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In this dissertation a methodology is proposed for simultaneously evaluating the 

population bioequivalence (PBE) of a generic drug to a pre-licensed drug, or the 

bioequivalence of two formulations of a drug using multiple correlated pharmacokinetic 

metrics. The univariate criterion that is accepted by the food and drug administration 

(FDA) for testing population bioequivalence is generalized.  

Very few approaches for testing multivariate extensions of PBE have appeared in 

the literature. One method uses the trace of the covariance matrix as a measure of total 

variability, and another uses a pooled variance instead of the reference variance. The 

former ignores the correlation between the measurements while the later is not equivalent 



 

 xiii 

to the criterion proposed by the FDA in the univariate case, unless the variances of the test 

and reference are identical, which reduces the PBE to the average bioequivalence. 

The confidence interval approach is used to test the multivariate population 

bioequivalence by using a parametric bootstrap method to evaluate the  1  100% 

confidence interval. The performance of the multivariate criterion is evaluated by a 

simulation study. The size and power of testing for bioequivalence using this multivariate 

criterion are evaluated in a simulation study by altering the mean differences, the 

variances, correlations between pharmacokinetic variables and sample size. A comparison 

between the two published approaches and the proposed criterion is demonstrated. Using 

nonlinear models and nonlinear mixed effects models, the multivariate population 

bioequivalence is examined. Finally, the proposed methods are illustrated by 

simultaneously testing the population bioequivalence for AUC and maxC  in two datasets. 
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1 Introduction 

 

 Bioequivalence (BE) studies are an essential component of the 

applications for approval of generic drugs or new formulations of previously licensed 

drugs submitted to the regulatory agencies. Any two drugs are deemed to have the same 

therapeutic effect if they have the same rate of absorption, the same maximum 

concentration or level of the pharmacologically active material at the site of action, and 

the same total amount available before the drug is completely excreted. This is 

considered fundamental for bioequivalence and is sometimes referred to as the 

fundamental assumption for bioequivalence (Chow and Liu, 2009).  

Bioequivalence is closely related to bioavailability (BA) in drug testing. Both are 

required by the Food and Drug Administration (FDA) for the approval of drugs, and 

therefore essential in investigational new drug applications (INDs), new drug applications 

(NDAs), abbreviated new drug applications (ANDAs), and their supplements. The FDA 

regulates BE studies and the regulations governing these studies are provided in part 320 

of 21 CFR (FDA, 2000). 

Bioavailability is defined by the FDA in 21 CRF 320.1 as: 

“The rate and extent to which the active ingredient or active moiety is absorbed from a 

drug product and becomes available at the site of action. For drug products that are not 

intended to be absorbed into the bloodstream, bioavailability may be assessed by 

measurements intended to reflect the rate and extent to which the active ingredient or 

active moiety becomes available at the site of action.”   
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Bioequivalence is defined by the FDA in 21 CRF 320.1 as: 

“The absence of a significant difference in the rate and extent to which the active 

ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives 

becomes available at the site of drug action when administered at the same molar dose 

under similar conditions in an appropriately designed study.” 

Establishing bioavailability (BA) of any drug is a benchmark effort with 

comparisons between formulations and routes of admission such as oral solution, oral 

suspension, or an intravenous formulation. Whereas, demonstrating BE is usually formal 

and use comparative statistical tests that uses specific criteria for comparisons (FDA, 

2000). To license a generic drug it is essential to demonstrate that the newly proposed 

drug or formulation contains the same active pharmaceutical moiety with the same dose 

and strength and it has the same route of administration. The producer of the test 

(generic) drug should show that the release of an active substance from the test drug 

product and the subsequent absorption into the systemic circulation is similar to the 

release and absorption of the reference drug. There is a need to demonstrate that the 

bioavailability of the proposed drug is similar to that of the approved and listed drug, the 

reference drug.  To test for the similarity of the bioavailability of the two drugs, 

bioequivalence testing is required. 

1.1. Types of Bioequivalence Measures: 

1.1.1  Average Bioequivalence 

Average bioequivalence (ABE) is the most widely used measure of BE in the 

pharmaceutical industry and research. It compares between the means or averages of the 

test and reference drug distributions. Bioequivalence is concluded if the confidence 



 

16 

 

interval of difference between the means of the reference and the test means falls within a 

predefined range. 

This measure ignores the difference in the variance between the test and reference 

drug distributions. Ignoring the differences in the variance does not guarantee that the 

two drugs, reference and test, could be used interchangeably in terms of safety and 

efficacy. 

1.1.2  Population Bioequivalence 

Population bioequivalence (PBE) is another measure of bioequivalence that was 

proposed to evaluate prescribability of the drug. Prescribability of a drug is defined as the 

ability to get the same effect by prescribing the brand-name drug or its generic drug to a 

new patient (Chow and Liu, 2009).  As mentioned in section 1.1.1 the ABE focuses only 

on the comparison of population averages of the rates or extent of absorption and not on 

the variances of these measures. In contrast, PBE includes comparisons of both the means 

and variances of the measures. Therefore, the PBE approach assesses total variability of 

the measure in the population (Hauk and Anderson, 1992, FDA 1997). 

1.1.3  Individual Bioequivalence (IBE) 

Individual bioequivalence was proposed to evaluate switchability of two drugs. 

Switchability (Anderson, 1993; Liu and Chow, 1995) is defined as the ability to switch 

from the brand-name drug to a generic drug while guaranteeing the same efficacy and 

safety to the patient who was using the brand-name drug. It is recommended to assess 

bioequivalence within individual subjects to assess switchability. Intra-subject variances 

are included in the comparison between the test and reference drugs when assessing IBE.  
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1.2. The Hypothesis of bioequivalence:  

Let  be a BE measure of interest, usually, in the case of ABE, the difference 

between the means of the pharmacokinetic parameters (PK) of the two drugs being 

compared. Let 1  and 2  be two pre-defined bioequivalent limits. Then the two-sided 

hypotheses to assess bioequivalence are: 

0 1 2 1 2: :aH or vs H           

These hypotheses can also be rewritten as two one-sided hypotheses as  

01 1 1 1: :aH vs H      

and 

02 2 2 2: :aH vs H    
.
 

If both null-hypotheses are rejected at level , there is evidence of bioequivalence 

at 100(1-)% significance. If   is the difference between the average PK parameters of 

two drugs, the 100(1 – 2)% confidence interval for   could be constructed as  

     ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,
T R T RT R T Rz z                (1) 

 

where ˆ ˆT R  is the difference between the two estimated means of the PK parameter 

for drugs T and R, and ˆ ˆˆ
T R   is the estimated standard deviation of the difference 

between the means. Then testing the two hypotheses simultaneously is equivalent to 

comparing the confidence interval to the bioequivalence acceptance region for  1 2,    

 ˆ ˆ0.2 ,0.2R R  , where ˆR  is the estimated mean of the PK of the reference drug.  
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The estimates of the differences in the means and the 100(1 – 2)% confidence 

intervals, and the estimate of the reference mean could be obtained from any 

experimental design such as parallel or cross-over trials. 

1.3. Assessing Bioequivalence 

The goal of bioequivalence studies is to test the hypothesis that two or more drugs 

are bioequivalent in terms of PK parameters. Experiments designed to assess 

bioequivalence of drugs take a wide range of measurements of the levels of the drug in 

the blood or plasma over a period of time. The key parameters in bioequivalence testing 

are shown as part of a typical plasma concentration time profile in Figure 1 (Mehrotra 

2007). The figure shows also the minimum effective concentration (MEC) which is the 

minimum concentration to produce the desired pharmacological effect; and the maximum 

tolerable concentration (MTC) beyond which toxic and adverse events are intolerable. 

From such concentration-time data or curves several PK parameters such as the rate of 

absorption ( ak ), and ( maxT ) the time until the maximum concentration ( maxC ) is 

reached, and total available dose (area under the blood level-time curve ( AUC )) are 

either measured or estimated. 

For example, the AUC  resultant from a single dose of a drug formulation is 

commonly assessed with the linear trapezoidal method (Berger RL, 1996, Gibaldi, 1982). 

The average of two subsequent plasma-concentrations (Ci and 1Ci ) is calculated,  then 

it is multiplied by the difference between the consecutive time points ( ti  and 1ti ). The 

partial areas are then summed to produce the AUC   
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  1
0 1

2
1

t
C Ci iAUC t tt i i

i

    
 

 . (2) 

The total area under the curve would be estimated as  

 0 0
ClastAUC AUC t

ke
   , (3) 

where ke  is the elimination constant, which describes the rate of reduction of the log 

plasma-concentration per unit time. This constant could be estimated as the value of the 

slope of the reduction of the log concentration by time. Thus it could be calculated using 

the elimination half-life ( 1 2t ) which is the time it takes for the concentration of the drug 

to fall to half its concentration. Suppose the concentration of the drug dropped for 1C  

measured at time 1t to its half 2C  at time 2t , then the time difference 2 1t t  is noted as 

1 2t   which is known as the half time. Then the elimination constant could be calculated 

as rate of this drop as: 

     log 2 1 log 2 1 log 1 2log 2 log 1 0.693

1 2 1 2 1 2 1 2 1 2

C C C CC C
ke

t t t t t


      

The trapezoidal formula used for AUC  is an approximation of the total area 

under the curve. The further the distance between the time points when the blood 

concentrations are measured, the larger the inaccuracy of the calculated AUC . 

Depending on the original profile of blood concentration curve, this could be an 

underestimation in some cases and an overestimation in other cases. 

maxC  is measured as the highest observed concentration. Although this measure 
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Figure 1 Typical plasma concentration time profile after oral administration 

 

 Cmax, maximum concentration; tmax, time to Cmax; AUC, area under the curve; MEC, minimum effective 

concentration; MTC, maximum tolerated concentration. 

 

rarely coincides with the true maxC
 
(the estimate is biased downward), this measure is 

widely used in bioequivalence determinations. It is not unusual for plasma concentration 

profiles that reach a peak then the concentration drops, only for the concentration to peak 

again. The second peak may be higher or lower than the first peak. In these situations, the 

maxC is usually estimated as the concentration of the highest peak in profile. However, 

the first peak may be used as the estimate of maxC  when used as a measure of 
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absorption. The maxT
 
is defined as the time when maxC is observed, and similar to 

maxC , it is rarely accurate. 

The rate of absorption could be measured in two ways. The first method is based 

on the linear fit of the first few points (at least three points) from beginning of the 

concentration profile to the first peak. This absorption constant, usually noted as 0k , is 

calculated as the slope of that linear fit. The number of points chosen for this fit is based 

on the R-squares of the fits.  Other methods uses nonlinear models to estimate the 

absorption rate constant denoted as ak . These estimates of the bioequivalence parameters 

are non-model based calculations and they cannot account for the uncertainty in 

measuring the drug concentration. Alternatively, these parameters could also be estimated 

by fitting mechanistically meaningful non-linear models. 

By assumption, if the difference between the new test drug and the reference drug 

in terms of the means of these pharmacokinetic parameters are within a pre-defined 

acceptable magnitude then the drugs are deemed bioequivalent. 

1.4. Extensions considered in this dissertation 

Most of the pharmacokinetic parameters are derived from the same blood 

concentration-time profile. This makes them correlated and therefore individually testing 

each measure for BE is not optimal. Several approaches to extend the ABE methods to 

multivariate situation have been proposed (Brown, 1995; Berger and Hsu, 1996; Brown, 

1997; Munk and Pflujer, 1999; Wang, 1999; and Tamhane and Logan, 2004). However, 

for the population BE only one method has been suggested and investigated in the 

literature for the multivariate bioequivalence (Chervoneva, 2007).  However, this 
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approach is based only on the trace of the variance covariance matrix. Since the trace is 

the sum of the diagonal elements of the matrix, this approach essentially ignores the 

correlation between the pharmacokinetic measures and therefore could not be considered 

an extension of the univariate approach to the  multivariate situation.  Another method 

was suggested by Dragalin et al. (2003), in which the Kullback–Leibler divergence 

(KLD) was used to evaluate the multivariate case of IBE. They proposed an analogous 

method to be applied to evaluate the PBE. Their method was not studied, and was not 

accepted by the FDA. 

Another aspect of the bioequivalence methods that is often ignored in the 

literature is the fact that many of the pharmacokinetic measures are derived from the 

concentration-time curves and therefore there is uncertainty in the estimates. When these 

measures are based on a single compartment non-linear fit of the data it is possible to 

estimate this uncertainty and incorporate it in the BE tests. One such method has been 

suggested in the literature but it considers each PK measure individually (Panhardt 2007). 

Multivariate extensions are considered in this dissertation.  

In Chapter 2, a review of the literature on the topics of BE are presented. The 

chapter will discuss the methods of BE testing, types of BE tests, the PK used in testing 

for bioequivalence. Methods of estimating these PK are also presented and compared.  

Chapter 3 will present the development of a methodology to simultaneously 

evaluate population BE using multiple PK. A multivariate extension of the FDA 

approved PBE criterion will be derived. A method to implement the proposed 

multivariate criterion will be presented. Also in this chapter a method to simultaneously 
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estimate the PK parameters from a  nonlinear mixed effects models and test for BE using 

the proposed multivariate method will be presented.  

In Chapter 4 the design and results of a simulation study to evaluate the 

multivariate criterion in testing for PBE are presented. The size and power of testing BE 

using this criterion are evaluated. The definition of the acceptable BE regions and 

regulatory limits are discussed, especially with the introduction of the covariance as a 

new factor in defining these regions.  

In Chapters 5 and 6, the material from chapter 3 and 4 are consolidated in the 

form of two journal articles. The first paper (chapter 5) will introduce the multivariate 

extension to the PBE that accounts for the correlation between the pharmacokinetic 

variables. This paper will also include an illustration of the method using an existing data 

and a comparisons to other methods available in the literature. The second paper (Chapter 

6) will focus on the nonlinear methods. 

In Chapter 7, summary and conclusions of the finding of this research are 

presented along with the limitations and future work. Several appendices are 

supplementing this study. Appendix I provides mathematical presentation of PBE as a 

distance measure.  The SAS programs used for this dissertation and tables of the data 

used in the examples. Since the chapters are written in the form of journal manuscripts, 

the mathematical derivations of the PBE criterion are presented in Appendix II. The 

distribution histograms, and blood concentration profiles for all subjects in this study are 

also displayed in the appendices C, E and F. 



 

24 

 

 

2 Background 

2.1. Introduction  

Bioequivalence studies are used in the development of generic drugs and the 

development of new formulations of drugs that were previously approved. Developing a 

new drug and obtaining approval from the Food and Drug Administration (FDA) requires 

multiple clinical trials to document the toxicity and the efficacy of the pharmacologically 

active ingredients of the new drug. A generic formulation of an approved compound is 

not subject to the multiple clinical trial requirement of a new compound because it is 

assumed that the active ingredients of the generic drug have the same toxicity and 

therapeutic efficacy as the approved drug. Thus, a generic drug needs only to demonstrate 

bioequivalence to the approved drug; once bioequivalence is demonstrated, it is also 

assumed that the therapeutic efficacy is similar between the approved and generic drugs. 

Thus the bioequivalence studies are designed to establish this expected similarity of the 

generic drugs to the approved drug having the same active ingredients.  

Experiments are designed to measure the concentration of the active ingredient of 

both the test and the reference drugs in the blood, or in the biological site of action, at 

appropriate time intervals. A profile of the concentration of the drug over time is then 

generated. Several pharmacokinetic parameters are estimated from the concentration by 

time profiles and are used to quantify bioavailability. In general the PK parameters of 

interest are, the maximum absorbed drug ( AUC ), the time ( maxT ) at which the highest 
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concentration in the blood ( maxC ) occurs, rates of absorption ( 0k and ka ), rate of 

elimination( ke ),  and blood or plasma half lives( 0.5t ) are calculated. 

2.2. BE a function of distance 

For any given metric two drugs are defined to be bioequivalent if  

 
2  , (4) 

where   is a predefined constant, and for any given metric,  is a critical value obtained 

from the distribution of a distance function of the new and the reference drugs. The upper 

limit ( ) is often prescribed by regulatory agencies. The  in general is the (1 - )th 

percentile of the distribution of the distance function for a given confidence level  .  For 

instance, if the 90% confidence interval of the distance function falls completely within 

the interval  ,  , bioequivalence is concluded. This procedure is equivalent to testing 

two one-sided hypotheses such as those mentioned in section 1.2 each at level  using an 

analogous test (Schuirmann, 1987).   

The ABE test focuses on the differences in the means of the pharmacokinetic 

parameters.  

    T R    , (5) 

The US FDA‘s guideline suggests comparing this distance measure with a BE 

predefined limit ( ) that is equal to 20% of the reference mean. BE is concluded when 

the confidence interval of the distance is within the BE acceptance region, i.e. 

 ˆ ˆ0.2 ,0.2R R  , where ˆR  is the estimated mean of the PK of the reference drug. The 

distribution of the PKs used in bioequivalence testing like maxC  and AUC  are known to 
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be lognormal, so the log-transformed parameters are often used in evaluating 

bioequivalence. The confidence interval of the distance measure   is estimated as 

     ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,
T R T RT R T Rz z                (6) 

 

where ˆ ˆT R  is the difference between the two estimated means of the PK parameter 

for drug T and R, and ˆ ˆˆ
T R   is the estimated standard deviation of the difference 

between the means.  

This method of evaluating bioequivalence, does not account for differences in the 

variability between the reference and test drugs. PBE was proposed to evaluate 

prescribability of the drug. Prescribability of a drug is defined as the ability to get the 

same effect by prescribing the brand-name drug or its generic drug to a new patient 

(Chow and Liu, 1992). In contrast to average BE, the PBE includes comparisons of the 

means and the total variability of the pharmacokinetic measures between the reference 

and test drugs (Hauk and Anderson, 1992).  

The PBE was introduced by FDA in 1997 as an alternative method of testing BE. 

The PBE is a scaled distance between the test and reference distributions with respect to 

the first two moments while the ABE is simply the difference between the first moments 

only. The PBE may be thought of as the ratio of two expected squared distances where 

the numerator is the expected squared distance between the reference and the test and the 

denominator is the expected squared distance between two reference observations. 

Bioequivalence, then is determined by the ratio of the two expected squared differences is 

within a predefined distance, , from unity. That is,  
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 

 

2

1
2

E y yT R

E y yR R



 
    
    

 (7) 

where yT  is a random variable denoting the test PK metrics, yR and yR are two 

realizations of the reference random variable and E represents the expectation.  

The univariate PBE criterion in (7), by substituting the unit ratio of the 

denominator term for the 1, could be redefined as (Sheiner 1992, Schall and Luus  1993), 

 

   

 

2 2

2
2

E y y E y yT R R R

E y yR R



             
    

. (8) 

Rewriting equation (8) in terms of the population mean and variance, it reduces to, 

 
 2 2 2

2

T R T RC

R

   




  
  . (9) 

where R and T are the means of the reference and the test random variables 

respectively, and 2
R

 and 2
T

 are the population variances of the reference and test 

pharmacokinetics respectively. Thus, the 
2 from the original inequality in (4)  is a 

function both of a distance metric of the means as well as the variances. The hypothesis 

test form of PBE uses the hypotheses 0 :  vs :aH C H C   . Bioequivalence is 

concluded with 100  1  % confidence if (1 )Ĉ    , where (1 )Ĉ  is the estimate of 

the upper limit of the one-sided 100(1 )th confidence interval of the PBE criterion 

defined in (9) using the maximum likelihood estimates (mle‘s) of the means and 

variances. 
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Extending this to more than one metric requires accommodation of the 

correlation. For example, suppose that the blood absorption coefficient ( aK ), and the 

time ( maxT ) until the maximum concentration ( maxC ) of the blood concentration is 

reached, and the area under the blood concentration curve ( AUC ), are all calculated from 

the same blood concentration-time profile. In this case, the assumption of independence 

in testing bioequivalence using multiple tests for each of the four parameters is not 

justifiable. Clearly, the correlations among these variables should be incorporated in the 

multivariate tests of bioequivalence. 

2.3. Multivariate extensions of BE assessment  

Multiple multivariate extensions for the average BE (Brown, 1995; Berger and 

Hsu, 1996; Brown, 1997; Munk and Pflujer, 1999; Wang, 1999; and Tamhane and 

Logan, 2004) have been proposed in the literature. However, there are only a couple that 

deal with the multivariate PBE. The first notable exception is  Dragalin et al. (2003), in 

which the Kullback–Leibler divergence (KLD) is used as a measure of discrepancy 

between the distributions of the two formulations. They propose a generalization of 

average and PBE measures, and generalize it to the multivariate situation. Their 

multivariate method could be summarized as follows. Consider a multivariate random 

variable Y  representing a set of PK metrics. Suppose Y  is distributed as normal with 

mean vector μ  and variance covariance matrixΣ . Let T and R represent test and 

reference treatments, respectively. The criterion proposed by Dragalin et al. (2003) is 

based on the following inequality 

    1 1 1 2
2

trace pT R T R T R T R
          

     
μ μ μ μ Σ Σ Σ Σ  (10) 
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Here, the left hand side (LHS) of the equation is the KLD. Two formulations are 

declared bioequivalent if the upper bound of a level-  confidence interval for the KLD 

is less than a given specific value,  . This criterion does not reduce to the univariate 

criterion proposed by the FDA in equation(9); instead it reduces to 

 
   2 22 2 2 2

1

2 22

T R T RT R R T

R T

       

 

      
 
 
  

 (11) 

Thus, this criterion may be seen as the average of two terms where the first term is the 

same measure of distance scaled by the reference variance proposed by FDA. The second 

term is similar except that it is scaled by the variance of the test. This criterion is 

equivalent to the FDA proposed criterion only if the reference and test variances are 

equal, in which case it is only a measure of the squared mean distances. Dragolin et al. 

argue that the measure proposed by the FDA is not a well defined distance measure, 

while the LHS of equation (10) is. However, the purpose of scaling the measure only 

with respect to the reference variance attributes more weight to the well established drug.  

The second notable exception is Chervoneva et al. (2007) who propose a criterion 

using the trace of the variance-covariance matrices. Although this criterion reduces to the 

univariate PBE when p, the number of variables, is one, it does not incorporate the 

correlations. The trace of a matrix being the sum of the diagonal elements alone ignores 

the off diagonal elements which represent the covariances.   

The bioequivalence rule proposed by Chervenova et. al. (2007) is, 

 
       

 

tr trT R T R T R
Bp

tr R


   
 

μ μ μ μ Σ Σ

Σ
 . (12) 
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They linearize this inequality by writing,  

          tr tr trT R T R T R R    μ μ μ μ Σ Σ Σ , (13) 

which reduces to, 

          1 0tr trT R T R T R     μ μ μ μ Σ Σ . (14) 

They then construct estimates of the confidence interval for the LHS of the above 

inequality by developing confidence intervals of the traces and the quadratic term. They 

calculate the predefined  using the same limits of differences in means and variances 

defined by the FDA in the univariate case. They concluded BE when the upper limit of 

the 90% confidence interval is negative. For p = 1 this rule reduces to the univariate rule 

in equation (9) .  

