
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2013 

ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE 

WIRELESS SENSOR NETWORKS WIRELESS SENSOR NETWORKS 

Changyong Jung 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/570 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VCU Scholars Compass

https://core.ac.uk/display/51291238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/570?utm_source=scholarscompass.vcu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


School of Engineering 
Virginia Commonwealth University 

 
 

This is to certify that the dissertation prepared by Changyong Jung entitled ON RELAY 
NODE PLACEMENT PROBLEM FOR SURVIVABLE WIRELESS SENSOR 

NETWORKS has been approved by his committee as satisfactory completion of the 
dissertation requirement for the degree of Doctor of Philosophy in Engineering 

 
 

 
 

Meng Yu, Ph.D., Dissertation Director, School of Engineering 
 
 
 

James Ames, Ph.D., Committee Member, School of Engineering 
 
 
 

Hongsik Choi, Ph.D., Committee Member, Information Technology, Georgia Gwinnett College 
 
 
 

Wei Cheng, Ph.D., Committee Member, School of Engineering 
 
 
 

Thang Dinh, Ph.D., Committee Member, School of Engineering 
 
 
 

Yuichi Motai, Ph.D., Committee Member, School of Engineering 
 
 
 

Meng Yu, Ph.D., Graduate Program Director, School of Engineering 
 
 
 

Krzystof Cios, Ph.D., Department Chair, School of Engineering 
 
 
 

J. Charles Jennett, Ph.D., Dean, School of Engineering 
 
 
 

F. Douglas Boudinot, Ph.D., Dean, School of Graduate Studies 
 
 
 

Date 
 

 



 

 ii 

 Changyong Jung 2013 
All Rights Reserved 



 

 iii 

ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE WIRELESS 
SENSOR NETWORKS 

 
A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in School of Engineering at Virginia Commonwealth University. 
 
 
 
 
 

by 
 

Changyong Jung 
 
 

Director: Meng Yu, Ph.D. 
 
 
 

Department of Computer Science 
School of Engineering 

Virginia Commonwealth University 
Richmond, Virginia 

December 2013 



 

 iv 

TABLE OF CONTENTS 
 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

CHAPTER 2 ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE 

WIRELESS SENSOR NETWORKS .............................................................................. 5 

2.1 INTRODUCTION ........................................................................................................ 5 

2.1.1 SURVIVABILITY FOR LINEAR TOPOLOGY IN WIRELESS SENSOR NETWORKS ....... 8 

2.1.2 SURVIVABILITY  FOR GENERAL TOPOLOGY IN WIRELESS SENSOR NETWORKS . 16 

2.1.3 RELAY NODE PLACEMENT PROBLEM FOR A CONNECTED GRAPH ..................... 17 

2.1.4 RELAY NODE PLACEMENT PROBLEM FOR SURVIVABILITY ............................... 17 

2.2 PROBLEM STATEMENT ........................................................................................... 25 

2.3 PERFORMANCE ANALYSIS FOR K-EDGE CONNECTED GRAPH AND APPROXIMATION
 26 

2.3.1 ALGORITHM AND RELATED KNOWN RESULTS ............................................... 26 

2.3.2 PROOF WITH 8-APPROXIMATION .................................................................... 28 

2.3.3 RELAY NODE PLACEMENT IN HIDDEN AREA ................................................. 40 

2.4 PROPOSED ALGORITHM ......................................................................................... 42 

2.4.1 ALGORITHM ................................................................................................... 42 

2.4.2 ANALYSIS OF THE ALGORITHM ...................................................................... 49 

2.5 CONCLUSION .......................................................................................................... 57 

CHAPTER 3 CONCLUSIONS AND CONTRIBUTIONS ......................................... 59 

3.1 CONCLUSIONS .......................................................................................................... 59 

3.1.1 RELAY NODE PLACEMENT PROBLEM IN WIRELESS SENSOR NETWORKS .............. 59 

3.2 CONTRIBUTIONS ....................................................................................................... 61 

ACKNOWLEDGEMENTS ........................................................................................... 62 

APPENDIX A .................................................................................................................. 63 

A.1. ACRONYMS DEFINITIONS ....................................................................................... 63 

A.2. SYMBOL DEFINITIONS ............................................................................................ 64 

APPENDIX B .................................................................................................................. 65 

APPENDIX C .................................................................................................................. 68 



 

 v 

REFERENCES ................................................................................................................ 71 

 



 

 vi 

LIST OF TABLES 
 

Table 1. Approximation for minimum number of relay node ............................................ 3 

Table 2.  Putting relay nodes for example of Figure 2...................................................... 37 

Table 3.  An algorithm to guarantee 2-edge connectivity ................................................. 45 

Table 4. k-edge connected Approximation algorithm ....................................................... 65 

Table 5.  Construction of 2-edge connected network with relay nodes and no Steiner 
nodes ................................................................................................................................. 66 

Table 6. Removal a Steiner node and charge relay nodes ................................................ 67 



 

 vii 

LIST OF FIGURES 
 

Figure 1. Sensed data delivery through sink node (or base station). .................................. 1 

Figure 2. Example network with sensors and base station. ................................................ 5 

Figure 3. Example of communication failure. .................................................................... 6 

Figure 4. Relay node placement between two nodes to maintain survivability.................. 9 

Figure 5. Classify sensor deploy on the straight line. ....................................................... 10 

Figure 6. Relay node placement for case 1. ...................................................................... 11 

Figure 7. Relay node placement for case 2. ...................................................................... 12 

Figure 8. Relay node placement for case 3. ...................................................................... 13 

Figure 9. Relay node placement for randomly deployed sensors. .................................... 13 

Figure 10. Overall Algorithm to calculate minimum number of relay nodes to ensure 
survivability. ..................................................................................................................... 15 

Figure 11. Single-tiered structure in WSNs. ..................................................................... 20 

Figure 12. Two-tiered structure in WSNs. ........................................................................ 21 

Figure 13. Relay node placement in overlapped area. ...................................................... 30 

Figure 14. Example for adding relay nodes instead of Steiner nodes. .............................. 36 

Figure 15. Steiner Node Placement to connect sensor nodes. .......................................... 38 

Figure 16. Relay node placement on the overlapped area of transmission range. ............ 39 

Figure 17. Relay Node Placement to Avoid Obstacles. .................................................... 41 

Figure 18. Relay node placement in triangle area............................................................. 46 

Figure 19. Relay node placement by proposed algorithm. ............................................... 48 

Figure 20. Relay node placement with special scheme (2-1). .......................................... 50 

Figure 21. Transmission range of A3 based on∠θ. ............................................................ 53 

Figure 22. The distance from S0 to S1’ guarantees the connectivity among A3, S1, and S2 
where 0° < ∠θ <60° ........................................................................................................... 54 

Figure 23. Calculating distance between S0 to S1′ when 0° < ∠θ <60° .............................. 56 

 



 

 viii 

  
ABSTRACT 

 
 

ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE WIRELESS 
SENSOR NETWORKS 
By CHANGYONG JUNG 

 
A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2013. 
 

Major Director: Meng Yu, Ph.D. 
Associate Professor, Department of Computer Science 

 
 
 
 

  Wireless sensor networks are widely applied to many fields such as animal 

habitat monitoring, air traffic control, and health monitoring.  One of the current 

problems with wireless sensor networks is the ability to overcome communication 

failures due to hardware failure, distributing sensors in an uneven geographic area, or 

unexpected obstacles between sensors.  One common solution to overcome this problem 

is to place a minimum number of relay nodes among sensors so that the communication 

among sensors is guaranteed.  This is called Relay Node Placement Problem (RNP).  This 

problem has been proved as NP-hard for a simple connected graph.  Therefore, many 

algorithms have been developed based on Steiner graphs.  Since RNP for a connected 

graph is NP-hard, the RNP for a survivable network has been conjectured as NP-hard and 

the algorithms for a survivable network have also been developed based on Steiner 

graphs.  In this study, we show the new approximation bound for the survivable wireless 

sensor networks using the Steiner graphs based algorithm.  We prove that the 

approximation bound is guaranteed in an environment where some obstacles are laid, and 



 

 ix 

also propose the newly developed algorithm which places fewer relay nodes than the 

existing algorithms.  Consequently, the main purpose of this study is to find the minimum 

number of relay nodes in order to meet the survivability requirements of wireless sensor 

networks.  
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CHAPTER 1 INTRODUCTION 

 
The wireless sensor technologies have been used to collect data using the small 

sensors which have low-cost and low-power.  The sensors are deployed in a physical 

space, sense information, and forward it to the sink node or base station using muti-hop 

paths as shown in Figure 1.   

