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Thrombosis is one of the leading causes of mortality and morbidity that is associated with 

myocardial infarction, stroke and pulmonary embolism. Anti-thrombotic agents which intend to 

reduce the occurrence and severity of thrombosis usually target the enzymes of the coagulation 

cascade. FXIa, a 160 kDa homodimer is gaining popularity of late as a potential target for anti-

thrombotic agents due to its relative safety. 

 A number of inhibitors which target the active site of FXIa have been reported but to our 

knowledge there have been no inhibitors which act via an allosteric mechanism. The aim of this 

project was to screen for allosteric inhibitors of FXIa from of pool of sulfated small-molecules. 
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These molecules were primarily designed to act as heparin mimetics; heparin being a natural 

anti-coagulant. These compounds were then analyzed to determine whether inhibition was via an 

allosteric mechanism.  
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Chapter 1: Introduction 

1.1 The Coagulation Cascade – Intrinsic and extrinsic pathways 

 Under normal physiological conditions, it is essential that blood circulate throughout the 

system in its liquid state. However, there are certain situations, such as in the case of a vascular 

injury wherein a stable clot or plug is formed in a mechanism involving platelets and enzymes 

termed coagulation enzymes. Such an injury could be mechanical, chemical or electrical and is 

considered as a major stimulus for initiating coagulation.1 These enzymes are activated from 

their zymogen form by proteolysis at one or more peptide bonds. Most of these enzymes also 

require membrane surfaces and cofactors in order to bring about the activation and these 

reactions may be Ca
2+

 dependent or Ca
2+

 independent. The sequence of zymogen activation and 

its subsequent actions, which ultimately result in the formation of a seal or clot at the site of 

injury, was referred to as the cascade of enzyme-proenzyme transformations by Macfarlane in 

1964.2 This is now more commonly referred to as the coagulation cascade or waterfall model.2, 3 

In addition to these coagulation enzymes or pro-coagulant agents, there also exist other entities, 

which are anti-coagulant in nature, such as antithrombin (AT) amongst others, which help 

maintain and regulate a fine balance between pro and anti-coagulation processes.3-6 

 Despite this fine balance, many situations arise wherein this balance is disturbed, which 

may lead to excess coagulation or bleeding (hemorrhage). The former, termed thrombosis occurs 

when excessive clot formation prevents the proper flow of blood through a vessel. A more severe 

condition, thromboembolism occurs when a part of the clot is dislodged from the site of injury 

and causes obstruction to blood flow through the vessels at other sites. Thrombotic disorders are 
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the major cause of mortality and morbidity associated with myocardial infarction, stroke, deep 

vein thrombosis and pulmonary embolism among others. Around 576,000 new cases of the most 

common thrombotic conditions, pulmonary embolism and deep vein thrombosis are detected 

each year in the USA.7,8
 Also, patients suffering from cancer are 3 times more likely to develop 

thrombotic disorders.9 Therefore, the choice of therapy for prevention of thrombotic disorders 

involves anti-coagulant agents. 

 The initiation of a procoagulant state is triggered when tissue factor (TF), an integral 

membrane protein that is present on the extravascular cell surfaces is exposed to peripheral blood 

cells and blood flow upon vascular damage. TF is expressed at high levels in cells surrounding 

the blood vessels such as vascular smooth muscle cells and also in brain, kidney, lung, placenta 

and testis. Individuals deficient in TF have not been identified and TF-deficient mice die during 

embryonic development.10 Apart from injury, TF can also be in contact with blood in cases 

where the endothelium is activated by chemicals, inflammatory processes and cytokines.11 TF 

then forms a complex with circulating factor VIIa (FVIIa) to form the extrinsic factor Xase 

complex in the presence of calcium ions. In the absence of TF, FVIIa has negligible enzymatic 

activity, hence, the formation of this complex is essential to bring about the conversion of factors 

IX and X to their active forms, factor IXa (FIXa) and Xa (FXa), respectively. FXa thus generated 

is responsible for producing picomolar concentrations of thrombin from prothrombin. Thrombin 

in turn brings about activation of platelets and also converts FV and FVIII to their active forms, 

FVa and FVIIIa, respectively. 

 FVIIIa then forms a complex with FIXa to give the intrinsic Xase complex on membrane 

surfaces that are provided by the platelets and endothelial cells. This complex activates FX at 50-



 

 

3 

 

100-fold higher rate than the extrinsic Xase complex (TF-FVIIa). Meanwhile, the FVa generated 

forms the prothrombinase complex with FXa, which is considered to be a major activator of 

prothrombin. The product of this activation, thrombin activates FXIIIa, and together these 

catalyze the cleavage of fibrinogen to give stable polymeric fibrin. The ultimate result of the 

extrinsic pathway is the formation of an insoluble fibrin clot from soluble fibrinogen.
12

 

 

Figure 1: The coagulation cascade - Intrinsic and Extrinsic pathways 

 Another route for initiating coagulation is through the “contact activation” or 

intrinsic pathway (Figure 1). This occurs when FXII or Hageman factor is activated by 

negatively charged surfaces and in the presence of high molecular weight kininogen and plasma 

kallikrein. FXIIa is also said to be activated by constituents of subendothelial matrix such as 
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glycosaminoglycans, sulfatides, soluble polyanions and even glass and kaolin.13 Although 

activated by a number of substances, the exact mechanism of activation of FXII is uncertain.14 

Apart from the coagulation cascade, FXII is also involved in the complement system. Even 

though FXII was discovered in 1950s its role in these two systems remains elusive.15. The next 

step in the intrinsic pathway after activation of FXII involves formation of FXIa from FXI, 

which in turn activates FIX to give FIXa. 

There are several entities that contribute to regulating the entire process of coagulation; 

one of them being tissue factor pathway inibitor (TFPI). The extrinsic Xase complex after 

generating a small amount of FXa is known to be inhibited by TFPI. Further generation of FXa is 

brought about by FIX along with its cofactor FVIII. FXa is crucial for maintaining hemostasis 

and it is seen that patients deficient in FIX and FVIII suffer from severe bleeding disorders 

showing that the presence of this complex is required for sustaining the clot through FXa 

formation. 

A glance at the intrinsic pathway shows a linear sequence of zymogen activations, which 

ultimately results in the formation of activated FIX. Initially, FXIIa was thought to be the sole 

activator of FXI. However, emergence of studies showing that deficiency of FXII, HK and 

HMWK resulted in no bleeding abnormalities suggested that these initial factors were perhaps 

not of utmost importance in hemostasis. In contrast, deficiencies of FVIII, FIX and FXI result in 

bleeding disorders highlighting their importance in the formation of a blood clot. The fact that 

deficiency of FXI, and not FXII, PK or HMWK, caused bleeding (injury-related) led to the belief 

that perhaps FXI was activated by other means. It has also been shown that thrombin generated 

in the early stages of coagulation by the extrinsic Xase complex activates FXI, thereby ensuring 



 

 

5 

 

a constant supply of thrombin in a positive feedback loop. This activation is could take place in 

the presence of highly negatively charged surfaces such as dextran sulfate.13, 16, 17 Also, the 

different bleeding phenotypes caused by deficiency of FIX and FXI shows that these two 

enzymes are also activated by others. Interestingly, the plasma of mammals such as whales and 

porpoises does not contain FXII, indicating that FXI activation by FXII is not essential for fibrin 

formation. These observations show that the intrinsic pathway is not linear but instead quite 

complicated.18 

1.2 Traditional anti-coagulant agents 

 The drugs that have gained tremendous popularity as traditional anti-coagulant therapy 

are unfractionated heparin (UFH), low molecular weight heparin (LMWH) and warfarin. 

Heparin 

 The word heparin is coined from the Greek word ‘hepar’ meaning liver, which was the 

tissue from which heparin was first isolated. Previously known as cephalin, this drug was first 

described in 1916 but became commercially available in 1940s.
18

 Heparin (Figure 2)
8
 is a highly 

sulfated heterogeneous and naturally occurring glycosaminoglycan (GAG) with molecular 

weight between 3000 -30,000 and an average molecular weight of ~15,000. 
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Figure 2: Heparin and its individual monosaccharide units 

 Antithrombin (AT) acts as an anti-coagulant by inhibiting several coagulation factors, 

primarily the coagulation factors Xa and thrombin (FIIa) thereby reducing clot formation. 

However, the rate of inhibition of these enzymes by AT is relatively slow. Heparin acts 

indirectly by binding to AT to give a heparin-AT complex, which shows a high affinity for 

thrombin and FXa resulting in a 500-4,000 fold increase in rate of inhibition. Hence, heparin can 

be termed an indirect inhibitor of coagulation. Although anti-coagulant therapy with heparin is 

tremendously popular, it has several disadvantages. Binding to AT is dependent upon a specific 

pentasaccharide sequence in heparin, which is seen in only one-third of heparin molecules. 

