform, DTFT(v). Equations relating to Pisarenko harmonic decomposition are presented as 

follows: 

The overall equation for the power density: 
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Figure 3-9: Pisarenko estimation of a set of breathing cycles involving good and bad breaths with the top 
model having 5 harmonics and the bottom having 150 harmonics 

 
 

From MatLab’s pisar.m function, the airway flow waveform is estimated, and the 

models are presented in figure 3-9. For the purposes of detecting incomplete exhalation, 

modeling using Pisarenko estimation is unreliable. When p = 5 harmonic compositions were 

assigned to the Pisarenko estimation, the resulting signal only resembled a sinusoidal waveform. 

When p = 150 harmonic compositions were assigned to the Pisarenko estimation, it closely 

modeled the original signal, but all of the characteristics that would distinguish abnormal breaths 

from normal breaths from the original signal had been lost. The trend of increasing harmonic 

compositions shows when larger p is assigned then more breath attributions would appear in the 

model, but the model is still inadequate for differentiating bad and good breath signal for the 

purpose of detecting incomplete exhalation or auto-PEEP. Furthermore, even if higher harmonic 
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composition would achieve this differentiation, assigning higher magnitudes of harmonics for the 

modeling and detection is computationally inefficient and consumes more processing time.  

Modeling in the time domain, allows better differentiation between normal breaths and 

incomplete exhalation breaths. This is accomplished by applying an understanding of the basic 

characteristics of mechanical ventilator breaths consisting of trigger, target, and termination, as 

well as the characteristics of bad breaths during incomplete exhalation that leads to auto-PEEP. 

The logic in creating this model will be used to develop the algorithm for automated detection of 

incomplete exhalation. Although Pisarenko estimation was not completely successful for 

incomplete exhalation detection, it is not the end of the road for using frequency domain-based 

incomplete exhalation detection. Gutierrez et al. successfully used frequency domain analysis to 

automatically detect trigger asynchrony.40 

Summary 

 This chapter has presented incomplete exhalation’s signal characteristics and how they 

relate to auto-PEEP. It also explored incomplete exhalation’s signal modeling and acquisition as 

well as acquiring auto-PEEP values via expiratory hold. Information that is important to develop 

research to create an automated detection of auto-PEEP via automatically detecting incomplete 

exhalation. The next three chapters will describe the technical description of the signal 

acquisition for acquiring data, the logic behind the signal characteristic and modeling for 

developing the algorithm of automated detection.  

 



 

 43 

 

 

Chapter 4 Development of an Algorithm for Automated Detection of 
Incomplete Exhalation Events of Mechanically Ventilated Adults 

 
 
 
 

Introduction/ Background 

Adults on conventional, positive pressure-based, mechanical ventilators can experience 

incomplete exhalation. Which if undetected can lead to auto-PEEP. Auto-PEEP may cause harm 

to the mechanically ventilated resulting in increased work of breathing, poor gas exchange, 

compromised hemodynamics, cardiac electromechanical dissociation, increased administration 

of vasopressor and sedatives, and prolonged mechanical ventilation treatment. Having an 

automated system for detection of incomplete exhalation can minimize the likelihood of auto-

PEEP and the potential harm to the patient. 12-14,21,24,25,29,49 

Incomplete exhalation is identified when the airway flow fails to reach a flow rate of 0 

L/min before a new breath is initiated. While the current method to detect incomplete exhalation 

is based on visual detection of the graphical waveform display, an algorithm will be developed to 

detect incomplete exhalation during the breath cycle.12,14,18 

To identify when incomplete exhalation has occur, the automated detection process must 

first identify the starting point of a new breath. Once this is established, the automated detection 

algorithm then reads whether the value of flow is less than 0 L/min. If flow is less than zero, then 

incomplete exhalation is identified, if not, exhalation is complete. 
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Method 

Examination of the Incomplete Exhalation Characteristics 

Before starting the algorithm design, examples during incompletely exhaled breaths were 

examined at the onset of inhalation. Onset of inhalation is generally marked by a sharp slope 

increase with an obvious turn angle from the exhaled line. During a normal breath with complete 

exhalation, this sharp turn would occur at 0 L/min when onset of inhalation occurs after 

exhalation has properly ceases (see figure 4-1). Incomplete exhalation breath is marked by an 

onset of inhalation of similar sharp slope increase but the turn angle occurring below 0 L/min 

(see figure 4-2). However, the turn angle is not always sharp and obvious (see figure 4-3). 

Figure 4-1. Breaths with complete exhalation 
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Figure 4-2: Breaths with incomplete exhalation 

 

Figure 4-3: Breaths with ambiguous incomplete exhalation 

 

A total of 203 examples of incomplete exhalation were found among 22 subjects who 

participated in an IRB approved (Virginia Commonwealth University IRB # HM 10466) 

Sedation and Ventilation Effects (SAVE) study (NIH R01 NR009506, M.J. Grap, PI).50 

Ventilator waveform data were obtained from the flow sensor of a NICO® cardiopulmonary 

management system, an FDA approved medical monitoring device manufactured by Philips 

Respironics (Carlsbad, CA). The flow sensor tube is attached to the subjects’ ventilator airway 

tube with the NICO® outputting electrical signal ventilator waveform from an analog output port 

which then sampled at 250 Hz through AcqKnowledge® BIOPAC Systems (Goleta, CA) data 
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acquisition system then stored into a PC. The data were examined for the following 3 values: 

time difference, ∆T, from the onset inhalation turn angle to the 0 L/min mark, slope of change of 

flow over ∆T , and value of flow during onset inhalation, Foi (see figure 4-4). The time 

difference, ∆T, had an average of 0.113 s, a minimum of 0.024 s, and a maximum of 0.320 s. 

Slope had an average value of 159 L/min/s, a minimum value of 34 L/min/s and, and a maximum 

value of 434 L/min/s. Foi  had an average value of -15 L/min, a minimum of -38 L/min, and a 

maximum of -3 L/min. These measures will be used to provide a basis for development of the 

detection algorithm. 

Figure 4-4: Depiction of Foi , ∆T, and slope 

 

The Algorithm Design 

There are three main parts to the incomplete exhalation detection algorithm. The primary 

part is to identify the onset of inhalation. The second part is to prevent double triggering as part 

of incomplete exhalation. The final and third part is to use inspiration from pressure waveform to 

prevent ineffective trigger to be identified as onset of inhalation.  

The onset of inhalation algorithm identifies when a new breath starts. Since inhalation 

happens when there is an intake of air flow, this is indicated by the positive flow direction. In 
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contrast, exhalation has negative flow direction. It is logical then to say if a positive flow occurs 

after a negative exhalation flow, a new breath has started. ∆T is used as a distance barrier 

between past and present events. If the past flow value is negative, and the present flow value, 

which is ∆T seconds away, is positive, then onset of inhalation have occurred.  

if flow(t) <= 1 && flow(t+∆T) > 1 

  OnsetInhalation = t; 

end 

Note that to further distinguish the onset of inhalation 1 L/min is used instead of 0 L/min to 

denote onset of inhalation because 0 L/min has no quantitative breath flow for inhalation. 

 Incomplete exhalation detection would occur during onset of inhalation detection, given 

the sharp turn of slope increase indicative of a new breath happening during negative flow value. 

