Virginia Commonwealth University

VIRGINIA COMMONWEALTH UNIVERSITY VCU Scholars Compass
Theses and Dissertations Graduate School
2009

TOWARDS A REFLECTIVE-AGILE
LEARNING MODEL AND METHOD IN THE
CASE OF SMALL-SHOP SOFTWARE
DEVELOPMENT: EVIDENCE FROM AN
ACTION RESEARCH STUDY

Jeftry Babb

Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

b Part of the Management Information Systems Commons

© The Author

Downloaded from
http://scholarscompass.vcu.edu/etd/1763

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in

Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1763?utm_source=scholarscompass.vcu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

School of Business
Virginia Commonwealth University

This is to certify that the dissertation prepared by Jeffry S. Babb Jr. entitled TOWARDS A
REFLECTIVE-AGILE LEARNING MODEL AND METHOD IN THE CASE OF SMALL-
SHOP SOFTWARE DEVELOPMENT: EVIDENCE FROM AN ACTION RESEARCH
STUDY has been approved by his or her committee as satisfactory completion of the dissertation
requirement for the degree of Doctor of Philosophy

Dr. Allen S. Lee, Chair, Virginia Commonwealth University

Dr. Richard R. Redmond, Committee Member, Virginia Commonwealth University

Dr. Gurpreet Dhillon, Committee Member, Virginia Commonwealth University

Dr. H. Roland Weistroffer, Committee Member, Virginia Commonwealth University

Dr. Anson Seers, Committee Member, Virginia Commonwealth University

Dr. Richard R. Redmond, Chair, Department of Information Systems, Virginia Commonwealth University

Dr. Michael Sesnowitz, Dean, School of Business, Virginia Commonwealth University

Dr. F. Douglas Boudinot, Dean of the Graduate School

April 13", 2009

© Jeffry S. Babb, Jr. 2009

All Rights Reserved

TOWARDS A REFLECTIVE-AGILE LEARNING MODEL AND METHOD
IN THE CASE OF SMALL-SHOP SOFTWARE DEVELOPMENT:
EVIDENCE FROM AN ACTION RESEARCH STUDY

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Business at Virginia Commonwealth University.

By

JEFFRY STEPHEN BABB, JR.
Master of Science in Information Systems, Virginia Commonwealth University, 2005
Master of Urban and Regional Planning, Virginia Commonwealth University, 2000
Bachelor of Arts in Geography, University of Hawaii at Manoa, 1991

Director: Dr. Allen S. Lee

Professor of Information Systems

Virginia Commonwealth University
Richmond, Virginia
May 2009

Acknowledgement

When | began my Ph.D. journey, a peer further along in her own journey once told me:
“this will fundamentally change your life; you won’t be the same person again.” No truer words
have been spoken. However, while this dissertation represents the culmination of one phase of
my journey as a scholar, it is also an open door to another phase. It would have been impossible
to cross this threshold without the guidance, wisdom and patience of many people. | will humbly

attempt to express my gratitude to mentors, family, friends and peers.

Without Dr. Richard Redmond’s guidance, encouragement and trust, 1 would not be
writing this at all. When | needed a voice of reason and a “reality check,” I could count on Dr.
Redmond to provide balance and perspective. Dr. Redmond’s faith in my abilities consistently
allowed me to renew my own confidence and move forward in those times where the light
seemed dim. The time that | have spent in Dr. Redmond’s care will remain cherished and
treasured moments for the rest of my days. My debt to Dr. Redmond is a debt I can only hope to

pay forward to my future students.

Dr. Allen Lee has been a patient teacher and has opened my mind to scientific inquiry
and the philosophy of science. He has been a voice of calm reason no matter how turbulent my
own waters were. If it were not for Dr. Lee’s steadfast patience and firm guidance, | would not
have been capable of producing this work. Even as a nascent neophyte, Dr. Lee always saw
through me, to the road ahead of me, and nudged me in the right direction. Dr. Lee was always
there for me and always patient, even during those times where | was not deserving of this

patience and was otherwise completely lost.

The mentorship | have received from both Dr. Lee and Dr. Redmond has been critical to
my development and | look forward to our continued association as | progress as a scholar,
teacher, and as a person. Dr. Lee and Dr. Redmond have also taught me, by their example, what
it means to be an outstanding educator. | would find myself searching my own soul and
direction regularly as a result of our conversations and | will dearly miss the ability to wander

into their offices for enlightenment, encouragement, and friendly discussions.

Dr. Gurpreet Dhillon has been steadfast in his guidance and support throughout my time
as a Ph.D. student. | owe a great deal of my awareness of the “mechanics” and craft of
scholarship to Dr. Dhillon. Always a supportive and friendly listener, Dr. Dhillon, by example,
has instilled in me the importance of having a “can do” and positive attitude in scholarly

endeavors.

There are other faculty mentors that have been indispensable to my journey. Dr. Jim
Wynne has taught me about the balance between teaching, research and service; Dr. Roland
Weistroffer has patiently and persistently encouraged me to engage in scholarship; Dr. Peter
Aiken lent me his ear when | needed it; Dr. Margaret “Peg” Williams and Dr. Anson Seers have

both been instrumental in developing my research perspective on organizations and learning.

There are also peers and friends who accompany you on a journey such as this. Both
Kofi Andoh-Baidoo and Manoj Thomas have provided me with encouragement and have been
every bit a role model for me as my faculty mentors have been. Mitch, Angela, Lew, Niki and
Santa have all been advocates and friends who were willing to listen when | needed to borrow an
ear. |1 would also thank all of my students for the role they have played in my development; I am

ever grateful for the good fortune I’ve been afforded to be an educator and a lifelong learner.

The last but greatest thank you | owe is to my family. There is no person more deserving of my
gratitude than my loving wife, Tina. At times, Tina was my anchor, and yet she was also my sail
and the force filling my sails at every step along the way. It is a pitiful understatement to say
that this was not possible without her. Therefore, this accomplishment is just as much hers as it
is mine. | also have my entire family to thank, especially my mother and my father, as they have
given me their life-long support and unwavering faith. 1 thank God as well; I thank God that this

part is OVER!

Table of Contents

Page

ACKNOWLEDGEMENT ...ttt sb e e e sbe e s ie e beesnneene e 1
TABLE OF CONTENTSttt ettt st e et e e e e sae e s b e e nnee s Vv
LIST OF TABLES ...ttt XV
LIST OF FIGURES ...ttt XVIII
ABSTRA CT ettt ettt b e h bt b e b e bt e R bt et et e be e naneene e XXI
CHAPTER 1 INTRODUCTION ...ttt 1
1.1 RESEAICH ODJECTIVESviiieiiiietieiie ettt sttt et se e sbeenbe e nbe e e nnes 3
1.2 RESEAIrCH QUESTIONScviiiiii ettt ettt et te e et e et e e st e e beesbe e e beesbseebeesbeeebeesaneebeesreeas 6

1.3 Research Motivations: Transitions in the Professional Practice of Software Development. 8

1.4 Research Motivations: Small-Team Software Development............ccocvvveiieerveieiieeiennens 11
1.5 Research Motivations: Reflective and Agile PractiCe..........c.ccooviieieniieninenesceeeee 13
1.6 Research Motivations: Information Systems and Software Development............c.ccccceeneee 17
1.7 Significance of the ReSEArCh TOPIC.uiiiiiiiiieiiee e 19
1.8 Sections Of the DISSEITAtION.........ccciieiiiiiieie e 21
CHAPTER 2 LITERATURE REVIEW ..o 23
2.1 On Method and MethodolOgyc.coveiieieiieceec e 24

2.2 The Nature of Software Development Methodologiescoovvireienencnenineeeeeees 28

2.3 The Professional Practice of Software Development............ccccooeiiiiinneeieseneee e 32
2.3.1 Professionals, Professionalism and Professionalization..............c.ccccooviiiiiiiicicnenn, 34
2.3.2 The Emergence of Software ENGINEEring..........ccccvevieiiiieeiieiiese e 36
2.3.3 The Social and Historical Context of Software Engineering as a Profession 40
2.3.3.1 Historical Trends in the Software Engineering Paradigm...........c.ccocvvivininninieinennns 40
2.3.3.2 Professional Crisis: Defining Software ENgiNEering.........ccoccveveveninenenisesieenns 42

2.4 Small-Team Software DeVEIOPMENTccoiiiiieiiie e 50
2.4.1 Appropriate Software Development Methods for Small Teams and Small Shops 57
2.4.2 Human Factors in Small-Team and Small-Shop Software Development.................... 61
2.4.3 Process Diversity in Small-Team and Small-Shop Software Development................. 64
2.4.4 Critical Factors and “Home Grounds” for Small-Team Software Development......... 65

2.5 Comprehending Agile Software Development PrOCESSES.........covvvereiieieerieseeseesieseeneens 68
2.5.1 Background on Agile Methods..........ccoiiiiiiiiieiee s 68
2.5.2 Selecting an Agile Method for Small-Team Software Development............c.cccoce..e.. 71
2.5.3 Positioning Agile MethodSveiiiiiiiee s 73
2.5.4 Cracks and Fissures in the Old Paradigm..........cccccveieiieiieienieesece e 76
2.5.5 The Emergence of Adaptive and Iterative Methods...........cccoovevieriiiinninie e 79
2.5.7 Strengths and Limitations Of Agile PrOCESSESccoviiirirrieriienienie e 84
2.5.8 Philosophical Reflections on Agile Methods ..., 89

Vi

2.6 Reflection, Reflective Practice and the Reflective Practitionercccccvevvvveeceiieeeeeeieiens 91

2.6.1 Antecedent WOork and ThINKINGocoviiiiiiiiieiie e 92
2.6.2 Reflecting on the Reflective Practitioner...........ccoviveiiiiiiieiese e 95
2.6.2.1 Technical Rationality: The Positivist Epistemology of Professional Practice........... 96
2.6.2.2 Elements of Reflective PraCtiCe...........ccocvveiiiiiieiiiseeeseeee e 99
2.6.3 Acceptance and Critique of Reflective-PractiCe..........ccccoovvivieeieiiniieneeie e 101
2.6.4 Situating the Utility of Reflective ACHION ..o, 102
2.7 Synthesizing the Literature: EmMerging ThemESccooiiiiiiiieiieieee e 103
2.7.1 Understanding Agility through Reflective ACtion...........ccccoeiveiiiieiiececc e 104
2.7.3 Considering the ArtiSan Frame..........cceiveiieieiie e eie e se e 105
2.7.4 Using Reflective-Agile as a Generative Metaphor for Small Teams...........c.ccccvene. 107
CHAPTER 3 DESCRIPTION OF THE BASELINE REFLECTIVE-AGILE METHOD......... 110
3.1 Criteria for the Selection of Extreme Programmingccoovevrieiieieneneseseseseeeeean, 111
3.2 Examining the Baseline Reflective-Agile Method.............ccooiiiiiiiniiii s 112
3.2.1 The Agile Element: Extreme Programming Examined............ccccccovevveviviiciiieieenns 113
3.2.1.1 SPeCITYiNg the SYSIEMc.eoiieiceceee e 115
3.2.1.2 Planning the REIEASEScoveiiiieii ettt 116
3.2 L3 HEIALIONS ...ttt bbbttt bbbttt 116
3.2.1.4 DEVEIOPIMENT.e ettt s et se e sbe et ne e b nbe et nne s 117
3.2.1.5 Acceptance and Small Release CYCIES........cooviiiiieiiiieiieceee e 119

vii

3.2.1.6 Reflecting on Extreme Programimingcccceoerirereninieieniese s 121

3.3 Introducing Elements of Reflective PractiCe...........cceveiieiieiiiie e 122
3.3.1 The Ladder of REFIECHION.........coiiiiiiiiec e, 123
3.3.2 The Learning OrganiZatioN............cccciveiueiieseeiesee e esie s sre e sreesae e reesae e sne e 125
3.3.3 Models and Theories for Organizational Learning and Agilityccccovevviiieivennnns 126

3.4 Summarizing the Elements of the Reflective-Agile Methodologycccccceveiiiiininnn. 128

CHAPTER 4 RESEARCH METHODOLOGY ...ooiitiiiiiiiiesieeiee ettt 130

4.1 Investigating IS Phenomenon with Dialogical Action ReSearchccccooevvevviienennns 131
4.2 The Dialogical Action ReSearch CYCIEcccovveiiiieiiee e 132

4.3 The Rigor and Relevance of Dialogical Action ReSearch.............ccceevveveieeivevcieeieenns 135
4.3.1 Why Action Research is an Appropriate Research Method.............cccccvevevieivccenen, 136
4.3.2 The Consequences Of EXPEITEINCE........c.cuiiiiiiiieieierie ettt 138
4.3.3 Truth in PractiCal OUICOMESccoiiiiiiiiiieiieriesiee et 138
4.3.4 The Logic of Controlled INQUITYcocoiiiiiii e 139
4.3.5 Social CoNteXt OF ACHIONoviiieiieiieee e 140

4.4 Dialogical AR is both Scientific and RIQOIOUSccceiierieiiieiiese e 141

4.5 Validating the Designed Artifact using Design Science and Action Research................. 144
4.5.1 Appropriating Lee’s Design Science and Action Research Framework 148
4.5.2 The Benefits of using an Action Research Partnership in Design Science................. 150