Heparin is very difficult to dose and monitor due to its unpredictable and variable 

pharmacokinetic properties.
19,21

 Activated-partial thromboplastin time (aPTT), which serves as a 

test to measure dose effect is also found to be unreliable in this case. Apart from its anti-

coagulant effect, heparin tends to interact with a number of proteins and surfaces probably due to 
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the high negative charge it possesses. This could be a major reason for a reduced bioavailability 

(less than 30%) when administered subcutaneously. It also binds to platelet factor 4, which gives 

rise to heparin-induced thrombocytopenia (HIT) which is one of the most severe complications 

associated with heparin therapy.
21,22 

Low-Molecular Weight Heparin (LMWH) 

 LMWHs are highly sulfated GAGs with a molecular weight in the range of 3,000 – 

5,000. LMWHs (Figure 3)
8
 are approximately one-third the length of UFH and contain an 

average of 15 monosaccharides per chain. LMWHs are prepared from UFH by chemical or 

enzymatic depolymerization.
22

  

 

Figure 3: Structure of LMWHs Mr = 5000 Da 
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Figure 4: Pentasaccharide sequence and the negatively-charged groups (encircled) which 

are essential for activation and binding to antithrombin with high-affinity 

 Like UFH, LMWHs also bind to AT and thrombin because of the pentasaccharide 

sequence (Figure 4).
8
 However, inhibition of thrombin requires at least 13 saccharide units in 

addition to the pentasaccharide sequence for the formation of a ternary complex of AT, thrombin 

and UFH/LMWH. As a result, in comparison to UFH, LMWH has fewer chains of sufficient 

length, which can aid in inhibiting thrombin. LMWHs comparatively have predictable anti-

coagulant response because it has lesser propensity to bind to other proteins and surfaces. Due to 

different molecular weights and anionic character the effect of LMWHs and UFH is different, 

with the former having a bioavailability of more than 90% when administered subcutaneously. 

However, LMWH effect cannot be reversed by administration of protamine. Also the elimination 

of drug is by renal clearance and hence is not safe for patients suffering from renal 

insufficiency.
22

  

Warfarin 

 First introduced as a rat-poison, coumarin derivative warfarin (Figure 5) gained 

popularity as an anti-coagulant drug due to its high water solubility and oral bioavailability in 
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contrast to UFH and LMWH which required parenteral administration.
18

 It acts by reducing the 

synthesis of vitamin-K dependent coagulation factors II, VII, X, IX and anticoagulant protein C 

and S.  

 

Figure 5: Structure of oral anti-coagulant, Warfarin 

However, the major disadvantage of warfarin is its narrow therapeutic index and its 

tendency to interact with vitamin-K rich foods and other drugs. Also, warfarin is contraindicated 

in pregnancy as it causes bleeding and teratogenecity. Warfarin has a high tendency to cause 

bleeding and therefore in 2006 the FDA put a “black box” warning on the drug.
8 

Direct Thrombin Inhibitors (DTIs) 

 Hirudin, (Figure 6) which was isolated from the leech Hirudo medicinalis in 1884, is 

said to be the most potent direct inhibitor of thrombin with a Ki value of about 20 fM. However, 

hirudin possesses a major risk of bleeding episodes and has a very narrow therapeutic index. 

Apart from this, its high potency for thrombin gives rise to complexes which are very tightly 

bound and therefore irreversible. This poses a problem as there is no antidote available which 

can reverse the complexes that are formed. Hirudin also has immunogenic capabilities as it is a 

foreign peptide. To reduce the risks of bleeding associated with hirudin, other DTIs such as 
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bivalirudin (Figure 6) and argatroban were introduced. However, these still carried a significant 

risk of bleeding. Another disadvantage of DTIs is their poor oral bioavailability, which is due to 

the presence of cationic arginine, guanidine or amidine groups in these molecules.
8 

 
Figure 6

8
: Structures of hirudin and bivalirudin, DTIs 

Factor Xa Inhibitors 

 These are of two kinds, direct and indirect inhibitors. The direct FXa inhibitors include 

rivaroxaban (Figure 7), which is a selective, oral and competitive inhibitor. 

 

Figure 7
8
: Structure of rivaroxaban 
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Fondaparinux and idraparinux (Figure 8) are examples of indirect (AT dependent) factor 

Xa inhibitors and are synthetic analogs of the pentasaccharide sequence that is essential for the 

interaction of heparin with AT.
8,20

 

(a)

(b)  

Figure 8
8
: Structure of indirect Factor Xa inhibitors (a) Fondaparinux, (b) Idraparinux 

1.3 Emergence of FXIa as a target 

The disadvantages associated with the traditional anti-coagulant drugs mostly stem from 

the fact that these drugs target enzymes that are required for hemostasis. Targeting such enzymes 

is prone to adverse consequences. This has led to a growing need for newer drugs that work 

through safer targets. Such a target should have a distinguishing role in the processes of 

hemostasis as well as thrombosis. 

From the small molecule perspective, an ideal anti-coagulant would be the that reduces 

thrombosis without disturbing normal hemostasis of the system. Hence, targeting the enzymes of 
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the intrinsic pathway is gaining interest as these are said to play a major role in thrombus 

formation and a minor insignificant role in hemostasis. Of the intrinsic pathway enzymes, FXI 

and FXII emerged as attractive targets in anti-thrombotic therapy.23-26 However, as previously 

mentioned, the role of FXII remains elusive and its involvement in not only the coagulation 

system but also prekallikrein-kinin, fibrinolysis and complement system makes it an unsafe 

target due to the increased risks of adverse effects.27 

 In contrast to the other well-known haemophilias, deficiency of FXI (Haemophilia C) is 

found to be relatively mild and is found to be most prevalent in Ashkenazi Jews. Spontaneous 

bleeding or hemorrhaging is rare in patients with FXI deficiency, with bleeding occurring only 

after a surgery and in locations of high fibrinolytic activity such as oral cavity, nose, tonsils and 

urinary tract.
28,29

 Since the deficiency of FXI does not cause very severe bleeding disorders as 

are seen with deficiencies of other clotting factors, its appears relative safety as a target. 

In the revised model of blood coagulation, thrombin generated in small amounts in the 

early stages of coagulation ensures its generation by activating FXI. Hence, FXIa is responsible 

for rapidly generating thrombin required for maintaining the fibrin clot integrity.
13

 In order to 

study the effect of FXI deficiency on thrombin generation in vivo, several mice studies were 

conducted. In a particular study, an injury on the carotid artery was brought about by using FeCl3 

in both, wild-type and FXI deficient mice. Ferric chloride tends to injure the vascular 

endothelium, thereby exposing collagen to circulating blood. It was seen that the injury caused 

the formation of an occlusive thrombus within 5-14 mins in contrast to the FXI-deficient mice in 

which the blood flow was minimally restricted, the flow decreasing gradually over 60 mins to 

50-70% of the rate before injury. The effect of FXI deficiency on clot formation in mice was 
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found to be more severe than seen in mice deficient in FVII or FIX. Interestingly, the ability to 

form clots was restored in the FXI-deficient mice following injection of human FXI. It is also 

seen that FXI deficiency provides some level of protection against thrombus formation in the 

carotid artery of mice. In a similar FeCl3-induced injury study, the protective effect of FXI-

deficiency in mice against arterial thrombosis was compared with those achieved by 

administering heparin and aspirin. It was seen that FXI-deficiency achieved protection equivalent 

to those produced by a very high heparin dose (1000 units/kg) and aspirin (30 mg/kg).
30,31

 

Similar results were obtained in studies conducted in mice to determine effect of FXI-deficiency 

on FeCl3-induced vena cava thrombosis.
32

 In the baboon model, it was seen that FXI inhibition 

reduced thrombus growth rate, thrombo-occlusion and overall mass of the thrombus. Hence, this 

shows that FXI is a good target for antithrombotic therapy.
33

 Another study on the propagation of 

thrombus formation in atherosclerotic plaque concluded that FXI is not only involved in the 

thrombi but also contributes to its formation. Therefore, when FXI was inhibited with a 

monoclonal antibody, the thrombus growth was reduced but there was no significant change in 

the bleeding time.
34

 All these results show that inhibition of FXI could help in preventing 

thrombosis without the side effect of bleeding. 

FXI is said to play an essential role in thrombin generation and there is a large body of 

work which proves that this contribution is due to a feedback activation mechanism by thrombin 

and is independent of FXIIa.
35-37

 The thrombin generated by FXIa is said to be responsible for 

activating TAFI (thrombin-activatable fibrinolysis inhibitor) in a reaction that requires high 

concentrations of thrombin. TAFI is responsible for the down regulation of fibrinolysis by factor 
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XI.
38

 Hence, inhibiting FXIa might make the clot more prone to dissolution since fibrinolysis 

will not be hampered by TAFI.  

