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Traumatic defects in articular cartilage can lead to joint disease and disability 

including osteoarthritis.  Because cartilage is unable to regenerate when injured, the field 

of tissue engineering holds promise in restoring functional tissue.  In this research, type II 

collagen was electrospun, cross-linked, and tested as scaffolds for supporting chondrocyte 

growth.  The mechanical, biochemical, and histological characteristics of the engineered 

tissue were assessed as a function of the electrospinning solution concentration (i.e. 

scaffold fiber diameter and pore properties) and as a function of the time in culture 
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(evaluated at 2, 4, and 6 weeks).  Fiber diameter had a linear relationship with 

concentration: mean diameter increased from 107 to 446 nm and from 289 to 618 nm, 

measured with SEM and permeability meter, respectively, with increasing concentration, 

from 60 mg/mL to 120 mg/mL.  Pore size revealed no relationship with concentration but 

mean values ranged in size from 1.76 to 3.17 µm2 or from 0.00055 to 0.0028 µm2, 

depending on the measurement technique.  Average porosity ranged from 84.1 to 89.1%, 

and average permeability was between 6.82x10-4 and 35.0 x10-4 D.  Histological analysis 

revealed a relatively high number of spherical cells, possibly indicating the expression of 

the chondrocyte phenotype.  However, there were very little glycosaminoglycans and type 

II collagen synthesized by the cells despite an increase in the cell density over time for the 

60, 80, and 100 mg/mL concentrations.  The mean values for peak stress (between 0.17 

and 0.35 MPa) and tangential modulus (between 0.32 and 0.64 MPa) for the mats are at 

least an order of magnitude less than that for native cartilage, while the mean values for 

strain at break (between 93 and 150%) for the mats are at least an order of magnitude 

greater than that for native cartilage.  The equilibrium stiffness for all concentrations 

decreased from week 2 to week 6 of tissue culture (which may correlate with increasing 

cell density); the 100 mg/mL concentration had the highest mean value (0.084 MPa at 

week 2) and the lowest mean value (0.010 MPa at week 6).  This research did not indicate 

any significant findings regarding the influence of concentration or culture time on 

chondrogenesis.  Because the cells appeared to grow on the surface of the scaffold but 

there was a lack of cell migration into the scaffold, the scaffold material may be sufficient 

to support chondrocyte growth but the scaffold physical design must be reconsidered.   
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Introduction 
 

 Articular cartilage is a thin layer of connective tissue covering synovial joint 

surfaces that functions to absorb energy, distribute loads uniformly between bones, and 

provide low-friction articulation.  Traumatic defects in articular cartilage can lead to joint 

disease and disability, which manifest as joint pain, stiffness, and a decrease in or loss of 

mobility.  Progressive degeneration (i.e. loss of normal structure and function) of articular 

cartilage can lead to osteoarthritis (OA), also known as osteoarthrosis or degenerative joint 

disease, in which the breakdown of the cartilage can lead to bones rubbing against each 

other [1, 2].  This disease affects an estimated 21 million people in the United States [2].  

OA is more prevalent in women, and its incidence increases with age.  In fact, about 10% 

of adults over the age of 50 years are afflicted with OA, and it is one of the leading causes 

of disability in the elderly [3].  It can occur in any synovial joint, but occurs most 

frequently in the knees, hips, hand joints, neck, and lower back [1, 2].  In the United States 

the cost of arthritis and related conditions including OA is almost $86.2 billion per year in 

medical care and indirect expenses, including lost wages and productivity [2].  Put another 

way, the total cost of arthritis (including OA) in the United States has been estimated to be 

over 2% of the gross domestic product [3].   

 Though the etiology of OA is not fully understood, the disease is characterized by a 

decline in the biomechanical properties of articular cartilage and a deterioration in the 
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balance between the chondrocyte anabolic (synthesis) and catabolic (resorption) processes 

which are essential for homeostasis [4].  Surgical attempts at repair can result in 

chondrocyte and tissue loss because disruption of healthy tissue may cause cell apoptosis 

and/or necrosis [5].  Currently, the main treatment is the replacement of the joint with 

metal prostheses that do not perform to the physical demand, wear out, loosen, or even 

break in situ [4].  To avoid joint replacement, clinicians and scientists have turned to tissue 

engineering for the repair of the cartilage prior to complete degeneration.  There are an 

abundant number of investigations into the tissue engineering of articular cartilage; 

however, thus far there have been no successes in the development of a tissue that exactly 

duplicates the material properties or durability of articular cartilage and thereby restores a 

normal joint surface.  Understanding the structure and function of healthy articular 

cartilage as well as the structural and biochemical alterations (i.e. matrix and cellular 

changes) that develop in OA are crucial in developing methods of repairing, restoring, or 

regenerating new tissue with the same function as the native tissue. 

 Tissue engineering, or regenerative medicine, is an interdisciplinary field that 

merges principles and innovations from engineering and life sciences for the purpose of 

addressing the improvement, repair, or replacement of tissue/organ function [6, 7].  Since 

its inception, the field has delved into three main areas: the injection of cells only, the 

development of encapsulated systems of cells, and the in vitro growth of cells in a scaffold 

(i.e. an artificial extracellular matrix) [8].  The latter is logical since every tissue or organ 

in our body is composed of parenchymal cells (functional cells) and mesenchymal cells 

(support cells) contained within an extracellular matrix (ECM) to form a dynamic 
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microenvironment.  Composition (i.e. biomaterials of synthetic or natural origin) and 

architecture of a tissue-engineered scaffold result in cell-environment interactions that 

determine the structure’s fate.  The tissue engineering of articular cartilage has developed 

out of the need to treat the chondral defects (on the surface of or within the cartilage).  

Since mature articular cartilage is aneural, avascular, and alymphatic, the tissue has a 

limited capacity for repair and regeneration [4, 9].   

 The design and development of a scaffold for articular cartilage tissue engineering 

is of interest in this research.  In general, the functions of the scaffold include the 

following: provide a defined space (with structural integrity) on/in which cells can migrate 

and proliferate, serve as a guide for tissue restructuring (i.e. new growth in vitro and/or 

incorporation in vivo), allow the diffusion of nutrients and wastes, and act as a cellular 

transducer of mechanical forces [8].  Biochemical and biomechanical considerations will 

be given to the tissue-engineered constructs, developed in this research study, designed to 

treat chondral defects.   
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Background 
 

Structure of Native Articular Cartilage Tissue 

 Articular cartilage is a thin layer of connective tissue covering synovial joint 

surfaces; it is the almost frictionless bearing surface for diarthrodial joints.  For humans the 

thickness of the cartilage layer may vary from 1 mm in finger joints to 6 mm on the 

articulating surface of the patella [10].  In normal physiologic conditions, articular cartilage 

is porous and highly hydrated.  With the application of a load, fluid flows in and out of the 

tissue, thereby resulting in changes in the mechanical, chemical, and electrical properties 

of the cartilage [11].  Articular cartilage functions to absorb energy, distribute loads 

uniformly between bones, and provide low-friction articulation.  Thus, to handle the forces 

imposed upon it, articular cartilage possesses a variable compressive stiffness and 

permeability (that depend on both current and previous loading conditions) as well as a 

low wear rate and a low coefficient of friction (ranging from 0.005 to 0.05) [10, 12].  Its 

function under a wide range of loading conditions ultimately depends on the structural 

arrangement of its major components (which differs within the tissue), the integrity of the 

extracellular matrix (ECM), and how these components respond to one another under 

loading.   

 Cartilage can be considered a fiber-reinforced composite material, that is both 

inhomogeneous and anisotropic, consisting of three major structural macromolecules 
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(collagen, proteoglycans, and glycoproteins) and cells known as chondrocytes (all of which 

are collectively considered the solid phase), water (considered the fluid phase), and solutes 

including ions and nutrients (sometimes considered a third phase, the ion phase).  In 

human articular cartilage, water accounts for more than 60% by wet weight, collagen 

comprises 60 to 80% of the dry weight or approximately 20% of the wet weight, and 

proteoglycans contribute 20 to 40% of the dry weight or about 7% of the wet weight [10, 

13].  Collagen and proteoglycan macromolecules are intertwined to form a solid structure 

that is anchored to the subchondral bone and through which water and solutes move freely 

to provide nourishment to chondrocytes as well as lubrication to the joint.  The 

cartilaginous ECM is depicted in Figure 1.  Molecular interactions among the structural 

macromolecules include collagen-collagen covalent (crosslinks) and noncovalent 

interactions, proteoglycan-proteoglycan noncovalent interactions, and collagen-

proteoglycan noncovalent interactions.  These molecular interactions achieve an 

immobilized network of collagen and proteoglycans (depending on shape and size) with 

pore sizes ranging from 25 to 75 Å that prevent the transport of large molecules through 

the tissue [14]. 
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Figure 1.  Illustration of collagen fibrils and proteoglycans in articular cartilage ECM [10]. 

 

 Type II collagen is the main collagen type found in articular cartilage, though types 

VI, IX, X, and XI can also be found in small amounts [13, 15].  A collagen fibril (Figure 2) 

consists of the basic tropocollagen structural unit composed of three procollagen 

polypeptide chains, or α chains (each designated α1(II) for type II collagen), which 

contain the repeating amino acid sequence of glycine-X-Y (in which X is frequently 

proline and Y hydroxyproline) and contain 990 to 1020 amino acids per polypeptide chain 

[16].  Each α chain is a left-handed helix, and the three chains are coiled about each other 

in a right-handed triple helix.  The tropocollagen molecules (rod-like in shape) are 

approximately 1.4 nm in diameter and 300 nm in length [14].  These molecules self-

assemble/polymerize outside of the cell into larger collagen fibrils.  Type II collagen fibrils 

exhibit an axial, periodic banding pattern of 64 nm separations (known as the D-periodic 

banding) [17].  Type I collagen fibrils form large fiber bundles that range in diameter from 

2 to 10 µm.  However, type II collagen fibrils do not form fiber bundles and range in 
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diameter from 20 to 200 nm [14, 18].  Intramolecular and intermolecular covalent 

crosslinks form between the α chains and between collagen molecules [14, 19].  Tensile 

stiffness and strength are the two most important contributions of collagen fibrils to the 

mechanical properties of the tissue as a whole [10].   

 
Figure 2.  Structure of collagen fibrils [14]. 

 

 Proteoglycans are aggregates composed of 100 to 200 monomers, known as 

glycosaminoglycans (GAGs), attached to a single backbone of hyaluronic acid, as shown 

in Figure 3.  Proteoglycans are entrapped within the collagen meshwork because of their 

size and electrostatic and frictional interactions with the collagen fibers (Figure 1).  Link 

proteins associate the monomers with the hyaluronic acid.  The two most abundant GAGs 

in articular cartilage that form proteoglycans (and in particular aggrecan) are chondroitin 

sulfate and keratan sulfate, with the former in more abundance typically than the latter 

depending on the zone [9].  Amounts, distribution, and composition vary among 



8 

individuals, and age- and disease-related changes in structure such as GAG monomer chain 

shortening and decreased aggregate size do occur [9, 14].   

 
Figure 3.  Structure of proteoglycan aggregate [9]. 

 

 GAGs are hydrophilic molecules with many negatively charged side chains that 

repel each other due to like charge, and thus fan out from the proteoglycan backbone 

giving the tissue a compressive resistance [9, 10].  As the proteoglycan is compressed and 

the side chains are brought into closer proximity, the effective repulsive force and charge 

density increases.  The negative charges attract the positive ions in the aqueous interstitial 

fluid, thereby leading to swelling of the tissue.  This swelling stresses the collagen fibers 

that restrain the proteoglycans such that the tissue can withstand the compressive stresses 

caused by matrix deformation during joint loading.  Thus, when a load is applied, the 

proteoglycans are compressed and the interstitial pressure increases; fluid flow then occurs 

through the matrix down the pressure gradient until equilibrium is reached and flow stops.  

Upon release of the load, the proteoglycans expand and fluid flows in the reverse direction 
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back into the matrix until the original shape (non-stressed) of the ECM is reestablished [9].  

As the interstitial fluid flows through the pores of the ECM, viscous frictional forces (drag 

forces) develop on the walls of these pores.  Cartilage deformation (compression and 

expansion) is determined by a balance of forces between the pressure exerted by 

proteoglycans and the tension generated within the collagen meshwork.   

 Articular cartilage consists of cells known as chondrocytes thinly dispersed within 

the ECM; the cells are more widely scattered within the ECM with increasing distance 

from the articular surface as depicted in Figure 4.  Chondrocytes, which arise from 

pluripotential mesenchymal stem cells, are metabolically active cells that produce, 

organize, maintain, and degrade cartilage matrix components [20].  The cells are, 

themselves, influenced by the ECM which responds to the loading conditions and the 

electrochemical signals imposed on the tissue (see Figure 5) [9, 10, 21].  During the 

development of cartilage, the cells proliferate rapidly and synthesize great amounts of 

matrix until maturation when the cells slow and cell density decreases.  In mature human 

articular cartilage, chondrocytes represent about 1% of the total volume, no longer divide, 

and decrease in density with age [10, 13, 15].  These cells do not form cell-to-cell contacts 

but surround themselves with ECM [9].  The structural matrix molecules maintain and 

direct tissue fluid flow through the tissue; thus, via diffusion and/or convection, nutrients 

are delivered to the chondrocytes by the synovial fluid carrying the nutrients from the 

interior lining of the synovial joint.  This solute transport is critical for chondrocyte 

nutrition as well as for the mechanical behavior of cartilage and joint lubrication [10].  

Chondrocytes vary in shape, and thus function, depending on the location within the 
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cartilage thickness, and the diameter can measure 10 µm or more at a circular cross-section 

[22].  In adult human articular cartilage, the flattened, discoidal cells (found more 

superficially) have been shown to have a reduced rate of protein synthesis; the spheroid-

shaped cells (found deeper within the cartilage thickness) are more actively involved in 

protein synthesis, particularly that to be processed into sulphated proteoglycans [22]. 

 

 
Figure 4.  A) Illustration of cell distribution within the ECM (white area is uncalcified 
matrix, black dots are cells) [23]; B) flattened, discoidal cells of the superficial zone and C) 
spheroidal cells from the deep zone [22]. 

 

 
Figure 5.  Diagram of the structure-function relationship of articular cartilage including 
chondrocyte and ECM interdependence [24]. 
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 Articular cartilage is divided into zones, or layers, based upon the inhomogeneous 

structural organization of the major tissue components throughout the depth of the tissue.  

Figure 6 gives a representation of the collagen organization within the zones.  Collagen 

varies with depth; it is found in greater concentrations nearer the surface, and collagen 

fibril diameter increases with depth [9, 10, 14].  Collagen fibrils are densely packed and 

run tangentially to the articulating surface in the superficial zone.  Fibrils are more 

randomly arranged in the middle zone but are oriented perpendicular to the surface in the 

deep zone where the fibrils are anchored in the tidemark region to the subchondral bone.  

The concentration of proteoglycans is maximal in the middle zone; GAG distribution is 

lowest at the surface, increases to a maximum in the middle zone, and decreases in the 

deep zone [14, 15].  Chondrocytes vary in morphology depending on the zone in which 

they are located (Figure 4 and Figure 7); in the superficial zone chondrocytes are flattened 

and elongated (discoidal), in the middle zone the cells are more spherical, and in the deep 

zone the cells are elliptical in shape and more vertically oriented [15, 22].   
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Figure 6.  Schematic of articular cartilage zones with collagen fibril organization [10] and 
graphical representations of the inhomogeneous distributions of water, proteoglycans, and 
collagen within those zones (superficial zone – SZ, middle zone – MZ, deep zone – DZ) 
[24]. 

 

 Within the cartilaginous zones, there are distinct regions of matrix around the 

chondrocytes in which the cells can establish and maintain an environment conducive to 

their needs (mechanically and metabolically) [9].  Figure 7 illustrates these matrix regions.  

The pericellular matrix is a thin layer of matrix that surrounds the cell and contains little or 

no fibrillar collagen.  Surrounding the pericellular matrix is the territorial matrix which can 

encase one chondrocyte or clusters of chondrocytes and their pericellular matrices; it 

consists of a dense network of fine collagen.  The interterritorial matrix establishes the 

mechanical properties of the cartilage; it surrounds the territorial matrix and forms the 

largest matrix region consisting of large collagen fibrils.   
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Figure 7.  Schematic of articular cartilage matrix regions (pericellular, territorial, and 
interterritorial) with chondrocyte and collagen fibril organization [25]. 

 

 

Biomechanical Properties of Articular Cartilage 

 In articular cartilage, collagen is responsible for the tensile and shear stiffness and 

strength, and proteoglycans are responsible for the equilibrium compressive stiffness of the 

tissue.  Since these proteins vary with depth and site within the tissue, it follows that the 

mechanical properties of the tissue are also depth- and site-dependent [26].   

 In uniaxial tensile measurements performed at a constant strain rate, the stress-

strain behavior is nonlinear, the curve of which consists of three areas of interest (shown in 

Figure 8).  The initial non-linear toe region is a result of the straightening of the coiled 

collagen fibrils at small extensions.  As tension increases, more fibrils are straightened and 

stretched; this is known as fiber recruitment.  The linear region involves the actual 

stretching of those fibrils into a parallel array, and the slope of this region gives an 

indication of the stiffness of the collagen fibrils as the tensile modulus (tangential 
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modulus) of the tissue.  After the linear region, the collagen fibrils fracture at the ultimate 

stress, which gives a measure of the strength of the collagen fibrils.  The mechanical 

properties of cartilage are dependent on depth, location (anterior, central, posterior), 

orientation relative to the predominant collagen fibril direction, and degree of 

degeneration.  Table 1 gives tensile properties of articular cartilage and collagen.  Tensile 

stresses develop in articular cartilage under compressive loading in the following manners: 

parallel to the surface in the superficial zone, various angles in the middle zone, and at 45º 

relative to the tidemark near the calcified region [10].   

 
Figure 8.  Typical stress-strain curve for articular cartilage tested in uniaxial tension [14]. 

 

 

Table 1.  Tensile properties of healthy hyaline cartilage and collagen fibers. 

 Tangential Modulus
(MPa) 

Peak Stress
(MPa) 

Strain at Break
(%) 

Hyaline Cartilage [27-29] 5-25 1.3-4.4 9.2-25.9 
Collagen [30]* 100-2900 5-500 5-50 

 *This is not type II collagen; these values are given for a general comparison. 
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 Articular cartilage displays both an elastic response and a time-dependent response 

to a perturbation; thus, the tissue is viscoelastic.  The viscoelastic properties of articular 

cartilage are primarily due to the frictional drag of the interstitial fluid flow through the 

permeable, porous, solid collagen-proteoglycan ECM [12, 14].  The compressive creep and 

stress relaxation behaviors are studied by applying theories describing the multiphasic 

nature of the tissue, including the solid phase consisting of the matrix of collagen fibrils, 

proteoglycans, and cells, the fluid phase consisting of interstitial water, and the ion phase 

[24, 31].  The model treats the tissue as a combination of a viscous fluid and an elastic 

solid.  Indentation experiments are typically used to test the viscoelastic properties of 

cartilage for several reasons: no special specimen preparations are needed, material 

properties can be determined in situ for native tissue, the whole joint surface can be tested 

easily, and neither the composition nor ultrastructure of the tissue is affected.  This simple 

setup involves compressing a specimen with a rigid, smooth cylinder, known as the 

indenter.   

 The creep response of articular cartilage to a constant compressive load is due to 

the flow of interstitial fluid (exudate) out of the matrix (Figure 9).  Upon initial application 

of the load, fluid leaves the matrix rapidly.  The straining of the fluid through the solid 

mesh creates a frictional drag.  With the loss of fluid pressure the collagen-proteoglycan 

matrix crushes and a compressive stress is developed within.  As time passes, flow 

gradually decreases and, at the point of equilibrium, when fluid flow ceases, there is a 

balance between the stress generated within the matrix and the applied load.   
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Figure 9.  General illustration and typical curve showing the deformation of articular 
cartilage for the creep response following an applied step load [32]. 

 

 Stress relaxation of articular cartilage occurs due to the redistribution of interstitial 

fluid within the matrix (Figure 10).  Following the application of a compressive 

deformation at a constant rate, high stress is initially created within the solid matrix near 

the point of application as the fluid is forced out.  As the deformation is held constant, fluid 

flows from and is redistributed within the matrix until an equilibrium compressive stress is 

established at which fluid flow ceases.   
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Figure 10.  General illustration and typical curve showing the stress response of articular 
cartilage for stress relaxation following an applied ramp displacement [14]. 

 

 Articular cartilage is considered a highly porous tissue with interconnected pores 

ranging in size from 25 to 75 Å [14, 32].  Permeability is a measure of resistive force at a 

given speed at which fluid flows through the pores, and it is inversely proportional to 

frictional drag exerted by the fluid.  Articular cartilage has a very low permeability, which 

means high frictional forces are generated within the pores.  The permeability of normal 

cartilage ranges from 10-16 to 10-15 m4/N·sec and that for degenerated cartilage is on the 

order of 10-14 m4/N·sec [12, 14, 32].  Permeability is strain dependent and decreases with 

increasing compressive strain; thus, excess fluid exudation is limited when compressive 

strain is prolonged.   

 

Articular Cartilage Damage and Potential for Native Repair 

 Diarthrodial joints withstand large ranges of loading conditions (very high loads 

and stresses typically at low operating speeds for an individual’s lifetime), but cartilage 
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sustains little wear and tear under normal conditions.  Mature articular cartilage is aneural, 

avascular, and alymphatic [9].  Based upon this structure, articular cartilage has a limited 

capacity for repair and regeneration of tissues in chondral defects (on the surface of or 

within the cartilage) [3].  In osteochondral defects, on the other hand, the void may be 

filled in with fibrocollagenous (composed mainly of fibrous collagen) and 

fibrocartilagenous (composed of parallel bundles of thick collagen fibers between 

chondrocytes, a low content of glycosaminoglycans, and small amounts of cartilage matrix 

only around chondrocytes) tissues, but hyaline cartilage repair tissues are rarely seen [33].  

Though healthy chondrocytes may proliferate and synthesize proteoglycans (in acute 

cartilage injuries), the cells do not migrate into and do not fill in the defects caused by 

injuries with newly synthesized matrix [9].  Damage to articular cartilage does not elicit an 

inflammatory response.  It is proposed that the lack of pluripotent marrow cells (i.e. 

parenchymal cells that are present in the bone) in the cartilage and the absence of a fibrin 

clot (i.e. the natural provisional scaffold) for the cells to migrate into are the reasons tissue 

regeneration does not occur in chondral defects [33].  In situations of trauma or overuse or 

misuse, degenerative changes may occur that can eventually lead to the development of 

OA [1].  Early changes seen in OA include loss of proteoglycans from the ECM, a 

disruption in the collagen fiber network due to excessive mechanical stresses (such as 

loosening) in the superficial zone extending into the transitional zone (considered fraying 

or fibrillation of the cartilage), changes in proteoglycan properties (molecular structure, 

disaggregation, etc.), abnormal proteoglycan expansion leading to excessive tissue 

swelling (and increased water content), changes in the collagen-proteoglycan interactions, 
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and remodeling of subchondral bone [1, 5, 10].  Macroscopically, softening, fibrillation, 

and erosions can be seen while clefts, loss of cartilage layers, cellular necrosis, cell 

cloning, and tidemark duplication are seen histologically; additionally, the superficial zone 

seems to be affected first in early OA [3].  Figure 11 presents two scanning electron 

micrographs (SEMs) showing the surfaces of healthy human articular cartilage (densely-

packed, randomly-arranged collagen fibrils and fine pores) and osteoarthritic human 

articular cartilage (degenerative characteristics including tears).  The presence of any 

surface irregularities on articular cartilage can have tremendous consequences, such as 

effects on friction (i.e. lubrication) and on the rate of further degradation.  Figure 12 

presents histological sections of healthy and osteoarthritic human articular cartilage.   
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Figure 11.  Scanning electron micrographs of the surfaces of human articular cartilage 
from a healthy specimen (top) and an osteoarthritic specimen (bottom); X3,000 
magnification [34]. 