 

Figure 1. Sensed data delivery through sink node (or base station). 
 

 

Wireless Sensor Networks (WSNs) is comprised of thousands of sensor nodes 

which are distributed in the physical area, and one or more sink nodes (or base stations). 

The sensed data are routed through the communication link that connects to other sensor 

node to delivery it to the sink nodes (or base stations).  Once the sink node or base station 
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gets the information from sensors, it communicates with a server or place which can 

integrate and analyze the information through the internet or satellite.   

 
In wireless sensor networks, the application can be developed based on sensed 

data.  Therefore, wireless sensor networks are widely applied to monitor the variety of 

ambient environment.  Some examples are habitat monitoring [23], air quality monitoring 

[24], active volcanoes monitoring [25], healthcare application [26, 27], and underwater 

monitoring [28, 29].  These research shows that the wireless sensor networks are usually 

applied the area that the human has the difficulty to control.  Because of the extensive 

application potential, wireless sensor networks have been intensively researched.  

However, there are always problems due to limited power, and communication failure 

because of power depletion, or harsh environment factors.  Thus, in order to design 

efficient wireless sensor networks, energy efficiency, scalability, and survivability are 

considered as major facors [1, 13].  Among these factors, we focus on solving the 

problem of survivability in wireless sensor networks.  The network survivability can be 

defined that the network system has the capability to perform its task in a timely manner, 

in the circumstance where the intrusion, attack, or failure is [20, 21].  Sensor nodes in 

WSNs are susceptible to failure because of limited energy which from small size battery 

or uneven geographical environment.  Therefore, survivability in WSNs is important.   

To ensure survivability in WSNs, the networks should be all connected and have 

at least 2 vertex-disjoint or edge-disjoint paths between sensors.  Since wireless sensors 

are randomly positioned after deployed, it might be disconnected with several reasons as 

mentioned earlier.  Therefore, there might need more sensors, refer to as relay nodes, to 

connect the networks.  The problem we study is to find the minimum number of relay 
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nodes to guarantee 2-edge connectivity which can tolerate one edge failure.  Many 

researches have been tried to get the better approximation algorithm for survivability 

problems in wireless sensor networks because it is conjectured as NP-hard [6, 13, 18, 19].  

Table 1 represents the current approximation algorithms for finding the minimum number 

of relay nodes to ensure certain connectivity in WSNs. 

Table 1. Approximation for minimum number of relay node 

 Connectivity Transmission range of sensors R vs. 
Transmission range of relays r 

Approximation 
ratio 

Lin & Xue  1 R = r  5 

Chen et al.  1 R = r  3 

Cheng et al.  1 R = r  3 

Lloyd & Xue 1 R ≤ r 7 

Kashyap et al.  2 R = r  10 

Hao et al.  2 R ≤ r  4.5 

Misra et al.  2 R ≤ r  10 

 

The current best approximation algorithm is 3-approximation when k = 1 that has 

1-edge or node dis-joint path, and R= r where R is Transmission range of sensor node 

and r is the transmission range of relay node [4, 10].  For the survivable wireless sensor 

networks, the current best algorithm is 10-approximation when the k = 2 which has 2-

edge or node dis-joint path, and R = r [6].  The current 10-approximation is far from the 

optimal solution especially when k ≥ 2.  Therefore, it needs to find a better method in 

order to get as close to optimal as possible.    
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In our research, we focus on the finding the better approximation ratio and 

minimizing the number of relay nodes.  The methods we use causes great impact to make 

better approximation bound and the heuristic algorithm we propose shows that it actually 

reduces the number of relay nodes in special cases.   
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CHAPTER 2 ON RELAY NODE PLACEMENT PROBLEM FOR SURVIVABLE WIRELESS 

SENSOR NETWORKS 

 
2.1 INTRODUCTION 

 
A wireless sensor network is a group of sensors which are deployed over a harsh 

area and communicate with each other wirelessly.  Deployed sensors collect, process, and 

distribute data through the network. Generally, when sensors are spread out, it starts to 

sense the information, and tries to forward it to the base station.  Since the power 

consumption for each sensor is one of the major restraints in wireless sensor networks, 

multi-hop path data forwarding is prominently used to reduce the power level of each 

sensor.  Figure 2 is an example network with sensors.  

 

Figure 2. Example network with sensors and base station. 
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Each sensor node is shown as a small circle filled with black color and enclosed 

with dotted circle which represents the transmission range.  The rectangle filled with red 

color is the base station.  The yellow line between sensors is the communication link.  

The sensed data from each sensor is transmitted to the base station through the 

communication link relaying it to the neighboring sensor.  The network in Figure 2 is all 

connected because every sensor has the route to every other sensor which also means that 

given any two sensors Si, Sj, there is a path from Si to Sj.  

  

However, in wireless sensor network, sensor nodes are likely to be disconnected 

to other sensor nodes due to several reasons which include hardware failure, uneven 

distribution in a geographic area, limitation of the transmission power for each sensor, 

and unexpected obstacles between sensors which cause degradation of signal power. 

Figure 3 is an example network that shows the communication failure due to an obstacle 

and limitation of the transmission power.  

 

Figure 3. Example of communication failure.  
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The sensor S4, S5, and S7 are disconnected from other sensors because their 

transmission power range is not enough to reach other sensors.  The sensor S14 can not 

communicate to other sensors because there is an obstacle between S14 and other sensors.  

Failure to communicate among sensors can cause the decline of overall network 

performance.  Therefore, the wireless sensor network topology needs to be fault tolerant.  

That means the network should have several vertex or edge disjoint path between sensors.  

The network is said to be k-connected if every pair of sensors are connected by at least k-

vertex or edge disjoint path.  If the network allows the k = 1 edge deletion only, the 

network is called k = 1 edge connectivity.  If the network allows the k = 1 vertex deletion, 

the network is called k = 1 vertex connectivity.        

  

 To maintain network connectivity in lieu of these unexpected communication 

failures, we need to add relay nodes or increase the transmission power.  Increasing 

transmission power is not an option because the wireless sensors have the limited power 

and cannot be recharged usually. Therefore, putting relay nodes between sensors can 

achieve the desired connectivity in the network.  The role of a relay node is to provide 

communication to other relay nodes and/or sensor nodes within transmission range.  In 

many cases, wireless sensors are distributed in the large area and putting just more 

sensors might increase the cost.  The solution is to place the minimum number of relay 

nodes among sensors in order to provide the desired connectivity.  This is called the 

Relay Node Placement Problem (RNP). 
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RNP is further subdivided into two categories [2, 5, 13].  RNP with connectivity 

is to form a connected network which would be minimum requirement to make a sensor 

network to work.  RNP with survivability is a connected sensor network, yet survivable 

from a failure of sensors/link, which means it should be n-connected network (or graph).  

In order to guarantee the survivable wireless sensor networks, we place a small number 

of relay nodes to ensure that all nodes are at least 2-edge/node connected so that the 

network has the capability to operate under node or edge failures and attacks.  In this 

chapter, we study the RNP for satisfying survivability in wireless sensor networks. 

 

2.1.1 SURVIVABILITY FOR LINEAR TOPOLOGY IN WIRELESS SENSOR NETWORKS 
 
 

The relay nodes are required when the transmission range of a sensor node is not 

reachable to other sensor nodes.  Finding the minimum number of relay nodes on the 

linear topology in WSNs is trivial.  In this section, we show the algorithm to find the 

minimum number of relay nodes for linear topology in WSNs.  

 

Let’s assume that two sensor nodes are deployed on the straight line and need to 

communicate each other.  The transmission range is 1m and distance between two nodes 

is 1.5m.  Since the transmission range is 1m so that they are not reachable.  The relay 

nodes are required.  In this case, we can simply calculate the number of relay nodes by 

formula as follows:  
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Number of Relay Node = 













 −1

r
l

 

     where l = length between nodes 
          r = transmission range 

 
With above formula we can get number of relay nodes to ensure the connectivity 

between two sensor nodes.  However, we can not guarantee the survivability between two 

sensor nodes.  Therfore, we need to put more relay nodes between two sensor nodes to 

ensure survivability.   