In chapter 4 the implementation of the criterion suggested in equation (8) will be 

discussed and the two measures presented here will be compared to the criterion 

proposed in the chapter 3. One of the main issues in the two methods presented here and 

the one that is proposed in chapter 3 is regarding the specification of the upper limit, . 

Next, this is discussed briefly. 

2.4. Upper bounds of PBE defined by FDA 

 In the univariate case,   is defined according to predetermined limits determined 

by the FDA. The maximum difference between the variances of the test and the reference 

( 2 2
T R

  ) allowed by FDA (1997) is 0.02, and the minimum allowed variance of the 

reference ( 2
R

 ) is 0.04. This minimum variance was motivated by the population 

difference ratio (PDR) and the corresponding criterion for ABE. The PDR is defined as 
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the square root of the ratio of the expected squared difference of the pharmacokinetic 

measure of the test and the reference to the expected squared difference of the same 

under replicated administration of the reference drug. The FDA defined 1.25 as the 

maximum allowable value of PDR to consider the two drugs bioequivalent. Notice that 

PDR will reduce to a function of the PBE criterion C in equation(9). That is, 

1
2

C
PDR   . The FDA also sets the upper limit of  T R  to the natural log of 1.25 

to accept bioequivalence according to the ‗80/125‘ rule, where the ratio between the test 

and reference means should lie within the [80%, 125%] range. Using these facts and 

assuming that 2 2
T R

  , the minimum value of 2
R

  that fulfills FDA‘s maximum 

allowable value of PDR is about 0.04, and the maximum value of   that determines PBE 

is 1.75 (Appendix C). 

The FDA proposed the limits for the PBE upper bounds for the univariate case only. 

No guidance was provided for the multivariate case.  Chervenova et al. (2007), used the 

same limits for each of the variables in the multivariate method they suggested. Their 

method ignored the correlations between the variable. The correlations should be 

accounted for and their effects need to be studied.  This important issue will be further 

considered in chapters 3 and 4.   
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3 A multivariate criterion for testing PBE 

In the previous chapter two multivariate criteria for testing BE were discussed. It was 

noted that these criteria are not appropriate analogs of the univariate FDA approved 

criterion. In this chapter, a multivariate criterion that is based on the motivation of the 

univariate FDA criterion is derived, and a method to implement it is presented. 

3.1. Development of the multivariate bioequivalence criterion C p  

The univariate PBE criterion is expressed as  

 

   

 

2 2

2
2

E Y Y E Y YT R R R

E Y YR R

            

    

. (15) 

To develop the multivariate equivalent for the criterion in (15), let TY and RY be p-

variate random variables denoting the test and reference PK metrics. Assume, TY is 

distributed as a p-variate normal with a mean Tμ  and a variance covariance matrix TΣ  

and let RY  and RY be two realizations of the p-variate normally distributed random 

variables with mean vector Rμ  and a variance covariance matrix RΣ . 

Then the multivariate equivalent of the denominator in(15) is   

   
1

2
E R R R R R
      

Y Y Y Y Σ . (16) 

Then the multivariate criterion that is equivalent to (9) could be written, 

        1 1C E Ep T R R T R R R R R R
                 

Y Y Σ Y Y Y Y Σ Y Y  (17) 
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To prove this, let  1 2
R T R
 Z Σ Y Y  and let  1 2

R R R


 K Σ Y Y , then by 

substituting Z  and K  appropriately in (17), the multivariate criterion could be expressed 

as  

    C E Ep   Z Z K K  (18) 

Note that  

 

 

 

 

 

     

2 2 ,

1 1

22 ,

1

22 ,

1

22 ,

1 1

.

p p

E E z E zi i
i i

p

E zizi
i

p

E zizi
i

p p

E zizi
i i

trace E E







 
    
   

  

 
  

 


 
  

 


 

 

 

 





 

Z Z

Σ Z ZZ

 (19) 

Similarly,        E trace E E  KK Σ K KK . Substituting these in (19),  the 

multivariate PBE criterion reduces to, 

            C trace E E trace E Ep
    Σ Z Z Σ K KZ K . (20) 

The expected value of Z is 

 

   

 

 

1 2 ,

1 2 ,

1 2 .

E E R T R

ER T R

R T R

  
  

    

 

Z Σ Y Y

Σ Y Y

Σ μ μ

 (21) 

Therefore the second term of the right hand side of (20) is  
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       

   

1 2 1 2 ,

1 .

E E T R R R T R

T R R T R

    

  

Z Z μ μ Σ Σ μ μ

μ μ Σ μ μ

 (22) 

The expected value of K  is,  

 

   

 

 

1 2 ,

1 2 ,

1 2 ,

.

E E R R R

ER R R

R R R

     

     

 



K Σ Y Y

Σ Y Y

Σ μ μ

0

 (23) 

Note that the variance covariance matrix of Z is:  

 

 

  
 

    

 

,

1 2 ,

1 2 1 2,

1 2 1 2,

1 2 1 2,

1 2 1 2 1 2 1 2.

V

V R T R

CovR T R R

Cov CovR T R R

R T R R

R T R R R R



 

  

  

  

    

Σ ZZ

Σ Y Y

Σ Y Y Σ

Σ Y Y Σ

Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

 (24) 

The last term of the above equation reduces to a p x p identity matrix, I, and thus the 

variance-covariance matrix of Z  reduces to 1 2 1 2
R T R
  Σ Σ Σ I .                                             

Similarly the variance covariance matrix of K  

 

 

  
    

 

,

1 2 ,

1 2 1 2,

1 2 1 2,

2 .

V KK

V R R R

Cov CovR R R R

R R R R



  

   

  



Σ

Σ Y Y

Σ Y Y Σ

Σ Σ Σ Σ

I

 (25) 
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Substituting these into (20) and using the cyclical properties of the trace, the multivariate 

criterion could be expressed as 

           

       

     

,

1 2 1 2 1 2 ,

1 1 .

C trace E E trace E Ep Z K

trace traceR T R T R R T R

trace pT R T R R T R

    

       

     

Σ Z Z Σ K K

Σ Σ Σ I μ μ Σ μ μ I

Σ Σ μ μ Σ μ μ

 

It is simple to show that this multivariate criterion reduces to the univariate 

criterion (9) when p = 1. It also accounts for the total variability and the correlations 

among the PK metrics used in evaluating bioequivalence. 

Using the invariance property, the maximum likelihood estimator (mle) of the 

multivariate PBE criterion could be obtained from the data as: 

      1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆC trace pp T R T R R T R
     Σ Σ μ μ Σ μ μ , (26) 

where ˆTμ  and ˆ Rμ are the mle‘s of the population means, and ˆ
TΣ  and ˆ

RΣ are the mle‘s 

of the variance covariance matrices of the test and reference variables.  

 

3.2. Hypothesis Testing of Multivariate PBE 

Using the proposed multivariate criterion ( C p ), the hypotheses for multivariate PBE are 

 0 :  vs :p a pH C H C   , (27) 

where C p is the p-variable PBE criterion and  is the constant predetermined by the 

regulators as the upper acceptable value for the acceptance region. One could define the 

test statistic based on the mle of the C p . However, the exact distribution of the test 
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statistic is not tractable. Therefore, numerical methods such as the Bootstrap algorithm 

have to be used to determine the distribution. In general, a size  test could be defined 

as,  

 

 

ˆ1 if 1 ,
( , )

ˆ0 if 1 .

p

R T
p

C
y y

C

 


 

  
 

 

,  (28) 

 

where
R

y  and 
T

y  are the sample observations, and  ˆ 1pC  is the (1 )100th percentile 

of the distribution of the mle of the PBE criterion. This test rejects the null hypothesis of 

no BE when the test statistic is 1.  Equivalently, the multivariate bioequivalence will be 

concluded at significance level   if the upper bound of the confidence interval for pC , 

namely  ˆ 1pC  is less than .  

3.2.1. Constructing the100(1 )th confidence interval of pC  

The exact distribution of the MV criterion of the mle Ĉp is not tractable. 

Therefore, a parametric bootstrap method (Efron & Tibshirani, 1993), as recommended 

by the FDA, is proposed. The steps of the parametric bootstrap method are: 

1. Obtain the mle‘s of the population parameters Tμ and TΣ of the test and Rμ and 

RΣ of the reference metrics. Calculate the MV PBE criterion using (26).  

2. Generate B pairs of bootstrap random samples. Each pair is made up of two 

random samples of size nT (the number test drug samples) and nR  (the number 

of reference drug samples), selected from a multivariate normal distribution with 
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mean vector ˆT  and covariance matrix ˆ
T for the test drug; and mean vector 

ˆR  and covariance matrix ˆ
R for the reference drug.  

3. For each pair of the b-th sample calculate the mle‘s of the means, ˆTb  and 

ˆRb and the mle‘s of the variance covariance matrices, ˆ
Tb and ˆ

Rb , for b   

1,...,B . Calculate the bootstrap estimate of the MV population criterion Ĉpb for 

each bootstrap sample. 

4. Determine,  ˆ 1Cpb  , the 100(1 )th percentile of the distribution of 

C pb based on the B bootstrap samples. 

5. PBE will be concluded if  ˆ 1Cpb    . 

3.3. Specifying the upper limit, , of BE 

 In Chapter 2, the limits and rational of BE acceptance used in calculating the 

univariate   determined by the FDA were presented. These limits are extended to the 

multivariate criterion, by setting the maximum difference between the means of the test 

and reference pharmacokinetic measures as the natural logarithm of 1.25; the maximum 

difference between the test and reference variances as 0.02, and the lowest variances as 

0.04. Since there is no analogous guideline for incorporating the correlations, different 

combinations of correlations among the test and reference variables will be used. In the 

case of independence of the two measures (i.e., 0T 
 
and 0R  ),   reduces to p-

multiples of the univariate  , where p is the number of variables. That is, 

1.75p pp   , leading to a rectangular region of BE rather than an elliptical region. 
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Using the proposed multivariable limits, values of   could be calculated for the case 

where  p = 2 with the BE limits of means and variance differences as defined by FDA. To 

account for the correlations, since there are no FDA specifications, the   could be 

computed for a range of values of R  and T .   

 Figure 2 shows the change in   in the positive range of the correlations. It is 

unlikely to find negative correlations between the AUC  and maxC . The horizontal 

reference line in the graph crosses the y-axis at 3.49 which is the value of   when the 

reference variables are independent (i.e., 0R  ). This value is noted as 0 . Also, when 

the reference variables are independent, (i.e., 0R  ), the value of   is a constant 

(equal to 3.49) regardless of the correlation between the test variables.  

The plot also illustrates, the value of   is always lower than 0 when the correlation 

between the reference variables is less than or equal to 0.4. For reference correlations 

greater than 0.4, the value of   is smaller than or greater than 0  depending on the 

values of R  and T . Since C p  is scaled by the reference variance covariance matrix,  

is more sensitive as the difference between the reference correlation and the test 

correlations increase. The (second) figure shows the plot of versus correlation when the 

two correlations are assumed equal. Notice that in the positive range of values the plot is 

close to the horizontal line representing independence.  However, the plot is consistently 

below the horizontal line. That is, the value of    is always smaller than 0 , calculated 

ignoring the correlation. As expected, this suggests, the acceptance region of BE will be 
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smaller when accounting for the correlations.  (Most of the PK variables are generally 

positively correlated.) 

In summary, these plots show, accounting for the correlations is necessary if the 

correlation between the variables in the reference and the test are expected to be vastly 

different. Further, when the correlations are vastly different guidance from the regulatory 

bodies is needed to determine the right upper bound. In the meanwhile, the BE should be 

tested for the most conservative bound. This problem becomes more complicated for p 

greater than two. Table 1 lists the values of   for the case where the correlations in the 

reference and the test are assumed equal, in the case of p=3. In this case there are three 

correlations, the first between the first and second PK, the second between the first and 

third PK, and the third correlation between the second and third PK. the value    when 

all the correlations are equal decreases as the correlation increases. When fixing the 

correlations between any two PK at low or medium values the value of   decreases by 

increasing the third correlation. This pattern is not the same when fixing two correlations 

at high value (like 0.8), the value of  increases from 2.39 when the third correlation is 

zero to 7.72 when the third correlations is at medium value, but   drops to 2.94 when the 

correlation is high at 0.8. The table also demonstrates that the values of   are higher in 

the case of p=3 than they are in the case of p=2. 

Table 1 comparison of  by different correlations among PK when p=3 

12
 13

 23
 

  

0 0 0 5.23 

0 0 0.3 4.66 

0 0 0.8 4.13 

0 0.3 0.3 4.23 
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0 0.3 0.8 4.04 

0 0.8 0.8 2.39 

0.3 0.3 0.3 3.83 

0.3 0.3 0.8 3.50 

0.3 0.8 0.8 7.72 

0.8 0.8 0.8 2.94 
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Figure 2: Effect of R  and T on the rule   
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Figure 3  with the BE limits of mu and var differences, and equal R  and T  
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3.4. Determination of PK parameters using model based estimation 

It is known in PK that the drugs and other chemicals are absorbed, metabolized, 

and eliminated from the body according to mechanisms that are specific to each drug or 

groups of drugs and their physio-chemical metabolic pathways, in the anatomical 

compartments they are distributed through. These mechanisms could be represented 

mathematically through differential equations from which non-linear functional forms of 

blood/serum concentration profiles could be derived. In the area of pharmaco-kinetics 

these are known as one, two or higher order compartmental models. These models 

assume the existence of multiple separate but connected compartments in the body where 

the drug will be absorbed and eliminated from. In each compartment the constants of 

absorption and elimination are unique for that compartment. The absorption of each drug 

could be assessed using non-compartmental methods like zero-order models as discussed 

in chapter 1. As mentioned in chapter 1, the AUC resultant from a single dose of a drug 

formulation is commonly assessed with the linear trapezoidal method (Berger RL, 1996, 

Gibaldi, 1982), ignoring the mechanistic non-linear nature of the concentration profile. 

This is mainly because in the early phases of drug development these models might not 

be known. The non-linear functional form of the PK mechanisms of approved drugs are 

always studied extensively during and after the approval of the drug. However, after the 

approval of the drug, and before the development of new formulations or generic drugs 

the characteristics of the non-linear function would be studied from which they could be 

well specified and all the characteristics of the plasma-concentration curves could be 

determined.  Acquiring this knowledge and the availability of advance analytic software 



 

44 

 

makes it logical to use compartmental or model-based methods for estimating the metrics 

used in evaluating bioequivalence. 

Non-linear models have been used in pharmacology to study the PKs of drugs for 

a long time. These models could be based on theoretical models describing the 

underlying mechanism that produces the data. As a consequence, the non-linear model 

parameters have a better physical interpretation (Adams, 2002). However, these models 

are not generally used in drug testing, except for very limited tasks, like estimating the 

constants of absorption and elimination. Even in situations where non-linear models are 

used to estimate the other PK metrics such as AUC and maxC only point estimates are 

used in the bioequivalence testing. The uncertainties in the estimation are ignored (FDA 

1992-2001, Chow SC, Liu JP 2000).    

 

3.5. Analysis of pharmacological functions using nonlinear models  

 

Consider the one-compartment pharmacological model that determines the drug 

concentration in the plasma or blood at any time point according to this function: 

 
 

k t k ta e e a

a e

k k D
C e e

Cl k k

   
 

, (29) 

where C is the plasma concentration, D  is the dose, Cl  is the clearance, t is the time of 

the measurement, ka is the constant of absorption, and ke is the constant of elimination. 

Note that the clearance rate of the drug is eCl k V , where V is the volume of the active 

compartment. The area under the curve AUC , could be estimated by integrating the 

plasma concentration with respect to time of the concentration function in (29). That is,
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 

0

k t k ta e e a

a e

k k D
AUC Cdt e e dt

Cl k k


    

   ,  (30) 

which yields 
D

AUC
Cl

 . If one is interested in AUC alone, the function could be re-

parameterized in terms of AUC by substituting AUC  for the ratio of the dose ( D ) to the 

clearance ( Cl ). That is, the model could be rewritten 

 
 

* k t k ta e e a

a e

AUC k k
C e e

k k

   
 

.     (31) 

Similarly maxC could be calculated by differentiating  (29) with respect to t and equating 

it to zero. This yields the equation, 

 
 

0
k t k ta e e a

a e

k k DC
e e

t Cl k k

 
          

 (32) 

Solving the above equation yields, 
 

max max
max

k T k Ta e e a

a e

k k D
C e e

Cl k k

   
 

, where 

maxT is calculated as 
   
 

ln lne a

e a

k k

k k




. Other PK parameters such as the first order rate of 

absorption ak , and the rate of drug elimination, ek , could also be determined from these 

models through appropriate mathematical manipulations.  

3.6. Modeling BE experiments using Nonlinear mixed effects models  

Consider a bioequivalence study comparing a new test drug to a reference drug. In 

such studies, which are usually designed as cross-over studies, each subject receives both 

treatments, and he/she might receive each treatment multiple times. So these correlated 

repeated measures need to be accounted for when estimating the fixed effects.  Suppose, 

the blood-concentration by time profile of the reference drug could be represented by a 
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known non-linear function f linking concentrations to sampling times of all the subjects 

with subject specific PK parameters, such as absorption ( ka ), elimination ( ke )rate 

constants, and clearance half-life ( Cl ). An example of this function is the one 

compartment model function in (29) 

Suppose several subjects are observed over a time interval at different occasions 

(of periods) on different treatments.  At time point, tijpk , let Cijpk  represent the blood-

concentration  of the 
thk  treatment given to the 

thi  subject at the thj time point, in the 

thp  period. Here  i  = 1, 2, …, n, k = T or R,  p= 1, 2, …, P, and j  = 1, 2, …, tipk , for, 

n subjects, 2 treatments, P periods and tipk  time points. Assume that the sampling times 

are fixed and identical, for each treatment, period, and for all subjects, as often is the case 

in cross-over trials. Then for all , , ,i j p and k , the time tijpk  could be simplified to t j . 

Let ipkλ be the vector of the PK parameters of the subject i for treatment k in period p. 

Then the nonlinear model for the concentration profile is, 

  ,C f tijpk j ipk ijpk λ , (33) 

where ijpk is the measurement error. It is also assumed that ijpk  are independent of 

ipkλ , and they are normally distributed with mean zero and variance 2
ijpk

 . 

Assume that the parameters ipkλ   are random vectors that could be decomposed for each 

period and treatment as 

 .ipk k p ik   λ μ β γ u  (34) 
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where .μ is the overall mean, kβ is the fixed effect of the treatment, pγ is the fixed effect 

of the period, and iku is the random effect of subject i for treatment k , it is also assumed 

that iku is distributed as a multivariate normal with mean zero vector and a variance 

covariance matrix  kΨ . 

To ensure that the estimates are always positive, ipkλ  elements are the natural 

logarithms of the original PK parameters in the function f. The elements of ipkλ  are  

     log , log ,  logipk a eipk ipk
Cl k k 

  
. 

The mle‘s of the original PK parameters: ka  , ke , and Cl  could be estimated 

using this nonlinear mixed effects model. Since maxC and AUC  or other metrics are 

functions of these PK parameters, then the mle‘s of these metrics for each treatment 

group could be estimated as functions of the mle‘s of the PK. The asymptotic 

approximation of the variance covariance matrices of these metrics could be estimated 

using the Taylor series expansion theorem. Where the second partial  derivatives are 

derived and the mles are estimated. This method is known as the delta method. When  

closed form derivatives are available, the estimation of the information matrix is easy. 

Otherwise other methods are utilized. 

Using these estimates of the means and variance covariance matrices of the test 

and the reference drugs, the multivariate PBE criterion ( C p  ) that was proposed in 

section 3.1 is estimated. Then the 90% confidence interval is constructed around this 

estimate using the parametric bootstrap method as suggested by the FDA and as shown in 

our first paper. Two thousand samples are randomly generated from a multivariate 
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distribution with means and variances equal to the mle‘s obtained from the NLMEM. The 

upper limit of the resultant confidence interval is compared to the predefined limit of 

bioequivalence   described earlier in the chapter. Bioequivalence is concluded if the 

upper limit of the 90% confidence interval is smaller than the predefined limit  . 

3.6.1 Modeling cross-over experimental design 

The cross-over design is the most recommended design for bioequivalence 

studies. In this design subjects are randomized to receive one of the sequences of 

treatments. Each of these sequences contains both the test and the reference drugs at 

different periods. For example in the two period cross-over design, one sequence is TR, 

and the other treatment is RT. A washout period should follow any treatment period to 

make sure no effect of the drug from the previous period will affect the consecutive 

period. In multiple period designs, the order in which the two drugs are given is usually 

selected at random using a block randomization method to ensure the balance within 

subjects. 

 At the beginning of each period, baseline blood concentration data are collected 

prior to the administration of the drug to evaluate the washout period. The 

pharmacological baseline measurement is supposed to be zero if the wash out period is 

long enough. After the drug is administered, the specified pharmacological measurement 

(level of specific active material in the blood) is obtained over a period of time at fixed 

time intervals predesigned according to the investigators knowledge and expectations 

about the pharmacodynamics of the tested drug. 

In this design, each subject receives both treatments, and one or more administrations of 

each treatment according the sequence assigned to him/her. Under this design, all 
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measures within each subject are correlated. The goal was to determine if the two drugs 

are bioequivalent. The NLMEM presented above in equation (34) is a suitable model for 

this design because the administrations are repeated in nature on each subject, and due to 

the expected missing data in such experiments. Using the same notation above the 

parameter vector could be decomposed as (34). 

 

3.6.2 Modeling parallel experimental design 

 

Although parallel designs are not the recommended designs for testing BE, in 

practice some drugs cannot be tested using other designs. In this design patients are 

randomized to either receive the test or the reference treatment. Similar to the nonlinear 

mixed effects model (NLMEM) described above. A fixed effect model could be 

constructed by excluding the period effect, and the random effect of the subject. This 

could be used to model the one-compartment pharmacological model that fits such data.  

Using the same notations above, the vector ikλ  is a fixed effects vector that can be 

decomposition as 

 .k k λ μ β  (35) 

where .μ is the mean value of all treatments, β is the coefficient of the fixed effect 

According to this model, the vector kλ , could be defined as      log , log ,  loga eCl k k    

 . 1 2 3, ,  μ , and  1 2 3, ,k k k k  β . The pharmacological function in (29) could 

be fit in the nonlinear model by substituting the PK parameters Cl  , ak , and ek  by the 

exponentials of the members of the fixed effect vector ikλ ; i.e.  1 1k  ,  2 2k  , 

and  3 3k   respectively.

  



 

50 

 

 

3.7. Summary of the method 

The estimates of the PK parameters for each treatment and the variance 

covariance matrices could be estimated as in section 3.6. The MV criterion would be 

estimated and the upper limit of the confidence interval, constructed using the bootstrap 

method, would be compared to the predefined limit   to evaluate PBE.
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4 Simulation Study 

 

 

In this chapter, properties of the multivariate PBE criterion proposed in the 

previous chapter are studied using Monte-Carlo simulation methods. The simulation 

study was designed to evaluate the distribution of the proposed multivariate criterion C p  

under different combinations of sample size (number of subjects in the trial), differences 

in the averages and variances of the pharmacokinetic (PK) parameters between the 

reference and test drugs, and under different correlations among the PK parameters 

within each treatment group. This study was mainly designed to guide in the selection of 

a method to construct the confidence interval for the proposed criterion. Another 

simulation study was designed to study the size and power of the hypothesis tests, and to 

compare the multivariate criterion versus the multiple testing using the univariate criteria. 