 

 
Figure 12.  Histological sections of adult (A) healthy articular cartilage and (B) articular 
cartilage in early OA (showing clefts, cellular cloning, and cell necrosis) [3]. 
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 Matrix metalloproteases (MMPs) are the family of proteolytic enzymes responsible 

for the digestion of the cartilage ECM in OA [3].  It is believed that type II collagen is 

digested by collagenase-1 (MMP-1) and collagenase-3 (MMP-13), and stromelysin-1 

(MMP-3) and aggrecanase-1 (ADAMTS-4) are the primary MMPs involved in 

proteoglycan degradation.  Homeostasis of the MMPs in joints is normally maintained by 

such physiologic activators as cathepsin B and plasminogen activator/plasmin and by their 

inhibitors known as tissue inhibitors of MMPs, or TIMPs.  Researchers have found an 

imbalance between the amounts of MMPs and TIMPs in OA tissues [3].   

 The most obvious deleterious effect of any sort of damage to articular cartilage is 

the loss of matrix proteoglycans, though the other components may suffer effects as well 

[5, 9].  There is a threshold of damage at which chondrocytes can replace the 

proteoglycans lost (as long as the collagen matrix remains intact and the chondrocytes are 

healthy), but beyond which the cartilaginous damage is irreversible [9].  The quality of the 

minimal amount of repair depends on the extent (volume or surface area of tissue injured) 

and severity of the damage as well as the location of injury.  Evidence has shown that 

smaller defects heal better than larger defects [9].  Causes of damage can include a variety 

of means: trauma (surgical or otherwise) to the synovial membrane, infection or 

inflammatory diseases, prolonged joint immobilization, mechanical disturbances 

(penetrating injuries even into subchondral bone, blunt trauma, frictional abrasion, 

concentrated loads), some anti-inflammatory agents, and anything that kills chondrocytes 

and disturbs the matrix. 
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 Repair is defined as the “replacement of damaged or lost tissue with new tissue” 

[9].  The two main symptoms propagating the search for ways to repair cartilage are the 

pain and disability.  Success of repaired tissue is described as that which restores normal 

pain-free motion of the joint and prevents deterioration of the joint.  Doctors, scientists, 

and engineers operate under the assumption that the repaired/regenerated tissue must have 

the same structure and function (including composition, material properties, and durability) 

as native tissue [9, 35].   

 There are numerous autologous and allogeneic therapies and tissue 

grafts/transplantations that have been investigated for the therapeutic treatment of articular 

cartilage defects, all of which have had varying results [1, 4, 5, 13, 20, 36-41].  Autologous 

implants have involved the use of filling cartilage defects with grafts of the lining tissues 

perichondrium and periosteum; these grafts have resulted in complications including 

incomplete filling with a tissue that has only some cartilaginous characteristics, 

detachment of the graft, and graft ossification.  In mosaicplasty, osteochondral plugs from 

low weight-bearing areas on the femoral condyles are removed and press-fitted into the 

cored out damaged areas of the cartilage; though these autografts may result in temporary 

pain relief and restoration of function, they have not been shown to possess longevity, they 

may be damaged by the insertion method, and a loss of chondrocytes can result at the 

donor site.  Cadaver allografts have been utilized to restore function with minimal pain; 

though they offer the benefit of not creating new pathological sites, they do not become 

integrated with the surrounding tissue and there are always the concerns of immunological 

responses and disease transmission.  The delivery of cells-only to the defect site, known as 
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autologous chondrocyte implantation (ACI) or autologous chondrocyte transplantation 

(ACT), is clinically available in the United States; such an approach involves filling a 

defect with autologous chondrocytes or mesenchymal stem cells and suturing a flap of 

periosteum over the defect to hold the cells in place.  Drilling and debriding can provide 

immediate relief of symptoms, but fibrocartilagenous tissue forms with a poor outcome 

long-term [42].  Surgical penetration of the subchondral bone, which disrupts the blood 

vessels, leads to the formation of a fibrin clot, and enables the migration and proliferation 

of mesenchymal cells (which can differentiate into cells with chondrocytic morphology) as 

well as the potential release of growth factors, has been shown to result in the stimulation 

of new surface tissue, though this is again fibrocartilagenous tissue [1].  Since 

transplantation involves complications (such as insufficient donor tissue supply, donor site 

morbidity, and difficulty obtaining correct three-dimensional shapes) and artificial 

prostheses can lead to the undesirable results of infection, protein deposition, and immune 

responses [42], other approaches for repair are under investigation. 

 

Tissue Engineering of Articular Cartilage 

 Due to the avascular nature and relatively low cellular content of articular cartilage 

and, hence, the inability of cartilage to regenerate when injured, tissue engineering holds 

much promise in the repair of larger cartilage defects.  Most often the tissue engineering of 

articular cartilage involves the use of a scaffold onto which articular chondrocytes or their 

precursor cells are seeded in order to grow a three-dimensional tissue that can be implanted 

into the joint defect.  Additionally, growth factors may be incorporated into scaffolds (with 
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or without cells) to encourage tissue growth.  The goal is to have in vitro chondrogenesis 

within the cell-scaffold complex that matches native in vivo chondrogenesis.  This in vitro 

chondrogenesis is dependent upon cell type, initial cell density, scaffold characteristics, 

and culture conditions.  Tissue engineers of articular cartilage have agreed that the way to 

achieve this in vitro chondrogenesis is by mimicking the native tissue’s mechanical and 

biochemical properties [35]. 

 Cell proliferative capacity, phenotype stability, and immunogenicity must be 

considered when selecting the cell type to use in cartilage tissue engineering.  

Chondrocytes are used as in ACI/ACT, but these cells exhibit replicative senescence and, 

thus, their in vitro expansion may be limited.  When chondrocytes are expanded in 

monolayer, the cells lose their differentiated phenotype and transform into a fibroblastic 

morphology characterized by a decrease in the expression of type II collagen and 

proteoglycans and an increase in the expression of type I collagen [43, 44].  Mesenchymal 

stem cells (MSCs), multipotent progenitor cells prevalent in adult bone marrow with the 

capacity to differentiate into chondrocytes among other cell types, are of extreme interest 

because isolation, expansion, and differentiation into chondrogenic cells would eliminate 

the need to harvest chondrocytes/cartilage from the patient.  MSCs have been induced into 

the chondrogenic pathway with transforming growth factor-beta (TGF-β).   

 An ideal characteristic of a scaffold is the support of cells at the early stage of 

tissue growth and then the slow degradation of the scaffold (into nontoxic products) as new 

ECM becomes functional.  A wide variety of natural and synthetic materials have been 

investigated to accomplish this goal.  Natural materials are of interest in scaffold materials 
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for cartilage tissue engineering [4, 5, 36, 38, 42, 45] because these materials may contain 

or present the biochemical and ultrastructural characteristics required by cells for proper 

cell-ECM communication.  Fibrin, the major component of wound site clots, has been 

investigated in a polymerized form and as a glue.  Agarose and alginate, linear 

polysaccharide polymers extracted from seaweed, form hydrogels that have performed 

well in filling the defects.  Since collagen is the main component of the native ECM and it 

can be degraded by the cells, it is very popular as a scaffold; collagen gels, sponges, and 

fibrous meshes have been investigated.  Cross-linking can be used to increase degradation 

rates and tailor mechanical strength.  Collagen gels have been shown to maintain 

chondrocyte phenotype, and collagen sponges can stimulate collagen synthesis.  Chitosan 

hydrogels and molded porous structures are also under investigation as defect-filler 

materials.  Hyaluronan, which makes up 1 to 10% of cartilage glycosaminoglycans and 

plays an important role in cell attachment, hydration, and matrix synthesis, has been used 

to prepare scaffolds to mimic embryonic cartilage tissue formation.  Natural polymers may 

interact with cells in a more native manner, but typical problems with natural materials 

include batch-to-batch quality variability and weak structural properties [42].   

 Of the synthetic materials utilized as scaffolds for articular cartilage tissue 

engineering, the most widely used are the polyesters poly(lactic acid) (PLA), poly(glycolic 

acid) (PGA), and their copolymers [4, 5, 36, 38, 41, 45, 46].  In particular, PGA scaffolds 

have been shown to improve proteoglycan synthesis by chondrocytes [42, 47].  

Advantages to using synthetic materials include the ability to customize the polymer 

chemistry and, hence, the mechanical properties which, in turn, can result in improved 
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retention at the implantation site; controlled polymer degradation; more consistent quality; 

and tailored surface morphology.  Frequently, different materials (synthetic and natural) 

are combined to create scaffolds with tailored biochemical and mechanical characteristics.  

These scaffolds can be produced in the forms of foams, hydrogels, woven and nonwoven 

fiber meshes, or multi-phase structures (e.g. fibrous PLA combined with an alginate gel) 

[36, 48].  Polyester scaffolds have, unfortunately, demonstrated poor cell attachment, 

difficulty in manufacturing, and some inflammatory reactions in vivo.   

 Numerous studies have compared the responses of cells, particularly chondrocytes, 

to various scaffold materials in different culture environments, and thus have attempted to 

demonstrate the effects on cellular metabolism.  Grande et al. cultured chondrocytes on 

non-woven PGA (fibers 14 µm in diameter and 200 µm pores), woven PLA-PGA 

copolymer (Vicryl, 210 µm pores), knitted nylon (90 µm pores), and non-woven fibrillar 

type I collagen (100 to 300 µm pores) in static culture and in a closed-loop recirculating 

system.  The greatest number of cells attached to the collagen scaffold, while the least 

number attached to the nylon scaffold; all of the synthetic materials displayed cells of both 

fibroblastic and chondrocytic morphologies after 5 weeks of culture.  Additionally, the 

synthetic materials resulted in the increased rate of production of proteoglycans compared 

to the collagen scaffold, but collagen scaffolds stimulated the synthesis of collagen 

compared to the others [47].  Buschmann et al. prepared agarose gel scaffolds for 

chondrocyte seeding, and they reported that cell density, GAG concentration, and stiffness 

of the engineered tissue (following 5 week culture) was about 25% that of calf articular 

cartilage [49].   
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 Though scaffolds in the form of gels and glues are conducive to cell growth [41], 

most are mechanically weak and cannot withstand handling.  There are a number of 

fabrication techniques routinely employed to create three dimensional scaffolds with 

desired features including high porosity, pore interconnectivity, large surface area, and 

mechanical integrity [50].  In fiber bonding a non-woven mesh of polymer fibers is 

chemically treated and then melted to bond the fibers at their cross-points.  Similarly, in 

spray casting external fibers of a non-woven mesh are bonded at their cross-points by a 

coating of polymer when they are sprayed with a polymer/solvent solution and the solvent 

is removed (the solvent does not dissolve the fibers of the mesh).  Solvent casting and 

particulate leaching involve the use of particulates that are dispersed within a polymer 

solution that is cast on a surface; the solvent is removed and the particulates are leached 

from the remaining polymer solid.  For membrane lamination, multiple scaffolds 

(membranes) are created using solvent casting and particulate leaching and then bonded 

together (on top of one another) to form a more complex three dimensional structure.  Melt 

molding involves heating a polymer solution (placed in a mold) containing particulates 

above its glass transition temperature followed by leaching of the particulates in a water 

bath.  As another fabrication technique, polymers can be extruded into tubular shapes or 

fibers via heating and applying pressure to push the heated polymer through an opening; 

non-woven, fibrous meshes can be created or solvent casting and particulate leaching can 

be combined with extrusion to create porous solid structures.  One form of gas foaming 

involves the saturation of polymer discs with carbon dioxide in a high pressure chamber 

followed by a rapid drop in pressure to ambient level.  Freeze drying is typically performed 
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on a frozen emulsion of two immiscible, but homogenized solutions in a lyophilizer via the 

process of sublimation.  Phase separation can be performed on liquid-liquid or liquid-solid 

preparations via such techniques as vacuum drying or freeze drying.  Finally, in 

electrospinning a charged polymer solution is passed through an electric field; as the 

solvent evaporates, a dry polymer fiber is collected to form a non-woven, fibrous mesh.  

Many of these techniques involve the use of toxic solvents, require significant amounts of 

time, cannot be performed with bioactive molecules, may result in closed pore 

morphology, or are unable to form complex three dimensional shapes; thus, many of these 

techniques do not lend themselves easily or economically to mass production. 

 Though the choice of scaffold material and fabrication technique have not been 

agreed upon, there is consensus that mechanical stimuli are necessary in the tissue 

engineering of articular cartilage though these details are still to be determined [4, 15, 35, 

51, 52].  Chondrocytes in native articular cartilage experience mechanical stimulation 

including compressive and shear forces and hydrostatic pressure.  Investigations in vitro of 

mechanical stimulus/response mechanisms include the effect of hydrostatic pressure on the 

protein production of cells grown in monolayer, the effect of direct compression of cell-

seeded scaffolds on proteoglycan and collagen production, and the effects of low-shear on 

protein production as a result of more effective diffusion of oxygen and nutrients into the 

scaffolds within the culture environments.  For example, dynamic, direct compression has 

been found to increase ECM synthesis and produce greater equilibrium moduli [35].  

Buschmann et al. exposed agarose gel scaffolds with chondrocytes to static (maintained at 

a specific thickness) and dynamic (a sinusoidal displacement with a specific amplitude) 
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compression up to 47 days to study the effects on protein synthesis rates; dynamic 

compression showed enhanced synthesis of GAGs and collagen [53].  Carver and Heath 

designed a perfusion system that intermittently compressed the chondrocyte-seeded PGA 

scaffolds; in general, the compression reduced cell proliferation and increased GAG and 

collagen synthesis within the scaffolds [54].   

 Bioreactors (in which cell-seeded scaffolds are cultured) have become quite 

popular in the tissue engineering of articular cartilage since the systems allow the control 

of in vitro culture conditions (including temperature, pH, oxygen concentration, pressure, 

and biochemical factors in the growth medium) and provide low-shear mechanical stimuli 

to cells [4, 13, 41, 52, 55-58].  For example, it has been shown that dynamic deformational 

loading or shear of chondrocytes within a three-dimensional structure results in GAG 

synthesis, and strain of mesenchymal progenitor cells within a collagen gel results in cell 

alignment and oriented collagen fibers [57].  Theoretically, a bioreactor can provide an 

initial uniform distribution of cells to be seeded onto the scaffolds placed within the 

bioreactor chamber.  Additionally, mass transport can be controlled to more directly 

influence cell function.  Vunjak-Novakovic et al. have performed extensive bioreactor 

studies of tissue engineered articular cartilage to reveal that the biochemical and 

mechanical properties of the tissue can be controlled by the duration and conditions of the 

bioreactor culture [55, 56, 59, 60].  In most of the studies, the scaffolds consisted of 

extruded, biodegradable PGA in a non-woven mesh structure (13 µm fiber diameters), 

measuring 5-10 mm diameter x 2-5 mm thick, with a typical void volume of 96%.  An 

initial seeding density of 5-7x106 freshly isolated chondrocytes per scaffold was typical, 
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and seeding was performed over 3 days in well-mixed spinner flasks.  Cell-polymer 

structures as well as harvested cartilage explants were placed into static flasks (no 

movement of scaffolds or medium), mixed flasks (no movement of scaffolds, but turbulent 

flow of medium), or rotating bioreactors (scaffolds suspended in laminar flow of medium) 

for culture for 6 weeks (standard culture conditions, with 5-10% CO2, were maintained 

within the incubators and 50% of the culture medium was replaced every 2-3 days).  An 

increase in GAG content and total collagen amount was seen over the 6 weeks for the cell-

scaffold structures in all three culture conditions, but the hydrodynamic environment of the 

rotating bioreactor demonstrated the largest increase compared to the other two culture 

conditions due to the mechanical stimulation provided to the cells.  The primary 

determinant of GAG and collagen content in these bioreactor studies was the presence of 

mixing within the culture vessels as opposed to the intensity of the mixing [61].  Novel 

bioreactors have been designed and developed by other groups with the goals of lowering 

the shear stress, allowing more controlled gas and nutrient exchange, and creating a large 

growth area to give room for more or larger scaffolds [57].   

 There are a number of proteins that have an influence on the differentiation and 

phenotypic expression of chondrocytes, including the TGF-β family, insulin-like growth 

factor (IGF-1), bone morphogenic proteins (BMPs), fibroblast growth factors (FGFs), and 

epidermal growth factor (EGF) [35, 42].  This diverse group of growth factors influences 

chondrogenesis of mesenchymal cells during embryonic development [4].  These 

molecules can have the following effects: proliferation induction, increased ECM synthesis 

and deposition, and chondrogenesis induction by MSCs.  Both TGF-β1 and IGF-1 can 
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stimulate both GAG synthesis and type II collagen synthesis.  Incorporation of such 

growth factors or other biological signaling moiety (such as the cell adhesion peptide 

RGD, or arginine-glycine-aspartic acid) gives the scaffold the biological activity to elicit 

desired cellular responses.   

 

Electrospinning in the Tissue Engineering of Articular Cartilage 

 Many of the scaffolds tested thus far have not resulted in regenerated tissue with 

the biochemical or morphological properties of native normal articular cartilage [36].  Due 

to limited availability of suitable donor tissue and the desire to match the mechanical 

properties of the implant with the mechanical requirements in vivo, investigators have 

recently become interested in designing electrospun scaffolds for the tissue engineering of 

articular cartilage.   

 Electrospinning is a process that was first conceived in the late 19th century by Lord 

Rayleigh, with the first US patent being issued in 1934 to Formhals [62, 63].  In 

electrospinning (Figure 13), a polymer solution within a reservoir is charged via 

application of an electric potential (kilovolt range) to an electrode (nozzle) attached to the 

reservoir.  A ground target is placed some distance away from the nozzle such that an 

electric field is created.  As the intensity of the electric field is increased, the force of 

electrostatic repulsions in the solution exceed the force of its surface tension and a liquid 

jet is formed at the nozzle tip; the conical shape of solution seen at the nozzle tip is known 

as the Taylor cone.  The liquid jet is ejected from the nozzle and attracted to the grounded 

target; the trajectory of the jet is dictated by the electric field and the charges within the 
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polymer.  If there are significant chain entanglements within the polymer solution and the 

solvent is relatively volatile, evaporation of the solvent yields the formation of a fiber.  The 

fiber collects on the target to form a fibrous, non-woven fabric/structure.  If the process is 

at steady state, then electrospinning is producing a single, continuous fiber that is 

collected.  The adjustment of several electrospinning parameters allows for further control 

and refinement of scaffold characteristics [64, 65].  Altering the concentration or molecular 

weight (and, hence, viscosity and polymer chain entanglements) of the polymer solution 

affects fiber diameter: the higher the concentration the larger the diameter of the fibers.  

Varying the geometry of the grounded target will change the size and shape of the 

electrospun scaffold.  Scaffold thickness is dependent on the volume of polymer solution 

electrospun: greater volumes equate to thicker specimens.  Fiber alignment is controlled by 

rotation of the grounded target: a high rotational speed will draw the fibers into a highly 

aligned formation parallel to the direction of rotation, while low rotational speeds allow the 

fibers to collect randomly on the grounded target.  Structures composed of multiple 

polymeric components can be created by electrospinning the components simultaneously 

from the same nozzle or from different nozzles (resulting in one layer) or one at a time on 

top of one another to create multiple layers [66].   
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Figure 13.  Schematic of the electrospinning apparatus showing the basic components. 

 

 Type II collagen was first electrospun for potential use in cartilage tissue 

engineering by Matthews et al. since type II collagen accounts for 50-80% of the dry 

weight of articular cartilage.  Type II collagen from chicken sternal cartilage dissolved in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFP) was electrospun at 40 mg/mL and 100 mg/mL, 

which resulted in fiber diameters of 110 ± 90 nm and 1750 ± 900 nm, respectively.  The 

collagen scaffold was fixed in glutaraldehyde vapors prior to seeding with normal human 

articular chondrocytes.  Histological analysis showed that the cells were evenly distributed 

across the scaffold thickness.  After two weeks in culture in a rotary cell culture system, 

there was a nearly confluent layer of cells on the external seeded surface, and there was 

some degree of remodeling of the matrix [67].  Shields et al. electrospun type II collagen in 

HFP, cross-linked the scaffolds with glutaraldehyde vapor, performed mechanical testing 

of dry uncross-linked samples, and seeded the cross-linked samples with adult human 

articular chondrocytes (scaffolds were statically cultured for 7 days).  Average fiber 
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diameter was 496 nm for the uncross-linked scaffolds and 1.6 µm for the cross-linked 

scaffolds.  Tensile mechanical properties of the uncross-linked samples were as follows: a 

tangential modulus of 172.5 ± 36.1 MPa, an ultimate tensile strength of 3.3 ± 0.3 MPa, and 

an ultimate strain of 0.03 ± 0.005 mm/mm.  Chondrocytes were shown to adhere and 

infiltrate the thickness of the scaffolds [68].   

 Other materials have also been electrospun for the tissue engineering of cartilage.  

Bhattatai et al. electrospun alginate-poly(ethylene oxide) (PEO) in water solutions to create 

scaffolds with mechanical properties within the range of articular cartilage following cross-

linking with calcium chloride [69].  Cellular compatibility was investigated (3 days) with 

chondrocytes and resulted in the cells attaching well, forming clusters, and maintaining 

their round morphology [69].  Li et al. electrospun poly(ε-caprolactone) (PCL), at 0.14 

g/mL in tetrahydrofuran (THF) and dimethylformamide (DMF) (700 nm diameter fibers), 

to investigate the responses of fetal bovine chondrocytes in vitro [70].  The chondrocytes 

on the PCL scaffold appeared round and adhered to and extended along the fibers; the cells 

expressed cartilage-associated ECM genes.  PCL was found to provide better mechanical 

and structural properties with a better degradation profile for culturing these cells.  Results 

showed that cellular proliferation and differentiation were controlled by the morphology of 

the scaffold and the composition of the medium which support the differentiation state of 

the cells.  This is as opposed to cultures in monolayers which do not maintain the 

chondrocytic phenotype [70].  In another study, Li et al. electrospun PCL again at 0.14 

g/mL in THF and DMF, but the scaffolds were seeded with human bone marrow derived 

mesenchymal stem cells (MSCs) and maintained in medium supplemented with 
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recombinant human transforming growth factor-β1 (TGF-β1) prepared to promote 

chondrogenesis [71].  In the presence of TGF-β1, the three-dimensional PCL scaffold 

induced greater expression of sulfated glycosaminoglycan synthesis and collagen types II 

and IX were up-regulated; the cell count remained constant after 21 days.  Chondrogenesis 

was induced and the electrospun scaffold (cell-matrix interactions) proved more effective 

at supporting chondrogenesis than the more commonly used method of MSC 

chondrogenesis in a high density cell pellet culture (cell-cell interactions) [71].  Recently, 

Li et al. electrospun six different poly(α-hydroxy ester) polymers, including PGA, poly(L-

lactic acid) (PLLA), poly(D,L-lactic acid) (PDLLA), the copolymer poly(D,L-lactic-co-

glycolic acid) at two ratios (50:50 and 85:15) (PLGA5050 and PLGA8515), and PCL.  

These polymers were electrospun from HFP for PGA (4 g/40 mL), a 50:50 mix of THF 

and DMF for PDLLA (4 g/11.4 mL), PLGA5050 (4 g/11.4 mL), PLGA8515 (4 g/13.4 

mL), and PCL (4 g/28 mL), and a 10:1 ratio of chloroform to DMF for PLLA (4 g/27.5 

mL).  Tensile testing was performed on dry samples with the following results.  