 

 

 

Sensor nodes 
Relay nodes 

 
Figure 4. Relay node placement between two nodes to maintain survivability.  
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As shown in Figure 4, two sensor nodes are deployed on the straight line, and 

transmission ranges of sensor nodes are not reachable.  Putting two relay nodes can 

guarantees the connectivity and survivability between two sensor nodes.    

 

A. Type of Deployed Sensors on the Straight Line. 

 

In this section, we assume that sensors are deployed randomly on the Straight line.  

Once sensors are deployed on the straight line, the deployed sensors can be classified as 

three different patterns.  Figure 5 represents three kinds of patterns for deploying sensors 

on the straight line. 

 
 

Case 1: 

Case 2: 

Case 3: 

 
Figure 5. Classify sensor deploy on the straight line.  
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B. Relay Node Placement to Ensure Survivability on the Straight Line 
 

 
It is clear that if two nodes are within the transmission range of each other, it 

doesn’t need relay nodes.  It means that relay nodes are placed when two sensors are out 

of transmission range each other.  As we explained in Section A, we classified three 

different patterns of sensor deployment on the straight line.  In case 1, we can put a relay 

node on a contact point between transmission ranges of two sensor nodes.  It guarantees 

the connectivity of two sensor nodes.  Since we are trying to ensure survivability (k = 2) 

between neighboring nodes, we need to put two more relay nodes in case 1, i.e., each 

relay node deployed on the edge of the corresponding sensor node should be located 

within the transmission range for each other.  Figure 6 shows the relay node placement 

which can provide the survivability for case 1. 

 

 

 
 
Figure 6. Relay node placement for case 1.  
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In case 2, we put two relay nodes between two sensor nodes.  With only two relay 

nodes, it ensures survivability.  Each relay node can be placed at the end of sensors’ 

transmission range.  Figure 7 shows the relay node placement for case 2. 

 

 

 
 
Figure 7. Relay node placement for case 2.  

 
In case 3, we put relay nodes at the end of sensor node’s transmission range first 

and each relay node deployed on the edge of the sensor node should be located within the 

transmission range for each other.  Figure 8 shows the relay node placement which can 

provide the survivability for case 3. 
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Figure 8. Relay node placement for case 3.  

 

C. Number of Minimum Relay Node to Ensure Survivability 

 
 In Section B, we show that how relay node can be placed to ensure survivability 

with definite form on the straight line.  If several sensors are deployed on the straight line 

randomly, the classified patterns we defined in the previous section can be mixed on the 

straight line.  Let’s see the following example: 

 1.6 1 5 1.2 1.6 

A B C D E F 

 
 

Figure 9. Relay node placement for randomly deployed sensors.  
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The Figure 9 shows that 6 sensors {A, B, C, D, E, F} are deployed 10m straight 

line.  The lengths between neighboring nodes are 1m, 1.6m, 1.2m, 5m, and 1.6m.  The 

triangle represents relay nodes needed to ensure survivability between neighboring nodes.  

The total number of relay nodes needed in this example is 16.  As we mentioned earlier, 

if two sensor nodes are within the transmission range, it doesn’t need relay node.  

However, in the case that another sensor node existed right behind two sensor nodes 

which are within the transmission range, those nodes need one relay node to connect to 

the next sensor node or relay node.  This case is the first two sensor nodes, i.e., node A 

and B in Figure 9.  If three patterns of deployed sensors on the straight line are mixed, the 

minimum number of relay node to ensure survivability can be calculated as follows: 

 Number of Relay Node to Ensure Survivability = 







−






 ×∑

−

=

1

1
12

n

k

k

r
l  

 
Where lk = distance between node k and k + 1 
 r = transmission range  
 n = sensor nodes         
 
 

If the sensors are deployed as the pattern case 1, case 2, and case 3 in Section B 

on the straight line regularly, the number of relay nodes to ensure survivability is 

calculated as follows:          

( )




<≤=
<≤=

−+







−






 ×∑

−

= rlrm
rlrm

r
l

k

km
n

k

k

5.12
25.11

112
1

1
 

 
 

The overall algorithm to find minimum relay nodes to ensure survivability on the 

linear topology in WSNs is summarized as follows: 
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Input: 
1. # of sensor nodes 
2. Lengths between neighboring sensor nodes 
3. Transmission range of the sensor nodes and relay nodes 

Output:  minimum number of relay nodes. 

Algorithm: Calculate minimum number of relay nodes to ensure survivability on the 
linear topology 

Begin 
 Nodes = n; 
            Transmission_range = r; 
 Distance_between_nodes = l; 
  

While (Connection = false) 
  

If only two nodes are existed and these are within the 
transmission range each other on the straight line, 

    Then, the number of relay node is 0 always. 
     

If only two nodes exist on the straight line and these are not 
within the transmission range, 

    Then, the number of relay nodes can be calculated by 

     













 −× 12

r
l  

    
If sensor nodes are deployed as regular pattern(case 1, case 2, 
case 3), Then,  the number of relay nodes can be calculated by  
 

( )




<≤=
<≤=

−+







−






 ×∑

−

= rlrm
rlrm

r
l

k

km
n

k

k

5.12
25.11

112
1

1
 

 
where  lk  = distance between node k and  k + 1. 

If several nodes are randomly deployed on the straight line, 
    Then, the number of relay nodes can be calculated by 
 









−






 ×∑

−

=

1

1
12

n

k

k

r
l

  

 where  lk  = distance between node k and  k + 1. 

 End 

End  
Figure 10. Overall Algorithm to calculate minimum number of relay nodes to ensure survivability.  
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2.1.2 SURVIVABILITY  FOR GENERAL TOPOLOGY IN WIRELESS SENSOR NETWORKS 
 
 

It has been conjectured that the RNP for satisfying survivability for general 

topology in WSNs is NP-hard since the RNP for satisfying simple connectivity has been 

proven to be NP-hard [3].  Thus, most research presents approximation algorithms and 

many are based on Steiner Graphs [2, 3, 4, 5, 6, 10, 11, 13, 18].  Although many 

approximation algorithms have been developed, their approximation ratio is far from 

optimal.  The current best approximation algorithm shows 10-approximation [6].  They 

showed that their algorithm has better results than the bound they suggested through the 

simulation. That means there may exist other ways to narrow the bound and approach an 

optimal solution.  For a better approximation ratio, we prove that the approximation ratio 

of the current best approximation algorithm based on Steiner Graphs has a better bound 

than what the Kashyap et al. proved [6], and that the same results hold with a practical 

restriction on the location of the relay node.  Additionally, we propose a new algorithm 

which shows better performace than any exsisting algorithms, in a sense that it uses fewer 

relay nodes than any existing algorithm to maintain required survivability. 

As mentioned earlier, RNP can be divided into two categories: RNP for 

connectivity and RNP for survivability. RNP for connectivity is when a k = 1 connected 

network and RNP for survivability is when a k ≥ 2 connected network. 
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2.1.3 RELAY NODE PLACEMENT PROBLEM FOR A CONNECTED GRAPH 
 

 
In 1999, Lin and Xue [3] studied “Steiner tree problem with minimum number of 

Steiner points and bounded edge length” (STP-MSPBEL) which asks for an 

interconnected tree of a given set of n  terminal points and a minimum number of Steiner 

points such that the Euclidean length of each edge is no longer than a given positive 

constant.  This problem is the same as RNP which finds the minimum number of relay 

nodes in a network to guarantee that every pair of the sensor nodes has a path consisting 

of sensor or relay nodes and that the distance of each path is no longer than the 

transmission range of the sensor and relay nodes.  They proved that the STP-MSPBEL is 

NP-hard, and presented a polynomial time approximation algorithm based on a minimum 

spanning tree (MST). They proved the worst case ratio is 5, which in turn was proven by 

Chen, et al. that the worst case ratio for Lin and Xu’s algorithm was 4 [4]. Chen, et al. 

also presented a 3-approximation algorithm.  Chen, et al. then later presented a 

randomized 2.5-approximation algorithm to connect a given set of sensor nodes.   

