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5-HT3 RECEPTOR LIGANDS AND THEIR EFFECT ON PSYCHOMOTOR 

STIMULANTS 

By Jessica Nicole Worsham, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
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Major Director:  Malgorzata Dukat Ph.D. 
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Co-Director:  Richard A. Glennon Ph.D. 
Professor, Chairman, Department of Medicinal Chemistry 

 
 

 Drug abuse and addiction are considered to be a result, at least in part, of the 

rewarding effects produced by increasing dopamine levels.  5-HT3 serotonin receptors have 

been shown to indirectly affect dopamine levels. Therefore, the effect of the 5-HT3 

receptor partial agonist, MD-354, on the actions of psychomotor stimulants was analyzed 

in mouse locomotor activity assays to determine whether MD-354 is working through a 5-

HT3 receptor agonist or antagonist mode of action. Studies with (+)amphetamine and 



xxii 

(+)methamphetamine in combination with MD-354 indicated MD-354 is either devoid of 

action or is behaving similar to the 5-HT3 receptor antagonist, ondansetron.  This effect 

could be occurring centrally; however peripheral effects can not be discounted.   In 

combination with cocaine, MD-354 behaved similar to the 5-HT3 receptor agonist, SR 

57227A, known to act both centrally and peripherally.  This difference between central and 

peripheral effects could account for the different modes of action observed with MD-354.  

  Studies also involved synthesis of potentially brain-penetrant carbamate analogs of 

MD-354, and QSAR to assist in validating a 5-HT3 receptor agonist pharmacophore. 

 



 1 

 
 
 
 

I.  Introduction 

 

 Drug abuse and addiction are growing problems in today’s society, where 

prevention is the only real treatment.  There are various drugs available, both prescription 

drugs and illegal drugs, that are abused due to their positive (i.e., rewarding) effects.  

Some common effects that lead to abuse include feelings of euphoria and stress relief.1 

However, repetitive use, tolerance, and dependence (whether psychic or physical) lead to 

abuse, addiction, and the unfortunate withdrawal that follows when an addict no longer 

has access to the drug of abuse.   

 Some of the most commonly abused psychomotor stimulants on the market are 

the Schedule II drugs amphetamine, usually in the form of prescription medications, 

methamphetamine, which is more commonly found on the street in an impure form, or in 

prescription medications, and cocaine, most commonly a street drug.  All three drugs 

have been shown to have an effect on the monoamines dopamine (involved with 

cognition, memory, and reward), norepinephrine (involved with memory, mood, and 

arousal), and serotonin (involved with mood, appetite, anxiety, reward, and aggression).2 

 DOM is a phenylalkylamine hallucinogen that produces euphoric and stimulant 

effects at low doses, but more hallucinogenic effects at higher doses.3 DOM is 

structurally similar to amphetamine and could possibly behave in a similar manner even 

though it is not classified as a psychomotor stimulant. 
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The phenylalkylamine psychomotor stimulant amphetamine, and its more potent analog 

methamphetamine, increase synaptic dopamine levels through several different methods: 

blocking dopamine reuptake and releasing dopamine from vesicles in the presynaptic 

terminal.4,5  Cocaine, a non-phenylalkylamine stimulant, works by blocking reuptake of 

dopamine into the presynaptic terminal.2 The positive reinforcing effects of cocaine are 

due to increased synaptic dopamine levels, known as the “dopamine hypothesis”.6  The 

positive subjective effects, such as the “high” observed with stimulants could be due to 

differences in levels of norepinephrine, known as the “noradrenergic hypothesis”.7 

 Serotonin has also been shown to play a role in the rewarding effect of 

psychomotor stimulants.  Although there are numerous 5-HT receptor populations and 

subpopulations, the receptor population of interest when describing drugs of abuse is the 

5-HT3 receptor.  Of the seven 5-HT receptor families, 5-HT3 receptors are the only 

serotonin receptor population that is a ligand-gated ion channel (LGIC) receptor as 

opposed to the others that are G-protein coupled receptors (GPCR).8  Activation of 

serotonin systems, more commonly 5-HT3 receptor systems, have been shown to 

modulate dopamine release.  Grant reviewed that 5-HT3 receptor agonists may indirectly 

increase dopamine levels whereas 5-HT3 receptor antagonists indirectly decrease 

dopamine levels.9  This could be due, in part, to the location of serotonin receptors in 

different regions of the brain relative to dopamine receptors, more specifically location in 

the mesolimbic dopaminergic pathway.9  Further support from Tecott et al.  indicated that 

GABAergic input on dopamine neurons due to the quantity and distribution of 5-HT3 

receptors in the CNS could account for the indirect effects on dopamine levels.10 
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 MD-354 is a unique 5-HT3 receptor partial agonist, as it can behave as either an 

agonist or an antagonist, that binds at 5-HT3 receptors with relatively high affinity (Ki = 

35 nM).11 When administered alone, MD-354 does not produce a locomotor stimulant 

effect, or might not penetrate the BBB; the latter is a possibility due to its low Log P 

value of -0.64.12,13 

 The effects of psychomotor stimulants can be evaluated through locomotor 

activity assays.  Although locomotor activity assays can analyze various parameters, 

some of the more common parameters involved in locomotor stimulation include 

increases in movement distance and movement time, and decreased movement episodes.    

 Since MD-354 is a 5-HT3 receptor partial agonist, and 5-HT3 receptors have been 

shown to affect dopamine levels, MD-354 may either potentiate or antagonize the effect 

of psychomotor stimulants in locomotor activity assays.  However, it is possible that MD-

354 may have no effect on the psychomotor stimulants because it might not readily 

penetrate the BBB. 

 The purpose of this study is to determine the effect that MD-354 might have on 

the psychomotor stimulants, and to characterize this effect as working through either a 5-

HT3 receptor agonist or 5-HT3 receptor antagonist mode of action.  Also, since MD-354 

may or may not cross the BBB, more lipophilic prodrugs will be synthesized and tested in 

locomotor activity assays to determine the effect.  QSAR studies will be conducted on a 

set of arylguanidine and arylbiguanide 5-HT3 receptor agonists and partial agonists in 

order to improve Dukat’s current working 5-HT3 receptor pharmacophore model.14  

Conformationally-constrained analogs will be incorporated into the model to account for 
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rotameric binding and CoMFA studies will be conducted to predict the binding affinities 

of novel arylguanidine derivatives. 
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II. Background 

 

A.  Drug Abuse/Drug Addiction 

 Drug abuse has social, medical, economic, and criminal impacts costing 

Americans millions of dollars per year, making treatment pertinent.  The term “drug 

abuse” is very vague, as its definition is based on social perceptions.  Some of the more 

common definitions for drug abuse entail any use of an illegal substance, use of legal 

substances in excessive amounts, or even use of legal substances regardless of the 

amount.1 A drug’s positive effects such as euphoric feelings, stress relief, and 

improvement of performance, are key factors in why drugs readily become abused.1 

Tolerance occurs when the rewarding effects are no longer achieved by the initial dose; 

therefore a higher dose is necessary to achieve an earlier effect.  Drug abuse and 

tolerance can lead to addiction and psychic dependence (i.e., continuous administration is 

necessary to achieve a euphoric feeling, regardless of the harmful consequences).1 This is 

not to be confused with physical dependence, which involves a physiological reaction, 

such as withdrawal symptoms, to the absence of the drug.1 Withdrawal symptoms are 

negative physical symptoms such as irritability, anxiety, fatigue, and even nausea.1 Drug 

addiction and dependence are not synonymous, because not all addicts are dependent 

upon the drug. 1     
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 The extent to which a drug has pharmacological properties that are able to predict 

a drug’s likelihood of abuse and dependence is termed “abuse liability”.15  If a drug is 

determined to have abuse potential, it can then be regulated under the Controlled 

Substances Act (CSA) as a scheduled drug.  This legislation was created in 1970, as a 

reorganization of government agencies, to regulate these drugs.  Schedule I drugs have a 

high potential for abuse, with no accepted medical use or safety for use.  Substances in 

Schedule II – V have medical use, with differences in abuse potential.16  Schedule II 

drugs have high abuse potential resulting in high psychological and/or physical 

dependence, whereas substances in Schedules III-V have lower abuse potential, as well as 

moderate to low physical or psychological dependence.16 Some countries and agencies 

further divide controlled substances into a sixth schedule that can be broken into three 

parts: Part 1 includes Class A precursors, Part 2 includes Class B precursors, and Part 3 

contains any preparation or mixture set out in Part 1 or Part 2.17  Some examples of 

Schedule VI Part 1 substances include acetic anhydride, lysergic acid, piperonal, and 

potassium permanganate.17 Part 2 substances include acetone, ethyl ether, hydrochloric 

acid, sulfuric acid, and toluene.17 

 In addition to the abuse of legal substances such as alcohol and nicotine, and the 

abuse of prescription drugs, some of the most widely abused substances include opioids, 

stimulants, hallucinogens, and related designer drugs.18 Even though abused drugs are 

easily classified on the basis of abuse potential, they might act by different mechanisms.  

By understanding the mechanisms of action of each drug, it might be easier to find 

effective treatments for drug abuse and addiction and, possibly, drug abuse prevention.   
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B.  Classification 

 1.  Opioids 

 The use and abuse of opium was reported as far back as 200 B.C.; opium is a 

substance occurring naturally from poppy seeds of Papaver somniferum.19  Opioids can 

be defined as opium alkaloids, their synthetic derivatives, and peptides with morphine-

like pharmacological effects that are antagonized by an opioid antagonist.19  These agents 

are thought to work through one or more of three major opioid receptors: mu (μ), kappa 

(κ), and delta (δ), to help with postoperative analgesia, myocardial infarction, trauma, 

burns, and orthopedic pain.20  Most opioids, such as morphine, the principle alkaloid of 

opium, codeine, hydrocodone, and oxycodone, are Schedule II drugs that help with 

moderate to severe pain, and that have abuse and addiction potential.21  Opioids are 

commonly abused due to their euphoric, analgesic, and sedative effects.20  However, an 

opioid overdose can lead to respiratory failure.20  Heroin, an acetylated form of morphine, 

is currently a Schedule I drug that is highly addictive.21  However, once heroin is no 

longer available to a heroin addict, intense withdrawal symptoms occur, such as nausea, 

vomiting, diarrhea, anxiety, and depression.20  Currently there are two drug replacement 

therapies for heroin addicts: methadone and buprenorphine.20,22   

 With most other drugs of abuse, prevention is the only treatment for addiction, as 

no other medications are available.  Because “replacement therapy” is available here, and 

because replacement therapy might be possible for other types of drug abuse, drug 

replacement therapy and drug abuse treatment are a major area of interest to help treat 

drug addiction. 
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2.  Stimulants 

  a)  Analeptics 

 Psychostimulants are drugs that have a direct neurological effect such as 

increased alertness and energy, appetite suppression, and euphoria.23 There are two main 

categories of stimulants: analeptics and behavioral stimulants.  Analeptic stimulants are 

not as readily abused as behavioral stimulants; analeptics work primarily on autonomic 

centers generally affecting respiration and circulation.18  Some examples of analeptics 

include strychnine and caffeine.  Strychnine is considered an analeptic stimulant because 

it increases respiration and blood pressure, but is a convulsant that can be lethal at high 

doses.24  Sometimes, “street drugs” such as cocaine and (+)lysergic acid diethylamide 

(LSD) are “laced” with small amounts of strychnine for respiratory stimulation.24  

Caffeine, a xanthine, is considered the most widely used psychoactive drug in the world 

because it reduces drowsiness and fatigue while increasing heart rate and blood pressure.1 

It is found in tea from Thea sinensis (and other species), and in coffee from Coffea 

Arabica (and other species).25  Interestingly, although craving is observed regardless of 

its lack of euphoric effects upon withdrawal of the caffeinated beverage, caffeine is not 

considered addicting.1 
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  b)  Behavioral Stimulants 

   i. Non-Phenylalkylamines 

 Behavioral stimulants have more of a central stimulatory effect than analeptics, 

resulting in changes in motor activity. The class of behavioral stimulants can further be 

divided into non-phenylalkylamine and phenylalkylamine (PAA) stimulants.  The most 

common non-phenylalkylamine stimulant is cocaine, a psychotropic drug used for the 

past 2000 years with 25.6% of 26-34 year olds using cocaine at least once in their 

lifetime;26 about five million people, just in the United States, use cocaine each year.27 

Cocaine, a naturally occurring drug, is found as a constituent of the Erythoxylon coca 

species of plants in South America.18  In the 1860’s, cocaine was used in several different 

tonics, which gave them “magic properties”.26  It was even found as the main stimulant in 

Coca Cola.18  In the late 1800’s cocaine served medical purposes such as treatment for 

morphine addiction and as a topical anesthetic in ophthalmology.26  Due to its stimulant 

properties, as well as the fact that it alleviated hunger, and allowed people to forget 

reality, it became a highly abused drug, eventually labeled as a Schedule II substance.26  

Cocaine has many different street names, such as “blow”, “crack”, “rock”, and “coke”, 

along with different forms: hydrochloride salt and free base.  Cocaine, a positive 

reinforcer, has a high abuse potential due to its rapid onset of action with “rush” central 

stimulatory effects including intense euphoria, psychic energy, heightened sexual 

excitement, and increased self-confidence.26,28,29  However, cocaine abusers  can also 

experience paranoia, hallucinations, and dysphoria, during their subsequent “crash”, with 

toxic concentrations potentially leading to fatal cardiac arrhythmias.26  
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 Cocaine works through dopamine (DA), norepinephrine (NE), and serotonin (5-

HT) mechanisms, with its stimulant effect mainly a result of the dopaminergic 

mechanism.  Dopamine nerve terminals contain a dopamine transporter (DAT), located 

perisynaptically, which terminates the actions of dopamine by a transport mechanism.2 

Cocaine works by blocking the DAT, preventing reuptake of dopamine into the 

presynaptic nerve terminal.2 This increases extracellular dopamine levels, producing a 

heightened state of euphoria.2  It is important to note that although cocaine blocks the 

dopamine transporter, it itself is not transported into the nerve terminal.2 

 Cocaine’s reinforcing effects are due to its ability to bind to the dopamine 

transporter and block reuptake of dopamine into the presynaptic terminal.6  The better 

able an agent to bind to the dopamine transporter, the greater the blockade, allowing more 

dopamine in the synapse, which accounts for the euphoric effect.  Structure-activity 

studies show that there are some key aspects to the structure of cocaine that can enhance 

or decrease its activity.  By simply switching the configuration of cocaine from R to S, by 

switching the carbomethoxy group from the C-2 position to the C-4 position, the activity 

of cocaine decreases more than 100-fold (1; Figure 1).30  The presence of the 

carbomethoxy group at the 2-position is optimal for cocaine-like activity.30  Removal of 

this group or replacement with most other substituents decreases activity, with one 

exception; different ester groups can replace the carbomethoxy substituent with only 

small alterations in activity.30 Also, at this position stereochemistry is important: 

epimerization from β to α substantially decreases activity.30  Similar decreases in activity 

are observed with the same epimerization at the C-3 position.30  Changes at the nitrogen 
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position can have varying effects.  For example, changing the length of the substituent 

chain has little to no effect on activity, whereas changing the functional group such as 

from an amine to an amide or even conversion from a tertiary amine to a quaternary 

amine significantly reduces activity.30  Interestingly, it was observed that the nitrogen 

atom can be moved from the 8-position to the 6- or 7-position without decreasing binding 

affinity to the dopamine transporter.30  These, as well as other, structural changes allow 

for a better understanding of the binding profile of cocaine.   
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Figure 1.  Structure of cocaine (1) labeled for discussion of structure-activity relationship 

studies. 
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ii.  Phenylalkylamines  

 Several different drugs make up the stimulant class of phenylalkylamines: agents 

that contain a phenyl group, an alkyl chain, and an amine.18  The most widely recognized 

stimulant is amphetamine (2; Figure 2), a central stimulant, anorectic, and 

sympathomimetic agent.18  Sympathomimetic drugs are drugs that mimic the actions of 

endogenous neurotransmitters stimulating the sympathetic nervous system.24  Of the 

stimulant phenylalkylamines, amphetamine is considered the prototypical drug, with 

others referred to as “amphetamine-like” or “amphetaminergic”.18  Unlike many drugs of 

abuse, amphetamine is not naturally occurring.  It was first synthesized in 187724 as an 

optical isomer; (+)amphetamine is the more potent of the two isomers.31  In 1930, 

amphetamine began to be used therapeutically in the treatment of narcolepsy and 

depression.24  However, its positive effects of mood elevation, euphoria, alleviation of 

fatigue, and improving task performance, resulted in abuse.24  Finally, in 1970 the Drug 

Enforcement Administration (DEA) labeled amphetamine as a Schedule II drug.21   
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Figure 2.  Structures of amphetamine and some important derivatives.                       
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Currently, amphetamines, such as Dexedrine®, Ferndex®, and Oxydess II® are 

used to treat narcolepsy, attention deficit hyperactivity disorder (ADHD), and obesity.24  

Both with prescribed and illicit amphetamines, toxic levels can create “amphetamine 

psychosis”, aggression, delusions, arrhythmias, and convulsions.32 “Amphetamine 

psychosis” is a paranoid-hallucinatory psychosis in a setting of clear consciousness in 

which formal aspects of thought are relatively intact, but in which delusions evoke 

intense fear.32 Sometimes, patients with amphetamine psychosis are misdiagnosed as 

having schizophrenia, a disease for which the symptoms are indistinguishable.23 

Amphetamine withdrawal can result in a  dysphoric state resulting in anhedonia, 

depression, anxiety, and social inhibition.33,34  Therefore, some attempts have been made 

to treat amphetamine addicts with antidepressants such as mirtazapine, fluoxetine, and 

imipramine.35,36  Amphetamine abuse poses a severe problem as there currently is no 

effective treatment on the market for addicts, whose withdrawal symptoms could be 

detrimental. 

 Methamphetamine (3; Figure 2), a derivative of amphetamine with a methylated 

amine, is a more popular street drug than amphetamine, as it generally has the same type 

of effects as amphetamine, but with a higher potency.18  Methamphetamine’s popularity 

is due to its ease of synthesis, with over 50% of clandestine labs seized in 1981 being 

“meth” labs.24  Methamphetamine synthesis is so easy it can be made in the trunk of a car 

using the “special ingredients” and two-liter bottles.37 Methamphetamine can be 

synthesized by numerous routes, the most common using (-)-ephedrine or (+)-

pseudoephedrine, ingredients in over-the-counter decongestants and bronchodilators.24  
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For this reason, over-the-counter medications with these ingredients have recently been 

under strict control.  The therapeutic forms of methamphetamine are Desoxyn®, Adipex®, 

and Methedrine® which are used for ADHD and obesity.2,24  However, street versions of 

methamphetamine include “meth”, “speed”, “crank”, “go”, “crystal”, and “ice”, all of 

which are hydrochloride salts for greater bioavailability.24 Methamphetamine is a 

Schedule II drug.21 Like amphetamine, methamphetamine use causes euphoria, increased 

alertness, self-confidence, and suppresses fatigue.38 However, withdrawal from 

methamphetamine use also causes a depressive state, with 49.4% of arrested “meth” 

addicts stating they had thoughts of suicide.39  As with amphetamine, treatment for 

methamphetamine addicts is also elusive. 

 Stimulatory effects of phenylalkylamines mainly result from their effect on 

dopamine levels, primarily D1 receptors.40  Amphetamine, and amphetamine-like 

phenylalkylamines that have a stimulant effect, such as methamphetamine, work by 

increasing the release of dopamine by affecting vesicular monoamine transporter-2 

(VMAT-2), preventing reuptake of dopamine into presynaptic terminals, and affecting 

monoamine oxidase isozymes MAO-A and MAO-B.4,5  This increase of dopamine levels 

causes central stimulant actions.  Also, the activity of dopamine receptors can be 

modulated by NE and 5-HT.40  Some of the non-stimulant phenylalkylamines do not 

readily effect dopamine, but have a greater effect on 5-HT levels.41  The different effects 

of phenylalkylamine stimulants on DA, NE, and 5-HT can be largely attributed to minor 

structural changes. 
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 It is observed that small modifications to the structure of amphetamine, the 

prototypical phenylalkylamine stimulant, can cause vast changes in the activity, potency, 

effects, and even mechanism of action, of the drug.  When analyzing structure-activity 

relationships of phenylalkylamine stimulants, there are five key points to be considered: 

terminal amine, chiral center, α-methyl group, β-position, and aromatic substitution.  

With the amine group, it is observed that primary amines are more potent than secondary 

amines (with the exception of methamphetamine), which are more potent than tertiary 

amines.18  Length of the amine substituent has an effect on secondary amines, with a 

decrease in activity as the length of the substituent is increased.18  There is a limit of bulk 

tolerance as larger substituents usually result in agents having little to no stimulant 

character.18   

 The α–methyl group seems pertinent for effect as demethylation to 

phenylethylamine results in loss of stimulant activity.18  Also, homologation to larger, 

bulkier substituents decreases stimulant effect.18  The presence of an α-methyl group 

creates a chiral center; the S(+) isomer is more potent than the R(-) isomer.18  Changes at 

the β-position have varying effects.  Hydroxylation of the β-carbon to norephedrine and 

norpseudoephedrine decreases stimulant actions.18  Ephedrine and pseudoephedrine (4; 

Figure 2) are β-oxidized analogs of methamphetamine.18  The abuse potential of 

ephedrine and pseudoephedrine is low but dependence can occur.25  Some side effects of 

these drugs include anxiety, headache, tachyarrhythmia, and hypertensive crisis.25 

 However, oxidation of norephedrine to cathinone results in an agent that retains 

equal to or greater potency as compared to amphetamine.18,42   Cathinone (5; Figure 2) is 



17 
a constituent of Catha edulis, the “Khat” shrub which is predominantly found in East 

Africa.25  Its stimulant effects are similar to that of amphetamine, including euphoria, 

excessive talkativeness, focus, excitement, elimination of hunger, and insomnia, with a 

high chance of tolerance occurring.41,43  The toxic effects of cathinone are limited, but 

include aggressive behavior, hallucinatory psychosis, and fatal hyperthermina.25  The N-

monomethyl analog of cathinone, methcathinone (6; Figure 2), a name originally coined 

in the Glennon laboratories,44 is a designer drug synthesized from ephedrine, linking it to 

its common name ephedrone.25 S(-)Methcathinone, which is found more often in the 

clandestine market than the R(+)-isomer or the racemic mixture is referred to as “CAT”.45  

As cathinone’s effects are similar to those of amphetamine, methcathinone is equally 

similar to methamphetamine.25 

 Lastly is manipulation of the ring by adding substituents.  For the most part, 

adding substituents to the ring decreases and may even abolish amphetamine-like 

stimulant action as seen with p-chloroamphetamine (PCA) and fenfluramine (7 and 8, 

respectively; Figure 2).18  PCA depletes serotonin levels in the brain, and produces a 

neurotoxic effect.46  Instead of the euphoric effect caused by amphetaminergic agents, 

PCA causes aggression, anxiety, and panic disorders.46  (±)Fenfluramine, marketed as 

Pondimin®, and its more potent stereoisomer (+)fenfluramine (Redux®), are non-

amphetaminergic phenylalkylamine derivatives once used clinically for appetite 

suppression.41  However, due to the side effects of cardiovalvulopathy, as well as primary 

pulmonary hypertension, these two drugs were withdrawn from the market in 1997.41  

Like PCA, fenfluramine also depletes serotonin levels in the brain.46  However, this 
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decrease is selective and may account for the development of tolerance to fenfluramine.  

Some, negative effects of fenfluramine include depression and aggravated psychosis.46     

 One of the key designer drugs on the market is N-methyl-1-(3,4-

methylenedioxyphenyl)-2-aminopropane, more commonly referred to as MDMA.18 

MDMA (9; Figure 2) was first synthesized in 1914 as an appetite suppressant and for 

psychotherapy to facilitate communication, but never had legal therapeutic use.24,25  

MDMA is an empathogen, in so much as it increases sociability, empathy, and feelings of 

well being.24 Also, there are readily observed physical reactions, such as trismus (jaw 

clenching) and bruxism (teeth grinding), which account for “ravers” usually chewing 

gum or sucking on a pacifier.47 Overdoses can cause panic, paranoia, psychosis and 

delirium with toxic (fatal) effects including convulsions, hyperthermia, behavioral 

changes, and acute renal failure.24  There are several street names for MDMA, including 

“Ecstasy”, “XTC”, “M&M”, “Zen”, and “Adam”.18,24  Its lack of therapeutic use resulted 

in its placement in Schedule I.21  The demethylated form of MDMA is 1-(3,4-

methylenedioxyphenyl)-2-aminopropane (MDA), which has both hallucinogenic and 

stimulant character based on optical isomers.18  Other structural changes of the 

phenylalkylamines result in hallucinogenic agents. 
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3.  Non-stimulant Phenylalkylamines 

 Hallucinogens, upon administration of a single effective dose, consistently 

produce changes in thought, mood, and perception with little memory impairment, 

produce little stupor, narcosis, or excessive stimulation, produce minimal autonomic side 

effects, and are non-addicting.48  The classical hallucinogens are hallucinogens that bind 

at 5-HT2 serotonin receptors (5-HT2 hypothesis of hallucinogen action)18 and are 

recognized by animals trained to discriminate 1-(2,5-dimethoxy-4-methylphenyl)-2-

aminopropane (DOM) (10; Figure 3) from vehicle.31,49  The family of 5-HT2 receptors 

can be further divided into 5-HT2A, 5-HT2B, and 5-HT2C receptors with evidence that 5-

HT2A receptors play the major role in the hallucinogenic action.50 The classical 

hallucinogens can further be divided into several other classes:  lysergic acid derivatives 

(e.g. LSD), phenylethylamines (e.g. mescaline), indolealkylamines (e.g. DMT), and other 

indolic derivatives (β-carbolines).18   The main focus of the present study is on 

phenylalkylamines, which includes both phenylisopropylamines and 

phenylethylamines.18   

 Mescaline (11; Figure 3), one of the most commonly known phenylethylamines, 

is naturally occurring from cactus, usually peyote (Lophophora williamsii).51  Onset of 

action usually has some negative effects such as nausea, vomiting, and diarrhea, but once 

subsided, visual hallucinations and perceptual distortions occur.51  Some side effects 

include emotional instability and anxiety, with toxic effects of bradycardia, hypotension, 

and respiratory depression: death is a rare result of toxicity.51 There is no therapeutic use 

for mescaline, it is currently classified as a Schedule I drug.18   
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Figure 3. Structures of common phenylalkylamine hallucinogens.  