1.4 Structure and function of FXI 

FXI is a unique serine protease zymogen and differs from vitamin-K dependent proteases 

in being a dimer of identical subunits (Figure 9). It lacks a calcium binding Gla domain at the N-

terminus, which is a characteristic of the vitamin-K dependent proteases. Each FXI subunit 

consists of four Apple domains (A1, A2, A3 and A4) named from the heavy chain N-terminal 

and a trypsin-like catalytic domain (CD) at the C-terminus. Each apple domain consists of 90-91 

amino acids and are 23-34% identical among the domains. The two subunits of 80 kDa each are 

held together by an interchain disulfide bond at Cys
321

-Cys
321

and the residues Leu
284

, Ile
290

 and 

Tyr
329

 constitutes the hydrophobic core in the A4 domain and are said to be essential for dimer 

formation. Each apple domain is made up of 7 anti-parallel β strands cradle a single α-helix. The 

entire arrangement of the apple domains upon the catalytic domain is sometimes referred to as 

the “cup and saucer” arrangement.
39-41

 Like other serine proteases, FXIa has a catalytic triad 

which consists of His
413

, Asp
462

 and Ser 
557

.
42

 Activation of FXI is brought about by cleavage of 

the peptide bonds, Arg
369

-Ile
370

 by FXIIa and other studies have also shown that activation can 

be brought about by thrombin and by FXIa (autoactivation).
39

 FXI is also reported to interact 

with surfaces of activated platelets and this interaction is essential for activation of FXI. The 

residues on FXI which are said to play a role in this interaction are Arg
250

, Lys
255

, Phe
260

 and 

Gln
263

 which are found to be located on the apple-3 domain of FXI.
43
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(Figure 9 was generated using the software The PyMOL Molecular Graphics System, Version 

1.2r3pre, Schrödinger, LLC. PDB ID: 2F83) 

Catalytic triad

His413

Asp462

Ser557

Arg369-Ile370Arg369-Ile370

Cys321-Cys321

Catalytic triad

His413

Asp462

Ser557

A2

A1 A1

A3

A4

A2

A3

A4

CD CD

Figure 9: Factor XI showing apple domains (A1, A2, A3 and A4) and catalytic domains. 

The cleavage in each subunit during the activation process gives rise to a heavy chain 

made up of 369 amino acids and a light chain (catalytic domain) made up of 238 amino acids. 

Out of the four apple domains A1 is said to be essential for binding of HMWK. The natural 

substrate for FXIa is FIX, which is said to bind to exosites other than the active site on FXIa, 

which are otherwise not exposed in the inactive form, FXI. Studies have shown a FIX-binding 
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site on the A3 domain and a critical residue for activation of FIX is Arg
184

. In addition the A4 

domain is also said to bind FXIIa.
39 

 The crystal structure of the zymogen FXI purified from human plasma shows that the two 

saucers (apple domains) are inclined at an angle of 70° and gives rise to an inverted ‘V’ shape 

with the active sites pointing away. This structure revealed that the A2 domains of each subunit 

are spread apart while the A1 and A3 of adjacent domains are in close contact.
44 

1.5 Inhibitors of Factor XIa 

 Even though the newer drugs targeting specific enzymes (recent ones being thrombin and 

FXa) are better than traditional therapy, they still fail to overcome bleeding problems and have 

about the same efficacy-to-safety index as heparin and warfarin. The first crystal structure that 

was obtained of FXIa was with certain ecotin mutants. Ecotin is secreted by Escherichia coli and 

is a pan-serine protease protein inhibitor of 142 amino acids. A group of ecotin mutants were 

prepared and their crystal structures with a mutant FXIa were studied in order to understand the 

way in which a substrate could bind to FXIa.
45

 These results gave information that could prove 

to be important in drug design of potential FXIa inhibitors in the future. However, it was difficult 

to obtain a crystal structure of a small molecule active site inhibitor with wild-type FXIa. Finally, 

after making certain mutations on 4 residues on the surface of FXIa a crystal structure of FXIa 

with benzamidine was obtained. Benzamidine is a weak active site inhibitor with an IC50 of 100 

µM. Benzamidine is reported to bind at the S1 pocket when its amidine group forms a hydrogen 

bond with Asp
189

 and also the carbonyl oxygen of Gly
218

.
46 
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Another inhibitor of FXIa is clavatadine A. Out of ~39,000 biota extracts that were 

screened against FXIa, one showed inhibition of the enzyme with an IC50 of around 0.4 g/L. 

Fractionation of this interesting extract (obtained from marine sponge Suberea clavata) led to the 

discovery of two bromophenol alkaloids, which were named as clavatadine A (1) and (2) whose 

structures are shown in figure 10. These did not inhibit FIXa and are reported to be selective, 

irreversible inhibitors of FXIa. The IC50s of the compounds (1) and (2) for FXIa were found to 

be 1.3 and 27 µM respectively.
47 

 

 

 

 

 The carbamate moiety of (1) is reported to form a covalent bond with the active site 

serine residue while the guanidine binds to Asp
189

 and Gly
218

. A mutant of FXIa was prepared at 

residues S
434

A, K
437

A, T
475

A and C
482

S in order to improve crystallizability.
47

 The crystal 

structure of clavatadine A (1) with FXIa is shown (Figure 11) and shows the carbamate side 

chain of 1 forming a covalent bond with the active site Ser
195

.  

Figure 10: Clavatadine A (1) and (2)
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Figure 11: Crystal structure of clavatadine A (1) with FXIa. 

(Figure adapted from- Buchanan, M. S.; Carroll, A. R.; Wessling, D.; Jobling, M.; Avery, V. M.; 

Davis, R. A.; Feng, Y.; Xue, Y.; O¨ster, L.; Fex, T.; Deinum, J.; Hooper, J. N. A.; Quinn, R. J. 

Clavatadine A, A Natural Product with Selective Recognition and Irreversible Inhibition of 

Factor XIa. J. Med. Chem. 2008, 51, 3583-3587.) 

A structure activity study was carried out for FXIa by screening derivatives of aryl 

boronic acid inhibitors for FXIa. Simple or substituted aryl boronic acids are said to weakly 

inhibit certain serine proteases. For screening, commercially available aryl boronic acid 

derivatives were selected which had a substituent which could act as a hydrogen bond donor. 

This would help in forming an electrostatic interaction with Asp
189

 of the FXIa active site. 

Clavatadine A (1) and (2) did inhibit FXIa with an IC50 of 77.3 and 120 µM respectively. 

Clavatadine A (1) was chosen for further structure activity relationship studies. In order to 
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improve the interaction of the molecule with the Asp
189

 residue at the active site, a guanidinium 

group was introduced instead of the methylene amine and the linker between the guanidium and 

phenyl ring were varied in length in order to explore the effect on interaction with Ser
195

 and also 

with Asp
189

. The compounds were synthesized in the form of borate pinacol esters. 

 

 

Figure 12: Aryl boronic acid derivatives 

 The interaction of these molecules (Figure 12) with the active site was studied by 

obtaining the crystal structures of these molecules in a mutant FXIa, rhaFXI370-607-S434A, 

T475A, C482S and K437. The crystal structures of these molecules showed that the boron atom 

formed a covalent bond with the active site Ser
195

 residue and was tetracoordinate. Also, the 

guanidine group in these molecules was found to interact with aspartate 189 which is present in 

the S1 pocket. The binding of these three molecules was quite similar except for the phenyl ring 
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of compound 12. This led to the inference that modification of substitution at the meta position 

on the phenyl ring could help in reaching a small pocket on the S1 site of FXIa. This gave rise to 

synthesis of a molecule 7 with a chiral center which had an IC50 of 1.4 µM and a greater 

selectivity against trypsin compared to its precursor, compound 5.  

 

Figure 13: Electron-density maps B, C and D for FXIa and compounds 10, 12 and 13 

respectively 
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(Figure adapted from- Lazarova, T. I.; Jin, L.; Rynkiewicz, M.; Gorga, J. C.; Bibbins, F.; Meyers, H. 

V.; Babine, R.; Strickler, J. Synthesis and in vitro biological evaluation of aryl boronic acids as potential 

inhibitors of factor XIa. Bioorg. Med. Chem. Lett. 2006, 16, 5022-5027.) 

Although the crystal structure of this molecule with FXIa (Figure 13) showed similar 

interactions, both molecules 10 and 13 bound in a different manner. Compound 13 exhibited 

additional interactions with lysine 192 and leucine 146. These interactions especially the one 

between leucine 146 and the pyridyl group of 13 could be responsible for its greater selectivity as 

compared to compound 10.
48

 Apart from the above mentioned compounds, there have also been 

certain peptidomimetic and non-basic synthetic inhibitors that were tested against FXIa.
49,50 

1.6 Rationale 

 It has been reported that the inhibition of FXIa can be brought about by highly charged 

polyanions such as dextran sulfate, heparin and hypersulfated heparin. It was also shown that the 

inhibition was brought about not by binding to the active site, but instead at an allosteric site.
51 

Drugs that usually target the enzymes of the coagulation cascade tend to rely on a saccharide 

scaffold with the hope that these would act as heparin mimetics. However, the problems 

associated with saccharide based drugs are numerous such as poor bioavailability and undesired 

side effects due to the interaction of these highly charged molecules with other proteins or cells. 

Another approach to designing new drugs is to synthesize non-saccharide based sulfated small 

molecules. Such molecules are reported to have more advantages such as a more hydrophobic 

nature which could contribute to better oral bioavailability, greater synthetic accessibility and 

most importantly, specificity.
52

 Initially, a number of molecules were synthesized successfully in 
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our laboratory to function as allosteric modulators of antithrombin. Over the years, our 

laboratory has generated a library of small sulfated non-saccharide based molecules.
52 

Although as previously described, a number of active site inhibitors have been reported, 

there have been no reported allosteric inhibitors of FXIa. The major aim of this project was to 

screen our library of molecules against FXIa with the hope of finding potential allosteric 

inhibitors for this particular enzyme. One of the major advantages of targeting an allosteric site is 

the selectivity achieved. It is observed that the active site pockets or substrate binding regions are 

usually conserved in the proteases that belong to a particular family. As a result, among these 

proteins it is difficult to find an active site inhibitor that could exhibit selectivity for any one 

particular protein. Hence, targeting an allosteric site will most probably provide better selectivity 

as compared to that for an active site.
53-55

 Another advantage is the effect produced by allosteric 

modulators reaches saturation and hence once the sites are occupied no more effect can be 

observed.
56,57 

In the case of FXIa, heparin is reported to bind to sites which are rich in positively 

charged amino acid residues such as arginine and lysine (discussed in detail in Chapter 3). 

