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Salvinorin A is a non-nitrogenous, selective kappa opioid receptor agonist with 

potent hallucinogenic properties.  Because Salvinorin A has no basic nitrogen, it does not 

readily adhere to the “message-address” concept of selectivity for the opioid receptors.  

Therefore, a better understanding of how salvinorin A and its analogs interact with the 

kappa opioid receptor may shed some light on how salvinorin A obtains its potency and 

selectivity.  The structure-affinity relationships (SAFIR) of salvinorin A and its analogs 

along with a discussion of the selectivity of the opioid receptors, is presented.  A 

fragment of salvinorin A, methyl-3-acetoxy-4-oxocyclohexanecarboxylate, was 

synthesized to determine if the B, C and D rings are or are not necessary for binding to 

the opioid receptors.  The fragment was found not to bind to the kappa, delta or mu 

receptor which reinforces the importance of the B, C and D rings in the binding of 

salvinorin A to the kappa opioid receptor.  Homology models of the kappa, delta and mu 
 xii



opioid receptors were constructed based on inactive bovine rhodopsin, light-activated 

bovine rhodopsin and the human beta-2 adrenergic receptors. The program MODELLER 

was also used to construct the kappa opioid receptor.  Two comparative molecular field 

analysis (CoMFA) studies are then presented which compared three different types of 

alignment methods.    The alignment methods employed included a receptor-docked 

alignment in which the salvinorin A analogs were docked into a model of the kappa 

opioid receptor using the program GOLD.  The docked poses for this alignment were 

chosen based on their similarity to our postulated model of salvinorin A in the kappa 

opioid receptor.  In our model the furan oxygen forms hydrogen bonds with Q115(2.60) 

and Y320(7.43), the methoxy oxygen of the C-4 position ester group may form a 

hydrogen bond with Y312(7.35) and the methyl group of the C-2 position acetoxy moiety 

forms a hydrophobic interaction with Y313(7.36).  These interactions are consistent with 

mutagenesis studies.  The other alignment methods employed were a FlexS alignment 

and a realignment of the receptor-docked poses using the Fit Atoms function within 

SYBYL.  Only the receptor-docked alignment method resulted in robust and predictive 

CoMFA models which indicates that the analogs may bind to the kappa opioid receptor in 

a similar but non-identical way.  In addition, information from the CoMFA models based 

on the receptor-docked alignment led to a postulated binding mode for a set of amine 

analogs of salvinorin A which were not part of the original data set.   Docking studies 

have the positively charged C-2 position amine group interacting with E209(XL2.49) 

while the furan oxygen and C-4 position ester group interacts with the same residues as in 

our model of salvinorin A in the kappa opioid receptor.  The studies presented here not 

 xiii



 xiv

only support our postulated model of salvinorin A binding to the kappa opioid receptor 

but may also explain the trend of the beta epimers of the amine analogs to have a higher 

affinity than the corresponding alpha epimers.  Site-directed mutagenesis studies could 

provide data to support or refute the postulated models of the amines docked in the kappa 

opioid receptor presented here.  



 

 

1. Introduction 

 

1.1. Background 

 Salvinorin A, also known as divinorin A, is a non-nitrogenous diterpene from the 

plant Salvia divinorum and is the most potent naturally-occurring hallucinogen known to 

date.  This species of Salvia plant, also known as “Ska Maria Pastora” or “Diviner’s 

Sage”, was first cataloged by Wasson and Hoffman in 1962 and is indigenous to the 

Sierra Mazateca mountains in Oaxaca, a small region in Mexico.1  The plant is found 

today growing in wide-spread locations and is also sold by nurseries.  Salvia divinorum 

and its extracts have been used for centuries by the Mazatec Indians of Mexico in their 

curing and divination rituals to produce visions and enlightenment and to treat a number 

of ailments such as diarrhea, headache, rheumatism, and anemia.2  The plant leaves can 

be chewed, extracted into a tea or infusion, or dried and smoked to produce the 

hallucinogenic effect which lasts from 20 minutes to two hours, depending on the route 

of administration.  Effects are rapid with inhalation and occur within seconds.  With 

buccal absorption, effects are seen within minutes.   Little or no effects are seen with 

ingestion possibly due to esterases in the blood or first-pass metabolism, hydrolyzing the 

ester at the C-2 position to the alcohol Salvinorin B (see Figure 1), which is known to be 

inactive.  Although short-lived, the hallucinogenic effect of salvinorin A has been 

described as more intense than LSD with frequent reports of mind-body dissociations and 

confusion of identity described as becoming an object.3  Because of its hallucinogenic 
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effect, ready availability, and legality, Salvia divinorum products have gained popularity 

as a “legal high” and can be found being sold in shops world-wide and via the Internet.4  

As of yet, Salvia divinorum products have not been classified as a controlled substance 

by the Food and Drug Administration and Drug Enforcement Administration, although it 

is designated as a drug of concern.  Several states in the United States and some countries 

have adopted legislation banning the use of salvinorin A and Salvia divinorum products. 

Salvinorin A was first isolated from the plant Salvia divinorum and its structure 

elucidated in 19825 by Alfred Ortega.  The same compound was later isolated from 

Salvia divinorum by Leander Valdes in 19846 who reported its psychoactive properties.  

Contrary to other hallucinogens which exert their effect by binding to the serotinergic 

receptor 5-HT2A, salvinorin A is a potent, selective kappa-opioid receptor (KOR) 

agonist.7  Along with its being a hallucinogen, salvinorin A also exhibits the analgesic8, 9, 

sedative10, and depressive11 effects typical of opioid receptor substrates. 

This dissertation initially presents a discussion of opioid selectivity, the binding 

energies of morphine and salvinorin A and the structure-affinity relationships of 

salvinorin A.  This is followed by the synthesis of a fragment of the salvinorin A 

molecule which includes the A ring and its functional groups.  This was done in order to 

ascertain if the B, C and D rings were necessary for binding to the kappa opioid receptor.  

Homology models of the kappa, delta and mu opioid receptors were then constructed 

based on the crystal structures of inactive bovine rhodopsin, light-activated bovine 

rhodopsin and the β2-adrenergic receptor.  Docking of selective ligands for these 

 2



receptors resulted in the light-activated bovine rhodopsin-based kappa, delta and mu 

receptor models emerging as the apparent best receptor models for additional studies. 

Two Comparative Molecular Field Analysis (CoMFA) studies are then presented 

in which a receptor-docked alignment method was used.  Salvinorin A analogs were 

docked into the light-activated bovine rhodopsin-based kappa opioid receptor model 

using the program GOLD.  Chosen docked poses of each compound in the receptor 

provided an alignment that resulted in highly predictive and robust CoMFA statistics.  

This alignment was compared to a FlexS alignment and a realignment of the docked 

poses using SYBYL Fit Atoms function.  The latter two alignments gave poor results. 

Also presented is a postulated binding model of a series of amine analogs of 

salvinorin A in the kappa opioid receptor.  This binding model was developed using 

information from the CoMFA models. 
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Figure 1.  The structures of salvinorin A (a) and salvinorin B (b). 
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1.2. Opioids and Opioid Receptors 

 The alkaloids contained in the juice from the seed pod of the poppy Papaver 

somniferum (opium) have been used medicinally for thousands of years.  The most 

abundant alkaloid in opium is morphine, named after the Greek god of dreams, 

Morpheus.  Other medicinally important opium alkaloids include codeine, thebaine, 

papaverine and noscapine (see Figure 2).  Morphine and codeine are analgesics, with 

codeine also having antitussive (cough suppressing) effects.  Thebaine has a stimulating 

effect and is not used therapeutically but is used industrially as a starting compound for 

conversion into semisynthetic analgesics such as oxycodone, oxymorphone, and 

etorphine.  The antagonists naloxone and naltrexone and the partial agonist/antagonist 

buprenorphine also are semisynthetic derivatives of thebaine.  Papaverine is an 

antispasmotic and noscapine is an antitussive. 

 With morphine being the protypical analgesic, a large number of morphine 

derivatives12 have been synthesized.  Many of these were derived from a simplified 

morphine skeleton (see Figures 3 and 4).  In a 1955 study by Braenden, et al.13 it was 

observed that all known morphine-like analgesics contained the following features: 

“(a)  a tertiary nitrogen, the group on the nitrogen being relatively small; (b)  a central 

carbon atom none of whose valences are connected with a hydrogen; (c)  a phenyl group 

or a group isosteric with phenyl, which is connected to the central carbon atom; and (d)   

maximum activity is obtained when the central carbon atom is connected to the nitrogen 

by a two-carbon chain.”  All of the examples shown in Figure 4 adhere to these four 

features except the 4-anilinopiperidines of which fentanyl is a representative member. 
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When comparing the opioid derivatives to the structure of salvinorin A, only one 

of these four features of the opioid analgesics is seen, that being an aromatic ring (furan).  

Morphine-like compounds have a T-shaped conformation of the polycyclic core while the 

salvinorin A polycyclic core, aside from ring puckering, is relatively flat.  Yet, salvinorin 

A has analgesic properties8,14 at the kappa opioid receptor without having the other 

features, most notably the basic nitrogen. 

 In 1954, long before the discovery of the opioid receptors, Beckett and Casy15 

proposed three features to be necessary for proper fit of the opioid analgesic to the 

receptor surface.  These were: “(1) a flat portion allowing van de Waals’ forces binding 

the aromatic ring of the analgesic drug; (2) an anionic site and (3) a cavity suitably 

oriented with (between) sites 1 and 2”.  This hypothesis held for a number of years until 

certain analgesics were found not to contain some of these features.  Salvinorin A does 

not fit this hypothesis as an analgesic. 

 In 1973, Pert and Snyder16 reported the first evidence of an opioid receptor.  The 

opioid receptors belong to the superfamily of G protein-coupled receptors (GPCRs).  

GPCRs are proteins that consist of seven trans-membrane (7TM) spanning helices which 

when activated interact with the trimeric (α, β, and γ) subunits of G proteins to elicit a 

response.  Four types of opioid receptors are known at the present time.  These are the μ 

(mu, for morphine) and κ (kappa, for ketocyclazocine), named for the drugs used in a 

1976 study by Martin and colleagues17, and the δ (delta, for deferens) from a 1977 study 

in which the mouse vas deferens was used.18  Only two years after the discovery of the 

opioid receptors, Hughes et al.19 isolated and identified two pentapeptides as endogenous 
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opioids and named them enkephalins after the Greek word “Kaphale” meaning “from the 

head”.  Since this discovery a number of endogenous peptides for the opioid receptors 

have been identified (see Figure 5) along with their precursor proteins (see Figure 6).  

The endogenous ligands are associated with the opioid receptors as follows: the 

enkephalins19 (delta and mu), β-endorphin20 (delta and mu), dynorphins21 (kappa) and α-

neoendorphin21 (kappa).  Another set of endogenous ligands which are agonists at the mu 

opioid receptor are endomorphin-1 and endomorphin-222, although their endogenous 

source or precursor protein has yet to be found.  The fourth type of opioid receptor was 

discovered in 1994 and termed ORL123 (for opioid receptor-like) or LC132.24  Two 

groups independently and simultaneously identified the endogenous peptide that activates 

this receptor and named it nociceptin25 and orphanin FQ26 (“orphanin” refers to its 

association with an orphan receptor and “FQ” refers to the terminal residues of the 

peptide).  Today, this receptor is termed NOP-R (for nociceptin/orphanin FQ opioid 

receptor).  Subtypes of the delta (δ1 and δ2), kappa (κ1, κ2 and κ3) and mu (μ1A-1X) have 

been suggested.  However, only in mu have splice variants been identified.  Only one 

cDNA clone has been reported for delta and for kappa receptors and no variants have 

been identified to date.   It is likely that the subtypes arise from interaction of these 

receptors with other proteins or receptors (i.e. hetero-oligomerization) and not mRNA 

variants.   The opioid receptor subfamily can be divided into two main branches.  One 

branch includes the delta, kappa, and mu receptors at which naloxone acts as an 

antagonist and the second branch includes the NOP receptor which has a negligible 

affinity for naloxone. 
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Met-Enkephalin:  Tyr-Gly-Gly-Phe-Met 

Leu-Enkephalin:  Tyr-Gly-Gly-Phe-Leu 

β-Endorphin:   Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser10-Gln-Thr- 

    Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn20-Ala-Ile-Ile-Lys- 

    Asn-Ala-Tyr-Lys-Lys-Gly-GluOH31 

Dynorphin (dyn1-17):  Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu- 

    Lys-Trp-Asp-Asn-Gln 

Dynorphin (dyn1-8):  Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile 

Dynorphin (dyn1-13):  Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu- 

    Lys 

α-Neoendorphin:  Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys 

β-Neoendorphin:  Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro 

Nociceptin:   Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala-Arg- 

    Lys-Leu-Ala-Asn-Gln 

Endomorphin-1:  Tyr-Pro-Trp-Phe-NH2 

Endomorphin-2:  Tyr-Pro-Phe-Phe-NH2 

 

Figure 5.  The endogenous opioid peptides. 
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Proopiomelanocortin         β-endorphin 

Proenkephalin A       Met-enkephalin and Leu-enkephalin 

Proenkephalin B/Prodynorphin     dynorphins and neoendorphins 

Pronociceptin       nociceptin 

 

Figure 6.  Precursor proteins (rectangles).  The endogenous peptide contained in each 
precursor protein is outlined in ovals. 

 12



1.3.  Opioid Selectivity 
 
 Most of the relevant work on selectivity of the opioid receptors began with the 

cloning of the kappa, delta and mu opioid receptors in the early 1990s27 using a 

combination of SAR, chimeric studies, and site-directed mutagenesis.  When the first 

high-resolution crystal structure of the inactive form of bovine rhodopsin became 

available28 in 2000, molecular modeling docking studies and computational methods 

became important in determining those residues responsible for conferring selectivity 

among the opioid receptors.  Prior to 2000 opioid receptor models were constructed using 

the non-homologous bacteriorhodopsin29-31 or low resolution electron diffraction 

maps32,33 of rhodopsin.  Most recent published studies have concentrated on the 

selectivity of individual ligands, their binding modes, and improvement of potency and 

affinity for selective agonist and antagonist ligands. 

 

1.4. General Concepts in Selectivity 

 The kappa, delta and mu opioid receptors share an overall sequence identity in the 

helical and loop regions of ~60%.  However, the sequence identity varies according to 

which regions of the receptor that are being analyzed.  The intracellular loop regions have 

a high sequence identity of ~90% while the N-terminus, EL2, EL3 and the C-terminus 

show little to no similarity.  Approximately 75% sequence identity is seen in TM2, TM3 

and TM7 whereas the identity between TM4, TM5 and TM6 is much less. 

 Classical opiate ligands and some of the other opioid ligands adhere to the 

“message – address” concept34,35, the “message” being the shared or universal portion of 
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the molecule which interacts with the receptor and confers affinity and the “address” 

being that unique portion of the molecule which interacts with the receptor to confer 

selectivity.  Non-selective opiate ligands have no “address” moiety.  For opiates, the 

tyramine (4-hydroxy-phenylethylamine) constitutes the message moiety while large 

substituents on the C ring provide the address or selectivity of the molecule (see Figure 

7). 

The “message” interactions take place with conserved binding site residues.  

