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Lung cellular disposition and anti-inflammatory pharmacology of inhaled 

corticosteroids (ICSs) is complex, comprised of a cascade of aerosol deposition and 

dissolution, followed by cellular uptake for local pharmacological action. This project 

hypothesized that the kinetics of dissolution for certain ICS aerosols generated from 

inhaler products were kinetically rate-determined for their cellular uptake and local 

pharmacological action. 

A novel dissolution testing system was developed to determine the dissolution 

kinetics for the ICS aerosols. A total of 5 ICSs aerosols generated from 6 inhaler 

products were collected in 2.1-3.3 or 4.7-5.8 µm of aerodynamic diameters at 0.7-19.8 



 xx

µg on filter membranes by impaction using the Andersen cascade impactor. The filter 

membrane was then placed on the donor side of the transwell insert, with its face down, 

and the ICS dissolution in the limited 40 µL of the donor fluid was monitored over time. 

The dissolution kinetics overall conformed to the rank order of the aqueous solubility, 

while also being affected by ICS aerosol’s mass, size, formulation and dosage forms. 

For the readily soluble triamcinolone acetonide (TA), the kinetics was first-order, 

reaching ≥89 % dissolution in 5 h. In contrast, for the least soluble fluticasone 

propionate (FP), the kinetics was zero-order, reaching only 3 % dissolution in 10 h. 

The project then developed an air-interface culture of human bronchial epithelial 

cell line, Calu-3. Well-differentiated monolayers were formed with sufficiently “tight” 

barrier for restrictive solute diffusion while their mucosal surface was maintained semi-

dry with 39.7±12.1 µL of the mucosal lining fluid in the 4.5 cm2 transwells. These 

monolayers were transfected with reporter plasmid of pNFκB-Luc to assess in vitro 

anti-inflammation via repression of pro-inflammatory NFκB by direct FP or TA aerosol 

deposition. The FP aerosols at 0.9 µg successfully exhibited significant 35.7±6.3 % 

repression. Notably, however, an identical ~0.5 µg of FP and TA aerosols caused 

comparable 15.5±2.2 and 10.4±2.6 % repression, respectively, despite FP’s 10-fold 

greater “intrinsic” anti-inflammatory potency over TA, reported in the literature. This 

was attributed to FP’s slow dissolution resulting in only 4.7 % cellular uptake, 

compared to 32.6 % for the TA aerosols. Hence, the FP aerosols were shown to be rate-

determined by dissolution on the lung cell surface, resulting in reduced anti-

inflammatory actions, which was not the case for the readily soluble TA aerosols. 
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CHAPTER 1 
 
 

BACKGROUND AND SIGNIFICANCE 
 
 
 
 
 Pulmonary drug delivery has been used for more than 50 years as a successful 

route of administration for delivering drugs for the local treatment of lung diseases like 

asthma and chronic obstructive pulmonary disease (COPD) [Schleimer et al, 2002]. The 

success of this therapy has primarily been attributed to the enhanced local targeting of 

the drugs to the airways, thereby reducing the systemic levels that are primarily 

responsible for their side effects [Hochhaus et al, 1997; Hochhaus G, 2004]. Even so, 

recent evidence has suggested that this route of delivery has not yet been fully 

optimized to exhibit maximized therapeutic effects, while minimizing the side effects in 

patients [Leach et al, 2002; Usmani et al, 2005]. In fact, it becomes clear that 

determination of the systemic exposure of these drugs following inhalation does not 

necessarily translate into local or systemic pharmacological actions [Edsbäcker et al, 

2008]. It is logical therefore to demand accurate determination of the local exposure of 

these drugs (i.e., in the lung), yet such an attempt has been quite challenging due to the 

lung’s anatomical complexity for delivery and the lung region-specific multiple 
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mechanisms for disposition [Byron et al, 1990, 1994; Patton, 1990; Patton and Byron, 

2007].  

Generally, pharmaceutical aerosols are administered via inhalation using inhaler 

products, possibly along with formulation excipients. In most cases, the inhaler products 

are pressurized metered dose inhalers (pMDIs) or dry powder inhalers (DPIs), while 

nebulizers are also available for special needs such as hospital or pediatric/geriatric uses 

[Hickey, 1996; Gonda, 1990; Dhand, 2008]. It is well recognized however that only a 

certain portion of the formulated drugs can reach the lung from these inhaler products, 

and this delivery is also dependent upon the patient’s inhalation maneuvers [Hickey, 

1996; Eiss and Huston, 2003]. Hence, this simply demonstrates a challenge for accurate 

determination of the local exposure of the drug in experiments. Besides, as illustrated in 

Figure 1.1, the lung’s cellular disposition of deposited aerosol drugs can be made even 

more complex. Provided both pMDIs and DPIs deliver drugs as solid or semi-solid 

aerosols, lung disposition includes aerosol particle dissolution in the lung lining fluid, 

followed by cellular uptake (and/or absorption) and possibly, metabolism, prior to the 

induction of local pharmacological actions within lung cells. In this context, it has been 

suggested that the lung lining fluid may serve as a significant barrier for dissolution 

and/or diffusion due to its limited volume of 10-30 mL and thickness of 0.1-23 µm in 

humans [Widdicombe, 1997; Patton, 1996].  As a result, it has been recently suggested 

that estimation of the local exposure of drugs within the lung may also not directly 

translate into even their local pharmacological actions, especially those occurring within 
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the lung cells [Esmailpur et al, 1997; Edsbäcker et al, 2006, 2008; Hogger and 

Rohdewald, 1994; Derendorf et al, 2006].     
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Figure 1.1 Possible lung cellular disposition of an inhaled therapeutic molecule upon 
aerosol deposition for local pharmacological actions. Inhaled corticosteroid 
molecules are shown diagrammatically, as an example, interacting with the 
cellular nuclear materials, alongside a series of alternate disposition 
processes. The scheme has been adapted from Edsbäcker et al, 2006 with 
slight modifications. 
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Among a variety of drugs used for inhalation to locally treat lung diseases, 

inhaled corticosteroids (ICSs) have so far offered one of the most successful and 

efficacious therapies for asthma and COPD [Schleimer et al, 2002; Edsbäcker et al, 

2006; Hochhaus G, 2004]. As shown in Figure 1.2 (a), in lung diseases like asthma, it 

has been shown that proinflammatory transcription factors such as nuclear factor kappa 

B (NFκB) translocates from the cytoplasm into the nucleus where, NFκB binds with its 

responsive elements to induce the expression of an array of genes for manifestation of 

inflammatory conditions [Eissa and Huston, 2003; Hogger and Rohdewald, 1993; 

Hochhaus, 2004]. When ICS molecule is inhaled, as shown in Figure 1.2 (b), they first 

enter the cells by partition-mediated diffusion and then bind to the glucocorticoid 

receptors (GRs) that are held in the cytoplasm by heat shock proteins (hsp). This 

binding causes GR activation and removal from hsp thereby enabling direct interactions 

of the ICS-GR complex with the proinflammatory transcription factors, e.g., NFκB, 

within the cytoplasm and/or following translocation into the nucleus. This prevents the 

induction of gene expression responsible for inflammation and is termed 

transrepression. In the past decade, it has been increasingly suggested that this action is 

the primary mechanism of the ICS molecules for anti-inflammatory effects, and a 

variety of ICSs have been discovered and developed with varying GR binding affinities 

and thus, varying anti-inflammatory potencies [Roumestan et al, 2003; Eissa and 

Huston, 2003; Winkler et al, 2004], as summarized in Table 1.1 
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Figure 1.2 Cellular mechanisms of (a) inflammation centered with NFκB and (b) ICS’s 

anti-inflammation via GR binding and its effect on NFκB actions. (a) 
Glucocorticoid receptor (GR) is held in the cytoplasm chaperoned by heat 
shock proteins (hsp), while NFκB translocates to the nucleus to cause 
inflammatory cytokines synthesis. (b) Upon entry into the cell, ICS binds to 
the GR, which is then activated via hsp removal directly interacting with 
NFκB. This prevents the synthesis of inflammatory cytokines, i.e., 
transrepression. Adapted from Hochhaus, 2004. 
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Table 1.1  Inhaled corticosteroids (ICSs) available in 2008 and their physicochemical 
properties and intrinsic anti-inflammatory potencies. The data are 
collectively adapted from Edsbäcker et al, 2006 and 2008; Hogger and 
Rohdewald, 1993; Hochhaus, 2004; Winkler et al, 2004; Roumestan et al, 
2003 and Jafuel et al, 2000. 

 
 
 
 
 

ICS 

 
 
Molecular 
Weight 
[Da] 

 
 
 
Log P 

 
 
Aqueous 
Solubility 
[µg/mL] 

 
 
Relative 
receptor        
affinity * 

Relative 
repression 
potency on 
NFκκκκB 
activity** 

Flunisolide 
(FLU) 

434 2.28      140.0 190   0.5 

Triamcinolone 
acetonide (TA) 

434 2.53         21.0 233   1.0 

Budesonide 
(BUD) 

431 3.24         16.0 935   2.2 

Beclomethasone 
dipropionate (BDP) 

521 3.63        0.13 1022   0.5 

Fluticasone propionate 
(FP) 

501 4.20           0.14 1800 10.0 

Mometasone furoate  
(MF) 

427 3.38 <0.1 2300     >10.0 

     * Relative to a GR affinity of dexamethasone set to 100 
   ** Relative to a half-maximal effective or inhibitory concentration of TA set to 1 
 

As of 2008, a total of 6 ICSs are available in various inhaled dosage forms in the 

United States [Electronic Orange Book, FDA]. Table 1.1 lists their physicochemical 

properties, i.e., molecular weight (MW), partition coefficient (Log P) and aqueous 

solubility, alongside their intrinsic anti-inflammatory potencies, i.e., relative affinity to 

the GR binding and relative potency of proinflammatory NFκB repression [Edsbäcker 

et al, 2006, Hogger and Rohdewald, 1993, Hochhaus, 2004, Winkler et al, 2004, 

Roumestan et al, 2003 and Jafuel et al, 2000]. It is clear from Table 1.1 that ICSs differ 

in physicochemical properties and intrinsic potencies, yet a general notion exists in that 
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the intrinsic anti-inflammatory potency increases with increasing lipophilicity (i.e., Log 

P) [Edsbäcker et al, 2006; Hogger and Rohdewald, 1993; Hochhaus, 2004]. This may 

be logical from the pH-partition hypothesis for drugs exhibiting their pharmacological 

actions within cells, like the ICSs. However, as the lipophilicity increases, aqueous 

solubility decreases. In fact, the more widely used ICSs like fluticasone propionate (FP) 

and beclomethasone dipropionate (BDP) have only 0.14 and 0.13 µg/mL of the aqueous 

solubility (Table 1.1), respectively. Hence, given their typical single inhaled doses of 

40-200 µg and their maximum 20 % of successful delivery to the lung [Byron and 

Patton, 1994], 8-40 µg of FP or BDP would be expected to land on the lung lining fluid 

as solid or semi-solid aerosols from their dosage forms of pMDIs and/or DPIs. In an 

ideal case scenario, where these ICS aerosols uniformly deposit throughout the entire 

lung mucosal surface with a total lung lining fluid volume of 10-30 mL [Widdicombe, 

1997], the ICS concentration would be approximately 0.3-4.0 µg/mL, assuming 

spontaneous and total dissolution. Obviously, such concentrations far exceed their 

solubility and therefore, it is likely that substantial portions of the deposited FP and 

BDP doses remain to be dissolved on the cell surface without being taken up by the 

cells. In contrast, this would not be the case for a fairly soluble ICS like triamcinolone 

acetonide (TA). Its single dose from pMDI is 200 µg, and again with 20 % of lung 

delivery and 10-30 mL of the lining fluid volume, TA concentrations on the lung 

mucosal surface would reach 1.3-4.0 µg/mL. Such concentrations are much lower than 

21 µg/mL corresponding to its aqueous solubility and hence, an ICS, like TA could be 

dissolved in the lung lining fluid fairly promptly following deposition.         
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Supportive evidence on this potentially solubility-limited lung disposition for 

certain aerosol drugs exists in the literature, yet in animals. Carboxylic acid of methyl 

sulfinyl xanthone was administered to the rat lung as suspension, and its lung 

disappearance profile was compared with that of its sodium salt given as solution 

[Chowhan and Amaro, 1976]. The slower and biphasic lung disappearance profile was 

shown for the suspension administration, compared to the faster and monophasic profile 

for the solution counterpart. This slower and biphasic profile for the suspension was 

attributed to a need for xanthone dissolution within the airways prior to lung absorption, 

suggesting, for the first time, that dissolution could control the kinetics of lung 

disposition. Likewise, a study with guinea pigs demonstrated that a 6.5-fold increased 

solubility of the poorly soluble fluorescein (acid; 13.5 µg/mL of aqueous solubility) by 

amorphous incorporation within the respirable-size microspheres resulted in near 2-fold 

increased lung absorption following powder aerosol administration to the lung 

[Sakagami et al, 2001]. This rather implied that, a limited 46 % bioavailability for the 

poorly soluble fluorescein, despite its small molecular weight (i.e., 332 Da), was likely 

caused by its slower dissolution within the airways of the guinea pigs. However, a 

counterargument also exists, primarily from a premise that inhaled aerosol particles are 

so small in size that their dissolution rate should be rapid by virtue of their large surface 

area per unit weight. A stimulus article recently published by the USP ad hoc Panel 

[Gray et al, 2008] followed this premise, since no compelling evidence for dissolution 

rate-controlled kinetics of lung disposition have been indicated in the human clinical 

literature. Accordingly, this debate that addressed our knowledge about this important 
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biopharmaceutical phenomenon for inhaled therapeutics, i.e., aerosol dissolution on the 

lung mucosal surface, is still in infancy, even though logically, it relates to the kinetics 

of lung disposition and possibly, the manifestation of local pharmacological actions.  

 

The USP ad hoc Panel was initially briefed to seek for a need of compendial 

dissolution testing system, specifically for aerosol drugs from inhaler products [Gray et 

al, 2008]. While the USP currently lacks such an established system to determine the 

kinetics of dissolution for aerosol particles, a custom-made flow-through system similar 

to the USP Dissolution Testing Apparatus 4.2 [USP, 2003b] was used for determining 

the dissolution profiles of selected ICS aerosol particles collected on the membrane 

filters, generated from their commercial pMDIs and DPIs [Davies and Feddah, 2003]. 

The aerosol collection on membrane filters was carried out at the exit of the USP 

induction port coupled with the Andersen cascade impactor (ACI), a compendial 

apparatus to determine aerodynamic particle size distributions for inhaler products. 

Such filters carrying ICS particles were subjected to dissolution profile testing in the 

flow-through system using simulated lung lining fluid at a flow rate of 0.7 mL/min. 

This approach was surely innovative in that the ICS aerosols generated from the inhaler 

products were directly tested for dissolution, for the first time. Nevertheless, because 

the ICS aerosols were collected by filtration at the exit of the USP induction port prior 

to the entry to the ACI, their sizes remained unknown likely inconsistent between the 

ICSs products. Moreover, the use of the flow-through system would create rather 

favorable flow dynamics for dissolution into an unlimited fluid volume, while the real 



 11 

lung lining fluid is largely stationary and limited in volume. Hence, it would be 

preferable to develop a dissolution testing method for inhaler products, which enables 

determination of the dissolution profiles for defined- and respirable-size aerosol 

particles into a limited volume of stationary fluid; this being more analogous to aerosol 

particle dissolution on the lung mucosal surface following deposition.   

 

Aerosol particles of ICS deposit and dissolve on the lung’s mucosal surfaces 

prior to drug uptake by the cells. Subsequently, the drugs may exert their anti-

inflammatory actions and be absorbed through the cells into the systemic circulation, as 

described in Figure 1.1; local lung metabolism may also occur for certain ICSs. 

However, these cellular events have never been successfully studied for ICSs generated 

from inhaler products other than perhaps, in human clinical trials. Small rodents such as 

rats, guinea pigs or mice are too small to receive typical aerosol ICS doses by 

inhalation, especially those directly generated from inhaler products [Sakagami, 2006]. 

Likewise, cultured lung cell systems have been developed, although these were usually 

submerged in culture media, precluding direct access of aerosol ICSs generated from 

the inhaler products to the cell surfaces. In this context, however, evidence has emerged 

that certain cultured lung cell systems can be prepared as monolayers with their apical 

mucosal surfaces covered with a limited volume of the cell lining fluid [Forbes 2000; 

Meaney et al, 2002; Sakagami, 2006; Ehrhardt et al, 2002; Borchard et al, 2002]. Such 

cultured lung cells are immortalized human bronchial epithelial cell line of cancer-

origin, Calu-3, transformed human bronchial epithelial cell line of normal lung-origin, 
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16HBE14o-, and finally, primary cultured rat alveolar epithelial cells [Sakagami, 2006; 

Forbes and Ehrhardt, 2004; Ehrhardt et al, 2002a and b; Forbes B, 2000; Cheek et al, 

1989; Dobbs LG, 1990; Fang et al, 2004; Elbert et al, 1999; Smith, 1977; Wang and 

Zhang, 2004; Borchard et al, 2002; Fiegel et al, 2003; Cooney et al, 2004; Grainger et 

al, 2006a and b; Mathias et al, 2002]. These lung cells have been shown to form 

monolayers under a culturing condition called “air-interface culture” (AIC) where the 

cells were fed only with a culture media basolaterally in the transwell system, while the 

apical mucosal surface was left semi-dry [Fiegel et al, 2003; Cooney et al, 2004; 

Grainger et al, 2006a and b; Mathias et al, 2002]. This culture method appeared to 

facilitate the development of a well-differentiated barrier, compared to the conventional 

medium-submerged culture [Adler et al, 1990]. The method also enabled direct mucosal 

access of solutions, suspensions or aerosols by virtue of its semi-dry apical surface on 

which there is only a limited volume of the lining fluid [Fiegel et al, 2003; Cooney et 

al, 2004; Grainger et al, 2006b]. 

The Calu-3 cells available from the American Type Culture Collection (ATCC) 

have been the most studied in the literature, since their confluent monolayers grown 

under the “air-interface culture” (AIC) were shown to form a sufficiently tight barrier 

for diffusive permeation [Borchard et al, 2002; Fiegel et al, 2003; Cooney et al, 2004; 

Grainger et al, 2006a and b; Mathias et al, 2002]. These monolayers appeared to be 

capable of maintaining a semi-dry mucosal surface, thereby offering a unique 

opportunity for direct deposition of solid or liquid aerosols. The first attempt to do this 

was made using a multi-stage liquid impinger (MSLI), a compendial apparatus to 
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determine particle size distribution of inhaler products [Fiegel et al, 2003]. The 

transwell insert of the Calu-3 monolayer grown under the “air-interface culture” (AIC) 

was placed under the second stage nozzle in the MSLI for aerosol deposition of 

poly(lactic-co-glycolic)acid microparticles. The Calu-3 monolayers were shown to 

tolerate this microparticle deposition, as evidenced by their unaltered permeability for a 

marker solute and unchanged electrophysiological characteristics. Another attempt 

followed using a viable cascade impactor (VCI) [Cooney et al, 2004]. These authors 

placed transwell inserts just below its Stage 4 for ≤2.1 µm aerosol deposition onto the 

semi-dry mucosal surface of the Calu-3 monolayers. Unfortunately, in both of those 

studies, the lining fluid volume of the monolayers was undetermined, thereby 

precluding determination of solute permeability after aerosol deposition on the mucosal 

surface. Even so, both attempts proved that the Calu-3 monolayers can be incorporated 

into a cascade impactor direct aerosol particle deposition in defined sizes on the semi-

dry mucosal surface on the monolayer, while maintaining the intact characteristics of 

the barrier. Such systems would provide a unique opportunity to study cellular lung 

disposition processes as a cascade, similar to that occurring in human lung after aerosol 

inhalation.  

Meanwhile, cellular pharmacological assessment of anti-inflammatory effects of 

ICSs has so far largely disregarded the effects of their aerosol deposition onto the lung’s 

mucosal cell barrier in a limited volume of lining fluid. In fact, the anti-inflammatory 

potencies shown in Table 1.1 were obtained using direct application of ICS solutions to 

non-confluent medium-submerged lung cells to determine the potency of the anti-
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inflammatory response in incubation. The measurement commonly has employed 

immunoassays with the isolated nuclear fraction of the cells, e.g., enzyme linked 

immunosorbent assay (ELISA) for the proinflammatory NFκB [Baldwin, 1996]. 

Alternatively, reporter gene assays with the cells transfected with an inducible NFκB-

dependent reporter gene, such as luciferase [Baldwin, 1996; Roumestan et al, 2003; 

Jafuel et al, 2000] have been performed.  Provided that ICSs exert their actions by 

repression of the cellular transcription factors like NFκB, these approaches seem 

reasonable, yet most disregard aerosol deposition and local disposition, because of 

experimental difficulties. As a result, it has been suggested that their results were an 

over-simplification of in vivo or clinical events, which may explain certain literature 

with their puzzling anti-inflammatory potencies [Edsbäcker et al, 2006]. It has been 

well accepted that the local ICS disposition for aerosol drugs should overall define its 

cellular pharmacodynamic effects following aerosol deposition [Edsbäcker et al, 2006; 

2008].   

 

It should be clear now that there is a strong desire to develop useful models to 

address certain important biopharmaceutical processes pertaining to lung disposition 

preferably without using animals and humans. The examples of important 

biopharmaceutical processes include dissolution into the mucosal fluids for efficient 

cellular uptake/absorption as well as manifestation of local pharmacological actions 

following aerosol drug deposition. Hence, this dissertation project was designed to first 

determine the kinetics of dissolution for the ICS aerosols generated from inhalers and 
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then, to assess their importance on lung disposition and local anti-inflammatory effects. 

Two novel and unique in vitro systems were developed to achieve these objectives: an 

in vitro dissolution testing system and an in vitro Calu-3 cell monolayer system, both 

coupled with accurate and precise ICS aerosol deposition from the inhaler products. The 

project revolved around the central hypothesis that lung cellular disposition and 

pharmacology of certain aerosol ICSs are kinetically rate-determined by dissolution on 

the lung surface following aerosol deposition. First, a simple system was developed, 

capable of assessing the dissolution kinetics for ICS aerosol particles generated from 

commercial inhaler products. This identified ICSs for which dissolution was most likely 

rate-determining. Air-interface cultured Calu-3 monolayers with a semi-dry mucosal 

surface were then developed and validated, thereby, offering an opportunity to directly 

deposit ICS aerosol particles on their surface in a well-defined and well-characterized 

deposition system. This system was used to assess anti-inflammatory effects, in relation 

to dissolution, using the Calu-3 monolayers transfected with a NFκB-dependent reporter 

gene. 
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CHAPTER 2 
 
 

HYPOTHESES 
 
 
 
 

The goal of this dissertation project was to determine the kinetics of dissolution 

for aerosol particles of inhaled corticosteroids (ICSs) generated from inhaler products 

and to assess their importance on lung disposition and local anti-inflammatory actions. 

Overall, it was hypothesized that lung cellular disposition and pharmacology of certain 

aerosol ICSs were kinetically rate-determined by particle dissolution into a limited 

volume of lung mucosal lining fluid. Specifically, the project first aimed to develop an 

in vitro dissolution testing system to determine the kinetics of dissolution for ICSs of a 

defined-size into a limited volume of fluid upon aerosol deposition from inhaler 

products. Then, the project proceeded to develop an in vitro lung epithelial cell 

monolayer system enabling deposition of a defined-size aerosol, followed by 

assessment of the effects of dissolution on cellular uptake and anti-inflammatory 

actions. Accordingly, the project was designed to test the following six hypotheses: 

 

a. Aerosol particles of ICSs generated from inhaler products can be accurately and 

precisely collected on membrane filters in a defined-size in the Andersen cascade 
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impactor (ACI), such that their kinetics of dissolution in a limited volume of fluid 

can be determined in a transwell system. 

 

b. The kinetics of dissolution for different aerosol ICSs differ substantially, depending 

upon not only ICS solubility, but also aerosol mass, particle size and/or formulation 

and dosage form. 

 

c. A unique lung epithelial cell monolayer of Calu-3 can be formed with its apical 

mucosal surface left semi-dry with a limited volume of the cell lining fluid that can 

be successfully as an epithelial barrier for use in pulmonary biopharmaceutics 

research. 

 

d. Confluent Calu-3 cell monolayers can be transfected with a measurable biomarker 

for inflammation, nuclear factor kappa B (NFκB) -dependent reporter gene of 

luciferase (pNFκB-Luc), for use in anti-inflammatory assessment of aerosol ICSs. 

 

e. Aerosol particles of ICSs in defined-size ranges from inhalers can be accurately and 

precisely deposited on the apical surface of the Calu-3 cell monolayers using the 

ACI in a modified configuration, in order to determine their mucosal disposition, 

cellular uptake and anti-inflammatory effects. 
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f. Cellular uptake of certain aerosol ICSs can be kinetically rate-limited because of 

mucosal dissolution, thereby, resulting in compromised anti-inflammatory 

responses; thus signifying that their intrinsic molecular potencies of anti-

inflammation in the literature overrate their potencies following aerosol deposition 

in the lung. 

 

 In Chapter 3, a new in vitro dissolution testing system for aerosol ICSs from inhaler 

products will be described alongside system development and validation. In Chapter 4, 

lung epithelial cell monolayers of Calu-3 grown under the air-interface culture (AIC) 

will be described alongside the characterization as an epithelial barrier suitable for direct 

aerosol deposition. In Chapter 5, aerosol ICS deposition from inhalers onto the semi-dry, 

transfected Calu-3 monolayers and its anti-inflammatory action assessment via the NFκB 

activity measured by luciferase will be described. The results are interpreted in the light 

of knowledge gained on ICS dissolution and cellular uptake from previous chapters. 

Chapter 6 will summarize the findings of this dissertation project and draw general 

conclusions.    
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CHAPTER 3 
 
 

KINETIC ASSESSMENT OF AEROSOL PARTICLE 
DISSOLUTION FOR TESTING COMMERCIAL INHALER 

PRODUCTS 
 
 
 
 

3.1 INTRODUCTION 

Inhaled dosage forms deliver their active pharmaceutical ingredients (APIs), 

along with formulation excipients, onto the lung surface in a solid or semi-solid form, 

except in case of solution nebulization. Hence, a study of their biopharmaceutics should 

at least consider API dissolution into a limited volume (e.g., 10-30 mL) of lung lining 

fluid prior to subsequent cellular uptake or absorption [Hochhaus et al, 1997; Edsbäcker 

et al, 2006]. In this context, evidence exists in the literature that aerosol particles 

generated from inhalers can contain formulation excipients that potentially alter their 

surface properties and/or form different states of crystallinity due to their formulation 

and aerosol generation processes [Dalby and Byron, 1993; Thomas et al, 2005]. While 

these may alter the kinetics of dissolution of the APIs themselves, it is also possible that 

certain APIs and their aerosol particles may suffer from dissolution rate-determined 

uptake within the lung [Wurster and Taylor, 1965; Sakagami et al, 2002]. 



