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Natural weathering and wear of structural materials in service nearly always 

generate surface roughness, and follow the Central Limit Theorem prediction for surface 

topology. This study couples experimental and statistical theory, and FEM to extend 

knowledge of life of materials from initial service surface conditions through surface 

damage accumulation.  Statistical moments and other parameters were correlated with 

fracture locations probability (H/N), versus auto correlation length, and depth. As the 

surface grows to a full Gaussian, H/N increases its dependence on profile’s Average and 

RMS Roughness, and derived parameters. This dependence shows an asymptotic limit 

behavior that approaches agreeably Griffith’s crack criterion, though with multiple pit 



xi 

locations. Importantly, a Transitional Region was observed, below which the probable 

location of fracture is uncorrelated to the parameters studied. This is because introduced 

roughness is insufficient to compete with impurities, internal and external manufacturing 

flaws, and scratches, due to handling and machining, on the samples.
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Chapter 1 Introduction 
 

 

1.1 Economic Motivation 

Despite the fact that catastrophic failure offers profits for attorneys and consulting 

engineers, such events are damaging to the economy as a whole. Undoubtedly, the 

economic cost of fracture and its prevention is quite large [1, 26]. Regardless of the 

considerable advancement on our understanding of material fracture, still structures are 

overdesigned as to assure reliability, thus increasing their cost [27]. A study by the 

Department of Commerce completed in past years showed that the annual cost of fracture 

(not including the effects of wear or corrosion) of materials in the United States 

represented about 4% of the Gross National Product (GNP), which infers a rather 

significant use of resources and manpower [26]. According to similar studies, if wear and 

corrosion effects were added to that noteworthy figure, costs would elevate to about 10% 

of the GNP [1]. Europe has reported comparable percentages [28]. Therefore, it is quite 

reasonable to assume that similar to higher values are likely to apply to all developed 

countries [1]. 

 

1.2 Basic Concepts 

Roughness is one of the main factors influencing wear and crack initiation and propagation 

[29]. Under some proper loading, valleys of rough surfaces can be thought of as surface 

crack initiators [30]. By surface, it is meant the geometrical boundary between a solid and 

the environment. Now, Random Roughness (RR) has been defined as the standard error of 
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Fig. 1.2- Fractured denture 

individual elevations after oriented roughness 

has been removed [2]. Or analogically stated, 

RR can be described as the standard deviation of 

elevation from a plane across a tilled surface, 

once oriented roughness is considered for. The 

influence of Random Roughness on surfaces is 

very important as it is a phenomenon that 

continuously takes place in nature and on engineering surfaces [21]. It can reasonably be 

stated that virtually, under some fine-scale spatial resolution, RR is present almost 

everywhere, figure 1.1 [36, 37]. For instance, textures of most engineering surfaces, which 

are a function of both its production process and the nature of the parent material, are 

random [3].  It is, therefore, of much interest to further understand the effects of random 

roughness on material failure as it models real situations.  

 

1.3 Some Applications  

Early predictions of mechanical failure on surfaces that roughen randomly will be 

beneficial to several fields including Dentistry [4, 

5], Micro/NanoElectro-Mechanics [6, 7, 8], 

Coatings [16, 39, 40], Mineralogy [41, 42], etc. 

In the field of Dentistry, it has been strongly 

emphasized the effects that surface topology has 

Fig. 1.1- Even seemingly flat areas of a surface are rough 

under some fine-scale spatial resolution 
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on the life of oral prosthesis. For example, from the dental laboratory perspective, one of 

the 4 most common causes of fractures in implant-supported removable dentures (see 

figure 1.2) is roughness and wear of the posterior teeth to the point of loss of vertical 

dimension of occlusion resulting in anterior teeth fracture/debonding [5].  

 Much study has been done trying to characterize and predict the influence of roughness on 

Micro/Nano Electromechanical devices. For example, the influence of random roughness 

on cantilever sensitivity and resonance frequency has recently been studied [6,7] and 

cantilever Bending with rough surfaces was previously well studied by Jorg Weissmuller 

et al., who concluded that roughness has a non-negligible effect on the cantilever 

sensitivity [8]. 

Failure of coating films (figure 1.3) takes 

place after the loss in barrier integrity due 

to the accumulated damage of small scale 

weather-induced degradation events. 

These events imprint a random rough 

damage on the coating surface, and, under 

some type of loading, it leads to chain 

scission, and then probably, to coating fracture [18]. A hefty number of investors have 

obvious interest in predicting the service life of polymeric products exposed to the 

environment, as these represent, for example, the protective coatings of many structures in 

service [32]. It has been found that the cracks in the coating of gas turbine blades act as an 

initiator for the thermal fatigue crack [31]. Economical and safety reasons are among the 

Fig. 1.3- Failure coating films 
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most important benefits to gain from more accurate service life predictions of coatings 

[32]. These needs are more extensively expressed in a symposium entitled “Service Life 

Prediction” [9], which for the sake of conciseness of the present work, have been left to the 

choice of the reader. 

1.4 Background and Proposed Study 

Ever since the awakening of fracture mechanics in the 1950’s, much study has been carried 

out to try to correlate structure failure with different geometrical discontinuities and 

singularities, and relationships for, in particular, stress concentration factor, Kt, are widely 

known for these [1,13,17, 18]. Moreover, with the advent, and continuous refinement, of 

Finite Element Modeling (FEM) much more complex geometries and customized 

problems have been able to be resolved and predict failure accurately [33, 34,35].  Tada, 

Paris and Irwin made an important contribution of 30 years of work on developing and 

compiling a comprehensive source of formula and stress analysis information on crack 

problems, particularly for very specific geometric flaw shapes and periodic patterns [10]. 

Howbeit, understanding of surfaces with randomly concentrated pits of ablation and their 

correlation to material properties need still much study [43, 44].  Moreover, in comparison 

to fracture of metals, research of the behavior of fracture for nonmetals, is not still mature, 

whose understanding is vital to optimizing applications for the aforementioned fields [38, 

18].  

Now, as far as what type of surfaces should be considered, it is clear [22] that many 

surfaces are non-Gaussian; but it is equally clear that many surfaces are Gaussian [22]. 
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More importantly, a study of Gaussian surfaces should give a preparatory background for 

the study of non-Gaussian surfaces [12].  

Therefore, since constitutive models for deformation of amorphous material failure have 

been developed for fracture of well defined notches, the present study couples both 

experimental, statistical theory and finite element simulation to extend knowledge of 

materials failure by fracture, from initial service surface conditions and during random 

surface damage accumulation and environmental degradation. In practical terms, this 

endeavor is attempted by means of correlating profile and surface statistical parameters 

[23, 24, 25] of a dynamic surface that moves from a “flat” manufactured [21] to a Half 

Gaussian and, finally, to a Full Gaussian (early stages of wear) with respect to fracture 

location probabilities.  
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Chapter 2 Methodology 

 

 

 

Like in any engineering design, selection of processes, materials, dimensions, 

functional limitations, and resources are all interconnected and strictly related. Therefore, a 

proper algorithm to select a process must keep in mind, for instance, a type of material and 

the dimensions required, and so on, see figure 2.1. Following are the Material, Dimensions 

and Process used in this study, while keeping functionality and standard testing in mind. 

 

 

 

 

 

 

 

2.1 Material Selection 

Random rough surfaces were to be mathematically modeled, and repeatedly developed 

on specimens through a method that generated reproducibility on the mechanical properties 

of the samples. Therefore, the challenges of selecting the proper material for this study 

stemmed from the following needs:  

 A material that could be easily ablated without causing secondary chemical and/or 

physical effects on the surface. 

Fig. 2.1- Algorithm to select the different aspects of the methodology 

Material 

Dimension Function 

Standards Process 
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 A material that could macroscopically be flat enough, in order to differ from the 

rather light damage that would be imprinted on it. 

 A material that would allow temperature to vary it from brittle to ductile, for future 

further study. 

 A material that could be mechanically tested with standard test procedures. 

 A material that could be made into the needed dimensions. 

The material selected was commercial Methyl Meth-Acrylate (PMMA) polymer (figure 

2.2b) made by Plaskolite and containing 99.5% Poly Methyl Methacrylate and 0.5% 

Methyl Methacrylate. Sheets of this material were purchased having dimensions of 36 

inches by 72 inches wide by 0.118 inches thick (figure 2.2a). Values of modulus and stress 

and strain at fracture were found through experimental procedures. Bending tests at room 

temperature and 0.2 in/min strain rate were carried out using an MTS (Insight 30) machine, 

graphs of which are sown in figure 2.2c-d. For a set of 10 samples, the average Elongation 

at break was 2.7% with a standard deviation of 0.4%, and the modulus was 2.2 GPa. 