This algorithm is written as thus: 

 slope = (flow(t+∆T) - flow(t))/ ∆T; 

 if slope > slopethreshold && flow(t) <= Foi 

  IncompleteExhalation = t; 

end 

Here the variable slope threshold is introduced which is not yet defined. Also not defined by a 

value is the variable Foi. Foi , slope threshold, and ∆T remain as variables in the algorithm 

because the value assigned to them fell in the range based on the examination of the incomplete 

exhalation characteristics. Some values will be highly sensitive to detect incomplete exhalation 

that it would yield many false positive presence of incomplete exhalation and other values will 

be so restrictive and would yield false negative presence of incomplete exhalation. 
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Determination of the most optimum value for Foi , slope threshold and ∆T will be attained 

through analysis of the receiver operating characteristic (ROC) curve. 

Double triggering is noted on flow or pressure graphs as a breath followed shortly by 

another breath, where the time between them is very short, less than half the expected expiratory 

time (see figure 4-5).8,30,51 The algorithm takes the average breath period for the last 5 breaths to 

determine expected expiratory time. If the current onset of inhalation breath fulfills the criteria of 

double triggering, it will not be considered for incomplete exhalation detection.  

 if (t-OnsetInhalation) > 0.5*meanLast5BrthPeriod 

  if slope > slopethreshold && flow(t) <= -1 

   IncompleteExhalation = t; 

end 

end 

Figure 4-5: Example of double triggering 

 

Ineffective trigger occurs when a ventilated patient initiates a breath trigger but the 

ventilator did not deliver the breath. This is shown on the waveform as a convex bump on the 

flow waveform usually accompanied by a concave dip on the pressure waveform (see figure 4-

6).8,30,31,52 Not wanting the detection algorithm to consider the ineffective trigger for incomplete 

exhalation the pressure waveform is used as an inhalation marker. Only incomplete exhalation 

Double triggering 
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that occurs with a typical pressure waveform would be confirmed as a detection of incomplete 

exhalation.  

 if match(IncompleteExhalation, InhalationMarker) = 1 

  IEDetect = IncompleteExhalation; 

End 

Figure 4-6: Example of ineffective trigger 

  

A summary of how the algorithm works, is shown in figure 4-7 and it depicts how the 

four codes discussed above relates to flow and pressure waveform.  
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Figure 4-7: Flowchart of algorithm 

 

Testing the Algorithm 

Out of 60 subjects from the SAVE study that were not involved in the examination of the 

incomplete exhalation characteristics, 13 were identified to have had at least one breath that 

exhibited incomplete exhalation characteristics by an observer during a sample of two minutes. 

These two minute samples of 13 subjects were not used as part of the incomplete exhalation 

characteristics examination to develop the algorithm. However, they were used to test the 

algorithm and identify optimum variable values for slope threshold and ∆T.  
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Table 4-1: Values of parameters used for classifier 

Foi (L/min) ∆T (s) slope threshold (L-s/min) 
0 0.025 30 

-1 0.050 60 
-2 0.075 90 
-3 0.100 120 
-4 0.125 150 
-5 0.150 180 
-6 0.175 210 

 0.200 240 
 0.225 270 
 0.250 300 

 0.275 330 
 0.300 360 
 0.325 390 
  420 
  450 
 

Three observers identifying incomplete exhalation from the data samples were used to 

test the algorithm detection. The three observers have expertise in mechanical ventilator 

waveform. The three observers were comprised of a critical care physician, a nursing educator 

experienced with ventilated patients, and a biomedical engineer specializing in ventilator 

waveform analysis. All three observers performed independent examination of waveform data 

for detection of incomplete exhalation. All three independently detected incomplete exhalation 

for the two minute data sets for each of the 13 subjects. Fleiss Kappa statistical measure was 

used to assess the inter-rater agreement, which is a modified version of Cohen’s Kappa that can 

be used for more than two observers.53,54 The incomplete exhalation events that were not initially 

agreed upon were given forced agreement unanimously by the three observers post independent 

detection. This agreed upon data therefore became the golden standard for testing the algorithm.  

Table 4-1 shows the parameter values of five different Foi, thirteen different ∆T, and fifteen 

different slope thresholds. These values are within the range described in the “Examination of the 
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Incomplete Exhalation Characteristics” section and yielded 1365 discrete classifier points on a 

Receiver Operating Characteristics (ROC) curve. 

Optimizing the Algorithm 

A Youden index was used to find the set variables values that would optimize the 

algorithm’s output by weighing sensitivity and specificity equally.37 The Youden index finds the 

point on the ROC curve closest to the (0,1) point that satisfies the following: 

 max[Sensitivity(c) +  Specificity(c) – 1] 

Where c corresponds to the point on the ROC curve and max means the “maximum of.” 

Results 

Fleiss kappa index from the three observers yielded 0.81 for agreement. 

The discrete ROC curve shows the overall result of the mean values of sensitivity and 

specificity across the subjects for the 1365 classifier points (figure 4-8). The maximum value of 

the Youden index of 0.75 yielded a sensitivity of 0.91 and specificity of  0.84 and occur when 

results are set to Foi = -3 L/min, ∆T = 0.2 s, and slope threshold = 90 L-s/min. 

Youden values for Foi parameters 0,-1,-5,and -6 L/min never reaches 0.7. Only Foi values 

-2, -3, and -4 L/min yield Youden index values higher than 0.7. 
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Figure 4-8: ROC graph. Large point represents the optimal point based on Youden index. 

 

Figure 4-9: Contour plot for Youden values with Foi = -2 
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Figure 4-10: Contour plot for Youden values with Foi = -3 

  
Figure 4-11: Contour plot for Youden values with Foi = -4 
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Figure 4-12: Incomplete exhalation detection with algorithm setting Foi = -3, ∆T = 0.2, and slope threshold = 
90 

 

Discussion/ Conclusion 

 The high value of the Fleiss kappa index (0.81) validates strong agreement between the 

three observers in terms of identifying  incomplete exhalation during their independent analysis. 

Any breath that were not agreed upon were discussed by all observers during a joint 

identification session. The breath identifications from the joint session were used to test the 

algorithm and the results are given by the ROC curve. The ROC curve shows that the algorithm 

performs better than random chance.36 The clusters of points closest to (0,1) point represents the 

best performance of the algorithm in detecting incomplete exhalation when compared to 

observer’s detection. As stated in the results, the maximum value of the Youden index yielded a 
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sensitivity of 0.91 and specificity of  0.84 corresponding to parameter values Foi = -3 L/min, ∆T 

= 0.2 s, and slope threshold = 90  L-s/min. The sensitivity values shows a true positive rate of  91 

% and a false positive rate of 16 %. This results in an accuracy of 0.89 and precision of 0.88. 

Given these values, it is acceptable to use these parameter as default values for the algorithm.  

 Figures 4-9 to 4-11 shows contour plots of the Youden values which give a 

comprehensive view of the contribution of each parameter to the peak of the Youden index 

value. The Youden index contour plots when Foi is set to -2, -3, and -4 L/min are shown because 

they yielded higher Youden plateau (reaching 0.7). The contour plots shows Youden index 

values plateuing on the middle range of ∆T and the lower range of slope threshold. These ranges 

for Foi, ∆T, and slope threshold contributed towards the peak of the Youden index. Though there 

are no other plateau reaching Youden index of 0.7, there is a hint of a second plateau emerging 

when looking at contour plots set to Foi = -3 (figure 4-10) and -4 L/min (figure 4-11). This 

second plateau corresponds to lower values of slope threshold and lower values of ∆T. This 

suggests that the area has the potential to yield high sensitivity and specificity. The idea for the 

automated detection algorithm is to have a default parameter setting that can be adjusted within a 

range. These contour plots can serve as starting point of where that range should lie. Anywhere 

near the 0.7 plateau is a start.  