These studies were limited to equal size samples of reference and test drugs. The effect of 

different sample sizes, missing values and dependence between the treatments drugs 

should be examined in future studies. 

4.1. Generating p-variate normally distributed data 

 It has been shown in many studies that the log-transformed pharmacokinetic 

parameters have a normal distribution, and that data extracted from the same 

concentration time profiles for each subject are correlated. To create samples that 

preserve these properties samples for the simulations were drawn from multivariate 

normal distribution. Two samplesYT and Y R  of N sets of pairs of variables were 

generated from a bivariate normal distribution to represent the test and reference datasets.  
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The first dataset includes variable 
1

y
R i

 and 
2

y
R i

hat represent the log-transformed 

pharmacokinetic parameters of the reference drug, namely log( )maxC and log( )AUC . 

The second dataset includes 
1

y
T i

and 
2

y
T i

that represent the log-transformed data of the 

test drug, where i  represents the 
thi subject, for 1,...,i N . The corresponding data 

matrices are  

.  .  .
11 12 1

,
.  .  .

21 22 2

.  .  .
11 12 1

.
.  .  .

21 22 2

y y y
T T T N

T
y y y
T T T N

y y y
R R R N

R
y y y

R R R N

 
  
  

 
  
  

Y

Y

 

have samples of bivariate normal distributions, which we will denote by 

~ ( , ),N pk k k
Y μ Σ  

where the subscript k represent the treatment, T, Rk  . For treatment k the population 

mean vector is 

 , ,1 2k kk
 μ  

and the variance covariance matrix is 

2
1 1 2

.
2

1 2 2

k k kk
k

k k k k

 
 
 
  

Σ
   

   

 

In the case of more than two PK, this covariance structure allows for different 

correlations between the pharmacokinetic variables within each of the two drugs. For the 

simulation a parallel design is assumed, so that the observations from the two treatments 

are assumed independent. This assumption is widely accepted in the case of the 

univariate evaluation of PBE.  
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 SAS IML code calling the function (VNORMAL) was used in a macro to 

generate the samples of bivariate normal data. All simulations and analyses were done 

using SAS 9.2, SAS Institute, Cary, NC. Code is presented in Appendix K.   

 

4.1.1  Evaluation of the distribution of the multivariate BE criterion. 

 A preliminary Monte-Carlo experiment was performed to study the distributions 

of the multivariate criterion. The results in Appendix C show that the distributions are 

skewed to the right, especially in smaller sample sizes. As the sample size increases the 

distribution gets closer to a symmetric normal distribution. The distribution under equal 

correlations, and three sample sizes (25, 50, and 100), were examined. Distribution 

histograms in Appendix C show that with a small sample size (n = 25) the distribution of 

the estimate of PBE criterion, C p , is far from normality. As the sample size increases, 

the distribution approaches normality. However, if the distribution was investigated by 

the difference between the covariances of reference and the test, then this study 

demonstrates that these difference specific distributions  are far from the normal 

distribution even with the larger sample sizes (n = 100). 

 The results of this Monte-Carlo experiment (presented in Appendix C) supported 

FDA‘s recommendation of using the bootstrap method to construct the confidence 

interval for the univariate PBE criterion rather than applying a normal approximation. It 

could be concluded that similar to the univariate case, using the parametric confidence 

intervals which assume normality for the multivariate PBE criterion C p  would not be 

appropriate. In order not to assume any distribution the parametric bootstrap method to 
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evaluate the percentile confidence interval was used as suggested by the FDA. The 

parametric bootstrap method was used because there is enough evidence that the log-

transformed pharmacokinetic measures like AUC, maxC and maxT  follow a normal 

distribution. It was convenient to resample (for the bootstrap) from a p-variate normal 

distribution in which means and variance covariance matrix are equal to those estimated 

from the sample.  

 

4.2. Constructing confidence intervals for the PBE Criterion C p  

 The non-parametric confidence interval was constructed using the percentiles 

from the parametric bootstrap method. From each replication of the experimental 

settings, the means and the variance covariance matrices were estimated. Then 2000 

bootstrap samples were generated by randomly selecting from multivariate normal 

distribution with mean and variance equal to those estimated from the replication. Then 

estimates of the multivariate PBE criterion C p were calculated for each of these 2000 

bootstrap samples. The 95
th

 bootstrap percentile of C p was determined. This is the upper 

limit of the one sided 95% confidence interval for C p that would be used in the 

hypothesis testing.  

 

4.3. Simulation Configurations 

The simulation study was run with 500 replicates. Each replicate represented a 

bioequivalence trial with N subjects in each treatment (test or reference). For each subject 

two measures representing the log-transformed AUC and maxC , were selected from the 

bivariate normal distribution as described earlier. To estimate the nonparametric 
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confidence interval in each simulation, 2000 bootstrap samples were randomly selected 

from the bivariate distributions. Efron (1982) demonstrated that in general 2000 bootstrap 

samples would be large enough to obtain unbiased confidence intervals. 

 Following FDA guidelines for the univariate case of PBE, and based on the 

information from published bioequivalence trials the following factors and their levels 

were considered: 

1. Sample size (The number of subjects in each sample (N)): It is important to 

evaluate the performance of any new statistic or test under a variety of sample 

sizes. The usual number of subjects in most of the bioequivalence drug trials 

varies between 20 and 100 per group. So it was decided to choose the values 25, 

50 and 100. 

2. Difference in the means: As discussed earlier the maximum allowable difference 

between the (log transformed) means of the test and the reference parameters is 

the natural logarithm of 1.25. Five values for the difference between the means 

were selected: -2log(1.25),  -log(1.25)/2, zero, log(1.25), 2log(1.25). 

3. The standard deviations: The FDA recommends a minimum value for the 

reference standard deviation of 0.2, so it selected as the value for the variance of 

the reference pharmacokinetics. Hence, 2 2&
1 2R R

  were set to be 0.04.  

4. Difference in the variance: The FDA defines bioequivalence if the difference 

between the variances of the reference and the test pharmacokinetic is within 

0.02. We selected the values for the variance of the test PK to be 0.04, 0.06 and 

0.1. 
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5. Correlation between the pharmacokinetic variables: The correlations for variables 

are not used in the definition of bioequivalence. The correlations are ignored in 

the multiple univariate testing and in the MV criterion suggested by Chervoneva 

(2007). To evaluate the performance of the proposed criterion, a wide range of 

correlations that allow for all possible values including rare cases like negative 

correlations were selected. The correlations between -0.2 and 0.8 in increments of 

0.2 were selected to evaluate the effect of the difference between the correlations 

on the power and the size of the tests for bioequivalence.  

  The size of testing the hypotheses of BE was evaluated under conditions that 

represent the maximum allowable values of variances and differences between the 

means of the reference and test drugs. The power of the test was evaluated under 

conditions that fulfill the BE with respect to the variances and the means. The size 

and power were evaluated under different sample sizes and variable correlations 

between the reference and between the test variables.  

 

4.4. Description of the simulation steps 

In summary, the simulations was performed using the following steps for each of the 

combinations of sample size, difference in means, difference in variance and correlations 

between the reference and the correlations between the test PK measures: 

1. Generate 500 samples (replicates) of four random variables of size N from two  

bivariate normal distribution with reference means 1R  and 2R  and test means 

1T and 2T , and correlations R and T  and variances 2
1R

 , 2
2R

 , 2
1T

 , and 

2
2T

 that define each configuration or setting. 
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2. Estimate the means vector and variances covariance matrix for each replication. 

3. Bootstrap each replicate 2000 times using parametric bootstrap method by 

selecting 2000 random samples from multivariate normal distribution with the 

means and variances equal to those estimated in step 2. Calculate the estimated 

MV criterion Ĉpb for each bootstrap sample. The subscript b denotes bootstrap. 

4. Calculate the 95
th

 percentile for the 2000 calculated bootstrap estimates of Ĉpb  

for each simulation configuration. Let this percentile be denoted ˆ
(.95)Cp which is 

the upper limit of the one-side confidence interval of C p . 

5. For each replication, reject the null hypothesis if the upper bound of the one-sided 

95% confidence interval, ˆ
(.95)Cp , was less than the predefined  . Calculate the 

number and percent of times the result was correct in agreement with the setting, 

and do the same using the univariate criterions for each of the variables. 

6. Calculate the size and power of the test by calculating the percentage of times the 

null hypothesis was rejected among the 500 replicates, if the null hypothesis was 

true or was not true respectively. 

 

4.5. Simulation Results 

 

The results of the simulation study are tabulated by sample size, the difference 

between the averages of each of the variables and the difference in the variances, the 

correlations of the reference and the correlations of the test drugs in the Appendices C 

and D. The results show that the size of the test is affected by the sample size, and the 

correlations. 
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4.5.1 Evaluation of size of the test 

The size of the test could be evaluated as the highest probability of rejecting the null 

hypothesis given the null hypothesis is true.  That is, using the definition 

   sup ( , ) 1Ho R T
P y y   . (36) 

 In the example of bioequivalence this is the highest probability of determining two drugs 

as BE when they are actually not BE. 

 

The size of the test was evaluated using random selection from distributions that have the 

maximum accepted values of the differences between the means and between the 

variances. These values define the boundaries of the multivariate PBE acceptance region 

in all dimensions. These are the values that define the true value of the multivariate PBE 

criterion as equal to the predefined . The table compares between two tests, the first 

accounts for the correlation in the predefined , the second one ignores the correlations 

when defining  . The probability of type I error is very conservative in the case of 

smallest tested sample sizes of 25 and it increases by increasing the sample size. These 

errors exceed the 0.05 level only when the reference correlations are higher than 0.2, and 

the   is calculated under the assumption of independence. The largest probability of type 

I errors are observed when the correlations of either the reference or the test are very high 

(0.8), and when the differences between the correlations of the reference and the 

correlations among the test are large. 

Probability of the type I errors are also sensitive to the magnitude of the 

correlation used in calculating the   (Table 3). Testing the bioequivalence hypothesis 

using negative correlations, on samples drawn from positively correlated random 
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variables, causes the highest increase in type I errors. There is a minimal increase in 

probability of Type I error when using a positive correlation that is not equal to the true 

correlation except for testing with lower correlations when the true correlation is high 

0.8. This would result in rejecting the null hypothesis, and concluding PBE in more non-

BE cases.  

 

4.5.2 Evaluation of power of accepting BE 

Table 4 compares the power of the proposed multivariate PBE test as a function 

of the sample size, the correlations and the differences in the means and the difference 

between the variances. As expected the power is highest when there is no difference in 

the true means of the reference and test variables. The power drops gradually as the 

difference between the means increases in either direction. Accounting for the correlation 

in the upper limit, , of PBE results in a test with less power than ignoring the 

correlation. The power increases as the absolute difference between the test and reference 

means increases. The test that ignores the correlation achieves the highest power, while 

the intersection of two separate univariate tests has the lowest power. Data in Table 5 

presents the power as a function of the difference in the variances of the reference and 

test variables. The power increases as the sample size increases and as the difference 

between the variances decreases.  

Each simulation sample was classified as bioequivalent or not according to the 

proposed multivariate PBE test accounting for correlations, ignoring the correlations, and 

using the intersection of two univariate tests of BE with and without Bonferoni 

correction. Then according to each scenario the simulation samples were classified into 

correctly classified and incorrectly classified. Table 6 compares the correct classification 
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of all BE and non-BE scenarios using the four methods. The sensitivity of testing for BE 

is higher when ignoring the correlation than all other tests. This means that more 

scenarios are classifying correctly as BE when the truth is BE. However this higher 

sensitivity is at the cost of having the highest false positive rate or the lowest specificity, 

i.e. the highest proportion of misclassification (type I error or incorrect classification) 

when the truth is not BE.  

The power function was evaluated as a function of the test means under fixed 

values of the reference means and variance covariance matrix and under equal 

correlations between the test variables and between the reference variables. The x-axis in 

Figure 4 presents the value of the means of the test variables, assuming equal means for 

both PK. The acceptance region of Bioequivalence under these conditions is the area 

bounded by the two vertical lines in the graph which represent differences of (log 1.25) 

from the reference means. The figure shows that the power of rejecting the null 

hypothesis of ―no BE‖ is higher than 90% when the reference means are equal to the test 

means. This power decreases as the difference between the means increases. After 

crossing the acceptance boundaries, the vertical reference lines in the plot, the probability 

of rejecting ‗not BE‘ drops to below 0.05. The figure shows that this trend is common 

among all three test: i) comparing the multivariate criterion to a rule   that does not 

account for the correlation, ii) comparing the multivariate criterion to a rule   that does 

account for the correlation , iii) the intersection of two univariate comparisons of the 

univariate criterion to a univariate rule  .    
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Figure 5 presents the drop in the power of testing the null hypothesis of ‗no BE‘, 

under fixed variance of the reference, as the variance of the test increases. This power, as 

expected, increases as the sample size increases. The power is above 0.7 with sample size 

of 100 when the variance is 0.06, which is equivalent to a difference of  0.02 between the 

variances. As the variance of the test variable increases the probability of rejecting the 

null hypothesis of no BE decreases. When the difference between the variances exceeds 

0.02 this probability represents the probability of type I error, and it is always 0.05 for the 

smallest sample size of 25. For larges sample sizes the probability of type I error is lower 

than 0.05 only when the difference between variances is greater than 0.05. 
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Table 2. Size* of the test,  

  Ignoring correlation in  ,  0P Cp   
Accounting for correlation in  , 

 P Cp   

R  T  n=25 n=50 n=100 n=25 n=50 n=100 

-0.2 -0.2 0.0100 0.0000 0.0000 0.0133 0.0033 0.0133 

 0 0.0000 0.0067 0.0000 0.0000 0.0067 0.0267 

 0.2 0.0067 0.0000 0.0000 0.0067 0.0133 0.0400 

 0.4 0.0033 0.0000 0.0033 0.0167 0.0133 0.0233 

 0.8 0.0000 0.0067 0.0100 0.0200 0.0300 0.0267 

0 -0.2 0.0033 0.0133 0.0133 0.0033 0.0133 0.0133 

 0 0.0033 0.0200 0.0100 0.0033 0.0200 0.0100 

 0.2 0.0033 0.0133 0.0333 0.0033 0.0133 0.0333 

 0.4 0.0000 0.0133 0.0100 0.0000 0.0133 0.0100 

 0.8 0.0100 0.0167 0.0300 0.0100 0.0167 0.0300 

0.2 -0.2 0.0100 0.0000 0.0133 0.0067 0.0000 0.0100 

 0 0.0000 0.0467 0.0567 0.0000 0.0167 0.0233 

 0.2 0.0133 0.0267 0.0467 0.0100 0.0133 0.0067 

 0.4 0.0133 0.0467 0.0767 0.0067 0.0267 0.0233 

 0.8 0.0500 0.0667 0.1433 0.0233 0.0133 0.0433 

0.4 -0.2 0.0033 0.0000 0.0100 0.0033 0.0033 0.0133 

 0 0.0000 0.0067 0.0333 0.0000 0.0000 0.0200 

 0.2 0.0067 0.0333 0.0667 0.0033 0.0200 0.0167 

 0.4 0.0100 0.0467 0.1300 0.0067 0.0133 0.0067 

 0.8 0.0533 0.1700 0.3700 0.0100 0.0233 0.0167 

0.8 -0.2 0.0000 0.0000 0.0000 0.0067 0.0333 0.0333 

 0 0.0000 0.0000 0.0000 0.0067 0.0100 0.0200 

 0.2 0.0000 0.0000 0.0000 0.0067 0.0133 0.0033 

 0.4 0.0000 0.0000 0.0000 0.0033 0.0067 0.0333 

 0.8 0.0133 0.1100 0.2867 0.0000 0.0000 0.0200 

 *the probability of rejecting the null hypothesis of ―not bioequivalent‖ at the 

boundary of the BE region. 

 R  and T are correlations among reference measures and among test measures. 

  Bold italic: 95% CI does not include 0.05; Bold: 95% CI includes 0.05. 
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Table 3: Effect of misclassification of the rule theta on Type I error 

 

Sample 

Size 

rhoR rhoT .2  0  .2  .4  .8  

25 -0.2 -0.2 0.0063 0.0063 0.0025 0.0000 0.0000 

0 0 0.0163 0.0063 0.0013 0.0013 0.0013 

0.2 0.2 0.0263 0.0063 0.0063 0.0013 0.0000 

0.4 0.4 0.0350 0.0050 0.0088 0.0050 0.0013 

0.8 0.8 0.0638 0.0025 0.0125 0.0088 0.0025 

50 -0.2 -0.2 0.0125 0.0125 0.0000 0.0000 0.0000 

0 0 0.0475 0.0138 0.0088 0.0038 0.0000 

0.2 0.2 0.0875 0.0125 0.0125 0.0050 0.0000 

0.4 0.4 0.1213 0.0113 0.0238 0.0113 0.0038 

0.8 0.8 0.2388 0.0113 0.0588 0.0388 0.0113 

100 -0.2 -0.2 0.0188 0.0188 0.0000 0.0000 0.0000 

0 0 0.0838 0.0163 0.0050 0.0025 0.0000 

0.2 0.2 0.2100 0.0113 0.0113 0.0025 0.0000 

0.4 0.4 0.3488 0.0088 0.0375 0.0088 0.0025 

0.8 0.8 0.5288 0.0238 0.1313 0.0663 0.0238 

2 2 2 2ln(1.25); 0.04; 0.061 1 2 2 1 2 1 2T R T R R R T T
                
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Table 4. Power of the test 

        

  Ignoring correlation in  , 

 0P Cp   

Accounting for correlation in  , 

 P Cp   

rhoR muT-

muR 
n=25 n=50 n=100 n=25 n=50 n=100 

-0.2 -0.335 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 -0.223 0.0033 0.0100 0.0167 0.0133 0.0283 0.0567 

 -0.112 0.1600 0.5100 0.9017 0.2683 0.6950 0.9800 

 0 0.4183 0.9017 1.0000 0.5917 0.9633 1.0000 

 0.112 0.1567 0.5483 0.8967 0.2567 0.7450 0.9717 

 0.223 0.0050 0.0050 0.0167 0.0067 0.0283 0.0600 

 0.335 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0 -0.335 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 -0.223 0.0250 0.0467 0.0833 0.0250 0.0467 0.0833 

 -0.112 0.1933 0.6283 0.9350 0.1933 0.6283 0.9350 

 0 0.4333 0.9200 0.9983 0.4333 0.9200 0.9983 

 0.112 0.2250 0.5850 0.9417 0.2250 0.5850 0.9417 

 0.223 0.0183 0.0383 0.0817 0.0183 0.0383 0.0817 

 0.335 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2 -0.335 0.0000 0.0017 0.0000 0.0000 0.0017 0.0000 

 -0.223 0.0300 0.0817 0.1850 0.0183 0.0350 0.0783 

 -0.112 0.2167 0.6683 0.9583 0.1467 0.5017 0.8983 

 0 0.4367 0.9133 1.0000 0.3383 0.8367 0.9917 

 0.112 0.2267 0.6767 0.9650 0.1600 0.5383 0.9083 

 0.223 0.0383 0.1150 0.2133 0.0250 0.0533 0.0850 

 0.335 0.0017 0.0000 0.0000 0.0017 0.0000 0.0000 

0.4 -0.335 0.0000 0.0017 0.0017 0.0000 0.0000 0.0000 

 -0.223 0.0350 0.1383 0.3367 0.0150 0.0283 0.0867 

 -0.112 0.2333 0.7167 0.9717 0.1233 0.4817 0.8567 

 0 0.4350 0.9283 1.0000 0.2467 0.7500 0.9800 

 0.112 0.2567 0.7667 0.9683 0.1333 0.4733 0.8383 

 0.223 0.0350 0.1500 0.3100 0.0150 0.0383 0.0767 

 0.335 0.0000 0.0033 0.0017 0.0000 0.0000 0.0000 

0.8 -0.335 0.0117 0.0117 0.0133 0.0017 0.0017 0.0000 

 -0.223 0.0483 0.2467 0.5850 0.0067 0.0600 0.0917 

 -0.112 0.2817 0.7533 0.9783 0.0817 0.3633 0.7633 

 0 0.4517 0.9133 1.0000 0.1650 0.6250 0.9300 
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 0.112 0.2833 0.7500 0.9833 0.0750 0.3517 0.7700 

 0.223 0.0683 0.2250 0.5600 0.0150 0.0317 0.0883 

 0.335 0.0033 0.0150 0.0200 0.0000 0.0000 0.0000 

 2 2 0.04
1 2R R
   , 2 2 0.05

1 2T T
   , R T  and  R T   

 power of test = the probability of rejecting the null hypothesis ―not 

bioequivalent‖ within the population  BE region 

 

 

Table 5. Power of the test as a function of the correlation, difference in the 

variances, and the sample size 

rhoR 2 2
T R

  V1T 

Ignoring correlation in  , 

 0P Cp   

Accounting for correlation in  , 

 P Cp   

  N=25 n=50 n=100 n=25 n=50 n=100 

-0.2000 0.0000 0.6300 0.9867 1.0000 0.7700 1.0000 1.0000 

 0.0100 0.4183 0.9017 1.0000 0.5917 0.9633 1.0000 

 0.0200 0.2100 0.6700 1.0000 0.3033 0.8567 1.0000 

 0.0300 0.1133 0.3967 0.8133 0.1967 0.6333 0.9467 

 0.0400 0.0400 0.1800 0.5433 0.1000 0.3333 0.8067 

 0.0600 0.0100 0.0333 0.0400 0.0200 0.0533 0.2300 

0.0000 0.0000 0.6733 0.9933 1.0000 0.6733 0.9933 1.0000 

 0.0100 0.4333 0.9200 0.9983 0.4333 0.9200 0.9983 

 0.0200 0.1867 0.7200 0.9735 0.1867 0.7200 0.9735 

 0.0300 0.0867 0.3967 0.8167 0.0867 0.3967 0.8167 

 0.0400 0.0567 0.1667 0.4933 0.0567 0.1667 0.4933 

 0.0600 0.0033 0.0200 0.0833 0.0033 0.0200 0.0833 

0.2000 0.0000 0.7633 0.9933 1.0000 0.6667 0.9800 1.0000 

 0.0100 0.4367 0.9133 1.0000 0.3383 0.8367 0.9917 

 0.0200 0.1933 0.6167 0.9700 0.1133 0.5000 0.9133 

 0.0300 0.1067 0.4533 0.8033 0.0700 0.2933 0.6333 

 0.0400 0.0367 0.2300 0.5100 0.0233 0.1433 0.3000 

 0.0600 0.0033 0.0133 0.0733 0.0000 0.0067 0.0233 

0.4000 0.0000 0.6633 0.9900 1.0000 0.4700 0.9567 1.0000 

 0.0100 0.4350 0.9283 1.0000 0.2467 0.7500 0.9800 

 0.0200 0.2000 0.7167 0.9767 0.1067 0.4500 0.8633 



 

66 

 

 0.0300 0.0700 0.4200 0.8233 0.0267 0.1900 0.4900 

 0.0400 0.0500 0.1700 0.5533 0.0200 0.0733 0.1667 

 0.0600 0.0133 0.0333 0.0733 0.0000 0.0100 0.0033 

0.8000 0.0000 0.6967 0.9933 1.0000 0.4133 0.8900 1.0000 

 0.0100 0.4517 0.9133 1.0000 0.1650 0.6250 0.9300 

 0.0200 0.2467 0.7067 0.9800 0.0733 0.2933 0.6633 

 0.0300 0.0833 0.3967 0.8333 0.0200 0.0867 0.2800 

 0.0400 0.0567 0.2467 0.4533 0.0033 0.0400 0.0633 

 0.0600 0.0033 0.0433 0.0600 0.0000 0.0000 0.0000 

 

Table 6. Percentage of the simulated cases leading to correct decision regarding BE. 

