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VARIABLE SELECTION IN COMPETING RISKS USING THE L1 PENALIZED COX

MODEL

By Xiangrong Kong, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2008

Major Director: Kellie J. Archer, Ph.D.

Assistant Professor

Department of Biostatistics

One situation in survival analysis is that the failure of an individual can happen because

of one of multiple distinct causes. Survival data generated in this scenario are commonly

referred to as competing risks data. One of the major tasks, when examining survival data,

is to assess the dependence of survival time on explanatory variables. In competing risks, as

with ordinary univariate survival data, there may be explanatory variables associated with

ix



x

the risks raised from the different causes being studied. The same variable might have dif-

ferent degrees of influence on the risks due to different causes. Given a set of explanatory

variables, it is of interest to identify the subset of variables that are significantly associated

with the risk corresponding to each failure cause. In this project, we develop a statistical

methodology to achieve this purpose, that is, to perform variable selection in the presence

of competing risks survival data. Asymptotic properties of the model and empirical simu-

lation results for evaluation of the model performance are provided. One important feature

of our method, which is based on the idea of the L1 penalized Cox model, is the ability to

perform variable selection in situations where we have high-dimensional explanatory vari-

ables, i.e. the number of explanatory variables is larger than the number of observations.

The method was applied on a real dataset originated from the National Institutes of Health

funded project “Genes related to hepatocellular carcinoma progression in living donor and

deceased donor liver transplant” to identify genes that might be relevant to tumor progres-

sion in hepatitis C virus (HCV) infected patients diagnosed with hepatocellular carcinoma

(HCC). The gene expression was measured on Affymetrix GeneChip microarrays. Based

on the current available 46 samples, 42 genes show very strong association with tumor pro-

gression and deserve to be further investigated for their clinical implications in prognosis

of progression on patients diagnosed with HCV and HCC.



Chapter 1

Introduction to Survival Analysis

Survival analysis is a field in statistics that specifically deals with the modeling and analysis

of survival data: time from a well-defined time origin until the occurrence of some event

or end point of interest. In medical research, the time origin may be the date of diagnosis

of a disease of interest, or the date of an individual being recruited to take certain treatment

regimen, or among others. The end point of interest can thus be the date of death of a

patient, and the resulting data are known as failure time data. The end point of interest may

correspond to situations other than death, such as the date of progression or recurrence

of a disease, or the date of recovery of the patient (Collett, 2003). The methodologies

presented in survival analysis can also be applied in modeling data generated in other fields

of science. In economics, the “survival” time can be the time of unemployment of an

unemployed person. In industrial applications, the “survival” time can be the lifetime of a

unit or some component in a unit, and here survival analysis is termed reliability analysis

(Hougaard, 2000).

The distinguishing feature of survival data is that survival times are frequently censored,

and therefore special methods are required when analyzing survival data. Often in survival

studies, in addition to observed survival time, some explanatory variables may be observed.

Such explanatory variables typically describe pre-existing heterogeneity in the samples

under study (Kalbfleisch and Prentice, 2002), and one of the major tasks when modeling

survival data, which is the focus of this project, is to assess the dependence of survival time

1
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on explanatory variables.

In this chapter, we start with Section 1.1 by introducing the mathematical notations

and statistical framework that are commonly used to describe survival problems. Different

modeling techniques, including non-parametric, parametric, and semi-parametric models,

have been presented in the literature on survival analysis. They are briefly reviewed in

Section 1.2 to 1.4, with emphasis on the semi-parametric Cox proportional hazards model

in Section 1.4. These models are generally used in the analysis of univarariate survival

data where independence between survival times is assumed. In Section 1.5, we introduce

multivariate survival data, including the competing risks scenario, which is the main topic

of this work.

1.1 Survival Data

Let T be a nonnegative random variable representing the survival time of an individual

from a population. T can be either discrete or continuous. In this project, we focus on the

more common situation where T is continuous.

1.1.1 Survival Time Distribution

The probabilistic aspect of T can be described in many ways, three of which are particularly

used in survival analysis: the survivor function, the probability density function, and the

hazard function (Kalbfleisch and Prentice, 2002).

Survivor Function

The survivor function S (t) is defined by the probability that T exceeds a value t, that is,

S (t) = P(T > t), 0 < t < ∞ .

Thus

F(t) = 1 − S (t) , (1.1)
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is the commonly seen cumulative distribution function (CDF) of T .

Probability Density Function

We know that the probability density function (PDF) f (t) for T is defined as:

f (t) =
dF(t)

dt
=
−dS (t)

dt
.

Hazard Function

The hazard function h(t) is defined as:

h(t) = lim
δt→0

P(t ≤ T ≤ t + δt|T > t)
δt

. (1.2)

It is the instantaneous rate at which failures occur for individuals who have survived up to

time t. As the survivor function and the probability density function, the hazard function

itself fully specifies the distribution of T .

The following relationships between the survivor function, the PDF and the hazard

function can be derived using their definitions (Kalbfleisch and Prentice, 2002). From

Equation 1.2,

h(t) =
f (t)
S (t)

=
−d log F(t)

dt
.

Integrating with respect to t and using F(0) = 1, we obtain

S (t) = exp
[
−

∫ t

0
h(s)ds

]
(1.3)

= exp [−H(t)] ,

where H(t) =
∫ t

0
h(s)ds is called the cumulative hazard function. The PDF of T can be
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obtained by differentiating Equation 1.3:

f (t) = h(t) exp [−H(t)] .

1.1.2 Time Origins and Censoring

In considering survival time data, it is important to have a clear and unambiguous definition

of the time origin from which survival is measured. For instance, if the time of interest

represents age, the time origin thus is date of birth of the individual. In other instances,

the natural time origin may be the date of occurrence of some event, such as the date of

diagnosis of a particular disease. Similarly, the event or end point of interest should be

clearly defined as well. For example, in a trial comparing treatments of heart disease,

we might take previous documented occurrence of heart attack as providing eligibility for

study. The time origin can be the date of admission and randomization to the study, and

the event may correspond to the date of recurrence of a heart attack. The clinical medical

conditions corresponding to the event should be carefully specified. Clear identification of

an origin and an end point are crucial in survival analysis (Kalbfleisch and Prentice, 2002).

The survival time of an individual is said to be censored when the end point of interest

is not observed for that individual. This may occur when the data from a study are analyzed

at a point in time when some individuals are still alive. Alternatively, the survival status

of an individual may be lost to follow-up. For example, suppose that after being recruited

to a clinical trial, a patient moves to another place, and can no longer be traced. The only

information available on the survival experience of that patient is the last date on which he

or she was known to be alive. This date may well be the last time that the patient reported

to a clinic for a regular check-up. In each situation, the observed time of an individual is

less than the actual, but unobserved, survival time. This kind of censoring occurs after the

individual has been entered into a study, that is, the true survival time is to the right of (i.e.

greater than) the observed survival time, and is therefore known as right censoring (Collett,
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2003).

Another form of censoring is left censoring, which is encountered when the actual

survival time of an individual is less than that observed. For illustration, consider a study

in which interest centers on the time to recurrence of a particular cancer following surgical

removal of the primary tumor. Three months after their operation, the patients are examined

to determine if the cancer has recurred. At this time, some of the patients may be found to

have a recurrence. For such patients, the actual time to recurrence is less than three months,

and the actual recurrence times of these patients are not observed and thus considered left

censored (Collett, 2003).

Another type of censoring is interval censoring. In this situation, individuals are known

to have experienced an event within an interval of time. For illustration, consider again the

above example concerning the time to recurrence after a tumor removal surgery. If a patient

is observed to be free of the disease at three months, but is found to have had a recurrence

when examined six months after surgery, the actual recurrence time of the patient is thus

known to be between three months and six months (Collett, 2003).

The application dataset used in this thesis includes right censored data, so the emphasis

of this project will be on the analysis of right censored data.

An important assumption that will be made in the analysis of censored survival data is

that the actual survival time of an individual is independent of any mechanism that may

cause that individual’s survival time to be censored before the actual survival time. This

means that if we consider a group of individuals, all of whom have the same values of

relevant prognostic variables, an individual whose survival time is censored at a time point

must be representative of all other individuals in that group who have survived to that

time. “A patient whose survival time is censored will be representative of those at risk at

the censoring time if the censoring process operates randomly”(Collett, 2003). Similarly,

when survival data are to be analyzed at a predetermined point in calendar time, or at

a fixed interval of time after the time origin for each patient, that is, left censoring or
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interval censoring may be observed, the prognosis for individuals who are still alive can

be taken to be independent of the censoring, as long as the time of analysis is specified

before the data are observed. However, the independence assumption cannot be made if, for

example, the survival time of an individual is censored because treatment was withdrawn

as a result of deterioration in their physical condition. This type of censoring is known as

informative censoring (Collett, 2003). The non-informative censoring is not uncommon in

medical studies. In this thesis, non-informative censoring is assumed for all application

datasets.

1.2 Exploring Univariate Survival Data - Non-parametric

Procedures

The initial step in analyzing survival data can be some exploratory analyses of the survival

times for individuals in a particular group. Such summaries may be of immediate interest,

or as a precursor to a more detailed analysis of the data, through which the dependence of

the survival on some predictor variables can be studied (Collett, 2003). Either the survivor

function or the hazard function fully specifies the distribution of the survival time variable,

and they are often of interest to be estimated for summarizing the survival data.

1.2.1 Estimating the Survivor Function

We know that the cumulative density function (CDF) of a random variable can be estimated

by the empirical distribution function, therefore, with Equation 1.1, the survivor function

of T can be estimated by the empirical survivor function, given by

Ŝ (t) =
Number of individuals with survival times ≥ t

Number of individuals in the data set
.



7

The empirical survivor function is constant between any two adjacent observed event times,

so it is a step-function. The fact that the survival times of some individuals are censored,

however, makes it necessary to take this information into consideration when estimating the

survivor function. One of the most frequently used estimates for censored survival data is

the Kaplan-Meier estimate. Assume the survival data are recorded on n individuals drawn

from the population, and let ti denote the survival time observed for the ith individual.

Further assume that the failures are observed on m individuals out of the total n individuals,

while the survival times of the other individuals are censored. Let t(1) ≤ t(2) ≤ · · · ≤ t(m)

denote the ordered m failure times. The set of individuals who are alive just prior of time t(l)

and thus are subject to the risk of failure is denoted by R(t(l)), and the number of individuals

in this set is denoted by nl. Let dl denote the number who die at this time. Then the

Kaplan-Meier estimate of the survivor function is given by:

Ŝ (t) =
∏
t(l)<t

exp
(
nl − dl

nl

)
, (1.4)

with Ŝ (t) = 1 for t < t(1), and where t(m+1) is taken to be ∞. If the largest observed time

t(m) is an uncensored failure time, then Ŝ (t) = 0 for t ≥ t(m). On the other hand, if the

largest observation is a censored survival time, say t∗, then the Kaplan-Meier estimate Ŝ (t)

is undefined for t > t∗. Other methods proposed for estimating the tail of Ŝ (t) when the

last observation is censored can be used, such as the Brown-Hollander-Korwar tail estimate

(Brown et al., 1974), in which they suggest completing the tail by an exponential curve.

If there are no censored observations, then the Kaplan-Meier estimate in Equation 1.4

is reduced to be the ordinary empirical survivor function.

The standard error of the Kaplan-Meier estimate is given by Greenwood’s formula:

se
{
Ŝ (t)

}
≈ Ŝ (t)

∑t(l)<t

dl

nl(nl − dl)


1
2

.
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For more details about the Kaplan-Meier estimate and Greenwood’s formula, and other

estimates of the survivor function, such as the life-table and Nelson-Aalen estimates, the

reader can refer to Chapter 2 in Collett 2003.

1.2.2 Estimating the Hazard Function

The survival distribution may also be summarized through the hazard function, which is

the instantaneous risk of failure. The Kaplan-Meier estimate of the hazard function is:

ĥ(t) =
dl

nlτl

for t(l) ≤ t < t(l+1), where τl = t(l+1) − t(l).

The standard error of ĥ(t) is given by

se
{̂
h(t)

}
= ĥ(t)

{
nl − dl

nldl

} 1
2

.

For other ways of estimating the hazard function, refer to Chapter 2 in Collett 2003.

1.3 Modeling Univariate Survival Data - Parametric Pro-

cedures

The non-parametric methods described in Section 1.2 can be useful for an initial explo-

ration of the survival times observed; however, more often in medical research we desire

to study the association between survival and some explanatory variables, and therefore

regression techniques that model survival time as a function of the explanatory variables

are needed. One popular approach is to fully specify the parametric form of the distribu-

tion of survival time, and the two most commonly used distributions are the exponential

distribution and the Weibull distribution. Other commonly used distributions include the
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Log-Normal distribution, the (Generalized) Gamma distribution, the Log-Logistic Distri-

bution, and the generalized F distribution. All these aforementioned parametric regression

models lead to a unified form: a log-linear model. That is, the predictor variables have

linear effect on the logarithm of T , where the distribution of the random error determines

the parametric form of T .

The log-linear model can be generalized into two classes of models: relative risk (also

called proportional hazards) model, and accelarated failure time model. In the proportional

hazards model, the effect of the predictor variables is to act multiplicatively on the hazard

function; while in the accelerated failure time model, the predictor variables act multi-

plicatively on the survival time T directly. The exponential and Weibull regression models

are the only two log-linear models that belong to both the class of proportional hazards

model and the class of accelerated failure time model (Kalbfleisch and Prentice, 2002). Ei-

ther class of models can be parametric or semi-parametric models. The paramteric models

correspond to the aforementioned distributions and are described in this section, and the

semi-parametric models will be discussed in the next section.

1.3.1 Parametric Proportional Hazard Models: the Exponential Model

and Weibull Model

Exponential Model

Assume the survival time T is exponentially distributed with parameter λ, i.e., f (t) =

h exp(−ht). The parameter h here is essentially the hazard, and is constant with respect to t.

This property is known as the memoryless property of the exponential distribution. Further

assume we also have measurements on k predictor variables denoted as x, where x is vector

of length k. We model the hazard at time t to be a function of the predictor variables x. The

form of the function is not unique, and the most common one to consider is

h(t; x) = h exp
{
x
′

β
}

, (1.5)
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where β is the vector of coefficients corresponding to the explanatory variables. Thus the

conditional PDF of T given x is

f (t; x) =
[
h exp (x

′

β)
]

exp
{
−

[
h exp (x

′

β)
]

t
}

. (1.6)

Therefore the survival time T is still exponentially distributed, and its dependence on x is

directly modeled through the hazard. The inference on the parameters β can be obtained

through the maximum likelihood approach. For more details, the reader can refer to Chap-

ter 3 of Kalbfleisch and Prentice (2002).

Model (1.6) specifies that the log survival time is a linear function of the predictor

variables x. If we let Y = log T , and let

Y = α − x
′

β + W , (1.7)

where α = − log λ and W follows the extreme value distribution with PDF exp (w − ew), it

is easy to show that model (1.6) is equivalent to model (1.7). Model (1.7) is a log-linear

model with the error variable W having a specified distribution (Kalbfleisch and Prentice,

2002).

Weibull Model

Let the survival time T follow the Weibull distribution with hazard function

h(t) = hγ(ht)γ−1 ,

for h, γ > 0. This hazard is monotone decreasing for γ < 1, and increasing for γ > 1, and

reduces to the constant exponential hazard if γ = 1. Therefore, the Weibull model has the

flexibility to model monotonically changing hazard. Now consider when we have predictor

variables x, we again can model the hazard to be a function of x. Specifically, we can model
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the hazard function as

h(t; x) = γ(ht)γ−1 exp (x
′

β) . (1.8)

Thus the conditional PDF of T given x is

f (t; x) = hγ(ht)γ−1 exp (x
′

β) exp
{
−(ht)γ exp (x

′

β)
}

. (1.9)

The inference of β can be obtained through the maximum likelihood approach and the

reader can refer to Chapter 3 of Kalbfleisch and Prentice (2002).

Equation 1.8 specifies that the predictors act multiplicatively on the Weibull hazard.

Model (1.9) can also be expressed as a log-linear model. Let

Y = α + x
′

β∗ + σW , (1.10)

where Y = log (T ), α = − log h, σ = γ−1, β∗ = −σβ, and W follows the extreme value

distribution with PDF exp (w − ew). It is easy to see that the Weibull model has an extra

scale parameter γ compared to the exponential model, and if γ = 1, the Weibull model

reduces to the exponential model (Kalbfleisch and Prentice, 2002).

In model (1.5) or model (1.8), if we let the predictor variables be 0, we get the so-

called baseline hazard, denoted as h0(t). From (1.5), the baseline hazard in the exponential

regression model is h; and from (1.8) in the Weibull model it is γ(ht)γ−1. If we further

assume an unspecified form of h0(t), then we generalize the parametric proportional hazards

model to the semi-parametric proportional hazards model (or the famous Cox proportional

hazards model), and this will be discussed in Section 1.4.
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1.3.2 Parametric Accelerated Failure Time Models

The log-linear form of the exponential and Weibull regression models suggests that the

predictor variables also act additively on the logarithm of the survival time. From this, we

obtain a general class of log-linear models: the accelerated failure time model (Kalbfleisch

and Prentice, 2002). Let

Y = x
′

β + σW , (1.11)

where σ > 0, W is an error variable with density fw(w) and assumed to be independent of β.

The interpretation of the above model in terms of log T is straightforward, it is equivalently

saying that the predictor variables have a multiplicative effect directly on T (rather than

the hazard function), so the role of x is to accelerate (or decelarate) the time to failure

(Kalbfleisch and Prentice, 2002).

From (1.11), the PDF of the survival time T is f (t) = (1/σt) fw

(
(log t − x

′

β)/σ
)
. If

fw(w) is fully specified, then model (1.11) is a parametric accelerated failure time model. If

W ∼ extreme value distribution, where fw(w) = exp (w − ew), model (1.11) is the Weibull

regression model (including the exponential model), which is also a proportional hazards

model.

Log-Normal Model

If W ∼ N(0, 1), that is fw(w) = (2π)−1/2 exp (−w2/2), then T follows the log-normal

distribution, and model 1.11 yields the log-normal regression model. The PDF of T can be

written as

f (t) = (2π)−1/2(σt)−1 exp

−
(
log (t exp (−x

′

β))
)2

2σ2

 .

The survivor and hazard functions involve the normal distribution function Φ(w) =
∫ w

−∞
φ(u)du,

where φ(u) is the PDF of the standard normal distribution. The survivor function is S (t) =
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1 − Φ(
[
log

(
t exp (−x

′

β)
)]
/σ), and the hazard function is f (t)/S (t). The hazard function

has value 0 at t = 0, increases to a maximum and then decreases, approaching zero as t

becomes large (Kalbfleisch and Prentice, 2002).

(Generalized) Gamma Model

If W ∼ extreme value distribution with one parameter a, that is fw(w) = exp (aw − ew)/Γ(a),

then model (1.11) yields the generalized gamma regression model. T has PDF

f (t) =

exp (−x
′

β)
[
t exp−(x

′

β)
]( a

σ−1)
exp

{
−

[
t exp−(x

′

β)
] 1
σ

}
σΓ(a)

.

When σ = 1, T ∼ Γ(a, exp−(x
′

β)), and this corresponds to the gamma regression model.

The generalized gamma model also includes the exponential model when σ = a = 1, and

the Weibull model when a = 1. The log-normal model is also a limiting special case as

a → ∞. The hazard function of the generalized gamma distribution incorporates a variety

of shapes, as indicated by the special cases. However, the distribution of survival time is

most easily visualized in terms of the log survival time Y , that is, through the log-linear

model (1.11) (Kalbfleisch and Prentice, 2002).

Log-Logistic Model

If the error variable W ∼ logistic distribution, that is fw(w) = ew/(1 + ew)2, then the

log-linear model yields the log-logistic model. The PDF of T is

f (t) =
exp (−x

′

β)(t exp (−x
′

β))
1
σ−1

σ
[
1 +

(
t exp (−x′β)

) 1
σ

]2 .

This model has the advantage of having simple algebraic expressions for the survivor and
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hazard functions. The survivor and hazard functions are, respectively,

S (t) =
1

1 +
(
t exp (−x′β)

) 1
σ

,

and

h(t) =
exp (−x

′

β)
(
t exp (−x

′

β)
) 1
σ−1

σ(1 +
(
t exp (−x′β)

) 1
σ )

.

The log-logistic model thus is more convenient than the log-normal distribution in handling

censored data, “while providing a good approximation to it except in the extreme tails”

(Kalbfleisch and Prentice, 2002).

Generalized F Model

If the error variable W ∼ the logarithm of an F-distribution with 2m1 and 2m2 degrees

of freedom, then the resulting model from T through model (1.11) is the generalized F

distribution. This model incorporates all the foregoing distributions as special cases, and

has the advantage that it can adapt to a wide variety of distributional shapes. For more

details, the reader can refer to Chapter 2 of Kalbfleisch and Prentice (2002).

There are, of course, other distributions that can be used to model survival data, such

as the Gompertz hazard model. All these models are specified through the form of the log-

linear model Y = x
′

β + σW, which means that the regression variables have multiplicative

effect on the survival time T directly. The likelihood approach is often used for inference

on the coefficients. Rank based tests are another alternative to the likelihood approach and

the reader can refer to Chapter 7 of Kalbfleisch and Prentice (2002).

The accelerated failure time model with unspecified error distribution can be consid-

ered as a semi-parametric model, similar to the semi-parametric Cox proportional hazards

model. “Although rank tests for censored data for testing β = β0 under the semi-parametric

accelerated failure model are readily carried out, the corresponding estimation problem is
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generally more challenging” (Kalbfleisch and Prentice, 2002). The method for this project

is based on the semi-parametric Cox proportional hazards model, therefore we will have a

more thorough introduction of the Cox model in the next section.

1.4 Modeling Univariate Survival Data - Semi-parametric

Procedure

We have shown in Section 1.3 two major modeling techniques to explore the dependence

of survival on explanatory variables: modeling the survival time directly (through the log

survival time), or modeling the hazard function directly. Each modeling approach can be

of interest for use in its own right, and it is not the purpose of this project to compare them

with each other. We will focus on the latter approach, however, because of the availablility

of efficient computational algorithms for the proportional hazards models.

1.4.1 The Cox Proportional Hazards Model

Assume the hazard of failure at a particular time depends on the values x1, x2, · · · , xk of k

explanatory variables X1, X2, · · · , Xk. The values of these variables will be assumed to have

been recorded at the time origin of the study. Let xi be the vector of explanatory variables

observed on the ith individual. As mentioned at the end of Section 1.3.1, let h0(t) be the

baseline hazard function, which is the hazard for an individual for whom the values of all

the explanatory varaibles are zero. Then the general proportional hazard model is

hi(t) = ψ(xi)h0(t) , (1.12)

where ψ(xi) is a function of the values of the vector of explanatory variables for the ith

individual. The dependence of survival on the explanatory variables is modeled through the

ψ(·) function. The ψ(·) function can be interpreted as the hazard at time t for an individual
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whose vector of explanatory variables is xi, relative to the hazard for an individual for

whom x = 0 where 0 denotes the vector of zeros (Collett, 2003). This model is also known

as the Cox proportional hazards model, or Cox regression model (Cox, 1972). Although the

model is based on the assumption of proportional hazards, no particular form of distribution

is specified for h0(t), and therefore it is referred to as a semi-parametric model.

The ψ(·) function, as the relative hazard, cannot be negative. There are different forms

for ψ(·), but the most commonly used is to take ψ(x) = exp (x
′

β). Thus model (1.12) leads

to

hi(t) = exp (β1x1i + β2x2i + · · · + βkxki)h0(t) = exp (x
′

iβ)h0(t) , (1.13)

where β j is the coefficient correponding to the jth explanatory variable ( j = 1, 2, · · · , k),

and its magnitude determines the significance of this variable on the hazard. Notice this

model can be re-expressed in the form

log
{

hi(t)
h0(t)

}
= β1x1i + β2x2i + · · · + βkxki = x

′

iβ .

Therefore the proportional hazards model may also be considered as a linear model for

the logarithm of the hazard ratio (Collett, 2003). Although it is not needed to specify the

distribution of T , the proportional hazards assumption for any pair of values of the explana-

tory variables is relatively strong. However, the Cox model actually encompasses a wide

class of models, as “further extensions of the model to allow stochastic time-dependent

explanatory variables are possible and important” (Kalbfleisch and Prentice, 2002).

1.4.2 Estimation of The Coefficients

The Partial Likelihood

The primary method of estimation for the Cox proportional hazards model is called

partial likelihood. Suppose that m failures are observed on the n individuals. Let t(1) <
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t(2) < · · · < t(m) be the ordered m failure times, assuming for now that only one failure can

happen at each failure time, that is, there are no ties in the data. Let R(t(l)) denote the risk

set which is the set of individuals who are alive and uncensored, and thus subject to failure

at the time a little prior to t(l). Consider the probability of an individual with associated

explanatory variables xi fails at t(l), conditional on t(l) being one of the failure times:

P
(
individual with variables x(l) fails at t(l)| one failure at t(l)

)
(1.14)

=
P
(
individual with variables x(l) fails at t(l)

)
P
(
one failure at t(l)

)
=

P
(
individual with variables x(l)fails at t(l)

)∑
l∈R(t(l)) P

(
individual l fails at t(l)

)
=

Hazard at t(l) for the individual with x(l)∑
a∈R(t(l))

(
Hazard at t(l) for individual a

)
=

hi(t(l))∑
a∈R(t(l)) ha(t(l))

,

where i indexes the individual who has variables x(l) and fails at t(l). It follows that

hi(t(l))∑
a∈R(t(l)) ha(t(l))

=
h0(t(l)) exp (x

′

(l)β)∑
a∈R(t(l)) h0(t(l)) exp (x′aβ)

=
exp (x

′

(l)β)∑
a∈R(t(l)) exp (x′aβ)

.

Therefore, the baseline hazard h0(t) cancels out, and the inference of β is not dependent on

h0(t). The partial likelihood is the product of the conditional probabilities over all the m
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failure times:

L(β) =

m∏
l=1

exp (x
′

(l)β)∑
a∈R(t(l)) exp (x′aβ)

. (1.15)

Individuals for whom the survival times are censored do not contribute to the numerator of

the partial likelihood function, but they are included in the summation over the risk sets at

failure times that occur before a censored time (Collett, 2003).

Now consider the data of the n individuals, and let t1, t2, · · · , tn be their observed times.

Let δi be a binary indicator for the ith individual (i = 1, 2, · · · , n), which is 0 if this individ-

ual is right-censored at ti, and 1 if failure happens at ti. Thus the partial likelihood function

in (1.15) can be expressed as

L(β) =

n∏
i=1

 exp (x
′

iβ)∑
l∈R(ti) exp (x′lβ)


δi

,

where R(ti) is the risk set at time ti. The corresponding log-likelihood function is given by

log L(β) =

n∑
i=1

δi

x
′

iβ − log
∑

l∈R(ti)

exp (x
′

lβ)

 . (1.16)

The estimates of the β-estimators in the Cox model shown in (1.13) can be obtained by

maximizing the above log-likelihood function; or equivalently, the estimates are solutions

to the vector equation

U(β) =
∂ log L(β)

∂β
=

m∑
l=1

x(l) −

∑
a∈R(t(l)) xa exp x

′

aβ∑
a∈R(t(l)) exp x′aβ

 = 0 . (1.17)

The U(β) is the so-called score vector. The equation can be solved using numeric proce-

dures, such as the Newton-Raphson method (Collett, 2003).

Treatment of Ties

The construction of the partial likelihood is based on the assumption of no ties among
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the survival times, however, it is not uncommon to observe tied survival times. In addition,

there might also be one or more censored observations at a failure time. When both cen-

sored survival times and failures occur at a given time, the censoring is often assumed to

occur after all the deaths, and therefore there is no ambiguity concerning which individuals

should be included in the risk set at this time. When there are tied failures observed, the

exact partial likelihood at a tied failure time is constructed by breaking the ties in all possi-

ble ways and taking the average (Kalbfleisch and Prentice, 2002). Maximizing this partial

likelihood, however, is normally computationally intensive, particularly when the number

of ties is large at any failure time.

Some approximations to the exact partial likelihood have been proposed and are widely

used. One is by Breslow and Crowley (1974), and the approximate partial likelihood over

the m observed failure times of the n individuals is

L(β) ≈
m∏

l=1

 exp (s
′

lβ)[∑
a∈R(t(l)) exp (x′aβ)

]dl

 , (1.18)

where dl is the number of tied failures at t(l), l = 1, 2, · · · ,m, and sl is the vector of sums

of each of the k covariates for these dl individuals. That is, sl =

dl∑
h=1

x(l)h, where x(l)h

is the vector of covariates for the hth of the dl individuals who fail at t(l). Here the dl

failures at time t(l) are considered to be distinct and to occur sequentially. The probalilities

of all possible sequences of failures are then summed to give the above approximation

of the partial likelihood. (1.18) is quite straighforward to compute, and is an adequate

approximation when the number of tied observations at any one failure time is not too large

(Collett, 2003).

Another approximation method by Efron (1977) is to approximate the partial likelihood

as

L(β) ≈
m∏

l=1

exp (s
′

lβ)∏dl
h=1

[∑
a∈R(t(l)) exp (x′aβ) − (h − 1)d−1

l

∑
a∈D(t(l)) exp (x′aβ)

] , (1.19)
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where D(t(l)) is the set of all individuals who fail at time t(l). This is a closer approxima-

tion to the appropriate partial likelihood function than Breslow’s approximation method,

although in practice, both methods often give similar results (Collett, 2003). Most statisti-

cal packages for survival analysis provide the options of these two approximation methods

for the situation with tied failures.

1.4.3 Definition and Some Theory for Partial Likelihood

Cox (1972) introduced the concept of partial likelihood and Cox (1975) provided more for-

mal justification for the likelihood-like properties of the partial likelihood function (Crow-

der, 2001). The partial likelihood is not the ordinary likelihood function, however, the

estimates from maximizing the partial likelihood have asymptoic properties similar to the

traditional maximum likelihood estimators. Andersen and Gill (1982) used multivariate

counting process set-up to derive the asymptotic properties of the coefficients estimated

from the Cox partial likelihood. Gill (1984) provided “a readable illustration” of the tech-

niques behind the Cox model (Crowder, 2001). Here we introduce some basic theory about

the partial likelihood following Section 4.4.5 of Crowder (2001).

The generic set-up is as follows. Suppose the parameter set is denoted as θ, and let

θ = (β, φ), where β is the vectors of parameter of interest and φ is a vector of nuisance

parameters that is often of very high or infinite dimension. In some applications, φ can

be a nuisance function, such as the baseline hazard function h0(t) in the Cox regression

model (1.13), which is of inifinite dimension. Suppose further that the accumulating data

sequence can be formulated as dl = ((A1, B1), (A2, B2), · · · , (Al, Bl)) for l = 1, 2, · · ·m. Then
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the likelihood function can be written as

L(θ) = fθ(Dm) =

m∏
l=1

fθ(Al, Bl|Dl−1) (1.20)

=

m∏
l=1

fθ(Al|Dl−1, Bl) fθ(Bl|Dl−1)

=

m∏
l=1

fθ(Al|Dl−1, Bl) ×
m∏

l=1

fθ(Bl|Dl−1)

= P(β) × Q(θ) ,

where fθ is a generic notation for a probability density or mass function. P(β) is called

the partial likelihood of β based on Al in the sequence {Al, Bl}. Normally Q(θ) depends to

some extent on β and therefore contains some residual information about β. Cox’s justifi-

cation for ignoring Q(θ), in the case of the proportional hazards model, is that this residual

information is unavailable because β and φ are inextricably entangled in Q(θ) (Crowder,

2001). The partial likelihood P(β) =
∏m

l=1 fθ(Al|Dl−1, Bl) arises as the product of condi-

tional probability statements, but is not directly interpretable as a likelihood in the ordinary

sense. In general, “it cannot be given any direct probability interpretation as either the

conditional or the marginal probability of any event. Nonetheless, in many instances it can

be used like an ordinary likelihood for purpose of large-sample estimation in that the usual

asymptotic properties formulas and the properties associated with the likelihood function

and likelihood estimation apply” (Kalbfleisch et al.2002).