Figure 4-12 shows the amount of breaths classified as true positive, true negative, false 

positive, or false negative from the two minute ventilator breath data when the optimum 

algorithm setting is used. The results show acceptable distribution of true positive and true 

negative values for the optimum setting. The algorithm was tested against observers and yielded 
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high sensitivity and specificity with optimum parameter values.  This automated detection of 

incomplete exhalation using this algorithmic method shows much promise for future clinical use. 

There are several limitations to this study that need to be addressed and should be the 

focus of future work. The data that was used to develop the algorithm was generously provided 

from another study focusing on mechanical ventilation effects but with no focus on detecting 

incomplete exhalation or auto-PEEP. As a result, many of the breaths were not easily categorized 

as either incomplete exhalation or not (i.e. yes or no). The observers raised concerns that some of 

the breaths were difficult to categorize in a binary fashion between yes for incomplete exhalation 

or no incomplete exhalation. In addition, the complete absence of auto-PEEP values is also a 

limitation. There is no way to confirm whether high occurrences of incomplete exhalation yield 

positive presence of auto-PEEP. One way to address this limitation is to conduct a study with 

new data sets with the specific focus on looking at incomplete exhalation detection and its link to 

auto-PEEP. Testing the performance of the algorithm with a new data set provides an 

opportunity to confirm or deny the robustness of the algorithm. Coupling the data with 

quantitative auto-PEEP values will provide insights about the relationship between the two. 
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Chapter 5 Testing the Robustness of Incomplete Exhalation 
Automated Detection Algorithm for Validation by Introducing Novel 

Data 
 
 
 
 

Introduction/Background 

 Occult positive-end expiratory pressure (PEEP), also known as intrinsic PEEP (PEEPi) 

and auto-PEEP, is a condition that occurs when excessive air-pressure is present in the lungs at 

the end of expiration. For patients who are sedated on invasive mechanical ventilators, the 

presence of auto-PEEP could go unnoticed and result in severe consequences. Such as 

barotrauma, low cardiac output, hypotension, excessive sedation, cardiac electromechanical 

dissociation, and death. 12-14,21,24,25,29,49 

 Fortunately, there are noninvasive ways to indicate the presence of auto-PEEP. From the 

mechanical ventilator waveform, examples of recurring incomplete exhalation have been noted 

as an indicator of auto-PEEP. 12,14,18 Unfortunately, the current method to detect this is by visual 

inspection by those with the knowledge of ventilator graphics. Such personnel are very few and 

certainly cannot monitor all patients all the time. An automated detection algorithm would be the 

better choice of monitor and detection of incomplete exhalation.  In the previous chapter, an 

algorithm-based automated detection for incomplete exhalation was developed and tested for 

optimal parameter setting. This chapter tests the algorithm’s robustness with novel data to 

determine whether there is any significant change in the performance of the algorithm. 



   

 59 

Method 

 Virginia Commonwealth University (VCU) Institutional Review Board (IRB) approved a 

biomedical research study involving human subjects for the validation of incomplete exhalation 

automatic detection algorithm (IRB # HM 13962). Data collection conducted over a year 

enrolled 15 subjects from VCU Health System’s (VCUHS) Medical Respiratory Intensive Care 

Unit (MRICU). Informed consents were obtained from the legally authorized representative of 

the ventilated and sedated adult patients of VCUHS’s MRICU prior to subject enrollment and 

data collection. Prior to recruitment, potential subjects were screened for the following inclusion 

criteria: sedated and intubated on mechanical ventilation (excluding tracheal intubation with a 

collar), exhibition of incomplete exhalation of alveolar gas via ventilator graphics identification 

as defined by published works of non-zeroing of flow prior to new breath, and the presence of 

any known risk factors such as asthma, chronic obstructive pulmonary disease (COPD), or acute 

respiratory distress syndrome (ARDS). 12,14,18 Table 5-1 shows the subject demographic 

including age, gender, race, reason for ICU admission, ventilator setting, and Sequential Organ 

Failure Assessment (SOFA) score during the time of data collection. 

 Each subject’s airway flow and pressure waveform were recorded up to 90 minutes via 

the NICO® cardiopulmonary management system, an FDA approved medical monitoring device 

by Philips Respironics, Carlsbad, CA. Airway flow and pressure were measured from inline 

pressure and airflow sensors of the NICO® device connected to the patient ventilator line through 

medical grade tubing. Continuous analog voltage signals that corresponded to pressure and flow 

values from the patient ventilator were sampled at a rate of 250 samples per second or every 4 
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milliseconds and stored on a notebook computer via the AcqKnowledge® BIOPAC Systems data 

acquisition system (BIOPAC Systems, Inc., Goleta, CA). 

Table 5-1: Subject Demographic Novel Data 

AA = African American, W- White, A/C = Assist/Control, SIMV = Synchronized Intermittent Mandatory 
Ventilation 

Subject 
Number Age Gender Race Reason for ICU Admission 

Ventilator 
setting 

SOFA 
score 

1 59 F AA Unresponsive with low O2  A/C  10 
2 27 F W Tylenol toxicity with hepatic injury SIMV 15 
3 54 F W Respiratory failure A/C  6 
4 57 M W Shortness of Breath SIMV 12 
5 62 M W Fever and sepsis Spontaneous 5 
6 50 M W Asthma exacerbation A/C  6 
7 46 F AA Asthma exacerbation A/C  9 
9 59 F W Fever and rash A/C 9 

10 63 M W Chronic obstructive pulmonary disease A/C 4 
11 48 M W Acute respiratory failure A/C  13 
12 54 F Asian Liver failure Spontaneous 10 
13 28 M AA Pleural effusion and chronic respiratory 

failure 
BiLevel 7 

14 54 F W Graft vs host disease, cunninghamella 
pneumania, & respiratory distress 

A/C 4 

15 59 M AA Shortness of breath and atrial fibrillation A/C 8 
16 60 M W Ascites A/C 7 

  

 Once data was collected, two minute samples of each subject’s ventilator graphics were 

presented to three observers for incomplete exhalation detection. The three observers have 

expertise in mechanical ventilator waveform. The first is a critical care physician, the second  is a 

nursing educator with experience in ventilated patients, and the last is a biomedical engineer who 

specializes in ventilator waveform analysis. All three observers performed independent detection 

of incomplete exhalation. Fleiss Kappa statistical measure was used to quantify the inter-rater 

agreement, a modified version of Cohen’s Kappa.53,54 The incomplete exhalation events that 

were not initially agreed upon were given forced agreement unanimously by the three observers 
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post independent detection. The unanimous detection data are then used to validate the 

algorithm. 

 To look at whether there were significant difference in performance, the algorithm used 

the default parameter as follows: Foi = -3 L/min, ∆T = 0.2 s, and slope threshold = 90 L-s/min. 

Foi is the value of flow at the onset of inhalation. ∆T is the time difference between onset 

inhalation to the 0 L/min mark. Slope threshold is set for the slope of change of flow over ∆T. 

This default parameter came from an optimization from the highest Youden index from the old 

data that yielded sensitivity of 0.91 and specificity of 0.84. Data sets of both the old study 

population versus the novel population were compared for their true and false positive rates. 

Equal variance tests were performed and their subsequent results were used to perform a two-

tailed t-test between the two population to determine whether there were any significant 

difference in the algorithm’s performance for the two populations. 

Results 

Fleiss kappa index from the three observers yielded 0.88 for agreement. 