 

 DOM (10; Figure 3), 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane is a 

phenylisopropylamine used as the prototypical hallucinogen in drug discrimination 

studies.18  The R(-)-isomer of DOM is more potent than the S(+)-isomer or the racemic 

mixture.52 At low doses, DOM increases self-awareness, while producing feelings of 

anxiety, euphoria, and dysphoria, without producing a hallucinogenic effect.3 However, 

at higher doses, DOM produces hallucinogenic effect similar to LSD and mescaline;3 

DOM is >80 times more potent than mescaline.53  One of the original street names for 

DOM was “STP”.3 DOM has proven to be more hazardous than LSD, as it has a longer 

onset of action.  Therefore, impatient people could take multiple doses of DOM causing 

an overdose and even hospitalization.54  DOM is believed to work as an agonist at central 

serotonin (5-HT) sites,55 more specifically through a 5-HT2 mechanism.56,57 

 Structural changes to DOM, the prototypical hallucinogen, cause changes in 

potency and activity.  With respect to the terminal amine of DOM, a primary amine is 

more potent than a secondary amine, and homologation of the α-methyl group decreases 

potency.18  However, opposite effects are observed at the chiral center as well as with 
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aromatic substitution, when compared with amphetamine.18  Effect of substitution at the 

β-position is highly dependent upon configuration.  Addition of a β-hydroxy group in the 

R-configuration has little effect on affinity versus DOB, however the same addition in the 

S-configuration decreases affinity by 50-fold from R(-)DOB.58  Also, addition of a β-

methoxy group has a 100-fold decrease in affinity in the S-configuration but maintains 

affinity in the R-configuration.58 Increasing the length of the 4-methyl group enhances 

potency.18  However, if this lengthening surpasses n-propyl then potency decreases.18  

Activity is maintained with substitution at the 4-position with electron-withdrawing 

groups such as bromine or iodine (i.e., DOB or DOI respectively).18 The R(-)isomer has 

been shown to be more active than the S(+)isomer which in some cases has zero 

activity.18  Also, reduction in activity and potency can be observed through N-

monomethylation.18  This comparison between amphetamine and DOM is summarized in 

Table 1. 
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Table 1.  Comparative structure-activity relationships of amphetamine-like stimulants vs. 

DOM-like hallucinogens.18 
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The behavioral actions of arylalkylamines, in this case phenylalkylamines, can 

fall into one of three categories: classical hallucinogen (H), central stimulant (S), and 

PMMA-like (P) (Figure 4).18,59,60 Each category contains a prototypical drug used to 

characterize other drugs in drug discrimination studies: DOM represents the 

hallucinogens, (+)amphetamine represents the stimulants, and PMMA, N-methyl-1-(4-

methoxyphenyl)-2-aminopropane, represents PMMA-like actions.18,59,60  Most 

phenylalkylamine drugs of abuse fall into one of these three categories, or behave similar 

to more than one category.  For example, MDMA would fall under intersect 2 as it 

produces both amphetamine-like and PMMA-like activity.18,59,60  R(-)MDA has both 

hallucinogenic-like activity as well as PMMA-like activity, placing it in intersect 3.  

However the (±)MDA, produces amphetaminergic, hallucinogenic, and PMMA-like 

activity, placing it in the center.18,59,60   It is important to note that through this 

classification, there should be three different mechanisms of action as well as three 

separate structure-activity relationships. 

 

Figure 4.  A modified Venn diagram of behavioral effects of arylalkylamines.59,60 
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C.  Mechanism of Action of Stimulants 

 The behavioral pharmacology and addictive properties of the stimulants cocaine, 

amphetamine, and methamphetamine are related to the monoamines, serotonin, 

norepinephrine, and dopamine.  Serotonin is involved with mood, fear, sleep, appetite, 

anxiety, reward, and aggression.2 Serotonin is produced in the raphe nuclei of the 

brainstem and moves to the cortex, thalamus, basal ganglia, hippocampus, and 

amygdala.2 Norepinephrine is involved with arousal, attention, memory, and mood, and is 

produced in the locus coeruleus.2 It is also found in the hypothalamus, cortex, 

hippocampus, and striatal regions, along with several other parts of the brain.2  Dopamine 

is involved in many processes such as movement, cognition, memory, and reward,61 and 

plays a primary role in the reinforcing effects of cocaine, known as the dopamine 

hypothesis.  Dopamine makes up approximately 80% of the catecholamine content in the 

brain.62  All three of these neurons express transporter proteins that belong to the Na+/Cl- 

superfamily, (norepinephrine transporter, NET; dopamine transporter, DAT; and 5-HT 

transporter, SERT) which function to regulate monoaminergic activity in the brain.63,64  

Interestingly, psychostimulants affect all three transporters; cocaine binds with almost 

equal affinity to all three transporters, whereas (+)amphetamine and 

(+)methamphetamine bind with substantially higher affinity to DAT and NET than SERT 

as seen in Table 2.2  However, addictive properties of psychostimulants are due to their 

effect on dopamine.2  
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Table 2.  Stimulant drug affinities (Ki) at monoamine transporters (cocaine affinities at 

DAT and SERT are expressed as IC50 values).2 

Drug    DAT   NET   SERT 

(-)Cocaine   478 nM65  779 nM7    304 nM65 

(+)Amphetamine    34 nM7    39 nM7  3830 nM7 

(+)Methamphetamine  114 nM66    48 nM66  2137 nM66 

  

 Sometimes synonymous with addiction is withdrawal symptoms when the drug of 

abuse is no longer administered.  Rothman et al. proposed a dual deficit model of 

stimulant addiction, stating withdrawal symptoms are a result of drug-induced dopamine 

and serotonin dysfunction as seen in Figure 5.67  Dysfunction occurs when withdrawal 

from chronic stimulant use leads to a decrease in availability of dopamine and 

serotonin.67  Dopamine deficit consists of decreased synaptic dopamine, altered dopamine 

transporter function, and/or postsynaptic receptor changes resulting in anhedonia and 

psychomotor retardation.67 Serotonin deficit consists of decreased synaptic serotonin, 

decreased serotonin cell activity, and/or decreased synaptic dopamine, which results in 

depressed mood, obsessive compulsive thoughts and behaviors, and lack of impulse 

control.67 Therefore, drugs that release dopamine or serotonin should effectively treat the 

withdrawal symptoms observed with addiction (i.e., such as d-amphetamine, a dopamine 

releasing agent, in the treatment of withdrawal symptoms from cocaine abuse).67  

Rothman et al. also stated that a drug that acts as both a dopamine and serotonin releasing 

agent could treat addiction with limited abuse liablility.67 
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Figure 5. Dual-deficit model of psychostimulant addiction.67 

 

 1.  Dopamine 

 Dopamine (12; Figure 6) is a catecholamine neurotransmitter found both in the 

central and peripheral nervous system, that activates dopamine G-protein coupled 

receptors (GPCR).2 In the peripheral nervous system it modulates cardiovascular and 

renal function, gastrointestinal motility, and the endocrine system.68  In the central 

nervous system, dopamine effects cognition, emotion, locomotor activity, hunger, and 

regulation of the endocrine system.68  Dopamine is produced in the substantia nigra (SN), 

the ventral tegmental area (VTA), and the hypothalamus.2  
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Figure 6. The structures of three important monoamine neurotransmitters. 

 

 The dopamine synapse consists both of presynaptic and postsynaptic nerve 

terminals.  In the presynaptic terminal, dopamine is packaged into vesicles by VMAT-2 

for storage, release, and protection from oxidation and reactive consequences.69 When 

DA is released into the synapse it can bind to postsynaptic dopamine receptors D1, D2, 

D3, D4, and D5.68  Dopamine receptors can be divided into two groups containing the five 

different dopamine receptor subtypes.  The D1-like group consists of D1 and D5 receptors 

and is associated with stimulatory function and located postsynaptically, whereas the D2-

like group is located both pre- and postsynaptically, is associated with inhibitory 

function, and includes D2, D3, and D4 receptor subtypes.68,70,71  Agonists and/or 

antagonists can bind selectively to D1-like receptors over D2-like receptors and with 

selectivity within the D2-like group.68  However, currently no compounds can selectively 

differentiate between D1 and D5 receptors.68   

 The structure of the dopamine receptors varies slightly between each subtype, as 

some contain more amino acids than others.68 However all have a few of the same key 

elements.  For example, there is an NH2-terminal stretch containing various numbers of 
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N-glycosylation sites between subtypes that stretches between seven transmembrane 

domains and ends with the carboxy terminus.68  The carboxy terminus varies in length, 

but all contain serine, threonine, and a cysteine residue.68,71  Two cysteine residues are 

present in the second and third extracellular loop which creates a disulfide bridge, 

providing structure stability.71 As mentioned before, D1-like receptors are involved with 

stimulatory function, due to their short third intracellular loop that interacts with G-

stimulatory (Gs) proteins to stimulate cAMP production.68,71  D2-Like receptors are just 

opposite as their longer third intracellular loop interacts with G-inhibitory (Gi) proteins, 

to inhibit cAMP production.68,71 

 Activation of G-proteins affects adenylyl cyclase (AC) activity, which in turn 

affects cAMP accumulation modulating protein kinase A by phosphorylation or 

dephosphorylation (Figure 7).62  Protein kinase A is responsible for regulating the 

synthesis of cytoplasmic and nuclear proteins, the function of membrane channels, and 

sensitization or desensitization of different G-protein coupled receptors.62  Dopamine 

receptors are also involved with modulating the activity of phospholipase C, the release 

of arachidonic acid, the activity of calcium and potassium channels, the activity of Na/H 

exchangers, and Na-K ATPase.68   
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Figure 7. Activation of G-protein coupled receptors by a drug causes the dissociation of 

the αβγ complex.  The α/GTP complex then activates second messenger systems such as 

cAMP or PLC.72 

 

 The euphoric feeling resulting from stimulant use is due to an increase in 

dopamine levels that can occur through several different routes.73  The DAT and VMAT-

2 regulate dopamine in both the synapse and cytosol; psychostimulants alter the function 

of both of these types of transporters.73 Cocaine works primarily by blocking reuptake of 

dopamine into the presynaptic terminal by blocking the DAT (Figure 8).30  Amphetamine 

and methamphetamine both can block the reuptake of dopamine, like cocaine, but also 

can cross the plasma membrane by lipophilic diffusion and act directly on vesicular 
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monoamine carriers by releasing transmitters from the vesicle.63,74  Also, both 

amphetamine and methamphetamine promote efflux of transmitter (e.g. DA) by a 

transporter-mediated exchange.63   

 

 

 

Figure 8.  Schematic representation of a dopaminergic nerve terminal.  Cocaine prevents 

reuptake (“A”), whereas amphetamine and methamphetamine cause release of dopamine 

from intracellular vesicles.2,18 
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2.  Norepinephrine 

 Since repeated data support that dopamine plays a role in the reward/ 

reinforcement behavior observed in animal models,7 the next question was to determine 

the effect of norepinephrine (13; Figure 6).  Both amphetamine and methamphetamine 

increase NE concentrations by stimulation of release,75 whereas cocaine increases NE by 

blocking reuptake.76  However, blocking reuptake may not increase extracellular 

neurotransmitters as much as substrate-releasing agents, since it is nerve impulse-

dependent.7,77  Evidence shows that the release of NE may contribute to the positive 

subjective effects, such as the “high” produced by stimulants, coined the “noradrenergic 

hypothesis”.7 Since cocaine is unable to increase NE levels as much as substrate releasers 

like amphetamine, the subjective effects cannot be accounted for with this type of 

stimulant.7 

  

3.  Serotonin 

 As already discussed, central stimulants can increase synaptic levels of serotonin 

(e.g. see Table 2).  This increase in serotonin levels can activate various populations of 5-

HT receptors.  The 5-HT receptor family will be described in the next section.  Because 

emphasis of the present work is on 5-HT3 receptors (and their ligands), these receptors 

will be discussed in detail. 
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D.  Serotonin Receptors 

 1.  Classification 

 Serotonin (5-HT) (14; Figure 6), is a neurotransmitter involved in anxiety, 

aggression, depression, schizophrenia, appetite control, drug abuse, and hallucinogenic 

activity.78  Currently, there are seven families of serotonin receptors, 5-HT1-5-HT7, some 

of which are divided into subpopulations.78  These families are characterized based on 

three components: drug binding characteristics, receptor-effector coupling, and structural 

sequences for the nucleotides and amino acids.79  The majority of 5-HT receptors have 

been cloned as either human, mouse, rat, or guinea pig receptors leading to the 

generalization of their amino acid sequence homology.78 

 All of the serotonin receptors are G protein-coupled receptors except for 5-HT3 

receptors which are ligand-gated ion channel (LGIC) receptors.78  G Protein-coupled 

receptors consist of seven transmembrane (TM) spanning helices, with an extracellular 

N-terminus, an intracellular C-terminus, and loops connecting the helices;72 the 

intracellular loop between TM5 and TM6 is rather large and thought to be involved with 

second messenger system coupling.78 Serotonin receptors can be coupled to two types of 

second messenger systems: adenylyl cyclase (AC), where coupling can occur positively 

or negatively, or phospholipase C.78  All of the different subpopulations, with the 

currently accepted nomenclature, and their second messenger systems are summarized in 

Table 3. 
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Table 3.  Classification of current populations of serotonin receptors.78 

Currently Accepted Name    Second Messenger System 

5-HT1 

 5-HT1A       AC(-) 
 5-HT1B       AC(-) 
 h5-HT1D      AC(-) 
 h5-HT1B      AC(-) 

 5-HT1E       AC(-) 

 5-ht1F       AC(-) 
5-HT2 

 5-HT2A       PI 
 5-HT2B       PI 
 5-HT2C       PI 
5-HT3        Ion Channel  
5-HT4        AC(+) 
5-HT5 

 5-ht5A       ? 
 5-ht5A       ? 
5-HT6        AC(+) 
5-HT7        AC(+) 
   

 

2.  5-HT3 Receptors 

  a)  Structure and Distribution 

  5-HT3 receptors, formerly known as “M” receptors, due to inhibition of their 

response to morphine, are in the Cys-loop family of ligand–gated ion channel receptors, 

along with nicotinic acetylcholine (nACh) receptors, γ-aminobutyric acid type A 

(GABAA) receptors, and glycine receptors.8,80 LGIC receptors, of the 5-HT3-type, consist 

of five homopentameric subunits, each made of four transmembrane-spanning amino acid 

chains (M1-M4), which form a pore; the M2 chain faces the pore.78  This pore rapidly 

opens when neurotransmitter binds to the receptor,  and is permeable to sodium, 
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potassium, and calcium cations.81  M1 through M4 are connected by extracellular and 

intracellular loops, with both a carboxy and amino terminus, as seen in Figure 9.78  Ion 

selectivity and gating of the receptor is controlled by residues found between M1 and M3 

(i.e., M2).8  

 Homology-based models of the extracellular domain were previously based on the 

crystal structure of acetylcholine-binding protein (AChBP), however recent discoveries 

have identified the crystal structure of the extracellular domain of the mouse nicotinic 

acetylcholine receptor (nAChR) α1 subunit.8,82-85 These receptors are found both in the 

peripheral and central nervous system.  There currently are five different subtypes of 5-

HT3 receptors; A, B, C, D, and E, but 5-HT3A and 5-HT3B are the only two shown to form 

functional receptors.86  

Figure 9.  (A) Pore formed from five subunits, with M2 (shaded) facing the pore. (B) 

Four transmembrane-spanning amino acid chains.78  

A M1 M2 M3 M4

NH3
+

COO- 

B
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5-HT3 receptors are found in both the peripheral nervous system, on the terminals 

of sympathetic, parasympathetic, and sensory neurons, and in the central nervous 

system.9 In the central nervous system serotonin is produced in the raphe nuclei in the 

brainstem and then is able to project into the cortex, thalamus, basal ganglia, 

hippocampus, and amygdala.87  Evidence suggests that 5-HT3 receptors are presynaptic 

excitatory receptors allowing it to regulate the release of acetylcholine, dopamine, 

noradrenaline, cholecystokinin and serotonin.9  Some studies have shown that 5-HT3 

receptor antagonists attenuate cocaine and amphetamine induced locomotor effects, 

suggesting that 5-HT3 receptors modulate mesolimbic dopamine activity.9  This 

modulation however is indirectly related to the increases in mesolimbic dopamine 

induced from psychomotor stimulants alone.9  These effects are only observed with 

locomotor activity, and cannot be replicated with drug discrimination or self-

administration studies, providing little information about abuse liability.88-91  Evidence, 

however, does suggest that deficits in dopamine and serotonin neuronal function are 

observed with stimulant abuse withdrawal.92  Since studies show there’s an indirect 

correlation between 5-HT3 receptor antagonists and mesolimbic dopamine activity, as 

well as evidence supporting that increased serotonin levels decrease withdrawal 

symptoms, stimulants could be working, at least in part, through a 5-HT3  receptor 

mechanism.9    
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  b)  Function 

 5-HT3 receptors themselves, as well as 5-HT3 receptor antagonists, have a wide 

array of functions.  Activation of 5-HT3 receptors increases intracellular Ca2+, modulates 

neurotransmitter release (dopamine and norepinephrine), excites central and peripheral 

neurons, and mediates emetic and inflammatory responses.86,93  More specifically, the 

receptors are involved in dopamine and acetylcholine release, as well as control of the 

GABA-ergic system.80,94 This ability to indirectly regulate dopamine is why 5-HT3 

receptors might be involved with drug dependence.9 Not much is known about the 

function of 5-HT3 receptor agonists, although emesis may be an occurring side effect, or 

partial agonists, which seem to portray an anxiolytic profile.95  However, antagonists 

have been shown to relieve several types of ailments. Some 5-HT3 receptor antagonists 

treat chemotherapy-induced or radiation-induced vomiting, and migraines.96,97 Some are 

used in the treatment of anxiety, depression, pain, and dementia. Some 5-HT3 receptor 

antagonists may suppress withdrawal symptoms in alcoholics, as well as nicotine-, 

cocaine-, and amphetamine-addicts.94,96 Moreover, some are able to block the abuse-

related effects of drugs.9 

 

  c)  Antagonists 

 Hundreds of different 5-HT3 receptor antagonists have been discovered since the 

initial selective 5-HT3 receptor antagonist bemesetron (15; MDL 72222) was reported.78 

Bemesetron was formed by a slight structural modification to cocaine (a 5-HT-M 

receptor antagonist), by the removal of a carbomethoxy group, and addition of two 
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chlorine atoms.78  Current antagonists fall into two groups, keto compounds and 

imidazoles.  Some of the more common keto compounds include granisetron (16), 

tropisetron (17), and zacopride (18), as seen in Figure 10.78  The imidazole-containing 

compounds (Figure 11) include ondansetron (19), alosetron (20), fabesetron (21), and 

ramosetron (22).78  Granisetron (16), ondansetron (19), and tropisetron (17) are of special 

interest as they are highly selective and potent 5-HT3 receptor antagonists used in the 

treatment of emesis associated with anticancer chemotherapy.98  Several pharmacophore 

models have been reported for 5-HT3 receptor antagonists.99-104 
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Figure 10.   Keto-group-containing 5-HT3  receptor antagonists.78 
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Figure 11.  Imidazole-containing 5-HT3 receptor antagonists.78 

  

  d)  Agonists 

 Currently, there are not many known 5-HT3 receptor agonists/partial agonists, 

however the few that exist fall into one of five categories: tryptamines, arylpiperazines, 

arylbiguanides, arylguanidines, and miscellaneous agents.14  There is renewed interest in 

arylpiperazines which generally were initially considered non-selective for 5-HT3 

receptors, or could behave as 5-HT3 receptor agonists, partial agonists, or antagonists.78  

Quipazaine (23; Figure 12) binds both at 5-HT3 and 5-HT2A receptors with a Ki value of 

around 1 nM.105 However, it acts as an agonist in some assays and as an antagonist in 

others.  Structure-activity studies have shown that appropriate structural modifications 

can result in more selective 5-HT3 receptor agonists.  For example, piperazine N4-
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methylation, creating N-methylquipazine (NMQ) (24; Figure 12) enhances the selectivity 

of the compound for 5-HT3 receptors.106  Also, ring-fusion creates the partial agonist MR 

18445 (25; Figure 12).78 
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Figure 12.  A few examples of arylpiperazine 5-HT3 receptor agonists and partial 

agonists. 

 

Serotonin itself is a nonselective 5-HT3 receptor agonist that does not bind with 

high affinity (Ki= ca 500-1,000 nM).107  By methylating this structure to obtain 2-methyl-

5-HT (26; Figure 13), a partial agonist, selectivity increases while binding affinity 

remains unchanged.107  However, Glennon et al. showed that 2-methyl 5-HT (26) also 

binds to 5-HT6 receptors with high affinity.108  Structure-affinity studies identified a 

limited region of bulk tolerance at the terminal amine of serotonin for agonism at 5-HT3 

receptors.  Subsequently, studies by our laboratory showed, using brain 5-HT3 receptors, 

that N,N-dimethylated structure bufotenine (Ki= 280 nM) and the N,N,N-trimethylated 

structure 5-HTQ (27; Figure 13)  (Ki= 75 nM), bind with higher affinity and selectivity 

than serotonin.109  However, the quarternary structure of 5-HTQ (27) may prevent it from 

crossing the blood-brain barrier (BBB).109   Previous structure-activity studies had shown 
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that di- and tri-methylation of serotonin resulted in potent serotonin agonists in a superior 

cervical ganglionic cell preparation.110  Another potent and specific 5-HT3 receptor 

agonist, that does not belong to the tryptamine-derived category is 4-amino-(6-chloro-2-

pyridyl)-1piperidine hydrochloride, more commonly known as SR 57227A (28, Figure 

13), which is a potent agonist that crosses the BBB.111 
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Figure 13.  5-HT3 receptor agonists and partial agonists.109,111  

  

 Phenylbiguanide (29; Table 4) is a low affinity 5-HT3 receptor agonist (Ki~1000 

nM) that falls into the arylbiguanide classification.112  Structure-affinity studies have 

shown that introduction of a chloro group at the 2-, 3-, or 4-position results in higher 

binding affinity, with meta-chlorophenylbiguanide (mCPBG) (30) having a Ki value of 

about 17 nM (Table 4).11  Benz-fusion at the 3- and 4- positions of the phenyl ring as 

seen with the 2-naphthyl analog (i.e. 31) mimics the effect of the 3-chloro group.11,113 

Improvements in affinity from the parent phenylbiguanide were observed with di- and tri-

chloro substitution of the phenyl ring.114 By adding an electron-withdrawing nitro group, 

a five-fold increase in affinity was observed versus the phenylbiguanide.11,113  However, 
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the addition of the electron-withdrawing 3-trifluoromethyl group resulted in lower 

affinity, around the 700 nM range; similar results were observed with the addition of a 

methyl substituent to phenylbiguanide.11,113,114  The high affinity of the N-(2-

phenylethyl)guanidine analog 52 supported the idea that the biguanide moiety was not 

essential for binding.11  This led to a new series of structure-activity studies. 

 By shortening the biguanide chain, arylguanidines were created, with m-

chlorophenylguanidine (m-CPG or MD-354) (42; Table 4) as a lead compound with a 

binding affinity at 5-HT3 receptors of Ki = 35 nM.11,113  The same types of structural 

modifications were made to the arylguanidines as in the arylbiguanides, which displayed 

similar results.  For example, higher binding affinities were observed with di- and tri-

chloro substituted phenyl rings (i.e. 48-50; Table 4), and high binding affinity was 

observed upon benz-fusion as seen with the 2-napthyl analog (i.e. 43; Table 4).11,14,113 

This information supports the concept that parallel structural changes result in parallel 

shifts in affinity. Also, affinity decreased with the addition of 3-methyl or 3-

trifluromethyl substituents (i.e. 46, 47; Table 4).11 The 3-trifluromethyl substituent is 

electron-withdrawing, which is seemingly favored, however it is much bulkier than the 

chloro-substituted analogs, which may result in its lack of binding affinity when added to 

phenylguanidine.115 Lipophilic substituents are favored at the 4-position, but only up to a 

certain size, as wider lipophilic substituents decrease affinity.115   
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Table 4. Binding affinities of arylbiguanide and arylguanidine 5-HT3 receptor 

agonist/partial agonist derivatives.11,14,113-115 

HN N
H

NH

NH2

NH

R

          

HN NH2

NH

R

        

N
H

Cl

NH2

HN

       

   29-39        40-50          52 

Aryl-  Approximate         R    Aryl-   Approximate  

biguanides Ki  (nM)      guanidines  Ki  (nM) 

29  ~1,000   H      41   2,340 

30         17   3-Cl      42         35 

31         12   3,4 fused phenyl  43        25 

32         62   2-Cl      44      190 

33       200   4-Cl      45      320 

34       220   3-NO2      -----     ----- 

35       780   3-CH3      46   6,520 

36       700   3-CF3      47   5,700 

37          0.4  2,3,5-Cl     -----     ----- 

38        12   3,4-Cl      48         3.1 

39         1.8  3,5-Cl      49         5 

40         2.7  3,4,5-Cl     50         0.7 

-----  -----   3-CF3, 4-Cl     51       36 

-----  -----   -----      52       40 
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 Few pharmacophore models have been proposed for 5-HT3 receptor 

agonists/partial agonists, and none include all the different types of ligands.  Glennon et 

al. proposed a pharmacophore model for ligands containing an indole moiety, stating that 

the distance from the aromatic centroid to the terminal amine is pertinent for binding.116  

Later, Yamada et al. proposed a 3-point pharmacophore model consisting of an aromatic 

region, an adjacent nitrogen atom, and a terminal amine.117  However, a limitation to this 

model is that it only deals with 5-HT3 receptor agonist binding at gut 5-HT3 receptors.117  

Rault et al. proposed a more complex 5-point pharmacophore model using seven 

different structural classes of ligands.95 This model consisted of two hydrogen bond 

acceptors, an aromatic moiety, a hydrophobic group, and an ionizable site that 

corresponds to the terminal amine.95  However, none of these models accounts for the 

two major classes of 5-HT3 receptor agonist ligands: arylguanidines and arylbiguanides.   