4.6 Using the Design Science and Action Research FrameworK...........cccccoocveviieiiiiiicciieenen, 152

viii

4.6.1 Fitting the DSAR Framework to the Research Approachcccceoevevinencniennnnns 154

4.6.2 Taking the Interpretivist Mode of Inquiry for Evaluation.............cccccoeeviniiiiinnnnns 157
4.6.3 The Generalizability of the Research OULPULS..........ccceiiriiiiiiiie e 158
CHAPTER 5 EVIDENCE FROM THE ACTION RESEARCH PARTNERSHIP 161
5.1 Description of the Dialogical Action Research Settingccoccvvveveeieiieiieere e 161
5.1.1 The Practitioners and the Practitioner Setfingccccooererinineninieeiese e 162
5.1.2 Description of the Dialogical Action Research Team..........ccocoovvvvieieiencnineneninns 164
5.2 Iterations in the Dialogical Action ResSearch ProCeSScccooevveierieneniieiienesee e 165
5.2.1 Timeline of the Dialogical Action Research Iterationscccccevevveviieiciiicieenns 165
5.2.1.1 Discovery and Diagnosis in the Early Period.............ccccvvieiiiieiiieiieiecc e 167
5.2.1.2 Adopting EXtreme Programming.........ccccceveeierieenesiesieeseeeeseesieseesee e eseesseesseens 168
5.2.1.3 Adapting EXtreme Programming..........ccccererereneneneneseeeeseese e 169
5.2.1.4 Achieving ReflectiVe PraCtiCecccooeiiiiiiiinieieee e 170
5.2.2 Reducing the Data: Synthesizing the Dialogical Action Research Iterations 171
ST I B I o | 1 1 [OOSR 172
5.3.1 Directions and Rigor from Coding Dialogical and Observational Data..................... 173
5.3.1.1 Grounded Theory as a Mode Of ANAlYSIS.........cccervereiiierieiese e, 174
5.3.1.2 Computer-Assisted Qualitative Data Analysis...........ccooeoviineiiininieeee, 177
5.3.2 Grounding the Practitioners’ Historical and Social Contextc.cccevveiieeiiiiiinnns 184
5.3.3 A List of Concerns from the Initial DIiagnoSIsccovieveriiriiinniiie e 190

5.4 Documenting the Practitioners” EXtant Methodscccevvvieiiiiieiesie e 194

5.4.1 Characterizing the Practitioners’ Desire for a Method (and Methodology)............... 195
5.4.2 The Practitioners’ Extant Software Development ProCesS........ccccouvveriererieeieenennns 201
5.5 Addressing the Initial DIagNOSES.......cc.ecueiieiieie et sre e e nre e 209
5.5.1 Issues Related t0 QUANILYcveiieeiieesie e 210
5.5.1.1 Ensuring ConsiStent QUAITLYccuiiiiiieiiirieieiesie e 214
5.5.1.2 JUStITYING QUANIILY ...c.voiiiiiiiiesii e 215
5.5.2 Issues Related t0 LeArNING.......c.ciiiririeiie ittt st 218
5.5.3 Issues Related to Productivity and Process Optimizationcccccccevvvevveieieenenn, 223
5.5.4 Issues Related to Power, Risk, Skill and Leadershipcccccveveviieiieniiiciieieens 227
5.5.4.1 Power, Leadership and RUNNING @ BUSINESS..........cccovvereiieiieenesie e esie e 228
5.5.4.2 Skills, Work Ethic and the Individualccceveiiiiiiiiiiie e 232
5.5.4.3 Transferring Skills and SKills Cross-Trainingcccccooervereneneneniseseseeeeeeeen, 233
5.5.4.4 Replication: Refactoring Team Habits to Align with Leader Habits 234
5.5.5 Client Confusion: Constituencies, Stakeholders and Team Membership 242
5.6 ACLION PIaNNING......eiiiiiiiieie ettt e st e e sne e reeneenneenreens 248
ST A X ot o] o I 1 o PRSP 254
5.7.1 Adopting Agile Practices and Extreme Programmingcccccevevereereeneereereeseenennn, 254
5.7.2 Adapting Agile Practices and Extreme Programming..........ccooceeverveenienenienseenennens 259
5.7.5 Adopting and Adapting Reflective PractiCeccovvevviiriinieiieniec e, 261

CHAPTER 6 EVALUATING AND INTERPRETING THE EVIDENCEccooveiiiienenn. 266

6.1 Evaluating the Outcomes and Consequences Of ACHION.........cccveiienenie e 266
6.1.1 Evaluating Productivity in Early and Sustained SUCCESSES.........cccovevvvveiieiiieeiiieiinnns 267
6.1.2 Evaluating Issues Related t0 QUAlItY..........ccoveieiieii e 274
6.1.3 Evaluating Issues Related to Client Relationshipscccoveveieiieie e, 281
6.1.4 Evaluating Issues Related to SKills Development..........ccccooeiiienininieieiesc s 285
6.1.5 Evaluating Issues Related t0 Learningccocoovvererieiieneniene e 298
6.1.6 SIGNS OF SUCCESS ...ttt sttt enbe et sre e nteeneesre e b e 304

6.2 Focus on Learning and COMMUNICALIONc.coveiiiiiiieie e 306

6.3 Philosophical Grounding for INterpretationccceoviieiieie i 307
6.3.1 A Phenomenological Approach to Interpretation...........cccceevvvevesiesienn e 308
6.3.2 Constructing a Subjective Understanding of Meaning..........ccccceevverinieninieienenn, 310

6.4 The Evidence and Theoretical Reflection on Agile Methodscccceoviiiiiiiiiininee, 311
6.4.1 Learning and Communication: Support for Reflective Practicecccoccevverennnnns 319
6.4.2 Learning and Communication: Support for the Learning Organization..................... 324

6.5 Towards a Reflective-Agile Epistemology and Paradigm for Learning...........c.ccccccveuenne 328

6.6 Validating the Interpretive Mode of Inquiry in Dialogical Action Research.................... 333
6.6.1 Framing the Dialogical Action Research Approach...........cccocveiviiiiiiiencncncncns 334
6.6.2 Considering the Potential Pitfalls of Dialogical Action Research............ccccccerieenen. 334
6.6.3 A Principled Approach to Validating Interpretive Research Qutcomes..................... 339

Xi

6.6.4 A Principled Approach to Validating Dialogical Action Research Outcomes........... 345

6.7 Reflections on the EVIAENCE..........ciii e 352
CHAPTER 7 ANALYSIS OF THE DESIGNED ARTIFACT ..o 356
7.1 A Reflective-Agile Learning Model and Method Methodology..........ccccccvvevviieiieiieennnns 356
7.2 Elements of the ArtifaCt ..o 359
7.2.1 EXplicating the MOdElccooiii e 359
7.2.2 EXplicating the MEethod ... 361
7.3 Iteratively Designing the ArtifaCt...........ccooviiiiriiiie e 364
7.3.1 DSAR lteration One: Early Discovery and Diagnosisccccceiveieeiesieeieeieeseennnn, 366
7.3.2 DSAR Iteration TWo: AdOPLING XP ...c..ooviiieiecieceee e 367
7.3.4 DSAR lteration Three: Adapting XP.........cccooiieieiieieeieseeseee e e 368
7.3.5 DSAR lteration Four: Towards Reflective PractiCe.............ccocoovririiieienencncnenns 370
7.4 IMProVEMENTS OVET TIME ...viiiiiiiiieiieie ettt bbbttt 371
7.4.1 How the Designed Artifact Remedies the Real World Problem ... 373
7.4.2 How the Designed Artifact Improves the Practitioners’ EXpertisecccccevvevveennnns 375
7.4.3 How the Designed Artifact Improves the Researcher’s EXPertisec.ccveevevvvennene. 377
7.5 How the Designed Artifact Addresses the Research QUESHIONS..........ccccvvverveieiieeiianns 389
7.5.1 How the Designed Artifact Addresses Research Question One...........ccccccevenenennne 389
7.5.2 How the Designed Artifact Addresses Research Question TWOcccceevveevieiinnnns 391
7.5.3 How the Designed Artifact Addresses Research Question Three...........cccccceevveinnnns 392

Xii

7.6 Validating the DSAR Framework as Interpretative Researchcccocvvviiiiiiicienn, 393

7.6.1 Guideline: Design as an ArtifaCtccooiiiiiiiiee e 395
7.6.2 Guideline: Problem ReleVANCEcoooviiiiiiii e, 397
7.6.3 Guideline: Design EVAlUALION..........c.cooeiiiiiic e 397
7.6.4 Guideline: Research ContribULIONS............cooeiiiiiiciie s 398
7.6.5 Guideling: RESEArCh RIGOT.........ciiiiiiiiiieiesese e 398
7.6.6 Guideline: Design as & SEarch PrOCESS.........ccceiiriiiririnieieie e 399
7.6.7 Guideline: Communication of ReSEarch............ccocoviiiiiiiiiiee, 401
CHAPTER 8 CONCLUSION. ...ttt ne e e snneenneas 402
8.1 SpecCification Of LEAIrNINGcccvciiiieiice ettt 404
8.2 Lessons from the Problem SOIULION ..o 405
8.3 Improvements to the Practitioners’ EXPertiSeccooueeiereniiinisisieeee e 407
8.4 Improvements to the Researcher’s EXPErtiSEcoouoeieriierininieiesie s 409
8.4.1 Implications for the Body of Knowledge on Agile Methodsccceviiiiiiiiennnns 410
8.4.2 Implications for the Body of Knowledge on Action Research............c.ccccoeevveieennnns 411
8.4.3 Implications for the Body of Knowledge on Reflective Practice...........c.ccccevvrveennenn. 413
8.4.4 Implications for the Body of Knowledge on Small Teams...........ccccoeovevvvicivciecnnns 415
8.4.5 Implications for the Body of Knowledge on Organizational and Team Learning..... 416
8.5 LImitations and WEAKNESSEScueiiiiriiiiiiisiieiee et 420
8.6 Directions for FUtUre RESEAICHcooiiiiiiiiiee e 424

8.7 Final Reflections

LITERATURE CITED

Xiv

List of Tables

Table 1 RESEAICN QUESTIONS......ccuveiiiieriieieeiee st eiestee e ee st ste e sreeseeeseesreesteeneesseeaeeneesreenseaneenseans 8
Table 2 General Phases Of the SDLC ..o e 30
Table 3 Synopsis of Selected Literature on Software Development Methodologies 32

Table 4 Synopsis of Selected Literature on the Professional Practice of Software Development 33
Table 5 Elements of a Mature Profession (Ford and Gibbs 1996)cccoceveniiiniiiin e 43
Table 6 Assessing the Maturity of the Software Engineering Discipline (Pour et al. 2000)........ 45
Table 7 Synopsis of Selected Literature on Small-Team Software Development....................... 51
Table 8 SD Companies by Number of Employees (Source: U.S. Census Bureau — 2005 County

BUSINESS PALLEINS)veiiieiiiitie ittt sttt esne e be et esneenne e 54
Table 9 Factors Relating Team Size and Software Development Method Use............ccccceveneenne. 55
Table 10 Desirable Properties of a SD Methodology for Small-Teams and Small-Shops (Fayad et

A1 2000) ...t e et 56
Table 11 Levels of Software Method Understanding and Use (Boehm and Turner 2004)........... 63

Table 12 Small Team and Large Team Methodology "Home Grounds” (Boehm and Turner

DO0AY ..ottt et e ee e e e 65
Table 13 Manifesto for Agile Software Development (Fowler et al. 2001)cccccevviiriveninnne 69
Table 14 Principles behind the Agile Manifesto (Fowler et al. 2001)........ccccooceiiiiiniiiiniieriee 70
Table 15 Comparison of Agile and Iterative Methods...........ccoovvviiieiiiiiic e 71
Table 16 Results of Abrahamsson et al.’s (2003) Comparative Analysiscccoevvviienrvieee. 84
Table 17 Limitations of Agile Methods (Turk et al. 2002)..........cccerirerinninieneenese e 86

XV

Table 18 Risk-based Analysis of Methodologies (Boehm and Turner 2004)ccccoevveviennenne 87

Table 19 Prescriptions for Method Use (Boehm and Turner 2004)ccoooviviiineninnie e 88
Table 20 Diffusion of Innovation in Traditional and Learning Systems (Schon 1973) 93
Table 21 Extreme Programming Practices (Beck 1999; Wake 2002)ccocereervnieeiieenennens 113
Table 22 Rungs on the Ladder of RefIeCtioncccooveiiiii i 123

Table 23 A Ladder of Reflection: The Case of Pair Programming (Tomayko et al. 2004)........ 124

Table 24 The Baseline Reflective-Agile Software Development Methodcccovceviiiinnnns 129
Table 25 Supporting the Scientific Rigor of Dialogical AR (Martensson and Lee 2004).......... 143
Table 26 Guidelines for Design Science Research (Hevner et al. 2004).........ccccccovvviviiiienennns 145
Table 27 Lee and Baskerville's (2003) Generalizability Frameworkcccccooveiviiieiinnenncns 160
Table 28 Code, Category and Occurrences from the Dialogical Evidence by Category............ 181

Table 29 Code, Category and Occurrences from the Dialogical Evidence by Occurrences 182

Table 30 List of Concerns from the Initial DIagnoSIS.........cccovviierierieiinienee e 192
Table 31 Addressing Issues from Diagnosis With XPccccooiiieiiiieiicie e 249
Table 32 Major Interventions of the StUAYccccveiiiiiic i 250

Table 33 Comparing Canonical AR and Reflection-in-action (Martensson et al. 2004; Schon

L0087) ettt bRt bRt Rt Rt be et be Rt et ne s 251
Table 34 Timeline of ACION-TaAKINGccviiiiici et 254
Table 35 The Ladder of Reflection as presented to0 SSC..........cccoveiieviiiciecce e 262
Table 36 SSC Revenue and EXpenses for 2008............c.coveiiiiieiieieeie e 270
Table 37 Bodies of Theory for Learning and Communication.............cccocevvvevieiieieevesieeseenns 306
Table 38 Traditional and Emerging Perspectives of Design (Nerur et al. 2007)...........cccccvenenn 314
Table 39 Key lessons in Reflective Systems Development (Mathiassen 1998)..........c.ccccveuee. 318

XVi

Table 40 Considering Reflective Practice in Dialogical AR at SSC: Qualitycccccceeevrienen, 321
Table 41 Considering Reflective Practice in Dialogical AR at SSC: Productivity 322
Table 42 Considering Reflective Practice in Dialogical AR at SSC: Skills Development and