 20 

Given this logical involvement and possible importance of the dissolution 

kinetics of inhaled therapeutics in lung biopharmaceutics, Davies and Feddah [Davies 

and Feddah, 2003] developed a unique in vitro method to determine the dissolution 

profiles of inhaled corticosteroid (ICS) particles generated from commercial pMDIs and 

DPIs. The aerosol collection on membrane filters was carried out at the exit of the USP 

induction port using the Andersen cascade impactor (ACI), a compendial apparatus to 

determine aerodynamic particle size distributions for inhaler products. This was 

followed by their dissolution profile determination using a custom-designed flow-

through system, similar to the USP Dissolution Testing Apparatus 4.2 [United States 

Pharmacopoeia, 2003b]. This approach was innovative in that the ICS aerosols 

generated from the inhaler products were directly tested for dissolution, for the first 

time. Nevertheless, because ICS aerosols were collected by filtration at the exit of the 

USP induction port prior to the entry to the ACI, their sizes remained unknown and 

likely inconsistent between the products. In addition, the use of the flow-through system 

would create rather favorable flow dynamics with an unlimited volume of fluid 

available for dissolution. In contrast, the lung lining fluid in human is only 10-30 mL in 

total volume [Widdicombe, 1997], which would limit the dissolution capacity for 

deposited drugs, while the flow dynamics are relatively stationary. Hence, it would be 

ideal that a dissolution method for inhaler products enables the kinetic assessment of 

dissolution for defined- and respirable-size aerosol particles into a limited volume of 

stationary fluid, analogous to aerosol particle dissolution on the surface of the lung.  
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Accordingly, this chapter attempted to develop a unique dissolution testing 

method for aerosol particles generated from commercial inhaler products, focused on 

collection of defined-size aerosols to be tested for dissolution in a limited volume of 

stationary fluid. It employed aerosol impaction onto the filter membranes placed on 

Stage 2 and Stage 4 of the ACI from an airflow rate of 28.3 L/min, so that particles with 

4.7-5.8 and 2.1-3.3 µm of aerodynamic diameter, respectively, could be accurately and 

precisely collected in an amount between 0.6 and 19.8 µg. These filter membranes were 

then placed in the transwell inserts where sequential events of particle dissolution on the 

donor side and permeation across the transwell’s supporting membrane were monitored 

following addition of a limited volume (40 µL) of dissolution fluid. A total of 5 ICSs 

and 7 commercial inhalers that were pMDIs or DPIs were used to collect a variety of 

drug deposits on the filter membranes. These were tested to pursue the hypothesis that 

the kinetics of dissolution for aerosol particles may depend on not only the reported 

aqueous solubility of each API but also the drug deposit mass, aerosol size and 

formulation and most notably, differ across APIs. 

 
 
 

3.2 MATERIALS AND METHODS 

 

3.2.1 COMMERCIAL INHALER PRODUCTS  

All commercial inhaler products used in this study were obtained from their 

vendors through the VCU Health System Pharmacy. Table 3.1 lists 7 ICSs inhaler 
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products for 5 ICSs along with their physicochemical features. They were packaged in 

either pMDIs or DPIs. The ICSs differed with respect to their reported aqueous 

solubilities. Formulations were non-aqueous suspensions and solutions and powder with 

several different excipients. These products also differed in their metered doses.  All 

products were used prior to their labeled expiry date, except for Vanceril® pMDI that 

was used as an expired product, as it was withdrawn from the market in 2002. Vanceril® 

pMDI was used 5 years after the expiry date, yet a negligible degradation of API, BDP, 

was evidenced by the absence of any chromatographic detection of any peaks other than 

those of the API from the samples taken from the inhalers (data not shown). 
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40BDP dissolved in HFA-
134a and ethanol

0.13521pMDIBDPQVAR

100BDP  suspended in CFC-
11, and -12  with oleic 
acid

0.13521pMDIBeclomethasone
Dipropionate
(BDP)

VANCERIL

50FP and Lactose 2000.14501DPIFPFLOVENT 
DISKUS

44 and 
220

FP suspended in HFA-
134a

0.14501pMDIFluticasone 
Propionate (FP)

FLOVENT HFA

200BD only16431DPIBudesonide
(BD)

PULMICORT 
TURBUHALER

200TA suspended in CFC-
12 and 1% alcohol

21434pMDITriamcinolone 
Acetonide (TA)

AZMACORT5

250FL suspended in CFC-
11, -12 and -114 with 
sorbitan trioleate

140434pMDIFlunisolide (FL)AEROBID

Metered 
Dose
[µg]

Formulation4Aqueous 
Solubility 
[µg/mL] 3

Molecular 
Weight 
[Da]

Dosage 
Form2Drug

Inhaler
Product1

1 The names of all products are registered trademarks.
2 pMDI: pressurized metered dose inhaler, DPI: dry powder inhaler
3 Data were taken from Hoggeret al, 1993
4 Prescription information 
5 Used without the built-in spacer.

Table 3.1 Inhaled corticosteroids (ICSs) and their commercial inhaler products tested in this study. 
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3.2.2 ICS AEROSOL PARTICLE COLLECTION ON FILTERS BY IMPACTION 

Figure 3.1 schematically shows collection of ICS aerosols onto membrane filters 

by impaction in defined aerodynamic diameter ranges of 4.7-5.8 and 2.1-3.3 µm 

following generation from each of the inhaler products listed in Table 3.1. An 8-stage, 

non-viable Andersen cascade impactor (ACI Mark II; Thermo Electron Corporation, 

Franklin, MA) with stainless steel collection plates was used, coupled with the USP 

induction port and the mouthpiece adaptor tailored to each inhaler. These were 

assembled, together with a pump (General Electric Company, Fort Wayne, IN), which 

was adjusted to operate at 28.3 L/min of airflow rate. During this ACI assembly, 

however, the stainless steel collection plates on Stage 2 and Stage 4, which are 

calibrated to collect aerosol particles at 4.7-5.8 and 2.1-3.3 µm in aerodynamic 

diameters, respectively, at 28.3 L/min [United States Pharmacopoeia], were turned 

upside down. This allowed 6 polyvinylidene difluoride (PVDF) filter membranes (25 

mm in diameter; 0.22 µm Durapore, Millipore Corporation, Billerica, MA) to be 

placed at each of these stages, as shown in Figure 3.1; note that the nozzle-to-filter 

distance was unaltered from those in the conventional, calibrated ACI configuration. 

Following assembly, ICS aerosols were collected on these PVDF filter membranes 

following their generation from each of pMDIs and DPIs by using an appropriate 

number of actuations into the impactor with airflow set to 28.3 L/min. The required 

number of actuations was chosen to enable collection of the target ICS aerosol deposit 

on each filter in a range of 0.6-19.8 µg. This was based on preliminary experiments 

where ICS collections were made over the entire stainless steel plates (80 mm in 
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diameter; 50.2 cm2) in order to predict the deposition mass on each membrane filter (25 

mm in diameter; 4.9 cm2) by and its normalization based on its reduced collection area.  
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Inhaler
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Andersen cascade impactor
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Figure 3.1 A schematic of ICS aerosol particle collection in the defined aerodynamic diameter ranges 
using the Andersen cascade impactor (ACI). While the ICS aerosols were collected at both 
Stage 2 and Stage 4, only Stage 4 is shown magnified above for the collection of the 2.1-
3.3 µm ICS aerosols on 6 polyvinylidene difluoride (PVDF) filter membranes placed on the 
reversed stainless steel collection plate. Deposited drug is shown diagrammatically as solid 
black triangles. 
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3.2.3 DISSOLUTION AND PERMEATION PROFILES OF ICS AEROSOL 

PARTICLES 

Following ICS aerosol collection, the ACI was disassembled. Each of the filter 

membranes with 0.6-19.8 µg ICS deposit was placed, with the deposited drug face 

down, onto the donor compartment of the transwell inserts with semi-permeable 

polyester membrane (25 mm in diameter; 0.4 µm pore) support (Corning Costar; 

Cambridge, MA), as shown in Figure 3.2. The insert was then returned to the transwell 

base containing 1.4 mL of phosphate-buffered saline (PBS; pH 7.4) or distilled, 

deionized water (DDW; pH 7.0). PBS (pH 7.4) was used for FL, TA and BUD; DDW 

(pH 7.0) was chosen for FP and BDP as their mass spectrometry analysis disfavored 

PBS. Immediately, ICS dissolution and transwell membrane (polyester) permeation 

were initiated by adding 0.04 mL of PBS or DDW onto the donor side and monitored 

over time (for 5-10 h) at 37 °C and near 100 % relative humidity inside an incubator 

(Model 5410; NAPCO, Precision Scientific, Inc., Chicago, IL) by taking 0.5 mL 

samples from the receptor compartment at different time intervals. The receptor 

compartment was replenished each post-sampling with 0.5 mL fresh and pre-warmed 

PBS or DDW to maintain its volume at 1.4 mL. At the end of each experiment, the 

donor compartment was thoroughly washed with 1.0 mL admixture of 60% CH3CN and 

40% DDW to recover the ICS remaining to be dissolved and permeated. All samples 

were analyzed for ICS quantification by the validated analytical methods described 

below (Table 3.2), such that the profiles of dissolution and permeation were obtained, as 

described in 3.2.6.     
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3.2.4 TRANSWELL MEMBRANE PERMEATION PROFILES OF ICS 

FOLLOWING SOLUTION APPLICATION  

For FL and TA, the permeation profiles across the transwell (polyester) 

membranes unaffected by dissolution were also determined by direct solution 

application at 25 and 10 µg/mL, respectively. 0.04 mL of the ICS solution was applied 

to the donor side of the transwell inserts and their permeation to the receptor side with 

1.4 mL of PBS was monitored by sampling 0.5 mL at various times and analyzed, as 

described below.  
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Figure 3.2 A schematic of transwell system to determine dissolution and permeation of 
the ICS aerosol particles (represented by triangular heaps) collected on the 
PVDF filter membranes in the ACI. The filter membrane was placed face 
down on the transwell’s supporting membrane. ICS dissolution and 
permeation was initiated by adding 0.04 mL PBS or DDW on the donor 
side.  
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3.2.5 DRUG ANALYSIS 

Analytical standards of FL, TA, BD, FP and BDP, HPLC grade CH3CN and 

CH3OH and ammonium formate (NH4HCO2) were obtained from Sigma-Aldrich (St. 

Louis, MO).  Each of the ICSs in PBS, DDW or 60% CH3CN/ 40% DDW samples were 

analyzed by the methods developed and validated in-house, as summarized in Table 3.2. 

FL, TA and BD were analyzed by high performance liquid chromatography 

(HPLC) coupled with UV detection at 236 nm (Waters Corporation, Milford, MA). The 

mobile phase comprised of 60 % CH3CN and 40 % DDW at a flow rate of 1 mL/min. 

The samples (100 µL) diluted with 60/40 CH3CN/DDW were injected onto a 

Spherisorb ODS-2 column (4.6 mm in diameter and 250 mm in length, 5 µm; Alltech 

Associates Inc., Deerfield, IL), and FL, TA and BD were typically eluted at 3, 5 and 8 

min, respectively. Each of the analyses was fully validated with respect to (a) the 

linearity (r2>0.999) of the peak area vs. concentration over the range of 0.05 to 5 µg/mL 

and (b) the limit of quantitation (LOQ) of the assay at 50 ng/mL (Table 3.2).  

FP was analyzed by HPLC, coupled with tandem mass spectrometry (MS/MS), 

modified from Krishnaswamy et al [Krishnaswamy et al, 2000]. The mobile phase 

comprised of 50 % CH3CN and 50 % DDW containing 0.1 % NH4HCO2 at a flow rate 

of 0.3 mL/min. The samples (50 µL) were injected onto a Gemini S4-C18 110 Å column 

(4.6 mm x 50 mm, 5 µm) and detected using a triple quadruple mass spectrometer 

(Quattro-LC, Waters, Milford, MA) with electrospray ionization (ESI) in a positive ion 

mode. The MS-MS signals were tuned and optimized through a constant infusion of 1.0 

µg/mL FP solution in CH3OH at 1.0 mL/min delivered with an infusion pump (Harvard 
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Syringe Pump, Harvard Apparatus, Holliston, MA). High-purity nitrogen (National 

Welders; Richmond, VA) was used as a collision gas. The optimization concluded that 

the source and the ESI probe temperatures be set at 140 °C and 400 °C, respectively, 

with the corona and cone voltages at 4.0 kV and 10.0 kV. The assay was used under 

those conditions and mass resolution was set at unit mass and hence, the m/z transition 

from 501.44 (MH)+ to 313.21 was monitored. FP was shown to be eluted at 3 min, 

which was analyzed using MASSLYNX software. The analysis was fully validated with 

respect to (a) the linearity (r2>0.999) of the peak area vs. concentration over the range 

of 3-100 ng/mL and (b) the LOQ at 3.0 ng/mL (Table 3.2). 

BDP was analyzed by the HPLC-MS/MS method developed at the VCU 

Bioanalytical Core Laboratory using the Waters Quattro-Micro (Waters, Milford, MA) 

mass spectrometer with atmospheric pressure chemical ionization (APCI) in a positive 

ion mode. The samples (50 µL) were injected onto a Zorbax Eclipse XDB-C8 (4.6 x 

50mm, 3.5µm) at a flow rate of 0.6 mL/min. The mobile phase was a gradient of DDW 

and CH3OH in the presence of 2 mM NH4HCO2 (A and B, respectively). The gradient 

was set from A to B at 0% B (0.01 min), 50% B (0.4 min), 80% B (6.0 min), 90% B (7.0 

min), 50% B (7.1 min) and 0% B (10.0 min), controlled with a Shimadzu 10-AVP 

(Columbia, MD) system. The probe temperature was set at 350 °C, while the 

declustering potential, entrance potential, collision energy and collision energy potential 

were set at 76 V, 10 V, 23 V and 20 V, respectively. The m/z transition from 521.4 

(MH)+ to 319.4 was monitored. BDP was eluted in a 10 min run-time. Data analysis was 

performed using the MASSLYNX software. The analysis was fully validated with 
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respect to the linearity (r2>0.999) of the peak area vs. concentration over the range of 1-

100 ng/mL along with the LOQ at 1.0 ng/mL (Table 3.2). 

 

3.2.6 PROFILE ANALYSIS 

Cumulative ICS mass dissolved and permeated into the receptor compartment at 

a given sampling time was calculated from the product of the sample concentration and 

the volume (1.4 mL) of the receptor plus that of the concentrations in previously taken 

samples and their volumes (0.5 mL). Initial ICS mass deposited on each of the filter 

membranes were determined from the sum of the ICS masses recovered from the donor 

and receptor compartments by the end of the experiment. The dissolution and 

permeation profile of each transwell was described as % ICS mass dissolved and 

permeated into the receptor compartment over initial ICS mass deposit as a function of 

time and then, expressed as mean % profiles with sample standard deviation (SD) from 

triplicate experiments, as shown in Figures 3.3 through 3.8. Apparent half-life (t0.5) was 

calculated from each profile via linear interpolation of the time points that bracketed the 

50 % point of ICS mass dissolved and permeated in the mean % profiles, except for FP 

and BDP, in which the t0.5 values were determined by profile extrapolation. 
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1.0APCI4, m/z
521.4 →319.4

0.6Gradient of 2 mM NH4HCO2 
in  H2O  and 2mM  NH4HCO2 
in CH3OH (details in text 
below) 

Zorbax Eclipse XDB-
C8, 3.5 µm,
Length: 50 mm,
ID: 4.6 mm

HPLC-
MS/MS

Beclomethasone
dipropionate
(BDP)

3.0ESI3, m/z
501.44 →313.21

0.350%  CH3CN  and 50%  H2O  
containing 0.1% NH4HCO2

Gemini S4 C18 110 Å, 
5 µm,
Length: 50 mm,
ID: 2.0 mm

HPLC-
MS/MS2

Fluticasone 
propionate (FP)

50236 nm1.060% CH3CN and 40% H2OSpherisorb ODS,
2-5 µm, 
Length: 250 mm,
ID: 4.6 mm

HPLC-UVBudesonide (BD)

50236 nm1.060% CH3CN and 40% H2OSpherisorb ODS,
2-5 µm, 
Length: 250 mm,
ID: 4.6 mm

HPLC-UVTriamcinolone 
acetonide (TA)

50236 nm1.060% CH3CN and 40% H2OSpherisorb ODS,
2-5 µm, 
Length: 250 mm,
ID: 4.6 mm

HPLC-UVFlunisolide (FL)

Flow rate
[mL/min]

Mobile PhaseColumn LOQ1

[ng/mL]
Detection

Separation

AnalysisDrug

Table 3.2 Inhaled corticosteroids (ICSs) and their analytical methods used in this study. 

1 Limit of quantitation                           3 Electrospray ionization 
2 Krishnaswamy et al, 2000                  4 Atmospheric pressure chemical ionization 
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3.3 RESULTS  

 

3.3.1 ICS AEROSOL PARTICLE COLLECTION ON FILTERS BY IMPACTION 

Table 3.3 summarizes the ICS mass deposits collected on the 5.0 cm2 PVDF 

filter membranes placed on Stage 2 and Stage 4 of the ACI following various numbers 

of actuations or doses from each of the pMDIs or DPIs tested in this study (Table 3.1). 

These various actuations or doses were selected, so that the ICS mass deposits on the 

filter membranes were best comparable at ~2 (1.6-2.9) µg and otherwise, adequately 

varied within or across the ICSs and inhaler products. This was aimed to assess the 

kinetics of dissolution and permeation, in relation to the specific ICS in question, its 

solubility, dose, formulation and dosage form, as studied and discussed below. Clearly, 

the required numbers of actuations or doses to achieve the ~2 µg deposit at each stage 

were different between the ICSs and products, due to the differences in the metered 

dose (Table 3.1) and aerodynamic particle size distribution. Overall however, the ACI 

deposition system shown in Figure 3.1 enabled the 4.7-5.8 and 2.1-3.3 µm ICS aerosol 

deposition on the filter membranes fairly reproducibly with ≤ 23 % of relative standard 

deviation (%RSD).  

  

 

 



 35 

Table 3.3 ICS mass deposits collected on the 5.0 cm2 PVDF filter membranes placed on 
Stage 2 and Stage 4 of the ACI following various numbers of actuations or 
doses from each of the pMDIs or DPIs. Data represent mean±SD (n=3). 

 
 

Mass deposit on the filter 
(µg) 

 
 
 

Inhaler product 
(Metered dose) 

 
 
 
 

Drug 

 
 
 

Number of 
actuations 

 
Stage 2 

 
Stage 4 

1   0.7 ± 0.1 2.3 ± 0.1 
5   6.2 ± 1.0 10.9 ± 0.5 

AEROBID (pMDI) 
(250 µg) 

FL 

10   9.1 ± 1.7 18.8 ± 1.1 
1   1.1 ± 0.1  0.4 ± 0.03 
5   7.7 ± 1.4 2.5 ± 0.3 

AZMACORT (pMDI) 
(200 µg) 

TA 

10 14.0 ± 1.0 4.7 ± 0.2 
1     N.A. 0.8 ± 0.04 
5   1.5 ± 0.2 1.7 ± 0.1 

PULMICORT TURBUHALER 
(DPI) 
(200 µg) 

BD 

10   1.9 ± 0.1 2.9 ± 0.2 
            5*    1.8 ± 0.1 4.8 ± 0.9 FLOVENT HFA (pMDI) 

(44 and 220 µg) 
FP 

  5**  16.4 ± 3.7 19.8 ± 0.8 
FLOVENT DISKUS 
(DPI) 
(50 µg) 

FP 22   2.2 ± 0.3 2.4 ± 0.4 

VANCERIL (pMDI) 
(100 µg) 

BDP 7 1.3 ± 0.1 1.6 ± 0.2 

QVAR (pMDI) 
(40 µg) 

BDP 14 0.6 ± 0.1 1.6 ± 0.1 

N.A. Not applicable  
* 44µg metered dose 
**  220µg metered dose 
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3.3.2 DISSOLUTION AND PERMEATION PROFILES OF ICS AEROSOLS 

 

3.3.2.1 Flunisolide (FL) from AEROBID® pMDI 

Figure 3.3-a shows the cumulative % mass of FL dissolved and permeated into 

the receptor compartment over time for the aerosols collected on Stage 2 of the ACI 

(4.7-5.8 µm in aerodynamic diameter) from AEROBID pMDI after 0.7, 6.2 and 9.1 µg 

of the mass deposit per filter membrane. These profiles reflected the kinetics of FL 

aerosol dissolution into the 40 µL buffer fluid on the donor side and subsequent 

permeation through the transwell polyester membrane. Each of the profiles was 

kinetically apparent first-order, which reached near complete ≥ 91 % dissolution and 

permeation in 5 h. However, none of the profiles reached a complete 100 % speculating 

possible adsorption of the drug particles to the hydrophobic PVDF membrane or 

substantially decreased concentration gradient at ≥3 h, between the donor and receptor 

compartments. Across 0.7-9.1 µg of the FL deposits under Stage 2 collection, the 

profiles were shown to be indistinguishable (p>0.05, ANOVA) with their apparent half-

life (t0.5) of 0.88±0.22 h (across mass deposits, mean±SD, n=9). Note however that, in 

theory, 40 µL of the donor fluid should have exceeded the capacity to dissolve the entire 

6.2 and 9.1 µg of the FL deposits, due to the aqueous solubility of 140 µg/ml (Table 

3.1). Therefore, compared to its permeation, FL dissolution into the 40 µL donor fluid 

appeared to be faster and thus, not rate-determined kinetically; otherwise, the excessive 

mass of the FL particles over the dissolution capacity on the donor side would have 

slowed down the kinetics at 6.2 and 9.1 µg.  
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Figure 3.3-b shows the profiles of dissolution and permeation for the FL 

aerosols collected on Stage 4 of the ACI (2.1-3.3 µm in diameter) at 2.3, 10.9 and 18.8 

µg. Despite a difference in size, the profile at 2.3 µg remained effectively consistent 

with the profiles for the 4.7-5.8 µm aerosols (Figure 3.3-a; p>0.05, ANOVA), which 

resulted in the comparable t0.5 value of 0.67±0.06 h. This was presumably because the 

40 µL donor buffer fluid could afford dissolving the entire 2.3 µg of the FL deposit, yet 

the dissolution kinetics were not substantially improved by the smaller aerosol size. In 

contrast, however, at much higher mass deposits of 10.9 and 18.8 µg, the kinetics of 

dissolution and permeation became progressively slower (Figure 3.3-b). This could be 

attributed to the far excessively increased FL particles remaining to be dissolved on the 

donor side even for this smaller size of the highly soluble FL. Nevertheless, the rather 

slow kinetics for the smaller 2.1-3.3 µm aerosols at 10.9 µg, compared to those for the 

4.7-5.8 µm aerosols at a comparable 9.1 µg, were not certain, leaving a speculation that 

the profiles were not a reflection of individual particle dissolution, but dissolution from 

the heaps comprised of the different size particles.  
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Figure 3.3 Cumulative % mass of FL dissolved and permeated into the receptor 
compartment as a function of time for the aerosols collected on (a) Stage 2 
and (b) Stage 4 of the ACI (4.7-5.8 µm and 2.1-3.3 µm in aerodynamic 
diameter, respectively) from AEROBID pMDI at various mass deposits. 
Data represent mean±SD (n=3). The profiles shown in (a) are statistically 
indistinguishable (p>0.05 by ANOVA) across the FL deposits. 

(a) 

(b) 
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3.3.2.2 Triamcinolone acetonide (TA) from AZMACORT® pMDI 

Figure 3.4 shows the profiles of dissolution and permeation for the TA aerosols 

collected on Stage 2 (4.7-5.8 µm) at 1.1, 7.7 and 14.0 µg and on Stage 4 (2.1-3.3 µm) at 

2.5 µg, generated from AZMACORT pMDI. All the profiles were kinetically apparent 

first-order like FL, yet approaching different asymptotes between 78-90 % in 5 h, 

depending on the mass deposit and size. Indeed, in line with the rank of the solubility 

(Table 3.1), the kinetics of dissolution and permeation for the TA aerosols appeared to 

be slower than those for the FL aerosols (Figures 3.3 and 3.4, respectively); the t0.5 

values of 1.03-2.10 h for the TA aerosols, were overall greater than those for the FL 

aerosols (an averaged t0.5 value of 0.88 h). Notably, the kinetics for the 4.7-5.8 µm TA 

aerosols were shown to slow down with increasing the mass deposits from 1.1 to 14.0 

µg. At all of these deposits, TA could not be dissolved entirely in the 40 µL donor fluid 

for dissolution, in theory, based on its solubility of 21 µg/mL (Table 3.1). It was likely 

therefore that dissolution of the TA aerosol particles because kinetically significant, 

relative to the transwell membrane permeation. Meanwhile, the profile for the 2.1-3.3 

µm TA aerosols at 2.5 µg was intermediate between the profiles for the 4.7-5.8 µm 

aerosols at 1.1 and 7.7 µg (Figure 3.4). Hence, like FL, the kinetics of dissolution for 

this less soluble TA was unlikely to be improved by the smaller size. 
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Figure 3.4 Cumulative % mass of TA dissolved and permeated into the receptor 

compartment as a function of time for the aerosols collected on the Stage 2 
at 1.1, 7.7 and 14.0 µg and on the Stage 4 at 2.5 µg in the ACI (4.7-5.8 µm 
and 2.1-3.3 µm in aerodynamic diameter, respectively) from 
AZMACORT pMDI. Data represent mean±SD (n=3). 
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3.3.2.3 Budesonide (BD) from PULMICORT® TURBUHALER DPI 

Figure 3.5 shows the profiles of dissolution and permeation for the BD aerosols 

collected on Stage 2 (4.7-5.8 µm) at 1.9 µg and on Stage 4 (2.1-3.3 µm) at 0.8 and 1.7 

µg, generated from PULMICORT TURBUHALER DPI. Again, the apparent first-

order profiles reached different asymptotes at 56-74 % in 5 h, the values being lowered 

further than those seen for FL and TA (Figures 3.3 and 3.4). This implied that the 

kinetics of BD dissolution were slower than those for TA and indeed, the t0.5 values at 

the comparable mass deposits of 1.9 and 1.1 µg on the Stage 2 were 3.90±0.87 and 

1.05±0.16 h, respectively. By virtue of their effectively same molecular weights, i.e., 

431 and 434 Da (Table 3.1), diffusive permeation across the transwell membranes for 

BD and TA should be similar. Hence, this profile difference between the BD and TA 

aerosols was likely caused by differences in their dissolution kinetics, even though their 

reported aqueous solubilities were almost comparable at 16 and 21 µg/mL, respectively 

(Table 3.1). This arguably addressed that the kinetic behavior of certain aerosol particle 

dissolution was not solely in accord with the equilibrium data of the aqueous solubility. 