  MV BE criterion accounting for the correlation 

  BE  Not BE 

  Incorrect correct Total  Incorrect correct Total 

Intersection of 2 

(1 / 2)CI Univariat

e tests (Bonferoni 

correction) 

Incorrect 3.5 15.56 19.07  11.87 0.91 12.78 

Correct 0.37 80.56 80.93  12.29 74.93 87.22 

Total 3.88 96.12 100  24.16 75.84 100 

         

Intersection of 2 

(1 )CI Univariate 

tests 

 

 

Incorrect 3.23 7.81 11.04  15.84 1.72 17.56 

Correct 0.65 88.31 88.96  8.33 74.11 82.44 

Total 3.88 96.12 100  24.16 75.84 100 

         

MV ignoring 

correlation in rule 

 

 

 

Incorrect 0.9 0.52 1.43  22.66 11.04 33.71 

Correct 2.97 95.6 98.57  1.5 64.79 66.29 

Total 3.88 96.12 100  24.16 75.84 100 
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Figure 4. Power as a function of mean of the test variable 
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Figure 5. Effect of the sample size and the variance of the test variables on Power 
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Table 7. Effect of the reference and the test correlations on multivariate PBE criterion (Cp) as a function of  0  

R  T  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-0.2 + + + + + + + + + + + + 

-0.1 + + + + + + + + + + + + 

0 = = = = = = = = = = = = 

0.1 - - - - - - - - - - - - 

0.2 - - - - - - - - - - - - 

0.3 - - - - - - - - - - - - 

0.4 + + - - - - - - - - - - 

0.5 + + + - - - - - - - - - 

0.6 + + + + + - - - - - - - 

0.7 + + + + + + + - - - - - 

0.8 + + + + + + + + + - - - 

0.9 + + + + + + + + + + + - 

: ,  : ,  : ,  0 0 0

 is  under no correlation in both reference and test, 3.48970 0

     

  

     


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4.5.3 Asymmetry of test 

The upper bound of the multivariate BE region, , were calculated according to 

the correlations between the test, columns in Table 7, and between the reference, rows in 

the table. The calculated  ‘s were  compared to 0 , which was calculated assuming 

independence between the test variables, and independence between the reference 

variables. The difference between these two   ‘s represents the difference between the 

BE regions under correlation and under independence. The ‗+‘ represents the condition 

where the BE region is larger under correlation, while the  ‗-‗ represents the condition 

when the BE region was larger under independence. The equal sign represents equal BE 

regions under both conditions. The diagonal of Table 7 represents the conditions where 

the reference correlations are equal to the test correlations. The table is clearly 

asymmetric, because its entries are not mirror images across the diagonal. This means 

that the BE regions are not equal for the same combinations of correlations depending on 

which drug is considered the reference. This is due to the scaling of the MV PBE 

criterion by the reference variance. This results in the possibility of considering a drug A 

as bioequivalent to a drug B, while Drug B is not bioequivalent to drug A.  

  

4.6. Graphing the BE regions 

To graphically illustrate the nature of the regions of equivalence consider the 

following. As before, let TX and RX be vectors of random variables representing the 

metrics used.  Let TX be distributed as multivariate normal with mean vector Tμ and 

variance covariance matrix TΣ . Let RX be distributed as multivariate normal with mean 
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vector Rμ and variance covariance matrix RΣ . Then, as described in chapter, section 2.3 

bioequivalence acceptance region is defined as  

      1 1 .C trace pp T R T R R T R       Σ Σ μ μ Σ μ μ  (37) 

Note that this could be rewritten, 

      1 1 .p traceT R R T R T R     μ μ Σ μ μ Σ Σ  (38) 

The right hand side of this inequality, which is a scalar, does not depend on the 

means. Therefore, the left hand side is a quadratic form in terms of the difference of the 

mean vectors and thus the inequality represents an ellipsoid whose shape is controlled by 

the variance covariance matrices (Johnson and Wichern 2002). Similarly we could 

construct an ellipsoid based on the estimates of the parameters on both LHS and RHS of 

the equation above, say, using  ˆ
95C Cp p .  This ellipsoid is formed by the inequality, 

      1 1ˆ ˆ ˆˆ ˆ ˆ ˆ 95C p traceT R R T R p T R
     μ μ Σ μ μ Σ Σ . (39) 

Then, graphically one could conclude bioequivalence if the ellipsoid based on the 

95% region of the data (equation 39) is totally contained within the ellipsoid defined by 

the . In Figure 6 examples of these ellipsoids are presented. The red ellipse represents 

the BE acceptance region constructed under the FDA defined conditions for two 

independent variables. The blue ellipse represents the area of the data bounded by the 95
th

 

percentiles of the two independent variables.  The black ellipse represents the BE 

acceptance region under correlated variables. Finally, the gold ellipse represents the area 

of the data bounded by the 95
th

 percentiles of the two correlated variables. The overlap of 

these ellipses demonstrates how accounting for the correlation between the variables 
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actually changes the acceptance region. This result could be vastly different depending on 

how the correlation is incorporated. For example, area in the figure that is outside the BE 

region that ignores correlation (red ellipse) is actually within the bioequivalence region 

that accounts for the correlation (the black ellipse). On the other side there are areas 

within the region that ignores correlation but they are outside the BE regions defined 

under correlation. 

Figure 6 Acceptance bioequivalence regions 
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5 Multivariate Extensions of Population Bioequivalence: A Comparison 

Between three Measures 

 

5.1.  Abstract 

In this article an extension of the univariate methods for evaluating the population 

bioequivalence (PBE) of a generic drug to a pre-licensed drug, or the bioequivalence of 

two formulations of a single drug is extended to simultaneously test for multiple 

correlated pharmacokinetic metrics. Specifically the univariate criterion recommend by 

the food and drug administration (FDA) is extended. One of the extensions proposed in 

the literature (Chervoneva, 2007), attempts to extend the univariate PBE through the use 

of the trace of the matrix of variances covariances of the pharmacokinetic measures. 

However, the trace, being the sum of the diagonal elements, does not incorporate the 

covariance. Dragalin et al. (2003) proposed a multivariate criterion using the Kullback–

Leibler divergence (KLD) as a measure of discrepancy between the distributions of the 

two formulations. This criterion does not reduce to the univariate criterion proposed by 

the FDA, because it is not scaled by the reference variance. 

The extension proposed here, similar to the univariate PBE, uses an inequality in 

quadratic forms. A parametric bootstrap method is used to determine the  1  100% 

critical point of the distribution of the quadratic form. The performance of the proposed 

multivariate criterion is evaluated through a simulation study. The results from a 

simulation study and an application of this method are presented. The three criteria are 

compared by a simulation and applications. 
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5.2. Key words 

multivariate bioequivalence; population bioequivalence; AUC; Cmax  

 

5.3. Introduction  

Bioequivalence studies are used in the development of generic drugs and the 

development of new formulations of drugs that were previously approved. Developing a 

new drug and obtaining approval from the Food and Drug Administration (FDA) requires 

multiple clinical trials to document the toxicity and the efficacy of the pharmacologically 

active ingredients of the new drug. A generic formulation of an approved compound is 

not subject to the multiple clinical trial requirement of a new compound because it is 

assumed that the active ingredients of the generic drug have the same toxicity and 

therapeutic efficacy as the approved drug. Thus, a generic must only demonstrate 

bioequivalence to the approved drug; once bioequivalence is demonstrated, it is also 

assumed that the therapeutic efficacy is similar between the approved and generic drugs. 

Thus the bioequivalence studies are designed to establish this expected similarity of the 

approved drug to the generic drugs having the same active ingredients.  

Several pharmacokinetic metrics are used to quantify bioavailability. Experiments 

are designed to measure the concentration of the active ingredient in the biological active 

site, like blood, at appropriate time intervals. A profile of the concentration of the drug 

over time is then generated. The pharmacokinetic metrics, specifically, AUC , the 

maximum absorbed, maxT  the time at which maxC occurs, rates of absorption, rate of 

elimination, and blood or plasma half lives are calculated. 

For any given metric two drugs are defined to be bioequivalent if  
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2  , (40) 

where   is a predefined constant, and for any given metric,  is a critical value obtained 

from the distribution of a distance function of the new and the reference drugs. The upper 

limit   is often prescribed by regulatory agencies. For example, the US FDA‘s guideline 

suggests   should be 20% of the reference mean. The  is estimated from the data and is, 

in general, the (1 - 2 )th percentile of the distribution of the distance function for a given 

confidence level  . If 
2 satisfies the inequality above the two drugs are considered 

bioequivalent.  For instance, if the 90% confidence interval of the distance function falls 

completely within the interval  ,  , bioequivalence is concluded. This procedure is 

equivalent to testing two one-sided hypotheses each at level  using  an analogous test 

(Schuirmann, 1987).   

The average bioequivalence (ABE) test focuses on the differences in the means of 

the pharmacokinetic parameters. This method of evaluating bioequivalence, does not 

account for differences in the variability between the reference and test drugs. Population 

bioequivalence (PBE) was proposed to evaluate prescribability of the drug. 

Prescribability of a drug is defined as the ability to get the same effect by prescribing the 

brand-name drug or its generic drug to a new patient (Chow and Liu, 1992). In contrast to 

average BE, the PBE includes comparisons of the means and the total variability of the 

pharmacokinetic measures between the reference and test drugs (Hauk and Anderson, 

1992).  

The PBE was introduced by FDA in 1997 as an alternative method of testing BE. 

The PBE is a measure of the distance between the test and reference distributions with 

respect to the first two moments while the ABE is simply the difference between the first 
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moments only. The PBE may be thought of as the ratio of two expected squared distances 

where the numerator is the expected squared distance between the reference and the test 

and the denominator is the expected squared distance between two reference 

observations. Bioequivalence, then is determined by the ratio of the two expected squared 

differences is within a predefined distance, , from unity. That is,  

 

 

 

2

1
2

E y yT R

E y yR R



 
    
    

 (41) 

where yT  is a random variable denoting the test PK metrics, yR and yR are two 

realizations of the reference random variable and E represents the expectation.  

The univariate PBE criterion in (41), by substituting the unit ratio of the 

denominator term for the 1, could be redefined as (Sheiner 1992, Schall and Luus  1993), 

 

   

 

2 2

2
2

E y y E y yT R R R

E y yR R



             
    

. (42) 

Rewriting Eqn (42) in terms of the population mean and variance, it reduces to, 

 
 2 2 2

2

T R T RC

R

   




  
  . (43) 

where R and T are the means of the reference and the test random variables 

respectively, and 2
R

 and 2
T

 are the population variances of the reference and test 

pharmacokinetics respectively. Thus, the 
2 from the original inequality in (40)  is a 

function both of a distance metric of the means as well as the variances. The hypothesis 

test form of PBE uses the hypotheses 0 :  vs :aH C H C   . Bioequivalence is 
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concluded with  1  x100% confidence if (1 )Ĉ    , where (1 )Ĉ  is the estimate of 

the upper limit of the one-sided (1 )100th confidence interval of the PBE criterion 

defined in (43) using the maximum likelihood estimates (mle‘s) of the means and 

variances. 

Extending this to more than one metric requires accommodation of the 

correlation. For example, suppose that the blood absorption coefficient ( aK ), and the 

time ( maxT ) until the maximum concentration ( maxC ) of the blood concentration is 

reached, and the area under the blood concentration curve ( AUC ), are all calculated from 

the same blood concentration-time profile. In this case, the assumption of independence 

in testing bioequivalence using multiple tests for each of the four parameters is not 

justifiable. Clearly, the correlations among these variables should be incorporated in the 

multivariate tests of bioequivalence. 

Multiple multivariate extensions for the average BE (Brown, 1995; Berger and 

Hsu, 1996; Brown, 1997; Munk and Pflujer, 1999; Wang, 1999; and Tamhane and 

Logan, 2004) have been proposed in the literature. However, there are few that deal with 

the multivariate PBE. . The first notable exception  is  Dragalin et al. (2003), in which the 

Kullback–Leibler divergence (KLD) is used as a measure of discrepancy between the 

distributions of the two formulations. They propose a generalization of average and PBE 

measures, and generalized it to the multivariate situation. Their multivariate method 

could be summarizes as follows. Consider a multivariate random variable Y representing 

a set of PK metrics. Suppose Y is distributed as normal with mean vector μ  and variance 

covariance matrixΣ . Let T and R represent treatment and reference groups, respectively. 

Dragalin et al. (2003) propose a criterion based on the following inequality 
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    1 1 1 2
2

D trace pp T R T R T R T R
           

     
μ μ μ μ Σ Σ Σ Σ  (44) 

Here, the left hand side (LHS) of the equation is the KLD. Two formulations are 

declared bioequivalent if the upper bound of a level-  confidence interval for the KLD 

is less than a given specific value, . This criterion does not reduce to the univariate 

criterion proposed by the FDA in equation (43); instead it reduces to 

 
   2 22 2 2 2

1

2 22

T R T RT R R TDp

R T

       

 

      
  
 
  

 (45) 

Thus, this criterion may be seen as the average of two terms where the first term is the 

same measure of distance scaled by the reference variance proposed by FDA. The second 

term is similar except that it is scaled by the variance of the test. This criterion is 

equivalent to the FDA proposed criterion only if the reference and test variances are 

equal, and then it is only a measure of the squared mean distances and not the differences 

of the variances. Dragalin et al. (2003) only proposed the multivariate criterion, but never 

tested it.  

The second notable exception is Chervoneva et al. (2007) in which they propose a 

criterion for the p-variate multivariate case using the trace of the variance-covariance 

matrices. Although this criterion reduces to the univariate PBE when p = 1, it is not an 

appropriate extension to the multivariate case as the method fails to incorporate the 

correlations. The trace of the matrices, (the sum of the diagonal elements of the 

covariance matrix), ignores the correlations.   

The bioequivalence rule proposed by Chervenova el al. (2007) is, 
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       

 

tr trT R T R T R
Bp

tr R


   
 

μ μ μ μ Σ Σ

Σ
 (46) 

 

In applications they propose constructing a 95% confidence interval for Bp , and deem 

the test and reference distributions bioequivalent when the upper limit of this interval is 

less than the predefined  . For p = 1 this rule reduces to the univariate rule in equation 

(43).  

The objective of this study was to develop a multivariate PBE criterion that is equivalent 

to the univariate criterion approved by the FDA, then comparing the three criteria in 

testing PBE in a simulation and using examples. The following sections the development 

of the new criterion are discussed and a standardized method to compare between them is 

outlined. More detailed discussion of the properties of the newly developed criterion will 

be presented.  

5.4. Methods 

5.4.1 Development of the multivariate bioequivalence criterion C p  

The proposed multivariate extension is based on the fundamental definition of the 

PBE. That is, the difference in the means and the difference in the variances are scaled by 

the reference covariance matrix and summed. The criterion is given as follows: 

      1 1C trace pp T R T R R T R       Σ Σ μ μ Σ μ μ  (47) 

To justify this let TY and RY be p-variate random variables denoting the test and 

reference PK metrics. Assume, TY is distributed as a p-variate normal with mean vector 

Tμ  and variance covariance matrix TΣ . And let RY  and RY be two realizations of the 
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p-variate normally distributed random variable with mean Rμ  and variance covariance 

matrix RΣ .  

The multivariate extension proposed here basically extends the definition (42) for 

the univariate case. The squares in (41) are replaced by quadratic forms and the 

denominator is replaced by its multivariate equivalent, namely the inverse of the 

corresponding matrix 

   
1

2
ER R R R R
      

Σ Y Y Y Y . (48) 

Then the multivariate expression similar to (42) is as follows: 

        1 1C E Ep T R R T R R R R R R
                 

Y Y Σ Y Y Y Y Σ Y Y  (49) 

Substituting  1 2
R T R
 Z Σ Y Y ; and  1 2

R R R


 K Σ Y Y  in (49), and using the 

matrix and trace properties, the multivariate criterion in (49) could be expressed as  

            C trace E E trace E Ep
    Σ Z Z Σ K KZ K  (50) 

 

It can be shown that the expectation of Z is equal to  1 2
R T R
 Σ μ μ , and its variance 

covariance matrix is 1 2 1 2
R T R
  Σ Σ Σ I , the expectation of K is 0 , and its variance 

covariance matrix ΣK is equal to 2I , where I is a p p  identity matrix (see Appendix 

B). Substituting these expectations and variance covariance matrices in  (50) reduces to 

the multivariate criterion in (47) (Dahman 2009 Ch3 for details).  
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It is simple to show that the resultant multivariate criterion reduces to the 

univariate criterion (43) when p=1. It also accounts for the total variability and the 

correlations among the PK metrics used in evaluating bioequivalence. 

Using the invariance property, the maximum likelihood estimator of the 

multivariate PBE criterion could be estimated from the data as: 

      1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆC trace pp T R T R R T R
     Σ Σ μ μ Σ μ μ , (51) 

where ˆTμ  and ˆ Rμ are the maximum likelihood estimates (mle‘s) of the population 

means, and ˆ
TΣ  and ˆ

RΣ are mle‘s of the variance covariance matrices of the test and 

reference variables.  

 

5.4.2 Constructing the100(1 )th confidence interval of the MV criteria 

The exact distribution of the MV criteria introduced earlier, Bp , Dp , and C p are not 

tractable. Therefore, a parametric bootstrap method (Efron & Tibshirani, 1993), as 

recommended by the FDA, is proposed. This method requires obtaining the mle‘s of the 

population parameters Tμ and TΣ of the test and Rμ and RΣ of the reference metrics. 

Random samples of the same size as the original experiment would be generated from 

multivariate normal distribution with means and variances equal to the mle‘s of each of 

the drugs in the original experiment. The MV population criteria would be calculated for 

each of the bootstrap samples. Then the100(1 )th percentile of the distribution of 

criteria based on the B bootstrap samples would be determined. PBE is concluded if the 

100(1 )th percentile is less than the predefined limit,  .  
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5.4.3 Specifying the upper limit, , of BE 

 In the univariate case,  is defined according to predetermined limits determined 

by the FDA. The maximum difference between the variances of the test and the reference 

( 2 2
T R

  ) allowed by FDA (1997) is 0.02, and the minimum allowed variance of the 

reference ( 2
R

 ) is 0.04. 

These limits are extended to the multivariate criterion, by setting the maximum 

difference between the means of the test and reference pharmacokinetic measures as the 

natural logarithm of 1.25; the maximum difference between the test and reference 

variances as 0.02, and the lowest variances as 0.04. Since there is no analogous guideline 

for incorporating the correlations, different combinations of correlations among the test 

and reference variables and will be used. The value of   depends on the PBE criterion 

used. This value would not depend on the correlation for Chervenova's, so it is always 

constant. 

Using the proposed multivariable limits, values of   were calculate for the case 

where  p = 2 with the BE limits of means and variance differences as defined by FDA. 

Dahman (2009) have shown that the upper limit of the acceptance region of BE,
 
 , is 

affected by the number of parameters, the correlations of test and by the correlations of 

reference. When these correlations are identical, the bigger the correlation the smaller is 

 (data not shown). When the correlations are negative, the value of   is always greater 

than 0 . On the other hand, when the correlations are positive, as expected among PK,   

is always smaller than 0 . Dahman (2009) demonstrated that this variability in the values 

of  affects the results of testing the hypothesis of bioequivalence. This phenomenon 
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affects both criteria that account for the correlation, i.e. Dp  and C p . This will require the 

regulatory bodies to study the conditions and effect of the values of the correlations to set 

the values of the predefined upper limit of the population criterion.  

5.5. Properties of the multivariate PBE criterion C p   

Properties of the multivariate PBE criterion C p proposed in the previous sections 

are studied using Monte-Carlo simulation methods. The simulation study was designed to 

evaluate the distribution of the proposed multivariate criterion C p  under different 

combinations of sample size (number of subjects in the trial), differences in the averages 

and variances of the pharmacokinetic (PK) parameters between the reference and test 

drugs, and under different correlations between the PK parameters within each treatment 

group. This study was mainly designed to guide in the selection of a method to construct 

the confidence interval for the proposed criterion. Another simulation study was designed 

to study the size and power of the hypothesis tests, and to compare the multivariate 

criterion versus the multiple testing using the univariate criteria. 

These studies were limited to equal size samples of reference and test drugs. The effect of 

different sample sizes, missing values and dependence between the treatments drugs 

should be tested in future studies. 

 It has been shown in many studies that the log-transformed pharmacokinetic 

parameters have a normal distribution, and that data extracted from the same 

concentration time profiles for each subject are correlated. To create samples that 

preserve these properties we used random sampling from multivariate normal 
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distribution. A sampleY of N sets of two pairs of variables was generated by random 

selection from a 4-variate normal distribution.  

The first pair of variable &
1 2

y y
R i R i

represent the log-transformed pharmacokinetic 

parameters of the reference group, namely log( )maxC and log( )AUC . The second pair 

&
1 2

y y
T i T i

represent the log-transformed data of the test group, where i  represents the 

thi subject, 1,...,i N . Each pair has a bi-variate normal distribution, which we will 

denote by ~ ( , )Y Nk p kk
  , where k is the treatment, and the population means vector 

for each treatment is  ,1 2k kk
   and k is the variance covariance matrix for each 

treatment.  

 SAS IML code calling the function (VNORMAL) was used in a macro to 

generate the samples of p-variate normal data. All simulations and analyses were done 

using macros in SAS 9.2, SAS Institute, Cary, NC.   

 The distribution of C p is not known, and cannot be easily determined. The FDA  

recommended using the parametric bootstrap method to construct the confidence interval 

for the univariate PBE criterion rather than applying a normal approximation. It was 

concluded that similar to the univariate case, using the parametric confidence intervals 

which assume normality for the multivariate PBE criterion C p  would not be appropriate. 

In order not to assume any distribution the parametric bootstrap method to evaluate the 

percentile confidence interval was used as suggested by the FDA. The parametric 

bootstrap method was used because there is enough evidence that the log-transformed 

pharmacokinetic measures like AUC, maxC and maxT  follow a normal distribution. For 
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that reason it is convenient to resample (for the bootstrap) from a p-variate normal 

distribution in which means and variance covariance matrix are equal to those estimated 

from the sample.  