  A current working pharmacophore model (Figure 14) proposed by Dukat 

accounts for binding of arylbiguanides and arylguanidines.  This model consists of N1  

 

 

 

 

 

 

Figure 14. Current working pharmacophore model for 5-HT3 receptor agonists and 

partial agonists.14 
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which is located 2.7Å from an aryl centroid (Du) (i.e. A), and a terminal amine located 

4.5-4.9Å from Du (i.e. B).14  All three guanidine nitrogen atoms are believed to be 

required, with limited substitution; the N1 position contains a steric block.14  Lastly, there 

is a region where affinity can be enhanced with substituents at the meta and para 

positions.14  However, this model might not account for rotameric binding, since meta-

substitution is preferred and two meta positions are present: the 3- and 5- position.115 

Further studies are required to resolve this problem. 

 

E.  Quantitative Structure-Activity Relationships 

 Pharmacophore models are extremely helpful in predicting the behavior of new 

molecules.  Although, they are in fact, “just a model”, information from a pharmacophore 

model can be helpful in the design of new ligands for particular receptors.  The 

correlation between the biological activities of drugs with their physiochemical properties 

is known as quantitative structure-activity relationships (QSAR), which is employed to 

create pharmacophore models.118  Methods used to describe structure-activity 

relationships include comparative molecular field analysis (CoMFA) and comparative 

molecular similarity indices analysis (CoMSIA). 

  In general, development of pharmacophore models usually separates agonists and 

antagonists, as agonists generally stabilize the active conformation of the receptor, 

whereas antagonists stabilize the inactive conformation.118 Therefore, by placing both 

agonists and antagonists into the same receptor model, the predictability of the model 

might be low due to opposing biological factors.   



45 
 In order to create a pharmacophore model using either CoMFA or CoMSIA, a 

“training set” of ligands with known biological activity is aligned within a fixed lattice.119  

This set should exemplify all types of ligand substituents equally (e.g. electron-

withdrawing groups, electron-donating groups, bulky substituents), in all possible 

substitution locations.  Once aligned, a partial least squares analysis is conducted to 

correlate the field values with biological data, usually binding affinity.118  The “fit” of the 

binding affinity values is expressed by the squared correlation coefficient, r2 which 

usually is high if the ligands  are well aligned.118   The predictability of the model is 

determined through cross-validation, and is expressed as q2.118  Predictability values of 

0.6 and above exemplify a “good model”, which can be used to predict the binding 

affinity of new receptor ligands.119  The higher the q2 value, the better the model should 

be at predicting the binding affinity of new ligands.  The quality of this model can be 

verified using a test set of compounds not included in the training set, but for which 

biological data are known.  If predicted binding affinities are similar to the actual binding 

affinities of test set compounds, then this further validates the predictability of the 

model.118 

 Other than predicting the binding affinity of new receptor ligands, QSAR models 

can assist in the design of new ligands.  This is due to the fact that CoMFA and CoMSIA 

studies provide important information about the location of favorable and unfavorable 

substituents.  For example, CoMFA studies provide information to where electrostatic 

fields are favorable or unfavorable, as well as to favorable and unfavorable steric bulk 

regions.119    Once again, this information is based solely on ligands used in the training 
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set employed to create the model. CoMSIA studies also give information about the 

electrostatic and steric regions as well as hydrophobic, H-bond donor, and H-bond 

acceptor regions that are favorable or unfavorable.120  With this information, the binding 

affinity of new compounds can be predicted, or novel ligands can be designed through 

analysis of favorable regions. 

 

F.  Behavioral Assays 

 There are several different rodent behavioral studies used to characterize 

stimulant drugs including drug discrimination, self-administration, and locomotor activity 

studies.  Stimulants can act as discriminative stimuli in a drug discrimination (DD) 

paradigm from which information can be obtained on a drug’s duration of action, time of 

onset, mechanism of action, potency, and structure-activity relationships.121  Self-

administration studies are used to determine the reinforcing efficacy of the drug.122  Since 

it is already known that behavioral stimulants have a central stimulatory effect which 

results in changes in motor activity, locomotor activity assays are used to evaluate this 

change. 

 Locomotor activity assays are conducted in square transparent chambers 

surrounded by infared photo detectors; one bank of detectors measures activity at the 

plane of the floor, whereas another is positioned centimeters above the floor to measure 

vertical activities.123  These measure the coordinates of an animal’s location, as well as 

the type of motion.123  Stimulants commonly increase motor activity such as the amount 

of movement.  Some commonly analyzed parameters induced by stimulants include 
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movement time, distance, velocity, and episodes.  Movement time is the sum of time of 

all movements in the floor plane as measured in seconds.123  For example, if mouse 

movements were analyzed for 2700s, but the animal only moved a total of 1200s, the 

latter would be considered its movement time.123  Movement distance is the sum of all 

vector coordinate changes in the floor plane, and movement episodes are total 

movements in the floor plane.123  So, if a mouse continues to walk for one minute, then 

stops, this equates to one movement episode, whereas every centimeter the mouse walked 

in that one episode is counted in movement distance.123  An average of the movement 

time and movement distance can be calculated as velocity (cm/min), which is considered 

the average speed of floor-plane coordinate-change defined movements.123  Typical 

results for stimulants include increases in movement distance and movement time, but a 

decrease in movement episodes.  These same parameters (time, distance, and episodes) 

can be applied to vertical entries, more commonly known as “rearing”, which includes 

entries in the vertical plane that activate the upper infared photo-detectors.123  

 Some stimulant parameters that give insight into anxiolytic versus anxiogenic 

activity are margin distance, margin time, center distance, center time, and center entries.  

Margin distance is the same as movement distance, but is only calculated within a 2.5-

beam-margin-of-space toward the interior walls.123  Margin time is the amount of time 

spent within this same margin of space.123  Mice that tend to stay near the margin display 

thigmotaxis, which can be related to either anxiety or agoraphobia.124,125 Center distance 

and center time are the distance, in centimeters, and time, in seconds, spent in the center 

arena.123  Center episodes include the number of times the mouse enters the center arena, 



48 
characterized by anything outside of the 2.5-beam-margin-of-space.123  The more time 

spent near the margins is characterized as an anxiogenic-like effect as the mouse is 

thought to be more fearful.123  When the opposite occurs, where the mouse spends more 

time in the center of the chamber, the animal is thought to be displaying anxiolytic-like 

character.123  

 As in most behavioral assays, the actions of a test drug (i.e., stimulant) are 

compared to the actions induced by saline.  All drug administration parameters remain 

the same such as duration of test, route of administration, pre-injection time, as well as 

habitat conditions.  When the study is complete, the results are analyzed using a one-way 

analysis of variance (ANOVA) test on the mean response of each parameter, followed by 

a post-hoc test to determine statistical significance.123  Results from many stimulant 

studies result in an inverted U-shaped function, due to the fact that locomotor activity 

increases as stimulant dose increases; however, after a certain dose, the effect either 

remains steady or decreases.126  This type of behavioral assay should provide insight into 

the effects of stimulants as well as other drugs on mouse locomotor activity. 
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III. Specific Aims 

 

 Psychomotor stimulants such as (+)amphetamine (2), (+)methamphetamine (3), 

and cocaine (1) increase dopamine levels which, in turn, can increase locomotor activity 

when administered to rodents.  However, recent studies have shown that activation of 

serotonin systems, more specifically 5-HT3 receptors, may modulate dopamine release.  

5-HT3 receptor agonists have been shown to release dopamine in the striatum and nucleus 

accumbens.127,128  5-HT3 receptor antagonists such as tropisetron (17; previously known 

as ICS 205-930), zacopride (18), and MDL 72222 (15) attenuate stimulant parameters 

when co-administered with acute treatments of cocaine in locomotor activity studies 

using rats.129  The 5-HT3 receptor antagonist ondansetron (19) was able to attenuate the 

effects of chronic treatment of cocaine and acute treatment of amphetamine on 

hyperlocomotion.130,131  Similar results were observed using mice with acute treatments 

of cocaine in combination with tropisetron (17) and zacopride (18).132  These data, as well 

as other studies, suggest that 5-HT3 receptor agonists might indirectly increase dopamine 

levels, whereas 5-HT3 receptor antagonists decrease dopamine levels, in different areas of 

the brain.9 

 MD-354 (42; Figure 15) is a 5-HT3 receptor partial agonist that binds at 5-HT3 

receptors with rather high affinity (Ki = 35 nM).11   MD-354 (42) behaves both as an 
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agonist and antagonist in different assays, with antagonist activity being more commonly 

associated with higher doses, such as in antagonizing cisplatin-induced emesis.133  

 

 

HN NH2

NH

Cl  

MD-354 (42) 

Figure 15.  Structure of the arylguanidine mCPG, more commonly known as MD-354. 

  

 One purpose of the present studies was to determine the effects of MD-354 (42) 

on the locomotor actions of psychomotor stimulants; that is, might MD-354 potentiate (or 

antagonize) the locomotor effects of (+)amphetamine?  Previous data have shown that 

MD-354, at doses of 1.0-10 mg/kg, does not produce a statistically significant difference 

on any locomotor parameter.12 When administered alone, MD-354 behaves like saline. 

But, if in combination with psychomotor stimulants it potentiates the drug’s locomotor 

effects, MD-354 might be used as a form of drug replacement therapy.  Drug replacement 

therapy consists of combination treatment to wean a patient off the abused drug by 

decreasing the dose of the drug of abuse while maintaining its positive effects due to its 

combination with another non-stimulant drug.  

 Behavioral effects of MD-354 (42), as well as of several stimulants, will be 

analyzed using a mouse locomotor activity assay.  (+)Amphetamine (2) and 
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(+)methamphetamine (3) are phenylalkylamine stimulants with similar mechanisms of 

action.  Therefore, results should be similar, except that methamphetamine is a more 

potent stimulant.  These data will be compared to those obtained with cocaine (1), a non-

phenylalkylamine stimulant with a different mechanism of action (reuptake blocker, 

cocaine, versus substrate releaser).  DOM (10) will be used as control, because it is 

structurally similar to amphetamine, but is a non-stimulant phenylalkylamine 

hallucinogen.   

   Dose response curves will be obtained for each drug to determine an effective 

dose, which is a dose that produces a statistically significant effect versus saline.  An 

effective dose will be used in combination studies with varying doses of MD-354 (42).  

The preinjection times, as well as the recording-time of the assays, will be determined 

based on each drugs’ known onset of action and duration of action determined from 

literature data.  Statistical analysis will be performed on commonly used stimulant 

parameters such as movement distance, movement time, and movement episodes, as well 

as other informative parameters (center distance, center time, center entries, margin 

distance, margin time, and vertical entries).   Potentiation of stimulant parameters (i.e., an 

increase in movement distance and movement time or a decrease in movement episodes) 

when MD-354 is administered in combination with an effective stimulant dose, would 

suggest that MD-354 (42) is working through an agonist mechanism.  However, 

attenuation of stimulant parameters would indicate an antagonist mechanism of action.    

 To further support or refute the determined mode of action of MD-354 (42), a 

combination study of (+)amphetamine (2) and the 5-HT3 receptor antagonist ondansetron 
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(19) will be performed.  Since MD-354 is a partial agonist, it may behave as 5-HT3 

receptor agonist, which should increase dopamine levels (increasing locomotor activity), 

or as a 5-HT3 receptor antagonist, which could have the opposite effect.  If the results of a 

combination study of a 5-HT3 receptor antagonist (e.g. ondansetron) with 

(+)amphetamine are similar to those obtained with MD-354 (42) in combination with 

(+)amphetamine (2), then MD-354 could be working through a 5-HT3 receptor antagonist 

mode of action.  However, if results differ from what is shown in the combination of 

MD-354 (42) with the stimulants, then MD-354 may be working through a 5-HT3 

receptor agonist mechanism.   

 This idea will further be evaluated by conducting a similar study using a 5-HT3 

receptor agonist, SR 57227A (28); a combination study of (+)amphetamine (2) and SR 

57227A will be performed.  If the results of the combination study are similar to those 

observed using (+)amphetamine in combination with MD-354 (42), then MD-354 may be 

working through a 5-HT3 receptor agonist mechanism, which should further support or 

refute the data found in the combination study of ondansetron with (+)amphetamine.   

 Since the phenylalkylamine stimulants (+)amphetamine (2) and 

methamphetamine (3) work through a different mechanism of action than the non-

phenylalkylamine stimulant cocaine (1), similar results from combination studies with 

MD-354 (42) may or may not be observed.  This could be due to differences in 

mechanism of action, instead of the overall effect of increased synaptic dopamine levels.  

The data from these studies will be compared to the combination studies of cocaine with 

MD-354 to determine if MD-354 is working through a 5-HT3 receptor agonist or 5-HT3 
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receptor antagonist mechanism of action.  This will be compared to the effects obtained 

in combination studies with amphetamine to determine if MD-354 behaves similarly with 

phenylalkylamine stimulants as with non-phenylalkylamine stimulants (which work 

through different mechanisms of action). 

 Combination studies will also be conducted using the 5-HT3 receptor agonist SR 

57227A (28) in combination with cocaine as well as the 5-HT3 receptor antagonist 

ondansetron (19) in combination with cocaine to determine if MD-354 (42) is working 

through a 5-HT3 receptor agonist or antagonist mechanism. This study will help 

determine whether MD-354 is behaving similarly in combination with cocaine as with 

(+)amphetamine.  Differences in the two studies once again could be associated with the 

different mechanisms of action of the two psychomotor stimulants. 

 Since DOM (10) is a hallucinogen instead of a stimulant, locomotor activity 

parameters such as movement distance or movement time might not increase following 

DOM administration.  However, consistent with what is known about hallucinogens,3 

DOM might increase vertical entries (“rearing”). 

 MD-354 does not produce a locomotor stimulant effect by itself.12  Either it is 

devoid of such action or MD-354 may not penetrate the BBB (i.e., it is assumed that a 

central action is responsible for locomotor stimulation).  MD-354 has a Log P value of       

-0.64 which may prevent it from crossing the blood-brain barrier.13  Compounds with low 

Log P values such as MD-354 may cross the BBB, however BBB penetration is more 

commonly observed with compounds having a Log P value between 1.5-2.5.134  

Therefore, a more lipophilic compound, the methyl carbamate analog of MD-354 (42), 
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will be synthesized and tested as a prodrug.135  Data from pharmacological assays 

suggested that the methyl carbamate analog of MD-354 acted similarly to MD-354.12  

This could be a result of insufficient lipophilicity, causing difficulty in crossing the BBB, 

or that hydrolysis to MD-354 (42) occurred before it was able to cross the BBB.135  

Therefore, another purpose of the present study is to synthesize more lipophilic 

carbamate analogs of MD-354 that might act as prodrugs of MD-354 (Figure 16).  These 

carbamate analogs include the phenyl carbamate 53, the phenyl carbamate with an 

electron-withdrawing group, 4-chlorophenyl carbamate 54, and the phenyl carbamate 

with an electron-donating group, 4-methoxyphenyl carbamate 55.  Although the Log P 

values of these three carbamates are currently unknown, because they have yet to be 

prepared, they can be predicted; using conversion ratios with the predicted Log P value of 

MD-354 versus its known Log P value (octanol/water), the predicted Log P values of the 

phenyl carbamates can be compared to MD-354.  The phenyl carbamate was predicted to 

have a Log P value of 1.62 which is greater than that of MD-354 (42) and falls within the 

range of values which usually allows an agent to cross the BBB.  Addition of the 

electron-withdrawing chloro-group to the phenyl carbamate 54 increases lipophilicity, 

with a predicted Log P value of 1.83.  The addition of the electron-donating methoxy-

group to the phenyl carbamate (i.e., 55) decreases lipophilicity slightly (Log P = 1.56) 

from the phenyl carbamate 53.  Since all three of the carbamates had predicted Log P 

values in the range of 1.5-2.5, they should all cross the BBB, as they are predicted to be 

more lipophilic than MD-354. These three carbamates should also display differences in 



55 
rates of hydrolysis based on differences in hydrolytic stability due to the addition of 

electron-donating and electron-withdrawing groups to the phenyl carbamate 53. 
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Figure 16.  Three proposed carbamate analogs of MD-354. 

 

 Once synthesized, the carbamates will be tested in rodent locomotor activity 

assays.  These carbamates should be more lipophilic than MD-354 (vide supra), should 

more readily penetrate the BBB than MD-354 because of their increased lipophilicity, 

and should be hydrolyzed to MD-354 in vivo by brain tissue esterases. Thus, if MD-354 

possesses latent stimulant properties but simply does not penetrate the BBB, then more 

lipophilic carbamates might produce locomotor stimulation. 

 In addition to the synthesis of the carbamate analogs, a conformationally 

constrained analog of MD-354 (42) will be synthesized.  Previous literature reported the 

synthesis of 2-amino-7-chloro-3,4-dihydroquinazoline (56);13 however, a review of 

available data suggested that the structure may have been misassigned and was actually 
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the 6-chloro analog (i.e., 57).  Therefore, 2-amino-6-chloro-3,4-dihydroquinazoline (57) 

will be synthesized and compared to the earlier sample for clarification of structure. 

 

   

N NH

NH2

Cl

4

5

6

7

   

N NH

NH2

Cl   

N NH

NH2

Cl  

                               56                                      57                                 58 

Figure 17. Conformationally constrained analogs of MD-354. 

 

 Once the correct structure (i.e., 56 or 57) is identified, this constrained analog as 

well as 2-amino-5-chloro-3,4-dihydroquinazoline (58)135 will be used to further develop 

and test our current working pharmacophore model for 5-HT3 receptor agonists and 

partial agonists (as shown in Figure 14).  The use of conformationally-constrained 

analogs in the working pharmacophore model is necessary to account for rotameric 

binding.  Some arylguanidine and arylbiguanide analogs contain substituents at the meta-

position.  However, it is not known at which meta position the substituents are located: 

the 3-position or the 5-position.  This is due to the fact that rotameric binding might occur 

between the N1-position of the guanidine moiety and the phenyl ring (Figure 14).  By 

examining conformationally-constrained analogs, rotameric binding can be accounted 

for, indicating at which meta-position a chloro group is more favorable for binding.     
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 A final goal of this work is to examine the quantitative structure-activity 

relationships (QSAR) for the binding of arylguanidines and arylbiguanides at 5-HT3 

receptors. As well as the conformationally-constrained analogs, about 40 other 

arylguanidine and arylbiguanide analogs will be employed as the training set.  This 

training set will be aligned and analyzed using Comparative Molecular Field Analysis 

(CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA).  Results 

will be validated using a test set of five compounds not included in the training set, but 

for which binding data are available.  These studies will attempt to identify regions 

favorable for steric, electrostatic, and hydrophobic interactions.  This information will be 

used to predict the binding affinity of five new analogs that have been synthesized in our 

laboratories, binding data for which are not yet available. 

 The overall focus of these studies is to determine the effect of MD-354 (42) on 

psychomotor stimulants, to synthesize phenyl carbamate analogs of MD-354, and 

evaluate them in the mouse locomotor activity assay in order to determine whether or not 

MD-354 penetrates the BBB and lacks stimulant effect or possesses stimulant-like 

activity but does not cross the BBB.  Another goal is to prepare a conformationally-

constrained arylguanidine and conduct QSAR studies to further develop our current 

working pharmacophore model for 5-HT3 receptor ligands.  
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IV. Results and Discussion 

A.  Behavioral Studies 

 1.  Results 

  a)  MD-354 (42)  

 Our laboratory has previously shown that, when administered alone, MD-354 (42) 

produces saline-like effects in the mouse locomotor activity assay.12  In the present 

investigation, to more thoroughly document this effect,  locomotor activity assays were 

conducted using i.p. injection doses of 1.0, 3.0, 6.0, and 10 mg/kg of MD-354 (42) with a 

30-min pre-injection time, and a 45-min recording-time, as well as a 0-min pre-injection 

time and a 1-h recording-time.  Current data are in agreement with, and extend, that in the 

literature; MD-354 (42) did not show a statistically significant difference versus saline in 

the measured stimulant parameters [e.g. movement episodes, movement time (Figure 18), 

movement distance, or vertical entries (data not shown)].   
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Figure 18.   Effect (± S.E.M.) of MD-354 (42) (30-min pre-injection time) on total 
movement episodes and total movement time with a 45-min recording-time (n = 6 
mice/treatment). 
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 Other parameters analyzed, such as margin time (Figure 19) and center time 

(Figure 19), as well as, margin distance, center distance, or center entries (data not 

shown) also lacked a statistically significant difference versus saline.  It is important to 

note that mice injected with MD-354 (42) or saline typically spent more time around the 

margin of the chamber than in the center as shown in Figure 19.  These data support the 

notion that mice normally display as much anxiogenic-like activity in the presence of 

MD-354 as they do following administration of saline alone. 
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Figure 19.  Effect (± S.E.M.) of MD-354 (42) (30-min pre-injection time) on total 
margin time and total center time with a 45-min recording-time (n = 6 mice/treatment).  
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  b)  Ondansetron (19) 

 MD-354 is a 5-HT3 receptor partial agonist that can display both agonist and 

antagonist character (vide supra).  The purpose of the current study was to determine the 

effect of MD-354 (42) on the locomotor effects of psychomotor stimulants.  To further 

characterize the function of MD-354 (42), a 5-HT3 receptor agonist and a 5-HT3 receptor 

antagonist were used in combination with psychomotor stimulants.  Comparison of the 

results from a combination of MD-354 with stimulants, to that of SR 57227A (28), a 5-

HT3 receptor agonist, and ondansetron (19), a 5-HT3 receptor antagonist, with stimulants, 

should provide insight about the function of MD-354 (42). Therefore, dose-response 

studies were conducted with ondansetron (19) and SR 57227A (28), alone, and in 

combination with the stimulants amphetamine (2) and cocaine (1).   

 The present study analyzed the locomotor activity of the 5-HT3 receptor 

antagonist ondansetron (19) at doses 0.1, 0.5, and 1.0 mg/kg.  The protocol remained the 

same, with a 30-min pre-injection time followed by a 45-min recording-time.  When 

administered alone, ondansetron (19) produced saline-like effects on stimulant 

parameters (movement episodes, movement time, movement distance, and vertical entries 

as shown in Figure 20) as well as on non-stimulant parameters (margin distance, margin 

time, center distance, center time, and center entries, as shown in Figure 21), which was 

consistent with literature data indicating that ondansetron lacks central stimulant action 

when administered via the i.p. route.136 
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Figure 20.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) on total movement episodes, total movement time, total movement distance, and 
vertical entries versus saline with a 45-min recording-time (n = 6 mice/treatment). 
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Figure 21.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) on total margin distance, total margin time, total center distance, total center time, 
and total center entries versus saline with a 45-min recording-time (n = 6 mice/treatment). 
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 c) SR 57227A (28) 

 Locomotor activity assays were conducted with various doses of the agonist SR 

57227A (28) (1.0, 3.0, and 10 mg/kg) which were injected i.p. 30 min prior to the test 

with a recording-time of 45 min.  The same parameters were analyzed as with MD-354 

(42) with similar results; SR 57227A (28) produced saline-like effects as shown in Figure 

22.  Analysis of center entries using a t-test instead of one-way ANOVA showed that SR 

57227A (28) had a statistically significant effect versus saline at a 1.0 mg/kg dose, as SR 

57227A suppressed center entries, suggesting that SR 57227A displayed anxiogenic-like 

behavior in mice (Figure 23).  Even though SR 57227A doses were not statistically 

significant versus saline for either center distance or center time, the observed effect 

occurred in a dose-responsive manner, as a 1.0 mg/kg dose of SR 57227A was indicative 

of the upward slope of a dose-response curve. 
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Figure 22. Effect (± S.E.M.) of varying doses of SR 57227A (28) (30-min pre-injection 
time) on total movement episodes, total movement time, total movement distance, and 
total vertical entries versus saline with a 45-min recording-time (n = 7 mice/treatment). 
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Figure 23. Effect (± S.E.M.) of varying doses of SR 57227A (28) (30-min pre-injection 
time) on total margin distance, total margin time, total center distance, total center time, 
and total center entries versus saline with a 45-min recording-time (n = 7 mice/treatment).   
Asterisk denotes statistical significance compared to the saline control group; *P<0.05; t-
test.    
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  d) (+)Amphetamine (2) 

   i. Dose Response 

 A locomotor activity assay was performed with varying doses of (+)amphetamine 

(2) to determine an effective dose (i.e., a dose that produces a statistically significant 

effect versus saline).  In the present investigation, (+)amphetamine doses of 0.3, 1.0, 2.0, 

3.0, and 6.0 mg/kg were injected to the mice, which were immediately placed into the 

chamber (0-min pre-injection time) with a recording-time of 45 min.  After 15 min, 

(+)amphetamine (2) doses of 3.0 and 6.0 mg/kg produced a statistically significant 

stimulant effect on movement episodes, movement time, and movement distance (Figure 

24).  Similar effects were observed for the entire duration of the experiment.   