PLGA5050 and PGA scaffolds had the highest Young’s modulus and PLLA and PCL were 

the least stiff scaffolds.  PLGA5050 and PGA also had the highest values of yield stress, 

while PCL had the highest value of yield strain.  The different materials had varying 

degradation rates, with PCL and PLLA scaffolds maintaining their structure for the full 42 

days of incubation in PBS at 37ºC.  PDLLA, PLGA5050, and PLGA8515 all shrank after 3 

days, with PLGA5050 showing the most severe shrinkage.  For the PLLA and PCL 

scaffolds, in which degradation occurred the slowest, the seeded chondrocytes adhered to 

the fibers and began migrating through pores during the 7 days of incubation.  Results 
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showed that the properties of the electrospun fibers are dependant upon the polymer used 

[72].  Shin et al. electrospun 25 wt% solutions of 75:25 PLGA in a 1:1 mixture of DMF 

and THF resulting in a mean fiber diameter of 550 ± 150 nm and a porosity of 80.68%.  

Tensile testing of dry samples revealed the following mechanical properties: a mean tensile 

modulus of 95.53 ± 6.60 MPa, a mean ultimate tensile stress of 3.10 ± 0.49 MPa, and a 

mean ultimate tensile strain of 78.95 ± 12.63 %.  There was little degradation of this 

scaffold even after 7 weeks of incubation.  Their conclusion is that these mechanical 

properties, though not quite equivalent to those of cartilage, would be able to be implanted 

and can support tissue regeneration [73].  1% (w/v) chitosan was mixed with a small 

amount of PEO in an undisclosed solvent and electrospun by Subramanian et al.  Tensile 

testing of wet samples gave results of 2.25 ± 0.67 MPa for the modulus and 0.63 ± 0.16 

MPa for the ultimate tensile strength.  Following cell seeding, canine chondrocytes 

attached to the fibers of the electrospun scaffold, and it was concluded that cell growth was 

not inhibited by the electrospinning reagents or process [74].   

 These investigations were aimed at evaluating the usefulness of different 

electrospun materials for the application of articular cartilage tissue engineering.  A variety 

of materials, natural and synthetic polymers, can be electrospun and the properties of the 

resulting scaffolds can be modulated via polymer selection, concentration, and blending.  

Thus far, a number of investigators have shown positive and promising results with 

chondrocyte-scaffold interactions and scaffold mechanical properties.   
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Scaffold Design 

 The native ECM network creates a dynamic, three-dimensional microenvironment 

in which cells are maintained.  The ECM functions as both the structural matrix for tissue 

as well as the regulator of cellular activity via cell-ECM communications.  Signals are 

transmitted between the cell nucleus and the ECM enabling communication between both 

for cell adhesion, migration, growth, differentiation, programmed cell death, modulation of 

cytokine and growth factor activity, and activation of intracellular signaling [75].  The 

influence of the ECM on cellular activities occurs via binding of specific factors to specific 

ECM molecules and binding of ECM molecules to cell surface receptors known as 

integrins, which then influence local release of growth factors or separation of molecules 

(for cell attachment, spreading, and growth) [76, 77].  Beginning as soluble components 

processed within the cells, the ECM is secreted from the cells and is highly regulated by 

and specific to each tissue type and developmental stage [78].  With the goal of imitating 

nature [6], the engineered scaffold must be able to interact with cells in three dimensions 

and facilitate this cell-matrix communication.  In the native tissues, the structural ECM 

proteins (20-500 nm in diameter) are 1 to 2 orders of magnitude smaller than the cell itself, 

which allows the cell to be in direct contact with many ECM fibers, thereby defining its 

three dimensional orientation.  The environmental conditions must be appropriate such that 

signals can be exchanged between cells and between cells and the environment with the 

goal of restoring tissue function.  Thus, the scaffold material, the scaffold fabrication 

technique, and the tissue development methodology must be selected such that in vivo 

chondrocyte-matrix interactions are simulated in vitro. 
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 The three dimensional scaffold provides a structure to which cells can attach, 

migrate, and grow giving the regenerating tissue an initial predefined shape and size.  

These engineered ECMs, or scaffolds, should be designed to conform to a specific set of 

requirements [36, 79-83].  The first requirement is that the material must be biocompatible 

and function without interrupting other physiological processes.  This functionality 

includes an ability to promote normal cell growth and differentiation while maintaining a 

three dimensional orientation/space for the cells.  Secondly, the scaffold should not 

promote or initiate any adverse tissue reaction; this includes any degradation products.  

Once implemented in vitro or in vivo, the material should either be removed via 

degradation and absorption or incorporated via innate remodeling mechanisms, leaving 

only native tissue.  Degradation should be at an appropriate rate such that the newly 

regenerating tissue can support itself and allow effective diffusion of nutrients and wastes.  

The scaffold must possess the mechanical properties necessary to withstand not only the 

forces experienced in situ at the joint (i.e. site of implantation) but also the 

handling/manipulation forces experienced during the implantation procedure.  

Additionally, the scaffold must possess the ability to be retained at the implantation site.  If 

the scaffold has been designed for drug, protein, or cell release, it has to have the proper 

release profile.  In addition, for clinical and commercial success, scaffold production 

should be simple yet versatile enough to produce a wide array of configurations to 

accommodate the size, shape, strength, and other intricacies of the target tissue/organ.  

Finally, surgeons prefer uncomplicated preparation and handling procedures for any 

scaffold.   
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 The native ECM fiber components are one to two orders of magnitude smaller than 

the cell itself, thereby allowing the cell to be in direct contact with many of the fibers 

defining its three-dimensional orientation.  Thus, the determination of suitable pore size, 

total porosity, and ECM fiber size may be crucial in determining the success or failure of a 

tissue-specific tissue-engineering scaffold.  Highly porous scaffolds, such as those with 

porosities greater than 90%, provide sufficient space for cellular infiltration where the cells 

perform actively and exchange nutrients and wastes with the environment [84].   

 

Material Selection: Type II Collagen 

 As described above, there are a number of natural and synthetic materials that have 

been investigated for use in scaffolds for cartilage tissue engineering.  Frenkel and Di 

Cesare have composed a table presenting a summary of in vivo findings of the performance 

of various materials (autologous, natural, and synthetic) (see Appendix A) [36].  Of 

particular interest for this research is type II collagen.  In general it is known that cell-

collagen interactions influence cell growth and differentiation depending on how well the 

cells are able to penetrate the fibrillar collagen ECM [85]. 

 Collagenous scaffolds (of various types of collagen) are of particular interest in 

tissue engineering because these scaffolds mimic the biochemical and ultrastructural 

properties of the native extracellular matrix (ECM) of tissues, which is known to influence 

cell behavior [75, 85].  Since type II collagen is the predominant collagenous component 

of articular cartilage, it is of interest for use in scaffolds for tissue engineering articular 
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cartilage [5, 13, 33].  Nehrer et al. fabricated type I collagen-GAG copolymer sponge 

scaffolds (via freeze drying and dehydrothermal cross-linking) and type II collagen-GAG 

copolymer sponge scaffolds (via reconstituted porcine cartilage and UV irradiation cross-

linking), with an average pore diameter of 85 µm and porosity of 85%; the sponges were 

seeded with autologous chondrocytes, cultured for no longer than 12 hours, and implanted 

into adult canine models for a 15 week study.  The type I and type II collagen structures 

resulted in increased amounts of reparative tissue, both types resulting in comparable 

amounts, but the type II collagen scaffold induced a greater percentage of and more 

uniformly spaced cartilage-like material though it was mostly fibrocartilagenous [33].  

Conclusions were drawn that more time is required to reveal if the transitional tissue will 

eventually convert to hyaline cartilage; also, cell densities and scaffold modifications may 

influence the reparative qualities of the chondral defects.  Previous in vitro studies by 

Nehrer et al. have shown that type II collagen scaffolds have better maintained 

chondrocyte morphology (spherical instead of elongated and flattened) and resulted in 

greater GAG production than have type I collagen scaffolds [86, 87].  Lee et al. used 

similar type II collagen sponges as Nehrer et al. (but with cross-linking in an aqueous 

solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-

hydroxysuccinimide) and investigated the implantation (into chondral defects in a canine 

model) of the chondrocyte-seeded sponges following 4 weeks of in vitro static culture.  

Results showed the large production of hyaline-like tissue (51%) in the defects, a fill 

volume of 88%, and little histological evidence of the collagen scaffolds after the 15 week 

implantation period [88].  In a more recent study by Dorotka et al., a collagen membrane 



41 

(composed of types I and III collagen on the inner, rough surface and type II collagen on 

the outer, porous, cell-seeded surface) was prepared and inserted into osteochondral 

defects already treated with microfracture.  More hyaline tissue (as well as fibrocartilage 

tissue) was observed to grow in these defects over the 4 month study compared to the 

defects treated with microfracture only or microfracture and non-seeded collagen scaffolds; 

from 4 to 12 months, however, the amount of hyaline tissue decreased and the repair tissue 

generally deteriorated [89].  Isolated and purified types I and II collagen have been 

lyophilized and cross-linked by Pieper et al. to prepare scaffolds (pore sizes ranging from 

50 to 100 µm) onto which chondrocytes were seeded and cultured for up to 14 days; results 

showed cells and some clusters of cells with preserved chondrocytic phenotype throughout 

the thickness of the type II collagen scaffolds, a cartilaginous-like layer on the surface of 

the scaffolds (after 14 days of culture), and the presence of newly synthesized GAGs [90].  

Shi et al. created sponge-like scaffolds (with open, interconnected pores between 100 and 

250 µm, and a porosity of 87%) composed of chitosan and type II collagen via a freeze 

drying method followed by cross-linking that were cultured in vitro for 15 days; the 

scaffolds sustained the chondrocytic phenotype and the cells formed some clusters and 

synthesized type II collagen, but the majority of the cells remained on the periphery of the 

scaffolds [91].  Yang et al. compared the redifferentiation of human chondrocytes cultured 

in a pellet and on type II collagen-coated filters.  The cell on the collagen-coated filters 

appeared to have improved type II collagen synthesis compared to those in the pellet 

culture.  Additionally, cells on the filters appeared to be more like native chondrocytes 
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ultrastructurally, and, though cell content decreased in both redifferentiation models, the 

decrease was less on the filters [92]. 

 The scaffold under investigation in this research is composed only of type II 

collagen.  Only one scaffold material was chosen in order to minimize the variables 

associated with scaffold design.  The other interest in using collagen alone is the finding 

that the presence of proteoglycans in the ECM can prevent cell adhesion [13]. 

 As with the other collagenous scaffolds, which have been fabricated in numerous 

ways, particularly as gels and sponges [93-96], freeze-dried solutions of collagen [97, 98], 

and more recently as electrospun fibrous mats [66-68, 99-103], the type II collagen 

scaffolds lack substantial strength upon hydration.  Thus, the structures must be treated or 

fixed in some capacity to render sufficient mechanical integrity to the scaffolds [104].   

 

Fabrication Technique: Electrospinning 

 Conventional polymer processing techniques cannot produce fibers much less than 

10 µm in diameter, which is several orders of magnitude greater than the diameter of 

native ECM fibers, particularly that of collagen.  Thus, scientists in tissue engineering have 

turned to nanotechnology and, specifically, the development of nanofibers, to find 

solutions to the development of tissue engineering scaffolds.  Nanofibers with diameters on 

the order of 20 to 200 nm mimic the geometry of the sub-micron diameter fibers of the 

native articular cartilage ECM, specifically the diameters of native type II collagen fibrils 

[14, 18].  At present, there are only a few processing techniques at the forefront that 
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successfully produce fibers, and subsequent scaffolds, on the nano-scale; Jayaraman et al. 

and Smith and Ma have recently reviewed these techniques [105, 106].  Self-assembly 

involves the spontaneous organization of individual components into an ordered and stable 

structure with non-covalent bonds [107, 108].  Peptide self-assembling systems that form 

nanofibers, with diameters ranging from 30 to 50 nm, for applications as tissue engineering 

scaffolds, have been used by several groups [106-109].  The complexity of the procedure 

and the low productivity of the method limit self-assembly as a large-scale tissue 

engineering option [110].  Ma and Zhang have developed a phase separation technique (a 

thermodynamic separation of a polymer solution into a polymer-rich component and a 

polymer-poor/solvent-rich component) that produces nano-fibrous three-dimensional 

scaffolds.  An advantage to this technique is the control over macroporous networks within 

the fibrous matrices [111, 112].  Additionally, fibers with diameters in the range of 50 to 

500 nm and porosities exceeding 98% are possible [112].  However, this method is limited 

to being effective with only a select number of polymers and is strictly a laboratory scale 

technique [105].  Electrospinning, described previously, is the third technique capable of 

creating polymeric nanofibers, which can be collected in various orientations to create 

unique structures in terms of composition and mechanical properties [50, 62, 64].  

Electrospinning offers further advantages including being cost effective and capable of 

mass production [105].   

 Electrospinning has been chosen as the fabrication technique to create the scaffolds 

for cartilage tissue engineering in this research.  This technique allows control over fiber 

diameter as a function of polymer concentration (linear relationship); thus, diameters 
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approaching those of native ECM fibers can be achieved.  Pores are created in the 

electrospun mats by overlapping fibers.  The scaffolds must possess appropriate porosity to 

allow cell penetration and to provide a place for the cells to be housed [84].  The non-

woven structure of electrospun meshes have porosities greater than 80% [50].  Historically, 

in biomaterials and tissue engineering scaffold design, the most commonly held paradigm 

requires pores larger than 10 microns, and in some cases larger than 100 microns, to allow 

cellular in-growth and vessel formation [113].  Though pore size should be large enough 

for the particular cells to be grown within the scaffold, hypotheses have been made that the 

non-woven structure of the electrospun mats allow migrating cells to maneuver amongst 

the fibers by actually moving the fibers [84, 101] or that fiber degradation occurs during 

cell migration [101], both of which suggest pore size may not be absolutely critical for 

electrospun nanofibrous scaffolds.   

 

Cross-linking: Carbodiimide in Ethanol 

 Cross-linking can be utilized to tailor degradation rate and biomechanical 

characteristics (typically to match those characteristics of the tissue designated for 

regeneration), but it may compromise biocompatibility.  The requirement for tissue 

engineering scaffolds to not elicit any prolonged immune responses has led to research and 

development of fixation techniques that may prove more biocompatible than popular 

chemical cross-linking agents including glutaraldehyde, formaldehyde, and epoxy 

compounds, which have been shown to be cytotoxic because of the reactive moieties that 
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are covalently coupled between neighboring collagen fibrils [104, 114-116].  

Glutaraldehyde, in particular, does offer the advantages of being less expensive, reacting 

relatively quickly, cross-linking over varying distances, and reacting with a larger number 

of amino groups present in a protein molecule [114].  It is the most commonly used and 

accepted agent for the cross-linking of biological tissues, but it has also been implicated in 

the development of calcification [114, 117, 118].   

Our laboratory has previously shown that the electrospinning process can facilitate 

the assembly of type I collagen molecules into fibrils that demonstrate the characteristic D-

period banding pattern [99].  Unfortunately, the native intramolecular and intermolecular 

crosslinks (via lysyl oxidase [119]) do not form to a significant degree, if at all, among the 

electrospun fibers.  Herein lies several critical issues involved in the cross-linking of 

electrospun collagen.  Upon hydration in any aqueous solution, the electrospun 

collagenous mats immediately shrink and disintegrate such that the scaffold breaks itself 

apart but does not dissolve.  Thus, cross-linking is a necessity in order to maintain the 

structural integrity of the scaffold.  However, typical protocols for cross-linking 

electrospun collagen have utilized glutaraldehyde, but even then the scaffolds tend to gel 

(unless more severe cross-linking protocols are followed) and lose their nanofibrous 

morphology, which is one of the most important features of the scaffold to begin with.  To 

avoid this, our laboratory has previously electrospun blends of collagen with synthetic 

polymers [120], which has proven successful in initial cell studies, but it is desirable to be 

able to work with collagen-only electrospun scaffolds for cartilage tissue engineering.  
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Thus, a complementary/exogenous cross-linking agent is required if pure collagen 

electrospun scaffolds are to be utilized as tissue engineering scaffolds.   

Choice of cross-linking agent requires knowledge of the reactive group(s) present, 

typically an amino acid side chain, and appropriate ambient conditions (such as pH, 

temperature, solvent, etc.) that do not negatively affect the protein [104].  In choosing a 

cross-linking agent for collagen, heterobifunctional agents, which contain two different 

reactive groups that are able to directly link two different amino acid side chains [121], are 

of interest in maximizing the extent of cross-linking.  The great interest in 

heterobifunctional carbodiimides, in particular 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC), is that these are zero-length 

cross-linking agents, i.e. the agent itself is not incorporated into the macromolecule.  The 

protonated carbodiimide reacts with the carboxylic functional groups of aspartic and 

glutamic amino acids and forms the intermediate O-isoacylurea, which then undergoes 

nucleophilic attack by the amine functional groups of lysine and hydroxylysine amino 

acids on adjacent collagen fibrils.  The crosslink, an iso-peptide bond (that mimics the 

natural peptide bonds in proteins), is formed thereby bridging neighboring polypeptide 

chains, and a urea derivative is released that can be removed via rinsing [116, 122].  By 

modifying the ratio of EDC to collagen, the extent of cross-linking can be controlled [104].  

EDC has been used to cross-link reconstituted collagen fibrils, i.e. collagen molecules 

removed from tissues via acid or enzyme extraction that spontaneously form fibrils [90, 

123, 124], insoluble collagen, and collagen fibers from intact tissues [104, 122, 125-127].  

EDC is suited for use with type II collagen from bovine cartilage because each of the three 
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α1(II) chains that constitute the triple helical structure consists of 15 lysine, 23 

hydroxylysine, 43 aspartic acid, and 87 glutamic acid residues per thousand residues per 

chain [128]. 

A method of cross-linking electrospun type II collagen (highly purified) scaffolds 

utilizing carbodiimide in an ethanol solution has been developed to effectively cross-link 

the collagen by creating iso-peptide interfibrillar bonds while minimizing the shrinkage of 

the collagenous mats [129].  The use of EDC in a non-aqueous solution will cross-link 

electrospun type II collagen fibrous matrices in a comparable manner to typical 

glutaraldehyde fixation protocols.  Ethanol has been used previously with collagenous 

materials without report of deleterious effects such as denaturation.  Additionally, ethanol 

has been used with glutaraldehyde in the treatment of aortic cusps to minimize the effects 

of calcification [130].  Pieper et al. have investigated the cross-linking of lyophilized 

collagen matrices (extracted from bovine achilles tendon) in the presence of 40% v/v 

ethanol to preserve the porosity of the collagen matrix; these matrices resulted in 

comparable tensile strengths to matrices cross-linked in aqueous EDC alone [90, 123].  

Buttafoco et al. utilized EDC and N-hydroxysuccinimide (NHS) in a 2-morpho-linoethane 

sulfonic acid (MES) buffer in 70% v/v ethanol/water for cross-linking electrospun type I 

collagen (electrospun from hydrochloric acid with poly(ethylene oxide) and sodium 

chloride added).   
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Tissue Development Methodology 

 Most often the tissue engineering of articular cartilage involves the use of a 

scaffold onto which articular chondrocytes or their precursor cells are seeded in order to 

grow a three-dimensional tissue in vitro that can later be implanted into the joint defect 

[35, 55].  The goal is to achieve in vitro chondrogenesis that matches native in vivo 

chondrogenesis and mimics the mechanical and biochemical properties of the native tissue.  

This in vitro chondrogenesis is dependent upon cell type, initial cell density, scaffold 

characteristics, and culture conditions.  For the research presented here, scaffolds created 

via the electrospinning fabrication technique and then seeded with chondrocytes were 

maintained in a bioreactor growth environment to investigate a novel approach to articular 

cartilage tissue engineering (Figure 14).  The specific aim of this study was to achieve 

tissue that likened the mechanical and biochemical properties of the middle zone of 

articular cartilage since the scaffolds consist of randomly arranged fibers and would not be 

degraded by the end of the 6 week duration.   
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Figure 14.  Schematic of the design approach used in this research. 

 

 

Chondrocytes 

 In vitro chondrogenesis can be achieved via the seeding of the designed scaffolds 

with cells capable of synthesizing articular cartilage ECM; these cells are namely 

chondrocytes or their precursor cells (chondroprogenitor cells derived from marrow, 

periosteum, or perichondrium).  Chondrocytes offer the advantage of already being capable 

of producing type II collagen and GAGs since they are already of the correct phenotype.  

Disadvantages include being limited in availability and resulting in donor-site morbidity 

[45].  Expansion in culture is necessary to obtain sufficient numbers of chondrocytes for 

seeding, but the main problem is dedifferentiation into a fibroblastic phenotype during 

culture.  This dedifferentiation results in a change in the synthesis of type II collagen to 

types I and III [43].  Thus, chondroprogenitor cells, and in particular marrow-derived 

mesenchymal stem cells have been investigated as an alternative [45, 58]. 
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 Chondrocytes have been chosen in this research to be seeded onto the scaffolds 

since these cells are responsible for producing the matrix components (type II collagen and 

aggrecan) that give the cartilage strength and flexibility.  It has been shown that suspension 

of passaged chondrocytes within a three-dimensional matrix (such as agarose gels and 

alginate beads) and special culturing techniques (such as suspension cultures, high-density 

cultures, and co-cultures with primary chondrocytes) can induce redifferentiation from the 

fibroblastic phenotype back into the chondrocytic phenotype by restoring the spherical 

shape of the cells [20, 44, 46, 131, 132].  This research will investigate the differentiation 

status of the chondrocytes on the electrospun type II collagen scaffolds.  It still remains to 

be shown whether chondrocytes that have been passaged several times in monolayer 

culture can produce tissue of favorable cartilage quality and quantity [46].   

 

Bioreactor 

 Ideally, since this research is addressing the tissue engineering of the middle zone 

of articular cartilage, the desired tissue outcome is a uniform spatial distribution of 

chondrocytes within the three-dimensional scaffold structure.  Static culture vessels can 

result in poor cellular infiltration into the thickness of the scaffold due to poor mass 

transport of nutrients and wastes; thus, only a layer of cells on one side of the scaffold may 

develop.  Mixed/spinner flasks do provide a well-mixed environment around the cells, but 

may result in the formation of a fibrous capsule around the scaffold structure because of 

the turbulent flow and associated shear stress that is too high [57].  On the other hand, 
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bioreactors are designed to maintain cells and tissue in continuous free fall (simulated 

microgravity), providing a buoyant, low shear environment (for mechanical stimulation) 

and high mass transfer of nutrients.  The buoyant environment of these devices fosters cell-

cell and cell-matrix contacts and the formation of large cell masses.  The in vitro culture 

conditions within the bioreactor can be controlled such that the chondrocytes are able to 

proliferate within the scaffold while degrading and replacing it with new extracellular 

matrix components.  One negative of the bioreactor environment is that cells within the 

scaffold align in the direction of the shear forces; this is not ideal since the different zones 

of articular cartilage have cells with different alignments relative to the surface [57].  Other 

drawbacks to the rotating wall vessel bioreactor include non-uniform growth of tissue and 

collision of the scaffolds with the vessel wall resulting in cell damage and disturbances 

with cell attachment and matrix deposition [57].  Despite the disadvantages, the bioreactor 

growth environment is best for the desired tissue-engineered structure proposed in this 

particular study [60, 133].  The bioreactor used in this research is the Slow Turning Lateral 

Vessel (STLV) on the Rotary Cell Culture System (RCCS) (Synthecon™, Inc.), which is a 

rotating wall vessel in which the scaffolds flow between two concentric cylinders, the inner 

of which is a silicone gas exchange membrane. 
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Methods 
 

Collagen Preparation 

 Type II collagen was extracted from articular cartilage removed from all joints of 

fetal calf legs [134].  For a detailed checklist of extraction and purification steps, see 

Appendix B.  Unless otherwise stated, all procedures were performed at 4ºC.  To a slurry 

of homogenized cartilage, guanidine (2.5 M final concentration) and Tris (0.025 M final 

concentration), pH 7.4, were added and stirred overnight.  Following four rinses with cold 

deionized water, the cartilaginous tissue was suspended in 0.5 M acetic acid, pH 2.8.  