Fig. 2.2 (a)-Sheets of PPMA.    (b)- Repeating Unit (Mer) of Polymer selected 

Fig. 2.2 (c)-Stress vs. Strain at Fracture for Acrylic selected.    (d)- Stress at Fracture for 10 standard (flat) samples 

Stress at Fracture vs. Strain at Fracture 

Average Stress = 76.0 MPa, SD=8.7 

Average Strain = 2.7 mm/mm, SD=0.4 
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2.2 Dimensions 

2.2.1 Overall Dimensions 

Unless otherwise specified, for all the experiments carried out in this study, the 

dimensions used (based on ASTM D 790 Standard Test Methods for Flexural Properties of 

Unreinforced and Reinforced Plastics and Electrical Insulating Materials), including for the 

tests in the aforementioned section, are those shown in figure 2.3. Note that thickness of 

the ablated area is highly exaggerated on that schematic. 

½  in =Wa 

Top View 

0.118 in = t 

½  in = Ws 

5 in=Ls 

Ablated Area 

Side View 

Fig. 2.3 (a,b)-Dimensions of specimen: (a)Top view, (b) Side View. (c,d)- Actual photos of specimens  
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Actual depth of the damaged region is in the order of the thousandths of specimen’s total 

thickness, which in absolute terms is in the range of 2 to 60 micrometers approximately.   

 

2.2.2 Ablated Region Dimensions 

Two parameters were used to develop a whole spectrum of random rough surfaces, 

namely, Auto Correlation Length (ACL) and Deepening Step (D).  ACL is defined as a 

surface roughness parameter that provides spatial information of surface topography that is 

not included in amplitude parameters such as root-mean-square roughness. In relation to 

the Auto Correlation Function (ACF), the ACL is defined as the length over which the  

 

 

 

 

 

 

 

 

 

former drops to a small fraction of its value at the origin, typically 10% of its original 

value. Much information about the randomness of a surface can be understood from its 

ACL. The degree of randomness of a surface increases with an increase in the magnitude 

of its ACL. 

ACL (micrometers) Wa=Ws=W (mm) ACL/W(pcm) 

10 12.7 78.7 

30 12.7 236.2 

45 12.7 354.3 

60 12.7 472.4 

90 12.7 708.7 

Table 2.1- Some of the used values for Auto Correlation Length compared to 

Total ablated dimensions. 
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Some values of ACL/W (where W=Ws=Wa=0.5 inches) are shown in table 2.1. Note that 

the units are in metric and that of ACL/W is in percent mille (pcm).    

Deepening is intended to emulate the dynamic increase of surface damage into the 

bulk of the material. As it will be explained in more detail in chapter three, initially the 

surface is half Gaussian (HG) and it grows into an approximately full Gaussian (FG) 

surface.  Deeper surfaces (D>45) were also studied in order to verify that, as surface 

damage becomes large enough, the behavior is similar to what traditional models predict 

(i.e. Griffith’s crack criterion, provided that the several flaws are approximated as a single 

average one). The process of deepening was chosen to be a linear one, mostly because this 

study is more concern with the end stages as supposed to the paths themselves. Moreover, 

since the steps of deepening considered are rather fine, the process could accurately 

simulate a continuous one. A deepening step zero (D=0) represents an initial HG surface, 

while D=45 represents a FG surface. Now, since the process of Laser development (see 

Fig. 2.4: a) Empirical correlation relationship between deepening parameter, D and RTD. 

b) Plots of (left) D=0 (HG) surface and (right) D=45 (FG) surface. Both surfaces developed with ACL=45  
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section 2.3.1) required calibration for the acrylic used, a relationship of true depth versus D 

needed to be developed, which in fact is shown in figure 2.4a. So, for example, D=45 (FG 

surface) represents an increase of about 10 micrometers from the initial surface (D=0). For 

the sake of comparison, figure 2.4b shows “D=0” and “D=45” surfaces developed using 

ACL=45. Also, Table 2.2 shows some of the values of D used compared to the overall 

thickness of the specimens. Included in that table are values of the corresponding Relative 

True Depth (RTD) which is the true distance, in micrometers, with respect to the initial HG 

surface. Maximum Absolute True Depth (ATD) values for a FG surface are around 45 

micrometers, which represent about 15 thousandths of the specimen’s total thickness. 

D (steps) RTD (micrometers) RTD/t (thousandths) 

0 0 0 

15 3.33 1.11 

30 6.67 2.22 

45 10 3.33 

2.3 Experimental Process 

 The entire process followed in this study has been depicted in the Procedure Flow 

Diagram shown in figure 2.5. This chapter will cover the experimental part of the process, 

i.e. laser ablation/cutting, profiling measurements, Mechanical Testing and High 

Resolution Scanning photographing, leaving the Mathematical Model part for chapter 3 

and Measurements and Analysis for chapter 4. 

Side View 

Table 2.2 Some of the used values for D and the corresponding RTD, and ratio RTD over specimen thickness. 
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Mathematical Model Laser 

Ablation/Cutting 

Profiler Measurement 

Mechanical Testing HRS 
Measurements 

&  

Analysis 

FEM 

Fig. 2.5 Entire Procedure Flow Diagram of Study  

 

2.3.1 Laser Ablation/Cutting  

 2.3.1.1 Laser System 

After the random surfaces were mathematically 

modeled and digitally developed by making use 

of the Direct Convolution Method (DCM) 

developed by Bergstrom (see chapter 3), via a 

Matlab code, these were vector-cut and 3-D 

engraved. A laser machine of the type 

Mini Epilog 30 watt (figure 2.6) was 

utilized for this part of the process, this 

equipment uses CO2, with a resolution of 

10 microns. This spot size resolution is 

Fig. 2.6- CO2 based laser system used to cut and ablate 

acrylic shims. 

50 µm 

Fig. 2.7- Micrograph of ablated PMMA proving the 

manufacturer’s claim of Laser’s resolution = 10 microns. 
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precisely the reason why the minimum ACL of 

10 was selected, since lower ACL would not 

have been able to be accurately reproduced by 

this device.  

Shown in figure 2.7 is a micrograph of the 

smallest features obtained with this CO2 system. 

Note the wavelength of about 10 microns 

etched. Also note the tiny circular shaped 

features produced by sparks which would be non negligible if ACL was below 10 

micrometers. Also, it is important to mention that high frequency mode was selected in 

order to obtain higher fine-resolution output. Figure 2.8 shows a sketch of the difference 

between low and high frequency modes. Note for instance that, for cutting, low frequencies 

produce a perforation as opposed to the continuous cut obtained with high frequencies 

pulsing. 

2.3.1.2 Calibration 

Since depth’s output and resolution depends strictly on the particular application and 

Fig. 2.8- Contrast of Low and High Frequency modes 

Fig. 2.9- True Ablated Depth versus Grey Scale non linear curve, and Linear Portion taken from it. 



14 

material used, calibration needed to be carried out in order to correlate the digitally 

developed grayscale bitmaps (representing rough surfaces) with True Ablated Depth 

(TAD). Calibration was performed using 600 dots per inch resolution on the laser printing 

specifications. This value was consistently used throughout the procedure and experiments, 

as well.  A feature called 3-D engraving was used for the experiments. This laser feature 

understands grayscale in a way shown by the graph of figure 2.9. As it can be noticed, the 

curve is non linear and possesses an “S” shape, approximately. However, for Percent Black 

(PB) of between 30 to 80% the curve behaves rather linearly. A least squared fit was 

carried out to find a relationship between TAD and PB, which resulted in: 

687.29*1208.1  PBTAD  (eq. 2.1)                                                                   

With a Coefficient of Determination, R
2
=0.9948. Equation 2.1 was used in combination 

with the procedure to be shown in chapter 3, in order to transform properly to the surface-

grayscale bitmaps developed using the mathematical model. 

2.3.2 Profile Measurements 

Profile measurements were carried out using an XP Stylus Profiler, which is a 

TAD based on equation 2.1 

Average TAD Profiled 

Fig. 2.10- Profile showing TAD compared to that obtained from equation 2.1 
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computerized, high-sensitivity surface profiler that measure roughness, waviness, and step 

height in a variety of applications. It features the ability to measure precision step heights 

from under 10 Å to as large as 100 microns and provides more than five orders of 

magnitude of precision Z height measurements. 

Laser-ablated samples were profiled in order to compare the precision of our process 

combined with the accuracy of equation 2.1. Figure 2.10 shows an actual scanned profile. 

It also shows the average TAD that was etched with CO2 laser system used and how it 

compares with the target TAD predicted by empirical equation 2.1. The difference lies 

between 3-5%, which represents about 2-3 micrometers of true depth in average.  

 

2.3.3 Mechanical Tests 

PMMA beams having dimensions shown in figure 2.3 were bent using standard ASTM 

D790 3-Point Bending Tests using an MTS machine, as depicted in figure 2.11. The Test 

parameters are shown in table 2.3. It is important to notice the value of the strain rate as it 

is one of the major parameters that affects the mechanical behavior of polymers. Also, all 

Fig. 2.11- One of the D790 3-point ASTM standard Bending test performed.  
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tests were performed at around 20 degrees Celsius which is well below the Glassy-to-

Leathery transition temperature for PMMA. This is evidently proved by a simple 

comparison of the stress-strain curves obtained, figure 2.12a, with graphs produced by T.S. 