In the proportional hazards set-up, the distinct observed failure times are t(1) < t(2) <

· · · < t(m) and the censoring times during the interval [t(l), t(l+1)) are tls (s = 1, 2, · · · , sl),

where sl is the number of censored observations during this interval. Assuming no ties,

the individual who fails at time t(l) has index il, and those censored during [t(l), t(l+1)) have

indices ils (s = 1, 2, · · · , sl). Let Cl = {tls, ils : s = 1, 2, · · · , sl} comprise the full record of

censored cases during the interval [t(l), t(l+1)). Now take Al = {il} and Bl = {Cl−1, tl} in the

above factorization of L(θ). Then fθ(Al|Dl−1, Bl) is just the conditional probability in (1.14),
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and so P(β) is the L(β) in (1.15).

The score function of the partial likelihood is

U(β) =
∂ log P(β)

∂β
=

m∑
l=1

∂ log fβ(Al|Dl−1, Bl)

∂β
=

m∑
l=1

Ul(β) .

Under usual regularity conditions, and conditional on {Dl−1, Bl}, fβ(Al|Dl−1, Bl) is a density

function (Kalbfleisch et al.2002), so it can be shown that

U(β) ∼ N(0, I(β)) as m→ ∞ ,

where I(β) is the expected information matrix:

I(β) = −E

∂2log fβ(Al|Dl−1, Bl)

∂β∂β
′

 . (1.21)

Let β̂ be the maximum partial likelihood estimator obtained from solving U(β) = 0,

and let Iobs(β) = −∂2 log L(β)/∂β∂β
′

be the observed information matrix from the partial

likelihood. Under certain conditions (Crowder, 2001, Page 75), β̂ is consistent for the true

parameter β
0
; and the asymptotic distribution of β̂ is

β̂ ∼ N
(
β

0
, I(β

0
)
)

as m→ ∞ ,

where I(β
0
) is the information matrix in (1.21) evaluated at β

0
. In practice, I(β

0
) can be

estimated by Iobs(β). In the Cox proportional hazards model (1.12), with ψ(x) = exp (x
′

β),

the conditions for the asymptotic properties are usually met.

For more discussions about the large sample properties for partial likelihood estima-

tors, the reader can refer to Chapter 4 of Crowder (2001) and Chapter 4 of Kalbfleisch et

al.(2002). Specifically, for the asymptotic properties of the partial likelihood estimators in

the Cox model, the reader can refer to Andersen and Gill (1982) and Gill (1984), in which
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counting process theory was used to rigorously derive the large sample properties.

1.5 Some Topics about Multivariate Survival Data

So far the methods for survival analysis we have discussed are applicable to the situation

when there is one single (possibly censored) failure time of the same type on each study

subject, and the different subjects are assumed to be independent. This is what we call uni-

variate survival data. In some applications, the survival data observed might be of more

complex structures, such as the so-called multivariate survival data (Hougaard, 2000). The

fundamental characteristic of multivariate survival data is that independence between sur-

vival times cannot be assumed, which adds complexity when modeling and analyzing the

data.

One structure of multivariate survival data involves recurrent events. That is, a single

individual might experience the same event multiple times during the study period. The

failure times observed on the same individual apparently cannot be assumed to be inde-

pendent. One simple example arises for times to tumor recurrence among patients of a

certain type of cancer. The shared frailty model presented in Chapter 9 of Hougaard (2000)

is exclusively for analyzing recurrent events data. Chapter 9 of Kalbfleisch and Prentice

(2002) also provides methods which directly model the intensity process corresponding to

the recurrent events. The rationale of these methods is quite intuitive with some knowledge

about counting process theory.

Another situation when multivariate survival data arise is multi-state data. Similar

to the recurrent events data, multiple failure times are observed on a single individual,

however, these times correspond to the occurrence of events of distinct types. Generally

the life history of an individual under study may involve multiple types of failures that

happen longitudinally. For example, a patient in a study might be first observed to have a

certain disease, and the patient is followed until death. The patient therefore experiences
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two events: the disease and the death. He or she is transitioned from the state of being

free of the disease, to the state of being diseased, and then to the state of being dead.

Chapter 5 and 6 of Hougaard (2000) elaborates different scenarios of multi-state data and

the corresponding modeling techniques. Kalbfleisch and Prentice (2002) also provides

models based on Markov process in Chapter 8.

In some studies, although each individual is only observed with one event, the sur-

vival times of different individuals may not be independent, such as the times recorded

on members from the same family, or the data generated from multi-center studies. The

frailty model has the flexibility for modeling this kind of correlated (or clustered) data and

is presented in Chapter 7 and 8 of Hougaard (2000). The model of jointly modeling the

correlated survival times within a cluster is described in Chapter 10 of Kalbfleisch and

Prentice (2002).

One more type of multivariate survival data is competing risks. Each individual is

observed with one failure time, however, the failure may be one of several distinct failure

types; or the failure happens because of one of multiple causes, that is, the different causes

are competing to be the final reason for the failure to happen on the patient. With competing

risks data, three problems might be of interest (Kalbfleisch and Prentice, 2002): 1. To

estimate the relationship between some explanatory variables and the rate of occurrence of

failures of specific types (or causes). 2. To study the interrelation between failure types. 3.

To estimate failure rates for certain types of failure given the removal of some or all other

failure types. “Strictly speaking, however, competing risks data is not multivariate survival

data, as only one time is observed on each subject, and thus it is likely impossible to study

the dependence between failure types” (Hougaard, 2000). This fact determines that only

under some specific study conditions, the three problems of interest, especially the last two

problems, can be answered. The reader can refer to page 249 of Chapter 8 in Kalbfleisch

and Prentice (2002) for a more detailed discussion.

This project focuses on analyzing competing risks data, and the main purpose is to
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study the association between explanatory variables and the failures caused by different

reasons. In the next chapter, we will introduce more about competing risks, including the

mathematical notation and some modeling techniques.



Chapter 2

More About Competing Risks

In Chapter 1, we introduced the topic of survival analysis and reviewed some popular mod-

eling techniques for univariate survival data. Some topics where multivariate survival data

arise were also introduced at the end of Chapter 1. In this chapter, we will discuss in detail

the specific topic of competing risks. We start with Section 2.1 to introduce the probabilis-

tic framework for the description of competing risks survival data. The hazard functions

for competing risks are defined in Section 2.2. The modeling techniques are introduced in

Section 2.3 and Section 2.4, including the traditional latent time variable approach and its

limitation, and the hazard based approach - the proportional hazards model for competing

risks. Two examples, one derived from a prostatic cancer clinical trial and the other from

an ongoing NIH (National Institutes of Health) funded project studying hepatitis C virus

(HCV) infected patients diagnosed with hepatocellular carcinoma (HCC), are presented in

Section 2.5 to illustrate the situation where competing risks can arise in real-world research.

2.1 Introduction of Competing Risks

The earliest recorded attempt at modeling competing risks involved analyzing cause-specific

mortality from smallpox, among other diseases, in order to estimate the effectiveness of

smallpox vaccination by Bernoulli in 1760. Seal (1977) and David and Moeschberger

(1978) provide more work in the field. Even though the field of statistics has made exten-

26
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sive progress in modeling time-to-event data, specifically, modeling time-to-event in the

presence of competing risks is relatively new (Crowder, 2001).

In classical competing risks, the observed outcome is denoted as (T,C), where T rep-

resents the time to failure and C represents the cause of failure. Similar to traditional

univariate survival modeling approaches, T is a continuous random variable. However,

in traditional survival analytic models, C often is a dichotomous variable indicating that

the individual either experienced the event or was censored. In competing risks models,

C represents the cause of failure and hence is a discrete random variable taking one of a

fixed (normally small) number of values, labeled as 1, 2, · · · , p. Therefore, for our compet-

ing risks models, the survival outcome is from a bivariate distribution with one continuous

component and one discrete component. It is a key feature of competing risks that to every

failure one and only one cause can be assigned from the given set of p causes, that is, the

different causes (or failure types) compete to be the final cause of failure. For example, in

the field of renal transplantation, C can be the cause of graft failure and T is the time from

transplant until graft failure. Competing risks modeling is also useful for applications in

other fields, such as the field of engineering where C can indicate the failing component of

an electronic system.

The identifiable probabilistic framework for competing risks is the joint distribution of

C and T , which can be specified through the so-called sub-distribution function F( j, t) =

P(C = j,T ≤ t), or equivalently by the sub-survivor function S ( j, t) = P(C = j,T > t)

Crowder (2001). Note that the sum of F( j, t) and S ( j, t) is not unity, but F( j, t)+S ( j, t) = p j,

where p j = P(C = j) = F( j,∞) = S ( j, 0) is the marginal distribution of C and is the

probability of cause j to “win”. Thus F( j, t) is not a proper distribution function. It is

assumed that p j > 0 and
∑p

j=1 p j = 1. The sub-density function for T corresponding to

cause j is f ( j, t) = −dS ( j, t)/dt.

The marginal survivor function and marginal density function of T can be calculated
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from

S (t) =

p∑
j=1

S ( j, t) ,

and

f (t) =
−dS (t)

dt
=

p∑
j=1

f ( j, t) .

Some related conditional probabilities may be of interests in real-world contexts. The

conditional probability P(failure at t|cause j) = f ( j, t)/p j, for instance, provides the distri-

bution of time to graft failure from cause j in the aforementioned renal transplant example;

the conditional probability P(cause j|failure at t) = f ( j, t)/ f (t), provides the probability of

graft failure from cause j at a specified time; or P(C = j|T > t) = S ( j, t)/S (t), for example,

gives the probability of ultimate graft failure from cause j for a patient observed at time t

post-transplant.

2.2 Hazard Functions in Competing Risks

The hazard function corresponds to the conditional instantaneous rate of failure and is

defined in subsection 1.1.1 for univariate survival data. There are various hazard functions

describing probabilities of imminent failure associated with the competing risks set up: the

overall hazard function from all failure types (or causes) and the failure type specific (or

cause specific) sub-hazard function.

2.2.1 Sub-Hazard and Overall Hazard

The Overall Hazard
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The overall hazard function is defined as:

h(t) = lim
δt→0

P(T ≤ t + δt|T > t)
δt

(2.1)

= lim
δt→0

S (t) − S (t + δt)
S (t)δt

=
f (t)
S (t)

=
−d log S (t)

dt
,

where T is the random variable representing time to failure, and failure can be due to one

of the p failure types.

The sub-hazard

The hazard function for failure due to cause j, in the presence of all p risks, is defined

as:

h( j, t) = lim
δt→0

P(C = j,T ≤ t + δt|T > t)
δt

(2.2)

= lim
δt→0

S ( j, t) − S ( j, t + δt)
S (t)δt

=
f ( j, t)
S ( j, t)

,

So h(t) =
∑p

j=1 h( j, t).

As mentioned in Section 1.5, sometimes in applications it is of interest to assess the con-

sequence of changes in certain risks. For example, in oncology, neo-adjuvant chemotherapy

in combination with surgery may improve survival for patients with breast cancer compared

to surgery alone. Suppose during a time period I = (a, b), the sub-hazard h( j, t) of cause j

is increased whereas the sub-hazards of other risks are not changed, one would intuitively

expect that the overall probability of failure in period I is increased, while the relative prob-

ability of failure from a cause other than j in I is decreased (Crowder, 2001). The following

theorem (Kimball, 1969) states this formally. And the opposite conclusions would hold if

h( j, t) were decreased over I.
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THEOREM 2.1 (Kimball (1969)). Suppose that for the interval I = (a, b),
∫ b

a
h(C, t) is

increased for C = j only. Then,

(i) PI , the probability of failure in I = (a, b), conditional on survival to enter I, is

increased;

(ii) PI j′ , the probability of failure in I from cause j′, conditional on entry to I, is de-

creased for j′ , j.

The proofs follow from Crowder (2001) with some additional details. We have

PI = P(a < T ≤ b|T > a)

=
(S (a) − S (b))

S (a)

= 1 − exp
{
−

∫ b

a
h(t)dt

}
,

using Equation (1.3). Since obviously h(t) =
∑p

j=1 h( j, t) is increased with the increase in

the specified sub-hazard, so the exponential term is decreased. Thus (i) is verified.

For (ii), we have

PI j′ = P(C = j′, a < T ≤ b|T > a)

=
(S ( j′, a) − S ( j′, b))

S (a)

=

∫ b

a
f ( j′, t)dt

S (a)

=

∫ b

a

h( j′, t)S (t)
S (a)

dt .

Since h( j′, t) is not changed, and from (i), S (t)/S (a) is increased, hence we get the result in

(ii). �

As for univariate survival data, modeling of competing risks survival data can be speci-

fied directly in terms of the sub-hazards, other than the sub-survivor function or sub-density

function. Next we will particularly introduce the concept of proportional hazards in the
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context of competing risks.

2.2.2 Proportional Hazards in Competing Risks

If the relative risk of failure from cause j at time t, h( j, t)/h(t), is independent of t for

each j( j = 1, 2, · · · , p), then proportional hazards are said to be obtained. This means

that as time goes on, “the relative risks of the various causes of failure stay the same, none

increasing its share of the overall risk, though the overall risk might change along time”

(Crowder, 2001).

The following theorem states some conditions where proportional hazards is obtained.

THEOREM 2.2 (Elandt-Johnson (1976); David and Moeschberger (1978); Kochar and

Proschan (1991)). The following conditions are equivalent:

(i) proportional hazards is obtained;

(ii) the time and cause of failure are independent;

(iii) h( j, t)/h( j′, t) is independent of t for all j and j′, j, j′ = 1, 2, · · · , p;

If either condition holds, then h( j, t) = p jh(t), or equivalently, f ( j, t) = p j f (t), or

F( j, t) = p jF(t)

The proof follows what is outlined on Page 13 of Crowder (2001).

Part (ii) of the theorem indicates that failure during some particular period does not

make it more or less likely to be from cause j than failure in another period. In many areas

of application, however, this probably would be an exceptional situation. For example,

in public health sciences, the relative risks of cot death, and senile dementia might be

expected to differ with age (Crowder, 2001). But the concept of proportional hazards is still

attractive, as the proportional hazards assumption often is reasonable at least in a piecewise

fashion along the time scale (Chiang (1961), David (1970), Seal (1977)).
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2.3 Modeling Continuous Competing Risks Data - The Tra-

ditional Latent Lifetimes Approach and Its Limitation

The specification of competing risks survival data that we presented in Section 2.1 and 2.2

is based on the joint modeling of the failure time and the failure cause (or failure type).

The traditional route is based on assigning a set of latent lifetime variables corresponding

to the multiple failure causes. Although this approach is intuitive at first sight, it is either

accompanied by the additional assumption of independence between these latent lifetimes,

which may not be applicable to real applications; or without the independence assumption,

there is a certain issue of model identifiability presented in detail in Chapter 7 of Crowder

(2001).

2.3.1 Introduction of Latent Lifetimes

In the traditional approach for describing competing risks survival data, it is assumed that

there is a potential failure time associated with each of the p risks to which an individual

is exposed. Let T j denotes the time to failure from cause j ( j = 1, 2, · · · , p). Then the

smallest T j ( j = 1, 2, · · · , p) determines the time T to overall failure, and we use its index C

to denote the cause of failure, i.e., T = min {T1,T2, · · · ,Tp} = TC. Once the individual has

failed, the remaining lifetimes corresponding to the individual causes are lost to observation

(Crowder, 2001).

The joint distribution of the random vector T = (T1,T2, · · · ,Tp) is used to statistically

describe the competing risks data. The joint distribution function is defined as G(t) =

P(T ≤ t) = P(T1 ≤ t1,T2 ≤ t2, · · · ,Tp ≤ tp); and similarly, the joint survivor function

is G(t) = P(T > t). If the T j ( j = 1, 2, · · · , p) are jointly continuous, the joint density is

∂pG(t)/∂t1∂t2 · · · ∂tp, or equivalently, (−1)p∂pG(t)/∂t1∂t2 · · · ∂tp.
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Independence of the T js is defined by

G(t) =

p∏
j=1

G j(t j) ; (2.3)

or equivalently,

G(t) =

p∏
j=1

G j(t j) , (2.4)

where G j(t j) = P(T j ≤ t j) is the marginal distribution function of T j and G j(t j) = P(T j > t j)

is the marginal survivor function of T j, where T j corresponds to the time to failure due to

cause j specifically.

It will be assumed that T j ( j = 1, 2, · · · , p) are continuous and that ties cannot happen,

that is, P(T j = T j′) = 0 for all j , j′, otherwise C is not easily defined (refer to Section 7.2

of Crowder (2001)).

2.3.2 Marginal Distribution of the Latent Failure Times and the Sub-

distribution

In the older terminology, the sub-survivor function S ( j, t), defined in Section 2.1, was called

the crude survivor function; and the marginal distribution function G j(t) was called the

net survivor function. These two ways of modeling competing risks survival data are not

irrelevant. If the joint survivor function G(t) of T has known form, then the overall survivor

function S (t) can be obtained as G(t1p), where 1p = (1, 1, · · · , 1) is of length p. Moreover,

the following theorem shows the relation between the sub-density function and the joint

survivor function of the latent failure times.

THEOREM 2.3 (Tsiatis (1975)). The sub-density function can be calculated directly from
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the joint suvrivor function of the latent failure times as

f ( j, t) =
∂G(t)
∂t j

|t1p
. (2.5)

The proof of the theorem can be found on Page 38 of Crowder (2001) and is omitted

here.

It follows from the theorem that the sub-hazard function can also be calculated directly

from the joint survivor function of the latent time variables G(t) as

h( j, t) =
f ( j, t)
S (t)

=
−∂log G(t)

∂t j
|t1p

.

2.3.3 The Identifiability Crisis of Latent Failure Times Approach

Describing competing risks from the point of view of latent lifetimes seems very natural,

and statistically, one can specify a parametric model for the joint multivariate distribution

of the latent time variables G(t), fit it to the data, and do the inference, etc. However, one

problem of the approach of latent time variables is that the G j(t) ( j = 1, 2, · · · , p) do not

describe events that physically occur - “they only describe failures from isolated causes in

situations where all the other risks have been removed somehow” (Crowder, 2001). It is

the S ( j, t), the sub-distributions, not the G j(t), the marginal distribution of latent variables,

that are truly observed in the real situation. Moreover, it often happens that the whole

mechanism is changed after the removal of the other causes, and therefore it is not valid to

assume that when T j is observed without other competing risks, its distribution is the same

as its marginal distribution derived from the joint distribution (Crowder, 2001). Even more

so, without the assumption of independence between the latent times, which is often the

reality, the modeling of latent times can have a serious identifiability problem brought out

by Cox (1959). Cox (1959) studied various parametric models with two causes, and Tsiatis

(1975) extended to the general case of p risks. They showed that, “given any joint survivor
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function with arbitrary dependence between the component variates (i.e., the latent times),

there exists a different joint survivor function in which the variates are independent and

which reproduces the sub-densities f ( j, t) precisely” (Crowder, 2001). This implies that

from the same set of observations on (C,T ) alone, we can have two different models that

fit the data equally well; that is, model identifiability problem arises with the latent time

variables approach. The following theorem theoretically describes this problem. The proof

follows that in Chapter 7 of Crowder (2001) with additional details and correction of a

mistake, and can be found in the appendix.

THEOREM 2.4 (Tsiatis (1975)). Suppose that the set of S ( j, t) is given for some model

with dependent risks. Then there exists a unique proxy model with independent risks yield-

ing identical S ( j, t). It is defined by G(t) =
∏p

j=1 G
∗

j(t j), where G
∗

j(t j) = exp
{
−

∫ t

0
h( j, s)ds

}
and the sub-hazard functiion h( j, s) derives from the given S ( j, t).

The theorem establishes only that to each dependent-risks model there corresponds a

unique independent-risks proxy model with the same sub-survivor functions. Moreover, it

has been shown (Crowder, 1991) that each independent-risks model actually has a whole

class of satellite dependent-risks models and that this class can be further partitioned into

sets with the same marginal functions. Therefore, “it is not possible to obtain from the

observations of (C,T ) unique information about the distributions of cause-specific failure

times or on the dependence structure between them” (Crowder, 2001). An exception is the

case of regression model where there are explanatory variables in the model, identification

is possible within a certain framework (Heckman and Honor, 1989), though Kalbfleisch

and Prentice (2002, page 261) pointed out that it is still more straightforward to consider

only specifying the cause-specific hazards since in fact only the cause-specific hazards (i.e.

sub-hazards) enter the likelihood function and they are all that is needed to specify the joint

distribution of the failure time and the cause (T,C).

For more discussions and some examples about the problem of non-identifiability, the

reader can refer to Chapter 7 of Crowder (2001).
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2.4 Modeling Continuous Competing Risks Data - The Haz-

ard Based Approach

The traditional latent failure time approach has been heavily criticized by Prentice et al.

(1978) and Kalbfleisch and Prentice (2002). The main criticism has been that the joint

survivor function suffers from the aforementioned identifiability problem. The fact that

strong untestable assumptions are needed about the nature of the failure mechanism and

the effect of cause removal is another weakness of the latent failure time approach. In

addition, the existence of hypothetical latent failure times is highly questionable.

In Section 6.1 of Crowder (2001), the author partially defended for the traditional latent

time approach over the aforementioned strong arguments by Prentice et al. (1978) and

Kalbfleisch and Prentice (2002). A doctrine brought out by the author, however, is that “one

should set up models only for observable phenomena”, i.e., “a kind of what you see is what

you set” doctrine; and his main recommendation lies on the hazard-based (specifically,

sub-hazard) approach as “models for processes evolving over time can be developed much

more naturally in terms of hazards than multivariate survivor functions. Thus one can deal

with quite complex situations that would be difficult, even intractable, from the traditional

point of view”. Section 6.2 and 6.3 of Crowder (2001) provided some nice examples of

parametric modeling of the hazard function, and also some non-parametric methods. Here

we will review in detail the semi-parametric proportional hazards regression model for

competing risks.

2.4.1 Proportional Hazards Model for Competing Risks

The ordinary Cox proportional hazards model for univariate survival data is h(t, x) =

ψ(x)h0(t) (Equation (1.12)), where h0 is an unspecified baseline hazard function and ψ(x)

is a positive function of the vector x of explanatory variables, such as the commonly used
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ψ(x) = exp x
′

β. There is a difference between what is meant by “proportional hazards” in

traditional Cox proportional hazards model compared to proportional hazards as defined

in the subsection 2.2.2 for competing risks survival data. However, the cause-specific sub-

hazard from the competing risks model can be rewritten to mimic the more familiar Cox

proportional hazards model.

Following the notation used in Section 1.4, for the ith individual, the sub-hazard func-

tions for the j = 1, 2, · · · , p causes are specified as

h( j, t; xi) = ψ j,ih0( j, t) , (2.6)

where the h0( j, t), j = 1, 2, · · · , p, form a set of baseline sub-hazards that not necessar-

ily need be explictly specified, and ψ j,i = ψ j(xi; β
j) is some positive function of both xi,

the vector of explanatory variables for the ith individual, and β j, the associated vector of

regression coefficients corresponding to cause j. One popular choice of the ψ function is

ψ j,i = exp x
′

iβ
j. The parameter vector, i.e., the vector of coefficients, in the full model thus

is

β =
(
β1

1, β
1
2, · · · , β

1
k ; β2

1, β
2
2, · · · , β

2
k ; · · · ; βp

1 , β
p
2 , · · · , β

p
k

)′
of length k× p, where k is the number of explanatory variables. Since the same explanatory

variable may have different effects on the different risks, it is reasonable to assume that the

β j, j = 1, 2, . . . , p, vectors are independent of each other. In practical applications, one

may want to seek for a parsimonious model by testing for restrictions on the β js, such as

β1 = β2, or some particular components of β j are zero.

The construction of the partial likelihood is similar to that for univariate proportional

hazards model described in subsection 1.4.2. Suppose that m failures are observed on the

n individuals. Let t(1) < t(2) < · · · < t(m) be the ordered m failure times, with t0 = 0 and

tm+1 = ∞, assuming for now that only one failure can happen at each failure time, that is,
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there are no tied failure times in the data, and let R(t(l)) be the risk set at time t(l).

The probability that individual i ∈ R(l) fails from cause j in the time interval (t(l), t(l) +dt]

is h( j, t(l); xi)dt. Suppose that t(l) is the failure time of the individual il, and the observed

cause being cl. Given the events up to time t−(l), and given that there is a failure of type cl at

time tl, the conditional probability that, among all the individuals in R(t(l)), it is individual

il who fails, is

h(cl, tl; xil
)dt∑

a∈R(t(l)) h(cl, tl; xa)
=

ψcl,il h0(cl, t)(∑
a∈R(t(l)) ψcl,a

)
h0(cl, t)

(2.7)

=
ψcl,il∑

a∈R(t(l)) ψcl,a
,

where
∑

a∈R(t(l)) is the summation over individuals in the risk set at t(l), and baseline sub-

hazard function, as in the partial likelihood of univariate proportional hazards model in the

subsection 1.4.2, have canceled out. The corresponding partial likelihood function thus is,

P(β) =

m∏
l=1

(
ψcl,il∑

a∈R(t(l)) ψcl,a

)

The maximum partial likelihood estimator of β can be obtained by maximizing P(β)

over β, or equivalently, by solving the equation that the score function equals zero (i.e.

U(β) = ∂log P(β)/∂β = 0). Large-sample inference can be conducted by treating log P(β)

as a log-likelihood function in the usual way. Under usual regularity conditions, the inverse

of the observed information matrix I(β) = −∂2log P(β)/∂β∂β
′

provides an estimate for the

variance-covariance matrix of β.

The set-up of the partial likelihood of the proportional hazards model for competing

risks also conforms to the generic theory about the partial likelihood described in the sub-

section 1.4.3. Here we take Al = {il}, and Bl = {Cl−1, t(l), cl}, then the fθ(Al|Dl−1, Bl) in

Equation (1.20) is just the conditional probability in Equation (2.7).

For more details about this topic, including the proportional hazards model for com-
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Figure 2.1: Survival Outcomes of the Prostate Cancer Study

peting risks using the counting process framework, the reader can refer to Section 6.4 and

Section 8.10 of Crowder (2001), and Section 8.2 of Kalbfleisch and Prentice (2002).

2.5 Examples of Competing Risks Problems

2.5.1 Prostatic Cancer Data

The prostatic cancer data were obtained from a randomized clinical trial conducted in the

late 1960’s comparing four treatments for patients with advance-staged prostatic cancer

(Stage 3 and 4). The trial was double-blinded and the treatments were placebo pill, 0.2 mg

diethylstilbestrol (DES), 1.0 mg of DES, or 5.0 mg of DES, all drugs administered daily by

mouth. The patients were followed at 6 month intervals according to a standard protocol or

more frequently if required. The survival outcomes of 506 patients were collected during

the trial, and the outcomes were categorized into different categories of diseases. Figure

2.1 summarizes the categorization of the survival outcomes.

It can be seen from Figure 2.1 that each patient was subject to the risks of multiple kinds
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of diseases, such as prostate cancer, cardiovascular disease, and others; while only one kind

of disease was ascribed to be the reason for the patient to die. The figure graphically shows

the competing risks structure of the data.

Also recorded during the trial were some pretreatment covariates, including age, weight,

and variables regarding to the health situation of the patients. This dataset has been col-

lected in Andrews and Herzberg (1985) and has been a classical example about competing

risks survival problem arising from real-world research. Multiple groups of researchers

have analyzed these data (Byar and Corle, 1977), or used the data to illustrate their pro-

posed methods for analysis of competing risks problem (Kay (1986), Lunn and McNeil

(1995), Ng and McLachlan (2003), and others).

2.5.2 Hepatitis C Virus (HCV) Infected Patients Diagnosed with Hep-

atocellular Carcinoma (HCC) Data

These data originate from Dr. Robert A. Fisher’s National Institutes of Health/National

Institute of Diabetes and Digestive and Kidney Diseases funded project “Genes related

to Hepatocellular (HCC) progression in living donor and diseased donor liver transplant”

(R01DK069859). HCC is a worldwide prevalent malignancy, with more than 500,000 fatal-

ities annually (El-Serag and Mason (1999), Davila et al. (2003), and El-Serag (2002)). The

major risk factor for the development of HCC is hepatitis B virus (HBV) infection (Block

et al., 2003), followed by hepatitis C virus (HCV) infection. HCV has high incidence rate

in the United States, with about 3 million Americans estimated to be chronically infected.

Even though causative factors are known, the molecular mechanism that leads to malig-

nant transformation of hepatocytes is not understood. In oncology, it is recognized that

tumor development and progression involve multi-level genetic changes. Multiple molec-

ular studies have shown that genomic changes accumulate during the development and

progression of HCC (Marsh and Dvorchik (2003), Gross-Goupil et al. (2003), Tseng et al.

(2003), and Guan et al. (2003)). Because patients with HCC arising from chronic cirrhosis
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Figure 2.2: Survival Outcomes of the HCC+HCV Study

due to HCV infection essentially have a non-functioning liver, liver transplantation is the

only viable treatment option. Unfortunately, there is a shortage of donor livers available

compared to the number of patients on the liver transplant waitlist, so that 30% of patients

will progress and be removed from the waitlist prior to an organ becoming available (Gores,

2003). Until organ availability improves, transplantation for HCC can only be offered to

patients whose survival is predicted to be similar to that in patients transplanted for benign

diseases. One specific aim of the funded project is to examine the genes that are implicated

in tumor progression in patients with HCV and HCC while waiting for liver transplantation.

After a patient is diagnosed with HCV+HCC and waitlisted for liver transplantation, the

tumor may progress while the patient is on the waitlist; or liver transplantation may be per-

formed if an appropriate donor is available before progression is observed; or the patients

may die without progression, or still be waiting for transplantation. Therefore, progression,

transplantation and death are competing events for the patient, and the problem can thus

be described as competing risks survival data. The survival outcomes are summarized in

Figure 2.2, which graphically presents the competing risks structure of the data.

Due to the shortage of donor organ supply for liver transplantations, it is of interest to
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explore the hypothesis that establishment of a molecular-based method for the classifica-

tion of HCV+HCC patients at diagnosis may permit the differentiation between patients

who will and will not have tumor progression, and thus allow a better accuracy in select-

ing patients for treatment cure with liver transplantation. The platform for gene expression

measurement is Affymetrix HG-U133A or HG-U133A2 GeneChip microarray. The tumor

tissue was biopsied from each patient after diagnosis of HCC, and hybridized to the mi-

croarray following the relevant protocol to obtain the gene expression measurements. To

date the data of 46 patients have been collected, and the study is continuing with a tar-

get enrollment of 150 HCV infected patients with HCC. The anticipated progression rate

among the patients is about 40%. It is of interest to identify the subset of genes that might

be relevant to tumor progression and thus may be potential markers for prognosis.