Hence, the presence of varying numbers of the sulfate groups on different locations on a small 

scaffold could perhaps mimic the ionic interaction that heparin has with FXIa. After 

identification of the potential allosteric inhibitors, further studies would involve characterizing 

the regions where these interact with FXIa, possibly by comparing it with known inhibitors such 

as heparin. 
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Chapter 2: Discovery of small sulfated molecules as FXIa inhibitors 

2.1 Aim 

The main aim at the start of the project was to screen a mini-library of small sulfated 

molecules in order to find small-molecule allosteric inhibitors of FXIa which may act in a 

fashion similar to those of the polyanions. This involved the screening of a total of 26 small 

molecules and determination of the IC50 for those molecules which showed reasonable 

inhibition. Upon finding the molecules of interest, experiments were conducted to determine 

whether the inhibition of the enzyme was due to an allosteric mechanism or competitive binding. 

Prior to screening, the Km of the substrate for FXIa was determined by testing in three different 

buffers. 

2.2 Determination of Km of substrate S-2366 for FXIa. 

2.2.1 Materials: 

 The enzyme human factor XIa was purchased from Haematologic Technologies (Essex 

Junction, VT) and the substrate S-2366 (L-pyroglutamyl-L-prolyl-L-arginine-p-nitroaniline) was 

purchased from Diapharma (West Chester, OH). All the other chemicals were purchased either 

from Sigma Aldrich (St.Louis, MO) or from Fisher Scientific (Pittsburgh, PA) and were of 

biochemical grade.  
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2.2.2 Procedure and results: 

The Michaelis-Menten constant Km was determined at varying concentrations of S-2366 

at constant concentration of FXIa. For the experiment the aliquots of the stock enzyme were 

made by using a buffer containing 150 mM NaCl, 50 mM Tris, 0.02% PEG 8000 and 0.1% 

Tween-80 at pH 7.4. The final concentration of the enzyme was 0.765 nM and was constant 

throughout the experiment. The concentration of the substrate varied from 1.6 mM to 0.009 mM. 

The three buffers that were tested were, 

Buffer A: 0.09M Tris, 0.09M NaCl, 0.1% PEG-8000, 0.02% Tween-80 at pH=8.3 

Buffer B: 0.09M Tris, 0.09M NaCl, 0.1% PEG-8000, 0.02% Tween-80 at pH=7.4 

Buffer C: 0.05M Tris, 0.15M NaCl, 0.1% PEG-8000, 0.02% Tween-80 at pH=7.4  

Each individual well contained 90 µL of buffer (maintained at 37°C) and 5 µL of enzyme 

FXIa. After incubating for 10 mins at 37°C in the microplate reader (Molecular Devices-

FlexStation3), the substrate was added and the absorbance at 405 nm was measured immediately 

to determine the initial velocity of p-nitroaniline released. The velocities of the reactions were 

monitored on the basis of the absorbance of p-nitroaniline generated from substrate cleavage by 

FXIa, in individual wells. The values were obtained by using the software, SoftMax Pro 

Microplate Data Acquisition and Analysis software and the results were plotted using the 

software SigmaPlot (Systat Software, San Jose, CA)  and the best fit was obtained using the 

formula,  
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For all the three buffers, the values of initial velocity were plotted against the concentration of 

the substrate as can be seen in figures 14, 15 and 16. 

 

Figure 14: Determination of Km with Buffer A 
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Figure 15: Determination of Km with Buffer B 

 

Figure 16: Determination of Km with Buffer C 
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Buffer Km (µM) Vmax 

A 880 ± 0 114 ± 14 

B 382 ± 0 74 ± 2 

C 348± 0 70.3 ± 0.6 

Table 1: Results of Michaelis-Menten kinetics for compounds 13 and 24 

On comparing the values of Km for the three buffers (Table 1), it was seen that buffer C 

produced a reasonable Vmax with a Km that was the lowest compared to those of buffer A and B. 

Based on these results it was decided that buffer C would be used for screening of the library as 

well as other future experiments. 
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2.3 Discovery of FXIa inhibitors: 

 

 The mini-library consisted of small molecules of different functionalities and scaffolds 

and the screening was carried out by using a 96-well microplate. The compounds consisting of 

different scaffolds are given in tables 2, 3, 4, 5 and 6. The syntheses of these compounds have 

been reported by our group.
58-60

 The compounds having a concentration of at least 300 µM (with 

water as solvent) were incubated with the 0.765 nM enzyme for 10 minutes at 37°C. As 

mentioned previously, buffer C was used for the screening and its temperature was maintained 

throughout at 37°C. For each column of the microplate, 2 wells were kept as blanks in which 

solvent (water) was added instead of an inhibitor. The remaining 6 wells of each column 

contained a different inhibitor. After the incubation, the substrate S-2366 was added such that the 

final substrate concentration in each well was 330 µM. The initial rate of the substrate cleavage 

by FXIa was determined by monitoring the change in absorbance of p-nitroaniline at 405 nm by 

using a microplate reader and FlexStation III (Molecular Devices, Sunnyvale, CA). 

 The compounds were then filtered in terms of the % residual activity of the enzyme and 

which is given by, 

 

 A cut-off of 50% was applied and any inhibitor which exhibited a % residual activity of 

less than that was further analyzed to determine their IC50 for FXIa.  
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Compound 

Number 

R
1
 R

2
 

1 CH3 

 

2 CH3 

 

3 CH3 

 

4  

 

5 
 

 

6 

 
 

Table 2: Sulfated benzofuran monomers 
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Compound 

Number 

R
1
 R

2
 

7 CH3 

 
8 CH3 

 
9 CH3 

 

10 CH3 

 
11 CH3 

 
12 CH3 

 
13  

 
Table 3: Sulfated benzofuran dimers 
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Compound 

Number 

R
1
 R

2
 R

3
 R

4
 R

5
 R

6
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H H OSO3
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21 
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H OSO3
-
 OSO3

-
 H H 

Table 4: Sulfated tetrahydroisoquinoline scaffold 

Compound 

Number

R1 R2

23

24

25

26

27

 

Table 5: Sulfated benzofuran trimers 
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The % residual activity for these molecules was determined and the results obtained can 

be seen in figure 17. 

Figure 17: % Residual activity of all the screened molecules of different scaffolds 

 From figure 17 it can be seen that compounds 7, 13, 23, 24, 25, 27, 28 and 29 exhibited 

inhibition against FXIa and had a % residual activity of less than 50%. For further analysis and 

IC50 determination compound 13, a benzofuran dimer and 24, a benzofuran trimer were chosen 

Table 6: Other sulfated small-molecules 
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due to their availability and to serve as a representative of other active molecules of the same 

scaffold. Compound 13 was chosen instead of 7 because the former had better potency and 

similarly compound 24 was chosen from the series of trimers as it was the most potent. The 

information from analyses of these representatives could perhaps serve in understanding the 

behavior of their respective classes.  

2.4 Determination of IC50 of compounds 24 and 13 

 The IC50s of compounds 24 and 13 were determined by making serial dilutions of the 

inhibitors such that each consecutive well would have a concentration which is 5/6
th

 of the 

previous concentration. Two wells of each row of a 96-well plate were kept as blanks by adding 

water instead of the inhibitor. The buffer used for these experiments was buffer C and the 

temperature throughout the experiment was maintained at 37°C. To 85 µL of the buffer, 5 µL of 

the inhibitor and 5 µL of enzyme (final concentration in each well was 0.765nM) were added. 

The mixture was then incubated for 10mins followed by addition of 5µL of substrate (final 

concentration being 345µM). The initial rate of p-nitroaniline formed was determined by 

monitoring the absorbance at 405nm in the form of the slope of the reaction. The % residual 

activity for these compounds was determined with respect to the blanks. A plot of the % residual 

activity versus the log of concentration of the inhibitor was made and fitted using the equation 

for IC50, 

HSICI

OM

O
O

YY
YY

)log](log[ 50101







 

 The inhibition profiles of compounds 13 and 24 are given in figure 18,  



 

 

35 

 

0

20

40

60

80

100

-7.2 -6.2 -5.2 -4.2

%
 R

es
id

u
a

l A
ct

iv
it

y

[Inhibitor, Molar]

Compound 13

Compound 24

 

Figure 18: IC50 profiles for compounds 13 and 24 against FXIa 

 The IC50s of compounds 13 and 24 are 10.3 ± 0.7 µM and 0.69 ± 0.03 µM.  

2.5 Determination of KD of compounds 13 and 24 for FXIa 

 The KD of compounds 13 and 24 were determined by using FXIa labeled with 

Fluorescein-EGR. 