These interactions include D(3.32) and the ligand amine, H(6.52) and the phenolic OH, 

and a mutagenesis study by Befort, et.al.36 suggests that the conserved residues W(4.50), 

F(5.47) and W(6.48) form the scaffold stabilizing hydrophobic interaction in all three 

receptors.  Salvinorin A, being non-nitrogenous, does not appear to conform to the 

“message – address” model.  However, if one had to assign a “message” region of the 

molecule it would most likely be the furan ring which interacts with the conserved 

residues Q(2.60) and Y(7.43).  The “address” moiety would likely be the C-2 position 

acetate group which interacts with the non-conserved Y313(7.36).  The C-2 position 

benzoate analog of salvinorin A (herkinorin) is μ-selective indicating a lack of bulk 

tolerance or a need for a H-bonding moiety in that position for the ligand to bind 

selectively to the KOR. 
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Figure 7.   Examples of the “message – address” concept.  Shown is the non-selective 
opiate naltrexone and delta-selective opiate naltrindole. 
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Conserved residues in the binding pocket include T(2.54), Q(2.60), Y(2.64) in 

TM2; W(XL1.50) in EL1; D(3.32), Y(3.33), M(3.36) in TM3; W(4.50) in TM4; 

L(XL2.52) and F(XL2.54) in EL2; K(5.39), F(5.43), F(5.47) in TM5; W(6.48), I(6.51) in 

TM6 and I(7.39), Y(7.43) in TM7. 

 

Table 1.  Non-conserved residues in the binding pocket.  Residues underlined are thought 
to be the most important residues for conferring selectivity of the opiates. 
 

 Kappa Delta Mu 

TM2 (2.63) V118 K108 N129 

TM3 (3.29) I135 L125 I146 

EL2 (XL2.49) E209 V197 D218 

TM6 (6.55) I294 V281 V302 

TM6 (6.58) E297 W284 K305 

TM7 (7.32) L309 V297 T317 

TM7 (7.35) Y312 L300 W320 

TM7 (7.36) Y313 H301 H321 

 
 

Models constructed from site-directed mutation models36 suggested that two 

residues at the extracellular ends of TM6 and TM7 confer opiate and opiate-like ligand 

selectivity.  The following residues are non-conserved and oriented for ligand binding: 

kappa - E297(6.58), Y312(7.35); delta - W284(6.58), L300(7.35); and mu - K303(6.58), 

W318(7.35).  
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 Selectivity arises from two mechanisms:  a) mutual attraction and b) steric 

exclusion.  Mutual attraction occurs when the ligand is attracted to a complementary 

residue on the receptor (e.g. ionic interaction, hydrophobic interaction, etc.) and leads to 

stabilization and increased binding.  Steric exclusion occurs when a residue or residues 

on the receptor do not allow mutual attraction to occur resulting in decreased binding.  

The selective opiate and opiate-like compounds achieve their selectivity from a 

combination of these two mechanisms. 

The selectivity of Salvinorin A for the kappa opioid receptor is compared to a 

number of selective compounds in Table 2.  It can be seen that salvinorin A has both  

 

Table 2.  Comparison of selective compounds. 

  Ki (nM)   

Compound delta kappa mu Reference 

salvinorin A 5790 1.9 >1000 37 

morphine 140 46.9 1.1 38 

DAMGO 190 1300 0.34 22 

U50488 >10,000 0.2 290 38 

TRK-820 1200 3.5 53 39 

ethylketocyclazocine 3.4 0.1 0.3 38 

bremazocine 0.9 0.03 0.2 38 

endomorphin-1 1506 5428 0.36 22 

endomorphin-2 9233 5240 0.69 22 

β-endorphin 2.4 96 2.1 22 

Met-enkephalin 0.91 4442 9.5 22 

dynorphin (1-17) 42.7 1.7 7.7 38 

 

 17



high affinity and selectivity for the kappa opioid receptor.  Only the endogenous 

endomorphins with their high affinity and selectivity for the mu receptor rival salvinorin 

A.  Salvinorin A has been tested for binding at over fifty receptors and has been found to 

bind only to the kappa opioid receptor. 

 

1.5.  Binding Energies 

 In 1984, Andrews et al.40 proposed a method of calculating binding energies for a 

molecule by summing the intrinsic binding energies for 10 common functional groups 

and subtracting two entropy-related terms.  The difference between the observed binding 

energy and the calculated binding energy determines the goodness of fit of a drug to its 

receptor.  The free energy of drug-receptor binding is calculated using the following 

equation: 

∆G =  T∆Srt + nDOFEDOF + ∑ nXEX    (1) 

In equation (1), T∆Srt is the loss of overall rotational and translational entropy of the 

bound drug molecule, nDOF is the number of internal degrees of conformational freedom 

in the molecule, EDOF is the energy associated with the change in entropy resulting from 

the loss of each degree of freedom upon binding of the drug to the receptor, and EX is the 

intrinsic binding energy associated with each functional group X of which there are nX 

such functional groups in the molecule.  In order to obtain the EDOF and EX values, 

Andrews used data from 200 drugs and enzyme inhibitors and ran regression analyses 

using the equation: 

∆G = -RTlnK       (2) 
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with experimentally obtained Ki or KD values to calculate the free binding energies used 

in the regression analyses.  The average intrinsic binding energy values for ten common 

functional groups and the entropy term coefficient for the loss of degrees of freedom are 

shown in Table 3. 

 

Table 3.  Average intrinsic binding energies. 

Group Energy (kcal/mol) 

C(sp2) 0.7 

C(sp3) 0.8 

N+ 11.5 

N 1.2 

CO2
- 8.2 

OPO3
2- 10.0 

OH 2.5 

C=O 3.4 

O, S 1.1 

Halogen 1.3 

DOFa -0.7 
aDegrees of internal conformational freedom. 

 The allowance for the loss of overall rotational and translational entropy was 

calculated to be 14 kcal/mol based on the 1977 work of Page.41  In its final form, the 

following equation can be used to obtain the calculated free energy of binding for any 

molecule: 

∆G = -14 – 0.7nDOF + 0.7nC(sp2) + 0.8nC(sp3) + 11.5nN
+ + 1.2nN + 8.2nCO2- + 10.0nPO4

2- 

 +  2.5nOH + 3.4nC=O + 1.1nO,S + 1.3nHal     (3) 
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The observed free binding energy minus the calculated (average) free binding energy 

results in either a positive number indicating a better than average binding, or a negative 

number indicating a weaker binding than average.  According to Andrews, a large 

positive number would indicate that most or all of the functional groups are involved in 

binding resulting in a higher affinity at the receptor and would be a good drug candidate 

as a lead compound for further modification.   In his work, morphine was used as an 

example and the ∆GOBS and ∆GAVG for this compound were calculated using equations 

(2) and (3), respectively.  Table 4 shows the free binding energies for morphine and 

salvinorin A. 

 

Table 4.  Free binding energies for morphine and salvinorin A (kcal/mol). 

Group Coefficient Morphine Salvinorin A 
T∆Srt -14 -14 -14 
DOF -0.7 -1.4 -3.5 

C(sp2) 0.7 5.6 5.6 
C(sp3) 0.8 7.2 12.0 

N+ 11.5 11.5  
N 1.2   

CO2
- 8.2   

PO4
2- 10.0   

OH 2.5 5.0  
C=O 3.4  10.2 
O,S 1.1 1.1 4.4 
Hal 1.3   

∆GAVG  15.0 20.5 
∆GOBS  11.2 11.9 

∆GOBS - ∆GAVG  -3.8 -8.6 
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Andrews concludes that a negative value for the difference between the observed free 

binding energy and the average (calculated) free binding energy (-3.8 for morphine) 

indicates that either not all the functional groups are interacting with the receptor or that 

the ligand is in a relatively high energy conformation and points out that for morphine a 

negative value is consistent with the finding that portions of the morphine structure can 

be removed without significant loss of affinity.  Salvinorin A has an even larger negative 

difference between the two energies (-8.6).  Because of the constrained polycyclic 

structure of salvinorin A, it is unlikely that a high energy conformation is the source of 

the negativity.  However, the structure-activity relationship data indicates that several 

portions of the salvinorin A structure are not required for high affinity binding. 

 

1.6. Structure-Affinity Relationships (SAFIR) of Salvinorin A Analogs 

 The SAFIR of salvinorin A analogs is shown in Figure 8.  Due to the large 

number of salvinorin A analogs, it is difficult to formulate an all-inclusive, self-consistent 

SAFIR by inspection.  However, several general remarks can be made.  The C-1 carbonyl 

is not required for high affinity.42,43  However, reduction of the C-1 carbonyl to an 

alcohol increases the Ki 500-fold.42,43  The C-2 position acetyl group is required for high 

affinity.  Hydrolysis of the ester to the alcohol (salvinorin B) reduces affinity 100-fold.44  

A C-2 propanoate ester is optimum45 and esters as large as the n-hexanoate46 are tolerated 

at C-2.  Ethyl or propyl ethers47 are tolerated at the C-2 position and methoxymethyl 

ethers47 are optimal.  The C-4 position group tolerates very little change.  The C-18 

carbonyl is required for high affinity.  The C-18 deoxo compound shows 350-fold48 loss 
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of affinity.  The methyl ester at the C-4 position is required.  The C-4 carboxylic acid 

shows a >5000-fold49 loss of affinity.  The C-17 carbonyl is not necessary.  The C-17 

deoxo compound42 still retains high affinity and reduction of the C-17 carbonyl to an 

alcohol is tolerated, reducing the affinity by 25-fold.42  The furan ring is required for high 

affinity.  Reduction of the furan ring is well tolerated, but removal of the furan ring 

reduces the affinity 1500-fold.44     
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Figure 8.  Structure-affinity relationships of salvinorin A analogs. 
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When looking at the Ki data for the 280 analogs of salvinorin A, the data does not 

show clear SAFIR trends.  It is very difficult to draw any conclusions about why 

salvinorin A is so extremely selective based on Ki data alone.  Salvinorin A has been 

tested for binding at a myriad of receptors and shows no binding at any receptor other 

than at the kappa opioid receptor.  It does not bind at delta and mu opioid receptors 

despite the high sequence identity of the opioid receptors.  So what makes this compound 

so selective?  Having no basic nitrogen that can be protonated and, therefore, no 

interaction with the highly conserved D(3.32) as is seen with the aminergic receptors and 

their ligands, it is fairly easy to see why it does not bind to these receptors in a way that 

nitrogen-containing substrates do.  Salvinorin A has eight possible H-bond acceptor 

oxygen atoms.  From the SAFIR it is suggested that not all of these oxygen acceptor 

atoms are required for high affinity.  Most of the important functional groups for binding 

reside on the A ring so the first project undertaken in this research was to synthesize the 

fragment of salvinorin A containing the A ring to see if this fragment would bind to the 

kappa opioid receptor without the B, C and D rings and possibly shed some light on the 

binding mode and selectivity of salvinorin A.  
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2. Salvinorin A Fragment Synthesis 

 

2.1. Introduction 

 In order to determine the necessity of the B, C and D rings of salvinorin A for 

binding at the kappa opioid receptor the fragment shown in red in Figure 9 was 

synthesized.  A simple two-step synthesis consisting of a transesterification to the methyl 

ester at the C-4 position followed by an acetoxylation at the C-2 position was originally 

planned (see Scheme 1). 

 

O O O

OO OO OO

O

O
A B

 
                            1                                     2                                           3 

Scheme 1. Two step synthesis.  A = transesterification, B = acetoxylation. 

 

Three methods of transesterification were attempted.  Method 1 (TE1) followed the 

procedure of Mori, et al.50 and used KCN in MeOH, refluxed for 19 hours.  Method 2 

(TE2) and Method 3 (TE3) used the method of Ranu, et al.51  TE2 used InI3 in MeOH, 

refluxed for 25 hours, whereas TE3 used indium metal and I2 to form InI3 in situ and was 

refluxed 30 hours.  TE1 produced a small amount of product as indicated by thin layer 

chromatography (TLC).  For all three methods, reaction times were long and little to no 
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product was formed.  Separation of the methyl ester formed from the ethyl ester starting 

compound was also a problem.  These two compounds tended to coelute with column 

chromatography.  After trying several solvent systems for column chromatography with 

no separation obtained, it was decided to attempt a two-step route to obtain the methyl 

ester (methyl-4-oxocyclohexane carboxylate).  The first step used  10% NaOH in MeOH 

refluxed for one hour to hydrolyze the ethyl ester to the carboxylic acid followed by a 

second step of esterification using a catalytic amount of H2SO4 in MeOH and refluxed 30 

minutes to arrive at the ethyl ester product (see Scheme 2). 

 

 O O O

OO OHO OO
1 4 2

a b
 
 
 
 
 
 
 

Scheme 2.  Synthesis of methyl-4-oxocyclohexane carboxylate (2).  Reagents (a) 10% 
NaOH in MeOH, (b) H2SO4 (cat.) in MeOH. 
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Figure 9.   Salvinorin A fragment (red). 
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Reaction times were short and yield was good for the methyl ester (92% overall 

for the two steps).  After hydrolysis there was no starting compound left (i.e. 100% yield 

of the acid 4) and, therefore, separation from the small amount of impurities was easily 

achieved using column chromatography. 

 Acetoxylation of the methyl ester 2 proved to be the more challenging step in the 

synthesis.  Two different methods of direct acetoxylation of 2 were attempted.  The first 

method used was that of Tanyeli, et al.52 which used Pb(OAc)4 in cyclohexane and 

refluxed 21 hours.  This method resulted in very poor yield of product and was very 

difficult to separate from the starting compound.  The second direct method attempted 

was that of Lee, et al.53 which used Tl(OAc)3 and CF3SO3H in N,N-dimethylacetamide 

(DMAc) at 60 °C followed by H2O.  Yields were very low for this direct acetoxylation 

method also and, in addition, multiple spots were seen on TLC.  An added disadvantage 

of this method was removal of the DMAc.  Because of the high boiling point of DMAc 

(165° C), it could not be removed by rotary evaporation without losing product.  Multiple 

extractions with water did not remove all the DMAc.  Column chromatography was able 

to separate the residual DMAc; however, multiple spots were detected with TLC of the 

eluant with much coelution of products. 

 The next attempt at acetoxylation of the methyl ester 2 was a two-step process 

starting with α-bromination of 2 followed by acetoxylation of the brominated methyl 

ester.  The bromination procedure was taken from Fleischmann, et al.54 and used bromine 

added to a cooled solution of methyl ester in CH2Cl2.  Yields of α-bromo methyl ester 

compound were good (~80% crude product assumed to be mostly the α-bromo product).  
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TLC indicated no starting compound and an intense spot at a higher Rf than the methyl 

ester assumed to be the mono-brominated product and a second, much less intense spot 

below it which was assumed to be the dibrominated product.  The crude bromination 

product was used without purification in the next acetoxylation step.  The acetoxylation 

procedure was from work done by Lauktien, et al.55 and was modified by refluxing the 

bromo product in glacial acetic acid and adding sodium acetate (the original method used 

potassium acetate and 2-chlorocyclohexanone).  In this procedure the acetic acid was 

difficult to remove.  TLC indicated three spots thought to be starting compound (the α-

bromo methyl ester), the desired product 3 and possibly a hydrolysis product of 3.  After 

column chromatography a sample pure enough for NMR was obtained.  DEPT-NMR 

showed one methyl group instead of two and, therefore, it was concluded to be the 

hydrolysis product of the desired product 3.  Attempts were made to purify the crude 

bromo mixture by column chromatography before doing the acetoxylation step.  This 

resulted in a product which had the necessary peaks of the desired product 3, however, 

there still remained impurities in the sample. 

 It was then decided to undertake a three-step synthesis by converting the methyl 

ester to the silyl enol ether, followed by epoxidation and finally acetoxylation of the 

epoxide (see Scheme 3). 
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Scheme 3.  Synthesis of methyl-3-acetoxy-4-oxocyclohexane carboxylate (3). Reagents: 
(a) (CH3)3SiCl, Et3N in DMF or (CH3)3SiN(CH3)2, CH3I in benzene, (b) MCPBA in 
CH2Cl2, (c) Et3NHF, Et3N in acetic anhydride. 
 