 

2.1.4 RELAY NODE PLACEMENT PROBLEM FOR SURVIVABILITY 
 

 
Kashyap et al. [6] studied minimum relay node placement to guarantee that k =2 

while maintaining the same transmission range of sensor and relay nodes.  They 

developed a k-edge and vertex connectivity algorithm to find the minimum number of 

relay nodes, and proved the approximation ratio for 2-edge and vertex connectivity based 

on Steiner graphs.  Their algorithm finds the minimum cost spanning k-edge connected 

sub-graph in a complete graph and places relay nodes on each edge based on the distance 
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between sensor nodes.  Then they check whether or not k-edge and vertex connectivity is 

maintained with each relay node.  All necessary relay nodes are retained for maintaining 

k-edge and vertex connectivity and then used to calculate the minimum number of relay 

nodes.  They achieved k-edge and vertex connectivity of n nodes in O((kn)2) time, and 

proved an approximation ratio for 2-edge and vertex connectivity. They find all 

connected components in a Steiner graph and construct minimum spanning tress in each 

component.  Finally they place relay nodes instead of Steiner nodes which have a 

maximum of five degrees.  Their algorithm guaranteed 10-approximation in the worst 

case scenario.  Kashyap, et al. extended their algorithm to consider the forbidden region 

where relay nodes cannot be placed due to obstacles, and proved the same approximation 

is guaranteed.  They found that their algorithm actually produced better solutions than the 

bound suggested during simulation.   

 

There are some researches to prolong the network lifetime and improve network 

scalability.  To reduce a lage amount of energy consumtion through multi-hop routing, 

they proposed two-tiered relay node placement based on routing structures [2, 13].   They 

defined the single-tiered RNP and two-tiered RNP as follows: 

 

  Single-tiered RNP finds the minimum number of relay nodes such that between 

every pair of sensor nodes there exists a path to all sensor nodes or relay nodes- where 

the transmission range of relay nodes is r and transmission range of sensor nodes is R. 
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       Two-tiered RNP finds the minimum number of relay nodes such that between 

every pair of sensor nodes there exists a path only through relay nodes, where the ends of 

that path can be sensor nodes but all other nodes are relay nodes. This is because sensor 

nodes can only send their own sensed data or received data from other sensors or relay 

nodes and do not store and forward the data from other nodes. 

 The example of single-tiered and two-tiered is in Figure 11, and Figure 12.  In 

single-tiered in WSNs, each sensor senses data and forwards it to the base station or sink 

node through other sensors or relays.    
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Figure 11. Single-tiered structure in WSNs.  
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Figure 12. Two-tiered structure in WSNs.  

 

In two-tiered in WSNs, each sensor in a cluster senses the data and forwards it to 

the cluseter head or backbone node [6, 19].  The cluster head for each cluster has high 

level energy, and can be recharable [6, 19, 13, 18].   



 

 22 

 

Hao et al. [13, 18] studied two-tiered RNP.  They formulated two-tiered relay 

node placement with the assumption that a sensor’s transmission range(r) is larger than 0 

and a relay’s transmission range(R) is larger than or equal to 4r with the sensors 

uniformly distributed in the space.  They studied both the connected relay node single 

cover problem, which is to find the minimum number of relay nodes and their locations 

so that each sensor node is covered by at least one relay node, and the 2-connected relay 

node double cover problem, which is to find the minimum number of relay nodes and 

their locations so that each sensor node is covered by at least two relay nodes, where each 

sensor is within distance r of k-relay nodes and those relay nodes form k-connected 

networks.  They presented the polynomial time approximation algorithm where both 

problems have a worst case ratio of 4.5.   

 

Errol L. Lloyd et al. [2] studied both the single-tiered and two-tiered RNP. They 

presented a polynomial time 7-approximation algorithm for the single-tired RNP which 

guarantees the network connectivity.  For the two-tiered RNP, they presented a general 

framework combining an approximation algorithm for the minimum geometric disk cover 

problem which finds the minimal sized set of disks covering all the given points and an 

approximation algorithm for SMT-MSPBEL.  They presented a polynomial time (5 + є) 

approximation algorithm, where є > 0 can be any given constant.  

 

Recently, a study was conducted which was related to relay node placement in a 

constrained environment where relay nodes can be placed at a subset of candidate 
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locations. This differs from previous work which assumes that relay nodes can be placed 

anywhere (unconstrained).  Misra et al. studied constrained relay node placement [5].  

They studied both connectivity and survivability and presented a framework of efficient 

approximation algorithms for the graph Steiner tree problem for connectivity in the 

network.  They showed that their framework, with the best approximation algorithm, 

becomes a 5.5 approximation algorithm, when all the nodes are on regular triangular grid 

points and B =∅, where B is a set of base stations.  In the general case, their framework 

shows 6.2-approximation algorithm with best approximation algorithm.  For survivability, 

their framework shows 10-approximation algorithm for general cases, and 9-

approximation algorithm for special cases.   

 

In this chapter, we studied RNP for ensuring survivability in a wireless sensor 

network.  There has not been any previous work considering overlapped transmission 

range of given sensors while they find a minimum number of relay nodes among sensors 

ensuring connectivity or survivability.  We considered the overlapped transmission range 

among sensors, if it existed, in order to retrieve the minimum number of relay nodes to 

ensure survivability (assuming the transmission range of sensors and relays are the same).  

This has a considerable impact on the approximation bound of polynomial time 

approximation algorithm based on Steiner graphs in order to find the minimum number 

of relay nodes while ensuring 2-edge connectivity in the network.  Previous research [6] 

proved that the algorithm they developed is guaranteed to have less than 10 times the 

optimal number of relay nodes to make the network survivable with the presence of one 

link failure.  However, we prove that the algorithm actually guarantees less than 8 times 
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the optimal number of relay nodes to make the network survivable with the presence of 

one link failure while considering overlapping sensor transmission range. 

 

The main purpose of this chapter is to find the minimum number of relay nodes 

required to meet survivability requirements. 
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2.2 PROBLEM STATEMENT 

 
Our network model is described as a graph G = (V, E), where V is the set of 

vertices (sensor nodes) and E is the set of edges (links between nodes).  We assume that 

each node has a limited transmission range defined as a unit distance of one in Euclidean 

space.  A node can connect to any other node within this range. We assume that the relay 

nodes are identical to the sensor nodes with regards to the transmission range. We also 

assume that we have control over the location of relay nodes.  Therefore we can put relay 

nodes in the network so that we can achieve the desired level of connectivity around the 

sensor nodes.  We are interested in finding minimum number of relay nodes so that the 

overall network can be k-edge connected network (k = 2), because it provides the level of 

survivability against the edge failures. The problem can be formulated as follows:  

 

Given a graph G (V, E) where e (u, v) is in E if distance, d (u, v) ≤ 1 for all u, v 

which is in V.  Find G´ (V´, E´) where e (u, v) is in E´ if distance, d (u, v) ≤ 1 for all u, v 

in V´ while satisfying: 

i. G´ is k-edge connected graph (k = 2), because it provides the survivability 

against an edge failure.  

ii. V´- V is minimized such that  

a. For any u, v in V´, there exist two paths P1 and P2 such that edges in P1 

and P2 have no common set. 
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2.3 PERFORMANCE ANALYSIS FOR K-EDGE CONNECTED GRAPH AND APPROXIMATION 

 
In this chapter, we address the minimum number of relay nodes necessary to 

guarantee 2-edge connected survivable wireless sensor networks.  As we stated earlier, 

current solutions have taken the approach of using Steiner Graphs to solve this problem 

since it has been conjectured that it is NP-hard.  In [6], an approximation algorithm to 

find the minimum number of relay nodes to prove k-edge and vertex connectivity is 

presented.  The algorithm is also based on Steiner Graphs where it is assumed that each 

sensor node has a limited transmission range and the transmission range of sensor nodes 

and relay nodes are the same.  The algorithm guarantees less than ten times the optimal 

number of relay nodes to make the network survivable in the event of one link/node 

failure.  To the best of our knowledge, it is the best known result for the worst case 

analysis.  

 

2.3.1 ALGORITHM AND RELATED KNOWN RESULTS 

 
The approximation algorithm by Kashyap [6] achieved best performance 

assuming that the sensors are deployed in Euclidian space and the transmission range of 

the sensors and relay nodes is the same.  Their algorithm is described in Table 4 (See 

Appendix B). 