2.5.1 Materials:  

Human FXIa tagged with FEGR at the active site was purchased from Haematologic 

Technologies Inc. (Essex Junction, VT). All other chemicals and reagents were purchased either 

from Sigma Aldrich (St.Louis, MO) or from Fisher Scientific (Pittsburgh, PA) and were of 

biochemical grade.  
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2.5.2 Procedure:  

 The final concentration of the enzyme FXIa-FEGR in the micro-cuvette was 74 nM. The 

change in fluorescence of FXIa-FEGR was measured in the presence of increasing 

concentrations of the inhibitor (Compound 24 or 13). A temperature of 37°C was maintained 

throughout the experiment and the slit widths of both emission and excitation were 1mm apart. 

For the experiment, a semi-micro quartz cuvette was used and with 2 mm and 10 mm path length 

on the excitation and emission side, respectively, and containing 250 µL total volume was used. 

The buffer used for this experiment was Buffer C (150mM NaCl, 50mM Tris, 0.1% PEG 8000 at 

pH = 7.4). The excitation and emission spectra were set at 490nm and 522nm respectively.  

2.5.3Result:
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Figure 19: Determination of KD of compounds 24 and 13 for FXIa-FEGR 

The KD of compounds 24 and 13 (Figure 19) for FXIa-FEGR were calculated using SigmaPlot 

and the equation,  
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Q = [E] + [I] + KD 

The KD determined for compound 24 and 13 are 1.22 ± 0.16 µM and 4.86 ± 0.62 µM 

respectively.  

2.6 Detecting “promiscuous inhibitors” 

 A major problem in screening several inhibitors of different scaffolds against a biological 

target is the development of false positives. Such “inhibitors” bring about inhibition by forming 

colloidal aggregates, which takes place through “self-association of the organic molecules in the 

aqueous solution”.
61

 These aggregates are reported to be hundreds of nanometer in diameter and 

are reported to sequester the protein thereby giving the false impression that it is inhibiting it. 

These aggregates are thought to act by either getting absorbed on the surfaces of the enzyme or 

by enveloping the enzyme within themselves.
61-63 

 Such “promiscuous” compounds which form aggregates in solution are highly sensitive 

to non-ionic detergents. Adding detergent to the assay buffer reduces the aggregability of 

molecules, which eliminates inhibition. Detergents in the concentrations of 0.01-0.1% cause 

disruption of aggregates (if formed) and also prevent interaction of aggregates with the 

enzyme.
64-65

 In such a way, a non-ionic detergent differentiates inhibitors from false positives. In 

order to determine whether compounds 13 and 24 inhibited in a non-specific way, their 

inhibition profiles were determined in buffers having varying concentrations of the detergent, 

Tween-80. These profiles were then compared to the profile obtained in the absence of a 

detergent. Molecules which inhibit an enzyme in the absence of a detergent but not in its 

presence are most probably undergoing aggregate formation. 
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2.7 Inhibitory profiles in different concentrations of Tween-80 

2.7.1 Materials: 

 The enzyme human FXIa was purchased from Haematologic Technologies (Essex 

Junction, VT) and the substrate S-2366 (L-pyroglutamyl-L-prolyl-L-arginine-p-nitroaniline) was 

purchased from Diapharma (West Chester, OH). All the other chemicals were purchased either 

from Sigma Aldrich (St.Louis, MO) or from Fisher Scientific (Pittsburgh, PA) and were of 

biochemical grade.  

2.7.2Procedure: 

 The IC50 of compounds 13 and 24 were determined in a similar manner as the one 

mentioned before. The buffer used for the experiment was buffer C which contained 150 mM 

NaCl, 50 mM Tris, 0.1% PEG-8000 and 0.02% Tween-80 at pH=7.4. In addition to this buffer, 

four other similar buffers were prepared differing only in their concentration of Tween-80 

(absence, 0.05%, 0.1% and 0.5%). The plots of % residual activity against the log of 

concentration of the inhibitors are shown in figures 20 and 21. 
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Figure 20: IC50 profiles of compound 24 in presence of varying concentrations of Tween-80 

in buffer 
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Figure 21: IC50 profiles of compound 13 in presence of varying concentrations of Tween-80 

in buffer. 
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2.7.3 Results: 

Percentage of Tween-80 Compound 24 (µM) Compound 13 (µM) 

0 0.5 ± 0.04 28.1 ± 2 

0.02 6.7 ± 0.03 109.3 ± 2.4 

0.05 10.6 ± 0.3 342.3 ± 16 

0.1 18.6 ± 1.0 477.2 ± 23 

0.5 31.7 ± 0.2 >1mM 

Table 7: IC50s of compounds 24 and 13 for FXIa in increasing concentrations of Tween-80 

It has been reported that any compound which acts as an inhibitor in the absence but not 

presence of detergent is most probably a promiscuous or aggregate-based inhibitor.
65

 Also, the 

inhibitory action of such compounds is found to be completely destroyed in the presence of a 

detergent and such a property is characteristic of inhibition by aggregate formation. Upon 

increasing the detergent concentrations the results obtained (Table 7) indicate that although there 

is a change in the IC50 of compound 13 and 24, the compounds retained their inhibitory action at 

a Tween-80 concentration as high as 0.1 – 0.5%. The IC50 of compound 13 in the absence of 

Tween-80 in these experiments was 28.11 µM as opposed to the IC50 given previously for the 

same compound (10.34 µM). These compounds are sensitive to moisture and hence there is a 

possibility that frequent temperature changes (from storage at -20°C to room temperature) for the 

solid compound might have lead to a compromised inhibitory action against FXIa. However, the 

detergent studies were performed on the same day and hence on a comparative basis (absence 

and presence of Tween-80), a gradual increase in IC50 upon increase in concentration of Tween-
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80 is observed. A new batch of compound 13 was synthesized and the IC50 recorded for this new 

batch was similar to the old batch (~10 µM). 

 Detergents at low concentrations are said to activate certain enzymes but when present in 

high concentrations are found to reduce enzyme activity. It has also been reported that high 

concentrations of detergents are found to reduce the inhibitory activities of certain inhibitors. 

This loss in activity is attributed to the formation of detergent micelles.
66

 These also could be the 

reasons for the increase in IC50 observed. Apart from this, the inhibitory activity of these 

compounds did not completely disappear even in the presence of very high concentrations of 

Tween-80. As a result, the possibility of inhibition by non-specific or promiscuous means was 

ruled out.  
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Chapter 3: Biophysical Characterization 

3.1 Determining the type of inhibition by Michaelis-Menten kinetics 

 Although FXIa was found to be inhibited by compounds 13 and 24, whether inhibition 

was due to binding to active site of the enzyme or an allosteric site was not known. A means of 

determining this would be to compare the Vmax and Km of the FXIa-catalyzed substrate 

hydrolysis as a function of substrate concentrations for different concentrations of inhibitor. 

These values were then compared to the Vmax and Km in the absence of the inhibitor.  

3.1.1 Materials: 

 Human Factor XIa was purchased from Haematologic Technologies Inc. (Essex Junction, 

VT). The chromogenic substrate L-pyroglutamyl-L-prolyl-L-arginyl-p-nitroaniline (S-2366) was 

purchased from DiaPharma (West Chester, OH). All the other materials or chemicals were of 

biochemical grade and purchased either from Sigma Aldrich (St.Louis, MO) or from Fisher 

Scientific (Pittsburgh, PA). 

3.1.2 Procedure: 

 The buffer used for these experiments consisted of 150mM NaCl, 50mM Tris, 0.1% PEG 

8000 at a pH = 7.4 and the temperature throughout the experiment was maintained at 37°C. For 

compound 13, three different concentrations (10 µM, 5 µM and 7.25 µM) and similarly for 

compound 24 four different concentrations were used (150 nM, 300 nM, 750 nM and 900 nM). 

The initial rate of substrate hydrolysis by FXIa was measured at 405nm using the microplate 

reader, FlexStation III (Molecular Devices). The Km and Vmax values obtained for each 
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concentration of the inhibitors is given in tables 8 and 9. The rate of substrate hydrolysis by the 

enzyme in the absence of the inhibitors was also determined. (Figure 22 and 23) 
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Figure 22: Michaelis-Menten kinetics of compound 24 
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Figure 23: Michaelis-Menten kinetics of compound 13 
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3.1.3 Conclusions drawn from Michaelis-Menten kinetics 

The values of Km and Vmax were obtained by fitting the data obtained to the Michaelis-

Menten equation and are given in tables 8 and 9.  

 

[Compound 24] Vmax Km (mM)

0 nM 77.4 ± 1.7 0.26 ± 0.02

150 nM 65.2 ± 6.3 0.60 ±0.13

300 nM 53 ± 5 0.64 ± 0.13

750 nM 45.5 ± 5.6 0.64 ± 0.04

900 nM 14.2 ± 2.2 0.38 ± 0.15

 

Table 8: Km and Vmax at different concentrations of compound 24 

[Compound 13] Vmax Km (mM)

0 µM 43.1 ± 0.6 0.25 ± 0.01

5 µM 37.4 ± 1.4 0.23 ± 0.02

7.25 µM 30.7 ± 0.6 0.25 ± 0.01

10 µM 20.3 ± 1.2 0.31 ± 0.04

 

Table 9: Km and Vmax at different concentrations of compound 13 
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At different concentrations of both 24 and 13, it can be seen that there is a change in the 

Vmax (decrease with increasing inhibitor concentration) of the FXIa-catalyzed substrate 

hydrolysis while there seems to be no significant change in the Km. Such observations in the Km 

and Vmax are a characteristic of non-competitive inhibition. Hence, from these results it can be 

concluded that 13 and 24 are inhibiting FXIa by binding to a site other than the active site. In 

order words, they are inhibiting FXIa by binding to an allosteric site.  