 Upon analyzing other parameters, it was observed that (+)amphetamine (2) 

produced no statistically significant difference versus saline on vertical entries, margin 

time, center distance, center time, and center episodes (Figure 25).  However, doses of 

3.0 and 6.0 mg/kg of (+)amphetamine statistically significantly increased margin distance 

during the entire recording-time as shown in Figure 24. 

 In order to visualize the stimulant effect of an effective dose of (+)amphetamine 

(2), a picture of the actual movements made by the animals following a 3.0 mg/kg dose of 

(+)amphetamine versus saline is shown in Figure 26.  
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Figure 24. Effect (± S.E.M.) of (+)amphetamine (2) injected 0 min prior to examination 
on total movement episodes, total movement time, total movement distance, and total 
margin distance with a 45-min recording-time (n = 6-8 mice/treatment).  Asterisk denotes 
a significant difference compared to the saline control group; **P<0.01, ***P<0.001; 
one-way ANOVA (F5,43 = 15.46 (movement episodes), F5,43 = 7.44 (movement time), 
F5,43 = 7.44 (movement distance), F5,43 = 8.05 (margin distance)) followed by a Newman-
Keuls post-hoc test. 
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Figure 25.  Effect (± S.E.M.) of (+)amphetamine (2) injected 0 min prior to examination 
on total vertical entries, total margin time, total center distance, total center time, and 
total center entries with a 45-min recording-time (n = 6-8 mice/treatment).  
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Figure 26.  Graphical representation of the movement distance for the entire duration (45 
min) of the experiment.  A) The actual locomotion of a mouse when injected with saline.  
B) Stimulation by injection of an effective dose of (+)amphetamine (3.0 mg/kg). 
 

   ii. Combination of (+)Amphetamine (2) and MD-354 (42) 

 An effective dose of (+)amphetamine (3.0 mg/kg) was examined in combination 

with varying doses of MD-354 (42).  The protocol entailed injecting varying doses of 

MD-354 (1.0, 3.0, and 10 mg/kg) i.p. 30 min prior to the test.  (+)Amphetamine (2) was 

injected 0 min prior to the experiment and the mice were placed in the chamber with a 

45-min recording-time.  Combination of MD-354 with an effective dose of 

(+)amphetamine neither potentiated or modulated the stimulant effect of 

(+)amphetamine. For both stimulant and non-stimulant parameters (movement episodes, 

movement time, movement distance, vertical entries, margin distance, margin time, 

center distance, center time, and center entries), which were separated for convenience, 

results were essentially the same following administration of (+)amphetamine (2) alone, 

and following administration of (+)amphetamine in combination with doses of MD-354 

(42) (Figure 27 and Figure 28).  Although combinations of MD-354 with 

A B
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(+)amphetamine were not statistically significant, the effects of MD-354 on 

(+)amphetamine were dose dependent for the parameters center distance and center 

entries. 
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Figure 27. Effect (± S.E.M.) of combination of (+)amphetamine (2) (3.0 mg/kg) with 
varying doses of MD-354 (42) on total movement episodes, total movement time, total 
movement distance, and vertical entries following a 30-min pre-injection time of MD-354 
and a 45-min recording-time (n = 7-8 mice/treatment).  
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Figure 28. Effect (± S.E.M.) of combination of (+)amphetamine (2) (3.0 mg/kg; 0-min 
pre-injection time) with varying doses of MD-354 (42) (30-min pre-injection time) on 
total margin distance, total margin time, total center distance, total center time, and total 
center entries with a 45-min recording-time (n = 7-8 mice/treatment).  
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 A similar study was conducted using doses of 1.0, 3.0, and 10 mg/kg of MD-354 

(42) (30-min pre-injection time) in combination with a moderate dose of (+)amphetamine 

(2) (2.0 mg/kg; 0-min pre-injection time).  The obtained results were similar to those 

observed with an effective dose of (+)amphetamine (3.0 mg/kg) alone, on all parameters 

observed (data not shown). 

 

   iii. Combination of (+)Amphetamine (2) and Ondansetron (19) 

 The effect of the 5-HT3 receptor antagonist ondansetron (19) on the actions of an 

effective dose of (+)amphetamine (2) was examined.  Doses of 0.1, 0.5, and 1.0 mg/kg of 

ondansetron were injected i.p., 30 min prior to the test.  (+)Amphetamine (2; 3.0 mg/kg) 

was injected 0 min before the test and a 45-min recording-time was employed.  In 

combination, ondansetron (19) neither potentiated nor modulated the action of an 

effective dose of (+)amphetamine.  For parameters analyzed (movement episodes, 

movement distance, movement time, vertical entries, margin distance, margin time, 

center time, and center entries), the effect of ondansetron pre-treatment on the actions of 

(+)amphetamine were not different than that following administration of (+)amphetamine 

alone (Figure 29 and Figure 30), except at a 1.0 mg/kg dose of ondansetron, which 

potentiated the effect of (+)amphetamine on the parameter center distance (Figure 30).  

Since doses of ondansetron in combination with (+)amphetamine decreased margin 

distance and margin time, while increasing center measures, ondansetron in combination 

with (+)amphetamine was producing an anxiolytic-like effect.  Even though this effect 

was not statistically significant in most cases, it was dose dependent. 
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Figure 29.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) in combination with 3.0 mg/kg of (+)amphetamine (2) (0-min pre-injection time) 
on the stimulant parameters of total movement episodes, total movement time, total 
movement distance, and total vertical entries with a 45-min recording-time (n = 6-8 
mice/treatment). 
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Figure 30.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) in combination with 3.0 mg/kg of (+)amphetamine (2) (0-min pre-injection time) 
on total margin distance, total margin time, total center distance, total center time, and 
total center entries with a 45-min recording-time (n = 6-8 mice/treatment). 
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   iv. Combination of (+)Amphetamine (2) and SR 57227A (28) 

 To determine the effects of the 5-HT3 receptor agonist SR 57227A (28) on the 

effects produced by a moderate dose of (+)amphetamine (2) (2.0 mg/kg), studies with 

combinations of both drugs were conducted.  In the present investigation, SR 57227A 

(28) was administered 30 min prior to testing at i.p. doses of 1.0, 3.0, and 10 mg/kg.  

(+)Amphetamine (2) was administered 0 min prior to test.  Within 15 min of the initiation 

of the experiment, potentiation of stimulant effects was observed; the effects lasted 30 

min.  The parameters affected by this combination included movement episodes, 

movement time, movement distance and margin distance for the first 15-min interval, and 

only movement episodes and movement distance for the second 15-min interval.  For the 

parameters mentioned above, potentiation occurred at a 3.0 mg/kg dose of SR 57227A 

(28) with 2.0 mg/kg of (+)amphetamine (2), except movement episodes, where 

potentiation was observed with both 3.0 mg/kg and 10 mg/kg doses of SR 57227A 

(Figure 31).  The other parameters (vertical entries, margin time, center distance, center 

time, and center entries) revealed amphetamine-like effects throughout the entire 

experiment (Figure 32).  Comparison of the data indicated that SR 57227A (28) 

potentiated the stimulant effect of a moderate dose of (+)amphetamine (2) and that this 

potentiation occurred in a dose-dependent manner.   
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Figure 31.  Effect (± S.E.M.) of varying doses of SR 57227A (28) (injected 30 min prior 
to examination) on a moderate dose of (+)amphetamine (2) (injected 0 min prior to 
examination) after the first 15-min interval of a 45-min protocol (n = 8 mice/treatment).  
Asterisk denotes a significant difference compared to a 2.0 mg/kg dose of 
(+)amphetamine; *P<0.05, **P<0.01, and ***P<0.001; one-way ANOVA (F4,41 = 19.52 
(movement episodes), F4,41 = 16.15 (movement time), F4,41 = 13.68 (movement distance), 
and F4,41 =  10.36 (margin distance)) followed by a Newman-Keuls post-hoc test. 
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Figure 32.  Effect (± S.E.M.) of varying doses of SR 57227A (28) (30-min pre-injection 
time) on a moderate dose of (+)amphetamine (2) (2.0 mg/kg, 0-min pre-injection time) on 
total vertical entries, total margin time, total center distance, total center time, and total 
center entries with a 45-min recording-time (n = 6-8 mice/treatment).     
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  e)  (+)Methamphetamine (3) 

   i. Dose Response 

 A mouse locomotor activity assay was conducted to determine an effective dose 

of (+)methamphetamine (3).  Varying doses of (+)methamphetamine (0.3, 1.0, 1.5, 3.0 

and 10 mg/kg) were injected i.p. 0 min before the mice were placed in the chamber with a 

recording-time of 60 min.  Within the first 15-min interval, doses of 

(+)methamphetamine (3) displayed statistically significant stimulant effects versus saline.  

These effects varied between different doses and different parameters for the entire 60-

min trial.  Upon analysis of stimulant parameters, (+)methamphetamine (3) produced a 

statistically significant stimulant effect versus saline at doses of 1.5, 3.0 and 10 mg/kg on 

movement episodes, movement time, and movement distance within the first 15 min 

(Figure 33) and on various doses for the same three parameters for the entire duration of 

the experiment (Figure 34). These stimulant effects were observed at lower doses, than 

with those of (+)amphetamine, supporting the idea the (+)methamphetamine is the more 

potent stimulant. (+)Methamphetamine (3) also produced a statistically significant effect 

on vertical entries and margin distance from the first 15-min interval throughout the 

experiment (Figure 34).  Center entries were statistically significantly increased within 30 

min (data not shown) and continued so for the duration of the 60-min experiment (Figure 

34).  Parameters not affected by varying doses of (+)methamphetamine (3) include 

margin time, center distance, and center time (Figure 35).   
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Figure 33.  Effect (± S.E.M.) of varying doses of (+)methamphetamine (3) (0.3, 1.0, 1.5, 
3.0, and 10 mg/kg; 0-min pre-injection) on the stimulant parameters of movement 
episodes, movement time, and movement distance within 15 min of a 60-min protocol (n 
= 6-8 mice/treatment).  Asterisk denotes a significant difference compared to the saline 
control group; **P<0.05, **P<0.01, ***P<0.001; one-way ANOVA (F5,39 = 14.83 
(movement episodes), F5,39 = 15.49 (movement time), F5,39 = 10.08 (movement distance)) 
followed by a Newman-Keuls post-hoc test. 
 

 

 



 80

Saline 0.3 1.0 1.5 3.0 10
0

100

200

300

400

500

600

**

***

                 (+)Methamphetamine Dose (mg/kg)

M
ov

em
en

t E
pi

so
de

s

Saline 0.3 1.0 1.5 3.0 10
0

900

1800

2700

3600

*

***
***

***
***

                 (+)Methamphetamine Dose (mg/kg)

M
ov

em
en

t T
im

e 
(s

)

Saline 0.3 1.0 1.5 3.0 10
0

10000

20000

30000

*

***

***

***

                (+)Methamphetamine Dose (mg/kg)

M
ov

em
en

t D
is

ta
nc

e 
(c

m
)

Saline 0.3 1.0 1.5 3.0 10
0

100

200

300

400

500

600

700

800 ***

**

                 (+)Methamphetamine Dose (mg/kg)

Ve
rt

ic
al

 E
nt

ri
es

 

Saline 0.3 1.0 1.5 3.0 10
0

2000

4000

6000

8000

10000

12000

****

***

                (+)Methamphetamine Dose (mg/kg)

M
ar

gi
n 

D
is

ta
nc

e 
(c

m
)

Saline 0.3 1.0 1.5 3.0 10
0

50

100

150

200

250

300

350

400

450

*

***

                 (+)Methamphetamine Dose (mg/kg)

C
en

te
r 

En
tr

ie
s

 

Figure 34.  Effect (± S.E.M.) of varying doses of (+)methamphetamine (3) (0-min pre-
injection) on total movement episodes, total movement time, total movement distance, 
total vertical entries, total margin distance, and total center entries with a 60-min protocol 
(n = 6-8 mice/treatment).  Asterisk denotes a significant difference compared to the saline 
control group; **P<0.05, **P<0.01, ***P<0.001; one-way ANOVA (F5,39 = 13.58 
(movement episodes), F5,39 = 14.63 (movement time), F5,39 = 25.01(movement distance), 
F5,39 = 13.89 (vertical entries), F5,39 = 7.89 (margin distance), F5,39 = 5.16 (center entries)) 
followed by a Newman-Keuls post-hoc test. 
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Figure 35.  Effect (± S.E.M.) of varying doses of (+)methamphetamine (3) (0-min pre-
injection time) on total margin time, total center distance, and total center time with a 60-
min recording-time (n = 6-8 mice/treatment).   
 

   ii.  Combination (+)Methamphetamine (3) and MD-354 (42) 

 The effect of varying doses of MD-354 (42) on an effective dose of 

(+)methamphetamine (3) was examined.  MD-354 (42) doses of 0.3, 1.0, 3.0, and 6.0 

mg/kg were administered i.p. 0 min prior to the experiment.  (+)Methamphetamine (1.5 

mg/kg) was administered 0 min prior to the experiment and the recording-time was 1 h.  

For all parameters analyzed, administration of MD-354 in combination with 
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(+)methamphetamine neither potentiated nor modulated the stimulant effect of 

(+)methamphetamine.  A combination of MD-354 (42) and (+)methamphetamine (3) 

produced similar effects as (+)methamphetamine administered alone.  The parameters 

analyzed included movement episodes, movement time, movement distance, vertical 

entries, margin distance, margin time, center distance, center time, and center entries as 

shown in Figure 36 and Figure 37. 
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Figure 36. Effect (± S.E.M.) of varying doses of MD-354 (42) (0.3, 1.0, 3.0, and 6.0 
mg/kg; 0-min pre-injection time) on an effective dose of (+)methamphetamine (3) (1.5 
mg/kg; 0-min preinjection time) on total movement episodes, total movement time, total 
movement distance, and total vertical entries with a 60-min recording-time (n = 6-8  
mice/treatment). 
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Figure 37.  Effect (± S.E.M.) of varying doses of MD-354 (42) (0.3, 1.0, 3.0, and 6.0 
mg/kg; 0-min pre-injection time) on an effective dose of (+)methamphetamine (3) (1.5 
mg/kg; 0-min preinjection time) on total margin distance, total margin time, total center 
distance, total center time and total center entries with a 60-min recording-time (n = 6-8 
mice/treatment). 
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 A similar protocol was employed using a 3.0 mg/kg dose of (+)methamphetamine 

(3) in combination with 1.0, 3.0, and 6.0 mg/kg doses of MD-354.  The pre-injection and 

recording-times remained the same, resulting in similar effects as observed with a 

combination of 1.5 mg/kg (+)methamphetamine (3) and varying doses of MD-354 (42): 

combination of MD-354 with (+)methamphetamine neither potentiated nor modulated the 

stimulant effects of (+)methamphetamine (data not shown).   

 

  f)  DOM (10) 

   i. Dose Response 

 A locomotor activity assay was conducted to determine an effective dose of DOM 

(10) and to determine its effects on mouse locomotor actions.  Varying doses of DOM 

(0.3, 1.0, and 3.0 mg/kg) were injected i.p. 0 min before the mice were placed in the 

chamber, with a recording-time of 60 min.  After 15 min, DOM (10) behaved similarly to 

saline at all administered doses.  However, within 30 min of the experiment, movement 

distance and margin distance were statistically significantly increased following all doses.  

Within 45 min, doses of 0.3 and 1.0 mg/kg of DOM (10) statistically significantly 

increased movement distance and margin distance.  However, only a 0.3 mg/kg dose of 

DOM (10) increased vertical entries.  Following 60 min post administration, DOM 

increased locomotor activity on the parameters of movement time, movement distance, 

vertical entries, and margin distance versus saline as shown in Figure 38.  Throughout the 

entire study, DOM produced a saline-like effect on the parameters of movement episodes, 

margin time, center distance, center time, and center entries (Figure 39).   
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Figure 38.  Effect (± S.E.M.) of varying doses of DOM (10) (0-min pre-injection time) 
on total movement time, total movement distance, vertical entries, and margin distance 
with a 60-min recording-time (n = 6-8 mice/treatment).  Asterisk denotes statistical 
significance compared to the saline control group; *P<0.05, **P<0.01, ***P<0.001; one-
way ANOVA (F3,28 = 3.5 (movement time), F3,28 = 5.03 (movement distance), F3,28 = 
4.15 (vertical entries), F3,28 = 6.54 (margin distance)) followed by a Newman-Keuls post-
hoc test. 
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Figure 39.  Effect (± S.E.M.) of varying doses of DOM (10) (0-min pre-injection time) 
on total movement episodes, total margin time, total center distance, total center time, 
and total center entries with a 60-min recording-time (n = 6-8 mice/treatment).  
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   ii.  Combination of DOM (10) and MD-354 (42) 

 The next step was to determine the effect of MD-354 (42) on an effective 

behavioral dose of DOM (10).  A study was conducted using 0.1, 1.0, 3.0, and 6.0 mg/kg 

doses of MD-354 (42) (30-min pre-injection time) in combination with a 0.3 mg/kg dose 

of DOM (10) (0-min pre-injection time).  The recording-time of the experiment was 60 

min.   Within 15 min of the initiation of the experiment, a low dose of MD-354 (0.1 

mg/kg) antagonized the effect of DOM on movement distance, vertical entries, and center 

entries (a 1.0 mg/kg dose of MD-354 also antagonized the effect DOM displayed on 

vertical entries).  As the experiment continued, MD-354 (42) antagonized various other 

parameters at various doses.  Some parameters effected include movement time, 

movement distance, vertical entries, margin distance, center distance, and center entries 

as shown in Figure 40.  The effect DOM (10) had on vertical entries alone and in 

combination with MD-354 (42) is shown in Figure 41.  Combination of MD-354 with 

DOM produced similar results as DOM administered alone on movement episodes, 

margin time, and center time throughout the duration of the experiment (as shown in 

Figure 42). 
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Figure 40.  Effect (± S.E.M.) of varying doses of MD-354 (42) (30-min pre-injection 
time) on an effective dose of DOM (10) (0.3 mg/kg; 0-min pre-injection time) on total 
movement time, total movement distance, total vertical entries, total margin distance, 
total center distance, and total center entries with a 60-min recording-time (n = 6-8 
mice/treatment).  Asterisk denotes statistical significance compared to a 0.3 mg/kg dose 
of DOM; *P<0.05, **P<0.01, ***P<0.001; one-way ANOVA (F5,41 = 2.74 (movement 
time), F5,41 = 4.43 (movement distance), F5,41 = 5.31 (vertical entries), F5,41 = 4.49 
(margin distance), F5,41 = 1.30 (center distance) F5,41 = 2.48 (center entries)) followed by 
a Newman-Keuls post-hoc test. 
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Figure 41.  Graphical representation of vertical entries for the entire duration (60 min) of 
the experiment. A) Vertical entries of mice when administered saline. B) Vertical entries 
of mice when administered 0.3 mg/kg dose of DOM.  C) Vertical entries of combination 
of 1.0 mg/kg dose of MD-354 and 0.3 mg/kg dose of DOM. 
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Figure 42.  Effect (± S.E.M.) of varying doses of MD-354 (42) (30-min pre-injection 
time) on an effective dose of DOM (10) (0.3 mg/kg; 0-min pre-injection time) on total 
movement episodes, total margin time, and total center time with a 60-min recording-
time (n = 6-8 mice/treatment). 
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  g) Cocaine (1) 

   i. Dose Response 

 The present study was conducted to determine an effective dose of cocaine (1).  

Varying doses of cocaine (1) (1.0, 3.0, 10, and 30 mg/kg) were administered i.p. 0 min 

prior to the experiment.  The mice were placed in the chamber and tested for 45 min.  

Within the first 15 min, locomotor activity was statistically significantly decreased versus 

saline on the stimulant parameter of movement episodes (30 mg/kg), whereas activity 

was significantly increased for movement time (30 mg/kg) and movement distance (10 

and 30 mg/kg) as shown in Figure 43, as well as following 10 and 30 mg/kg doses of 

cocaine (1) on the non-stimulant parameters of margin distance and margin time (Figure 

43).  Statistically significant decreases in center distance and center time were observed 

versus saline at doses of 10 and 30 mg/kg of cocaine (Figure 44).  Within 30 min, the 

only effects observed were statistically significant increases on the stimulant parameters 

of movement episodes, movement time, movement distance, and margin distance. By 45 

min, movement time, movement distance, and margin distance were still increased 

following 10 and 30 mg/kg doses of cocaine, as well as statistically significantly increase 

in vertical entries versus saline (Figure 45).   Overall, cocaine produced a saline-like 

effect at all doses administered on total vertical entries, total margin time, total center 

distance, total center time, and total center entries (Figure 46), however the effects on 

vertical entries, center distance and center time were dose-dependent. 
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Figure 43. Effect (± S.E.M.) of varying doses of cocaine (1) (0-min pre-injection time;  
45-min recording-time) on movement episodes, movement time, movement distance and 
margin distance within the first 15-min (n = 6-8 mice/treatment). Asterisk denotes 
statistical significance compared to the saline control group; *P<0.05, **P<0.01, 
***P<0.001; one-way ANOVA (F4,43 = 6.78 (movement episodes), F4,43 = 5.37 
(movement time), F4,43 = 6.32 (movement distance), F4,43 = 6.45 (margin 
distance))followed by a Newman-Keuls post-hoc test. 
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Figure 44. Effect (± S.E.M.) of varying doses of cocaine (1) (0-min pre-injection time; 
45-min recording-time) on margin time, center distance and center time within the first 
15-min (n = 6-8 mice/treatment). Asterisk denotes statistical significance compared to the 
saline control group; *P<0.05, **P<0.01, ***P<0.001; one-way ANOVA (F4,43 = 4.91 
(margin time) F4,43 = 4.36 (center distance), F4,43 = 4.91 (center time)) followed by a 
Newman-Keuls post-hoc test. 
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Figure 45.  Effect (± S.E.M.) of varying doses of cocaine (1) (0-min pre-injection time; 
45-min recording-time) on total movement episodes, total movement time, total 
movement distance, total margin distance (n = 6-8 mice/treatment). Asterisk denotes 
statistical significance compared to the saline control group; **P<0.01 and ***P<0.001; 
one-way ANOVA (F4,43 = 5.09 (movement episodes), F4,43 = 7.67 (movement time), F4,43 
= 9.02 (movement distance), F4,43 = 8.31 (margin distance)) followed by a Newman-
Keuls post-hoc test. 
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Figure 46.  Effect (± S.E.M.)  of varying doses of cocaine (1) (0-min pre-injection time; 
45-min recording-time) on total vertical entries, total margin time, total center distance, 
total center time, and total center entries (n = 6-8 mice/treatment). 
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ii. Combination of Cocaine (1) and MD-354 (42) 

 The effect of varying doses of the 5-HT3 receptor partial agonist, MD-354 (42) 

(1.0, 3.0, and 10 mg/kg) on an effective dose of cocaine (1) (10 mg/kg) was examined.  

MD-354 (42) was administered 30 min prior to examination, followed by cocaine (1) 

administered 0 min prior to examination.  The recording-time for the present 

investigation was 45 min.  Within the first 15 min, in combination with cocaine (1), MD-

354 (42) potentiated the stimulant effect that cocaine displayed when administered alone.  

This potentiation was observed with a decrease in movement episodes and an increase in 

movement time as shown in Figure 47.  Within this first 15 min all other parameters 

behaved similarly to cocaine when administered alone (data not shown).   
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Figure 47.  Effect (± S.E.M.) of varying doses of MD-354 (42) (30-min pre-injection 
time) on a effective dose of cocaine (1) (10 mg/kg; 0-min pre-injection time) within the 
first 15-min of the 45-min protocol (n = 6-8 mice/treatment). Asterisk denotes statistical 
significance compared to a 10 mg/kg dose of cocaine; *P<0.05 and **P<0.01; one-way 
ANOVA (F4,43 = 16.90 (movement episodes) and F4,43 = 23.73 (movement time)) 
followed by a Newman-Keuls post-hoc test. 
  

 



 97
 Within 30 min of the experiment, a separate set of parameters were affected.  

Instead of stimulant parameters being potentiated as within the first 15 min, vertical 

entries, center distance, and center entries were potentiated as shown in Figure 48.  

Vertical entries were potentiated at all doses of MD-354 (42) versus cocaine (1), whereas 

6.0 mg/kg dose of MD-354 in combination with cocaine potentiated the effect on the 

parameters center distance and center entries versus cocaine alone (Figure 48).   
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Figure 48.  Effect (± S.E.M.) of varying doses of MD-354 (42) (30-min pre-injection 
time) on an effective dose of cocaine (1) (0-min pre-injection) within 30 min of the 45-
min protocol (n = 6-8 mice/treatment).  Asterisk denotes statistical significance compared 
to a 10 mg/kg dose of cocaine; *P<0.05 and **P<0.01; one-way ANOVA (F4,43 = 17.92 
(vertical entries), F4,43 = 2.37 (center distance), F4,43 = 5.88 (center entries)) followed by a 
Newman-Keuls post-hoc test. 
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 Movement distance, margin distance, margin time, and center time were not 

affected by the combination of MD-354 (42) with cocaine (1) at any dose combinations 

administered. For these parameters, combination of MD-354 with an effective dose of 

cocaine (10 mg/kg) produced a cocaine-like effect (Figure 49).  
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Figure 49.  Effect (± S.E.M.) of varying doses of MD-354 (42) (30-min pre-injection 
time) on an effective dose of cocaine (1) (0-min pre-injection time) for total movement 
distance, total margin distance, total margin time, and total center time with a 45-min 
recording-time (n = 6-8 mice/treatment). 
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   iii. Combination of Cocaine (1) and Ondansetron (19) 

 The effect of varying doses of the 5-HT3 receptor antagonist ondansetron (19) was 

examined in combination with an effective dose of cocaine (1).  Varying doses of 

ondansetron (0.1, 0.5, and 1.0 mg/kg) were injected i.p. 30 min prior to the experiment.  