Discrete ROC curve from novel data showed the overall result of the mean values of 

sensitivity and specificity across the subjects for the 1365 classifier points (figure 5-2). The 

default parameter yielded Youden index of 0.70 with sensitivity of 0.97 and specificity of 0.72 

for the novel data.  

Results from testing the algorithm with the default parameters yielded equal variance for 

true positive rate (TPR) values according to Brown-Forsythe test (p –value = 0.1408). A 

subsequent two tailed t-test assuming equal variances showed no significant difference (t = 1.5, 
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df = 12.402, p-value = 0.1408) for the algorithm’s true positive rates between the old subjects 

data and the novel subjects data (see table 5-2).  

Results from testing the algorithm with default parameter on both data sets yielded 

unequal variance for false positive rate (FPR) values according to Brown-Forsythe test (p –value 

= 0.0398). Subsequent two tailed t-test assuming unequal variances showed no significant 

difference (t = 1.9, df = 16.765, p-value = 0.0725) for the algorithm’s false positive rates between 

the old subjects data and the novel subjects data (see table 5-2). 

Table 5-2: Comparing Novel and Old Data 

    
TPR 

  
FPR   

Parameter Foi ∆T 
slope 

threshold Novel Old 
t-test  

p-value  Novel Old 
t-test  

p-value  
Default/  
Old max Youden -3 0.2 90 0.97 0.91 0.1408 0.28 0.16 0.0725 
Novel max Youden -2 0.025 150 0.93  

 
0.08 

   

The novel data’s maximum Youden index yielded a different parameter set from the 

default parameter set. Youden index value for novel data is 0.85 at sensitivity of 0.93 and 

specificity of 0.91. Which yielded parameter settings of Foi = -2 L/min,  ∆T = 0.025 s, and slope 

threshold = 150 L-s/min. 
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Figure 5-1: ROC graph of old data. The large O represents the point with highest Youden index for old data 
resulting from inputting default optimum parameter set. 

 
Figure 5-2: ROC graph of novel data. The large O represents the point resulting from inputting default 
optimum parameter set from the old data. The large diamond (◊) represents the point with highest Youden 
index for novel data. 
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Figure 5-3: Old data’s Youden index contour plot 
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Figure 5-4: Novel data’s Youden index contour plot 
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Figure 5-5: Novel data incomplete exhalation detection with algorithm setting Foi = -3, ∆T = 0.2, and slope 
threshold = 90 

Discussion/ Conclusion 

 The purpose of testing the algorithm with the default parameters on the novel data was to 

see whether the performance of the algorithm changed for a new set of data. Two tailed t-tests 

for both true positive rates and false positive rates mathematically showed that the algorithm’s 

performance was not statistically different. Although the p-values were not high, the novel data 

did show a higher sensitivity value (0.97) than the old data (0.91). The novel data’s specificity is 

acceptable (0.72) given that the novel data yielded high accuracy of 0.93 and high precision of 
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0.84. These numbers support the t-tests’ results that the algorithm’s performance was not 

significantly different between the two populations.   

The novel data yielded a different maximum Youden index point than the old data, but 

this was to be expected since the novel data were made up of completely different subjects (see 

figures 5-1 and 5-2). The fact that the algorithm’s default parameter did not yield statistically 

different performance between the old and novel data outweighs the concern of the novel data 

having a different maximum Youden index. It is conclusive that evidence points toward the 

algorithm’s robust performance. Furthermore, the validation of the functionality of the algorithm 

to automatically detect incomplete exhalation is present because the algorithm’s default setting 

yielded high accuracy and precision values for a set of untested, novel data.  

 In the previous chapter, one of the limitations of the study pointed towards grey 

categories of incomplete exhalation as expressed by the observers. Such complaints were not as 

prevalent for the novel data, and the higher Fleiss Kappa value (old = 0.81versus novel = 0.88) 

supports this notion. This is due to the fact that the novel data were screened for the positive 

presence of incomplete exhalation, whereas the old data was not. The changes in the Youden 

plateau between the old and novel data were presented in figures 5-3 and 5-4. The Youden 

plateau moved from the middle ∆T range to the lower ∆T range. Definitive incomplete 

exhalation detection by observers had shorter ∆T, due to a higher slope, when compared against 

ambiguous incomplete exhalation. Interestingly enough, the old data contour plot showed an 

emerging second plateau right around the area of the novel data’s plateau. This suggested that 

within the old data set, incomplete exhalations with short ∆T were present indicating 

unambiguous incomplete exhalation. Figure 5-5 showed true positive, true negative, false                                                                                                                                                                                                                                                                        
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positive, and false negative resulted from testing the algorithm’s default parameter for each 

subject. Note that subjects 5 and 12 actually had no incomplete exhalation even though they were 

screened to have them. This is because both subjects’ ventilator settings were changed 

immediately before data collection that eliminated instances of incomplete exhalation.  

 It is reasonable to pick ranges for the default setting parameters based on the contour 

plots of both data sets. Foi will be between -2 and -3 L/min. Slope thresholds will be between 80 

and 160 L-s/min. ∆T will have the widest range from 0.025 to 0.225 s.  The range for ∆T could 

be narrower if there is a consensus from respiratory healthcare providers as to the definite 

boundaries for incomplete exhalation detection. This can be achieved by recruiting more 

qualified observers to rate various incomplete exhalation waveforms and deliberate on their 

decisions. 

 Ultimately, the dissertation objective is to establish an automated detection algorithm of 

auto-PEEP. Now that there is a detection algorithm established for incomplete exhalation, the 

next task to quantitatively link between frequencies of incomplete exhalation (index) with 

pressure values of auto-PEEP. How many incomplete exhalations need to occur before auto-

PEEP is significantly present? Would using an index of 50% of a person’s breaths in a minute 

enough for auto-PEEP to emerge? Or would the index have to be 60%, 70%, or 80%? These are 

the questions that can be answered by collecting auto-PEEP values in tandem with incomplete 

exhalation detection.   
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Chapter 6 Analyzing Relationship of Incomplete Exhalation with 
Auto-PEEP 

 
 
 
 

Introduction/ Background 

 Auto-PEEP, short for auto positive end-expiratory pressure, is an excessive pressure in 

the alveolar lungs. This auto-PEEP, also known as intrinsic PEEP (PEEPi), is caused by an 

accumulation of an air volume that is trapped by incomplete exhalation (IE) at the end of a 

breath. Air which is not allowed to exit can lead to excessive pressure. For those who are on 

mechanical ventilation, the lingering effect of this excessive pressure, or auto-PEEP, can cause 

increased work of breathing, failure to wean from mechanical ventilator, worsening of alveolar 

gas exchange, hemodynamic compromise, hypotension, inappropriate treatment, cardiac 

electromechanical dissociation, and even death. Hence it is important to be able to detect it 

quickly and change the mechanical ventilator treatment of the patient to avoid any of these 

adverse effects.  12-14,21,24,25,29,49 

 Previous chapters have involved the description and validation of an algorithm for 

automatically detecting the incomplete exhalation that contributes to auto-PEEP. This chapter 

further investigates the quantitative relationship between the rates of occurrence of incomplete 

exhalation with the auto-PEEP values that are present. The algorithm developed for automated 

incomplete exhalation detection will be used to sweep through the waveform data for any 

incomplete exhalation and calculate the percentage of it occurring every minute (index). 
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Method 

 Data from 13 subjects were collected from the patients of Virginia Commonwealth 

University Health System (VCUHS) Medical Respiratory Intensive Care Unit (MRICU). Human 

subject research was approved by VCU Institutional Review Board (IRB # HM 13962), and 

consents were obtained from subjects’ legally authorized representatives given the sedated 

condition of the subjects. Inclusion criteria for subject enrollment were adult patients who were 

sedated and intubated with mechanical ventilators, not including tracheal intubation with a collar. 