 

 The non-parametric confidence interval was constructed using the percentiles 

from the parametric bootstrap method. From each replication of the experimental 

settings, the means and the variance covariance matrices were estimated. Then 2000 

bootstrap samples were generated by randomly selecting from multivariate normal 

distribution with mean and variance equal to those estimated from the replication. Then 

estimates of the multivariate PBE criterion Ĉp were calculated for each of these 2000 

bootstrap samples. The 95
th

 bootstrap percentile of Ĉp was determined. This is the upper 

limit of the one sided 95% confidence interval for Ĉp that would be used in the 

hypothesis testing.  

 

5.5.1 Simulation Configurations 

The simulation study was run with 500 replicates. Each replicate represented a 

bioequivalence trial with N subjects in each group (treatment or reference). For each 

subject two measures representing the log-transformed AUC and maxC , were selected 

from the p-variate normal distribution as described earlier. To estimate the nonparametric 

confidence interval in each simulation, 2000 bootstrap samples were randomly selected 

from the p-variate distributions. Efron (1982) demonstrated that in general 2000 bootstrap 

samples would be large enough to obtain unbiased confidence interval. 
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Following FDA guidelines for the univariate case of PBE, and based on the 

information from published bioequivalence trials several factors were considered at 

specific levels. It is important to evaluate the performance of any new statistic or test 

under a variety of sample sizes. The usual number of subjects in most of the 

bioequivalence drug trials varies between 20 and 100 per group. Three sample sizes were 

chosen (25, 50 and 100). As discussed earlier the maximum allowable difference between 

the (log transformed) means of the test and the reference parameters is ln(1.25). the 

difference in the means was test at 5 values (-2ln(1.25),  -ln(1.25)/2, 0, ln(1.25), 

2ln(1.25)). As recommended by the FDA, the minimum value for the reference standard 

deviation of 0.2 was set as the value for the variance of the reference pharmacokinetics. 

The difference in the variance between the variances of the reference and the test 

pharmacokinetic were selected from 0.04, 0.06 and 0.1. The correlations between 

variables were not used in the definition of bioequivalence by the FDA or the previous 

methods of testing multivariate PBE. The performance of the proposed criterion was 

evaluated under a wide range of correlations that allow for all possible values including 

rare cases  of negative correlations. The effects of the correlations between -0.2 and 0.8 in 

increments of 0.2 on the power and the size of the tests for bioequivalence were 

evaluated.  

The size of testing the hypotheses of BE was evaluated under conditions that 

represent the maximum allowable values of variances and differences between the means 

of the reference and test drugs. The power of the test was evaluated under conditions that 

fulfill the BE with respect to the variances and the means. The size and power were 
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evaluated under different sample sizes and variable correlations between the reference 

and between the test variables.  

 

5.5.2  Description of the simulation steps 

The simulation performed the same steps for each of the combinations of sample size, 

difference in means, difference in variance and correlations between the reference and the 

correlations between the test PK measures. Five hundred samples (replicates) of 4 

random variables of size N were generated from a multivariate normal distribution with 

reference means  1R  and 2R  and test means 1T and 2T , and correlations R and 

T  and variances 2
1R

 , 2
2R

 , 2
1T

 , and 2
2T

 that define each configuration or setting. 

The mean and variance were estimated for each replication. Each replication was 

bootstrapped by randomly selecting 2000 from multivariate normal distribution with the 

means and variances equal to those estimated for each replication. The MV criterion 

Ĉp was calculated fro each bootstrap sample. The 95
th

 percentile for the 2000 calculated 

bootstrap estimates of Ĉp  was determined for each replication. For each replication, BE 

was determined if the upper limit of the one-sided 95% confidence interval for Ĉp  was 

less than the predefined  . The number and percent of times the result was correct in 

agreement with the setting were calculated using the multivariate criterion and using the 

univariate criterions for each of the variables. The size and power of the tests were 

calculated by calculating the percentage of times the null hypothesis was rejected among 

the 500 replicates, if the null hypothesis was true or was not true respectively. 
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5.5.3  Simulation Results 

The size of the test was evaluated using random selection from distributions that 

have the maximum accepted values of the differences between the means and between 

the variances. These values define the boundaries of the multivariate PBE acceptance 

region in all dimensions. These are the values that define the true value of the 

multivariate PBE criterion as equal to the predefined  . The table compares between two 

tests, the first accounts for the correlation in the predefined  , the second one ignores the 

correlations when predefined  . The type I error are very conservative in the case of 

smallest tested sample sizes of 25, these errors increase by increasing the sample size. 

These errors never exceed the 0.05 level except in higher correlations than 0.2 between 

the reference measures, when using the theta that ignores the correlations. The largest 

type I errors are observed when the correlations of either the reference or the test are very 

high (0.8), and when the differences between the correlations of the reference and the 

correlations among the test are large. 

Probability of the type I errors are also sensitive to the magnitude of the 

correlation used in calculating the  . Testing the bioequivalence hypothesis using 

negative correlations, on samples drawn from positively correlated random variables, 

causes the highest increase in type I errors. There is a minimal increase in probability of 

Type I error when using a positive correlation that is not equal to the true correlation 

except for testing with lower correlations when the true correlation is high 0.8. This 

would result in rejecting the null hypothesis, and concluding PBE in more non-BE cases.  

As expected the power power of the proposed multivariate PBE test was highest 

when the two true means of the reference and test variables were equal. The power drops 
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gradually as the difference between the means increases in either direction. Accounting 

for the correlation in the upper limit theta, , of PBE result in a test with less power than 

ignoring the correlation. The power increases as the absolute difference between the test 

and reference means increases. The test that ignores the correlation achieved the highest 

power, while the test that utilized the intersection of two separate univariate tests was 

with the smallest power. The power increases as the sample size increases and as the 

difference between the variances decreases,  

Each simulation sample was classified as bioequivalent or not according to the 

proposed multivariate PBE test accounting for correlations, ignoring the correlations, and 

using the intersection of two univariate tests of BE with and without Bonferoni 

correction. Then according to each scenario the simulation samples were classified into 

correctly classified and incorrectly classified. Table 8 compares the correct classification 

of all BE and non-BE scenarios using those 4 methods. Ignoring the correlation is 

superior to all other tests in classifying the scenarios correctly when the truth is BE. 

However this superiority is at the cost of having the highest proportion of 

misclassification (Incorrect Classification) when the truth is not BE.  

The power function was evaluated as a function of the mean of test drug under 

fixed values of the reference means and variance covariance matrix and under equal 

correlations between the test variables and between the reference variables. The power of 

rejecting the null hypothesis of ―no BE‖ is higher than 0.9 when the reference means are 

equal to the test means. This power decreases as the difference increases. The power of 

testing the null hypothesis of ‗no BE‘, under fixed variance of the reference, drops as the 

difference between the variances of the test and reference increases. This power increases 
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by the sample size as expected. The power is above 0.7 with sample size of 100 when the 

difference is smaller that 0.02.  

 

Table 8 Percentage of cases classified correctly/incorrectly 

  MV BE criterion accounting for the correlation 

  BE  Not BE 

  Incorrect correct Total  Incorrect correct Total 

Intersection of 2 

(1 / 2)CI Univariat

e tests (Bonferoni 
correction) 

Incorrect 3.5 15.56 19.07  11.87 0.91 12.78 

Correct 0.37 80.56 80.93  12.29 74.93 87.22 

Total 3.88 96.12 100  24.16 75.84 100 

         

Intersection of 2 

(1 )CI Univariate 

tests 
 
 

Incorrect 3.23 7.81 11.04  15.84 1.72 17.56 

Correct 0.65 88.31 88.96  8.33 74.11 82.44 

Total 3.88 96.12 100  24.16 75.84 100 

         

MV ignoring 
correlation in rule 
 
 
 

Incorrect 0.9 0.52 1.43  22.66 11.04 33.71 

Correct 2.97 95.6 98.57  1.5 64.79 66.29 

Total 3.88 96.12 100  24.16 75.84 100 

 

5.6. Comparison Between the Three MV PBE criteria 

The power functions of testing for bioequivalence using the three multivariate 

PBE criteria were compared.. Chervenova (2007) linearized the condition of 

bioequivalence, and constructed confidence intervals using properties of the trace. 

Their method cannot be applied to the criteria proposed by Dragalin(2003) and 

Dahman(2009). Dragalin(2003) did not evaluate Dp . To be able to compare the 
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results properly, one standard method was applied to all three criteria. This 

method was to apply the simulation conditions demonstrated earlier to generate 

random samples. For each of those samples the mle‘s of the mean and variance of 

the test and reference were estimated. Each of the PBE criteria was calculated for 

each sample and using bootstrap, the100(1 )th confidence intervals were 

constructed for each criterion. Then probabilities of BE were calculated for each 

scenario.   

Figure 7 presents the comparison of the power functions of the three criteria at 

different sample sizes, and correlations. The plots demonstrate that the power of 

all tests is greater than 90% when the sample size is large (100). The power of Cp 

is lower than 90% with sample size 50. Although Bp does not account for 

correlation, the power function varied by the correlation when the sample size 

was small. This might be just random variations, but more tests are needed to 

verify that. The higher power of Bp is compromised by its higher size which 

exceeds the 0.05 level even when the sample size is only 25. 
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Figure 7 The Power Function by mean of test and sample size (under fixed variance and reference mean) 
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5.7. Applications 

 

5.7.1  Testing Population Bioequivalence in a parallel design 

Data used was from a study performed by Clayton and Leslie (1981) to study the 

bioequivalence of an enteric-coated erythromycin base (test drug) to the previously available 

reference formulation of erythromycin stearate. After administering the reference or test drug, 

venous blood samples were collected at 0.0, 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 hours. The data are 

presented in the dissertation appendix F. 

Although this study was intended to follow a two period crossover design, due to non 

randomization and due to the fact that all patients were given the reference drug in the first 

period, and the test drug in the second period it will be treated as a parallel design (Chinchilli & 

Elswick 1997). (this data set was selected because it provides the blood concentrations for all the 

collection times, which will be useful in illustrating the nonlinear model method proposed in the 

next paper.) To illustrate the multivariate method proposed here we first calculated the 

pharmacokinetic parameters. 

Since each subject received both the reference and the treatment drugs, to account for the 

correlations from these repeated measures a mixed effect linear model was selected to fit this 

data. Treatment effect will be treated as a fixed effect. The two multiviarate outcome of interest 

are the Cmax and AUC which are products of the same blood concentration profile for each 

subject. To account for the repeated measure as well as the correlation of the outcomes, a 

multivariate mixed effect model was used and the two outcomes were fit simultaneously. Since 

there were only two periods we modeled the correlation between the two repeated measures as a 

compound symmetry. In studies with more period other structures like autoregressive(1) AR(1) 

or Toepliz are more appropriate and should be considered. To account for the correlation 
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between the outcomes we used an unstructured covariance structure. We also allowed for 

estimating different variance covariance matrices for the two treatment drugs. One of the 

limitations of this experiment was the result of administering the same drug to all patients in each 

period. This results in the redundancy of the period effect and the treatment effect. The period 

effect in properly designed cross-over studies should be modeled as a fixed effect.    

From the blood concentration data we calculated the maxC as the highest concentration 

of the blood concentration time profile, the AUC using the trapezoidal method (Berger RL, 

1996, Gibaldi, 1982). Since these measures are known to be log-normal, they were log-

transformed. Table 9 presents the calculated and transformed data for the 20 subjects under the 

reference and the test drugs. 

Table 9 AUC  and maxC from Clayton and Leslie 

Reference Treatment Test Treatment 

SUBJECT AUC logAUC Cmax logCmax AUC logAUC Cmax logCmax 

1 13.978 2.637 5.350 1.677 10.788 2.378 2.590 0.952 

2 13.810 2.625 4.140 1.421 3.150 1.147 0.920 -0.083 

3 8.865 2.182 3.460 1.241 5.710 1.742 2.600 0.956 

4 9.923 2.295 4.510 1.506 14.033 2.641 3.430 1.233 

5 10.545 2.356 3.700 1.308 5.908 1.776 1.430 0.358 

6 9.855 2.288 4.100 1.411 7.935 2.071 1.990 0.688 

7 23.680 3.165 6.180 1.821 16.295 2.791 3.680 1.303 

8 8.320 2.119 4.070 1.404 6.553 1.880 3.580 1.275 

9 6.353 1.849 2.500 0.916 7.643 2.034 2.120 0.751 

10 12.925 2.559 5.230 1.654 7.658 2.036 1.360 0.307 

11 7.918 2.069 4.240 1.445 2.888 1.060 1.010 0.010 

12 6.700 1.902 2.520 0.924 9.068 2.205 3.110 1.135 

13 10.768 2.377 3.490 1.250 10.743 2.374 2.870 1.054 

14 5.970 1.787 2.100 0.742 4.375 1.476 0.820 -0.198 

15 10.788 2.378 5.180 1.645 9.290 2.229 3.390 1.221 

16 9.345 2.235 3.800 1.335 4.635 1.534 0.920 -0.083 

17 5.850 1.766 1.960 0.673 3.050 1.115 0.850 -0.163 

18 6.158 1.818 2.360 0.859 2.330 0.846 0.490 -0.713 

19 1.650 0.501 0.560 -0.580 5.775 1.754 1.560 0.445 
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20 5.945 1.783 2.060 0.723 3.933 1.369 1.320 0.278 

 

Using the mixed effects model the mle‘s of the means and covariances of both the 

reference and the treatment drugs were estimated. These estimates were  
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The log transformed maxC and AUC were found to be highly correlated, as expected, 

both in the test group ˆT = 0.88 and in the reference group where ˆR was 0.95.  

The multivariate criterion proposed ( Ĉp ) was calculated from these estimates using equation 

(51). The univariate criterion of PBE for each of AUC and CMax were also calculated according 

to equation (43). Then the bootstrap method was used to determine the upper limits of the 90% 

confidence intervals for the MV criterion and the two univariate criteria. The multivariate PBE 

rule theta which defines the upper boundary were calculated in two ways: i) by ignoring the 

correlations between the PK ( p  =3.49), and ii) by accounting for these correlations ( p  

=4.32). 

Parametric bootstrap was set to generate 2000 samples and calculate the multivariate 

criterion for each sample and then generating the 90% confidence interval of original Ĉp and to 

determine the upper limits of the 90% confidence intervals for the MV criterion and the two 

univariate criteria, these were found as 16.87, 2.32 and 5.30. The qualitative results of these tests 

as bioequivalent or not are performed by comparing the upper limit of the one-sided 95% CI to 

the predetermined acceptance boundary. 
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To compare between the multivariate test and the univariate tests, we used the bootstrap 

samples  to evaluate the probabilities of rejecting bioequivalence using the multivariate test, and 

the univariate tests. Those probabilities are actually the p-values of those tests. We also tested 

bioequivalence using the two univariate test simultaneously under the assumption of 

independence. This is a rectangular test which means that the p-value represents the probability 

of rejecting bioequivalence with respect to AUC and/or Cmax. 

The estimates of the upper limit of the one-sided 95% CI were greater than the upper 

boundaries of the bioequivalence acceptance limits in the multivariate and the two univariate 

cases. So these results show that for this study the two formulations are not bioequivalent using 

either the multivariate or the univariate population bioequivalence testing. It also shows that for 

this specific example accounting for the correlations did not make a difference in the qualitative 

result.  

Table 10 presents the results of the comparison of the tests p-values. Although all tests 

rejected bioequivalence in this study, there are noticeable differences between the p-values of the 

bivariate test p=0.8425 and the intersection of the two univariate tests p=0.5885. the value of the 

multivariate test is larger so it is more conservative in accepting BE the using the univariate test 

separately or simultaneously.   
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Table 10 result of PBE testing of Clayton data 

  p 

Bivariate test with rule theta no corr P(Cp>3.49)  0.9185 

Univariate AUC P(C1>1.74) 0.5430 

Univariate Cmax  P(C2>1.74) 0.0995 

Bivariate test with rule theta with corr P(Cp>4.32) 0.8425 

Assuming independence Intersection of 2 univariate  

1-[P(C1<1.74)* 

P(C2<1.74)] 0.5885 

 

 

 

5.7.2  Testing multivariate PBE in a crossover design: 

 

Twenty eight subjects were recruited in the study, and were given 3 doses of each of the 

two drugs, with a washout period between each of the two sessions. The order in which the two 

drugs were given was selected at random using a block randomization method to ensure the 

balance within each subject. Although there are 20 possible ways to assign three A‘s and three 

B‘s, the random process did not cover all possibilities. 

 At the beginning of each session, baseline data were collected 30 seconds prior to the 

administration of the drug. The pharmacological baseline measurement was supposed to be zero 

if the wash out period was appropriately long enough. Then the drug was administered, and the 

specified pharmacological measurement (level of specific active material in the blood) was 

obtained over several minutes at very short intervals. 

 Each subject was administered one of the two drugs in all six sessions, however due to 

mechanical failure, or lower than qualified measures, some of the sessions were completely 

missing all blood measures. No information about those sessions was provided other than the 

drug given. 
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 From the blood concentration by time data presented in the APPENDIX E, the 

pharmacokinetic PK metrics were calculated. The maximum absorbed blood level of the active 

material ( maxC ) was defined as the highest observed concentration. The time associated with that 

concentration ( maxC ) was considered the maxT . The total absorbed drug was calculated as the 

AUC using the trapezoidal method. Table 11 presents the natural logs of maxC  and AUC for 

each subject in each session of the study. The sequence in the table determines which drug was 

given in each period. 

This study was powered to test the bioequivalence using one outcome at a time. Since we 

are interested in accounting for the correlations between the evaluated outcomes, the multivariate 

mixed model could be applied. We used a bivariate mixed model where the two outcomes 

log(Cmax) and log(AUC) were estimated simultaneously. 

 It also assumes that the correlation is decaying as the periods are further apart. 

Using the estimates of logCmax and logAUC for each of the treatment and the variance 

covariance structures displayed in Table 12, the univariate and multivariate criteria for PBE we 

calculated according to (43) and (51). Using bootstrap method, the upper limit of the 90% 

confidence interval of these criteria were calculated. 

 

The correlations between the logCmax and logAUC were found to be .9 for both the 

treatment and the the test drugs. The PBE criteria were estimated as Ĉp = -0.03132, univariate 

C1 = 0.057199, univariate C2 = -0.06109. The upper limits of the 90% CI were 1.75622, 

1.17345, 0.95773 estimated by the bootstrap were compared to the acceptance boundaries 

2.3103, 1.74483, 1.74483 for the multivariate, the univariate for Cmax and the univariate for the 

AUC respectively. 
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The comparison of the p-values for these tests are presented in Table 13. In this example 

again, all the tests resulted in the same qualitative result that those too drugs are bioequivalent. 

The differences in the p-values suggest the high possibility of getting different qualitative results 

in other samples or examples. The results in Table 13 display that the tests that accounts for the 

correlation between the outcomes has higher probability of rejecting bioequivalence than the test 

that ignore the correlation. 



 

101 

 

 

Table 11 PM data 

sequence logCmax1 logAUC1 logCmax2 logAUC2 logCmax3 logAUC3 logCmax4 logAUC4 logCmax5 logAUC5 logCmax6 logAUC6 

ABABAB 1.668 5.112 . . . . . . . . . . 

BABABA 2.588 6.073 2.313 5.733 2.152 5.745 2.079 5.671 2.416 5.819 2.163 5.585 

BABBAA 2.632 6.246 2.313 5.896 2.342 5.853 2.603 6.035 2.116 5.701 2.282 5.850 

AABABB 3.025 5.930 2.407 6.004 2.067 5.667 2.001 5.563 2.434 5.839 2.241 5.813 

ABABAB . . . . 2.001 5.608 . . . . . . 

ABBBAA . . 1.131 2.442 . . 1.361 4.210 1.526 4.398 1.386 4.467 

ABBAAB 2.976 6.276 3.077 6.460 2.912 6.455 2.981 6.471 2.815 6.276 2.912 6.449 

BABBAA 1.482 4.417 1.668 4.488 1.411 4.377 2.907 6.159 2.791 5.972 2.653 6.157 

ABAABB . . 2.851 6.125 2.695 5.677 2.398 5.670 2.510 5.849 2.754 5.906 

ABAABB 2.241 5.628 2.262 5.798 2.028 5.592 2.092 5.550 2.175 5.621 2.241 5.800 

BBBAAA 1.932 5.474 1.825 5.433 1.808 5.432 1.792 5.376 2.092 5.730 1.988 5.678 

AABBAB . . . . 1.792 5.103 1.361 4.684 1.335 4.545 1.435 4.623 

ABAABB 1.504 4.465 . . 1.932 4.579 1.411 3.411 1.932 4.719 . . 

BABAAB 1.723 5.394 1.917 5.429 1.902 5.459 2.054 5.484 2.282 5.716 2.079 5.725 

ABBAAB 1.335 4.624 . . 1.686 5.371 2.152 5.594 1.974 5.147 1.361 5.017 

BABBAA 1.740 5.348 1.163 3.984 1.723 4.433 2.425 5.595 1.361 3.671 1.386 4.520 

BABABA 2.493 5.974 2.833 6.279 2.960 6.457 2.741 6.246 3.699 6.395 2.653 6.247 

BAABAB 3.307 6.406 3.343 6.205 2.976 6.211 3.250 6.535 3.195 6.447 3.339 6.093 

BBAAAB 2.251 5.760 2.116 5.697 2.175 5.864 2.028 5.460 1.932 5.642 . . 

ABBAAB 2.734 6.181 2.701 6.198 2.001 5.633 2.588 6.084 2.833 6.444 2.741 6.353 

BBABAA 3.219 6.428 3.091 6.271 3.364 6.479 . . 3.100 6.329 . . 

BABABA 2.610 6.007 2.760 6.154 3.030 6.524 2.728 6.197 . . 3.049 6.660 

BBABAA 2.896 5.933 3.367 6.204 3.144 6.097 2.944 6.055 3.250 6.398 3.127 6.296 

AABABB 2.851 6.393 2.803 6.256 2.827 6.393 . . 2.518 6.145 2.603 6.138 

AABABB 2.342 5.791 2.688 6.351 2.407 6.093 2.868 6.359 3.118 6.838 2.797 6.339 

AABABB 3.025 6.403 3.780 6.887 3.630 7.202 3.170 6.366 3.140 6.440 3.481 6.793 

BBAABA 2.603 5.605 2.617 5.782 2.493 5.711 2.380 5.501 2.493 5.504 2.632 5.781 

ABBABA . . 1.932 5.592 2.067 5.600 2.001 5.615 1.856 5.534 1.723 5.466 
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Table 12 Mean and covariance estimates of PM data using multivariate mixed model  

 ˆ A  ˆB  ˆ
A Σ  ˆ

BΣ  

logCmax 2.2018  2.2891  0.135903 0.175565

0.175565 0.283044

 
 
 

 
0.152862 0.187008

0.187008 0.284740

 
 
 

 

logAUC 5.5115  5.6456  

 

Table 13 Results of test comparison 

  p 

Bivariate test with rule theta 

no corr 
P(Cp>3.49)  0.0005 

Univariate AUC P(C1>1.74) 0.0140 

Univariate Cmax  P(C2>1.74) 0.0070 

Bivariate test with rule theta 

with corr 

P(Cp>2.31) 
0.023 

Assuming independence 

Intersection 

 of 2 univariate  

1-[P(C1<1.74)* P(C2<1.74] 

0. 0209 
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5.8. Conclusion 

In this article the univariate definition of population bioequivalence was extended to account 

for simultaneous multivariate testing of bioequivalence. A new multivariate criterion that is an 

extension to the FDA approved univariate criterion was developed. The statistical properties of 

this criterion in testing for bioequivalence were investigated using a simulation study. It was  

presented that this newly developed and proposed MV criterion could be a reliable aggregate 

measure for bioequivalence with good size and power properties. This study presented the 

importance for accounting for the correlation in defining the acceptable bioequivalence region. 