Chapter 3

Review of Penalized Regression Model for Variable

Selection

In this chapter, we formally introduce penalized regression models which have been found

to be useful in improving prediction accuracy of model parameter estimates. With an ap-

propriate choice of the penalty, this approach can effectively shrink the parameter estimates

such that some estimates are shrunken to be exactly zero. Therefore this method can be used

for variable selection without undertaking a forward, backward, or best subset variable se-

lection procedure. In Section 3.1, the definition of penalized linear regression model is

introduced. In Section 3.2, a specific penalized regression model based on the L1 norm of

the coefficients, also known as the “lasso” method is introduced. In Section 3.3, the lasso

method applied to Cox proportional hazards model for survival data analysis is introduced.

Finally, an algorithm specifically proposed for estimation in lasso models is reviewed in

Section 3.4.

3.1 Introduction of Penalized Regression Model

Consider the linear regression model

yi = β0 + β1x1i + β2x2i + · · · + βkxki + εi = β0 + x
′

iβ + εi , (3.1)

43
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where i = 1, 2, · · · , n indexes the observations, yi is a continous response for the ith obser-

vation, xi = (x1i, x2i, · · · , xki)
′

is the vector of k explanatory variables for the ith observation,

β0 is the intercept term, β = (β1, β2, · · · , βk)
′

is the vector of coefficients corresponding to

the k explanatory variables, and ε1, ε2, · · · , εn are i.i.d random variables with mean 0 and

variance σ2. Equation (3.1) can be more compactly expressed using matrix notation, where

the model is written as

y = Xβ + ε ,

where y is the vector of response, X is the n×(k+1) design matrix whose first column are all

1’s (corresponding to the intercept term) and the remaining k columns are the k observed

explanatory variables for the n observations, β is the vector of coefficients, and ε is the

vector of random errors. Without loss of generality, we assume the explanatory variables

are standardized so that the mean and variance of each variable are 0 and 1, respectively.

The ordinary least squares (OLS) estimates of β are solutions of

min
n∑

i=1

(yi − β0 −

k∑
j=1

xi, jβ j)2 , (3.2)

which is equivalent to seeking the solutions to the normal equation X
′

Xβ = X
′

y. The

OLS estimator of the coefficients are also the maximum likelihood estimator (MLE) if in

model (3.1) we assume the random errors εi (i = 1, 2, · · · , n) are normally distributed. The

OLS estimates are unbiased estimators but may suffer from the problem of large variance,

especially when the explanatory variables are correlated.
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The penalized regression model is

β̂ = arg min
β

n∑
i=1

(yi − β0 −

k∑
j=1

x j,iβ j)2 (3.3)

such that
k∑

j=1

|β j|
γ ≤ s ,

that is, a constraint on the Lγ norm of the coefficients is applied on the OLS model to shrink

the coefficient estimates. The constraining parameter (or tuning parameter ), s, if allowed to

tend to infinity, results in the OLS model. For all s, the solution for β0 is β̂0 =
∑n

i=1 yi/n = y,

so without loss of generality, we can center the outcome so that hereafter we assume that

y = 0 and hence omit the intercept term β0.

Equivalently, with Lagrange multiplier theory, Model (3.3) can be expressed as

β̂ = arg min
β

n∑
i=1

(yi −

k∑
j=1

x j,iβ j)2 + λ

k∑
j=1

|β j|
γ , (3.4)

where γ > 0 and λ is the tuning parameter (corresponding to s in Model (3.3) though not

equal to s) whose value determines the magnitude of penalty on the sum of squared errors.

The penalty term
∑k

j=1 |β j|
γ, which is the γ-norm of the coefficients, can be generalized

to other forms of functions of the coefficients to achieve certain purposes. The estima-

tors from the penalized regression model (3.4) were called Bridge estimators in Frank and

Friedman (1993) where they were introduced as a generalization of the well known ridge

regression (Knight and Fu, 2000). Ridge regression is a popular procedure for “combating

multicollinearity in linear regression models” (Myers, 1990). It is often known to be the

procedure that introduces a little bias into the diagonal of X
′

X in order to reduce the large

variance of the parameter estimates. That is, ridge estimators are the solution of

(X
′

X + dI)β = X
′

y (3.5)
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where d is like the tuning paramter λ in Model (3.4). The choice of d often is taken to be

the value where stability of the coefficient estimates shows up on the plot of ridge trace

(Hoerl and Kennard, 1970).

Another aspect of ridge regression is that it, in fact, is the penalized regression model

based on L2 norm of the coefficients, that is, Model (3.3) or Model (3.4) with γ = 2. This

can be shown if we keep in mind that the normal equation is obtained by differentiation

of the equation (y − Xβ)
′

(y − Xβ), which is matrix notation for the function in Equation

(3.2). If we reversely integrate both sides of Equation (3.5) with respect of β, then we can

obtain the equivalent L2 penalized regression model having the form in (3.4). Although the

L2 penalized estimators (i.e. the ridge estimators) are biased, compared to OLS estimators,

they may have smaller variance and thus may be better estimates in terms of the criterion

of prediction accuracy.

Knight and Fu (2000) established the asymptotic properties of the penalized linear re-

gression estimators under different situations of the penalty term (0 < γ ≤ 1, or γ > 1).

When γ ≤ 1, “the limiting distribution of the penalized estimators suggests that the esti-

mates of truly 0 coefficients are shrunken to be exactly 0 with positive probability”(Knight

and Fu, 2000). With this property, the model with γ = 1 is especially attractive as the opti-

mization problem in Model (3.4) remains to be a convex problem. In fact, Tibshirani (1996)

proposed the “lasso” model (Least Absolute Shrinkage and Selection Operator) which es-

sentially is the L1 penalized linear regression model, and showed that the lasso model, as

ridge regression, can yield better prediction accuracy compared to OLS estimators. An-

other attractive advantage of the lasso model is that it shrinks the coefficient estimates and

some are shrunken to be exactly 0, which indicates its usefulness as a method for iden-

tifying the subset of variables that are significantly associated with the response. In the

following sections, we will present additional details about the lasso model and its function

as a variable selection method.
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3.2 L1 Penalized Regression Model - Lasso

3.2.1 Estimation Shrinkage by Lasso

The lasso model by Tibshirani (1996) is

β̂ = arg min
β


n∑

i=1

yi −

k∑
j=1

β jxi j


2 (3.6)

st.
k∑

j=1

|β j| ≤ s

The tuning parameter s ≥ 0 controls the amount of shrinkage that is applied to the es-

timates. If we let β̂0
j represent the OLS estimate of β j ( j = 1, 2, · · · , k), then the tuning

parameter that will result in no shringkage is given by s0 =
∑k

j=1 |β̂
0
j |. Model (3.6) with

s < s0 will cause shrinkage of the coefficient estimates towards 0, and some coefficient

estimates may be exactly equal to 0. For example, if we let s = s0/2, approximately half

of the coefficient estimates will be shrunken to 0, which is a convenient way of identifying

the best subset of variables of size k/2.

Ridge regression which uses the penalty
∑k

j=1 β
2
j ≤ s also shrinks the coefficient es-

timates, however, the coefficient estimates often are not shrunken to be exactly 0. The

rationale behind the different effect between the L1 penalty and the L2 penalty was ge-

ometrically explained by Tibshirani (1996) for a scenario that contains two explanatory

variables, using the plot shown in Figure 3.1. The objective function
∑n

i=1

(
yi −

∑k
j=1 β jxi j

)2

in the lasso model (3.6) equals the quadratic function (in matrix notation)

(β − β̂
0
)
′

X
′

X(β − β̂
0
)

plus a constant, where β̂
0

is the OLS estimates of β. The elliptical contours of this quadratic

function are shown in Figure 3.1 (a) and (b) by the full curves and they are centered at the
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OLS estimates β̂
0
. The constraint region in lasso, determined by

∑k
j=1 |β j| ≤ s, is the rotated

square in Figure 3.1 (a). Therefore, the lasso solution is the first place where the contours

hit the square, and this will sometimes occur at a corner, yielding a zero coefficient estimate.

The constraint region in ridge regression, determined by
∑k

j=1 β
2
j ≤ s, as shown in Figure

3.1 (b), is a circle with no corners for the contours to touch, and therefore zero solutions

will rarely occur.

Another way to understand the shrinkage effect of the penalty is from the Bayes point

of view. As we mentioned earlier, Model (3.6) is equivalent to (Murray et al. 1981)

β̂ = arg min


n∑

i=1

yi −

k∑
j=1

β jxi j


2 + λ

k∑
j=1

|β j| . (3.7)

|β j| is actually proportional to the minus log-density of the double exponential distribution.

As a result, the lasso estimate can be derived as the Bayes posterior mode under indepen-

dent double-exponential priors for the β js, where the density is

f (β j) =
1
2τ

exp
(
−
|β j|

τ

)
,

where τ = 1/λ. Note that ridge regression corresponds to independent N(0, 1/λ) priors

for the β js (refer to section 7.4.3 of Wang and Chow (1994)). The comparison between the

double-exponential density and the normal density (with the same scale parameter) explains

the difference in shrinkage effect between the lasso and ridge regression. Figure 3.2 shows

the density curves of these two distributions. It can be seen that “the double-exponential

density puts much more mass near 0 and in the tails, and this reflects the greater tendency

of the lasso to produce estimates that are either large or exactly 0” (Tibshirani, 1996).

3.2.2 Asymptotics of Lasso Linear Regression Model

Knight and Fu (2000) studied the asymptotic properties for lasso type estimators. Their
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(a)

(b)

Figure 3.1: Geometric explanation of estimation for (a) lasso linear model (b) ridge regres-
sion (Reproduced from Figure 2 in Tibshirani (1996))
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Figure 3.2: Density curves of double-exponential and normal distribution (scale parameter
is 1) (Reproduced from Figure 7 in Tibshirani (1996))

discussions and conclusions are established for the general penalized least squares model

(Model (3.4)) covering different kinds of penalty terms (in terms of the value of γ). A

distinguishing feature of Model (3.4) when γ ≤ 1 is the possibility of obtaining exact

zero parameter estimates. When γ < 1, however, the objective function in (3.4) is not

convex and thus it is computationally challenging to obtain the estimates, especially when

the number of coefficients k is large. “There may be multiple local minima of the objective

function where it is nondifferentiable” (Knight and Fu, 2000). Therefore, in this subsection,

we explicitly focus on the properties for the lasso linear regression model (Model (3.7))

discussed in the earlier subsection.

Following the notation in Model (3.7), we denote the tuning parameter λ as λn as it is of

interest to discuss the asymptotic property of the model. Further we assume the following

regularity conditions,

Dn =
1
n

n∑
i=1

xix
′

i → D , (3.8)
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where xi = (xi1, xi2, · · · , xik)
′

is the vector of explainatory variables observed on the ith

sample. D is a nonnegative definite matrix and

1
n

max
1≤i≤n

x
′

i xi → 0 . (3.9)

Normally in practice, the explanatory variables can be standardized so that the diagonal

elements of Dn (and hence the diagonal elements of D) are all 1. The conditions in (3.8)

and (3.9) ensure that Dn stabilizes at a constant when n → ∞. We will also assume D

is nonsingular, that is, the design matrix X is of full column rank. The following two

theorems state the consistency and the limiting distribution of the lasso estimator β̂
n
. The

proofs follow the proofs in Section 2 of Knight and Fu (2000) with additional details.

THEOREM 3.1. If λn/n → λ0 ≥ 0, then β̂
n

P
→ β

0
, where β

0
denotes the vector of true

parameters.

Proof: Consider

Zn(β) =
1
n

n∑
i=1

(
yi − xi

′β
)2

+
λn

n

k∑
j=1

|β j|

Also let

Z(β) = (β − β
0
)
′

D(β − β
0
) + λ0

k∑
j=1

|β j|

Note that the unique minimizer of Z(β) is β
0
, the vector of true parameters.
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For the first part in Zn(β), we have

1
n

n∑
i=1

(
yi − xi

′β
)2

=
1
n

n∑
i=1

[
(yi − x

′

iβ0
) + (x

′

iβ0
− x

′

iβ)
]2

(3.10)

=
1
n

 n∑
i=1

(yi − x
′

iβ0
)2 + (β

0
− β)

′

n∑
i=1

xix
′

i(β0
− β) + 2

n∑
i=1

(yi − x
′

iβ0
)x
′

i(β0
− β)


=

1
n

n∑
i=1

ε2
i + (β

0
− β)

′

Dn(β
0
− β) + 2

1
n

n∑
i=1

εix
′

i(β0
− β)

where εi (i = 1, 2, · · · , n) are the i.i.d random errors assigned in Model (3.1), with mean 0

and variance σ2.

By law of large numbers, 1
n

∑n
i=1 ε

2
i

P
→ σ2, and 1

n

∑n
i=1 εix

′

i(β0
− β)

P
→ 0. Therefore, if

λn/n→ λ0 ≥ 0, it follows that

sup
β∈K
|Zn(β) − Z(β) − σ2|

P
→ 0 ,

where K is any compact set of the parameter space Rk.

Then applying Corollary II.2 in Andersen and Gill (1982), the minimizer of Zn(β),

which is our lasso estimate β̂
n

by definition, converges to the minimizer of (Z(β) − σ2)

(hence Z(β)). That is,

β̂
n

P
→ β

0
.

�

THEOREM 3.2. If λn/
√

n→ 0, then

√
n(β̂

n
− β

0
)

D
→ N(0, σ2D−1) .
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Proof: Following the steps in (3.10), we let

Qn(β) =

n∑
i=1

(
yi − xi

′β
)2

+ λn

k∑
j=1

|β j|

=

n∑
i=1

ε2
i + n(β

0
− β)

′

Dn(β
0
− β) + 2

n∑
i=1

εix
′

i(β0
− β) + λn

k∑
j=1

|β j| .

Let u =
√

n(β − β
0
), then

Qn(β) =

n∑
i=1

ε2
i + u

′

Dnu − 2

 n∑
i=1

εiu
′

xi

 /√n + λn

k∑
j=1

|β j| .

Note that u
′

Dnu → u
′

Du, and by central limit theorem (Lindeberg-Feller) (Lin et al.,

1999),

−2

 n∑
i=1

εiu
′

xi

 /√n
D
→ −2u

′

w , (3.11)

where w is a random vector of length k and w ∼ N(0, σ2D). Also we have

λn

k∑
j=1

|β j| =
λn
√

n

k∑
j=1

|
√

nβ j + u j| −
√

n|β j| . (3.12)

If λn/
√

n→ 0, then (3.12)→ 0.

If we let

Q(β) =

n∑
i=1

ε2
i + u

′

Du + −2u
′

w ,

then Qn(β)
D
→ Q(β).

The minimizer of Q(β) is u = Dw ∼ N(0, σ2D−1), and the minimizer of Qn(β) is

û =
√

(n)(β̂ − β
0
) (by definition). Since Qn(β) is convex and Q(β) has a unique minimum,
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it follows Geyer (1996) that

arg min(Qn(β))
D
→ arg min Q(β) .

That is,
√

n(β̂ − β
0
)

D
→ N(0, σ2D−1). �

For more discussion when the design matrix is singular and nearly singular, the reader

can refer to Knight and Fu (2000).

3.2.3 Some Discussion

The OLS estimator is also the maximum likelihood estimator (MLE) if in Model (3.2) the

random errors are normally distributed. Penalizing the residual sum of squares with the

L1 norm, as in the lasso model (3.7), is equivalent to penalizing the likelihood function (or

log-likelihood) with the same kind of penalty. Thus the lasso linear regression model can

be easily generalized to a generalized linear model with an L1 penalty on the likelihood

function to perform coefficient estimation and variable selection. For example, applying

the L1 penalty in the logistic regression model, the penalized estimates, compared to the

ordinary MLE, will be shrunken and some coefficient estimates may be shrunken to be

exactly 0. Interested readers can refer to Section 8 of Tibshirani (1996) for lasso in gen-

eralized regression models, where an example of L1 penalized logistic regression was also

provided.

The tuning parameter in lasso controls the magnitude of the penalty on the residual sum

of squares (or the likelihood function), and in effect determines the number of coefficient

estimates that will be shrunken to be exactly 0. The limiting conditions about the magni-

tude of λ (Model (3.7)) in the afore-presented theorems are required for the consistency

and limiting distribution of the lasso estimates. However, in practice, we have to decide an

appropriate value of λ (or tuning parameter) to use for calculating the coefficient estimates.

In Tibshirani (1996), the author proposed to use the tuning parameter value that minimizes
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the prediction error as estimated by cross-validation or through linear approximation of the

lasso estimate. Another method the author proposed is based on Stein’s unbiased estimate

of risk (Stein, 1981), where the value of tuning parameter is chosen to minimize the ap-

proximate unbiased estimate of the risks of mean-square error of the β estimates. Other

criterion for evaluation of model fitness can be used to choose the λ value, such as the

Akaike information criterion (AIC) (Akaike, 1973) or the Bayesian information criterion

(BIC) (Schwarz, 1978). Most of these criteria are based on prediction accuracy. Leng et al.

(2006) shows that prediction-accuracy-based criteria alone are not sufficient for the purpose

of variable selection using lasso in linear regression problems. When the analysis purpose

is variable selection, selection of an optimal tuning parameter value for variable selection

procedure has yet to be examined.

Efron et al. (2004) proposed a new model selection algorithm for linear regression

model called “least angle regression” (LARS). Their work also establishes the connection

between the lasso linear model and LARS, which is that “a simple modification of the

LARS algorithm implements the Lasso. The LARS algorithm requires only the same or-

der of magnitude of computational effort as OLS estimation, and thus can be an efficient

method for estimating the coefficient estimates in lasso linear regression model”.

3.3 Lasso in Cox Model

The nature and shrinking effect in parameter estimation of the L1 penalty (in fact Lγ, γ ≤ 1)

make it appealing as a variable selection method for other statistical settings. One important

application is the lasso method for variable selection in the Cox model for survival data

analysis (Tibshirani 1997). The L1 penalty is applied on the maximization of the partial

likelihood for the Cox proportional hazards model, and the some of the parameter estimates

will be estimated exactly as 0, and thus realize the function of variable selection.

Following the set up for survival data in Section 1.4, we consider the commonly-used
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exponential form of the proportional hazards model shown in Equation (1.13), that is, the

hazard is modeled as

hi(t) = exp (β1x1i + β2x2i + · · · + βkxki)h0(t) = exp (x
′

iβ)h0(t) , (3.13)

where h0(t) is the baseline hazard and not necessarily be specified.

Usually the coefficients β = (β1, β2, · · · , βk)
′

corresponding to the k explanatory vari-

ables can be estimated through maximization of the log partial likelihood (or minimization

of the minus log partial likelihood function) (refer to subsection 1.4.2)

l(β) = log L(β) =

n∑
i=1

δi

x
′

iβ − log
∑

l∈R(ti)

exp (x
′

lβ)

 . (3.14)

Without loss of generality, we assume that the explanatory variables are standardized

so that the mean and standard deviation of each variable are 0 and 1, respectively.

The L1 penalized Cox model is (Tibshirani 1997)

β̂ = arg min
{
−l(β)

}
(3.15)

st.
k∑

j=1

|β j| ≤ s ,

where s > 0 is a user-specified tuning parameter. Suppose β̂
0

= (β̂0
1, β̂

0
2, · · · , β̂

0
k) denote

the maximizers of the log partial likelihood (3.14). Then if s ≥
∑k

j=1 |β̂
0
j |, the solutions to

(3.15) are the usual maximum partial likelihood estimates. If s <
∑k

j=1 |β̂
0
j |, however, the

solutions to (3.15) are shrunken toward zero. As in the linear regression model setting, an

attractive feature of the constraint based on L1 norm of the coefficients is that often some

of the estimated coefficients are exactly zero, and therefore Model (3.15) can be used for

variable selection. In addition, compared to stepwise and best subset selection procedures

where variables enter (or leave) the model discretely, the L1 penalty is constraining all

the variables simultaneously, and thus variable selection is performed in a more smooth
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manner.

Note that the adoption of the exponential form of the relative risk in (3.13) guarantees

that the objective function in Model (3.15) is still convex, which makes easier the compu-

tation to seeking for solutions of the optimization problem.

Equivalently, using Lagrange multiplier method for the constrained optimization prob-

lem in (3.15), the L1 penalized Cox model can be written as

β̂ = arg min
{
−l(β)

}
+ λ

k∑
j=1

|β j| , (3.16)

where λ ≥ 0 is the tuning parameter (as s in (3.15) but not equal to s) that controls the

magnitude of penalty and thus determines the number of nonzero coefficient estimates.

When λ = 0, the solutions to (3.15) are just the ordinary maximum partial likelihood

estimates.

Tibshirani (1997) performed a simulation study and confirmed that the lasso Cox model

can better pick up those truly 0 coefficients (i.e., their lasso estimates are 0) in comparison

to a stepwise selection procedure. Fan and Li (2002), using counting process theory, es-

tablished the asymptotic properties of penalized Cox proportional hazards models which

encompass the lasso model based on L1 penalty. Interested Readers can refer to Tibshirani

(1997) for more details about the lasso Cox model and two real applications of the method.

Another example of applying this model for variable selection can be found in Gui and

Li (2005), where the authors performed a penalized Cox regression analysis on the high-

dimensional gene expression microarray data for selecting the subset of genes associated

with survival phenotype.
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3.4 L1 Regularization Path Algorithm for the Calculation

of the Lasso Estimates

So far we have not thoroughly discussed how to compute the lasso estimates (either in lin-

ear regression or Cox survival model). We briefly mentioned the LARS algorithm (Efron

et al. 2003) that can be used for estimation in lasso linear regression model. Tibshirani

(1996, 1997) proposed some algorithms for estimation, however, these algorithms are only

applicable when X
′

X (X is the design matrix) is non-singular. When the number of obser-

vations n is smaller than the number of explanatory variables k, the design matrix is not

of full column rank, and thus those algorithms cannot be applied. Here we will specifi-

cally review the L1 regularization path algorithm for generalized linear models (including

the lasso Cox model ) by Park and Hastie (2007), which can be used for high-dimensional

problems where n ≤ k.

The optimization problem in Park and Hastie (2007) is

β̂(λ) = arg min
β

{
− log L(β) + λ||β||1

}
, (3.17)

where L(β) can be the likelihood function for the linear model in (3.1), or the likelihood

function for a generalized linear model, or the partial likelihood for the Cox proportional

hazards model in (3.13); and ||β||1 =
∑k

j=1 |β j| is the L1 norm of the coefficient vector.

We illustrate the algorithm using the generalized linear model set-up. Suppose the

response variable y follows a distribution in the exponential family with mean µ =E(Y)

and variance V =Var(Y). The generalized linear model is modeling the mean of Y linearly

dependent on the explanatory variables through a link function g(·):

η = g(µ) = β0 + x
′

β .
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Then the likelihood of Y can be expressed through the natural parameter θ = θ(β) as (Mc-

Cullagh and Nelder, 1999):

L(y; θ, φ) = exp
{
([yθ − b(θ)]/a(φ) + c(y, φ)

}
,

where φ is the dispersion parameter of the distribution of Y and is assumed to be known,

and the functions a(·), b(·), and c(·) are dependent on the distribution of Y . Then Model

(3.17) is

l(β, λ) = −

n∑
i=1

{
yiθ(β)i − b(θ(β))i

}
+ λ||β||1 (3.18)

For a given λ, (3.18) is a convex function of β, and β̂(λ) which minimizes l(β, λ) should

be unique. To seek for the solutions β̂(λ), we can differentiate l(β, λ) with respect of β and

let the derivative equal 0, that is, let

H(β, λ) = 0 , (3.19)

where

H(β, λ) =
∂l(β, λ)

∂β
= −X

′

W(y − µ)
∂η

∂µ
+ λsgn(0, β1, β2, · · · , βk)

′

,

where X is the design matrix of dimension n×(k+1) (including the first column of 1’s), W is

a diagonal matrix of dimension n×n and the ith diagonal element is V−1
i

(
∂µ

∂η

)2

i
, and (y−µ) ∂η

∂µ

is a vector of length n with the ith (i = 1, 2, · · · , n) element being (yi −µ)
(
∂η

∂µ

)
i
. Solutions to

Equation (3.19) can be calculated using iterative procedures, such as the Newton Raphson

algorithm (Agresti, 2003).

The goal of the L1 regularization algorithm (Park and Hastie, 2007) is to “compute

the entire solution path for the coefficients β with λ varying from ∞ to 0”. The authors
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showed that when λ exceeds a threshold (refer to their Lemma 2.1), i.e. when the penalty

is too large, all of the explanatory variables’ coefficient estimates will be zero and only the

estimate of the intercept term β0 is non-zero. This threshold thus is used to initialize the

computation in their algorithm. When λ decreases from the starting value, some variables

will join the active set (the set of variables whose coefficient estimates are non-zero). The

estimation of coefficients at each value of λ is performed with a “predictor” step and a

“corrector” step. And the values of λ at which the estimations are conducted are the values

where changes, in comparison to the active set estimated at the immediate prior value of

λ, of the active set happen. The authors summarized the computation at each iteration (say

the mth) into four steps:

1. Step length: determine the step length for decrement of λ. Given the current value

of λm, the approximate step length to λm+1 at which the active set of variables would

change is calculated using the weighted LARS algorithm (Efron et al. 2003). Briefly,

the correlation between each variable and the residuals at the current iteration can be

expressed as a function of λ; thus the change of λ will change the correlations of the

variables. The minimum change of λ, such that there is at least one variable from the

non-active set whose absolute correlation is changed to be as those in the active set

(and thus this variable would enter the active set), hence can be obtained and serves

as the step length for the next iteration.

2. Predictor step: with the updated λ value λm+1, linearly approximate the correspond-

ing change in the coefficient estimates β̂
m

for the variables in the active set, and thus

obtain the updated estimates corresponding to λm+1, denote them as β̂
m+

. Note the

estimation of β is dependent on λ, meaning β is a function of λ. Using Taylor expan-

sion to linearly approximate this function, the change of λ from λm to λm+1 will yield

the updated coefficient estimates β̂
m+

.

3. Corrector step: using β̂
m+

as the starting value, find the exact solution of coefficients
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at λ = λm+1 for the variables in the active set, and denote it as β̂
m+1

. This step is

essentially solving Equation (3.19) with λm+1 using the variables in the current active

set. As mentioned earlier, any iterative procedure for solving non-linear equations

can be applied. The β̂
m+

from the corrector step normally is close to the exact solution

and thus provides an efficient start for the calculation of β̂
m+1

.

4. Active set: check to see whether the active set of variables has been changed with

the updated estimates β̂
m+1

. For each variable not in the active set, use condition (13)

of Park and Hastie (2007) to judge whether this variable should be added into the

active set. If the active set is modified, repeat the corrector step with the variables

in the newly updated active set and obtain their estimates. If the new estimate of a

variable in the updated active set becomes 0, then this variable will be removed from

the active set.

The algorithm iterates with the above four steps at each iteration until λ reaches 0. From

the description of the steps, we can see that the algorithm does not perform parameter

estimation with all the variables simultaneously in the model, rather it only attempts to

estimate the variables joined in the active set (which means the coefficient estimates for

the variables not in the active set are all zero). Therefore, the algorithm can be applied to

problems where n ≤ k.

When the explanatory variables are highly correlated, the diagonals of (X
′

X)−1 will be

large, and hence the coefficient estimates from the L1 penalized model (3.17) will be highly

unstable. Park and Hastie (2007) proposed to add a small fixed penalty based on the L2

norm of the coefficients, that is, they actually seek the solution of

β̂(λ) = arg min
β

{
− log L(β) + λ||β||1 +

s0

2
||β||22

}
,

where s0 is a small positive constant (default in their algorithm is 1e-5). The effect of

this fixed L2 penalty is as that in ridge regression, to reduce the variability of parameter
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estimates when the variables are correlated. When the correlations are small, the effect of

the very small quadratic penalty is trivial.

The rationale of the algorithm for L1 penalized Cox model is the same as that for the

generalized linear model, and reader can refer to the appendix of Park and Hastie (2007)

for more details.

The authors implemented their algorithm as an R package “glmpath” and made it pub-

licly available for downloading. The availability of this software makes the algorithm es-

pecially appealing to use, and is also the main reason that we adopted this algorithm in this

thesis work.



Chapter 4

Model Development for Variable Selection in Competing

Risks

We have reviewed in Chapter 1 the background material pertaining to survival analysis and

introduced some special situations where multivariate survival data arise. In Chapter 2, we

exclusively discussed the competing risks multivariate survival data, including the prob-

abilistic description of the data and the modeling approaches for studying the association

between explanatory variables and the survivals of different failure types (or risks). The two

examples, the prostatic cancer data and the HCC data, exemplify the competing risks prob-

lems that arise in real research. From these two examples, especially the HCC study, we

see the need for selecting the subset of explanatory variables (the genes in the HCC study)

that are influential on the survival times corresponding to specific failure types. Chapter

3 provides a review of penalized regression techniques, expecially the L1 penalized model

which can be used for variable selection in different settings, such as linear regression and

Cox proportional hazards models. In this chapter, we start Section 4.1 by explicitly stating

the problem of interest in this thesis. In Section 4.2, we propose our model for solving

the problem, followed by the estimation algorithm and asymptotic properties of the model.

Numerical simulations are used to evaluate the proposed model, and the simulation mech-

anism and results are described in Section 4.3.

63
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4.1 The Problem of Interest

Assume there are p failure types (or risks). Each individual is subject to failure from

these p failure types, though only one type of failure is observed for each individual. That

is, we have competing risks survival data. Also measured are k explanatory variables at

the time origin on each individual. The problem of interest is to identify the subset of

explanatory variables that are significantly associated with each failure type or some

specific failure types.

4.2 The Proposed Model

Let T denote the variable for the observed time, which is the length of time from the pre-

defined time of origin until failure or censoring; and let C be the discrete random variable

for the failure types. Suppose there are n individuals, and T = ti is the observed time on the

ith individual. The failure can be of p types, labeled as 1, 2, · · · , p; and let C = ci denote

the failure type observed on the ith individual. Let di be the censoring indicator for the ith

individual where di = 0 if the individual is censored, and di = 1 if the failure is observed.

Further suppose there are k explanatory variables, and let x be the vector of length k for the

explanatory variables. Then xi is the vector of explanatory variables observed on the ith

individual.