 

In step one the algorithm builds a complete graph representing deployed sensor 

nodes.  In step two, the weight of each edge is calculated based on the length of each 

edge, and the calculated weight of each edge represents number of relay nodes required 
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to form a link.  In step three, the algorithm computes an approximate minimum cost 

spanning k-edge connected sub-graph.  Finding the minimum weight spanning k-edge 

connected sub-graph of a graph is proven to be NP-hard [11].  The approximation 

algorithm to find the minimum cost spanning k-edge connected sub-graph proposed by 

Khuller and Vishkin is used [7].  This approximation algorithm has an approximation 

ratio of 2.  With the k-edge connected sub-graph obtained from the approximation 

algorithm, the relay nodes are placed in step four based on the weight of the edge.  If all 

nodes including relay nodes are in transmission range of each other, a link is formed in 

step five.  In step six some relay nodes are removed.  The relay nodes can form an edge 

with all the other nodes if they are within transmission range.  When a relay node is 

removed, the graph is checked to determine if k-edge connectivity is still guaranteed or 

not.  If the graph cannot preserve k-edge connectivity after removing a relay node, the 

algorithm replaces the relay node and checks the next relay node.  If k-edge connectivity 

is preserved after removing a relay node then the algorithm moves to check the next relay 

node.  This is repeated until all relay nodes have been considered.   

 

To prove the approximation ratio of 2-edge connectivity, they assume that all 

sensor nodes are deployed in Euclidean space and the optimal solution to find a number 

of relay nodes for 2-edge connectivity exists.  The algorithm developed by Kashyap [6] 

to find the minimum number of relay nodes for 2-edge connectivity is presented in Table 

5 (See Appendix B). 
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The algorithm first constructs the graph G with Steiner nodes and finds all 

connected components.  It then finds the minimum-degree minimum spanning tree for 

each components.  For each tree {St1, St2,…, Stm}, it removes Steiner nodes and adds 

relay nodes between the sensor nodes connected to those Steiner nodes. It then constructs 

a graph which is 2-edge connected between sensor nodes.  This procedure is repeated 

until the graph has zero Steiner nodes and is 2-edge connected.  

In the next section, we prove that this algorithm has 8-approximation for 2-edge 

connected graph instead of 10-approximation they guaranteed in 2-edge connectivity.  

 

2.3.2 PROOF WITH 8-APPROXIMATION 

 

Theorem 2.1: If sensors are distributed in the space and guaranteed 2-edge 

connectivity with optimally distributed s Steiner nodes, then the algorithm 

developed by Kashyap et al. [6] produces a graph with a maximum of 8s relay nodes 

and zero Steiner nodes. 

 
 
To prove our theorem we use following lemma. 
 
 
Lemma 2.2:  A network which is 2-edge connected using a minimum number of 

relay nodes has maximum 4s relay nodes, where s is the minimum number of 

Steiner nodes required.   
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Proof: Let’s assume that a graph G = (V, E) is connected and it has a minimum number 

of Steiner nodes. The 2-edge connected network with relay nodes algorithm we discussed 

is started and constructs trees such as St1, St2, …, Stm.  The following three properties are 

used to prove the approximation bound. 

 

Property 2.3: The angle between two edges meeting a Steiner node in its tree Sti is at 

least 60 degrees [4]. 

Property 2.4:  Any Steiner node in the tree has a degree of no more than five [15]. 

 

Property 2.5:  Putting relay nodes on the overlapped transmission range of given 

sensor nodes ensures minimum number of relay nodes for connectivity requirement.   

 

Proof:  Placing a relay node on the overlapped coverage area of multiple sensor nodes, 

ensures connectivity among them.  Assume that transmission ranges of three sensor 

nodes are overlapped.  There will be one common area which meets all three sensor’s 

transmission range.  Putting only one relay node on that area guarantees connectivity 

among all three sensors.  Figure 13 shows this connectivity.   
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Figure 13. Relay node placement in overlapped area. 
 

The property 2.3 means that if the two edges which meet in a Steiner node are 

less than 60 degrees, the two edges to the Steiner node can be deleted and the two nodes 

which were connected to the Steiner node via these edges could be connected directly.  

Property 2.4 makes sure that the maximum degree of a Steiner node in a minimum 

spanning tree of each component is bounded by five.   

 

When we add relay nodes instead of Steiner nodes, the algorithm produces a 

graph Gj which is 2-edge connected.  Let us call this graph Hj which consists of Steiner 

nodes and sensor nodes within the transmission range of the Steiner nodes.  To add relay 
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nodes instead of a Steiner node we create a cycle using Depth First Search (DFS). The 

algorithm for adding realy nodes instead of a Steiner node is in table 6 (See Appendix B).  

For constructing a cycle among the sensor nodes connected to the Steiner nodes, first 

start from a Steiner node – let’s say st1.  Then connect all the sensor nodes which are in 

the transmission range of st1, and mark them – tree (Tj) for every node in G is constructed. 

Now we start DFS search and visit every node in a counter-clockwise direction.  Once a 

new Steiner node is visited add all sensor nodes within transmission range of the Steiner 

node to the tree Tj and mark them.  Then remove the branches of Tj which don’t include 

any sensor nodes.  Now the relay nodes are added if length is greater than one. Property 

2.4 and property 2.5 are considered when we add relay nodes instead of a Steiner node.  

Following is an example to put the minimum number of relay nodes among sensors.  
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a) Graph with Steiner node 
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b) Cycle creation using DFS 
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c) Add transmission range to find overlapped area 
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d) Add relay nodes instead of Steiner nodes 
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e) Graph after removal Steiner nodes 

 
Figure 14. Example for adding relay nodes instead of Steiner nodes. 
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Figure 14 a) shows the graph with Steiner nodes.  It forms a tree which connects 

to all sensor nodes {S1, S2, S3, S4, S5, S6, S7, S8, S9} via Steiner nodes {A, B, C, D, E, F}.  

Figure 14 b) shows the construction of the cycle using Depth First Search to add relay 

nodes.  Figure 14 c) shows adding the transmission range of each sensor node and finding 

any overlapped areas.  Once there are overlapping areas for each sensor, a relay node is 

placed instead of a Steiner node.  Figure 14 d) shows relay nodes instead of Steiner nodes.  

Once all relay nodes are placed instead of Steiner nodes, then the Steiner nodes are 

removed.  The resulting graph which includes relay nodes without Steiner nodes is in 

Figure 14 e).  The total number of relay nodes in this example is 9.  Table 2 summarizes 

number of relay nodes between sensors instead of Steiner nodes. 

 

Table 2.  Putting relay nodes for example of Figure 2 

Edge 
between  
Sensor 
nodes 

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S6) (S6, S7) (S7, S8) (S8, S9) (S9, S1) 

Steiner  
nodes  

between 
edge 

A,B B,C C,D D D,C,E E,C,B,F F F,B,A A 

Number of 
relay nodes 
instead of 

Steiner 
nodes 

1 1 1 1 2 1 0 1 1 

 

Consider the following to get the bound on the number of relay nodes in the tree 

Stj which consists of a Steiner node and connected sensor nodes in the transmission range 

of a Steiner node.  Figure 14 shows Steiner node placement to connect sensor nodes in Stj.  
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In this example, a Steiner node has a maximum degree of exactly five and it is connected 

to all other sensor nodes.  We put a relay node instead of a Steiner node if the Euclidean 

distance between sensor nodes is a unit.  We now include the transmission range of each 

sensor node to put a relay node instead of a Steiner node.  Figure 15 shows added 

transmission range and relay node placement.    

 

 
Figure 15. Steiner Node Placement to connect sensor nodes. 
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Figure 16. Relay node placement on the overlapped area of transmission range. 

 
 

In figure 16, when we add the transmission range of each sensor node there are 

overlapping transmission areas {a, b, c}, {a, b, e}, {b, c, d} and {c, d, e}.  We put relay 

nodes on these areas instead of a Steiner node and remove a Steiner node.  The example 

requires four relay nodes and all sensor nodes are 2-edge connected.  Now, we prove our 

lemma 5.2.  We can say that the number of relay nodes added (Nrelay) is less than or equal 

to 4Nsteiner, where Nsteiner is the number of Steiner nodes in the tree. 

 

steinerrelay NN 4≤                                   (1) 
 
 
 
 

 

a 

b 

c d 

e 
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The total number of relay nodes needed (T) is bounded by following so that the 

lemma is proved. 

sN
m

j
steiner 44

1
=∑

=

                                  (2) 

 
𝑇 ≤ 4𝑠                                                  (3) 

 
 

We now prove the theorem.  The 2-edge connectivity approximation algorithm to 

find the minimum number of relay nodes we use applies a 2-approximation algorithm to 

find the minimum weight 2-edge connected sub-graph.  Therefore, the total number of 

relay nodes required in the network does not exceed 8s. 

2 ∗ 4𝑠 = 8𝑠,𝑤ℎ𝑒𝑟𝑒 𝑠 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 𝑛𝑜𝑑𝑒𝑠             (4) 
 

Theorem 2.1 is proved. 
 