Further work is required to provide a guideline on how to use the correlation in defining the 

acceptable PBE regions.  

The problem of asymmetry could result in conflicting determinations of BE depending on the 

drug used as a reference. Solutions to this problem need to be investigated. This article did not 

study the multivariate testing using more than two outcomes. This could be a subject for a 

separate study.  There are computational difficulties when attempting  to use more complex 

covariance structures to account for differences in variability between treatment drugs and to 

account for different covariance structures other than compound symmetry and autoregressive(1) 

when using multivariate mixed effect models. The effect of these limitations warrants further 

investigation. Finally, the patterns and effects of the missing observations in these studies on the 

multivariate evaluation of population bioequivalence were not evaluated. 

The methodology developed in this article does not utilize the complete blood concentration 

data collected in bioequivalence studies to generate the blood concentration profiles. This 

method only uses the point estimates of the PKs estimated from the blood concentration profiles 
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and assumes they are measured without any error. This assumption is not reliable, so other 

analysis models should be considered to account for the variability of these profiles.  
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6 Testing Population Bioequivalence Using Non Linear Mixed Effects Models  

 

6.1. Introduction 

Bioequivalence testing is an important part of the drug approval process. Companies that 

make generic drugs are required, by the Food and Drug Administration (FDA), to show enough 

evidence that the generic drug is bioequivalent to the originally approved and patented drug. It is 

also required from the original manufacturers when they introduce a new formulation of their 

previously approved drugs. It is assumed that any drugs with the same chemical composition or 

active ingredient will have the same biological effect if they have similar absorption rates, 

blood/serum concentration levels and similar excretion rates. With this assumption the approval 

of generic drugs or new formulations of previously approved drugs does not require the 

extensive testing of toxicity and efficacy that is required for the approval of new drugs.  

The FDA publishes and updates, daily, the ―Approved Drug Products with Therapeutic 

Equivalence Evaluations‖, which is commonly known as the Orange Book. The designation of 

‗therapeutic equivalence‘ indicates that the generic formulation is (among other things) 

bioequivalent to the original (or innovator) formulation and signifies the FDA‘s expectation that 

the formulations are likely to have equivalent clinical effect and no difference in their potential 

for adverse effects. The main criterion for the inclusion of any product is that the product is the 

subject of an application with an effective approval that has not been withdrawn for safety or 

efficacy reasons.  In addition, the Orange Book contains therapeutic equivalence evaluations for 

approved multisource prescription drug products (FDA, 1998). 
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Pharmaceutical equivalence means that two drugs contain the same amounts of the active 

pharmaceutical ingredients in the same dosage and route of administration. Therapeutic 

equivalence requires, in addition to the pharmaceutical equivalence, the two drugs to be 

bioequivalent.  Bioequivalence is defined by FDA in section 505(j)(8)(B) of the Federal food, 

Drug, and Cosmetic Act as: ―the rate and extent of absorption of the drug do not show a 

significant difference from the rate and extent of absorption of the listed drug when administered 

at the same molar dose of the therapeutic ingredient under similar experimental conditions in 

either a single dose or multiple doses‖ or ―the extent of absorption of the drug does not show a 

significant difference from the extent of absorption of the listed drug when administered at the 

same molar dose of the therapeutic ingredient under similar experimental conditions in either a 

single dose or multiple doses and the difference from the listed drug in the rate of absorption of 

the drug is intentional, is reflected in its proposed labeling, is not essential to the attainment of 

effective body drug concentrations on chronic use, and is considered medically insignificant for 

the drug.‖(Congress, 2008) 

Bioequivalence studies attempt to gain insight on formulation ―switchability‖ (i.e., the 

ability to substitute one formulation or another without concern of the potential for reduced 

effectiveness or increased probability of adverse effects). A key assumption is that switchability 

may be inferred from plasma concentration vs. time data and metrics reflecting the rate and 

extent of drug absorption. The area under the plasma concentration vs. time curve (AUC) is 

commonly employed as the metric describing the extent of drug absorption, while the maximal 

concentration observed following drug administration (Cmax) is the metric recommended by the 

FDA to evaluate the rate of drug absorption (FDA, 1992).  
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In the July 1992 guidance on Statistical Procedures for Bioequivalence Studies Using a 

Standard Two-Treatment Crossover Design, it was recommended that a standard in vivo BE 

study design be based on the administration of either single or multiple doses of the T and R 

products to healthy subjects on separate occasions, with random assignment to the two possible 

sequences of drug product administration (FDA, 1992). 

In addition to the constants of absorption and elimination, the maximum concentration of 

the drug Cmax, and the total amount of the drug available in the compartment of effect AUC are 

usually used to compare the bioavailability of drugs, and hence to compare their effectiveness. 

6.2. Estimation of PK metrics 

It is widely known that drugs or other chemicals are absorbed, metabolized, and 

eliminated from the body according to specific mechanisms that are peculiar to each drug or 

groups of drugs and its physio-chemical metabolic pathways, and to the anatomical 

compartments it is distributed through. These pharmacological compartments are instantaneously 

well mixed and kinetically homogeneous. These specific mechanisms result in specific 

pharmacological compartmental model. These compartmental models are postulations of how 

the pharmacological system is believed to function. They are composed of finite number of 

components, like one-, two- or higher order- compartmental models. These compartments are 

specifically connected with each other, and each of them has specific input and output routes. 

The absorption of each drug into each of these compartments follows specific models like zero- 

or first-order models. Similarly the excretion of  any drug from any of these compartments has 

its own models and constants. 
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6.2.1 Non-model based estimation 

The metrics used to evaluate the bioequivalence of drugs are usually estimated from the 

blood-concentration-time profiles using non-model or non-compartmental methods. These 

methods do not assume any knowledge of the pharmaceutical models the drug could follow.  

They use algebraic equations to describe the blood-concentration profiles. For example, the AUC 

resultant from a single dose of a drug formulation is commonly assessed with the linear 

trapezoidal method (Berger RL, 1996, Gibaldi, 1982). The area of the trapezoids connecting the 

consecutive time points and their measured blood concentrations are calculated and summed to 

produce the AUC .  The trapezoidal formula used for AUC  is an approximation of the total area 

under the curve. The further the distance between the time points when the blood concentrations 

are measured, the larger the inaccuracy of the calculated AUC . Depending on the original profile 

of blood concentration curve, this could be an underestimation in some cases and an 

overestimation in other cases. 

maxC  is measured as the highest observed concentration. Although this measure 

rarely coincides with the true maxC
 
(the estimate is biased downward), this measure is widely 

used in bioequivalence determinations. It is not unusual for plasma concentration profiles that 

reach a peak then the concentration drops, only for the concentration to peak again. The second 

peak may be higher or lower than the first peak. In these situations, the maxC is usually 

estimated as the concentration of the highest peak in profile. However, the first peak may be used 

as the estimate of maxC  when used as a measure of absorption. The maxT
 
is defined as the time 

when maxC is observed, and similar to maxC , it is rarely accurate. 

The rate of absorption could be measured in two ways. The first method is based on the 

linear fit of the first few points (at least three points) from beginning of the concentration profile 
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to the first peak. This absorption constant, usually noted as 0k , is calculated as the slope of that 

linear fit. The number of points chosen for this fit is based on the R-squares of the fits.  Other 

methods uses nonlinear models to estimate the absorption rate constant denoted as ak . These 

estimates of the bioequivalence parameters are non-model based calculations and they cannot 

account for the uncertainty in measuring the drug concentration. Alternatively, these parameters 

could also be estimated by fitting mechanistically meaningful non-linear models. 

These non-model based estimates assume that the drug concentration measurements are 

made without errors, hence they ignore the uncertainty of these measurements. 

6.2.2 Model-based estimation 

Pharmacokinetic curves of approved drugs are always studied extensively during and 

after the approval of the drug. In the early phases of drug development these models might not be 

known. However, after the approval of the drug, and before the development of new 

formulations or generic drugs all model characteristics would be studied from which they could 

be well specified and all the characteristics of the plasma-concentration curves could be 

determined and the compartmental models could be defined.  These compartmental models can 

handle non-linearities in the functions of blood concentration with time. They are often used in 

the experimental designs and to estimate the dosing regiments for phase I clinical trials. 

Acquiring this knowledge and the availability of advance analytic software makes it logical to 

use compartmental or model-based methods for estimating the metrics used in evaluating 

bioequivalence. 

Non-linear models have been used in pharmacology to study the pharmacokinetics of 

drugs for a long time. These models could be based on the theoretical compartmental models 

describing the underlying mechanism that produces the data. As a consequence, the non-linear 
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model parameters have a more physical interpretation (Adams, 2002). However, these models 

are not generally used in drug testing, except for very limited tasks, like estimating the constants 

of absorption and elimination. Even in situations where non-linear models are used to estimate 

the other PK metrics such as AUC and maxC only point estimates are used in the bioequivalence 

testing. The uncertainties in the estimation are ignored (FDA 1992-2001, Chow SC, Liu JP 

2000).    

We demonstrate in this article that the two steps, namely the estimation of the 

pharmacokinetic measures from the concentration time curves and the subsequent multivariate 

bioequivalence testing with respect to these measures could be combined into one complete 

analysis. The proposed method is easy to implement in part due to the emergence of non-linear 

mixed model methods (Davidian 2003, Galecki 2004) and the subsequent software developments 

(Wolfinger 1999, SAS 2008, R-manual 1996, Pinheiro and Bates 2000).    

Consider the one-compartment pharmacological model that determines the drug 

concentration in the plasma or blood at any time point according to this function: 

 
 

k t k ta e e a

a e

k k D
C e e

Cl k k

   
 

, (52) 

where C is the plasma concentration, D  is the dose, Cl  is the clearance, t is the time of the 

measurement, ka is the constant of absorption, and ke is the constant of elimination.  

These are known as the primary parameters of the blood concentration function. Note that the 

clearance rate of the drug is eCl k V , where V is the volume of the active compartment. The 

area under the curve AUC , could be estimated by integrating the plasma concentration function 

with respect to time of the concentration function in (52). That yields a closed form to estimate 

the AUC as the ratio of the dose ( D ) to the clearance ( Cl ). If one is interested in AUC alone, 
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the function in (52) could be re-parameterized in terms of AUC by substituting AUC  for that 

ratio. That is, the model could be rewritten 

 
 

* k t k ta e e a

a e

AUC k k
C e e

k k

   
 

.     (53) 

Similarly maxC could be calculated by differentiating  (52) with respect to t and equating it to 

zero then solving for maxT  and maxC . This yields 
 

max max
max

k T k Ta e e a

a e

k k D
C e e

Cl k k

   
 

, 

where maxT is calculated as 
   
 

ln lne a

e a

k k

k k




. The calculations of the PK parameters that are 

usually used as metrics in bioequivalence studies are presented here.  However, all other PK 

parameters could be estimated as functions of the primary parameters of the concentration 

function in (52) and its derivatives. The first order absorption ak which is the rate of absorption, 

and the rate of drug elimination, ek , are both estimated directly from these models.  

 

Theory and algorithms for fitting nonlinear models (NLM) have been extensively 

developed and have been in use for decades (Wolfinger 1999, Davidian 2003, Galecki 2004, 

Adams 2002). However, applications of these in the bioequivalence literature seem limited. 

When the blood concentration data is collected a smoothed profile is drawn to represent the 

estimated function. Many PK measures are actually measured from these non linear fits, which 

are usually done on individual subject basis. However these nonlinear models are not used in 

statistical testing of bioequivalence. Only few attempts to fit nonlinear models and use them in 

testing hypotheses in drug studies could be found in the literature.   

 Pinheiro and Bates (1995) applied a nonlinear mixed effect model on data collected to 

study the drug theophylline. The serum concentrations of the drug were measured in 12 subjects 
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over a 25-hour period after oral administration. They applied the nonlinear modeling on a one 

compartment pharmacological model. They used this methodology for studying the 

pharmacodynamics of theophylline. Pinheiro and Bates (2000) also demonstrated that non-linear 

models, unlike linear models, provide more reliable predictions for responses outside the 

observed range of the data.  

Panhardt (2007) recently used simulation studies on the theophylline data to show that 

nonlinear mixed effect models (NLMEM) could be used in testing pharmacological interactions 

and bioequivalence. They considered a cross-over PK study of a drug that follows a first order 

model. They implemented the same model used by Pinheiro and Bates (1995) to compare 

between two drugs using simulated data based on the theophylline data. They used this 

simulation to test for average bioequivalence. They studied only one outcome. They did not 

apply their methods on any multivariate cases. 

  The literature is really scarce in examples of using the nonlinear models in drug 

bioequivalence testing. Even finding a data set that records all the plasma concentrations and 

time for two groups of drugs is very hard.  

Multivariate testing of multiple outcomes was never tested using the nonlinear models. 

Multivariate bioequivalence testing using these models was also never done. 

 

6.3. Multivariate Analysis of PBE: 

To establish bioequivalence in PK the FDA recommends testing the AUC and Cmax.  It 

has been demonstrated that these two PK metrics are highly correlated. However, most of the 

tests of bioequivalence ignore this correlation and test the two variables separately, often without 

multiple comparisons adjustment. Further, even when multivariate methods are used they are 
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essentially an intersection test of the two individual univariate tests. That is, these tests do not 

account for the correlations.  

The acceptance region of bioequivalence in these tests are rectangular (in the case of 

bivariate) or hyper-rectangular (in the case of multivariate). Munk, and Pflujer  (1999)  argue 

that the convex alternatives of this rectangular region (e.g., ellipsoid) is more appropriate in the 

case of multivariate testing if one wishes to appropriately account for the correlated nature of 

these measure. They also show that the 1   confidence rules for convex alternatives are 

actually / 2 level tests—with applications to the multivariate assessment of bioequivalence. 

They suggest a Hotellings‘ 2T  statistic for multivariate version of the average bioequivalence 

testing.  

We developed a multivariate test for population bioequivalence (in the first paper in 

Ch5), that is based on comparing the upper limit of a  100 1   confidence interval of the PBE 

multivariate criterion C p to a fixed bound p that is defined by the regulators (FDA 1999).  

 

6.4. Statistical Method: 

 

Consider a bioequivalence study comparing a new test drug to a reference drug. In such 

studies, which are usually designed as cross-over studies, each subject receives both treatments, 

and he/she might receive each treatment multiple times. So these correlated repeated measures 

need to be accounted for when estimating the fixed effects.  Suppose, the blood-concentration by 

time profile of the reference drug could be represented by a known non-linear function f linking 

concentrations to sampling times of all the subjects with subject specific PK parameters, such as 
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absorption ( ka ), elimination ( ke )rate constants, and clearance half-life ( Cl ). An example of this 

function is the one compartment model function in (52). 

Suppose several subjects are observed over a time interval at different occasions (of 

periods) on different treatments.  At time point, tijpk , let Cijpk  represent the blood-

concentration  of the 
thk  treatment given to the 

thi  subject at the thj time point, in the thp  

period. Here  i  = 1, 2, …, n, k = T or R,  p= 1, 2, …, P, and j  = 1, 2, …, tipk , for, n subjects, 2 

treatments, P periods and tipk  time points. Assume that the sampling times are fixed and 

identical, for each treatment, period, and for all subjects, as often is the case in cross-over trials. 

Then for all , , ,i j p and k , the time tijpk  could be simplified to t j . Let ipkλ be the vector of the 

PK parameters of the subject i for treatment k in period p. Then the nonlinear model for the 

concentration profile is, 

  ,C f tijpk j ipk ijpk λ , (54) 

where ijpk is the measurement error. It is also assumed that ijpk  are independent of ipkλ , and 

they are normally distributed with mean zero and variance 2
ijpk

 . 

Assume that the parameters ipkλ   are random vectors that could be decomposed for each period 

and treatment as 

 .ipk k p ik   λ μ β γ u  (55) 

where .μ is the overall mean, kβ is the fixed effect of the treatment, pγ is the fixed effect of the 

period, and iku is the random effect of subject i for treatment k , it is also assumed that iku is 

distributed as a multivariate normal with mean zero vector and a variance covariance matrix  
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kΨ . To ensure that the estimates are always positive, ipkλ  elements are the natural logarithms 

of the original PK parameters in the function f. The elements of ipkλ  are  log ipkCl , 

 log aipk
k , and  log eipk

k . 

The mle‘s of the original PK parameters ka  , ke , and Cl  could be estimated using this 

nonlinear mixed effects model. Since maxC and AUC  or other metrics are functions of these PK 

parameters, then the mle‘s of these metrics for each treatment group could be estimated as 

functions of the mle‘s of the PK. The asymptotic approximation of the variance covariance 

matrices of these metrics could be estimated using the Taylor series expansion theorem. Where 

the second partial  derivatives are derived and the mle‘s are estimated. This method is known as 

the delta method. When closed form derivatives are available, the estimation of the information 

matrix is easy. Otherwise other iterative methods are utilized. 

Using these estimates of the means and variance covariance matrices of the test and the 

reference drugs, the multivariate PBE criterion ( C p  ) that was proposed in (the first paper in 

Ch5) would be estimated. Then the 90% confidence interval could be constructed using the 

parametric bootstrap method as suggested by the FDA and as shown in (our first paper). Two 

thousand samples are randomly generated from a multivariate distribution with means and 

variances equal to the mle‘s obtained from the NLMEM. The upper limit of the resultant 

confidence interval is compared to the predefined limit of bioequivalence   described earlier in 

the first paper in Ch5. Bioequivalence is concluded if the upper limit of the 90% confidence 

interval is smaller than the predefined limit  . 
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6.5. Examples: 

6.5.1 Cross over design 

Twenty eight subjects were recruited in the study, and were given 3 doses of each of the 

two drugs, with a washout period between each of two sessions. The order in which the two 

drugs were given was selected at random using a block randomization method to ensure the 

balance within subjects. Although there are 20 possible ways to assign three A‘s and three B‘s, 

the random process did not cover all possibilities. 

 At the beginning of each session, baseline data were collected 30 seconds prior to the 

administration of the drug. The pharmacological baseline measurement is supposed to be zero if 

the wash out period is long enough. After the drug was administered, the specified 

pharmacological measurement (level of specific active material in the blood) was obtained over 

several minutes at very short intervals. 

 Each subject was administered one of the two drugs in all six sessions, however due to 

mechanical failure, or lower than qualified measures, some of the sessions were completely 

missing all blood measures. The data collected from the subjects are presented in (APPENDIX 

E). Only the first two periods were used in this analysis due to computational issues in proc 

nlmixed in SAS9.2 

The goal was to determine if the two drugs are bioequivalent. The NLMEM presented 

above in equation (55) is a suitable model for this data because the administration was repeated 

in nature on subjects, and due to the missing data in one of the periods for few patients. However 

due to computational limitations the random effects were at the subject level only, and they were 

the same for both treatments. 
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The logarithmic transformations of maxC  and AUC  and their variance covariance 

matrices were estimated for each of the treatment by fitting the model in equation (55) . These 

mle estimates are displayed in Error! Reference source not found.. The univariate and 

multivariate criteria for PBE were calculated according to (43) and (51). Then using the 

bootstrap method, the upper limit of the 90% confidence interval of these criteria were 

calculated. The 95
th

 percentile of the MV criterion was 2.33274, and the univariate 95
th

 

percentile for Cmax was 0.88843, while the 95
th

 percentile for the AUC was 1.39511. 

The multivariate rule   was calculated accounting for and ignoring the correlations 

between the variables in the test ( ˆ 0.6T  ) and reference ( ˆ 0.7R  ) groups. The rule theta 

accounting for these correlations was 2.67, while the upper bound of bioequivalence ignoring the 

correlation was 3.49. 

The p-values for testing for bioequivalence were calculated as the probability of rejecting 

bioequivalence among the bootstrap samples. This probability was calculated as the proportion 

of bootstrap samples that had C p greater than the rule  .  

The upper limits of the confidence intervals are all smaller than the predetermined 

bounds. It is concluded that these two drugs (A and B) are bioequivalent. This conclusion did not 

differ by the method used to test in this example. 
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 Table 14 shows that the probabilities of rejecting bioequivalence. The difference in the 

p-values between the test that used the intersection of the two univariate tests and the MV test 

that accounts for correlation in the rule theta was small. On the other hand, the rectangular test 

differed with the   MV test that ignored the correlation in the rule theta by 10-fold difference. 

 

Table 14 Mean and covariance estimates of PM data using multivariate mixed model 

 

 ˆ A  ˆB  ˆ
A Σ  ˆ

BΣ  

Cross over 

example logCmax 1.9738 1.9904 0.803000 0.427108

0.427108 0.56892

 
 
 

 
0.69168 0.365640

0.36564 0.419672

 
 
 

 

logAUC 6.6503 6.4239 

Parallel 

example logCmax 0.1639 1.0525 0.915564 0.81042

0.81042 2.39928

 
 
 

 
0.292656 0.209664

0.209664 0.770328

 
 
 

 

logAUC 2.259 2.3062 

 

Table 15 result of PBE testing of PM data 

  p 

Bivariate test with rule theta no corr P(Cp>3.49)  0.0035 

Univariate AUC P(C1>1.74) 0.0310 

Univariate Cmax  P(C1>1.74) 0.0045 

Bivariate test with rule theta with corr P(Cp>2.67) 0.0245 

Assuming independence Intersection of 2 univariate  1-P(C1<1.74)* P(C2<1.74 0.0354 
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6.5.2 Parallel design 

We used the data from a study performed by Clayton and Leslie (1981) to study the 

bioequivalence of an enteric-coated erythromycin base (test drug) to the previously available 

reference formulation of erythromycin stearate. Twenty subject received the reference drug, and 

after a washout period each subject received the test drug. After administering the reference or 

test drug, venous blood samples were collected at 0.0, 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 hours. The 

data is presented in the dissertation APPENDIX F. 

This study was described as a parallel design by (Chinchilli and Elswick 1997) because the 

treatments were not randomly assigned to each period.  However, we have to account for the 

correlated nature of the repeated measures within each subject. The lack of the randomization, 

makes the period effect redundant to the treatment effect, so only the treatment fixed effect 

should be included in the model. The same nonlinear mixed effects model (NLMEM) used in the 

cross over design above (without the period effect) was used to model the one-compartment 

pharmacological model that fits this data. 