Further, ventilators must be in a setting where expiratory hold maneuver was allowed to take 

place. This excluded spontaneous setting. Additional inclusion criteria included patients with any 

known risk factors for developing auto-PEEP such as asthma, chronic obstructive pulmonary 

disease (COPD), or acute respiratory distress syndrome (ARDS). 12,14,18 Table 6-1 shows the 

subject demographic including age, gender, race, reason for ICU admission, ventilator setting, 

and Sequential Organ Failure Assessment (SOFA) score during the time of data collection. 

 For each participating subject the airway flow and pressure waveform were recorded up 

to 90 minutes using NICO® cardiopulmonary management system, an FDA approved medical 

monitoring device by Philips Respironics, Carlsbad, CA. Airway flow and pressure were 

measured from inline pressure and airflow sensors of the NICO® device connected to the patient 

ventilator line through medical grade tubing. Continuous analog voltage signals that 

corresponded to pressure and flow values from the patient ventilator were sampled at a rate of 

250 samples per second or every 4 milliseconds and stored on a notebook computer via the 

AcqKnowledge® BIOPAC Systems data acquisition system (BIOPAC Systems, Inc., Goleta, 
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CA). Expiratory hold maneuvers were conducted every 10 minutes during data collection to 

record the quantitative value of auto-PEEP.12,48 

Table 6-1: Subject Demographic  

AA = African American, W- White, A/C = Assist/Control, SIMV = Synchronized Intermittent Mandatory 
Ventilation 

Subject 
Number Age Gender Race Reason for ICU Admission 

Ventilator 
setting 

SOFA 
score 

1 59 F AA Unresponsive with low O2 A/C  10 
2 27 F W Tylenol toxicity w/ hepatic injury SIMV 15 
3 54 F W Respiratory failure A/C  6 
4 57 M W Shortness of breath SIMV 12 
6 50 M W Asthma exacerbation A/C  6 
7 46 F AA Asthma exacerbation A/C  9 
9 59 F W Fever and rash A/C 9 

10 63 M W Chronic obstructive pulmonary disease A/C 4 
11 48 M W Acute respiratory failure A/C  13 
13 28 M AA Pleural effusion and chronic respiratory 

failure 
BiLevel 7 

14 54 F W Graft vs host disease, cunninghamella 
pneumania, & respiratory distress 

A/C 4 

15 59 M AA Shortness of breath and atrial fibrillation A/C 8 
16 60 M W Ascites A/C 7 

 

Once waveform data and auto-PEEP values from the expiratory hold maneuver were 

collected, index of incomplete exhalation was determined for every minute. A mean value of the 

index during the time range between expiratory hold was performed and paired with the auto-

PEEP value.  

Results 

 Based on statistical analysis, no significant linear model was found that described the 

relationship between IE index and auto-PEEP (F1,62 = 1.67, p-value = 0.2010). Figure 6-1 shows 

scatterplot of intrinsic PEEP and IE index. 

Table 6-2 displays the correlation between IE index and intrinsic PEEP per subject. 

Subjects 1, 2, 3, 4, 6, 7, 10, and 13all showed positive correlation whereas subject 10 produced a 
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significant linear model (F1,4= 12.53, p-value = 0.024). Subjects 9, 11, 15, and 16 showed a 

negative correlation while only subject 16 producing significant linear model (F1,4= 49.55, p-

value = 0.0021). 

Table 6-2: Correlation of IE Index with PEEPi by Subject and Overall 

 
IE index 

 
PEEPi 

   Subject Mean Std Dev N Mean Std Dev Correlation R2 p-value 
1 0.7692 0.0298 7 3.2286 2.2246 0.53 0.29 0.2127 
2 0.7668 0.2319 9 0.9889 0.8313 0.55 0.3 0.1271 
3 0.8543 0.0656 4 13 2.1602 0.49 0.26 0.4901 
4 0.9777 0.0187 5 1.76 1.2361 0.62 0.38 0.2679 
6 0.7479 0.2503 3 1.5667 0.2082 0.8 0.63 0.4144 
7 0.614 0.317 6 2.65 0.5925 0.6 0.36 0.2071 
9 0.7072 0.029 6 5.9333 4.1428 -0.7 0.5 0.1153 

10 0.8682 0.2088 6 1.4333 0.5574 0.87 0.76 0.024 
11 0.4884 0.0207 3 19.6667 1.1547 -0.2334 0.05 0.8497 
13 0.791 0.1473 4 3.975 1.0404 0.79 0.62 0.2107 
14 0.9899 

 
1 1.8 

 
0 

  15 0.6589 0.0475 4 2.725 1.258 -0.2 0.04 0.804 
16 0.6389 0.0238 6 2 0.8832 -0.96 0.93 0.0021 

Overall 0.7509 0.1896 64 4.0109 4.8079 -0.16 0.03 0.201 
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Figure 6-1: Scatterplot of intrinsic PEEP with IE index 

 

Figure 6-2: PEEPi values along with IE index vs time for subject 2 
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Figure 6-3: PEEPi values along with IE index vs time for subject 7 

 

Figure 6-4. PEEPi values along with IE index vs time for subject 10 
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Discussion and Conclusion 

 Data showed no significant linear relationship for the overall correlation of incomplete 

exhalation index and intrinsic PEEP value during the expiratory hold maneuver and is counter to 

what the literature has suggested. One reason could be because different patient lungs have 

different compliance and stiffness causing higher or lower PEEPi values for the same IE index. 

Logic then infers to looking at the IE index and PEEPi values per subject. Even upon doing so, 

no definitive relationship was present (see table 6-2).  

 A pattern emerged when IE index and PEEPi values were both viewed as functions of 

time. Figures 6-2 to 6-4 showed subject 2, 7, and 10’s IE index and PEEPi value with relation to 

time. These figures present a clear picture of the rise and fall of PEEPi values that corresponded 

to the rise and fall of IE index. With more data, there can be a better picture of how the time 

dependency influences the relationship of IE index and PEEPi. Speculation can be made that 

certain IE index need to be sustained for a period of time before a PEEPi value rises to a 

significant number, but that delay time is still unknown. Furthermore, how often expiratory hold 

maneuver should be performed for accurate PEEPi value is unknown. PEEPi taken in between 

long time period will yield lower sampling. PEEPi taken too often can cause significant air 

release from the incomplete exhalation air-trapping, thereby tainting the PEEPi measurement.   

 Two conclusions emerge from this chapter. The first being there is no conclusive 

significant linear relationship between IE index and auto-PEEP for this population. The second is 

that there is a time dependency that needs to be factored in when relationship between IE index 

and PEEPi are observed. 
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Chapter 7 Future Work 
 
 
 
 

Auto-PEEP Cutoff for Incomplete Exhalation Index 

 The next step in the research for an automated detection of auto-PEEP is to establish a 

threshold for incomplete exhalation (IE) index. In theory, it is understood that when repeated 

incomplete exhalation occurs without allowing flow equlibriation for the trapped gas to escape, 

pressure builds up leading to an eventual auto-PEEP. The threshold of how many repetitive IE 

needs to occur for it to be significant enough to be warranted as auto-PEEP has yet to be 

established. Also, the threshold of what quantity of auto-PEEP is high enough that measures are 

necessary to be enacted to avoid impending negative has yet to be established as well. Is it 2 

cmH2O, 5 cmH2O, 10 cmH2O, or some other value? 