 

2.3.3 RELAY NODE PLACEMENT IN HIDDEN AREA 

 
In this section we are considering the placement of relay nodes in an environment 

where some obstacles are laid so that 2-edge connectivity among sensors cannot be 

guaranteed.  We call this a hidden area.  We actually maximize the angle between the 

sensor node and the relay node can be placed.  Figure 17 shows the maximized angle to 

avoid some obstacles with our scheme. 
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Figure 17. Relay Node Placement to Avoid Obstacles. 
 
 
 

We still put relay nodes in the overlapping area of sensor nodes instead of a 

Steiner node but place them as close to the end point of the overlapped area as possible.  

This actually maximizes the angle to avoid obstacles and still ensures 2-edge connectivity.  

The ∠ gaf, ∠ hbg, ∠ ich, and ∠ hdi represent around 36.5° and ∠ fei represents 65°.  It 

still needs four relay nodes instead of a Steiner node.  Therefore, our extended scheme to 

avoid hidden areas in certain circumstances still guarantees the 8-approximation.   
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2.4 PROPOSED ALGORITHM 

 
The algorithm we propose here finds the minimum cost spanning 2-edge 

connected sub-graph.  Once the algorithm finds the minimum cost spanning 2-edge 

connected graph, relay nodes are placed based on the distance between sensors.  Then the 

algorithm finds nodes placed in triangular form.  If the angle is smaller than or equal to 

60 degrees it tries to minimize the number of relay nodes.  The details for this algorithm 

are discussed in the next section. 

 

2.4.1 ALGORITHM 

 
In this section, we describe the algorithm proposed. Table 3 shows the algorithm.  

The algorithm builds a complete graph on the sensor nodes first. Then it calculates the 

weight of each edge between sensor nodes.  The weight represents the number of relay 

nodes required to form an edge.  The weight is calculated by the following function 

which is based on the distance between nodes. 

 

 𝑊𝑒 =  ⌈|ℓ ��|⌉ −  1,𝑤ℎ𝑒𝑟𝑒 |ℓ|𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠                      (5) 
 
 

We do not allow the relay nodes to have edges other than the one required to form 

the edge we placed on.  After it calculates the weight of each edge it finds the minimum 

cost spanning 2-edge connected sub-graph.  Each sub-graph ensures 2-edge connectivity 

in the graph.  The graph is now called Gc.  We applied the approximation algorithm to 

find the minimum cost spanning 2-edge connected sub-graph developed by Khuller and 
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Vishkin [7] which takes O(kn)2 time.  Now the relay nodes are placed and allowed to 

form edges with all nodes in their transmission range.  The next step is to find any three 

nodes forming a triangle.  Once the algorithm finds three nodes forming a triangle it 

removes all the relay nodes which are in the current path among the three nodes and 

makes a new edge forming a triangle among the three nodes.  Then the algorithm 

measures the angle among the three nodes.  If the measured angle is less than 60 degrees 

it tries to put relay nodes forming Figure 18.  We call this form of relay node placement 

the Two-One (2-1) scheme.  This scheme actually improves relay node placement so that 

it minimizes the number of relay nodes.  If the number of relay nodes needed with this 

scheme is smaller than that of graph Gc, then it selects triangle form and relay nodes from 

(2-1) scheme.  If the number of relay nodes needed with this scheme is greater than or 

equal to that of graph Gc, then it removes the edge that formed the triangle and restores 

the path from Gc.  If the measured angle is greater than or equal to 60 degrees it removes 

the relay nodes and the edges to form a triangle and places relay nodes and a path from 

Gc.  The algorithm is repeated until all the nodes which can form a triangle have been 

considered.  This step takes O(nr (ns + nr) e) time where ns is the number of sensors, nr is 

the number of relay nodes before finding the triangular nodes, and e is the number of 

edges between sensors and relay nodes.  The resulting graph G´ = (N´, E´) is guaranteed 

to have minimum number of relay nodes to form 2-edge connectivity.  Therefore, the 

algorithm takes O((kns)2 + nr (ns + nr) e) time.  Figure 18 is an example of relay node 

placement with this algorithm.  Figure 18 a) shows that the algorithm finds the minimum 

cost spanning 2-edge connected sub-graph. Figure 18 b) shows the resulting graph G´ = 
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(N´, E´).  The special scheme (2-1) is applied to minimize the number of relay nodes.  

The number of relay nodes needed in this example is 28.   
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Table 3.  An algorithm to guarantee 2-edge connectivity 

Steps Procedures 

1 Make a complete graph G = (N, E).   

If the edge between the nodes does not exist,      
  then add new edge.   
If an edge exists between the nodes already,     
  a new edge is not added. 

2. Calculate the weight of each edge based on the distance between nodes. 

𝑊𝑒 =  ⌈|ℓ ��|⌉ −  1,𝑤ℎ𝑒𝑟𝑒 |ℓ|𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠  
3 Compute an approximation minimum cost spanning 2-edge connected graph.  

The graph is now called Gc. 

4 Place relay nodes on each path.  The number of relay nodes is based on the 
weight of each edge.  

5 Find three nodes which can form a triangle.  

a. Remove all the relay nodes on the current path among three nodes, and 
add new edges to form a triangle. 

b. If ∠ A < 60°,         
  
then, try to form {2-1-2-1 ….} relay nodes  
 if the number of relay nodes is smaller than that of the path on the 
Gc. 
  Then select the triangle and newly added {2-1-2-1…} 
relay nodes. 
 If the number of relay nodes is equal to or greater than that of the 
 path Gc. 
  Then, remove the edge to form a triangle and the relay 
nodes.  
  Put back the path to form Gc and the relay nodes on that 
path.   

c. If ∠A  ≥ 60°,        
  then remove an edge to form a triangle and the relay 
nodes. 
 Put back the path to form Gc and relay nodes on that path. 

d. Repeat until all nodes are considered to form a triangle. 

6 Output graph G´ = (N´, E´) has minimum number of relay nodes to form 2-edge 
connectivity. 
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Figure 18. Relay node placement in triangle area. 
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a) Graph Gc with relay nodes 
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Figure 19. Relay node placement by proposed algorithm. 
 

 

The algorithm we propose in this section actually ensures 2-edge connectivity and 

guarantees the 8-approximation to find the minimum number of relay node.  In the next 

section we discuss the placement of relay nodes in triangle area, and explain the benefit 

of the algorithm which uses the lesser number of relay nodes than the recently proposed 

Steiner tree based algorithms.       

  

b) Resulting graph G´  
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2.4.2 ANALYSIS OF THE ALGORITHM 

 
In the previous section we showed an algorithm which ensures 2-edge 

connectivity.  This algorithm uses the special scheme (2-1) to place fewer relay nodes 

when it finds three nodes forming a triangle.  This special scheme actually places less 

number of relay nodes while maintaining 2-edge connectivity.  Figure 20 explains 

benefits of this scheme. 

 

a) Relay node placement before applying special scheme 
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b) Relay node placement after applying special scheme 

 

Figure 20. Relay node placement with special scheme (2-1). 

 

Figure 20 shows that three sensor nodes {S1, S2, S3} form a triangle.  The path 

that guarantees 2-edge connectivity from S1 to S3 and S2 to S3 is already formed by the 

algorithm we proposed.  Accordingly, relay nodes, {R1, R2, R3, R4, R5, R6, R7, R8}, are 
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placed along the path in Figure 20 a).  The number of relay nodes needed in Figure 20 a) 

is 8.  Now, we apply the special scheme to the three nodes forming triangle.  Figure 20 b) 

shows relay node placement with the special scheme.  We put two relay nodes {R1, R2} 

within the transmission range of S3 and find the overlapping transmission range of R1 and 

R2.  Then we place one relay node on the top of the overlapped area {R3}.  At the end of 

the transmission range of R3 we put two relay nodes {R4, R5} and find the overlapping 

transmission range of R4 and R5.  R6 is placed on top of the overlapped area so that it is in 

the transmission range of S1 and S2.  Three sensor nodes, {S1, S2, S3}, are connected 

through six relay nodes and still guarantee 2-edge connectivity.      

The ∠ R1, S1, R2 should be less than 60 degree to minimize the relay nodes using 

the special scheme (2-1).  We prove it through following Theorem and Lemmas.   

 

Theorem 2.6: If sensors form the triangle, ∠θ which is composed by jiSS and kiSS  < 

60°, and
)
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rSS ji , where r is radius of 

transmission range, the number of relay nodes are minimized and 2-edge 

connectivity is guaranteed. 