Carswell and H.K. Nason and published by ASTM [19], which is shown in figure 2.12b. 

This latter curve was developed from tensile tests, which explains why the moduli appear 

to have different values (one is flexural modulus and the other is Young’s modulus of 

elasticity). What wanted to be emphasized is the similar mechanical behavior under similar 

temperatures. 

 

 

 

 

 

 

 

 

 

Fig. 2.12- (a) PMMA mechanical bending behavior from present study; (b) PMMA mechanical tensile behavior from 

experiments reported by ASTM (Carswell and Nason 1944) 

Table 2.3- Parameters and values used in the 3-point bending tests  

Parameters Value 

Strain Rate 0.2 inches/second 

Span length 3 inches 

Thickness 0.118 inches 

Width 0.5 inches 

 

0.2 in/min 
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An array of various values of ACL and D led to a total of 90 types of repeatable rough 

surface specimens to be 

bent. Moreover, 10 

different random 

roughnesses were 

developed which totals 

900 types of specimens, 

not all of which were 

bent. Figure 2.13 shows 

a photo of a small portion of the roughened acrylic specimens after bending-to-fracture 

tests were performed on them. 

 

2.3.4 High Resolution Scanning (HRS)  

After specimens were bent to fracture, HRS was performed to sets of them in order to 

digitally measure fracture locations. It might be worthwhile mentioning that this was also 

done in order to compare the top view aspect of the digitally-developed grayscale-bitmap 

surface with the actual laser-ablated ones, which is shown in figure 2.14. (Recall that 

comparison of depth was discussed in section 2.3.2).  HRS was performed using an HP 

Scanjet G4050 device; scans were saved into Tagged Image File Format (tiff) files with an 

output resolution of 1200 pixels per inch (PPI). Notice in figure 2.14 that while on the gray 

scale plot, darker means deeper, on the actual HRS photos lighter color means deeper. 

Fig. 2.13- Portion of sets of already-broken specimens  
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As mentioned before, in developing our specimens ACL was varied from 10 to 90 in steps 

of 10, which infers 9 values for ACL (NACL=9). Also, D was varied from 0 (HG) to 45 

(FG) in steps of 5, which means 10 values of D (ND=10). Additionally, random surfaces 

were developed 10 times, therefore having 10 different types of random models (NRR=10).  

This means that, NACL* ND* NRR= 900 types specimens were digitally developed for the 

present study.  Furthermore, for each type of digitally-developed specimen, 14 specimens 

(Ns=14) were laser-ablated, two of which were kept (not bent) for other study purposes. 

Only strategic types of specimens were needed in order to cover the entire spectrum of the 

scope of this study. So, selection was made for ACL=10, 45, 90; likewise, D=0, 15, 30, 45. 

Higher values of D, 90 and 135 were also studied. These were laser-developed twice (and 

for some types of specimens even three times) in order to confirm results.  Figure 2.15 

shows HRS photos for ACL=10, 45 and 90, and D=0, 15, 30, and 45, for 12 specimens. 

Each one of the three blocks is a type of ACL with D increasing downwards.    

Fig. 2.14- Matrices plots (top) and HRS pictures of actual shims (bottom) for, (a) ACL=10 microns, (b) ACL=45 

microns, (c) 90 microns. 
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Fig. 2.15- HRS photos of 144 specimens. Upper Block: ACL=10, Middle Block: ACL=45, Lower Block: ACL=90. At each block 

there are 4 lines of specimens. Each line corresponds to a different value of D, increasing downward. D=0, 15, 30, and 45. 
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CHAPTER 3 Mathematical Model 

 

 

This chapter covers the reasons for and the actual process of the mathematical 

model used to develop the random rough surfaces and simulation of the dynamic 

degradation process. 

3.1 Central Limit Theorem and Convolution 

Natural weathering and wear of structural materials in service nearly always generate 

surface roughness, as weathering is an accumulation of vast numbers of small, random 

assaults and thus follows the Central Limit Theorem (CLT) prediction for surface 

topology.  CLT explains the behavior of the sum of random variables. One of the most 

commonly used forms of the theorem is as follows. Let Z1…Zn be random variables with 

sum, 



n

k

kZS
1

, then CLT predicts that the S will have a Gaussian distribution provided 

that: 

1. Each summand that is not negligible compared to the dispersion of the entire sum 

has a distribution close to Gaussian. 

2. The maximum of the absolute value of the negligible summands is itself negligible 

compared to the dispersion of the sum. 

And, since convolution is directly related to the probability distribution of S, then what is 

being said, in basic terms, is that a random signal (in our case, a random surface), or 

whatever other signal, when it is convoluted by itself several times, it grows very rapidly 
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into a Gaussian distribution. A simple code to show this fact is depicted in figure 3.1. The 

first graph is a randomly generated signal, called f; the second graph is the convolution of f 

by itself; the third and fourth are the convolution of f 3 and 4 times, respectively. As it can 

clearly be seen, normal distribution is attained rather quickly. So our approach consists on 

developing a random rough surface with Gaussian behavior, which signifies the final 

surface, and “pushing” it into an ideally perfect surface, step by step, 

as though imitating, for instance, a natural weathering process, as 

depicted in figure 3.2. In our case, the process will start with a Half 

Gaussian (HG) surface and ends with Full Gaussian (FG) one.  

Now, it is well known that if a distribution follows the Gaussian (also 

called normal) behavior, then its probability distribution function is:  

2

2

2

)(

2

1
)( 










x

exP   On the domain (-,)        (eq. 3.1) 

Fig. 3.2 “Pushing in” a 

Gaussian Surface 

Fig. 3.1- A visual prove of how a random surface (or signal) when convoluted by itself grows into Gaussian. Notice that 

it only takes 4 convolutions to clearly see “bell-shape” Gaussian distribution.  
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Where s is the Standard Deviation and µ is the mean. Commonly (3.1) is normalized by 

taking µ=0 and s2
=1. Or a change of variable is performed on (3.1) using, 



)( 


x
Z                                                               (eq. 3.2) 

Carrying out this change of variables, one gets:                                                     

dzedxxP

z

2

2

2

1
)(






                            (eq. 3.3) 

(This rescales the roughness). 

3.2 Random Rough Surface Generation 

For this study, random surfaces were generated using a pseudo random generating 

function, Random(x), in Matlab®), that utilizes a multi-seed approach and it can generate 

up to 2
1492

 numbers before repeating itself [20]. 

Let the depth of the surface be a function of x and y, according to the coordinate system 

shown in figure 3.3, such that, 

),(),( yxRandomyxz                         (eq. 3.4) 

Which implies that z is a random (normally 

distributed) variable with mean zero and standard 

deviation, s. Assuming isotropy in the x-y plane, 

then we defined the Gaussian filter f  as,     

2

2

),,( ACL

r

eACLyxf


                    (eq. 3.5) 

Where 22),( yxyxr                (eq. 3.6) 

X 

Z 

Y 

Fig.3.3-Rectangular coordinate system with 

respect to a surface  
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Applying the Direct Convolution Method, DCM, [11]: 










1

0

2

)]()([
12 N

k

N

kni

efDFTzDFT
N

L
ACLN

Fbergstrom




                           (eq. 3.7) 

Where N= number of grids along each axis. (N=600 was used) 

ACL=auto correlation length (varied from 10 to 90, in steps of 10) 

L: for this application, L=N 

DFT is the Discrete Fourier Transform, so in eq. 3.7, the two expressions can be written as, 







N

n

N

kni

enzzDFT
0

2

)()(



                                                (eq. 3.8)          

And similarly, 







N

n

N

kni

enffDFT
0

2

)()(



                                             (eq. 3.9)                  

A Matlab code called “Raw Arrays” that carries out all these calculations is shown in 

Appendix A. 

 

3.3 Surface Truncation and Replacement 

 Next, the Gaussian surface is truncated and replace back by taking the average location 

and only including values below that average. D=0 stands for complete truncation and no 

replacement; D=5, 10, and 15 represent 5, 10, 15 points, respectively, of replacement of 

surface after truncation. A simple pseudo code, representing that, follows: 

           For D=0 until 45 by steps of 5 

         fBergstrom(i)=fBergstrom+D; 

     

   For all i 
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       Surface(i)=(fBergstrom(i)>0).*fBergstrom(i); 

 

Next, normalization and some transformations of the arrays were carried out for three main 

reasons: 

1. Grayscale was to be used to interpret depth,  

2. The linear section of the gray scale in figure 2.9 goes from 30-80%,and  

3. The program language used (Matlab) interprets 0 (zero) as 100% black and 1 

(unity) as 100% white. 

To explain this more clearly, an example could be rather useful. Let A be a matrix 

produced by the code “Raw Arrays”. Notice, that it is clear from the values shown after eq. 