A 10 mg/kg dose of cocaine was injected 0 min prior to the experiment; the recording-

time of the experiment was 45 min.  Within the first 15 min only one parameter was 

affected; movement episodes were suppressed by a 0.5 mg/kg dose of ondansetron (19) 

as shown in Figure 50.  The stimulant effect of cocaine was potentiated by addition of the 

5-HT3 receptor antagonist ondansetron (19).   
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Figure 50.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) on an effective dose of cocaine (1) (10 mg/kg; 0-min pre-injection time) observed 
within the first 15-min of the 45-min protocol (n = 6-8 mice/treatment).  Asterisk denotes 
statistical significance compared to a 10 mg/kg dose of cocaine; *P<0.05; one-way 
ANOVA (F4,40 = 8.11 (movement episodes)) followed by  a Newman-Keuls post-hoc 
test. 
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Within 30 min, only one parameter was affected by the combination of 

ondansetron (19) with cocaine (1); when administered together, ondansetron (0.5 and 1.0 

mg/kg doses) potentiated the effect of cocaine on center entries as shown in Figure 51. 
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Figure 51.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) on a 10 mg/kg dose of cocaine (1) (0-min pre-injection time) observed within 30-
min of the 45-min protocol (n = 6-8 mice/treatment).  Asterisk denotes statistical 
significance compared to a 10 mg/kg dose of cocaine; *P<0.05 and **P<0.01; one-way 
ANOVA (F4,40 = 5.81 (center entries)) followed by Newman-Keuls post-hoc test. 
  

Within 45 min of initiation of the experiment, the effect of ondansetron (29) on 

cocaine (1) shifted to margin distance. The effect of cocaine was suppressed by 0.1 and 

1.0 mg/kg of ondansetron in an inverted U-shape dose response manner as shown in 

Figure 52. 



 101

0

1000

2000

3000

* *

 Saline          Cocaine            0.1                  0.5                 1.0
                      10 mg/kg                          Ondansetron Dose (mg/kg)

M
ar

gi
n 

D
is

ta
nc

e 
(c

m
)

 

Figure 52.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) on a 10 mg/kg dose of cocaine (1) (0-min pre-injection time) observed within 45-
min (n = 6-8 mice/treatment).  Asterisk denotes statistical significance compared to a 10 
mg/kg dose of cocaine; *P<0.05; one-way ANOVA (F4,40 = 4.59 (margin distance)) 
followed by a Newman-Keuls post-hoc test. 
 

 Only one parameter was affected by the combination of ondansetron with cocaine 

in each 15-min interval.  However, upon analysis of the entire study, combination of 

varying doses of ondansetron (19) with an effective dose of cocaine (1) neither 

potentiated nor antagonized the effect of cocaine when administered alone.  This was 

observed for all parameters analyzed for total time of the experiment (movement 

episodes, movement time, movement distance, margin distance, margin time, center 

distance, and center time as shown in Figure 53 and Figure 54) except center entries 

which were potentiated at 0.5 and 1.0 mg/kg doses of ondansetron.  Although statistically 

significant changes were not observed, the effects of ondansetron on cocaine were dose 

dependent. 
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Figure 53.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) in combination with an effective dose of cocaine (1) (0-min pre-injection time) on 
total movement episodes, total movement distance, total movement time, total vertical 
entries with a 45-min recording-time (n = 6-8 mice/treatment). 
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Figure 54.  Effect (± S.E.M.) of varying doses of ondansetron (19) (30-min pre-injection 
time) in combination with an effective dose of cocaine (1) (0-min pre-injection time) on 
total margin distance, total margin time, total center distance, total center time, and total 
center entries with a 45-min recording-time (n = 6-8 mice/treatment). 
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iv. Combination of Cocaine (1) and SR 57227A (28) 

 Combination studies of the 5-HT3 receptor agonist SR 57227A (28) with an 

effective dose of cocaine on locomotor activity were conducted.  The present 

investigation employed 1.0, 3.0, and 10 mg/kg doses of SR 57227A (28) (30-min pre-

injection time) in combination with a 10 mg/kg dose of cocaine (1) (0-min pre-injection 

time) administered i.p.  The recording-time of the experiment was 45 min.  Within the 

first 15 min, the stimulant effect of cocaine was potentiated as evidenced by increasing 

the parameters of movement episodes and movement time.  This effect was observed 

following all three administered doses of SR 57227A (28) in combination with cocaine as 

opposed to the effect observed with cocaine (1) administered alone (Figure 55).  Also, 

within the first 15-min interval, the effect of cocaine was antagonized by a 1.0 mg/kg 

dose of SR 57227A.  When administered alone, cocaine (1) suppressed center entries, 

however in combination with SR 57227A (28), the number of center entries was 

increased (Figure 55). 

 These were the only parameters influenced by the combination of varying doses 

of SR 57227A with an effective dose of cocaine.  For the duration of the experiment, the 

combination of SR 57227A (28) and cocaine (1) behaved similarly to cocaine 

administered alone for all parameters analyzed (movement episodes, movement time, 

movement distance, vertical entries, margin distance, margin time, center distance, center 

time and center entries as shown in Figure 56 and Figure 57). 
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Figure 55.  Effect (± S.E.M.) of SR 57227A (28) (30-min pre-injection time) on an 
effective dose of cocaine (1) (0-min pre-injection time) within the first 15-min of the 
experiment of a 45-min protocol (n = 6-8 mice/treatment).  Asterisk denotes statistical 
significance compared to a 10 mg/kg dose of cocaine; *P<0.05, **P<0.01, ***P<0.001; 
one-way ANOVA (F4,40 = 20.38 (movement episodes), F4,40 = 25.01 (movement time), 
F4,40 = 2.55 (center entries)) followed by Newman-Keuls post-hoc test. 
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Figure 56.  Effect (± S.E.M.) of SR 57227A (28) (30-min pre-injection time) in 
combination with cocaine (1) (0-min pre-injection time) on total movement episodes, 
total movement distance, total movement time, and vertical entries with a 45-min 
recording-time (n = 6-8 mice/treatment). 
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Figure 57.  Effect (± S.E.M.) of SR 57227A (28) (30-min pre-injection time ) in 
combination with cocaine (1) (0-min pre-injection time) on total margin distance, total 
margin time, total center distance, total center time, and total center entries with a 45-min 
recording-time (n = 6-8 mice/treatment). 
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 2. Discussion 

 The purpose of the present study was to determine the influence of the 5-HT3 

receptor partial agonist MD-354 on the locomotor actions of psychomotor stimulants (as 

5-HT3 receptor ligands have been shown to indirectly affect dopamine levels) and if this 

effect could be characterized as acting through a 5-HT3 receptor agonist or 5-HT3 

receptor antagonist mode of action.  The present investigation was conducted in order to 

determine the locomotor effects of the phenylalkylamine stimulant (+)amphetamine (2) in 

combination with MD-354 (42), ondansetron (19), and SR 57227A (28) as compared to 

similar tests using cocaine (1) (a non-phenylalkylamine stimulant) with the same 5-HT3 

receptor ligands.  (+)Methamphetamine (3) (a structurally similar amphetamine 

phenylalkylamine stimulant) and DOM (10) (a phenylalkylamine non-stimulant used as a 

control) were also administered in combination with MD-354 to determine the effects of 

MD-354 in combination with these drugs of abuse, on locomotor activity.  The overall 

effects of these agents and drug combinations are shown in Table 5. 

 Varying doses of the 5-HT3 receptor ligands were administered alone to determine 

whether or not they bestowed an effect versus saline.  When administered alone, MD-354 

had no effect on mouse locomotor activity (Table 5).  These data are consistent with and 

further extend earlier findings.  Dukat et al. investigated the effect of MD-354 (42) on 

mouse locomotor activity at doses ranging from 1.0 to 10 mg/kg; results suggested that 

MD-354 produces saline-like effects on locomotor activity.12   Ondansetron was found to 

behave similarly to MD-354; the saline-like effect of ondansetron was consistent with  
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Table 5.  Summary of the effects of all drugs tested in the mouse locomotor activity assay.a 

Measure:     Movement   Movement Movement Vertical Margin       Margin Center        Center  Center 
         Episodes        Time    Distance  Entries Distance    Time Distance      Time Entries 
MD-354                -     -        -      -        -            -                  -  -       - 

Ondansetron         -     -        -      -        -            -                  -  -       - 

SR 57227A         -     -        -      -        -            -                  -  -      ↑ 

(+)Amph         ↓    ↑       ↑      -        ↑               -       -                 -                - 

 + MD-354             -     -        -                 -                         -               -                  -                -                 - 

 + Ondan                -     -        -      -        ↓            ↓                  ↑  -       - 

 + SR 57227A         ↓     ↑                         ↑      -                   ↑            -                  -                -                 -  

(+)Meth        ↓    ↑       ↑      ↑        ↑            -                  -                -                ↑ 

  + MD-354            -                  -                         -                      -                        -               -                   -               -                 - 

DOM          -    ↑                        ↑                     ↑                        ↑              -                   ↓               -                 -       

  + MD-354            -                 ↓                        ↓                     ↓                        ↓              -                   ↓               -                ↓ 

Cocaine                  ↓                ↑                        ↑                     ↑                        ↑              ↑                  ↓               ↓                 - 

  + MD-354            ↓                ↑                         -                      ↑                        -              -                  ↑                -                ↑  

  + Ondan               ↓                 -                         -                     -                        ↓               -                   -                -               ↑ 

  + SR 57227A        ↓                ↑                         -                     -                          -              -                   -                -               ↑ 
a. The “-” symbol indicates no change in effect compared to control, the “↑” symbol indicates an increase in effect versus 

control, and the “↓” indicates a decrease in effect versus control.  See text for a more detailed description and discussion of the 

effects.
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that which was found in the literature.  Ramamoorthy et al. published a paper discussing 

the antidepressant potential of the 5-HT3 receptor antagonist ondansetron (19).137  In this 

study, locomotor activity was characterized as “locomotor scores”, analyzing various 

doses of ondansetron (0.005-1000 μg/kg).137  For the entire dose range, ondansetron 

produced saline-like effects in mice.137  Analysis of SR 57227A, when administered 

alone, also resulted in saline-like effects, with the exception of center entries (Table 5); 

this effect was only statistically significant when analyzed using the t-test instead of a 

one-way ANOVA which was employed for testing the significance of other parameters.  

The saline-like effect of SR 57227A is consistent with literature findings. Yoo et al. 

analyzed the effect of SR 57227A (28) on locomotor activity and showed that SR 

57227A did not produce locomotor stimulation when administered alone on the stimulant 

parameter of distance traveled (movement distance).138 For all three 5-HT3 receptor 

ligands, the results observed in the present investigation are consistent with literature 

findings, even though not exactly the same types of parameters were measured. The 5-

HT3 receptor ligands are considered to not display any effect on mouse locomotor 

activity when administered alone. 

 For each drug of abuse, varying doses were administered in order to determine an 

effective dose of each drug.  An effective dose of (+)amphetamine (2) was determined to 

be 3.0 mg/kg as this dose (as well as a 6.0 mg/kg dose) increased the effect on the 

common stimulant parameters of movement time and movement distance, while 

decreasing movement episodes. Movement episodes are counted as one movement 

episode being equivalent to the entirety of the movement between the initial start until the 
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rodent stops.  Therefore, if the mouse is continuously walking, movement time and 

distance would increase, whereas movement episodes would decrease. The effect on 

margin distance was also potentiated by 3.0 and 6.0 mg/kg doses of (+)amphetamine (2), 

suggesting that the activity of the rodent was not only stimulated by (+)amphetamine, but 

the rodent also began to display anxiogenic-like behavior.   Mcgeehan et al. showed that 

the locomotor activity parameter average distance traveled was significantly increased 

following administration of 3.0 and 5.0 mg/kg doses of (+)amphetamine versus saline.139  

Data from Glennon et al.  further support this idea as locomotor activity (measured as 

interruptions of photocell beam breaks) at even lower doses (1.0 mg/kg doses) of racemic 

amphetamine injected i.p. increased locomotion in mice.140  However, doses of 0.3 mg/kg 

produced saline-like effects.140  It is important to note, although Glennon’s study was 

conducted using racemic amphetamine instead of one isomer, such as (+)amphetamine 

(2) used in the current study, the use of a different type of locomotor activity apparatus 

might account for the lower effective dose observed in the Glennon studies.140  Bushnell 

also reported on the dose-dependent stimulant response of (+)amphetamine (0.3 to 10 

mg/kg i.p.) on locomotor activity in mice;141 the findings of the present investigation 

were consistent with the literature findings.  It is important to note that an immense 

amount of research has been published (thousands of papers) on dose response curves of 

all four drugs ((+)amphetamine, (+)methamphetamine, DOM, and cocaine) in locomotor 

activity assays using both mice and rats. Since this literature is so exhaustive, only a few 

references have been cited.  But, in general where literature data are available, they are 

not inconsistent with the present findings. 



 112
 With many drugs of abuse, dose-response studies can be conducted to 

demonstrate how increasing doses have an effect on particular parameters, such as 

increasing movement distance with increasing doses of (+)amphetamine (2).  Eventually, 

however, a threshold is reached, where the dose of administered drug results in 

stereotypy.  In dose response curves this is often observed as either a plateau or even a 

decrease in effect, creating an inverted U-shaped curve.126 

 Since MD-354 (42) is a 5-HT3 receptor partial agonist, it has the potential to 

behave as either an agonist or an antagonist, and could possibly potentiate or antagonize 

the effect of (+)amphetamine (2) when administered in combination by indirectly 

influencing dopamine levels.   Therefore, both an effective dose (3.0 mg/kg) and 

moderate dose (2.0 mg/kg) of (+)amphetamine (2) were used in combination with MD-

354 (42), in case MD-354 was to potentiate the effect of (+)amphetamine to the point of 

stereotypy.  Drug discrimination studies in rats have been conducted using similar dose 

combinations of (+)amphetamine and MD-354; data showed MD-354 enhances the 

stimulus effects of moderate doses of (+)ampethamine.142  Although there is a difference 

in species and type of study conducted, the results support the notion that MD-354 can 

potentiate a behavioral action of (+)amphetamine.  However, in the present investigation, 

neither dose combination resulted in potentiation or antagonism of the (+)amphetamine 

(2) effect when compared to the effect of the stimulant administered alone.  These results 

were observed both with stimulant and non-stimulant parameters throughout the entirety 

of the experiment. 
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 For comparison, an effective dose of (+)amphetamine (2) (3.0 mg/kg) was 

administered in combination with the 5-HT3 receptor antagonist ondansetron (19).    

Costall et al. indicated that the 5-HT3 receptor antagonist GR38032F (known as 

ondansetron) inhibited hyperlocomotion (measured as counts) induced by intra-

accumbens injections in rats.131     However in the present investigation, the 5-HT3 

receptor antagonist ondansetron did not behave in a similar manner when administered in 

combination with (+)amphetamine.   Similar to the results observed with a combination 

of MD-354 (42) and (+)amphetamine, ondansetron (19) neither potentiated nor 

antagonized the stimulant effect of (+)amphetamine (2) compared to (+)amphetamine 

administered alone.  This effect was observed throughout the entirety of the experiment 

for all stimulant parameters. However, a 1.0 mg/kg dose of ondansetron was able to 

potentiate the effect of (+)amphetamine on the parameter center distance; that is, 

ondansetron in combination with (+)amphetamine displayed an anxiolytic-like effect. The 

difference in effect between the present investigation and that observed by Costall et 

al.131 could be due to the difference in species, route of administration, and method of 

determining locomotor activity. With the exception of this non-stimulant parameter 

(center distance), it was concluded that in combination with (+)amphetamine (2), MD-

354 (42) is either behaving similar to a 5-HT3 receptor antagonist, or MD-354 is devoid 

of action.  Since the effects of the combination of MD-354 and (+)amphetamine on 

locomotor activity parameters were similar to those observed with the combination of 

ondansetron and (+)amphetamine, the conclusion that MD-354 is behaving  in a similar 
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manner to a 5-HT3 receptor antagonist is supported.  However, the lack of potentiation or 

antagonism of effect could also suggest MD-354 is devoid of action. 

 Combination of an effective dose of (+)amphetamine (2) with the 5-HT3 receptor 

agonist SR 57227A (28) was examined.  Whereas neither MD-354 (42) nor ondansetron 

(19) altered the effect of (+)amphetamine (2) when administered in combination, SR 

57227A (28) influenced the effect of a moderate dose of (+)amphetamine (2.0 mg/kg).  A 

moderate dose of (+)amphetamine was used instead of the effective dose in case the 5-

HT3 receptor agonist potentiated the stimulant effect of (+)amphetamine (2) to the point 

of stereotypy.  The four parameters that were affected by administration of 

(+)amphetamine (2) alone at a 3.0 mg/kg dose were also affected when (+)amphetamine 

was administered in combination with SR 57227A (28).  The combination of SR 57227A 

(3.0 and 10 mg/kg doses) with (+)amphetamine potentiated the effect (+)amphetamine on 

movement episodes (i.e., the number of movement episodes was decreased).  This 

potentiation was more significant at the 3.0 mg/kg SR 57227A dose than the 10 mg/kg 

dose.  The combination of SR 57227A (28) with (+)amphetamine (2) also potentiated the 

effect of (+)amphetamine on the stimulant parameters of movement time and movement 

distance, as well as the non-stimulant parameter margin distance.  This potentiation was 

observed as an inverted U-shaped curve as the 3.0 mg/kg SR 57227A dose was the only 

one that potentiated (+)amphetamine’s actions on all three parameters.  For the other 

parameters, vertical entries, margin time, center distance, center time, and center entries, 

the combination of (+)amphetamine (2) with SR 57227A (28) behaved similarly to 
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(+)amphetamine when administered alone.  Analysis of these results showed that 

(+)amphetamine when administered alone produced a saline-like effect.   

 Results from combinations of (+)amphetamine (2) (3.0 mg/kg) with varying doses 

of the 5-HT3 receptor antagonist ondansetron (19) indicated that the combination behaved 

similarly to the results observed with (+)amphetamine and MD-354. The 5-HT3 receptor 

agonist SR 57227A (28) behaved differently than either MD-354 (42) or ondansetron 

(19) when administered in combination with (+)amphetamine (2).  That is, SR 57227A 

potentiated certain aspects of (+)amphetamine-induced locomotor stimulation, whereas 

both MD-354 and ondansetron in combination with (+)amphetamine produced 

(+)amphetamine-like effects.  Hence, two conclusions are possible.  Either MD-354 lacks 

sufficient agonist potential to mimic the actions of SR-57227A, or too little MD-354 is 

penetrating the BBB to reach its central sites of action, as drug discrimination studies 

suggest that MD-354 is centrally acting;142 however, peripheral effects cannot be 

excluded. 

  (+)Methamphetamine (3), a psychomotor stimulant structurally similar to 

(+)amphetamine, was also tested in locomotor activity assays.  Literature states that 

(+)methamphetamine is a more potent central stimulant than (+)amphetamine (2);16 

similar central stimulant effects should be evident at lower doses.  This idea was 

supported as stimulant measures were increased at a 1.5 mg/kg dose of 

(+)methamphetamine as compared to 3.0 mg/kg dose of (+)amphetamine.  Doses of 

(+)methamphetamine (3) increased movement time and movement distance while 

suppressing movement episodes; this was similar to the results observed following 
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administration of an effective dose of (+)amphetamine (2) alone.  These effects also 

created an inverted U-shaped curve as doses of 1.5 mg/kg increased stimulant parameters, 

where a dose of 10 mg/kg had less of an effect; in some cases, no effect was observed.  

Not only did (+)methamphetamine (3) potentiate the effect on stimulant parameters, but 

lower doses (as low as 0.3 mg/kg) somewhat potentiated the three key stimulant 

parameters (movement episodes, movement distance, and movement time) as well as 

vertical entries, margin distance, and center entries after the first 15 min of the 

experiment.  Glennon et al. analyzed racemic methamphetamine in similar male ICR 

mice and also observed an increase in locomotion (measured as interruptions of photocell 

beams) at 1.0 mg/kg and above, whereas a 0.3 mg/kg dose of racemic methamphetamine 

produced a saline-like effect.140  Once again, variances in effective dosage amounts could 

be due to the use of racemic methamphetamine (3) as compared to its more potent 

isomer.   

 In the present investigation, center entries was the only parameter increased by 

(+)methamphetamine (3) that was not affected by (+)amphetamine (2), suggesting that 

(+)methamphetamine is behaving more in an anxiolytic nature than (+)amphetamine.   

However, both (+)methamphetamine and (+)amphetamine, at all doses administered, 

produced saline-like effects on margin time, center distance, and center time. 

 Studies with 1.5 and 3.0 mg/kg doses of (+)methamphetamine (3) in combination 

with varying doses of MD-354 (42) were conducted to determine if MD-354 was 

behaving similarly to (+)amphetamine in combination with a structurally similar 

psychomotor stimulant.  For all combinations, MD-354 (42) plus (+)methamphetamine 
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(3) produced results similar to those observed following administration of 

(+)methamphetamine alone; this was observed for all nine parameters analyzed for the 

entire duration of the experiment.  Data from the combination of MD-354 (42) and 

(+)methamphetamine (3) paralleled the results observed with combinations of MD-354 

and (+)amphetamine (2).  Apparently, the effect of MD-354 on the motor actions of 

(+)methamphetamine and (+)amphetamine are similar. 

 DOM (10), a non-stimulant phenylalkylamine structurally similar to amphetamine 

was used as a control.  Supposedly lacking significant central stimulant properties, DOM 

was not expected to influence “stimulant” measures of activity.  However, it has been 

previously shown that hallucinogens can produce both a stimulant effect in locomotor 

activity assays as well as stimulus generalization; stimulus effects can be block by 

serotonin antagonists.54 

 Results of the present investigation showed that DOM (10) at a low dose (0.3 

mg/kg) significantly increased vertical entries.  This is an activity measure that was not 

affected by administration of either the psychomotor stimulant (+)amphetamine (2) or 

(+)methamphetamine (3).  Also, DOM doses did not have an effect on movement 

episodes, which was decreased by varying doses of psychomotor stimulants. This 

increase in vertical entries, as well as no effect on movement episodes differentiates 

DOM from the psychomotor stimulants.   Other parameters affected by the administration 

of DOM (10) included movement time, movement distance, and margin distance 

suggesting the drug displayed some stimulant activity, which is consistent with literature 

that states that low doses of DOM may produce stimulant effects.3 Yamamoto and Ueki 
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analyzed the effect of DOM on locomotor activity in mice, and observed increases in 

locomotor activity at 0.5 -1.0 mg/kg doses injected i.p.3  However, at 0.1 mg/kg, head 

twitches, a hallucinogenic parameter was increased.3 Data observed in the present 

investigation is consistent with Yamamoto and Ueki’s3 results, although the present study 

did not analyze head twitches, but rearing as a hallucinogenic parameter.   

 By increasing vertical entries, the animal is in motion more, which in turn will 

increase the amount of time the animal is in motion (i.e., movement time).  Also, when 

animals display rearing behavior, it is usually around the margins of the chamber, as the 

mice look as if they are trying to climb out of the chamber; this can increase both margin 

distance, margin time, and movement distance. Therefore, as vertical entries increase, it 

is not uncommon for movement time, movement distance, margin distance, or margin 

time to also increase.  Further analysis of the effects of varying doses of the hallucinogen 

DOM (10) showed results similar to those observed following administration of 

(+)amphetamine (2) and (+)methamphetamine (3) (i.e., no effect), as DOM produced 

saline-like effects for margin time, center distance, center time, and center entries.   

 Results of combination studies of an effective dose of DOM (10) (0.3 mg/kg) with 

MD-354 (42) differed from those observed from combination of MD-354 with 

(+)amphetamine (2) and (+)methamphetamine (3).   With both phenylalkylamine 

stimulants, combination of MD-354 with (+)amphetamine or (+)methamphetamine 

produced effects similar to the stimulant when administered alone.  However, in 

combination with DOM (10), MD-354 (42) antagonized stimulant parameters as well as 

other parameters analyzed.  In particular, DOM (10) is a hallucinogen; vertical entries 
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should be increased,123 which was observed with DOM administered alone as well as in 

combination with MD-354.  However, in combination with MD-354 (42), the effect of 

DOM (10) on vertical entries, as well as movement time, movement distance, margin 

distance, center distance and center entries were all completely blocked, resulting in a 

saline-like effect.  The only parameters not affected by this combination were movement 

episodes, margin time, and center time, which were saline-like when DOM was 

administered alone.  Literature has shown that 5-HT2 antagonists block the stimulus 

effect of DOM,54 therefore, similar results could be observed with a 5-HT3 partial agonist.   

 Cocaine (1) was evaluated as a non-phenylalkylamine stimulant that has a 

different mechanism of action than (+)amphetamine or (+)methamphetamine, to 

determine if MD-354 (42) behaves similarly or differently in combination than with 

phenylalkylamine stimulants.  Administration of varying doses of cocaine (1) indicated 

that the stimulant significantly increased the effect on the same four parameters increased 

by (+)amphetamine (2) and (+)methamphetamine (3).  These four parameters, movement 

episodes, movement time, movement distance, and margin distance, were significantly 

increased at doses 10 mg/kg and 30 mg/kg; stereotypy was not observed at the high (30 

mg/kg) dose.  The present results are consistent with literature data as Mcgeehan et al. 

showed that the average distance traveled was significantly increased following doses of 

15 and 30 mg/kg of cocaine (1).139 Cocaine produced a saline-like effect on total vertical 

entries, total margin time, total center distance, total center time, and total center entries 

which coincides with the data found in both the (+)amphetamine (2) and 

(+)methamphetamine (3) studies.  This indicates that all three psychomotor stimulants are 



 120
producing similar locomotor effects, regardless of their differences in mechanism of 

action, since the overall effect is an increase in synaptic dopamine levels. 