Meanwhile, unlike FL or TA, the smaller 2.1-3.3 µm BD aerosols collected on Stage 4 

appeared to show faster dissolution and permeation than the larger 4.7-5.8 µm aerosols 

collected on Stage 2, upon the comparable 1.7 and 1.9 µg mass deposits (Figure 3.5); 

likewise, the t0.5 values were 1.76±0.05 and 3.90±0.87 h, respectively. Once again, 

given the same rate of the transwell membrane permeation for BD, this could be 

attributed to a larger surface area per unit weight ratio for the smaller aerosols, finally 

accelerating their dissolution rates, as have often been the cases for the dissolution of 



 42 

certain rather larger particles (Martin and Bustamante, 1993a). Nevertheless, the 

different observation of this aerosol size dependence on the kinetics of dissolution 

between the BD and TA aerosols, despite their comparable solubility, remained to be 

substantiated, including the exact controlling mechanism of dissolution for the aerosol 

particles collected in the form of cone-shaped heaps.  
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Figure 3.5 Cumulative % mass of BD dissolved and permeated into the receptor 
compartment as a function of time for the aerosols collected on Stage 2 at 
1.9 µg and on the Stage 4 at 0.8 and 1.7 µg (4.7-5.8 µm and 2.1-3.3 µm in 
aerodynamic diameters, respectively) in the ACI, generated from 
PULMICORT TURBUHALER DPI. Data represent mean±SD (n=3).  
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3.3.2.4 Fluticasone propionate (FP) from FLOVENT HFA® pMDI and DISKUS® DPI 

Figure 3.6 shows the profiles of dissolution and permeation for the FP aerosols 

collected on Stage 2 (4.7-5.8 µm) at 1.8 and 16.4 µg from FLOVENT HFA pMDI and 

at 2.2 µg from DISKUS DPI. The profiles reached only ≤ 6.0 % of dissolution and 

permeation even by 10 h in an apparently zero-order fashion, demonstrating the slowest 

kinetics among the ICSs tested in this study including BDP described below. While 

being consistent with FP’s lowest aqueous solubility of 0.14 µg/mL (Table 3.1), this did 

not allow the t0.5 determination except by linear extrapolation, in which case, a t0.5 value 

would be 141.6±60 h. Notably, the profiles of the FP aerosols collected on Stage 2 from 

FLOVENT pMDI and DISKUS DPI at the comparable mass deposits of 1.8 and 2.2 

µg, respectively, were not statistically different (p>0.05, ANOVA), despite apparent 

differences after 4 h. This suggested that the dissolution kinetics of the different sized 

FP aerosols generated from these 2 different inhaler products were equivalent, 

providing the same rate of the transwell membrane permeation. Nevertheless, like TA 

and BD, the kinetics of FP dissolution and permeation continued to be dependent upon 

the deposited masses and slowed down at the higher deposit amounts of 16.4 µg (Figure 

3.6).   
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Figure 3.6 Cumulative % mass of FP dissolved and permeated into the receptor 
compartment as a function of time for the aerosols collected on Stage 2 of 
the ACI (4.7-5.8 µm in aerodynamic diameter) at 1.8 and 16.4 µg from 
FLOVENT HFA pMDI and at 2.2 µg from DISKUS DPI. Data 
represent mean±SD (n=3).  
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3.3.2.5 Beclomethasone dipropionate (BDP) from VANCERIL and QVAR pMDIs 

Figure 3.7 shows the profiles of dissolution and permeation for the BDP 

aerosols collected on Stage 4 (2.1-3.3 µm) at 1.6 µg from VANCERIL and QVAR 

pMDIs. Like FP, the profiles appeared to be zero-order, yet reaching a much higher 12 

% and 16 % of dissolution and permeation in 10 h, despite the identical reported 

aqueous solubility of 0.13 µg/ml (Table 3.1). Given the comparable rate of diffusive 

permeation across the transwell membrane by virtue of their similar molecular weights 

(i.e., 521 and 445 Da, respectively), this implied that either or both of the BDP and FP 

profiles resulted from changes in the dissolution kinetics induced by formulation effects 

when compared to those for the pure crystalline materials with 0.13 and 0.14 µg/mL of 

solubility, respectively. In this context, it was intriguing that the BDP aerosols from 

QVAR showed significantly faster dissolution and permeation than those from 

VANCERIL (p=0.013, ANOVA). Indeed, this faster kinetics for the QVAR aerosols 

appeared to result from the rapid dissolution in the first 1 h where the rate was 5.0±0.8 

%/h as compared to 2.3±0.0 %/h for the VANCERIL® aerosols. Then, the profiles in the 

subsequent periods (i.e., ≥1h) appeared to parallel those for VANCERIL; their linear 

slopes, 1.1±0.03 and 1.1±0.04 %/h, respectively, were insignificantly different (p>0.05, 

unpaired Student’s t-test). While remaining speculative, as discussed below, these 

different kinetics between the QVAR® and VANCERIL® aerosols were most likely 

caused by differences in their formulations (Table 3.1) and the resultant solid aerosol 

particles following propellant evaporation.  
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 Figure 3.7 Cumulative % mass of BDP dissolved and permeated into the receptor 
compartment as a function of time for the aerosols collected on Stage 4 of 
the ACI (2.1-3.3 µm in aerodynamic diameter) at 1.6 µg from 
VANCERIL and QVAR pMDIs. Data represent mean±SD (n=3). The 
dissolution and permeation profile of QVAR is significantly faster than 
that of VANCERIL (p=0.013, ANOVA). 
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3.4 DISCUSSION 

The assessment of dissolution of aerosol particles generated from commercial 

inhalers was possible in this simple system. The uniqueness of this method was 

primarily the experimental conditions employed to study the dissolution kinetics. The 

most important aspect was the use of a stationary fluid environment in which the 

dissolution of aerosol particles in the limited volume of the fluid (40 µL) was studied. 

This condition was designed to be semi-quantitatively analogous to humans, where the 

total lung fluid volume has been predicted to be 10-30 mL over 100m2 of the lung 

surface [Widdicombe, 1997]. Moreover, the use of stationary conditions was also 

analogous to that in the respiratory tract. Hence, this new system was more relevant, 

with respect to the flow dynamics for aerosol particle dynamics than the prior attempt 

[Davies and Feddah, 2003], in which a flow-through apparatus was used. This present 

method also enabled the collection of aerosols in a specific range, generated from the 

inhalers. This allowed the determination of the influence of particle size on the rate of 

dissolution, as attempted for the FL, TA and BD particles generated from respective 

inhaler products. In this sense, the previous attempt [Davies and Feddah, 2003] 

collected the aerosol particles that escaped the USP inlet port, such that their particle 

sizes were largely unknown. In contrast, a possible limitation exists in this system 

developed in this chapter by the use of PBS and DDW as its dissolution media. Such 

solvent may not be the best mimics for the lung fluids. Indeed, surfactants present in the 

lung like dipalmitoyl-L-α-phosphatidylcholine (DPCC) have been shown to hasten the 

kinetics of dissolution of some ICSs, especially the more lipophilic FP by the previous 
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attempt [Davies and Feddah, 2003]. However, the present study did not attempt the 

influence of such a surfactant on the dissolution of lipophilic ICSs due to analytical 

limitations. 

Figure 3.8 summarizes the profiles of dissolution and permeation for 5 ICS 

aerosol particles in the size-range 2.1-3.3 µm in size (Stage 4 collection) following 

collection of comparable ~2 (1.6-2.9) µg deposits generated from 5 inhaler products. 

Because their molecular weights are similar (431-521 Da; Table 3.1), the kinetics of 

diffusive permeation should be consistent. This was indeed supported in part by 

apparently same profiles for FL and TA upon their 40 µL solution applications (data not 

shown); in fact, when 40 µL aqueous solutions of FL and TA were applied to the donor 

compartment of the transwell system at a concentration of 25 and 10 µg/mL 

respectively, their t0.5 values 0.17±0.06 and 0.16±0.04h were consistent, both of which 

were much shorter than those for their aerosols shown in Figures 3.3 and 3.4. Therefore, 

it was likely that the profile differences for these 5 ICSs aerosols in Figure 3.8 were 

primarily caused by the differences in their kinetics of dissolution into 40 µL of the 

donor fluid in the transwell. Overall, the kinetics of dissolution for the 2.1-3.3 µm 

aerosol particles was shown to differ substantially between the ICSs, but conform to the 

rank order of their aqueous solubilities. However, such reported solubility values were 

not the only factor defining the kinetic profiles. Pairs of ICSs with similar solubilities 

still produced different profiles such as TA and BD or FP and BDP (Figure 3.8). This 

was presumably because some of the ICS aerosol particles generated from the 

respective inhaler products resulting from certain changes caused by, for example, 
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formulation excipients, particle wettability and/or ICS crystallinity. In this context, our 

satellite experiments showed that 1 % ethanol addition into the 40 µL donor fluid did 

not accelerate the profile for BD, compared to the use of the 40 µL fluid (data not 

shown). Hence, the faster kinetics for TA over BD in Figure 3.8 were apparently not 

due to co-solvent effects by ethanol [Kibbe, 2000], a formulation excipient in 

Azmacort® (TA; Table 3.1). However, it was reasonably possible to speculate that TA 

and BD possess different wettabilities and/or the TA particles generated from the MDI 

containing 1 % ethanol were altered, fully or in part, in their crystallinity, which may 

have contributed to these different profiles; in contrast, it was highly unlikely that BD 

formulated as the pure drug and generated from the DPI had altered crystallinity 

induced by formulation. A similar observation was seen for the BDP aerosol particles 

that exhibited faster dissolution than FP (Figure 3.8), despite their reported similar 

solubilities (~0.14 µg/mL, Table 3.1). In this case, it has been reported that BDP forms 

solvate crystals in the presence of both CFC and HFA propellants like Vanceril® and 

Qvar®, respectively (Dalby et al, 1993), while FP particles generated from the DPI were 

most likely crystalline. Thus, it appeared that the BDP aerosols were more prone to 

have crystallinity changes than the FP aerosols. Between the BDP aerosols, an inter-

product difference was observed. The aerosols generated from Qvar®, a solution of BDP 

in HFA propellant with ethanol, showed faster dissolution kinetics than the aerosols 

from Vanceril®, a suspension of probably crystalline BDP in CFC propellants 

suspended with the aid of dissolved oleic acid (Figure 3.7). Such a difference could 

partly be attributed to the clathrate crystal formation of BDP (Dalby et al, 1993) upon 
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interaction with both CFC and HFA propellants, which could alter the apparent 

solubility to varying extents. Incidentally, Freiwald et al, 2005 observed different 

pulmonary absorption of BDP delivered by two different HFA-propelled aerosols 

(Sanasthmax®/Becloforte™ and Ventolair®/Qvar). They confirmed that the BDP 

particles delivered by Ventolair®/Qvar™ were significantly smaller and displayed faster 

dissolution in human bronchial fluid, compared to the particles delivered by 

Sanasthmax®/Becloforte™. Their work also illustrated certain crystallinity changes for 

the BDP particles, resulting in the different dissolution kinetics. While these issues 

should be further clarified, it is clear that the ICS aerosol particles generated from the 

inhaler products should be the subject matter for this dissolution testing rather than the 

pure ICS drugs themselves. 

Currently, the USP standards for product performance of inhaled dosage forms 

require the testing for delivered dose and aerodynamic particle size distribution yet have 

not included the testing of dissolution. [United States Pharmacopoeia, Chapter <601>] 

This is primarily because drug delivery to, and regional deposition within, the lung are 

considered to far outweigh aerosol particle dissolution in controlling the effective dose 

and its therapeutic effect. Indeed, their literature review failed to locate substantial 

concerns about the issue of dissolution for inhaled therapeutics with respect to their 

pharmacokinetics or clinical performance among the currently approved products [Gray 

et al, 2008]. In contrast, such data were available in the literature for animal testing. 

Chowhan and Amaro, 1976, demonstrated a substantially delayed disappearance of 

methyl sulfinyl xanthone, from the rat lung, when the molecule was administered as its 
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carboxylic acid suspension, compared to its sodium salt given as a solution. This was 

attributed to dissolution effects, when the acid was employed in suspension. Likewise, 

sustained dissolution or release from the respirable-size microspheres led to prolonged 

durations in pharmacokinetics and/or pharmacodynamics following aerosol 

administration to the lung in several studies using dogs, rats and guinea pigs [Sakagami 

et al, 2002 and 2005]. However, no such modified dissolution or release products have 

been so far clinically marketed for inhalation use in humans. The performance tests for 

the currently marketed oral inhaled dosage forms have thus, concerned only the lung 

delivery and regional deposition. e.g., delivered dose and aerodynamic particle size 

distribution [FDA, Guidance for industry; metered dose inhaler and dry powder inhaler, 

1998], and their dissolution testing is not considered critical. However, this in vitro 

dissolution testing of aerosol particles suggested that this process may be rate 

determined for some highly lipophilic ICSs like FP. 
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Figure 3.8 Cumulative % mass of 5 ICSs dissolved and permeated into the receptor 

compartment as a function of time for the aerosols collected on the Stage 4 
(2.1-3.3 µm in aerodynamic diameter) of the ACI from their inhaler 
products at the best comparable ~2 (1.6-2.9) µg mass deposits. Data 
represent mean±SD. 
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3.5 SUMMARY & CONCLUSIONS 

A unique dissolution testing method was developed for defined-size aerosol 

particles generated from commercial inhaler products of various ICSs with different 

physicochemical properties. Upon defined size aerosol particle collection in the ACI, 

dissolution took place in a limited volume (40 µL) of stationary fluid, followed by 

membrane permeation to determine their transfer kinetic profiles. This was an attempt 

to determine the rate of dissolution in the limited volume of the fluid like aerosols in the 

lung mucosal surface, while also controlling the aerosol size and mass deposit, in order 

to identify their effects on the kinetics of aerosol dissolution and permeation. Overall, 

the kinetics of dissolution differed substantially between the ICSs but conformed to the 

rank order of their reported aqueous solubilities. However, solubility values alone were 

not the only factor that influenced dissolution kinetics, as the profiles for ICSs with 

similar solubility were sometimes different, such as TA and BD or FP and BDP. 

Moreover, certain ICSs, especially those with a low solubility, showed substantially 

slower profiles with an increase in the aerosol size and mass deposit. While the exact 

causes of these differences and changes remained speculative, it became clear that ICS 

aerosol particles delivered by inhaler products should be tested for dissolution rather 

than the pure drugs.  

Specifically, it was of interest that this non-biological system of dissolution and 

permeation identified exceptionally slow dissolution kinetics for the least soluble ICS, 

fluticasone propionate (FP). Only 3 % of the 2.4 µg deposited mass was shown to be 

dissolved in 10 h, which was quite a contrast to the 89 % in 5 h for the readily soluble 
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ICS, triamcinolone acetonide (TA), as shown in Figure 3.8. This raised a question 

concerning whether the cellular anti-inflammatory activity of FP could be dissolution 

rate-determined and thus, compromised by this slow event though the “intrinsic” 

molecular anti-inflammatory activity of FP has been shown to be the most potent 

among these drugs. 
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CHAPTER 4 
 
 

DEVELOPMENT AND CHARACTERIZATION OF THE AIR-
INTERFACE CULTURED CALU-3 CELL MONOLAYERS 

 
 
 
 

4.1       INTRODUCTION 

Lung cellular disposition of inhaled therapeutics is a complex cascade of their 

aerosol deposition onto, and dissolution into, the lining fluid, followed by their cellular 

uptake and/or absorption, as described in Figure 1.1 [Edsbäcker et al, 2006]. In this 

context, none of the available in vitro lung cell culture models have been applicable due 

to their culture being necessary in media-submerged conditions and hence, resulting in 

an inability of aerosol deposition on their surface. While this has demanded the use of 

less favorable and more complex models with animals or humans in this research arena, 

evidence has recently emerged in the cell culture techniques suggesting that certain lung 

epithelial cells can be grown without apical culture media [Sakagami, 2006]. A 

continuous cell line of human bronchial epithelial carcinoma, Calu-3, is one of such 

unique cells that grow to form the monolayers under the culture leaving their apical 

surface semi-dry [Borchard et al, 2002; Fiegel et al, 2003; Cooney et al, 2004; Grainger 

et al,  2006a and b; Mathias et al, 2006]. In fact, these monolayers appeared to be more 
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differentiated, with cilia and a thicker mucosa, compared to those grown under the 

conventional submerged culture [Grainger et al 2006a]. Nevertheless, their 

characterization in the literature has been confounded, as also discussed in this chapter, 

due to a lack of universal validation to ensure the consistent formation of the 

sufficiently restrictive monolayers. This culturing technique is termed as an air interface 

culture (AIC) where the culture medium has access to the Calu-3 cells only from the 

basolateral side. 

In this chapter, Calu-3 monolayers grown under the AIC were assessed if they 

indeed formed sufficiently “tight” diffusive barrier for their use in pulmonary 

biopharmaceutics, while maintaining their semi-dry mucosal surface with a limited 

volume of the lining fluid. Various culturing conditions were tested with respect to the 

restrictive barrier formation for the selection of the most suitable monolayers. Then, 

they were further characterized by scanning electron microscopy (SEM), transepithelial 

resistance (TEER) and permeability of various model solutes. The lining fluid volume 

on the apical (mucosal) surface of the monolayers was also determined using a tracer 

dilution technique. This enabled the development of sufficiently restrictive lung 

epithelial cell monolayers enabling direct aerosol deposition to study a cascade of 

aerosol dissolution and cellular uptake and/or absorption in the in vitro system. 
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4.2 MATERIALS AND METHODS  

 

4.2.1 CALU-3 CELL CULTURE AND MONOLAYER FORMATION 

Calu-3 cells were obtained at passage 19 from the American Type Culture 

Collection (ATCC; Rockville, MD) and propagated in the 25 or 75 cm2 culture flasks 

(Corning Costar; Cambridge, MA), prior to use according to the supplier’s protocol 

[Product Information Sheet, ATCC]. For propagation, the cells were seeded at 0.1 x106 

cells/cm2 in the flasks and cultured in 8 or 20 mL of the Eagles Minimum Essential 

Medium (EMEM; ATCC, Rockville, MD; Table A.1) supplemented with 10% (v/v) 

fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% (v/v) penicillin-streptomycin 

(Sigma-Aldrich; St. Louis, MO). They were maintained under the humidified 95% (v/v) 

air and 5% (v/v) CO2 at 37 °C in the incubator (Model 5410, NAPCO; Milliville, NJ) 

connected to a CO2 gas cylinder (National Welders; Richmond, VA). The culture media 

was changed every other day, during which the cell growth was monitored under the 

microscope (Nikon-TMS phase contrast microscope, Image Systems Inc.; Columbia, 

MD). Typically, the cells reached the confluence by 5-7 days, such that they were 

passaged in a new flask or frozen for the cell bank storage following trypsin-EDTA 

(Sigma-Aldrich) treatment. The standard operating procedures for cell propagation, 

passage and banking are described in detail in Appendix A.  

For experimentation, the Calu-3 cells between passage 21 and 42 were used. 

They were seeded onto 1.13 or 4.5 cm2 clear polyester transwell filter inserts (Corning 

Costar) at a density of 0.1 or 0.5 x106 cells/cm2 and cultured for 24 h with the media 
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filled in both apical and basolateral compartments of the transwells at 0.5 and 1.5 mL 

for the 1.13 cm2 transwells and 1.5 and 2.6 mL for the 4.5 cm2 transwells, respectively. 

At 24 h after the seeding, the apical medium was removed, commencing the air-

interface culture (AIC) where the cells were fed only with 0.5 and 1.4 mL of the 

basolateral medium, respectively, in the 1.13 and 4.5 cm2 transwells, as shown in Figure 

4.1. The medium was replaced everyday, during which the cell growth was monitored 

under the microscope. In some experiments, transepithelial electrical resistance (TEER) 

was measured everyday using an Epithelial Voltohmmeter (EVOM) and STX or 

Endohm electrodes (World Precision Instruments, Sarasota, FL), as described below. 

Typically, the cells reached the confluent monolayers by 7-10 days, irrespective of 

different seeding densities (0.1 or 0.5x106 cells/cm2) or transwell areas (1.13 or 4.5 

cm2). 

 

 

 

 

 



 60 

 

 

 

 

 

 

 Figure 4.1 Air-interface culture (AIC) of the Calu-3 cells in the transwell. The 
basolateral volumes of the culture medium were 0.5 and 1.4 mL for the 
1.13 and 4.5 cm2 transwells, respectively. The Calu-3 cells are shown as 
the confluent monolayer, typically observed by 7-10 days in culture. 

 

 

4.2.2 BARRIER ASSESSMENT FOR THE CALU-3 CELL MONOLAYERS 

 

4.2.2.1 SCANNING ELECTRON MICROSCOPY (SEM)  

On day 7-10, upon confirmation of the monolayer confluence under the 

microscope, the surface morphology was assessed under the scanning electron 

microscope (SEM; JSM-820, JEOL, Peabody, MA). This was carried out at the electron 

microscopy facility of the VCU Department of Anatomy. The monolayers grown on the 

transwell inserts were fixed in 2.5% glutaraldehyde (Sigma-Aldrich) in 0.1 M 

cacodylate buffer (Invitrogen) overnight, followed by repeated rinse with 0.1 M 

cacodylate buffer. The monolayers were then fixed with 2 mL of 1% osmium tetroxide 

(Invitrogen), applied apically, on ice for 1 h and then, rinsed several times with the 

cacodylate buffer. The monolayers and supporting membranes were carefully removed 

Apical compartment: Air 

Basolateral compartment: 0.5 or 
1.4 mL of the cell medium 

Calu-3 Cells 
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from the transwell insert and subjected to a series of graded ethanol bathes (70 %, 80 % 

and 90 % for 5-10 min each and 3 times of 100 % for 10 min each) for dehydration. 

They were placed in hexamethyldisilazane reagent (Electron Microscopy Sciences, 

Hatfield, MA) and finally mounted on the stubs using double sticky tape. Following 

gold coating using a sputter coater (EMS-550 Sputter Coater, EMS, Harfield, MA) with 

a thickness of 10 Å, the sections were observed under the SEM (JSM-820 JOEL, USA 

Inc., Peabody, MA).  

 

4.2.2.2 TEER MEASUREMENT  

TEER was measured with an EVOM and STX or Endohm electrodes during the 

culture to assess the monolayer confluence and tightness. For each measurement, the 

cells were first equilibrated with appropriate volumes of the culture media for 15 min; 

the volumes were 0.5 and 1.5 mL for the 1.13 cm2 transwells and 1.5 and 2.6 mL for the 

4.5 cm2 transwells, respectively, on the apical and basolateral compartments. Then, 

TEER was measured using chopstick STX electrodes for the 1.13 cm2 transwells and 

Endohm electrodes for the 4.5 cm2 transwells, according to the supplier’s protocol. The 

observed resistance values were corrected by subtracting the resistance of the 

transwell’s membrane, obtained from the cell-free transwells and then, converted to the 

TEER values with the area-normalization via multiplication, i.e., 1.13 and 4.5 cm2; 

these were then expressed as Ω·cm2. 
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4.2.2.3 PERMEABILITY DETERMINATION  

On day 7-10 upon the visual confluence and sufficiently high TEER 

development, the permeability of the Calu-3 monolayers was determined for various 

solutes to assess their barrier nature. Table 4.1 lists 7 model solutes tested in this 

assessment along with their molecular weights and analytical methods validated in-

house previously. These solutes were all hydrophilic, yet different in molecular weights 

ranging from 376 to 150k Da. For the permeability determination, the Calu-3 

monolayers were first equilibrated for 90 min in the incubator with 1.5 and 2.6 mL for 

4.5 cm2 and 0.5 and 1.5 mL for 1.13 cm2 transwells, respectively, of the Krebs-Ringer 

buffer (KRB, pH 7.4) in the apical and basolateral compartments. The KRB solution 

consisted of 15.0 mM HEPES (N-[2-hydroxy-ethyl]piperazine-N’-[2-ethanesulfonic 

acid]), 116.4 mM NaCl, 5.4 mM KCl, 0.78 mM NaH2PO4, 25.0 mM NaHCO3, 1.8 mM 

CaCl2, 0.81 mM MgSO4 and 5.55 mM glucose, and freshly prepared before each study. 

Then, the apical media was replaced with the KRB solution containing certain known 

concentrations (Co) of each solute listed in Table 4.1, except for insulin. For insulin, the 

Krebs–Henseleit buffer (pH 7.4) containing 4 % (w/v) bovine serum albumin was used 

to avoid insulin’s adsorptive loss to the plastics, as described previously [Pang et al, 

2005]. The concentrations were chosen to monitor the permeation profiles and 

therefore, 10 µg/mL for FNa, 1.0 mg/mL for 4.3 kDa F-PHEA, 1.0 IU/mL for insulin, 

2.0 mg/mL for 8.4 kDa F-PHEA, 0.5 mg/mL for FD-10, 1.0 mg/mL for FD-70 and 5.0 

mg/mL for FD-150. At various time intervals (10, 30, 60, 90, 120, 150 and 180 min), 

200 µL aliquots were withdrawn from the basolateral compartment; 200 µL of the fresh 
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media was added each post-sampling. These samples were analyzed by the method 

shown in Table 4.1 to determine their concentrations. The concentration at each time 

point was converted to the solute mass permeated into the basolateral compartment by 

its product with the basolateral volume, i.e., 2.6 mL or 1.5 mL. The cumulative solute 

mass permeated into the basolateral compartment plus the product of the concentrations 

in previously taken samples and their volumes (i.e., 0.2 mL) was plotted as a function of 

time so that the apparent permeability coefficient (Papp) was calculated from their initial 

linear portions using Eq 4.1:  

                                                      Papp = J / (A.Co)                                              (Eq. 4.1) 
 

where J is the initial solute mass for permeation obtained from the linear slope of the 

cumulative mass permeated vs. time profiles, A is the area of the transwell inserts, 1.13 

or 4.5 cm2, and Co is the initial concentration of each solute applied to the apical 

compartment. The linear portions of the profiles were ensured with their regression 

coefficients >0.95 under <5% permeation of the sink condition. The supporting 

membrane (polyester) of the transwell was shown to be a negligible barrier for all tested 

solutes, as evidenced by >100-fold higher Papp values, justifying the lack of necessity of 

the correction.  
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10%

10%

10%

10%

11%

10%

3%

Accuracy 5

[1]9%1Fluorimetry2376FNa

[1]5%100GPC-F 3150,000 1FD-150

[1]5%100GPC-F 39,500 1FD-70

[1]5%100GPC-F 34,500 1FD-10

[1]5%100GPC-F 38,400 1F-PHEA

[2]15%100ELISA45,800Insulin

[1]5%100GPC-F 34,300 1F-PHEA

ReferencePrecision
LOQ

(ng/mL)
Analytical 
MethodMW (Da)Solute

Table 4.1 Model solutes used to determine the apparent permeability coefficients (Papp) 
across the Calu-3 monolayers and their molecular weights and analytical methods. 