Pepsin (2x, Sigma-Aldrich Chemical Co.) was added to the mixture at 1 g per 1 L solution 

and incubated overnight.  The viscous supernatant containing solubilized collagen was 

adjusted to pH 7.4; sodium chloride was added to a final concentration of 5 M while 

stirring slowly.  The solution was incubated overnight at room temperature, after which the 

collagen precipitate was dissolved in 0.05 M Tris/0.2 M sodium chloride, pH 7.4.  This 

solution was dialyzed (Spectrum Spectra/Por 4 RC Dialysis Membrane Tubing 12000-

14000 MWCO, Fisher Scientific International Inc.) against a buffer solution containing 

0.05 M Tris/0.2 M sodium chloride buffer, pH 7.4, and allowed to equilibrate overnight; 

this was repeated two additional times.  Anion exchange microgranular diethylaminoethyl 

cellulose separation media, DE-52 (Whatman, Fisher Scientific International Inc.), was 

added to the collagen solution (at 100 g per liter of solution) and incubated overnight.  To 
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the supernatant, sodium chloride (0.8 M final concentration) and acetic acid (0.1 M final 

concentration) were added and stirred overnight.  The precipitated collagen was dissolved 

in 0.1 M acetic acid, and the resulting solution was dialyzed against a solution containing 

0.01 M acetic acid overnight with stirring; this was repeated six additional times.  Finally, 

the purified collagen solution was frozen and lyophilized until dry product was obtained.   

 

Collagen Purity and Apparent Molecular Weight 

Isolated (lyophilized) and electrospun type II collagen were dissolved in 50 mM 

acetic acid solution at a concentration of 4 mg/mL.  These solutions were analyzed by 

SDS-PAGE gel electrophoresis under denaturing conditions for purity and apparent 

molecular weight determination.  Briefly, 40 µg of purified or electrospun collagen were 

prepared by the addition of 1X SDS sample buffer and boiled for 3 minutes.  The samples 

were resolved using an 8-16% gradient SDS-PAGE gel (Criterion precast gel, BioRad) 

and visualized using GelCode blue stain reagent (Pierce). 

 

Electrospinning 

The lyophilized collagen was dissolved in 1,1,1,3,3,3 hexafluoro-2-propanol (HFP, 

TCI America, Portland, OR) at concentrations of 60, 80, 100, and 120 mg/mL at room 

temperature; this concentration range was previously determined as the electrospinning 

range for type II collagen [135].  The collagen solution was electrospun to create 

randomly-oriented, non-woven, fibrous mats.  Figure 13 illustrates the electrospinning 

process.  The apparatus used includes a syringe pump (KD Scientific), a high voltage 
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power supply (Spellman CZE1000R, Spellman High Voltage Electronics Corp.), a syringe 

(Becton Dickinson, plastic) as the reservoir for the polymer solution to which is attached 

an 18-gauge blunt-end needle, and a 303 stainless steel mandrel (7.6 cm length x 2.5 cm 

width x 1.6 cm thickness) as the collection target.  All electrospinning parameters were 

kept constant, including applied voltage (22 kV), distance between the needle and 

grounded mandrel (12.7 cm), solution dispensing rate (2 mL/hr), translational speed (2 

cm/s over a 7.3 cm distance), and rotational speed (500 rpm for random fiber orientation).  

There was no grounded plate behind the mandrel.  For each mat, 5 mL of solution was 

electrospun.   

 

Cross-linking of Collagen Scaffolds 

 The carbodiimide cross-linking solution was prepared by dissolving the solid cross-

linking agent, N-(3-Dimethylaminopropyl)-N’-ethyl-carbodiimide hydrochloride (EDC, 

Sigma-Aldrich Chemical Co.), in pure ethanol (Fisher Scientific Inc.) to the desired 

concentration of 20 mM.  Electrospun mats of each of the 4 concentrations (with 

approximate dimensions 6 cm length x 2 cm width) were submerged in 20 mL of the EDC 

solution and incubated with shaking for 18 hours.  After cross-linking, the mats were 

placed in 20 mL of 0.1 M sodium phosphate for 2 hours to hydrolyze any unreacted O-

isoacylurea intermediates.  Finally, all samples were rinsed and soaked in sterile phosphate 

buffered saline (PBS) for at least 2 hours.   
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Fiber Diameter and Pore Size Measurement of Dry Scaffolds 

Fiber and pore morphologies of the dry (uncross-linked) electrospun mats were 

viewed with scanning electron microscopy (SEM) using a JEOL JSM-820 JE electron 

microscope (Japanese Electron Optical Ltd., Japan).  A micrograph was taken and digitized 

with a Hewlett-Packard Scanjet 5550c flatbed scanner and then examined with UTHSCSA 

ImageTool 3.0 imaging software (NIH shareware) to measure fiber diameter and pore size.  

Mean and standard deviation were determined from 60 fiber diameter measurements and 

40 pore area measurements; calibration for each micrograph was made with the scale bar 

on the micrograph.   

 

Fiber Diameter, and Pore Size Measurement of Hydrated Scaffolds 

Environmental scanning electron microscopy (ESEM) was used to take images of 

the 60 mg/mL cross-linked mat in the hydrated state.  The microscope used was a Philips 

XL30 ESEM TMP (FEI Company, Hillsboro, OR) purchased under the NSF award # DBI-

0098534 at the Duke University, Department of Biology, Scanning Electron Microscopy 

Lab.  For improved image quality, the hydrated sample was blotted slightly to remove 

excess water such that the sample could be fixed to the sample holder.  The grayscale of 

the digital images taken with the ESEM was inverted to allow for improved viewing of the 

topography of the mat surface.  Mean and standard deviation were determined from 60 

fiber diameter measurements and 40 pore area measurements; calibration for the 

measurement was made with the scale bar on the digital image.  There have been problems 

utilizing the ESEM in the Department of Neurobiology and Anatomy Microscopy Facility 
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at Virginia Commonwealth University; thus, only the 60 mg/mL scaffold will have 

morphology data in the dry and hydrated states for comparison. 

 

Porosity Measurement 

 Porosity, expressed as the percentage void to total volume, was determined by the 

following equation:  

100
ρ
ρ-1 Porosity 

0

×







=  

where ρ is the calculated density of the scaffold determined by dividing the mass 

(measured in the dry state) by the overall volume (measured in the hydrated state) of the 

mat and ρ0 is the density of collagen (1.41 g/cm3).  Three samples were used to determine 

the porosity of each scaffold of each concentration.   

 

Permeability Measurement and Fiber Diameter and Pore Size Determination of 
Hydrated Scaffolds 
 
 The permeability of three punches (1 cm diameter) from each cross-linked, 

electrospun mat of each concentration was measured in the hydrated state (soaked in PBS 

for at least 2 hours at room temperature beyond cross-linking protocol).  A meter 

developed by Scott Sell based on Ogston’s theory of flow through systems of long thin 

rods was employed for permeability measurement, and the fluid utilized for the testing was 

PBS to mimic the physiologic ionic strength [136, 137].  Permeability, represented as the 

Darcy constant (τ), is calculated using the following equation: 
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p t F
h  ηQτ =  

where Q is the volume that flows through in time t (mL/sec), η is the viscosity of the fluid, 

h is the thickness of the scaffold, F is the cross-sectional area of the scaffold, and p is the 

applied pressure (proportional to the height of the meter).  The average fiber diameter (d) 

can then be calculated from the Darcy constant as follows:  

Φ τk d =  

where k is a constant determined to be equal to 10 [137], and Φ is the volume fraction of 

the collagen in the scaffold.  The average pore area (using the assumption of a circular pore 

shape) can be determined based on the equation for the average pore radius (R) as follows:  

2
1-τ

0.5093  R = . 

 

Tensile Testing (Stress-Strain Relationship) of Hydrated Scaffolds 

Mechanical properties of the cross-linked mats were measured in the hydrated state 

(soaked in PBS for approximately 2 hours at room temperature) to show behavior under 

approximate physiological conditions.  Uniaxial tensile testing of the mats on a MTS 

Bionix 200 Mechanical Testing System (MTS Systems Corp., Eden Prairie, MN), 

incorporating a 50N load cell with an extension rate of 10.0 mm/minute to failure, was 

performed on four “dog-bone” shaped samples (2.67 mm wide at their narrowest width and 

a gage length of 7.49 mm) punched from each mat of each concentration.  The data 

acquisition rate was 20 Hz.  The mechanical properties recorded include tangential 
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modulus, peak stress, and strain at failure, which were calculated by the MTS software 

TestWorks 4.0. 

 

Scaffold Preparation and Disinfection 

 From each cross-linked, electrospun mat of each concentration, scaffold discs were 

punched using a 1.0 cm biopsy punch.  The scaffold discs were placed in petri dishes, 

covered with 100% ethanol, and allowed to soak for 10 minutes.  The ethanol was removed 

with a pipette and the scaffold discs were rinsed with sterile PBS four times (10 minutes 

per rinse).  The scaffold discs were stored in sterile PBS until cell-seeding.   

 

General Culture of Chondrocytes 

 Clonetics normal human articular chondrocytes from the knee (NHAC-kn) were 

purchased from Cambrex Corporation.  The cells were cultured in tissue culture plastic 

flasks in monolayer (until sufficient numbers were attained) under standard culture 

conditions: 37ºC at 5% CO2 and constant humidity in an incubator.  Sterile technique was 

followed and all work was performed in a laminar flow workstation.  While in monolayer, 

the growth media used was Dulbecco’s Modified Eagle Medium with Nutrient Mixture F-

12 (Invitrogen Corporation) supplemented with 10% fetal bovine serum and 1% penicillin-

streptomyocin (10,000 Units/mL each).  The cells were used at passage three.   
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Initial Cell-Seeding Investigation 

 An initial cell-seeding investigation was performed to determine which method 

would result in attachment of the most cells with the most uniform distribution.  Five 

scaffold discs total, 1.0 cm in diameter, were punched from a 60 mg/mL cross-linked, 

electrospun mat.  Three discs were placed in a 48-well plate for static culture.  0.25 mL of 

the media and cell mixture was added to two of the discs at a cell density of 5x105 

cells/mL media, and 0.25 mL of media alone was added to the third disc (the control with 

no cells); after about 2 hours, another 0.25 mL of media was added on top of all three 

discs.  A media height of approximately 2 mm was maintained above the scaffold surface, 

and more media was added if evaporation occurred.  Two scaffold discs were placed in a 

55 mL bioreactor (Slow Turning Lateral Vessel (STLV) on the Rotary Cell Culture System 

(RCCS) (Synthecon™, Inc.)) for dynamic culture with an initial cell density of 5x105 

cells/mL media; rotation was started at 15 rpm and increased to 20 rpm after one day.  

Both cultures were maintained (under standard culture conditions) for three days so that 

the growth media did not have to be replaced.  The media used in this initial investigation 

was the same as that described for the general culture of chondrocytes.  The cell density 

used was determined based on previous bioreactor studies by Vunjak-Novakovic et al. [60, 

138].  After three days of culture, all scaffolds were removed, placed in 10% formalin, and 

processed for histology (Hematoxylin and Eosin staining).   
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Scaffold Seeding and Tissue Culture in Bioreactors 

 Clonetics standard chondrocyte growth media (Cambrex Corporation) was 

prepared by adding the entire amount of each supplement in the BulletKit (CGM 

SingleQuots CC-4409) to the basal medium (CC-3217); thus, supplementation included 

5% fetal bovine serum, 0.1% gentamicin sulfate amphotericin-B, 0.2% bovine insulin, 

0.5% r-human fibroblast growth factor-B, 0.1% transferrin, and 0.2% insulin-like growth 

factor-1.  Twelve scaffold discs, 1.0 cm in diameter, were punched from each cross-linked, 

electrospun mat of each concentration, for a total of 48 scaffold discs, and soaked in media 

before cell-seeding.  Four 55 mL bioreactor chambers (Slow Turning Lateral Vessel 

(STLV) on the Rotary Cell Culture System (RCCS) (Synthecon™, Inc.)) were conditioned 

prior to use (i.e. filled with media, bubbles removed, attached to RCCS in incubator, turned 

on to rotate, and left about 24 hours in incubator to check for leaks).  Nine scaffolds of 

each concentration were transferred under sterile conditions to one bioreactor chamber 

(Figure 15) and 3 scaffolds of each concentration were placed in media (without cells) to 

serve as controls; thus, there were 4 bioreactor chambers each with a different 

concentration of electrospun type II collagen (Figure 15).  Chondrocytes were resuspended 

in media (to a density of 4.3x105 cells/mL media) and added to each bioreactor chamber 

such that the concentration of cells was 2.6x106 cells/scaffold.  For improved seeding 

efficiency and uniformity, the cells were seeded on the scaffolds in this dynamic manner 

within the bioreactor (as opposed to statically).  Three full days were allowed for cell 

seeding before the media was changed.  The media was completely changed about every 

third day.  Three scaffolds of each concentration were removed after 2, 4, and 6 week 
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culture periods (Figure 15).  All culturing was performed under standard culture 

conditions: 37ºC at 5% CO2 and constant humidity in the incubator.  The rates of rotation 

necessary to suspend the scaffold discs in continuous free fall were determined 

experimentally.  In general, it was found that a rate of 22 rpm was sufficient to maintain 

the scaffold discs in free fall during tissue development; by the sixth week, the rate was 

increased to 25 rpm.   

 

 
Figure 15.  Photographs of the (A) four STLVs on the RCCS in the incubator, (B) a single 
STLV bioreactor chamber with a scaffold disc rotating within, and (C) the scaffolds 
removed from the chambers. 

 

 

Thickness Measurement of Cultured Tissue 

 After removal from the bioreactor at the 2, 4, and 6 week culture periods, the 

thicknesses of the scaffold discs were measured with a dial caliper.  There were three 

measurements for each concentration at each time period.  These measurements were 

A B 

C 
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compared to the thickness measurements of the scaffolds prior to cell seeding.  All scaffold 

discs were measured in the hydrated state without compression such that fluid was not 

forced out/removed from the discs. 

 

Stress Relaxation Testing of Cultured Tissue 

 An indenter (cylindrical, 2 mm diameter, plane-ended, stainless steel) was attached 

to the MTS Bionix 200 Mechanical Testing System (MTS Systems Corp., Eden Prairie, 

MN) incorporating a 50N load cell as shown in Figure 16.  Indentation was performed in 

the center of each scaffold disc, perpendicular to the scaffold surface.  The discs were 

placed in a glass petri dish and kept hydrated with growth media.  Three discs for each 

concentration were tested at each time period.  The following parameters were used: test 

speed of 0.5 mm/min, data acquisition rate of 10 Hz, hold time of 200 s, and a preload of 

0.015 N for the first run only (to ensure contact); the temperature in the room fluctuated 

between 75 and 81ºF.  The indenter was lowered to contact the scaffold, and five 

successive ramp-and-hold displacements were applied to achieve 5, 10, 15, 20, and 25% 

strains.  After each ramp-and-hold displacement, stress relaxation was achieved within 200 

seconds; the equilibrium stress was calculated with the measured equilibrium load 

(recorded by the MTS software TestWorks 4.0).  An equilibrium stress-strain curve was 

plotted and the slope of the most linear portion was taken to be the equilibrium stiffness (or 

indentation stiffness) of the cultured tissue.  This method has been used by others 

investigating the mechanical properties of cartilage [88, 139].   
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Figure 16.  Photographs of the stress relaxation testing with (A) the Mechanical Testing 
System (MTS) and (B) the indenter. 

 

 

Cell Density Analysis of Cultured Tissue 

 The cell density in each scaffold construct per weight (i.e. wet mass) was 

determined based on DNA concentration via fluorometric analysis with Hoechst 33258 dye 

[140].  The following chemical preparations were made.  Papain was dissolved in sterile 

PBS at 125 µg/mL, pH 6.0, with 5 mM cysteine·HCl and 5 mM Na2EDTA.  A stock 

solution of Hoechst 33258 dye was made at 1 mg/mL in distilled water and stored in a foil-

wrapped container at 4ºC; the working solution of dye was prepared immediately before 

use by diluting the working solution to 0.2 µg/mL in 10 mM Tris, 1 mM Na2EDTA, 0.1 

mM NaCl, pH 7.4, and it was put in an amber bottle.  Calf thymus DNA was made at 100 

µg/mL in PBS, and dilutions of 0 to 100 µg DNA/mL PBS were prepared for the standard 

curve.  From each of the 3 scaffold discs of each concentration, a 3 mm biopsy punch was 

taken (see Figure 17).  Each biopsy punch was rinsed in PBS, weighed wet with an 

A B 
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analytical balance, placed in a cryovial, and digested in 1 mL papain solution for 13.5 hr at 

60ºC.  Additionally, cultured chondrocytes (in monolayer) were passaged, counted, 

prepared as dilutions, pelleted, and treated the same as the biopsy punches.  To 100 µL of 

each papain-digested sample, 1 mL of dye solution was added with gentle shaking.  300 µL 

of each of these solutions were placed into wells of a 96-well plate.  The Hoechst dye 

working solution was used as a blank.  The FLUOstar fluorometer (BMG Lab 

Technologies) with FLUOstar Galaxy software was used in the fluorometric assay in 

which the excitation wavelength was 320 nm (ideally would be 365 nm) and the emission 

wavelength was 460 nm (ideally would be 458 nm).  Eight cycles were run and recorded.  

The DNA content per chondrocyte has previously been shown to be 7.7 pg per cell [140].   

 

 
Figure 17.  Photograph of the 3 mm biopsy punches taken from each scaffold disc for cell 
density, GAG, type I collagen and type II collagen, and histological analyses. 
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Glycosaminoglycan (GAG) Analysis of Cultured Tissue 

 The GAG concentration in each scaffold construct per weight (i.e. wet mass) was 

determined via use of dimethylmethylene blue dye [86, 141, 142].  The following chemical 

preparations were made.  16 mg of 1,9-dimethylmethylene blue was dissolved in 1 L of 

water containing 3.04 g glycine, 2.37 g NaCl, and 95 mL 0.1 M HCl, solution pH 3.0 with 

an absorbance of 0.31 at 525 nm; the solution was stored in a brown bottle at room 

temperature.  Papain was dissolved at 50 µg/mL in 0.1 M sodium phosphate, 5 mM 

cysteine·HCl, and 5 mM Na2EDTA, pH 6.0.  Bovine chondroitin sulfate was made at 100 

µg/mL in the buffer solution above, and dilutions of 0 to 100 µg/mL were prepared for the 

standard curve.  From each of the 3 scaffold discs of each concentration, a 3 mm biopsy 

punch was taken (see Figure 17).  Each biopsy punch was rinsed in PBS, weighed wet with 

an analytical balance, placed in a cryovial, and digested in 1 mL papain solution for 2 hr at 

60ºC.  To a 33 µL aliquot of each papain-digested solution and the standards placed into 

wells of a 96-well plate, 300 µL of 1,9-dimethylmethylene blue dye solution was added.  

The buffer solution was used as the blank.  The absorbance was measured at 525 nm in the 

SPECTRAmax PLUS384 microplate spectrophotometer (Molecular Devices).  Pipetting, 

mixing, and measurement were performed as quickly as possible due to the instability of 

the dye color.   

 

Type II Collagen Synthesis in Cultured Tissue 

 From each of the 3 scaffold discs of each concentration, a 3 mm biopsy punch was 

taken (see Figure 17).  Each biopsy punch was rinsed in cold distilled water, weighed wet 
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with an analytical balance, placed in a cryovial, and incubated in 1 mL of cold distilled 

water at 4ºC overnight.  The swollen tissue was resuspended in 0.5 mL of 3 M guanidine 

hydrochloride/0.05 M Tris-HCl buffer, pH 7.5, and mixed on a rocker at 4ºC overnight.  

The tissue was centrifuged for 3 min at 10,000 rpm, and the precipitate was washed with 

cold distilled water three times and then resuspended in 0.8 mL of 0.05 M acetic acid 

containing 0.5 M NaCl, pH 2.9-3.0 (adjusted with formic acid).  0.1 mL of pepsin solution 

(10 mg/mL dissolved in 0.05 M acetic acid) was added to each sample and mixed at 4ºC 

for 48 hours.  0.1 mL of 10X TBS (1.0 M Tris/2.0 M NaCl/50 mM CaCl2) was then added 

and the pH was adjusted to 8.0 with 1 N NaOH.  Finally, 0.1 mL of pancreatic elastase (1 

mg/mL dissolved in 1X TBS, pH 7.8-8.0) was added and mixed at 4ºC overnight on a 

rocker.  The samples were centrifuged at 10,000 rpm for 5 min and the supernatants were 

collected (the tissues appeared completely solubilized).  Until tested with the type II 

collagen ELISA, the samples were kept frozen at -20ºC. 

 The Native Type II Collagen Detection Kit by Chondrex, Inc. (Redmond, WA) was 

used to perform an ELISA on the digested tissue samples in order to quantify the amount 

of type II collagen in the cultured tissue per weight (i.e. wet mass).  Briefly, each of the 

following chemicals was consecutively placed in wells of a 96-well plate provided in the 

kit, allowed to incubate, and then rinsed away with the wash buffer provided in the kit: a 

capture antibody (100 µL per well, incubated at 4 ºC overnight), the samples and standards 

(dilutions were prepared from the type II collagen standard provided in the kit) (100 µL per 

well, incubated at room temperature for 2 hours), a detection antibody (100 µL per well, 

incubated at room temperature for 2 hours), and Streptavidin Peroxidase (100 µL per well, 
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incubated at room temperature for 1 hours).  Tablets of urea H2O2 and o-phenylenediamine 

(OPD) chromagen were dissolved in water and added to each well (100 µL per well, 

incubated at room temperature for 30 min); the reaction was stopped with 2N sulfuric acid 

(50 µL per well).  Optical density values were measured with the SPECTRAmax PLUS384 

microplate spectrophotometer (Molecular Devices) at 490 nm.   

 

Type II/Type I Collagen Ratio in Cultured Tissue 

 From each of the 3 scaffold discs of each concentration, a 3 mm biopsy punch was 

taken (see Figure 17).  Each biopsy punch was rinsed in cold distilled water, weighed wet 

with an analytical balance, placed in a cryovial, and incubated in 1 mL of cold distilled 

water at 4ºC overnight.  These punches were processed exactly the same as described 

above for the type II collagen analysis.  The samples were kept frozen at -20 ºC until tested 

with the type I collagen ELISA. 

 The Human Type I Collagen Detection Kit by Chondrex, Inc. (Redmond, WA) was 

used to perform an ELISA on the digested tissue samples in order to quantify the amount 

of type I collagen in the cultured tissue per weight (i.e. wet mass).  The procedure for this 

kit is exactly the same as described above for the type II collagen analysis except that the 

capture and detection antibodies are specific for type I collagen.  After quantifying the 

amounts of type I collagen in each sample, the ratio of type II to type I collagen can be 

calculated for each electrospun type II collagen concentration. 
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Histological Evaluation of Cultured Tissue 

 From each of the 3 scaffold discs of each concentration, two 3 mm biopsy punches 

were taken (see Figure 17).  All of these punches were placed in 10% formalin and 

processed for histology; one of the two punches from each scaffold disc was stained with 

Hematoxylin and Eosin (H&E) and the other with Masson’s Trichrome.  For each punch, a 

slide with nine cross-sectional slices was prepared for viewing with a light microscope.  

Cellular distribution within the scaffolds and cellular morphology was assessed 

qualitatively.   