 Studies were conducted to determine if MD-354 (42) behaved similar in 

combination with cocaine (1) to combination with (+)amphetamine (2).  An effective 

dose of cocaine (10 mg/kg) was used in combination with the 5-HT3 receptor partial 

agonist MD-354 (42).  Potentiation of the effect of cocaine administered alone was 

observed when in combination with MD-354 for several parameters: movement episodes, 

movement time, vertical entries, center distance, and center entries (at various time 

intervals).  A decrease in movement episodes and an increase in movement time and 

vertical entries was observed at all doses of MD-354 (42) in combination with cocaine 

(1).  Center distance and center entries were only affected at a higher dose of MD-354.  

These results were observed at different time intervals.  Analysis of the overall effect of 

the combination indicated that MD-354 potentiated the effect of cocaine on center entries 

at a 6.0 mg/kg dose.  These results differed from those observed with a combination of 

MD-354 (42) and (+)amphetamine (2), as the combination with MD-354 produced effects 

similar to those observed with (+)amphetamine alone. 

 Combination of the same dose of cocaine (1) (10 mg/kg) with the 5-HT3 receptor 

antagonist ondansetron (19) displayed results similar to the combination of MD-354 (42) 

and cocaine.  The effect of cocaine was potentiated in combination with ondansetron (19) 

for movement episodes (i.e., movement episodes decreased).  The effect of cocaine was 

also potentiated in combination with ondansetron for center entries, whereas ondansetron 

decreased the effect of cocaine on margin distance.  The effect of cocaine (1) 
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administered alone increases margin distance; however in combination with ondansetron, 

the effect was blocked, resulting in a saline-like effect.  The effect of ondansetron on 

cocaine varied between different time intervals.  However, analysis of the total effect of 

the combination of drugs on the nine parameters showed that only center entries were 

affected at 0.5 and 1.0 mg/kg doses of ondansetron (potentiated the effect of cocaine).  

 Several different 5-HT3 receptor antagonists (i.e., zacopride, tropisetron, 

bemesetron, and ondansetron) have been studied in combination with cocaine, usually 

resulting in attenuation of the effect of cocaine. Le et al. analyzed locomotor activity 

counts in male DBA/2N mice,143   which differed from the ICR strain of mice used in the 

present studies. Low doses of ondansetron (19), 0.001, 0.01, and 0.1 mg/kg were 

administered s.c. in combination with cocaine (1) to yield slightly different results from 

those observed in the present investigation, as the combination of ondansetron did not 

potentiate or antagonize the stimulant effects of cocaine.143  The differences in the results 

could be due to the type of rodent used as well as the route of administration.  King et al. 

indicated that varying doses of ondansetron (1.0 -16 mg/kg i.p.) attenuated the effect of 

cocaine (15 mg/kg i.p.) in male Sprague Dawley rats.130 Locomotion was measured using 

the Ellinwood and Balster rating scale.130   Svingos and Hitzemann conducted a study 

analyzing the effect of zacopride, tropisetron, and bemesetron on an effective (10 mg/kg) 

dose of cocaine.129  All three 5-HT3 receptor antagonists (injected i.p.) attenuated the 

effect of cocaine in rats when analyzing locomotion (measured as the number of quadrant 

crossovers).129  Further support for attenuation of the effect of cocaine by 5-HT3
 receptor 

antagonists was determined by Reith.132  The effect of tropisetron (injected s.c), as well 
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as zacopride (injected i.p.), in combination with a 25 mg/kg dose of cocaine were 

determined; combination resulted in attenuation of locomotor counts in male 

C57BL/6ByJ mice.132  In the present study, ondansetron behaved similarly to the 

different 5-HT3 receptor antagonists discussed by attenuating the effect of cocaine on 

margin distance.  However, other parameters were potentiated by the combination of 

ondansetron with cocaine. The differences in attenuation of effect observed with several 

5-HT3 receptor antagonists and the present study could be due to route of administration, 

doses, difference in species, as well as the method used for determining locomotor 

activity.   

 For the present study, a combination of cocaine (1) with ondansetron (19) 

produced effects similar to those observed with combinations of cocaine and MD-354 

(42).  Analysis of data suggests that MD-354 is behaving similar to the 5-HT3 receptor 

antagonist ondansetron when administered in combination with an effective dose of 

cocaine (1).  This is because combination studies of MD-354 and cocaine, as well as 

ondansetron and cocaine, produced similar effects on cocaine. This is similar to the 

results observed with MD-354 (42) in combination with (+)amphetamine (2), suggesting 

that in combination with psychomotor stimulants, regardless of mechanism of action, 

MD-354 either behaves similar to a 5-HT3 receptor antagonist or is devoid of action. 

 A combination study was conducted using the 5-HT3 receptor agonist SR 57227A 

(28) with a 10 mg/kg dose of cocaine (1).  The dosage was not altered for cocaine as in 

the (+)amphetamine (2) study, as the cocaine dose-response curve suggested that there 

was a large range of effective doses of cocaine before the threshold of stereotypy was 
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reached.  The results of the combination study showed that SR 57227A (28) potentiated 

the stimulant effect of cocaine by decreasing movement episodes, and increasing 

movement time and center entries at various time intervals; these same three parameters 

were affected in a similar manner by the addition of MD-354 (42) to cocaine (1), 

suggesting MD-354 is behaving like a 5-HT3 receptor agonist.  However, analysis of the 

results of the total effect showed that the only parameter affected by the combination was 

center entries; SR 57227A potentiated the effect of cocaine on center entries when 

analyzed using an un-paired t-test.   

 The results of the present study were further investigated as MD-354 (42) was 

seemingly behaving as both a 5-HT3 receptor agonist and 5-HT3 receptor antagonist when 

analyzing the total effect of each 5-HT3 receptor ligand in combination with cocaine: 

analysis of all nine parameters showed that the 5-HT3 receptor ligands displayed no effect 

on cocaine except with the parameter center entries.   Since similar effects were observed 

when analyzing total parameters, the effect of the combination of 5-HT3 receptor ligands 

on cocaine were analyzed at different time intervals.  Combination studies of MD-354 

and cocaine, ondansetron and cocaine, and SR 57227A and cocaine all potentiated the 

effect of cocaine on movement episodes and center entries.  Since MD-354 is a 5-HT3 

receptor partial agonist, it has the potential to behave as either/both an agonist and 

antagonist.   It was concluded that in combination with cocaine (1), MD-354 (42) 

behaved similarly to a 5-HT3 receptor agonist, based on the evidence provided by other 

locomotor activity parameters analyzed.  Three parameters, movement episodes, 

movement time, and center entries were potentiated by both ondansetron (19) and 
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SR57227A (28), suggesting MD-354 (42) worked as both a 5-HT3 receptor agonist and a 

5-HT3 receptor antagonist.  Ondansetron (19) also antagonized the effect of cocaine (1) 

on margin distance. This antagonism was distinct, and not observed in combination 

studies of cocaine with MD-354 (42) or SR 57227A (28).  By actually antagonizing the 

effect instead of modulating the effect on margin distance, as compared to MD-354 and 

SR 57227A studies, the antagonist is blocking effect of the drug.  Since neither the 5-HT3 

receptor partial agonist or 5-HT3  receptor full agonist display this or similar effects (i.e., 

attenuation of effect of cocaine on margin distance), it is supported that MD-354 (42) is 

working through a 5-HT3 receptor agonist mechanism in combination with cocaine (1).  

Table 5 summarizes the results of the locomotor activity studies conducted in the present 

investigation. 

 For the three psychomotor stimulants ((+)amphetamine (2), (+)methamphetamine 

(3), and cocaine (1)) margin distance was increased when the drug of abuse was 

administered alone.  This could be a result of the drugs inducing anxiogenic-like 

behavior.  However, this could just be a result of stimulation.  It is normal for rodents to 

display anxiogenic-like activity, which is supported by the high values obtained for 

margin distance and margin time as opposed to center distance and center time.  When a 

psychomotor stimulant was administered, the mice displayed increased locomotion.  If 

the mice are walking more following the administration of a stimulant, and generally tend 

to walk around the margins, then it is likely the mice will walk more around the margins 

when administered a stimulant.  The stimulants may be producing anxiogenic-like 

behavior, but also could be displaying thigmotaxis in a stimulated manner. 
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 In conclusion MD-354 (42) may either behave as a 5-HT3 receptor antagonist in 

combination with phenylalkylamine stimulants, or be devoid of action as it neither 

potentiates nor antagonizes effective doses of (+)amphetamine (2) nor 

(+)methamphetamine (3).  However, in combination with a non-phenylalkylamine 

stimulant, that releases dopamine through a different mechanism of action, MD-354 (42) 

might behave as a 5-HT3 receptor agonist, by potentiating several stimulant and non-

stimulant parameters as seen with the 5-HT3 agonist SR 57227A.  The differences in 

mode of action of MD-354 may be a result of the mechanism of action of each stimulant 

to release dopamine. 

MD-354 is a 5-HT3 partial agonist with a low Log P value suggesting it does not 

cross the BBB.  However, drug discrimination studies, which can indicate whether or not 

a drug acts centrally (i.e., crosses the BBB), have shown that MD-354 serves as a 

discriminative stimulus11 and that MD-354 enhances the discriminative stimulus action of 

(+)amphetamine in rats.143  Currently it is unknown whether MD-354 works peripherally.  

Analysis of ex vivo studies indicated that the 5-HT3 receptor agonist, SR 57227A, crosses 

the BBB and acts both centrally and peripherally.111 Since MD-354 neither potentiated 

nor antagonized the stimulant effect of (+)amphetamine in the locomotor activity assay it 

is not displaying a central effect, compared to the central acting 5-HT3 agonist which 

potentiated the stimulant effect of (+)amphetamine.  Although locomotor activity assays 

are in vivo studies that analyze central effects, the possibility of a peripheral effect of 

MD-354 can not be excluded.   
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 Comparison of MD-354 and (+)amphetamine with MD-354 and cocaine suggests 

differences in mode of action, as MD-354 potentiated the effect of cocaine on various 

parameters, at various time intervals.  Similar effects were observed with SR 57227A 

suggesting that in combination with a stimulant that has a different mechanism of action, 

MD-354 may behave both centrally and peripherally. 

 In conclusion, in combination with phenylalkylamine stimulants, the 5-HT3 

receptor partial agonist MD-354 may be devoid of action because it is not lipophilic 

enough to cross the BBB, crosses the BBB, but at a dose too low to cause an effect if 

MD-354 is a centrally acting agent, or is behaving similar to a 5-HT3 receptor antagonist.  

However, in combination with a non-phenylalkylamine stimulant, MD-354 behaves 

similar to SR 57227A which acts both centrally and peripherally. 

 

B.  Synthesis 

 1.  Preparation of phenyl carbamate analogs of MD-354. 

 MD-354 (42) was prepared as previously described (Scheme 1).144 
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Scheme 1.  a. HCl/Et2O; b. NH2CN, EtOH, reflux; c. NH4NO3, H2O. 
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 Several different methods were used to synthesize carbamate analogs of MD-354.  

For the methyl carbamate analog 62, a one-pot synthesis by Khasanov145 was employed 

(Scheme 2).  
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Scheme 2.  a. H2O, 45 °C; b. 40% NaOH, reflux, 4.5 h. 

  

The first attempt to prepare the phenyl carbamate 53 was to follow the same 

method used in the synthesis of the methyl carbamate 62 (Scheme 3).145 Calcium 

cyanamide was allowed to react with phenyl chloroformate (63).  3-Chloroaniline 

hydrochloride (60) was added to the filtrate and the pH was adjusted to 4.  The precipitate 

was collected by suction filtration and recrystallized from anhydrous MeOH.  1H NMR 

spectral analysis indicated that the product was not the desired carbamate 53, but a dimer 

of 3-chloroaniline, N,N’-bis(3-chlorophenyl)urea (64).  Urea 64 is a known146 compound.  

Comparison of the melting point of 64 with literature data supported this 

characterization.146  The structure of 64 was also supported by microanalysis for C, H, 

and N. 
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Scheme 3.  a. H2O, 45 °C, 30 min; b. 40% NaOH, reflux overnight. 

 

 This same procedure was followed using 4-chlorophenyl chloroformate (65) and 

4-methoxyphenyl chloroformate (66) (Scheme 4).  In both instances, the resultant white 

precipitate was also identified as the 3-chloroaniline dimer 64.   
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Scheme 4.  a.  H2O, 45 °C, 30 min; b. 40% NaOH, reflux overnight. 
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 In general, there are numerous methods available to synthesize ureas.  For the 

most part, ureas are extremely stable, and most of the routes of synthesis are very clean 

and easy to perform.147  Interestingly, one of the common methods to synthesize ureas 

includes carbamates as starting material.  Liu et al.  reported a two-step synthesis which 

used a chloroformate and an amine to obtain a carbamate, followed by the addition of  an 

amine to form a urea.147 This reaction could be conducted both in organic and aqueous 

solvents.  Liu et al.  also stated that the reaction of isocyanates with amines can also 

produce ureas under mild conditions.147 

 Therefore, with the reaction conditions used in Scheme 3 and Scheme 4, the 

desired carbamate may have been synthesized, but was quickly converted to the urea, as 

urea may be a more stable compound than the phenyl carbamate 53.  Further analysis of 

the reaction mechanism showed that several side products other than the desired phenyl 

carbamate can be obtained (i.e., isocyanate derivative).   If an isocyanate had been 

formed, it too could have been converted into the urea in the presence of excess amine.  

Since the reaction yielded several products (tlc), which could include both the isocyanate 

(and infrared analysis of the crude reaction mixture showed the possible formation of an 

isocyanate intermediate as evidenced by a band at 2359 cm-1), the desired carbamate, and 

unreacted amine, conditions employed during purification might have resulted simply in 

the isolation of one of these products, the urea 64. 

 Another attempt was made to synthesize the phenyl carbamate analog of MD-354 

using a procedure by Naiman (Scheme 5).148   In this procedure, MD-354 (free base; 42) 

was added to a solution of  triethylamine and dry THF.  A THF solution of phenyl 
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chloroformate (63) was added to the reaction mixture and the reaction was monitored by 

tlc.  The triethylamine hydrochloride precipitate (mp = 261 °C)149 was removed by 

filtration and the solvent was evaporated to obtain an oil which was subjected to flash 

chromatography.  Three products were obtained: two were unstable and decomposed 

rapidly upon standing as evidenced by tlc.  A third product was recrystallized from 

anhydrous MeOH.  1H NMR spectral analysis of the latter product indicated the presence 

of three aliphatic protons (signal at δ = 3.60 ppm) that corresponded to the methyl group 

of methyl carbamate 62.  Melting point and tlc analysis further supported this conclusion: 

Rf = 0.35 (3:2 hexane:EtOAc). 
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Scheme 5. a. Et3N, THF; crystallized from MeOH. 

  

 Looking back at the previous reaction, tlc analysis indicated that a significant 

amount of starting material was still present after the 15-min reaction time.  Therefore, 

the reaction was repeated (Scheme 5), but allowed to continue until all the starting 

material was consumed (17 h).  Several additional products were formed (tlc).  The 
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resultant oil was crystallized from anhydrous MeOH several times to yield a white solid.  

1H NMR spectral analysis and melting point indicated that the methyl carbamate 62 was 

obtained, again with three aliphatic proton signals present in the 1H NMR spectrum.  

Based on this information, it was thought that the desired product could more easily be 

isolated using a shorter reaction time; this was employed in future trials.  However, 

higher yield of the methyl carbamate 62 was obtained during purification using 

recrystallization methods (17%) as opposed to flash chromatography (3%). 

 Synthesis of the methyl carbamate 62 from phenyl chloroformate 63 indicated 

that methanolysis might be occurring.  Two separate purification techniques were 

employed to determine if heat was necessary for this to occur.  The reaction was repeated 

and the resultant oil was divided into two batches.  One batch crystallized upon addition 

of hot MeOH, which yielded the methyl carbamate.  The other batch was subjected to 

MeOH at room temperature.  A solid material precipitated from the addition of MeOH, 

but could not be purified.  This supported the conclusion that heat is necessary for 

methanolysis to occur because methyl carbamate 62 was not isolated from the latter 

reaction.  

 The next attempt to synthesize the phenyl carbamate analog of MD-354 used the 

procedure of Gotz and Zeeh150 (Scheme 6). This method consisted of adding cyanamide 

to water while maintaining a pH of 7-8.  Phenyl chloroformate (63) was added to the 

reaction mixture, and was allowed to stir, followed by the addition of 3-chloroaniline 

(59); pH was adjusted to 3.  Basification of the filtrate resulted in immediate precipitation 

of a white solid (NaCl; mp > 300 ˚C).  A second product was present on tlc which was 
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determined to be phenol (67); Rf  = 0.83 (3:2 hexane:EtOAc).  Synthesis of phenol and 

NaCl prevented the reaction from proceeding to completion. 
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Scheme 6.  a.  H2O, 50% NaOH, conc. HCl (pH 7-8), 45 °C, 1 h; b. conc. HCl (pH 3), 

reflux, 45 min. 

  

 Further analysis of the literature suggested that commercially available phenyl 

chloroformate is not very stable, and could be hydrolyzed to phenol or decompose in the 

presence of water, heat, or air, all three of which were present in the previous attempts.151  

Therefore, the reaction conditions for the previous reactions were modified.  Using the 

method of Khasanov145 (Scheme 7), acetone rather than water was used as solvent in the 

first step of the reaction, and the reaction was conducted at room temperature instead of 

at 45 °C.  A calcium cyanamide/acetone mixture was added to phenyl chloroformate (63) 

and the reaction mixture was allowed to stir.  3-Chloroaniline hydrochloride (60) was 

added to the filtrate and stirring was continued; the pH was not changed.  The solution 

was evaporated under reduced pressure to yield a white solid.  Recrystallization attempts 
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were made with several solvents (i.e., ethyl acetate, acetonitrile, and acetone) with 

acetone as the only solvent able to dissolve the product without heat.  Once again, 1H 

NMR spectral analysis suggested the product was not the desired phenyl carbamate 53.  

Instead, 1H NMR and elemental microanalysis supported the conclusion that the product 

obtained was the tetra-carbamate analog of MD-354 as its hydrochloride salt (i.e., 68). 

This conclusion was further supported by the IR spectrum that showed a carbamate 

peak(s) at 1586 cm-1. 
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Scheme 7. a. acetone, rt, N2, 45 min; b. rt, N2, 4 h. 

  

 The formation of tetra-carbamate 68 could be due to the fact that the reaction was 

not run in a 1:1 ratio of starting materials.  Instead, a 2:1 carbamate:amine ratio was used, 

which could result in a dicarbamate product.  When running the reaction, it was 

extremely difficult to add the CaCN2/acetone mixture to phenyl chloroformate (63) 
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because calcium cyanamide was not soluble in the solvent.  Therefore, it is likely that not 

all of the calcium cyanamide was added, causing even more of an excess of phenyl 

chloroformate. The basicity of the amines in the presence of excess acid chloride could 

result in multiple couplings, creating tetra-carbamate 68.      

 Another attempt to synthesize the phenyl carbamate analog of MD-354 was made 

using protecting groups (Scheme 8).152,153  In this method, 1H-pyrazole-1-carboxamide 

hydrochloride (69) was allowed to stir with diisopropylethylamine and CH2Cl2.  A 

solution of phenyl chloroformate (63) and CH2Cl2 was added to the mixture.  Once the 

reaction was complete (tlc), the product was extracted using aqueous sodium bicarbonate 

and brine.  The extract was dried (sodium sulfate), filtered, and solvent was evaporated 

under reduced pressure to yield a white, fluffy solid, the phenyl ester 70 of the pyrazole.  

The product was characterized by 1H NMR spectral analysis and elemental analysis. 

 The ester 70 and 3-chloroaniline hydrochloride (60) were allowed to stir in 

refluxing diisopropylethylamine (DIEA).  Once all starting materials were consumed 

(tlc), the solvent was evaporated under reduced pressure and the resultant crude product 

was isolated using column chromatography: 3:2 hexane:EtOAc.  The crude product was 

recrystallized from acetone to yield the urea 64. 
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Scheme 8.  a. DIEA, DCM, rt, 2 h; b.  DIEA, reflux overnight. 

  

 Once again, ureas are easily synthesized by the addition of amine to carbamates.  

Since characterization of intermediate 70 indicated that the desired carbamate had been 

formed, then the phenyl carbamate 53 should be synthesized.  However, the more stable 

urea was isolated.  The literature states that the reaction of protected pyrazole with simple 

primary amines is rapid and needs to be monitored closely.153  However, reduction in 

nucleophilicity drastically increased reaction time sometimes preventing the reaction 

from proceeding (e.g. the amine p-nitroaniline suppressed reaction time completely).153  

Even though m-chloroaniline is more nucleophilic than p-nitroaniline,154 the electron-

withdrawing group may be strong enough to suppress the reaction, resulting in the urea 

64 instead of the desired phenyl carbamate 53.  

 Based on previous synthetic attempts to prepare phenyl carbamate 53 that 

indicated the occurrence of methanolysis, the concept of alcoholysis was analyzed.  The 

theory was put to use with the simple reaction of acid chloride and amine in dry THF to 
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synthesize a carbamate.  Different bulky alcohols (i.e, isoporopanol and n-butanol) would 

then be used to isolate bulky carbamates, such as the isopropyl carbamate or n-butyl 

carbamate.  A THF solution of phenyl chloroformate (63) was added to a solution of MD-

354 (free base; 42), triethylamine, and dry THF (Scheme 9).  The triethylamine 

hydrochloride was removed by filtration and the filtrate was evaporated under reduced 

pressure to yield a yellow oil.  The oil was divided into two separate batches; isopropanol 

was added to one and n-butanol was added to the other at room temperature.  The 

precipitates from each batch were collected and washed with Et2O.  It was expected that 

one reaction would yield the isopropyl carbamate whereas the other would provide the 

butyl counterpart.  Comparison of the two products indicated the same material was 

formed in both cases (melting point, tlc, and 1H NMR spectral analysis).  1H NMR 

spectral analysis and elemental analysis supported the conclusion that the structure was 

that of the desired phenyl carbamate 53.   
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 The purpose of using the bulky alcohols in this reaction was to support the idea 

that alcoholysis was occurring.  However, synthesis of the phenyl carbamate 53 instead 

of either the isopropyl carbamate or the butyl carbamate indicated that this was not the 

case.  Several factors may contribute to this.  It was shown that for methanolysis to occur, 

heat was necessary.  However, at no point was heat used in the purification of the phenyl 

carbamate 53 (Scheme 9).  Therefore, alcoholysis may not have been able to occur since 

heat was not present to hydrolyze the phenyl carbamate 53.  Also, alcoholysis may have 

been prevented due to the actual bulkiness of isopropanol and n-butanol.  Since MeOH is 

a much sterically smaller (less bulky, and/or more acidic) compound, it could attack the 

phenyl carbamate 53 and convert it to the methyl carbamate 62.  However, since the other 

alcohols employed were bulkier, steric interactions due to the structure of the phenyl 

carbamate 53, may have prevented the alcohols from attacking the compound, which in 

turn prevented alcoholysis.  Therefore, the phenyl carbamate 53 was isolated instead of 

the isopropyl or butyl carbamates.  Also, alcoholysis may not have occurred due to the 

polarity of the bulky alcohols; the bulky alcohols are less polar and less acidic than 

MeOH, therefore they are less reactive.  The less polar nature of isopropanol and n-

butanol as opposed to MeOH, may require more extreme conditions, such as the use of 

heat, to allow alcoholysis to occur.      

 The stability of the final product was of concern since so many attempts showed it 

to be unstable.  Therefore, the final product was heated with H2O.  Within 15 min, the 

phenyl carbamate 53 began to hydrolyze and by 30 min there was no phenyl carbamate 

present as evidenced by tlc.  Analysis by tlc indicated that the phenyl carbamate 53 may 
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have been hydrolyzed to its carbamic acid 71 which decarboxylated to form starting 

material, m-chlorophenylguanidine (42, free base), Rf = 0.77 (MeOH) (Scheme 10).  The 

phenyl carbamate also hydrolyzed to MD-354 in room temperature H2O; hydrolysis 

occurred at a slower rate than in refluxing H2O.  It is important to note that heat and 

water were not necessary to decompose the phenyl carbamate; in a separate reaction, the 

product decomposed while in EtOAc in a sealed vial at room temperature.  These data 

support the idea that carbamate 53 is relatively unstable.  Therefore, the carbamate was 

not evaluated in animal studies, as it may hydrolyze or decompose too quickly to attain 

any reliable results.   
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Scheme 10. a. H2O, reflux 

  

 The same procedure was applied to the synthesis of both the 4-chlorophenyl 

carbamate 54 and the 4-methoxyphenyl carbamate 55.  However, attempts at purification 

were unsuccessful.  Also, it was noted that the crude products were extremely unstable, 

and decomposed in sealed vials (tlc).  This lack of apparent product stability was the 

basis for not continuing with the pharmacological aspects of this study. 
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 2. Preparation of a conformationally-constrained analog of MD-354. 