 Two different methods were attempted to make the silyl enol ether.  The first was 

a method by House, et al.56 that used (CH3)3SiCl and Et3N in DMF and refluxing 48 

hours.  The reaction time was long and no product was obtained with this method.  The 

second method attempted to make the silyl enol ether was a procedure by Yamamoto and 

Matui57 which was modified from the original by using (trimethylsilyl)dimethylamine 

instead of (trimethylsilyl)diethylamine with methyl iodide in benzene.  The reaction time 

was short (two hours) and the yield (84%) was much better than the first method. 

 The next step was to convert the silyl enol ether (5) to the epoxide (6) with m-

chloroperbenzoic acid (MCPBA) in CH2Cl2 followed by acetylation of the epoxide 

formed using Et3NHF/Et3N in acetic anhydride according to the method by Rubottom and 

Gruber58 to arrive at the desired product (3).  The crude epoxide was used without 

purification.  Product (3) was verified by NMR and GC/MS to be a mixture of two 

diastereomers and their enantiomers.  The product was then sent to the NIMH 

Psychoactive Drug Screening Program (University of North Carolina, Chapel Hill, NC) 
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to determine the affinity at the KOR, DOR and MOR.  Product (3) had a Ki  > 10,000 nM 

at all three opioid receptors. 

 

2.2. Experimental 

 The starting compound (1), ethyl-4-oxocyclohexanecarboxylate, was obtained 

from Aldrich (Sigma-Aldrich, St. Louis MO, catalog number 320825).  Melting points 

were taken on an Optimelt (Stanford Research Systems) melting point apparatus.  Proton 

NMRs were taken on a Varian Mercury-300 MHz spectrometer.  The data is being 

reported as: chemical shifts δ (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = 

quadruplet, m = multiplet or unresolved, br = broad signal), coupling constant(s) J (Hz), 

and integration.  

 

4-oxocyclohexanecarboxylic acid (4) 

 To 5.46 g (0.031 mol) of ethyl-4-oxocyclohexanecarboxylate (1) in 10 ml MeOH 

was added 2.49g (0.062 mol) NaOH dissolved in 10 ml H2O.  The mixture was refluxed 1 

hour, cooled and acidified to a pH of 1-2 with 10% aq. HCl followed by extraction with 

CH2Cl2 (50 ml × 3).  Extracts were combined, dried with anhydrous MgSO4 and filtered.  

The CH2Cl2 was removed by rotary evaporation leaving a white solid (4).  Yield: 3.90 g 

(88%, 0.027 mol); mp range = 70 – 72° C, 1H NMR (CDCl3): δ 2.02 (m, 4H), 2.35 (m, 

4H), 2.85 (m, 1H), 11.43 (br, 1H). 
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Methyl-4-oxocyclohexanecarboxylate (2) 

 To 3.90 g (0.027 mol) of 4-oxocyclohexanecarboxylic acid (4) in 10 ml of 

anhydrous MeOH was added 2 drops of conc. H2SO4.  The reaction mixture was refluxed 

1 – 2 hours.  The MeOH was then evaporated to a small volume and 100 ml of CH2Cl2 

added.  The mixture was extracted with H2O (2 × 100 ml) and the CH2Cl2 layer dried 

with anhydrous MgSO4, filtered and evaporated to an oil (2).  Yield: 4.38 g (100%, 0.28 

mol; 1H NMR (CDCl3): δ 1.96 (m, 4H), 2.37 (m, 4H), 2.71 (m, 1H), 3.65 (s, 3H). 

Methyl-4-(trimethylsilyloxy)cyclohex-3-enecarboxylate (5) 

 In a three-neck 100 ml round bottom flask set up with a condenser, stopper and 

septum stopper was added 20 ml anhydrous benzene, 2.2 ml (0.014 mol) 

trimethylsilyldimethylamine and 1.0 ml (0.16 mol) methyl iodide.  The reaction mixture 

was stirred under N2 at 50 – 60 °C for one hour.  The temperature was raised to 70 – 80 

°C after one hour and 1.70 g (0.011 mol) of methyl-4-cyclohexanecarboxylate (2) was 

added gradually by syringe over a 30-minute period.  The mixture was then stirred for 

one hour longer.  The mixture was allowed to cool and 50 ml diethyl ether was added.  

The amine salt that formed upon the addition of the anhydrous diethyl ether was filtered 

out.  The benzene and diethyl ether were evaporated off leaving 2.37 g of crude (5).  The 

2.37 g of crude (5) was applied to a 20 cm (40 mm OD) glass column filled with silica 

gel (60 mesh) which had been pretreated with a 1% solution of Et3N in ethyl acetate.  The 

elution solvent was 9:1 petrolium ether:ethyl acetate.  Yield: 2.10 g (84%, 0.01 mol); 1H 

NMR (CDCl3): δ 0.01 (s, 9H), 1.80 (m, 2H), 1.90 (m, 2H), 2.05 (m, 2H), 2.30 (m, 1H), 

3.45 (s, 3H) 4.58 (t, J =3.0 Hz, 1H). 
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Methyl-6-(trimethylsilyloxy)-7-oxabicyclo[4.1.0]heptane-3-carboxylate (6) 

 To 1.505 g (0.0066 mol) of methyl-4-(trimethylsilyloxy)cyclohex-3-

enecarboxylate (5) in 5 ml of anhydrous CH2Cl2 under N2 and in a MeOH ice bath (-15 

°C) was added 1.680 g (0.0073 mol assuming 75% pure) of m-chloroperbenzoic acid 

(MCPBA) which had been dissolved in anhydrous CH2Cl2.  Addition was drop-wise 

slowly by syringe.  After the addition was complete, the mixture was allowed to stir at 

room temperature for 1 hour.  The CH2Cl2 was evaporated off and the residue dissolved 

in 50 ml of hexane.  The hexane mixture was extracted with saturated NaHCO3 (2 × 50 

ml).  The hexane layer was dried with anhydrous MgSO4, filtered and evaporated to 

dryness.  Weight of crude epoxide (6) = 0.342 g.  The crude residue was used in the next 

step without purification. 

Methyl-3-acetoxy-4-oxocyclohexanecarboxylate (3) 

 To 0.342 g of crude epoxide (6) was added 8 ml of acetic anhydride, 0.7 g of 

Et3N·HF and 1.0 ml of Et3N.  The Et3N·HF was prepared by adding 1.0 g (0.0062 mol) of 

Et3N·3HF to 1.255 g (0.0124 mol) of Et3N to 10 ml anhydrous acetone.  Stir, then 

evaporate acetone.  White crystals form which are very hydroscopic.]  The mixture was 

allowed to stir at room temperature under N2 for 48 hours.  To the reaction mixture was 

added 75 ml of diethyl ether and then extracted with 50 ml of saturated NaHCO3.  

Additional solid NaHCO3 was added to hydrolyze the acetic anhydride.  The ether layer 

was then washed successively with 20 ml H2O, 20 ml 1.2 N HCl and 20 ml saturated 

NaHCO3.  The aqueous washes were each extracted with 30 ml diethyl ether, the ether 

extracts combined, dried with anhydrous MgSO4 and filtered.  The filtrate was 
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evaporated down to a small volume and loaded on a 15 mm diameter glass column 

packed with silica gel (mesh 60) to a height of 21 cm.  The column was eluted under 

pressure with 9:1 petroleum ether:ethyl acetate.  Fractions containing the desired product 

were combined and solvent removed under rotary vacuum leaving 85 mg (0.4 mmol) of 

desired product (3).  1H NMR (CDCl3): δ 2.15 (s, 6H), 2.5 (m, 6H), 3.0 (m, 1H), 3.70 (s, 

3H), 3.80 (s, 3H), 5.25 (dd, J = 6.0 Hz, 1H), 5.35 (dd, J= 6.0 Hz, 1H); GC/MS:  Four 

peaks appeared on the GC (two diastereomers and their enantiomers).  All four had 

identical mass spectra.  m/z:  43 (P), 172, 183.  The molecular ion is not seen. 

2.3. Conclusion 

 Failure of the salvinorin A fragment to bind to the kappa opioid receptor indicates 

that the B, C and D rings are important to the integrity of the molecule for selective 

binding at the receptor.  The next step in this research was to examine the binding modes 

of salvinorin A and its analogs through molecular modeling studies which may clarify the 

the observed Ki data and lend some insight into selectivity. 
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3. Homology Modeling of Opioid Receptors 

  

3.1. Models Based on Bovine Rhodopsin 

3.1.1. Experimental 

 The research presented here will be concerned with only the delta, kappa, and mu 

opioid receptors.  DOR, KOR and MOR will be used throughout this paper to identify the 

delta opioid receptor, the kappa opioid receptor and the mu opioid receptor, respectively. 

 The human DOR, KOR and MOR share ~60% sequence similarity in the TM 

helical and loop regions and they exhibit ~19% sequence similarity with bovine 

rhodopsin.  The crystal structure of bovine rhodopsin in the inactive state28 (PDB access 

ID = 1F88) at a resolution of 2.80 Å was used as the template to construct models of the 

opioid receptors.  The sequences of human DOR, KOR and MOR were aligned using 

Clustal X59,60 (version 1.83) in the multiple alignment mode, using a gap opening penalty 

of 15 and BLOSUM61 30 protein weight matrix.  All other values were left as the default 

values.  The results were then aligned to a previous alignment of six receptors (human 

acetylcholine muscarinic M1 receptor, human dopamine D3 receptor, human vasopressin 

V1a receptor, human δ-opioid receptor, human β2 adrenergic receptor and bovine 

rhodopsin) by Bissantz62 et al. using ClustalX in the profile alignment mode (gap opening 

penalty = 15, BLOSUM Series).  The resulting alignment of the opioid receptors with 

bovine rhodopsin is shown in Figure 10.  All but bovine rhodopsin of the Bissantz 

sequences were removed after alignment for clarity.  
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Figure 10.   Alignment of the opioid receptors with bovine rhodopsin.  Helical regions 
are in blue.  Ballesteros-Weinstein numbering with conserved residues is shown in red.  
Beta strands are shown with salmon arrows.  Sequences are numbered for bovine 
rhodopsin (top) and kappa opioid receptor (bottom). 
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Homology modeling of the receptors was performed on a MIPS R14K-based SGI 

Fuel workstation running SYBYL (version 6.9.2, 2004, Tripos Associates, Inc., St. Louis, 

MO).  The ‘A’ chain of bovine rhodopsin was used as the template, deleting the ligand 

retinal, the sugars, ions and waters.  The first 33 residues of the N-terminus on the KOR 

model were removed.  These residues have the greatest sequence dissimilarity compared 

to bovine rhodopsin, are spatially far away from the binding site and are not necessary for 

small-molecule ligand binding.  Residues were mutated individually to the corresponding 

opioid residues according to the alignment.  The appropriate deletions were made.  Loop 

searches were utilized in loop regions to accomodate insertions.  Sidechains were added 

to these loops using SCWRL63 (version 3.0).  The receptor was renumbered, hydrogens 

added, disulfide bridges connected and lone pairs deleted before energy minimization 

using the Tripos Force Field incorporating Gasteiger-Hückel charges with a distance-

dependent dielectric constant = 4 and a nonbonded cutoff = 8 Å to a gradient of 0.05 

kcal/(mol × Å).   

The substituted cysteine accessibility method (SCAM) provides information on 

residues which are likely in the binding pocket of GPCRs.  SCAM studies of the opioid 

receptors64-67  have indicated conformational rearrangements in the trans-membrane 

helices.  A helical rotation of trans membrane helix two (TM2) in the opioid receptors has 

been postulated68 based on SCAM studies, chimeric studies and site-directed 

mutagenesis.  Therefore, TM2 was rotated in two parts to prevent distortion within TM2 

at the TM2-EL1 loop interface.  The first rotation, an axis of rotation was defined by 

residues 2.41 to 2.5369 (Axis 1).  Residues 2.57 to 2.66 were then rotated -30° about Axis 
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1 (counter-clockwise looking down the receptor from the extracellular side).  The 

residues 2.57 to 2.66 defined Axis 2 and these residues were rotated -45° about Axis 2.  

SCWRL was then used to reassign sidechain conformations on residues 1.29 to 1.47 on 

TM1 and 2.57 to 2.66 on TM2 followed by energy minimization using the parameters 

previously described.  PROCHECK and PROTABLE (within SYBYL) were then used to 

identify steric clashes of sidechains and to check backbone geometry and sidechain 

chirality.  Corrections were made and the receptor was again energy-minimized.  The 

structure of inactive bovine rhodopsin crystal (1F88) and the three opioid receptor models 

constructed from it are shown in Figure 11.  The same receptors superimposed are shown 

in Figure 12. 
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a.     b. 

 
c.     d. 

 

Figure 11.  Opioid receptor models based on inactive bovine rhodpsin 1F88 crystal 
structure. (a) The A chain of bovine rhodopsin template; (b) KOR with N-terminus 
truncated; (c) DOR; (d) MOR models. 
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Figure 12.  Superimposed bovine rhodopsin 1F88 crystal structure with opioid receptor 
models.  Bovine rhodopsin 1F88 template (yellow); KOR (green); DOR (cyan); MOR 
(magenta). 
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Models of the KOR based on the inactive state bovine rhodopsin crystal 

structure70 (PDB ID = 1U19) and the light-activated state bovine rhodopsin crystal 

structure71 (PDB ID = 2I37) were kindly provided by Dr. Philip D. Mosier.  Details of the 

building of these two KORs have been described previously.68,72,73  The DOR and MOR 

were then built using the KOR model as a template as described above, except for the 

rotation of TM2 which was already incorporated into the template KOR models.  These 

six models, three inactive rhodopsin-based models (IR-KOR, IR-DOR and IR-MOR) and 

three light-activated rhodopsin-based models (AR-KOR, AR-DOR and AR-MOR), were 

then used in the research presented here.  The rhodopsin template and the opioid receptor 

models constructed from it are shown in Figures 13 and 15.  The superimposed models 

are shown in Figures 14 and 16. 
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a.     b.  

   

c.     d. 

   

Figure 13.  Opioid receptor models based on inactive bovine rhodopsin 1U19 crystal 
structure.  (a) The A chain of bovine rhodopsin template; (b)  IR-KOR; (c) IR-DOR; (d) 
IR-MOR models.  The N- and C-termini are truncated in all three opioid models. 
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Figure 14.  Superimposed bovine rhodopsin 1U19 crystal structure with opioid receptor 
models.  Bovine rhodopsin 1U19 template (yellow); IR-KOR (green); IR-DOR (cyan); 
IR-MOR (magenta). 
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 a.     b. 

    
 c.     d. 

    
 
Figure 15.  Opioid receptor models based on light-activated bovine rhodopsin 2I37 
crystal structure.  (a) The A chain of light-activated bovine rhodopsin template; (b) AR-
KOR; (c) AR-DOR; (d) AR-MOR models.  The N- and C-termini have been truncated in 
all three opioid models. 