 

Lemma 2.7:  If 0° < ∠θ < 60°, where ∠θ  is an angle between jiSS and kiSS  in a 

triangle, there is a relay node that its transmission range connects to Sj and Sk.  
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Proof:  Let’s assume that there are nodes S0, S1, and S2 which form a triangle. The 

algorithm puts two relay nodes, A1 and A2 in the transmission range of the node S0 first, 

and then it puts another relay node A3 on top of the overlapped transmission range of A1 

and A2.  If 0° < ∠θ < 60°, where ∠θ  is an angle between 10SS and 20SS  in triangle, 

nodes S1, and S2 are in the transmission range of the relay node A3, and it guarantees 2-

edge connectivity from A3 to S1, and S2.  If not, S1, and S2 are not in the transmission 

range of the relay node A3 which implies that there is no connectivity from the relay node 

A3 to S1 and S2.  Figure 21 explains this connectivity. 

 

 

a) S1, and S2 are in the transmission range of A3 where ∠θ <60°. 
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b) S1, and S2 are not in the transmission range of A3 where ∠θ >60°. 

Figure 21. Transmission range of A3 based on∠θ. 
 
 
Lemma 2.8: The distance between Si and Sj in a triangle should be less than or equal 

to  
)

2
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−

−
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r  , when ∠θ  is bigger than 0° and less than 

60°, where r is the transmission range. It guarantees that the node Si and Sj are in 

the transmission range of a relay node Ai.  
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Proof:  Figure 13 proves this lemma.  ∠θ  is bigger than 0° and less than 60° but the 

node S1 and S2 are not in the transmission range of A3.  The distance between S0 and S1′, 

and S0 and S2′ guarantees that a relay node A3 can connect to S1 and S2, where S1′, and S2′  

are the point of contact that 10SS  and 20SS  meet with the transmission range of A3 

meaning that if the nodes S1 and S2 are far from the relay node A3, there needs more relay 

nodes to connect to S1 and S2.  Following describes the calculated distance between S0 

and S1′ .        

 

Figure 22. The distance from S0 to S1’ guarantees the connectivity among A3, S1, and S2 where 0° < ∠θ 
<60° 
 
 



 

 55 

To calculate the length of S0 and S1′ , we can put the foot of perpendicular on the segment 

of S1′and S2′  from S0 which is h and the foot of perpendicular on S0h from S1″ as h″.  

Figure 14 explains this triangle.  

When the intersection point of A1 and segment S0 S1′   as  S1″, the length of S0 S1″ is 2r 

because r is the transmission range, ∠ S1″ S0 h″ = θ/2 , ∠ S0 S1″ h″  = 
2

180 θ− , the length 

of S0h″  is )
2

180sin(2 θ−r   and the length of S1″h″ is  )
2

180cos(2 θ−r by tangent law in 

trigonometric functions.  

In the triangle S1′ h″ S2′, ∠ h″ S1′ h= θ
2
390 −  and the length of h″ S1′  is r.  Therefore, the 

height of h″ h will be r )
2
390sin( θ−  and length of S1′ h will be r )

2
390cos( θ− . 

To find the length S1′ S1″ , we can put the foot of perpendicular on the segment of S1′and 

h as h′ from S1″. In the triangle S1″ S1′ h′, ∠ h′ S1′ S1″  is   θ
2
190− because two triangles 

are similar if they have two equal corresponding angles, the length of S1′ S1″  is  

)
2

180cos(

)
2

180cos(2)
2
390cos(

θ

θθ

−

−
−− rr

                                                             (6) 

Therefore, based on the radius of transmission r, and the degreeθ, the length S0S1′  is  

)
2

180cos(

)
2

180cos(2)
2
390cos(

2
θ

θθ

−

−
−−

+
rr

r                                         (7) 
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By the lemma 2.7 and 2.8, the Theorem 2.6 is true which implies that if sensors form a 

triangle that ∠θ is less than 60°, and length of a line from the sensor of the angular point 

to another sensor is less than the formula (7), the special scheme (2-1) can reduce the 

number of relay nodes, and guarantees 2-edge connectivity. 

 

 

Figure 23. Calculating distance between S0 to S1′ when 0° < ∠θ <60° 
 

The algorithm we propose works well to get the minimum number of relay nodes 

while ensuring 2-edge connectivity, and guarantee the 8-appximation.  As we proved it in 

the previous section, the algorithm uses the approximation algorithm to find the 
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minimum cost spanning 2-edge connected sub-graph developed by Khuller and Vishkin 

[7] which has approximation factor 2. Then, for each tree, it replaces a Steiner node to 

relay nodes.  Therefore the algorithm ensures 8-approximation (2 * 4s = 8s where s is the 

number of Steiner nodes).  

 

2.5 CONCLUSION 

 
In this chapter we studied the minimum number of relay nodes to ensure 2-edge 

connectivity in wireless sensor networks.  We proved that the minimum number of relay 

nodes can be reduced from 10s, proved by Kashyap et al. [6] to 8s.  Therefore, we prove 

new approximation bound for the survivable wireless sensor networks using the current 

best approximation algorithm developed by Kashyap et al. [6].  We also proved that our 

extended scheme still guarantees the same approximation in the presence of obstacles for 

some cases which barely covered the overlapped area, given certain conditions.   

 

We proposed an algorithm to find the minimum number of relay nodes to ensure 

2-edge connectivity.  We developed a special scheme (2-1) which can minimize the 

number of relay nodes placed, and proved that it can actually reduce the number of relay 

nodes if the sensors form a triangle that ∠θ is less than 60°, and length of a line from the 

sensor of the angular point to another sensor is less than the length derived from formula 

(7).  

 

There are other problems to consider in the future.  We proved the maximum 

bound is 8s when the network requires only 2-edge connectivity.  We may need to 



 

 58 

consider and prove that the algorithm guarantees the same approximation when k > 2-

edges or 2-vertices. Even though our scheme reduces the number of relay nodes, there is 

still a room for improvement. 
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CHAPTER 3 CONCLUSIONS AND CONTRIBUTIONS 

 

3.1 CONCLUSIONS 
 

The following conclusions can be made from the Chapter 2: 

3.1.1 RELAY NODE PLACEMENT PROBLEM IN WIRELESS SENSOR NETWORKS 

 
The Relay Node Placement Problem, refered to as RNP, is to place the minimum 

number of relay nodes among sensors to guarantee the desired connectivity in wireless 

sensor networks.  In order to guarantee the desired connectivity for network survivability, 

all nodes are at least 2-edge or node connected.  When the desired connectivity (at least 

2-edge/node connectivity) is accomplished, the network is said to have survivability.  We 

found that the RNP for satisfying survivability is conjectured as NP-hard because the 

RNP for connectivity only is proved as NP-hard [3] through the other researches.  We 

found that the current best approximation algorithm [6] we know so far has 

approximation ratio of 10 when the 2-edge connectivity is guaranteed.  We proved that in 

each minimum cost spanning tree, it needs 4s relay nodes, and the total number of relay 

nodes required in the network does not excees 8s where s is the number of Steiner nodes.  

We also proved that our extended scheme to avoid hidden area in certain circumstances 

still guarantees the 8s where s is the number of Steiner nodes. 

 

We proposed the heuristic algorithm which still guarantees 8-approximation to 

find the minimum number of relay nodes to ensure 2-edge connectivity.  We found that 

our new scheme(2-1) can reduce the number of relay nodes if the sensors form a triangle 
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that ∠θ is less than 60°, and length of a line from the sensor of the angular point to 

another sensor is less than 
)

2
180cos(

)
2

180cos(2)
2
390cos(

2 θ

θθ

−

−
−−

+
rr

rr

, where r is radius of 

transmission range.  The algorithm takes O((kns)2 + nr (ns + nr) e) time.   
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3.2 CONTRIBUTIONS 
 

This study has two main contributions on the problems in wireless sensor networks.  

The first contribution of this study is to prove the minimum number of relay nodes in 

wireless sensor netwowks with a new approach using Steiner graph.  The existing the 

best algorithm shows 10-approximation.  However, we prove that the existing algoritm 

actually 8-approximation considering the transmission range as one of the factors.  We 

extended the same scheme to the environment that the sensors has the difficulty to 

communicate each other because of some obstacles.  Our extended schemes still 

guaranteed the 8-approximation.   