3.2 Fluorescence spectroscopy for compounds 13 and 24 with FXIa-FEGR 

The Michaelis-Menten kinetics study showed that the compounds 13 and 24 were 

perhaps inhibiting FXIa through an allosteric mechanism. To further assess whether inhibitor 24 

and 13 were indeed binding at a site other than the active site, we resorted to fluorescence-based 

detection of conformational change in the active site. A fluorophore, Fluorescein-EGR (FEGR) -

labeled at the active site of FXIa was purchased from Haematologic Technologies. Fluorescein 

(Figure 24) is a well-established fluorophore that is particularly sensitive to changes in 

electrostatics of the area adjacent to its location and serves as an excellent probe for 

conformational changes upon ligand binding. 

 

Figure 24: Structure of succinimidyl ester linked fluorescein 
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 Since the inhibitors are proposed to bind at an allosteric site, the FEGR label was 

introduced at the active site of the enzyme by reacting FXIa with Fluorescein-Glu-Gly-Arg-

chloromethylketone (FEGRck). Active serine proteases are usually tagged with a fluorescent 

probe by incubating the protease with FEGRck for 2hrs at room temperature.
67,68

 The protein 

aliquots are then analyzed using SDS-PAGE. When FXIa is treated with FEGRck, the methylene 

group reacts with the active site histidine residue which displaces the chloride and ultimately the 

enzyme is tagged by formation of a covalent bond.
67

 By tagging the enzyme in such a manner, its 

catalytic activity is inhibited and it is possible to study the molecular changes that might be 

brought about at the active site due to allosteric inhibitors. If the binding of the compound to the 

allosteric site is bringing about a conformational change in the active site of the enzyme then 

there would be a change in the fluorescence (quantum yield or EM) of FEGR. 

The excitation and emission wavelength of FEGR is 490 and 520 nm respectively. In 

fluorescence experiments there is a possibility of interference in the measurements due to other 

components that are present in the mixture. This can interfere with the actual changes in 

fluorescence of FEGR giving rise to inaccurate results which are undesirable. In order to 

eliminate the possibility of interference caused by the inhibitors, their absorption spectra were 

determined.  

3.2.1 Materials 

The human FXIa labeled with FEGR, referred to as FXIa-FEGR, was purchased from 

Haematologic Technologies (Essex Junction, VT). The chromogenic substrate L-pyroglutamyl-

L-prolyl-L-arginyl-p-nitroaniline (S-2366) was purchased from DiaPharma (West Chester, OH). 
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All the other materials or chemicals were of biochemical grade and purchased either from Sigma 

Aldrich (St.Louis, MO) or from Fisher Scientific (Pittsburgh, PA). The absorption spectra were 

recorded by using a Shimadzu UV/Vis Spectrophotometer using a semi-micro quartz cuvette and 

the buffer used was Buffer C.  

3.2.2 Effect of compound 24 binding to FXIa-FEGR 

 For compound 24 the absorption spectrum (Figure 25) was recorded prior to the 

fluorescence experiments. 

 

Figure 25: Absorption spectra for compound 24 

The fluorescence emission spectra of FXIa-FEGR and appropriate controls were 

measured on a Photon Technology International (Birmingham, NJ) spectrofluorometer at a 

constant temperature of 37°C with slit width for excitation and emission channels set to 1 mm. 

The concentrations of FXIa-FEGR and compound 24 were 73.8 nM and 8 µM, respectively. A 
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semi-micro quartz cuvette with 2 mm and 10 mm path length on the excitation and emission 

side, respectively, and containing 250 µL total volume was used. A Tris-HCl buffer, pH 7.4, 

containing 50 mM Tris, 150 mM NaCl, and 0.1% PEG 8000 was used for measurements. The 

excitation wavelength was set at 480 nm and the emission spectrum was collected from 500 – 

600 nm (Figure 26). 
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Figure 26: Emission scan of FXIa-FEGR in presence and absence of compound 24 

The absorption spectrum (Figure 25) of 24 shows that the compound does not absorb at 

either the excitation (490 nm) or the emission wavelength (520 nm) of the fluorophore FEGR 

used for these experiments. Hence the possibility that there could be interference in the 

fluorescence measurements by the inhibitor can be eliminated. Similar results were observed for 

compound 13. 

FXIa-FEGR 

 

 

FXIa-FEGR + 

Compound 24 
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The emission scan (Figure 26) shows that in the presence of compound 24 the 

fluorescence of FXIa-FEGR is reduced in comparison to FXIa-FEGR alone. At the MAX (522 

nm), presence of 8 µM compound 24, reduces the counts from 48,042 to 42,756 indicating a loss 

of ~11% in fluorescence intensity. This loss is substantial and suggestive of an inhibitor induced 

alteration in the electrostatics of the active site geometry, which contains the fluorophore. A 

plausible explanation for this decrease in fluorescence intensity is compound 24 induced a 

conformational change in the enzyme’s active site. This also implies that inhibitor 24 binds at a 

site remote from the active site to induce an allosteric conformational change. 

3.2.3 Effect of compound 13 binding to FXIa-FEGR 

 The absorption spectrum for 13 was recorded in a similar manner as that mentioned for 

24 and is given in figure 27. The buffer used was buffer C. 

 Also, the emission scan of FXIa-FEGR was measured in the absence and presence of 13 

(Figure 28). The concentrations of 13 and FXIa-FEGR were 120 µM and 74 nM, respectively. 

The slit width for both excitation and emission was set at 1mm and a temperature of 37°C was 

maintained throughout the experiment. The emission scan shows a drastic decrease in the 

fluorescence counts of FXIa-FEGR in presence of 13 as compared to the fluorescence in its 

absence. This effect seems to be similar to the one seen with compound 24. However, when the 

inhibitor was added gradually in the semi-micro cuvette, a rise in the fluorescence was observed 

with increasing concentration. When the emission scan (ranging from 490-520 nm) of 13 was 

recorded using the PTI Spectrofluorometer, the compound did not exhibit any fluorescence. It is 

quite possible that the compound exhibited fluorescence upon binding to the enzyme.  
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Figure 27: Absorption spectrum for compound 13 
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Figure 28: Emission scan of Compound 13 (~120 µM) 

In the emission scan (Figure 28), it can be seen that the presence of the inhibitor 13 

causes a decrease in the fluorescence of FXIa-FEGR (MAX = 523nm) from 35001 counts to 

18957 counts, which is ~46% decrease. Since a high concentration of inhibitor could be 

FXIa-FEGR 

FXIa-FEGR + compound 

13 
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contributing to the fluorescence change, the concentration for the quenching experiment was 

reduced to 40 µM.  

3.3 Further studies to confirm allosteric inhibition 

To further assess the nature of the allosteric conformational change in the enzyme, 

fluorescence quenching studies were performed using collisional quenchers, acrylamide and 

sodium iodide. Fluorescence quenching studies attempt to identify differences in the response of 

two species, e.g., a fluorophore-labeled protein-ligand complex and a fluorophore-labeled protein 

alone, to collisional quenchers. If a conformational change in the protein is brought about by the 

presence of a ligand, the collisional quencher will sense an altered orientation of the fluorophore 

between the two species. Fluorescence quenching requires the quencher to achieve molecular 

contact with the excited state of fluorophore. Upon a successful contact, the fluorophore returns 

to the ground state without releasing a photon.
69 

Thus, these studies can differentiate the 

accessibility of the fluorophore to the quencher in ligand bound and unbound states.  

 Fluorescence quenching has been utilized a number of times to monitor the changes that 

occur in protein conformation which could occur due to their environment or components of the 

environment (such as inhibitors) with which they interact.
69-71

 Most of the studies involve 

quenching of tryptophan residue(s) in single or multiple-tryptophan containing proteins and the 

quenchers used frequently are acrylamide and iodide.
72

 Acrylamide is a polar uncharged 

molecule which can enter the interiors of the protein and hence can quench fluorescence of 

hidden Trp residues which are otherwise inaccessible to a larger charged species such as iodide. 

Fractions of bovine lens crystallins, trypsin, RNase-T 1 and cytochrome c are some of the 
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proteins that have been studied using quenching.
72-74

 Other quenchers used are succinimide, 

oxygen, pyridine and hydrogen peroxide. The fluorophore, fluorescein tagged to the active site of 

proteins such as trypsin has been used for quenching experiments especially with iodide being 

used as a quencher.
75

 Iodide quenching studies using fluorescein have also been employed to 

understand the disposition of cobra α-toxin when it was bound to the surface of acetylcholine 

receptor as compared to when it was unbound. Here the fluorescein was tagged to a Lys
23

 residue 

of the toxin.
76

 Apart from this there are other proteins that have utilized the combination of 

fluorescein with iodide.
77-79

 In 2004, Sinha et al. reported an acrylamide quenching study with 

DEGR-FXIa in which a conformation change upon binding to certain polyanions was observed. 

In the presence of a polyanion such as dextran sulfate (Mr ~ 10000; DX10) there was an increase 

in the fluorescence (MAX) of DEGR-FXIa. Due to the possibility of interaction of iodide with 

the highly charged polyanionic molecules, acrylamide was chosen as the quencher. Quenching 

determined that the DEGR-FXIa bound to DX10 was more resistant to quenching than unbound 

DEGR-FXIa. This resistance was attributed to a conformation change that may have been 

brought about in DEGR-FXIa when bound to DX10.
80
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3.4 Quenching studies 

 All the chemicals and materials purchased are same as mentioned previously. 