THANSTEE . bbbt b bbbt 323
Table 43 Considering Organizational Learning in Dialogical AR at SSC: Individual Learning 325
Table 44 Considering Organizational Learning in Dialogical AR at SSC: Team Learning....... 326

Table 45 Considering Organizational Learning in Dialogical AR at SSC: Strategic Partnerships

... 327
Table 46 Summary of Principles of Interpretive Field Research...........ccccccooeiiiiiiiiiiniinnn, 340
Table 47 Principles and Criteria for Canonical AR (Davison et al. 2004)cccoocvvvveiinieennnn 346

Table 48 Distinguishing Features of Dialogical Action Research (Martensson and Lee 2004). 352

Table 49 Steps in the Reflective-Agile Learning Method ... 363
Table 50 Key to DSAR Activities in thisS RESEAICHccoviiiiiiiiiecee e 365
Table 51 DSAR Activities in Ieration ONE...........ccoeiiiiiiiiiiiees e 366
Table 52 DSAR Activities in [eration TWOccooiiieiiiniiieirencse e 367
Table 53 Evaluating the Outcomes of Dialogical ARcccccoveieiiiiiii e 372
Table 54 Improvements to the Real World Problem ... 374
Table 55 How the Designed Artifact Improves the Practitioners’ EXpertise........ccccccvevvenenen, 376
Table 56 How the Designed Artifact Improves the Researcher’s EXpertiseccoccvvvveveannnns 384
Table 57 Action Strategies Observed in July 2008.............c.ccoveiiiieiieie e 386
Table 58 Action Strategies Observed in February 2009...........ccccooiiiiiiiieii e 387

Xvii

List of Figures

Figure 1 Paradigmatic Transition from Engineering to Artisanship..........c.cooevvvinienenencnenenn 16
Figure 2 A Systems View of an Information System (Lee 2008)cccoovvverereneninienieeens 18
Figure 3 Elements of a Philosophy of Science - Effects on Methodology (Argyris et al. 1978;

KaDOUD 2001) ... 26

Figure 4 Evolution of a Discipline from Craft to Profession (Shaw 1990) (McConnell 2004b).. 36

Figure 5 Categories and Depth of SWEBOK Knowledge (Bourque et al. 1999)..........ccccceevennene. 47
Figure 6 Elements of a Software Development Methodology (Cockburn 2000)cccceveneee. 58
Figure 7 Problem Size and Increases in People Costs (Cockburn 2000).........cccceevvverenenenennnnn 59
Figure 8 Communication Richness and Methodology Effectiveness (Cockburn 2000)............... 60
Figure 9 Cockburn's Methodology Selection Framework (2000)coceveienenenenineniseeene 60
Figure 10 Personality Type and Small Team Performance (Gorla and Lam 2004) 62
Figure 11 Dimensions Affecting Method Selection (Boehm and Turner 2004)ccccecveevenene. 66

Figure 12 Classifying Software Development Methodologies from Predictive to Adaptive

(Abrahamsson et al. 2003; McConnell 2004D)..........ccooiiiiiiiere e 73
Figure 13 The Waterfall Model 0f the SDLC ..ot 75
Figure 14 Evolutionary Map of Agile Methods (Abrahamsson et al. 2003)cc.ccoevviveiienne 81
Figure 15 Progression Towards a Craftsmanship Model of IT Practice.........c.ccoovvninviinnene, 105
Figure 16 Elements of Extreme Programming (Wells 2000)cccooiiiniriininiieieieneneeee 114
Figure 17 Iteration Phase of XP (Wells 2000).........cccooiiiriiiiieie e 117
Figure 18 The Development Phase of XP (Wells 2000)...........ccccuvirieieienineneneseseeeeeeeees 118

Xviii

Figure 19 Programming Practices within XP (Wells 2000)cccceriririienenieneenesee e 119

Figure 20 The Iterative Nature of XP (Wells 2000)ccooveiiriiiiiriieiee e 121
Figure 21 Single-Loop and Double-Loop Learning (Argyris et al. 1974).......ccccocvvivivivennnne. 127
Figure 22 The Ladder of Reflection (SChON 1987)cccociiiiiiiiiii e 128
Figure 23 Steps in the Dialogical AR PrOCESS........ccoiiiiiiiiiiie e 135
Figure 24 Action Research Cycle (Baskerville 1999) ... 140
Figure 25 Research Framework for Design Science (March and Smith 1995)cccccveeeee 146
Figure 26 Design Science Research Evaluation Methods (Hevner et al. 2004)ccccceeueeee. 147
Figure 27 Lee's Design Science and Action Research Framework (2007)........ccccevvrverivennene 149
Figure 28 Adjusted DSAR Framework (Lee 2007)ccviirieererieiieiesie e 151
Figure 29 Initial Model of Constructs for the Reflective-Agile Method and Methodology....... 155
Figure 30 Filling iN the DSAR IMALIIX......coiiiiiiieiieiesie et 156
Figure 31 Iterative Improvements in Expertise (Martensson and Lee 2004)ccccceevvevevennnes 166
Figure 32 Timeline of the Dialogical AR Iterationscccccvevviieieene s 167
Figure 33 HyperRESEARCH - The Study WINAOW..........ccceoveiiiiiiieece e 179
Figure 34 HyperRESEARCH - Code List EAItOrcccccvevieiiiiiec e 180
Figure 35 HyperRESEARCH - SOUICe WINUOWccveiiiiiiiciir e 181
Figure 36 SSC's Extant MethodolOgycocveiieiiiiiiicceee et 207
Figure 37 SSC's Extant Methodology and the Waterfall Modelc.ccccoovveiviieiciiccece, 208
Figure 38 Cycles of Dialogical Action Research (Martensson and Lee 2004).............ccccee.e.... 253
Figure 39 SSC's AdOPtion Of XP PrOCESSES.cviiieiiiiieiieiie st sie et ste et 256
Figure 40 SSC's Adoption of the Iteration Activities of the XP Methodc.cccevviiiiennne. 257
Figure 41 SSC's Adoption of the Collective Code Ownership Activities of the XP Method..... 258

XiX

Figure 42 XP Processes as Adapted DY SSC ..o 260

Figure 43 Introducing Theories of Reflection and Learning into SSC's Daily Agile Processes 264

Figure 44 Relating Change, Cost and Time in the SDLC..........ccccoioiiiiiiniieneceeee e 283
Figure 45 Espoused SKills DiSparity @t SSC.........ccoiiiiiiiiiirie e 288
Figure 46 Estimated Future SKills Disparity at SSC..........cccceiiiiiiiniiiin e 288
Figure 47 Ideal Skills Distribution fOr SSC.........cccoiiiiiii s 289
Figure 48 Simplifying Issues and Actions to those of Learning and Communication................ 307
Figure 49 Evolutionary Shifts in Design Thinking (Nerur et al. 2007)cccoooviviiieneiinnnenn. 316

Figure 50 Abduction: the Logical Fallacy of Affirming the Consequent (Lee and Hubona 2008)

... 338
Figure 51 Hevner et al.'s Information Systems Research Framework (2004)ccccccevvvnenee. 358
Figure 52 Elements of the Reflective-Agile Learning Model ... 360

Figure 53 The Reflective-Agile Learning Model and Method evidenced in SSC's Adaptation of

D PSPPSR ROV PPPPPPTPRPTS 362
Figure 54 DSAR Activities in eration Three.........cccveiv e 368
Figure 55 DSAR Activities in eration FOUT...........ccviiiiiiiicc e 370
Figure 56 Emergence in the Design/Test Cycle (Hevner et al. 2004)cccccecvevevveveciiesinenne, 400
Figure 57 Model for the application of Deutero-learning in RALMMccccoocevveveiiecnenen. 419
Figure 58 Lee's Integrated Interpretive and Positivist Framework (1991)ccccceveviivvenene. 426

XX

Abstract

TOWARDS A REFLECTIVE-AGILE LEARNING MODEL AND METHOD
IN THE CASE OF SMALL-SHOP SOFTWARE DEVELOPMENT:
EVIDENCE FROM AN ACTION RESEARCH STUDY

By Jeffry S. Babb, Jr., Ph.D.
A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Business at Virginia Commonwealth University.

Virginia Commonwealth University, 2009

Major Director: Dr. Allen S. Lee
Professor, Information Systems

The ascension and use of agile and lightweight software development methods have
challenged extant software design and development paradigms; this is especially notable in the
case of small-team and small-shop software development. In this dissertation, a Reflective-Agile
Learning Method and Methodology (RALMM) for small-shop software development, is

proposed to enhance communication and learning in the use of agile methods.

The purpose of the inquiry in this dissertation pertains to: the nature of the professional
practice of small team software development; the implications of the epistemology of Reflective
Practice has for the professional practice of small-team software development; and whether the
introduction of Reflective Practice to an extant agile methodology improves process,

productivity and professional confidence for a small development team.

XXi

This dissertation uses Dialogical Action Research (Martensson and Lee 2004), or
Dialogical AR, a qualitative and interpretive research approach, to iteratively develop and refine
the Reflective-Agile Learning Model and Method (RALMM). The proposed model and method
also considers Hazzan and Tomayko’s (2002, 2004, and 2005) synthesis of Schon’s (1983, 1987)
Reflective Practice and Extreme Programming (XP). RALMM is shaped by Argyris and
Schoén’s theories of practice (1974) and Organizational Learning (1978, 1996) and Schon’s
ancillary work on generative metaphor (1979) and frames (Schon et al. 1994). The RALMM
artifact was developed in a Dialogical AR Partnership using Lee’s (2007) framework for
synthesizing design science and action research. The development and use of RALMM
facilitated theorizing on the role of Reflective Practice in the successful use of agile methods. To
assist in interpretation and analysis, the data collected during Dialogical AR cycles are analyzed
using Strauss and Corbin’s (1998) Grounded Theory as a mode of analysis to guide in the coding

and analysis of qualitative evidence from the research.

As a result of this research, RALMM improved the practitioners’ processes and
productivity. Furthermore, RALMM helped to establish, formalize and reinforce a team learning
system for the continued development of the practitioners’ professional repertoire. Additionally,
the iterative development of RALMM provides a basis for theorizing on Reflective Practice as an
epistemology, paradigm, metaphor and frame of reference for the professional practice of small-

shop software development.

xxii

CHAPTER 1 Introduction

This dissertation examines the emergence of small team and small-shop software
development in order to iteratively develop a Reflective-Agile Learning Model and Method
(RALMM) as an outcome of design science research as explained by Hevner et al. (2004) and
March and Smith (1995). In recent years, advances in connectivity and tools and techniques
related to software development have influenced and changed the nature of software
development. Today, software professionals enjoy abundant opportunities to work
independently, entrepreneurially and within smaller teams; often-times, these professionals may
be working alone’. As a result of these developments, some developers have recently questioned
the prevailing and accepted paradigm for the professional practice of software development:
software engineering. This research presents a Reflective-Agile Learning Model and Method
(RALMM) for small-shop development in response to these structural changes in the
professional environment of software development. More importantly, this dissertation asks:
“what is the nature of the professional practice of small-shop development?” Furthermore, “how
has the engineering paradigm, frame and metaphor for the professional practice of small team
software development in the small-shop environment been challenged by the advent of agile
methods?” In exploring this question, Donald Schon’s (1983, 1987) epistemology of Reflective
Practice and Argyris and Schon’s theories of action for Organizational Learning are considered

as the basis of an alternative paradigm for the professional practice of software development in

! These “lone ranger” programmers are often said to be engaging in “Cowboy Coding.”

the use of agile software development methods. This question is explored in the iterative
development of an IT artifact of design science developed in a Dialogical AR Partnership in the

adoption of Extreme Programming (XP), which is an agile software development method.

The advent and popularization of the Internet has unquestionably changed the way in
which software is developed. The Internet makes ideas and information readily available
utilizing application-layer technologies which are ever-changing and proliferate as quickly as the
Internet expands and evolves. Various Internet-oriented technologies drive idea and information
sharing which expands the realm of possibilities for the professional software developer.
Similarly, the tools available for efficient and rapid software development have also matured and
proliferated, bringing new opportunities for productivity and creativity in small team and small-
shop software development. As the Internet continually decreases information dissemination and
innovation diffusion costs, small teams in the small-shop setting can leverage the availability of

new tools and information to increase productivity and improve their development processes.

Thus, an imperative to improve scholarly understanding of the professional practice of
small team software development in the small-shop environment is apparent. Whereas the
professional practice of software development has been cast as engineering since the late 1960s,
the advent of agile software development methodologies has fostered debate concerning the

fundamental and epistemological nature of software development and the engineering paradigm.

This chapter will proceed as follows. First, the objectives of the research and research
questions are discussed. Next, a justification for the significance of the research is presented.
This is followed by a discussion of motivations for this research pertaining to the professional

practice of small-team software development in the small-shop environment, agile software

development methods, Reflective Practice, and individual and team learning. This chapter

concludes with an outline of the remaining chapters of the dissertation.

1.1 Research Objectives

This research is motivated by the ways in which the advent and use of agile methods in
the small-team and small-shop setting have raised questions about the professional practice of
software development. Furthermore, this researcher examines the implications that the
introduction of Reflective Practice (Schén 1983, 1987) has for team and Organizational
Learning in the use of agile software development methods. This inquiry raises philosophic,
ontological, epistemological and paradigmatic issues related to the nature of small-team and

small-shop professional practice and frames certain questions:

e What is unique about small-team software development in the small-shop
environment?

e What are the qualities and attributes of agile methods which are suited to small-team
software development in the small-shop environment?

e Assuming agile methods constitute a paradigmatic break from traditional software
methods, what are the ontological, epistemological and methodological underpinnings
of the agile paradigm?

e If the epistemology of Positivism (what Schon calls Technical Rationality) is intrinsic
to software engineering, then what epistemology of practice is suited to agile
methods?

e Can aspects of the epistemology of Reflective Practice be applied to an agile
methodology in order to improve process, productivity and learning for small teams
using an agile method in the small-shop environment?

e What would the application of Reflective Practice change about agile methods?

e What would the application of Reflective Practice change about prevailing concepts
concerning the professional practice of small-team software development in the
small-shop environment?