 

The second contribution of this study is to develop the heuristic algorithm which 

can reduce the number of relay nodes.  The algorithm uses new scheme (2-1) which 

applies the triangle area which is the special case. The algorithm also guarantees 8-

approximation which is the best as we know so far.  

 

In short, our approach can minimize cost of sensors when we applied into the 

practical environment where infra-structure of the networks can not be constructed due to 

the limited access. 
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APPENDIX A 

 
A.1. ACRONYMS DEFINITIONS 

 
WSNs Wireless Sensor Networks 

RNP Relay Node Placement Problem 

STP-
MSPBEL 

Steiner tree problem with minimum number of Steiner points and 
bounded edge length 

MST Minimum spanning tree 

DFS Depth First Search 

Nrelay  

Nsteiner 
Relay nodes added 
Number of Steiner Nodes in the tree 

T Total number of relay nodes needed 

We Weight of each Eges 
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A.2. SYMBOL DEFINITIONS 

S Sensor node 

s number of Steiner nodes 

r Transmission range of relay node 

R Transmission range of sensor node 

k = 1 A network is connected. 1-edge or node dis-joint 
path is existed 

k ≥ 2 At least 2-edge/node connected in the network 















 −1

r
l  

 









−






 ×∑

−

=

1

1
12

n

k

k

r
l

 

 

( )




<≤=
<≤=

−+







−






 ×∑

−

= rlrm
rlrm

r
l

k

km
n

k

k

5.12
25.11

112
1

1

 

 
G = (V, E) 

 
Number of relay nodes in the linear topology 
 
 
Number of relay nodes to ensure survivability for 
mixed case in the linear topology  
 
Number of relay nodes to ensure survivability  
for regular pattern in the linear topology  
 
 
 
A network model as a graph which consists of 
vertices and edges.   

⌈|𝑒|⌉ − 1 The formula that calculates the weight of each edge 
in given network.  

{St1, St2,…,Stm} Minimum degree minimum spanning tree sets 

sj number of Steiner nodes in the tree j 

steinerrelay NN 4≤  The number of relay nodes added (Nrelay) is less 
than or equal to 4Nsteiner  

∑
=

m

j
steinerN

1
4  The total number of steiner nodes required in a 

network  

∠θ Angle θ  in thr triangle 

jiSS  

kiSS  

)
2

180cos(

)
2

180cos(2)
2
390cos(

2
θ

θθ

−

−
−−

+
rr

r  

 
Length between Si and Sj 

 
Length between Si and Sk 
 
 
 
The distance between Si and Sj in a triangle  
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APPENDIX B 

Table 4. k-edge connected Approximation algorithm  
  

Steps Procedures 

1 Construct the complete graph G by adding edges between all the vertices of 

graph.  If an edge already exists between the pair of nodes, a new edge is not 

added. 

2 Put a weight on each edge.  The weight of each edge is calculated by⌈|𝑒|⌉ −

1, where e is the length of edge e. 

3 Compute an approximation minimum cost spanning k-edge connected sub-

graph Ĝ. 

4 Place relay nodes on the edges in Ĝ.  The number of relay nodes is equal to 

the weight of the edge.  

5 If all nodes including relay nodes in Ĝ are within each other’s transmission 

range, then form a link. 

6 Check the relay node to determine if it is necessary or not.  The following 

step is repeated until all relay nodes have been considered. 

 

a. Remove node i and all adjacent edges. 

b. Check for k-edge connectivity between the nodes. 

c. If the graph is k-edge connected, then check the next node i + 1. 

d. If the graph is not k-edge connected, then put back node i with 

all adjacent edges. And then, check next node i +1. 

 

Stop once all relay nodes have been checked. 

7 Produce the resulting graph. 
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Table 5.  Construction of 2-edge connected network with relay nodes and no Steiner 

nodes 

Steps Procedures 

1 Construct Graph G = (V, E) on the Steiner nodes, where an edge(u,v) is in E if it 

is an edge between the Steiner nodes u,v in G 

2. Find all connected components in G. 

3 Form a minimum-degree minimum spanning tree in each connected component.  

The trees are St1, St2,…,Stm. 

4 For each tree { St1, St2,…,Stm}, repeat following for j = 1 to m: 

• Remove the Steiner nodes contained Stj and add relay nodes between 

sensors to get the graph Gj, which is 2-edge connected.  

5 Output the graph Gm 
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Table 6. Removal a Steiner node and charge relay nodes 

Steps Procedures 

1  

Start a Steiner node in the tree - stj. 

 
2.  

Connect it to all sensor nodes within its transmission range and mark them.  

 
3  

Constructs a tree tj which starts from stj. 

   
4  

Start DFS for each tj. For each node, it traverses anti-clockwise direction.  

 
5  

Each time a new steiner node stj is encountered, connect with it all unmarked 
sensor nodes in its transmission range, and mark them.  Update tj by adding these 
sensor nodes, and continue DFS from the edge between stj and its parent. 

 
6  

Remove the branches of tj which does not have sensor nodes. 

 
7  

Connect all the sensor nodes by DFS and forms the cycle between them  

 
8  

Add relay nodes to all added edges if the length is greater than 1. 

 

9  

The resulting graph is Gj 
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APPENDIX C 

 
Proof of NP-hard for Relay Node Placement Problem for connected graph by Lin 

and Xue [3] is presented here: 

 

Problem 1: (Discrete Euclidean Steiner minimum tree) Given a set X of integer-

coordinate points in Euclidean plan, and positive integer L, Does there exists a set Y ⊇ X 

of integer-coordinate points such that some spanning tree T for Y satisfies l′(T) ≤ L ? 

 

Problem 2: (STP with minimum number of Steiner points and bounded edge-

length).  Given a set P of n terminal points in the two dimensional Euclidean plane R2, a 

positive constant R, and a non-negative integer B.  The problem asks whether there exists 

a tree spanning a point set Q ⊇ P such that each edge in the tree has a length no greater 

than R and the number of Steiner points (points in Q \ P) is less than or equal to B.   

 

Problem 3: (Relay node placement problem). Given a set H of n sensor nodes in 

the Euclidean plane, transmission range K, and positive integer J.  Does there exists a 

node set S ⊇ H such that in the connected graph Z, each link has a length less than or 

equal to K, and the number of relay nodes (S \ H) is less than or equal to J ?    

 

Problem 2 and 3 are actually the same problem.  The decision problem to prove 

NP-hard for Relay node problem is in problem 1 which is Discrete Euclidean Steiner 

minimum tree.   
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Proof:  Let I be the instance of problem 1.  We construct an instance I′ of problem 

2.  Let P = X, R = 1, and B = L – (|X| -1).   

Let T′ be a solution to I′, i.e., T′ is a tree spanning a superset Y of X such that |Y 

\ X| ≤ L – (|X| - 1) and such that the Euclidean length of each edge in T′ is no more than 1.  

Since the Euclidean length of each edge in T′ is no more than 1, the discrete length of 

each edge in T′ is no more than 1.  Therefore, l′(T′) ≤ |Y| - 1 since there are |Y| - 1 edges 

in T′.  However, 

|Y| - 1 = |Y \ X| + |X| - 1 

           ≤ L – (|X| - 1) + |X| - 1 

           = L.                                                                    (1) 

 Therefore, T′ is also solution to I.  It is proved that any solution to I′ is also a 

solution to I. 

Now assume that T is a solution to I.  Therefore T is a tree which spans a superset 

Y of X such that l′(T) ≤ L.  Note that the number of edges in T is |Y| - 1.     

For each edge e in T, we insert l′(e) – 1 equally spaced degree-2 Steiner points to 

divide edge e into l′(e) edges of length at most 1 each.  We will obtain a tree T′ spanning 

a superset Y′ of Y such that the length of each edge in T′ is no more than 1.  Note that the 

number of newly added Steiner points is  

 

|Y′| - |Y| = ∑ (l′(e) − 1)e∈E(T)  

               = ∑ l′(e)e∈E(T)  - |E(T)| 

               ≤ L – (|Y| - 1).                                                  (2) 
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Therefore the number of Steiner points in T′ is 

|Y′| -|X| = |Y′| - |Y| + (|Y| - |X|) 

             ≤ L – (|Y| - 1) + (|Y| - |X|) 

             = L – (|X| - 1) 

            = B                                                                      (3) 

 

This shows that T′ is a solution to I′.  To summarize, we have shown that if the 

answer to I′ is “NO” then the answer to I is also “NO”.  
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