4.2.1 The Proposed Model

The probabilistic aspect in modeling the competing risks is the joint distribution of T and C

(Crowder, 2001). It is specified through the sub-survivor function S ( j,T ) or the sub-hazard

function h( j, t) for j = 1, 2, · · · , p, as defined in Section 2.2. This approach of modeling

competing risks data does not require the assumption of independence between the different

failure types. Our variable selection method is based on the proportional hazards regression
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model for competing risks presented in Section 2.4. For the completeness of presentation

of our methodological development for variable selection, we write down the model here:

h( j, t; x) = ψ j,xh0( j, t) for j = 1, 2, · · · , p ,

where h0( j, t) is an unspecified baseline sub-hazard corresponding to failure type j, ψ j,x =

exp (x′β j) is the function through which the effect of the explanatory variables on the sub-

hazards is specified, β j = (β j
1, β

j
2, · · · , β

j
k)
′ is the k × 1 vector of coefficients of the explana-

tory variables corresponding to failure type j. Thus

β =
(
β1

1, β
1
2, · · · , β

1
k ; β2

1, β
2
2, · · · , β

2
k ; · · · ; βp

1 , β
p
2 , · · · , β

p
k

)
is the overall vector of coefficients in the model based on data of all p types of failure and

needs to be estimated. The baseline sub-hazard h0( j, t) for cause j is not required to be

proportional to the baseline sub-hazard h0( j′, t) for another cause j′ where j , j′. Since the

same explanatory variable may have different effects on the different types of failures, it is

reasonable to assume that the β j, j = 1, 2, · · · , p, vectors are independent of each other.

Let t(1) < t(2) < · · · < t(m) be the ordered m observed failure times on the n individuals.

From the subsection 2.4.1, the overall partial likelihood function for all individuals is

P(β1, β2, · · · , βp) =

m∏
l=1

ψcl,il∑
a∈R(t(l)) ψcl,a

=

m∏
l=1

exp (xil
′βcl)∑

a∈R(t(l)) exp (xa
′βcl)

, (4.1)

where il is the index for the individual who fails at t(l), and the corresponding failure type is

cl; R(t(l)) is the set of individuals at risk of failure type cl at the time just prior to t(l). Note as

in the partial likelihood of Cox model for univariate survival data, the baseline sub-hazards

h0( j, t), j = 1, 2, · · · , p, cancel out. Since they are independent of the explanatory variables

and the purpose is to evaluate the influence of the explanatory variables on the survival, the
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h0( j, t), j = 1, 2, · · · , p, are not of interest to be estimated.

The log partial likelihood then is

l(β1, β2, · · · , βp) = log P(β1, β2, · · · , βp) =

m∑
l=1

xil
′βcl − log

 ∑
a∈R(t(l))

exp (xa
′βcl)


 .

Adopting the idea of penalized likelihood, specifically, the penalty based on L1 norm of the

coefficients as in the method of “least absolute shrinkage and selection operator” (lasso) by

Tibshirani (1997), we propose using the following model for variable selection:

(β̂
1
, β̂

2
, · · · , β̂

p
) = arg max

β j,j=1,2,··· ,p
l(β1, β2, · · · , βp) (4.2)

st : ||β1||1 ≤ s1

||β2||1 ≤ s2

...

||βp||1 ≤ sp ,

where ||β j||1 = |β
j
1|+|β

j
2|+· · ·+|β

j
k| is the L1 norm of the coefficients vector β j that corresponds

to failure type j; s j, j = 1, 2, · · · , p, are tuning parameters that quantify the magnitude of

the constraints on the L1 norms of the coefficients vectors and determine the number of

coefficients estimated as zero in the model. Rather than constraining all the coefficients

simultaneously with one single tuning parameter, here we propose to use a different tuning

parameter for each vector of coefficients corresponding to each type of failure. This is more

intuitive since the influence on different failure types of the same explanatory variable can

be different and we are not interested in studying the effect of explanatory variables on the

overall survival without differentiating the failure types.

Model (4.2) is essentially an optimization problem with multiple constraints. Applying
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the Lagrange multipliers method, we obtain a model equivalent to (4.2):

(β̂
1
, β̂

2
, · · · , β̂

p
) = arg min

β j,j=1,2,··· ,p

−l(β1, β2, · · · , βp) +

p∑
j=1

λ j||β
j||


= arg min

β j,j=1,2,··· ,p

− m∑
l=1

xil
′βcl − log

 ∑
a∈R(t(l))

exp (xa
′βcl)


 +

p∑
j=1

λ j||β
j||


(4.3)

where λ j, j = 1, 2, · · · , p, are tuning parameters which determine the magnitude of penalty

on the log partial likelihood.

When p = 1, i.e. there is only one failure type, as is the case in univariate survival

analysis, model (4.2) reduces to the lasso model (3.15) for Cox regression as described

by Tibshirani (1997). Then the L1 regularization path algorithm for Cox model (Park and

Hastie, 2007) reviewed in the subsection 3.4 can be applied directly to compute the co-

efficient estimates. With competing risks, p > 1, and we have multiple constraints in

the variable selection model, which make it more complicated to estimate the model pa-

rameters. Next we will show that although the model is built upon the overall likelihood

encompassing the data of all failure types, with the choice of the form of the constraints,

model (4.2) can be expressed in terms of p components corresponding to the p types of

failure.

4.2.2 Estimation of the Model Parameters

Recall that we have m distinct failure times over the n individuals, denoted as t(1), t(2), · · · , t(m).

Among the ordered m times, let t j
(1), t

j
(2), · · · , t

j
(m j)

be the ordered failure times due to cause

j, j = 1, 2, · · · , p, where m j is the number of observed failures due to cause j, and∑p
j=1 m j = m. The contribution to the overall partial likelihood (4.1) from the failures

of type j is P j(β j) =
∏m j

l=1 m j

(
ψ j,i j

l
/
∑

a∈R(t j
(l))
ψ j,a

)
, where i j

l is the index of the individual

who fails at t j
(l) (of failure type j). It is a function only of β j and is independent of the
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coefficients corresponding to other failure types. The overall partial likelihood (4.1) then

can be expressed as the product of p components corresponding to the p failure types:

P(β1, β2, · · · , βp) =

m∏
l=1

ψcl,il∑
a∈R(t(l)) ψcl,a

=

m1∏
l=1

 ψ1,i1l∑
a∈R(t1(l))

ψ1,a

 × m2∏
l=1

 ψ2,i2l∑
a∈R(t2(l))

ψ2,a

 × · · · × mp∏
l=1

 ψ1,ip
l∑

a∈R(tp
(l))
ψp,a


=

p∏
j=1

P j(β j) .

The log partial likelihood thus is

l(β1, β2, · · · , βp) =

p∑
j=1

log P j(β j) .

Therefore, solving model (4.3) is equivalent to solving:

(β̂
1
, β̂

2
, · · · , β̂

p
) = arg min

β j,j=1,2,··· ,p

−
 p∑

j=1

log P j(β j)

 +

p∑
j=1

λ j||β
j||1


= arg min

β j,j=1,2,··· ,p

p∑
j=1

[
− log P j(β j) + λ j||β

j||1

]
. (4.4)

Because of the assumption that β j, j = 1, 2, · · · , p are independent of each other, the in-

ference from the component corresponding to failure type j, j = 1, 2, · · · , p, within the

summation in (4.4) does not depend on the inference from any other component within that

summation. This is equivalent to the problem that simultaneously minimizes p functions

Q j(β j), j = 1, 2, · · · , p, where

Q j(β j) = − log P j(β j) + λ j||β
j||1

= −

m j∑
l=1

xi j
l

′β j − log

 ∑
a∈R(t j

(l))

exp (xa
′β j)


 + λ j||β

j||1 .

(4.5)
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Therefore, we can seek the solutions for the p functions Q j(β j), j = 1, 2, · · · , p, individually

by applying any existing optimization algorithm that is available for computing the lasso

estimates in the Cox model for univariate survival data, such as the L1 regularization path

algorithm for Cox model by Park and Hastie (2007) reviewed in subsection 3.4.

However, special care is needed before applying the algorithm for the Cox model for

univariate survival data, since the risk set at any time point has to be clearly defined corre-

sponding to each failure type. Recall that in univariate survival analysis, the risk set at any

time t contains individuals who have not failed by t, and it is composed of two groups of

individuals: those who will fail at or after t, and those who will be censored at or after t.

Here in competing risks survival data, R(t j
(l)) in (4.5) is the risk set with respect to failure

type j at a time just prior to t j
(l) (the lth failure time due to cause j), and it is composed of

three groups of individuals: the group of individuals who fail due to failure type j at or after

t j
(l); the group of individuals who are censored at or after t j

(l); and the group of individuals

who fail after t j
(l) due to failure types other than j. For failure type j specifically, the last

two groups of individuals can both be considered as “censored” since their failure times of

type j are not observed. Therefore, before solving solutions for Q j(β j) using an algorithm

for univariate survival data, we need to manually create a binary status indicator specific to

each failure type for each individual, indicating whether the individual is observed to fail

of type j, or the individual is “censored” (i.e. truly censored or fail of other failure types).

Then the L1 regularization path algorithm (Park and Hastie, 2007) for Cox model with uni-

variate survival data can be applied for solving Q j(β j) in (4.5) to obtain coefficient estimates

corresponding to failure type j. For each failure type, we have to create its specific binary

status indicator, though this is not difficult to do in most programming environments. Be-

cause the nature of the path-following algorithm makes it possible to solve problems with

more explanatory variables than number of observations, we can also deal with competing

risks data with high-dimensional explanatory variables by using this algorithm.

It has been assumed so far that one and only one failure can happen at any observed
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failure time. When there are ties at the observed failure times, the scenario can be dif-

ferentiated into two situations. One situation is that only ties of the same type of failure

can happen at an observed failure time. Then any method of approximation to the exact

likelihood, such as methods by Breslow and Crowley (1974) and Efron (1977) described in

subsection 1.4.2, can be used. The other situation is that ties may happen of different types.

For example, two failures occur at time t, one of type j and the other of type j′. When

studying the effect of the explanatory variables on hazard for failure type j, we minimize

Q j(β j) in Equation 4.5, and the failure of type j′ is viewed as “censored”. Censored ob-

servations are often assumed to occur after all the failures, and thus there is no ambiguity

when minimizing Q j(β j) (Kalbfleisch and Prentice, 2002).

4.2.3 Aymptotic Properties of the Estimators

Since the estimation of the coefficients corresponding to one failure type is independent of

that for other types, and the number of failure types of interest is always fixed (and usually

small), we only need to discuss the asymptotic properties of the estimates corresponding

to one single failure type, which are equivalently the lasso estimates in the Cox model

with univariate survival data. Therefore, without loss of generality, we are concerned with

estimating the model when the number of failure types p = 1. The coefficient estimates are

obtained by minimizing Q(β) as the Q j(β j) in (4.5), i.e.

β̂ = arg min
β

(
−l(β) + λ||β||1

)
= arg min

β
Q(β) , (4.6)

where the j’s indexing the failure type in the superscript and subscript are omitted. l(β) =

log P(β) = log
[∏m

l=1

(
ψil/

∑
a∈R(t(l)) ψa

)]
is the log partial likelihood, where il is the index for

the individual who fails at t(l), and ψi = exp (xi
′β), and R(t(l)) is the set of individuals at risk

of failure type ci at the time just prior to t(l)

It will be shown in theorems that when the rate of the tuning parameter λ going to 0
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satisfies certain conditions, the L1 penalized partial likelihood estimators are consistent,

and they are asymptotically normally distributed. We will denote λ as λn since we are

interested in its convergence speed as n → ∞, where n still denotes the sample size. It is

implicitly assumed that the number of observed failures m → ∞ when n → ∞. Prior to

stating the theorems, let us review the intuition about the asymptotic properties of partial

likelihood estimators in general. Recall from subsection 1.4.3 that the data sequence can be

formulated as Dl = ((A1, B1), (A2, B2), · · · , (Al, Bl)) for l = 1, 2, · · ·m. Then the likelihood

function can be written as

L(θ) = fθ(Dm) =

m∏
l=1

fθ(Al, B j|Dl−1)

=

m∏
l=1

fθ(Al|Dl−1, Bl) ×
m∏

l=1

fθ(Bl|Dl−1)

= P(β) × Q(θ) .

Here, P(β) =
∏m

l=1 fθ(Al|Dl−1, Bl) is the partial likelihood. Consider the score components

Ul =
∂log f (Al|Hl; β)

∂β
, l = 1, 2, · · · ,m , (4.7)

where Hl = (Dl−1, Bl) is used to specify the conditioning variables for the lth term in (4.7).

So the total score arising from the overall partial likelihood P(β) is

U =
∂log P(β)

∂β
=

m∑
l=1

Ul .

Conditionally on Hl = hl, f (Al|hl; β) is a density function. Thus, under the usual regu-

larity conditions, we have E(Ul|Hl = hl) = 0. It follows that

E(Ul) = EE(Ul|Hl) = 0 .
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Further, let l < l′, the condition Hl = hl implies that Ul is fixed. Hence, for l < l′,

E(UlUl′
′) = EE(UlUl′

′|Hl′) = E[UlE(Ul′ |Hl′)] = 0 .

Therefore the score contributions U1,U2, · · · , have mean zero and are uncorrelated (Chap-

ter 4 of Kalbfleisch et al. 2002).

Specifically to the case of the Cox proportional hazards model, f (Al|hl; β) is the condi-

tional probability P
(
individual with variables x(l) fails at t(l)| one failure at t(l)

)
= ψil/

∑
a∈R(t(l)) ψa.

The partial likelihood is P(β) =
∏m

l=1

(
ψil/

∑
a∈R(t(l)) ψa

)
. Recall the notation l(β) = log P(β),

and let ll(β) = log
(
ψil/

∑
a∈R(t(l)) ψa

)
be the lth term in l(β). We now verify that the following

regularity conditions hold with the partial likelihood P(β) from the Cox model.

ASSUMPTION 1. P(β) is identifiable with respect to β, that is, ∀β , β′, P(β) , P(β′).

ASSUMPTION 2. Let β
0

be the vector of true values of β. In the neighborhood of β
0
,

the first order derivative, second order derivative, and the third order derivative of the log

partial likelihood l(β) exist for all x.

In the Cox model, with ψi = exp (x′β), it is not difficult to see that P(β) is identifiable,

and l(β) is a differentiable convex function of β (Chapter 4 of Crowder (2001)) , and the

first order, second order, and the third order derivatives all exist.

Let

u(β) =
∂l(β)

∂β
,

which is the score statistic (a vector of length k (the number of explanatory variables)). Let

uw(β) = ∂l(β)/∂βw be the wth element of u(β), w = 1, 2, · · · , k. Let

Aw =
∂2uw(β)

∂β∂β′
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which is a k × k matrix of the second order derivative of the score statistic u(β), and its

(w1,w2) component is ∂2uw(β)/∂βw1∂βw2 , w1,w2 = 1, 2, · · · , k.

ASSUMPTION 3. In the neighborhood of β
0
, |Aw| ≤ Z(x), where EZ(x) < ∞, w =

1, 2, · · · , k.

This assumption requires that the values of the explanatory variables are bounded. In

reality, the measurements of the explanatory variables are normally bounded, and thus this

assumption holds in the Cox model with ψi = exp (x′β).

ASSUMPTION 4. In the neighborhood of β
0
,

Eβ
0

∂P(β)/∂βw

P(β)

 = 0

Eβ
0

∂2P(β)/∂βw∂βw′

P(β)

 = 0 .

This assumption basically requires that the operations of integration and differentiation

are exchangeable. This is not a problem for the partial likelihood P(β) in the Cox model

with ψi = exp (x′β), since P(β) and its first order derivative are continuous with respect to

both x and β. Therefore,

Eβ
0

∂P(β)/∂βw

P(β)

 =
∂Eβ

0

(
P(β)/P(β)

)
∂βw

=
∂1
∂βw

= 0 .

Recall that ll(β) = log
(
ψil/

∑
a∈R(t(l)) ψa

)
denote the lth term in the log partial likelihood,

that is, l(β) =
∑m

l=1 ll(β).

ASSUMPTION 5. The information matrix is positive-definite in the neighborhood of β
0
.

That is,

Il(β0
) = Eβ

0
−

∂ll(β)

∂β

 ∂ll(β)

∂β

 ′ > 0 .
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And the total information matrix I(β
0
) =

∑m
l=1 Il(β0

) approaches infinity at the rate of

O(m) when m→ ∞.

THEOREM 4.1. Assume that (x1, t1, d1), (x2, t2, d2), · · · , (xn, tn, dn) are independent and

identically distributed according to the population (x,T,D), where x is the vector of ex-

planatory variables, T is the survival time, D is the variable for censoring status, and T

and D are conditionally independent given x. Assume that the regularity conditions in As-

sumption 1-5 hold, then for model (4.6), if when n → ∞, the number of failures m → ∞,

and the tuning parameter λn/n → 0, then there exists a local minimizer of Q(β), that is, β̂

exists and it is consistent for β
0
.

Proof: We have

Q(β) = −l(β) + λn||β||1 ,

where ||β||1 =
∑k

w=1 βw is the L1 norm of the vector of coefficients.

We want to show that in a close neighborhood δ of β
0
, where ||δ||1 ≤ δ0 a small constant,

we have,

1
n

(
−Q(β

0
+ δ) − (−Q(β

0
))
)
→ 0 , (4.8)

then there exists a local maximizer of −Q(β) near β
0
, which is the minimizer of Q(β),

denoted by β̂, and β̂→ β
0
.

1
n

(
−Q(β

0
+ δ) + Q(β

0
)
)

=
1
n

[
l(β

0
+ δ) − λn||β0

+ δ||1 −
(
l(β

0
) − λn||β0

||1

)]
=

1
n

[(
l(β

0
+ δ) − l(β

0
)
)

+
(
−λn||β0

+ δ||1 + λn||β0
||1

)]
≤

1
n

(
l(β

0
+ δ) − l(β

0
)
)

+
1
n
λn

∣∣∣∣||β0
+ δ||1 − ||β0

||1

∣∣∣∣ .
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Consider the Taylor approximation of l(β
0

+ δ) at β
0
,

l(β
0

+ δ) = l(β
0
) +

∂l(β)

∂β′
|β

0
δ + δ∗′

∂l2(β)

∂β∂β′
|β

0
δ∗ ,

where ||δ∗||1 < ||δ||1, that is, it is within the δ neighborhood of β
0
.

So

1
n

[
l(β

0
+ δ) − l(β

0
)
]

=
1
n

[
u′(β

0
)δ

]
−

1
n

[
δ∗′Iobs(β0

)δ∗
]

, (4.9)

where u′(β
0
) is the score statistic evaluated at β

0
, and

Iobs(β0
) = −

∂2l(β)

∂β∂β′
|β

0

is the observed information matrix at β
0
.

The second part in the right-hand side of Equation (4.9) goes to zero with Assumption

5. The first part

1
n

[
u′(β

0
)δ

]
=

1
n

 k∑
w=1

uw(β
0
)δw

 , (4.10)

where uw(β
0
) is the wth element of the score vector u(β

0
), and δw is the wth element of δ,

w = 1, 2, · · · , k.

With the justification on Page 72, u(β) is the sum of m uncorrelated components, by the

law of large numbers, uw(β
0
)/n → 0 when n → ∞ and m → ∞, w = 1, 2, · · · , k. Thus

Equation (4.10)→ 0, and it follows that Equation (4.9)→ 0.

Also we have

∣∣∣∣||β0
+ δ||1 − ||β0

||1

∣∣∣∣ ≤ ||δ||1 ≤ δ0 .



76

Therefore, if when n→ ∞, λn/n→ 0, then (4.8) holds. �

THEOREM 4.2. With the regularity conditions in the assumptions,

(β̂ − β
0
)

L
→ N(0, I(β

0
)−1)

Proof: For Q(β) = −l(β) + λn||β||1, let’s consider its score statistic, denoted as v(β):

v(β) =
∂Q(β)

∂β
=
∂(−l(β))

∂β
+ λnsgn(β) = −u(β) + λnsgn(β) ,

where sgn(β) = sgn ((β1, β2, · · · , βk)). v(β) is a vector of length k, where k is the number of

explanatory variables.

Now we expand vw(β), the wth element of v(β), at β
0
,

vw(β) =

∂(−l(β))

∂βw
+ λnsgn(βw)


β

0

+


k∑

i=1

∂2(−l(β))

∂βw∂βi


β

0

· (βi − βi0) + 0


+

1
2

k∑
i=1

k∑
j=1

 ∂3(−l(β))

∂βw∂βi∂β j


β∗

· (β∗i − βi0) · (β∗j − β j0) , (4.11)

where w = 1, 2, · · · , k, β∗ is between β and β
0
. Since β̂ is the local minimizer from Theorem

4.1, the left-hand side of (4.11) is 0. Thus we have

0 = u(β
0
) − λnsgn(β

0
) −

(
Iobs(β0

) − A
)
· (β̂ − β

0
) ,

where

Iobs(β0
) = −

∂2(l(β))

∂β∂β′
|β

0
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is the observed information matrix evaluated at β
0
. and

A =
1
2



(β̂ − β
0
)′ · A1

(β̂ − β
0
)′ · A2

...

(β̂ − β
0
)′ · Ak


where

Aw =

∂2uw(β)

∂β∂β′


β

0

is the second derivative matrix of the wth element of the score statistic u(β), and is of

dimension k × k.

So we have

(β̂ − β
0
) =

(
Iobs(β0

) − A
)−1 [

u(β
0
) − λnsgn(β

0
)
]

. (4.12)

From Theorem 4.1, if λn/n → 0 when n → ∞, (β̂ − β
0
)

P
→ 0, and with Assumption 3,

|Aw| is bounded, thus the rows of A go to 0 when n→ ∞.

Now assume that the observed information matrix stabilizes at its expected value, that

is, Iobs(β0
)→ E

[
Iobs(β0

)
]

= I(β
0
).

In partial likelihood, the score vector u(β
0
) is the sum of m uncorrelated terms as dis-

cussed on Page 72. With Assumption 5, using central limit theorem, we can get

u(β
0
)→ N(0, I(β

0
)) .

So from (4.12), if when n→ ∞, not only λn/n→ 0, but further λn → 0, then by Slutsky
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theorem,

(β̂ − β
0
)

L
→ N(0, I(β

0
)−1)

�

Based on the proven theorems 4.1 and 4.2, we conclude that the penalized maximum

partial likelihood estimator has the same asymptotic properties as the regular maximum

partial likelihood estimator, as long as the penalty is small. More rigorous proofs require

knowledge of counting process theory (Andersen et al., 1993), and the reader can refer to

Fan and Li (2002).

4.2.4 Choice of the tuning parameter value

In the proposed model (4.3), the λ j, j = 1, 2, · · · , p are tuning parameters. The magnitude

of λ j determines the number of variables whose coefficients will be estimated as zero for

failure type j. The larger the value of λ j, the larger the penalty is on the partial likelihood in

Equation (4.3) , and the more variables will have zero coefficient estimates. The asymptotic

results require that when sample size is large, the tuning parameter should approach 0.

However, it does not explicitly state what value of the tuning parameter to use. When

applying the model to do variable selection, we thus need to decide what specific values to

use for estimating the coefficients.

One may choose the tuning parameter values that minimize some criterion, such as

the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian information crite-

rion (BIC) (Schwarz, 1978), or a criterion based on cross-validation as used in Tibshi-

rani (1997). All of these criteria are based on prediction accuracy. Leng et al. (2006)

shows that prediction-accuracy-based criteria alone are not sufficient for the purpose of

variable selection using lasso in linear regression problems. A similar conclusion is drawn

in Meinshausen and Buhlmann (2006) where they studied neighborhood selection in high-
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dimensional graph with the lasso. They showed that the probability of including noise

variables with the prediction-optimal λ value is in fact asymptotically 1. However, they

demonstrated that consistent neighborhood selection is possible if the penalty is chosen

larger than the prediction-optimal value, and they proposed to use the tuning parameter

value that controls the probability of falsely joining some distinct components of the graph.

This criterion cannot be applied to this project since the response is not multivariate normal

data. The asymptotic results in subsection 4.2.3 imply that λ should go to 0 when n → ∞

and m → ∞. We used either λ1 = n0.3 or λ2 = n0.1 in model (4.3) when estimating the

coefficients, where n is the total sample size.

4.3 Numerical Simulations to Evaluate the Proposed Model

The asymptotic properties state the consistency and normality of the L1 penalized partial

likelihood estimates when the sample size and the number of failures approach infinity.

In medical applications, however, most often we have a small or moderate sample size.

Therefore, we conducted numerical simulations to empirically evaluate the performance of

the proposed model in identifying true important variables.

4.3.1 Simulation Parameters

To simulate the competing risks data, the following simulation parameters need be specified

in order to generate the data:

• p: the number of failure types.

In this simulation, p was fixed at 2. That is, we simulated the situation where there

are two failure types.

• n: the total sample size.

Two levels of n were simulated, specifically, n=100; and n = 200.
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• k: the number of explanatory variables.

One important application of the proposed method is for variable selection when

the sample size is smaller than the number of explanatory variable, therefore, we al-

lowed k to vary from smaller to larger than n. That is, we let k = 10, 50, 100, 200, 500,

and 1000.

• kn0: the number of truly important explanatory variables.

Among the k explanatory variables, only kn0 of them are truly related to the sur-

vival. That is, their corresponding coefficients are non-zero whereas the remaining

k − kn0 variables have zero coefficients. To mimic the situation in gene expression

study where only a small number of genes influence a phenotype, we assume that

only a small number of variables are truly important to the survival. When k = 10,

kn0 = 4; when k > 10, kn0 = 20.

• βn0: the coefficient of the important explanatory variables.

For the kn0 truly important variables, their effects on the survival are specified

through their corresponding coefficients. The coefficients are fixed at βn0 = ±2.

Other parameters included:

• the ratio between the number of observations of Failure type I and the number of

observations of Failure type II was fixed at 6:4.

• the percentage of overall censoring was fixed at 15%.

• the number of simulation runs for each combination of parameters was 20.

• the maximum correlation between the truly important explanatory variables and noise

variables (variables not relevant to survival) was 0 (not correlated), or 0.80.
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4.3.2 Data Generation

In each simulation run, for each combination of the simulation parameters, we generated

the data as follows:

1. Generate the design matrix Xn×k = (x(1)
′, x(2)

′, · · · , x(k)
′) following the outlined pro-

cedure, where x(w), w = 1, 2, · · · , k, is the vector of the n observations for the wth

variable.

(a) Generate xw ∼ N(0, 1) for w = 1, 2, · · · , kn0. Denote Xa = (x(1)
′, x(2)

′, · · · , x(kn0)
′).

So Xa, of dimension n × kn0, is the submatrix of X, and corresponds to the ob-

servations of the kn0 truly important variables.

(b) Denote as Xb the submatrix of X which corresponds to the observations of the

(k − kn0) noise variables. The noise variables can be correlated to the truly im-

portant variables, however, it is very important that the noise variables are not

correlated to the survival times which are generated based on the truly impor-

tant variables. Similar to the simulation mechanism in Gui and Li (2005), we

generated X as follows:

i. If we assume the noise variables are not correlated to the truly impor-

tant variables, let Ω denote the linear space expanded by the vectors of

x(1), x(2), · · · , and x(kn0). We can obtain a normal-orthogonal base of the or-

thogonal complement space of Ω using the QR decomposition of Xa. Let

Xa = QR be the decomposition of Xa, then Q is an orthogonal matrix of

dimension n × n. Let B denote the submatrix of Q which excludes the first

kn0 columns of Q, then B
′

Xa =0, where 0 is the matrix only of 0s. B, of

dimension n × (n − kn0), thus is a normal-orthogonal base of the orthogo-

nal complement space of Ω. Any linear transformation of B is orthogonal

complement of Xa. We generate a matrix C of dimension (n−kn0)×(k−kn0)
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(each column of C ∼ N(0, 1)), then Xb = BC, of dimension n × (k − kn0), is

orthogonal complement of Xa, and therefore not correlated to the survival

times. So Xb is the design matrix for the noise variables. Let X = (Xa
...Xb),

then X is the total design matrix whose first kn0 columns are observations

for the kn0 truly important variables, and the remaining (k − kn0) columns

correspond to the observations of the noise variables.

ii. If we allow the noise variables to be correlated to the truly important vari-

ables, we first use Gram-Schmidt orthonormalization to obtain an orthog-

onal base of Xa (which is also an orthogonal base of the linear space Ω

expanded by Xa), and denote this matrix as Xa m. Following the proce-

dure previously described, using QR decomposition of Xa m to get B, the

normal-orthogonal base of the orthogonal complement space of Ω. Let

A = B + Xa mCm, where Cm is of dimension kn0 × (n − kn0) whose eigen-

values are not all zero, then A spans a linear space Ψ. Ψ is not orthogonal

complement of Ω. The correlation between an arbitrary vector on Ψ and

an arbitrary vector on Ω is bounded by

eλ/
√

(1 + e2
λ) , (4.13)

where e2
λ is the largest eigenvalue of C

′

mCm (the proof is sketched in the

Appendix). So we select Cm with an appropriate choice of maximum

eigenvalue of C
′

mCm, then we can generate the observations of the noise

variables on the space Ψ by taking linear transformations (of appropriate

dimensions) of A. That is, let Xb = AC, where C is generated to be a

matrix of dimension (n − kn0) × (k − kn0) (each column of C ∼ N(0, 1)).

Let X = (Xa
...Xb), then X is the total design matrix whose first kn0 columns

are observations for the kn0 truly important variables, and the remaining
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(k − kn0) columns correspond to the observations of the noise variables.

The correlation between the important variables and the noise variables is

bounded by Equation (4.13) (Gui and Li, 2005).

Here we consider the maximum correlation to be 0.8. From Equation

(4.13), the largest eigenvalue of C
′

mCm is e2
λ = 1.778. We can simply let

C
′

mCm be a diagonal matrix with 1.778 being the largest diagonal value.

Then Cm can take the first kn0 rows of C
′

mCm, with the original diagonal

values being replaced by their square roots. Notice that the upper bound of

the correlation between vectors of the spaces Ψ and Ω given in Equation

(4.13) is a very loose bound. The observed maximum correlation normally

is much smaller than this bound.

2. The vector of coefficients for Failure type I is β1 = (βn0, · · · , βn0︸        ︷︷        ︸
kn0

, 0, · · · , 0), that is,

the first kn0 variables are those truly important variables which have non-zero effects

on the survival. The vector of coefficients for Failure type II is β2 = −β1.

3. Generate the survival times corresponding to each failure type respectively. The

survival time of each failure type T j, j = 1, 2, is assumed to be exponentially dis-

tributed, where the effect of the explanatory variables is specified through the haz-

ard function. To generate exponentially distributed survival data, we first generate

U ∼ Uniform(0, 1), then

T = −
log (U)

h0 exp (x′β)
∼ Exponential distribution ,

and the hazard function is h(t|x) = h0 exp (x′β) (Bender et al. (2005), Leemis (1987)),

where x is the vector of explanatory variables and h0 is the baseline hazard, which is

generated from the Weibull distribution with shape parameter 5 and scale parameter

2.
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4. Generate a binary variable b to indicate the failure type of each individual. The

probability of an observation with Failure type I is 60%, that is b ∼ Bernoulli(0.6),

individual i is of Failure type I if bi = 1, and of Failure type II if otherwise, i =

1, 2, · · · , n.

5. The survival data for each individual then is if bi = 1, then Ti = T 1
i , otherwise

Ti = T 2
i , i = 1, 2, · · · , n.