These open questions shape and motivate this research and provide a basis for the objectives and
research questions in this dissertation. These questions will be addressed and answered in the

formal research questions subsequently stated in this chapter.

This research described in this dissertation has iteratively developed a model and method
for small-team software development in the small-shop environment utilizing the steps of
Extreme Programming (XP) and Schon’s (1987) Ladder of Reflection — a technique which
facilitates Reflection-in-action and Reflection-on-action. Following Lee’s (2007) Design Science
and Action Research (DSAR) framework as a model, Dialogical Action Research (Dialogical
AR) is used to iteratively develop the Reflective-Agile Learning Model and Method to provide a

deeper understanding of:

e Reflective Practice: What are the impacts of introducing Reflective Practice into a
small-team and small-shop software development setting change?

e The Professional Practice of Small-Team Software Development: What is the
nature of process and productivity in small-team software development in the small-
shop setting? What is the source of professional validation and guidance for small-
team software development?

e Agile Software Development Methods: As agile methods have been demonstrated

as a good fit for most small-team development projects, what improvements can be
made to agile software methods that would benefit small teams?

The design science artifact, RALMM, addresses these issues through iterative design and
reflection within a Dialogical AR Partnership. As agile methods most benefit small teams in the

areas of change and risk management, design simplicity, retrospectives (reflection) and tacit

knowledge management (reflection), Schon’s epistemology of Reflective Practice is well-suited

to further study in these areas.

The development of the RALMM follows guidelines for design science research offered
by Hevner et al. (2004). This guidance describes “...the boundaries of design science within the
IS discipline via a conceptual framework for understanding information systems research and by
developing a set of guidelines for conducting and evaluating good design-science research”
(Hevner et al. 2004: 77). Hevner et al. also recognize, as does Lee (2007), that a design artifact
may be an IT instantiation, organizational design, policies or practices. As a design for a
learning system, RALMM addresses the methodological implications of the use of one agile
method in a small software development shop. In this sense, the word methodology describes
more than a collection of methods; a methodology also reflects philosophical, epistemology and
social norms to which a small team, explicitly or implicitly, subscribes. Thus, the objectives for

this research are:

e The Impact of Agility — To introduce an agile method, Extreme Programming, into a
small-team and small-shop software development project where the team has not
previously used XP or any other agile method. XP should provide improvements to the
team’s process and productivity. Thus, XP is used as a necessary baseline in order to
determine what further improvements, if any, arise from the introduction of Reflective
Practice.

e The Impact of Reflective Practice — To apply methods and techniques from Schén’s
epistemology of Reflective Practice to XP in order to assess improvements in the
following areas:

0 Team effectiveness: improvements in process and productivity

0 Augile effectiveness: improvements in adaptation to change, simplicity of design,
use of retrospective, application and utilization of tacit knowledge

0 Team Learning: determine the effects reflective practice has on team learning

o Professional Confidence: Reflective Practice should provide a framework for
professional reinforcement and willingness to adapt and evolve methods.

e Specify Learning — To use the Dialogical AR and the DSAR framework to improve
learning for both theory and practice in the following ways:

0 Suggest improvements for the professional practice of small-team development in
the small-shop setting

0 Theorize on the success or failure of the introducing the epistemology of
Reflective Practice to XP.

0 Theorize on the success or failure of the research framework (both Dialogical AR
and the DSAR framework).

These objectives provide a basis and background for the research questions in this dissertation.
Research questions provide bounds and scope for a research effort in addition to providing a

basis to determine whether the dissertation has accomplished its aims.

1.2 Research Questions

The research questions should facilitate the objectives of the research and bound and
shape the research effort. Specifically to the approach taken in this dissertation, Reflective
Practice should improve our understanding of agile practices for small-team software

development in the small-shop environment in the following ways:

e Small team using no method: The practitioners in the Dialogical AR Partnership
work in a small software development shop which does not use any formal or
specified method. Thus, agile methods are a suitable choice as agile methods have
been proven effective for small-team and small-shop software development. The
principle advantages of introducing XP would be in areas of the software team
learning, development process and team productivity.

e Small team already using an agile method: In the case where a small software
development team already uses an agile method, Reflective Practice may allow a
small-team software development team more levity, clarity, adaptability and agility in

Taking a Reflective Practitioner approach to the professional practice of small-shop software
development and their use of agile software development methodologies should also improve
existing theories regarding the professional practice of small-shop software development.
Lastly, the DSAR research approach promises to advance theory and practice in the area of
small-shop software development. Therefore, the primary motivations driving this research are
related to gaining a deeper understanding of the professional practice of small-shop software
development from the Reflective Practitioner perspective and developing a learning system for
the use of agile methods. With these motivations in mind, this dissertation uses empirical

evidence to provide answers to the following research questions:

Table 1 Research Questions

Question ' Description

Research Question One “What is an explanation for how the professional practice of
small-team software development in the small-shop environment
benefits or does not benefit from the introduction of Reflective
Practice, and what contributions can this explanation make to
the body of theory on the professional practice of small-team
software development?”

Research Question Two “What is an explanation for how Reflective Practice improves or
otherwise changes the use of agile software development
methods in a small-team and small-shop software development
environment, and what contributions can this explanation make
to the body of theory on agile software development methods for
small-team and small-shop software development?”

Research Question Three “What is a design science artifact which provides the benefits of
agile software development practices and Reflective Practice
while satisfying accepted guidance for the development,
implementation and evaluation of the design science artifact?”

Answers to these research questions provide a basis for determining the degree to which
Reflective Practice can be infused into an extant agile method in order to both improve the
method and create a clearer understanding of learning in the professional practice of small-team

software development in a small-shop environment.

1.3 Research Motivations: Transitions in the Professional Practice of Software

Development

Due to the “software crisis” of the 1950s and 1960s (Pour et al. 2000), software
development has cast as an engineering activity where engineering serves as a frame of reference
and generative metaphor (Schon, 1978) which presents a way of seeing (and not seeing) the

practice of software development; as a frame of reference and metaphor, engineering shapes

perspectives within communities of practice and communities of research. Thus, to assume that
software development is engineering is to assume a positivist epistemology or what Schon
(1983) has termed Technical Rationality. Software development has not always been considered
an engineering practice and the recent advent and use of agile development methodologies has
again brought about epistemological debate concerning the nature of software development

(Abrahamsson et al. 2003; Shaw 1990).

In essence, Technical Rationality represents a positivist epistemology for software
development where the influence of the individual professional software developer is muted by
generalized, theory-driven, and normative activities to which the practitioner must adhere. Thus,
according to Schon (1983), an individual practitioner serves a purpose beyond that of a
compliant automaton who applies theoretical treatments to well-understood problem sets.
Instead, the professional practitioner utilizes her professional repertoire in daily practice, and
significantly relies on her ability to reflect in the act of practice and, post-facto, on the act of
practice in cases where novelty confounds her repertoire. Reflection-in-action represents a key
distinction between the Technical Rationality, a positivist epistemology of practice, and

Reflective Practice, which is a reflective epistemology of practice.

It would be easy to dismiss this questioning of engineering as a quibble over semantics,
however, terms, definitions, frames of reference and generative metaphors all exert profound
influence on the actions taken in software development. As software development strives for
professional recognition, engineering, the dominant espoused reference discipline for
professional software development, has tended to influence the philosophy of that profession.

Thus, to adopt a reference discipline is to assume the paradigm of that discipline.

If engineering is “...creating cost-effective solutions to practical problems by applying
scientific knowledge to building things in the service of mankind” (Shaw 1990), so too is
software engineering. Thus the emergent profession of software development has adopted the
governing epistemology of engineering and all of the implications and ramifications therein. The
effect of frames and metaphors can also be understood in language and human communications.
Languages also provide a way of seeing the world and not seeing the world; some languages
naturally express a concept or phenomenon whereas other languages completely lack an
expression for the same phenomenon. In other cases, a phenomenon has a word in one language
whereas that word is missing in another. In this sense, it is possible that an engineering frame for
small-team software development in the small-shop environment may not be fully informative
and explanatory vis-a-vis the actual daily experience of the small-team developer. Furthermore,
these ways of seeing and not seeing have implications for how a small-shop practitioner learns in
his or her use of a software development methodology and whether his or her individual learning
contributes to a team learning system. This is a fundamental and recurring theme in this

research.

Whereas Schon (1983) suggests Reflective Practice as a means of explaining professional
activity and learning in a manner that Technical Rationality cannot, using Reflective Practice to
specify a learning system for XP enables an approach to learning which goes beyond what is
possible through Technical Rationality alone. In this case, the selection of XP is appropriate as
agile methods generally reject traditional (and positivist) software engineering methodologies.
Furthermore, a challenge to engineering as the dominant metaphor provides opportunity to
explore new frames for small-team software development. By their nature, agile software

development methods already provide an initial direction for a new frame and metaphor for

10

small-team software development; Reflective Practice should move our understanding of this

new frame and metaphor forward.

1.4 Research Motivations: Small-Team Software Development

This research focuses on small-team software development in the small-shop environment
for a variety of reasons. As a direct and indirect result of the increasing dependence on and use
of the Internet and the World Wide Web, many of the most significant software and technology

innovations have come from individuals and small teams. Here are just a few examples:

e Linus Torvalds (Linux) — Wrote an operating system, Linux, based on Unix and
Minix whilst a computer science student at the University of Helsinki. Linux is the
cornerstone of the Free and Open Source Software movement and powers a
significant portion of applications on the Web and the Internet.

e Bill Gates and Paul Allen (Microsoft) — Childhood prodigies who worked to create
Altair BASIC and perfect MS-DOS. Their company, forged out of their early
software development work, has gone on to dominate the software market for
personal computing. When Bill Gates stated in 1985 that “...our goal is to get a
workstation running our software onto every desk and eventually in every home,” he
obviously meant it and the track record is clear: Microsoft Windows has, at times,
dominated over 90% of the market share for PC operating systems (Jackson 1999).

e Larry Page and Sergey Brin (Google) — Larry Page and Sergey Brin, under
direction of Terry Winograd, developed a precursor to Google, called “BackRub,”
whilst doing research as Ph.D. candidates at Stanford University (Battelle 2005).
Google, once a dissertation research project, has gone on to significantly signify
information research and retrieval on the World Wide Web. Google commands
nearly half of the search-engine market (Sullivan 2006).

e Mark Zuckerberg (Facebook) — Mark Zuckerberg wrote the original code for
Facebook in his dorm room at Harvard in 20042, Facebook has gone on to exemplify

? There is some controversy surrounding true authorship of Facebook — Aaron J. Greenspan and, separately, Divya
Nerendra, Cameron Winklevoss and Tyle Winklevoss all have made legal claims on the Facebook idea. US District

Court in Boston has continually ruled in Zuckerberg’s favor.

11

social networking websites. (McGirt 2007)

e Brendan Eich (Javascript) — Brendan Eich created Javascript (how, ECMAScript)
while working at Netscape Communications Corporation in 1995. This dynamic,
weakly-typed and prototype-based language (with first-class functions a la Scheme
and LISP) is the de facto client-side scripting and state language for Internet
browsers. The connectivity and application revolution on the World Wide Web
would not be what it is without this language. The entirety of Web 2.0 innovations
rests on the client-side capabilities of this language (Lohr 1996).

e Shawn Fanning (Napster) — Shawn Fanning became synonymous with (illegal)
online peer-to-peer file sharing with Napster, which he created in 1998. The online
file sharing phenomenon, now with technologies like BitTorrent, has fundamentally
changed the music, film and software industries and has brought software and

Intellectual Property theft issues to the forefront of societies’ discussion on the ethical
use of the World Wide Web (Ante 2000).

This list of entrepreneurial developers illustrates the degree to which society-changing software

innovations often come from small teams, small shops and individuals.

Debate regarding the importance of team size has existed as long as the professional
practice of software development has existed. In his seminal tome, The Mythical Man Month,
Frederick Brooks (1975) focuses on the travails of managing large teams and large projects, but
acknowledges that a “small, sharp team of first-class people” is preferable to “hundreds of
programmers” (Brooks 1995: 30). While large-scale industrial/military/financial systems® do
require engineering approaches, the eCommerce-oriented and everything-is-connected, always-
online, and web-orientation of many contemporary applications often does not; many software
projects for the World Wide Web is developed by small teams in a small-shop environment
(Ginige et al. 2001). Even within an extremely successful web-oriented company like Google,

many projects are handled by smaller teams (Google 2008); this has also been the case at

® The “software crisis” of the 1950s-1970s arose as the results of failures and cost-overruns in the design,

development and implementation of large-scale, industrial/military/financial systems.

12

Microsoft (Cusumano et al. 1997). Furthermore, as a large portion of software development in
the United States occurs within the context of a small team, small shop or small company (U.S.
Census Bureau — 2005 County Business Patterns), then small-team software development

warrants further and continued study.

1.5 Research Motivations: Reflective and Agile Practice

In the mid-to-late 1990s, several notable and experienced software developers were using
and honing new methodologies which focused on small teams and adaptive responses to risk.
These lightweight methodologies coalesced and formalized as agile methodologies in early 2001
(Fowler et al. 2001). The synergy, synchronicity and serendipity involved in the emergence of
agile methods and the increased prevalence of small-team software development is hardly
accidental. Thus, there is an imperative that scholars of software and information systems
development investigate the confluence of agile methods, small-team and small-shop
development and new and emerging metaphors for professionalism in software development.
Phenomena of most interest to scholars might be: the distinguishing features of small-shop
software development; methods most suited to small-shop development; an epistemology of
practice which best explains the new and emerging frames and metaphors for the professional

practice of small-team development in the small-shop environment.