3.7 that “Raw Arrays” produces Arrays having dimensions of 600 columns by 600 rows. 

So, let A be a 600x600 array such that, 



































........

........

........

...9913434167190

...5508925523

...111100567560

...908522320112

...45255255045

A
       

After normalization, A becomes B, by dividing by 255: 

 

 



































........

........

........

...388.525.133.655.745.

...216.0349.1090.

...435.392.220.294.235.

...353.333.875.788.047.

...176.110176.

B
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Notice, that the maximum value is indeed 255, which represents 100% black and after 

normalization becomes 1 (unity). However, as it was mentioned before, the programming 

language used (Matlab) interprets unity as 0% black; so, a proper transformation is needed, 

which leads to C: 



































........

........

........

...612.475.867.345.255.

...784.1651.091.

...565.608.780.706.765.

...647.667.125.212.953.

...824.001824.

C
 

 

3.4 Grayscale Transformation 

Finally, a second transformation (Matrix C to D) is needed to correct the values according 

the calibration relationship of grayscale versus real depth, discussed in Section 2.3.1.2. 

Values are rescaled between 30 percent and 80 percent black. So, if there is no ablation, 

the value is kept the same, but if is some ablation, this value is transformed using the 

equation from calibration. For example, total ablation (zero) is interpreted as 0.2, since this 

value is the greatest ablation that can be obtained within the linear region of the calibration 

curve, and very close to the absolute TAD. 

It can easily be shown that, 



 


1

2.05.0 ij

ij

C
D                          (eq. 3.10) 

1ijC
1ijC
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From this equation, it can be noticed that all entries of D v [0.2, 1], but there are no 

values in the interval [0.7, 1).  As explained before, 0.2 must represent 100% black. 

So, using C from the aforementioned example, D will look like: 

 

 

 

 

 

 

Matrix D is ready for grayscale 2-D plot to be used in the 3-D engraving mode on the CO2 

laser machine. Some of these plots can be seen in figure 3.4 for several values of D and 

ACL.  

 

 

 

 

 

 

 

 

Fig. 3.4- Grey Scale Plots for (Up): ACL=15, (Middle): ACL=30, and (Bottom): ACL=75. From left to right D=0, 20, 

45   



































........

........

........

...506.438.634.373.328.

...592.1523.2.655.

...483.504.590.553.583.

...524.534.263.306.677.

...612.2.2.1612.

D



27 

3.5 Surface Transformation to xyz format 

Even though Matrix D is ready for laser etching, however, it is not yet ready to be 

imported to a xyz datasheet to be used in statistical analysis and FEM. For this, yet another 

transformation needs to be carried out. The reason is, because D must be converted to TAD 

according to the results of equation 2.1.  At this point, there are several approaches, 

depending on which matrix (A,B,C, or D) is to be transformed to TAD. For the sake of 

continuity of this process, it has been chosen to transform D into a TAD matrix, which will 

be called E.  

Now, since the values of D are no longer those corresponding to x-axis of the plot 

of figure 2.9, a combined transformation must be performed to account for that. The result 

is a linear equation as following: 



 


0

046.8178.115 ij

ij

D
E                            <Eij> = micrometers         (eq. 3.11) 

  This matrix E is ready to be imported into the Finite Element Modeling Software 

and also to be used to calculate the different statistical parameters for both overall surfaces 

and profiles. Also, and for the sake of completion, E has been calculated for the example 

above, and the result is as follows: 

 



































........

........

........

...5.223.306.79.371.43

...5.1205.209.572.5

...1.257.227.120.175.13

...4.202.196.506.4582.3

...2.109.579.5702.10

E
 Micrometers 

1ijD

1ijD
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Some surfaces coming from matrices of the type E are shown in figure 3.5. Notice that for 

each ACL and D, 3 different views are depicted. 

 

3.6 Summary 

So, in summary,   

 The process simulated follows the Central Limit Theorem, and all the mathematical 

consequences of it. 

Fig. 3.5- Top, side and Perspective views of Surface Plots for (top): ACL=10, D=0; (middle): ACL=45, D=0; (bottom): 

ACL=45, D=45 
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 Gaussian Random rough Surfaces were developed using an exponential Auto 

Correlation Function (ACF) 

 The Direct Convolution Method developed by Harald Bergstrom [11] was used to 

simulate the dynamic degradation process. 

 Truncation of FG surface was performed and restoration was performed by steps. 

 Computer Codes were developed to perform these lengthy calculations for 90 types 

of surfaces. 

 Proper transformations of the arrays were carried out to account for how the laser 

system interprets gray scale, for TAD calibration, and for how the programming 

language interprets the grey scale. 

 Arrays of surfaces were made ready and imported for both Statistical Analysis and 

FEM. 

 

 

 

 

 

 

 

 

 



30 

CHAPTER 4 Statistical Analysis 

 

 

 

4.1 Fracture Mechanics 

 

It has been known for a long time that the presence of discontinuities in a material, subject 

to a remote load, introduces stress concentrations which depend, to a great extent, on the 

geometry, location and orientation of the discontinuity with respect to the overall 

dimensions [1, 18]. The Stress Concentration Factor, Kt, is defined as the ratio of the local 

stress to the remote stress: 

load

local
tK



                (eq. 4.1a) 

This implies that, 

loadtlocal K               (eq.4.1b) 

Fractures typically occur in locations where σlocal is high, see figure 4.1.  In equation 4.1b, 

the stress in the right hand side is due to the bending caused by the load. However, the 

Stress Concentration Factor, Kt, is some type of function dependent on the roughness of the 

surface, which is exactly what this study is trying to investigate. It is proposed that Kt can 

be written as, 





n

i

iit iyxFkyxK
0

),,(),(             (eq. 4.1c)       Where F(x, y, i) is some kind of polynomial 

function whose terms and respective exponents must be investigated. Also, ki are constants 

of the series. Intuitively, it can be stated that F(x,y,i) is a function related to the different 

statistical parameters of the rough surface. For a given point (x,y) on the surface, the 
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greater Kt is, the higher the probability fracture will occur at that particular point. So focus 

will be made on the correlation between statistical surface parameters with fracture 

location probability. 

 

4.2 Fracture Location Measurements 
 

After HRS images were produced, these were used to measure the location of fracture, see 

figure 4.1. Let the function H(xi) be the number of fractures that take place within a very 

small distance of the location 

corresponding to the line at xi. And let N 

be the total number of fractures. So that, 

H(xi)/N can represent both density 

and/or the probability of fracture at 

location xi.  Then, H and hence, H/N are 

directly proportional to Kt. 

A plot of H(x, D) for ACL=45 is shown in figure 4.2. Notice that the long horizontal axis 

Y 
 

 

X 
 

 

xi 
 

 

Line of Fracture 

Fig. 4.1 Fracture Location Measurement  
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in that plot represents location at every 5% of the total ablated width (Wa). Similar plots 

were developed for all specimens studied. Statistical calculations were performed for 

surfaces and profiles at every location xi. Consider Figure 4.3, showing an actual cross-

section profile at a particular location for initial and final conditions. Note that the y-axis of 

that profile plot is the ratio of TAD to total specimen thickness (t). 

Statistical Analysis of the data obtained was performed considering the following 

parameters: average roughness, RMS roughness, variance, kurtosis, skewness, maximum 

depth, slope and curvature for both surfaces and profiles along lines parallel to fracture 

lines, see figure 4.3.  So, statistical moments were evaluated using the following equations: 





N

i

iZ
N

m
1

1
                             (eq. 4.2a)                 




N

i

ia mZ
N

R
1

1
              (eq. 4.2b) 





N

i

i mZ
N

s
1

22 )(
1

                 (eq. 4.2c)                 
3

1
3

1




N

i

i mZ
Ns

Sk          (eq. 4.2d) 

   2

2

1

2 1
mmZ

N
R

N

i

iq  


      (eq. 4.2e)               
4

1
4

1




N

i

i mZ
Ns

K             (eq. 4.2f) 

Fig. 4.3- (Left) Lines parallel to fracture locations, (right) Profile along some line at Xi, for D=0 and D=45  
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For profiles, equations 4.2 give the Arithmetic Mean (m), Average Roughness (Ra), RMS 

Roughness (Rq),Variance (s
2
), Standard Deviation (s), the Skewness (Sk), and Kurtosis 

(K). Also, other profile parameters like the curvature, slope, and Gaussian Ratio were 

calculated using the following equations: 

 


















1

1

1

1

1
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N

i

ii

x

ZZ
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Z
xZ                            (eq. 4.3a)   
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1

                                      (eq. 4.3c) 

Equations 4.3a and 4.3b give the average slope, and average curvature of a profile at line x 

parallel to the y-axis. Equation 4.3c produces the Gaussian Ratio (GR) of a profile at line 

x.  Recall that, for Gaussian conditions, 


2
GR  

Also, the surface slope (surface gradient=SG) and the surface curvature (SC) at a given 

point, were computed in the following way [12]: 
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Where, each term of the above surface equations is obtained using the aforementioned 

profile equations. Besides the Maximum Depth (MD) in a profile, other derived parameters 

were included in this study, which are defined in section 4.7. 