 

FNa: sodium fluorescein; F-PHEA: fluorophore-labeled poly-α,β-[N(2-hydroxyethyl)-D,L-aspartamide;  FD: FITC-labeled dextran 
1 Averaged weight-based molecular weight 
2 Fluorescence spectrometer (Model LS 50; Perkin Elmer Ltd., Norwalk, CT) with excitation and emission wavelengths  (λex and λem)  

of 490 and 520 nm, respectively 
3 Gel permeation chromatography coupled with fluorescence detection (Model RF-535; Shimadzu Corporation, Kyoto Japan) with 
λex and λem of 486 and 516 nm, respectively 

4 Enzyme linked immunosorbent assay, ALPCO, Windham, NH 
5 Accuracy and precision defined by difference from nominal concentration (DFN) and %RSD, respectively. 
[1] Sakagami, 2000; [2] Pang, 2004 
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4.2.2.4 THE RENKIN FUNCTION’S APPROACH FOR THE MONOLAYER’S 

DIFFUSIVE PORE SIZE ESTIMATION  

The Papp values for the 7 model solutes across the Calu-3 monolayers were used 

to estimate the diffusive pore size using the Renkin function approach [Renkin, 1954]. 

The Renkin function, R           is the dimensionless molecular sieving function for the 

cylindrical pore channels and described with Eq. 4.2: 

 

     R              =    [1-          ] 2 [1 – 2.104           + 2.09          - 0.95             ]       (Eq. 4.2) 

 

where ri is the solute radius and rp is the pore radius of the barrier, i.e. Calu-3 

monolayers. Meanwhile, the Papp values were considered as a result from restricted 

diffusion and/or steric hindrance and frictional resistance of the solutes and therefore, 

described with this Renkin function, as shown in Eq. 4.3: 

                                                    Papp = Di            R                                             (Eq. 4.3) 

 

where Di is the diffusion coefficients of the solutes, ε is the barrier porosity and L is the 

barrier length. For each solute listed in Table 4.1, the diffusion coefficient (Di) was 

estimated from its molecular weight (MW) using Eq. 4.4, empirically derived by Seki et 

al, 2003. 

                                         log Di = -0.434 log MWi - 4.059                                (Eq. 4.4) 

This further enabled the determination of the solute radius (ri) using the Stokes-Einstein 

equation, Eq. 4.5: 

ri 
 

rp 
 

ri 
 

rp 
 

ri 
 

rp 
 

ri 
 

rp 
 

ri 
 

rp 
 

  3   5 

ε 
 

L 
 

ri 
 

rp 
 

ri 
   

rp 
 



 66 

                                                                                                                             

 (Eq. 4.5) 

 

where k is the Boltzmann constant, T is the absolute temperature and η is the viscosity 

of the barrier (assumed to be equivalent to that of water, 1 cP. 

Accordingly, the values for       and rp became floating unknown values for each 

solute in Eqs. 4.2 and 4.3, which were estimated using the mean Papp values for the 7 

solutes and their molecular weights using the Microsoft Excel and its built-in Solver. 

The spreadsheet was prepared, tabulating the values for Papp, Di and ri for each solute. 

They were subjected to Solver’s optimization to derive the best estimates for         and 

rp, based upon the simplex, generalized reduced gradient algorithms [Fylstra et al, 

1998]. In this algorithm, the estimates for         and rp should yield the minimum sum of 

squared differences between the predicted and experimental Papp values. 

 

4.2.3 CELL LINING FLUID VOLUME DETERMINATION 

On Day 7-10 upon the visual confluence and sufficiently high TEER 

development, the Calu-3 monolayers were subjected to the determination of the cell 

lining fluid volume using tracer dilution method. Rhodamine B isothiocyanate-labeled, 

7.0 kDa dextran (RD-7; Sigma-Aldrich) was used as a tracer. Its 1.0 mL KRB solution 

at 0.1 mg/mL was applied to the apical compartment and thoroughly yet gently washed 

by repeat pipetting action. Then, the apical solution was recovered and analyzed by 

GPC coupled with fluorescence detection (Model RF-535; Shimadzu Corporation) with 

Di =   kT 
        6ηΠri 

ε 
 

L 
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λex=540 nm and λem=573 nm. The GPC column was a SeparonTM HEMA-Bio 40 

column (8 x 250 mm, 10 µm particle size; Tessek Ltd., Prague, Czech Republic) and the 

mobile phase was 0.05 M PBS (pH 7.4) at 1.0 mL/min. The analysis was validated with 

the linear range over 50-120 µg/mL (r2>0.999), and ≤5.0 % of the precision (RSD: 

relative standard deviation; n=3).  

RD-7 concentration (CRD) of the recovery samples from the monolayers was 

decreased due to the additionally recovered volume of the Calu-3 cell lining fluid (VLF). 

Hence, the VLF values were calculated from Eq. 4.6, assuming mass balance: 

 

 

 

 

 

100 µg/mL х 1.0 mL 

CRD 
- 1.0 mL VLF  = (Eq. 4.6) 



 68 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 THE CULTURING CONDITIONS FOR THE HIGHLY RESTRICTIVE 

CALU-3 MONOLAYERS 

Irrespective of 0.1 or 0.5 x 106 cells/cm2 of the seeding density or the use of 1.13 

or 4.5 cm2 transwells, the Calu-3 cells grown under AIC formed confluent monolayers 

by day 7-10 visually confirmed under the microscope. However, as shown in Table 4.2, 

the values of the steady state TEER and Papp for FNa were shown to differ in different 

culturing conditions. In the smaller transwells (i.e., 1.13 cm2), the higher seeding 

density of 0.5 x106 cells/cm2 resulted in the higher TEER and a lower FNa Papp, which 

indicated relatively restrictive monolayer formation. Even so, these values were 

somewhat more variable, suggesting the formation of rather inconsistent monolayers 

between the transwells, possibly associated with the formation of cell multilayers and 

stacking [Mathias et al, 2002; Sambuy et al, 2005]. In contrast, in the 4.5 cm2, the 

highly restrictive “tight” monolayers were reproducibly formed at a seeding density of 

0.1 x 106 cells/cm2, yielding 1486±42 Ω·cm2 of TEER and 1.35±0.09 x 10-7 cm/s of Papp 

for FNa. 
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Table 4.2 Values of the steady state TEER and Papp for FNa obtained from the Calu-3 
monolayers grown under AIC at various culturing conditions.  

 
 

Transwell area 
(cm2) 

 
Seeding density  
(x106 cells/cm2) 

 
TEER* 
(Ω·cm2)  

 
Papp for FNa * 
(x10-7 cm/s)  

1.13 0.1  324 ± 27 4.03 ± 0.29 
1.13 0.5  888 ± 96 0.90 ± 0.30 
4.5 0.1 1486 ± 42 1.35 ± 0.09 

* Data represent mean±SD from n≥3. 
 

 

Table 4.3 summarizes the culturing conditions, TEER and FNa Papp obtained 

from the study, compared to those reported in the literature, for the Calu-3 monolayers 

grown under the AIC. It was evident that the literature employed different transwell 

area, seeding density, coating, and day of use, which resulted in substantially variable 

TEER ranging from 306 to 1486 Ω·cm2 and Papp for FNa from 1.0 to 2.2 x 10-7 cm/s. 

Moreover, the observation was inconsistent across the literature, thereby requiring the 

condition optimization for each laboratory to yield sufficiently “tight” monolayers in a 

reproducible fashion, like the present study. It was notable that the Calu-3 monolayers 

formed in the present study resulted in the highest TEER at ~1500 Ω·cm2 in the 4.5 cm2 

transwells without a use of coating upon a seeding density of 0.1 x106 cells/cm2. 

However, as shown in Figure 4.2, the TEER development towards the steady state value 

appeared to be dependent upon the passage. It was shown that the TEER development 

took longer for the cells with a higher passage. This was probably also the case for the 

literature shown in Table 4.3 where the Calu-3 cells with the higher passages, e.g. 38-56 

and 36-41, resulted in a lower TEER by day 8 (750 Ω·cm2) or a longer time period (17-
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19 days) to reach the steady state TEER [Fiegel et al, 2003; Trehin et al, 2004, 

respectively].  Similarly, the use of lower passages, e.g. 20-40, resulted in higher TEER 

of 1056-1126 Ω·cm2 [Mathias et al, 2004]. Such passage effects have also been reported 

for the human intestinal Caco-2 cell line [Yu et al, 1997]. 
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Grainger, 20061.530611-13None5.00.33

Yang, 2004N.D~ 40010-14Collagen5.01.0

Meaney, 2002N.D350-40016-18VitrogenTM1.01.0

Mathias, 20021.51056-11268-16Collagen5.01.13

Cooney, 20041.055014-21Collagen2.51.13

Li, 2006N.D800-12008-16Collagen2.51.13

Ehrhardt, 20021.150016None0.11.13

Trehin, 2004N.D36217-19Collagen1.04.2

Fiegel, 20032.27508None0.14.5

Table 4.21.4±0.11486±428-10None0.14.5

Reference
Papp for FNa
[×10-7/cm/s]

TEER 
[Ω·cm2]

Day of 
use

Transwell 
coating

Seeding 
density 

[×106/cm2]

Transwell 
area
[cm2]

Table 4.3 The Calu-3 monolayers grown under the AIC and their culturing conditions reported in the literature. 
 

N.D. Not determined 
* First authors are only shown. 
 

*  
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Figure 4.2 TEER development of the Calu-3 cells during 20 days of the air-interface 
culture (AIC) in the 4.5 cm2 transwell upon a seeding density of 0.1 x 106 
cells/cm2 with the passages 22 and 40. 
Data represent mean±SD from n=6.  
The solid line indicates the steady state TEER observed as an average of the 
TEER values for day 10-20 across the cells with passages 22 and 40. 
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4.3.2 BARRIER ASSESSMENT OF THE CALU-3 MONOLAYERS GROWN 

UNDER THE AIC 

Figure 4.3 shows a scanning electron micrograph of the Calu-3 monolayers 

grown under AIC in the 4.5 cm2 transwell upon a seeding density of 0.1 x 106 cells/cm2 

and taken on day 10 following visual confluence. This condition was selected by virtue 

of the highest TEER value for the monolayers reaching steady state reaching ~1.5 k 

Ω·cm2. The Calu-3 cell bodies are shown in its typical size of 5-10 µm with cilia on 

their mucosal cell surface. The intercellular junctions are also shown surrounding the 

cells. These were consistent with those reported in the literature [Mathias et al, 2002; 

Grainger et al, 2006], despite substantial differences in the TEER and Papp values as 

described in Table 4.3.   

In the literature, the submerged condition with both the apical and basolateral 

sides receiving culture media was also shown to be suitable for the growth of Calu-3 

monolayers [Grainer et al, 2006]. However, their epithelial morphology was reported to 

be different from the monolayers grown under the AIC, as no ciliated structures or 

mucus was observed [Grainger et al, 2006]. The AIC culture has shown an enhanced 

transport of Na+ across the epithelium because of the greater availability of oxygen for 

the cells [Johnson et al, 1993]. Such factors can indirectly contribute to the differences 

in morphology observed under these conditions.  
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Figure 4.3  A representative scanning electron micrograph of the Calu-3 cell monolayer 
grown under the air-interface culture on day 10 (Passage-35) in the 4.5 cm2 
transwell, upon a seeding density of 0.1 x106 cells/cm2. The bar indicates a 
10 µm scale. 
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Figure 4.4 shows the cumulative % mass permeated into the basolateral 

compartment vs. time profiles for 7 solutes tested in this study across the air-interface 

cultured Calu-3 cell monolayers. The maximum cumulative % mass permeated by 180 

min was 0.4 %, which justified the assumption of the sink conditions across these 

solutes. With increasing the molecular weights of the solutes (Table 4.4), the 

cumulative % mass permeated was decreased, which was in line with their diffusive 

permeation and the Fick’s theory [Martin and Bustamante, 1993b]. Correspondingly, 

the lag times of the profiles became more evident for the macromolecules (e.g. FDs), 

which required the linear steady slope calculation from the data excluding those in the 

lag phase. Table 4.4 summarizes the Papp values for the 7 solutes across the Calu-3 

monolayers derived from the profiles shown in Figure 4.4. The Papp values decreased 

with increasing the molecular weights, as deduced from the profiles shown in Figure 

4.4. When these Papp values were plotted as a function of MW in a logarithmic format, 

an excellent linear correlation was observed for 6 solutes excluding FD-150, as shown 

in Figure 4.5. This suggested that diffusive permeation of these 6 solutes was equally 

restricted, while a further size exclusive steric hindrance and frictional resistance 

became effective for the largest molecule, FD-150 [Martin and Bustamante, 1993b; 

Renkin, 1954]. Indeed, the linear slope for the 6 solutes in Figure 4.5 was -0.36±0.13 

(r2=0.92), which was effectively consistent with -0.33, the theoretical slope value based 

on the Stokes-Einstein assumption of diffusion for the spherical molecules [Byron et al, 

1994a]. Accordingly, all of the Papp data shown in Table 4.4 were possible to estimate 

the diffusive pore radius (rp) by the Renkin function approach. The diffusive pore radius 
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of the Calu-3 monolayers (rp) was derived to be 13.2 nm, while the ratio, ε/L (the ratio 

of the barrier porosity to barrier length) was 0.03 nm-1, as described in Table 4.5. This 

derived rp of 13.2 nm was close to the solute diameter for FD-150, ~11.0 nm [Hastings 

et al, 1992], which well explained the deviation from linearity for the Figure 4.5. 
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Figure 4.4 Cumulative % mass permeated into the basolateral compartment for 7 
solutes across the Calu-3 monolayers as a function of time. The 
monolayers were grown under the air-interface for 8-10 days in the 4.5 
cm2 transwells upon a seeding density of 0.1x106 cells/cm2. Data represent 
mean±SD from n=4-6. 
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Table 4.4 Papp values for 7 model solutes across the Calu-3 monolayer grown under 
AIC (4.5 cm2 transwell; 0.1 x 106 cells/cm2 of seeding density). 

 
 
Solute 

 
MW  
(Da) 

 
Papp

* 
(x10-7 cm/s) 

FNa       376 1.35 ± 0.10 
F-PHEA     4,300 0.53 ± 0.11 
Insulin     5,808 0.56 ± 0.15 
F-PHEA     8,400 0.35 ± 0.06 
FD-10     9,500 0.55 ± 0.01 
FD-70   50,700 0.20 ± 0.04 
FD-150 150,000 0.02 ± 0.01 

*Data represent mean±SD from n=4-6 
MW: molecular weight 

 

Figure 4.5 also plotted the Papp values vs. the molecular weights of several 

solutes tested with the Calu-3 monolayers in the literature. In line with a much lower 

TEER of 306 Ω·cm2, the Papp values by Grainger et al, 2006 appeared to be higher 

overall, while a deviation from the linearity became evident at 70 kDa in molecular 

weight. On the other hand, Mathias et al, 2002 reported quite a different slope of the 

linearity from the Calu-3 monolayers with fairly high TEER of ~1100 Ω·cm2. Table 4.5 

summarizes the linear slopes obtained from Figure 4.5 alongside the rp values of the 

Calu-3 monolayers across 3 institutions. The slope of the present study agreed with the 

Stokes-Einstein relationship, while the remaining two slopes resulted in different 

estimates. The pore radius (rp) of the Calu-3 monolayers for the present study was close 

to that reported by Grainger et al, 11.0 nm, despite the differences in TEER and slopes. 

This could also be attributed to the differences in porosity of the cell membranes (ε; also 

calculated by Renkin function analysis) between the work of Grainger et al and the 
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present study. Such inconsistencies also addressed the inability of the data comparison 

across the institutions, in Figure 4.5, for the standardization of the Calu-3 monolayers, 

emphasizing a need for this study for own laboratory establishment and validation.  
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Figure 4.5 Papp values across the air-interface cultured Calu-3 monolayers vs. molecular 
weights of various hydrophilic solutes obtained at three different 
institutions. 

 

Slope= -0.36 
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Table 4.5 The linear slopes derived from the plots in Figure 4.5 and pore radius (rp) of 
the Calu-3 monolayers estimated using the Renkin function approach. 
 

 
 

 
 

Slope 

 
rp 

(nm) 
Present Study       -0.36±0.13 13.2 

Grainger et al, 2006 -1.22±0.06 11.0 
Mathias et al, 2002 -0.63±0.07 5.7 

 

 

4.3.3 CELL LINING FLUID VOLUME OF THE CALU-3 MONOLAYERS 

The tracer-dilution technique with RD-7 yielded 39.7±12.1 µL (mean±SD, n=3) 

of the cell lining fluid for the apical surface of the Calu-3 monolayers grown under AIC 

on day 8-10 in the 4.5 cm2 transwells upon a seeding density of 0.1x106 cells/cm2. The 

high % CV of ~30 % on the fluid volume estimation could be because of biological or 

analytical variability which may require further repeated determination to use this 

volume with confidence. Nevertheless, this estimate was useful in approximation of the 

lining fluid thickness, yielding 88.2±26.7 µm. A similar value of 90.9 µm has been 

recently reported with the similarly grown Calu-3 monolayers yet in the 0.33 cm2 

transwells under the AIC [Grainger et al, 2006b]. Therefore, this consistency between 

institutions gave a strong support on the accuracy on the VLF value, though with a high 

variability. Even so, the ~90 µm thickness of the lining fluid was much greater than 10-

23 µm of the lining fluid thickness measured in the tracheo-bronchial regions in humans 

[Widdicombe, 1997]. Hence, the Calu-3 monolayers grown under the AIC still favored 

the fluid capacity per unit surface area for dissolution of deposited aerosols on the lung 
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surface by a factor of 4-9. Hence, the semi-dry apical surface of the Calu-3 monolayers 

with sufficiently “tight” restriction to this diffusion would enable a valid argument for 

aerosol dissolution, if some ICSs showed this process to be rate-determined. 

 

 

4.4 SUMMARY AND CONCLUSIONS  

The air-interface culture of the human bronchial epithelial cell line, Calu-3, 

formed well-differentiated monolayers with a sufficiently “tight” barrier for restrictive 

diffusion with a high TEER of ~1.5 k Ω·cm2. The monolayers resembled the airway 

luminal surface with respect to the presence of cilia and intercellular junctions and a 

limited volume of the lining fluid. The intercellular junctions were shown to serve as 

the restrictive diffusive barrier, which was capable of differentiating permeation of 

various model solutes with varying MW. Nevertheless, the cell passage and culturing 

conditions were shown to affect such tight junction formation and thus, it became 

essential to ensure the consistent formation of the “tight” monolayers at each laboratory. 

The present study concluded that the Calu-3 monolayers grown under the AIC in 4.5 

cm2 transwells upon a seeding density of 0.1x106 cells/cm2 was the most suitable model 

by virtue of their restrictive barrier formation for diffusion while maintaining the semi-

dry mucosal cell surface with ~40 µL of the lining fluid. This would provide the unique 

opportunity to study aerosol particle deposition, dissolution and uptake or absorption in 

the in vitro system, the cascade of events that have only been studied with animals or 

humans.  
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CHAPTER 5 
 
 

IN VITRO CELL MONOLAYER-BASED ANTI-INFLAMMATION 
ASSESSMENT OF INHALED CORTICOSTEROIDS UPON 

AEROSOL DEPOSITION  

 
 
 
 
 

5.1 INTRODUCTION 

In vitro cellular assessment of anti-inflammatory potencies and activities for 

inhaled corticosteroids (ICSs) has conventionally employed application of ICS solution 

to non-confluent lung cells in culture [Jafuel et al, 2000; Roumestan et al, 2003]. While 

such a method has enabled the assessment of their “intrinsic” molecular anti-

inflammatory potencies, it has been criticized that lung organ-related issues such as 

deposition, dissolution and cellular uptake, when administered as ICS aerosols, are not 

taken into account [Edsbäcker et al, 2006; 2008]. As a result, these potencies have been 

suggested to overrate their in vivo or clinical anti-inflammatory potencies and activities 

upon inhalation [Edsbäcker et al, 2008]. In this context, in chapter 3, only 3 % of 2.4 µg 

of the deposited mass of the least soluble ICS, fluticasone propionate (FP), was shown 
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to be dissolved in 10 h in the presence of the limited 40 µL fluid (Figure 3.8). This 

logically implied that 97 % of FP would be left undissolved and thus unavailable for its 

anti-inflammatory action, when deposited on the lung’s mucosal surface with an equally 

limited volume of the lining fluid. In contrast, 2.4 µg of the deposited mass of the 

readily soluble triamcinolone acetonide (TA) showed near complete 89 % dissolution in 

the 40 µL fluid by 5 h (Figure 3.8). It was likely therefore that, compared to FP, 

dissolution for TA aerosols, would not be problematic for cellular uptake and thus, anti-

inflammatory action. Even so, the conventional assessment has rated that FP is 10-fold 

potent than TA in the “intrinsic” anti-inflammatory potency (Table 1.1).  

The Calu-3 cell monolayers developed and characterized in chapter 4 possess a 

unique feature that their confluent mucosal surfaces are left semi-dry with the limited 

volume of the lining fluid. This would enable direct deposition of ICS aerosols on their 

mucosal surfaces like the airways, provided that their accurate and precise deposition 

system can be established. In contrast, the assessment of the cellular anti-inflammatory 

activity via certain proinflammatory transcription factor markers faces an experimental 

challenge. It has been well recognized that confluent monolayers like Calu-3 are quite 

formidable for gene construct to be sufficiently transfected, and otherwise, the cellular 

anti-inflammatory activity would not be measurable [Uduehi et al, 1999; Florea et al, 

2002; Düchler et al, 2001]. Hence, it became quite essential to develop the effective 

transfection method, specifically for the confluent Calu-3 monolayers, so that their anti-

inflammatory activity in response to the ICS aerosol deposition could be determined via 

repression of the measurable proinflammatory transcription factor marker.  
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Accordingly, in this chapter, FP and TA were chosen as the least and fairly 

soluble ICSs, respectively, to determine their cellular anti-inflammatory activities upon 

aerosol deposition on the confluent Calu-3 monolayer system. Accurate and precise ICS 

aerosol deposition system from the inhaler products was developed and validated using 

the modified assembly of the Andersen cascade impactor (ACI). Then, the Calu-3 cell 

monolayers were optimally transfected with a nuclear factor kappa B (pNFκB; a 

proinflammatory transcription factor) -dependent reporter plasmid of luciferase 

(pNFκB-Luc) to determine its response following aerosol deposition of FP and TA on 

the monolayer surface. By so doing, the FP aerosols were identified to be kinetically 

rate-limited by their mucosal dissolution, which resulted in rather inefficient 

manifestation of the anti-inflammatory action, compared to the TA aerosols, despite the 

10-fold potency in the “intrinsic” molecular activity in the literature.   

 

 

5.2 THEORY: TRANSFECTION AND REPORTER GENE ASSAY  

Generally, most cells including Calu-3 do not express basal levels of 

inflammatory markers that are measurable. Therefore, it becomes necessary that such 

measurable inflammatory markers be sufficiently introduced into the cells, so that the 

cellular anti-inflammatory potencies or activities of aerosol ICSs can be determined. 

Reporter genes serve as such measurable markers, when attached to another gene of 

interest in the same plasmid construct, for its insertion into the cells. This molecular 

biology technique called transfection has been increasingly employed to study the 
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mechanisms by which transcription factors act to control eukaryotic gene expression. 

NFκB is one of the proinflammatory transcription factors directly involved and 

activated through the cascade of cellular inflammation [Jafuel et al, 2000; Roumestan et 

al, 2003]. However, preliminary attempts using specific enzyme-linked immunosorbent 

assay (ELISA) resulted in undetectable cellular NFκB levels in the Calu-3 cells, thereby 

requiring the transfection of a plasmid construct of NFκB-dependent reporter gene of 

luciferase enzyme (pNFκB-Luc). In this chapter, this plasmid was transfected into the 

Calu-3 cell monolayers using a commercially available kit, Effectene® transfection kit 

(Qiagen, Valencia, CA). While its details remain proprietary, it has been described that 

the plasmid is condensed by interaction with the Enhancer in the EC buffer system, both 

of which are supplied in the kit to form a complex with the Effectene® reagent. The 

technique appears to employ the negative-positive charge attraction for successful 

insertion (i.e., transfection) of the plasmid-Effectene® complex into the cells, rather than 

liposome lipid formulation. A typical incubation is 24 h in culture and then, the cells are 

lysed to measure the luciferase (Luc) activity generated from the Luc reporter genes by 

luminescence assay. In this assay, Luc catalyses a bioluminescent reaction of its 

substrate, luciferin, in the presence of ATP, Mg2+ and O2, emitting a flash of light 

signals proportional to the NFκB activity. These light signals can be measured using a 

luminometer [Kumar et al, 2003; Roumestan et al, 2003; Effectene® Transfection 

Reagent Handbook 2002; Baldwin, 1996]. 
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5.3 MATERIALS AND METHODS 

 

5.3.1 CALU-3 CELL CULTURE AND MONOLAYER FORMATION 

The Calu-3 cells (ATCC) were propagated, as described in Chapter 4 (as well as 

Appendix A) and used between passages 27 and 36. Their monolayers were formed, as 

also described in Chapter 4 (as well as Appendix A). Briefly, the cells were seeded at a 

density of 0.1 x106 cells/cm2 in the 4.5 cm2 transwells (Corning Costar) and cultured 

overnight under the medium-submerged condition with 1.5 and 2.6 mL of the apical and 

basolateral media, respectively. On day 2, the culture was changed to the air-interface 

culture (AIC) where the cells were fed and grown only with 1.4 mL of the basolateral 

media, while their apical surface was left semi-dry. The basolateral media was changed 

everyday, during which the cell growth was monitored under the microscope until the 

confluent monolayers were formed. The culture was maintained under the humidified 

95% (v/v) air and 5% (v/v) CO2 at 37 °C in the incubator (NAPCO) throughout. 

Whereas the monolayers were generally formed by day 8-11, most of the experiments 

described below (e.g., aerosol deposition assessment and/or plasmid transfection) were 

carried out on day 11-12 after their TEER values were ensured to exceed 700 Ω·cm2.  

 

5.3.2 ICS AEROSOL DEPOSITION ON THE CALU-3 MONOLAYERS  

Figure 5.1 schematically describes ICS aerosol deposition collection onto the 

Calu-3 monolayers in a defined aerodynamic diameter of ≤3.3 µm, generated from 

commercially available inhaler products. The 8-stage Andersen cascade impactor (ACI 
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Mark II; Thermo Electron Corporation) was used for the aerosol collection, yet under a 

slightly different airtight assembly configuration, in order to accommodate the transwell 

inserts under Stage 4. That is, the ACI was assembled in a descending order of the 

Stages 0, 1, 2, 3, 4 and the filter stage, followed by Stages 5, 6 and 7, as shown in 

Figure 5.1. For the ≤3.3 µm aerosol collection, the 4.5 cm2 transwell insert of the 

confluent Calu-3 monolayer was placed on the filter stage under Stage 4, using a plastic 

cup custom-made by the VCU Custom Design and Fabrication. The cup held 0.2 mL of 

pre-warmed culture media, so that the basolateral compartment remained submerged, 

while protecting the basolateral plastics from ICS contamination. The impactor was 

coupled with the USP induction port and the mouthpiece adaptor, and operable with the 

pump (General Electric Company) adjusted at 28.3 L/min of airflow rate. In some 

experiments, the ACI was assembled in a descending order of the Stages 0, 1, 2 and the 

filter stage, followed by the Stages 3, 4, 5, 6 and 7, in order to collect the ≤5.8 µm 

aerosols under the Stage 2. 