6. Generate a binary variable to indicate the censoring status of each observation. The

probability of an observation to be censored is 15%. The censored times are gener-

ated from Uniform (2,10)

4.3.3 Simulation Results with Some Discussion

With the simulated dataset in each simulation run, we created the failure type specific “cen-

soring” variable, that is, for the model for Failure type I, all observations that were either

censored or failed due to Failure type II were considered censored. Likewise, for the model

for Failure type II, all observations that were either censored or failed due to Failure type

I were considered censored. Thereafter, we applied the proposed variable selection model

using the L1 regularization path algorithm (Park and Hastie, 2007) to estimate the coeffi-

cients. The performance of the proposed method was evaluated by the average sensitivity

and specificity for identifying the truly important variables over the 20 simulations. The

sensitivity in each simulation run was defined as the percent of the truly important variables

being included in the estimated model, calculated as the number of truly important variables

having a non-zero coefficient estimate in the final model out of kn0. The specificity in each

simulation run was defined as the percent of true noise variables not appearing in the es-

timated model, calculated as the number of true noise variables having a zero coefficient

estimate out of (k − kn0).

The choice of the tuning parameter values for identifying important variables used was
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described in Section 4.2.4. Again, two values λ1 = n0.3 and λ2 = n0.1 were examined.

When The Explanatory Variables Are Uncorrelated

When the truly important variables and noise variables were uncorrelated, the average

sensitivity and specificity over the 20 simulation runs for each scenario are summarized in

Table 4.1. For each value of λ and n, the sensitivity is plotted against k for both failure

types in the left panel of Figure 4.1, and the specificity is plotted against k in the right panel

of Figure 4.1.

From Table 4.1 and Figure 4.1, we see that:

• as n↗

Considering either failure type, fixing the number of variables (k), and considering

the same tuning parameter λ, when the sample size increases, more variables tend

to have coefficients estimated to be non-zero, resulting in higher sensitivity, with

specificity being decreased slightly. For larger k, however, with the assumption that

only a small number of variables are truly important, the specificity does not diminish

as much as the gain in sensitivity.

• as k ↗

Considering either failure type and the same tuning parameter λ, when the number

of variables (k) increases, the specificity increases dramatically with a larger number

of variables being noise variables; the sensitivity is quite stable when the sample size

is n = 200, and only drops slightly when n = 100.

• as λ↘

Considering either failure type, and fixing the number of variables (k) and the sample

size (n), a smaller tuning parameter value imposes less penalty in Model (4.5) and

more coefficients will be estimated to be non-zero. This means that using λ2 =

n0.1 < λ1 = n0.3, so that, we will expect a higher sensitivity and lower specificity
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with smaller λ. This conforms to what is observed from Table 4.1 and Figure 4.1.

However, when the number of variables is large and only a small number of variables

are truly important, such as k = 500 or k = 1000, the specificity using λ2 is not much

less ( 1%) than when using λ1, whereas the sensitivity is about 5% higher.

• result for Failure Type I and Failure Type II

The main difference between Failure type I and Failure type II in the simulations is

that more events of Failure type I were generated (recall that the ratio between the

number of observations of Failure type I and the number of observations of Failure

type II is 6:4). With the availability of more events, the sensitivity for Failure type I

was always better than that for Failure type II, while the specificity was lower than

the specificity for Failure type II. When k is large, the difference in specificity is

relatively small compared to the gain in sensitivity for Failure type I.

The simulation results demonstrate that a higher sensitivity is always coupled with a

lower specificity, however, when the number of variables is large, and the assumption holds

that only a small number of variables are truly important to survival, the decrease of speci-

ficity is much less than the gain of sensitivity. When k ≥ 500, the false discovery rate

(FDR) (FDR=1-positive predicted value) can be controlled to be less than 15%. This is a

common threshold used for gene identification in high-throughput genomic experiments,

so that the L1 penalized Cox proportional hazards model for competing risks should be

useful in identifying genes that are truly related to specific risks of events.

Further, the simulation study suggests that in general, a large sample size is desirable

(as is the case for most statistical analyses). The variable selection method is also improved

for failure types with more observed events. Moreover, when the sample size is relatively

large compared to the number of explanatory variables, in order to guarantee an acceptable

specificity, it may be preferable to apply a relatively large penalty (i.e. use larger tuning

parameter value); on the other hand, when the number of variables is relatively large com-
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pared to the sample size, as is in gene expression studies, it is recommended that a smaller

penalty be applied (i.e. use smaller tuning parameter value).
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When The Important Variables And The Noise Variables Are Correlated

We examined the situation where n = 200 and k = 1000 when the truly important and

noise variables are correlated. As previously described, the maximum correlation allowed

is bounded by 0.8. The data generation followed the procedures described in subsection

4.3.2. The maximum observed correlation coefficient between the important variables and

noise variables from the generated data is about 0.2, which is in fact much smaller than the

upper bound 0.8. The average sensitivity and specificity over the 20 simulation runs are

summarized in Table 4.2.

Maximum correlation 0.8

n=200, k=1000

λ1 λ2

Failure sensitivity% 52.3 62.3

Type I specificity% 87.7 86.8

Failure sensitivity% 28.0 35.8

Type II specificity% 89.4 88.5

Table 4.2: Average sensitivity and specificity over the 20 simulation runs when the max-
imum correlation between the truly important variables and noise variables is 0.8, and
n = 200, k = 1000.

To explore the influence of the correlation between the variables, we can compare the

results to the corresponding columns in Table 4.1 where the variables are uncorrelated. For

each failure type, the specificity was plotted against the sensitivity for both λ1 and λ2 for

the correlated and uncorrelated scenario when n = 200 and k = 1000 (Figure 4.2). With the

presence of correlation between the important variables and the noise variables, the average

sensitivity diminishes. Using either choice of λ, the average sensitivity decreases more than

15%; whereas the average specificity remains to be larger than 85%. In addition, similar

to the observation from Table 4.1, since there are more events of Failure type I, it always
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has a better sensitivity than Failure type II. A smaller tuning parameter value λ (λ2 < λ1)

imposes less penalty and makes more variables have coefficients estimated to be non-zero,

and therefore yields a better sensitivity with the cost of a slightly diminished specificity.
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Figure 4.2: Comparing the average sensitivity and specificity over 20 simulation runs when
the maximum correlation between the truly important and noise variables is 0.8 and when
there is no correlation between the variables. n=200, k=1000.
(The maximum observed correlation between variables is about 0.2, smaller than the upper
bound 0.8.)

Comparing to variable selection using the univariate Cox model approach

One intuitive method for variable selection is to fit a model using only one variable at

a time, and then use the resulting p-value from testing the significance of the variable’s co-

efficient estimate to quantify the relevance of the variable to the response. This univariable

approach is especially widely used when the number of variables is large relative to the

number of observations. We obtained the sensitivity and specificity from using the univari-
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able approach for the situation where n = 200 and k = 1000, and compared them to the

results from using our proposed approach based on the L1 penalized Cox model.

With the same datasets generated for the situation where the variables were uncorrelated

and n = 200 and k = 1000, for each failure type, we fit a univariable Cox model for each

variable, with the variable being the single predictor. The p-value from the likelihood

ratio test to test the significance of the model (that is, the significance of the variable) was

compared to a pre-determined threshold α. If the p-value was less than α, the variable was

selected as an important variable to survival of the failure type. We explored the result

when choosing α = 0.05, α = 0.25 and α = 0.50. The average sensitivity and specificity

over the 20 simulations are listed in Table 4.3.

α

0.05 0.25 0.50

Failure sensitivity% 7.5 32.0 58.3

Type I specificity% 95.2 75.6 50.6

Failure sensitivity% 4.0 25.0 52.5

Type II specificity% 94.8 74.8 50.3

Table 4.3: Average sensitivity and specificity over the 20 simulation runs using the univari-
able Cox model approach for the situation where the variables are uncorrelated and n = 200
and k = 1000

α = 0.05 is a commonly used p-value threshold, however, from Table 4.3, using this

criterion for variable selection does not yield satisfactory sensitivity. To ensure the sen-

sitivity to be at least 50%, one should use a threshold as large as 0.50, with the cost of a

dramatically decreased specificity.

Comparing to the results in Table 4.1 for the situation where n = 200 and k = 1000,

our proposed model outperforms the univariable Cox model approach in terms of both

sensitivity and specificity. The fact that the proposed L1 penalized Cox model approach
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models all the variables simultaneously, may contribute to the better performance.



Chapter 5

Applications of the Proposed Model

In Chapter 4, we have developed the model for variable selection in competing risks sur-

vival data, and established some asymptotic properties of the model. The numerical sim-

ulations were useful in assessing the performance of the method under different scenar-

ios. In this chapter, we illustrate the use of the proposed model by applying it to the two

real competing risks problems introduced in Chapter 2, the prostatic cancer study and the

HCV+HCC study. Specifically, Section 5.1 describes the results from the prostatic cancer

analysis which was performed to study the effect of the treatment and identify important

covariates. The conclusion from this analysis is discussed in reference to literature about

earlier analyses performed using this dataset. Section 5.2 describes the results from the

HCV+HCC analysis which was performed to identify genes significantly associated with

tumor progression. When data from more patients become available, the updated results

from the statistical analysis may be informative for clinical researchers’ understanding of

the roles of genes that are involved in the development and rapid progression of HCC.

5.1 Application to the Prostatic Cancer Study

The background of this study has been introduced in Section 2.5, with the “competing

risks”’ structure of the data shown in Figure 2.1. The survival time of a patient is defined

as the time from the date of randomization or study entry to the date of death (or the end of

94
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the clinical trial or date of last follow-up if death was not observed during the trial). The

explanatory variables in this prostatic cancer study included the treatment, either placebo or

different doses of diethylstilbestrol (placebo, 0.2mg, 1.0mg, or 5.0mg), and the following

11 pretreatment covariates recorded at the beginning of the clinical trial (Andrews and

Herzberg, 1985):

• Age in years (Age);

• Weight in kg (Wgt);

• Performance rating (PF): 0, normal activity; 1, in bed less than 50% of daytime; 2,

in bed more than 50% of daytime; and 3, confined to bed;

• History of cardiovascular disease (CH): 0, no; 1, yes;

• Systolic blood pressure (SBP);

• Diastolic blood pressure (DBP);

• Serum haemoglobin in g/100ml (HG);

• Size of primary tumor estimated in cm2 from rectal examination (TS): 00=no palpa-

ble tumor;

• Combined index of tumor stage and histologic grade (CI);

• Serum prostatic acid phosphatase in King-Armstrong units (AP);

• and Bone metastases (BM): 0, no; 1, yes.

There were 506 patients who participated in this trial and a subset of 483 patients had

complete information for all covariates. The goal of this trial was to compare the effect

due to treatment on survival of the patients with prostatic cancer. In addition, it is of

interest to identify pretreatment covariates that are of prognostic importance. The different
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types of failure recorded in the original data are detailed in Figure 2.1. For the purpose of

comparing our results to those previously published, we followed Cheng et al. (1998) and

Ng and McLachlan (2003) categorization and coded failures into three types: death due to

prostate cancer; death due to cardiovascular disease; and death due to other diseases.

5.1.1 Statistical Analysis and Result

To illustrate the use of our proposed model for variable selection in competing risks, we

applied the L1 penalized Cox model to the subset of the 483 patients having complete in-

formation for the covariates, to explore the effect of the treatment and identify important

covariates for the risks of death due to prostate cancer and cardiovascular disease, respec-

tively. Among these 483 patients, 125 patients (25.9%) died of prostatic cancer, 94 patients

(19.5%) died of cardiovascular disease, 125 patients (25.9%) died of other diseases, and

the remaining 139 patients (28.8%) were alive at the end of the trial.

All categorical variables were either ordinal in nature, such as treatment which was

increasing doses of diethylstilbestro, or performance rating which was increasing with the

severity of patient illness; the binary variables were coded 1 indicating the presence of the

condition and 0 otherwise. Therefore, all variables were treated as continuous in the model.

Before applying the L1 regularization path algorithm, the measurements of the explanatory

variables were standardized (each variable centered by subtracting its sample mean and

scaled by dividing by its square root of variance) to avoid any impact of the original units

of the variables on the downstream statistical analysis.

Model 4.3 was used to model the data. To estimate the model coefficients, following

the procedures described in the subsection 4.2.2, we first created the “censoring” variable

corresponding to each failure type that is of interest, and then the L1 regularization path

algorithm (Park and Hastie, 2007) was run. For this dataset, the number of variables is

small relative to the total sample size. The simulation study in Section 4.3 suggests that

when the sample size and the number of events for each failure type are relatively large
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compared to the number of variables, a smaller penalty (i.e., the smaller λ is chosen to be)

will lead to decreased specificity. Therefore, it might be preferable to use a relatively large

tuning parameter value. To ensure a reasonable level of specificity, we used λ = n0.3. In

this specific application, λ1 = n0.3 = 4830.3 = 6.385. Figure 5.1 displays the traces of

the coefficient estimates along the change of the tuning parameter λ (i.e. the magnitude of

penalty) for death due to prostate cancer (top panel) and for death due to cardiovascular

disease (bottom panel).

The coefficient estimates from the model using λ1 = n0.3, and the model using λ = 0, in

which case the estimates are the ordinary maximum likelihood estimators of the coefficients

are listed in Table 5.1. The standard errors, which appear in parentheses in Table 5.1, were

estimated using the bootstrap method with B = 100 bootstrap resamplings (Efron and

Tibshirani, 1993). In each bootstrap resampling, a random sample of size of n (n = 483)

observations was drawn with replacement from the original dataset, and then the proposed

L1 penalized Cox model (Model (4.3)) with λ = n0.3 was applied on the bootstrap sample to

estimate the coefficients. If a variable is truly important to survival of a specific failure type,

its corresponding coefficient estimate is expected to be non-zero when using a bootstrap

resample. Figure 5.2 shows the boxplots of the coefficient estimates from the 100 bootstrap

resamples for all the variables, respectively.

To quantify the significance of difference from 0 for each variable’s estimated coeffi-

cient, we used a Wald test to test the null hypothesis that the coefficient estimate is equal to

0 versus the alternative that it is not equal to 0. The p-values for all variables are summa-

rized in Table 5.2.

5.1.2 Conclusion and Discussion

From Figure 5.2 and Table 5.2, we can see that for the failure type death due to prostate

cancer, the covariates tumor size (TS) and combined index of tumor stage and histologic

grade (CI) have significant impact on the hazard of death from prostate cancer. The larger
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Figure 5.1: Traces of the coefficient estimates along the change of λ for death due to
prostate cancer (top panel) and death due to cardiovascular disease (bottom panel). The
dotted vertical lines indicate the values of λ at which the coefficient estimates change.
Each ∗ is the estimated coefficient at the corresponding λ value for a variable. The real
vertical line indicates the values of λ1. The standardized coefficients refer to the coefficient
estimates with the standardized measurements of the variables.
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Prostate Cancer Cardiovascular Disease
Coefficient λ1 λ = 0 λ1 λ = 0
Estimates n0.3 MLE n0.3 MLE
Treatment 0.20 (0.10) -0.32 (0.10) 0.04 (0.09) 0.16 (0.11)
Age -0.05 (0.07) -0.15 (0.09) 0.14 (0.11) 0.31 (0.13)
Wgt 0.00 (0.05) -0.01 (0.10) -0.03 (0.10) -0.20 (0.12)
PR 0.16 (0.08) 0.21 (0.08) 0.00 (0.04) 0.01 (0.13)
CH 0.00 (0.05) 0.03 (0.10) 0.47 (0.11) 0.59 (0.11)
SBP -0.02 (0.06) -0.12 (0.12) 0.00 (0.06) 0.04 (0.13)
DBP 0.00 (0.06) -0.03 (0.13) 0.00 (0.08) 0.08 (0.13)
HG -0.15 (0.09) -0.21 (0.10) 0.00 (0.05) 0.09 (0.12)
TS 0.41 (0.09) 0.47 (0.08) 0.00 (0.05) -0.06 (0.13)
CI 0.49 (0.12) 0.55 (0.10) 0.00 (0.04) 0.04 (0.12)
AP 0.00 (0.03) -0.01 (0.06) -0.01 (0.08) -0.93 (0.73)
BM 0.16 (0.10) 0.18 (0.09) 0.00 (0.05) 0.14 (0.14)

Table 5.1: Coefficient estimates for each variable and for death due to prostate cancer (left
panel), and death due to cardiovascular disease (right panel) under two choices of tuning
parameter value. The coefficient estimates correspond to standardized measurements of the
variables. The standard errors in brackets were obtained using the bootstrap method for λ1.
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Figure 5.2: Boxplots of the coefficient estimates from the bootstrap resamples using the
proposed L1 penalized Cox model for death due to prostate cancer (top panel) and death
due to cardiovascular disease (bottom panel). The red · in each box indicates the coefficient
estimate from the original dataset.
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the tumor is, or the more advanced the tumor is, the higher the risk of death from prostate

cancer. Another factor that increases the hazard of death due to prostate cancer is the

ability to perform normal activity (performance rating PF, p-value=0.021). Having bone

metastases, which is an aspect considered in the combined index, also increases the haz-

ard of death due to prostate cancer (p-value=0.061). On the other hand, a higher level of

the covariate Haemoglobin (HG) indicates a decreased risk of death due to prostate can-

cer. Decrease of haemoglobin often leads to symptoms of anemia, and “anemia associated

with advanced prostate cancer is a common occurrence” (Nalesnik et al., 2004). Moreover,

researchers have studied the “diagnostic value of anemia in newly diagnosed metastatic

prostate cancer” (Beer et al., 2004). The main interest of this clinical trial, the treatment

diethylstilbestrol, decreases the risk of death from prostate cancer among the prostatic can-

cer patients. A higher dose of the treatment is statistically significantly associated with a

decreased risk (p-value=0.027).

For the failure type death due to cardiovascular disease, the presence cardiovascular

disease history (CH) significantly impacts the hazard of death from cardiovascular disease

(p-value< 0.001). Patients’ age marginally increases the risk with p-value=0.098. An

increased dose of treatment corresponds to an increased risk of death from cardiovascular

disease, though the influence is not significant (p-value=0.331).

These findings are in accordance to what was concluded in Ng and McLachlan (2003).

For further investigation of the dataset, the interaction terms between the treatment and

covariates can be included in the model, by which we can study the effect of the treatment

on different groups of patients. The reader can refer to Cheng et al. (1998), Kay (1986),

Lunn and McNeil (1995), and Lunn and McNeil (1992) for other methods that were applied

on this study and the results that were reported in these works.
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5.1.3 Model Diagnostic

Since our model for variable selection is based on the Cox regression model which requires

the assumption of proportional hazards, we examined the diagnostic plots of the Cox-Snell

residuals (Chapter 4 of Collett (2003)) for each failure type (death due to prostate cancer

and death due to cardiovascular disease), to check the validity of this assumption.

For death due to prostate cancer, all individuals with other types of failure were treated

as censored. A Cox proportional hazards model was fit with the treatment and all the co-

variates as predictors. If the proportional hazards assumption is satisfied, the Cox-Snell

residuals from this model for the individuals who died of prostate cancer are expected

to follow an exponential distribution with parameter 1. Therefore, the plot of log ri vs.

log− log Ŝ (ri) should be the diagonal line with unit slope and zero intercept, where ri de-

notes the Cox-Snell residual for the ith individual who died of prostate cancer, and Ŝ (ri) is

the Kaplan-Meier estimate at ri (refer to Section 1.2). For the failure type Cardiovascular

disease, we obtained the same kind of plot of Cox-Snell residuals. Both plots are shown in

Figure 5.3.

It can be seen that for both failure types, the assumption of proportional hazards is not

severely violated. Therefore it is reasonable to use the proposed model which is based on

Cox proportional hazards model for variable selection.

5.2 Application to the HCV+HCC study - Finding the Genes

Related to Tumor Progression

The background of the HCV+HCC study was introduced in Section 2.5, with the “compet-

ing risks” structure of the data shown in Figure 2.2. The “survival time” for each patient is

defined to be the time from the date of diagnosis of hepatocellular carcinoma (HCC) until

the date of an event. Here the event can be either tumor progression, transplantation, death,
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Figure 5.3: Plot of Cox-Snell residuals to check the validity of the proportional hazards
assumption in the model for death due to prostate cancer (top panel) and the model for
death due to cardiovascular disease (bottom panel).
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or censored among those who had not experienced one of the previous three events. The

explanatory variables are the expression level of 22,215 genes that were measured using

Affymetrix GeneChip microarrays.

The tissue sample from 46 patients diagnosed with HCV+HCC underwent RNA ex-

traction, cDNA synthesis, and biotin labeling. Among the 46 samples, 9 were hybridized

to HG-U133A arrays and the remaining were hybridized to HG-U133A 2.0 arrays. The

microarray data from the two different versions of arrays were first merged by probe se-

quence, and then the normalized probe set expression summaries were obtained using the

Robust Multichip Average (RMA) method ((Irizarry et al., 2003). The quality of the mi-

croarrays was assessed by examining the 3’:5’ ratios of the control genes ISGF, GAPDH

and β-ACTIN, which did not reveal quality concerns. The Affymetrix control probe sets

were then removed from downstream survival analysis, leaving 22,215 probe sets to be

analyzed.

5.2.1 Statistical Analysis and Results

Among the 46 patients, 14 were observed to have tumor progression, 25 had liver trans-

plants, 2 died without progression and transplantation, and 5 were alive and on the waitlist

as of the date the analysis was performed. Because there were only 2 deaths, we treated

them as censored. Thus there are two main “failure causes”: progression and transplanta-

tion. With transplantation as a competing event, it was of interest to identify a subset of

genes that are significantly associated with tumor progression. We applied our proposed L1

penalized Cox model for variable selection in competing risks (Model 4.3 ) to estimate the

coefficients of the genes corresponding to the failure type “tumor progression”.

Prior to fitting the model for time to tumor progression, we first created a “censoring”

variable wherein all events other than progression were considered censored. Subsequently

the measures of gene expression were standardized, and then the L1 regularization path

algorithm (Park and Hastie, 2007) was invoked. For this dataset, the number of variables
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is much larger than the total sample size. The simulation study in Section 4.3 suggests

that when the number of variables is very large and a small portion of the variables is

expected to be associated with the type of failure of interest, as is commonly assumed to

be the case in gene expression studies, a smaller penalty (or smaller λ value) can yield

better sensitivity without loss of much specificity. Therefore, for this dataset, we used

λ = n0.1 = 460.1 = 1.466.

Figure 5.4 shows the traces of the coefficient estimates as the tuning parameter λ (i.e.

the magnitude of penalty) varied. The coefficient estimates of 19 probe sets were non-zero

in the final model.

To quantify the significance of difference from 0 for each probe set’s coefficient esti-

mate, we used the bootstrap method to estimate the variability of the estimates with B =100

bootstrap resamplings (Efron and Tibshirani, 1993). In each bootstrap resampling, a ran-

dom sample of size of n (n = 46) observations was drawn with replacement from the

original dataset, and then the proposed L1 penalized Cox model (Model 4.3 ) with λ = n0.1

was applied on the bootstrap resample to estimate the coefficients of the probe sets. If a

variable is truly important to survival of a specific failure type, its corresponding coeffi-

cient estimate is expected to be non-zero. However, for the majority of the 22,215 probe

sets, the distribution of coefficients estimated using the bootstrap resamples are centered

about 0 without much variability. This fact implies that a p-value from the Wald type test

is not appropriate for evaluating the significance of difference from 0 for each probe set.

We therefore used a Wilcoxon signed rank test (Hollander and Wolfe, 1999, Chapter 3)

for each probe set to test the null hypothesis that the median coefficient estimate over the

100 bootstrap resamples is 0, versus the two-sided alternative hypothesis that the median

coefficient estimate was not 0.

If we use α = 0.05 as a threshold for the p-values from the individual Wilcoxon signed

rank tests for all the probe sets, 42 probe sets are significantly associated with the hazard

of tumor progression. Figure 5.5 shows the boxplots of the coefficient estimates from the
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Figure 5.4: Traces of the coefficient estimates as the tuning parameter λ varied in the
model for the time to tumor progression. Each ∗ indicates the estimated coefficient at
the corresponding λ value for a variable. The real vertical line indicates the values of λ =

n0.1. The standardized coefficients refer to the coefficient estimates with the standardized
measurements of the variables.
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bootstrap resamples for these 42 probe sets. Among these 42 probe sets, the coefficients

of 10 probe sets were estimated non-zero using the original data. The annotation data, the

standardized coefficient estimates using the orginal data, the counts of non-zero bootstrap

estimates out of the 100 bootstrap resamplings, and the p-values from the Wilcoxon signed

rank tests for these probe sets are presented in Table 5.3.
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Prostate Cancer Cardiovascular Disease
Estimate (SE) p-value Estimate (SE) p-value

Treatment -0.202 (0.104) 0.027 0.040 (0.091) 0.331
Age -0.048 (0.069) 0.242 0.141 (0.109) 0.098
Wgt 0.000 (0.054) 0.500 -0.026 (0.097) 0.396
PR 0.159 (0.078) 0.021 0.000 (0.039) 0.500
CH 0.000 (0.046) 0.500 0.470 (0.112) < 0.001
SBP -0.015 (0.056) 0.394 0.000 (0.063) 0.500
DBP 0.000 (0.550) 0.500 0.000 (0.080) 0.500
HG -0.146 (0.092) 0.056 0.000 (0.051) 0.500
TS 0.410 (0.087) < 0.001 0.000 (0.052) 0.500
CI 0.495 (0.116) < 0.001 0.000 (0.043) 0.500
AP 0.000 (0.027) 0.500 -0.013 (0.084) 0.436
BM 0.161 (0.104) 0.061 0.000 (0.055) 0.500

Table 5.2: Coefficient estimates for each variable and its corresponding standard error and
p-value obtained using the Wald test, based on the choice of λ1 = n0.3. The coefficient
estimates are based on standardized measurements of the variables. The standard errors in
brackets were obtained using the bootstrap method with B = 100 resamplings.
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Figure 5.5: Boxplots of the coefficient estimates from the bootstrap resamples for the 42
identified probe sets. The red · in each box indicates the coefficient estimate from the
original dataset.
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

7056 Hs.2030 203887 s at THBD thrombomodulin 20 20p11.2 -0.53 37 < 0.01

10497 Hs.493791 202893 at UNC13B
unc-13 homolog B (C.

9 9p12-p11 0.67 33 < 0.01
elegans)

11096 Hs.58324 219935 at ADAMTS5

ADAM metallopeptidase

21 21q21.3 1.03 33 < 0.01
with thrombospondin

type 1 motif, 5

(aggrecanase-2)

10352 Hs.523506 218766 s at WARS2

tryptophanyl tRNA

1 1p13.3-p13.1 0.44 24 < 0.01synthetase 2,

mitochondrial

5996 Hs.75256 216834 at RGS1
regulator of G-protein

1 1q31 0.00 21 < 0.01
signaling 1

23633 Hs.470588 212102 s at KPNA6
karyopherin alpha 6

1 1p35.1-p34.3 0.29 16 < 0.01
(importin alpha 7)

6446 Hs.510078 201739 at SGK
serum/glucocorticoid

6 6q23 -0.35 16 < 0.01
regulated kinase

9935 Hs.651210 218559 s at MAFB

v-maf

20 20q11.2-q13.1 -0.53 15 < 0.01
musculoaponeurotic

Continued on next page
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

fibrosarcoma oncogene

homolog B (avian)

2257 Hs.584758 207501 s at FGF12
fibroblast growth

3 3q28 0.00 13 < 0.01
factor 12

58 Hs.1288 203872 at ACTA1
actin, alpha 1,

1 1q42.13-q42.2 0.00 12 < 0.01
skeletal muscle

4798 Hs.530539 206968 s at NFRKB
nuclear factor related to

11 11q24-q25 0.30 12 < 0.01
kappaB binding protein

90627 Hs.507704 213103 at STARD13

StAR-related lipid

13 13q12-q13 0.00 12 < 0.01transfer (START) domain

containing 13

8357 Hs.591778 206110 at HIST1H3H histone cluster 1, H3h 6 6p22-p21.3 0.00 11 < 0.01

83752 Hs.694785 221834 at LONP2
lon peptidase 2,

16 16q12.1 0.00 10 0.01
peroxisomal

9703 Hs.591189 201729 s at KIAA0100 KIAA0100 17 17q11.2 0.00 10 0.01

10324 Hs.50550 219106 s at KBTBD10

kelch repeat and BTB

2 2q31.1 0.00 10 0.01(POZ) domain

containing 10

Continued on next page
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

26502
Hs.256526

219862 s at NARF
nuclear prelamin A

17 17q25.3 0.00 10 0.01
Hs.600304 recognition factor

64854 Hs.331478 203870 at USP46
ubiquitin specific

4 4q12 0.00 9 0.01
peptidase 46

51715 Hs.555016 220955 x at RAB23
RAB23, member RAS

6 6p11 0.00 9 0.01
oncogene family

9813 Hs.100874 201777 s at KIAA0494 KIAA0494 1 1pter-p22.1 0.00 8 0.01

1010 Hs.113684 207149 at CDH12
cadherin 12, type 2 (N-

5 5p14-p13 0.00 7 0.02
cadherin 2)

222255 Hs.489603 214342 at ATXN7L1 ataxin 7-like 1 7 7q22.2 0.00 7 0.02

9775 Hs.389649 201303 at EIF4A3

eukaryotic translation

17 17q25.3 0.00 6 0.04initiation factor 4A,

isoform 3

4151 Hs.517586 204179 at MB myoglobin 22 22q13.1 0.00 6 0.04

56242 Hs.659321 206900 x at ZNF253 zinc finger protein 253 19 19p13.11 0.00 6 0.04

9153 Hs.367833 207249 s at SLC28A2

solute carrier family 28

15 15q15 0.13 6 0.04
(sodium-coupled

nucleoside transporter),

Continued on next page
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

member 2

4100 Hs.72879 207325 x at MAGEA1

melanoma antigen

X Xq28 0.00 6 0.04
family A, 1 (directs

expression of antigen

MZ2-E)

3422 Hs.283652 208881 x at IDI1
isopentenyl-diphosphate

10 10p15.3 0.00 6 0.04
delta isomerase 1

1649
Hs.505777

209383 at DDIT3
DNA-damage-inducible

12 12q13.1-q13.2 0.00 6 0.04
Hs.690217 transcript 3

11004 Hs.69360 209408 at KIF2C
kinesin family member

1 1p34.1 0.00 6 0.04
2C

5441 Hs.441072 211730 s at POLR2L

polymerase (RNA) II

11 11p15 0.00 6 0.04(DNA directed)

polypeptide L, 7.6kDa

23001 Hs.480116 212602 at WDFY3
WD repeat and FYVE

4 4q21.23 0.00 6 0.04
domain containing 3

51208 Hs.655324 214135 at CLDN18 claudin 18 3 3q22.3 0.00 6 0.04

8566 Hs.284491 218019 s at PDXK
pyridoxal (pyridoxine,

21 21q22.3 0.00 6 0.04
Continued on next page
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

vitamin B6) kinase

24137 Hs.648326 218355 at KIF4A
kinesin family member

X Xq13.1 0.00 6 0.04
4A

55039 Hs.9925 219299 at TRMT12

tRNA methyltransferase

8 8q24.13 0.00 6 0.0412 homolog (S.

cerevisiae)

55654 Hs.355708 219460 s at TMEM127
transmembrane protein

2 2q11.2 0.00 6 0.04
127

55388 Hs.198363 220651 s at MCM10

minichromosome

10 10p13 0.00 6 0.04maintenance complex

component 10

1525 Hs.634837 203917 at CXADR
coxsackie virus and

21 21q21.1 -0.02 6 0.04
adenovirus receptor

10579

Hs.501252

211382 s at TACC2

transforming, acidic

10 10q26 0.00 6 0.04coiled-coil containing

Hs.695119 protein 2

10402 Hs.148716 213355 at ST3GAL6

ST3 beta-galactoside

3 3q12.1 0.00 6 0.04alpha-2,3-

Continued on next page
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Table 5.3: Probe sets significantly associated with time to tumor prossion. The probe sets are listed in increasing order of p-values.