Now, due to the facts that the actual fracture lines are relatively thick, and also that these 

lines are not straight, a partition of 20 theoretical fracture locations was performed, at each 

5% of Wa, see figure 4.3.  Since N=600, then each theoretical fracture location will 

correspond to 600/20=30 real profiles. Referring again to figure 4.3, one could easily 

visualize this by just imagining that in between every two of the 20 dotted lines, there are 

28 actual profiles accounted for. Therefore, for the computation of the aforementioned 

profile’s parameters and moments, average values of 30 profiles were taken.  

% Wa 
m RMS VAR SD K SK MAX SLOPE CURV 

0-5 
7.94E-06 3.93E-07 3.5E-11 5.46E-06 1.857 0.148 1.96E-05 -3.116E-05 0.0470 

5-10 
8.46E-06 4.26E-07 4.3E-11 6.12E-06 1.463 -0.109 1.88E-05 -8.937E-06 -0.3738 

10-15 
9.27E-06 4.54E-07 4.3E-11 6.17E-06 1.738 0.103 2.081E-05 4.8025E-19 -2.231E-14 

15-20 
9.25E-06 4.50E-07 3.9E-11 5.99E-06 2.167 0.109 2.276E-05 -1.340E-05 -0.19849 

20-25 
8.87E-06 4.66E-07 5.5E-11 7.16E-06 1.467 0.090 2.111E-05 2.409E-10 -0.1516361 

25-30 
9.37E-06 5.00E-07 6.6E-11 7.88E-06 1.533 0.173 2.338E-05 -5.449E-19 -2.175E-14 

30-35 
1.12E-05 5.68E-07 7.2E-11 8.30E-06 1.718 0.111 2.631E-05 2.177E-06 0.052383 

35-40 
1.02E-05 5.25E-07 6.3E-11 7.80E-06 1.807 0.111 2.551E-05 2.215E-05 0.000122 

40-45 
1.59E-05 7.60E-07 9.3E-11 9.61E-06 1.945 0.0835 3.175E-05 1.689E-05 0.0002488 

45-50 
1.88E-05 8.42E-07 7.1E-11 8.47E-06 2.749 -0.352 3.384E-05 1.833E-05 0.110 

50-55 
1.37E-05 7.18E-07 1.2E-10 1.10E-05 2.056 0.440 3.562E-05 1.344E-18 2.585E-15 

55-60 
1.241E-05 6.568E-07 1.084E-10 1.023E-05 2.465 0.566 3.679E-05 -9.773E-06 0.1065 

60-65 
1.273E-05 6.500E-07 9.644E-11 9.572E-06 3.720 0.789 4.080E-05 2.177E-05 -0.20950 

65-70 
1.216E-05 6.086E-07 7.981E-11 8.630E-06 2.465 0.241 3.267E-05 3.528E-05 0.051369 

70-75 
1.263E-05 6.228E-07 7.996E-11 8.561E-06 3.353 0.67335 3.596E-05 1.575E-05 -0.10125 

75-80 
1.045E-05 5.991E-07 1.174E-10 1.028E-05 3.790 1.16877 4.045E-05 1.650E-05 -1.388E-14 

80-85 
9.067E-06 5.344E-07 1.012E-10 9.455E-06 3.393 1.00584 3.577E-05 2.833E-05 -0.048 

85-90 
9.118E-06 4.88E-07 6.945E-11 7.758E-06 2.022 0.40932 2.711E-05 3.0785E-05 0.09557 

90-95 
9.659E-06 4.776E-07 5.1371E-11 6.608E-06 1.516 -0.13047 2.091E-05 2.4346E-05 0.18752 

195-00 
8.992E-06 4.464E-07 4.666E-11 6.235E-06 1.637 0.11004 2.078E-05 -7.638E-06 -0.0918 

Table 4.1: Example Table of Average Parameters computed at every 5% of Wa, for ACL=45 and D=45 
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This is actually a very accurate approximation since each partition only corresponds to a 

total length of 0.5”/20=0.025 inches or 635 micrometers.  Table 4.1 shows an example of 

this. 

4.3 Effects from Bending Moment, Second Moment of Area 

For a center-loaded, simply supported beam, with a rectangular shape, the maximum 

tensile stress occurs on the outermost point of the convex side at the center of the beam.  

I

Mz
            (eq. 4.5) 

Where “M” is the bending Moment, “z” is the distance from the neutral axis, and “I” is the 

Second Moment of Area, or Moment of Inertia. If the cross section was smooth and even, 

equation 4.5 could easily be evaluated.  However, roughness introduces changes in the 

evaluation of such equation, and the effects of M, z, and I must be investigated and 

accounted for, if non negligible. 

4.3.1 Effects from Bending Moment 

Since 3-point bending tests were performed, a linear v-shape curve was convoluted with all 

parameters to account for maximum bending stress in the center of the shim. This can be 

easily deduced from the fact that for a center-loaded simply supported beam, the 

Deflection and Moment equations are given by [13], (refer to figure 2.11): 

)43(
48

1
)( 32
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         (eq. 4.6a) 
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2

2

)(



                                (eq. 4.6b) 

Combining Equations 4.6, leads to the simple and linear relationship [1], 
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Fig. 4.4- Inverse V-shaped effect of bending moment on 

stress  


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)(

xslP
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Where “P” is the load applied and “sl” is the span length (see table 2.3). Now notice that 

Normalizing M(x)/Mmax and accounting for the 

fact that our length of interest (Wa) is only 1/6 

of the span length, a plot similar to that of figure 

4.4 is obtained.  

 

4.3.2 Effects of the Second Moment of Area 

The Second Moment of Area, or Moment of Inertia, I, with respect to an axis is the sum of 

the products obtained by multiplying each element of the area dA by the square of its 

distance from the orthogonal axis, or, 

 dAzI 2                       (eq. 4.8) 

Since obviously the distance from the neutral axis to the rough surface is changing, I must 

2
0

sl
x 

slx
sl


2

Fig. 4.5- Effect of Reciprocal of Moment of Inertia on Stress for a Random Surface with ACL=45 at various D 

(eq. 4.7) 
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be computed numerically at each particular location, see figure 4.3. The effects of I are 

shown in figure 4.5. Note the ordinate axis in that plot is the reciprocal of the ratio I/Iflat, 

where Iflat is the second moment of area of a perfect flat shim. Therefore, “I” has inversely 

proportional effects on the bending stress by a small yet noticeable value. For ACL=45, the 

reciprocal of “I” can increase the bending stress by up to the range 3-5%, depending on the 

depth of the surface (D). However, a combined effect is sought for and discussed starting 

in the next section. 

4.3.3 M, I, z Combined Effects 

Mixing the effects of Bending Moment,M, Second Moment of Area, I, and Distance to 

Neutral Axis, z, a combined effect is obtained. Figure 4.6 shows this for a RR surface with 

Fig. 4.6- Combined effects on a RR surface with ACL=45  

Fig. 4.7- Combined Effects of M, I and z on Standard Deviation of profiles along bending axis, for a RR surface with ACL=45. 

Notice that c in this plot stands for distance to neutral axis. 
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ACL=45, at various values of D. Notice that the dominating shape looks like the bending 

moment aspect of figure 4.4, however the maximum value near the center of the shim does 

not go to 1, this is due to the inflence of I and z. Applying these combined effects to, for 

example, the Standard Deviation, of some surface, a plot similar to that of figure 4.7 is 

obtained. Notice that these shapes are dependent on the RR of the surface but the Moment 

has the highest influence at this early stage of degradation. 

However, if D is increased by higher amounts, a more uneven effect is seen. For instance, 

for D=90 and 135, the combined effects seen in figure 4.6 are changed to those shown in 

figure 4.8. Notice in this case, that the Bending Stress (due to loading only) of a rough 

surface can reach up to about 98% of that of flat surface, as opposed to the 93% obtained 

with D=45. This is already saying that as ablation gets deeper, Stress Concentration due 

mere Bending Moment increases.  

These effects affect the value of σload, in equations 4.1a or 4.1b. So combining all these 

effects a relationship is proposed for the function H, as follows: 

Fig. 4.8- Combined effects on a RR surface with ACL=45, for D=90 and D=135 
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       H(x) 
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


               (eq. 4.9) 

Where the quotient in the RHS of (4.9) is the ratio of stress (due to bending 

moment) for a rough surface to that of a perfect flat surface, the rest of the variables and 

constants are as defined previously. The dependence of F on the parameters defined in 

equations 4.2, 4.3, and 4.4 is investigated next. 