 

Statistical Analysis 

 Statistical analysis was performed on all data recorded in the experiments described 

above.  Unless otherwise stated, all statistical analysis was based on a one-way analysis of 

variance and a Tukey-Kramer pair-wise multiple comparison procedure (with an a priori 

significance level of α = 0.05) performed with the JMPIN 4.0.3 statistical software 

package (SAS Institute, Inc.).  Graphs of the results were constructed with Microsoft Excel 

2000.  The goals of the statistical analysis were as follows: to determine if the electrospun 

collagen concentration had significantly different influences on the fiber diameter, pore 

size, permeability, and mechanical properties of the mats, and to determine if the 

electrospun collagen concentration (i.e. resulting fiber diameter and pore size) and/or the 

culture time had any effects on the mechanical properties of and the cellular responses 

within the cultured tissue.   
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Results 
 

 The results of the following are given in this section: the purity of the type II collagen, 

the physical characterization of the scaffolds, the biomechanical testing of the electrospun 

mats and scaffolds (uniaxial tensile and stress relaxation), the biochemical characterization of 

the scaffolds, and the histological analysis of the scaffolds.  Additionally, comments are made 

regarding the results of the statistical analysis; data from the statistical analysis is given in 

Appendix C.   

 

Collagen Purity 

 Type II collagen has successively been extracted and purified from fetal calf legs for 

use in this research.  Figure 18 gives the results of the SDS-PAGE; the apparent molecular 

weight, determined to be 150 kDa, and the purity of the collagen samples are consistent with 

the type II collagen standard supplied by the University of Tennessee, RDRCC Collagen Core 

Center [134].  The stained band for the electrospun sample is a result of a more dilute solution 

loaded into the gel.   
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Figure 18.  SDS-PAGE analysis of the purified collagen from two different extractions (Ext 1 
and Ext 2) and of electrospun collagen (Espun) was conducted to determine the apparent 
molecular weight and purity.  The 150 kDa bands of Ext 1, Ext 2, and Espun are consistent 
with the molecular weight of the type II collagen standard (C II) and appear to be 
homogeneous. 

 

 

Physical Characterization of Dry and Hydrated Scaffolds 

 Figure 19 gives SEMs of the dry electrospun mats of type II collagen prior to cross-

linking, and Figure 20 shows the ESEM of the hydrated 60 mg/mL type II collagen cross-

linked, electrospun mat.  The handling characteristics of the electrospun mats, immediately 

removed from the mandrel, are such that the mat can be gently manipulated by hand without 

permanent deformation to the structure.  Table 2 gives the fiber diameter, pore size, porosity, 

and permeability measurements of the dry (uncross-linked) and hydrated (cross-linked) 

scaffolds before any culturing was performed.  To better illustrate the relationship between 

electrospinning solution concentration and fiber diameter and pore area, Figure 21 gives the 

trend lines produced using the data.  A linear relationship does exist between concentration 

and fiber diameter measured using the scanning electron micrographs, but no other linear 

relationships exist, particularly not between concentration and pore area.  At P<0.0001, there 
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is a statistically significant difference between all of the diameter means (for each 

concentration) measured from the scanning electron micrographs, and there is a significant 

difference between the 60 mg/mL concentration mean fiber diameter measurements for dry 

and hydrated mats measured with SEM and ESEM, respectively.  For the diameter 

calculations made using the permeability data, the following significant differences were 

determined: the 60 mg/mL concentration is different from the 100 mg/mL and the 120 mg/mL 

concentrations, and the 80 mg/mL concentration is different from the 100 mg/mL and the 120 

mg/mL concentrations.  The only significant difference calculated within the pore area 

measurements made with SEM is between the mean pore areas for the 60 mg/mL and the 100 

mg/mL concentrations; there is no significant difference between the 60 mg/mL concentration 

mean pore area measurements for dry and hydrated mats measured with SEM and ESEM, 

respectively.  The mean pore area values determined from the permeability data are all 

statistically significantly different from one another except for the 60 mg/mL and 80 mg/mL 

concentrations which are not significantly different from each other.  The porosity of all of the 

electrospun mats falls between 84 and 90%; none of the porosity means for the different 

concentrations are statistically different from one another.  There is a trend toward increasing 

permeability as concentration increases with the exception of the 120 mg/mL concentration.  

Additionally, the mean permeability values are all statistically significantly different from one 

another except for the 60 mg/mL and 80 mg/mL concentrations which are not significantly 

different from each other.   
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Figure 19.  Scanning electron micrographs of dry (uncross-linked) type II collagen 
electrospun mats at (A) 60 mg/mL, (B) 80 mg/mL, (C) 100 mg/mL, and (D) 120 mg/mL 
(scale bar is 1 µm). 

 

 
Figure 20.  Environmental scanning electron micrograph of hydrated (cross-linked) type II 
collagen electrospun mat at 60 mg/mL (scale bar is 10 µm). 
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Table 2.  Fiber diameter, pore size, porosity, and permeability measurements for the type II 
collagen electrospun mats; results are given as mean ± standard deviation. 

Electrospun Concentration 
60 80 100 120 Measurement Measurement 

Technique mg/mL mg/mL mg/mL mg/mL 
SEM (dry) 107 ± 38 184 ± 74 309 ± 12 446 ± 232 
ESEM (hydrated) 232 ± 57 — — — Fiber Diameter (nm) 
Permeability Meter 289 ± 94 318 ± 41 618 ± 79 592 ± 45 
SEM (dry) 1.76 ± 1.76 2.12 ± 1.73 3.17 ± 2.44 2.92 ± 2.28 
ESEM (hydrated) 1.68 ± 1.55 — — — Pore Size (µm2) 
Permeability Meter 0.00055 ± 

0.00012 
0.00080 ± 
0.00030 

0.00282 ± 
0.00029 

0.00181 ± 
0.00034 

Porosity (%) Dry mass/wet volume 87.3 ± 6.4 89.1 ± 2.1 88.8 ± 2.6 84.1 ± 0.5 
(x10-4 D) 6.82 ± 1.45 9.91 ± 3.73 35.0 ± 3.6 22.5 ± 4.2 Permeability (x10-13 m4/Ns) Permeability Meter 7.56 ± 1.61 11.0 ± 4.1 38.8 ± 4.0 24.9 ± 4.6 
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Figure 21.  (Top) Fiber diameter versus concentration measured with SEM, ESEM and 
permeability meter; n = 60 measurements; R2 values for the trend lines are 0.9854 for SEM 
and 0.7977 for permeability meter.  (Bottom) Pore area versus concentration measured with 
SEM, ESEM, and permeability meter; n = 40 measurements; R2 values for the trend lines are 
0.7764 for SEM and 0.5214 for permeability meter. 
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Tensile Testing 

 Previous uniaxial tensile testing performed on dry and cross-linked (hydrated) samples 

of a 60 mg/mL type II collagen electrospun mat indicated that a statistically significant 

difference existed between the dry (no treatment) samples and all of the cross-linked samples 

for peak stress, strain at break, and tangential modulus [129].  Since the type II collagen 

scaffolds will only be used in the cross-linked, hydrated state for any tissue engineering 

purposes, all biomechanical testing in this research was performed in the hydrated state.  

Figure 22 shows the stress-strain relationships of samples of each concentration of collagen 

electrospun.  These hydrated, cross-linked samples demonstrate uniaxial tensile behavior 

more characteristic of native tissue than do dry, uncross-linked samples.  Table 3 lists the 

values of the mechanical properties (means and standard deviations) for each electrospun 

concentration, and Figure 23 is presented to allow a quick comparison between these 

mechanical parameters.  Also shown in Table 3 are the corresponding mechanical properties 

for native articular cartilage tissue.  The values for peak stress and tangential modulus for the 

electrospun mats are at least an order of magnitude less than the values of these properties for 

native cartilage, while the values for strain at break for the electrospun mats are at least an 

order of magnitude greater than the value of this property for native cartilage.  At P<0.0001, 

there is a statistically significant difference between the mean values of peak stress for the 60 

mg/mL, 80 mg/mL, and 100 mg/mL concentrations and between the mean values of peak 

stress for 80 mg/mL, 100 mg/mL, and 120 mg/mL concentrations.  For strain at break 

calculations, both the 80 mg/mL and 120 mg/mL concentrations are significantly different 

from all of the other concentrations, while the 60 mg/mL and 100 mg/mL are not significantly 
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different from one another.  Statistical analysis of the tangential modulus data revealed that 

the 60 mg/mL and 120 mg/mL concentrations are significantly different from both the 80 

mg/mL and 100 mg/mL concentrations.   
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Figure 22.  Stress-strain curves for the cross-linked, electrospun mats of each concentration 
tested in uniaxial tension; n = 4. 
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Table 3.  Mechanical properties from uniaxial tensile testing (given as mean ± standard 
deviation) for each electrospun mat of type II collagen of each concentration. 

Electrospun Concentration Native 
60 80 100 120 Articular  

mg/mL mg/mL mg/mL mg/mL Cartilage 

Peak Stress (MPa) 0.35 ± 0.02 0.22 ± 0.03 0.17 ± 0.01 0.32 ± 0.03 1.3-4.4 [29] 

Strain at Break (%) 120 ± 10 150 ± 11 120 ± 4 93 ± 8 9.2-25.9 [29] 

Tangential Modulus (MPa) 0.55 ± 0.06 0.34 ± 0.05 0.32 ± 0.03 0.64 ± 0.09 5-25 [27-29] 
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Figure 23.  Average peak stress, tangential modulus, and strain at break for the type II 
collagen cross-linked, electrospun mats of each concentration tested in uniaxial tension; n = 4, 
error bars show standard deviation. 

 

Initial Cell-Seeding Investigation 

 The scaffolds placed both in the static culture and in the bioreactor had an initial cell 

density of 5x105 cells/mL media.  Photographs of the resulting histology can be seen in Table 

4.  Though cells do attach to the statically cultured scaffold, the cells do not grow on both 

sides of that scaffold.  However, in the bioreactor, the cells attach to both sides/surfaces of the 

scaffold and, hence, have more surface area to potentially migrate and proliferate more readily 

into the thickness of the scaffold.  From these results, the cell density used appeared to be 



77 

sufficient to obtain at least a monolayer of cells (though maybe not confluent) on most of the 

surfaces of the scaffolds within the bioreactor. 

 

Table 4.  Histology from the initial cell-seeding investigation; sections are stained with H&E. 
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Thickness of Cultured Tissue 

 The thickness measurements of the scaffold discs are presented in Figure 24.  When 

the thickness measurements of each concentration were analyzed statistically to determine any 

differences for each culture period, there were no statistical differences found except for the 

100 mg/mL concentration in which there was a significant difference between the control 

(week 0) and week 4 mean values.  In other words, the thickness values did not vary 

significantly over time for each concentration (with the one exception noted).  At each time 

period, there were significant differences determined: at week 0 the 60 mg/mL concentration 

was different from the 80 mg/mL and 120 mg/mL concentrations, the 80 mg/mL 

concentration was also different from the 100 mg/mL concentration, and the 100 mg/mL 

concentration was also different from the 120 mg/mL concentration; at week 2 all of the 

concentrations were significantly different from each other; at week 4 the 60 mg/mL 

concentration was different from the 80 mg/mL and 120 mg/mL concentrations, and the 100 

mg/mL concentration was different from the 120 mg/mL concentration; and at week 6 the 

significant differences were determined to be the same as at week 0.   
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Figure 24.  Thickness measurements of the scaffolds of each electrospun concentration before 
(week 0) and during tissue culture (weeks 2, 4, and 6); n = 3, error bars show standard 
deviation. 

 

 

Stress Relaxation 

 The results of the stress relaxation testing performed on the control samples and on the 

cultured tissue samples are given in Figure 25.  In general, there was a trend for all 

concentrations in which the equilibrium stiffness decreased from week 2 to week 6 of tissue 

culture.  For the 60 mg/mL concentration, the equilibrium stiffness mean value at week 0 was 

statistically significantly different from the mean values at week 4 and week 6.  There were no 

significant differences determined between the mean values for the different times periods for 

the 80 mg/mL and 120 mg/mL concentrations.  For the 100 mg/mL concentration, the only 

significant difference was between the mean values at week 2 and week 6.  At week 0 and 

week 4 there were no statistically significant differences between the concentrations.  
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However, at week 2 the 60 mg/mL concentration was significantly different from the 100 

mg/mL concentration; and at week 6 the 120 mg/mL concentration was significantly different 

from the other three concentrations.  Also tested in this method of stress relaxation were 

cartilage pieces removed from several locations on a calf femur, and the equilibrium stiffness 

from those tests was determined to be 0.60 ± 0.69 MPa; this value is about an order of 

magnitude greater than the values determined for the scaffolds.  The cartilage pieces tested 

were taken from different locations on the calf femur (front, back, middle), but there were no 

other samples available (i.e. a piece from the same location on the femur could not be tested 

multiple times); thus, this data is not included in the statistics.  Graphs of load and extension 

used to prepare the equilibrium stress versus strain curves (from which the equilibrium 

stiffness was determined) are given in Appendix D.   
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Figure 25.  Equilibrium stiffness determined from stress relaxation testing of the scaffolds of 
each electrospun concentration before (week 0) and during tissue culture (weeks 2, 4, and 6); 
n = 3, error bars show standard deviation. 
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Biochemical Analysis of Cultured Tissue 

 The results of the cell density analysis are presented in Figure 26.  In general, the trend 

is such that as concentration increases, cell density (i.e. cell number per mass of scaffold) 

decreases.  Cell density also appears to increase with time for each concentration.  From the 

statistical analysis by concentration, at week 2 the only significant differences are between the 

mean values of cell density for the 60 mg/mL concentration and the 80 mg/mL and 120 

mg/mL concentrations; at week 4 the only significant difference exists between the values for 

the 60 mg/mL concentration and the 120 mg/mL concentration; and at week 6 the 120 mg/mL 

concentration is significantly different from the other concentrations, and the 60 mg/mL 

concentration is also different from the 100 mg/mL concentration.  Statistical analysis by time 

period revealed no significant differences between the mean cell density values at the three 

time periods for the 60 mg/mL, 100 mg/mL, and 120 mg/mL concentrations; and for the 80 

mg/mL concentration the mean value at week 6 was significantly different from the values for 

week 2 and week 4.  The cell number seeded per mg scaffold mass is given in Figure 26.  for 

comparison, but it must be noted that this seeding was performed in the bioreactor media not 

directly on the surfaces of the scaffolds (refer to Methods section).   
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Figure 26.  Cell density (cell number per mg scaffold mass) for the scaffolds of differing 
electrospinning solution concentrations cultured for 2, 4, and 6 weeks; n = 3, error bars show 
standard deviation.  Week 0 is shown to give the number of cells seeded per mg scaffold mass 
(2.6x106 cells per scaffold were seeded in the bioreactors). 

 

 

 Overall, the results of the GAG analysis do not reveal any trends (Figure 27); neither 

the particular electrospun mat (i.e. a specific concentration) nor any particular time period of 

culture had any influence on the GAG content (represented as µg GAG per mg scaffold 

mass).  It should be noted that the control scaffolds (week 0) had some GAG content; thus, it 

is possible that the extraction process was not successful in completely removing all of the 

GAGs from the type II collagen.  From the statistical analysis, there are no significant 

differences between the mean values of GAG content for the different concentrations at any 

of the time periods (including week 0), nor are there any significant differences between the 

mean values of GAG content for each time at any one concentration.   
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Figure 27.  GAG content (µg per mg scaffold mass) for the scaffolds of differing 
electrospinning solution concentrations cultured for 0 (controls), 2, 4, and 6 weeks; n = 3, 
error bars show standard deviation. 

 

 

 Table 5 gives the mean values of the collagen content in the scaffolds determined via 

ELISA testing.  There are no statistically significant differences between any of the mean 

values of type I collagen content in the scaffolds in any of the analyses based on time period 

or electrospinning solution concentration.  For the type II collagen statistical analysis, at week 

6 the mean value of type II collagen content in the 100 mg/mL concentration is significantly 

different from all of the other concentrations.  Furthermore, for the 100 mg/mL concentration, 

the mean value of type II collagen content at week 6 is significantly different from the mean 

values of the same concentration at weeks 0, 2, and 4.  There are no other significant 

differences between the type II collagen values.  The type II/type I collagen ratio can not be 

calculated since there are no values of type II collagen and type I collagen content for 

corresponding time periods and concentrations (i.e. in the ratio calculations, either the 
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numerator or the denominator would always be zero).  A spike and recovery study was 

performed to test the protocol used to detect type II collagen; the standard provided in the 

ELISA kit was added to several samples without cells and tested alone at a known 

concentration.  The spiked samples gave readings equal to the reading of the standard alone.  

Thus, the standard is working but the collagen in the samples is either at undetectable levels 

(unlikely since the scaffolds are composed of type II collagen) or is not being detected by the 

antibody that was raised against the collagen molecules in the standard.   

 

Table 5.  Collagen content (µg per mg scaffold mass) for the scaffolds of differing 
electrospinning solution concentrations cultured for 0 (controls), 2, 4, and 6 weeks; values are 
given as mean ± standard deviation, n = 3. 

 Concentration 
(mg/mL) Week 0 Week 2 Week 4 Week 6 

60 0 0 0 0 

80 0.00053 ± 
0.00092 

0.00112 ± 
0.00102 

0.00344 ± 
0.00296 

0.00040 ± 
0.00041 

100 0.00027 ± 
0.00047 

0.00048 ± 
0.00022 

0.00231 ± 
0.00240 

0.00638 ± 
0.00104 

Type II 
Collagen 
(µg/mg) 

120 0 0 0 0 

60 0 0 0 0.00049 ± 
0.00062 

80 0 0 0 0 

100 0 0 0 0 

Type I 
Collagen 
(µg/mg) 

120 0 0 0.00003 ± 
0.00006 0 
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Histological Analysis of Cultured Tissue 

 Representative photographs were taken of the histology slides and are given in Table 

6, Table 7, Table 8, and Table 9 for the 60 mg/mL, 80 mg/mL, 100 mg/mL, and 120 mg/mL 

concentrations, respectively.  For all of the concentrations, pictures were taken of the control 

scaffolds, without cells, for comparison purposes.  Some general comments are given below 

describing the observations made on all of the scaffolds. 

 

60 mg/mL Concentration 

 For the 60 mg/mL concentration at week 2, one side of the scaffold usually had more 

cells on it than the other side; there was not much infiltration of the cells into the scaffolds 

unless there was a large void or pocket present.  Some of the cells were spheroid in shape and 

some were elongated.  It was typical to find clumps of cells especially on the side of the 

scaffold with more cells.  For the most part, there was a solid layer of cells on both sides of 

the scaffolds.  At week 4, the observation was made that when the cells are in clusters, they 

appeared more spheroid in shape; but when the cells are in a monolayer on the scaffold, they 

appeared more elongated.  Also, the cells that have infiltrated the scaffold appear to be more 

spheroid than the cells lining the outside of the scaffold.  There was very little cellular 

infiltration unless a path (such as a tear or void) was available.  At week 6 there appeared to 

be an abundance of cells on one side, and only one or two layers of cells on the other side 

across the entire length of the scaffold.  There were numerous spheroid cells, and cellular 

infiltration into the scaffold did occur though not through the entire thickness; the infiltration 
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was from the direction with the most cells.  There were also a few areas of lighter blue visible 

in the Masson’s Trichrome-stained section possibly indicating new collagen production.   

 

80 mg/mL Concentration 

 For the 80 mg/mL concentration at week 2, there are some cell clusters and thin layers 

of cells lining both sides of the scaffolds, with one side having a layer greater than two cells in 

thickness and the other side having a layer less than or equal to two cells in thickness.  The 

cells tended to follow the contours of the scaffold, and most of the cells appeared elongated.  

There are some pockets of spheroid cells and some light blue areas seen in the sections 

stained with Masson’s Trichrome (possibly indicating new collagen production).  There is 

some cellular infiltration from the direction of the side with the most cells; most cellular 

infiltration occurred where there is a path for the cells to move along.  Clusters of cells 

appeared to be moving into openings on the ends of the scaffolds between the layers created 

by electrospinning; this is interesting because these sections were punched out of the 1 cm 

disc, so the ends are not exposed before punching (though the punches are made near the edge 

of the 1 cm disc).  At week 4 it was observed that the cells formed a confluent layer on both 

sides of the scaffold.  No cellular infiltration was observed and there were no significant areas 

of light blue visible in the Masson’s Trichrome-stained sections.  There were some spheroid 

cells, but most cells appeared elongated.  At week 6 two of the samples displayed clusters of 

cells on one side of the scaffold and only a thin layer of cells on the other side, while the other 

sample only had thin layers of cells with no clusters.  There was cellular infiltration from the 



87 

direction of the side with the most cells (i.e. clusters of cells), and there were areas of light 

blue seen around the cell clusters in the Masson’s Trichrome-stained sections.   

 

100 mg/mL Concentration 

 For the 100 mg/mL concentration at week 2, there were thin confluent layers of cells 

on both sides of the scaffolds that appeared spheroid in shape and more evenly distributed (i.e. 

there were no clusters of cells visible).  There was very little to no cellular infiltration seen but 

there were cells lining the delaminated surfaces of the scaffold, and there were a few light 

blue areas in the Masson’s Trichrome-stained sections (possibly indicating new collagen 

production).  At week 4 there were still somewhat thin cell layers on both sides of the scaffold 

with a few cell clusters and very little cellular infiltration.  Both spheroid and elongated cells 

were seen, and some blue areas are visible in the Masson’s Trichrome-stained sections.  

Where there were larger gaps or crevices on the surface, more cells aggregated.  On one 

sample there were cells in the middle of the scaffold as well as in thin layers on the top and 

bottom of the scaffold; this was interesting because there was no clear path through the 

thickness of the scaffold for the cells to have migrated into the middle of the scaffold.  At 

week 6 the sections contained numerous cell clusters and some cellular infiltration especially 

where the scaffold geometry was not solid; the rest of the scaffold surfaces (both sides) were 

covered by thin layers of cells (several cells in thickness) with much less cellular infiltration.  

The amount of spheroid cells outnumbered the elongated cells.  There were some blue areas 

seen in the Masson’s Trichrome-stained sections.   
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120 mg/mL Concentration 

 For the 120 mg/mL concentration at week 2, there were very thin layers of cells lining 

the top and bottom surfaces of the scaffolds, with the cell layer on one surface slightly thicker 

than the layer on the other surface.  One sample did delaminate and there may have been a 

few cells on the delaminated surfaces.  Cellular infiltration was almost nonexistent except for 

the one Masson’s Trichrome-stained sample in which cells appeared in the middle of the 

scaffold with no clear path of migration from either side (i.e. top or bottom) of the scaffold; 

these cells had a spheroid appearance.  At week 4 there appeared to be confluent cell layers on 

both sides of the scaffold with one layer several cells in thickness and the other layer only a 

monolayer of cells.  Several samples have very contoured surfaces.  The cell shape was 

difficult to determine, though most appeared to be elongated, and there did not appear to be 

any cellular infiltration.  One sample had a small cluster of cells on one surface with very 

minimal infiltration into the scaffold at that cluster.  There were a few cells observed in the 

middle of two sections stained with Masson’s Trichrome.  At week 6 the samples had thin, 

mostly confluent layers of cells on both sides of the scaffolds, either a monolayer or several 

cells in thickness.  There were some spheroid cells, but the majority appeared elongated.  

There was a sample with cells in the middle of the scaffold with an opening on one edge of 

the scaffold (a possible path for cellular migration).  Only a very small area of the light blue 

staining was visible in one sample stained with Masson’s Trichrome. 
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Table 6.  Histology for the 60 mg/mL concentration for each culture period; H&E and 
Masson’s Trichrome stains are represented at 10x, 20x, or 40x magnifications. 