LocusLink UnigeneID AffyID
Gene Gene Chromo

Map
Coeffcient

Count p-value
Symbol Name -some Estimate

sialyltransferase 6

56985
Hs.661424

220606 s at C17orf48
chromosome 17 open

17 17p13.1 0.00 6 0.04
Hs.47668 reading frame 48
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5.2.2 Conclusion and Discussion

Clinical researchers may be interested in further investigating the functions of the genes

in Table (5.3) on the progression of hepatocellular carcinoma. In fact, several genes have

been reported in liver disease research. The gene THBD (thrombomodulin) has a statis-

tically significant coefficient -0.526 (p-value< 0.001), meaning that an increased level of

THBD expression reduces the risk of tumor progression. It is known that THBD “converts

thrombin from procoagulant into anticoagulant protein to activate protein C. Thrombin also

plays an important role in the metastatic process of cancer cells”(Suehiro et al., 1995). The

authors performed an immunohistochemical and clinicopathological study of THBD in 141

patients with resected hepatocellular carcinoma (HCC) measuring less than 6 cm in diame-

ter. They found that the recurrence freedom rate was significantly higher in patients whose

tissue stained positive for THBD than patients whose tissue stained negative for THBD

. And thus THBD -producing HCC showed a slow intrahepatic spread. They concluded

that these findings “suggested that THBD may inhibit the adhesion of tumor cells to the

portal vein because of anticoagulant activity and thus prevent the spread of intrahepatic

metastasis” (Suehiro et al., 1995). Expression of THBD was also compared between cir-

rhotic non-HCC patiens and HCC patients in a separate study by Biguzzi et al. (2007).

The authors found that THBD had elevated levels among patients with HCC in comparison

to those without HCC, and concluded that THBD may be an important marker of HCC

development among patients with liver cirrhosis.

Although this analysis included 46 HCV+HCC patients, the study is continuing with

a target enrollment of 150 hepatitis C virus infected patients with HCC, and the antici-

pated progression rate among these patients is 40%. With the availability of more data, the

variable selection model for competing risks proposed in this thesis may yield improved re-

sults because the genes identified from the analysis of the full study data will be of greater

sensitivity and specificity. The results may help the researchers better understand the pro-
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gression of HCC at the molecular level, and may be used as markers for prognosis or drug

target in the future.

5.2.3 Model Diagnostics

Since there are many more variables than the sample size, it is not possible to build a Cox

model with all the probe sets as predictors. To evaluate the validity of the proportional

hazards assumption, we obtained plots of the Cox-Snell residuals from the univariate Cox

models (i.e., each gene as the single predictor in the model) for a few genes. Specifically,

Figure 5.6 shows that plot for the probe set “202893 at”, which is an identified probe set in

Table 5.3. It can be seen that the assumption of proportional hazards is reasonable.
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Figure 5.6: Plot of Cox-Snell residuals to check the validity of the proportional hazards
assumption for probe set 203893 at.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

Survival analysis is a field in statistics that deals with the modeling and analysis of survival

data: time from a well-defined time origin until the occurrence of some event or end points

of interest. In Chapter 1, we reviewed the features of survival data and the probabilistic

functions used for describing survival data. As one of the major tasks when examining

survival data is to assess the dependence of survival time on explanatory variables, we

reviewed in detail some popular modeling techniques used in univariate survival data anal-

ysis. Under certain scenarios, problems with multivariate survival data can arise, and some

topics about multivariate survival data were introduced at the end of Chapter 1. Specifically,

the topic of competing risks, which is the focus of this thesis, was thoroughly reviewed in

Chapter 2, including the probabilistic functions used for describing competing risks data,

the modeling approaches, and two examples from real-world problems. One example per-

tained to a prostatic cancer clinical trial, which has been a classical example for illustrating

competing risks survival data. The other example originated from the ongoing NIH funded

project “Genes related to HCC (hepatocellular carcinoma) progression in living donor and

deceased donor liver transplant”. One specific aim of this study is to identify genes that are

associated with tumor progression in hepatitis C virus (HCV) infected patients diagnosed

with HCC. In Chapter 3, we reviewed the penalized regression model, with emphasis on

118
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the lasso linear model (i.e. L1 penalized model) and lasso Cox model, which can be used

for variable selection. The L1 regularization path algorithm by Park and Hastie (2007) was

also introdued in Chapter 3.

The goal of this thesis, which was explicitly stated in Chapter 4, is to perform vari-

able selection with competing risks survival outcome. That is, each individual is subject to

failure from multiple failure types, though only one type of failure is observed for the indi-

vidual. Also measured are some explanatory variables at the time origin on each individual.

It is of interest to identify the subset of explanatory variables that are significantly associ-

ated with each failure type or some specific failure types. We proposed a model based on L1

penalized Cox proportional hazards model to achieve this purpose. The algorithm that can

be used to estimate the model parameters was also provided. Some asymptotic properties

of the model, together with the proofs, were presented. Moreover, numerical simulations

were conducted to empirically evaluate the performance of the proposed model in selecting

the correct important variables to survival due to each failure type. One important feature

of the proposed model is that all the explanatory variables are modeled simultaneously,

and the algorithm presented can be used for estimation when the number of variables is

larger than the number of sample size. In Chapter 5, the proposed model was applied to

two real-world problems that had been previously described in Chapter 2. The result from

the statistical analysis on the prostatic cancer dataset conforms to what has been concluded

in earlier publications by other researchers. For the HCV+HCC study, with the currently

available 46 samples, the application of the model identified 42 genes that were signifi-

cantly associated with tumor progression in HCV infected patients diagnosed with HCC.

When more samples become available, the result of identifying the subset of genes using

the proposed model will be improved. Further investigation and validation of the identified

genes may lead to better understanding of tumor progression at the molecular level, and

thus improve prognosis among HCV+HCC patients waitlisted for liver transplantation.
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6.2 Future Work

6.2.1 Variable Selection in Competing Risks Taking into Account the

Correlations between Genes

The proposed model for variable selection in competing risks was applied on the gene

expression study about HCV+HCC patients to identify the subset of genes that are associ-

ated with tumor progression. However, it is known that genes do not work independently,

and the interrelation structure among the genes was neglected when applying the proposed

model.

The Gene Ontology (GO) project provides databases of structured controlled vocab-

ularies (ontologies) which describe gene and gene products in terms of their associated

biological processes, cellular components and molecular functions for any organism. The

Kyoto Encyclopedia of Genes and Genomes (KEGG) project is another resource for in-

formation about genomes, enzymatic pathways, and biological chemicals. The KEGG

Pathway database collects known knowledge about molecular interaction and reaction net-

works. Using information from these databases, we can mathematically describe the in-

terrelationships between genes, and then incorporate the interrelation structure into the

variable selection analysis.

Graphs are a common way of depicting the gene networks. An example is shown in

Figure 6.1 that graphically illustrates genes involved in the Prion disease pathway.

One intuitive method to mathematically describe a graph is its adjacency matrix (Wang,

1997). Let G represent a graph with k vertices, and V(G) = {v1, v2, · · · , vk} represent the

set of vertices of G. Then A(G), of dimension k × k, is the adjacent matrix of G, where the

i, jth element of A(G) is

ai, j =

 1, if vi and v j are connected,

0, if vi and v j are not connected or i = j.
Therefore, for the graph in Figure 6.1, if neglecting the directions in the graph, its
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adjacent matrix is



122

Figure 6.1: Prion disease pathway. http://www.genome.ad.jp/kegg/pathway/hsa/hsa05040.
html.

http://www.genome.ad.jp/kegg/pathway/hsa/hsa05040.html
http://www.genome.ad.jp/kegg/pathway/hsa/hsa05040.html
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LAMA1 LAMB1 LAMC1 HS PD1 HS PA5 LAMR1 PrPc GFAP BCL2 APLP1 NRF2 T NF IL6

LAMA1 0 0 0 0 0 0 1 0 0 0 0 0 0

LAMB1 0 0 0 0 0 0 1 0 0 0 0 0 0

LAMC1 0 0 0 0 0 0 1 0 0 0 0 0 0

HS PD1 0 0 0 0 0 0 1 0 0 0 0 0 0

LAMR1 0 0 0 0 0 0 1 0 0 0 0 0 0

PrPc 0 0 0 0 0 0 0 0 0 0 0 0 0

GFAP 0 0 0 0 0 0 1 0 0 0 0 0 0

BCL2 0 0 0 0 0 0 1 0 0 0 0 0 0

APLP1 0 0 0 0 0 0 1 0 0 0 0 0 0

NRF2 0 0 0 0 0 0 1 0 0 0 0 0 0

T NF 0 0 0 0 0 0 1 0 0 0 0 0 0

IL6 0 0 0 0 0 0 1 0 0 0 0 0 0
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Li and Li (2008) in fact have recently used the normalized Laplacian matrix for a graph

G to account for the known information of the gene networks. They imposed both L1

penalty and a quadratic penalty of the coefficients based on the Laplacian matrix in a linear

regression model to identify the subset of genes that were associated with the response.

They did not consider the directions known in the gene networks, and theories about the

directed graph may be further utilized to better describe the networks of genes. Another

extension of their work is to model survival responses using models for survival analysis.

6.2.2 Variable Selection in Models for Categorical Data Analysis

The penalized likelihood approach can be easily extended to models for categorical data

analysis, such as logistic regression model, logit model, or loglinear model. Penalty based

on Lr (r ≤ 1) norm of the coefficients in these models normally have a similar effect on the

estimation of the coefficients as in a linear regression model and Cox proportional hazards

survival model. That is, the penalty yields sparseness of the coefficient estimates, and thus

can be used for the purpose of variable selection.

One application of the penalized likelihood approach in logistic regression model is to

analyze SNP (Single Nucleotide Polymorphism) data for comparing regions of the genome

between cohorts, such as matched cohorts with and without a certain phenotype. A SNP

is a DNA sequence variation occurring when a single nucleotide - A, T , C, or G - in

the genome differs between individuals of a species. For a variation to be considered

a SNP, it must occur in at least 1% of the population. Many SNPs have no effect on

cell function, but it is believed that some variations in the human DNA sequences can af-

fect how humans develop diseases and respond to pathogens, chemicals, drugs, and other

agents (interested readers can refer to Human Genome Project - SNP Fact Sheet: http:

//www.ornl.gov/sci/techresources/Human Genome/faq/snps.shtml#snps). The variable se-

lection function of the penalized likelihood approach can be utilized to find the SNPs that

might be associated with the phenotype of interest. The L1 regularization path algorithm

http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml#snps
http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml#snps
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for generalized linears model by Park and Hastie (2007) can again be used for estimation,

which accommodates the situation where there are more variables (SNPs) than number of

observations. It is also potentially possible to account for gene-gene interactions and gene-

environment interactions when using penalized likelihood in a logistic regression model.

It may be interesting to further investigate the identified genes from the HCV+HCC

study by exploring the SNPs on these gene sequences with consideration of the sample’s

population infomation in the study. A hypothesis is that if that the expression of the identi-

fied genes is associated with tumor progression is due to variations on the gene sequences

(including copy number variation), then these variations might be used for prognosis or as

a drug target for the studied population.

6.2.3 Choice of Tuning Parameter for Best Variable Selection

The coefficient estimation using the penalized likelihood approach as in Model 4.3 is de-

pendent on the choice of the tuning parameter value. Often the choice of the tuning param-

eter is chosen to be the value that minimizes prediction error which can be estimated by

cross-validation (Tibshirani, 1996, 1997). For model selection (i.e. selection of the subset

of important variables) in ordinary linear regression setting, Shao (1993) considered the

problem of using leave-one-out cross-validation method to evaluate the predictive ability

of a model. The author showed that the leave-one-out cross-validation method, “which

is asymptotically equivalent to other methods such as Akaike information criterion (AIC)

(Akaike, 1973), the Cp (Mallows, 1973) and bootstrap (Efron, 1983, 1986)”, is asympto-

ically inconsistent in the sense that the probability of selecting the model with the best

predictive ability does not converge to 1 as the sample size n → ∞. It was concluded

that using a leave-nv-out cross-validation (nv being the number of observations reserved for

validation), where nv satisfying nv/n → 1 as n → ∞, can solve the inconsistency problem.

Zaman (1984) also discussed that model selection procedures, including those based on

popular criteria such as predictive loss and information, lead to inadmissible procedures.
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Particularly, when using the L1 penalized likelihood approach in a linear regression model

for variable selection, Leng et.al. (2006) pointed out that when the prediction accuracy is

used as the criterion to choose the tuning parameter, the L1 penalized likelihood procedure

does not yield consistent variable selection. Similar to the consistency definition in Shao

(1993), a variable selection procedure is consistent if the probability that the procedure cor-

rectly identifies the set of important explanatory variables approaches one when the sample

size goes to infinity. They showed that “when there are superfluous variables in the linear

regression model and the design matrix is orthogonal, the probability of correctly identify-

ing the true set of important variables using prediction-accuracy-based criteria is less than

a constant not depending on the sample size”. Meinshausen and Buhlmann (2006) used

L1 penalized likelihood approach to perform neighborhood selection in high-dimensional

graphs, which is equivalent to variable selection in Gaussian linear models. They also con-

cluded that the optimal tuning parameter value for prediction does not lead to a consistent

neighborhood estimate. Instead, they proposed to control the probalility of falsely joining

some distinct connectivity components of the graph (i.e., the probability of falsely selecting

a variable).

All of the above findings are in the context of linear regression model. For variable

selection in survival analysis models using L1 penalized likelihood procedure, it has not

been studied how to choose the tuning parameter value to obtain a consistent result. If

the sensitivity, which can be evaluated by the asympotic probability of selecting the true

important variables, or the specificity, which can be evaluated by the asympotic probability

of falsely selecting a noise variable, can be established, then the optimal tuning parameter

value might be further studied.
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Appendix A

Proof of Theorem 2.4

The proof follows that in Chapter 7 of Crowder (2001) with additional details and correc-

tion of a mistake.

THEOREM A.1 (Tsiatis (1975)). Suppose that the set of S ( j, t) is given for some model

with dependent risks. Then there exists a unique proxy model with independent risks yield-

ing identical S ( j, t). It is defined by G(t) =
∏p

j=1 G
∗

j(t j), where G
∗

j(t j) = exp
{
−

∫ t

0
h( j, s)ds

}
and the sub-hazard functiion h( j, s) derives from the given S ( j, t).

Proof : We want to find a function G
∗
(t) =

∏p
j=1 G

∗

j(t j) such that G
∗
(t) is the joint

survivor function corresponding to the given S ( j, t), that is, from Equation (2.5), we should

have f ( j, t) = −∂G
∗
(t)/∂t j|t1p

for j = 1, 2, · · · , p. Hence, we need that

f ( j, t) =
∂G
∗

j(t j) G
∗
(t)

∂t j G
∗

j(t j)
|t1p

(A.1)

=
−d log G

∗

j(t)

dt
G
∗
(t1p) .

Summing Equation (A.1) over j yields

f (t) =
−d log G

∗
(t1p)

dt
G ∗ (t1p) =

−dG
∗
(t1p)

dt
. (A.2)
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Integrating Equation (A.2), we have S (t) = G
∗
(t1p) and from Equation (A.1) , we have

−d log G
∗

j(t)

dt
=

f ( j, t)
S (t)

= h( j, t) . (A.3)

We have shown that if the independent-risks proxy model exists, then it has relationship

with the given dependent-risks model as above. Now we need to show that the proxy model

does exist, which means that we need to show that G
∗

j(t) ( j = 1, 2, · · · , p) are valid survivor

functions and the sub-densities from the proxy model mimic the sub-densities from the

given dependent-risks model. It is obvious that as t → ∞, G
∗

j(t) → 0, and therefore G
∗

j(t)

( j = 1, 2, · · · , p) are valid survivor functions. To show the latter part, keep in mind Equation

(2.5) and that the proxy model has independent risks, so we have

g∗( j, t) = g∗(t)
∏
j′, j

G j′(t)

=
−dG

∗

j(t)

dt

∏p
j′ G j′(t)

G
∗

j(t)

=
−d log G

∗

j(t)

dt

p∏
j′=1

G
∗

j′(t)

from Equation (A.3)

= h( j, t)
p∏

j′=1

exp
{
−

∫ t

0
h( j′, s)ds

}
= h( j, t) exp

{
−

∫ t

0
h(s)ds

}
= h( j, t)S (t)

= f ( j, t) .
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Appendix B

Proof of Formula (4.13)

Proof: We want to prove that the correlation between a vector on the space Ψ and a vector

on the space Ω is as shown in (4.13), where the column vectors of Xa m are a set of orthonor-

mal base of Ω, and the column vectors of A = B + Xa mCm are a set of orthonormal base of

Ψ, where B is a orthonormal matrix whose columns span the orthogonal complement space

of Ω.

Let u be a vector of length kn0, then Xa mu is a vector on the space Ω. Let v be a vector

of length (n − kn0), then Av = (B + Xa mCm)v is a vector on the space of Ψ. The correlation

between the two vectors is:

r =
u
′

X
′

a m · (B + Xa mCm)v√
u′X′a mXa mu ·

√
v′(B + Xa mCm)′(B + Xa mCm)v

.

Since Xa m is the orthonormal base of Ω, so X
′

a mXa m = I, where I is the identity matrix

of approapriate dimension; similarly, B
′

B = I. Also, sine B is orthogonal to Xa m, so we

have X
′

a mB =0, where 0 is a matrix of all 0 elements. Therefore,

r =
u
′

Cmu√
u′u

√
(v′v + v′C′

mCmv)
(B.1)

≤

√
u′u

√
v′C′

mCmv√
u′u

√
(v′v + v′C′

mCmv)

=

√
v′C′

mCmv
v′v + v′C′

mCmv
.
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Note the first inequality in (B.1) holds because of Cauchy’s inequality. Hence

r2 ≤
1

v′v
v′C′mCmv

+ 1
. (B.2)

Let E be a diagonal matrix whose diagonals are the eigenvalues of C
′

mCm (some eigen-

values of C
′

mCm are 0 since Cm is not of full rank), and let P be the orthonormal matrix

(of dimension (n − kn0) × (n − kn0)) whose columns are the eigenvectors for matrix C
′

mCm

. Therefore, by eigen decomposition theorem, we have C
′

mCm = PEP−1, and the quadratic

form v
′

C
′

mCmv in (B.2) is

v
′

C
′

mCmv = v
′

PEP−1v

≤ v
′

PEλP−1v

= e2
λv
′

PIP−1v

= e2
λv
′

v ,

where Eλ is the diagonal matrix as E, but the nonzero diagonals are replaced by e2
λ, the

largest eigenvalue of C
′

mCm.

So in (B.2),

r2 ≤
1

1
e2
λ

+ 1
,

and hence (4.13) holds, that is, the correlation between u and v

r ≤
eλ√

1 + e2
λ

.
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Appendix C

Source Code for the Simulation Study in Chapter 4

C.1 Simulation When the Truly Important Variables Are
Independent of the Noise Variables - Using the Pro-
posed Method

#########################################################

#########################################################

#PURPOSE: SIMULATION IN DISSERTAION: L1 PENALIZED MAXIMUM

#LIKELIHOOD APPROACH IN COMPETING RISKS

#Note:GENERATION OF X USING DECOMPOSITION: TRULY

#IMPORTANT VARIABLES ARE INDEPENDENT OF NOISE VARIABLES

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: July 2nd, 2008

########################################################

########################################################

setwd("C:/talaci/research/thesis/data")
#setwd("C:/Kong/simulation/data/May17")

library(survival)
library(glmpath)
library(MASS)

memory.limit(size=4000)

#######################################################

run<-50 #the no. of simulation runs

p.censor<-0.15 #proportion of censoring

B<-100
########################################################
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alpha<-0.05

sim.func<-function(n=50, k=100,p.risk1=0.5,p.censor=0.15)

###The correlation coefficient matrix for

### x - Identity matrix now

rho<-diag(1,nzero,nzero)

###Design Matrix

x.a<-matrix(rep(0,n*nzero),ncol=nzero)
x.a<-mvrnorm(n = n, mu=rep(0,nzero), Sigma=rho)

colnames(x.a)<-paste("x",1:nzero,sep="")

B<-qr.Q(qr(x.a),complete=TRUE)[,-c(1:nzero)]
C<-mvrnorm(n = (n-nzero), mu=rep(0,(k-nzero)),

Sigma=diag(1,(k-nzero),(k-nzero)))

x.b<-B%*%C
colnames(x.b)<-paste("x",(nzero+1):k,sep="")

#max(t(x.b)%*%x.a)

x<-cbind(x.a,x.b)

lambda1<-exp(x%*%beta1)
set.seed(123*sample(1:1000,1)+i*10)
u<-runif(n)
base.t<-rweibull(n, shape=5, scale = 2)

t1<--log(u)/(lambda1*base.t)

lambda2<-exp(x%*%beta2)
set.seed(2345*sample(1000:2000,1)+i*10)
u<-runif(n)
t2<--log(u)/(lambda2*base.t)

###Generate group indicator indicating fail

###due to cause 1 or cause 2; and true censoring

### indicator

group.ind<-rbinom(n, 1, p.risk1)

#1 if group1 and 0 if group2

censor.ind<-rbinom(n,1,1-p.censor)
#1 if event and 0 if censored
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censor.t<-runif(n,2,10)

###Get the observed days

days<-ifelse(group.ind==1, t1, t2)

days<-ifelse(censor.ind==0,censor.t,days)
#censored times are from a uniform

#distribution

#cbind(days, group.ind , censor.ind)

#days<-(days-mean(days))/sqrt(days)

###Preparing for estimation: creat cause

###specific censoring indicators

censor.ind.1<-ifelse(group.ind==1
& censor.ind!=0, 1, 0)

censor.ind.2<-ifelse(group.ind!=1
& censor.ind!=0, 1, 0)

###Estimation using coxpath for cause 1

data.c1<-list(x=x, time=days
, status=censor.ind.1)

coxpath.c1<-coxpath(data=data.c1
,standardize = TRUE,trace = F)

###Estimation using coxpath for cause 2

data.c2<-list(x=x, time=days,
status=censor.ind.2)

coxpath.c2<-coxpath(data=data.c2,
standardize = TRUE,trace = F)

###Report

result<-list(coxpath.c1 ,coxpath.c2)
return(result)

}

#########################################################

#SITUATION1: N=100,K=10,P.RISK1=0.6

#########################################################

n<-100 #total number of observations

k<-10 #number of covariates

p.risk1<-0.6 #proportion of observations fail

#due to risk 1
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nzero.effect1<-2 #the non-zero coefficient effect

# of beta

nzero.effect2<-2
nzero<-4
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r1<-list()
result.c2.r1<-list()

coef.c1.r1<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r1<-matrix(rep(NA,run*k),ncol=k)

check.c1.r1<-matrix(rep(NA,run*k),ncol=k)
check.c2.r1<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r1<-c()
spec.c1.r1<-c()

sens.c2.r1<-c()
spec.c2.r1<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

result.c2.r1[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

#length(result.c1.r1[[i]]$lambda)-1
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ind<-length(result.c1.r1[[i]]$lambda
[result.c1.r1[[i]]$lambda>threshold[j]])
coef.c1.r1[i,]<-result.c1.r1[[i]]$
b.corrector[ind,]

#length(result.c2.r1[[i]]$lambda)-1
ind<-length(result.c2.r1[[i]]$lambda
[result.c2.r1[[i]]$lambda>threshold[j]])
coef.c2.r1[i,]<-result.c2.r1[[i]]$
b.corrector[ind,]

check.c1.r1[i,]<-ifelse(coef.c1.r1[i,]
!=0,1,0)
check.c2.r1[i,]<-ifelse(coef.c2.r1[i,]
!=0,1,0)

}

sens.c1.r1[j]<-sum(as.vector(check.c1.r1
[,c(1:nzero)]))/(nzero*run)

spec.c1.r1[j]<-1-sum(as.vector(check.c1.r1
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r1[j]<-sum(as.vector(check.c2.r1
[,c(1:nzero)]))/(nzero*run)

spec.c2.r1[j]<-1-sum(as.vector(check.c2.r
[,c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION2: N=100,K=50,P.RISK1=0.6 #

#########################################################

n<-100 #total number of observations

k<-50 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
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run<-20

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r2<-list()
result.c2.r2<-list()

coef.c1.r2<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r2<-matrix(rep(NA,run*k),ncol=k)

check.c1.r2<-matrix(rep(NA,run*k),ncol=k)
check.c2.r2<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r2<-c()
spec.c1.r2<-c()

sens.c2.r2<-c()
spec.c2.r2<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k

,p.risk1=p.risk1,p.censor=p.censor

, beta1=beta1, beta2=beta2,B=B)

result.c1.r2[[i]]<-temp[[1]]
result.c2.r2[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r2[[i]]
$lambda[result.c1.r2[[i]]$lambda>threshold[j]])

coef.c1.r2[i,]<-result.c1.r2[[i]]
$b.corrector[ind,]
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ind<-length(result.c2.r2[[i]]
$lambda[result.c2.r2[[i]]$lambda>threshold[j]])

coef.c2.r2[i,]<-result.c2.r2[[i]]
$b.corrector[ind,]

check.c1.r2[i,]<-ifelse(coef.c1.r2[i,]
!=0,1,0)

check.c2.r2[i,]<-ifelse(coef.c2.r2[i,]
!=0,1,0)

}

sens.c1.r2[j]<-sum(as.vector(check.c1.r2[,
c(1:nzero)]))/(nzero*run)

spec.c1.r2[j]<-1-sum(as.vector(check.c1.r2[,
c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r2[j]<-sum(as.vector(check.c2.r2[,
c(1:nzero)]))/(nzero*run)

spec.c2.r2[j]<-1-sum(as.vector(check.c2.r2[,
c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION3: N=100,K=100,P.RISK1=0.6,EFFECT1=2, EFFECT2=2 #

#########################################################

n<-100 #total number of observations

k<-100 #number of covariates

p.risk1<-0.6 #proportion of observations

# fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

# effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2
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###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r3<-list()
result.c2.r3<-list()

coef.c1.r3<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r3<-matrix(rep(NA,run*k),ncol=k)

check.c1.r3<-matrix(rep(NA,run*k),ncol=k)
check.c2.r3<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r3<-c()
spec.c1.r3<-c()

sens.c2.r3<-c()
spec.c2.r3<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r3[[i]]<-temp[[1]]
result.c2.r3[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r3[[i]]
$lambda[result.c1.r3[[i]]$lambda
>threshold[j]])

coef.c1.r3[i,]<-result.c1.r3[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r3[[i]]
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$lambda[result.c2.r3[[i]]$lambda
>threshold[j]])

coef.c2.r3[i,]<-result.c2.r3[[i]]
$b.corrector[ind,]

check.c1.r3[i,]<-ifelse(coef.c1.r3
[i,]!=0,1,0)
check.c2.r3[i,]<-ifelse(coef.c2.r3
[i,]!=0,1,0)

}

sens.c1.r3[j]<-sum(as.vector(check.c1.r3
[,c(1:nzero)]))/(nzero*run)

spec.c1.r3[j]<-1-sum(as.vector(check.c1.r3
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r3[j]<-sum(as.vector(check.c2.r3
[,c(1:nzero)]))/(nzero*run)

spec.c2.r3[j]<-1-sum(as.vector(check.c2.r3
[,c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION4: N=100,K=200,P.RISK1=0.6,EFFECT1=2, EFFECT2=2

#########################################################

n<-100 #total number of observations

k<-200 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")
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beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r4<-list()
result.c2.r4<-list()

coef.c1.r4<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r4<-matrix(rep(NA,run*k),ncol=k)

check.c1.r4<-matrix(rep(NA,run*k),ncol=k)
check.c2.r4<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r4<-c()
spec.c1.r4<-c()

sens.c2.r4<-c()
spec.c2.r4<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r4[[i]]<-temp[[1]]
result.c2.r4[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r4[[i]]
$lambda[result.c1.r4[[i]]
$lambda>threshold[j]])
coef.c1.r4[i,]<-result.c1.r4[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r4[[i]]
$lambda[result.c2.r4[[i]]$lambda
>threshold[j]])
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coef.c2.r4[i,]<-result.c2.r4[[i]]
$b.corrector[ind,]

check.c1.r4[i,]<-ifelse(coef.c1.r4
[i,]!=0,1,0)
check.c2.r4[i,]<-ifelse(coef.c2.r4
[i,]!=0,1,0)

}

sens.c1.r4[j]<-sum(as.vector(check.c1.r4[,
c(1:nzero)]))/(nzero*run)

spec.c1.r4[j]<-1-sum(as.vector(check.c1.r4[,
c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r4[j]<-sum(as.vector(check.c2.r4[,
c(1:nzero)]))/(nzero*run)

spec.c2.r4[j]<-1-sum(as.vector(check.c2.r4[,
c((nzero+1):k)]))/((k-nzero)*run)

}

save.image("SITUATION 1 to 4-composition x.RData")

#########################################################

#SITUATION5: N=200,K=10,P.RISK1=0.6,EFFECT1=2, EFFECT2=2

#########################################################

n<-200 #total number of observations

k<-10 #number of covariates

p.risk1<-0.6 #proportion of observations fail

#due to risk 1

nzero.effect1<-2 #the non-zero coefficient effect

# of beta

nzero.effect2<-2
nzero<-4
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")
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beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r5<-list()
result.c2.r5<-list()

coef.c1.r5<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r5<-matrix(rep(NA,run*k),ncol=k)

check.c1.r5<-matrix(rep(NA,run*k),ncol=k)
check.c2.r5<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r5<-c()
spec.c1.r5<-c()

sens.c2.r5<-c()
spec.c2.r5<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta
1, beta2=beta2,B=B)

result.c1.r5[[i]]<-temp[[1]]
result.c2.r5[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r5[[i]]
$lambda[result.c1.r5[[i]]$lambda
>threshold[j]])

coef.c1.r5[i,]<-result.c1.r5[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r5[[i]]$
lambda[result.c2.r5[[i]]$lambda
>threshold[j]])
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coef.c2.r5[i,]<-result.c2.r5[[i]]
$b.corrector[ind,]

check.c1.r5[i,]<-ifelse(coef.c1.r5[i,
]!=0,1,0)
check.c2.r5[i,]<-ifelse(coef.c2.r5[i,
]!=0,1,0)