3.4.1 Fluorescence quenching of FXIa-FEGR in presence and absence of compound 24 

 The concentrations of FXIa-FEGR and compound 24 were 74 nM and 8 µM, 

respectively, while the quenchers, acryamide and sodium iodide, were studied at multiple 

concentrations. The fluorescence measurements were carried out at a constant temperature of 

37°C using a quartz cuvette (excitation and emission path lengths of 2 mm and 10 mm, 

respectively) and with excitation and emission wavelengths set to 480 and 520 nm, respectively. 

The excitation and emission slit widths were set to 1 mm and 50 mM Tris-HCl buffer, pH 7.4, 

was used as described above. 

Results and conclusions for compound 24 

Gradual increase in the concentration of acrylamide from 0 to 0.4 M did not alter the emission of 

FXIa-FEGR alone (Figure 29).  
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Figure 29: Fluorescence quenching of FXIa with acrylamide in presence and absence of 

Compound 24 

 In the presence of 8 µM compound 24, the fluorescence at 520 nm decreases nearly 11%, 

as expected (see above). However, the presence of acrylamide (0  4 M) does not change this 

fluorescence appreciably.  

The absence of any effect of acrylamide is surprising and interesting. Acrylamide is a 

small hydrophobic molecule that most probably interacts with inner hydrophobic patches present 

on FXIa. It is also a dynamic quencher that finds difficulty contacting with the large fluorophore, 

FEGR, because it’s long-range quenching is limited.
79

 Thus, it is possible that a larger collisional 

quencher may be a better choice to identify subtle conformational changes brought about in 

FXIa.
81

  

 Another collisional quencher used in the literature is iodide ion as previously mentioned 

and we studied its ability to quench the FXIa-FEGR fluorescence. Figure 30 shows the profile of 
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fluorescence emission intensity in the presence of 0 to 0.175 M sodium iodide. Iodide ion is able 

to induce quenching in the fluorescence of both species, FXIa-FEGR alone and its complex with 

compound 24. Interestingly, the iodide concentration dependence for the species is significantly 

different suggesting that collisions between the quencher and the fluorophore are significantly 

different. Alternatively, the FXIa-FEGR bound to the inhibitor is more resistant to quenching 

than in the absence of the inhibitor. Also, when additional inhibitor 24 (~33 µM) is added to 

FXIa-FEGR quenched by iodide, the enzyme partially recovers its fluorescence. This supports 

the hypothesis that compound 24 is able to induce an allosteric conformational change in the 

active site of FXIa, which may be the reason for inhibition of its catalytic activity. Also, when a 

saturating concentration of the inhibitor is added to the free FXIa-FEGR quenched by sodium 

iodide, the enzyme seems to somewhat regain its fluorescence. 
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Figure 30: Changes and recovery of fluorescence in FXIa-FEGR by gradual addition of 

NaI in presence and absence of compound 24 
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Collisional quenching of fluorescence can be described by the Stern-Volmer equation 1, 

.........(1) 

In this, F0 and F are the fluorescence intensities of the fluorophore in the absence and 

presence of the quencher, kq is the bimolecular quenching constant, is the fluorophore lifetime 

in the absence of the quencher and Q is the concentration of the quencher. In this equation, KD, 

equal to , is the Stern-Volmer constant for dynamic quenching (not equilibrium dissociation 

constant).
14

 The modified Stern-Volmer equation, which is useful when the change in 

fluorescence is very small at low quencher concentrations is given by, 

 

 A plot of  versus  for the enzyme both, in presence and absence of the inhibitor, is 

called the Stern-Volmer plot.
69,80
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Figure 31: Stern-Volmer plot for FXIa-FEGR in absence and presence of compound 24 (8 and 40 

µM) 

 A characteristic feature of the Stern-Volmer plot is that assuming that the solution 

consists of only one species, the y-intercept of the plot will always be 1.0.
80

 As can be seen from 

Figure 31, the Stern-Volmer plot for FXIa—FEGR alone intersects the y-axis at 1.0. Likewise, 

the plot in the presence of a saturating concentration of 40 µM compound 24 also intersects at 

1.0. However, in the presence of 8 µM inhibitor, the intersect is ~1.8, which indicates the 

presence of two different species of fluorophores, free and bound FXIa-FEGR.  

 In conclusion, the resistance of compound 24 – FXIa to quenching by sodium iodide in 

comparison to FXIa alone could be due to a conformational change in the active site brought 

about by binding of the inhibitor. The induced conformational change most probably makes the 

fluorophore less accessible to the collisional quencher. Alternatively, the binding to the inhibitor 
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to FXIa results in a steric clash with the incoming iodide. This could arise from the inhibitor 

binding at a site near the active site that bears the FEGR label. 

3.4.2 Fluorescence quenching of FXIa-FEGR in absence and presence of compound 13. 

The quenching studies on compound 13 can be seen in figures 32 and 33. 
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Figure 32: Quenching of fluorescence by NaI in presence and absence of compound 13 
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Figure 23: Stern-Volmer plot for FXIa-FEGR in presence and absence of compound 13 

 The Stern-Volmer plot (Figure 33) shows that the plot in the presence of inhibitor 13 (40 

µM) intersects at ~2.2. This shows that there was more than 1 species of fluorophore present in 

the solution which could possibly be free FXIa-FEGR and compound 13 bound FXIa-FEGR. 

Perhaps the concentration of the inhibitor (40 µM) was not sufficient to saturate all the binding 

sites and hence the intercept on the y-axis is higher.  

Results and conclusions for compound 13 

 The Michaelis-Menten studies show that compound 13 is inhibiting FXIa by an allosteric 

mechanism. However, for the quenching experiments, the possibility of interference in 

fluorescence measurements due to the inhibitor has to be accounted for. Further investigation 

perhaps will help in achieving clarity regarding how binding of the inhibitor to FXIa could cause 

a conformational change in the active site of the enzyme.  
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Chapter 4: Competition with heparin 

4.1 Interaction of heparin with FXIa 

As the coagulation cascade enzymes prepare to form a stable clot upon injury, there is 

another set of interactions of certain proteins that intend to stop clot formation and therefore are 

anti-coagulant in nature. One such natural anti-coagulant is antithrombin (AT) which binds and 

inhibits thrombin. AT has a low affinity for thrombin however in the presence of heparin, a 

highly sulfated glycosaminoglycan (GAG), AT shows a very high affinity for thrombin. Apart 

from thrombin, heparin is reported to indirectly inhibit FXa, FXIIa and FXIa as the inhibition of 

these enzymes is dependent upon the presence of AT.
82,83

 

The regulation of FXIa is known to be carried out by several serine protease inhibitors or 

serpins. Earlier findings had reported that α1-antitrypsin as the major inhibitor of FXIa with 

antithrombin playing a significant role. However, recent findings have shown that in fact C1-

inhibitor plays an important role in regulating FXIa while α2-antiplasmin is said to make an 

essential contribution.
84,85

 Another serpin, AT is also found to inhibit FXIa and this inhibition is 

found to be potentiated in the presence of heparin amongst other GAGs.
86

 The mechanism of 

potentiation of inhibition is carried out when both FXIa and AT bind to the same molecule of 

heparin. AT is also known to undergo conformational changes upon binding to heparin which 

further contribute to potentiate inhibition.
26,88

 Heparin is also said to potentiate the inhibition of 

FXIa by the kunitz-type protease inhibitor, PNII in which both, FXIa and PNII bind to the same 

heparin molecule.
87,89

 Since heparin is reported to be involved not only in activation but also in 

inhibition of FXIa, there has to be an interaction between these two species. Heparin is known to 
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bind to the apple-3 domain of FIX bearing the heparin-binding consensus sequence, 
250

R-I-K-K-

S-K
255

. Mutagenesis studies by Zhao et al. involved replacement of basic amino acid residues, 

Lys
252

, Lys
253

 and Lys
255

 by Ala. By replacing Lys
253

 with Ala
253

 it was seen that inhibition of 

FXIa by AT reduced 4-fold compared to wild-type FXIa and smaller reductions were observed 

when residues Lys
252

 and Lys
255

 were replaced by Ala.
84

 Not only inhibition but also 

autoactivation was affected (reduced) more significantly when Lys
253

 was replaced with Ala and 

to a lesser extent when Lys
252

 and Lys
255

 were replaced with Ala. These studies showed that 

Lys
253

 is the most important amino acid required for binding to heparin while Lys
252

 and Lys
255

 

are also residues considered important for interactions with heparin. However, if this were the 

only heparin-binding site on FXIa then substitution of the lysine residues with Ala should result 

in a mutant which is incapable of binding to heparin. A reduction but not a complete loss in 

heparin-binding property of this mutant indicates the possibility of another heparin-binding site 

on FXIa.
84,90 

Following the above mentioned observation, the primary amino acid sequence of FXIa 

was scanned to detect if any of the amino acid sequences were homologous to the known 

heparin-binding sequences found in other proteins. Usually heparin binding sites are found to be 

rich in arginine and lysine amino acids and are commonly separated by one hydrophobic amino 

acid. Apart from this, amino acids leucine, tyrosine and tryptophan are also found commonly in 

the heparin-binding site. When FXIa was scanned for amino acid sequences homologous to the 

sequences to which heparin binds, the two residues that were found were, 
509

YRKLRDK
515

 and 

527
CQKRYRGHKITHKMIC

542
 located in the catalytic domain. The latter sequence is a 

carboxyterminal cysteine-constrained loop which is observed in other heparin-binding enzymes 
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such as FIXa and thrombin. In fact, the arginine residues in this sequence in thrombin makes up 

a part of exosite 2, which is a known heparin binding site. Results of certain studies suggest that 

residues Lys
529

, Arg
530

 and Arg
532

 in the cysteine-constrained loop is important for binding of 

FXIa to GAGs.
87

 