 2-Amino-6-chloroquinazoline hydrochloride (57) was synthesized using a general 

method described by Grosso and Nichols (Scheme 11).155  Commercially available 5-

chloroisatoic anhydride (73) and S-methylisothiourea (72) were heated at reflux in 1,4-

dioxane.  The resulting quinazolinone 74 was reduced with diborane in refluxing THF to 

obtain the free base 57, which was converted to its hydrochloride salt using an HCl/ether 

solution. 

 The progress and purity of each step of the reaction was monitored by tlc using 

3:2 hexane:EtOAc as  eluent.  1H NMR spectroscopy of the final target indicated the 

presence of two aliphatic proton signals at δ = 4.49 ppm that correspond to the methylene 

group of 57 after the reduction of lactam 74.  Similarly, the IR spectrum showed absence 

of the lactam group at 1679 cm-1 seen in 74.  The physicochemical properties of 57 were 

compared with those of a sample previously synthesized in our laboratory but incorrectly 

assigned structure 56.   Both compounds possessed identical melting points, Rf = 0.26 

(H2O), IR, 1H NMR, and microanalytical properties. 
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Scheme 11. a. 1,4-Dioxane, Na2CO3, reflux, overnight; b. BH3-THF, reflux, N2, 2.5 h; c. 

HCl/Et2O, recrystallized from EtOH. 

 

 The conformationally-constrained analog of MD-354 (i.e., 57) was synthesized to 

confirm the structure of a compound previously synthesized in our laboratories, and 

whose structure may have been misassigned.  Previously, it was believed that 2-amino-7-

chloroquinazoline hydrochloride (56) had been obtained; however, analysis of the 

synthesis indicated that the position of the chloro group was in question.  Therefore, two 

reactions were performed using different starting materials, 5-chloroisatoic anhydride and 

4-chloroisatoic anhydride, to yield the respective 6- and 7-chloroquinazolines.  The 7-

chloro analog, 56, has been independently synthesized in our laboratory by an 

unequivocal route and has been shown to be different in structure from that of 57 (Ownby 

and Dukat, unpublished data as shown in Scheme 11). 

 1H NMR spectral analysis indicated that the difference between the 6-chloro 

quinazoline and the 7-chloroquinazoline was a shift of two aromatic hydrogen signals 

upfield.  These data were compared to the 1H NMR data of the previously reported 
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compound, which supported the conclusion that the structure had been misassigned and 

that the 2-amino-6-chloroquinazoline hydrochloride (57) had originally been synthesized.   

 

C.  Molecular Modeling 

 QSAR studies were conducted on 5-HT3 receptor agonists and partial agonists to 

evaluate Dukat’s current working pharmacophore accounting for the binding of 

arylguanidines and arylbiguanides at 5-HT3 receptors.14  Since many of the arylguanidine 

and arylbiguanide ligands are meta-substituted, and because there are two meta-positions 

(3 and 5), rotameric binding can occur.  Therefore, constrained analogs were included to 

better account for the possibility of rotameric binding. 

 An arginine fragment obtained from SYBYL was used to construct a model of 

MD-354 (42), which served as the template for all of the arylguanidine analogs shown in 

Table 6.  The crystal structure of m-chlorophenylbiguanide was obtained from the 

Cambridge Database (Identification name FERDOW), and was used as a template to 

construct the arylbiguanide analogs shown in Table 7.   Since there are two meta-

positions, selection of substitution was based on Ki values; meta-substituted analogs with 

Ki values ≥700 nM were labeled as 5-substituted analogs, whereas those with Ki values 

<700 nM were labeled as 3-substituted analogs.  This classification was based on the 

constrained analogs used in the model; the 5-chloroquinazoline bound with an affinity 

>700 nM, therefore meta-substituents with higher affinity were placed in the 3-position. 

Also, for analogs that were di- and tri-substituted, substitution positions were determined 

based on binding affinity.  For example the 3,6-dichloro arylbiguanide analog was 
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labeled as such, instead of 2,5-dichloro arylbiguanide, because the binding affinity was 

less than 700 nM, which was consistent with monosubstituted 3-chloro analogs.  

 

Table 6.  Arylguanidine 5-HT3 receptor agonists/partial agonists and their respective 

binding affinities used in the present QSAR studies.113,115 

             

HN NH2

NH

R

1
2

3

4
5

6

          

#   R=  pKi  #  R=      pKi   

41  H  5.63  83  4-C2H5      6.11   

42  3-Cl  7.49  43  3,4-fused phenyl  7.74   

47  5-CF3  5.61  84  4-C6H5       8.15   

75  5-OH  5.69  48  3,4-Cl       8.51  

76  3-CN  6.91  51  3-CF3, 4-Cl      7.44  

77  5-OCH3 5.80  85  4,5-OCH3      5.57  

78  4-CH3  6.3  46  5-CH3       5.19  

45  4-Cl  6.49  86  4-C(CH3)3      5.68  

79  4-CF3  6.64  87  4-C6H5       5.60  

80  4-OCH3 6.00  49  3,5-Cl       8.30  

81  3-Cl, 5-OCH3 7.74  50  3,4,5-Cl      9.15  

82  4-CH2C6H5 6.60   
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Table 7.  Arylbiguanide 5-HT3 receptor agonists/partial agonists and their respective 

binding affinities used in the present QSAR studies.115 

HN N
H

NH

R

1
2

3

4
5

6

NH2

NH

 

#  R=  pKi  # R=   pKi   

29  H  5.92  89 3-Cl, 4-CH3  6.65   

30  3-Cl  7.75  39 3,5-Cl   8.74   

37  3,5,6-Cl 9.40  90 3,5-CF3  5.92   

38  3,4-Cl  7.92  91 3,6-Cl   8.54   

40  3,4,5-Cl 8.57  92 2,3-Cl   8.33    

32  6-Cl  7.21  93 4,6-F   6.59   

33  4-Cl  6.68  94 4-F   6.21   

88  4-CH3  6.05  95 4-CF3   6.16   

31 3,4-fused phenyl 7.85   

 

 The structures of 43 arylguanidines and arylbiguanides (with Ki values spanning a 

10,000-fold range), including three constrained analogs (57, 58, and 96; Figure 58) were 

constructed and minimized using Gasteiger Hückel algorithms.  These 43 analogs were 

used as a training set and aligned using a Least Squares Method: the Fit Atom function.  

Alignment was based on three common points of the structure of MD-354 (42): the aryl 
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3-position, the aryl 5-position, and the carbon atom of the guanidine moiety (as shown in 

Figure 59).  

 

N NH

NH2

Cl    

N NH

NH2

Cl    Cl

NH
N

NH2

 

       57           58           96 

 pKi = 7.10   pKi = 6.13   pKi = 6.14 

Figure 58. Constrained analogs and their respective binding affinities used in further 

evaluation of the 5-HT3 receptor working pharmacophore model.13,135 

 

 CoMFA studies were conducted on the training set of 43 arylguanidine and 

arylbiguanide derivatives.  Analysis indicated there was a 63% steric contribution and a 

37% electrostatic contribution (r2 = 0.681, q2 = 0.693) with 5 as the optimal number of 

components.  Since the predictability factor (q2) was above 0.60, the model was 

considered to be acceptable and could be used to predict binding affinities of 

arylguanidine or arylbiguanide analogs.  In general, models with r2 values above 0.60 

have good predictability, however, the closer to 1 the r2 value, the better the 

predictability. 
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HN NH2

NH

R

       

Figure 59.  A)  Three points used for alignment of all 43 training-set compounds.  B)  All 

43 compounds aligned in CoMFA. 

 

 These results differ from those observed in the previous pharmacophore model as 

the previous model only used a total of 33 compounds instead of 43 as employed in the 

current investigation.113  In the previous model, similar compounds were used for both 

arylguanidines and arylbiguanides; mono-, di-, and tri-substituted compounds, as well as 

the 2-napthyl analogs.  However, the previous model did not include bulky substituents at 

the 4-position or any of the constrained analogs.113  It did, however, include substitution 

within the guanidine moiety, which is not included in the current investigation.113  The 

same three points, aryl 3-position, aryl 5-position, and the cationic carbon attached in the 

guanidine moiety were used for alignment.113  However, with the previous model, 

CoMFA studies resulted in r2 = 0.851 and q2 = 0.584.113 

A

B
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 The difference in predictability of the model generated in the present studies 

versus that of the previous model not only could be due to the addition of constrained 

analogs to the training set, but also the function of these constrained analogs.  Currently, 

is not known whether these constrained analogs behave in an agonist or antagonist 

manner. 5-HT3 receptor agonists and antagonists may bind to the receptor in a different 

manner.  If this is the case, and both models are supposed to be representative of 

arylguanidine and arylbiguanide 5-HT3 receptor agonists and partial agonists, the addition 

of ligands with unknown functionality may decrease the predictability of the model. 

 Validation of the model was completed using a test set of five (arbitrarily 

selected) compounds, whose known pKi values were compared to the pharmacophore 

model’s predicted values (Figure 60).  The predictability of the validation set was high as 

some affinities were predicted within 2- to 3-fold.  
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HN NH2

NH

Cl

  

HN NH2

NH

Cl

H3CO

  

HN N
H

NH

Cl

NH2

NH

F3C  

  44    97    98 

Actual pKi:    6.72  (Ki = 190 nM)          6.10  (Ki = 794 nM)     6.52  (Ki = 302 nM)  

Predicted pKi:6.23  (Ki = 588 nM)          6.13  (Ki = 741 nM)    6.00 (Ki = 1000 nM)  

 

 

HN N
H

NH

NH2

NH

CH3   

HN N

N

NH2

Cl  

       99                   100 

Actual pKi:  6.11  (Ki = 776 nM)          5.84  (Ki = 1445 nM)  

Predicted pKi:  5.95  (Ki = 1122 nM)               5.10  (Ki = 7943 nM)  

Figure 60.  Predicted pKi and Ki values of five arbitrarily selected test-set compounds 

from the CoMFA model compared to their known113,115 pKi and Ki values. 

 

 Figure 61 displays the region in the pharmacophore model where electrostatic 

interactions are favorable versus unfavorable.  There was only a small area near the aryl 

5- and aryl 6-positions where negatively charged substituents were favored.  The aryl 3- 

and aryl 4-positions possessed a large region favoring positively charged substituents.  

These interactions were also favored around the guanidine moiety.   
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Figure 61.  CoMFA results analyzing only electrostatic interactions (n = 43).  Blue is a 

region were positively charged substituents are favored, whereas red represents regions 

where negatively charged substituents are favored. MD-354 (42) is displayed in the 

model. 

  

 CoMFA results also displayed regions where steric interactions are favorable 

versus unfavorable (Figure 62).  A small area of bulk tolerance was observed near the 

aryl 3-position.  However, this area did not extend too far away from the aromatic region.  

It was observed that steric interactions were unfavorable to a large extent at the aryl 4-

position.  Therefore, bulky substituents are not favored and, in fact, compounds display 

lower binding affinities when they bear such substituents near this region.  
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Figure 62. CoMFA results analyzing regions of steric tolerance (n = 43).  Green areas are 

regions where bulky groups are favored and yellow represents areas where bulky 

substituents are unfavored.  MD-354 (42) is the compound represented in the model. 

 

 Based on the CoMFA studies, there are more regions of favorable electrostatic 

interactions than favored steric interaction.  This could be due to the number of 

arylguanidines and arylbiguanides that had variable electrostatic substituents versus the 

amount of sterically hindered 5-HT3 receptor agonists/partial agonists employed in the 

training set.  Figure 63 displays the full results of the CoMFA study, which differ from 

Dukat’s pharmacophore model as the previous model provided more information about 

substitution within and around the guanidine moiety.  However, that model included 

analogs with substitution within the guanidine moiety as opposed to the present model 

that did not include these types of analogs. 
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Figure 63.  CoMFA results including favorable and unfavorable regions of steric and 

electrostatic interactions (n = 43). Blue areas are regions where positively charged 

substituents are favored, whereas red areas are regions where negatively charged 

substituents are favored.  Green areas are regions where bulky groups are favored and 

yellow areas are regions where bulky substituents are unfavored. MD-354 (42) is 

compound displayed in the model. 

 This model differs from results of the previous CoMFA model as bulky 

substitutents are favored close  to the aryl 3- and aryl 5-positions, whereas bulky 

substituents are unfavored around the majority of the aryl-positions (further out from the 

aryl 3- and aryl 5-positions) and around the guanidine moiety.113  The present model 

suggests that bulky substituents are favored near the aryl 3-position, and disfavored 

around the aryl 4-position, however, this is the only information the present investigation 
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provides relating favorable and unfavorable regions or steric bulk.   Therefore, the 

present investigation is not as informative as the previous model on the location of where 

regions of bulk are preferred versus unfavorable regions. 

 Also, the present investigation displays large regions where electrostatic 

interactions are favored (i.e., positively charged substituents improve affinity).  This is 

observed near the aryl 3-, aryl 4-, and aryl 5-positions, as well as within the guanidine 

moiety.  The previous model also displays favorable electrostatic interactions within the 

guanidine moiety, as well as near the aryl 5-position, however these interactions are 

unfavored near the aryl 3-position.113  This could be due to assignment of meta-

substituents to the 3- versus 5-position based on binding affinity relative to the 

constrained analogs.  Once again, constrained analogs were not present in the previous 

study.    

 CoMSIA studies can provide information on steric, electrostatic, hydrophobic, H-

bond donor, and H-bond acceptor regions.  All five aspects were analyzed in the present 

study (n = 43), however the r2 values were low (r2 < 0.50) on all parameters analyzed 

except hydrophobic interactions.  With this parameter, slightly better predictability was 

observed (r2 = 0.51, q2 = 0.50), as opposed to H-bond donor/acceptor, electrostatic, and 

steric parameters.  Although this predictability is not too reliable, as r2 is not greater than 

0.60, it still can be used to give some insight into regions where hydrophobic interactions 

are favorable versus unfavorable (Figure 64). 
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Figure 64. CoMSIA results showing regions of hydrophobic interaction (n = 43).  Cyan 

areas are regions were hydrophobic interactions are favored whereas those areas shown in 

purple are regions where hydrophobic interactions are unfavorable. MD-354 (42) is the 

compound displayed in the model. 

  

 Results from CoMSIA studies indicated that hydrophobic interactions are favored 

near the aryl 3-position, the aryl 5-position, and near the terminal amine in the guanidine 

moiety.  There was a much larger area of unfavorable hydrophobic interactions, which 

was observed near the aryl 4-position as well as in the center of the aromatic ring; 

typically, compounds with nonpolar substituents at these positions would be predicted not 

to bind well.   

 From these findings, the binding affinities of five new compounds recently 

synthesized in our laboratories, whose binding affinities have not yet been determined, 
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were predicted as shown in Figure 65.  The binding affinities were predicted using 

CoMFA as this model displayed higher predictability than the CoMSIA model. 
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        101             102                 103             56  104 

      7.43           6.68      7.51           7.53  7.76 

Figure 65. Predicted pKi values of five new arylguanidine analogs using CoMFA 

analysis. 

  

 These predictions will be compared to the actual binding affinities of these 

compounds once radioligand binding data become available.   

 This information further extends the current working pharmacophore model for 5-

HT3 arylguanidine and arylbiguanide agonists and partial agonists. Evidence from the 

current investigation supports the idea that binding is sensitive to electronic and lipophilic 

substituents at the aryl 3- and aryl 5-positions as well as lipophilic substituents at the aryl 

4-position.  Information provided from this model gives insight into what features are 

necessary to bind with high affinity to the 5-HT3 receptor.  Based on this, design of novel 

compounds can be facilitated. 

 QSAR studies are extremely helpful in designing novel ligands that could bind 

with high affinity, by understanding which regions of the receptor prefer which type of 
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substituents (i.e., electron-withdrawing versus electron-donating groups).  The present 

investigation shows that electrostatic factors are preferred in the majority of the model 

except at aryl 5- and aryl 6- positions.  However, di-substituted ligands, preferably 

electron-withdrawing groups at the 3- and 5- positions bind with higher affinity than 

mono-substituted ligands.  Therefore, design of novel di-substituted ligands should be 

considered.   

 Not only are QSAR studies useful in design of ligands, but very helpful in 

predicting the binding affinities of ligands.  Even though some of the compounds in 

Figure 65 have already been synthesized (i.e., all but 104), binding data have not yet been 

obtained.  Nevertheless, binding affinities have been predicted and compared to each 

other.  This information can also help in the design of new ligands, as analysis of what 

may increase or decrease binding affinity, such as more electronegative substituents, can 

help to determine new analogs to be synthesized without having to wait for binding 

studies to be conducted.  
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V. Conclusions 

 

 In locomotor activity assays, the goal was to determine the effect, if any, MD-354 

might have on the locomotor effects of different psychomotor stimulants.  This could 

provide information on whether MD-354 is acting through a 5-HT3 receptor agonist or 

antagonist mechanism.  Since MD-354 is a 5-HT3 partial agonist, it has the potential to 

behave as either an agonist or antagonist.  The three 5-HT3 receptor ligands MD-354 

(42), the 5-HT3 receptor antagonist ondansetron (19), and the 5-HT3 receptor agonist SR 

57227A (28) all produced saline-like effects in locomotor activity assays when 

administered alone.  Effective doses of the four drugs of abuse tested ((+)amphetamine 

(2), (+)methamphetamine (3), DOM (10), and cocaine (1)) were determined and used in 

combination with the 5-HT3 receptor ligands.  MD-354 (42) neither potentiated nor 

antagonized the stimulant effect of either (+)amphetamine (2) or (+)methamphetamine 

(3).  These results were similar to those observed with (+)amphetamine in combination 

with ondansetron (19).  They suggest that MD-354 might be acting as an antagonist, or is 

devoid of action. These results differed from the combination of (+)amphetamine with 

SR 57227A, as the 5-HT3 agonist potentiated the stimulant effect of (+)amphetamine on 

the parameters of movement episodes, movement time, movement distance, and margin 

distance. Combination of MD-354 (42) with cocaine (1) resulted in the potentiation of 

stimulant parameters consistent with results observed with a combination of SR 57227A 
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(28) and cocaine. This suggests that MD-354 (42) is working through a 5-HT3 receptor 

agonist mechanism.  These results could be due to the fact that psychomotor stimulants 

display increased locomotion due to increased synaptic dopamine levels, and 5-HT3 

receptor agonists can indirectly cause release of dopamine.  However (+)amphetamine (2) 

and (+)methamphetamine (3) increase dopamine levels through a different mechanism of 

action than cocaine (1).  This could be the reason MD-354 has different effects between 

the phenylalkylamine stimulants versus the non-phenylalkylamine stimulant.  

Combination of MD-354 (42) with the phenylalkylamine control non-stimulant DOM 

(10) resulted in antagonism of the effect that hallucinogens commonly have on various 

parameters.  This antagonism versus potentiation, or no effect at all, could be due to the 

fact that DOM is not a stimulant and does not work through releasing dopamine.  

 Various trials were employed to synthesize the more lipophilic phenyl carbamate 

analogs of MD-354, which were to be used in animal studies as prodrugs of MD-354.  

Lack of stability of the carbamates made isolation of the phenyl carbamate analog of 

MD-354, 53, extremely complex.  However, by avoiding heat, air, and water the phenyl 

carbamate analog of MD-354, 53, could be isolated using bulky alcohols to precipitate 

the product.  However, upon exposure to heat and water, the phenyl carbamate analog 53 

was rapidly hydrolyzed to starting material MD-354 (42).  This lack of stability precluded 

animal studies from being conducted.  Other phenyl carbamate analogs were even more 

unstable, and could not be isolated as they decomposed upon standing. 

 The current working pharmacophore model for arylguanidine and arylbiguanide 

5-HT3 receptor agonists and partial agonists was further developed by the addition of 



 157
constrained analogs to the model to help account for rotameric binding that can occur 

based on the presence of two meta-substitution positions.  This model indicated that the 

3- and 5-positions are sensitive to lipophilic and bulky substituents.  Information from the 

model can be used to design high affinity 5-HT3 receptor ligands.  CoMFA studies were 

used to predict the binding affinity of several analogs that have been or are being 

synthesized in our laboratory, but for which binding data are not yet available.  Once 

binding data are available, their binding affinities might further validate this model. 

 In conclusion, the 5-HT3 receptor partial agonist MD-354 may behave as either an 

agonist or is devoid of action when administered with psychomotor stimulants that have 

different mechanisms of action.  It is indicated that this is a central action, although 

peripheral action can not be excluded.  The effect of MD-354 on DOM locomotor effects 

is intriguing and requires further investigation.  These effects are very interesting, but 

cannot be explained at this time.  In regards to synthesis, the more lipophilic carbamate 

analogs of MD-354 were unstable preventing use in animal studies as prodrugs of MD-

354 that could possibly cross the BBB. As such, this is the first study to demonstrate that 

phenyl carbamates of guanidines are not stable compounds. QSAR studies were 

conducted including conformationally-constrained analogs to help improve the current 

working 5-HT3 receptor agonist/partial agonist pharmacophore model for arylguanidines 

and arylbiguanides.   
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VI. Experimental 

A. Synthesis 

  Melting points were taken on a Thomas-Hoover melting point apparatus in glass 

capillary tubes and are uncorrected.  1H NMR spectra were recorded with a Varian EM-

390 spectrometer with tetramethylsilane (TMS) as an internal standard.  Peak positions 

are given in parts per million (δ).  Infared spectra were obtained on a Nicolet Avatar 360 

FT-IR spectrophotometer. Microanalyses were performed by Atlantic Microlab Inc. 

(Norcross, GA) for the indicated elements and results are within 0.4% of calculated 

values.  Chromatographic separations were performed on silica gel columns (Silica Gel 

62, 60-200 mesh, Sigma-Aldrich). Flash chromatography was performed on a 

CombiFlash Companion/TS (Teledyne Isco Inc., Lincoln, NE).  Reactions were 

monitored by thin-layer chromatography (tlc) on silica gel GHLF plates (250 μ, 2.5 x 10 

cm; Analtech Inc., Newark, DE).  

 

m-Chlorophenylguanidine nitrate (42). m-Chloroaniline HCl (60) (2.36 g, 14.4 mmol), 

cyanamide (1.21 g, 28.8 mmol), and absolute EtOH (12 mL) were combined and heated 

at reflux overnight.  The solvent was removed under reduced pressure and the crude 

product was dissolved in H2O (6 mL).  Excess NH4NO3 (2.66 g, 33.2 mmol) was added 

to form a precipitate that was collected and recrystallized from H2O.  The resulting HNO3 

salt was collected by filtration, rinsed with anhydrous Et2O (3 x 10 mL), and 
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recrystallized a second time from H2O to yield 1.57 g (31%) of product as white crystals 

42:  mp 170-171 οC (lit.144 mp 171-172 οC). IR (KBr, cm-1) 3420, 3333, 3195, 1659, 1217 

cm-1; 1H NMR (DMSO-d6) δ: 7.22 (m, 1H, ArH), 7.33-7.39 (m, 3H, ArH, NH), 7.47 (t, 

J=7.8 Hz, 1H, ArH), 7.52 (br.s, 3H, NH), 9.72 (br.s, 1H, HNO3). 

 

Phenyl [[(3-chlorophenyl)amino](imino)methyl]carbamate (53).  Method A.  A 

solution of phenyl chloroformate (63) (0.08 mL, 0.63 mmol ) in dry THF (3 mL) was 

added in a dropwise manner to a mixture of m-chlorophenylguanidine (42, free base) 

(0.11 g, 0.63 mmol) and Et3N (0.18 mL, 1.26 mmol) in dry THF (3.5 mL) on ice under a 

N2 atmosphere.  The reaction mixture was allowed to stir for 25 min at room temperature, 

then filtered twice to ensure all Et3N·HCl was collected. The solvent was evaporated 

under reduced pressure.  A few drops of isopropanol were added to the resultant crude 

product and the solution was placed in the refrigerator for 1 h.  The precipitate was 

collected by filtration and washed with anhydrous Et2O.  The solid was dried under 

vacuum for 48 h to yield 0.04 g (19%) of a white crystalline product, 53:  mp 159-161 ºC; 

IR (KBr, cm-1) 3463, 3288, 3051, 1668;  1H NMR (DMSO-d6) δ: 7.09-7.27 (m, 6H, 

ArH), 7.37-7.42 (t, 2H, ArH), 7.61 (s, 1H, ArH), 9.28 (3H, NH, D2O exchangeable).  

Anal. calcd. for  C14H12N3O2Cl•0.25Et2O: C, 58.45; H, 4.74; N, 13.63 Found: C, 58.38; 

H, 4.42; N, 13.77. 

 

Method B. A solution of phenyl chloroformate (63) (0.38 mL, 3.05 mmol ) in dry THF 

(11 mL) was added in a dropwise manner to a mixture of m-chlorophenylguanidine (42, 
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free base) (0.52 g, 3.05 mmol) and Et3N (0.85 mL, 6.10 mmol) in dry THF (16 mL) in an 

ice bath under a N2 atmosphere.  The reaction mixture was allowed to stir for 25 min at 

room temperature, then filtered twice to ensure all Et3N·HCl was collected. The solvent 

was evaporated under reduced pressure.  A few drops of n-butanol were added to the 

resultant crude product and the solution was placed in the refrigerator for 1 h.  The 

precipitate was collected by filtration and rinsed with anhydrous Et2O.  The solid was 

dried under vacuum for 48 h to yield 0.03 g (3%) of a white crystalline product, 53:  mp 

159-160 ºC; 1H NMR (DMSO-d6) δ: 7.07-7.29 (m, 6H, ArH), 7.38-7.42 (t, 2H, ArH), 

7.62 (s, 1H, ArH), 9.28 (3H, NH, D2O exchangeable).   