 44



 

 
Figure 16.  Superimposed bovine rhodopsin 2I37 crystal structure and the opioid 
receptor models.  Bovine rhodopsin 2I37 template (yellow); AR-KOR (green); AR-DOR 
(cyan); AR-MOR (magenta). 
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3.2. Models Based on the β2-Adrenergic Receptor 

3.2.1. Experimental 

 A model of the KOR based on the crystal structure of the β2-adrenergic receptor 

(PDB ID = 2RH1) was also provided by Dr. Philip D. Mosier and was constructed in the 

following manner:74 All molecular modeling was performed using SYBYL 7.3 (Tripos, 

LLC, St. Louis, MO) except where noted.  ClustalX 1.83 was used to align the human 

KOR and β2AR primary amino acid sequences.  The hKOR homology model was 

generated manually using the x-ray crystal structure of the human β2AR-T4L fusion 

protein co-crystallized with carazolol (PDB ID = 2RH1) as the template.75  Amino acid 

residues in the TM regions, IL1, IL2 and Helix 8 were directly mutated to the 

corresponding hKOR residues.  Loop searches were employed to model the remaining 

loops and to replace the six missing residues of IL3.  Like the β2-adrenergic receptor, 

there is evidence76 indicating that the EL2 loop segment connecting the extracellular end 

of TM4 to the EL2-TM3 disulfide bridge in the hKOR is α-helical, and this feature was 

retained in the present hKOR model.  To incorporate the refinement procedures that had 

previously been applied to successive rhodopsin-based models of the hKOR, the 

extracellular portion of TM2 was rotated68 and the sidechain rotameric states of non-

conserved TM helix residues were copied from a previously-described rhodopsin-based 

activated hKOR model.72  The W287(6.48) “toggle” χ1 torsion angle was set to the 

“active” (trans) conformation.77  The N-terminus of the KOR model was truncated and 
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N-acetylated at P56(1.30), the C-terminus was truncated and O-methylated at P347, and 

the C345 sidechain was palmitoylated.  Water molecules involved in conserved GPCR H-

bonding networks were added by transferring the water molecule oxygen atoms from the 

2RH1 crystal structure to the hKOR model, then removing those with severe clashes 

and/or fewer than two H-bonding partners.  Similarly, the salvinorin A ligand was 

transferred from the previously-described activated hKOR model72 into the current β2AR-

based hKOR model; receptor-ligand interactions were retained during this procedure.  

Finally, the hKOR-salvinorin A complex was energy-minimized (Tripos Force Field; 

energy-gradient termination at 0.05 kcal/(mol×Å); Gasteiger-Hückel atomic charges; 

distance-dependent dielectric constant = 4.0) and the structural integrity of the model was 

assessed using PROCHECK78 and the PROTABLE facility within SYBYL.  Using this 

model as a template, the DOR and MOR were constructed in an analogous manner as the 

inactive and active rhodopsin-based receptors and will be referred to as B-KOR, B-DOR 

and B-MOR.  The β2-adrenergic receptor template and the opioid models constructed 

from it are shown in Figure 17.  Superimposed models are shown in Figure 18. 
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 a.     b.  

      
 c.     d. 

    
Figure 17.  Opioid receptor models based on the β2-adrenergic receptor 2RH1 crystal 
structure.  (a) The β2-adrenergic receptor (with lysozyme) template; (b) B-KOR; (c) B-
DOR; (d) B-MOR models.  The N- and C-termini have been truncated on all models. 
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Figure 18.  Superimposed β2-adrenergic receptor 2RH1 crystal structure and opioids 
receptor models.  The β2-adrenergic receptor 2RH1 template (yellow); B-KOR (green); 
B-DOR (cyan); B-MOR (magenta). 
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3.3. MODELLER  Models 

3.3.1. Experimental 

 Models of the KOR, DOR and MOR were also constructed using the program 

MODELLER79,80 (version 9v3, Andrej Sali, Departments of Biopharmaceutical Sciences 

and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical 

Research, Mission Bay Byers Hall, University of California San Francisco, San 

Francisco, CA).  One hundred models of the KOR were generated by MODELLER using 

the A chain of inactive bovine rhodopsin crystal structure (PDB ID = 1U19) as the 

template in which the N- and C-termini had been truncated and the ligand removed.  The 

alignment used to create the input alignment file in PIR format for MODELLER was the 

Bissantz-opioid receptors alignment used previously (see Figure 2).  After generation of 

100 models of the KOR, the receptors were energy-minimized using the Tripos force 

field incorporating Gasteiger-Hückel charges with a distance-dependent dielectric 

constant = 4 and a nonbonded cutoff = 8 Å to a gradient of 0.05 kcal/(mol × Å).  

Following minimization, salvinorin A, salvinorin B and the kappa antagonist 5-

guanidinylnaltrindole (GNTI) were docked in each of the 100 KOR models generated by 

MODELLER using the program GOLD81 (Genetic Optimization of Ligand Docking, 

version 3.1, Cambridge Crystallographic Data Centre, Cambridge, UK).  Ten docking 

runs were performed for each ligand.  The best-ranking solutions as determined by 

GOLD score for each ligand docked in each of the 100 receptors were visually inspected.  

Receptor number 36 of the 100 MODELLER-generated KORs was chosen as the best 
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overall KOR model based on GOLD scores and consistency with experimental 

biochemical studies.  The model of the KOR chosen (number 36) is shown in Figure 19. 
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Figure 19.  KOR model number 36 of the MODELLER-generated receptors.  The N- and 
C-termini have been truncated. 
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3.4. Determining Best Models for Ligand Docking 

3.4.1. Experimental 

 In order to determine which set of homology models to use for docking ligands a 

study was undertaken to compare the KOR, DOR and MOR models based on the inactive 

form of bovine rhodopsin (IR-KOR, IR-DOR and IR-MOR), the light-activated 

rhodopsin (AR-KOR, AR-DOR and AR-MOR) and the β2-adrenergic (B-KOR, B-DOR 

and B-MOR) receptors.  The following compounds were selected for docking in the nine 

receptor models (see Table 5).  Work was performed on an HP wx9400 workstation using 

SYBYL (version 7.3).  Each compound was constructed using SYBYL’s sketching utility 

followed by energy minimization applying Gasteiger-Hückel charges with a distance 

dielectric constant of 4.0 D/Å.  Each compound was docked twenty times into each of the 

nine receptors using the program GOLD (version 4.0).  The top-ranking GOLD Scores 

from each run were used in the comparison (see Table 6).  The GOLD Score is made up 

of four components: 1) protein-ligand hydrogen bond energy (external H-bond); 2) 

protein-ligand van der Walls (vdw) energy (external vdw); 3) ligand internal vdw energy 

(internal vdw) and 4) ligand torsional strain energy (internal torsion).  The GOLD fitness 

score is the negative sum of the four energy  terms, with the external vdw term being 

multiplied by a factor of 1.375.  This is a correction to encourage protein-ligand 

hydrophobic interactions.  A larger positive GOLD Score indicates higher affinity of the 

ligand for the receptor.  Negative scores usually indicate severe ligand-protein clashes. 
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Table 5.  Compounds docked into the nine models of opioid receptors and their Ki 
values.  Selective compounds are highlighted.  
 

Ligand Type Ki (nM) at δ Ki (nM) at κ Ki (nM) at μ Reference
BW373U86 agonist 0.01 17 26 82 

SIOMa agonist 1.7 >1000 33 83 
BNTXb antagonist 6.2 48 26 84 

naltrindole antagonist 0.2 10.1 6.3 38 
TRK-820 agonist 1200 3.5 53 39 

bremazocine agonist 0.2 0.03 0.9 38 
5’-GNTIc antagonist 70 0.18 36.9 85 
norBNId antagonist 5.7 0.2 21 38 
fentanyl agonist 152.7 84.8 0.7 38 

morphine agonist 140 46.9 1.1 38 
GL-06e antagonist 306.3 67.02 0.41 86 
GL-09e antagonist 135.2 36.93 0.56 86 

etorphine agonist 1.5 0.2 0.3 38 
naloxone antagonist 67.5 2.5 1.4 38 

aSIOM = 7-spiroindanyloxymorphone, bBNTX = benzylidenenaltrexone, c5’-GNTI =  
guanidinylnaltrindole, dnorBNI = norbinaltorphimine, erefers to compounds 6 and 9 from a paper by G. Li, 
et.al.(see reference in table). 
 

 

Table 6.  Top-ranking GOLD Scores.  The highest GOLD Score for each compound at 
any of the nine receptors is shown in bold type.  IR- = inactive rhodopsin-based DOR, 
KOR or MOR.  AR- = active rhodopsin-based DOR, KOR or MOR.  B- = β2-adrenergic-
based DOR, KOR or MOR. 
 

Compound IR-DOR IR-KOR IR-MOR 
BW373U86 13.11 20.47 12.31 
SIOM 18.25 32.11 -18.26 
BNTX 20.51 16.07 16.94 
naltrindole 29.68 32.00 -12.22 
TRK-820 -8.74 13.22 16.63 
bremazocine 18.69 21.88 -4.88 
5’-GNTI -136.47 -87.29 -126.16 
norBNI -322.17 -61.87 -76.76 
fentanyl 14.87 23.82 23.23 
morphine 34.93 26.80 30.96 
GL-06 -5.24 -59.03 -0.97 
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GL-09 -40.36 -61.04 11.82 
etorphine -2.15 0.87 -5.77 
naloxone 38.23 21.63 13.43 
    
Compound AR-DOR AR-KOR AR-MOR
BW373U86 31.68 45.32 29.30 
SIOM -50.75 19.31 -32.93 
BNTX -51.29 54.02 27.20 
naltrindole 31.36 45.47 26.13 
TRK-820 9.86 33.78 30.48 
bremazocine 2.65 36.71 43.69 
5’-GNTI -140.47 -70.84 -99.16 
norBNI -382.57 -157.64 -500.23 
fentanyl 20.62 40.08 37.64 
morphine 25.89 47.33 41.44 
GL-06 26.02 45.73 32.34 
GL-09 -61.29 28.02 -31.50 
etorphine -85.95 22.94 26.73 
naloxone 23.67 52.73 49.27 
    
Compound B-DOR B-KOR B-MOR 
BW373U86 27.22 18.45 -14.38 
SIOM -6.73 -53.70 2.69 
BNTX 36.74 -37.64 -23.20 
naltrindole 29.30 -8.24 -6.76 
TRK-820 42.99 16.84 -14.88 
bremazocine -12.67 -0.64 -7.20 
5’-GNTI -131.74 -118.11 -135.00 
norBNI -83.93 -277.87 -135.66 
fentanyl 37.24 34.97 28.47 
morphine 4.83 18.26 13.44 
GL-06 -0.12 -17.50 -39.79 
GL-09 -1.40 -32.37 -26.59 
etorphine -77.43 -80.30 -25.36 
naloxone 10.48 22.31 11.06 

 

 

3.4.2. Results 

From the data it can be seen that the receptors based on the light-activated 

rhodopsin showed the highest GOLD scores for all but three compounds.  The beta 
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adrenergic-based receptors showed the most clashing of docked compounds (negative 

GOLD Scores) and lowest overall scores.  The GOLD Scores did not correlate well with 

the selectivity of the test compounds.  If, instead of using the top-ranked GOLD Score, 

the GOLD Score corresponding to the docked position most like the postulated models in 

the literature is chosen the outcome is similar with AR-MOR and AR-KOR showing the 

highest scores.  Based on this docking study, it was decided to use the light-activated 

rhodopsin-based kappa opioid receptor model (AR-KOR) for subsequent docking of the 

salvinorin A analogs rather than the inactive rhodopsin-based (IR-KOR) or the beta 

adrenergic-based (B-KOR) kappa opioid receptor models.  With salvinorin A and many 

analogs being agonists this is consistent with the light-activated bovine rhodopsin-based 

model giving the best results. 
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4. Comparative Molecular Field Analysis (CoMFA) 

 

4.1. Introduction 

 Comparative Molecular Field Analysis (CoMFA) was used to try to relate the 

binding mode of a large number of salvinorin A analogs to the Ki data in a meaningful 

way that may help answer the question of selectivity. CoMFA, a three-dimensional 

quantitative structure-activity relationship (3D-QSAR) methodology, may be used to 

rationalize and predict ligand-receptor interactions when used in conjunction with 

homology modeling.  In CoMFA, a 3D-QSAR model is constructed by correlating 

regions of the steric and electrostatic fields with experimentally obtained affinity data for 

a set of ligands (the training set or TSET). Information contained in the model can then 

be used for the design and prediction of binding affinities of new ligands (the prediction 

set or PSET) for the target receptor.  Salvinorin A analogs are well-suited for a CoMFA 

study because the core of the molecule does not vary and is conformationally constrained 

due to its polycyclic  structure, much like the steroid system presented in the initial 

description of the method.87 

 The quality and nature of the data used to construct the CoMFA model is of prime 

importance in obtaining an accurate, predictive model.  Binding affinity data can vary 

from lab to lab depending on the assay methods, radioligand and cell lines employed.  

The choice of radiolabeled ligand can dramatically affect the values obtained88,89, as can 

the level of gene expression which results in differing receptor densities in cloned cell 
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lines.90  Therefore pooling of data for a CoMFA study is generally discouraged.  In this 

study, Ki data was taken from a compilation of 280 known salvinorin analogs from 

several independent labs.42,43,45,47-49,91-107  Occasionally, Ki values determined for the 

same compound would vary greatly.  Only those compounds with an exact Ki were used 

(i.e. estimated values such as those reported as >10,000 were not considered).  The 

alignment of compounds is a critical factor in obtaining a good CoMFA model.  

Therefore, several alignment methods were tested. 

 Initial CoMFA models of all analogs taken as a whole gave very poor results with 

no correlation, indicating that the nature and/or quality of the data may be adversely 

influencing the results.  Therefore, the data was divided into subsets by laboratory, 

radioligand used, or by substituted position.  The analogs used in this study varied at the 

C-2 and C-4 positions and included furan analogs and C-8 epimers (see Figure 1).  The 

compounds available for this study are shown in Tables 7, 8, 9 and 10.   
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Table 7.  C-2 position analogs. 

 

 

OO

O
R

O

O O

H H

Cpd. R C-8 
Configuration 

Ki ± S.E.M.,  nM 
(Radioligand)a Reference 

1 beta 

0.75 ± 0.62  (U) 
1.0 ± 0.1  (D) 
1.3 ± 0.5  (D) 
1.9 ± 0.2  (IO) 
2.4 ± 0.4  (D) 

4 ± 1  (U) 
4.4  (Und.) 
5 ± 1  (U) 

18.74 ± 3.38  (B) 

105 
104 

47, 95, 96 
37, 93, 98 
49, 108 

42 
100 
99 
92 

2 

 

beta 

65.9 ± 8.6  (D) 
111 ± 12  (D) 
155 ± 23  (D) 
280 ± 20  (IO) 
8672  (Und.) 

104 
94 

47, 48, 95 
37, 44 

43 

3 

 

alpha 

38 ± 2  (IO) 
77 ± 4  (D) 

140 ± 9  (D) 
163 ± 50  (U) 

300  (IO) 

93 
47, 94, 96 

48 
42 
45 

4 
 

alpha 43 ± 5  (D) 
304 ± 46  (D) 

47, 94 
49 

5 
 

beta 
 

424 ± 16  (D) 
 

48 

6 
 

beta 18 ± 2  (U) 
51.18 ± 5.42  (Und.) 