WEEK 0 
No cells 

H&E, 20x H&E, 40x Masson’s Trichrome, 20x 

Sa
m

pl
e 

1 

H&E, 20x H&E, 40x Masson’s Trichrome, 40x 

Sa
m

pl
e 

2 

H&E, 20x Masson’s Trichrome, 20x 

 

WEEK 2 

Sa
m

pl
e 

3 

H&E, 20x Masson’s Trichrome, 10x Masson’s Trichrome, 40x 
WEEK 4 

Sa
m

pl
e 

1 

H&E, 10x Masson’s Trichrome, 20x 
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Sa
m
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e 

2 

H&E, 20x H&E, 40x Masson’s Trichrome, 40x 

 

Sa
m

pl
e 

3 

H&E, 20x H&E, 20x Masson’s Trichrome, 20x 

Sa
m

pl
e 

1 

H&E, 20x 

H&E, 10x 

H&E, 40x Masson’s Trichrome, 20x 

Sa
m

pl
e 

2 

H&E, 20x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 

WEEK 6 

Sa
m

pl
e 

3 

H&E, 20x H&E, 40x Masson’s Trichrome, 10x 
 

 



91 

Table 7.  Histology for the 80 mg/mL concentration for each culture period; H&E and 
Masson’s Trichrome stains are represented at 10x, 20x, or 40x magnifications. 

WEEK 0 
No cells 

H&E, 20x Masson’s Trichrome, 20x 

 
Sa

m
pl

e 
1 

H&E, 10x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 

Sa
m

pl
e 

2 

H&E, 10x H&E, 40x Masson’s Trichrome, 20x 

WEEK 2 

Sa
m

pl
e 

3 

H&E, 40x Masson’s Trichrome, 10x 

 

WEEK 4 

Sa
m

pl
e 

1 

H&E, 20x Masson’s Trichrome, 20x 
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Sa
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e 

2 

H&E, 10x H&E, 40x Masson’s Trichrome, 20x 

 

Sa
m

pl
e 

3 

H&E, 20x Masson’s Trichrome, 10x 

 

Sa
m

pl
e 

1 

H&E, 10x H&E, 40x Masson’s Trichrome, 10x 

Sa
m

pl
e 

2 

H&E, 10x Masson’s Trichrome, 20x Sample 3: H&E, 10x 

WEEK 6 

Sa
m

pl
e 

3 

H&E, 40x H&E, 40x Masson’s Trichrome, 20x 
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Table 8.  Histology for the 100 mg/mL concentration for each culture period; H&E and 
Masson’s Trichrome stains are represented at 10x, 20x, or 40x magnifications. 

WEEK 0 
No cells 

H&E, 20x H&E, 40x Masson’s Trichrome, 20x 

Sa
m

pl
e 

1 

H&E, 10x H&E, 20x Masson’s Trichrome, 20x 

Sa
m

pl
e 

2 

H&E, 20x H&E, 40x Masson’s Trichrome, 20x 

WEEK 2 

Sa
m

pl
e 

3 

H&E, 20x Trichrome, 10x Masson’s Trichrome, 20x 
WEEK 4 

Sa
m

pl
e 

1 

H&E, 10x H&E, 40x Masson’s Trichrome, 40x 
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Sa
m

pl
e 

2 

H&E, 20x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 

 

Sa
m

pl
e 

3 

H&E, 20x Masson’s Trichrome, 20x 

 

Sa
m

pl
e 

1 

H&E, 10x H&E, 20x Masson’s Trichrome, 10x 

Sa
m

pl
e 

2 

H&E, 20x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 

WEEK 6 

Sa
m

pl
e 

3 

H&E, 10x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 
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Table 9.  Histology for the 120 mg/mL concentration for each culture period; H&E and 
Masson’s Trichrome stains are represented at 10x, 20x, or 40x magnifications. 

WEEK 0 
No cells 

H&E, 10x (half, delaminated) H&E, 40x Masson’s Trichrome, 20x 

Sa
m

pl
e 

1 

H&E, 40x (one side) H&E, 40x (opposite side) Masson’s Trichrome, 20x 

Sa
m

pl
e 

2 

H&E, 10x H&E, 40x Masson’s Trichrome, 20x 

WEEK 2 

Sa
m

pl
e 

3 

H&E, 40x Masson’s Trichrome, 20x Masson’s Trichrome, 40x 
WEEK 4 

Sa
m

pl
e 

1 

H&E, 10x Masson’s Trichrome, 20x 

 



96 

Sa
m

pl
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2 

H&E, 20x H&E, 40x Masson’s Trichrome, 20x 

 

Sa
m

pl
e 

3 

Trichrome, 20x Masson’s Trichrome, 40x 

 

Sa
m

pl
e 

1 

H&E, 10x H&E, 40x Masson’s Trichrome, 20x 

Sa
m

pl
e 

2 

H&E, 10x H&E, 40x Masson’s Trichrome, 20x 

WEEK 6 

Sa
m

pl
e 

3 

H&E, 20x H&E, 40x Masson’s Trichrome, 10x 
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Discussion 
 

Cross-linking Electrospun Collagen 

 Electrospun collagen fibers consist of reconstituted collagen fibrils (i.e. acid 

soluble collagen extracted from fetal calf cartilage) that are formed via both the 

electrospinning fabrication process and possibly via the spontaneous organization of 

collagen molecules [143].  These electrospun collagen fibers are potentially similar in 

ultrastructure to native collagen; however, the fibers are fragile, possibly due to a lack of 

native cross-links resulting in weakly bonded fragments of collagen molecules.  Thus, the 

electrospun structures need further treatment to stabilize the material.  Further cross-

linking, beyond what little weak bonding may have spontaneously occurred, is necessary 

in order to work with an electrospun collagen scaffold in a hydrated state for tissue 

engineering applications.  The heterobifunctional reagent EDC was used to introduce 

synthetic cross-links that form a bridge between two amino acids without imparting any 

other chemistry to the collagen molecule.  Within the triple helical structure of collagen, 

there are a large number of opportunities for lysine interactions with aspartic acid and with 

glutamic acid residues; thus, cross-links created by EDC can be formed within an α chain, 

between α chains, between collagen molecules, or between collagen fibrils [127].   

 To avoid the disintegration or fragmentation of the electrospun structures, ethanol 

was utilized as the cross-linking solvent and the proton donor for the EDC reaction instead 
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of a buffered solution; this is the unique aspect of the cross-linking protocol used in this 

research.  Ethanol molecules in concentrated solutions associate via hydrogen bonding, the 

energy of which is comparable to that of the hydrogen bonding of water [144].  

Furthermore, the ethanol molecule has little steric hindrance and can interact with and 

hydrogen bond to chemical groups in tissues, including carbonyl oxygen, amine, and 

amide nitrogen, i.e. the O and N atoms in peptide bonds [144, 145].  Additionally, solvents 

of a lower dielectric constant (35 for ethanol compared to a value of 81 for water) reduce 

the dipolar forces resulting in a change in the bonding; the salt bridges (due to oppositely 

charged groups) of fibrous proteins in an aqueous solution will be converted to hydrogen 

bonds when immersed in alcohol solutions [144, 145], which may be advantageous in 

maintaining the electrospun collagen mat structure.  Further support for the greater 

performance of the electrospun collagen mats immersed in ethanol compared to water is 

that ethanol molecules in concentrated solutions hydrogen bond to one another and can 

form polymeric chains [144], which may help stabilize the electrospun collagenous 

structure.  Also, the ethyl group of the solvent could interact through hydrophobic 

interactions with the collagen surface [146, 147]; the hydroxyl group is then available to 

interact with other ethanol molecules or other residues in the protein to again stabilize the 

electrospun collagenous mat structure.  The critical issue involved in this study was not to 

provide better reactivity of groups, but to provide the condition that maintained the proper 

structure of the mat.  Ethanol provided that condition since it was not possible to use a 

buffered solution.   
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Some shrinkage in overall dimensions of the electrospun mats was observed with 

the EDC cross-linking treatment.  This shrinkage (between 12 and 33% decrease in 

dimensions) is probably due to the absorption of moisture by the agents during 

measurement of the solids prior to cross-linking and the subsequent reaction of the fibrous 

collagen to slight hydration.   

 

Scaffold Morphology and the Interaction with Chondrocytes 

 The type II collagen electrospun scaffolds supported chondrocyte attachment and 

possible proliferation on the surface of the scaffolds.  Cell adhesion, spreading, and shape 

have been shown to be influenced by scaffold morphology; thus, fiber diameter, porosity, 

pore size, and pore interconnectivity and tortuosity in a scaffold can influence cell behavior 

and serve to orient cells [148].  The average diameters of the fibers in the scaffolds of all 

concentrations ranged between about 100 to 620 nm; this scale is comparable to that of the 

native ECM.  Thus, the electrospun collagen provided the size and chemical composition 

the cells would see in vivo.   

 There was a statistically significant difference found in the fiber diameter 

measurements of the 60 mg/mL concentration in the dry, untreated state (measurement 

made using a digitized image of a scanning electron micrograph) and in the hydrated, 

cross-linked state (measurement made using a digital picture).  This could be a result of the 

cross-linking procedure binding collagen fibrils together to increase fiber diameter or a 

result of some swelling due to the hydration or a combination of both.  Further 

investigation is needed.   
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 A large pore volume (i.e. porosity) allows sufficient space for cells to grow into 

tissues and for nutrients and wastes to diffuse in and out, respectively.  The average 

porosity of the scaffolds used in this research ranged between 84 and 89%.  These values 

are just below the suggested minimum porosity of 90% (considered highly porous, and 

there has been suggestion of a 95% or greater porosity needed for chondrocytes [91]), 

which is believed to provide sufficient space for cellular infiltration where the cells 

perform actively and exchange nutrients and wastes with the environment [84, 149].  This 

parameter must be considered in conjunction with the other scaffold design parameters. 

 It has traditionally been thought that the minimum pore size is dependent on the 

diameter of the cell in the tissue to be regenerated [150].  Pores smaller in diameter than 2 

nm only allow small molecules such as gases to penetrate; small proteins are able to pass 

through pores with diameters between 2 nm and 50 nm; larger proteins and molecules can 

penetrate pores with diameters greater than 50 nm; and cells can migrate when pore sizes 

exceed 1 µm [113].  Mooney and Langer state that pores greater than 10 µm in diameter 

are necessary for a scaffold to become incorporated into the host tissue, though Matthews 

et al. have shown that an electrospun scaffold, with pore sizes 50 times smaller than that 

described by Mooney and Langer, resulted in migration and dense population of aortic 

smooth muscle cells throughout the scaffold [99].  However, the behavior of chondrocytes 

in such a scaffold may not be the same as that seen with smooth muscle cells.  On an 

additional note regarding pores, a uniform pore structure and distribution has been shown 

to have better mechanical properties [91]. 
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 Pores in an electrospun scaffold constitute the spaces formed between the fibers 

that collect on the target during the electrospinning process.  Because the mat that is 

created is nonwoven, it is believed that there is the potential for cells to push the fibers 

around during migration such that the cells essentially dictate the pore size and distribution 

desirable for a particular cell behavior [84].  In this research, approximate pore diameters 

of the electrospun mats were calculated from the average pore areas measured using the 

imaging software on the scanning electron micrographs, and these values ranged between 

1.5 and 2.0 µm for the dry and hydrated mats of varying concentrations.  These values are 

significantly greater than the pore diameters determined using the permeability data, which 

ranged between 0.02 and 0.06 µm.  The pore area measurement from the scanning electron 

micrographs is very subjective; it is quite difficult to determine actual pores in a two-

dimensional picture; thus, the calculations from the permeability data may be more 

accurate.   

 The pore sizes determined from the permeability data (0.02 to 0.06 µm) more 

closely match but are still greater in size than the pores formed by collagen and 

proteoglycans in healthy articular cartilage, the size of which ranges from 25 to 75 Å [14].  

Though this pore-size scale will limit what passes through the scaffold (more like the 

native tissue), perhaps this pore-size scale is too small for chondrocytes to infiltrate the 

scaffolds.  As seen in the histology photographs, the scaffolds do appear as dense mats of 

collagen with a few large voids and some areas of delamination (depending on the 

concentration), but in general there is very little cellular infiltration perhaps due to the 

relatively small pore size.   
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 Healthy articular cartilage has a very low permeability, which ranges from 10-16 to 

10-15 m4/N·sec [12, 14, 32].  The mean values of electrospun mat permeability calculated in 

this research range from 0.000682 to 0.00350 D or from 7.6x10-13 to 3.9x10-12 m4/N·sec, 

which are at least 2 orders of magnitude greater than the permeability of normal articular 

cartilage.  In fact, the permeability of the electrospun mats is closer to but still greater than 

that for degenerated cartilage (which is on the order of 10-14 m4/N·sec) [12, 14, 32].  The 

permeability of the type II collagen electrospun mats in this study is comparable to the 

mean permeability (about 1.25x10-12 m4/N·sec) determined for non-woven mesh PGA 

scaffolds commonly used in cartilage tissue engineering [151]. 

 On an additional note, prior to seeding, the scaffold dry weights (all collagen) were 

(on average) approximately 10% of the scaffold wet weights.  This illustrates the sponge-

like capacity of the electrospun scaffolds; in other words, the scaffolds displayed a swollen 

behavior upon hydration.  Furthermore, to compare the unseeded scaffolds to native 

articular cartilage tissue, water constitutes greater than 60% of the tissue by wet weight and 

type II collagen about 20% by wet weight.   

 

Histology and Biochemical Analyses 

 Chondrocytes cultured in monolayer did take on the fibroblast-like, flattened 

morphology.  Thus, there is the possibility of dedifferentiation during the static culture.  

Upon transfer of the chondrocytes to the bioreactor for dynamic culture on the scaffolds, 

redifferentiation media was not used.  The hypothesis being tested was that growing the 

cells on the three-dimensional electrospun type II collagen fibrous scaffolds would result 
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in the cells reexpressing, and possibly redifferentiating into, the chondrocytic phenotype 

and their spheroid morphology.  The tissue structure created in this research resembled the 

superficial zone more than the middle zone.  The collagen fibrils are oriented tangentially 

to the scaffold surfaces (with no fibers oriented perpendicular to the surfaces) and some 

cells are elongated in shape, both are characteristics of the superficial zone.   

 The results of the histology give some insight into the effects of scaffold 

morphology on cell growth and cellular infiltration.  There were numerous cell aggregates 

(cell clusters) especially in crevices on the surfaces of the scaffolds.  The cells in these 

clusters appeared more spheroid in shape whereas the cells in the thin layers (one to only a 

few cells in thickness) usually appeared elongated.  The formation of such cell clusters has 

been observed inside tissue-engineered matrices by others studying the in vitro 

regeneration of articular cartilage [90]. 

 It has been shown by Vunjak-Novakovic et al. that dynamic cell seeding results in a 

more uniform distribution of cells throughout the scaffold, and higher seeding cell numbers 

have been associated with high rates of cartilage matrix production (partially attributed to 

greater opportunities for cell-to-cell and cell-to-matrix interactions) [138, 152].  It is 

believed that an uneven distribution of cells may lead to an inhomogeneous repair tissue 

which is unacceptable in cartilage repair.  To date a homogeneous cell distribution has 

been best achieved in the gel matrix [153].  The initial cell seeding study performed as part 

of this research demonstrated that cells attached to both sides of the scaffolds with 

dynamic cell seeding in the bioreactor environment.  However, the histology results here 

show that there were always more cells on one side/surface of the scaffolds than on the 



104 

other side/surface.  In a few sections, there is some cellular infiltration from the direction 

of the side with the most cells.  The seeding density used in this research definitely resulted 

in the attachment of cells to all scaffolds, but no conclusions can be made at this point 

about the effects on matrix production (as described below). 

 There was only one statistically significant change in thickness over time and that 

was for the 100 mg/mL concentration between week 0 and week 4, though this finding can 

not sufficiently be explained by the other results (biochemical, mechanical, or 

histological).  The reason for the lower thickness of the 100 mg/mL concentration 

compared to the 80 mg/mL concentration could be explained by the loss of fibers during 

the electrospinning process (which is known to be affected by changes in temperature, 

humidity, and extraneous electrical interferences).   

 The main observation made regarding cell migration is that most cellular 

infiltration into the scaffold occurred where there is a path for the cells to move along.  

Such a path could be a tear or a large void or pocket along the surface of the scaffold or an 

area of delamination (separation of the layers of fibers sometimes created during 

electrospinning) on the edge of the scaffold disc.  Clusters of cells appeared to be moving 

into the openings on the edges of some of the 3 mm diameter scaffolds.  This is interesting 

because these sections were punched out of the 1 cm cultured disc, so the ends are not 

exposed before punching; however, these 3 mm discs are punched from near or on the edge 

of the 1 cm disc so it is possible the cells had time to migrate into the scaffolds from the 

edge over the 2, 4, or 6 week culture period.  Migration occurring from the edges of the 

scaffolds may also be because the matrix is a layering of fibers in two dimensions; cells 
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moving in from the edge can follow one fiber into the scaffold rather than moving from 

fiber to fiber (as the cells would during migration from the surface into the thickness). 

 The number of chondrocytes per mg of cartilage (wet mass) has been shown to be 

between 26,000 and 78,000 chondrocytes/mg [154].  This finding is much lower than most 

of the cell density values determined in this research with the exception of the 120 mg/mL 

concentration and the 80 mg/mL and 100 mg/mL concentrations at week 2.  In viewing the 

histological slides, there did appear to be more cells in the 60 mg/mL, 80 mg/mL, and 100 

mg/mL concentrations; this finding does correlate with the DNA analysis results which 

showed that the 120 mg/mL concentration over all three culture periods resulted in the 

lowest cell density.  The general trend is that cell density increased over time, thereby 

indicating proliferation on the collagen scaffolds.  This trend does seem to be supported by 

the histology.  Several of the cell density mean values have quite large standard deviations, 

possibly indicating poor uniformity of cell distribution.  One note needs to be made 

regarding cell density: in measuring the DNA content in the scaffold samples, an excitation 

wavelength of 320 nm had to be used even though the Hoechst 33258 dye excites at 365 

nm and an emission wavelength of 460 nm had to be used despite an emission peak at 458 

nm for the Hoechst 33258 dye.  This was due to the limitations of the instrument available.  

Though the wavelengths used are not exactly at the peaks of the spectra for this dye, the 

widths of the spectra are such that analysis was still possible.   

 The GAG content measured in this research represents that deposited on/within the 

collagen scaffold, and was much lower than a reported range of GAG content in articular 

cartilage found to be between 22 and 38 µg/mg of cartilage (wet mass) [154].  The GAG 
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content did not increase over time in any of the concentrations as was expected.  In fact, 

there are no statistically significant differences between any of the GAG contents in any 

one concentration over the different culture periods, nor are there any differences between 

the GAG contents in any one culture period over the different concentrations.  Thus, it may 

be possible that the cells did not reexpress the chondrocytic phenotype despite the 

appearance of spheroid-shaped cells particularly in the 60 mg/mL, 80 mg/mL, and 100 

mg/mL concentrations.  There is an explanation for the appearance of GAGs in the control 

scaffolds that contain no cells.  Though the purity of the collagen samples was consistent 

with the type II collagen standard supplied by the University of Tennessee, RDRCC 

Collagen Core Center [134], there may still be the presence of proteoglycans that were not 

removed in the collagen extraction process.  The molecular weight of the backbone core 

protein is around 250,000 and that of chondroitin sulfate is about 20,000; there is an 

average of 80 chondroitin sulfate chains present in a typical cartilage proteoglycan [155].  

Thus, this high molecular weight would not appear on the gel used in the SDS-PAGE in 

this research.   

 The collagen synthesis detected by the ELISA tests was minimal.  Only the 80 

mg/mL and 100 mg/mL concentrations showed any type II collagen present.  From those 

results, the values of type II collagen content that aren’t essentially zero are those values 

for the 80 mg/mL concentration at weeks 2 and 4 and those for the 100 mg/mL 

concentration at weeks 4 and 6.  The histology (Masson’s trichrome-stained sections) 

revealed the presence of collagen, by way of light blue staining, in the 80 mg/mL 

concentration at weeks 2 and 6 and in the 100 mg/mL concentration at weeks 4 and 6; 
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these results do correlate with the results of the type II collagen ELISA test.  Very slight 

areas of blue staining were seen in the 60 mg/mL concentration at week 6 and in the 120 

mg/mL concentration at week 6.  The type I collagen ELISA test did detect type I collagen 

in these two concentrations (60 mg/mL and 120 mg/mL) though the mean values are very 

close to zero.  Though type II collagen was not produced in large quantities, it is good that 

type I collagen was not produced.  This could potentially mean that the cells have not 

changed phenotypes; however, they are not actively making their own matrix. 

 It is very interesting that the type II collagen ELISA did not detect the collagen that 

comprised the scaffold itself – this is shown by the zero reading (or essentially zero) for 

the control scaffolds at week 0.  The lyophilized collagen (at the stage prior to dissolution 

in HFP and subsequent electrospinning) is detected by the ELISA and, in fact, results in a 

standard curve closely matching that created by running the standard provided in the kit.  

Further tests are underway to understand if the electrospinning process or possibly the 

cross-linking process transforms the collagen in such a manner as to mask the epitopes 

detected by the ELISA kit antibodies.  Type II collagen dissolved in HFP as well as 

electrospun type II collagen were detected by the ELISA kit though the concentrations 

(including the standards run in this particular test) were not what were expected (i.e. 

known concentrations were prepared and tested) – since an already-opened kit was used, it 

is possible that the thawed, re-frozen, and thawed antibodies were no longer stable.  The 

spike and recovery test revealed that the spiked samples gave readings equal to the reading 

of the standard alone.  Thus, the standard is working but the collagen in the samples is 

either at undetectable levels (unlikely since the scaffolds are composed of type II collagen) 
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or is not being detected by the antibody that was raised against the collagen molecules in 

the standard.  This test showed that the sample preparation is sufficient since the standard 

was recovered from the samples (i.e. nothing in the preparation is hindering the binding of 

the standard), but the collagen molecules in the samples won’t bind to the kit antibody.  

The cross-linking effect of EDC could have rendered a conformational change (to the type 

II collagen in the electrospun mat) that has hindered/inhibited the binding to the epitopes 

by the antibodies (provided in the ELISA kit) that are specific to those epitopes of native 

type II collagen.  Such a conclusion was made with porcine dermal collagen membranes 

treated with glutaraldehyde [156].  An interesting study would be to recharacterize the 

cross-linked, electrospun type II collagen scaffolds by developing a new antibody for these 

scaffolds that would recognize and bind to the new epitopes/surface residues available in 

these scaffolds.  Testing the new antibody versus the original antibody (from the kit, that 

recognizes native type II collagen epitopes) may prove to be insightful.   

 

Scaffold Mechanical Properties 

In native tissue, at small extensions, there is a non-linear toe region in which 

collagen fibers are realigning, and at larger extensions, the aligned collagen fibers are 

stretched collectively thereby contributing to the stiffness observed in the curve [27].  The 

same phenomenon is occurring in the cross-linked, electrospun, non-woven mats, in which 

the randomly-oriented collagen fibers first align themselves at small extensions and are 

collectively strained at larger extensions.   
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The stiffness of the structure as a whole depends on fiber diameter and orientation, 

number of fibers, and the strength of covalent cross-links and noncovalent bonds (i.e. type 

and amount).  The tensile material properties do not follow a particular trend in this 

research.  The diameter and pore area measurements determined from the permeability 

meter show that the mean values increase with concentration with the exception of the 120 

mg/mL concentration, which showed a decrease to values below that of the 100 mg/mL 

concentration.  There may be a concentration threshold at which the collagen molecules 

can no longer form fibers of larger diameters.  Additionally, alignment was not controlled 

because a random arrangement of fibers was the desired effect.  Though no control efforts 

were made, the increasing diameters may have had an effect on the arrangement of the 

fibers; this alignment needs to be measured in future work.  All of the cross-linked, 

electrospun mats tested in this research demonstrated values of peak stress and tangential 

modulus at least an order of magnitude less than those reported for cartilage tissue, and the 

strain at break values of the electrospun mats were at least an order of magnitude greater 

than the value of this property for native cartilage tissue.  Though it must be kept in mind 

that these differences reflect variances between a simulated ECM alone versus whole 

tissue, it does bode well for the use of electrospun type II collagen mats in the tissue 

engineering of cartilage in that during tissue regeneration in vitro, the stiffness of the 

electrospun scaffold should not inhibit chondrocyte mobility, and the electrospun fibers 

should be free to be moved by the cells themselves [101].  However, this was not the case 

in this research; the cells did not appear to move the fibers so that cellular infiltration could 

occur rapidly. 
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The cross-linked, electrospun scaffolds maintained their structural integrity during 

the 6 weeks of culture such that they could still be easily manipulated with forceps.  Such 

capacity to maintain strength favors these scaffolds over collagen gels for use in cartilage 

tissue engineering.   