 

4.4 Stress Concentration at the Interfaces 

Looking at the plot of figure 4.2, a rather siginificant value of H is noticed at both flat-to-

rough interfaces. This same trend was observed for medium ACL ( 7525  ACL , 

approximately). However, it was observed that for low ACL surfaces, H(0) and H(Wa) 

are not as significant. In General, these effects are due to high stress concentration caused 

by the irregularities in the flat-to-rough surface interfaces. This lead to the decision of 

investigating H away from the ends, approximately between 5%Wa and 95%Wa. This is 

actually in agreement with St. Venant’s Principle (St. Venant 1855) [14].  So from now on 

in the present study, and unless otherwise specificed, Fracture Location Probability (or 

Density) Function, H/N will be refered to as occuring away from the interfaces. 

 

4.5  Degree of Scatterness 

Let SD be a function such that: 

1

1

01

1






HH

H
D

NN

N
S            (eq. 4.10) 
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Where NH1 is the number of locations at which function H 0  and NH0 is the number of 

locations at which H=0. Then, we call SD the degree of scatterness of function H. Notice 

that when fracture takes place at every location, then NH0=0 and therefore SD=1, and so H 

is said to be Completely Scattered.  On the other hand, when there is only one location at 

which H is nonzero, i.e., fracture is completely localized, then SD vanishes. So SDv [0,1]. 

It is important to keep in mind, though, that SD could be misleading in cases where, for 

example, there are both one highly concentrated location ( a location where H is large) 

and several enough low concentrated locations (where H’s are very low). This is due to 

the fact that SD has been defined in such a way that it does no count for the weight of H at 

each location. However, for this particular study, equation 4.10 gives a good estimate of 

the degree of scatterness (dispersion) of H, since the total number of fractures (N) is not 

too large. 

  

4.6 Correlation 

Function H(xi/wa) for different ACL and D was correlated with the aforesaid moments and 

parameters defined in equations 4.2 thru 4.4, plus the ones to be discussed in later sections. 

Bivariate correlations were used to find Pearson’s product-moment correlation coefficient. 

The Pearson Coefficient is a dimensionless index that can measure linear dependence 

between two variables [15], in order words it is invariant to linear transformations of either 

compared variable. Pearson initially formulated a mathematical relationship for this rather 

important measure in 1895, as follows: 
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                (eq. 4.11) 

Where, A and B are any pair of variables to be compared. It can be proved, using the 

Cauchy-Swartz inequality that the absolute value of the numerator of equation (4.11) is 

less than or equal to the denominator which makes R be bounded such that, Rv[-1,1]. 

Now, examining more closely the best correlation possible that can be obtained with 

parameters and factors, it is notice that it is precisely the existence of points x0, such that 

H(x0) = 0, what impedes the correlation coefficient from becoming unity. A test of a 

perfectly correlated set of values was performed. Some of the values of one of two 

variables compared were substituted with zeros, in order to simulate a case similar to the 

results of our study. The idea was to explore the different extreme cases and to find the 

best maximum correlation obtainable. The results show that if all breaks occurs at one 

location, and this is, in turn, correlated perfectly to some parameter, then the Rmax=0.767. 

Notice that, as it was clarified this Rmax value was calculated for extreme case when there 

is only one location at which H is nonzero, i.e., when the degree of scatterness, SD, is zero. 

Also notice that, as SD increases Rmax increases. Conclusively, for a perfectly correlated 

pair of variables, Rmax ranges from 0.767 to 1.0, when SD goes from 0 to 1. This is very 

important to properly interpret the results obtained and to be presented in chapter 5. 

Now, let RHm be Pearson’s correlation coefficient between parameter “m” and 

function H/N. So, for example, the correlation between kurtosis, skewness, and max 

depth with H are represented as RHk, RHSk, RHMD, respectively.   
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4.7 Derived Parameters 

Since the Pearson’s correlation shows linear relationship, then other parameters resulting 

from the combination of the statistical ones must be also investigated. This discussion will 

start with a parameter proposed by Hinderliter et al. [16]: 

4

1

2))0((
1

)0(

)(












ssRMSRoughne

kt

Stress

tStress

G

G            (eq. 4.12) 

Where the subscript “G” comes from the fact that equation (4.12) was derived from 

Griffith’s criterion formula. “kt” can be interpreted as the surface RMS roughness at any 

time t, based on the Central Limit Theorem evolution of the surface. The ratio (4.12) is 

then directly proportional to the toughness of the polymeric coating. Its reciprocal then will 

be directly proportional to the Fracture Density, H/N. Since for some real cases (like the 

present study) the Average Surface correlates better than the RMS, then it is proposed here 

to use a parameter similar to the reciprocal of (4.12) but based on the Average Roughness 

(AR).  Both of these parameters are referred to, in this study, as the RMS HM-factor and 

the AVG HM-factor.  

Another parameter is 

proposed here based on 

the results developed by 

Inglis [17]. The first 

quantitative evidence for 

the stress concentration effect of flaws was provided by Inglis, who analyzed elliptical 

holes in flat plates [18]. His analyses included an elliptical hole 2a long by 2b wide with 

2b 2a 
σ 

σ 

2b 

P 

Fig. 4.9- Elliptical Hole in flat plate 
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applied stress perpendicular to the major axis of the ellipse (see figure 4.9). The stress at 

the tip of the major axis (point P) is given by: 











b

a
P

2
1          (eq. 4.13) 

So the Stress Concentration Factor, in this case, is given by, 











b

a
kt

2
1                   (eq. 4.14) 

If the elliptical hole of figure 4.9 is cut in half parallel to the minor axis, a notch of depth 

“a” is obtained. Now extending this idea to a multi-crack arrangement, an array of cracks 

of ai depth is obtained (figure 4.10). It is proposed here an average Stress Concentration 

Factor, defined as follows, 











ACL

AR
kt 21       (eq. 4.15) 

Where AR=Average 

Roughness and ACL is 

Auto Correlation Length. 

Despite the fact, that half 

the pit depth is being used, 

the factor 2 is kept based on 

the approximation also proposed by Inglis for a notch that is not elliptical except at the tip. 

In the results, the Stress Concentration Factor given by equation 4.15 is referred to as 

“Modified Inglis Factor”. Of course, secondary effects due to the presence of several pits 

close to each other are yet to be considered in the proposed formula (4.15); 

ai 

Fig. 4.10- Superposition of several half elliptical holes 
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notwithstanding, this is just an initial approximation. Besides the secondary effects due to 

the superposition of pits is essentially the purpose of this study. 

 

4.8 Finite Element Analysis 

Surfaces developed in Matlab® were imported into COMSOL® to observe the stress 

distribution via FEA. An interpolation function was used to interpret the surfaces as seen in 

figure 4.11.  This surface 

was then digitally 

“imprinted” on a block as 

shown in figure 4.12. 

Notice that since the 

damage is so small the 

roughness is barely seen. 

Also, notice that a 

cylindrical beam was included to simulate the actual ASTM’s D790 3-Point bending test 

that was used in the present study. Also, another approach was used that involved tensile 

loading on a thinner film, instead of the 

whole thickness. Normal and fine mesh were 

used. A sample of a normal mesh on the 

ablated area is shown in figure 4.13. A Linear 

Elastic Material physics under the Solid 

Fig. 4.11- Surface plot in COMSOL® 

Fig. 4.12- one of the two models simulated 
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Mechanics module was used.  For one 

case boundary tensile loads were used 

parallel to the x-axis. For another case, 

boundary loads were located as to 

produce a bending moment on the beam, 

see figure 4.13.  

At this stage of this ongoing research, the 

FEA output obtained was only used to compare the experimental and statistical analysis. 

Fig. 4.13- Normal size mesh used 

Fig. 4.14- Von Mises (octahedral) stress distribution (Pascals) for ACL=45, D was varied as: top left, D=0; top right, 

D=15; bottom left, D=30; bottom right, D=45. Surface deformation and displacement field of material included. 
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Figure 4.14 shows octahedral stress distribution for ACL=45, and D=0, 15, 30, and 45. 

Notice in those plots the following: 

 The interfaces high concentration stresses were removed due to the type of model. 

 The scale of the octahedral stresses (in units of Pascal) changes for each plot. 

 High stress concentration´s degree of dispersion decreases as D increases, which is 

very much agreeable with what was observed experimentally. 

 The locations of high stress concentration agree with the locations found 

experimentally. 
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CHAPTER 5 Results and Discussion 

 

 

5.1 Results 

           5.1.1 Descriptive Statistics 

Table 5.1 presents a sample of the Descriptive Statistics used in developing the results.  

Table 5.2 shows tabulation, for a particular Auto Correlation Length, and at several D, of 

the Pearson’s moment-product coefficient for the following profile parameters: Average, 

Root Mean Squared, Standard Deviation, Kurtosis, Skewness, Maximum Depth, Slope, 

Curvature, and the derived parameters. In that table it is included the Sig.(2-tailed) value, 

the Sum of Squares and Cross-products, the Covariance, and the number of scores. Even 

though they are not shown in those tables, Gaussian Ratio is also included among the 

parameters considered. In Table 5.2, D varies from 0 to 135. 