Fluticasone propionate (FP) aerosols were generated from Flovent HFA® 220 µg 

MDI (GlaxoSmithKline, Research Triangle Park, NC), while triamcinolone acetonide 

(TA) aerosols were from Azmacort® 200 µg MDI (Abbott, Abbott Park, Illinois); their 

product details are shown in Table 3.1 in Chapter 3. They were actuated at various 

times (e.g., 1, 3, 10 or 20 times for Flovent HFA® and 25 times for Azmacort®) within a 

period of 30 s under the airflow at 28.3 L/min to deposit the target masses of each ICS. 

For determination of ICS aerosol mass deposit, the ACI was immediately disassembled, 

and the Calu-3 monolayer surface was thoroughly washed with 1.0 mL admixture of 
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CH3CN and H2O (60/40). The recovery solution was centrifuged at 12,000 g for 1 min 

to remove the dislodged cells, and the supernatant was analyzed by the HPLC-UV 

method developed and validated in-house. The analysis employed Spherisorb ODS-2 

column (4.6 mm x 250 mm, 5 µm; Alltech Associates Inc.) for separation at 1.0 mL/min 

of the mobile phase, CH3CN/H2O (60/40), followed by detection at 236 nm (Waters 

Corporation). It was fully validated for both FP and TA with respect to their calibration 

linearity (r2>0.999) over the range of 0.05 to 5 µg/mL and 0.05 µg/mL as the limit of 

quantification (LOQ). Meanwhile, for determination of NFκB repression by the ICS 

aerosols, this ICS aerosol deposition was carried out to the Calu-3 monolayers 

transfected with pNFκB-Luc, as described below.     
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Figure 5.1 Defined-size aerosol deposition and collection on the Calu-3 monolayers using the Andersen cascade 
impactor (ACI). The Stage 4 and filter stage are magnified to describe the placement of the 
transwell insert of the Calu-3 monolayer with a custom-made plastic cup containing 0.2 mL of the 
culture media. The transwell insert shown is placed under the Stage 4 to collect the ≤3.3 µm 
aerosols, while some experiments placed the inserts under the Stage 2 for the ≤5.8 µm aerosol 
deposition. 
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5.3.3 pNFκB-Luc TRANSFECTION OF THE CALU-3 MONOLAYERS 

Transfection of the Calu-3 monolayers required exhaustive optimization 

attempts of the protocol, referenced to the transfection kit [Effectene® Transfection 

Reagent Handbook, Qiagen, Valencia, CA 2002] in order to maximize the retention of 

the NFκB-dependent plasmid construct of the luciferase (pNFκB-Luc) in the 

monolayers. The pNFκB-Luc contains the reporter gene of luciferase enzyme with 5 

tandem repeats of the binding sites for the proinflammatory transcription factor, NFκB, 

which was obtained from Stratagene (La Jolla, CA) and later, custom-made at the VCU 

Molecular Biology Core Facility. The transfection was carried out using the Effectene® 

transfection kit (Qiagen) with the best quantity combination of pNFκB-Luc and the kit’s 

reagents (Effectene, Enhancer and Buffer EC), optimized in the preliminary attempts. 

The optimization studies concluded that, for the 4.5 cm2 transwells, the best retention 

and expression of pNFκB-Luc was obtained by the use of 0.8 µg pNFκB-Luc incubated 

for 10 min with 100 µL Buffer EC and 6.4 µL Enhancer, followed by another 10 min 

incubation with 8 µL Effectene. This master-mix solution was finally diluted to 1.5 mL 

with the culture media and added to the apical surface of the transwells and incubated 

for 24 h with 2.6 mL of the basolateral media (i.e. under the medium-submerged 

condition), yet following 15 min apical pretreatment with 2.5 mM 

ethyleneglycotetraacetic acid (EGTA, Sigma-Aldrich) in phosphate-buffered saline (pH 

7.2; PBS, Gibco Invitrogen, Carlsbad, CA). For the Luc activity measurement, the Calu-

3 cell monolayer surface was rinsed thoroughly with PBS, followed by cell harvest with 

200 µL of the lysis reagent (Promega, Madison, WI). The lysed cell samples were 
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centrifuged at 12,000 g for 30 min, and their 20 µL supernatants were measured for 

luminescence using the 20/20 luminometer (Turner Biosystems, Sunnyvale, VA). The 

NFκB activity was obtained as the Luc activity in the relative light unit (RLU), which 

was then normalized by unit mg protein determined via the bicinchoninic assay (BCA 

protein assay kit, Thermo Fisher Scientific, Rockford, IL) of the lysed samples.   

 

5.3.4 TNFα-INDUCED NFκB ACTIVITY REPRESSION IN THE CALU-3 

MONOLAYERS UPON ICS AEROSOL DEPOSITION 

On day 11-12 post-seeding, pNFκB-Luc transfection of the confluent Calu-3 

monolayers with TEERs ≥ 700 Ω⋅cm2 was carried out for 24 h, as described above. This 

was followed by 4 h incubation under the air-interface culture by removing the apical 

solution, in order to restore the semi-dry apical mucosal surface temporarily disturbed 

by the transfection. Then, the transfected Calu-3 monolayers in the transwell inserts 

were placed within the ACI where FP or TA aerosols were deposited from Flovent 

HFA® and Azmacort®, respectively, as described above. The transwell inserts were 

returned to their base plate, and the monolayers were stimulated with 60 ng/mL of 

human tumor necrosis factor-α (TNFα; BD Bioscience, San Jose, CA) for 6 h in the 

incubator. Before each experiment, the TNFα solution was prepared freshly from 10 

µg/mL stock solution of serum-free Eagles Minimum Essential Medium (EMEM; 

ATCC, Rockville, MD), and its 0.04 and 1.4 mL prepared in the culture media were 

applied to both the apical and basolateral compartments, respectively. In addition, the 

basolateral media contained 0.14 µg/mL FP and 21 µg/mL TA (saturated solubility of 
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FP and TA) in the Flovent® HFA and Azmacort® studies, respectively, in order to avoid 

ICS permeation into the basolateral compartment. It should be noted however that 

neither of this 0.14 µg/mL FP nor 21 µg/mL TA in the basolateral compartment exerted 

any repression of this TNFα-induced NFκB activity by itself. At 6 h of this aerosol ICS 

and TNFα incubation, the monolayers were harvested with 200 µL of the lysis reagent 

(Promega), and the lysed samples were subjected to the luminescence and protein 

determinations, as described above. In some experiments, the monolayer surfaces were 

washed with 1.0 mL admixture of CH3CN and H2O (60/40), at 6 h to determine the FP 

and TA masses remaining for dissolution and uptake by the analytical method described 

above.     

 

5.3.5 TNFα-INDUCED NFκB ACTIVITY REPRESSION IN THE CALU-3 

MONOLAYERS UPON ICS SOLUTION OR SUSPENSION APPLICATION  

On day 11-12 post-seeding, the 24 h pNFκB-Luc transfection was carried out to 

the confluent Calu-3 monolayers, followed by the 4 h incubation under the air-interface 

culture to restore the semi-dry apical mucosal surface, as described above. FP (Sigma-

Aldrich; St. Louis, MO) solution was prepared at 15 µg/ml (30 µM) from serial dilution 

of 1 mg/mL stock solution in N, N-dimethylformamide (DMF, Acros Organics, NJ, 

New Jersey) with the culture media. This appeared to maintain the formulation of FP 

solution, by virtue of the presence of <1% v/v DMF. Meanwhile, FP suspension was 

also prepared at 15 µg/ml, yet from FP powder directly added into, and diluted with, the 

culture media; its visual observation confirmed the suspension. For determination of 
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true concentration with respect to dissolved FP, these solution and suspension were 

filtered using a syringe filter (0.45 µm, Fisher Scientific, Pittsburg, PA) and the filtrate 

was analyzed by the validated HPLC-UV method described above. The pNFκB-Luc 

transfected Calu-3 monolayers in the transwell inserts were apically incubated for 6 h 

with 1.5 mL of the FP solution or suspension, during which the monolayers were also 

stimulated by the apical and basolateral media with 60 ng/mL of TNFα; the volume of 

the basolateral media was 2.6 mL. At 6 h of this ICS and TNFα incubation, both the 

apical and basolateral surfaces of the monolayers were thoroughly washed with PBS 

and then, harvested with 200 µL of the lysis reagent (Promega). The lysed samples were 

subjected to the luminescence and protein determinations, as described above. In some 

experiments, the apical solution (1.5 mL) was recovered and the monolayer surfaces 

were washed with 1.0 mL admixture of CH3CN and H2O (60/40). This ~2.5 mL 

recovery samples was further mixed with 10 mL of the admixture to dissolve all 

suspended FP. This enabled the determination of FP mass remaining for dissolution and 

uptake at 6 h by the analytical method described above.     
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5.4 RESULTS 

 

5.4.1 ICS AEROSOL DEPOSITION ON THE CALU-3 MONOLAYERS 

The Calu-3 monolayers were well tolerated to 30 s of the airflow at 28.3 L/min 

in the ACI, evidenced by insignificant < 5% changes in the TEER values post-airflow 

exposure. The microscopic observation of the monolayer surfaces also confirmed no 

appreciable morphological changes. Accordingly, Table 5.2 shows the FP and TA 

aerosol masses collected on the Calu-3 cell monolayers on the 4.5 cm2 transwells placed 

under Stage 4 and Stage 2 of the ACI, generated from various actuations of the Flovent® 

HFA and Azmacort® MDIs. For both FP and TA, the aerosol mass deposits were shown 

to be reproducible, suggesting that the system described in Figure 5.1 enabled accurate 

and precise collection of the ICS aerosols on the Calu-3 monolayers. With increasing 

the number of actuations, the aerosol deposits were also increased for FP, somewhat 

proportionally. They were ranged from 0.06 to 0.90 µg under the Stage 4 and thus, ≤ 3.3 

µm in the aerodynamic diameter. Provided that these Calu-3 cell monolayers grown 

under the air-interface culture were shown to maintain their lining fluid volume at 39.7 

µL, as determined in Chapter 4, these FP mass deposits would result in 1.5-22.7 µg/mL 

(3.0-45.3 µM) of the theoretical concentrations upon complete dissolution. Obviously, 

such concentrations were not possible, since FP’s aqueous solubility was reported to be 

only 0.14 µg/mL (0.28 µM; Table 3.1 in Chapter 3). It was most likely therefore that the 

majority of the deposited FP masses remained to be dissolved on the Calu-3 monolayer 

surface without efficient intracellular uptake. Meanwhile, even with 25 actuations, only 
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0.10 µg of the TA aerosols was deposited on the Calu-3 monolayers from the 

Azmacort® MDI, when the transwell inserts were placed under the Stage 4 of the ACI 

(Table 5.1). This deposit was much smaller than that from the Flovent® HFA, given that 

the latter MDI enabled much greater 0.90 µg deposits with the fewer 20 actuations 

(Table 5.1). Because both MDIs metered almost equivalent ICS masses (220 and 200 

µg, respectively; Table 3.1), this lower TA deposit upon Stage 4 collection suggested 

that a smaller fraction of the ≤ 3.3 µm aerosols was generated from the Azmacort®, 

compared to the Flovent® HFA. Instead, when collected under Stage 2 (≤ 5.8 µm), a 

much greater 0.52 µg of the TA aerosols was deposited on the Calu-3 cell monolayers 

upon identical 25 actuations (Table 5.2). Hence, the Azmacort® appeared to generate 

relatively larger size ICS aerosols, compared to the Flovent® HFA. Because of this 

difference in their generated aerosol size distribution, an equivalent ICS mass of 0.10 

µg was deposited under the Stage 4 following 3 actuations of the Flovent HFA® and 25 

actuations of the Azmacort®. Likewise, an equivalent mass of ~0.5 µg was deposited 

following 10 actuations of the Flovent® HFA and 25 actuations of the Azmacort®, even 

though their aerosol sizes were different, ≤ 3.3 and ≤ 5.8 µm, respectively, due to the 

need for using different collection stages. It was lastly calculated that 0.10 and 0.52 µg 

of the TA aerosols deposited on the Calu-3 monolayers would result in 2.5 and 13.1 

µg/mL (5.0 and 26.2 µM) of the theoretical concentrations upon complete dissolution in 

the 39.7 µL of the lining fluid, respectively. These were clearly possible, given 21 

µg/mL of the TA’s aqueous solubility. Hence, all of the TA aerosol deposits in these 
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experiments were likely to undergo fairly fast and complete dissolution on the Calu-3 

monolayer surface.  

 

Table 5.1 Fluticasone propionate (FP) and triamcinolone acetonide (TA) aerosol 
masses collected on the 4.5 cm2 transwell inserts with the Calu-3 
monolayers placed under Stage 4 or 2 of ACI, generated from various 
actuations of the Flovent® HFA 220 µg and Azmacort® 200 µg MDIs. 

 
 

ICS 
 

Number of 
actuations 

 
Stage for 
collection 

 
Mass (µg) 

(mean±SD, n=3) 
FP 1 4 0.06 ± 0.02 
FP 3 4 0.10 ± 0.02 
FP 10 4 0.55 ± 0.02 
FP 20 4 0.90 ± 0.03 
TA 25 4 0.10 ± 0.03 
TA 25 2 0.52 ± 0.03 

 

 

5.4.2 pNFκB-Luc TRANSFECTION AND TNFα INDUCTION IN CALU-3 

MONOLAYERS 

Figure 5.2 shows the luciferase (Luc) activity measured as the RLU per mg 

protein, for the Calu-3 monolayers transfected with pNFB-Luc with or without 6 h 

stimulation of 60 ng/mL TNFα in 2 representative experiments carried out on 2 

different days. By virtue of successful transfection, the Luc activity was shown to be 

measurable in both experiments, yielding 2.4±0.6 x105 and 1.6±0.3 x105 RLU/mg 

protein. Moreover, these values were significantly increased to 9.5±0.3 x105 and 

5.1±0.9 x105 RLU/mg protein by the TNFα stimulation (p<0.05; unpaired t-test), 

respectively, which demonstrated successful induction of the proinflammatory 
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transcriptional response in these confluent Calu-3 monolayers. However, the RLU/mg 

protein values in the same treatments were different in different experiments, 

presumably due to variable nature of the transfection efficiency. Accordingly, these 

values were unable to be compiled directly across the experiments and this necessitated 

taking these transfection efficiency differences in each experiment into account. In this 

context, Table 5.2 shows the fold-induction of the RLU/mg protein values by the TNFα 

stimulation, relative to the transfection control, i.e., the transfected Calu-3 cell 

monolayers without TNFα stimulation, obtained in each of 4 experiments. These fold 

induction values were shown to be more consistent across the experiments and 

therefore, used for the data analysis from multiple experiments. As a result the TNFα 

stimulation was shown to cause 3.97±1.07-fold increase in the Luc activity, compared 

to the transfection control. 
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Figure 5.2 Luciferace (Luc) activity expressed as RLU/mg protein with or without 6 h 
stimulation of 60 ng/mL TNFα in the pNFκB-Luc transfected Calu-3 
monolayers from 2 independent experiments. Data represent mean±SD 
from n=3. * indicates the significant increase of the Luc activity compared 
to the transfection control (p<0.05; t-test).  

 

Experiment 1 Experiment 2 

 * 

     * 
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Table 5.2 Fold-induction of the RLU/mg protein values by the TNFα stimulation, 
relative to the transfection control, i.e., the transfected Calu-3 cells without 
the TNFα stimulation, in each transwell carried out on different days. 

 
` 

Fold-Induction 
4.55 3.02 4.84 3.92 
4.10 2.76 3.29 3.32 

Expt# 1 

3.44 

Expt# 2 

3.88 

Expt# 3 

6.59 

Expt# 4 

 

 
Mean±SD (n=11): 3.97±1.07 

 

 

5.4.3 TNFα-INDUCED NFκB ACTIVITY REPRESSION IN THE CALU-3 

MONOLAYERS UPON ICS AEROSOL DEPOSITION 

Figure 5.3 shows the fold-induction of the Luc activity representing the NFκB 

activity in the Calu-3 monolayers in response to various mass deposits of the ICS 

aerosols upon TNFα stimulation. As concluded above, the TNFα stimulation resulted in 

3.97±1.07-fold increase in the NFκB activity, compared to the transfection control, 

demonstrating significant inflammatory response in the Calu-3 monolayers. This 3.97-

fold induction of the NFκB activity was shown to be repressed by the ≤3.3 µm aerosol 

deposition of FP generated from the Flovent® HFA in an apparently dose-related 

manner. Indeed, 35.7±6.3 % repression observed at 0.90 µg of the FP aerosols was 

statistically significant (p<0.05, ANOVA), while such a mass deposition required 20 

actuations of the Flovent® HFA; a lower 15.5±2.2 % repression for the 0.55 µg FP did 

not reach statistical significance. Unfortunately, a further increased mass deposition was 

not attempted, since the maximum 30 s of the airflow in the ACI would not allow over 



 101 

25 actuations. Meanwhile, as shown in Figure 5.3, an insignificant 10.4±2.6 % 

repression was observed at 0.52 µg of the TA aerosols generated and deposited from 25 

actuations of the Azmacort®. Though insignificant, this was quite of interest that the 

equivalent mass deposits of FP and TA (i.e., ~0.5 µg) resulted in comparable % 

repression in the NFκB activity of the Calu-3 monolayers (i.e., 15.3 and 10.4 %, 

respectively), despite a 10-fold higher “intrinsic” molecular anti-inflammatory potency 

for FP over TA, based on their cellular NFκB activity repression upon solution 

application [Jafuel et al, 2000].  

 Table 5.3 shows the FP and TA mass and % taken by the Calu-3 cells in 6 h 

following aerosol deposition and incubation alongside % NFκB repression obtained 

above. The ICS masses were calculated from the differences between the aerosol mass 

deposit and the mass recovered from the Calu-3 apical surface at 6 h. Notably, even 

following 6 h incubation, only 42.2±24.7 ng and 29.1±22.2 ng of the FP were taken by 

the Calu-3 monolayers upon 0.90 and 0.55 µg of aerosol deposition. This represented 

4.7 and 5.6 % of the mass deposits, and therefore, near 95 % of the FP deposit remained 

on the cell surface and was uninvolved in the NFκB repression in these transfected 

Calu-3 monolayers (Figure 5.3). This was presumably due to FP’s least aqueous 

solubility of 0.14 µg/mL, in line with ~4-5 % of dissolution and permeation for FP in    

6 h in the dissolution testing system described in chapter 3 (Figure 3.6). In contrast, the 

TA aerosols appeared to undergo much greater intracellular uptake for 6 h, and 

demonstrated that 170.7±40.6 ng or 32.6±7.8 % of the 0.52 µg deposit was taken by the 

Calu-3 cell monolayers (Table 5.3). It was likely therefore that the higher aqueous 
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solubility of TA (21 µg/mL; Table 5.3) enabled faster and greater ICS aerosol 

dissolution on the Calu-3 cell monolayers and hence, greater cellular uptake upon 

aerosol deposition. In this sense, comparable 15.5 and 10.4 % repression in the NFκB 

activity of the Calu-3 monolayers for the FP and TA aerosols were still reasonable 

attributed to the greater TA mass taken by the cells, which compensated its 10-fold 

lower intrinsic potency of the NFκB activity, compared to the FP aerosols. 
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Figure 5.3 Fold-induction of the Luc activity representing the NFκB activity of the 

transfected Calu-3 monolayers in response to various FP and TA aerosol 
deposition from Flovent® HFA and Azmacort® MDIs, respectively, with or 
without 6 h stimulation of 60 ng/mL TNFα. Data represent mean±SD from 
n=10 for the control, n=11 for the TNFα stimulated group and n=6 for the 
FP and TA tested groups. * indicates the significant decrease in the NFκB-
Luc activity by the FP aerosols, compared to the TNFα stimulated group 
(p<0.05; t-test). 

+ 60 ng/mL TNFα  

 * 
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Table 5.3 FP and TA mass and % taken by the Calu-3 monolayers following aerosol 
deposition at various masses from the Flovent® HFA 220 µg and Azmacort® 
200 µg MDIs after 6 h incubation, alongside % NFκB activity repression. 

 
 
 

ICS 

Aerosol  
Deposit 1 

[µg] 

Cellular ICS 
Mass at 6 h 2  

[ng] 

%  Mass 
taken  by 
the cells 3 

 
% Repression 4 

of NFκB activity 
0.90 42.2 ± 24.7 5.6 ± 4.2 35.7 ± 6.3 FP 
0.55 9.1 ± 22.2 4.7 ± 2.7 15.5 ± 2.2 

TA 0.52 170.7 ± 40.6 32.6 ± 7.8 10.4 ± 2.6 
1 Data: mean: derived from Table 5.1 
2 (Cellular ICS mass) = (Aerosol deposit) – (ICS mass recovered from the Calu-3 cell  
   surface at 6 h). Data: mean ± SD (n=3). 
3 (Cellular ICS mass)/ (Aerosol deposit) x 100. Data: mean ± SD (n=3). 
4 Data: mean±SD  
 

 

5.4.4 TNFα-INDUCED NFκB ACTIVITY REPRESSION IN THE CALU-3 

MONOLAYERS UPON ICS SOLUTION OR SUSPENSION APPLICATION 

Figure 5.4 shows the fold-induction of the Luc activity representing the NFκB 

activity in the Calu-3 monolayers in response to 15 µg/mL FP solution and suspension 

application upon TNFα stimulation. Despite their preparation at the theoretical 15 

µg/mL, these solution and suspension were shown to contain 11.2 and 0.4 µg/mL of 

dissolved FP from the filtrate analysis, respectively, and thus, considered to be 74.7 % 

solution and 97.3 % suspension. The 3.97-fold induction of the NFκB activity by TNFα 

was shown to be clearly repressed by these solution and suspension, yielding only 

1.18±0.22 and 1.75±0.18 (n=4) of the fold-induction, respectively. These represented 

significant 94.0±17.8 % and 74.6±7.5 % repression (p<0.05, ANOVA) of the TNFα-

induced NFκB activity and suggested that the solution application caused a greater 
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repression than the suspension counterpart, even though both were applied at the 

identical total FP concentration, 15 µg/mL.  

Table 5.4 shows the FP mass and % taken by the Calu-3 cells in 6 h following 

15 µg/mL solution and suspension application and incubation alongside % NFκB 

repression obtained above. The masses were calculated from the differences between 

the mass applied at the beginning of the experiment, and the mass recovered from the 

Calu-3 apical surface at 6 h. It was evident that for this 6 h incubation, much greater 

8.0±0.7 and 0.7±0.2 µg of FP in the solution and suspension, respectively, were taken 

by the Calu-3 monolayers which represented 39.3 and 3.4 % of the total FP mass 

applied at the beginning of the study. It was clear that when suspension was applied,   

~4 % was taken by the cells at 6 h, which was comparable to the uptake by cells 

following aerosol deposition (Table 5.3). Hence, FP appeared to suffer from extremely 

poor dissolution kinetics resulting in an inefficient repression of the NFκB activity. 

Nevertheless, 74.6 % repression of the NFκB activity was seen following suspension 

application, much greater than 35.7 % following aerosol deposition (Table 5.3), simply 

because of the larger FP uptake by the cells during the 6 h incubation (0.7 µg vs. 0.04 

µg). In contrast, the solution application of FP was not affected by these protracted 

dissolution kinetics and resulted in a much higher % cellular uptake (39.3 %, Table 5.4) 

and a near complete (94 %) repression of the NFκB activity. Again, this was purely 

based on 8.0 µg taken by the cells for the 6 h incubation.  
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Figure 5.4 Fold-induction of the Luc activity representing the NFκB activity of the 
transfected Calu-3 monolayers in response to 15 µg/mL FP solution and 
suspension application, with 6 h stimulation of 60 ng/mL TNFα. Data 
represent mean±SD from n=10 for the control, n=11 for the TNFα 
stimulated group and n=4 for the FP tested groups. * indicates the 
significant decrease in the NFκB-Luc activity by the FP application 
compared to the TNFα stimulated group (p<0.05; ANOVA). 

+ 60 ng/mL TNFα  

*  

  * 
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Table 5.4 FP mass and % taken up by the Calu-3 monolayers after 6 h following         
15 µg/mL solution or suspension application and incubation, alongside % 
NFκB activity repression. 

 
 

Solution/ 
Suspension 

 
Applied Mass 1 

[µg] 

Cellular ICS 
Mass at 6 h 2  

[µg] 

%  Mass 
taken  by 
the cells 3 

% Repression 4 
of NFκB 
activity 

Solution 20.0 8.0 ± 0.7 39.3 ± 2.9 94.0 
Suspension 21.7 0.7 ± 0.2 3.4 ± 0.9 74.6 

1 Data: mean: derived by analyzing the applied solution/suspension 
2 (Cellular FP mass) = (Applied Mass) – (FP mass recovered from the Calu-3 cell surface at  
   6 h). Data: mean ± SD (n=3). 
3 (Cellular FP mass)/ (Applied Mass) x 100. Data: mean ± SD (n=3). 
4 Data: mean: derived from Figure 5.4 
 

 

5.5 DISCUSSION 

The present study has successfully demonstrated that the Andersen cascade 

impactor (ACI) can be used to deposit ICS aerosol particles generated from commercial 

inhaler products on the Calu-3 cell monolayers in an accurate and precise manner. The 

monolayers were tolerant to such a deposition, evidenced by the intactness of the cell 

barrier and the maintenance of physiological properties. This gave the unique 

opportunity to deposit ICS aerosol particles on the semi-dry apical surface of these 

monolayers to study the cascade of events that occur upon aerosol deposition on the 

lung surface. Classically, such a cascade of events in pulmonary biopharmaceutics has 

employed only the active pharmaceutical ingredients (APIs) of the inhaler products, 

applied as solution on the cell surface, rather than the aerosols generated from the 

inhalers. This was not a true reflection of in vivo or clinical events, such that several 

attempts have quite recently been made with the Calu-3 monolayers placed inside an 
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impactor or impinger for direct aerosol deposition [Fiegel et al, 2003; Cooney et al, 

2004]. Even so, these attempts, though being innovative, did not employ the aerosol 

generated from the inhaler products, and hence, were unable to demonstrate their 

usefulness for clarifying the cellular disposition and pharmacological events upon 

aerosol deposition.    

The development of confluent Calu-3 monolayers expressing measurable NFκB-

dependent luciferase as a biomarker for inflammation was truly challenging due to the 

resistance of confluent monolayers towards gene construct uptake and its retention. 