The growing agile software development community frequently speak of disconnect
between their experiences in contemporary software development and the guidance of traditional
software engineering. Thus, their collective response to the perceived inadequacies of traditional

software engineering methods has motivated the recent diffusion of various lightweight and agile

13

methods (DeBaar 2007). One interpretation of the emergence of agile methods is that they
represent a need for new frames and metaphors for the professional practice of software
development which fit the new realities of web-oriented, small-team software development

(DeBaar 2007; DeMarco et al. 2002).

Noteworthy in the nascent history of agile software development is the persistent
presence of the engineering metaphor in the literature; agile methods are still cast as software
engineering methods despite leanings to the contrary inherent in agile methods. There are a few
“Agilists” who understand that agile methods represent paradigmatic shift away from the
engineering frame of reference (Rajlich 2006), yet software professionals have merely
incorporated the tenets of Agility into an existing and dominant framework of software
engineering. According to Argyris and Schoén (1974, 1978), this is a failure to modify
fundamental governing variables and strategies for action planning in response to the
consequences of action. Moreover, this constitutes a possible obstruction to individual and team
learning in the use of agile methods. Thus, this research also examines the validity of the
engineering metaphor in the use of agile methods in small-team software development in the
small-shop setting. Given that the typical “sweet spot” for agile methods is within small-team
software development projects (Boehm et al. 2004), this gives occasion to question the
epistemological nature of agile methods in general. Are small-team and small-shop software
developers using agile methods engineering? Are they designing? Developing? Crafting?
Furthermore, as engineering is aligned with the epistemology of Technical Rationality, how does
the use of an agile method in a small-shop imply an alternative epistemology of professional

practice?

14

This research proposes that the success of agile software development methods in small
teams and small shops provides an opportunity to examine and question the engineering
metaphor and positivist epistemology as it relates to small-team software development. Thus,
this dissertation also undertakes an empirical investigation to determine the suitability of
Reflective Practice as a frame of reference and epistemology for agile method use in small
software development shops. In taking the Reflective Practitioner approach, one possible frame
of reference for the agile software developer in the small-shop environment would be that of
artisan or craftsman. In this sense, artisans are craftspeople whose handiwork resembles pre-
industrial professionalism. This is in contrast to the subsequent influence of the Industrial
Revolution, the Scientific Revolution and the Age of Enlightenment which popularized scientific
approaches to practice (i.e. Taylorism, etc.) and relegate an artisan as engaged in mere avocation.
However, artisanship and craftsmanship may be more appropriate frames of reference for agile
methods if the epistemology of reflective practice is used as a frame of reference for agile small-
shop software development. This is an epistemological dilemma that Schoén calls “frame
conflict” (1979, 1983, and 1994). Figure 1 illustrates this frame conflict and suggests the need to
theorize on a new frame for agile methods. This frame conflict has implications for the use of
agile methods in small teams and small shops and also influences models of learning in the use
of software development methods. Thus, Figure 1 suggests that adaptive and lightweight
processes have not been sufficiently theorized such that a clear frame of reference and metaphor

has emerged.

15

Figure 1 Paradigmatic Transition from Engineering to Artisanship

Frame: Frame Frame:
—>) —
Engineering ! : ! Artisanship
Method Class: Method Class: Method Class:
Predictive g Adaptive-Agile Reflective-Agile

In order to understand the frame conflict inherent in agile methods, this research
references a full range of Donald Schon’s theoretically rich perspectives on the shaping of
professional activity in his work on Reflective Practice, generative metaphor and framing (Schén
1979; Schon 1983; Schon 1987; Schon et al. 1996; Schon et al. 1994). For the purposes of this
dissertation, a “frame” refers to a “frame of reference” which is a means by which new
phenomena are understood and incorporated into an extant framework of understanding. In his
work on generative metaphor, Schén (1979, 1983) describes how the metaphors which a
community of practice uses to describe new and novel situations guide understanding and actions
within that community. Put more simply, the language and thinking used to set a problem may

determine the actions taken to solve the problem. In this sense, the metaphor of engineering has

16

become a way of seeing, and not seeing, the professional practice of software development in

general, but also in the case of agile software development in the small-shop setting specifically.

If agile methods are meant to improve process and productivity within a small software
development shop, then how much more effective would the use of agile methods be if the
epistemological nature of agile methods is more clearly understood? Can the epistemology of
Reflective Practice be infused into an agile method in order to both improve the method and
improve our theoretical understanding of agile methods as used in small-shop software

development? Exploring and answering these questions is also central to this dissertation.

1.6 Research Motivations: Information Systems and Software Development

A review of the literatures on Information Systems Development (ISD) and Software
Engineering (SE) reveals a considerable degree of overlap and potential for confusion. In order
to distinguish between these two disciplines, which, in their respective literatures, seem to be
speak about the same phenomenon, explicating a model of what an information system is may
help. For the purposes of this research, an information system is defined as a socio-technical
system which is “... the result of an information technology enabling an organization, as much as
an information system is the result of an organization enabling an information technology” (Lee
2004: 13). We can expand this definition with the addition of a separate data system (Lee 2008)

shown in Figure 2.

17

Figure 2 A Systems View of an Information System (Lee 2008)

N

A

In Figure 2, each subsystem of the information system, IT, Data and the Organization,
iteratively exacts requirements on other subsystems; thus, each subsystem is structured by its
interactions with other subsystems. This structuring concept of systems is well established in the
literature (Barley 1986; Giddens 1984; Orlikowski et al. 1991; Schon 1967). A considerable
number of articles in the seminal literature on Information Systems Development (ISD)
(Hirschheim et al. 1989; Hirschheim et al. 1996; livari et al. 1998; Orlikowski et al. 1991; Truex
et al. 2000) afford considerable focus on the organizational and social aspects of information
systems development. Thus, this research characterizes Information Systems Development, and
the literature thereon, as being organization and systems-centric. While there are increasing calls
in the IS literature for stronger consideration of the design aspects of ISD (Agarwal et al. 2005;
Hevner et al. 2004; Lee 2007; Lee 2008; Orlikowski et al. 2001), the majority of ISD literature
leans towards an organizational focus. This research considers both organizational and design

aspects of ISD.

18

The literature on software engineering shares some of the same concerns as the literature
on ISD yet the software engineering literature considers the organizational system insofar as this
system provides design and acceptance requirements. Hence, organizational concerns are
secondary in the large majority of the Software Engineering. This is also changing; some
researchers and practitioners in Software Engineering have called for more focus on values and
human issues (Boehm 2003; Boehm 2006; Tomayko et al. 2004). In summary, this research
assumes that software engineering traditionally takes an artifact-centric view of systems
development, where the technological and data concerns of the software component of a system
are of primary importance. ISD usually takes an organization-centric or systems-centric view of

systems development.

For the purposes of this study, Software Engineering — the dominant paradigm for the
professional practice of software development — is seen as a subset of the overall activities of
Information Systems Development. Consequently, this research does not equate Software
Engineering with ISD as there are important paradigmatic differences between them. Moreover,
as this research focuses on small-shop software development, any resulting theoretical outcomes
should be accepted within the wider body of scholarly knowledge concerning Information

Systems Development and Software Engineering.

1.7 Significance of the Research Topic

A theory is also a way of seeing and not seeing; that which is not seen would not be
explicit within the philosophy, ontology, epistemology and methodologies which inform that

theory. While both traditional software engineering and agile software development methods

19

likely share a philosophical ontology, traditional software engineering methods and agile
methods may not share the same epistemology with respect to professional practice. The
literature on agile methods suggests that, in some cases, the prevailing paradigm insufficiently
explains emerging and new realities in practice. This process is discussed at length by Kuhn
(1996) as a symptomatic part of normal science. This paradigmatic uncertainty (Rajlich 2006)
suggests that theorizing on an appropriate paradigmatic conception of agile methods is also a

research-worthy topic.

In some respects, agile software methodologies have largely abjured the overt influence
of software engineering in favor of “seeing” software development from a different perspective —
a perspective which does not place scientific rigor as paramount. In fact, the Agile Manifesto
(Fowler et al. 2001) does not mention science at all — it is not “seen.” Moreover, the Agile
Manifesto concludes with a very important caveat (Highsmith et al. 2002): “that is, there is value
in items on the right, we value items on the left more” (p.121). In this case, items on the right
are the tenets of software engineering and the items on the left are those of agility, adaptation and
artisanship. This sentiment clearly indicates that agile methods do not entirely eschew the
antecedent knowledge and wisdom of software engineering (Highsmith et al. 2002), but that
there are new values which have proven more useful in daily practice. Schon (1983, 1987)
addresses a similar disconnect between theory and practice in contrasting Technical Rationality

and Reflective Practice.

The frame conflict between software engineering and agile methods can also be framed
as a Hegelian dialectic where software engineering is the thesis, agile software development
methods are the antithesis and a synthesis has not yet been reached. One possible synthesis

would be to inform Technical Rationality from the results of on-the-spot frame experimentation

20

as practitioners use, refine and augment repertoire through Reflection-in-action and Reflection-
on-action. Thus, a generalized body of knowledge developed though a positivist tradition can
also serve as an important source and basis for a practitioner’s repertoire. Just as agile methods
cannot replace traditional heavyweight methods in all cases, Reflective Practice is an
augmentation of Technical Rationality in the same sense that Double-Loop Learning is an
Augmentation of Single-Loop Learning (Argyris et al. 1978; Argyris et al. 1996; Argyris et al.

1974).

An empirical investigation into the efficacy of Reflective Practice in the use of agile
methods has already been suggested in the literature (Hazzan et al. 2004a; Tomayko et al. 2004).
Thus, a goal for iteratively developing the designed artifact is to test the efficacy of Reflective
Practice and suggest how Reflective Practice can augment the positivist epistemology of
professional practice in order to provide balance. This goal is consistent with calls in the
literature to balance and augment Positivism with other epistemologies, such as Interpretivism

(Lee 1991; Lee 1999; Mingers 2001) or design science (March et al. 1995).

Lastly, any successful application of Schon’s epistemology of practice should elevate the
role of art and craft in the use of agile software development methods. As Schon (1983: 18)
asserts, the art and craft of professional practice not only lies within reflection, but art and craft
are indispensable aspects of professional practice often relegated by the epistemology of

Positivism.

1.8 Sections of the Dissertation

21

The remaining sections of this dissertation are now outlined. Chapter Two presents a
literature review which discusses and outlines the literatures which scope and frame the
theoretical and practical bases for the dissertation. Chapter Three outlines and illustrates
Extreme Programming as a baseline which is extended by designed artifact. Chapter Four
outlines the research methods used: Dialogical AR and Lee’s (2007) DSAR Framework.
Chapter Four also positions this research as a mixed-methods approach which combines design
research conducted in a Qualitative and Interpretive mode of inquiry. Chapter Five presents the
particulars of the Dialogical AR Partnership with respect to the Diagnosis, Action Planning and
Action Taking phases of Canonical action research (Canonical AR) as realized within the
Dialogical AR method. Chapter Six presents an evaluation and analysis of the consequences of
actions and interventions taken in the Dialogical AR Partnership and uses accepted evaluation
criteria for Interpretive fields studies (Klein et al. 1999) and Action research (Davison et al.
2004). Chapter Seven evaluates and theorizes on the designed artifact utilizing accepted design
science evaluation criteria (Hevner et al. 2004). Chapter Seven also uses the designed artifact to
address the research questions. Chapter Eight provides concluding remarks, limitations of the

study and directions for future work.

22

CHAPTER 2 Literature Review

This chapter provides a review of the literature to support the legitimacy of the research
questions and objectives and provide background concerning the nature of these questions and

objectives. With this stated, the parts of the literatures explored are:

e Method and methodology: A review which dissects and differentiates these two
commonly-confused concepts and a definition for each of these concepts for the purposes
of this dissertation.

e Software development methodologies: This section explores the following questions:
What is the history behind software development methodologies and what are the
philosophical, ontological and epistemological perspectives governing these
methodologies? What is the history of software development that has driven these
methodologies? Why was there a need for methodologies in the first place?

e The professional practice of software development: Explores the nature of profession
and professionalism in the practice of software development. This includes an
examination of the professions in general and of the prevalent ontological,
epistemological and paradigmatic views on the professional practice of software
development.

e Small-team/Small-shop software development: Distinguishes small-team development
from other kinds of development. Explores the nature of this emergent segment of the
professional practice of software development and the nature of software development
methods which are most suited to small-team software development.

e Agile software development methodologies: This section of the literature review ties
together previous sections on small-team software development and software
development methods in order to present the history and case of agile software
development methods.

o Reflective practice and learning: This section explores the nature of and reasoning
behind Schon’s (1983, 1987) epistemology of Reflective Practice, including application
areas where Reflective Practice has been well-accepted. Additionally, Reflective Practice
is linked to a wider program of research and theory shared by Argyris and Schon (1974,
1978, and 1996) concerning learning, reflection and change.

23

The remaining sections of this chapter provide background and support for the research
questions in this dissertation. This chapter will proceed as follows; first, a discussion on the
nature of method and methodology from a research and practical perspective; next, the nature of
software development methodologies is examined; this is followed by a discussion on the
professional practice of software development; next is a focus on the nature of small-team and
small-shop software development; next is a description of agile methods and their suitability for
small-team software development in the small-shop setting; the chapter then concludes with
discussion on Reflective Practice and Argyris and Schon’s larger program of research on

learning, reflection and change.

2.1 On Method and Methodology

It is important to distinguish method from methodology as numerous references are made
to both concepts throughout this dissertation. A method is subject to many meanings and
interpretations; generally, most formal definitions agree that a method is a procedure or a set of
steps. The Oxford English Dictionary (2001) states that a method is "... a way of doing anything,
especially according to a defined and regular plan; a mode of procedure in any activity..." This
is in keeping with the generally accepted notion of a scientific method in which a series of

repeatable steps are undertaken to acquire knowledge, develop theory and/or test theory.