 The mle estimates of means and covariance were obtained by fitting this models using 

proc nlmixed in SAS 9.2. These estimates are presented in Table 14.  

 

maxC and AUC were found to be moderately highly correlated, as expected, both in the 

test group ˆT was 0.55,  and in the reference group where ˆR was 0.44. The upper limit of 

bioequivalence,   was defined accordingly as 3.48 not accounting for the correlation and as 2.87 

when accounting for the correlations. The multivariate criterion was calculated from these 

estimates and found to be 7.14. The univariate criterion of PBE for each of AUC and maxC were 

found 4.83 and 2.12 respectively. The upper limits of the 90% confidence intervals constructed 
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by the bootstrap for the MV criterion and the two univariate criteria, these were found as 7.14, 

4.83 and 2.12.  

Qualitatively the conclusion in this example did not differ according to which method 

was used. All the tests rejected bioequivalence by a very high p-value. Table 16 shows that the 

differences in the values of p-values are so subtle.  This might be a reflection to the huge 

differences between the estimates of the means of the reference and they are so big that with any 

test bioequivalence is rejected easily. 

 

Table 16 result of PBE testing of Clayton data using NLMEM 

  p 

Bivariate test with rule theta no corr P(Cp>3.49)  0.9730 

Univariate AUC P(C1>1.74) 0.9635 

Univariate Cmax  P(C1>1.74) 0.6740 

Bivariate test with rule theta with corr P(Cp>2. 55) 0.9910  

Assuming independence Intersection of 2 univariate  

1-[P(C1<1.74)* 

P(C2<1.74)] 0.9881 

 

 
 

6.6. Conclusion  

 

We have discussed in this article the methods and processes of estimating the 

pharmacokinetic metrics used in testing bioequivalence. Although the nonlinear models have 

seen a considerable amount of applications and software development , its use in the field of 

bioequivalence testing is in its infancy. We demonstrated how to apply the nonlinear models in 

estimating and testing for bioequivalence. We presented the importance of multivariate testing 
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for bioequivalence, and we implemented the use of the nonlinear mixed effects models to 

account for correlated data in the bioequivalence studies repeated measure. 

 

We faced several computational limitations in the implementation of these mixed models. 

These are important issues that need to be investigated and studied. As an example of these 

limitations, we were unable to model more than one random effects in the nonlinear models. 

Another example is the convergence issues with higher number of periods in the cross-over 

designs. That forced us to limit the analysis to two periods only. Increasing the number of 

variables fixed or random effects greatly reduces the speed of the computations, and many time 

the estimations fail due to the large number of parameters to estimate. The starting values that 

are required to get good estimates are many times hard to determine, which results in local 

convergences, that are far from the real estimates.  

We did not study the effect of choosing various models of the variance covariance structures 

for the repeated measures. This might affect the estimation of the fixed effects of interest. This 

could be the subject of a future study. 
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7 Summary and Recommendations for Future Work 

 

In this study we extended the definition of the population bioequivalence into the 

multivariate dimension. We derived a criterion that is an actual multivariate extension of the 

univariate PBE approved by the FDA. Using a simulation study we have shown that this 

multivariate criterion has satisfactory properties (size and power) in testing for population 

bioequivalence. 

The simulation study has also shown that this criterion suffers from two problems. The 

first is being asymmetric with respect to the Reference and the Test, where the exchanging the 

reference for the test metrics will result in un-identical results. This problem makes it possible to 

consider drug A bioequivalent to the reference drug B, however drug B is not bioequivalent to 

drug A.  

This problem is not in the multivariate test only. It could be displayed in the univariate 

tests. It is due to the scaling of this criterion by the reference variance, or variance covariance 

matrix in the multivariate case. One may argue that in bioequivalence studies, the reference and 

test formulation cannot be treated equally, and that the test should be proved to be equivalent to 

the reference, and not the other way around. In other words the FDA puts extra burden on the 

generic drug producers to prove bioequivalence of their products to the novel drug.  

For patients, bioequivalent drugs are drugs that could be used interchangeably to 

treatment certain ailments or to alleviate specific symptoms. From this respect, bioequivalence 

should not be different between two drugs depending on which was considered the reference 
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drug. Actually by definition the bioequivalence studies are surrogates for clinical trials in 

evaluating the therapeutic equivalence of the generic drugs to the novel drug.  

The asymmetric property might be especially inconvenient if the equivalence of two 

generic drugs, or two new drugs, is to be evaluated. The KLD method might be a good solution 

for this issue. Testing the merits of this method in studying multivariate population 

bioequivalence might convince the FDA to change its stance of rejecting it. 

. 

Another problem is due to the aggregate nature of this criterion which is a sum of two 

entities. The upper limit of this criterion could be reached by increasing either one of the entities 

while keeping the other as small as possible, or by increasing both entities simultaneously. The 

impact of this is that multivariate bioequivalence could be met even if it is violated at one of the 

univariate tests when the other metric is close to zero. This is a limitation of all aggregate tools. 

That is why the FDA requires that to show univariate population bioequivalence, univariate 

average bioequivalence should be presented. Similarly we might need to show multivariate BE 

after showing univariate population BE. This is an important research question that needs to be 

investigated to try to find measures or methods that have the hierarchical nature of average 

bioequivalence and population bioequivalence. 

The distance approach in evaluating bioequivalence is very intuitive. That‘s why it is 

easy to extend from the average bioequivalence into the population bioequivalence by adding the 

distance between the variances. However, when we looked into the multivariate case of PBE, 

another parameter appears, that is the correlation. It is hard to understand the correlations 

between the reference and between the test drug metrics as part of the distance between the two 

distributions of the reference and the test. That‘s why it is hard to select a meaningful difference 

in the correlations that could affect the bioequivalence. We tested the acceptance regions with 



 

124 

 

and without correlations, but our selection of the correlation to be equal to the estimated 

correlation of the data was arbitrary. Future research might be able to create some guidelines on 

how to define the acceptable differences in correlations. 

We compared between the three PBE criteria. We examined Dragalin‘s criterion of PBE 

that was based on the KLD. This criterion was not accepted by the FDA although it was never 

tested before. The reason for the rejection is related to put the burden on the producer of the test 

drug to prove that it is equivalent to the reference drug. Although this is reasonable in most of 

the cases, there are cases where more than one generic drugs could be compared, and such cases 

require that both drugs be proven equivalent to each other regardless of which one is considered 

the reference. More testing of Dragalins criterion as a true distance measure between any two 

distributions might prove useful in other applications of equivalence testing where no preference 

is given to any distribution.        

We also discussed and demonstrated how nonlinear models are good tools in evaluating 

bioequivalence by showing how to use it in population bioequivalence studies. We demonstrated 

the use of nonlinear mixed effects models in bioequivalence studies. We have shown that the 

development in statistical software had made it much easier to use these complex models in 

estimating the metrics and their variances. However there are still many limitations. For 

example, there is no direct way to implement a specific covariance pattern for repeated 

correlated measure. There is no specific way to have more than one random effect, although in 

some situations it is required to have random effects for different units of analysis.  

We demonstrated the use of the NLMEM on the one-compartment pharmacological 

model. There are much more complex models in pharmacological studies. However, it is well 

known that the nonlinear models are very mechanistic. We could use these models to model 
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almost all intrinsic mechanisms for any pharmaceutical processes, like absorption, elimination, 

effective range, onset of activity, lag of action, etc. Nonlinear models could be used in modeling 

more complex models than the one-compartment model that we demonstrated. It is important to 

test bioequivalence applications using more complex models. 

Bioequivalence problems could be handled by a frequentist or a Bayesian approach, but 

frequentist solutions are more common in the literature and much more often used in practice, 

despite the nice properties of many Bayesian solutions. This may be due in part to the weight of 

regulatory agencies in bioequivalence testing, the most significant application area. There might 

be a regulatory bias towards the frequentist approach, but it is also likely that the level of 

difficulty and the weak understanding of the  Bayesian approach might reducing the use of such 

methods in this field. It would be interesting to approach PBE and it multivariate testing from a 

Bayesian approach.  

The studies in this dissertation were limited to equal size samples of reference and test 

drugs. This might not be realistic in a lot of BE studies. The simulation studies also did not have 

any missing values. The effect of different sample sizes, missing values and dependence between 

the treatments drugs should be tested in future studies. 

 

 

 

.   
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APPENDIX A: Population Bio-Equivalence a distance measure  

 

The population bioequivalence was proposed by [Ref] as a measure of the distance 

between the distribution of the T treatment and the reference R treatment. This distance is scaled 

by the variance of the reference treatment. 

 

   

 

2 2

2
2

E Y Y E Y YT R R R

E Y YR R

            

    

 (56) 

The first term of denominator, and second term of the numerator: 

 
   2 2 22

2 2 2 2 2 22 2

E Y Y EY E Y Y EYR R R RR R

R R R R R R
     

        

     

 (57) 

Note the division by two in the denominator allows for scaling by the reference variance 2
R . 

The first term of the numerator: 

 

   

 

 
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2 2 2 2 2

2 2 2 2 2

E Y Y EY E Y Y EYT R T RT R

E Y YT RT T R R

T R T RT T R R

   

       

    
  

    

     

 (58) 

Under the assumption of independence between the reference R and Test distributions ( 0   ) 

  2 2 2 2 2E Y YT R T T R R
        

  
 (59) 
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Then the numerator in (56) will reduce to 

 

   

 
 

2 2 2 2 2 2 22 2

2 2 2 22

2 2 2

E Y Y E Y YT R R R T RT T R R R

T RT R T R

T R T R

      

     

   

                 

    

   

 (60) 

Then the univariate population bioequivalence is expressed as: 

 
 2 2 2

2

T R T R

R

   



  
 (61) 

 This was used by Zarifa in testing bioequivalence, by comparing this criterion to a 

predetermined upper limit   

 

 

 

 

   

2 2 2

2

2 2 2 2

2 2 2 2 0

2 2 2 1 0

T R T R

R

T R T R R

T R T R R

T R T R

   




    

    

    

  


   

    

    

 (62) 

The upper limit of the 90% confidence interval for the linearized criterion 

   2 2 2 1T R T R
         should be negative to accept bioequivalence. 
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APPENDIX B: Derivation of MV PBE 

 

Derivation of MV PBE 

The univariate population bioequivalence (PBE) criterion is expressed as  

 

   

 

2 2

2
2

E Y Y E Y YT R R R

E Y YR R

            

    

 (63) 

This expression could be rewritten as 

 
 2 2 2

2

T R T R

R

   



  
 (64) 

To develop the equivalent multivariant equivalent for the criterion in 1.1, let TY and RY be p-

variate random variables denoting the test and reference PK metrics. Let‘s assume that TY is 

distributed as a p-variate normal with a mean Tμ  and a variance covariance matrix TΣ . And let 

RY  and RY be two realizations of the p-variate normally distributed random variable with mean 

Rμ  and a variance covariance matrix RΣ . 

Then the multivariate equivalent of the denominator in (63) is   

    2E R R R R R
      

Y Y Y Y Σ  (65) 

Then the multivariate criterion that is equivalent to (63) could be written as:  

        1 1C E Ep T R R T R R R R R R
                 

Y Y Σ Y Y Y Y Σ Y Y  (66) 
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Let  1 2
R T R
 Z Σ Y Y ; and let  1 2

R R R


 K Σ Y Y , then by substitution with Z  and K in 

(66), the multivariate criterion could be expressed as  

    C E Ep   Z Z K K  (67) 

Note that  

 

 

 

 

 

     

2 2

1 1

22

1

22

1

22

1 1

p p

E E z E zi i
i i

p

E zizi
i

p

E zizi
i

p p

E zizi
i i

trace E E







 
    
   

  

 
  

 


 
  

 


 

 

 

 





 

Z Z

Σ Z ZZ

 (68) 

Then the multivariate population bioequivalence criterion could be written as; 

            C trace E E trace E Ep
    Σ Z Z Σ K KZ K  (69) 

The expectation of Z is equal to  

 

   

 

 

1 2

1 2

1 2

E E R T R

ER T R

R T R

  
  

    

 

Z Σ Y Y

Σ Y Y

Σ μ μ

 (70) 

So the second term of the right hand side of (69) is  

 
       

   

1 2 1 2

1

E E T R R R T R

T R R T R

    

  

Z Z μ μ Σ Σ μ μ

μ μ Σ μ μ

 (71) 

The last term of (69) is zero because, the expectation of K is  
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   

 

 

1 2

1 2

1 2

E E R R R

ER R R

R R R

     

     

 



K Σ Y Y

Σ Y Y

Σ μ μ

0

 (72) 

Note that the covariance of Z is:  

 

 

  
 

    

 

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

Cov

Cov R T R

CovR T R R

Cov CovR T R R

R T R R

R T R R R R



 

  

  

  

    

Σ ZZ

Σ Y Y

Σ Y Y Σ

Σ Y Y Σ

Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

 (73) 

Since the last term of the above equation reduces to a pxp identity matrix, then the variance-

covariance matrix of Z  reduces to 1 2 1 2
R T R
  Σ Σ Σ I                                                

And the covariance of K  

 

 

  
 

    

 

1 2

1 2 1 2

1 2 1 2

1 2 1 2

2

Cov KK

Cov R R R

CovR R R R

Cov CovR R R R

R R R R



  

   

   

  



Σ

Σ Y Y

Σ Y Y Σ

Σ Y Y Σ

Σ Σ Σ Σ

I

 (74) 

Substituting into (69) and using the cyclical properties of the trace, the multivariate criterion 

could be expressed as 
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           

       

     

1 2 1 2 1 2

1 1

C trace E E trace E Ep Z K

trace traceR T R T R R T R

trace pT R T R R T R

    

       

     

Σ Z Z Σ K K

Σ Σ Σ I μ μ Σ μ μ I

Σ Σ μ μ Σ μ μ

 

So the Multivariate criterion is 

      1 1C trace pp T R T R R T R
     Σ Σ μ μ Σ μ μ  (75) 

. 
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APPENDIX C: Distribution of Multivariate PBE criterion 

 

Using a simulation with sample sizes 25, 50, and 100 per treatment group, and with a 

difference between the treatment and reference groups d , as: 0.7, 1, and 1.3. and differences 

between the variances of the treatment and reference groups 2 2
T R

  as: 0.0, 0.02, and 0.04. 

The multivariate criterion was calculated, and its histograms representing its distribution were 

plotted.  

The following two figures show that the distribution of C p get more toward the normal 

as the sample size increases when the variances the variances are between the two treatment 

groups are equal, however this trend is not seen when the variances are between the two 

treatment groups are not equal.  
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N \ d  .7 1 1.3 

25 

   

50 

   
100 

   
Figure 8 Distribution of Cp by sample size and mean diff under independence 
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N \ 2 2
T R

   
0 0.02 0.04 

25 

   

50 

   
100 

   
Figure 9 Distribution of Cp by sample size and difference of variances under independence
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APPENDIX D: Graphical presentation of PBE Acceptance regions 

 

To graphically illustrate the ellipsoidal nature of the regions of equivalence developed by 

the test consider the following. Let TX and RX be vectors of random variables representing the 

metrics used in bioequivalence testing.  Let TX be distributed as multivariate normal with mean 

vector Tμ and variance covariance matrix TΣ . Let RX be distributed as multivariate normal 

with mean vector Rμ and variance covariance matrix RΣ . Then bioequivalence acceptance 

region is defined as  

      1 1C trace pp T R T R R T R p
      Σ Σ μ μ Σ μ μ  (76) 

Note that this could be reordered as 

      1 1p traceT R R T R p T R     μ μ Σ μ μ Σ Σ  (77) 

The right hand side of this inequality, which is a scalar, does not depend on the means. 

Therefore, the left hand side is a quadratic form in terms of the difference of the mean vectors 

and thus the inequality represents an ellipsoid whose shape is controlled by the variance 

covariance matrices (Johnson and Wichern.xxx). Similary we could construct an ellipsoid based 

on the estimates of the parameters on both LHS and RHS of the equation above such that 

ˆ
95C Cp p .  That is, the ellipsoid formed by the inequality, 

      1 1ˆ ˆ ˆˆ ˆ ˆ ˆ 95C p traceT R R T R p T R
     μ μ Σ μ μ Σ Σ . (78) 

Bioequivalence is then pictorially presented if the second ellipsoid (actual data) is totally 

contained within the first ellipsoid defined by the regulators‘ limits. In Figure 10 examples of 

these ellipsoids are presented. The values were chosen to demonstrate, accounting for the 
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correlation between the variables actually changes the acceptance region. This result could be 

vastly different depending on how the correlation is incorporated. For example, the area in the 

figure that is outside the red ellipse (that ignores correlation) is outside the bioequivalence 

acceptance region if we ignore correlation,  however it will be within the bioequivalence region 

if we account for the correlation. 

Figure 10 Acceptance bioequivalence regions 
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Create two data sets 

Test and reference with the following variance and means: 

 

sigmaT sigmaR mubarT mubarR Mubar d 

0.0407217 -0.000756 0.0412375 -0.000168 1.1275743 1.0130981 0.1144762 

-0.000756 0.0448253 -0.000168 0.0410481 1.1182117 0.9863747 0.131837 

 

 

Theta for the bivariate is 3.5, and theta for the univariate is 1.75 
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The point estimates of the PBE criteria 

 

Bivariate  

Cp_Data 

Univariate  

C1_data 

Univariate 

C2_data 

0.8236143 0.3052789 0.5154513 

 

The upper limit of the 95% CI for these found by 2000 bootstraps as 

 

theta Cp_95 C1_95 C2_95 

3.489652 1.313103 0.604775 0.881751 

 

In the same bootstrap, also calculated the upper limit of the quadratic form 

quad_C quad_theta 

1.053592 3.661915 

 

The ellipses of the quadratic term with the following limits were plotted: 

 

 

   1 1ˆ ˆ ˆˆ ˆ ˆ ˆT R R T R p T Rtrace p              

   1 1
95

ˆ ˆ ˆˆˆ ˆ ˆ ˆT R R T R p T RC trace p             

 

Then ˆ ˆ&R T  where modified to have a correlation=0.5 and the same variances. 

 

The quadratic forms were plotted again; 

The plot shows that the although the angle changes from 0 to 45, the upper and lower limits do 

not change 

The outer ellipses are from    1 1ˆ ˆ ˆˆ ˆ ˆ ˆT R R T R p T Rtrace p              

And the inner ellipses are from    1 1
95

ˆ ˆ ˆˆˆ ˆ ˆ ˆT R R T R p T RC trace p             
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APPENDIX E: PM Data Blood Concentration Curves 

PM Data Blood Concentration Curves 

PM Data 

All data from 1-7 seconds were zeros. 
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Figure 11 Blood conc.by time curves averaged over periods 
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Figure 12 Blood conc curves by treatment and period 
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APPENDIX F: Parallel Design Data 

This data from: 

―Clayton D, Leslie A: The bioavailability of erythromycin stearate vesus enteric-coated 

erythromycin base when taken immediately before and after food. Journal of International 

Medical Research 9:4770-4777, 1981‖ 

Variable name t0 t05 t10 t15 t20 t40 t60 t80 

Concentration @ time 0 30min 60min 90min 2hours 4hours 6hours 8hours 

 

Table 17 Reference Concentrations by subject and time 

SUBJECT Treatment t0 t05 t10 t15 t20 t40 t60 t80 

1 Reference 0 5.00 5.35 4.42 3.13 1.00 0.28 0.12 

2 Reference 0 0.07 2.08 3.42 4.14 2.30 0.52 0.21 

3 Reference 0 1.63 3.46 3.31 2.18 0.66 0.25 0.12 

4 Reference 0 0.62 4.51 3.98 2.67 0.71 0.23 0.15 

5 Reference 0 2.66 3.70 3.34 2.74 0.83 0.23 0.15 

6 Reference 0 0.17 2.62 4.10 3.04 0.88 0.34 0.17 

7 Reference 0 4.12 5.40 6.13 6.18 2.68 1.10 0.57 

8 Reference 0 2.24 4.07 3.11 1.68 0.55 0.16 0.09 

9 Reference 0 1.43 2.50 2.01 1.45 0.49 0.22 0.15 

10 Reference 0 2.63 5.23 3.62 3.34 1.04 0.38 0.17 

11 Reference 0 1.44 4.24 1.84 1.87 0.56 0.28 0.14 

12 Reference 0 2.52 2.25 1.66 1.54 0.48 0.23 0.14 

13 Reference 0 0.09 3.01 3.49 2.93 1.32 0.46 0.25 

14 Reference 0 0.26 2.10 1.96 1.92 0.47 0.19 0.09 

15 Reference 0 0.57 5.18 3.69 3.07 0.77 0.28 0.13 

16 Reference 0 0.65 3.80 3.16 2.08 0.97 0.41 0.18 

17 Reference 0 0.09 1.86 1.96 1.70 0.56 0.26 0.13 

18 Reference 0 1.16 2.36 1.87 1.49 0.54 0.20 0.12 

19 Reference 0 0.11 0.09 0.36 0.56 0.18 0.12 0.07 

20 Reference 0 0.12 1.90 2.06 1.90 0.49 0.21 0.13 
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Table 18 Test concentration by subject and time 

SUBJECT Treatment t0 t05 t10 t15 t20 t40 t60 t80 

21 Test 0 0.10 0.66 1.08 2.59 1.88 1.26 0.35 

22 Test 0 0.12 0.10 0.13 0.10 0.13 0.92 0.75 

23 Test 0 0.24 2.60 2.60 1.48 0.38 0.14 0.10 

24 Test 0 0.10 2.08 3.43 2.87 2.45 1.13 0.48 

25 Test 0 0.13 0.98 0.64 0.69 1.43 0.56 0.19 

26 Test 0 0.16 1.66 1.99 1.52 1.60 0.38 0.17 

27 Test 0 0.53 2.94 2.58 3.68 2.47 1.48 0.77 

28 Test 0 0.11 3.58 2.60 1.79 0.39 0.14 0.11 

29 Test 0 0.13 0.14 0.12 0.15 2.12 1.11 0.80 

30 Test 0 0.10 1.26 0.97 0.69 1.29 1.36 0.33 

31 Test 0 0.10 0.12 0.08 0.07 0.14 1.01 0.35 

32 Test 0 0.07 0.08 0.69 3.11 1.42 0.79 0.34 

33 Test 0 0.13 0.11 0.14 0.13 2.87 1.83 0.99 

34 Test 0 0.12 0.17 0.65 0.82 0.82 0.50 0.24 

35 Test 0 0.14 0.09 0.10 0.10 3.39 0.93 0.36 

36 Test 0 0.13 0.10 0.14 0.12 0.92 0.92 0.62 

37 Test 0 0.10 0.09 0.12 0.14 0.11 0.85 0.80 

38 Test 0 0.13 0.10 0.10 0.10 0.45 0.49 0.16 

39 Test 0 0.08 0.09 0.08 0.12 1.56 0.91 0.56 

40 Test 0 0.08 0.11 1.32 0.67 0.74 0.35 0.16 
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Figure 13 Reference and Test serum concentration profiles 
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AUC was calculated using the trapezoidal method. CMax was determined as the highest 

observed concentration. 