 In the stress relaxation test, a constant displacement is applied to the specimen 

surface and the resulting stress within the tissue is measured.  During the ramp phase of the 

displacement, the tissue is compressed at a constant rate, fluid exudation occurs and the 

solid ECM is compacted.  During the relaxation phase, once the desired displacement is 

attained and the compressive strain is held constant, fluid and stress redistribution occurs 

within the specimen until an equilibrium is achieved (i.e. a homogeneous state of 

compression is achieved).  This method (with indentation) was selected because of the 

anticipated limited thickness of the cultured tissue and the requirement to not disturb the 

surrounding tissue since it was to be used in other biochemical testing and histology.  

There were no statistically significant differences between the equilibrium stiffness values 

of the controls (week 0); thus, the electrospinning solution concentration (and hence the 

fiber diameter and pore size) did not have an influence on the equilibrium stiffness.  

Culture time also had little to no influence as shown by the few statistical differences that 

do not follow any particular pattern.  One point of interest is that at week 6 the 120 mg/mL 

concentration is significantly different from all of the other concentrations; this correlates 

well with the finding that the 120 mg/mL concentration had the lowest cell density, which 

was significantly different from the cell densities of all of the other concentrations.  The 

trend that the mean equilibrium stiffness decreases from week 2 to week 6 may be related 
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to the cell density trend in which the mean cell density increases from week 2 to week 6 

(with the exception of the 120 mg/mL concentration).  Thus, a decrease in equilibrium 

stiffness may be related to an increase in cell density.  Very little degradation, if any, is 

suspected over the 6 week culture period because the pore structure appeared the same at 

week 6 as at week 0 per the histological analysis.  However, it is possible that there was 

some slight degradation occurring in the scaffolds which may account for the general 

decreasing trend in equilibrium stiffness over time.  The exact degradation rate has yet to 

be determined.   

 Mechanical stimulation via hydrodynamic forces in the rotating chambers of the 

bioreactor during in vitro cultivation is proposed to more closely resemble some of the 

aspects of the dynamic loading on cartilage in vivo and has been shown to result in the 

production of the cartilaginous matrix components GAG and type II collagen with uniform 

distribution in some tissue-engineered constructs [56].  In the research presented here it is 

not clear if the dynamic bioreactor environment had any influences on the mechanical 

properties or biochemical compositions of the scaffolds.  It is possible that greater 

hydrodynamic loading is necessary to stimulate the cells on these scaffolds that were found 

to be stiffer than native cartilage.  In any case, the benefits of being able to control the 

conditions of cell seeding and culture environment more easily in the bioreactor were 

appreciated in this research. 
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Conclusions and Future Work 
 

 The electrospun type II collagen mats created for this research have the desired 

fibrous structure (on the scale of native ECM) and possess mechanical properties 

(following cross-linking) that enable handling and use in culture conditions.  Based on the 

biochemical results in conjunction with the histology, the cell proliferation and 

biosynthetic activity of the chondrocytes was not influenced (to a statistically significant 

level) by electrospinning solution concentration (i.e. fiber diameter and pore size) or by 

time in culture.  In fact, very little if any biosynthetic activity (GAG and collagen 

synthesis) was observed in this research.  While the cells are still proliferating, there will 

be minimal production of matrix components.   

 It is possible that, following the extraction process involving the use of pepsin that 

digests and removes the telopeptide ends, the product remaining is type II atelocollagen 

[90]; this is no longer the ordered fibril form that existed before the extraction process.  

After electrospinning, the mat may be more of a filamentous structure rather than 

composed of collagen fibrils (of an ordered structure) because of a lack of native 

crosslinks.  Hence, the structure may be in the monomeric form.  The EDC is used to 

cross-link the electrospun mat such that it has sufficient mechanical integrity to withstand 

tissue culture conditions.  It would be of interest to know if the lack of native crosslinks, 

which in turn does not allow the formation of purely native type II collagen fibrils, 
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interferes with cell signaling in any way.  Thus, further investigation into the exact 

chemical structure of the cross-linked, electrospun type II collagen molecules should be 

performed in an effort to better understand the cell-matrix interactions.   

 Though the chemical composition may not be exactly native type II collagen, the 

first action item for future work should be investigating the scaffold design.  The 

electrospun mats that underwent the studies in culture were used in the physical state they 

were in when removed from the mandrel (with cross-linking and subsequent swelling upon 

hydration).  The results of this research showed very little cellular migration into the 

scaffold thickness and very little matrix biosynthetic activity, which could be because the 

cells remained on the surface of the scaffolds and grew outward from the scaffold, thereby 

really only participating in cell-to-cell interactions.   

 Most of the studies that have had some successes in stimulating the production of 

cartilaginous tissue (i.e. engineered cartilage) have utilized scaffolds with large 

interconnected pores, in the range of 50 to 300 µm.  The electrospun scaffolds achieve pore 

interconnectivity, but the pore size is very small.  Additionally, this research did not reveal 

an ability of the chondrocytes to move the fibers in order to migrate into the scaffolds (in 

fact, most cellular infiltration only occurred at open paths into the thickness/cross-section 

of the scaffolds).  A design proposition would be to actually punch uniformly distributed 

holes, on the 100 µm scale, into the hydrated scaffold (following cross-linking) to provide 

direct paths large enough for the cells to easily migrate through and into the thickness of 

the scaffold.  Exact geometries, and the consequential effects on the mechanical properties, 

would have to be investigated.  Additionally, cells could be sprayed into the scaffold 
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during the electrospinning fabrication process.  This would create a scaffold with cells 

already distributed within the scaffold; however, sterile conditions must be maintained. 

 On an additional design note, the tissue structure created in this research more 

closely resembles the superficial zone than the middle zone at this point.  Though the 

collagen fibers are randomly organized within the electrospun mat, the fibers are 

essentially only in two dimensions and run tangential to the mat surfaces.  Thought needs 

to be given as to how to create fibers that run perpendicular to the mat surfaces such that 

fibers are oriented randomly in three dimensions.   

 Several modifications can be made to the methods in future work to improve the 

analysis of GAGs and collagen, such as using the stains safranin-O or alcian blue for 

histochemical visualization of proteoglycans or picrosirius red to stain for collagen, or 

using SEM to visualize the cells on the surface of the scaffolds (to better show spherical 

versus elongated).  Additionally, instead of the ELISA for detection of collagen, several 

other techniques could be used including fluorescence immunostaining, probing the cells 

via in situ hybridization, or de novo synthesis with radioactive proline.  It could be possible 

that the cells need longer culture periods to degrade the existing scaffold, migrate into the 

scaffold, and replace the scaffold with their own ECM.  Though spherical cells were 

observed, the chondrocytes may need to be redifferentiated or freshly isolated 

chondrocytes could be used instead of chondrocytes cultured in monolayer prior to 

seeding.  The passaged cells could be combined with primary chondrocytes when seeded 

onto the scaffolds; such a co-culture approach has proven successful in increasing cartilage 

tissue formation [132].  Fabricating a scaffold out of another material or a mixture of 
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materials (i.e. natural and synthetic polymers) may stimulate the cells to make their own 

matrix; the type II collagen could be electrospun with another polymer, either from the 

same mixture or from multiple nozzles.  It has been shown that chondrocytes respond to 

decreases in the amount of matrix surrounding them by increasing their rate of matrix 

deposition [152].  Thus, tailoring the degradation rate (e.g. via cross-linking or modifying 

the materials) of the scaffold to be more rapid may cause the chondrocytes to respond with 

increased synthesis.   

 From the results of this research, there did not appear to be extensive cell-matrix 

interactions.  In articular cartilage, there is an interdependence between the two 

components in which the chondrocytes synthesize and degrade the ECM, and the ECM 

protects the chondrocytes from mechanical damage, transmits and stores such molecules as 

cytokines and growth factors for the chondrocytes, and acts as a signal transducer for the 

chondrocytes to help maintain their phenotype.  Though the chondrocytes attached to the 

surfaces of the scaffolds, the cell layers grew outward from the scaffolds and formed cell 

clusters in many areas.  There was very little cellular infiltration unless there was an 

opening of significant size (typically larger than the size of the cell).  The author believes 

that the first item to address given these results is to reevaluate the scaffold design.   
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APPENDIX A: Comparison of Materials Used In Vivo 
 

A summary of in vivo findings of the performance of various materials (autologous, 
natural, and synthetic) used in articular cartilage tissue engineering [36]. 
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APPENDIX B: Type II Collagen Extraction and Purification 
 

Protocol for Preparation of Type II Collagen from Fetal Bovine Articular Cartilage 

Expected yield: ~50:1 ratio of cartilage to CII if all goes well; therefore, a 150g bag of 
cartilage chips should yield ~3g of CII 

 
Cartilage Aquisition 

□ From fetal calf legs, remove articular cartilage from front and back limbs, all joints. 
Be careful to avoid collecting non-cartilaginous material (non-cartilaginous tissues 
contain other types of collagen that are difficult to separate from type II collagen). 
NOTE:  All operations must be performed at 4 ˚C, unless otherwise specified. 

 
Day 1 Date Amount 

□ Obtain the wet weight of cartilage.   

□ Cut cartilage into small pieces with a razor blade and blend in a Waring 
CB10T 3hp blender using ice and cold distilled water.  Three pulses at 
Maximum setting - one minute per pulse. 

  

□ Add an equal volume of cold (4˚C) 5 M guanidine/0.05 M Tris, pH 7.4 to 
the homogenate.   [Guanidine extracts proteoglycan] 

  

□ Check pH of entire mixture, pH to 7.4.   

□ Stir overnight in the cold.   
   

Day 2 Date Amount 

□ Centrifuge at 12250 g for 30 min at 4˚C.  Discard the supernate.   

□ Resuspend the cartilage pellet in cold distilled water and homogenize as 
before in blender if necessary. 

  

□ Collect the cartilage pellet by centrifugation (12250 g for 30 min at 4˚C) 
and wash with cold distilled water 3 more times.  Allow at least 1-2 hour of 
stirring in cold distilled water for each wash.   [It is important to remove 
guanidine completely, because guanidine may interfere with pepsin action 
at the next step] 
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□ Wash #2   

□ Wash #3   

□ Wash #4   

□ After the last wash, suspend the cartilage pellet in a suitable volume of cold 
0.5 M acetic acid (HAc), and adjust the pH of the suspension to 2.8 by 
using concentrated formic acid. 

  

□ Let solution equilibrate to room temperature.   

□ Add 2x pepsin (Sigma chemical company - highest quality available) –  
10 g/10 L of homogenate. 
Note: You can dissolve pepsin in a small volume of cold distilled water or 
0.5 M HAc for a few minutes and add to the cartilage homogenate with 
stirring.   [It is important to use pepsin as soon as it is dissolved because 
pepsin begins to autolyze as soon as it is in solution] 

  

□ Stir overnight in the cold.   
   

Day 3 Date Amount 
Appearance: after overnight, the suspension should be viscous with minimal 
cartilage pieces.   

□ Centrifuge (12250 g for 60 min in at 4˚C) and collect the viscous supernate 
containing solubilized collagen. 
If necessary, the cartilage pellet may be re-extracted with pepsin. 

  

□ Adjust the pH of the pepsin-extracted collagen supernate to 7.4:   

□ First add 10 mL/L of 1 M Tris, pH 7.4   

□ Use 10 M NaOH to bring the pH to 7.4.     

□ Add an equal volume of 5 M NaCl slowly and with good stirring   

□ Allow it to stand overnight at room temperature.   [This step precipitates 
collagen and also inactivates pepsin] 

  

   

Day 4 Date Amount 

□ Collect the collagen precipitate by centrifugation (12250 g for 60 min in at 
4˚C). 

  

□ Discard supernate.   

□ Dissolve the collagen precipitate in a suitable volume of 0.05M Tris/0.2 M 
NaCl, pH 7.4. 
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□ Stir overnight (or longer) in the cold.   
   

Day 5-7 Date Amount 

□ Dialyze the collagen solution vs. the 0.05M Tris/0.2 M NaCl, pH 7.4 buffer 
(at least 10 volumes) in the cold with stirring. 

  

□ 1st change   

□ 2nd change   
   

Day 8 Date Amount 

□ Centrifuge and collect supernate containing solubilized collagen.   

□ Add approximately 500 g of DE 52   

□ Stir gently in the cold overnight.   
   

Day 9 Date Amount 

□ Centrifuge and collect the supernate.  Discard the pellet.   

□ To the supernate, add while stirring the correct volume of 5 M NaCl to 
make the final concentration of NaCl to be 0.8 M, and the correct volume 
of HAc to make the final concentration of HAc to be 0.1 M.   [collagen will 
precipitate] – use Molarity Calculator 

  

□ Stir overnight in the cold.   
   

Day 10 Date Amount 

□ Centrifuge and collect the collagen precipitate.  Discard the supernate.   

□ Dissolve collagen precipitate in 0.1 M HAc.   

□ Stir overnight (or longer) in the cold.   
   

Day 11-15 Date Amount 

□ Centrifuge and collect the supernate.  Discard the pellet.   

□ Put collagen supernate into dialysis bags, and dialyze vs. 0.01 M Na2HPO4 
(10 volumes) in the cold with stirring.   [collagen will precipitate] 

  

□ 1st change   

□ 2nd change   

□ 3rd change   

□ 4th change   
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Day 16 Date Amount 

□ Centrifuge and collect collagen precipitate.   

□ Dissolve the precipitate in 0.1 M HAc.   

□ Stir overnight (or longer) in the cold.   
   

Day 17-23 Date Amount 

□ Centrifuge to obtain collagen solution.   

□ Place solution in dialysis bags and dialyze vs. 0.01 M HAc (at least 10 
volumes) in the cold with stirring. 

  

□ 1st change   

□ 2nd change   

□ 3rd change   

□ 4th change   

□ 5th change   

□ 6th change   
   

Day 24+ Date Amount 

□ Freeze collagen solution in ice cube trays.   

□ Place cubes in lyophilizer flasks and lyophilize until dry product is 
obtained. 

  

□ Test purity of collagen with SDS-PAGE.   
 

 
% Yield: # grams CII obtained  x  100%  =  ____________  x  100%  =  ____________% 
 # grams cartilage 
 
 ∴ ____________ ratio cartilage to type II collagen 
 
 

Chemicals to make on Day 1 
 
1 M Tris: 1 M x 121.14 MW x 1 L = 121.14 g, then fill to 1 L with dH2O 
 pH to 7.4 with HCl 
 
5 M Guanidine/0.05 M Tris: 5 M x 95.53 MW x 1 L = 477.65 g, then fill to 950 mL with dH2O 
  Add 50 mL 1 M Tris 
  pH to 7.4 
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APPENDIX C: Statistical Analysis 
 

Oneway Analysis of SEM Diameter By Concentration 
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All Pairs
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 0.05  

Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 3.9574679 1.31916 70.2046 <.0001 
Error 236 4.4344806 0.01879  
C. Total 239 8.3919485  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 100 80 60 
120 0.000000 0.136717 0.261500 0.338467 
100 -0.13672 0.000000 0.124783 0.201750 
80 -0.2615 -0.12478 0.000000 0.076967 
60 -0.33847 -0.20175 -0.07697 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
2.58745 

Abs(Dif)-LSD 120 100 80 60 
120 -0.06476 0.071961 0.196744 0.273711 
100 0.071961 -0.06476 0.060028 0.136994 
80 0.196744 0.060028 -0.06476 0.012211 
60 0.273711 0.136994 0.012211 -0.06476 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Diameter By Technique for 60 mg/mL 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Technique 1 0.46538108 0.465381 199.7761 <.0001 
Error 118 0.27488252 0.002330   
C. Total 119 0.74026359   
Means Comparisons 
Dif=Mean[i]-Mean[j] ESEM Diameter SEM Diameter
ESEM Diameter 0.000000 0.124550
SEM Diameter -0.12455 0.000000
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 
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q* 

1.98027 
Abs(Dif)-LSD ESEM Diameter SEM Diameter
ESEM Diameter -0.01745 0.107100
SEM Diameter 0.107100 -0.01745
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of SEM Pore Area By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 52.88905 17.6297 4.0904 0.0079 
Error 156 672.35568 4.3100  
C. Total 159 725.24474  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.00000 0.25750 1.05165 1.41703 
120 -0.25750 0.00000 0.79415 1.15953 
80 -1.05165 -0.79415 0.00000 0.36538 
60 -1.41703 -1.15953 -0.36538 0.00000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
2.59695 

Abs(Dif)-LSD 100 120 80 60 
100 -1.20555 -0.94805 -0.15390 0.21147 
120 -0.94805 -1.20555 -0.41140 -0.04603 
80 -0.15390 -0.41140 -1.20555 -0.84018 
60 0.21147 -0.04603 -0.84018 -1.20555 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Pore Area By Technique for 60 mg/mL 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Technique 1 0.12090 0.12090 0.0438 0.8348
Error 78 215.27934 2.75999
C. Total 79 215.40024
Means Comparisons 
Dif=Mean[i]-Mean[j] SEM Pore Area ESEM Pore Area
SEM Pore Area 0.000000 0.077750
ESEM Pore Area -0.07775 0.000000
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 
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q* 

1.99085 
Abs(Dif)-LSD SEM Pore Area ESEM Pore Area
SEM Pore Area -0.73957 -0.66182
ESEM Pore Area -0.66182 -0.73957
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Porosity (%) By Concentration (mg/mL) 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration (mg/mL) 3 48.57007 16.1900 1.2390 0.3578 
Error 8 104.53720 13.0672  
C. Total 11 153.10727  
Means Comparisons 
Dif=Mean[i]-Mean[j] 80 100 60 120 
80 0.00000 0.31333 1.86333 5.07667 
100 -0.31333 0.00000 1.55000 4.76333 
60 -1.86333 -1.55000 0.00000 3.21333 
120 -5.07667 -4.76333 -3.21333 0.00000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 80 100 60 120 
80 -9.45186 -9.13853 -7.58853 -4.37520 
100 -9.13853 -9.45186 -7.90186 -4.68853 
60 -7.58853 -7.90186 -9.45186 -6.23853 
120 -4.37520 -4.68853 -6.23853 -9.45186 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Permeability (D) By Concentration (mg/mL) 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration (mg/mL) 3 0.00001497 0.000005 42.7107 <.0001 
Error 8 0.00000093 0.0000001  
C. Total 11 0.00001590  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.000000 0.001253 0.002510 0.002820 
120 -0.00125 0.000000 0.001258 0.001567 
80 -0.00251 -0.00126 0.000000 0.000310 
60 -0.00282 -0.00157 -0.00031 0.000000 
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Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 120 80 60 
100 -0.00089 0.000359 0.001617 0.001926 
120 0.000359 -0.00089 0.000364 0.000674 
80 0.001617 0.000364 -0.00089 -0.00058 
60 0.001926 0.000674 -0.00058 -0.00089 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Diameter (um) By Concentration (mg/mL) – Permeability Data 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration (mg/mL) 3 0.27523097 0.091744 19.4504 0.0005 
Error 8 0.03773442 0.004717  
C. Total 11 0.31296539  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.000000 0.025773 0.300032 0.329035 
120 -0.02577 0.000000 0.274259 0.303262 
80 -0.30003 -0.27426 0.000000 0.029003 
60 -0.32903 -0.30326 -0.029 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 120 80 60 
100 -0.17958 -0.1538 0.120455 0.149458 
120 -0.1538 -0.17958 0.094682 0.123685 
80 0.120455 0.094682 -0.17958 -0.15057 
60 0.149458 0.123685 -0.15057 -0.17958 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Pore Area (um2) By Concentration (mg/mL) – Permeability Data 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Concentration (mg/mL) 3 0.00000968 0.0000032 42.7156 <.0001
Error 8 0.00000060 7.5545e-8  
C. Total 11 0.00001029  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
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Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.000000 0.001007 0.002019 0.002268 
120 -0.00101 0.000000 0.001012 0.001261 
80 -0.00202 -0.00101 0.000000 0.000249 
60 -0.00227 -0.00126 -0.00025 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 120 80 60 
100 -0.00072 0.000288 0.001300 0.001549 
120 0.000288 -0.00072 0.000293 0.000542 
80 0.001300 0.000293 -0.00072 -0.00047 
60 0.001549 0.000542 -0.00047 -0.00072 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 60 Thickness By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.02577267 0.008591 1.8280 0.2201
Error 8 0.03759600 0.004699
C. Total 11 0.06336867
Means Comparisons 
Dif=Mean[i]-Mean[j] 0 4 2 6 
0 0.000000 0.016667 0.067667 0.118333 
4 -0.01667 0.000000 0.051000 0.101667 
2 -0.06767 -0.051 0.000000 0.050667 
6 -0.11833 -0.10167 -0.05067 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 0 4 2 6 
0 -0.17925 -0.16258 -0.11158 -0.06091 
4 -0.16258 -0.17925 -0.12825 -0.07758 
2 -0.11158 -0.12825 -0.17925 -0.12858 
6 -0.06091 -0.07758 -0.12858 -0.17925 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 80 Thickness By Week # 
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Source DF Sum of Squares Mean Square F Ratio Prob > F 
Week # 3 0.05366958 0.017890 2.5048 0.1330 
Error 8 0.05713867 0.007142  
C. Total 11 0.11080825  
Means Comparisons 
Dif=Mean[i]-Mean[j] 2 6 4 0 
2 0.000000 0.105667 0.131000 0.183667 
6 -0.10567 0.000000 0.025333 0.078000 
4 -0.131 -0.02533 0.000000 0.052667 
0 -0.18367 -0.078 -0.05267 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 2 6 4 0 
2 -0.22098 -0.11531 -0.08998 -0.03731 
6 -0.11531 -0.22098 -0.19564 -0.14298 
4 -0.08998 -0.19564 -0.22098 -0.16831 
0 -0.03731 -0.14298 -0.16831 -0.22098 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 100 Thickness By Week # 
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Oneway Anova 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Week # 3 0.12236967 0.040790 4.3622 0.0425 
Error 8 0.07480533 0.009351  
C. Total 11 0.19717500  
Means Comparisons 
Dif=Mean[i]-Mean[j] 4 2 6 0 
4 0.000000 0.135667 0.199000 0.275333 
2 -0.13567 0.000000 0.063333 0.139667 
6 -0.199 -0.06333 0.000000 0.076333 
0 -0.27533 -0.13967 -0.07633 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 4 2 6 0 
4 -0.25284 -0.11717 -0.05384 0.022492 
2 -0.11717 -0.25284 -0.18951 -0.11317 
6 -0.05384 -0.18951 -0.25284 -0.17651 
0 0.022492 -0.11317 -0.17651 -0.25284 
Positive values show pairs of means that are significantly different. 
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Oneway Analysis of 120 Thickness By Week # 

12
0 

Th
ic

kn
es

s

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 2 4 6

Week #

All Pairs
Tukey-Kramer
 0.05  

Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.16257620 0.054192 1.8794 0.2114
Error 8 0.23067361 0.028834  
C. Total 11 0.39324981  
Means Comparisons 
Dif=Mean[i]-Mean[j] 2 4 6 0 
2 0.000000 0.162300 0.225967 0.319300 
4 -0.1623 0.000000 0.063667 0.157000 
6 -0.22597 -0.06367 0.000000 0.093333 
0 -0.3193 -0.157 -0.09333 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 2 4 6 0 
2 -0.444 -0.2817 -0.21803 -0.1247 
4 -0.2817 -0.444 -0.38033 -0.287 
6 -0.21803 -0.38033 -0.444 -0.35066 
0 -0.1247 -0.287 -0.35066 -0.444 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 0 Thickness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.73946892 0.246490 21.7502 0.0003 
Error 8 0.09066200 0.011333  
C. Total 11 0.83013092  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 80 60 100 
120 0.000000 0.107667 0.529333 0.558667 
80 -0.10767 0.000000 0.421667 0.451000 
60 -0.52933 -0.42167 0.000000 0.029333 
100 -0.55867 -0.451 -0.02933 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 120 80 60 100 
120 -0.27835 -0.17069 0.250981 0.280314 
80 -0.17069 -0.27835 0.143314 0.172648 