42 
43 

O

O

HO

O

O

HO

O

O

OH

O
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7 

 

beta 
1.8 ± 0.1  (IO) 
7.2 ± 0.5  (D) 

32.63 ± 15.7  (B) 

45 
47, 48, 95 

43, 92 

8 

 

beta 641 ± 122  (D) 48 

9 
 

beta 4 ± 1  (IO) 
4.9 ± 0.6  (D) 

98 
47, 48, 95 

10 
 

beta 665 ± 100  (D) 48 

11 
 

beta 15 ± 2  (IO) 98 

12  beta 70 ± 4  (IO) 98 

13 

 

beta 3199 ± 961.2 (B) 92 

14 

 

beta 19 ± 2  (IO) 45, 93 

15 

 

beta 42 ± 1  (IO) 45, 93 

16 

 

beta 90 ± 2  (IO) 37, 45, 93 

17 

 

beta 290 ± 40  (IO) 98 

18 

 

beta 
 

180 ± 10  (IO) 
 

98 

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

 60



19 

 

beta 90 ± 7  (IO) 37, 98 

20 

 

beta 70 ± 7  (IO) 37, 98 

21 

 

beta 740 ± 40  (IO) 37, 98 

22 

 

beta 1930 ± 50  (IO) 45, 93 

23  beta 260 ± 20  (IO) 37, 98 

24 

 

beta 211 ± 37  (U) 99 

25 

 

beta 375 ± 42  (U) 99 

26 

 

beta 197 ± 19  (D) 47 

27 

 

beta 176 ± 5.5  (D) 47 

28 

 

beta 90 ± 10  (IO) 98 

29 

 

beta 430 ± 10  (IO) 45, 93 

O

OBr

O

O
Br

O

O

Br

O

O

N

O

O

S

O

O
F

F
F

O

O
Cl

Cl
Cl

O

O
N

O

O
N
H

O

O

O
N
H

O

O

O
O

O
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30 

 

beta 3.2 ± 0.2  (D) 47, 95 

31 

 

beta 83.0 ± 8.5  (D) 47, 95 

32 

 

beta 462 ± 20  (D) 47, 95 

33 

 

beta 120 ± 4  (IO) 45, 93 

34 

 

beta 93 ± 3  (IO) 
282 ± 13  (D) 

45, 93 
47 

35 

 

beta 64 ± 2  (IO) 45, 93 

36 
 

beta 223 ± 123  (D) 48 

37 

 

beta 328 ± 40  (D) 48 

38 

 

beta 65.2 ± 24.6 (D) 
 48 

39 
 

beta 28.9 ± 1.0  (D) 47, 48, 95 

40 

 

beta 17.6 ± 3.1  (D) 48 

41 

 

beta 2.3 ± 0.6  (D) 47, 48 

ON

O
H

H

ON

O

H

ON

O

H

ON

O

H

ON

O

H

O

NH
Cl

Cl
Cl

H2N

N
H

N
H

N
H

N
H

N
H
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42 

 

beta 168 ± 10  (D) 48 

43 

 

beta 90.9 ± 2.5  (D) 47, 48, 95 

44 

 

beta 
30 ± 2 (IO) 
86 ± 22  (U) 
149 ± 1  (D) 

37 
99 
48 

45 

 

beta 332 ± 41  (D) 48 

46 

 

beta 3.2 ± 0.1  (D) 48 

47 

 

beta 16.5 ± 1.1  (D) 47, 48 

48 

 

beta 374 ± 19  (D) 48 

49 

 

beta 117 ± 63  (D) 48 

50 

 

beta 1.6 ± 0.1  (D) 48 

51 

 

beta 6.9 ± 1.1  (D) 47, 48 

52 

 

beta 27.6 ± 1.8  (D) 48 

N

N

N

O

H

N

O

H

N

O

N

O

N

O

H

N

O

H

N

O

N

O

N

O
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53 

 

beta 240 ± 17  (D) 48 

54 

 

beta 38.1 ± 1.9  (D) 48 

55 

 

beta 376 ± 36  (D) 48 

56 

 

beta 
11.2  (Und.) 

12.27 ± 1.44  (Und.) 
54.5 ± 25.7  (U) 

100 
43 

105 

57 

 

beta 

7.50 ± 1.03  (Und.) 
7.9  (Und.) 
8 ± 1  (U) 

18.4 ± 7.9  (U) 

43 
100 
99 

105 

58 
 

beta 607.6 ± 102.7  (Und.) 43 

59 
 

beta 608 ± 103  (U) 99 

60 
 

beta 261 ± 67  (U) 99 

61 
 

beta 220 ± 12  (D) 47, 48, 95 

62 
 

beta 7.9 ± 0.3  (D) 47, 48, 95 

63 
 

beta 28.7 ± 3.0  (D) 47, 95 

64 
 

beta 35.8 ± 5.1  (D) 47, 95 

65 
 

beta 60.1 ± 5.1  (D) 47, 95 

66 
 

beta 0.4 ± 0.02  (D) 
0.60 ± 0.07 (D) 

47, 94 
108 

N

O

N

O

N

O

HS

S

O

Cl

Cl

Br

O

O

O

O

O

O O
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67 
 

alpha 30 ± 3  (D) 47, 94 

68 
 

beta 75.7 ± 5.9  (D) 47, 95 

69 

 

beta 2.3 ± 0.1  (IO) 45, 93 

70 

 

beta 227 ± 32  (D) 47 

71 

 

beta 60 ± 6  (IO) 98 

72 

 

beta 50 ± 5  (IO) 98 

73 
 

beta 546 ± 140  (U) 105 

74 
 

beta 151 ± 53  (U) 105 

O O

O

OSH3C
O

O

OS
O

O
F3C

OS
O

O

OS
O

O
H3C

HS

S

O
a)  D = [3H] Diprenorphine (antagonist), IO = [125I] IOXY (antagonist) 6 beta-Iodo-3,14-dihydroxy- 17-
cyclopropylmethyl-4,5 alpha-epoxymorphinan (IOXY), U = [3H] U69,593 (agonist), 
B = [3H] Bremazocine (agonist), Und. = Undetermined 
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Table 8.  C-4 position analogs. 

OO

O
O

O

O

H H

R  
 

Cpd.                  R C-8 
Configuration 

Ki ± S.E.M., nM 
(Radioligand)a Reference 

 
75 

 

              

               OH  

 
beta 

43.4 ± 4.93  (D) 
347 ± 53  (U) 

1000 ± 269  (D) 

106 
42 
48 

76 
O  

alpha 
 

769 ± 180  (D) 
 

 
48 

 

77 
 

OHO  

alpha 17.3  (D) 
48.6 ± 4.4  (D) 

 
47 

96, 106 

78 
OO  

beta 28.5 ± 0.9  (D) 
365 ± 26  (D) 

96 
47 

79 

 

OO
 

beta 201 ± 26  (D) 
679 ± 112  (D) 

96 
47 

80 
     OO O  

beta 
 

99.6 ± 15.9  (D) 
 

96 

81 
OO O  

alpha 
 

110 ± 15  (D) 
 

 
96 

 

 
82 

 
NO
H  

 
beta 

 

 
1392 ± 218  (D) 

 

 
48 

 

 
83 

 
       

NO
H

 

alpha 475 ± 41  (D) 96 

84 
O

NO
H O

 

beta 470 ± 92  (D) 47, 96 
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85 

 

NO
H

O

O
 

alpha 1147 ± 721  (D) 47 

86 

 

NO
H

O

O
 

beta 19.3  (D) 47 

87 

 

NO
H

O

O
 

alpha 18.1  (D)  47 

88 

 

NO
H

O

O
 

beta 14.2 ± 0.8  (D) 
26.9 ± 1.8  (D) 

47 
96 

89 

NO

O

O

 

beta 210 ± 32  (D)  47, 96 

90 O

O
 

beta 221 ± 19.1  (D)  106 

91 

 

OO O
O

 

beta 
 

613 ± 54.1  (D) 
 

 
106 

 

a) See footnote Table 1.  
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Table 9.  Furan analogs.  

OO

O
O

O

O O

H H

R

 
 

Cpd. R C-8 
Configuration 

Ki ± S.E.M., nM 
(Radioligand)a Reference 

92 
O

O

O

HO
HO  

beta 390 ± 30  (IO)  44 

93 
O

O

O

HO
HO  

beta 7020 ± 750  (IO) 44 

94 N
S

O O

 

beta 840 ± 90  (IO) 97 

95 N
S

O O

 

beta 410 ± 30  (IO) 97 

96 N
S

O O

O

 

beta 1620 ± 110  (IO) 97 

97 
N O

O
O

 

beta 8530 ± 550  (IO) 97 

98 
O

Br

 

beta 3.0 ± 0.2  (IO) 44 
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99 
O

O

O

 

beta 420 ± 20  (IO) 44 

100 
O

O

O

 

beta 180 ± 20  (IO) 44 

101 
O

O

O

H H  

beta 25 ± 1  (IO) 44 

102 
O

O

O

H H
 

beta 125 ± 4  (IO) 44 

103 
O

H H
 

beta 3.7 ± 0.2  (IO) 44 

104 N O

 

beta 300 ± 20  (IO) 44 

105 N O
N

 

beta 56 ± 3  (IO) 44 

106 N O
N

 

alpha 990 ± 60  (IO) 44 

a)  See footnote Table 1. 
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Table 10.  Miscellaneous analogs. 
 
 

Cpd. Structure Ki ± S.E.M.,  nM  
(Radioligand)a Reference 

 
107 

 

 

1022 ± 262  (U) 
5378 ± 2595  (Und.) 

42 
43 

 
108 

 
 

 

76070 ± 47668  (Und. ) 43 

109 

 

418 ± 117  (D) 104 

110 

 

230  (U) 
230 ± 21  (D) 

101 
104 

111 
 

 

18 ± 2  (U) 
20.13 ± 3.30  (Und.) 

42 
43 

OO

O
O

O

O O

H H

O

O

OO

O
HO

O

O O

H H

O

O

O

O

O O

H H
O

O

O

OH

O

O

O O

H H
O

O

O
O

O

O

O O

H H
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112 

 

3190 ± 150  (IO) 93 

113 

 

1125 ± 365  (U) 42, 43 

114 

 

650  (IO) 
14196 ± 2604  (Und.) 

45 
43 

115 

 

650 ± 30  (IO) 93 

116 

 

347 ± 53  (U) 42 

117 
 

 

6 ± 1  (U) 
5.62 ± 0.68  (Und.) 

42 
43 

O

O
HO

O

O O

H H
OH

O

O
O

O

O O

H H

O

OH

O

O
O

O

O O

H H

O

O

O

O

O
O

O

O O

H H

O

O

O

O

O
O

O

OH

H H

O

O

OO
O

O

O O

H H

O
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118 

 

6 ± 2  (U) 
13.71 ± 3.58  (Und.) 

42 
43 

119 
 

 

2900 ± 400  (U) 101 

120 
 

 

3400 ± 150  (IO) 44 

OO
O

O

O

O O

H

MeO

OO

O

O

O OMe

H H

MeO

O

OO

O
O

H H

O

O O

a)  See footnote Table 1. 

  

4.2. Experimental Methods 

 CoMFA studies were performed using SYBYL software (version 7.3, Tripos 

Associates, St. Louis, MO) on an HP xw9400 workstation running Red Hat Enterprise 

Linux 4.  The hKOR model used here was built based on the coordinates of activated 

bovine rhodopsin crystal as previously described.29,33,34  Compounds were constructed 

using the crystal structure of Salvinorin A5, Cambridge Structural Database (CSD) code = 

BUJJIZ, as the template and then energy-minimized using the Tripos Force Field 

(Gasteiger-Hückel charges; distance-dependent dielectric constant = 4.0; default 

parameters elsewhere).  Because the alignment is critical to a good CoMFA model 

outcome, several alignment methods were tested for use.  Alignment methods included 
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the Fit Atoms function within SYBYL with salvinorin A as the template, SYBYL module 

GALAHAD, SYBYL module Surflex-Sim and FlexS109 (version 1.20.3, BioSolveIT 

GmbH, Sankt Augustin, Germany).  The Fit Atoms alignment uses a point-by-point rigid 

alignment of a molecule to the template.  In this case, three atoms (C-2, C-4, and C-5) in 

the salvinorin A core and the corresponding three atoms in the molecule to be aligned 

were chosen.  GALAHAD uses a two-stage alignment to generate a pharmacophore 

hypothesis and the aligned molecules.  The first stage uses an advanced genetic algorithm 

and aligns the molecules in torsional space; the conformers generated are then aligned in 

Cartesian space.  The first stage is a flexible alignment, while in the second stage the 

molecules are treated as rigid.  Because a common template molecule could not be 

constructed that would include all molecules in the database, a number of structures were 

dropped from the GALAHAD alignment during the run and a complete database of 

salvinorin analogs could not be generated.  Therefore, the GALAHAD alignment was not 

used to generate the final CoMFA alignments.  Surflex-Sim uses a morphological 

similarity algorithm to generate alignments.110  Morphological similarity measures the 

distance to the molecule surface from observation points in space on a uniform grid.  

Minimum distances from each point are measured to the vdW surface, a H-bond acceptor 

or negatively charged atom, and a H-bond donor or positively charged atom.  The input 

molecule is fragmented and each fragment conformationally searched and aligned to the 

target molecule to maximize the morphological similarity to the target.  Remaining 

molecule fragments are then added iteratively using the positioned fragments as a guide.  

FlexS predicts the conformation and orientation of a ligand molecule relative to a 
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reference molecule which is treated as rigid.  Therefore, the reference molecule used 

should be a high affinity compound and represent the bound conformation.  The molecule 

to be superimposed is partitioned into fragments.  An anchor fragment is placed first and 

the remaining fragments are added iteratively allowing conformational flexibility at each 

step.109  To explore the effect of ligand superimposition on the resulting statistical 

models, three methods of alignment were employed in each of the following two studies.  

The first alignment used was generated by selecting the docked solution which most 

resembled the postulated model of Salvinorin A in the KOR29,33,34 (Figure 21) by first 

looking for the best interaction of the furan ring with Q115(2.60) and Y320(7.43) and 

second, inspecting for the best interactions of the rest of the molecule with receptor 

residues. The result in most cases was the first-ranked solution for each ligand.  The 

second alignment method (using the same data set) was performed with FlexS (version 

1.20.3, BioSolveIT GmbH, Sankt Augustin, Germany).  The FlexS template (Compound 

9) used for this study is shown in Figure 20. Compound 9 was used as the template for 

this alignment because it is the longest C-2 chain which still retains high affinity.   The 

third alignment method, a manual realignment of the docked poses in the receptor-docked 

alignment, was performed by aligning all docked poses from the first alignment method 

to salvinorin A using the SYBYL Fit Atoms method.   
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Figure 20.  FlexS template molecule (Compound 9). 
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In the 3D-QSAR analysis, all aligned training set (TSET) molecules are placed in 

a cubic lattice (grid) which is divided into hundreds (or thousands) of points at a regular 

spacing.  In this CoMFA study, the default grid spacing of 2.0 Å was used unless region 

focusing was employed.  In some cases, further statistical improvement could be made 

using the advanced CoMFA technique of region focusing.111  Region focusing divides the 

lattice grid into multiple grids with a smaller lattice spacing and then performs a CoMFA 

analysis on each of these smaller grids.  Grids below a determined q2 cutoff are 

eliminated and another CoMFA analysis is performed on the remaining grids as a whole 

resulting in enhancement of those lattice points and, in some cases, an improved 

statistical outcome. 

Lennard-Jones 6-12 and Coulomb potentials were used to calculate the steric and 

electrostatic interaction fields, respectively.  An sp3-hybridized carbon atom with a 

charge of +1 was used as the probe atom.  The standard default settings were used, except 

for the steric and electrostatic cutoff values which were each varied by increments of 5 

kcal/mol from 10-50 kcal/mol to obtain the highest value of q2 for each dataset 

alignment.  All Ki data were converted to pKi (-log Ki).  The pKi represents the dependent 

variable while the CoMFA field potentials at each grid point represent the independent 

variables in the partial least squares (PLS) regression analyses.  The standard “leave-one-

out” (LOO) cross-validation method was used to obtain the predictive correlation 

coefficient q2 and the optimal number of principal components (PCs).  The optimal 

number of PCs corresponds to the smallest error of prediction and the highest q2.   The 

PLS analysis was then repeated with no validation using the optimal number of PCs to 
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generate the CoMFA model.  The r2 statistic and the standard error of estimate (SEE) 

were obtained from this model.  The r2 is a measure of the amount of variation in the 

dependent variable that can be ascribed to variation in the independent variables. The 

r2
pred was obtained from the linear regression of the experimental vs. predicted pKi values 

of the prediction set (PSET).  A column filter of 3 or 4 kcal/mol was applied to improve 

efficiency and reduce noise in the field data.  The filter procedure excludes those columns 

whose grid point potentials vary below the set cutoff.  In the first model, region 

focusing111 was used to improve the model statistics.   