 

Table 19 AUC and Cmax from non-compartmental methods 

Reference Treatment Test Treatment 

SUBJECT AUC logAUC Cmax logCmax SUBJECT AUC logAUC Cmax logCmax 

1 13.978 2.637 5.350 1.677 21 10.788 2.378 2.590 0.952 

2 13.810 2.625 4.140 1.421 22 3.150 1.147 0.920 -0.083 

3 8.865 2.182 3.460 1.241 23 5.710 1.742 2.600 0.956 

4 9.923 2.295 4.510 1.506 24 14.033 2.641 3.430 1.233 

5 10.545 2.356 3.700 1.308 25 5.908 1.776 1.430 0.358 

6 9.855 2.288 4.100 1.411 26 7.935 2.071 1.990 0.688 

7 23.680 3.165 6.180 1.821 27 16.295 2.791 3.680 1.303 

8 8.320 2.119 4.070 1.404 28 6.553 1.880 3.580 1.275 

9 6.353 1.849 2.500 0.916 29 7.643 2.034 2.120 0.751 

10 12.925 2.559 5.230 1.654 30 7.658 2.036 1.360 0.307 

11 7.918 2.069 4.240 1.445 31 2.888 1.060 1.010 0.010 

12 6.700 1.902 2.520 0.924 32 9.068 2.205 3.110 1.135 

13 10.768 2.377 3.490 1.250 33 10.743 2.374 2.870 1.054 

14 5.970 1.787 2.100 0.742 34 4.375 1.476 0.820 -0.198 

15 10.788 2.378 5.180 1.645 35 9.290 2.229 3.390 1.221 

16 9.345 2.235 3.800 1.335 36 4.635 1.534 0.920 -0.083 

17 5.850 1.766 1.960 0.673 37 3.050 1.115 0.850 -0.163 

18 6.158 1.818 2.360 0.859 38 2.330 0.846 0.490 -0.713 

19 1.650 0.501 0.560 -0.580 39 5.775 1.754 1.560 0.445 

20 5.945 1.783 2.060 0.723 40 3.933 1.369 1.320 0.278 

 

. 
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Figure 14 Raw and Predicted Blood Concentration Profiles of Reference drug 



 

167 

 

 

 

 

 

Figure 15 Raw and Predicted Blood Concentration Profiles of Test drug 
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Figure 16 Raw and Predicted Blood Concentration Profiles of Reference and Test Drugs 
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APPENDIX G: Confidence intervals of the estimated size in table 1 

Table 20 95% CI of estimates sizes in table 1 

  Cp95<theta Cp95<theta-c 

rhoR rhoT n=25 n=50 n=100 n=25 n=50 n=100 

-0.2 -0.2 
-0.029 , 

0.049 
0 , 0 0 , 0 

-0.032 , 

0.058 

-0.013 , 

0.019 

-0.009 , 

0.036 

 0 0 , 0 
-0.016 , 

0.029 
0 , 0 0 , 0 

-0.016 , 

0.029 

-0.005 , 

0.058 

 0.2 
-0.025 , 

0.039 
0 , 0 0 , 0 

-0.025 , 

0.039 

-0.018 , 

0.045 
0.002 , 0.078 

 0.4 
-0.019 , 

0.026 
0 , 0 

-0.008 , 

0.015 

-0.034 , 

0.067 

-0.018 , 

0.045 

-0.006 , 

0.053 

 0.8 0 , 0 
-0.016 , 

0.029 
-0.01 , 0.03 

-0.035 , 

0.075 

-0.017 , 

0.077 

-0.005 , 

0.058 

0 -0.2 
-0.019 , 

0.026 

-0.018 , 

0.045 

-0.009 , 

0.036 

-0.019 , 

0.026 

-0.018 , 

0.045 

-0.009 , 

0.036 

 0 
-0.019 , 

0.026 

-0.019 , 

0.059 
-0.01 , 0.03 

-0.019 , 

0.026 

-0.019 , 

0.059 
-0.01 , 0.03 

 0.2 
-0.019 , 

0.026 

-0.018 , 

0.045 

-0.002 , 

0.068 

-0.019 , 

0.026 

-0.018 , 

0.045 

-0.002 , 

0.068 

 0.4 0 , 0 
-0.018 , 

0.045 
-0.01 , 0.03 0 , 0 

-0.018 , 

0.045 
-0.01 , 0.03 

 0.8 
-0.029 , 

0.049 

-0.019 , 

0.052 

-0.003 , 

0.063 

-0.029 , 

0.049 

-0.019 , 

0.052 

-0.003 , 

0.063 

0.2 -0.2 
-0.029 , 

0.049 
0 , 0 

-0.009 , 

0.036 

-0.025 , 

0.039 
0 , 0 -0.01 , 0.03 

 0 0 , 0 
-0.012 , 

0.105 

0.011 ,  

0.102 
0 , 0 

-0.019 , 

0.052 

-0.006 , 

0.053 

 0.2 
-0.032 , 

0.058 

-0.018 , 

0.071 

0.005 ,  

0.088 

-0.029 , 

0.049 

-0.018 , 

0.045 

-0.009 , 

0.023 

 0.4 
-0.032 , 

0.058 

-0.012 , 

0.105 

0.025 ,  

0.129 

-0.025 , 

0.039 

-0.018 , 

0.071 

-0.006 , 

0.053 

 0.8 
-0.035 , 

0.135 

-0.002 , 

0.136 
0.075, 

0.212 

-0.036 , 

0.082 

-0.018 , 

0.045 
0.003 , 0.083 

0.4 -0.2 
-0.019 , 

0.026 
0 , 0 -0.01 , 0.03 

-0.019 , 

0.026 

-0.013 , 

0.019 

-0.009 , 

0.036 
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  Cp95<theta Cp95<theta-c 

rhoR rhoT n=25 n=50 n=100 n=25 n=50 n=100 

 0 0 , 0 
-0.016 , 

0.029 

-0.002 , 

0.068 
0 , 0 0 , 0 

-0.007 , 

0.047 

 0.2 
-0.025 , 

0.039 

-0.016 , 

0.083 
0.018 , 0.116 

-0.019 , 

0.026 

-0.019 , 

0.059 

-0.008 , 

0.042 

 0.4 
-0.029 , 

0.049 

-0.012 , 

0.105 
0.064 ,  

0.196 

-0.025 , 

0.039 

-0.018 , 

0.045 

-0.009 , 

0.023 

 0.8 
-0.035 , 

0.141 
0.066, 

0.274 

0.275 , 

0 .465 

-0.029 , 

0.049 

-0.019 , 

0.065 

-0.008 , 

0.042 

0.8 -0.2 0 , 0 0 , 0 0 , 0 
-0.025 , 

0.039 

-0.016 , 

0.083 

-0.002 , 

0.068 

 0 0 , 0 0 , 0 0 , 0 
-0.025 , 

0.039 

-0.018 , 

0.038 

-0.007 , 

0.047 

 0.2 0 , 0 0 , 0 0 , 0 
-0.025 , 

0.039 

-0.018 , 

0.045 

-0.008 , 

0.015 

 0.4 0 , 0 0 , 0 0 , 0 
-0.019 , 

0.026 

-0.016 , 

0.029 

-0.002 , 

0.068 

 0.8 
-0.032 , 

0.058 
0.023, 

0.197 

0.198, 

0.375 
0 , 0 0 , 0 

-0.007 , 

0.047 

.  
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APPENDIX H: Results of Crossover Design mixed model 

Type 3 Tests of Fixed Effects   

Effect Num DF Den DF F Value Pr > F 

outcome 1 38.2 5284.2 <.0001 

sequence 14 13.4 2.26 0.0726 

period 5 104 0.91 0.4807 

Treatment 1 105 5.2 0.0247 

Treatment*outcome 1 92.2 1.6 0.2097 

 

 

Solution for Fixed Effects       

Effect    Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept    1.9832 0.4428 13 4.48 0.0006 

outcome logAUC   3.3565 0.04935 51.9 68.01 <.0001 

outcome logCmax   0 . . . . 

sequence AABABB   0.8618 0.4899 12.5 1.76 0.103 

sequence AABBAB   -0.4223 0.6364 13.8 -0.66 0.5179 

sequence ABAABB   0.263 0.508 12.7 0.52 0.6136 

sequence ABABAB   0.001884 0.5766 16.4 0 0.9974 

sequence ABBAAB   0.4606 0.506 12.5 0.91 0.3799 

sequence ABBABA   -0.07047 0.627 13.1 -0.11 0.9122 

sequence ABBBAA   -0.6698 0.6278 13.1 -1.07 0.3052 

sequence BAABAB   1.3201 0.6196 12.5 2.13 0.0537 

sequence BABAAB   0.01746 0.6196 12.5 0.03 0.978 

sequence BABABA   0.7231 0.506 12.5 1.43 0.1775 

sequence BABBAA   0.1171 0.5059 12.5 0.23 0.8207 

sequence BBAAAB   0.161 0.627 13.1 0.26 0.8013 

sequence BBAABA   0.6355 0.6196 12.5 1.03 0.3245 

sequence BBABAA   1.1973 0.5389 12.7 2.22 0.0452 

sequence BBBAAA   0 . . . . 

period 1   -0.06025 0.1114 70 -0.54 0.5904 

period 2   0.007936 0.1062 78.4 0.07 0.9406 

period 3   -0.06229 0.09954 90.4 -0.63 0.533 

period 4   0.03087 0.09082 104 0.34 0.7346 

period 5   0.08034 0.07215 111 1.11 0.2679 

period 6   0 . . . . 
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Treatment A  -0.08724 0.04502 110 -1.94 0.0552 

Treatment B  0 . . . . 

Treatment*outcome A logAUC -0.04687 0.0371 92.2 -1.26 0.2097 

Treatment*outcome A logCmax 0 . . . . 

Treatment*outcome B logAUC 0 . . . . 

Treatment*outcome B logCmax 0 . . . . 

         

 

 

Least Squares Means     

Effect trt  Estimate 

Standard  

Error Lower Upper 

Treatment*outcome A logAUC 5.5115 0.1112 5.2814 5.7416 

Treatment*outcome A logCmax 2.2018 0.09974 1.9895 2.4142 

Treatment*outcome B logAUC 5.6456 0.1113 5.4154 5.8758 

Treatment*outcome B logCmax 2.2891 0.09996 2.0764 2.5017 

.
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Table 21 Example of R covariance Matrix for subject 20 Example of the R covariance matrix for 

subject # 20 

0.1531 0.152 0.09697 0.09628 0.06143 0.06099 0.03891 0.03864 0.02465 0.02448 0.01562 0.0155 

0.152 0.2687 0.09628 0.1702 0.06099 0.1078 0.03864 0.06832 0.02448 0.04328 0.0155 0.02742 

0.09697 0.09628 0.1531 0.152 0.09697 0.09628 0.06143 0.06099 0.03891 0.03864 0.02465 0.02448 

0.09628 0.1702 0.152 0.2687 0.09628 0.1702 0.06099 0.1078 0.03864 0.06832 0.02448 0.04328 

0.06143 0.06099 0.09697 0.09628 0.1531 0.152 0.09697 0.09628 0.06143 0.06099 0.03891 0.03864 

0.06099 0.1078 0.09628 0.1702 0.152 0.2687 0.09628 0.1702 0.06099 0.1078 0.03864 0.06832 

0.03891 0.03864 0.06143 0.06099 0.09697 0.09628 0.1531 0.152 0.09697 0.09628 0.06143 0.06099 

0.03864 0.06832 0.06099 0.1078 0.09628 0.1702 0.152 0.2687 0.09628 0.1702 0.06099 0.1078 

0.02465 0.02448 0.03891 0.03864 0.06143 0.06099 0.09697 0.09628 0.1531 0.152 0.09697 0.09628 

0.02448 0.04328 0.03864 0.06832 0.06099 0.1078 0.09628 0.1702 0.152 0.2687 0.09628 0.1702 

0.01562 0.0155 0.02465 0.02448 0.03891 0.03864 0.06143 0.06099 0.09697 0.09628 0.1531 0.152 

0.0155 0.02742 0.02448 0.04328 0.03864 0.06832 0.06099 0.1078 0.09628 0.1702 0.152 0.2687 

.  
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APPENDIX I: Results of Crossover Design NLMEM model 

 

proc nlmixed data=BE.concentrations2 ecov ; 

where period<3; 

a= treatment='A'; 

per=period=2; 

 

dose=1; 

 

      parms beta1=-5 beta2=-2 beta3=0  b1=-1 b2=0 b3=1  s2=57 

            s2b1 =0.03  cb12 =0    s2b2 =0.4  ; 

      cl   = exp(beta1 + b1*a+ u1); 

      ka   = exp(beta2 + b2*a+ u2); 

      ke   = exp(beta3+b3*a+p1*per); 

      pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke); 

      model concentration ~ normal(pred,s2); 

      random u1 u2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject; 

 

  cla   = exp(beta1+ b1);  

       kaa   = exp(beta2+ b2);  

       kea   = exp(beta3+b3);  

 

    kab= exp(beta2); 

    keb= exp(beta3); 

    clb= exp(beta1); 

  estimate 'logCmaxModel a' log(kaa*kea*(exp(-

kea*log(kea/kaa)/(kea-kaa))-exp(-kaa*log(kea/kaa)/(kea-kaa)))/(cla*(kaa-

kea))) ; 

  estimate 'logAUCModel a' log(1/cla)  ; 

  estimate 'logCmaxModel b' log(kab*keb*(exp(-

keb*log(keb/kab)/(keb-kab))-exp(-kab*log(keb/kab)/(keb-kab)))/(clb*(kab-

keb))) ; 

  estimate 'logAUCModel b' log(1/clb)  ; 

 

 predict pred out=predvals; 

 

   run; 
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The NLMIXED Procedure 

Specifications 

Data Set BE.CONCENTRATIONS2 

Dependent Variable concentration 

Distribution for Dependent Variable Normal 

Random Effects u1 u2 

Distribution for Random Effects Normal 

Subject Variable Subject 

Optimization Technique Dual Quasi-Newton 

Integration Method Adaptive Gaussian Quadrature 

 

Parameters 

beta1 beta2 beta3 b1 b2 b3 s2 s2b1 cb12 s2b2 p1 NegLogLike 

-5 -2 0 -1 0 1 57 0.03 0 0.4 1 5407.07691 

 

Iteration History 

Iter   Calls NegLogLike Diff MaxGrad Slope 

1   5 5307.82215 99.25476 156.5468 -4082.82 

2   7 5174.03882 133.7833 68.23715 -83.7382 

80   897 4347.94491 0.000617 0.248288 -0.0006 

81   898 4347.94407 0.000845 0.093543 -0.00168 

82   900 4347.94402 0.000047 0.072078 -0.00004 

 

NOTE: GCONV convergence criterion satisfied. 
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Fit Statistics 

-2 Log Likelihood 8695.9 

AIC (smaller is better) 8717.9 

AICC (smaller is better) 8718.1 

BIC (smaller is better) 8738.0 

 

Parameter Estimates 

Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

beta1 -6.4239 0.09766 44 -65.78 <.0001 0.05 -6.6207 -6.2271 0.023142 

beta2 -3.6162 0.1890 44 -19.13 <.0001 0.05 -3.9971 -3.2353 0.019694 

beta3 -3.2253 0.1315 44 -24.53 <.0001 0.05 -3.4903 -2.9603 -0.0112 

b1 -0.2264 0.1125 44 -2.01 0.0503 0.05 -0.4531 0.000261 0.048394 

b2 -0.3056 0.2409 44 -1.27 0.2113 0.05 -0.7910 0.1799 0.042683 

b3 -0.1579 0.1653 44 -0.96 0.3445 0.05 -0.4910 0.1752 0.048333 

s2 13.6338 0.4990 44 27.32 <.0001 0.05 12.6280 14.6396 0.025545 

s2b1 0.08768 0.04568 44 1.92 0.0614 0.05 -0.00438 0.1797 0.044931 

cb12 -0.1306 0.04242 44 -3.08 0.0036 0.05 -0.2161 -0.04515 0.00585 

s2b2 0.3163 0.1401 44 2.26 0.0289 0.05 0.03404 0.5986 -0.07208 

p1 0.05966 0.1311 44 0.45 0.6514 0.05 -0.2047 0.3240 0.038647 

 

Additional Estimates 

Label Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

logCmaxModel a 1.9738 0.1351 44 14.61 <.0001 0.05 1.7015 2.2460 

logAUCModel a 6.6503 0.1137 44 58.48 <.0001 0.05 6.4211 6.8795 

logCmaxModel b 1.9904 0.1254 44 15.87 <.0001 0.05 1.7377 2.2432 

logAUCModel b 6.4239 0.09766 44 65.78 <.0001 0.05 6.2271 6.6207 
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Covariance Matrix of Additional Estimates 

Row Label Cov1  Cov2  Cov3  Cov4  

1 logCmaxModel a 0.01825 0.009707 0.000999 0.001117 

2 logAUCModel a 0.009707 0.01293 0.001121 0.004910 

3 logCmaxModel b 0.000999 0.001121 0.01572 0.008310 

4 logAUCModel b 0.001117 0.004910 0.008310 0.009538 

. 
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APPENDIX J: Asymmetry of PBE 

Table 22 Asymmetric effect of the reference and test correlations on true multivariate PBE criterion Bp’s relation to 0  

R  T  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-0.2 + + + + + + + + + + + + 

-0.1 + + + + + + + + + + + + 

0 = = = = = = = = = = = = 

0.1 - - - - - - - - - - - - 

0.2 - - - - - - - - - - - - 

0.3 - - - - - - - - - - - - 

0.4 + + - - - - - - - - - - 

0.5 + + + - - - - - - - - - 

0.6 + + + + + - - - - - - - 

0.7 + + + + + + + - - - - - 

0.8 + + + + + + + + + - - - 

0.9 + + + + + + + + + + + - 

: ,  : ,  : ,  0 0 0

 is  under no correlation in both reference and test, 3.48970 0

p p p     

  

     

  
This table was generated by comparing p which is calculated according to the row and column correlation to 0  
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It shows that asymmetry with respect to the correlation between the reference and between the 

tests.for example 0.8-0.9 combination is on the other side of than 0.9-0.8 combination. 

 

Table 22 was generated by comparing  which is calculated according to the row and column 

correlation to 0 . If   was greater than 0  a ‗+‘ was entered in the cell. If it was smaller a ‗-‗ is 

entered, and if they were equal an ‗=‘ sign was entered.  The table was color coded according to 

the signs. This displays the asymmetry of  with respect to the correlations between the reference 

and between the tests. For example note the signs of  0.8-0.9 combination, although the 

correlations are both large, and they are close in value, the sign comparing an   to 0  is the 

reverse of the 0.9-0.8 combination. These results agree with Figure 17 and Figure 18 and 

emphasize the importance of investigating how to define BE in terms of the correlation, and the 

need for regulatory guidelines. 

. 
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APPENDIX K: Effect of Reference and Test Correlations on   

Figure 17: Effect of R  and T on the rule   
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Figure 18: Effect of R  and T on the rule   

 

 

. 
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APPENDIX L: Direct Product AR(1) Covariance Structure  

 

. Due to the limited software ability to choose the covariance structure of Bivariate Mixed 

model in SAS, we selected the Direct product AR(1) structure, which is: 

Direct Product AR(1):  UN@AR(1) 
 

2 3 4 5

2 3 4

2 2 31 21

2 221 2

2 5 2 5
1 1 21 21

5 2 2 5
1 1 21 21

5 2 5
21 21 2 21

5 5 2 2
21 21 2 2

1

1

1

1

1

1

    

   

    

   



     

     

      

     

 
 
 
  
  
  

   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

This structure assumes a constant correlation between any two measures taken at consecutive 

periods. 
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APPENDIX M: calculated  ‗s for the three MV PBE criteria 

rhoR rhoT theta Chervo_theta _theta1 _theta2 KLD_theta 

-0.2 -0.2 4.11207 1.74483 1.74483 1.74483 2.76005 

0.0 -0.2 3.48965 1.74483 1.74483 1.74483 2.47663 

0.2 -0.2 3.32471 1.74483 1.74483 1.74483 2.42193 

0.4 -0.2 3.63547 1.74483 1.74483 1.74483 2.60509 

0.6 -0.2 4.80603 1.74483 1.74483 1.74483 3.21815 

0.8 -0.2 9.04981 1.74483 1.74483 1.74483 5.36781 

-0.2 0.0 4.23707 1.74483 1.74483 1.74483 2.61508 

0.0 0.0 3.48965 1.74483 1.74483 1.74483 2.24138 

0.2 0.0 3.19971 1.74483 1.74483 1.74483 2.09641 

0.4 0.0 3.34975 1.74483 1.74483 1.74483 2.17143 

0.6 0.0 4.24353 1.74483 1.74483 1.74483 2.61832 

0.8 0.0 7.71647 1.74483 1.74483 1.74483 4.35479 

-0.2 0.2 4.36207 1.74483 1.74483 1.74483 2.59482 

0.0 0.2 3.48965 1.74483 1.74483 1.74483 2.13084 

0.2 0.2 3.07471 1.74483 1.74483 1.74483 1.89559 

0.4 0.2 3.06404 1.74483 1.74483 1.74483 1.86248 

0.6 0.2 3.68103 1.74483 1.74483 1.74483 2.14320 

0.8 0.2 6.38314 1.74483 1.74483 1.74483 3.46647 

-0.2 0.4 4.48707 1.74483 1.74483 1.74483 2.69345 

0.0 0.4 3.48965 1.74483 1.74483 1.74483 2.13125 

0.2 0.4 2.94971 1.74483 1.74483 1.74483 1.79779 

0.4 0.4 2.77832 1.74483 1.74483 1.74483 1.64860 

0.6 0.4 3.11853 1.74483 1.74483 1.74483 1.75522 

0.8 0.4 5.04981 1.74483 1.74483 1.74483 2.65736 

-0.2 0.6 4.61207 1.74483 1.74483 1.74483 2.99138 

0.0 0.6 3.48965 1.74483 1.74483 1.74483 2.30517 

0.2 0.6 2.82471 1.74483 1.74483 1.74483 1.84770 

0.4 0.6 2.49261 1.74483 1.74483 1.74483 1.55665 



 

184 

 

rhoR rhoT theta Chervo_theta _theta1 _theta2 KLD_theta 

0.6 0.6 2.55603 1.74483 1.74483 1.74483 1.46336 

0.8 0.6 3.71647 1.74483 1.74483 1.74483 1.91858 

-0.2 0.8 4.73707 1.74483 1.74483 1.74483 3.97773 

0.0 0.8 3.48965 1.74483 1.74483 1.74483 3.05772 

0.2 0.8 2.69971 1.74483 1.74483 1.74483 2.36646 

0.4 0.8 2.20689 1.74483 1.74483 1.74483 1.82375 

0.6 0.8 1.99353 1.74483 1.74483 1.74483 1.42078 

0.8 0.8 2.38314 1.74483 1.74483 1.74483 1.31928 

 

Figure 19 The upper limit of each of PBE criteria as a function of the correlation 
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