Recently, the efficiency of polyethylinimine in Calu-3 monolayer transfection was 

tested showing only 102 RLU/mg protein of the transfected gene expression without 

causing a significant cell death [Florea et al, 2002]. Such poor transfection efficiency 

was believed to be caused by the resistance offered by the mucin of the Calu-3 

monolayers as well as by the differentiated nature of the monolayers. This resistance is 

effectively absent in transfection of the non-confluent cells. The resistance to 

transfection of the monolayers has also been reported for Caco-2 showing inefficient 

uptake of gene constructs as early as 3 days post-seeding attributed to certain 

biophysical processes occurring inside the cells [Uduehi et al, 1999]. To increase the 

efficiency of this transfection and hence, gene expression, the pretreatment of the Caco-

2 monolayers with a chelating agent such as EGTA was shown to be successful 

[Artursson and Magnusson, 1990]. Its use was rationalized by providing a greater 

cellular access for the gene construct entry by creating temporary openings in their 

Ca2+-dependent intercellular junctions [Artursson and Magnusson, 1990]. The EGTA 
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exposure appears to be time-dependent at a given concentration and less than 45 min 

with 2.5 mM EGTA resulted in a temporary Ca2+ deficit and thus, a reversible opening 

of the tight junctions without losing the cell viability. This was shown to increase the 

transfection efficiency by 5 times in the Caco-2 cell monolayers [Artursson et al, 1990]. 

Accordingly, this project with the Calu-3 monolayers similarly employed pretreatment 

with 2.5 mM EGTA for 15 min so that successful transfection with ~105 RLU/mg 

protein in the NFκB expression was achieved. Under this condition, 60 ng/mL of TNFα 

for 6 h further increased the NFκB expression by ~4 times in a relatively reproducible 

fashion in these transfected cells. It should be noted that this was the first success of the 

monolayer transfection of a gene construct sufficient enough to study either activation 

or repression of inflammation.  

Using the newly developed dissolution testing system for ICS aerosols, in 

Chapter 3, the poorly soluble ICS FP showed considerably slow dissolution by 4 % of 

the aerosol deposits for 6 h. This prompted a question whether FP suffers from this 

dissolution problem, causing an inefficient anti-inflammatory response. This was now 

resolved and indeed, the anti-inflammatory response of the FP aerosols was shown to be 

compromised due to slow dissolution and thus, reduced intracellular uptake. This 

explained that the “intrinsic” potency of FP towards the NFκB repression reported to be 

10-times higher than the readily soluble TA [Jafuel et al, 2000] upon a similar mass 

deposit at ~0.5 µg resulted in comparable anti-inflammatory effects. This effect of 

dissolution on the apparent anti-inflammatory effects in the Calu-3 monolayers was 

further substantiated when FP suspension and solution were applied to the transfected 
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monolayers at equal ICS mass. A compromised response in the NFκB repression was 

seen for the suspension, compared to that for the solution, attributed to less FP taken by 

the cells following suspension application.  

It becomes clear that % NFκB repression correlated with FP mass taken by the 

cells. Hence, Figure 5.5 plots such % repression of TNFα-dependent NFκB activity as a 

function of FP mass taken into the Calu-3 cells following 6 h of incubation in all cases 

of FP aerosols, suspension and solution.  It was clear that, as the FP mass taken by the 

cells increased, the % repression of the NFκB activity increased. In this context, 

Roumestan et al, 2003 employed non-confluent cultures of human alveolar continuous 

cell line, A549, and reported  0.1 x 10-12 M (50 ng/mL) of EC50 value for the NFκB 

repression. This data is practically less meaningful, since FP was applied as solution 

and its cellular uptake did not encounter resistance such as mucin and differentiated 

nature of confluent cell monolayers. The present study yielded 120 ng FP for 50 % 

repression of the NFκB activity (Figure 5.5) inside the cells. Therefore, it became 

apparent that the cell monolayers formed substantial barriers for FP internalization and 

moreover, its dissolution upon aerosol deposition further reduced the efficiency. By this 

even the local ICS exposure was considered to be irrelevant to correlate the anti-

inflammatory response, but the ICS mass taken by the cells measurable in this 

monolayer-based assessment. 
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Figure 5.5 % repression of the TNFα-induced NFκB activity as a function of FP mass 
taken by the Calu-3 cells following 6 h of incubation upon FP aerosol, 
suspension and solution applications. Mass taken by the cells are taken 
from Tables 5.3 and 5.4. Data represent mean±SD (n=6 for % repression 
and n=3 for mass determination). 

    0.55 µg aerosol 
         0.90 µg aerosol 

  15 µg/mL suspension 
         15 µg/mL solution 
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5.6 SUMMARY AND CONCLUSIONS 

The air-interface cultured Calu-3 monolayers were placed inside the Andersen 

cascade impactor that enabled an accurate and precise deposition of defined-size ICS 

aerosols generated from commercially available inhaler products. These monolayers 

were transfected with the plasmid construct of NFκB-dependent luciferase (NFκB-Luc), 

so that sufficient expression of NFκB could be measured by the Luc activity that was 

induced by TNFα stimulation. The FP aerosols deposited on the semi-dry surface of the 

transfected Calu-3 monolayers repressed the NFκB activity in an apparently deposited 

mass-related fashion. However, despite a 10-times higher potency of FP than TA, their 

anti-inflammatory activities upon comparable mass deposits in the transfected Calu-3 

cell monolayers seemed almost equivalent. This anti-inflammatory response was 

compromised for the FP aerosols, caused by their poor dissolution on the cell surface 

and lesser cellular uptake, compared to the more soluble but less potent TA. This 

finding was further corroborated from FP’s near complete repression of the NFκB 

activity by 94 % upon solution application at 15 µg/mL, as opposed to only 74.6 % 

following suspension application. These findings suggested that FP’s cellular uptake 

was dissolution rate-limited following aerosol deposition, thereby resulting in an 

inefficient response of its anti-inflammatory response. Most importantly, it was shown 

that regardless of dosage form or application the NFκB activity repression was 

primarily determined by not only the ICS’s “intrinsic” molecular potency but also the 

intracellular mass taken by the cells.  
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In summary, a novel and innovative confluent “monolayer-based” system of 

Calu-3 was successfully developed and used to assess the ICS disposition kinetics and 

pharmacological actions upon aerosol deposition. Such a system will not only facilitate 

our understanding of pulmonary biopharmaceutics but also serve as a research aid to 

further study the kinetics and dynamics of inhaled therapeutics, in a setting that more 

closely resembles in vivo or clinical conditions. 
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CHAPTER 6 
 
 

SUMMARY AND GENERAL CONCLUSIONS 
 
 
 
 
 

In this dissertation, the kinetics of dissolution for aerosol particles of inhaled 

corticosteroids (ICSs) generated from inhaler products was determined and its 

importance on their local disposition and anti-inflammatory actions was assessed, using 

newly developed in vitro models allowing aerosol deposition. A novel in vitro 

dissolution testing system was developed to enable the determination of the kinetics of 

dissolution for ICS aerosol particles of defined-size in a limited volume of fluid like that 

in the lungs. Then, an in vitro lung epithelial cell monolayer system of Calu-3 cells was 

developed, again enabling defined-size ICS aerosol deposition, such that the importance 

of the dissolution kinetics on the ICS’s cellular uptake and anti-inflammatory actions 

could be assessed. Using this system, lung cellular disposition of ICSs were 

systematically studied following a cascade of aerosol deposition, dissolution, cellular 

uptake and local pharmacological actions.  
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The novel dissolution profile testing system employed 5 ICSs, i.e., flunisolide 

(FL), triamcinolone acetonide (TA), budesonide (BD), fluticasone propionate (FP) and 

beclomethasone dipropionate (BDP) that differed in physicochemical properties (Table 

3.1), following their collection from marketed inhalers on membrane filters placed 

inside the Andersen cascade impactor (ACI). This ACI deposition system enabled 0.7-

19.8 µg of ICS aerosol mass to be collected reproducibly in 4.7-5.8 or 2.1-3.3 µm 

ranges of aerodynamic diameters with a relative standard deviation ≤ 23 % (Table 3.3). 

The incorporation of this filter with the ICS aerosol particles into a transwell with a 

limited 40 µL of stationary aqueous fluid on its donor side enabled dissolution and 

transwell membrane permeation of each drug to be studied. This closely represented 

ICS dissolution on the lung’s mucosal surface in humans upon aerosol deposition from 

typical inhaled products. When 5 ICSs were compared at the most comparable mass 

deposit of ~2 (1.6-2.9) µg, the kinetics of dissolution differed substantially between the 

ICSs while conforming overall to the rank order of their aqueous solubilities (Figure 

3.8). However, kinetics of dissolution sometimes differed from those expected based on 

solubility, as the profiles for the ICSs with similar solubility showed differences. For 

example, TA and BD with comparable aqueous solubility values of 21 and 16 µg/mL, 

respectively, showed significantly different dissolution profiles with apparent half-lives 

of 1.05±0.16 and 3.90±0.87 h, respectively.  Similarly, FP and BDP studied with 

comparable mass deposits of ~2 µg, and despite similar aqueous solubility values of 

0.14 and 0.13 µg/mL, respectively, showed substantially different dissolution and 

permeation in 10 h for <5 % and ~15 %, respectively. Moreover, this profile 
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interpretation and profile deduction became more complicated, as the profiles were 

shown to be dependent upon the aerosol size, mass deposit as well as formulation and 

dosage forms. Hence, it became clear that the ICS aerosol particles from inhalers should 

be tested for dissolution rather than the ICSs themselves. Of notable interest was the 

identification of exceptionally slow dissolution for the least soluble ICS, FP compared 

to the faster kinetics of the readily soluble ICS, TA. When compared at the same 2.4 µg 

of the deposited aerosol mass, FP showed only 3 % dissolution and permeation in 10 h, 

which was quite a contrast to 89 % seen in 5 h for TA (Figure 3.8). This finding raised a 

question whether FP would suffer from compromised local cellular anti-inflammatory 

activity due to these slow dissolution kinetics, despite reports of its 10-fold greater 

potency in “intrinsic” molecular activity towards anti-inflammation for FP compared to 

TA (Jafuel et al, 2000). 

 

The air-interface cultured monolayers of a human bronchial epithelial cell line, 

Calu-3, was then developed to assess the anti-inflammatory activity of the ICS aerosols 

upon deposition. It was shown that Calu-3 formed well-differentiated monolayers 

yielding a sufficiently “tight” barrier with restrictive diffusion for a variety of solutes 

and ~1.5 k Ω·cm2 of transepithelial electric resistance (TEER, Figure 4.2). Like the 

airway luminal surface, these monolayers exhibited cilia and intercellular junctions 

when observed under scanning electron microscope (Figure 4.3), while producing the 

limited (39.7±12.1 µL) of apical cell lining fluid. A variety of model solutes were tested 

to characterize their restrictive diffusive barrier nature in accordance with the diffusion 
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theory (Table 4.4). Notably such restrictive barrier formation was shown to be 

dependent upon the cell passage and culturing conditions and hence, the study 

concluded that the Calu-3 monolayers grown under the AIC in the 4.5 cm2 transwells 

upon a seeding density of 0.1x106 cells/cm2 was the most suitable model by virtue of its 

restrictive diffusive barrier formation and semi-dry mucosal cell surface maintained 

with about 40 µL of apical lining fluid. This development of the in vitro lung cell 

monolayer system provided the opportunity to study aerosol particle dissolution, 

cellular uptake and pharmacological actions together, following drug deposition, a 

cascade of events that have only been studied previously in whole animals or humans.  

 

The validated AIC Calu-3 monolayers were incorporated into a modified ACI 

assembly that enabled 0.55±0.02 and 0.90±0.03 µg of FP aerosol deposition and 

0.52±0.03 µg of the TA aerosols (Table 5.1), generated from the respective inhaler 

products to be deposited. The monolayers tolerated the deposition conditions well, as 

evidenced by insignificant changes in TEER. For FP, deposition of 0.55 and 0.90 µg far 

exceeded the drug’s solubility (0.14 µg/mL) assuming entire dissolution in ~40 µL of 

the Calu-3’s cell lining fluid (13.8-22.5 µg/mL). In contrast, 0.52 µg of the TA aerosols 

could possibly be dissolved, given TA’s solubility of 21 µg/mL. Accordingly, the 

significance of dissolution kinetics for these aerosol particles on cellular uptake and 

anti-inflammatory actions was assessed under the TNFα-induced inflammation in Calu-

3 monolayers transfected with NFκB (a pro-inflammatory transcription factor)               

-dependent reporter plasmid of luciferase. Following exhaustive optimization of the 
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transfection protocol, the Calu-3 monolayers were shown to produce 3.97±1.07-fold 

induced NFκB activity (Table 5.2), representing cellular inflammation. FP and TA 

aerosol deposition in the modified ACI assembly on these transfected monolayers 

showed anti-inflammatory effects in varying magnitudes following 6 h incubation. 

Notably, a similar mass deposit of ~0.5 µg of both FP and TA aerosol particles resulted 

in 15.5 % and 10.4 % repression of the TNFα-induced NFκB activity despite FP’s 

reported “intrinsic” molecular potency for anti-inflammation being 10 times greater 

than TA (Winkler et al, 2004). This apparently compromised anti-inflammatory 

response of FP aerosols corresponded well with only 4.7±2.7 % (29.1 ng) cellular 

uptake of the FP aerosols as opposed to 32.6±7.8 % (170 ng) for TA. This showed that 

the greater TA mass taken up by the cells compensated for its reported 10-fold lower 

intrinsic potency of the NFκB activity, compared to FP. Even so, the increased FP 

aerosols at 0.90 µg successfully repressed the NFκB activity by 35.7 %, which resulted 

from FP’s slightly higher cellular uptake of 42.2 ng (Table 5.3). Taken together, the FP 

aerosols exerted the compromised anti-inflammatory activity, presumably due to 

exceptionally slow dissolution. This was further supported, when FP directly applied as 

solution at 15 µg/mL was shown to yield much higher 94 % repression of the NFκB 

activity, compared to 74.6 % for the suspension application at 15 µg/mL (Table 5.4). 

The cellular uptake after 6 h was 39 % and 3.4 % of the total mass applied, respectively, 

corresponding well to the increased response for this drug observed for the FP solution. 

Consequently, this also corroborated the notion that slow dissolution of FP aerosols and 

suspension reduced the cellular uptake and thus, compromised anti-inflammatory 
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response. In this context, the literature in this area has over-rated the local anti-

inflammatory actions of ICSs due to the use of simple non-confluent cell-based assay 

systems, disregarding the cascade of events that occur upon aerosol deposition. Finally 

it was well-correlated that regardless of aerosol deposition or solution or suspension 

application, intracellular FP masses defined the magnitude of the anti-inflammation, 

e.g., NFκB repression seen with transfected Calu-3 monolayers. Through this project, it 

was emphasized that exposure of the drugs in the lung was still not sufficient to deduce 

clinical potencies of many ICSs. This lung “cell monolayer”-based assessment system 

coupled with aerosol deposition was shown to be an excellent research tool for 

systematically studying lung biopharmaceutics and pharmacology for inhaled 

therapeutics. 
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APPENDIX A1 
 

 

CALU-3 CELL CULTURE: STANDARD OPERATING 
PROCEDURES 

 
 

 
 

This Calu-3 cell culture was established and validated by our laboratory to 

ensure a continuous supply of the cells for the use as an air-interface cultured Calu-3 

monolayer system. The confluent Calu-3 cell monolayers grown under this air-interface 

culture formed a tight barrier to diffusion, while their apical (mucosal) surface remained 

semi-dry with a limited ~40 µL of lining fluid; as shown in Chapter 4.  

Accordingly, this dissertation project employed the air-interface cultured Calu-3 

monolayers to study the importance of dissolution for certain inhaled corticosteroid 

(ICSs) aerosols on their surfaces on their cellular uptake and local pharmacological 

actions. Overall, operating procedure of the Calu-3 cell culture has been of this adapted 

from the recommendations by the American Type Culture Collection (ATCC, 

Rockville, MD).  
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A.1.1 CALU-3 CELL PROPAGATION 

Calu-3 cells (Passage 29-36) were received as frozen cells from ATCC. These 

were slowly defrosted to 37 °C. The cell suspension (e.g., 1 x 106 cells in 1 mL) was 

transferred into a 50 mL centrifuge tube, and 8 mL of the culture media, Eagles 

Minimum Essential Medium (EMEM; ATCC, Rockville, MD; Table A.1) 

supplemented with 10% (v/v) fetal bovine serum (FBS; Invitrogen, Carlsbad, CA) and 

1% (v/v) penicillin-streptomycin (PS; Sigma-Aldrich; St. Louis, MO) was added in a 

drop-wise fashion; this was to avoid cell damage due to drastic temperature and osmotic 

pressure alterations. The cell suspension (i.e., 9 mL) was centrifuged at 120 x g for 6 

min at room temperature (25 ºC) and the supernatant containing the cryo-preservative 

agents was discarded. The cells were re-suspended with the pipetter with 10 mL of the 

culture media and seeded into 25 cm2 culture flask (Corning Costar; Cambridge, MA). 

The flasks were maintained under the humidified 95% (v/v) air and 5% (v/v) CO2 at 37 

°C in the incubator (Model 5410, NAPCO; Milliville, NJ) connected to a CO2 gas 

cylinder (National Welders; Richmond, VA). The culture media was changed every 

other day, during which the cell growth was monitored under the microscope (Nikon-

TMS phase contrast microscope, Image Systems Inc.; Columbia, MD). Typically, the 

cells reached the confluence by 5-7 days, such that they were passaged or frozen for the 

cell bank storage following trypsin-EDTA (Sigma-Aldrich) treatment, as described 

below. 
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Table A.1.1 Composition of Eagles Minimum Essential Medium used for Calu-3 cell 
culture.  
 
 

 
 
 

Organic Salts Concentration 
(g/L) 

Vitamins Concentration 
(g/L) 

CaCl2 (anhydrous) 0.20000 Choline Chloride 0.00100 
MgSO4 (anhydrous) 0.09767 Folic Acid 0.00100 
KCl 0.40000 myo-Inositol 0.00200 
NaHCO3 1.50000 Nicotinamide 0.00100 

NaCl 6.80000 
D-Pantothenic Acid 
(hemicalcium) 

0.00100 

NaH2PO4·H2O 0.14000 Pyridoxine·HCl 0.00100 

Amino Acids Concentration 
(g/L) 

Riboflavin 0.00010 

L-Alanine 0.00890 Thiamine·HCl 0.00100 

L-Arginine·HCl 0.12640 Others Concentration 
(g/L) 

L-Asparagine·H2O 0.01500 D-Glucose 1.00000 
L-Aspartic Acid 0.01330 Phenol Red, Na salt 0.01000 
L-Cystine·2HCl 0.03120 Sodium Pyruvate 0.11000 
L-Glutamic Acid 0.01470   
Glycine 0.00750   
L-Histidine·HCl·H2O 0.04190   
L-Isolecine 0.05250   
L-Leucine 0.05250   
L-Lysine·HCl 0.07250   
L-Methionine 0.01500   
L-Phenylalanine 0.03250   
L-Proline 0.01150   
L-Serine 0.01050   
L-Threonine 0.04760   
L-Tryptophan 0.01000   
L-Tyrosine·2Na·2H2O 0.05190   
L-Valine 0.04680   
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 The culture flasks were subcultured every 5-7 days following visual 

confirmation of 70-80 % confluence. The culture medium was removed from the flask, 

and the cells were washed with pre-warmed phosphate-buffered saline (37 °C). 

Subsequently, 2 mL of pre-warmed (37 °C) trypsin-EDTA (Sigma, St. Louis, MO) was 

applied to the cells for the 25 cm2 flask, and the flask was gently rocked for 30 s. The 

cells were incubated with trypsin-EDTA solution in the incubator for 5-10 min at 37 °C. 

Progress of trypsinization was periodically checked under the microscope, while the 

anchored cells were dislodged by banging the flask. Once the cells were detached from 

the flask, 5 mL of the EMEM containing 10 % FBS and 1 % PS was added for trypsin 

neutralization. At this point, the cells were homogeneously suspended and therefore, 20 

µL sample was taken for cell counting using the Neubauer hemocytometer (Fisher 

Scientific, Atlanta, GA). The rest of the cell suspension was centrifuged at 120 x g for 6 

min at room temperature. Following the cell yield determination, the cells were seeded 

at a density of 1x105 cells/cm2 into a new 25 or 75 cm2 along with 8 or 24 mL of the 

culture media as a newly passaged culture flask. Typically, the cells were split into 1:2 

to 1:3 at each passage. 

 

 

A.1.2 CALU-3 CELL BANKING 

Periodically, the cells were transferred into a frozen stock to avoid wasteful 

passage and to ensure a constant supply of cells in the laboratory. For this, two types of 

the media were prepared; a freezing media was EMEM supplemented with 10 % (v/v) 
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FBS and 5 % (v/v) dimethyl sulfoxide (DMSO, ATCC) while the process media was 

EMEM supplemented with 10 % FBS (v/v) only. Cryotubes (Fisher-Scientific) were 

appropriately labeled with cell line name, passage, concentration, date and operator. 

The Calu-3 cells were trypsinized, as described above, however, recovered in the 

freezing media. For cell banking, 1 mL of the cell suspension at 1x106 cells/mL was 

aliquoted to each cryotube (Fisher-Scientific). The cryotubes were then embedded in 

cotton wool and placed in a polystyrene freezing box (Fisher-Scientific). The freezing 

box was sealed with tape and placed at -80 °C for 2-4 h; this allowed the cells to cool 

down slowly and gradually. The cryotubes were then transferred in the liquid nitrogen 

storage.  
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o Table A.2.10: Cumulative mass and mass fraction dissolved and 
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permeated into the receptor compartment as a function of time for BD 

aerosols collected on Stage 4 following single shot of Pulmicort ® DPI.  

o Table A.2.16: Cumulative mass and mass fraction dissolved and 
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permeated into the receptor compartment as a function of time for BD 

aerosols collected on Stage 4 following 10 shots of Pulmicort ® DPI. 

o Table A.2.18: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 
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o Table A.2.19: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 

aerosols collected on Stage 2 following 5 shots of Flovent HFA ® (220 

µg) MDI. 

o Table A.2.20: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 

aerosols collected on Stage 4 following 5 shots of Flovent HFA ® (220 

µg) MDI. 

o Table A.2.21: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 

aerosols collected on Stage 4 following 5 shots of Flovent HFA ® (220 

µg) MDI. 

o Table A.2.22: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 

aerosols collected on Stage 2 following 22 shots of Flovent Diskus ® 

DPI. 

o Table A.2.23: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for FP 

aerosols collected on Stage 4 following 22 shots of Flovent Diskus ® 

DPI. 
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o Table A.2.24: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for BDP 

aerosols collected on Stage 2 following 14 shots of Qvar ® MDI.  

o Table A.2.25: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for BDP 

aerosols collected on Stage 4 following 14 shots of Qvar ® MDI.  

o Table A.2.26: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for BDP 

aerosols collected on Stage 2 following 7 shots of Vanceril ® MDI.  

o Table A.2.27: Cumulative mass and mass fraction dissolved and 

permeated into the receptor compartment as a function of time for BDP 

aerosols collected on Stage 4 following 7 shots of Vanceril ® MDI.  

• Chapter 4 

o Table A.2.28: Cumulative FNa mass permeated across air-interface 

cultured Calu-3 monolayers grown in 1.13 cm2 transwells at a seeding 

density of 0.1x106 cells/cm2. 

o Table A.2.29: Cumulative FNa mass permeated across air-interface 

cultured Calu-3 monolayers grown in 1.13 cm2 transwells at a seeding 

density of 0.5x106 cells/cm2. 

o Table A.2.30: Cumulative FNa mass permeated across air-interface 

cultured Calu-3 monolayers grown in 4.5 cm2 transwells at a seeding 

density of 0.1x106 cells/cm2. 
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o Table A.2.31: Cumulative FD-10 mass permeated across air-interface 

cultured Calu-3 monolayers grown in 4.5 cm2 transwells at a seeding 

density of 0.1x106 cells/cm2. 

o Table A.2.32: Cumulative FD-70 mass permeated across air-interface 

cultured Calu-3 monolayers grown in 4.5 cm2 transwells at a seeding 

density of 0.1x106 cells/cm2. 

o Table A.2.33: Cumulative FD-150 mass permeated across air-interface 

cultured Calu-3 monolayers grown in 4.5 cm2 transwells at a seeding 

density of 0.1x106 cells/cm2. 