 

Method C.  A solution of cyanamide (2.5 g, 60 mmol) in H2O (25 mL) was basified with 

50% NaOH (pH 7-8).  Phenyl chloroformate (63) (9.4 g, 60 mmol) was added in a 

dropwise manner and the reaction mixture was allowed to stir at 43 ºC for 1 h. An 

unidentified precipitate was collected by filtration; mp >300 ºC.  A second product was 

determined to be phenol (67) by tlc analysis compared to commercially available phenol; 

Rf = 0.83 (3:2 hexane:EtOAc). 

 

2-Amino-7-chloro-3,4-dihyroquinazoline hydrochloride (56).156  BH3-THF complex 

(12.2 mL, 1 M, 6.1 mmol) was added in a dropwise manner to 105 (0.6 g, 3.07 mmol) 

under a N2 atmosphere. The reaction mixture was heated at reflux for 2.5 h. After cooling 

the reaction mixture to room temperature, a 6 N solution of HCl (2.1 mL) was added in a 

dropwise manner releasing a gas. Then, a 6 N solution of NaOH (8.4 mL) was added to 
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basify the mixture. Upon standing, a white precipitate formed and was removed by 

filtration. The solvent was removed under reduced pressure and the residue was dissolved 

in hot H2O (20 mL), and extracted with hot CHCl3 (20 mL x 3). The solid at the interface 

was collected and dried under reduced pressure for 4 h to give 0.15 g (28%) of a white 

solid (56, free base): mp 178-180 °C, 1H NMR (DMSO-d6) δ: 3.45 (br.s., 1H, NH, D2O 

exchangeable), 4.30 (s, 2H, CH2), 6.11 (br.s., 1H, NH, D2O exchangeable), 6.60 (s, 1H, 

ArH), 6.73 (d, 1H, ArH), 6.89 (d, 1H, ArH). 

 A solution of 56 (free base) (0.13 g, 0.72 mmol) in EtOH was cooled in an 

ice/water bath. Gaseous N2 was bubbled through the solution for 5 min to remove any 

moisture followed by bubbling of gaseous HCl for 15 min. The solvent was removed 

under reduced pressure to give a white solid. The solid was recrystallized from absolute 

EtOH to afford 0.08 g (53%) of a white crystalline solid 56: mp 249-251 °C; IR (KBr, 

cm-1): 3300, 3190, 2979, 2927, 2855, 1700, 1618, 1493, 1091; 1H NMR (DMSO-d6) δ: 

4.45 (s, 2H, CH2), 7.07 (d, 1H, ArH), 7.17 (dd, 1H, ArH), 7.25 (d, 1H, ArH), 7.77 (s, 2H, 

NH2, D2O exchangeable), 8.63 (s, 1H, NH, D2O exchangeable), 11.02 (s, 1H, NH+, D2O 

exchangeable). Anal. Calcd. for C8H8N3Cl · HCl · 0.25 H2O: C, 43.17; H, 4.30; N, 18.89 

Found: C, 43.41; H, 4.05; N, 18.50. 

 

 2-Amino-6-chloro-3,4-dihydroquinazoline hydrochloride (57). The 

quinazolinone 74 (0.52 g, 2.65 mmol) was added to 1M BH3-THF (11 mL) and heated at 

reflux under N2 gas for 2.5 h.  The borate complex was then hydrolyzed by the dropwise 

addition of 6 N HCl (2 mL), then basified with 6 N NaOH (8 mL).  The mixture was 



 162
concentrated, dissolved in boiling H2O, and extracted with hot CHCl3 (3 x 10 mL).  

Solvent was removed under reduced pressure and the resultant solid was rinsed with Et2O 

to yield 0.26 g (54%) of white solid 57 (free base): mp 225-230 ºC; IR (KBr, cm-1) 3422, 

3102; (DMSO-d6) δ: 4.28 (s, 2H, CH2Ar), 5.63 (br.s, 2H, NH, D2O exchangeable), 6.23 

(br.s, 1H, NH, D2O exchangeable), 6.55-6.58 (d, 1H, ArH), 6.91 (s, 1H, ArH), 6.96-6.99 

(d, 1H, ArH).   

 A solution of HCl/Et2O (20 mL) was added in a dropwise manner to a stirred 

solution of 57 (free base) in hot EtOH (~10 mL).  The reaction mixture was allowed to 

stir at room temperature for 10 min.  The solvent was evaporated under reduced pressure.  

The resultant crude product was recrystallized from hot absolute EtOH to yield 0.06 g 

(19%) of off-white crystals 57: mp 237-238 ºC; 1HNMR (DMSO-d6) δ: 4.49 (s, 2H, 

CH2Ar), 6.99-7.02 (d, 1H, ArH), 7.30-7.38 (d, 2H, ArH), 7.80 (br.s, 2H, NH, D2O 

exchangeable), 8.69 (s, 1H, NH, D2O exchangeable), 11.16 (s, 1H, NH+, D2O 

exchangeable). Anal. Calcd. for C8H8N3Cl·1.25HCl·0.25H2O: C, 41.47; H, 4.24; N, 18.13 

Found: C, 41.89; H, 3.96; N, 18.05. 

 

Methyl [[(3-chlorophenyl)amino](imino)methyl]carbamate (62). Method A.  A 

solution of calcium cyanamide (0.64 g, 8.04 mmol) and H2O (4 mL) was added in a 

dropwise manner to methyl chloroformate (61) (0.56 mL, 7.32 mmol) and the reaction 

mixture was allowed to stir at 45 ºC for 20 min.  The solid was removed by filtration and 

then 3-chloroaniline hydrochloride (60) (0.60 g, 3.66 mmol) was added. The reaction 

mixture was made slightly more basic (pH 4) by the addition of 40% NaOH and heated at 
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reflux for 4.5 h.  The solution was filtered and solvent evaporated under reduced 

pressure.  The crude product was recrystallized from MeOH to yield 0.07 g (9%) of a 

white crystalline solid 62: mp 132-134 ºC (lit.145 138-140 ºC); tlc similar to that of 

previously synthesized sample12 Rf = 0.83 (9:1 CH2Cl2:MeOH); IR (KBr, cm-1) 3443, 

3350, 1741, 1669; 1H NMR (DMSO-d6) δ: 3.6 (s, 3H, OCH3), 7.11-7.15 (d, 1H, ArH), 

7.24-7.36 (m, 2H, ArH),7.48 (3H, NH, D2O exchangeable) 7.69 (s, 1H, ArH).    

 

Method B.  A solution of phenyl chloroformate (63) (0.34 mL, 2.70 mmol) in dry THF 

(10 mL) was added in a dropwise manner to a mixture of m-chlorophenylguanidine (42, 

free base) (0.46 g, 2.70 mmol) and Et3N (0.75 mL, 5.41 mmol) in dry THF (15 mL) in an 

ice bath under a N2 atmosphere.  The reaction mixture was allowed to stir for 15 min at 

room temperature, then filtered.  The solvent was evaporated under reduced pressure to 

yield a yellow oil.  Flash chromatography (3:2 hexane:EtOAc) was conducted to separate 

the products.  The isolated crude product was recrystallized from acetone to yield 0.02 g 

(3%) of a white solid: mp 129-132 ºC  (lit.135 128-129 ºC); 1H NMR (DMSO-d6) δ: 3.55 

(s, 3H, OCH3), 7.05-7.09 (d, 1H, ArH), 7.26-7.31 (m, 2H, ArH), 7.59 (s, 2H, NH, D2O 

exchangeable) 7.78 (s, 1H, ArH), 9.19 (s, 1H, NH, D2O exchangeable).  Anal. Calcd. for 

C9H10N3O2Cl · 0.25 acetone: C, 48.35;  H, 4.79; N, 17.35 Found: C, 48.63; H, 4.61; N, 

17.94.    

 

Method C.  A solution of phenyl chloroformate (63) (0.45 mL, 3.55 mmol) in dry THF 

(13 mL) was added in a dropwise manner to a mixture of m-chlorophenylguanidine (42, 
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free base) (0.60 g, 3.55 mmol) and Et3N (9.90 mL, 7.10 mmol) in dry THF (20 mL) in an 

ice bath under a N2 atmosphere.  The reaction mixture was allowed to stir overnight (17 

h) at room temperature then filtered.  The solvent was evaporated under reduced pressure 

to give a yellow oil.  A solid precipitated upon the addition of hot MeOH and was 

recrystallized from MeOH to yield 0.13 g (17%) of a white crystalline solid 62: mp 136-

138 ºC (lit.145 138-140 ºC); 1H NMR (DMSO-d6) δ: 3.48 (s, 3H, OCH3), 7.02-7.13 (d, 1H, 

ArH), 7.25-7.36 (m, 2H, ArH), 7.53 (s, 2H, NH, D2O exchangeable), 7.78 (s, 1H, ArH), 

9.15 (s, 1H, NH, D2O exchangeable). 

 

N,N’-bis(3-chlorophenyl)urea (64). Method A.  A solution of calcium cyanamide (0.54 

g, 7.74 mmol) and H2O (2 mL) was added in a dropwise manner to phenyl chloroformate 

(63) (0.77 mL, 6.02 mmol).  The reaction mixture was allowed to stir at 45 ºC for 20 min.  

The solid was removed by filtration and 3-chloroaniline hydrochloride (60) (0.50 g, 3.05 

mmol) was added to the solution.  The mixture was made slightly more basic (pH 4) by 

the addition of 40% NaOH and heated at reflux overnight.  The solution was filtered and 

solvent evaporated under reduced pressure.  The crude product was recrystallized from 

MeOH to yield 0.07 g (8%) of white crystalline solid 64:  mp 246-248 ºC (lit.146 245 ºC); 

1H NMR (DMSO-d6) δ: 7.04-7.07 (dd, 2H, ArH), 7.30-7.33 (m, 4H, ArH), 7.73 (s, 2H, 

ArH), 8.99 (s, 2H, NH, D2O exchangeable). 

 

Method B.  A solution of calcium cyanamide (0.64 g, 8.04 mmol) and H2O (2 mL) was 

added in a dropwise manner to 4-chlorophenyl chloroformate (65) (1.02 mL, 7.32 mmol).  
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The reaction mixture was allowed to stir at 45 ºC for 30 min.  The solid was removed by 

filtration and 3-chloroaniline hydrochloride (60) (0.60 g, 3.66 mmol) was added to the 

solution.  The mixture was made slightly more basic (pH 4) by the addition of 40% 

NaOH and was heated at reflux overnight.  The solution was filtered and solvent 

evaporated under reduced pressure.  The crude product was recrystallized from MeOH to 

yield 0.03 g (3%) of white crystalline solid 64:  mp 241-243 ºC (lit.146 245 ºC); 1H NMR 

(DMSO-d6) δ: 7.04-7.07 (dd, 2H, ArH), 7.30-7.33 (m, 4H, ArH), 7.73 (s, 2H, ArH), 8.99 

(s, 2H, NH, D2O exchangeable). 

 

Method C.  A solution of calcium cyanamide (0.54 g, 6.70 mmol) and H2O (2 mL) was 

added in a dropwise manner to 4-methoxyphenyl chloroforomate (66) (0.91 mL, 6.10 

mmol).  The reaction mixture was allowed to stir at 45 ºC for 30 min.  The solid was 

removed by filtration and 3-chloroaniline hydrochloride (60) (0.50 g, 3.05 mmol) was 

added to the solution.  The mixture was made slightly more basic (pH 4) by the addition 

of 40% NaOH and heated at reflux overnight.  The solution was filtered and solvent 

evaporated under reduced pressure.  The crude product was recrystallized from MeOH to 

yield 0.05 g (6%) of a white crystalline solid 64:  mp 239-240 ºC (lit.146 245 ºC); 1H NMR 

(DMSO-d6) δ: 7.04-7.07 (dd, 2H, ArH), 7.30-7.33 (m, 4H, ArH), 7.72 (s, 2H, ArH), 8.98 

(s, 2H, NH, D2O exchangeable). 

 

Method D.  A solution of phenyl chloroformate (63) (0.43 mL, 3.41 mmol) and CH2Cl2 

(1 mL) was added in a dropwise manner to a solution of 1H-pyrazole-1-carboxamide 
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hydrochloride (69) (0.50 g, 3.41 mmol), DIEA (1 mL), and CH2Cl2 (3 mL).  The reaction 

mixture was allowed to stir at room temperature for 2 h, then extracted using NaHCO3 

and brine; the extract was dried for 1 h with Na2SO4.  The solvent was evaporated under 

reduced pressure to yield 0.53 g (68%) of a white solid, 70: mp 101-105 ºC.  1H NMR 

(DMSO-d6) δ: 6.63 (s, 1H, ArH), 7.19-7.28 (m, 4H, ArH), 7.41-7.46 (t, 1H, ArH), 7.97 

(s, 1H, ArH), 8.46-8.47 (d, 1H, ArH), 8.90 (s, 1H, NH, D2O exchangeable), 9.25 (s, 1H, 

NH, D2O exchangeable).  Anal. Calcd for C11H10N4O2: C, 57.39; H, 4.38; N, 24.34 

Found: C, 55.56; H, 4.22; N, 23.46.  

 The pyrazole ester (70) (0.35 g, 1.52 mmol) was added to a mixture of m-

chloroaniline hydrochloride (60) (0.75 g, 4.56 mmol) and DIEA (0.9 mL).  The reaction 

mixture was heated at reflux overnight.  The solvent was evaporated under reduced 

pressure to yield a brown oil.  The product was isolated using column chromatography 

(3:2 hexane:EtOAc) and recrystallized from acetone to yield 0.10 g (23 %) of a white 

solid, 64: mp 244-246 ºC (lit.146 245 ºC); 1H NMR (DMSO-d6) δ: 7.04-7.06 (d, 2H, ArH), 

7.27-7.35 (t, 4H, ArH), 7.71 (s, 2H, ArH), 9.01 (s, 2H, NH, D2O exchangeable).  Anal. 

Calcd for C13H10N2OCl2:  C, 55.54; H, 3.59; N, 9.96 Found: C, 55.51; H, 3.47; N, 9.82. 

 

N,N,N’,N’-Tetrakis(phenylcarbamate)-3-chlorphenylguanidine hydrochloride (68).  

A solution of calcium cyanamide (1.07 g, 13.4 mmol) and acetone (15 mL) was added in 

a dropwise manner to phenyl chloroformate (63) (1.53 mL, 12.2 mmol) and allowed to 

stir at room temperature under an N2 atmosphere for 20 min.  The solid was removed by 

filtration and 3-chloroaniline hydrochloride (60) (1.00 g, 6.10 mmol) was added to the 
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solution; stirring was allowed to continue for another 5 h. The solution was filtered and 

solvent evaporated under reduced pressure.  The crude product was recrystallized from 

acetone to yield 0.19 g (5%) of a white solid 68: mp 84-87 ºC; IR (KBr, cm-1) 3257, 

1710, 1586; 1H NMR (DMSO-d6) δ: 7.11-7.14 (d, 2H, ArH), 7.24-7.48 (m, 20H, ArH), 

7.64 (s, 2H, ArH), 10.50 (s, 1H, NH+). Anal. Cald. For C35H24N3O8Cl · HCl: C, 59.83; H, 

3.80; N, 6.34 Found: C, 61.25; H, 4.02; N, 6.0. 

 

2-Amino-6-chloro-4-dihydroquinazolinone (74).  S-Methylisothiouronium sulfate (72) 

(2.04 g, 7.31 mmol) and Na2CO3 (1.19 g, 11.24 mmol) were added to dry 1,4-dioxane (34 

mL). The suspension was heated until all of the isothiourea was dissolved. 5-

Chloroisatoic anhydride (73) (2.00 g, 10.12 mmol) was added, and the reaction mixture 

was heated at reflux for 21.5 h. The reaction mixture was allowed to cool to room 

temperature and poured into 15 mL of H2O.  The mixture was allowed to stir for 20 min 

at room temperature.  The solid paste 74 was collected by suction filtration and dried 

under vacuum at 60 ºC for 24 h to yield 1.02 g (71%) of yellow solid 74: mp>300 ºC; tlc 

similar to that of previously synthesized product13 Rf = 0.26 (H2O); IR (KBr, cm-1) 3412, 

3174, 3081, 1679; 1H NMR (DMSO-d6) δ: 6.56 (br.s, 2H, NH, D2O exchangeable), 7.20-

7.23 (d, 1H, ArH), 7.56-7.60 (d, 1H, ArH), 7.80 (s, 1H, ArH), 11.22 (br.s, 1H, NH, D2O 

exchangeable). The product was used in the synthesis of 57. 

 

m-Fluorophenylguanidine nitrate (101).156  A mixture of m-fluoroaniline hydrochloride 

(1.00 g, 6.78 mmol) and cyanamide (0.38 g, 9.04 mmol) was heated at reflux in absolute 
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EtOH (5 mL) for 6 h. The solvent was removed under reduced pressure to give a pale 

yellow oil which was dissolved in H2O (2 mL), and NH4NO3 (1.00 g, 12.5 mmol) was 

added in excess. The solvent was removed under reduced pressure and the residue was 

recrystallized (H2O x 4). The light brown crystals were collected by filtration and washed 

with cold Et2O (3 x 5mL) to give 0.81 g (55 %) of a solid product, 101: mp 145-146 °C 

(H2O), 146-147 °C (EtOH) (lit.157 165 °C EtOH); IR (KBr, cm-1): 3342, 3330, 3195, 

1669, 1597, 1493, 1369, 1143; 1H NMR (DMSO-d6) δ: 7.21-7.04 (m, 3H, ArH), 7.53-

7.45 (m, 5H, ArH, NH2, ex with D2O), 9.72 (s, 1H, NH, D2O exchangeable). Anal. calcd 

for C7H8FN3 · HNO3
: C, 38.89; H, 4.20; N, 25.92 Found: C, 39.08; H, 4.15; N, 25.89. 

 

m-Iodophenylguanidine nitrate (102).158  m-Iodoaniline hydrochloride (4.4 g, 17.22 

mmol) and cyanamide (2.1g, 50.0 mmol) were added to absolute EtOH (20 mL). The 

reaction mixture was heated at reflux for 24 h and cooled to room temperature. Distilled 

water (5.0 mL) was added to the solution followed by addition of NH4NO3 (10.0 mL). A 

white precipitate was promptly formed and recrystallized from distilled H2O. The product 

was further purified by flash chromatography (9:1 CH2Cl2:MeOH) to afford white 

crystals 0.40 g (7%) 102: mp 166–168 ºC; ¹H NMR (DMSO-d6) δ: 7.25 (t, J = 8.40 Hz, 

1H, ArH), 7.27-7.30 (m, 1H, ArH), 7.49 (br s, 5H, NH2, D2O exchangeable), 7.62-7.63 

(m, 1H, ArH), 7.65-7.69 (m, 1H, ArH). Anal. Calcd for C7H8N3I · HNO3: C, 25.94; H, 

2.80; N, 17.29 Found: C, 25.73; H, 2.72; N, 16.98. 
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m-Bromophenylguanidine nitrate (103).158  3-Bromoaniline hydrochloride (4.0 g, 19.2 

mmol) and cyanamide (2.1g, 50.0 mmol) were added to absolute EtOH (20 mL). The 

reaction mixture was heated at reflux for 24 h and cooled to room temperature. Distilled 

water (5.0 mL) was added to the solution followed by addition of NH4NO3 (10.0 mL). A 

white precipitate was promptly formed and recrystallized from distilled H2O. The product 

was further purified by flash chromatography (9:1 CH2Cl2:MeOH ) to afford white 

crystals 0.72 g (14%) 103: mp 160–162 ºC; ¹H NMR (DMSO-d6) δ: 7.26 (ddd, J = 7.80 

Hz, 1H, ArH), 7.41 (t, J = 7.80 Hz, 1H, ArH), 7.47-7.52 (m, 7H, ArH and NH2, D2O 

exchangeable). Anal. Calcd for C7H8N3Br · HNO3: C, 30.34; H, 3.27; N, 20.22 Found: C, 

30.14; H, 3.16; N, 19.95. 

 

2-Amino-7-chloro-4-dihydroquinazolinone (105).156  4-Chloroisatoic anhydride (1.00 

g, 5.06 mmol) was dissolved in acetonitrile (24 mL, 80%), then S-methylthioisourea 

sulfate (72) (1.4 g, 5.06 mmol) and Na2CO3 (0.58 g, 5.47 mmol) were added to the 

solution. The resulting solution was heated at reflux for 5 h. The reaction mixture was 

allowed to cool to room temperature over 0.5 h. The suspension was filtered and washed 

with acetonitrile (80%, 25 mL x 3). The solvent was evaporated under reduced pressure 

then dissolved in CH2Cl2 (10 mL) and extracted with H2O (10 mL x 3).  The layers were 

separated and the organic layer was dried over MgSO4, filtered, and the solvent removed 

under reduced pressure. The residue was purified by column chromatography (9:1:0.1, 

CH2Cl2:MeOH:NH4OH). The reaction gave 0.64 g (65%) of a pale pink solid 105: mp 

>300 °C (lit.159 >300 °C); IR (KBr, cm-1): 3401, 3133, 1597, 1442, 1101; 1H NMR 
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(DMSO-d6) δ: 6.58 (br.s., 2H, NH2, D2O exchangeable), 7.11 (dd, 1H, ArH), 7.21 (d, 1H, 

ArH), 7.87 (d, 1H, ArH), 11.10 (br.s., 1H, NH, D2O exchangeable).  The product was 

used in the synthesis of 56. 

 

B.  Behavioral Studies 

 1.  Animals 

 Male ICR mice (19-29 g) were used throughout the study (Harlan Laboratories; 

Indianapolis, IN).  Mice were housed in groups of 5-6, with free access to food and water 

in a temperature-controlled environment under a standard 12:12 h dark/light cycle in an 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)-

approved facility.  The experiments were conducted in accordance to standards set by the 

Institutional Animal Care and Use Committee (IACUC) of Virginia Commonwealth 

University. Mice were allowed to adapt to the testing environment at least 1 h prior to 

any treatment, and weighed the same day as the experiments. 

 

 2. Drugs 

 (+)Amphetamine sulfate and cocaine hydrochloride (Lot 11K1085J) were 

purchased from Sigma-Aldrich Chemical Company (Milwaukee, WI).  (±)1-(2,5-

Dimethoxy-4-methylphenyl)-2-aminopropane (DOM) hydrochloride was obtained from 

the National Institute on Drug Abuse (NIDA; Rockville, MD).  (+)Methamphetamine 

hydrochloride was a gift from Dr. R. A. Glennon (Virginia Commonwealth University).  

SR 57227A (4-amino-(6-chloro-2-pyridyl)-1piperidine) hydrochloride was purchased 



 171
from Tocris (Batch 1A/45893; Ballwin, MO).  Ondansetron hydrochloride (Zofran®, Lot 

CO99723; GlaxoSmithKline) was purchased from MCVH-Pharmacy. Solutions were 

prepared fresh daily; all drugs were dissolved in 0.9% saline and administered to mice in 

a total volume of 10 ml/kg body weight by intraperitoneal (i.p.) injections. 

  

3. Locomotor Activity Assays 

 Mice, naïve to the test apparatus, were placed in individual Tru-Scan Activity 

System (Coulbourn Instruments, Allentown, PA) photocell activity cages (40 cm3).  Tests 

were conducted between 0800 h and 1730 h. The mice were treated with either saline (0-

min pre-injection time), MD-354 (1.0, 3.0, 6.0, or 10 mg/kg; 0-min pre-injection time or 

30-min pre-injection time), ondansetron (0.1, 0.5, or 1.0 mg/kg; 30-min pre-injection 

time), SR 57227A (1.0, 3.0, or 10 mg/kg; 30-min pre-injection time), alone or in 

combination with (+)amphetamine (2.0 or 3.0 mg/kg; 0-min pre-injection time), 

(+)methamphetamine (1.5 or 3.0; 0-min-preinjection time), cocaine (10 mg/kg; 0-min 

pre-injection time) and DOM (0.3 mg/kg; 0-min pre-injection time).  Other mice were 

treated with (+)amphetamine (0.3, 1.0, 3.0, or 6.0 mg/kg; 0-min pre-injection time), 

(+)methamphetamine (0.3, 1.0, 1.5, 3.0, or 10 mg/kg; 0-min pre-injection time), cocaine 

(1.0, 3.0, 10, or 30 mg/kg; 0-min pre-injection time) or DOM (0.3, 1.0, or 3.0 mg/kg; 0-

min pre-injection time).  The mice were only tested once and each dose of test agent (or 

combination of drugs) was studied in 6-8 mice (n = 6-8 mice/treatment). The behavioral 

analysis examined nine measures of activity: movement episodes, movement time (s), 
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movement distance (cm), vertical entries, margin distance (cm), margin time (s), center 

distance (cm), center time (s), and center entries.  

 

4. Statistical Analysis 

 Data for each measure of activity were analyzed statistically by a one-way 

analysis of variance (ANOVA) followed by a Newman-Keuls post-hoc comparison test.  

t-Tests were also employed in some analysis instead of a one-way ANOVA, when data 

suggested a statistical significance which was not supported by a one-way ANOVA or 

post-hoc comparison. 

   

C.  Molecular Modeling 

 The computational studies were performed on a Silicon Graphics workstation 

using SYBYL (SYBYL Molecular Modeling Package, Version 7.3, 2007; Tripos Inc., St. 

Louis, MO) software.  Compound 42 was built using an arginine fragment in the 

program.  Compound 30 was built from its crystal structure downloaded from the 

Cambridge Database. All of the compounds we constructed using standard bond lengths 

and angles within the Build/Sketch command followed by minimization (MINIMIZE) 

and calculation of charges by the Gasteiger-Hückel algorithm.  The compounds were 

individually superimposed using FIT ATOM on templates 42 and 31 to perform a least 

squares fit.  The linearly independent points (aryl 3-position, aryl 5-position, and the 

carbon atom in the guanidine moiety) were used in FIT ATOM. CoMFA and CoMSIA 

studies were conducted. 
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