Descriptive Statistics 

  Mean Std. Deviation N 

FRACTURE DENSITY .051 .071 18 

Ratio AVERAGE .894 .372 18 

AR HM-factor 1.163 .108 18 

Griffith 1.645 .327 18 

MOD. INGLIS(EEFECTS) 1.034 .117 18 

Ratio RMS .035 .011 18 

RMS H-factor 1.000 0.000 18 

RMS HM-Factor 1.017 .006 18 

Ratio SD .812 .243 18 

Ratio Kurt 1.117 .488 18 

Ratio Sk -.600 .266 18 

Ratio  MAX .510 .178 18 

SLOPE 0.00 0.00 18 

CURV -.018 .059 18 

Gaussian Ratio .730 .179 18 

Table 5.1: Descriptive Statistics sample table. 
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Table 5.2 Sample output of some of the statistical Parameters for ACL=45, varying D from 0 to 135 
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5.1.3 Scatter Plots and Correlation  

Following is a series 78 scatter plots selected to show the sensitivity of certain parameters 

at certain ACL and D. Here are shown only for ACL=45, varying D from 0 to 135. Similar 

data was obtained for other ACL’s (see appendix C).  The profile parameters shown in 

these simple scatter plots are Average Roughness, Root Mean Squared Roughness, AR-

factor, RMS factor, Griffith factor, Modified Inglis Factor, Maximum (average) Depth, 

Standard Deviation, Kurtosis, Skewness, Slope, Curvature, and Gaussian Ratio. The y-axis 

in all plots corresponds to the fracture density H/N.  Other Parameters included are 

Griffith Factor, Average Roughness HM-factor, RMS Roughness HM-factor and the 

Modified Inglis Factor. There are 13 plots at each value of D. These plots are shown so 

that the sensitivity of the Fracture Density (probability) with these parameters and factors 

can be appreciated.  Notice that for D=0 (first 13 plots), the data is completely scatter and 

it does not show any correlation whatsoever. For D=15, data are still scatter, but not as 

much as for D=0. For D=30 some trend starts to show for some of the parameter. This 

trend is actually more appreciated when D=30 is compared with D=45. For the latter, not 

only the same trend continues but it also grows. This same trend is kept as the surface 

degrades even deeper (D=90 and D=135), for some of the parameters and factors, 

especially for those involving either Average Roughness or Root Mean Squared 

Roughness.  A plot using data similar to that shown in table 5.2 confirms this trend, as it 

depicted in figure 5.2 (after the scatter plots). Some Uncorrelated parameters are included 

in Figure 5.3 to show the contrast. 
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Fig. 5.1- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=0 
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Fig. 5.2- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=15 
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Fig. 5.3- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=30 
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Fig. 5.4- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=45 
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58 Fig. 5.5- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=90 
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60 Fig. 5.6- Scatter Plots of Fracture Density Vs parameters for ACL=45 D=135 
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Fig. 5.7 Behavior of Correlation of Fracture Probability (density) with highly correlated Statistical Parameters and Factors for ACL=45 

Fig. 5.8 Behavior of Correlation of Fracture Probability (density) with other, low correlated, parameters for ACL=45 
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5.2 Discussion 

 It is observed from the scatter plots of the sets of figures 5.1 thru 5.6, that a safety 

envelopes starts to appear at D=30, for some parameters. As a first approximation, this 

envelop can be thought of a straight positive-slope line, above which the probability of 

fracture vanishes. This envelop is very important for designing purposes.  The parameters 

for which this is true are Average Roughness, Root Mean Squared Roughness, Griffith 

factor, Modified Inglis factor, and RMS-HM factor. Similar Trends are shown for the 

Skewness and the Standard Deviation.  Note that, if the data points at which H is zero 

where removed some of the trends shown in those scatter plots would be almost perfectly 

linearly correlated, as it will be further discussed. 

Now let us consider figures 5.7 and 5.8 (ACL=45). In them, Pearson’s correlation 

coefficient has been plotted versus all the parameters studied. Now the first observable is 

the low-to-zero sensitivity of the fracture location probability at low D values (i.e. D 20). 

This means that prediction of failure probability is rather difficult using the 

aforementioned statistical parameters or factors. This is due to the fact the introduced 

roughness (in both type and amount) is not sufficient to compete with other factors like 

internal flaws, impurities, and undesired scratches on the samples.  However, it was 

noticed that roughness introduced does confine failure location probability within the 

ablated area. In this case, a more micro-scale research must be carried out which is beyond 

the scope of the present study. 

 Additionally, as degradation progresses sensitivity of fracture location probability 

on some parameters gradually increases. More specifically stated, as the accumulation of 
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vast numbers of small, random assaults increases, fracture location becomes more and 

more predictable by Average Roughness, RMS Roughness, Griffith Factor, Modified 

Inglis Factor, RMS H factor, and RMS HM factor.  Conclusively, fracture location 

probability becomes more and more dependent primarily on Average Roughness, Root 

Mean Squared Roughness, and parameters derived from them. Likewise, from figure 5.8, it 

can be observed that, dependence of H/N on other parameters like Kurtosis, Maximum 

Depth, Slope and Curvature are rather weak, as deepening increases, for 0D135. The 

fact that Maximum Pit Depth shows a quite low correlation infers that local isolated deep 

valleys do not influence Fracture Probability in a significant way. 

Now, let us consider the region 0D30, in figure 5.7.  Firstly, it represents the 

transitional region between insensitivity to sensitivity of fracture location probability on 

the well correlated parameters. Also, it can be noticed that the change is rapid and positive, 

meaning that small increases in ablation increase significantly the degree of correlation. 

Conclusively, there is a Transitional Region below which the probability of fracture cannot 

be predicted by the statistical parameters studied, and above which predictability is very 

high. 

Let us consider now the plateau shown in figure 5.7. As degradation progresses 

even further (D>45), Pearson’s correlation Coefficient appears to find an asymptotic limit 

around the value 0.9, which is significant at the 0.01 level (for a 2-tailed test). This 

asymptotic limit falls very nicely into the Correlation of the Griffith Criterion Parameter 

(dotted line in figure 5.7) which agrees with Fracture Mechanics results for brittle 

materials. As a matter of fact, this is very close the best correlation possible (see section 
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4.6).  As it was discussed, the presence of locations at which H vanishes decreases the 

highest Pearson’s coefficient value of unity. For example, for the cases D=90 and D=135, 

the highest R obtainable is 0.798.  So normalizing the values obtained to this maximum R 

possible, the actual Pearson’s coefficient asymptote value is located around 0.9.  For a 

single notch, this limit would have been unity (1), however because there are multi-site 

pits, there appears to be some loss of brittleness and gain of ductility. This can easily be 

visualized by considering an initial stiff wooden beam that shows little to no ductility; then 

by grooving several notches on it, bending becomes easier and the beam appears to have 

lost some of its stiffness. 

It can also be seen that the proposed approximation formula in equation (4.15): 
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except at the tip.  This could be a significant result, since it is based on an equation used 
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5.3   Summary  

1. The first observation is that, for an initial Half Gaussian surface, H/N is insensitive to 

all parameters considered. This means that prediction of failure probability is rather 

difficult using the aforementioned statistical parameters or factors. This is due to the 

fact the introduced roughness (in both type and amount) is not sufficient to compete 

with other factors like internal flaws, impurities, and undesired scratches on the 

samples.  However, it was noticed that roughness introduced does confine failure 

location probability within the ablated area. In this case, a more micro-scale research 

must be carried out which is beyond the scope of the present study. 

2. The second observation is that as degradation progresses fracture location probability 

becomes more and more dependent primarily on Average Roughness, Root Mean 

Squared Roughness, and parameters derived from them. Likewise dependence of H/N 

on other parameters like Kurtosis, Maximum Depth, Slope and Curvature are rather 

weak, as deepening increases, for 0D135. The fact that Maximum Pit Depth shows 

a quite low correlation infers that local isolated deep valleys do not influence Fracture 

Probability in a significant way. 

3. There is a transitional region, D 20, below which the probability of fracture cannot be 

correlated to any of the statistical parameters studied, and above which there is a rather 

strong correlation. 

4. Additionally, as degradation progresses even further (D>45), Pearson’s correlation 

Coefficient finds a normalized asymptotic limit of around 0.9). This asymptotic limit 

agrees very nicely with Fracture Mechanics results for brittle materials.  
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5. It can also be seen that the proposed approximation formula in equation (4.15) 

correlates very well with the Fracture Density.  This could be a significant result, since 

it is based on an equation used for regular notches. There is a high probability, 

according to this result, that an analytical solution will involve a polynomial function 

of pit depth.   

 

 

5.4 Future Work 

 As part of the continuation of this study, as Ph. D. research, future work has been 

started in at least some of the following aspects: 

1. Multi-site damage analysis on poly-methyl-methacrylate plates and beams using 

static loading. The idea is shown in figure 5.9, and it consists on studying laminates 

of materials with different geometrical discontinuities. As layers deepens the 

diameters of the circle-shaped and/or axes of the elliptical-shape figures will 

decrease. So a series of superposition will be developed for each laminate. Then, 

LEFM approach for each laminate could be used to model the entire system, 

noticing that these laminates can be thought of as being under tensile stress. 