Experimentation with CoMFA parameters such as grid spacing (varying from 

2.0Å to 0.75Å) while changing the default field setting from TriposStd to indicator gave 

no significant improvement for the standard CoMFA analyses.  Therefore, the standard 

default settings were used except for the electrostatic and steric field cutoff values.  It was 

found that significant improvement could be made in the CoMFA models by adjusting 

these two parameters.  Initial attempts were made to arrive at a CoMFA model by 

pooling all salvinorin A analogs with an exact Ki.  However, a suitable model with good 

statistical meaning could not be generated using this approach.  Therefore, it was decided 

to focus on C-2 analogs only.  The C-2 analogs contained the largest number and 

diversity of R groups.  The C-4 analogs were omitted primarily because they exhibited 

either very high or very low affinity with few compounds falling mid-range.  The C-2 

analogs were used further subdivided into two groups based on the radioligand used in 

the binding assay. 
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In this work, two independent CoMFA studies were undertaken, one in which 

[125I]IOXY (6β-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5α-epoxymorphinan) was 

used as the assay radioligand (Model 1) and a second in which [3H]diprenorphine was the 

assay radioligand (Model 2).  Both radioligands are non-selective opioid antagonists.      

Compounds that are protonated at physiological pH (e.g. amines) and compounds with a 

Ki > 1,000 nM were not included in the dataset.  Protonated compounds would, perhaps, 

form an ion-pair interaction with D138(3.32) of transmembrane helix 3 (TM3) or 

E209(XL2.49) of the extracellular loop 2 (EL2) which may result in a significant 

difference in the binding mode compared to that of Salvinorin A.    MOPAC charges 

(AM1) were then applied to each aligned dataset before initiating the CoMFA analyses.  

Training set compounds were chosen randomly with the only criterion being that they 

cover a wide range of Ki values and include a variety of functional groups.  Docking of 

the salvinorin compounds was performed using GOLD (version 4.0, Cambridge 

Crystallographic Data Center, Cambridge, UK).  Twenty docking runs were performed 

for each compound in the dataset. 

   

  

4.3. Results and Discussion 

It should be noted that affinity data obtained using [3H]U69,593 and [125I]IOXY 

as the radioligand used rKOR and the data obtained using [3H]diprenorphine and 

[3H]bremazocine used hKOR.  However, upon careful comparison of the rKOR and 

hKOR models it was observed that the non-conserved residues were generally not in the 
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binding pocket area of the receptor.  Therefore, it was assumed that the Ki would not be 

significantly affected by receptor type.  In cases where there were multiple Ki values 

given for a compound, the Ki used was chosen taking into account probable structure-

affinity relationship trends. 

In the postulated model of Salvinorin A docked in the hKOR as previously 

described72 (see Figure 21), the oxygen of the furan ring may form a hydrogen bond with 

both Q115(2.60) and Y320(7.43).  A hydrogen bond interaction with these two residues 

is supported by site-directed mutagenesis studies33,34,88 in which KOR mutants Q115A, 

Y320A and Y320F all showed a substantial decrease in the binding affinity of salvinorin 

A as compared to wild type KOR.  An additional hydrogen bond may possibly exist 

between Y312(7.35) and the methoxy oxygen of the C-4 position methyl ester, although 

the KOR mutants Y312A and Y312F showed only a modest decrease34,88 in the binding 

affinity of salvinorin A (4.5-fold decrease for the KOR Y312A mutant).112  In addition, 

there is a hydrophobic interaction between Y313(7.36) and the methyl group of the C-2 

position acetoxy moiety of Salvinorin A which is supported by site-directed mutagenesis 

studies34,88 in which there are substantial losses of affinity for the KOR Y313A mutant 

but little or no loss for the Y313F mutant indicating a hydrophobic interaction rather than 

a hydrogen bond interaction.  Chimeric studies29,88,89 also indicate the importance of 

residues in TM2 and TM7 in the binding of salvinorin A to the KOR.  In addition, 

substituted cysteine accessibility method (SCAM) studies29,33,34 indicate that these 

residues are accessible in the binding pocket.  Other models of salvinorin A docked in the 

KOR have also been postulated by Kane, et al.112,113 based on mutagenesis data and 
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Singh, et al.114, that are consistent with their pharmacophoric model obtained using a 3D-

QSAR method. 

In the proposed binding model of Salvinorin A, (see Figure 21), a hydrophobic 

binding pocket consisting of Y312(7.35)115, Y313(7.36) and I316(7.39) surrounds the C-2 

functional group of Salvinorin A.  E209(XL2.49) is positioned behind and does not 

interact with Salvinorin A although subsequent research shown here postulates its 

interaction with amine analogs.    
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Figure 21.  Stereo view of salvinorin A docked in the kappa opioid receptor.  Salvinorin 
A is shown in ball-and-stick and colored according to atom type (grey = carbon, red = 
oxygen).  Residues are colored magenta. 
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One can make the assumption that the C-2 position analogs would bind in much 

the same way as Salvinorin A since the core of the molecule, in most cases, remains 

identical.  If this is the case, then methods such as FlexS or a manual fit, which produce a 

“tight” alignment of molecules (low RMSD values for those atoms in the common core 

structure), might be expected to result in a good CoMFA model.  However, it was found 

that the receptor-docked alignment, in which many of the molecules’ docked position 

and/or orientation deviated from Salvinorin A (some by as much as 4.5 Å), was found to 

be superior to FlexS and the Fit Atoms realignment.  In fact, in previous work (data not 

shown), several alignment methods available in the SYBYL package were evaluated 

including manual atom fitting, GALAHAD, database align and Surflex-Sim which 

resulted in well-aligned molecules but gave poor CoMFA statistics.  Salvinorin A analogs 

may thus bind in a similar, but non-identical manner to the parent.  Accordingly, a 

receptor-docked alignment may paint a better picture for predictive purposes.116  To 

further explore CoMFA models based on docked ligand conformation, a realignment of 

the docked poses was performed based on the “ligand’s point of view”.  In this 

procedure, a rigid realignment of the docked solutions was performed using atoms of the 

core ring system.  This realignment resulted in the core of the molecules being very well 

aligned but exhibited the poorest CoMFA statistics of the three types of alignments: 

FlexS, receptor-docked or realigned.  In the FlexS alignment the assumption is made that 

all analogs bind in an identical manner to a high-affinity compound (Compound 9).  The 

receptor-docked alignment allows for conformational diversity of the C-2 position 
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functional group and the core of the molecules to bind in a non-identical manner.  The 

realignment method takes out the translational component that was due to the docking. 

 Model 1 consists of a dataset of 34 salvinorin A analogs in which [125I]IOXY was 

used as the assay radioligand for the determination of affinity.  This dataset was divided 

into a TSET of 23 compounds and a PSET of 11 compounds (Table 11).  The three 

alignments employed are shown in Figure 22b (receptor-docked method), Figure 22c 

(FlexS method) and Figure 22d (realigned method).  Although FlexS results in a “tighter” 

alignment of the molecules, this alignment gave statistically poorer results (see Table 14) 

with a q2 = 0.311 as compared to the model based on the receptor-docked alignment with 

a region-focused q2 = 0.592 for the identical training and predicted sets.  Region focusing 

did not improve the FlexS model statistics in this case.  The realigned set of molecules, 

which had the ‘tightest’ fit resulted in a q2 = 0.526 after region focusing but a poor r2 = 

0.767 (see Table 16).  Predicted pKi values were also poor for the FlexS alignment and 

realignment resulting in six of the 34 compounds in the FlexS set and eight of the 34 

compounds in the realigned set having a residual value (experimental pKi – predicted 

pKi) greater than the desired range of ± 0.50 pKi unit (see Tables 13 and 15), whereas all 

values fell within the desired range for the receptor-docked alignment (see Table 11).  It 

is hypothesized that the receptor-docked alignment paints a “truer” picture of the binding 

pocket of the receptor, resulting in a more accurate CoMFA contour map reflecting the 

residues surrounding the molecule in its docked position. 
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Table 11. Model 1 dataset of 34 compounds using [125I] IOXY as the assay radioligand 
(receptor-docked alignment). 
 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 7, 9, 11, 12, 15-21, 23, 

29, 33-35, 44, 57, 69, 71, 72, 
121-130 

3 (C-8 epimer) 

 

      pKi
b   

Cpd. R Ki 
(nM) Ref. Seta exp. -RF -RF 

resi. +RF +RF 
resi. 

1 
O

O  
1.9 37 T 8.72 8.66 0.06 8.71 0.01 

2 HO  280 37 T 6.55 6.41 0.14 6.42 0.13 

3 
O

O  
38 93 T 7.42 7.34 0.08 7.37 0.05 

7 
O

O  
1.8 98 T 8.74 8.58 0.16 8.61 0.14 

9 
O

O  
4 98 T 8.40 8.39 0.01 8.39 0.01 

11 
O

O  
15 98 P 7.82 7.99 -0.17 8.06 -0.24 

12 
O

O
 

70 98 T 7.15 7.18 -0.03 7.18 -0.03 

15 O

O  

42 93 T 7.38 7.44 -0.06 7.45 -0.07 

16 O

O  

90 37 T 7.05 7.00 0.05 6.99 0.06 
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17 
O

O  
290 98 P 6.54 6.29 0.25 6.22 0.34 

18 O

O
 

180 98 P 6.74 6.88 -0.14 6.96 -0.22 

19 O

OBr  

90 37 T 7.05 7.11 -0.05 7.14 -0.09 

20 O

O
Br

 

70 37 P 7.15 6.73 0.42 6.79 0.36 

21 O

O

Br

 

740 37 T 6.13 6.04 0.09 6.10 0.03 

23 O

O
S

 

260 37 T 6.59 6.63 -0.04 6.58 0.01 

29 O

O
O

O

 

430 93 P 6.37 6.34 0.03 6.50 -0.13 

33 ON

O

H

 

120 93 T 6.92 6.95 -0.03 6.95 -0.03 

34 ON

O

H

 

93 93 P 7.03 7.21 -0.18 7.26 -0.23 

35 O

NH
Cl

Cl
Cl

 

64 93 T 7.19 7.19 0.00 7.21 -0.02 

44 N

O

H

 

30 37 T 7.52 7.86 -0.34 7.54 -0.02 

57 
S

O  
5.7 37 P 8.24 7.86 0.38 7.88 0.36 

69 
O

S
H3C

OO  
2.3 93 T 8.64 8.74 -0.10 8.73 -0.09 
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71 O
S

OO  

60 98 T 7.22 7.34 -0.12 7.26 -0.04 

72 O
S

OO

H3C

 

50 98 T 7.30 7.30 0.00 7.28 0.02 

121 O

ONO2  

900 37 T 6.05 6.09 -0.04 6.10 -0.05 

122 O

O
O2N

 

800 37 P 6.10 6.53 -0.43 6.51 -0.41 

123 O

O

O2N

 

570 37 P 6.24 5.90 0.34 6.01 0.23 

124 O

OO  

230 37 T 6.64 6.61 0.03 6.59 0.05 

125 O

O
O

 

550 37 P 6.26 6.31 -0.05 6.24 0.02 

126 O

O

O

 

540 37 T 6.27 6.26 0.01 6.31 -0.04 

127 O

O  

410 37 T 6.39 6.42 -0.03 6.37 0.02 

128 O

O

S

 

80 37 P 7.10 7.18 -0.08 7.34 -0.24 
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129 O

O
O

 

70 37 T 7.15 7.10 0.05 7.13 0.02

130 N
S

H3C

OO

H

 

260 37 T 6.59 6.69 -0.10 6.62 -0.03 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, -RF = predicted value 
without region focusing, -RF resi. = residual (experimental value - predicted value) without region 
focusing, +RF = predicted value with region focusing, +RF resi. = residual (experimental value - predicted 
value) with region focusing. 
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a.      b.     

  

c.      d. 

  
Figure 22.  Model 1 dataset alignments.  Salvinorin A for reference (a); receptor-docked 
alignment (b); FlexS alignment (c); realignment (d).  Training set compounds are colored 
by atom type, prediction set compounds are green. 
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Model 1 CoMFA statistics (receptor-docked alignment) are shown in Table 12.  A 

predictive q2 for this model (0.592) was obtained after region focusing indicating the 

robustness of the model.  The linear regression plots for Model 1 training and predicted 

datasets are shown in Figure 23.  The region-focused CoMFA contour maps are shown in 

Figure 24. 

 

Table 12.  Model 1 CoMFA statistics for the receptor-docked alignment. 

Parameter Initial Region 
Focused 

 
Steric cutoff (kcal/mol) 

 
Electrostatic cutoff (kcal/mol) 

 
Column filtering (kcal/mol) 

 
Components 

 
q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
r2

pred 
 

Steric contribution % 
 

Electrostatic contribution % 
 

25 
 

35 
 
3 
 
6 
 

0.491 
 

0.991 
 

0.090 
 
 

282.658 
 

0.841 
 

0.343 
 

0.657 

25 
 

35 
 
4 
 
6 
 

0.592 
 

0.994 
 

0.071 
 
 

464.818 
 

0.833 
 

0.393 
 

0.607 
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Figure 23.  Model 1 linear regression plots.  Open circles with a solid regression line 
indicate the training set and open triangles with a dashed regression line refer to the 
prediction set. 
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a.      b. 

 

Figure 24.  Model 1 CoMFA contour maps.  In the steric map (a), green contours show 
regions where bulk is tolerated and yellow contours where bulk is not tolerated.  In the 
electrostatic map (b), blue contours  represent regions where positive charge enhances 
affinity and red contours represent where negative charge enhances affinity. 
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 Both the TSET and PSET show a strong correlation in the linear regression plots. 

A region of bulk tolerance (green) can be seen around the C-2 position (Figure 24a) 

extending approximately three carbons in length from the carbonyl carbon.  The binding 

affinity data indicates that affinity decreases sharply for esters with chain lengths larger 

than four carbons in length at the C-2 position.  This bulk tolerance region falls within a 

hydrophobic pocket formed from Y312(7.35), Y313(7.36), and I316(7.39), which, on 

inspection would not be expected to accommodate long chain lengths of greater than four 

carbons.    A region of bulk intolerance can be seen behind the C-1 position and in the 

receptor, this is the region occupied by extracellular loop 2 (EL2) near the disulfide 

bridge linking the EL2 with transmembrane helix 3 (TM3).  In the electrostatic contour 

map (Figure 24b) several areas where electronegativity enhances affinity (red) are 

positioned around the ester and carbonyl oxygens of the molecule.  A small area in which 

electropositive atoms on the ligand enhance affinity (blue) can be seen on the beta (above 

the plane of the paper) side of the C-2 position ester group.  In the receptor, this blue 

region is found to fall near the negatively charged carboxylate moiety of E297(6.58) on 

TM6. 
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Table 13.  Model 1 dataset of 34 compounds using [125I] IOXY as the assay radioligand 
(FlexS alignment). 
 