• Chapter 5 

o Table A.2.34: Data sheets to obtain fold-induction of NFκB-activity with 

or without 60 ng/mLTNFα incubation for 6 h.  

o Table A.2.35: Data sheets to obtain fold-induction of NFκB-activity with 

60 ng/mLTNFα and various ICS treatment (aerosol, solution or 

suspension) incubation for 6 h. 

o Table A.2.36: Mass balance to calculate the cellular uptake of ICSs by 

Calu-3 cells following various treatment incubations at the start (t=0 h) 

and at the end (t=6 h) of the experiment. 
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Table A.2.1 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 2 following single shot of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 1       

Stage 2       

ICS Flunisolide (FL)      
FL mass permeated 

(µg) #1 #2 #3     
Time (min)        

15 0.18 0.13 0.15     
30 0.22 0.27 0.28     
45 0.27 0.35 0.35     
60 0.32 0.38 0.41     
90 0.39 0.49 0.52     

120 0.45 0.51 0.55     
150 0.48 0.57 0.57     
180 0.51 0.61 0.60     
240 0.53 0.64 0.64     
300 0.57 0.66 0.66     

Mass remaining on 
filter (R)  0.04 0.05 0.04 Mean ± SD RSD   

Sum (P+R) 0.61 0.71 0.70 0.68 ± 0.05 7.35   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.29 0.18 0.22 0.23 0.06 0.03 
30 0.36 0.37 0.40 0.38 0.02 0.01 
45 0.44 0.49 0.51 0.48 0.03 0.02 
60 0.51 0.53 0.59 0.55 0.04 0.02 
 90 0.63 0.68 0.74 0.69 0.06 0.03 
120 0.73 0.71 0.79 0.74 0.04 0.03 
150 0.78 0.80 0.82 0.80 0.02 0.01 
180 0.83 0.85 0.86 0.85 0.02 0.01 
240 0.86 0.90 0.92 0.89 0.03 0.02 
300 0.93 0.93 0.94 0.94 0.01 0.00 
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Table A.2.2 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 2 following 5 shots of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 5       

Stage 2       

ICS Flunisolide (FL)      

FL mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 1.91 1.30 1.17     
30 3.47 2.25 2.40     
45 4.11 3.03 2.75     
60 5.31 3.24 3.18     
90 5.80 4.13 4.16     

120 6.31 4.49 4.31     
150 6.60 4.79 4.85     
180 6.61 4.92 5.04     
240 6.92 5.24 5.23     
300 7.06 5.26 5.33     

Mass remaining on 
filter (R)  0.37 0.35 0.36 Mean ± SD RSD   

Sum (P+R) 7.43 5.61 5.69 6.24 ± 1.03 16.51   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.26 0.23 0.20 0.23 0.03 0.02 
30 0.47 0.40 0.42 0.43 0.03 0.02 
45 0.55 0.54 0.48 0.53 0.04 0.02 
60 0.71 0.58 0.56 0.62 0.08 0.05 
90 0.78 0.74 0.73 0.75 0.03 0.02 

120 0.85 0.80 0.76 0.80 0.05 0.03 
150 0.89 0.85 0.85 0.86 0.02 0.01 
180 0.89 0.88 0.89 0.88 0.01 0.00 
240 0.93 0.93 0.92 0.93 0.01 0.00 
300 0.95 0.94 0.94 0.94 0.01 0.00 
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Table A.2.3 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 2 following 10 shots of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 10       

Stage 2       

ICS Flunisolide (FL)      

FL mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 1.32 3.29 0.99     
30 3.82 4.56 2.20     
45 5.04 5.28 3.26     
60 6.99 5.88 3.50     
90 8.00 7.22 4.75     

120 8.80 7.56 5.48     
150 9.16 7.81 5.90     
180 9.63 7.86 6.13     
240 10.06 8.18 6.73     
300 10.24 8.25 6.94     

Mass remaining on 
filter (R)  0.76 0.41 0.68 Mean ± SD   

Sum (P+R) 11.00 8.66 7.62 9.09 ± 1.73 19.03   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.12 0.38 0.13 0.21 0.15 0.08 
30 0.35 0.53 0.29 0.39 0.12 0.07 
45 0.46 0.61 0.43 0.50 0.10 0.06 
60 0.64 0.68 0.46 0.59 0.12 0.07 
90 0.73 0.83 0.62 0.73 0.11 0.06 

120 0.80 0.87 0.72 0.80 0.08 0.04 
150 0.83 0.90 0.77 0.84 0.06 0.04 
180 0.88 0.91 0.81 0.86 0.05 0.03 
240 0.91 0.94 0.88 0.91 0.03 0.02 
300 0.93 0.95 0.91 0.93 0.02 0.01 
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Table A.2.4 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 4 following single shot of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 1       

Stage 4       

ICS Flunisolide (FL)      

FL mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 0.41 0.44 0.36     
30 0.78 0.96 0.90     
45 1.26 1.49 1.18     
60 1.45 1.60 1.30     
90 1.89 1.90 1.55     

120 2.03 2.06 1.73     
150 2.06 2.11 1.80     
180 2.13 2.21 1.92     
240 2.24 2.25 2.03     
300 2.29 2.30 2.09     

Mass remaining on 
filter (R)  0.13 0.09 0.13 Mean ± SD RSD   

Sum (P+R) 2.42 2.39 2.22 2.34 ± 0.11 4.70   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.17 0.19 0.16 0.17 0.01 0.01 
30 0.32 0.40 0.41 0.38 0.05 0.03 
45 0.52 0.62 0.53 0.56 0.06 0.03 
60 0.60 0.67 0.58 0.62 0.05 0.03 
90 0.78 0.79 0.70 0.76 0.05 0.03 

120 0.84 0.86 0.78 0.83 0.04 0.02 
150 0.85 0.88 0.81 0.85 0.03 0.02 
180 0.88 0.92 0.87 0.89 0.03 0.02 
240 0.93 0.94 0.92 0.93 0.01 0.01 
300 0.95 0.96 0.94 0.95 0.01 0.01 
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Table A.2.5 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 4 following 5 shots of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 5       

Stage 4       

ICS Flunisolide (FL)      

FL mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 1.62 0.70 0.74     
30 3.11 2.51 3.00     
45 4.18 3.32 4.19     
60 5.50 4.33 5.01     
90 7.72 6.69 6.93     

120 8.79 7.56 8.14     
150 9.46 8.17 9.10     
180 9.97 8.90 9.77     
240 10.47 9.59 10.37     
300 10.64 9.76 10.51     

Mass remaining on 
filter (R)  0.65 0.65 0.60 Mean ± SD RSD   

Sum (P+R) 11.29 10.41 11.11 10.93 ± 0.47 4.30   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.14 0.07 0.07 0.09 0.04 0.03 
30 0.28 0.24 0.27 0.26 0.02 0.01 
45 0.37 0.32 0.38 0.36 0.03 0.02 
60 0.49 0.42 0.45 0.45 0.04 0.02 
90 0.68 0.64 0.62 0.65 0.03 0.02 

120 0.78 0.73 0.73 0.75 0.03 0.02 
150 0.84 0.79 0.82 0.81 0.03 0.02 
180 0.88 0.86 0.88 0.87 0.01 0.01 
240 0.93 0.92 0.93 0.93 0.01 0.00 
300 0.94 0.94 0.95 0.94 0.00 0.00 
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Table A.2.6 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FL aerosols collected on 
Stage 4 following 10 shots of Aerobid® MDI. 

 
 

Inhaler Aerobid           

Shots/Actuations 10       

Stage 4       
ICS Flunisolide (FL)      

FL mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 1.90 0.91 1.14     
30 5.05 2.56 3.48     
45 6.14 4.27 6.34     
60 10.03 5.69 7.02     
90 13.47 10.53 11.18     

120 15.83 11.24 13.36     
150 16.59 14.31 13.81     
180 17.68 14.95 15.46     
240 18.50 16.12 16.35     
300 18.77 16.40 17.47     

Mass remaining on 
filter (R)  1.09 1.21 1.40 Mean ± SD RSD   

Sum (P+R) 19.86 17.61 18.87 18.78 ± 1.13 6.02   

Fraction FL  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.10 0.05 0.06 0.07 0.02 0.01 
30 0.25 0.15 0.18 0.19 0.06 0.03 
45 0.31 0.24 0.34 0.30 0.05 0.03 
60 0.51 0.32 0.37 0.40 0.09 0.05 
90 0.68 0.60 0.59 0.62 0.05 0.03 

120 0.80 0.64 0.71 0.71 0.08 0.05 
150 0.84 0.81 0.73 0.79 0.05 0.03 
180 0.89 0.85 0.82 0.85 0.04 0.02 
240 0.93 0.92 0.87 0.90 0.03 0.02 
300 0.95 0.93 0.93 0.93 0.01 0.01 
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Table A.2.7 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on Stage 2 
following single shot of Azmacort® MDI. 
 
 

Inhaler Azmacort           

Shots/Actuations 1       

Stage 2       

ICS Triamcinolone Acetonide (TA)     

TA mass permeated 
(µg) #1 #2 #3     

Time (min)        
15 0.20 0.23 0.09     
30 0.44 0.36 0.41     
45 0.52 0.47 0.45     
60 0.59 0.59 0.56     
90 0.79 0.70 0.65     

120 0.89 0.78 0.76     
150 0.96 0.86 0.80     
180 1.01 0.90 0.86     
240 1.07 0.94 0.90     
300 1.09 0.98 0.10     

Mass remaining on 
filter (R)  0.12 0.10 1.00 Mean ± SD RSD   

Sum (P+R) 1.21 1.08 1.00 1.09 ± 0.11 10.09   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.16 0.22 0.09 0.16 0.07 0.04 
30 0.36 0.33 0.33 0.34 0.02 0.01 
45 0.43 0.43 0.41 0.43 0.01 0.01 
60 0.49 0.55 0.45 0.50 0.05 0.03 
90 0.65 0.65 0.56 0.62 0.05 0.03 

120 0.73 0.73 0.66 0.71 0.04 0.03 
150 0.79 0.79 0.76 0.78 0.02 0.01 
180 0.83 0.83 0.81 0.82 0.01 0.01 
240 0.89 0.87 0.87 0.88 0.01 0.01 
300 0.90 0.91 0.90 0.90 0.00 0.00 
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Table A.2.8 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on 
Stage 2 following 5 shots of Azmacort ® MDI. 

 
 

Inhaler Azmacort           

Shots/Actuations 5       

Stage 2       

ICS Triamcinolone Acetonide (TA)     

TA mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.73 0.84 0.65     
30 1.55 1.37 1.36     
45 2.34 2.12 2.04     
60 3.14 2.50 2.33     
90 4.32 3.70 3.27     

120 5.65 3.99 4.08     
150 5.88 4.57 4.65     
180 6.48 4.98 5.13     
240 7.48 5.35 5.82     
300 7.92 5.65 6.01     

Mass remaining 
on filter (R)  1.38 1.13 0.96 Mean ± SD RSD   
Sum (P+R) 9.30 6.78 6.97 7.68 ± 1.40 18.23   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.08 0.12 0.09 0.10 0.02 0.01 
30 0.17 0.20 0.19 0.19 0.02 0.01 
45 0.25 0.31 0.29 0.29 0.03 0.02 
60 0.34 0.37 0.33 0.35 0.02 0.01 
90 0.46 0.55 0.47 0.49 0.05 0.03 

120 0.61 0.59 0.59 0.59 0.01 0.01 
150 0.63 0.67 0.67 0.66 0.02 0.01 
180 0.70 0.73 0.74 0.72 0.02 0.01 
240 0.80 0.79 0.83 0.81 0.02 0.01 
300 0.85 0.83 0.86 0.85 0.01 0.01 
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Table A.2.9 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on 
Stage 2 following 10 shots of Azmacort ® MDI. 

 
 
 

Inhaler Azmacort           

Shots/Actuations 10       

Stage 2       

ICS Triamcinolone Acetonide (TA)     

TA mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.88 0.89 0.91     
30 1.95 1.94 2.17     
45 3.31 3.11 2.85     
60 3.95 4.07 3.65     
90 5.26 5.91 5.44     

120 6.89 6.87 6.49     
150 7.77 7.57 7.34     
180 8.53 8.78 8.15     
240 9.75 9.39 9.07     
300 10.91 10.15 10.18     

Mass remaining 
on filter (R)  4.12 3.72 2.83 Mean ± SD RSD   
Sum (P+R) 15.03 13.87 13.01 13.97 ± 1.02 7.30   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.06 0.06 0.07 0.06 0.01 0.00 
30 0.13 0.14 0.17 0.15 0.02 0.01 
45 0.22 0.22 0.22 0.22 0.00 0.00 
60 0.26 0.29 0.28 0.28 0.02 0.01 
90 0.35 0.43 0.42 0.40 0.04 0.02 

120 0.46 0.50 0.50 0.48 0.02 0.01 
150 0.52 0.55 0.56 0.54 0.02 0.01 
180 0.57 0.63 0.63 0.61 0.04 0.02 
240 0.65 0.68 0.70 0.67 0.02 0.01 
300 0.73 0.73 0.78 0.75 0.03 0.02 
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Table A.2.10 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on 
Stage 4 following single shot of Azmacort ® MDI. 

 
 

Inhaler Azmacort           

Shots/Actuations 1       

Stage 4       

ICS Triamcinolone Acetonide (TA)     

TA mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.08 0.06 0.06     
30 0.15 0.10 0.10     
45 0.20 0.15 0.13     
60 0.24 0.18 0.15     
90 0.28 0.21 0.20     

120 0.31 0.24 0.23     
150 0.28 0.26 0.26     
180 0.33 0.28 0.28     
240 0.35 0.30 0.29     
300 0.37 0.32 0.32     

Mass remaining on 
filter (R)  0.04 0.04 0.04 Mean ± SD RSD   

Sum (P+R) 0.41 0.36 0.36 0.37 ± 0.03 8.11   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.20 0.17 0.18 0.18 0.02 0.01 
30 0.37 0.29 0.28 0.31 0.05 0.03 
45 0.50 0.41 0.36 0.42 0.07 0.04 
60 0.59 0.49 0.43 0.50 0.08 0.05 
90 0.68 0.59 0.55 0.61 0.07 0.04 

120 0.76 0.66 0.63 0.68 0.06 0.04 
150 0.69 0.73 0.72 0.71 0.02 0.01 
180 0.81 0.77 0.79 0.79 0.02 0.01 
240 0.86 0.84 0.80 0.83 0.03 0.02 
300 0.90 0.89 0.89 0.89 0.01 0.00 
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Table A.2.11 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on 
Stage 4 following 5 shots of Azmacort ® MDI.  

 
 

Inhaler Azmacort           

Shots/Actuations 5       

Stage 4       
ICS Triamcinolone Acetonide (TA)     

TA mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.19 0.24 0.21     
30 0.51 0.48 0.54     
45 0.80 0.69 0.97     
60 1.12 0.88 1.05     
90 1.47 1.21 1.45     

120 1.78 1.42 1.61     
150 1.95 1.63 1.74     
180 2.06 1.78 1.88     
240 2.27 1.97 2.04     
300 2.40 2.08 2.07     

Mass remaining on 
filter (R)  0.36 0.28 0.21 Mean ± SD RSD   

Sum (P+R) 2.76 2.36 2.28 2.47 ± 0.26 10.53   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.07 0.10 0.09 0.09 0.02 0.01 
30 0.19 0.20 0.24 0.21 0.03 0.02 
45 0.29 0.29 0.43 0.34 0.08 0.05 
60 0.41 0.37 0.46 0.41 0.04 0.02 
90 0.53 0.51 0.63 0.56 0.07 0.04 

120 0.64 0.60 0.70 0.65 0.05 0.03 
150 0.71 0.69 0.76 0.72 0.04 0.02 
180 0.75 0.75 0.82 0.77 0.04 0.02 
240 0.82 0.83 0.89 0.85 0.04 0.02 
300 0.87 0.88 0.91 0.89 0.02 0.01 
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Table A.2.12 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for TA aerosols collected on 
Stage 4 following 10 shots of Azmacort ® MDI. 

 
 

Inhaler Azmacort           

Shots/Actuations 10       

Stage 4       

ICS Triamcinolone Acetonide (TA)     

TA mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.24 0.45 0.45     
30 0.75 0.99 0.84     
45 1.11 1.13 1.20     
60 1.60 1.46 1.61     
90 2.48 2.05 2.06     

120 2.53 2.33 2.59     
150 2.95 2.80 2.93     
180 3.29 3.02 3.41     
240 3.71 3.55 3.64     
300 3.88 3.80 3.98     

Mass remaining on 
filter (R)  0.58 0.97 0.73 Mean ± SD RSD   

Sum (P+R) 4.46 4.77 4.71 4.67 ± 0.17 3.64   

Fraction TA  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.05 0.09 0.10 0.08 0.02 0.01 
30 0.17 0.21 0.18 0.18 0.02 0.01 
45 0.25 0.24 0.26 0.25 0.01 0.01 
60 0.36 0.31 0.34 0.34 0.03 0.02 
90 0.56 0.43 0.44 0.47 0.07 0.04 

120 0.57 0.49 0.55 0.53 0.04 0.02 
150 0.66 0.59 0.62 0.62 0.04 0.02 
180 0.74 0.63 0.72 0.70 0.06 0.03 
240 0.83 0.74 0.77 0.78 0.04 0.03 
300 0.87 0.80 0.85 0.84 0.04 0.02 
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Table A.2.13 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BD aerosols collected on 
Stage 2 following 5 shots of Pulmicort ® DPI.  

 
 

Inhaler Pulmicort           

Shots/Actuations 5       

Stage 2       

ICS Budesonide (BUD)      

BUD mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.19 0.15 0.17     
30 0.25 0.28 0.19     
45 0.30 0.33 0.24     
60 0.38 0.41 0.30     
90 0.49 0.52 0.49     
120 0.52 0.57 0.59     
150 0.57 0.59 0.64     
180 0.59 0.62 0.70     
240 0.64 0.66 0.75     
300 0.66 0.68 0.80     
360 0.68 0.71      
420 0.78 0.73      

Mass remaining 
on filter (R)  0.29 0.38 0.58 Mean ± SD RSD   
Sum (P+R) 1.32 1.40 1.75 1.49 ± 0.23 15.44   

Fraction BUD  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.19 0.15 0.21 0.18 0.03 0.02 
30 0.25 0.28 0.22 0.25 0.03 0.02 
45 0.30 0.33 0.26 0.30 0.03 0.02 
60 0.38 0.41 0.30 0.36 0.05 0.03 
90 0.49 0.52 0.34 0.45 0.10 0.06 
120 0.52 0.57 0.36 0.49 0.11 0.06 
150 0.57 0.59 0.51 0.56 0.04 0.02 
180 0.59 0.62 0.54 0.58 0.04 0.02 
240 0.64 0.66 0.60 0.63 0.03 0.02 
300 0.66 0.68 0.67 0.67 0.01 0.01 
360 0.68 0.71  0.70 0.02 0.01 
420 0.78 0.73  0.75 0.04 0.02 
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Table A.2.14 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BD aerosols collected on 
Stage 2 following 10 shots of Pulmicort ® DPI.  

 
 

Inhaler Pulmicort           

Shots/Actuations 10       

Stage 2       

ICS Budesonide (BUD)      
BUD mass 

permeated (µg) #1 #2 #3     
Time (min)        

15 0.18 0.19 0.21     
30 0.29 0.36 0.26     
45 0.41 0.41 0.38     
60 0.49 0.58 0.49     
90 0.63 0.76 0.60     
120 0.75 0.83 0.66     
150 0.81 0.90 0.72     
180 0.88 0.97 0.78     
240 0.94 1.04 0.85     
300 1.03 1.10 1.04     
360 1.07 1.15 1.08     
420 1.13 1.18 1.12     

Mass remaining 
on filter (R)  0.82 0.73 0.73 Mean ± SD RSD   
Sum (P+R) 1.95 1.91 1.85 1.90 ± 0.05 2.63   

Fraction BUD  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.09 0.10 0.11 0.10 0.01 0.01 
30 0.15 0.19 0.14 0.16 0.03 0.01 
45 0.21 0.21 0.20 0.21 0.01 0.00 
60 0.25 0.30 0.26 0.27 0.03 0.02 
90 0.32 0.40 0.33 0.35 0.04 0.02 
120 0.38 0.44 0.35 0.39 0.04 0.02 
150 0.42 0.47 0.39 0.43 0.04 0.02 
180 0.45 0.51 0.42 0.46 0.04 0.03 
240 0.48 0.54 0.46 0.50 0.04 0.02 
300 0.52 0.58 0.56 0.56 0.03 0.02 
360 0.55 0.60 0.59 0.58 0.03 0.02 
420 0.58 0.62 0.61 0.60 0.02 0.01 

 
 
 



 155 

 Table A.2.15 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BD aerosols collected on 
Stage 4 following single shot of Pulmicort ® DPI. 

 
 

Inhaler Pulmicort           

Shots/Actuations 1       

Stage 4       

ICS Budesonide (BUD)      

BUD mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.14 0.12 0.08     
30 0.18 0.20 0.22     
45 0.28 0.30 0.28     
60 0.32 0.34 0.35     
90 0.39 0.41 0.45     

120 0.44 0.46 0.50     
150 0.46 0.51 0.51     
180 0.50 0.54 0.54     
240 0.53 0.58 0.57     
300 0.55 0.60 0.59     

Mass remaining on 
filter (R)  0.22 0.23 0.16 Mean ± SD RSD   

Sum (P+R) 0.77 0.83 0.75 0.78 ± 0.04 5.13   

Fraction BUD  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.18 0.14 0.11 0.14 0.04 0.02 
30 0.24 0.24 0.29 0.26 0.03 0.02 
45 0.36 0.36 0.37 0.36 0.01 0.00 
60 0.42 0.41 0.47 0.43 0.03 0.02 
90 0.51 0.49 0.60 0.53 0.06 0.03 

120 0.57 0.55 0.66 0.60 0.06 0.03 
150 0.60 0.61 0.68 0.63 0.04 0.03 
180 0.65 0.65 0.72 0.67 0.04 0.02 
240 0.69 0.69 0.76 0.72 0.04 0.02 
300 0.71 0.72 0.79 0.74 0.04 0.02 
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Table A.2.16 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BD aerosols collected on 
Stage 4 following 5 shots of Pulmicort ® DPI.  

 
 

Inhaler Pulmicort           

Shots/Actuations 5       

Stage 4       

ICS Budesonide (BUD)      

BUD mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.20 0.20 0.17     
30 0.32 0.34 0.35     
45 0.46 0.42 0.47     
60 0.57 0.46 0.57     
90 0.71 0.67 0.80     
120 0.85 0.76 0.92     
150 0.94 0.89 1.02     
180 0.99 0.97 1.07     
240 1.08 1.07 1.13     
300 1.13 1.14 1.21     
360 1.17 1.18 1.25     
420 1.22 1.22 1.43     

Mass remaining on 
filter (R)  0.31 0.45 0.32 Mean ± SD RSD   

Sum (P+R) 1.53 1.67 1.75 1.65 ± 0.11 6.67   

Fraction BUD  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.13 0.12 0.10 0.12 0.02 0.01 
30 0.21 0.20 0.20 0.21 0.00 0.00 
45 0.30 0.25 0.27 0.27 0.02 0.01 
60 0.37 0.27 0.33 0.33 0.05 0.03 
90 0.47 0.40 0.45 0.44 0.04 0.02 
120 0.56 0.45 0.53 0.51 0.05 0.03 
150 0.61 0.53 0.58 0.58 0.04 0.02 
180 0.65 0.58 0.61 0.61 0.03 0.02 
240 0.71 0.64 0.65 0.66 0.04 0.02 
300 0.74 0.68 0.69 0.70 0.03 0.02 
360 0.77 0.70 0.71 0.73 0.04  0.02 
420 0.80 0.73 0.82 0.78 0.04  0.03 
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Table A.2.17 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BD aerosols collected on 
Stage 4 following 10 shots of Pulmicort ® DPI. 

 
 

Inhaler Pulmicort           

Shots/Actuations 10       

Stage 4       

ICS Budesonide (BUD)      

BUD mass 
permeated (µg) #1 #2 #3     

Time (min)        
15 0.27 0.31 0.20     
30 0.43 0.43 0.32     
45 0.57 0.60 0.47     
60 0.66 0.78 0.65     
90 0.96 0.97 0.89     
120 1.07 1.21 1.01     
150 1.27 1.38 1.25     
180 1.37 1.49 1.36     
240 1.55 1.71 1.64     
300 1.70 1.86 1.74     
360 1.79 1.98 1.87     
420 1.87 2.04 1.99     

Mass remaining on 
filter (R)  0.87 0.72 1.05 Mean ± SD RSD   

Sum (P+R) 2.74 2.76 3.04 2.85 ± 0.16 5.61   

Fraction BUD  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

15 0.10 0.11 0.07 0.09 0.02 0.01 
30 0.16 0.15 0.11 0.14 0.03 0.02 
45 0.21 0.22 0.15 0.19 0.04 0.02 
60 0.24 0.28 0.21 0.24 0.03 0.02 
90 0.35 0.35 0.29 0.33 0.03 0.02 
120 0.39 0.44 0.33 0.39 0.05 0.03 
150 0.46 0.50 0.41 0.46 0.04 0.03 
180 0.50 0.54 0.45 0.50 0.05 0.03 
240 0.56 0.62 0.54 0.57 0.04 0.02 
300 0.62 0.67 0.57 0.62 0.05 0.03 
360 0.65 0.72 0.62 0.66 0.05 0.03 
420 0.68 0.74 0.65 0.69 0.04 0.02 
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Table A.2.18 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 2 following 5 shots of Flovent HFA ® (44 µg) MDI. 

 
 

Inhaler Flovent HFA 44 µg         

Shots/Actuations 5       

Stage 2       

ICS Fluticasone Propionate (FP)     

FP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 3.92 3.92 3.92     
60 14.73 7.46 7.57     
90 27.88 14.64 12.43     

120 35.53 20.64 22.33     
150 44.48 27.17 26.16     
180 54.07 32.52 28.03     
240 73.38 37.76 39.96     
300 84.62 49.82 46.39     
360 99.41 61.84 51.17     
420 107.62 69.66 55.50     
480 120.05 72.67 67.53     
540 129.60 79.88 72.01     
600 138.18 90.95 82.89     

Mass remaining 
on filter (R)  1552.00 1764.79 1608.05 Mean ± SD RSD   

Sum (P+R) 1690.18 1855.74 1690.94 
1745.62 ± 
95.37 5.46   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.00 0.00 0.00 0.00 0.00 0.00 
60 0.01 0.00 0.00 0.01 0.00 0.00 
90 0.02 0.01 0.01 0.01 0.01 0.00 

120 0.02 0.01 0.01 0.02 0.01 0.00 
150 0.03 0.01 0.02 0.02 0.01 0.00 
180 0.03 0.02 0.02 0.02 0.01 0.00 
240 0.04 0.02 0.02 0.03 0.01 0.01 
300 0.05 0.03 0.03 0.03 0.01 0.01 
360 0.06 0.03 0.03 0.04 0.02 0.01 
420 0.06 0.04 0.03 0.04 0.02 0.01 
480 0.07 0.04 0.04 0.05 0.02 0.01 
540 0.08 0.04 0.04 0.05 0.02 0.01 
600 0.08 0.05 0.05 0.06 0.02 0.01 
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Table A.2.19 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 2 following 5 shots of Flovent HFA ® (220 µg) MDI. 

 
 

Inhaler Flovent HFA 220 µg         

Shots/Actuations 5       

Stage 2       

ICS Fluticasone Propionate (FP)     
FP mass 

permeated (ng) #1 #2 #3     
Time (min)        

30 9.03 12.57 13.91     
60 25.69 28.66 27.80     
90 35.30 37.91 37.66     

120 44.99 50.55 51.44     
150 57.15 60.02 62.60     
180 72.64 73.26 77.53     
240 87.73 90.00 92.72     
300 102.69 109.73 114.20     
360 119.65 117.27 122.49     
420 138.11 137.25 140.40     
480 153.07 153.86 151.00     
540 165.03 163.74 163.46     
600 182.72 176.78 183.51     

Mass remaining 
on filter (R)  12888.96 15500.58 20106.48 Mean ± SD RSD   
Sum (P+R) 13071.68 15677.36 20289.99 16346.34 ± 3655.36 22.36   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 6.9E-04 8.0E-04 6.9E-04 0.00 0.00 0.00 
60 2.0E-03 1.8E-03 1.4E-03 0.00 0.00 0.00 
90 2.7E-03 2.4E-03 1.9E-03 0.00 0.00 0.00 

120 3.4E-03 3.2E-03 2.5E-03 0.00 0.00 0.00 
150 4.4E-03 3.8E-03 3.1E-03 0.00 0.00 0.00 
180 5.6E-03 4.7E-03 3.8E-03 0.00 0.00 0.00 
240 6.7E-03 5.7E-03 4.6E-03 0.01 0.00 0.00 
300 7.9E-03 7.0E-03 5.6E-03 0.01 0.00 0.00 
360 9.2E-03 7.5E-03 6.0E-03 0.01 0.00 0.00 
420 1.1E-02 8.8E-03 6.9E-03 0.01 0.00 0.00 
480 1.2E-02 9.8E-03 7.4E-03 0.01 0.00 0.00 
540 1.3E-02 1.0E-02 8.1E-03 0.01 0.00 0.00 
600 1.4E-02 1.1E-02 9.0E-03 0.01 0.00 0.00 
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Table A.2.20 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 4 following 5 shots of Flovent HFA ® (44 µg) MDI. 