}

sens.c1.r5[j]<-sum(as.vector(check.c1.r5[,c
(1:nzero)]))/(nzero*run)

spec.c1.r5[j]<-1-sum(as.vector(check.c1.r5[,c
((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r5[j]<-sum(as.vector(check.c2.r5[,c(
1:nzero)]))/(nzero*run)

spec.c2.r5[j]<-1-sum(as.vector(check.c2.r5
[,c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION6: N=200,K=50,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-50 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
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names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r6<-list()
result.c2.r6<-list()

coef.c1.r6<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r6<-matrix(rep(NA,run*k),ncol=k)

check.c1.r6<-matrix(rep(NA,run*k),ncol=k)
check.c2.r6<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r6<-c()
spec.c1.r6<-c()

sens.c2.r6<-c()
spec.c2.r6<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r6[[i]]<-temp[[1]]
result.c2.r6[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r6[[i]]
$lambda[result.c1.r6[[i]]$lambda>threshold[j]])
coef.c1.r6[i,]<-result.c1.r6[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r6[[i]]
$lambda[result.c2.r6[[i]]$

lambda>threshold[j]])

coef.c2.r6[i,]<-result.c2.r6[
[i]]$b.corrector[ind,]

check.c1.r6[i,]<-ifelse(coef.c1.r6[i,]
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!=0,1,0)
check.c2.r6[i,]<-ifelse(coef.c2.r6[i,]
!=0,1,0)

}

sens.c1.r6[j]<-sum(as.vector(check.c1.r6[,
c(1:nzero)]))/(nzero*run)

spec.c1.r6[j]<-1-sum(as.vector(check.c1.r6[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r6[j]<-sum(as.vector(check.c2.r6[
,c(1:nzero)]))/(nzero*run)

spec.c2.r6[j]<-1-sum(as.vector(check.c2.r6[,
c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION7: N=200,K=100,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-100 #number of covariates

p.risk1<-0.6 #proportion of observations

# fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r7<-list()
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result.c2.r7<-list()

coef.c1.r7<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r7<-matrix(rep(NA,run*k),ncol=k)

check.c1.r7<-matrix(rep(NA,run*k),ncol=k)
check.c2.r7<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r7<-c()
spec.c1.r7<-c()

sens.c2.r7<-c()
spec.c2.r7<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1,

beta2=beta2,B=B)

result.c1.r7[[i]]<-temp[[1]]
result.c2.r7[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r7[[i]]
$lambda[result.c1.r7[[i]]$lambda
>threshold[j]])

coef.c1.r7[i,]<-result.c1.r7[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r7[[i]]$
lambda[result.c2.r7[[i]]$lambda>threshold[j]])
coef.c2.r7[i,]<-result.c2.r7[[i]]
$b.corrector[ind,]

check.c1.r7[i,]<-ifelse(coef.c1.r7
[i,]!=0,1,0)
check.c2.r7[i,]<-ifelse(coef.c2.r7
[i,]!=0,1,0)

}
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sens.c1.r7[j]<-sum(as.vector(check.c1.r7
[,c(1:nzero)]))/(nzero*run)

spec.c1.r7[j]<-1-sum(as.vector(check.c1.r7
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r7[j]<-sum(as.vector(check.c2.r7
[,c(1:nzero)]))/(nzero*run)

spec.c2.r7[j]<-1-sum(as.vector(check.c2.r7
[,c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION8: N=200,K=200,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-200 #number of covariates

p.risk1<-0.6 #proportion of observations

# fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r8<-list()
result.c2.r8<-list()

coef.c1.r8<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r8<-matrix(rep(NA,run*k),ncol=k)
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check.c1.r8<-matrix(rep(NA,run*k),ncol=k)
check.c2.r8<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r8<-c()
spec.c1.r8<-c()

sens.c2.r8<-c()
spec.c2.r8<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r8[[i]]<-temp[[1]]
result.c2.r8[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r8[[i]]
$lambda[result.c1.r8[[i]]$lambda
>threshold[j]])

coef.c1.r8[i,]<-result.c1.r8[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r8[[i]]$
lambda[result.c2.r8[[i]]$lambd

a>threshold[j]])

coef.c2.r8[i,]<-result.c2.r8[[i]]
$b.corrector[ind,]

check.c1.r8[i,]<-ifelse(coef.c1.r8
[i,]!=0,1,0)
check.c2.r8[i,]<-ifelse(coef.c2.r8
[i,]!=0,1,0)

}

sens.c1.r8[j]<-sum(as.vector(check.c1.r8
[,c(1:nzero)]))/(nzero*run)
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spec.c1.r8[j]<-1-sum(as.vector(check.c1.r8
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r8[j]<-sum(as.vector(check.c2.r8[,
c(1:nzero)]))/(nzero*run)

spec.c2.r8[j]<-1-sum(as.vector(check.c2.r8[,
c((nzero+1):k)]))/((k-nzero)*run)

}

save.image("SITUATION 5 to 8-composition x.RData")

#########################################################

#SITUATION9: N=200,K=500,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-500 #number of covariates

p.risk1<-0.6 #proportion of observations

# fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r9<-list()
result.c2.r9<-list()

coef.c1.r9<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r9<-matrix(rep(NA,run*k),ncol=k)
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check.c1.r9<-matrix(rep(NA,run*k),ncol=k)
check.c2.r9<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r9<-c()
spec.c1.r9<-c()

sens.c2.r9<-c()
spec.c2.r9<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r9[[i]]<-temp[[1]]
result.c2.r9[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r9[[i]]$lambda
[result.c1.r9[[i]]$lambda
>threshold[j]])

coef.c1.r9[i,]<-result.c1.r9[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r9[[i]]
$lambda[result.c2.r9[[i]]$lambda
>threshold[j]])

coef.c2.r9[i,]<-result.c2.r9[[i]]
$b.corrector[ind,]

check.c1.r9[i,]<-ifelse(coef.c1.r9
[i,]!=0,1,0)
check.c2.r9[i,]<-ifelse(coef.c2.r9
[i,]!=0,1,0)

}

sens.c1.r9[j]<-sum(as.vector(check.c1.r9[,
c(1:nzero)]))/(nzero*run)

spec.c1.r9[j]<-1-sum(as.vector(check.c1.r9[,
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c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r9[j]<-sum(as.vector(check.c2.r9[,
c(1:nzero)]))/(nzero*run)

spec.c2.r9[j]<-1-sum(as.vector(check.c2.r9[,
c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION10: N=200,K=1000,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-1000 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient effect

# of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r10<-list()
result.c2.r10<-list()

coef.c1.r10<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r10<-matrix(rep(NA,run*k),ncol=k)

check.c1.r10<-matrix(rep(NA,run*k),ncol=k)
check.c2.r10<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r10<-c()
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spec.c1.r10<-c()

sens.c2.r10<-c()
spec.c2.r10<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r10[[i]]<-temp[[1]]
result.c2.r10[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r10[[i]]
$lambda[result.c1.r10[[i]]$lambda
>threshold[j]])

coef.c1.r10[i,]<-result.c1.r10[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r10[[i]]
$lambda[result.c2.r10[[i]]$lambda
>threshold[j]])

coef.c2.r10[i,]<-result.c2.r10
[[i]]$b.corrector[ind,]

check.c1.r10[i,]<-ifelse(coef.c1.r10
[i,]!=0,1,0)
check.c2.r10[i,]<-ifelse(coef.c2.r10
[i,]!=0,1,0)

}

sens.c1.r10[j]<-sum(as.vector(check.c1.r10
[,c(1:nzero)]))/(nzero*run)

spec.c1.r10[j]<-1-sum(as.vector(check.c1.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r10[j]<-sum(as.vector(check.c2.r10
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[,c(1:nzero)]))/(nzero*run)

spec.c2.r10[j]<-1-sum(as.vector(check.c2.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

}

save.image("SITUATION 9 to 10-composition x.RData")

###################################################

###################################################

#ADD: SITUATION5A N=100,K=500 AND SITUATION6A

# N=100, K=1000

###################################################

####################################################

#########################################################

#SITUATION5A: N=200,K=500,P.RISK1=0.6 #

#########################################################

n<-100 #total number of observations

k<-500 #number of covariates

p.risk1<-0.6 #proportion of observations

# fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r5a<-list()
result.c2.r5a<-list()
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coef.c1.r5a<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r5a<-matrix(rep(NA,run*k),ncol=k)

check.c1.r5a<-matrix(rep(NA,run*k),ncol=k)
check.c2.r5a<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r5a<-c()
spec.c1.r5a<-c()

sens.c2.r5a<-c()
spec.c2.r5a<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r5a[[i]]<-temp[[1]]
result.c2.r5a[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r5a[[i]]
$lambda[result.c1.r5a[[i]]$lambda
>threshold[j]])

coef.c1.r5a[i,]<-result.c1.r5a[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r5a[[i]]
$lambda[result.c2.r5a[[i]]$lambda
>threshold[j]])

coef.c2.r5a[i,]<-result.c2.r5a[[i]]
$b.corrector[ind,]

check.c1.r5a[i,]<-ifelse(coef.c1.r5a
[i,]!=0,1,0)
check.c2.r5a[i,]<-ifelse(coef.c2.r5a
[i,]!=0,1,0)

}

sens.c1.r5a[j]<-sum(as.vector(check.c1.r5a[,
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c(1:nzero)]))/(nzero*run)

spec.c1.r5a[j]<-1-sum(as.vector(check.c1.r5a[,
c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r5a[j]<-sum(as.vector(check.c2.r5a[,
c(1:nzero)]))/(nzero*run)

spec.c2.r5a[j]<-1-sum(as.vector(check.c2.r5a[,
c((nzero+1):k)]))/((k-nzero)*run)

}

#########################################################

#SITUATION6A: N=200,K=1000,P.RISK1=0.6 #

#########################################################

n<-100 #total number of observations

k<-1000 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r6a<-list()
result.c2.r6a<-list()

coef.c1.r6a<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r6a<-matrix(rep(NA,run*k),ncol=k)

check.c1.r6a<-matrix(rep(NA,run*k),ncol=k)
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check.c2.r6a<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r6a<-c()
spec.c1.r6a<-c()

sens.c2.r6a<-c()
spec.c2.r6a<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1,

p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B)

result.c1.r6a[[i]]<-temp[[1]]
result.c2.r6a[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r6a[[i]]$
lambda[result.c1.r6a[[i]]$lambda
>threshold[j]])

coef.c1.r6a[i,]<-result.c1.r6a[[i]]
$b.corrector[ind,]

ind<-length(result.c2.r6a[[i]]
$lambda[result.c2.r6a[[i]]$lambda
>threshold[j]])

coef.c2.r6a[i,]<-result.c2.r6a[[i]]
$b.corrector[ind,]

check.c1.r6a[i,]<-ifelse(coef.c1.r6a
[i,]!=0,1,0)
check.c2.r6a[i,]<-ifelse(coef.c2.r6a
[i,]!=0,1,0)

}

sens.c1.r6a[j]<-sum(as.vector(check.c1.r6a[,
c(1:nzero)]))/(nzero*run)

spec.c1.r6a[j]<-1-sum(as.vector(check.c1.r6a[,
c((nzero+1):k)]))/((k-nzero)*run)
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sens.c2.r6a[j]<-sum(as.vector(check.c2.r6a[,
c(1:nzero)]))/(nzero*run)

spec.c2.r6a[j]<-1-sum(as.vector(check.c2.r6a[,
c((nzero+1):k)]))/((k-nzero)*run)

}

save.image("SITUATION 5A to 6A-composition x.RData")
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C.2 Simulation When the Truly Important Variables Are
Independent Correlated (maximum correlation 0.8) -
Using the Proposed Method

###################################################################

###################################################################

#PURPOSE: SIMULATION IN DISSERTAION: L1 PENALIZED MAXIMUM

# LIKELIHOOD APPROACH IN COMPETING RISKS

#NOTE: GENERATION OF X MATRIX USING DECOMPOSITION , TRULY

# IMPORTANT

# VARIABLES ARE CORRELATED WITH NOISE

# VARIABLES WITH MAXIMUM CORRELATION BEING 0.8

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: July 4TH, 2008

#########################################################

##########################################################

setwd("C:/talaci/research/thesis/data")
#setwd("C:/Kong/simulation/data/May17")

library(survival)
library(glmpath)
library(MASS)

memory.limit(size=4000)

########################################################

run<-50 #the no. of simulation runs

p.censor<-0.15 #proportion of censoring

B<-100
max.corr<-0.8
max.eigen<-max.corrˆ2/(1-max.corrˆ2)

#########################################################

alpha<-0.05

sim.func<-function(n=50, k=100,p.risk1=0.5,p.censor=0.15

, beta1, beta2,B, max.eigen){ #this is

#the function for simmulation

###The correlation coefficient matrix for x

# - Identity matrix now

rho<-diag(1,nzero,nzero)
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###Design Matrix

x.a<-matrix(rep(0,n*nzero),ncol=nzero)
x.a<-mvrnorm(n = n, mu=rep(0,nzero), Sigma=rho)

colnames(x.a)<-paste("x",1:nzero,sep="")

x.am<-qr.Q(qr(x.a))
#This is the ortho-normal basis of the

#space Omega expanded by x.a

B<-qr.Q(qr(x.a),complete=TRUE)[,-c(1:nzero)]
#This is an ortho-normal basis of

# the orthogonal complement space of

#Omega

Cm.Cm<-matrix(rep(0, (n-nzero)*(n-nzero))
, ncol=n-nzero)
diag(Cm.Cm)<-seq(from=max.eigen , to=0,

length.out=n-nzero)

#Then the largest eigenvalue

#of (Cm’Cm) is 1/3
Cm<-((Cm.Cm)ˆ(1/2))[1:nzero,]

A<-B+x.am%*%Cm
#This is a basis for the space Psi this

#is not orthogonal complement

#of Omega. Use A to generate the

#design matrix

# X.b for noise variables.

C<-mvrnorm(n = (n-nzero), mu=rep(0,(k-nzero))
, Sigma=diag(1,(k-nzero),(k-nzero)))

x.b<-A%*%C
#This is the design matrix for the noise

#variables

colnames(x.b)<-paste("x",(nzero+1):k,sep="")

x<-cbind(x.a, x.b)

lambda1<-exp(x%*%beta1)
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set.seed(123*sample(1:1000,1)+i*10)
u<-runif(n)
base.t<-rweibull(n, shape=5, scale = 2)

t1<--log(u)/(lambda1*base.t)

lambda2<-exp(x%*%beta2)
set.seed(2345*sample(1000:2000,1)+i*10)
u<-runif(n)
t2<--log(u)/(lambda2*base.t)

###Generate group indicator indicating

### fail due to cause 1 or cause 2;

###and true censoring indicator

group.ind<-rbinom(n, 1, p.risk1)

#1 if group1 and 0 if group2

censor.ind<-rbinom(n,1,1-p.censor)
#1 if event and 0 if censored

censor.t<-runif(n,2,10)

###Get the observed days

days<-ifelse(group.ind==1, t1, t2)

days<-ifelse(censor.ind==0,censor.t,days)
#censored times are from a uniform

# distribution

#cbind(days, group.ind , censor.ind)

#days<-(days-mean(days))/sqrt(days)

###Preparing for estimation: creat cause

###specific

###censoring indicators

censor.ind.1<-ifelse(group.ind==1 &
censor.ind!=0, 1, 0)

censor.ind.2<-ifelse(group.ind!=1 &
censor.ind!=0, 1, 0)

###Estimation using coxpath for cause 1

data.c1<-list(x=x, time=days, status=
censor.ind.1)

coxpath.c1<-coxpath(data=data.c1
,standardize = TRUE
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,trace = F)

###Estimation using coxpath for cause 2

data.c2<-list(x=x, time=days,
status=censor.ind.2)

coxpath.c2<-coxpath(data=data.c2
,standardize = TRUE

,trace = F)

###Report

result<-list(coxpath.c1 ,coxpath.c2)
return(result)

}

#########################################################

#SITUATION10: N=200,K=1000,P.RISK1=0.6 #

#########################################################

n<-200 #total number of observations

k<-1000 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1

nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r10<-list()
result.c2.r10<-list()

coef.c1.r10<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r10<-matrix(rep(NA,run*k),ncol=k)
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check.c1.r10<-matrix(rep(NA,run*k),ncol=k)
check.c2.r10<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r10<-c()
spec.c1.r10<-c()

sens.c2.r10<-c()
spec.c2.r10<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor , beta1=beta1

, beta2=beta2,B=B, max.eigen=max.eigen)

result.c1.r10[[i]]<-temp[[1]]
result.c2.r10[[i]]<-temp[[2]]

}

for(j in 1:length(threshold)){
for(i in 1:run){

ind<-length(result.c1.r10[[i]]$
lambda[result.c1.r10[[i]]$lambda
>threshold[j]])

coef.c1.r10[i,]<-result.c1.r10[[i]
]$b.corrector[ind,]

ind<-length(result.c2.r10[[i]]$
lambda[result.c2.r10[[i]]$lambda
>threshold[j]])

coef.c2.r10[i,]<-result.c2.r10[[i]]
$b.corrector[ind,]

check.c1.r10[i,]<-ifelse(coef.c1.r10
[i,]!=0,1,0)
check.c2.r10[i,]<-ifelse(coef.c2.r10
[i,]!=0,1,0)

}

sens.c1.r10[j]<-sum(as.vector(check.c1.r10
[,c(1:nzero)]))/(nzero*run)
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spec.c1.r10[j]<-1-sum(as.vector(check.c1.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r10[j]<-sum(as.vector(check.c2.r10
[,c(1:nzero)]))/(nzero*run)

spec.c2.r10[j]<-1-sum(as.vector(check.c2.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

}

save.image("SITUATION 9 to 10-composition x.RData")



172

C.3 Simulation When the Truly Important Variables Are
Independent of the Noise Variables - Using Univari-
able Apporach

#######################################################

#######################################################

#PURPOSE: SIMULATION IN DISSERTAION: UNIVARIABLE COX

# MODEL APPROACH

#NOTE: GENERATION OF X USING DECOMPOSITION

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: July 2nd, 2008

#######################################################

#######################################################

setwd("C:/talaci/research/thesis/data")
#setwd("C:/Kong/simulation/data/May17")

library(survival)
library(glmpath)
library(MASS)

memory.limit(size=4000)

#######################################################

run<-20 #the no. of simulation runs

p.censor<-0.15 #proportion of censoring

B<-100
########################################################

alpha<-c(0.01,0.05)

sim.func<-function(n=50, k=100,p.risk1=0.5,p.censor=0.15,

beta1, beta2){#this is the simmulation function

###The correlation coefficient matrix for x

###- Identity matrix now

rho<-diag(1,nzero,nzero)

###Design Matrix

x.a<-matrix(rep(0,n*nzero),ncol=nzero)
x.a<-mvrnorm(n = n, mu=rep(0,nzero), Sigma=rho)

colnames(x.a)<-paste("x",1:nzero,sep="")
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B<-qr.Q(qr(x.a),complete=TRUE)[,-c(1:nzero)]
C<-mvrnorm(n = (n-nzero), mu=rep(0,(k-nzero))

, Sigma=diag(1,(k-nzero),(k-nzero)))

x.b<-B%*%C
colnames(x.b)<-paste("x",(nzero+1):k,sep="")

#max(t(x.b)%*%x.a)

x<-cbind(x.a,x.b)

lambda1<-exp(x%*%beta1)
set.seed(123*sample(1:1000,1)+i*10)
u<-runif(n)
base.t<-rweibull(n, shape=5, scale = 2)

t1<--log(u)/(lambda1*base.t)

lambda2<-exp(x%*%beta2)
set.seed(2345*sample(1000:2000,1)+i*10)
u<-runif(n)
t2<--log(u)/(lambda2*base.t)

###Generate group indicator indicating fail due

### to cause 1 or cause 2; and true censoring

###indicator

group.ind<-rbinom(n, 1, p.risk1)

#1 if group1 and 0 if group2

censor.ind<-rbinom(n,1,1-p.censor)
#1 if event and 0 if censored

censor.t<-runif(n,2,10)

###Get the observed days

days<-ifelse(group.ind==1, t1, t2)

days<-ifelse(censor.ind==0,censor.t,days)
#censored times are from a uniform

#distribution

#cbind(days, group.ind , censor.ind)

#days<-(days-mean(days))/sqrt(days)



174

###Preparing for estimation: creat cause

###specific censoring indicators

censor.ind.1<-ifelse(group.ind==1 & censor.ind!=0
, 1, 0)

censor.ind.2<-ifelse(group.ind!=1 & censor.ind!=0
, 1, 0)

###Estimation using coxpath for cause 1

data.c1<-list(x=x, time=days
, status=censor.ind.1)

coxpath.c1<-coxpath(data=data.c1
,standardize = TRUE,trace = F)

###Estimation using coxpath for cause 2

data.c2<-list(x=x, time=days
, status=censor.ind.2)

coxpath.c2<-coxpath(data=data.c2
,standardize = TRUE,trace = F)

###############################################

###Pvalues from likelihood ratio test using

###univariate Cox Ph model for cause 1

uni.pval.c1<-c()
for (l in 1:k){

data.c1<-list(xx=x[,l], time=days
, status=censor.ind.1)
uni.pval.c1[l]<-summary(coxph(
Surv(time, status) ˜ xx, data.c1))

$logtest["pvalue"]
}

names(uni.pval.c1)<-colnames(x)

###Pvalues from likelihood ratio test using

### univariate Cox Ph model for cause 2

uni.pval.c2<-c()
for (l in 1:k){

data.c2<-list(xx=x[,l], time=days
, status=censor.ind.2)
uni.pval.c2[l]<-summary(coxph( Surv

(time, status) ˜ xx, data.c2))$
logtest["pvalue"]

}
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names(uni.pval.c2)<-colnames(x)

###Report

result<-list(coxpath.c1 ,coxpath.c2 ,
uni.pval.c1 , uni.pval.c2)

return(result)
}

#######################################################

#Calculating the sensitivity and specificity for

#Univariate Cox model approach

#Jun 2nd, 2008

#######################################################

s.s.func<-function(alpha=alpha, p.val.mat ,nzero=nzero)

{

k<-ncol(p.val.mat)
run<-nrow(p.val.mat)

check.mat<-matrix(rep(NA, run*k), ncol=k)
for (i in 1:run){

check.mat[i,]<-ifelse(p.val.mat[i,]
<=alpha, 1, 0)

}

sens<-sum(as.vector(check.mat[,c(1:(nzero/2)
,(k-nzero/2+1):k)]))/(nzero*run)

spec<-1-sum(as.vector(check.mat[,c((nzero/2+1)
:(k-nzero/2))]))/((k-nzero)*run)

result<-c(sens, spec)

names(result)<-c("sens","spec")
return(result)

}

####################################################

#########################################################

#SITUATION10: N=200,K=1000,P.RISK1=0.6

#########################################################

n<-200 #total number of observations

k<-1000 #number of covariates

p.risk1<-0.6 #proportion of observations

#fail due to risk 1
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nzero.effect1<-2 #the non-zero coefficient

#effect of beta

nzero.effect2<-2
nzero<-20
run<-20

###Non-zero Coefficients of for cause 1 and cause 2

###Non-zero Coefficients of for cause 1 and cause 2

beta1<-c(rep(nzero.effect1 ,nzero),rep(0,k-nzero))
names(beta1)<-paste("x",1:k,sep="")

beta2<--beta1
names(beta2)<-paste("x",1:k,sep="")

###

###

result.c1.r10<-list()
result.c2.r10<-list()

coef.c1.r10<-matrix(rep(NA,run*k),ncol=k)
coef.c2.r10<-matrix(rep(NA,run*k),ncol=k)

check.c1.r10<-matrix(rep(NA,run*k),ncol=k)
check.c2.r10<-matrix(rep(NA,run*k),ncol=k)

sens.c1.r10<-c()
spec.c1.r10<-c()

sens.c2.r10<-c()
spec.c2.r10<-c()

threshold<-c(nˆ(0.3),nˆ(0.1))

pval.c1.r10<-matrix(rep(NA,run*k),ncol=k)
pval.c2.r10<-matrix(rep(NA,run*k),ncol=k)

for (i in 1:run){

temp<-sim.func(n=n, k=k,p.risk1=p.risk1

,p.censor=p.censor

, beta1=beta1, beta2=beta2)

result.c1.r10[[i]]<-temp[[1]]
result.c2.r10[[i]]<-temp[[2]]
pval.c1.r10[i,]<-temp[[3]]
pval.c2.r10[i,]<-temp[[4]]
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}

for(j in 1:length(threshold)){
for(i in 1:run){

#length(result.c1.r10[[i]]$lambda)-1
ind<-length(result.c1.r10[[i]]$
lambda[result.c1.r10[[i]]$lambda
>threshold[j]])

coef.c1.r10[i,]<-result.c1.r10[[i]]
$b.corrector[ind,]

#length(result.c2.r10[[i]]$lambda)-1
ind<-length(result.c2.r10[[i]]$
lambda[result.c2.r10[[i]]$lambda
>threshold[j]])

coef.c2.r10[i,]<-result.c2.r10[[i]]
$b.corrector[ind,]

check.c1.r10[i,]<-ifelse(coef.c1.r10
[i,]!=0,1,0)
check.c2.r10[i,]<-ifelse(coef.c2.r10
[i,]!=0,1,0)

}

sens.c1.r10[j]<-sum(as.vector(check.c1.r10
[,c(1:nzero)]))/(nzero*run)

spec.c1.r10[j]<-1-sum(as.vector(check.c1.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

sens.c2.r10[j]<-sum(as.vector(check.c2.r10
[,c(1:nzero)]))/(nzero*run)

spec.c2.r10[j]<-1-sum(as.vector(check.c2.r10
[,c((nzero+1):k)]))/((k-nzero)*run)

}

###Univariate approach result

uni.c1.r10<-matrix(rep(NA, length(alpha)*2), ncol=2)
colnames(uni.c1.r10)<-c("sens","spec")
rownames(uni.c1.r10)<-c("alpha.01", "alph.05")

uni.c1.r10[1,]<-s.s.func(alpha=alpha[1], p.val.mat
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=pval.c1.r10 , nzero=nzero)

uni.c1.r10[2,]<-s.s.func(alpha=alpha[2], p.val.mat

=pval.c1.r10 , nzero=nzero)

save.image("SITUATION 9 to 10-composition and

                univariate x.RData")
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C.4 Plotting for Table 4.1

########################################################

#########################################################

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: JULY 2ND, 2008

########################################################

########################################################

setwd("C:/talaci/research/thesis/data/simulatioN
        /simulation results/July22")

memory.limit(size=4000)

#######################################Failure Type

sim.result<-read.csv(file="New simulation result for
        ploting xa indepen xb- CAUSE1.csv"

,colClasses = c(rep("numeric",6),"character"))

sim.result[,3:6]<-sim.result[,3:6]*100

attach(sim.result)

par(mfrow=c(2,2))
par(ps=18)

###k vs. sensitivity , Failure Type I

plot(k[n==100],sensitivity.lambda1[n==100], type="n",

xlim=c(0,1000), ylim=c(10,100), xlab="k"

,ylab="Sensitivity%",font.lab=2,ps=100,
main="Failure Type I",cex.main=0.9,cex.axis=0.9)

points(k[n==100],sensitivity.lambda1[n==100],col =

"red", pch=19)

lines(k[n==100],sensitivity.lambda1[n==100],col =

"red", pch=19,lwd=3)

points(k[n==200],sensitivity.lambda1[n==200],col =

"red", pch=11)

lines(k[n==200],sensitivity.lambda1[n==200],col =

"red", pch=11,lwd=3)
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points(k[n==100],sensitivity.lambda2[n==100],col =

"green",pch=19)

lines(k[n==100],sensitivity.lambda2[n==100],col =

"green",pch=19,lty=2)

points(k[n==200],sensitivity.lambda2[n==200],col =

"green",pch=11)

lines(k[n==200],sensitivity.lambda2[n==200],col =

"green",pch=11,lty=2)

axis(2,at=50,labels=T, cex.axis=0.6)

par(ps=15)
legend(x=425,y=40, legend=c(expression(paste("n=100,
        ",lambdaˆ1,";")),expression(paste("n=200, ",

lambdaˆ1,";"))),pch=c(19,11),lty=c(1),
text.col=c("red","red")

,col=c("red","red"), bty="n")

legend(x=735,y=39, legend=c(expression(paste("n=100, "
,lambdaˆ2)),expression(paste("n=200, ",
lambdaˆ2))),pch=c(19,11),lty=c(2), text.col=

c("green","green")
,col=c("green","green"),bty="n")

par(lwd=0.2)
abline(h=50,lty=3)

###k vs. specificity , Failure type I

par(ps=18)

plot(k[n==100],specificity.lambda1[n==100], type="n",

xlim=c(0,1000), ylim=c(10,100), xlab="k"

,ylab="specificity%",font.lab=2,ps=100,
main="Failure Type I",cex.main=0.9,cex.axis=0.9)

points(k[n==100],specificity.lambda1[n==100],col =

"red", pch=19)

lines(k[n==100],specificity.lambda1[n==100],col =

"red", pch=19, lwd=3)

points(k[n==200],specificity.lambda1[n==200],col =

"red", pch=11)



181

lines(k[n==200],specificity.lambda1[n==200],col =

"red", pch=11,lwd=3)

points(k[n==100],specificity.lambda2[n==100],col =

"green",pch=19)

lines(k[n==100],specificity.lambda2[n==100],col =

"green",pch=19,lty=2)

points(k[n==200],specificity.lambda2[n==200],col =

"green",pch=11)

lines(k[n==200],specificity.lambda2[n==200],col =

"green",pch=11,lty=2)

axis(2,at=50,labels=T, cex.axis=0.6)

par(ps=15)
legend(x=425,y=40, legend=c(expression(paste("n=100, "

,lambdaˆ1,";")),expression(paste("n=200, ",
lambdaˆ1,";"))),pch=c(19,11),lty=c(1),
text.col=c("red","red")

,col=c("red","red"), bty="n")

legend(x=735,y=39, legend=c(expression(paste("n=100,
        ",lambdaˆ2)),expression(paste("n=200, ",

lambdaˆ2))),pch=c(19,11),lty=c(2),
text.col=c("green","green")
,col=c("green","green"),bty="n")

par(lwd=0.2)
abline(h=50,lty=3)

#######################################Failure Type II

sim.result.2<-read.csv(file="New simulation result for
        ploting xa indepen xb- CAUSE2.csv"

,colClasses = c(rep("numeric",6),
"character"))

sim.result.2[,3:6]<-sim.result.2[,3:6]*100

###k vs. sensitivity , Failure Type II

par(ps=18)
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plot(k[n==100],sim.result.2$sensitivity.lambda1[n==100]
, type="n", xlim=c(0,1000), ylim=c(10,100),
xlab="k"

,ylab="Sensitivity%",font.lab=2,ps=100,
main="Failure Type II",cex.main=0.9,cex.axis=0.9)

points(k[n==100],sim.result.2$sensitivity.lambda1[n==100]
,col = "red", pch=19)

lines(k[n==100],sim.result.2$sensitivity.lambda1[n==100]
,col = "red", pch=19,lwd=3)

points(k[n==200],sim.result.2$sensitivity.lambda1[n==200]
,col = "red", pch=11)

lines(k[n==200],sim.result.2$sensitivity.lambda1[n==200]
,col = "red", pch=11,lwd=3)

points(k[n==100],sim.result.2$sensitivity.lambda2[n==100]
,col = "green",pch=19)

lines(k[n==100],sim.result.2$sensitivity.lambda2[n==100]
,col = "green",pch=19,lty=2)

points(k[n==200],sim.result.2$sensitivity.lambda2[n==200]
,col = "green",pch=11)

lines(k[n==200],sim.result.2$sensitivity.lambda2[n==200]
,col = "green",pch=11,lty=2)

axis(2,at=50,labels=T, cex.axis=0.6)

par(ps=15)
legend(x=425,y=40, legend=c(expression(paste("n=100, "