 The important residues involved in the interaction with heparin are shown in figure 34 

in the color cyan. (The software used for generating this image was The PyMOL Molecular 

Graphics System, Version 1.2r3pre, Schrödinger, LLC. PDB ID 2F83) 
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Figure 34: Important heparin-binding sites on the catalytic domain and apple-3 domain of 

FXI 
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Compounds 13 and 24 are sulfated small molecule inhibitors which are designed to act as 

GAG mimetics. The binding site of these small inhibitors on FXIa was not known and hence it 

was interesting to determine whether these molecules were binding at the same site as that of 

heparin. In order to do so, the potency of these molecules for FXIa was determined in the 

presence of 3 different concentrations of heparin-Na
+
. Prior to these experiments the potency of 

heparin-Na
+
 against FXIa only was determined. 

4.2 Determination of KD and IC50 of heparin for FXIa 

4.2.1 Materials: 

 Human coagulation factor XIa was purchased from Haematologic Technologies Inc 

(Essex Junction, VT) and the substrate S-2366 (L-pyroglutamyl-L-prolyl-L-arginine-p-

nitroaniline) was purchased from Diapharma (West Chester, OH). Heparin-Na
+
 (Acros Organics) 

and all other chemicals were purchased either from Sigma Aldrich (St.Louis, MO) or from Fisher 

Scientific (Pittsburgh, PA) and were of biochemical grade. 

4.2.2 IC50 determination: 

The IC50 was measured by making serial dilutions of heparin-Na
+
 such that each dilution 

was 1/10
th

 of the previous. Another series of dilutions was prepared which were 1/3
rd

 dilutions of 

the first series. The final concentration of the enzyme FXIa was 1.53 nM while that of substrate 

was 345 µM and the buffer used was Buffer C (previously mentioned). In each well, 85 µL of 

Buffer C (temperature maintained at 37°C) was added followed by 5 µL of heparin-Na
+
 and 10 

µL of FXIa. The mixture was allowed to incubate at 37°C for 10mins after which 5 µL of 

substrate was added and the initial rate of substrate hydrolysis by FXIa was immediately 
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recorded at 405nm using FlexStationIII (Molecular Devices, Sunnyvale, CA). The IC50 curve 

(figure 35) was plotted using the previously mentioned equation, 
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Figure 35: IC50 profile of heparin-Na
+
 for FXIa 

4.2.3 Determination of KD 

The KD of heparin for FXIa was previously determined in our lab (The Desai Lab) by 

measuring the changes in the intrinsic fluorescence of FXIa. The enzyme and other materials or 

chemicals were purchased from the same sources as those previously mentioned. The experiment 

was carried out at a constant temperature of 37°C and the buffer used consisted of 20mM NaPi, 

100mM NaCl, 0.1% PEG-8000, 0.1mM EDTA at a pH of 7.4. The excitation and emission 

wavelength were set at 280 and 340nm respectively. The slit width of both excitation and 
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emission were set at 1mm. A stock concentration of 200 µM was prepared in water and the 

change in intrinsic fluorescence of FXIa was observed when this solution was gradually added. 

The final concentration of FXIa was ~ 22 nM. A plot of % fluorescence against the concentration 

of heparin is shown in figure 36. 

The KD of heparin for FXIa was found to be 1.3 ± 0.003 µM. 

-25

-20

-15

-10

-5

0

0 1 2 3 4 5 6 7

%
 F

lu
o

re
sc

en
ce

[heparin, µM] 

heparin

predicted

 

Figure 36: KD of heparin for FXIa based on changes in intrinsic fluorescence 

4.2.4 Results 

The IC50 profile of heparin against FXIa indicates that heparin is indeed binding and 

inhibiting FXIa and its IC50 was found to be 0.21 ± 0.05 µM. Heparin inhibited FXIa by an 

inhibition of 30%.  
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4.3 Effect on inhibitory profiles of compounds 13 and 24 in presence of heparin 

  In order to ascertain whether our compounds were competing with heparin, the inhibition 

profiles for both compounds (13 and 24) were determined by incubating FXIa with heparin as 

well as the compounds. 

4.3.1 Materials:  

 The materials and chemicals used were the same as those mentioned in section 3.2 

(Materials section) 

4.3.2 Observations and inhibitory profiles 

 Serial dilutions of both the compounds 13 and 24 were made such that every dilution was 

5/6
th

 the concentration of the previous. Three solutions of different concentrations (414nM, 1.2 

µM, 2.4 µM) of heparin-Na
+
 (average molecular weight ~ 15000) were prepared in water. The 

final concentration of FXIa was 1.53nM while that of substrate was 345 µM. The assay consisted 

of adding 75 µL of Buffer C followed by 5 µL of inhibitor (compounds 13 or 24) and 10 µL of 

FXIa and 10mins incubation at 37°C. After incubation, 5 µL of heparin-Na
+
 was added followed 

by an incubation of 5mins after which 5 µL of substrate was added. The initial rate of substrate 

hydrolysis by FXIa was measured at 405nm using FlexStation III (Molecular Devices, 

Sunnyvale, CA). Three inhibition profiles of the inhibitors at different heparin-Na
+
 

concentrations and one in the absence of heparin-Na
+
 were generated.  

 The inhibition profiles for 13 and 24 are given in figures 37 and 38.  
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Figure 37: Inhibition profiles of compound 24 in absence and presence of three different 

concentrations of heparin-Na
+
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Figure 38: Inhibition profiles of compound 13 in absence and presence of three different 

concentrations of heparin-Na
+
 

4.3.3 Results: 

[heparin-Na
+
] 

 

Compound 24 

IC50 µM 

Compound 13 

IC50 µM 

0 0.7 ± 0.03 10.3 ± 0.7 

420 nM 0.74 ± 0.04 4.3 ± 1.7 

1.2 µM 0.73 ± 0.11 5.1 ± 0.8 

2.4 µM 0.8 ± 0.08 5.83 ± 0.6 

Table 10: IC50 of compounds 24 and 13 in presence of varying concentrations of heparin 

From figures 37 and table 10 it can be seen that with increasing concentrations of 

heparin-Na
+
 the IC50 profiles for compound 24 did not change significantly. This indicates that 

perhaps compound 24 is not competing with heparin-Na
+
 and may have a unique binding site of 
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its own which is different than the known binding site of heparin. The IC50 profiles of compound 

13 (Figure 38) shows a noticeable decrease in IC50 from ~ 10 µM to ~5 µM. This could be an 

indication that although this compound does not compete with heparin for FXIa, it could be 

acting in a synergistic manner. However, further analysis needs to be done in order to confirm 

this. 

4.4 Conclusions and Future directions: 

 FXIa is an unusual serine protease in the coagulation cascade not only in terms of its 

structure but also its behavior. Compared to the other more popular targets, FXIa has not been 

studied as extensively. Hence it is difficult to extrapolate the results and behaviors of other 

known targets to FXIa. Of late it has been gaining recognition as a possible new target for anti-

thrombotic drugs and is reported to be a safer target. The aim of this project was to find an 

inhibitor from a small-sulfated molecule library and to study its mode of inhibition and 

interaction with FXIa. Out of the library screened, compounds 13 and 24 seemed to show 

promising results as FXIa inhibitors. These compounds were found to bind at a site other than 

the active site based on the results obtained from Michaelis-Menten kinetics as well as 

fluorescence quenching. Although these compounds seem to be allosteric inhibitors, there are 

other questions which remain to be answered, one of them being the stoichiometry with which 

these compounds bind with FXIa. This data will help in understanding how the molecules 

interact with FXIa. Since the enzyme has two subunits it will be interesting to observe how these 

inhibitors interact with FXIa and to know whether FXIa exhibits cooperativity. The IC50 profiles 

of both 13 and 24 have shown biphasic curves and this phenomenon has to be investigated 

further.  
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Molecular docking studies: Heparin is proposed to bind to three different locations on FXIa of 

which one is on the apple-3 domain and the other two are on the catalytic domain. Results from 

this project indicate that 13 and 24 do not compete with heparin for FXIa. This may mean that 

these compounds bind at a site that is different than that of the heparin binding site. How well 

these molecules can be docked to the heparin-binding site can provide more information that 

could supplement the results obtained from the assays. 

In conclusion, amongst all the compounds which were screened against FXIa from the mini-

library two compounds were chosen, a dimer and a trimer of the same benzofuran scaffold.  

X-ray crystallography: In the future, crystal structures of one of the inhibitors with FXIa will 

help in understanding the mode of interaction of these molecules as well as the residues with 

which they interact.  
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