When considering the word methodology, it is important to consider this word’s
components. The suffix -ology is defined by the Oxford English Dictionary (2004) as "...an

academic discipline or field of knowledge.” Further to this is the Oxford English Dictionary

24

(2004) definition for a methodology: "The branch of knowledge that deals with method generally
or with the methods of a particular discipline or field of study." Or, further: "A method or body
of methods used in a particular field of study or activity." Therefore we can derive that a
methodology is concerned with a collection of individual methods and also concerned with the
generalized knowledge and philosophy surrounding these methods. Others propose that a
methodology is the theory or principles guiding the application of logical rules and syllogism as
relates to a field of study (Gower 1996). The Merriam-Webster Dictionary is generally in
agreement with the Oxford English Dictionary in defining a methodology as "a body of methods,
rules and postulates employed by a discipline™ and "the analysis of the principles or procedures

of inquiry in a particular field." Therefore, we can see that methodologies encapsulate methods.

This dissertation refers to methodology in two senses: a research methodology, which is
guided by a philosophy of science; and a design methodology, which is usually just a collection
of related methods, but is actually quite similar to a research methodology in that a design
methodology is also guided by a philosophy of science and practice. In either case, relating
methods and methodologies to each other develops a picture whereby a method is considered a
specific procedure, while methodology refers to methods at a higher level of analysis. Generally,
a methodology is informed by theories, concepts and ideas which then influence the use
methods. A particular field of study has underlying rationales, frames, metaphors and
philosophical assumptions all of which combine to reveal an ontological and epistemological
view of phenomena and the systematic study thereon. Therefore, a given method, as a process, is

only part of a methodology.

Lee (2004) suggests that a methodology lies in a continuum of subject matter pertinent to a
philosophy of science:

25

Philosophy of science = [ontology, epistemology, methodology and method]

Another means of considering these relationships between the elements of a philosophy of
science is to think of them as being interdependent. Accordingly, a method presupposes a
methodology; a methodology presupposes epistemology, an epistemology presupposes ontology,
etc. This implied sequence may not be as simple as previously stated; there is likely interplay
between these philosophic elements which has an impact on methodology and method. Figure 3

demonstrates one possible set of relationships:

Figure 3 Elements of a Philosophy of Science - Effects on Methodology (Argyris et al. 1978; Kaboub
2001)

Methods: (Observations and Actions)

A

Methodology

A

Theory

Social Ontology

Philosophical

Figure 3 suggests that theory is shaped by a number of subjects and concepts. First, there is a
philosophical ontology, which is comprised of a philosophical and systematic description of
reality and asks the question: “what exists?” The philosophical ontology influences an
epistemology, which is a theoretical description and set of beliefs on knowledge and truth. The
philosophical ontology also influences a social ontology, which is a theoretical description of the
nature and constitution of social reality*. Taken together, the philosophical ontology, the social
ontology and the epistemology provide a means of comprehending the objects of study within a
discipline and any theorizing on these objects. Therefore, theory encourages the systematic use

of methods for empirical testing and/or action-taking (Kaboub 2001; Searle 2006).

A methodology can also be understood as a conceptual framework for understanding
methods and method use. In this sense, software development methods are considered to belong
to some larger conceptual framework (Cockburn 2000). If methodology and conceptual
frameworks linked, then it is important to establish that a framework or methodology is an
intermediary for theories which shape inquiry and action. In this sense, a conceptual framework
such as “agility” in agile software development maps the territory of professional software

development practice and gives coherence to agile methods.

For the purposes of this dissertation, method is defined as “a means, algorithm or
procedure for directing purposeful action” and methodology is defined as ”a body of methods,

rules and postulates employed by a discipline in accordance with a paradigm, epistemology and

* The social ontology can be likened what Kuhn calls a paradigm: A concern with ontology and epistemology which
is socially shaped. This is a kind of observer subjectivity to ontological and epistemic objectivity - Searle, J.R.

"Social ontology: Some basic principles," Anthropological Theory (6:1) 2006, pp 12-29..

27

ontology guiding these methods.” In this sense, a methodology is an operationalization of
theory, epistemology and ontology and where action planning and strategizing takes place. A
method is the action-taking component of action-planning guided by methodology. Therefore, a
methodology shows “how things should be, or ought to be, done” and a method takes the steps to

achieve the desired end-state.

It would be easy to dismiss the importance of the term methodology as it implies all that
philosophically informs a method. We could just separate method and philosophy and avoid the
apparent redundancy of the word methodology. However, methodology is a useful concept as it
is paradigm-centric, whereas a method’s concept is method-centric. Thus, a methodology
represents a buffer between theoria and praxis where the concerns of both meet and ideas and
actions exchange. For example, Positivism serves as a methodology when conducting
scientifically-controlled laboratory experiments and Interpretivism is a methodology when

conducting an ethnographic case study.

2.2 The Nature of Software Development Methodologies

This section discusses software development methodologies as guides and models for the
professional practice of software development. In order to understand the role of Reflective
Practice in small-team and small-shop software development, a general consideration of
software development methodologies is discussed. A software development methodology arises
from two factors: a software development model (such as waterfall, spiral, RAD, Agile, etc.) and
software development techniques or methods (Cleanroom, PSP, Extreme Programming,

Prototyping, etc.). We can consider that a “mix-and-match” approach to software development

28

methodology is possible such that one or more models and one or more techniques may be
employed in any given project. Furthermore, it is not essential to utilize all steps within a
method (Sorensen 1995). Hence, there is a degree of flexibility possible when using software

development methodologies.

A software development methodology should facilitate most of the steps in the Software
Development Life Cycle (SDLC) where that methodology embodies the constructs, models and
methods for a software development process (Boehm 1996; March et al. 1995). Therefore, we

can define a software development methodology via a simple formula (Sorensen 1995):

METHODOLOGY = MODEL + TECHNIQUES

Generally, the methodological activities undertaken by software professionals correspond
to one or more stages in the Software Development Life Cycle (SDLC) (Bentley 1990; Brugha
2001). The SDLC describes the tasks and activities associated with designing, developing,
delivering and maintaining software. Table 2 below describes the principle steps evident within

most SDLC models.

29

Table 2 General Phases of the SDLC

SDLC Phase ' Phase Description

Domain Analysis The domain pertains to the area of endeavor in which the client
organization and individuals are situated (Hjegrland et al. 1995).
In this phase, general domain models and architectures are
established (Frakes et al. 1995).

Requirements, Specification | Identify the need for software product features, attributes,

and Scope Analysis capabilities, characteristics or qualities. This phase demonstrates
the business value for various features and ensures stakeholder
vesting (Boehm et al. 1988).

Architecture and Design Description and specification of the structures, components and
interfaces to the software and/or system. These are high-level
decisions made at an early stage which also consider stakeholder
involvement. Strategies for reuse, modularity, component design
and patterns are established (Bass et al. 2003).

Coding Computer programming code is written, debugged and tested for
logical consistency with design instructions. Application
domain, algorithms and logic are manifest within the code
pursuant to the specifications of the system/software
architecture.

Testing Software components, modules and systems are empirically
tested for quality assurance against the original architectural
specifications (Gelperin et al. 1988).

Documentation Requirements and design documentation is finalized. The intent
of this phase is to collate disparate architectural and technical
documentation to prepare for implementation and acceptance.

Implementation and The client adopts and integrates the new software/system. User
Acceptance acceptance predicates on training and prevailing views on how

software should work. Discrepancies between design steps and
acceptance are not uncommon but should be minimized.

Maintenance Ongoing activities to ensure software compatibility and quality
after delivery, implementation and acceptance.

30

Some software development methods approach the SDLC as a prescriptive set of linear
and sequential processes which lead to successful software; this is more evident with
heavyweight and process-oriented engineering models of the SDLC, such as the waterfall model.
The process-heavy waterfall model is often necessary for high-risk and/or large-scale

development where the discipline and rigor of engineering are required.

We can also add the various aspects of theory — paradigm, ontology and epistemology —
to this formulaic definition of a software development methodology in order to develop a fuller
understanding of a given software development process. Therefore, we can now derive a new

formula;

SOFTWARE DEVELOPMENT PROCESS = METHODOLOGY +

THOERTICAL_ASSUMPTIONS (Ontology, Epistemology and Paradigm)

Rather than exhaustively discuss every software development methodology historically
used in the professional practice of software development, this section has considered how these
methodologies are processes. This focus on process is congruent to the goal of this research to
determine what effects, if any, the introduction of Reflective Practice has on the software
development process in small software development shop. The literature on software
development methodologies is summarized in Table 3; this table shows how these sources
contribute to the objectives of this research and shows, by omission or incompleteness,

opportunities for further contribution.

31

Table 3 Synopsis of Selected Literature on Software Development Methodologies

Source Contributions Omissions and/or Opportunities
(Sorensen 1995) | Describes predictive and Does not recognize the paradigmatic
adaptive methodologies for aspects of methodology selection.

methodology selection. Provides
a model for software
methodologies.

(Hirschheim et Provides a paradigmatic Does not distinguish ISD and SE, does
al. 1989) framework for methodology not address the professional implications
classification using the Burrell of method selection.

and Morgan (1979) framework.

(livari et al. Provides a deeper analysis which | The mentioned Professional Work

1998) contrasts the Hirschheim and Practice approach to ISD is similar to
Klein analysis. Introduces Schon’s reflective practice but does not
specific examples of PWP directly to Schon’s epistemology.
methodologies from each of the | Schon’s epistemology is widely accepted
Burrell and Morgan traditions in many professions.

(Blum 1994) Provides taxonomy of software | Does not provide a paradigmatic
development methodologies discussion on what informs a conceptual
according to the and problem-oriented methodology.

formality/conceptuality of the
method and the problem or
product orientation of the
method.

2.3 The Professional Practice of Software Development

In order to examine the professional practice of software development following terms
and concepts require further definition: professional, professionalism and professionalization.
The remainder of this section sets out to define these terms. The reviewed literature on
professionals, professionalism and professionalization is summarized in Table 4; this table shows
how these sources contribute to the objectives of this research and shows, by omission or
incompleteness, opportunities for further contribution. The remainder of this section reviews

selected literature on the professions, professionalism and professionalization.

32

Table 4 Synopsis of Selected Literature on the Professional Practice of Software Development

Contributions

Omissions and/or Opportunities

Source

(Angus 2001; Baugh et al.
1994; Boehm 2002b; Brien
1998; Cheetham et al.
1996; Dingwall 2004;
Gotterbarn et al. 1999;
McCalla 2002; Parker
1968; Raymond et al.
1990)

Underscores the importance
of ethics and trust in
professional practice.
Emphasizes societal
vulnerability and the need
for professional
competence.

An opportunity to emphasize the
degree to which reflection
facilitates ethical and trustworthy
behavior and professional
confidence.

(Larson 1979; Pour et al.
2000; Ritzer 1975; Ritzer et
al. 1988; Wasserman 1996)

Characterizes the process of
professionalization and the
potential pitfalls thereon.

The professional practice of
software development is still
emerging and paradigmatic shifts in
methodologies constitute processes
of professionalization.

(Bagert 1999; Ensmenger
2001; McConnell 2004b;
Shaw 1990; Speed 1999)

Discussion on the
professionalization of
software development: the
controversies, requirements
and parameters, and the
status of achieving a
profession.

The professionalization of software
development has been extensively
cast as engineering; agile methods
have challenged this
characterization.

(Shaw 1990)

Software development as a
profession of design —
justification for the
engineering frame of
reference.

Does not address the role of art in
the designing process.

(Bourque et al. 1999; Ford
1996; Holmes 2000; Orden
1967; Parnas 2002)

Establishes the positivist
world-view of software
engineering and a body of
knowledge based on this
world-view.

Alternative world-views, such as
reflective practice, provide a more
complete understanding of agile
methods.

(Davison 2000; Orlikowski
et al. 1988; Oz 1992)

Information Systems
Development perspectives
on professionalization.

Software Engineering and
Information Systems Development
are not sufficiently distinguished.

(Boehm 2002b; Denning
2001a; Denning et al. 2001;
Elliot et al. 2002;
Purgathofer 2006; Trauth
1982)

Professional Identity

This needs to be clarified for small-
team development; the means by
which professional confidence can
be attained and sustained in a small-
team environment is required.

33

2.3.1 Professionals, Professionalism and Professionalization

Our modern world has been extensively forged by the professions and professional
activity. The professions and professional activity shape most of the principal business of
societies: defense, education, medicine, law, management, design and social work are just a few
examples (Schon 1983). The primacy of the professions lies within the large body of expert
knowledge held within professional practitioners; this knowledge is honed through years of
intensive study and is founded in theory and best practices. Furthermore, professions are self-
regulating and ensure that ethical bounds are placed upon practicing professionals (Brien 1998).
Professionals serve as the “tools” of technological and social progress such that society at-large
enjoys the benefit of the complex and important knowledge of the professions. The power
wielded by professionals also creates vulnerability within the rest of society as it is subject to the
failures and successes of professional practice (Brien 1998; Cheetham et al. 1996; Dingwall
2004; Ritzer 1975). The power embedded within the professions presents ethical issues and
brings these issues to the forefront of self-regulating activities within the professions (Brien

1998).

Within professional ethics and self-regulation we can find the impetus for
professionalism: an understanding of the rights and obligations which a profession bestows upon
a sanctioned practitioner as he or she exercises the profession. This sanction is important as the
concept of professions is often loosely employed. Thus, in the strict and classical sense,
professionals have a fiduciary duty to ensure that their decisions and actions in practice serve the
welfare of their clients (Jonsen et al. 1998). Therefore, professionalism has a great deal to do

with obligations, responsibilities and values. A profession must have infrastructure and

34

apparatus with which these values and mores are institutionalized; many professions have some
governing body which functions at an international, national or local level for these purposes.
These professional bodies serve not only to protect the interests of the public and the profession,
they often serve as legal guides where expertise in professional subject matter is critical.
Additionally, many professions license practitioners in their field to ensure quality and ethical
behavior. Fields of medicine, law, education, accounting, engineering, and architecture and,

recently, project management, are all regulated through licensing (Ritzer et al. 1988).