 A preliminary plan to progress the automated detection of auto-PEEP would be as 

follows: establishing an internal alarm when IE index reach a threshold and execute automatic 

expiratory hold maneuver to obtain auto-PEEP value; if auto-PEEP value passes a threshold, 

then the external alarm would be sound. If the auto-PEEP is not significantly high enough to 

sound the external alarm, but the IE index is high enough to warrant an expiratory hold 

maneuver, provisions for reasonable periodic frequency of performing expiratory hold maneuver 

would be in place. This frequency could be every half hour, every hour, or more depending how 

clinicians would deem it best for the patient. 
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Incomplete Exhalation Relationship with Asynchrony 

 Research has tied in the relationship between auto-PEEP and some forms of 

asynchrony.4,20,21 It would be very interesting to see what relationship, if any exists between IE 

index and asynchrony. Can we predict event of asynchrony based on IE? With the algorithm 

provided in this dissertation combined with the numerous automated ways of detection trigger 

asynchrony mentioned in Chapter 2, it is conceivable to analyze very large ventilator data sets 

that can span days and weeks. Machines will do the detection work, where previously no 

observer could spare the time to do. 

Real-Time Application 

 The automated detection cannot be incorporated into clinical use unless performed in real 

time. During the course of developing, optimizing, and analyzing the automated detection for IE, 

the algorithmic detection had always been done post data collection. It is a necessary goal to 

have a real-time automated detection. 
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APPENDIX A 
 
 

MatLab Code for Detection Algorithm 
 
 
 
 

function [Result] = PEEPiDetectVER5(observerIE, subjMfile, sampling, 
FlowChannel, PressureChannel, FlowThresh, deltaT, slopethreshold, Pthresh)  
  
% This is a function to detect Auto-PEEP from Flow waveform,FPthresh 
% after data is acquired.  
  
% Creator: Nyimas Y. Isti Arief 
%          ariefny@vcu.edu 
%          Biomedical Engineering, VCU, Richmond, VA, USA 
%          January 14, 2013 
  
% VER5 update: include input of observer IE values and output true positive 
% and true negative values, but data read cycle section is taken from VER3 
% not VER4 
% VER4 update: Combine with codes from AutoPEEPdetect for breath inhalation 
% marker 
% 
  
% Inital concept of how it works 
% 1. Read flow data bit by bit 
% 2. Once data value is below FlowThresh, simultaneously read future data 
deltaT 
% bits ahead. 
% 3. If future data is positive and fulfill slopethreshold (IE for slope 
bigger than, eg 0.150 s: value of delta flow/delta t in seconds), then 
% incomplete exhalation is detected.  
  
% Other notes: 
% --> addtnl notes, if BiLevel use Pthresh PEEPHI-1 ? - yes, works for 
subj020 
% - place a filtering window ahead of algorithm to smooth out Pressure 
% waveform as well as Flow for phase shift continuity (recommend filter IIR 
% LPF 5 Hz, delay about 40-50 ms) 
% 
% Criteria for use: Pressure must be in units of cmH20 and Flow in units of 
% L/min, not volts 
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% and 
% HAVE TO MAKE SURE DATA STARTS and STOPS BEFORE onset of INHALATION 
% Notes 2/5/2013: FlowThresh should be fixed at -1 or int < 0, which would be 
at -1. This is the theoretical definition of flow being and incomplete 
exhalation, that is flow not reaching zero at the start of a new breath. 
  
  
% Acquiring flow data 
acqdata = load(subjMfile); 
flow = acqdata.data(:, FlowChannel); 
% Acquiring pressure data 
pressure = acqdata.data(:, PressureChannel); 
% Acquiring observer data 
if ~isempty(observerIE) 
    fid = fopen(observerIE); 
    IE_Obs = []; 
    while 1 
        tline = fgetl(fid); 
        if ~ischar(tline),   break,   end 
        numtline = str2num(tline); 
        IE_Obs = [IE_Obs; numtline]; 
    end 
    fclose(fid); 
else 
    IE_Obs = []; 
end 
  
% Portion taken from AutoPEEPdetect 
% Detection of Onset of Inhalation via Pressure waveform 
if isempty(Pthresh) 
    Pthresh = round(mean(pressure)); % for real-time coding, change this to 
"mean pressure of last 5 breaths" 
end 
Pinhale = []; Pmin = pressure(1,:); 
tinhale = []; t = 1; 
i = 1; 
while i < length(pressure)  
    if Pmin < pressure(i,:) 
        if pressure(i,:) < pressure(i+1) 
            i = i+1; 
        elseif pressure(i,:) > pressure(i+1,:)  
            Pmin = pressure(i,:); 
            t = i; 
            i = i+1; 
        else 
            i = i+1; 
        end 
    elseif Pmin >= pressure(i,:) 
        Pmin = pressure(i,:); 
        t = i; 
        i = i+1; 
    end 
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    if pressure(i,:) > Pthresh % when data read, i, crosses over pressure 
threshold to indicate inhalation, 
        Pinhale = [Pinhale; Pmin]; % then store the latest Pmin 
        tinhale = [tinhale; t]; 
        while (pressure(i,:) > Pthresh-1) && (i < length(pressure)) % while 
data read, i, is on inhalation (indicated by Pthresh),  
            i = i+1;                                                % then do 
not record any i as Pmin, just keep on going 
        end                                                         % Until i 
fall below Pthresh - 1, the 1 value is a hysteresis buffer 
        Pmin = pressure(i,:);                                       % Once 
fall well below Pthresh line (Pthresh - 1), new Pmin indices can resume 
        t = i; 
    end 
end 
% rid of first value as a low pressure value for onset inhalation 
if tinhale(1) == 1 % 1 being the first sample, if sampling is 1000 Hz, 1 
corresponds to 0.001s, if sampling is 250 Hz, 1 corresponds to 0.004s 
    tinhale = tinhale(2:end); 
    Pinhale = Pinhale(2:end); 
end 
  
InhalationMarker = [tinhale/sampling, flow(tinhale,:),Pinhale];% div by 
sampling to match seconds 
[rowInhalationMarker, colInhalationMarker] = size(InhalationMarker); 
% End portion from AutoPEEPdetect 
  
% Replacing IE_Obs points to the corresponding points of InhalationMarker 
if ~isempty(IE_Obs) 
    for i = 1 : rowInhalationMarker 
        for j = 1 : length(IE_Obs) 
            if abs(IE_Obs(j) - InhalationMarker(i,1)) < 0.5  
                InhalationMarker(i,1) = IE_Obs(j); 
% 0.5 can be any number but it has to be the same cutoff value for comparing 
IE_Obs to InhalationMarker, IE_Alg to InhalationMarker, and IE_Alg to IE_Obs. 
% IE_Obs value is in InhalationMarker 
% Only IEDetect that are on same breath as InhalationMarker are recorded as 
IE_Alg 
% Only IE_Alg that are on same breath as IE_Obs(values in InhalationMarker) 
are valTruePositive 
% IE_Alg that are not on same breath as IE_Obs are still on same breath as 
InhalationMarker, and are recorded as valFalsePositive 
            end 
        end 
    end 
end 
% End Replacing IE_Obs points to the corresponding points of InhalationMarker 
  
% Calibrating deltaT based on sampling frequency 
deltaValue = deltaT; 
deltaT = deltaT * sampling; 
if isinteger(deltaT) == 0 
    deltaT = round(deltaT); 
end 
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% Initializations 
IEdetect = []; % Assigning IEdetect variable 
OnsetInhalation = []; % Assigning Onset of Inhalation variable 
  