 
 

Inhaler Flovent HFA 44 µg         

Shots/Actuations 5       

Stage 4       

ICS Fluticasone Propionate (FP)     
FP mass permeated 

(ng) #1 #2 #3     
Time (min)        

30 0.23 0.54 0.54     
60 8.60 5.85 7.49     
90 15.33 12.47 8.76     

120 22.14 15.22 12.83     
150 24.72 19.47 21.69     
180 30.23 26.92 22.17     
240 43.34 32.76 33.32     
300 49.22 44.30 36.60     
360 60.27 50.00 43.67     
420 70.19 61.89 44.89     
480 75.20 71.38 57.04     
540 85.02 73.79 65.60     
600 96.16 86.66 73.69     

Mass remaining on 
filter (R)  3679.00 5408.02 5105.24 Mean ± SD RSD   

Sum (P+R) 3775.16 5494.68 5178.93 4816.26 ± 915.33 19.00   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.00 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.00 0.00 0.00 0.00 
90 0.00 0.00 0.00 0.00 0.00 0.00 

120 0.01 0.00 0.00 0.00 0.00 0.00 
150 0.01 0.00 0.00 0.00 0.00 0.00 
180 0.01 0.00 0.00 0.01 0.00 0.00 
240 0.01 0.01 0.01 0.01 0.00 0.00 
300 0.01 0.01 0.01 0.01 0.00 0.00 
360 0.02 0.01 0.01 0.01 0.00 0.00 
420 0.02 0.01 0.01 0.01 0.01 0.00 
480 0.02 0.01 0.01 0.01 0.00 0.00 
540 0.02 0.01 0.01 0.02 0.01 0.00 
600 0.03 0.02 0.01 0.02 0.01 0.00 
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Table A.2.21 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 4 following 5 shots of Flovent HFA ® (220 µg) MDI. 

 
 

Inhaler Flovent HFA 220 µg         

Shots/Actuations 5       

Stage 4       
ICS Fluticasone Propionate (FP)     

FP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 8.90 11.84 8.78     
60 16.85 25.84 18.03     
90 23.93 35.02 29.33     

120 35.95 40.94 35.93     
150 43.64 56.66 44.06     
180 59.43 67.28 57.55     
240 72.07 87.16 70.12     
300 80.15 104.65 85.32     
360 93.29 114.65 92.37     
420 103.44 129.42 106.33     
480 113.69 149.48 122.05     
540 124.46 157.71 129.80     
600 135.14 171.34 138.69     

Mass remaining on 
filter (R)  19000.34 19439.62 20548.10 Mean ± SD RSD   

Sum (P+R) 19135.48 19610.96 20686.79 19811.08 ± 794.78 4.01   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 4.7E-04 6.0E-04 4.2E-04 0.00 0.00 0.00 
60 8.8E-04 1.3E-03 8.7E-04 0.00 0.00 0.00 
90 1.3E-03 1.8E-03 1.4E-03 0.00 0.00 0.00 

120 1.9E-03 2.1E-03 1.7E-03 0.00 0.00 0.00 
150 2.3E-03 2.9E-03 2.1E-03 0.00 0.00 0.00 
180 3.1E-03 3.4E-03 2.8E-03 0.00 0.00 0.00 
240 3.8E-03 4.4E-03 3.4E-03 0.00 0.00 0.00 
300 4.2E-03 5.3E-03 4.1E-03 0.00 0.00 0.00 
360 4.9E-03 5.8E-03 4.5E-03 0.01 0.00 0.00 
420 5.4E-03 6.6E-03 5.1E-03 0.01 0.00 0.00 
480 5.9E-03 7.6E-03 5.9E-03 0.01 0.00 0.00 
540 6.5E-03 8.0E-03 6.3E-03 0.01 0.00 0.00 
600 7.1E-03 8.7E-03 6.7E-03 0.01 0.00 0.00 
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Table A.2.22 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 2 following 22 shots of Flovent Diskus ® DPI. 

 
 

Inhaler Flovent Diskus 50 µg         

Shots/Actuations 22       

Stage 2       
ICS Fluticasone Propionate (FP)     

FP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 15.57 8.47 10.32     
60 27.24 15.12 13.08     
90 37.19 21.07 22.75     

120 45.22 25.76 28.15     
150 55.06 32.36 34.68     
180 61.25 36.47 41.64     
240 75.27 44.93 46.42     
300 80.90 51.86 52.09     
360 89.83 57.62 60.64     
420 95.93 63.06 64.95     
480 99.70 68.08 72.81     
540 106.37 75.40 77.32     
600 111.33 79.84 82.45     

Mass remaining 
on filter (R)  1909.44 2427.05 1946.10 Mean ± SD RSD   
Sum (P+R) 2020.767 2506.894 2028.558 2185.41 ± 278.44 12.74   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.01 0.00 0.01 0.01 0.00 0.00 
60 0.01 0.01 0.01 0.01 0.00 0.00 
90 0.02 0.01 0.01 0.01 0.01 0.00 

120 0.02 0.01 0.01 0.02 0.01 0.00 
150 0.03 0.01 0.02 0.02 0.01 0.00 
180 0.03 0.01 0.02 0.02 0.01 0.00 
240 0.04 0.02 0.02 0.03 0.01 0.01 
300 0.04 0.02 0.03 0.03 0.01 0.01 
360 0.04 0.02 0.03 0.03 0.01 0.01 
420 0.05 0.03 0.03 0.03 0.01 0.01 
480 0.05 0.03 0.04 0.04 0.01 0.01 
540 0.05 0.03 0.04 0.04 0.01 0.01 
600 0.06 0.03 0.04 0.04 0.01 0.01 
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Table A.2.23 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for FP aerosols collected on 
Stage 4 following 22 shots of Flovent Diskus ® DPI. 

 
 

Inhaler Flovent Diskus 50 µg         

Shots/Actuations 22       

Stage 4       
ICS Fluticasone Propionate (FP)     

FP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 5.13 6.55 9.89     
60 9.59 11.16 17.68     
90 13.85 16.16 24.80     

120 19.00 16.99 27.60     
150 22.61 23.15 33.82     
180 26.59 24.41 41.06     
240 29.84 32.52 48.81     
300 34.28 37.21 55.12     
360 39.85 39.35 62.55     
420 45.29 45.89 70.09     
480 49.01 51.19 76.25     
540 53.38 55.03 80.87     
600 56.10 59.39 87.71     

Mass remaining on 
filter (R)  2063.86 2839.62 2183.18 Mean ± SD RSD   

Sum (P+R) 2119.962 2899.007 2270.897 2429.96 ± 413.16 17.00   

Fraction FP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.00 0.00 0.00 0.00 0.00 0.00 
60 0.00 0.00 0.01 0.01 0.00 0.00 
90 0.01 0.01 0.01 0.01 0.00 0.00 

120 0.01 0.01 0.01 0.01 0.00 0.00 
150 0.01 0.01 0.01 0.01 0.00 0.00 
180 0.01 0.01 0.02 0.01 0.00 0.00 
240 0.01 0.01 0.02 0.02 0.01 0.00 
300 0.02 0.01 0.02 0.02 0.01 0.00 
360 0.02 0.01 0.03 0.02 0.01 0.00 
420 0.02 0.02 0.03 0.02 0.01 0.00 
480 0.02 0.02 0.03 0.02 0.01 0.00 
540 0.03 0.02 0.04 0.03 0.01 0.00 
600 0.03 0.02 0.04 0.03 0.01 0.01 
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Table A.2.24 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BDP aerosols collected 
on Stage 2 following 14 shots of Qvar ® MDI.  

 
 

Inhaler Qvar            

Shots/Actuations 14       

Stage 2       

ICS Beclomethasone Dipropionate (BDP)    

BDP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 3.23 11.83 5.63     
60 6.63 18.36 7.80     

120 7.48 20.98 8.45     
150 9.28 25.07 10.01     
180 9.00 26.51 11.51     
240 11.75 29.09 13.11     
300 13.08 34.26 15.66     
360 15.17 36.85 17.66     
420 16.56 43.80 19.22     
480 17.66 48.13 22.22     
540 18.93 51.07 24.46     
600 20.42 53.72 25.80     

Mass remaining 
on filter (R)  452.99 599.98 516.82 Mean ± SD RSD   

Sum (P+R) 473.41 653.70 542.6143 
556.58 ± 
90.95 16.34   

Fraction BDP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.01 0.02 0.01 0.01 0.01 0.00 
60 0.01 0.03 0.01 0.02 0.01 0.00 

120 0.02 0.03 0.02 0.02 0.01 0.01 
150 0.02 0.04 0.02 0.03 0.01 0.01 
180 0.02 0.04 0.02 0.03 0.01 0.01 
240 0.02 0.04 0.02 0.03 0.01 0.01 
300 0.03 0.05 0.03 0.04 0.01 0.01 
360 0.03 0.06 0.03 0.04 0.01 0.01 
420 0.03 0.07 0.04 0.05 0.02 0.01 
480 0.04 0.07 0.04 0.05 0.02 0.01 
540 0.04 0.08 0.05 0.05 0.02 0.01 
600 0.04 0.08 0.05 0.06 0.02 0.01 
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Table A.2.25 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BDP aerosols collected 
on Stage 4 following 14 shots of Qvar ® MDI.  

 
 

Inhaler Qvar µg           

Shots/Actuations 14       

Stage 4       

ICS Beclomethasone Dipropionate (BDP)    

BDP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 66.70 39.36 45.12     
60 90.52 70.92 75.71     

120 123.91 106.93 106.83     
150 123.20 128.58 117.68     
180 130.39 133.56 133.15     
240 154.43 157.07 153.35     
300 177.56 175.52 175.05     
360 183.47 188.59 189.83     
420 201.33 209.14 209.82     
480 212.33 226.71 221.15     
540 228.05 240.88 237.92     
600 241.57 258.98 258.67     

Mass remaining on 
filter (R)  1275.10 1290.32 1434.51 Mean ± SD RSD   

Sum (P+R) 1516.668 1549.295 1693.179 1586.38 ± 93.92 5.92   

Fraction BDP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.04 0.03 0.03 0.03 0.01 0.01 
60 0.06 0.05 0.04 0.05 0.01 0.00 

120 0.08 0.07 0.06 0.07 0.01 0.01 
150 0.08 0.08 0.07 0.08 0.01 0.00 
180 0.09 0.09 0.08 0.08 0.00 0.00 
240 0.10 0.10 0.09 0.10 0.01 0.00 
300 0.12 0.11 0.10 0.11 0.01 0.00 
360 0.12 0.12 0.11 0.12 0.01 0.00 
420 0.13 0.13 0.12 0.13 0.01 0.00 
480 0.14 0.15 0.13 0.14 0.01 0.00 
540 0.15 0.16 0.14 0.15 0.01 0.00 
600 0.16 0.17 0.15 0.16 0.01 0.00 

 
 
 



 166 

Table A.2.26 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BDP aerosols collected 
on Stage 2 following 7 shots of Vanceril ® MDI.  

 
 

Inhaler Vanceril           

Shots/Actuations 7       

Stage 2       

ICS Beclomethasone Dipropionate (BDP)    

BDP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 48.86 41.65 29.15     
60 91.70 67.36 68.47     
90 94.25 77.77 73.57     

120 117.18 88.73 89.61     
150 130.60 93.66 102.74     
180 143.03 104.90 107.39     
240 160.40 115.73 119.81     
300 181.94 131.23 140.50     
360 209.01 144.95 158.55     
420 224.36 160.37 169.18     
480 242.77 167.51 180.98     
540 264.62 188.57 198.79     
600 294.76 203.13 215.71     

Mass remaining 
on filter (R)  1029.38 1009.70 1095.96 Mean ± SD RSD   
Sum (P+R) 1324.138 1212.828 1311.671 1282.88 ± 60.99 4.75   

Fraction BDP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.04 0.03 0.02 0.03 0.01 0.00 
60 0.07 0.06 0.05 0.06 0.01 0.01 
90 0.07 0.06 0.06 0.06 0.01 0.00 

120 0.09 0.07 0.07 0.08 0.01 0.01 
150 0.10 0.08 0.08 0.08 0.01 0.01 
180 0.11 0.09 0.08 0.09 0.01 0.01 
240 0.12 0.10 0.09 0.10 0.02 0.01 
300 0.14 0.11 0.11 0.12 0.02 0.01 
360 0.16 0.12 0.12 0.13 0.02 0.01 
420 0.17 0.13 0.13 0.14 0.02 0.01 
480 0.18 0.14 0.14 0.15 0.03 0.02 
540 0.20 0.16 0.15 0.17 0.03 0.02 
600 0.22 0.17 0.16 0.18 0.03 0.02 
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Table A.2.27 Cumulative mass and mass fraction dissolved and permeated into the 
receptor compartment as a function of time for BDP aerosols collected 
on Stage 4 following 7 shots of Vanceril ® MDI.  

 
 
 

Inhaler Vanceril           

Shots/Actuations 7       

Stage 4       

ICS Beclomethasone Dipropionate (BDP)    

BDP mass 
permeated (ng) #1 #2 #3     

Time (min)        
30 19.23 21.78 13.55     
60 38.77 44.93 24.57     
90 48.86 55.21 33.00     

120 63.40 62.70 40.09     
150 80.28 75.84 51.07     
180 82.28 80.15 52.98     
240 91.05 90.79 66.21     
300 113.68 102.10 79.11     
360 137.11 132.78 99.46     
420 159.53 135.18 105.16     
480 172.24 153.38 123.16     
540 199.47 191.23 149.55     
600 219.60 200.98 158.19     

Mass remaining on 
filter (R)  1507.47 1387.03 1226.21 Mean ± SD RSD   

Sum (P+R) 1727.071 1588.014 1384.397 1566.49 ± 172.35 11.00   

Fraction BDP  
permeated  #1 #2 #3 Mean SD SE 
Time (min)        

30 0.01 0.01 0.01 0.01 0.00 0.00 
60 0.02 0.03 0.02 0.02 0.01 0.00 
90 0.03 0.03 0.02 0.03 0.01 0.00 

120 0.04 0.04 0.03 0.04 0.01 0.00 
150 0.05 0.05 0.04 0.04 0.01 0.00 
180 0.05 0.05 0.04 0.05 0.01 0.00 
240 0.05 0.06 0.05 0.05 0.00 0.00 
300 0.07 0.06 0.06 0.06 0.00 0.00 
360 0.08 0.08 0.07 0.08 0.01 0.00 
420 0.09 0.09 0.08 0.08 0.01 0.00 
480 0.10 0.10 0.09 0.10 0.01 0.00 
540 0.12 0.12 0.11 0.11 0.01 0.00 
600 0.13 0.13 0.11 0.12 0.01 0.00 
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Table A.2.28 Cumulative FNa mass permeated across air-interface cultured Calu-3 
monolayers grown in 1.13 cm2 transwells at a seeding density of 0.1x106 
cells/cm2. 

 
 
Transwell:  12 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ plate  

 Area 1.13 cm2        
Seeding 
density 0.1x106/cm2        
Apical 0.5 mL        

Basolateral 1.5 mL        
Solute         
Apical 40 µg/mL Na-F in KRB      

Basolateral KRB         
 #1 #2 #3 #4 #5 #6   

 CumFNa CumFNa CumFNa CumFNa CumFNa CumFNa Mean  
Time(min) [µg] [µg] [µg] [µg] [µg] [µg] [µg] SD 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.03 0.01 0.00 0.02 0.00 0.00 0.01 0.01 
30 0.04 0.03 0.02 0.04 0.02 0.02 0.03 0.01 
60 0.08 0.07 0.04 0.07 0.04 0.04 0.06 0.02 
90 0.14 0.10 0.07 0.10 0.07 0.08 0.09 0.03 

120 0.17 0.14 0.10 0.14 0.11 0.11 0.13 0.03 
150 0.21 0.17 0.14 0.18 0.15 0.14 0.17 0.03 
180 0.23 0.20 0.16 0.21 0.18 0.17 0.19 0.03 
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Table A.2.29 Cumulative FNa mass permeated across air-interface cultured Calu-3 
monolayers grown in 1.13 cm2 transwells at a seeding density of 0.5x106 
cells/cm2. 

 
 

Transwell:  12 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ plate 

 Area 1.13 cm2       

Seeding 
density 0.5x106/cm2       

Volume        
Apical 0.5 mL       

Basolateral 1.5 mL       
Solute        

Apical 40 µg/mL Na-F in KRB      
Basolateral KRB        

 #1 #2 #3 #4 #5   
 CumFNa CumFNa CumFNa CumFNa CumFNa Mean  

Time(min) [µg] [µg] [µg] [µg] [µg] [µg] SD 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.01 0.01 0.01 0.01 0.00 0.01 0.00 
60 0.02 0.02 0.01 0.02 0.02 0.02 0.00 
90 0.02 0.03 0.02 0.03 0.04 0.03 0.01 

120 0.03 0.03 0.02 0.04 0.06 0.04 0.02 
150 0.04 0.04 0.03 0.05 0.09 0.05 0.02 
180 0.05 0.04 0.04 0.06 0.10 0.06 0.03 
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Table A.2.30 Cumulative FNa mass permeated across air-interface cultured Calu-3 
monolayers grown in 4.5 cm2 transwells at a seeding density of 0.1x106 
cells/cm2. 

 
 

Transwell:  24 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ plate 

 Area 4.5 cm2       

Seeding 
density 0.1x106/cm2       

Volume        
Apical 1.5 mL       

Basolateral 2.6 mL       
Solute        

Apical 10 µg/mL Na-F in KRB      
Basolateral KRB        

 #1 #2 #3 #4 #5   
 CumFNa CumFNa CumFNa CumFNa CumFNa Mean  

Time(min) [µg] [µg] [µg] [µg] [µg] [µg] SD 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
60 0.01 0.00 0.00 0.02 0.01 0.01 0.01 
90 0.01 0.01 0.01 0.03 0.02 0.02 0.01 

120 0.03 0.02 0.02 0.04 0.03 0.03 0.01 
150 0.04 0.03 0.03 0.05 0.04 0.04 0.01 
180 0.06 0.04 0.05 0.06 0.06 0.05 0.01 
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Table A.2.31 Cumulative FD-10 mass permeated across air-interface cultured Calu-3 
monolayers grown in 4.5 cm2 transwells at a seeding density of 0.1x106 
cells/cm2. 

 
 

Transwell:  24 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ plate 

 Area 4.5 cm2       

Seeding 
density 0.1x106/cm2       

Volume        
Apical 1.5 mL       

Basolateral 2.6 mL       
Solute        

Apical 500 µg/mL FD-10 in KRB      
Basolateral KRB        

 #1 #2 #3     
 CumFD CumFD CumFD Mean    

Time(min) [µg] [µg] [µg] [µg] SD   
0 0.00 0.00 0.00 0.00 0.00   

30 0.23 0.07 0.28 0.19 0.11   
60 0.41 0.28 0.75 0.48 0.24   
90 0.66 0.48 0.85 0.66 0.19   

120 0.84 0.68 1.42 0.98 0.39   
150 1.14 0.90 1.61 1.22 0.36   
180 1.31 1.08 2.11 1.50 0.54   
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Table A.2.32 Cumulative FD-70 mass permeated across air-interface cultured Calu-3 
monolayers grown in 4.5 cm2 transwells at a seeding density of 0.1x106 
cells/cm2. 

 
 

Transwell:  24 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ plate 

 Area 4.5 cm2      

Seeding 
density 0.1x106/cm2      

Volume       
Apical 1.5 mL      

Basolateral 2.6 mL      
Solute       

Apical 1 mg/mL FD-70 in KRB     
Basolateral KRB       

 #1 #2 #3 #4   
 CumFD CumFD CumFD CumFD Mean  

Time(min) [µg] [µg] [µg] [µg] [µg] SD 
0 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.07 0.02 0.11 0.00 0.05 0.05 
60 0.13 0.13 0.29 0.14 0.17 0.08 
90 0.34 0.25 0.32 0.28 0.30 0.04 

120 0.41 0.47 0.36 0.48 0.43 0.05 
150 0.57 0.75 0.43 0.57 0.58 0.13 
180 0.74 0.87 0.55 0.73 0.72 0.13 
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Table A.2.33 Cumulative FD-150 mass permeated across air-interface cultured Calu-3 
monolayers grown in 4.5 cm2 transwells at a seeding density of 0.1x106 
cells/cm2. 

 
 

Transwell:  24 mm diameter, 0.4 um poresize, PE membrane, PS plate,12 wells/ 
plate 

 Area 4.5 cm2      

Seeding 
density 0.1x106/cm2      

Volume       
Apical 1.5 mL      

Basolateral 2.6 mL      
Solute       
Apical 2 mg/mL FD-150 in KRB     

Basolateral KRB       
 #1 #2 #3 #4   
 CumFD CumFD CumFD CumFD Mean  

Time(min) [µg] [µg] [µg] [µg] [µg] SD 

0 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.00 0.00 0.01 0.01 0.01 0.00 
60 0.04 0.01 0.04 0.08 0.04 0.03 
90 0.07 0.02 0.22 0.09 0.10 0.08 

120 0.10 0.04 0.33 0.16 0.16 0.13 
150 0.14 0.07 0.57 0.21 0.25 0.23 
180 0.20 0.08 0.81 0.22 0.33 0.33 
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Table A.2.34 Data sheets to obtain fold-induction of NFκB-activity with or without 60 
ng/mLTNFα incubation for 6 h. The concentration of protein in cell 
samples was calculated using the standard curve for albumin in the BCA. 

 
 

 

Corrected 
Average 
Abs* after 
BCA 

Conc**  of 
protein 
by BCA 
(µg/mL) 

Dilution 
Factor 

Actual 
Conc of 
protein 
(µg/mL) 

RLU 
per 20 
µL cell 
sample 

Protein 
in 20 
µL of 
sample 
(µg) 

RLU per mg 
of protein 

Fold 
Induction 

Control 0.43 1148.25 6.00 6889.50 44571 137.79 323470.50 1.30 
 0.50 1310.75 6.00 7864.50 27156 157.29 172649.25 0.70 
 0.47 1346.00 6.00 8076.00 49210 161.52 304668.15 1.29 
 0.59 1658.50 6.00 9951.00 42445 199.02 213270.02 0.90 
 0.55 1549.75 6.00 9298.50 35477 185.97 190767.33 0.81 
 0.52 1082.80 6.00 6496.80 17770 129.94 136759.64 0.87 
 0.52 1079.80 6.00 6478.80 23016 129.58 177625.49 1.13 
 0.58 991.00 6.00 5946.00 62198 118.92 523023.88 0.86 
 0.64 1091.83 6.00 6551.00 69477 131.02 530277.82 0.87 
 0.53 906.83 6.00 5441.00 83715 108.82 769297.92 1.27 

         
TNFα 0.50 1324.50 6.00 7947.00 98851 158.94 621939.10 3.30 
 0.40 1073.25 6.00 6439.50 105538 128.79 819458.03 3.30 
 0.54 1528.50 6.00 9171.00 197242 183.42 1075357.10 4.55 
 0.53 1486.00 6.00 8916.00 172766 178.32 968853.75 4.10 
 0.51 1453.50 6.00 8721.00 141671 174.42 812240.57 3.44 
 0.66 1375.80 6.00 8254.80 78379 165.10 474748.03 3.02 
 0.54 1121.80 6.00 6730.80 58456 134.62 434242.59 2.76 
 0.52 1086.80 6.00 6520.80 79451 130.42 609212.06 3.88 
 0.64 1099.33 6.00 6596.00 387622 131.92 2938311.10 4.84 
 0.57 974.33 6.00 5846.00 278702 116.92 2383698.26 3.92 
 0.56 957.67 6.00 5746.00 460240 114.92 4004872.96 6.59 
* Abs: Absorbance obtained at 262 nm. 
** Conc: Concentration. 
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Table A.2.35 Data sheets to obtain fold-induction of NFκB-activity with 60 ng/mLTNFα 
and various ICS treatment (aerosol, solution or suspension) incubation for 
6 h. The concentration of protein in cell samples was calculated using the 
standard curve for albumin in the BCA. 

 
 

 

Corrected 
Average 
Abs* after 
BCA 

Conc**  
of 
protein 
by BCA 
(µg/mL) 

Dilution 
Factor 

Actual 
Conc of 
protein 
(µg/mL) 

RLU 
per 20 
µL cell 
sample 

Protein 
in 20 
µL of 
sample 
(µg) 

RLU per mg 
of protein 

Fold 
Induction 

FP 0.55 µg (Flovent HFA 10 shots)      
 0.52 1481.00 6.00 8886.00 172492 177.72 970582.94 4.11 
 0.50 1423.50 6.00 8541.00 134321 170.82 786330.64 3.33 
 0.54 1526.00 6.00 9156.00 166023 183.12 906634.99 3.84 
 0.45 1194.50 6.00 7167.00 100853 143.34 703592.86 2.84 
 0.47 1237.00 6.00 7422.00 125850 148.44 847817.30 3.42 

FP 0.90 µg (Flovent HFA 20 shots)      

 0.59 1642.25 6.00 9853.50 156411 197.07 793682.45 3.36 
 0.58 1634.75 6.00 9808.50 167022 196.17 851414.59 3.60 
 0.61 1697.25 6.00 10183.50 142748 203.67 700878.87 2.97 
 0.51 1068.80 6.00 6412.80 45002 128.26 350876.37 2.23 
 0.54 1133.80 6.00 6802.80 53325 136.06 391934.20 2.49 
 0.48 1001.80 6.00 6010.80 53129 120.22 441946.16 2.81 

TA 0.52 µg (Azmacort 25  shots)      
 0.51 1065.80 6.00 6394.80 60782 127.90 475245.51 3.02 
 0.58 1205.80 6.00 7234.80 63479 144.70 438705.98 2.79 
 0.51 1061.80 6.00 6370.80 54458 127.42 427403.15 2.72 
 0.53 918.50 6.00 5511.00 305237 110.22 2769343.13 4.56 
 0.59 1017.67 6.00 6106.00 319673 122.12 2617695.71 4.31 
 0.62 1062.67 6.00 6376.00 353347 127.52 2770914.37 4.56 

FP Solution        
 0.53 1402.00 6.00 8412.00 40424 168.24 240275.80 0.97 
 0.41 1092.00 6.00 6552.00 45955 131.04 350694.44 1.41 
 0.61 1958.33 6.00 11750.00 121649 235.00 517655.32 1.33 
 0.55 1750.00 6.00 10500.00 82674 210.00 393685.71 1.01 

FP Suspension        
 0.44 1164.50 6.00 6987.00 69426 139.74 496822.67 2.00 
 0.42 1124.50 6.00 6747.00 53893 134.94 399384.91 1.61 
 0.53 1673.33 6.00 10040.00 129530 200.80 645069.72 1.65 
 0.54 1713.33 6.00 10280.00 140899 205.60 685306.42 1.75 
* Abs: Absorbance obtained at 262 nm. 
** Conc: Concentration. 
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Table A.2.36 Mass balance to calculate the cellular uptake of ICSs by Calu-3 cells 
following various treatment incubations at the start (t=0 h) and at the end 
(t=6 h) of the experiment. The mass was determined by washing the 
surface of cells with 60/40 CH3CN/H2O and these samples were analyzed 
using validated HPLC methods for FP and TA.  

 
 
 

Sample 
 

Time-point (h) Mass (µg) 

TA aerosol following 25 
shots of Azmacort   

 0 0.52 
 6 0.34 
 6 0.32 
 6 0.40 

FP aerosol following 10 
shots of Flovent HFA   

 0 0.52 
 6 0.50 
 6 0.51 
 6 0.47 

FP aerosol following 20 
shots of Flovent HFA   

 0 0.91 
 6 0.87 
 6 0.88 
 6 0.84 
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