It is generally accepted that a profession emerges from the professionalization of a trade
or occupation. The body of knowledge, professional qualifications and formalization of ethics
promoted by professional associations are the hallmarks of the professions; ascension to these
endeavors is part and parcel of the processes of professionalization. The professionalization
process can be easily understood in the example of engineering. As an engineering discipline
matures, it traverses several stages from ad hoc activity to professional activity. Generally, the
introduction of production efficiencies through management and technology, followed by the
development of a supporting science, transforms craftsmanship to professional activity (Shaw

1990).

Without a unifying set of professional practices, the craftsman’s effective activity is ad
hoc and does not necessarily contribute to a wider body of knowledge for effective practice.
When it becomes necessary that the ad hoc activities of the craftsman should support wide-scale
production, craft is commercialized as management and production techniques encourage greater
and more efficient output. A profession develops when a systematic science emerges which
studies and formalizes management, technology, economies and efficiencies within the craft

(McConnell 2004b; Shaw 1990). This formalization transforms craft to professional practice and

35

formalizes the know-how of craftsmanship into structures which supersede the efforts of the

individual.

Figure 4 Evolution of a Discipline from Craft to Profession (Shaw 1990) (McConnell 2004b)

Y
=
o
Qo
c
o
=
o
=]

Profession

Craft — » Commerce

Figure 4 describes the general progression from craft to profession where the outcomes of
craft are improved by production techniques to realize commerce. With commerce in place, a
formal science concerned with the problems related to craft and production within commercial
endeavor can develop. A discipline emerges when science and practice create a body of
knowledge which formalizes the required knowledge and skills for professional practice within a

field; thus, professionalism within this discipline is known and explicated.

2.3.2 The Emergence of Software Engineering

In the professionalization of software development, the sciences which arose to support it
are widely accepted as the science of design and computer science. Simon (1996) indicates that
sciences of design are sciences of the artificial: man-made artifacts not otherwise found in the
natural world. Among the principle areas of knowledge and professional activity governing
design is engineering. Engineering is concerned with designing artifacts having specific

properties and the science and knowledge of processes required to design these artifacts

36

(McConnell 2004b; Simon 1996). Design is not necessarily the sole purview of engineering;
design is a measured effort to determine and implement courses of action which change existing
situations into preferred situations (Simon 1996: 111). Furthermore, it can be argued that design
and designing are central to most professional endeavors; design is concerned with what ought to
happen rather than what is happening. Designs are concerned with desired end states regardless
of the found state. Many traditional, long-standing and well-known professions are concerned
with design: education, engineering, architecture, law and medicine. Therefore, the design
discipline which has most closely been associated with software development is engineering;

hence, the profession is largely recognized and accepted as software engineering.

Software engineering arose in response to a “software crisis” characterized by a general
dissatisfaction with the results of large software projects in the 1950s, 1960s and early 1970s.
Early software applications were cobbled together through creative bouts of trail-and-error as the
software development was still very new and novel. The tools, concepts and technologies that
contemporary software developers enjoy today did not exist for early software developers
beyond theory predicting their possibility. In response to the software crisis, the rigor and
discipline of science and engineering was called upon to create an ordered approach to software

development which would optimize output and productivity and minimize waste.

It is generally accepted that software engineering emerged in 1968 and 1969 at the North
Atlantic Treaty Organization (NATO) workshop on the state of software development (Shaw
1990). The environment at the time was receptive to the professionalization of software
development as the first few decades of computer programming were fraught with failures and

cost overruns (Boehm et al. 1988; Brooks 1995; Orden 1967). The acceptance of software

37

development as a discipline of design and engineering brought an opportunity to formalize

software tools, technologies, management, processes and design activities (Shaw 1990).

As a discipline of design, software engineering draws from a body of knowledge and
patterns for designing which encourage design reuse to solve familiar problems. These problems
become familiar as their solutions are added to body of professional knowledge within the
discipline; which is a benefit of a stable science. The degree to which problems and solutions
can be classified and routinized signals the maturity of a profession (McConnell 2004b;
Raymond et al. 1990). Thus, the engineering in software engineering would suggest that the
professional practice of software development entails “...creating-cost effective solutions to
practical problems by applying scientific knowledge to build things in the service of mankind”
(Shaw 1990). These cost-effective solutions represent a set of solved problems; thus, the
scientific paradigm of software engineering should provide a set of reusable artifacts which can
be applied to well-known classes of problems (Kuhn 1996). Among the reusable artifacts of

software engineering are (McConnell 2004b):

e Software design architectures - Client-Server, Structured and Procedural, Modular
and Object-Oriented, Three-tier, Service oriented, etc.

e Software Design Methodologies — Agile, XP, Scrum, RAD, RUP, Spiral, Waterfall

e Design Patterns - a reusable solution to common problems in software design —
Factory method, Singleton, Bridge, Adapter, Observer, etc.

e Requirements Specification — Use cases, IEEE 830, etc.
e User interfaces and Human Computer Interaction — GUIs, Web design, etc.

e Estimation processes — Parametric Estimating, COCOMO, Function Point Analysis,
Proxy-based estimating, the planning game, etc.

38

e Testing — Unit testing, Integration testing, System testing, Acceptance testing, Beta
testing, etc.

e Revision control and software configuration management — BitKeeper, Bugzilla,
Perforce, CVS, VSS, etc.

e Project and process management and quality control — ISO 9001, Total Cost
Management, Total Quality Management, Six Sigma, Capability Maturity Model

Subsequent to the adoption of engineering as a frame of reference and metaphor for the
professional practice of software development, software development professionals have
struggled to define what software engineering means. The engineering frame brings
philosophical, ontological and epistemological assumptions with it; thus it presumes a paradigm
or world-view. The world-view of software engineering suggests that a systematic, disciplined
and quantifiable method for software construction is required to create effective and reliable
software (Bourque et al. 1999; Holmes 2000; Orden 1967; Parnas 2001; Shaw 1990). According
to the software engineering world-view, the knowledge concerning the tools, people and
technologies required to build software are manifested within the formal methods and
mathematical rigor of engineering. In the software engineering world-view, the human element
in the problem space represents an irrational source of error which must be controlled.
Therefore, software engineering favors predictive planning and action sequencing where the
interaction between people and processes is closely monitored and managed. Software
engineering, as a discipline, can be considered as an example of Technical Rationality (Schon
1983, 1987). The rational attitude inherent within software engineering underscores the primacy
placed on generalized theoretical knowledge and can thus be described as paradigmatic in nature

(Boehm 1976; Boehm 1979).

39

2.3.3 The Social and Historical Context of Software Engineering as a Profession

The progression towards professionalization in software has been fraught controversy and
disagreement on the tenets of the discipline and the meaning of professionalism. Boehm (2006)
has characterized the evolution of software engineering as a Hegelian dialectic pursuing Kuhn’s
(1996) “normal science”: the business of defining and redefining the ontological, epistemological
and paradigmatic space within which the discipline lies. This is apropos as normal science “...

possesses a built-in mechanism that ensures the relaxation...” of questions surrounding the
appropriateness of the paradigm (Kuhn 1996: 24). While the controversy continues, the

profession is still cast in the engineering paradigm.

2.3.3.1 Historical Trends in the Software Engineering Paradigm

The Hegelian dialectic is a learning process whereby a thesis (an intellectual proposition)
is met with a negation of that thesis, antithesis; this conflict is resolved by reconciling their
common truths, synthesis, and forming a new proposition. By using a Hegelian dialectical
approach, Boehm (2006) offers a framework for understanding the history of the professional
practice of software development and provides an understanding of the controversies
surrounding the adoption of engineering as a frame and metaphor for the professional practice of

software development.

The 21 Century has brought antitheses to software engineering. Global connectivity has
resulted in global thinking and global economies placing new and greater demands on software

and has provided an occasion for redefining software engineering. Traditional heavyweight

40

processes and plan-based approaches, which emphasize extensive and contractual documentation
and maturity models, are said to confound the ability for software engineering to provide
relevant and timely software (Boehm et al. 2004). This dilemma has parallels in the rigor and
relevance debate found in the information systems literature (Baskerville et al. 2004; Benbasat et
al. 1999; Benbasat et al. 2003; Orlikowski et al. 2002; Orlikowski et al. 2001). Thus, as software
engineering matures and undergoes a plethora of Hegelian dialectic episodes, balancing agility

with discipline becomes a fundamental concern (Boehm et al. 2004).

Among the most compelling antithetical developments in software engineering has been
the arrival of agile software development methods. Agile methods favor individuals,
interactions, working software, customer collaboration and response to change especially in
areas where teams are small, risk is low, personnel are highly-capable, requirements are in flux
and in an organization/team which thrives on chaos vs. order (Boehm 2006; Boehm et al. 2004;
Cockburn 2002; McBreen 2002a). Recently, agile software development methods have given
rise to “post-agile” methods such as “value-based” software engineering, whereupon Boehm
(2006) calls for a focus on adapting technology to people rather than vice versa. This concept
resonates with the raison d’étre for a large portion of Information Systems research and
development (Benbasat et al. 2003; Hirschheim et al. 1989; Orlikowski et al. 2001; Whinston et
al. 2004). However, as Boehm is a died-in-the-wool software engineer, his call for an increased

focus on human issues is somewhat contrary to the Positivist paradigm of software engineering.

41

2.3.3.2 Professional Crisis: Defining Software Engineering

The history of software engineering illustrates an ever-present push towards the
professionalization of software development. However, debate regarding the nature of the
profession goes back to the earliest days of software development practice (Ensmenger 2001).
As Ensmenger (2001) points out, “one of the most intriguing and influential developments in the
history of software has been the widespread adoption of the rhetoric and ideology of software
engineering” (p. 70). This engineering frame of reference and metaphor has pervasively directed
an agenda influencing most technological, managerial, and professional developments in the
field for the past 30 plus years. Whereas in the 1950s and 1960s competing ideas of professional
software developers as “certified public programmers” (after accounting) or as computer
scientists were considered: the community chose engineering (Ensmenger 2001). In adopting
engineering as the frame of reference and metaphor to guide the professional practice of software
engineering, a set of ontological, epistemological and paradigmatic assumptions were also

assumed — willfully or otherwise.

One aspect of the controversy surrounding software engineering concerns software
engineering’s body of knowledge. McConnell and Tripp (1999) claim that, despite the advances
of the 1970s, 1980s and 1990s, most software development follows a “code and fix” approach:
hacking away at the problem in an unstructured manner — a la “cowboy coding.” (Highsmith et
al. 2001) The elements of a mature profession, however, are far from ad-hoc in nature (Ford
1996; McConnell et al. 1999; Pour et al. 2000). In a comprehensive study covering the aspects
and attributes of mature professions such as medicine, law, engineering and accounting, Ford and
Gibbs (1996) have described the elements of a mature profession (Table 5).

42

Table 5 Elements of a Mature Profession (Ford and Gibbs 1996)

Element Implementation in Software Engineering

Initial Professional Education Education is usually obtained in a computer science
program, yet it has been argued that computer science is
not software engineering (Parnas 1999). Roughly 40% of
professional software engineers are computer science
trained (Blevis et al. 2006; Boehm 2006).

Accreditation The Federation of accrediting bodies in areas of
engineering education has greatly progressed with
organizations like ABET, Inc. (née Accreditation Board for
Engineering and Technology).

Skills development Initial education is a first step whereas initial experiential
training is more valuable in developing a competent
professional. IEEE and ACM Software Engineering Body
of Knowledge has provided a basis for explicating these
skills (Bourque et al. 1999).

Certification Vendor certifications are very popular but have a
questionable shelf-life. While doctors and lawyers take
board exams and accountants pass CPA exams, software
engineers have few options which are widely seen as
legitimate (McConnell et al. 1999).

Licensing In other professions, licensing is similar to certification
with the exception that licensing is mandatory and
administered by government authority. Licensing has had
ups and downs in software engineering, with most efforts
having fizzled out (Bagert 1999; El-Kadi 1999; Knight et
al. 2002; Parnas 2002).

Professional Development This is a shared activity between the various stakeholders
within the profession. The practitioner has a personal
obligation to herself and the profession to engage in
ongoing professional development. Furthermore,
organizations and employers need to accommaodate this
professional development need (Bourque et al. 2002).

Professional Societies There are special interest teams within the IEEE and ACM
for software engineering.
Code of ethics The IEEE and ACM have made significant progress in this

area and have provided the profession with a code of ethics
for software engineering (Gotterbarn et al. 1999). Similar
calls have been made for a code of ethics for Information
Systems and Information Technology professions (Davison
2000; Orlikowski et al. 1988; Parker 1968), however, these
professions are less matured than software engineering and
in a less developed state with respect to form and function
(Hirschheim et al. 2003).

43

Creating legitimacy in the eyes of academia and society is primary among the
motivations for establishing a professional tradition for software development (Ensmenger
2001). With respect to legitimacy in society, the elements of a mature profession serve as a
barometer for progress in gaining mindshare and legitimacy. In a study conducted by the ACM
and IEEE Computer Science Software Engineering Coordinating Committee (SECC), software
engineering’s maturity in areas of an initial professional education, code of ethics, accreditation,
skills, development, professional development, certification and licensing was found to be either
non-existent of ad hoc (Pour et al. 2000: 36). While some of these areas have likely since
improved, this may suggest that the profession of software engineering has yet to establish a
unique identity. The roots of this identity lie in the academic delivery of the software engineering
body of knowledge in programs dedicated to software engineering. Table 6 shows the progress

of the professionalization of software development.