% Commence data read cycle 
for i = 1 :1: length(flow)- deltaT; 
    % Check if flow is negative 
    if flow(i,:) <= 1 % breath flow (negative) is exhaling before onset of 
inhalation, choose value 1 because 0 value fluctuates during exhalation 
        if flow(i+deltaT,:) > 1 % Read deltaT bits ahead to see if flow is 
inhaling (positive), indicative of onset of inhalation 
            % Calculate slope between present i and deltaT+i 
            deltaflow = flow(i+deltaT,:) - flow(i,:); 
            slope = deltaflow/(deltaValue);  
             
            % Begin IE detection and Onset of Inhalation detection --> Flow-
dependent detection 
                % Checking IE detection against Onset of Inhalation being 
                % more than half (0.5) of meanLast5brthOnset time distance 
                % away from the last onset should deter from any 
                % double-trigger as IE detection (matching definition of 
                % double trigger: a trigger occurring in less than half the 
                % normal exhalation time) 
             
            if isempty(OnsetInhalation)% Onset inhalation data is empty 
                % Mark Onset of breath inhalation 
                OnsetInhalation = [OnsetInhalation; i]; % i is in samples, 
not seconds 
                if (abs(slope) > slopethreshold) && (flow(i,:) <= FlowThresh) 
% test slope threshold and flow threshold for conditions of IE 
                    IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; % Record IE event; this is deltaT based on sampling, not 
actual sec time 
                end 
  
            elseif max(size(OnsetInhalation)) == 1 % When there's only 1 
onset inhalation recorded 
                % check distance from last onset of inhalation 
                if (i-OnsetInhalation)  > sampling*0.5 % Prevent redundancy 
and trigger asynchrony (double triggering) detection during exhalation phase: 
Write IE/onset inhalation detection only if enough time passes, ie 75% of 
mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i];  
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; % Record IE event 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (IE-last Onset is within deltaT time) 
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                     if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        elseif (i - IEdetect(end,1)) > sampling*.5 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                     end 
                end 
                     
            elseif max(size(OnsetInhalation)) == 2 % When there's 2 onset 
inhalation recorded 
                % get mean values of latest breath periods 
                Last5BrthOnset = OnsetInhalation(end)-OnsetInhalation(end-1); 
                meanLast5BrthOnset = Last5BrthOnset; 
                if (i-OnsetInhalation(end)) > 0.5*meanLast5BrthOnset % 
Prevent redundancy and trigger asycnhrony (double triggering) detection 
during exhalation phase: Write IE/onset inhalation detection only if enough 
time passes, ie 75% of mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i]; 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE   
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (ie deltaT) 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        elseif (i - IEdetect(end,1)) > 0.5*meanLast5BrthOnset 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                    end 
                end 
                 
            elseif max(size(OnsetInhalation)) == 3 % When there's 3 onset 
inhalation recorded 
                Last5BrthOnset = [OnsetInhalation(end)-OnsetInhalation(end-
1),OnsetInhalation(end-1)-OnsetInhalation(end-2)]; 
                meanLast5BrthOnset = mean(Last5BrthOnset); 
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                if (i-OnsetInhalation(end)) > 0.5*meanLast5BrthOnset % 
Prevent redundancy and trigger asycnhrony (double triggering) detection 
during exhalation phase: Write IE/onset inhalation detection only if enough 
time passes, ie 75% of mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i]; 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE   
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (ie deltaT) 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        elseif (i - IEdetect(end,1)) > 0.5*meanLast5BrthOnset 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                    end 
                end 
                 
            elseif max(size(OnsetInhalation)) == 4 % When there's 4 onset 
inhalation recorded 
                Last5BrthOnset = [OnsetInhalation(end)-OnsetInhalation(end-
1),OnsetInhalation(end-1)-OnsetInhalation(end-2), ... 
                    OnsetInhalation(end-2)-OnsetInhalation(end-3)]; 
                meanLast5BrthOnset = mean(Last5BrthOnset); 
                if (i-OnsetInhalation(end)) > 0.5*meanLast5BrthOnset % 
Prevent redundancy and trigger asycnhrony (double triggering) detection 
during exhalation phase: Write IE/onset inhalation detection only if enough 
time passes, ie 75% of mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i]; 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE   
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (ie deltaT) 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
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                        elseif (i - IEdetect(end,1)) > 0.5*meanLast5BrthOnset 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                    end 
                end 
                 
            elseif max(size(OnsetInhalation)) == 5 % When there's 5 onset 
inhalation recorded 
                Last5BrthOnset = [OnsetInhalation(end)-OnsetInhalation(end-
1),OnsetInhalation(end-1)-OnsetInhalation(end-2), ... 
                    OnsetInhalation(end-2)-OnsetInhalation(end-3), 
OnsetInhalation(end-3)-OnsetInhalation(end-4)]; 
                meanLast5BrthOnset = mean(Last5BrthOnset); 
                if (i-OnsetInhalation(end)) > 0.5*meanLast5BrthOnset % 
Prevent redundancy and trigger asycnhrony (double triggering) detection 
during exhalation phase: Write IE/onset inhalation detection only if enough 
time passes, ie 75% of mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i]; 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE   
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (ie deltaT) 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        elseif (i - IEdetect(end,1)) > 0.5*meanLast5BrthOnset 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                    end 
                end 
                 
            elseif max(size(OnsetInhalation)) > 5 % When there's more than 5 
onset inhalation recorded 
                Last5BrthOnset = [OnsetInhalation(end)-OnsetInhalation(end-
1),OnsetInhalation(end-1)-OnsetInhalation(end-2), ... 
                    OnsetInhalation(end-2)-OnsetInhalation(end-3), 
OnsetInhalation(end-3)-OnsetInhalation(end-4), OnsetInhalation(end-4)-
OnsetInhalation(end-5)]; 
                meanLast5BrthOnset = mean(Last5BrthOnset); 
                if (i-OnsetInhalation(end)) > 0.5*meanLast5BrthOnset % 
Prevent redundancy and trigger asycnhrony (double triggering) detection 
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during exhalation phase: Write IE/onset inhalation detection only if enough 
time passes, ie 75% of mean of last Breath Periods, or greater than 0.5 sec. 
                    OnsetInhalation = [OnsetInhalation; i]; 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE   
                        IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                    end 
                elseif (i-OnsetInhalation(end)) < deltaT % for the case when 
IE is detected after a non IE onset inhalation is detected that is within the 
same onset point (ie deltaT) 
                    if (abs(slope) > slopethreshold) && (flow(i,:) <= 
FlowThresh) % test slope threshold and flow threshold for conditions of IE 
                        if isempty(IEdetect)% for the case that there's no 
previous IE detection 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        elseif (i - IEdetect(end,1)) > 0.5*meanLast5BrthOnset 
                            OnsetInhalation(end,1) = i ; 
                            IEdetect = [IEdetect; i, flow(i,:), i+deltaT, 
flow(i+deltaT,:)]; 
                        end 
                    end 
                end 
                 
            end % end of checking for IE and Onset Inhalation              
        end % end of checking for inhalation flow (positive) 
    end % end of checking for exhalation flow (negative) 
end % end of reading flow data 
  