139 
q* 

60 0.250981 0.143314 -0.27835 -0.24902 
100 0.280314 0.172648 -0.24902 -0.27835 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 2 Thickness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 1.6301441 0.543381 161.8796 <.0001 
Error 8 0.0268536 0.003357  
C. Total 11 1.6569977  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 80 100 60 
120 0.000000 0.243300 0.738300 0.916300 
80 -0.2433 0.000000 0.495000 0.673000 
100 -0.7383 -0.495 0.000000 0.178000 
60 -0.9163 -0.673 -0.178 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 120 80 100 60 
120 -0.15149 0.091810 0.586810 0.764810 
80 0.091810 -0.15149 0.343510 0.521510 
100 0.586810 0.343510 -0.15149 0.026510 
60 0.764810 0.521510 0.026510 -0.15149 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 4 Thickness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.8214430 0.273814 10.0942 0.0043 
Error 8 0.2170080 0.027126  
C. Total 11 1.0384510  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 80 100 60 
120 0.000000 0.212000 0.440333 0.703000 
80 -0.212 0.000000 0.228333 0.491000 
100 -0.44033 -0.22833 0.000000 0.262667 
60 -0.703 -0.491 -0.26267 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 
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q* 

3.20238 
Abs(Dif)-LSD 120 80 100 60 
120 -0.43065 -0.21865 0.009688 0.272355 
80 -0.21865 -0.43065 -0.20231 0.060355 
100 0.009688 -0.20231 -0.43065 -0.16798 
60 0.272355 0.060355 -0.16798 -0.43065 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 6 Thickness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 1.1323263 0.377442 45.9665 <.0001 
Error 8 0.0656900 0.008211  
C. Total 11 1.1980163  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 80 100 60 
120 0.000000 0.123000 0.575667 0.741000 
80 -0.123 0.000000 0.452667 0.618000 
100 -0.57567 -0.45267 0.000000 0.165333 
60 -0.741 -0.618 -0.16533 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 120 80 100 60 
120 -0.23694 -0.11394 0.338730 0.504064 
80 -0.11394 -0.23694 0.215730 0.381064 
100 0.338730 0.215730 -0.23694 -0.0716 
60 0.504064 0.381064 -0.0716 -0.23694 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 0 Eq Stiffness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.00044189 0.000147 2.0375 0.1872 
Error 8 0.00057833 0.000072  
C. Total 11 0.00102022  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 60 120 80 
100 0.000000 0.009267 0.014433 0.015233 
60 -0.00927 0.000000 0.005167 0.005967 
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Dif=Mean[i]-Mean[j] 100 60 120 80 
120 -0.01443 -0.00517 0.000000 0.000800 
80 -0.01523 -0.00597 -0.0008 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 60 120 80 
100 -0.02223 -0.01296 -0.0078 -0.007 
60 -0.01296 -0.02223 -0.01706 -0.01626 
120 -0.0078 -0.01706 -0.02223 -0.02143 
80 -0.007 -0.01626 -0.02143 -0.02223 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 2 Eq Stiffness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.00531321 0.001771 3.6573 0.0633 
Error 8 0.00387406 0.000484  
C. Total 11 0.00918727  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.000000 0.034033 0.034233 0.059167 
120 -0.03403 0.000000 0.000200 0.025133 
80 -0.03423 -0.0002 0.000000 0.024933 
60 -0.05917 -0.02513 -0.02493 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 120 80 60 
100 -0.05754 -0.02351 -0.02331 0.001627 
120 -0.02351 -0.05754 -0.05734 -0.03241 
80 -0.02331 -0.05734 -0.05754 -0.03261 
60 0.001627 -0.03241 -0.03261 -0.05754 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 4 Eq Stiffness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.00204270 0.000681 1.7441 0.2353 
Error 8 0.00312322 0.000390  
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Source DF Sum of Squares Mean Square F Ratio Prob > F 
C. Total 11 0.00516592  
Means Comparisons 
Dif=Mean[i]-Mean[j] 100 120 80 60 
100 0.000000 0.011467 0.023833 0.034767 
120 -0.01147 0.000000 0.012367 0.023300 
80 -0.02383 -0.01237 0.000000 0.010933 
60 -0.03477 -0.0233 -0.01093 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 120 80 60 
100 -0.05166 -0.0402 -0.02783 -0.0169 
120 -0.0402 -0.05166 -0.0393 -0.02836 
80 -0.02783 -0.0393 -0.05166 -0.04073 
60 -0.0169 -0.02836 -0.04073 -0.05166 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 6 Eq Stiffness By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.00068615 0.000229 7.1653 0.0118 
Error 8 0.00025536 0.000032  
C. Total 11 0.00094151  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 80 60 100 
120 0.000000 0.015133 0.015567 0.020000 
80 -0.01513 0.000000 0.000433 0.004867 
60 -0.01557 -0.00043 0.000000 0.004433 
100 -0.02 -0.00487 -0.00443 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 120 80 60 100 
120 -0.01477 0.000361 0.000794 0.005227 
80 0.000361 -0.01477 -0.01434 -0.00991 
60 0.000794 -0.01434 -0.01477 -0.01034 
100 0.005227 -0.00991 -0.01034 -0.01477 
Positive values show pairs of means that are significantly different. 
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Oneway Analysis of 60 Eq Stiffness By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.00168734 0.000562 7.1684 0.0118
Error 8 0.00062770 0.000078
C. Total 11 0.00231504
Means Comparisons 
Dif=Mean[i]-Mean[j] 0 2 4 6 
0 0.000000 0.021467 0.024700 0.031800 
2 -0.02147 0.000000 0.003233 0.010333 
4 -0.0247 -0.00323 0.000000 0.007100 
6 -0.0318 -0.01033 -0.0071 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 0 2 4 6 
0 -0.02316 -0.00169 0.001539 0.008639 
2 -0.00169 -0.02316 -0.01993 -0.01283 
4 0.001539 -0.01993 -0.02316 -0.01606 
6 0.008639 -0.01283 -0.01606 -0.02316 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 80 Eq Stiffness By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.00196132 0.000654 2.8139 0.1076
Error 8 0.00185867 0.000232
C. Total 11 0.00381999
Means Comparisons 
Dif=Mean[i]-Mean[j] 2 0 4 6 
2 0.000000 0.009433 0.017233 0.034833 
0 -0.00943 0.000000 0.007800 0.025400 
4 -0.01723 -0.0078 0.000000 0.017600 
6 -0.03483 -0.0254 -0.0176 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 2 0 4 6 
2 -0.03985 -0.03042 -0.02262 -0.00502 
0 -0.03042 -0.03985 -0.03205 -0.01445 
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q* 

4 -0.02262 -0.03205 -0.03985 -0.02225 
6 -0.00502 -0.01445 -0.02225 -0.03985 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 100 Eq Modulus By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.00843958 0.002813 4.9665 0.0311
Error 8 0.00453143 0.000566
C. Total 11 0.01297101
Means Comparisons 
Dif=Mean[i]-Mean[j] 2 4 0 6 
2 0.000000 0.027633 0.028433 0.073933 
4 -0.02763 0.000000 0.000800 0.046300 
0 -0.02843 -0.0008 0.000000 0.045500 
6 -0.07393 -0.0463 -0.0455 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 2 4 0 6 
2 -0.06223 -0.0346 -0.0338 0.011703 
4 -0.0346 -0.06223 -0.06143 -0.01593 
0 -0.0338 -0.06143 -0.06223 -0.01673 
6 0.011703 -0.01593 -0.01673 -0.06223 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 120 Eq Stiffness By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.00064230 0.000214 2.1063 0.1778
Error 8 0.00081318 0.000102
C. Total 11 0.00145548
Means Comparisons 
Dif=Mean[i]-Mean[j] 2 4 0 6 
2 0.000000 0.005067 0.008833 0.019900 
4 -0.00507 0.000000 0.003767 0.014833 
0 -0.00883 -0.00377 0.000000 0.011067 
6 -0.0199 -0.01483 -0.01107 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 
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q* 

3.20238 
Abs(Dif)-LSD 2 4 0 6 
2 -0.02636 -0.0213 -0.01753 -0.00646 
4 -0.0213 -0.02636 -0.0226 -0.01153 
0 -0.01753 -0.0226 -0.02636 -0.0153 
6 -0.00646 -0.01153 -0.0153 -0.02636 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Peak Stress (MPa) By Concentration (mg/mL) 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration (mg/mL) 3 0.08400719 0.028002 48.9071 <.0001 
Error 12 0.00687075 0.000573   
C. Total 15 0.09087794   
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 120 80 100 
60 0.000000 0.024250 0.125250 0.177250 
120 -0.02425 0.000000 0.101000 0.153000 
80 -0.12525 -0.101 0.000000 0.052000 
100 -0.17725 -0.153 -0.052 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
2.96883 

Abs(Dif)-LSD 60 120 80 100 
60 -0.05023 -0.02598 0.075018 0.127018 
120 -0.02598 -0.05023 0.050768 0.102768 
80 0.075018 0.050768 -0.05023 0.001768 
100 0.127018 0.102768 0.001768 -0.05023 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Strain at Break (%) By Concentration (mg/mL) 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration (mg/mL) 3 6238.5525 2079.52 28.2267 <.0001 
Error 12 884.0650 73.67   
C. Total 15 7122.6175   
Means Comparisons 
Dif=Mean[i]-Mean[j] 80 60 100 120 
80 0.0000 24.0750 28.1250 55.6500 
60 -24.0750 0.0000 4.0500 31.5750 
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Dif=Mean[i]-Mean[j] 80 60 100 120 
100 -28.1250 -4.0500 0.0000 27.5250 
120 -55.6500 -31.5750 -27.5250 0.0000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
2.96883 

Abs(Dif)-LSD 80 60 100 120 
80 -18.0186 6.0564 10.1064 37.6314 
60 6.0564 -18.0186 -13.9686 13.5564 
100 10.1064 -13.9686 -18.0186 9.5064 
120 37.6314 13.5564 9.5064 -18.0186 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Modulus (MPa) By Concentration (mg/mL) 

M
od

ul
us

 (M
P

a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 120 60 80

Concentration (mg/mL)

All Pairs
Tukey-Kramer
 0.05  

Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Concentration (mg/mL) 3 0.29920369 0.099735 26.2271 <.0001
Error 12 0.04563275 0.003803  
C. Total 15 0.34483644  
Means Comparisons 
Dif=Mean[i]-Mean[j] 120 60 80 100 
120 0.000000 0.096000 0.303500 0.321750 
60 -0.096 0.000000 0.207500 0.225750 
80 -0.3035 -0.2075 0.000000 0.018250 
100 -0.32175 -0.22575 -0.01825 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
2.96883 

Abs(Dif)-LSD 120 60 80 100 
120 -0.12945 -0.03345 0.174045 0.192295 
60 -0.03345 -0.12945 0.078045 0.096295 
80 0.174045 0.078045 -0.12945 -0.1112 
100 0.192295 0.096295 -0.1112 -0.12945 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 2 Cell # By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 4.21282e10 1.4043e10 10.5881 0.0037 
Error 8 1.06103e10 1.32628e9  
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Source DF Sum of Squares Mean Square F Ratio Prob > F 
C. Total 11 5.27385e10  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 100 80 120 
60 0 89735 101387 166254 
100 -89735 0 11651 76519 
80 -101387 -11651 0 64868 
120 -166254 -76519 -64868 0 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 100 80 120 
60 -95223.7 -5488.4 6162.9 71030.8 
100 -5488.4 -95223.7 -83572.4 -18704.6 
80 6162.9 -83572.4 -95223.7 -30355.8 
120 71030.8 -18704.6 -30355.8 -95223.7 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 4 Cell # By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 3.51814e10 1.1727e10 7.3339 0.0110 
Error 8 1.27922e10 1.59903e9  
C. Total 11 4.79736e10  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 100 80 120 
60 0 70261 89927 151763 
100 -70261 0 19666 81502 
80 -89927 -19666 0 61836 
120 -151763 -81502 -61836 0 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 100 80 120 
60 -104557 -34296 -14630 47206 
100 -34296 -104557 -84891 -23056 
80 -14630 -84891 -104557 -42722 
120 47206 -23056 -42722 -104557 
Positive values show pairs of means that are significantly different. 
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Oneway Analysis of Week 6 Cell # By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 5.8741e+10 1.958e+10 49.2456 0.0013 
Error 4 1590422455 397605614  
C. Total 7 6.03314e10  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 80 100 120 
60 0 61834 87761 233548 
80 -61834 0 25927 171714 
100 -87761 -25927 0 145788 
120 -233548 -171714 -145788 0 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
4.07087 

Abs(Dif)-LSD 60 80 100 120 
60 -81173 -19339 6587 152375 
80 -19339 -81173 -55247 90541 
100 6587 -55247 -81173 64614 
120 152375 90541 64614 -81173 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 60 Cell # By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 2 8855489021 4.42774e9 1.2524 0.3623
Error 5 1.76771e10 3.53543e9
C. Total 7 2.65326e10
Means Comparisons 
Dif=Mean[i]-Mean[j] 6 4 2
6 0.0 74151.8 79188.2
4 -74151.8 0.0 5036.4
2 -79188.2 -5036.4 0.0
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.25387 

Abs(Dif)-LSD 6 4 2
6 -193473 -102464 -97428
4 -102464 -157970 -152934
2 -97428 -152934 -157970
Positive values show pairs of means that are significantly different. 
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Oneway Analysis of 80 Cell # By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 2 1.87212e10 9.36061e9 17.7091 0.0054
Error 5 2642875222 528575044
C. Total 7 2.13641e10
Means Comparisons 
Dif=Mean[i]-Mean[j] 6 4 2
6 0 102245 118741
4 -102245 0 16496
2 -118741 -16496 0
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.25387 

Abs(Dif)-LSD 6 4 2
6 -74808.9 33954.4 50450.0
4 33954.4 -61081.2 -44585.6
2 50450.0 -44585.6 -61081.2
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 100 Cell # By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 2 8023554493 4.01178e9 4.5757 0.0742
Error 5 4383773201 876754640
C. Total 7 1.24073e10
Means Comparisons 
Dif=Mean[i]-Mean[j] 6 4 2
6 0.0 56652.3 81163.0
4 -56652.3 0.0 24510.6
2 -81163.0 -24510.6 0.0
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.25387 

Abs(Dif)-LSD 6 4 2
6 -96347.1 -31300.2 -6789.5
4 -31300.2 -78667.1 -54156.5
2 -6789.5 -54156.5 -78667.1
Positive values show pairs of means that are significantly different. 
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Oneway Analysis of 120 Cell # By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Week # 2 578815023 289407512 5.0047 0.0640 
Error 5 289133546 57826709  
C. Total 7 867948570  
Means Comparisons 
Dif=Mean[i]-Mean[j] 4 6 2
4 0.0 7633.2 19527.8
6 -7633.2 0.0 11894.6
2 -19527.8 -11894.6 0.0
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.25387 

Abs(Dif)-LSD 4 6 2
4 -20203.1 -14954.5 -675.3
6 -14954.5 -24743.7 -10693.2
2 -675.3 -10693.2 -20203.1
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 0 GAG By Concentration 
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Oneway Anova 
Source DF Sum of Squaes Mean Square F Ratio Prob > F 
Concentration 3 0.37112887 0.123710 3.8958 0.0551 
Error 8 0.25403471 0.031754  
C. Total 11 0.62516358  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 100 80 120 
60 0.000000 0.073048 0.376239 0.392261 
100 -0.07305 0.000000 0.303191 0.319213 
80 -0.37624 -0.30319 0.000000 0.016022 
120 -0.39226 -0.31921 -0.01602 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 100 80 120 
60 -0.46594 -0.39289 -0.0897 -0.07368 
100 -0.39289 -0.46594 -0.16275 -0.14673 
80 -0.0897 -0.16275 -0.46594 -0.44992 
120 -0.07368 -0.14673 -0.44992 -0.46594 
Positive values show pairs of means that are significantly different. 



151 
 
Oneway Analysis of Week 2 GAG By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.16558488 0.055195 3.2879 0.0792 
Error 8 0.13429777 0.016787  
C. Total 11 0.29988265  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 100 80 120 
60 0.000000 0.014583 0.219451 0.260881 
100 -0.01458 0.000000 0.204868 0.246297 
80 -0.21945 -0.20487 0.000000 0.041430 
120 -0.26088 -0.2463 -0.04143 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 100 80 120 
60 -0.33878 -0.3242 -0.11933 -0.0779 
100 -0.3242 -0.33878 -0.13391 -0.09248 
80 -0.11933 -0.13391 -0.33878 -0.29735 
120 -0.0779 -0.09248 -0.29735 -0.33878 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 4 GAG By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.22316000 0.074387 2.2756 0.1568 
Error 8 0.26151516 0.032689  
C. Total 11 0.48467517  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 80 100 120 
60 0.000000 0.118975 0.162049 0.377216 
80 -0.11898 0.000000 0.043074 0.258240 
100 -0.16205 -0.04307 0.000000 0.215167 
120 -0.37722 -0.25824 -0.21517 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 80 100 120 
60 -0.47275 -0.35377 -0.3107 -0.09553 
80 -0.35377 -0.47275 -0.42968 -0.21451 
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q* 

100 -0.3107 -0.42968 -0.47275 -0.25758 
120 -0.09553 -0.21451 -0.25758 -0.47275 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 6 GAG By Concentration 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.10779934 0.035933 1.3286 0.3313 
Error 8 0.21637248 0.027047  
C. Total 11 0.32417182  
Means Comparisons 
Dif=Mean[i]-Mean[j] 60 100 120 80 
60 0.000000 0.143309 0.196455 0.255994 
100 -0.14331 0.000000 0.053147 0.112686 
120 -0.19646 -0.05315 0.000000 0.059539 
80 -0.25599 -0.11269 -0.05954 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 60 100 120 80 
60 -0.43001 -0.28671 -0.23356 -0.17402 
100 -0.28671 -0.43001 -0.37687 -0.31733 
120 -0.23356 -0.37687 -0.43001 -0.37048 
80 -0.17402 -0.31733 -0.37048 -0.43001 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 60 GAG By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.02715937 0.009053 0.1446 0.9303
Error 8 0.50077633 0.062597
C. Total 11 0.52793570
Means Comparisons 
Dif=Mean[i]-Mean[j] 0 4 6 2 
0 0.000000 0.048926 0.089364 0.128138 
4 -0.04893 0.000000 0.040438 0.079212 
6 -0.08936 -0.04044 0.000000 0.038774 
2 -0.12814 -0.07921 -0.03877 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
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q* 

3.20238 
Abs(Dif)-LSD 0 4 6 2 
0 -0.65419 -0.60526 -0.56483 -0.52605 
4 -0.60526 -0.65419 -0.61375 -0.57498 
6 -0.56483 -0.61375 -0.65419 -0.61542 
2 -0.52605 -0.57498 -0.61542 -0.65419 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 80 GAG By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.08172200 0.027241 2.4740 0.1360
Error 8 0.08808536 0.011011
C. Total 11 0.16980736
Means Comparisons 
Dif=Mean[i]-Mean[j] 4 6 2 0 
4 0.000000 0.177457 0.179688 0.208338 
6 -0.17746 0.000000 0.002231 0.030880 
2 -0.17969 -0.00223 0.000000 0.028650 
0 -0.20834 -0.03088 -0.02865 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 4 6 2 0 
4 -0.27437 -0.09691 -0.09468 -0.06603 
6 -0.09691 -0.27437 -0.27214 -0.24349 
2 -0.09468 -0.27214 -0.27437 -0.24572 
0 -0.06603 -0.24349 -0.24572 -0.27437 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 100 GAG By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.04693408 0.015645 1.2648 0.3499
Error 8 0.09895725 0.012370  
C. Total 11 0.14589133  
Means Comparisons 
Dif=Mean[i]-Mean[j] 0 2 4 6 
0 0.000000 0.069673 0.137927 0.159625 
2 -0.06967 0.000000 0.068253 0.089951 
4 -0.13793 -0.06825 0.000000 0.021698 
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Dif=Mean[i]-Mean[j] 0 2 4 6 
6 -0.15962 -0.08995 -0.0217 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 0 2 4 6 
0 -0.29081 -0.22113 -0.15288 -0.13118 
2 -0.22113 -0.29081 -0.22255 -0.20086 
4 -0.15288 -0.22255 -0.29081 -0.26911 
6 -0.13118 -0.20086 -0.26911 -0.29081 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 120 GAG By Week # 
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Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.03315500 0.011052 0.4956 0.6954
Error 8 0.17840118 0.022300
C. Total 11 0.21155618
Means Comparisons 
Dif=Mean[i]-Mean[j] 6 2 0 4 
6 0.000000 0.103200 0.106441 0.140322 
2 -0.1032 0.000000 0.003242 0.037122 
0 -0.10644 -0.00324 0.000000 0.033881 
4 -0.14032 -0.03712 -0.03388 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 6 2 0 4 
6 -0.39046 -0.28726 -0.28402 -0.25014 
2 -0.28726 -0.39046 -0.38722 -0.35334 
0 -0.28402 -0.38722 -0.39046 -0.35658 
4 -0.25014 -0.35334 -0.35658 -0.39046 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of Week 6 Type II Collagen  By Concentration 
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All Pairs
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 0.05  

Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Concentration 3 0.00008827 0.000029 94.8396 <.0001 
Error 8 0.00000248 0.000000  
C. Total 11 0.00009076  
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Means Comparisons 
Dif=Mean[i]-Mean[j] 100 80 60 120 
100 0.000000 0.005987 0.006385 0.006385 
80 -0.00599 0.000000 0.000398 0.000398 
60 -0.00638 -0.0004 0.000000 0.000000 
120 -0.00638 -0.0004 0.000000 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 100 80 60 120 
100 -0.00146 0.004531 0.004928 0.004928 
80 0.004531 -0.00146 -0.00106 -0.00106 
60 0.004928 -0.00106 -0.00146 -0.00146 
120 0.004928 -0.00106 -0.00146 -0.00146 
Positive values show pairs of means that are significantly different. 
 
Oneway Analysis of 100 Type II Collagen By Week # 
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 0.05  

Oneway Anova 
Source DF Sum of Squares Mean Square F Ratio Prob > F
Week # 3 0.00007229 0.000024 13.5837 0.0017
Error 8 0.00001419 0.000002
C. Total 11 0.00008648
Means Comparisons 
Dif=Mean[i]-Mean[j] 6 4 2 0 
6 0.000000 0.004077 0.005903 0.006114 
4 -0.00408 0.000000 0.001826 0.002037 
2 -0.0059 -0.00183 0.000000 0.000211 
0 -0.00611 -0.00204 -0.00021 0.000000 
Alpha=0.05 
Comparisons for all pairs using Tukey-Kramer HSD 

q* 
3.20238 

Abs(Dif)-LSD 6 4 2 0 
6 -0.00348 0.000594 0.002421 0.002632 
4 0.000594 -0.00348 -0.00166 -0.00145 
2 0.002421 -0.00166 -0.00348 -0.00327 
0 0.002632 -0.00145 -0.00327 -0.00348 
Positive values show pairs of means that are significantly different. 
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APPENDIX D: Stress Relaxation Data 
 

Extension versus time and load versus time curves used to construct the equilibrium 
stress versus strain curves in the stress relaxation mechanical testing. 
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Equilibrium stress versus strain curves used to determine the equilibrium stiffness in 
the stress relaxation mechanical testing. 
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