,lambdaˆ1,";")),expression(paste("n=200, ",
lambdaˆ1,";"))),pch=c(19,11),lty=c(1)
, text.col=c("red","red")
,col=c("red","red"), bty="n")

legend(x=735,y=39, legend=c(expression(paste("n=100, "
,lambdaˆ2)),expression(paste("n=200, ",
lambdaˆ2))),pch=c(19,11),lty=c(2),
text.col=c("green","green")

,col=c("green","green"),bty="n")

par(lwd=0.2)
abline(h=50,lty=3)
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###k vs. specificity , Failure type II

par(ps=18)

plot(k[n==100],sim.result.2$specificity.lambda1[n==100]
, type="n", xlim=c(0,1000), ylim=c(10,100),
xlab="k"

,ylab="specificity%",font.lab=2,ps=100,
main="Failure Type II",cex.main=0.9,cex.axis=0.9)

points(k[n==100],sim.result.2$specificity.lambda1
[n==100],col = "red", pch=19)

lines(k[n==100],sim.result.2$specificity.lambda1[n==100]
,col = "red", pch=19, lwd=3)

points(k[n==200],sim.result.2$specificity.lambda1[n==200]
,col = "red", pch=11)

lines(k[n==200],sim.result.2$specificity.lambda1[n==200]
,col = "red", pch=11,lwd=3)

points(k[n==100],sim.result.2$specificity.lambda2[n==100]
,col = "green",pch=19)

lines(k[n==100],sim.result.2$specificity.lambda2[n==100]
,col = "green",pch=19,lty=2)

points(k[n==200],sim.result.2$specificity.lambda2[n==200]
,col = "green",pch=11)

lines(k[n==200],sim.result.2$specificity.lambda2[n==200]
,col = "green",pch=11,lty=2)

axis(2,at=50,labels=T, cex.axis=0.6)

par(ps=15)
legend(x=425,y=40, legend=c(expression(paste("n=100, "

,lambdaˆ1,";")),expression(paste("n=200, ",
lambdaˆ1,";"))),pch=c(19,11),lty=c(1),
text.col=c("red","red")

,col=c("red","red"), bty="n")

legend(x=735,y=39, legend=c(expression(paste("n=100,
        ",lambdaˆ2)),expression(paste("n=200, ", lambdaˆ2)))

,pch=c(19,11),lty=c(2), text.col=c("green","green")
,col=c("green","green"),bty="n")
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par(lwd=0.2)
abline(h=50,lty=3)
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C.5 Plotting for Table 4.2

#########################################################

#PURPOSE: PLOTTING THE SIMULATION RESULTS FIGURE 4.2

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: JULY 2ND, 2008

#######################################################

setwd("C:/talaci/research/thesis/data/simulatioN
        /simulation results\July22")

memory.limit(size=4000)

#######################################Failure Type I

sim.result<-read.csv(file="New simulation result for
        ploting comparing ind and corr.csv"

,colClasses = "numeric")

attach(sim.result)

par(mfrow=c(2,1))
par(ps=18)

###Sensitivity vs. Specificity , Failure Type I

plot(sensitivity.lambda1[Type==1],specificity.lambda1
[Type==1], type="n", xlim=c(20,100),
ylim=c(85,90), xlab="Sensitivity%"

,ylab="Specificity%",font.lab=2, main=

"Failure Type I",cex.axis=0.9,yaxt="n"

,cex.main=0.9)

points(sensitivity.lambda1[Type==1&Max.Correlation==0]
,specificity.lambda1[Type==1&Max.Correlation==0],
col = "red", pch=19)

points(sensitivity.lambda1[Type==1&Max.Correlation==0.8]
,specificity.lambda1[Type==1&Max.Correlation==0.8]
, ,col = "red", pch=11)

lines(sensitivity.lambda1[Type==1],specificity.lambda1
[Type==1], col = "red", pch=19,lwd=3)
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points(sensitivity.lambda2[Type==1&Max.Correlation==0.0]
,specificity.lambda2[Type==1&Max.Correlation==0.0
], ,col = "green", pch=19)

points(sensitivity.lambda2[Type==1&Max.Correlation==0.8]
,specificity.lambda2[Type==1&Max.Correlation==0.
8], ,col = "green", pch=11)

lines(sensitivity.lambda2[Type==1],specificity.lambda2
[Type==1], col = "green", pch=19, lty=2)

par(ps=15)

legend(locator(1), legend=expression(lambdaˆ1),pch=c(),
lty=c(), text.col=c("red")
,col=c("red"), bty="n")

legend(locator(1), legend=expression(lambdaˆ2),pch=c(),
lty=c(), text.col=c("green")
,col=c("green"), bty="n")

legend(x= 81.96931 -6,y= 86.57141, legend=c("no correla
        tion","Max Correlation 0.8"),pch=c(19,11),bty="n"

)

axis(side=2,at=c(85,86,87,88,89,90),label=T)

#######################################Failure Type II

par(ps=18)

plot(sensitivity.lambda1[Type==2],specificity.lambda1
[Type==2], type="n", xlim=c(20,100), ylim=c
(85,90), xlab="Sensitivity%"

,ylab="Specificity%",font.lab=2, main="Failure

         Type II",cex.axis=0.9,yaxt="n",cex.main=0.9)

points(sensitivity.lambda1[Type==2&Max.Correlation==0]
,specificity.lambda1[Type==2&Max.Correlation==0]
, ,col = "red", pch=19)

points(sensitivity.lambda1[Type==2&Max.Correlation==0.8]
,specificity.lambda1[Type==2&Max.Correlation==
0.8], ,col = "red", pch=11)
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lines(sensitivity.lambda1[Type==2],specificity.lambda1
[Type==2], col = "red", pch=19,lwd=3)

points(sensitivity.lambda2[Type==2&Max.Correlation==0.
0],specificity.lambda2[Type==2&Max.Correlation
==0.0], ,col = "green", pch=19)

points(sensitivity.lambda2[Type==2&Max.Correlation==
0.8],specificity.lambda2[Type==2&Max.Correlation
==0.8], ,col = "green", pch=11)

lines(sensitivity.lambda2[Type==2],specificity.lambda2
[Type==2], col = "green", pch=19, lty=2)

par(ps=15)
legend(locator(1), legend=expression(lambdaˆ1),pch=c()

,lty=c(), text.col=c("red")
,col=c("red"), bty="n")

legend(locator(1), legend=expression(lambdaˆ2),pch=c()
,lty=c(), text.col=c("green")
,col=c("green"), bty="n")

legend(x= 81.96931 -6,y= 86.57141, legend=c("no correlation
        ","Max Correlation 0.8"),pch=c(19,11),bty="n")

axis(side=2,at=c(85,86,87,88,89,90),label=T)



Appendix D
Source Code for the Two Applications of the Proposed

Method in Chapter 5

D.1 Code for The Prostate Cancer Example

#########################################################

#########################################################

#PURPOSE: EXAMPLE IN DISSERTAION: L1 PENALIZED MAXIMUM

#LIKELIHOOD APPROACH IN COMPETING RISKS Prostatic Cancer

# DATA APPLICATION

#LAST MODIFIED DATE: May. 07, 2008

#########################################################

#########################################################

setwd("C:/talaci/research/thesis/data/Prostate cancer")

library(survival)
library(glmpath)

memory.limit(size=4000)

########################################################

#REVISION OF BOOTSTRAP.PATH FUNCTION

#PURPOSE: the original bootstrap function in (glmpath)

#can only work for criteria "aic" and "bic";

# to use lambda.1=nˆ0.3, the function is revised

########################################################

bootstrap.path.1<-function (x, y, data, B, index = NULL,

path = c("glmpath", "coxpath"),

method = c("aic", "bic"), trace = FALSE, ...)

#When choosing

#"aic", it actually means #using
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# lambda.1=nˆ0.3

{

path <- match.arg(path)
method <- match.arg(method)

if (!missing(data))
x <- data$x

n <- nrow(x)
p <- ncol(x)
if (!is.null(index))

B <- nrow(index)
else index <- matrix(sample(c(1:n), n * B

, replace = T),

nrow = B)

beta <- matrix(0, B, p)

lambda.1<-nˆ0.3

if (path == "glmpath") {

if (!missing(data))
y <- data$y

fit <- glmpath(x, y, ...)

s <- switch(method, aic = which.min(fit$aic)
, bic = which.min(fit$bic))

beta0 <- fit$b.corrector[s, -1] * fit$sdx
for (b in 1:B) {

bx <- x[index[b, ], ]

by <- y[index[b, ]]

fit <- glmpath(bx, by, ...)

s <- switch(method, aic = which.min(fit$aic)
, bic = which.min(fit$bic))

beta[b, ] <- fit$b.corrector[s, -1] * fit$
sdx

if (trace)
cat(b)

}

}

else {

time <- data$time
status <- data$status
fit <- coxpath(data, trace = FALSE, ...)

s <- switch(method, aic = which.min(fit$lambda
[fit$lambda >=lambda.1]), bic = which.min
(fit$bic))

beta0 <- fit$b.corrector[s, ] * fit$sdx
for (b in 1:B) {

bx <- x[index[b, ], ]
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btime <- time[index[b, ]]

bstatus <- status[index[b, ]]

fit <- coxpath(list(x = bx, time = btime,

status = bstatus),

...)

s <- switch(method, aic = which.min(fit$
lambda[fit$lambda >=lambda.1]), bic =

which.min(fit$bic))
beta[b, ] <- fit$b.corrector[s, ] * fit$sdx
if (trace)

cat(b)
}

}

dimnames(beta) <- list(seq(B), dimnames(x)[[2]])
attr(beta, "coefficients") <- beta0

class(beta) <- "bootpath"

beta
}

########################################################

raw.data<-read.csv(file="C:/talaci/research/thesis/data
        /Prostate cancer/Prostate data_XK.csv"

,colClasses = "numeric")

status.char<-ifelse(raw.data$Survival.Status >=3,
"other",raw.data$Survival.Status)

status.char<-ifelse(status.char=="0", "alive",

status.char)

status.char<-ifelse(status.char=="1" , "pros.cancer"

,status.char)

status.char<-ifelse(status.char=="2", "heart",

status.char)

survival.time<-raw.data$Follow.Up.months

x.data<-raw.data[,c(3,6:11,13:17)]

###Status indicator for "Prostatic Cancer"

cancer.status<-ifelse(status.char=="pros.cancer",1,0)
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#######################################################

###Cox Path- Cancer group

cancer.data.list<-list(x=as.matrix(x.data)

cancer.cox<-coxpath(data=cancer.data.list
, standardize = TRUE,trace = TRUE)

#Note, the b.corrector saves the estimates

#on the original data! To get the standardized
#estimates , b.corrector*sdx!!!

lambda.1<-483ˆ0.3

min.aic<-which(min(cancer.cox$aic)==cancer.cox$aic
,cancer.cox$aic)

lambda.min<-cancer.cox$lambda[min.aic]
#This is the lambda corresponding to the

# least AIC

s.lambda.1<-which.min(cancer.cox$lambda[cancer.cox
$lambda >=lambda.1])

#Standardized coefficients estimates from the original

#data using lambda.1

cancer.est<-cancer.cox$b.corrector[c(s.lambda.1),]
*cancer.cox$sdx

plot.coxpath(x=cancer.cox , xvar = "lambda",type =

c("coefficients", "aic", "bic")

, xlimit = NULL,

predictor = FALSE, omit.zero = TRUE

, breaks =FALSE,mar = c(5, 4, 4, 8.5)

, main="Coefficients Path - Prostate

                 Cancer")

#plot.coxpath plots the standardized

# coefficients!
abline(v=lambda.1)
abline(v=lambda.min)
abline(v=cancer.cox$lambda, lty=3)

axis(side=1, at=c(lambda.1, lambda.min),

labels=expression(lambdaˆ1,lambdaˆ2))
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###Use Bootstrap to get the estimates of standard

###errors

#bootstrap.path.1

#The exisiting bootstrap.path function can only

#work for "method=aic or bic". So to use nˆ{0.3}

#, the function is revised to accomadate the

#choic of lambda=nˆ{0.3}. Refer to the top of

#this file for the new function!
#Note: bootstrap.path returns statndardized coefficients

cancer.boot.1<-bootstrap.path.1(data=cancer.data.list
, B=100, path="coxpath", method=c("aic"),
trace=FALSE)

cancer.boot.2<-bootstrap.path(data=cancer.data.list
, B=100, path="coxpath", method=c("aic")
, trace=FALSE)

###Plot the boxplot of the bootstrap estimates

par(mar=c(5.1, 4.1, 4.1, 2.5))

colnames(cancer.boot.1)<-c("Trt","Age","Wgt","PR",
"CH","SBP","DBP","HG","TS","CI","AP","BM")

class(cancer.boot.1)<-"matrix"
boxplot(as.data.frame(cancer.boot.1), main="Prostate

         Cancer" , ylab="Standardized coefficients

         estimates")

abline(h=0, lty=3)

points(x=1:12, y=cancer.est , pch=19,col="red")

###Calculate p-values

cancer.std.err<-sqrt(apply(cancer.boot.1 ,2, var))
#std error from bootstrap

cancer.p<-round(pnorm(abs(cancer.est/cancer.std.err),
lower.tail=FALSE),3)

round(cancer.p ,3)

###Save the standardized estimates

#write.csv(x= t(scale(cancer.cox$b.corrector[c(12:13,17)
,],center=F, 1/cancer.cox$sdx))
, file="standardized estimates.csv")

###Ordinary Cox PH model to get the MLE and the std
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errors for the estimates

x.data.ph<-scale(x.data,center=T, scale=T)
cancer.data.list.ph<-list(x=as.matrix(x.data.ph)

coxph(Surv(time,status)˜x, cancer.data.list.ph)

###Cox-Snell residuals

cox.csresid<-(cancer.status -coxph(Surv(time,status)
˜x, cancer.data.list.ph)$residuals)

plot(log(-log(summary(survfit(Surv(cox.csresid
, cancer.status)˜1))$surv))

,log(summary(survfit(Surv(cox.csresid
, cancer.status)˜1))$time), xlim=c(-6, 0)

, ylim=c(-6,0)
, main="Prostate cancer", xlab=

"log(C-S residual)"

, ylab="log(-log(Kaplan-Meier

        estimate of the C-S residual))")

abline(0,1)

########################################################

#######################################################

###Cox Path- Heart group

heart.status<-ifelse(status.char=="heart",1,0)

heart.data.list<-list(x=as.matrix(x.data)\
, time=survival.time ,status=heart.status)

heart.cox<-coxpath(data=heart.data.list
, standardize = TRUE,trace = TRUE)

min.aic<-which(min(heart.cox$aic)==heart.cox$aic
,heart.cox$aic)

lambda.min<-heart.cox$lambda[min.aic]
#This is the lambda corresponding to the least AIC

s.lambda.1<-which.min(heart.cox$lambda[heart.cox
$lambda >=lambda.1])

s.lambda.2<-which.min(heart.cox$aic)
s.lambda.0<-length(heart.cox$lambda)
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#Standardized coefficients estimates on original

# data using lambda.1

heart.est<-heart.cox$b.corrector[c(s.lambda.1),]
*heart.cox$sdx

#Plot of paths

x11()
plot.coxpath(x=heart.cox , xvar = "lambda",type =

c("coefficients", "aic", "bic"), xlimit = NULL,

predictor = FALSE, omit.zero =

TRUE, breaks =FALSE,mar = c(5, 4, 4, 8.5)

, main="Coefficients Path -

        Cardivascular Disease")

abline(v=lambda.1)
abline(v=lambda.min)
abline(v=heart.cox$lambda, lty=3)

axis(side=1, at=c(lambda.1, lambda.min),

labels=expression(lambdaˆ1,lambdaˆ2))

###Use Bootstrap to get the estimates of standard errors

#bootstrap.path.1

#The exisiting bootstrap.path function can only work for

#"method=aic or bic". So to use nˆ{0.3}, the function is

#revised to accomadate the choic of lambda=nˆ{0.3}. Refer

#to the top of this file for the new function!
#Note: bootstrap.path returns statndardized coefficients

heart.boot.1<-bootstrap.path.1(data=heart.data.list
, B=100, path="coxpath", method=c("aic"),
trace=FALSE)

heart.boot.2<-bootstrap.path(data=heart.data.list ,
B=100, path="coxpath", method=c("aic"),
trace=FALSE)

###Plot the boxplot of the bootstrap estimates using

###lambda.1

x11()
par(mar=c(5.1, 4.1, 4.1, 2.5))

colnames(heart.boot.1)<-c("Trt","Age","Wgt","PR","CH"
,"SBP","DBP","HG","TS","CI","AP","BM")

class(heart.boot.1)<-"matrix"
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boxplot(as.data.frame(heart.boot.1), main=

"Cardiovascular disease" , ylab="Standardized

        coefficients estimates")

abline(h=0, lty=3)

points(x=1:12, y=heart.est , pch=19,col="red")

###Calculate p-value

heart.std.err<-sqrt(apply(heart.boot.1 ,2, var))
#std error from bootstrap

heart.p<-round(pnorm(abs(heart.est/heart.std.err),
lower.tail=FALSE),3)

round(heart.p ,3)

###Save the standardized estimates

#write.csv(x= t(scale(heart.cox$b.corrector[c(s
.lambda.1 ,s.lambda.2 ,s.lambda.0),],center=F,

1/heart.cox$sdx))
# ,append=TRUE, file="standardized estimates.csv")

###Ordinary Cox PH model to get the MLE and the

### std errors for the estimates

x.data.ph<-scale(x.data,center=T, scale=T)
heart.data.list.ph<-list(x=as.matrix(x.data.ph),

time=survival.time ,status=heart.status)

coxph(Surv(time,status)˜x, heart.data.list.ph)

###Cox-Snell residuals

cox.csresid<-(heart.status -coxph(Surv(time,status)˜x,
heart.data.list.ph)$residuals)

plot(log(-log(summary(survfit(Surv(cox.csresid ,
heart.status)˜1))$surv))

,log(summary(survfit(Surv(cox.csresid ,
heart.status)˜1))$time), xlim=c(-6, 0),

ylim=c(-6,0)
, main="Cardiovascular disease",

xlab="log(C-S residual)"

, ylab="log(-log(Kaplan-Meier

        estimate of the C-S residual))")

abline(0,1)
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D.2 Code for The HCV+HCC Example

#######################################################

#######################################################

#PURPOSE: EXAMPLE IN DISSERTAION: L1 PENALIZED MAXIMUM

#LIKELIHOOD APPROACH IN COMPETING RISKS

# HCV-HCC PATIENTS PROGRESSION DATA APPLICATION

#BY: XIANGRONG KONG

#LAST MODIFIED DATE: Jul6. 15, 2008

######################################################

######################################################

setwd("C:/talaci/research/thesis/data/HCC")

library(annotate)
library(hgu133a)
library(hgu133a2)
library(affy)
library(matchprobes)
library(hgu133aprobe)
library(hgu133a2probe)

library(survival)
library(glmpath)

memory.limit(size=4000)

###################################################

######################################################

#REVISION OF BOOTSTRAP.PATH FUNCTION

#PURPOSE: the original bootstrap function in (glmpath)

# can only

#work for criteria "aic" and "bic"; to use lambda.1

#=nˆ0.1, the function is revised

#######################################################

bootstrap.path.1<-function (x, y, data, B, index =

NULL, path = c("glmpath", "coxpath"),

method = c("aic", "bic"), trace = FALSE, ...)

#When choosing "aic", it actually means

#using lambda.1=nˆ0.1

{

path <- match.arg(path)
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method <- match.arg(method)

if (!missing(data))
x <- data$x

n <- nrow(x)
p <- ncol(x)
if (!is.null(index))

B <- nrow(index)
else index <- matrix(sample(c(1:n), n * B, replace

= T), nrow = B)

beta <- matrix(0, B, p)

lambda.1<-nˆ0.1

if (path == "glmpath") {

if (!missing(data))
y <- data$y

fit <- glmpath(x, y, ...)

s <- switch(method, aic = which.min(fit$aic)
, bic = which.min(fit$bic))

beta0 <- fit$b.corrector[s, -1] * fit$sdx
for (b in 1:B) {

bx <- x[index[b, ], ]

by <- y[index[b, ]]

fit <- glmpath(bx, by, ...)

s <- switch(method, aic = which.min(fit$aic
), bic = which.min(fit$bic))

beta[b, ] <- fit$b.corrector[s, -1] * fit

$sdx
if (trace)

cat(b)
}

}

else {

time <- data$time
status <- data$status
fit <- coxpath(data, trace = FALSE, ...)

s <- switch(method, aic = which.min(fit$lambda
[fit$lambda

>=lambda.1]), bic = which.min
(fit$bic))
beta0 <- fit$b.corrector[s, ] * fit$sdx
for (b in 1:B) {

bx <- x[index[b, ], ]

btime <- time[index[b, ]]

bstatus <- status[index[b, ]]

fit <- coxpath(list(x = bx, time = btime



198

, status = bstatus),

...)

s <- switch(method, aic = which.min(fit$
lambda

[fit$lambda >=lambda.1]), bic = which.

min(fit$bic))
beta[b, ] <- fit$b.corrector[s, ] * fit$

sdx

if (trace)
cat(b)

}

}

dimnames(beta) <- list(seq(B), dimnames(x)[[2]])
attr(beta, "coefficients") <- beta0

class(beta) <- "bootpath"

beta
}

######################################################

raw.pheno<-read.csv(file="C:/talaci/research/thesis
        /data
/HCC data 2007_Xk.csv",colClasses = "character")

cbind(1:dim(raw.pheno)[2],colnames(raw.pheno))

raw.pheno.2<-raw.pheno[raw.pheno$Exclude=="",]
raw.pheno.2<-raw.pheno.2[raw.pheno.2$celfile!="D-451B"

,]

#This is the replicate chip for patient

#"4243570"

#it’s removed after consulting with Dr. Mas

raw.pheno.3<-raw.pheno.2[,c(1,3,4,6,7,8,11,12,15,16
,17,18,19)]

pheno<-raw.pheno.3
#write.csv(raw.pheno.3 , "Reduced Pheno data_XK.csv")
rm(list=c("raw.pheno","raw.pheno.2","raw.pheno.3"))

diag.date<-as.Date(pheno$Diagnostic.date , "%m/%d/%Y")
names(diag.date)<-pheno$celfile

tran.date<-as.Date(pheno$TransDate ,"%m/%d/%Y")
tran.leng.temp<-as.numeric(difftime(tran.date ,diag.

date ,units="days"))
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names(tran.leng.temp)<-pheno$celfile

prog.date<-as.Date(pheno$DateProgress ,"%m/%d/%Y")
prog.leng.temp<-as.numeric(difftime(prog.date , diag.

date, units="days"))

names(prog.leng.temp)<-pheno$celfile

surv.date<-as.Date(pheno$SurvDate , "%m/%d/%Y")
surv.leng.temp<-as.numeric(difftime(surv.date ,

diag.date , units="days"))

#died and alive are both treated as censored,

names(surv.leng.temp)<-pheno$celfile
# due to lack of sample

cbind(tran.leng.temp , prog.leng.temp , surv.leng.temp)

temp<-ifelse(tran.leng.temp <prog.leng.temp ,1,0)
tran.leng<-ifelse(is.na(temp) | temp==1, tran.leng.temp

,NA)

temp<-ifelse(prog.leng.temp <tran.leng.temp , 1,0)

prog.leng<-ifelse(is.na(temp) | temp==1, prog.leng.temp

, NA)

cbind(tran.leng , tran.leng.temp)

cbind(prog.leng , prog.leng.temp)

cbind(tran.leng , prog.leng)

rm(list=c("tran.leng.temp", "prog.leng.temp", "temp"))

surv.leng<-ifelse(is.na(tran.leng) & is.na(prog.leng)
, surv.leng.temp ,NA)

cbind(tran.leng , prog.leng , surv.leng)

rm(list=c("surv.leng.temp"))

tran.censor.ind<-ifelse(is.na(tran.leng),0,1)
#this is the censoring indicator

#specifically for cause transplantation

prog.censor.ind<-ifelse(is.na(prog.leng),0,1)
#this is the censoring indicator

$specifically for cause progression

cbind(tran.leng , tran.censor.ind)
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cbind(prog.leng , prog.censor.ind)

cmbd.length<-apply(cbind(tran.leng ,prog.leng ,surv.leng),1
,min,na.rm=TRUE)

#######################################################

#######################################################

#Microarry data processing: RMA

#######################################################

#######################################################

#cmbd.cdf<-cmbd.affy$cdf
#gn<-ls(cmbd.cdf)
### The following control genes are on the old but not

### the new GeneChips

### To avoid problems, just remove them from the

###datasets/cdf
#rm(list=grep("AFFX-r2-H",gn,value=TRUE)

#,envir=cmbd.cdf)

#comb.rma<-rma(cmbd.affy$dat)
#comb.calls<-mas5calls(cmbd.affy$dat)
#save.image("HCCSurvival.RData")

#q()

#rma.data.temp<-exprs(comb.rma)
#rma.data<-rma.data.temp[-grep("AFFX",rownames
#(rma.data.temp)),]

#dim(rma.data)

#rm(cmbd.affy)

#rm(rma.data.temp)

#Compare the replicate chips of the same patient

#plot((rma.data[,grep("10-D-422",colnames(rma.data))]

+rma.data

[,grep("D-451B",colnames(rma.data))])
/2
,log(rma.data[,grep("10-D-422",colnames
(rma.data))]

-rma.data[,grep("D-451B",colnames
(rma.data))]

,base=2))

abline(h=0) #Does not look like high
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# reproducibility

########################Progression

sum(ifelse(substr(dimnames(rma.data)[[2]],10,21)
!=paste(names(cmbd.length),".CEL",sep=""),1,0))

###Penalized likelihood approach

rma.prog.data<-list(x=t(rma.data),time=cmbd.length
, status=prog.censor.ind)

rma.prog.result<-coxpath(data=rma.prog.data
, standardize = TRUE,trace = TRUE)

lambda.1<-length(cmbd.length)ˆ0.1

s.lambda.1<-which.min(rma.prog.result$lambda
[rma.prog.result $lambda >=lambda.1])

#Standardized coefficients estimates on original data

#using lambda.1

coef.est<-rma.prog.result$b.corrector[c(s.lambda.1),]
*rma.prog.result$sdx

#sig.coef<-coef.est[coef.est!=0]
#sig.names<-names(sig.coef)

#Plot of paths

par(cex.main=1, cex.lab=1)

plot.coxpath(x=rma.prog.result , xvar = "lambda",type

= c("coefficients", "aic", "bic"), xlimit

= NULL,

predictor = FALSE, omit.zero = TRUE

, breaks =FALSE,mar = c(5, 6, 4, 6.5)

, main="Tumor progression")

abline(v=lambda.1,lwd=1)
#abline(v=rma.prog.result$lambda, lty=3)
axis(side=1, at=c(lambda.1), labels=expression(paste

(lambda,"=",(nˆ0.1))))
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###Use Bootstrap to quantify the estimates difference

### from 0

#bootstrap.path.1

#The exisiting bootstrap.path function can only work

#for"method=aic or bic". So to use nˆ{0.3},

#the function is revised to accomadate the choic of

# lambda=nˆ{0.1}. Refer to the top of this file for the

#new function!
#Note: bootstrap.path returns statndardized

# coefficients

prog.boot.1<-bootstrap.path.1(data=rma.prog.data ,
B=100

, path="coxpath", method=c("aic"),
trace=FALSE)

#sig.boot<-prog.boot.1[, sig.names]

#std.err<-sqrt(apply(sig.boot , 2, var))

wilc.p<-c()
for(j in 1:dim(prog.boot.1)[2]){
wilc.p[j]<-wilcox.test(prog.boot.1[,j], exact=FALSE)

$p.value
}

names(wilc.p)<-colnames(prog.boot.1)

all.count<-c()
for(j in 1:dim(prog.boot.1)[2]){
all.count[j]<-length(prog.boot.1[,j][prog.boot.1[,j]

!=0])
}

names(all.count)<-colnames(prog.boot.1)

wilc.p[!is.na(wilc.p) & wilc.p <0.05]

#These are the probesets with p-values <0.05

sig.names<-names(wilc.p[!is.na(wilc.p) & wilc.p <0.05])

coef.sig<-coef.est[sig.names]
#The standardized coef estimates from the

# orginal data

#for the probesets with p-value <0.05
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#write.csv(x=cbind(round(sig.coef ,3), sig.count ,

round(wilc.p ,3))
, file="HCC result.csv")

###Report the significant genes. Individual alpha=0.05

sig.gene.p<-wilc.p[sig.names]

sig.gene.p<-sort(sig.gene.p)
sig.gene<-names(sig.gene.p)
sig.ll<-getLL(sig.gene, data="hgu133a2")
sig.sym<-getSYMBOL(sig.gene,"hgu133a2")
sig.uni<-mget(sig.gene ,env=hgu133a2UNIGENE)
sig.chr<-mget(sig.gene ,env=hgu133a2CHR)
sig.gn<-mget(sig.gene ,env=hgu133a2GENENAME)
sig.map<-mget(sig.gene ,env=hgu133a2MAP)
genelist<-list(sig.ll,sig.uni)

htmlpage(genelist=list(sig.ll),filename="Important
                 genes

                 for tumor progression.html"

, title="Important genes for tumor progression"
, table.head=c(’LocusLink’,’UnigeneID’
,’AffyID’,’Gene Symbol’,’Gene Name’

,’Chromosome’,’Map’,"Coef Estimate",

"p-value"),

othernames=list(sig.uni, sig.gene,sig.sym,

sig.gn , sig.chr,sig.map, round
(coef.sig[sig.gene],3),

round(wilc.p[sig.gene],3))
,table.center = TRUE

, repository=list("ll"))

###Plot the boxplot of the bootstrap estimates

par(mar=c(6.5, 5.1, 4.1, 2.5))

boot.sig<-prog.boot.1[, sig.gene]

colnames(boot.sig)<-sig.sym
boxplot(as.data.frame(boot.sig),ylab=

"Standardized

        coefficients estimates",

main="Tumor progression", las=3)

abline(h=0, lty=3)
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coef.sig<-coef.est[sig.gene]
points(x=1:dim(boot.sig)[2], y=coef.sig,

pch=19,col="red")

#######################################################

#######################################################

###Univaraite Cox PH model approach

log.p.value<-c()
for (j in 1:10){

log.p.value[j]<-summary(coxph(Surv(cmbd.length
,prog.censor

.ind)˜t(rma.data)[,j]
, method=c("breslow"

)))$logtest["pvalue"]
}

names(log.p.value)<-dimnames(rma.data)[[1]]
log.p.value[names(rma.prog.gene)]

########################

#Residual plot

#########################

x11()
sig.2.cox.residual<-coxph(Surv(cmbd.length ,prog.censor

.ind)˜std.sig.rma[,2], method=c("breslow")
)$residuals

cox.csresid<-(prog.censor.ind -sig.2.cox.residual)
plot(log(-log(summary(survfit(Surv(cox.csresid ,

prog.censor.ind)˜1))$surv))
,log(summary(survfit(Surv(cox.csresid
, prog.censor.ind)˜1))$time), xlim=c(-4, 0)

, ylim=c(-4,0)
, main="Probe set 202893_at"
, xlab="log(C-S residual)"

, ylab="log(-log(Kaplan-Meier

         estimate of the C-S residual))")

abline(0,1)
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