 

 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 7, 9, 11, 12, 15-21, 23, 

29, 33-35, 44, 57, 69, 71, 72, 
121-130

3 (C-8 epimer) 

     pKi
b  

Cpd. R Ki (nM) Ref. Seta exp. pred. resi. 

1 
O

O  
1.9 37 T 8.72 8.19 0.54 

2 HO  280 37 T 6.55 6.39 0.16 

3 
O

O  
38 93 T 7.42 7.40 0.02 

7 
O

O  
1.8 98 T 8.74 8.55 0.19 

9 
O

O  
4 98 T 8.40 7.91 0.49 

11 
O

O  
15 98 P 7.82 7.44 0.38 

12 
O

O  
70 98 T 7.15 7.25 -0.10 

15 O

O  

42 93 T 7.38 7.49 -0.11 

16 O

O  

90 37 T 7.05 6.69 0.36 
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17 
O

O  
290 98 P 6.54 7.83 -1.29 

18 O

O  

180 98 P 6.74 7.03 -0.29 

19 O

OBr  

90 37 T 7.05 6.67 0.38 

20 O

O
Br

 

70 37 P 7.15 6.67 0.48 

21 O

O

Br

 

740 37 T 6.13 6.47 -0.34 

23 O

O
S

 

260 37 T 6.59 6.91 -0.32 

29 O

O
O

O

 

430 93 P 6.37 7.34 -0.97 

33 ON

O

H

 

120 93 T 6.92 6.92 0.00 

34 ON

O

H

 

93 93 P 7.03 6.52 0.51 

35 O

NH
Cl

Cl
Cl

 

64 93 T 7.19 7.40 -0.21 

44 N

O

H

 

30 37 T 7.52 8.14 -0.62 

57 
S

O  
5.7 37 P 8.24 8.14 0.11 

69 
O

S
H3C

OO  
2.3 93 T 8.64 8.75 -0.11 

 94



71 O
S

OO  

60 98 T 7.22 7.32 -0.10 

72 O
S

OO

H3C

 

50 98 T 7.30 7.55 -0.25 

121 O

ONO2  

900 37 T 6.05 6.15 -0.10 

122 O

O
O2N

 

800 37 P 6.10 7.62 -1.52 

123 O

O

O2N

 

570 37 P 6.24 6.68 -0.44 

124 O

OO  

230 37 T 6.64 6.66 -0.02 

125 O

O
O

 

550 37 P 6.26 6.47 -0.21 

126 O

O

O

 

540 37 T 6.27 6.34 -0.07 

127 O

O  

410 37 T 6.39 6.25 0.14 

128 O

O

S

 

80 37 P 7.10 6.86 0.24 

129 O

O
O

 

70 37 T 7.15 7.23 -0.08 
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130 N
S

H3C

OO

H

 

260 37 T 6.59 6.45 0.14 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, pred.= predicted value, resi. 
= residual (experimental value - predicted value).  Outliers (residual > ±0.50 pKi unit) are underlined. 
 

 
 
 
Table 14.   Model 1 CoMFA statistics for the FlexS alignment. 
 

Parameter Value 
 

Steric cutoff (kcal/mol) 
 

Electrostatic cutoff (kcal/mol) 
 

Column filtering (kcal/mol) 
 

Components 
 

q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
Steric contribution % 

 
Electrostatic contribution % 

 

 
50 
 
5 
 
3 
 
3 
 

0.311 
 

0.881 
 

0.296 
 
 

46.922 
 

0.418 
 

0.582 
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Table 15.   Model 1 dataset of 34 compounds using [125I] IOXY as the assay radioligand 
(realignment). 
 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 7, 9, 11, 12, 15-21, 23, 

29, 33-35, 44, 57, 69, 71, 72, 
121-130 

3 (C-8 epimer) 

 
      pKi

b   

Cpd. R Ki (nM) Ref. Seta exp. -RF -RF 
resi. +RF +RF 

resi. 

1 
O

O  
1.9 37 T 8.72 7.94 0.78 8.00 0.72 

2 HO  280 37 T 6.55 6.98 -0.43 6.74 -0.19 

3 
O

O  
38 93 T 7.42 7.70 -0.28 7.71 -0.29 

7 
O

O  
1.8 98 T 8.74 7.96 0.78 8.10 0.64 

9 
O

O  
4 98 T 8.40 7.95 0.45 8.07 0.33 

11 
O

O  
15 98 P 7.82 7.79 0.03 7.84 -0.02 

12 
O

O
 

70 98 T 7.15 7.75 -0.60 7.74 -0.59 

15 O

O  

42 93 T 7.38 7.67 -0.29 7.47 -0.09 

16 O

O  

90 37 T 7.05 6.74 0.31 7.05 0.00 
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17 
O

O  
290 98 P 6.54 6.37 0.17 6.45 0.09 

18 O

O
 

180 98 P 6.74 7.36 -0.62 7.47 -0.73 

19 O

OBr  

90 37 T 7.05 6.81 0.24 7.01 0.04 

20 O

O
Br

 

70 37 P 7.15 6.46 0.69 6.74 0.41 

21 O

O

Br

 

740 37 T 6.13 5.84 0.29 6.18 -0.05 

23 O

O
S

 

260 37 T 6.59 6.47 0.12 6.65 -0.06 

29 O

O
O

O

 

430 93 P 6.37 6.98 -0.61 7.39 -1.02 

33 ON

O

H

 

120 93 T 6.92 7.06 -0.14 6.96 -0.04 

34 ON

O

H

 

93 93 P 7.03 7.35 -0.32 7.30 -0.27 

35 O

NH
Cl

Cl
Cl

 

64 93 T 7.19 7.44 -0.25 7.19 0.00 

44 N

O

H

 

30 37 T 7.52 8.04 -0.52 8.04 -0.52 

57 
S

O  
5.7 37 P 8.24 7.57 0.67 7.26 0.98 
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69 
O

S
H3C

OO  
2.3 93 T 8.64 8.42 0.22 8.71 -0.07 

71 O
S

OO  

60 98 T 7.22 7.23 -0.01 7.18 0.04 

72 O
S

OO

H3C

 

50 98 T 7.30 7.69 -0.39 7.30 0.00 

121 O

ONO2  

900 37 T 6.05 5.95 0.10 6.18 -0.13 

122 O

O
O2N

 

800 37 P 6.10 6.31 -0.21 6.43 -0.33 

123 O

O

O2N

 

570 37 P 6.24 5.96 0.28 6.11 0.13 

124 O

OO  

230 37 T 6.64 6.63 0.01 6.52 0.12 

125 O

O
O

 

550 37 P 6.26 6.77 -0.51 6.99 -0.73 

126 O

O

O

 

540 37 T 6.27 6.34 -0.07 5.85 0.42 

127 O

O  

410 37 T 6.39 6.81 -0.42 6.52 -0.13 

128 O

O

S

 

80 37 P 7.10 6.75 0.35 7.02 0.08 
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129 O

O
O

 

70 37 T 7.15 7.04 0.11 7.45 -0.30 

130 N
S

H3C

OO

H

 

260 37 T 6.59 6.63 -0.04 6.45 0.14 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, -RF = predicted value 
without region focusing, -RF resi. = residual (experimental value - predicted value) without region 
focusing, +RF = predicted value with region focusing, +RF resi. = residual (experimental value - predicted 
value) with region focusing.  Outliers (residual > ±0.50 pKi unit) are underlined. 
 
 

Table  16.  Model 1 CoMFA statistics for the realignment. 

Parameter Initial Region 
Focused 

 
Steric cutoff (kcal/mol) 

 
Electrostatic cutoff (kcal/mol) 

 
Column filtering (kcal/mol) 

 
Components 

 
q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
Steric contribution % 

 
Electrostatic contribution % 

 

 
25 
 

30 
 
3 
 
2 
 

0.402 
 

0.777 
 

0.395 
 
 

34.832 
 

0.472 
 

0.528 

 
25 
 

30 
 
3 
 
2 
 

0.526 
 

0.767 
 

0.404 
 
 

35.504 
 

0.485 
 

0.566 
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Model 2 consists of 48 compounds in which [3H]diprenorphine was used as the 

assay radioligand (see Table 17).  Of these, 35 compounds were chosen for the TSET 

with the remaining 13 compounds comprising the PSET.  In this set of compounds, 

region focusing did not enhance the statistics of the model with the receptor-docked 

alignment, but did enhance the statistics of the FlexS-aligned compounds and the 

realignment of docked compounds.  Prediction of pKi values for the FlexS alignment, 

however, were very poor, resulting in eleven outliers (pKi > ± 0.5 units from the 

experimental value) out of the 48 compounds.  The q2 for the FlexS region-focused 

model was 0.502, whereas for the receptor-docked alignment (no region focusing) q2 = 

0.646.  The realigned dataset, after region focusing, showed poor CoMFA statistics with 

q2 = 0.320 and resulted in six outliers out of the 48 compounds in the dataset. These 

alignments are shown in Figure 25 and the statistics for the receptor-docked model are 

reported in Table 18.  The linear regression plot for Model 2 is shown in Figure 26.  The 

CoMFA contour maps are shown in Figure 27. 
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Table 17.  Model 2 dataset using [3H]diprenorphine as the assay radioligand (receptor-
docked alignment). 
 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 5, 7-10, 27, 30-32,  34, 
44-55, 61-66, 68, 70, 131-

143  
3, 4, 67 (C-8 epimer) 

 

      pKi
b  

Cpd. R Ki (nM) Ref. Seta exp. pred.  resi. 

1 
O

O  
2.4 108 T 8.62 8.39 0.23 

2 HO  155 48 T 6.81 6.70 0.11 

3 
O

O  
77 47 T 7.11 7.13 -0.02 

4 HO  304 49 T 6.52 6.48 0.04 

5 
O

O  
424 48 T 6.37 6.47 -0.10 

7 
O

O  
7.2 48 T 8.14 8.14 0.00 

8 
O

O  
641 48 P 6.19 6.09 0.10 

9 
O

O  
4.9 48 P 8.31 7.82 0.49 

10 
O

O  
665 48 T 6.18 6.13 0.05 

27 O

O
N
H

O

 

176 47 P 6.75 6.47 0.28 
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30 ON

O

H

H
 

3.2 47 T 8.49 8.64 -0.15 

31 ON

O

H

 

83 47 T 7.08 6.99 0.09 

32 ON

O

H

 

462 47 T 6.34 6.30 0.04 

34 ON

O

H

 

282 47 P 6.55 6.83 -0.28 

44 N

O

H

 

149 48 T 6.83 6.99 -0.16 

45 N

O

H

 

332 48 P 6.48 6.88 -0.40 

46 N

O  

3.2 48 T 8.49 8.42 0.07 

47 N

O  

16.5 48 T 7.78 7.73 0.05 

48 N

O

H

 

374 48 T 6.43 6.52 -0.09 

49 N

O

H

 

117 48 T 6.93 6.95 -0.02 

50 N

O  

1.6 48 T 8.80 8.87 -0.07 

51 N

O  

6.9 48 T 8.16 8.17 -0.01 

52 N

O  

27.6 48 T 7.56 7.45 0.11 
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53 N

O  

240 48 T 6.62 6.64 -0.02 

54 N

O  

38.1 48 T 7.42 7.58 -0.16 

55 N

O  

376 48 P 6.42 6.72 -0.30 

61 O  220 48 P 6.66 6.92 -0.26 

62 O  7.9 48 T 8.10 8.16 -0.06 

63 O  28.7 48 P 7.54 7.72 -0.18 

64 O  35.8 47 T 7.45 7.36 0.09 

65 O  60.1 47 P 7.22 7.64 -0.42 

66 OO  0.6 108 T 9.22 9.26 -0.04 

67 OO  30 47 P 7.52 7.32 0.20 

68 
O  

75.7 108 T 7.12 7.14 -0.02 

70 O
S

F3C
OO  

227 47 T 6.64 6.75 -0.11 

131 OO  0.32 108 T 9.49 9.33 0.16 

132 OO  2.2 108 P 8.66 8.20 0.46 

133 OO  5.3 108 T 8.28 8.23 0.05 

134 O  
1.6 108 T 8.80 8.87 -0.07 

135 O  
35 108 T 7.46 7.49 -0.03 

136 OO
F  1.9 108 T 8.72 8.84 -0.12 

137 OO
F

F
F

 
31 108 P 7.51 7.54 -0.03 

138 OO
O  141 108 T 6.85 6.79 0.06 

139 
OO  

147 108 T 6.83 6.82 0.01 
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140 OS  13 108 P 7.89 8.22 -0.33 

141 OF  50 108 T 7.30 7.42 -0.12 

142 OO

 
72 108 T 7.14 7.02 0.12 

143 
OO

 
4 108 T 8.40 8.33 0.07 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, pred. = predicted value, resi. 
= residual (experimental value – predicted value). 
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a.      b. 

  

c.      d. 

  
Figure 25.  Model 2 dataset alignments.  Salvinorin A (a) extracted for reference; 
receptor-docked alignment (b); FlexS alignment (c) and realignment (d).  PSET 
compounds are green and TSET compounds are colored by atom type. 
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Table 18.  Model 2 CoMFA statistics for the receptor-docked alignment. 
 

Parameter Value 
 

Steric cutoff (kcal/mol) 
 

Electrostatic cutoff (kcal/mol) 
 

Column filtering (kcal/mol) 
 

Components 
 

q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
r2

pred 
 

Steric contribution % 
 

Electrostatic contribution % 
 

35 
 

30 
 
3 
 
6 
 

0.646 
 

0.989 
 

0.105 
 
 

427.463 
 

0.828 
 

0.350 
 

0.650 
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Figure 26.  Model 2 linear regression plots.  Open circles and a solid line represent the 
training set regression.  Open triangles and a dashed line show the prediction set 
regression. 
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a.      b. 

 
Figure 27.  Model 2 CoMFA contour maps.  (a). Green regions show bulk tolerance and 
yellow regions, bulk intolerance.  (b). Red regions indicate enhanced affinity with 
electronegativity and blue, where electropositivity will enhance affinity. 
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It should be noted that at least half of the statistical outliers in the FlexS 

alignments (3 out of 6 for Model 1 and 7 out of 11 for Model 2) were compounds which 

did not superimpose well in the corresponding receptor-docked alignments.  This 

supports the hypothesis that these compounds might bind in an orientation that differs 

from that of salvinorin A. 

As in Model 1, there is a region of bulk tolerance around the C-2 ester group and 

a region of bulk intolerance behind it (Figure 27a). In Figure 27b, regions of enhanced 

affinity with electronegativity (red) are seen near the oxygens of the C-2 position ester 

group and the C-1 carbonyl. The largest electronegative contour falls within H-bonding 

distance of H304(7.27) near the extracellular region of TM7. There is a particularly 

interesting region of where an electropositive moiety enhances affinity (blue) near the C-

2 position carbonyl oxygen atom on the beta side of the molecule.  This region of 

electropositivity falls near E209(XL2.49), which may explain the high affinity of some 

amine containing analogs48 not included in these models (vide infra).   Docking studies of 

these amines place the positively charged amine group in a position to interact with 

E209(XL2.49).  An example of the highest-affinity amine (see Figure 28), with a reported 

Ki of 2.3 nM48, is shown docked in the KOR (see Figure 29). 