2.   Study of thermal effects on the mechanical behavior of PMMA beams with 

random rough surfaces and compare that behavior with data similar to that shown 

in figure 2.12b. As temperature increases, brittleness decreases and the effects that 

multi-site pit roughness is expected to show some interesting results. There might 

be a critical ductility at which certain roughness. 
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3. Also, work is being oriented towards a more profound statistical analysis that 

includes: Partial Correlation, Neural Networks, Weight Estimation, etc. The goal is 

to develop a more rigorous relationship that will predict failure at early stage of 

surface degradation. 

4.  Analysis of stress and strain to fracture of PMMA beams with Random rough 

surfaces. 

5. Fractography analysis of fractured randomly rough PMMA beams under bending.

Fig. 5.11: Multi-site damage on several layers of 
laminates. 
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APPENDIX A 

 

 

 

Matlab code for Generation of Random Surfaces, Truncating them and Restoring them by 

Steps 

% calculate distribution of damage 
% surfaces are not really Gaussian early, they start flat and erosion 
% removes pieces (down) which leaves a memory until the least removed 
% location is down a few pieces deep (CLT) 
%%% 
%% 
% if fullrandom=0, skip ablation generation 
fullrandom=0; 

  

  
format long; 
steps=1; 

  
%using 1200 dpi, for a 1/2 x 1/2 inch 
N=600; 
rL=600; 
h=50.; 
clx=85; 
cly=85; 

  

  
%Method of convolution based on publication and program of Bergstrom 
%(reference in publications) 
%generates a fully random surface, after initial surface flatness has 

lost 
%memory 
% rL=12700; 
% N=12700; 
x = linspace(-rL/2,rL/2,N); y = linspace(-rL/2,rL/2,N); 
[X,Y] = meshgrid(x,y);  

  
Z = h.*randn(N,N); % uncorrelated Gaussian random rough surface 

distribution 
                   % with mean 0 and standard deviation h 

  
% isotropic surface 
% Gaussian filter 
    F = exp(-((X.^2+Y.^2)/(clx^2/2))); 
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% correlation of surface including convolution (faltung), inverse 
% Fourier transform and normalizing prefactors 
    fBergstrom = 2/sqrt(pi)*rL/N/clx*ifft2(fft2(Z).*fft2(F)); 

  
    %way to truncate matrix  
    %shift up and down to generate time evolution of surface, only     

reaches 
    %random after trancation is removed; namely Array1=fBergstrom 

     
    Array3=fBergstrom; 

     
   % WE proceed to truncate the random matrix 9 times in terms of 5          

   % units so making increasing the depths of each point on the surface. 

   % See sequences produced for further understanding 
    fBergstrom12=fBergstrom+5; 
    fBergstrom13=fBergstrom+10; 
    fBergstrom14=fBergstrom+15; 
    fBergstrom15=fBergstrom+20; 
    fBergstrom16=fBergstrom+25; 
    fBergstrom17=fBergstrom+30; 
    fBergstrom18=fBergstrom+35; 
    fBergstrom19=fBergstrom+40; 
    fBergstrom20=fBergstrom+45; 

     
Array1=(fBergstrom>0).*fBergstrom; 
Array12=((fBergstrom12)>0).*fBergstrom12; 
Array13=((fBergstrom13)>0).*fBergstrom13; 
Array14=((fBergstrom14)>0).*fBergstrom14; 
Array15=((fBergstrom15)>0).*fBergstrom15; 
Array16=((fBergstrom16)>0).*fBergstrom16; 
Array17=((fBergstrom17)>0).*fBergstrom17; 
Array18=((fBergstrom18)>0).*fBergstrom18; 
Array19=((fBergstrom19)>0).*fBergstrom19; 
Array20=((fBergstrom20)>0).*fBergstrom20; 

  
% until here 

  

  
Array2=255*ones(N,N)-Array1; 

  
% Linecolor none 
imwrite(Array1,'your_hdf_file.png') 
contourf(Array1,'DisplayName','Array1','linestyle','none');figure(gcf) 
axis square 
colormap gray 
axis off 
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APPENDIX B 

 

 

 

Matlab code to transform Surfaces to a PNG picture ready for Laser Ablation 

% Program to manipulate the arrays that represent random rough surfaces 
% This program will produce a PNG picture containing the grayscale 
% roughness of the surface.  

  
A=Array2; 
B=Array1; 
B12=Array12; 
B13=Array13; 
B14=Array14; 
B15=Array15; 
B16=Array16; 
B17=Array17; 
B18=Array18; 
B19=Array19; 
B20=Array20; 

  
% Lets first normalized to (0,1) and reverse the values, since 0 is 

maximum 
%dark (darkest) in matlab, but in the original matrix 255 (i.e. 1) is 
%maximum ablation 
for i=1:600 
    for j=1:600 
       A1(i,j)=1-A(i,j)/255; 
        B1(i,j)=1-B(i,j)/255; 
        B121(i,j)=1-B12(i,j)/255; 
        B131(i,j)=1-B13(i,j)/255; 
        B141(i,j)=1-B14(i,j)/255; 
        B151(i,j)=1-B15(i,j)/255; 
        B161(i,j)=1-B16(i,j)/255; 
        B171(i,j)=1-B17(i,j)/255; 
        B181(i,j)=1-B18(i,j)/255; 
        B191(i,j)=1-B19(i,j)/255; 
        B201(i,j)=1-B20(i,j)/255; 

         
       %let's correct the values according the calibration data of 
       %grayscale versus real depth. Values are rescaled between 30 

percent 
       % and 80 percent black. 
       % So, if there is no ablation (1) the value is kept the same, but 

if 
       % there is some ablation, this value is transformed by the 

equation 
       % given: new=old*0.5+.2. This comes from the calibration data 
       % obtain. See notes for more information. For example, total 
       % ablation (zero) is interpreted as .2 (20% dark) since this value 
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       % is the greatest ablation that can be obtained within the linear 
       % section of the calibration curve, and very close to the absolute 
       % maximum ablation. 

        
       if A1(i,j)==1 
           A2(i,j)=A1(i,j); 
       else 
            A2(i,j)=A1(i,j)*0.5+0.2; 
       end 

       
         if B1(i,j)==1 
           B2(i,j)=B1(i,j); 
       else 
            B2(i,j)=B1(i,j)*0.5+0.2; 

             

             

             
         end 

        
        if B121(i,j)==1 
           B122(i,j)=B121(i,j); 
       else 
            B122(i,j)=B121(i,j)*0.5+0.2; 
        end  

          
       if B131(i,j)==1 
           B132(i,j)=B131(i,j); 
       else 
            B132(i,j)=B131(i,j)*0.5+0.2;   
       end   

        
       if B141(i,j)==1 
           B142(i,j)=B141(i,j); 
       else 
            B142(i,j)=B141(i,j)*0.5+0.2;   
       end   

        
        if B151(i,j)==1 
           B152(i,j)=B151(i,j); 
       else 
            B152(i,j)=B151(i,j)*0.5+0.2;   
        end    

       
       if B161(i,j)==1 
           B162(i,j)=B161(i,j); 
       else 
            B162(i,j)=B161(i,j)*0.5+0.2;   
       end  

        
       if B171(i,j)==1 
           B172(i,j)=B171(i,j); 
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       else 
            B172(i,j)=B171(i,j)*0.5+0.2;   
       end   

        
       if B181(i,j)==1 
           B182(i,j)=B181(i,j); 
       else 
            B182(i,j)=B181(i,j)*0.5+0.2;   
       end  

        
       if B191(i,j)==1 
           B192(i,j)=B191(i,j); 
       else 
            B192(i,j)=B191(i,j)*0.5+0.2;   
       end   

        
       if B201(i,j)==1 
           B202(i,j)=B201(i,j); 
       else 
            B202(i,j)=B201(i,j)*0.5+0.2;   
       end 

        
    end 

     
end 

  

 

  
% Now we proceed to make the roughness images using the transformed 
% matrices 
imwrite(B2,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_1.png'); 
imwrite(B122,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_2.png'); 
imwrite(B132,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_3.png'); 
imwrite(B142,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_4.png'); 
imwrite(B152,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_5.png'); 
imwrite(B162,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_6.png'); 
imwrite(B172,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_7.png'); 
imwrite(B182,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_8.png'); 
imwrite(B192,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_9.png'); 
imwrite(B202,'C:\Users\medinahe\Documents\RESEARCH\Material 

Mechanics\pattern of random surfaces\roughcorrected_10.png'); 
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APPENDIX C 

  

Fig. C.1 Behavior of Correlation of Fracture Probability (density) with some parameters for ACL=10 

Fig. C.2 Behavior of Correlation of Fracture Probability (density) with some parameters for ACL=90 
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