  
% Rejecting IEdetect values that doesn't match InhalationMarker --> Pressure-
dependent detection 
    % Rejecting IE detection that doesn't match inhalation marker taken 
    % from pressure waveforms would prevent ineffective trigger as being 
    % detected as IE 
if ~isempty(IEdetect) 
    IEDetect = [IEdetect(:,1)/sampling , IEdetect(:,2:end)]; % IEdetect 
matching sampling units with InhalationMarker 
    IEdtct = []; 
    [rowIEDetect, colIEDetect] = size(IEDetect); 
    for i = 1 : rowIEDetect 
        match = []; 
        for j = 1 : rowInhalationMarker 
            if abs(IEDetect(i,1) - InhalationMarker(j,1)) < 0.5 
                match = 1; 
% 0.5 can be any number but it has to be the same cutoff value for comparing 
IE_Obs to InhalationMarker, IE_Alg to InhalationMarker, and IE_Alg to IE_Obs. 
% IE_Obs value is in InhalationMarker 
% Only IEDetect that are on same breath as InhalationMarker are recorded as 
IE_Alg 
% Only IE_Alg that are on same breath as IE_Obs(values in InhalationMarker) 
are valTruePositive 
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% IE_Alg that are not on same breath as IE_Obs are still on same breath as 
% InhalationMarker, and are recorded as valFalsePositive 
            end 
        end 
        if match == [1]; 
            IEdtct = [IEdtct; IEDetect(i,:)]; 
        end 
    end 
IEdetect = IEdtct; 
end 
% end Reject session 
  
% Notes: if OnsetInhalation quantity > InhalationMarker quantity, this is a 
sign of ineffective trigger presence 
       % if InhalationMarker quantity > OnsetInhalation quantity, this is a 
sign of double trigger presence 
  OnsetInhalation = [OnsetInhalation,flow(OnsetInhalation)]; 
  
% adjust time for sampling 
t = 1:length(flow); 
t = t/sampling; 
% making sure t array is same direction as flow 
[m n] = size(flow); 
[o p] = size(t); 
if m==1, % is a row 
    if p==1 % is a column 
        t = t'; % transpose t 
    end 
elseif n==1 % is a column 
    if o==1 % is a row 
        t = t'; 
    end 
end  
  
% Validation 
% Compare IE_Obs & IEdetect. InhalationMarker would be total breath 
TotalBreath = length(InhalationMarker); 
  
if ~isempty(IE_Obs) 
    if ~isempty(IEdetect) 
        length_IE_Obs = length(IE_Obs); 
        IE_Alg = IEdetect(:,1); 
        [rowIE_Alg,colIE_Alg] = size(IE_Alg); 
        valTruePositive = []; 
        plotTruePositive =[]; 
        for i = 1: rowIE_Alg 
            for j = 1: length_IE_Obs 
                if abs(IE_Alg(i)-IE_Obs(j)) < 0.5 
                    valTruePositive = [valTruePositive; IE_Alg(i), 
IEdetect(i,2)]; 
% 0.5 can be any number but it has to be the same cutoff value for comparing 
IE_Obs to InhalationMarker, IE_Alg to InhalationMarker, and IE_Alg to IE_Obs. 
% IE_Obs value is in InhalationMarker 
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% Only IEDetect that are on same breath as InhalationMarker are recorded as 
IE_Alg 
% Only IE_Alg that are on same breath as IE_Obs(values in InhalationMarker) 
are valTruePositive 
% IE_Alg that are not on same breath as IE_Obs are still on same breath as 
% InhalationMarker, and are recorded as valFalsePositive 
                end 
            end 
        end 
        Nrml_Obs = TotalBreath - length_IE_Obs; 
        Nrml_IE = TotalBreath - rowIE_Alg; 
        [TruePositive, colvalTruePositive] = size(valTruePositive); 
        FalsePositive = rowIE_Alg - TruePositive; 
        TrueNegative = Nrml_Obs - FalsePositive; 
        FalseNegative = Nrml_IE - TrueNegative; 
    else 
        rowIE_Alg = 0; 
        length_valTruePositive = 0; 
        valTruePositive = []; 
        length_IE_Obs = length(IE_Obs); 
     
        Nrml_Obs = TotalBreath - length_IE_Obs; 
        Nrml_IE = TotalBreath - rowIE_Alg; 
        TruePositive = length_valTruePositive; 
        FalsePositive = rowIE_Alg - TruePositive; 
        TrueNegative = Nrml_Obs - FalsePositive; 
        FalseNegative = Nrml_IE - TrueNegative; 
    end 
     
else % IE_Obs is empty or non-existant 
    length_IE_Obs = 0; 
    if isempty(IEdetect) 
        rowIE_Alg = 0; 
    else 
        IE_Alg = IEdetect(:,1); 
        [rowIE_Alg,colIE_Alg] = size(IE_Alg); 
    end 
    length_valTruePositive = 0; % there's no true positive since observer see 
no IE 
    valTruePositive =[]; 
     
    Nrml_Obs = TotalBreath - length_IE_Obs; 
    Nrml_IE = TotalBreath - rowIE_Alg; 
    TruePositive = length_valTruePositive; 
    FalsePositive = rowIE_Alg - TruePositive; 
    TrueNegative = Nrml_Obs - FalsePositive; 
    FalseNegative = Nrml_IE - TrueNegative; 
     
end 
  
Sensitivity = TruePositive/length_IE_Obs; 
Specificity = 1 - (FalsePositive/Nrml_Obs); 
FP_rate = FalsePositive/Nrml_Obs; 
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Result = [TotalBreath, length(IE_Obs), Nrml_Obs, rowIE_Alg, Nrml_IE, 
TruePositive, FalsePositive, TrueNegative, FalseNegative, FP_rate, 
Sensitivity, Specificity]; 
  
% Plot section start 
% Plotting for No IE 
if isempty(IEdetect) 
    figure, plot(t, flow),hold, 
    plot(InhalationMarker(:,1), InhalationMarker(:,2),'r+'); 
    plot(OnsetInhalation(:,1)/sampling, OnsetInhalation(:,2), 'bo'); 
    title([subjMfile, '; deltaT ', num2str(deltaT), '; slope threshold ', 
num2str(slopethreshold),' - NO Detection']); 
    ylabel('Airway Flow Waveform [L/min]'), xlabel('time [s]'); 
% Plotting if IE is present 
else 
    IEdetect(:,3) = IEdetect(:,3)/sampling; % converting sampled indices to 
match time in seconds 
    figure, subplot(2,1,1),plot(t, flow), hold, 
    plot(IEdetect(:,1), IEdetect(:,2),'rx'), 
    plot(InhalationMarker(:,1), InhalationMarker(:,2),'r+'); 
    plot(OnsetInhalation(:,1)/sampling, OnsetInhalation(:,2), 'bo'); 
    if ~isempty(valTruePositive) 
        plot(valTruePositive(:,1), valTruePositive(:,2),'g+'); 
    end 
    hold 
    title([subjMfile, '; deltaT ', num2str(deltaT), '; slope threshold ', 
num2str(slopethreshold), ' - Incomplete Exhalation Detection']); 
    ylabel('Airway Flow Waveform [L/min]'), xlabel('time [s]'); 
    subplot(2,1,2), plot(t, pressure); 
    title([subjMfile,': Pressure waveform']); 
    ylabel('Pressure [cmH20]'), xlabel('time [s]'); 
end 
% end Plot     
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APPENDIX B 
 
 

Subject 17 
 
 
 
 

 Subject 17 was collected after the dissertation defense. Its chart is here as a supplement to 

chapter 6. It illustrates the IE index and PEEPi values as functions of time. 

Figure B-1. PEEPi values along with IE index vs time for subject 17 
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