 110



 

 

 

 

OO
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N

H H

O O

O

H

 

Figure 28.   The β-N-isopropylamine analog of salvinorin A. 
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Figure 29.  Stereo view of the β-N-isopropylamine analog of salvinorin A docked in the 
KOR. 
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The docked position of this amine is very similar to our proposed model of the 

Salvinorin A–KOR complex (see Figure 16).  In addition to the furan oxygen having 

potential hydrogen bond interactions with both Q115(2.60) and Y320(7.43) and the 

hydrogen bonding interaction between Y312(7.35) and the C-4 position methyl ester 

oxygen, there is a hydrophobic interaction of the methyl groups of the isopropyl 

substituent with the aromatic rings of both Y312(7.35) and Y313(7.36) and an ionic 

interaction between the positively charged nitrogen and the negatively charged sidechain 

of E209(XL2.49).  It should also be noted that this is the beta epimer (i.e. the R 

configuration at the C-2 position).  The alpha (i.e. S) epimers do not interact as well with 

the residues mentioned here (data not shown), which may explain the lower affinity of 

the alpha isomers in this series of amine analogs, whereas the trend shown by the esters, 

ethers and amides is just the opposite with the alpha epimer having the higher affinity. 

The α-N-isopropylamine analog has a reported Ki of 17.6 nM .48 
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Table 19.   Model 2 dataset using [3H] diprenorphine as the assay radioligand (FlexS 
alignment). 

 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 5, 7-10, 27, 30-32,  34, 
44-55, 61-66, 68, 70, 131-

143  
3, 4, 67 (C-8 epimer) 

 
       pKi

b   

Cpd. R Ki 
(nM) Ref. Seta exp. -RF -RF 

resi. +RF +RF 
resi. 

1 
O

O  
2.4 108 T 8.62 8.43 0.19 8.48 0.14 

2 HO  155 48 T 6.81 6.66 0.15 6.89 -0.08 

3 
O

O  
77 47 T 7.11 7.23 -0.12 7.10 0.01 

4 HO  304 49 T 6.52 6.63 -0.11 6.72 -0.20 

5 
O

O  
424 48 T 6.37 6.18 0.19 6.23 0.14 

7 
O

O  
7.2 48 T 8.14 7.98 0.16 8.07 0.07 

8 
O

O  
641 48 P 6.19 7.46 -1.27 7.85 -1.66 

9 
O

O  
4.9 48 P 8.31 7.48 0.83 7.63 0.68 

10 
O

O  
665 48 T 6.18 6.00 0.18 6.35 -0.17 

27 O

O
N
H

O

 

176 47 P 6.75 6.57 0.18 6.33 0.42 
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30 ON

O

H

H
 

3.2 47 T 8.49 8.39 0.10 8.53 -0.04 

31 ON

O

H

 

83 47 T 7.08 7.40 -0.32 7.36 -0.28 

32 ON

O

H

 

462 47 T 6.34 5.96 0.38 6.14 0.20 

34 ON

O

H

 

282 47 P 6.55 6.73 -0.18 7.08 -0.53 

44 N

O

H

 

149 48 T 6.83 6.70 0.13 6.58 0.25 

45 N

O

H

 

332 48 P 6.48 6.41 0.07 6.53 -0.05 

46 N

O  

3.2 48 T 8.49 8.71 -0.22 8.71 -0.22 

47 N

O  

16.5 48 T 7.78 7.74 0.04 7.68 0.10 

48 N

O

H

 

374 48 T 6.43 6.74 -0.31 6.68 -0.25 

49 N

O

H

 

117 48 T 6.93 7.02 -0.09 6.97 -0.04 

50 N

O  

1.6 48 T 8.80 8.89 -0.09 8.80 0.00 

51 N

O  

6.9 48 T 8.16 8.23 -0.07 7.94 0.22 

52 N

O  

27.6 48 T 7.56 7.60 -0.04 7.85 -0.29 
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53 N

O  

240 48 T 6.62 6.56 0.06 6.61 0.01 

54 N

O  

38.1 48 T 7.42 7.29 0.13 7.06 0.36 

55 N

O  

376 48 P 6.42 7.82 -1.40 7.51 -1.09 

61 O  220 48 P 6.66 8.19 -1.53 8.28 -1.62 

62 O  7.9 48 T 8.10 8.11 -0.01 8.09 0.01 

63 O  28.7 48 P 7.54 8.29 -0.75 8.33 -0.79 

64 O  35.8 47 T 7.45 7.88 -0.43 8.00 -0.55 

65 O  60.1 47 P 7.22 8.25 -1.03 8.16 -0.94 

66 OO  0.6 108 T 9.22 8.80 0.42 8.95 0.27 

67 OO  30 47 P 7.52 8.45 -0.93 8.66 -1.14 

68 
O  

75.7 108 T 7.12 7.06 -0.06 6.97 0.15 

70 O
S

F3C
OO  

227 47 T 6.64 6.92 -0.28 6.53 0.11 

131 OO  0.32 108 T 9.49 9.16 0.33 9.20 0.29 

132 OO  2.2 108 P 8.66 8.19 0.47 7.99 0.67 

133 OO
 

5.3 108 T 8.28 8.36 -0.08 8.24 0.04 

134 O  
1.6 108 T 8.80 8.87 -0.07 8.86 -0.06 

135 O  
35 108 T 7.46 7.61 -0.15 7.61 -0.15 

136 OO
F  1.9 108 T 8.72 8.63 0.09 8.67 0.05 

137 OO
F

F
F

 
31 108 P 7.51 7.37 0.14 7.24 0.27 

138 
OO

O
 

141 108 T 6.85 7.00 -0.15 6.80 0.05 

139 
OO

147 108 T 6.83 6.75 0.08 6.64 0.19 
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140 OS  13 108 P 7.89 8.45 -0.56 8.47 -0.58 

141 OF  50 108 T 7.30 7.56 -0.26 7.62 -0.32 

142 OO
 

72 108 T 7.14 7.15 -0.01 7.27 -0.13 

143 
OO

 
4 108 T 8.40 8.32 0.08 8.29 0.11 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, -RF = predicted value 
without region focusing, -RF resi. = residual (experimental value - predicted value) without region 
focusing, +RF = predicted value with region focusing, +RF resi. = residual (experimental value - predicted 
value) with region focusing.  Outliers (residual > ±0.50 pKi unit) are underlined. 
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Table 20.   Model 2 CoMFA statistics for the FlexS alignment. 
 

Parameter Initial Region 
Focused 

 
Steric cutoff (kcal/mol) 

 
Electrostatic cutoff (kcal/mol) 

 
Column filtering (kcal/mol) 

 
Components 

 
q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
Steric contribution % 

 
Electrostatic contribution % 

 

 
25 
 

30 
 
3 
 
6 
 

0.455 
 

0.953 
 

0.218 
 
 

94.506 
 

0.407 
 

0.593 

 
25 
 

30 
 
3 
 
6 
 

0.504 
 

0.951 
 

0.222 
 
 

90.909 
 

0.421 
 

0.579 
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Table 21.  Model 2 dataset using [3H] diprenorphine as the assay radioligand 
(realignment). 
 

OO

O
R

O

O O

H H

 

OO

O
R

O

O O

H H

 
1, 2, 5, 7-10, 27, 30-32,  34, 
44-55, 61-66, 68, 70, 131-

143  
3, 4, 67 (C-8 epimer) 

 

       pKi
b   

Cpd. R Ki (nM) Ref. Seta exp. -RF -RF 
resi. +RF +RF 

resi. 

1 
O

O  
2.4 108 T 8.62 8.05 0.57 8.17 0.45 

2 HO  155 48 T 6.81 6.80 0.01 6.93 -0.12 

3 
O

O  
77 47 T 7.11 7.37 -0.26 7.09 0.02 

4 HO  304 49 T 6.52 6.49 0.03 6.72 -0.20 

5 
O

O  
424 48 T 6.37 6.55 -0.18 6.67 -0.30 

7 
O

O  
7.2 48 T 8.14 7.51 0.63 7.70 0.44 

8 
O

O  
641 48 P 6.19 6.35 -0.16 6.44 -0.25 

9 
O

O  
4.9 48 P 8.31 7.58 0.73 7.92 0.39 

10 
O

O  
665 48 T 6.18 6.64 -0.46 6.59 -0.41 

27 O

O
N
H

O

 

176 47 P 6.75 7.01 -0.26 7.26 -0.51 
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30 ON

O

H

H
 

3.2 47 T 8.49 8.12 0.37 8.27 0.22 

31 ON

O

H

 

83 47 T 7.08 7.43 -0.35 7.42 -0.34 

32 ON

O

H

 

462 47 T 6.34 7.54 -1.21 7.18 -0.84 

34 ON

O

H

 

282 47 P 6.55 7.35 -0.80 7.48 -0.93 

44 N

O

H

 

149 48 T 6.83 7.20 -0.37 6.76 0.07 

45 N

O

H

 

332 48 P 6.48 6.50 -0.02 6.53 -0.05 

46 N

O  

3.2 48 T 8.49 8.08 0.41 8.09 0.40 

47 N

O  

16.5 48 T 7.78 7.67 0.11 7.75 0.03 

48 N

O

H

 

374 48 T 6.43 6.55 -0.13 6.33 0.10 

49 N

O

H

 

117 48 T 6.93 6.81 0.12 6.86 0.07 

50 N

O  

1.6 48 T 8.80 8.83 -0.03 8.56 0.24 

51 N

O  

6.9 48 T 8.16 7.57 0.59 7.50 0.66 

52 N

O  

27.6 48 T 7.56 7.57 -0.01 7.69 -0.13 
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53 N

O  

240 48 T 6.62 6.63 -0.01 6.71 -0.09 

54 N

O  

38.1 48 T 7.42 7.69 -0.27 7.53 -0.11 

55 N

O  

376 48 P 6.42 6.70 -0.28 6.76 -0.34 

61 O  220 48 P 6.66 7.50 -0.84 7.63 -0.97 

62 O  7.9 48 T 8.10 8.03 0.07 8.24 -0.14 

63 O  28.7 48 P 7.54 7.50 0.04 7.51 0.03 

64 O  35.8 47 T 7.45 7.49 -0.04 7.83 -0.38 

65 O  60.1 47 P 7.22 7.41 -0.19 7.40 -0.18 

66 OO  0.6 108 T 9.22 9.63 -0.41 9.67 -0.45 

67 OO  30 47 P 7.52 7.44 0.08 7.36 0.16 

68 
O  

75.7 108 T 7.12 7.02 0.10 7.03 0.09 

70 O
S

F3C
OO  

227 47 T 6.64 6.88 -0.22 6.70 -0.06 

131 OO  0.32 108 T 9.49 9.31 0.18 9.42 0.07 

132 OO  2.2 108 P 8.66 8.95 -0.29 8.70 -0.04 

133 OO
 

5.3 108 T 8.28 8.50 -0.22 8.46 -0.18 

134 O  
1.6 108 T 8.80 8.38 0.42 8.35 0.45 

135 O  
35 108 T 7.46 7.08 0.38 7.29 0.17 

136 OO
F  1.9 108 T 8.72 8.81 -0.09 8.81 -0.09 

137 OO
F

F
F

 
31 108 P 7.51 7.46 0.05 7.47 0.04 

138 
OO

O
 

141 108 T 6.85 6.54 0.31 6.39 0.46 

139 
OO

147 108 T 6.83 6.39 0.44 6.54 0.29 
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140 OS  13 108 P 7.89 7.92 -0.03 7.82 0.07 

141 OF  50 108 T 7.30 7.63 -0.33 7.88 -0.58 

142 OO

 
72 108 T 7.14 7.24 -0.10 7.03 0.11 

143 
OO

 
4 108 T 8.40 8.48 -0.08 8.31 0.09 

a T = training set, P = predicted set.  bexp. = experimentally-determined value, -RF = predicted value 
without region focusing, -RF resi. = residual (experimental value - predicted value) without region 
focusing, +RF = predicted value with region focusing, +RF resi. = residual (experimental value - predicted 
value) with region focusing.  Outliers (residual > ±0.50 pKi unit) are underlined. 
 

 

Table 22.   Model 2 CoMFA statistics for the realignment. 

Parameter Initial Region 
Focused 

 
Steric cutoff (kcal/mol) 

 
Electrostatic cutoff (kcal/mol) 

 
Column filtering (kcal/mol) 

 
Components 

 
q2 
 

r2 
 

Standard Error of Estimate 
(SEE) 

 
F-test value 

 
Steric contribution % 

 
Electrostatic contribution % 

 

 
30 
 

30 
 
2 
 
3 
 

0.210 
 

0.814 
 

0.413 
 
 

53.334 
 

0.527 
 

0.473 

 
30 
 

30 
 
2 
 
3 
 

0.320 
 

0.873 
 

0.347 
 
 

45.274 
 

0.527 
 

0.473 
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5. Conclusions 

 

 Salvinorin A is an extraordinarily selective kappa opioid receptor agonist that is 

devoid of a basic nitrogen common to all known opioids, yet has high affinity.  Structure-

affinity relationships indicate that most of the important functional groups reside on the A 

ring.  Therefore, a fragment of salvinorin A including the A ring and its functional groups 

was synthesized.   This fragment was found not to bind to the kappa, delta or mu opioid 

receptors.  With this information, it is apparent that the B, C and D rings contribute to the 

stability of the molecule in the binding pocket of the KOR.  Salvinorin A has a total of 

eight H-bond acceptor oxygen atoms.  SAFIR studies indicate that not all of these oxygen 

atoms are essential for binding.  Binding free energy calculations also support the 

indication that not all functionalities are involved in binding. 

 In order to try and shed some light on the selectivity of salvinorin A, 

computational studies were undertaken.  Homology models of the kappa, delta and mu 

opioid receptors were constructed based on two different inactive crystal structures of 

bovine rhodopsin, the light-activated crystal structure of bovine rhodopsin and the β2 

adrenergic receptor.  A set of selective opioid ligands were then docked into these 

receptor models in order to determine the best models for further docking studies.  It was 

found that the models based on the light-activated bovine rhodopsin crystal structure gave 

the best results, specifically the AR-KOR model.  A database of salvinorin A analogs 

were docked into this model. 
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Because Salvinorin A and its analogs have a constrained polycyclic ring core and 

only differ in the functional groups attached at the C-2 and C-4 positions (much like 

steroids), it was thought that these analogs would be ideal for a comparative molecular 

field analysis study.  The information obtained may then help to clarify the binding mode 

and selectivity of salvinorin A and analogs and serve to predict new high-affinity analogs. 

In the CoMFA study, two models of C-2 position salvinorin A analogs bound to 

the KOR were presented whose similar contour maps coincided with the presence of 

complementary amino acid sidechains in the binding pocket.  These models also 

demonstrated significant predictive ability.  Model 1 analogs used [125I]IOXY as the 

radioligand in the binding affinity assay while Model 2 analogs used [3H]diprenorphine. 

The alignment that was found to produce the most statistically significant model was a 

receptor-docked alignment when compared to a FlexS alignment and a Fit Atoms 

realignment method.  The latter two alignment methods gave poor statistical results, yet 

were the most closely aligned sets of structures.  This indicated that salvinorin A analogs 

may be binding differently from one another despite their similarity in structure.  The 

receptor-docked alignment also supported our postulated model of salvinorin A in the 

KOR.  Region focusing enhanced Model 1 but not Model 2.  The contour maps revealed 

a region of bulk tolerance allowing for approximately a three-carbon chain from the ester 

carbonyl carbon.  The expected enhancement of affinity with increasing electronegativity 

was seen around the C-2 position ester oxygens and the C-1 position carbonyl oxygen.  

An area of enhanced affinity corresponding to increased electropositivity on the beta side 

of the molecule correlated well with our postulated docked position of amine analogs in 
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the KOR and may explain the trend for C-2 position beta-isomer amines to have a higher 

affinity than the corresponding alpha-isomer amines in the series.  Further mutagenesis 

studies on the key interacting residues could be carried out to support or refute the 

postulated docked model of the amines. 
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