44

Table 6 Assessing the Maturity of the Software Engineering Discipline (Pour et al. 2000)

Infrastructure component of a mature

How software engineering measures up

profession
Recognized body of knowledge

IEEE-CS/ACM taskforce has ratified the
SWEBOK (level 2-3)

Professional societies

IEEE, ACM, SIGSOFT (level 2-3)

Code of ethics

Both IEEE and ACM have codes of ethics
specific to SE (level 2-3) (Gotterbarn et al.
1999)

Initial professional education system

Programs in SE are on the rise, yet not
widespread (level 1-2)

Accreditation of professional education
programs

ABET and CSAB (level 2-3)

Skills development mechanism for
professionals entering the practice

Certificate programs, MSE degrees (level 1)

Professional development programs to
maintain skills and knowledge currency

Ad hoc and not consistent across the profession
(level 1)

Certification of professionals administered by
the profession

Limited, inconsistent or vendor-based (i.e.
Microsoft MSCE) (level 0-1)

Licensing of professionals administered by
government authority

Recently in Texas, Canada and the UK

With respect to formalized training, presently, professional software developers are: self

taught, trained in computer-science, trained in mathematics, trained in engineering, trained in

information systems (and related fields), and/or trained in some other discipline orthogonal to the

needs of software engineering (Bourque et al. 2002; Pour et al. 2000). Each of these disciplines

has a world-view and history which may not be in strict harmony with those of software

engineering. The Software Engineering Body of Knowledge (SWEBOK), in its present

accepted and ratified form (IEEE, ACM 2004) was incrementally developed via three iterations:

Straw Man (ISO/IEC 12207), Stone Man and Iron Man. A final version was accepted by the

Industrial Advisory Board and the IEEE Computer Society Board of Governors in February,

45

2004 (Society 2004). The SWEBOK provides for the following knowledge areas relevant to

software engineering:

e Requirements

Design

Constructing

Testing

Maintenance

Configuration Management
Engineering Management
Engineering Process
Engineering Tools and Methods

Quality
It is quickly apparent that these knowledge areas roughly follow the pattern of the SDLC. In

explicating these knowledge areas, and perhaps in recognition of the paucity of dedicated

software engineering programs, the SWEBOK also specifies the following related disciplines:

Computer engineering
Computer science
Management
Mathematics

Project management
Quality management
Software economics
Systems engineering

It is worth noting that existing university programs can provide tutelage in these areas from well-
established disciplines. For instance, the information systems, management or accounting
program in a school of business could partner with a computer science and/or computer
engineering program in a school of engineering to provide a foundation in the majority of these

knowledge areas. Figure 5 depicts how depth of knowledge in each knowledge area is handled.

46

Figure 5 Categories and Depth of SWEBOK Knowledge (Bourque et al. 1999)

Generally accepted — Established traditional practices
recommended by many organizations

Advanced and Research — Innovative practices tested and used
only by some organizations and concepts still being developed
and tested in research organizations

used only for certain types

of software

Specialized — Practices

With the existence of SWEBOK and with the beginnings of a mature profession in place or
under way, continued debate concerning the professional practice of software development
presents a curiosity. What are the major issues and sticking points? Among the issues are: the
lack of a formalized program in higher education specifically for software engineering; debate on
the need for certification and licensing; debate concerning the appropriateness of engineering to
describe the professional activities of software developers; debate on the degree to which ethical

standards for professional conduct are educated, upheld and enforced.

With the SWEBOK in place and general support from IEEE and ACM, the number of
programs in Software Engineering will continue to increase. Whereas some feel that
independence from software engineering’s current de facto home in computer science is a
necessary step (Denning 1998), while others hold that computer science continues to provide the
necessary scientific and mathematic rigor that a mature discipline of software engineering
requires (Denning 2005; El-Kadi 1999). It is clear from reading the SWEBOK that a great deal
of the subject matter is carried by programs in computer science, engineering and business.

However, there is a concern that software engineering needs its independence if maturity is to be

47

attained. A few principle arguments stand out: (1) software engineering demands an application
area for the knowledge computer science teaches, whereas computer science does not; (2) There
are epistemological issues relating to the Positivist influence on computer science and the design
influence on software engineering; (3) There is ongoing debate as to the balance between art and
science in the professional practice of software development — designing requires both (Pour et

al. 2000).

The certification and licensure question is understood in terms of the level of
formalization desired and extant in the discipline: how much is art and how much is science?
Regarding the ongoing development and dissemination of SWEBOK, some favor the rigor of
formal education, training, certification and testing (Bagert 1999; Jonsen et al. 1998; Parnas
2001; Pour et al. 2000; Ritzer 1975) in line with other professions, while others call for
consideration of the human aspects of software engineering (Boehm 2002b; Denning et al. 2001;
Tomayko et al. 2004) and still others doubt the maturity of the discipline has progressed enough
to successfully conduct licensing and certification (Knight et al. 2002; Schaefer 2006). Further
to this debate is the opinion that not all software development need be considered engineering

(Denning et al. 2009); at least this is the position of the State of Texas (Speed 1999).

The debate on the nature of professional software development, and the degree to which
professional practice will continue to mature as an engineering discipline, has not yet been
reached. It is clear that disagreement exists as to whether the professional practice of software
development is indeed engineering; or the degree to which software engineering has formalized
and matured; or what balance is there between art and science in the professional practice of

software engineering. Lastly, it is clear that other related professions in computer and

48

information technology also struggle with these issues (Carayannis et al. 2001; Klobas et al.

1995; Miser 1987; Moore 2000; Oz 1992; Purgathofer 2006).

A final issue related to the maturing of the professional practice of software development
is that of ethics. While a code of ethics is the hallmark of a matured profession, there are some
who feel that computing disciplines are difficult to define; this confounds attempts to formalize
the mores of the profession. With this, we return to the use of professional expert knowledge
and the public good. The non-professional laity is vulnerable to lapses in ethical behavior and
yet the professional practice of software development, ever increasing in its importance to
society at large, struggles with a basic concept of its ethical responsibilities. Examples where
damages to society are the result of careless or unethical professional behavior are numerous and
it may be that many advances in engineering come as responses to disasters. When a bridge
collapses (Quebec City, 1907, Tacoma Narrows, 1940, Minneapolis, 2007), society looks to
engineering to learn from the disaster and protect the public from future harm. However, failures

in the engineering of software and systems have also had serious impact:

e The IRS cost taxpayers $50 million per year in lost revenues in the 1990s due to
software design and implementation failures (McConnell 2004b).

e An FAA Advanced Automation System overran its planned budget by $3 billion
(Britcher 1998).

e The 1998 Mars Climate Orbiter mission, a $193.1 million NASA project, failed when
the landing vehicle crashed into the surface on mars due to a software error where
imperial and metric units were confused (Euler et al. 2001).

e The Denver International Airport, espoused as a feat of technology, was delayed in
opening for a year with software-induced faults in the baggage handling system
which cost up to $1.1 million per day (Glass 1998).

e The first launch of the Ariane-5 rocket for the European Space Agency exploded due
to a software error (Nueibeh 1997).

49

Each of these failures represents great cost to society, who entrust professional software
developers to be responsible, accountable and ethical. While the IEEE and the ACM have a code
of ethics for software engineers (Gotterbarn et al. 1999), consistent uptake and use of this code is
not certain as very few professional software engineers are systematically held accountable to
this code (Gotterbarn et al. 1999). This topic of ethics in computing is not new (Davison 2000;
Martin et al. 1990; Raymond et al. 1990), but it represents another puzzle piece for attaining a

professional tradition for software development.

As this dissertation progresses to account for the professional practice of small-team
development, it is important to realize that the professional practice of software development has
not stabilized to the extent that professions in medicine, law, architecture and accounting have;
software development is still nascent and environmental trends provide ample opportunity for
further study. With this we can frame the matter of ethics in the professional practice of software
development as a matter of trust, responsibility and accountability. Moreover, the structures
which reinforce professionalism in software development may be different in the small-shop
setting as opposed to what exists in a larger organization. As Reflective Practice presents a
methodological proposition for the use of agile methods in the small-shop environment, the role

which professionalism plays is in the use of these methods is of acute importance.

2.4 Small-Team Software Development

This section discusses the nature of small-team and small-shop software development and
the increasing incidence and importance of software development done “in the small.” The

reviewed literature on small-team software development is summarized in Table 7; this table

50

shows how these sources contribute to the objectives of this research and shows, by omission or

incompleteness, opportunities for further contribution. The remainder of this section reviews the

literature on small-team software development.

Table 7 Synopsis of Selected Literature on Small-Team Software Development

Contributions

Omissions and/or
Opportunities

(Cockburn 2000; Constantine
2002; Cragg et al. 1993; Dyba
2000; Faraj et al. 2000; Fayad
et al. 2000)

Distinguishes the conditions
and requirements of small
scale software development

Very little address on the
implications for
professionalism and
professional practice at this
level. Stronger link can be
made for the need for
adaptability.

(Boehm et al. 2004; Cockburn
2000; Cragg et al. 1993;
Cusumano 2007;
Kostamovaara et al. 2007)

Distinguishing small-team
from small-firm

More emphasis needed on the
possibility of small teams
existing within a large
organization.

(Cockburn 2000; Fayad et al.
2000; Nunes et al. 2000)

Team size and method
selection

More emphasis needed on
methodologies. More
emphasis needed on the
paradigmatic implications of
methodology selection.

(Gorla et al. 2004)

The need to emphasize people
over process. Presents the use
of the Meyers-Briggs Type
Indicator as a basis for
personality and role matching.

More emphasis needed on
paradigmatic concerns and
epistemological concerns —
how are people emphasized?
Personality types are
concerned with nature
whereas a concern with
establishing a learning system
may emphasize nurture.

(Boehm et al. 2004; Cockburn
2002)

Professional competency and
repertoire

Reflective practice can assist
in elevating professional
competency

(Boehm 2002a; Boehm et al.
2004; Cockburn 2002)

Critical considerations for
method selection and use
depending on team size

Can be used to characterize
the reflective-agile software
development methodology

o1

As the Internet, the World Wide Web, and other Information and Communication
Technologies have improved human commerce and information-sharing through connectivity, it
has become increasingly clear that small teams are “...developing significant products that need
effective, tailored software engineering practices...” (Fayad et al. 2000: 115). In fact, the
awareness of and distinction between large-team and small-team software development has
existed for quite some time (DeRemer et al. 1975). Whereas large-scale industrial and military
software projects gave rise to software engineering (ostensibly for large-team development), it is
arguable that the rise in the importance in personal computer and microcomputer in the 1980s,
and of Internet-related applications and technologies in the 1990s and 2000s, have increased
interest in small-team development (Cockburn 2000; Constantine 2002; Cragg et al. 1993,
Eppinger et al. 1994; Faraj et al. 2000; McDonald et al. 2001a; Rajlich 2000; Reddy et al. 1991).
As the number of personal computers grew to an estimated 1 billion from 1980 to 2007, and is
estimated to grow to 2 billion by 2015 (Chapman 2007), there is little wonder that the demand
for more computer programs and a wider variety of computer programs has markedly increased;
a significant portion of these programs are not large-scale and large-team products (Fayad et al.

2000).

Even in units sold, mass-market software (such as Common Off-the-shelf Software
(COTYS), customizations of COTS, and software resulting from web engineering) surpasses the
number of government and large industrial applications (Fayad et al. 2000; Ginige et al. 2001;
Gorla et al. 2004). As software growth has produced a larger number of small companies and
small teams, it would naturally follow that research on software development and development
methodologies should shift to accommodate this trend; however, research in this area is not

abundant prior to the 2000s (Cockburn 2000; Cusumano et al. 1997; Fayad et al. 2000). With the

52

onset of agile software development methods, a considerable amount of research and field
reports have concentrated on agility in software development with some reports concluding the
utility of agile methods is greatest for small-team development (Abrahamsson et al. 2003;
Cockburn et al. 2001; Cusumano et al. 1997). As such, there is room for continued scholarly
investigation into phenomenon related to small-team and small-shop development as rapid

change maintains turbidity within the domain of practice.

It is important to distinguish between small teams and company size. A small team can
exist in a small company (hence the term “small shop”) or a small team can exist within a larger
company. In both cases, the small team can be considered as mostly autonomous where the
small-shop team would be the most autonomous. Furthermore, when considering application
sectors (such as finance, telecom, aerospace, etc), the number of software projects utilizing five
developers or less accounts for as much as 66% of the overall number of software development
projects (Boehm et al. 2004: 226). While evidence from the literature varies, there is ample
support to define a small team as consisting of 10 members or less; in many cases five members
or less is common (Boehm et al. 2004; Cockburn 2000; Cragg et al. 1993; Dyba 2000; Ginige et
al. 2001; Reifer 2000). For the purposes of this dissertation, the terms “small team” and “small
shop” should be read synonymously as they pertain to a small team located in a small company

of 10 or fewer practitioners and, more often, 5 or fewer practitioners.

The U.S. Census Bureau records county business patterns by a NAICS® code which
breaks down the distribution of companies by employee size and by industry. The most

applicable NAICS codes for software development are 541511 (Custom Computer Programming

> North American Industry Classification System

53

Services) and 511210 (Software Publishers). County Business Pattern Data from 2005 indicate
that companies in NAICS classification 511210 (Software Publishers) with nine or fewer
employees comprised 60.01% of the total of 8793 companies nationally that year. The 2005
County Business Pattern data also indicate that companies in NAICS classification 541511
(Custom Computer Programming Services) with nine or fewer employees comprise 83.56% of
the total of 47,673 companies nationally that year. Table 8 shows these figures graphically and

underscores the magnitudinal importance of small-team development in small companies.

Table 8 SD Companies by Number of Employees (Source: U.S. Census Bureau — 2005 County Business Patterns)

Breakdown of software development companies by number of employees and company size

NAICS 511210 (Software | NAICS 541511 (Custom | Total (511210 and
Publishers) Computer Programming | 541511)
Services)

Number of | Number of | Percentage | Number of | Percentage | Number of | Percentage
Employees | Companies | of Whole Companies | of Whole Companies | of Whole
1-4 3941 44.82 % 34698 72.78 % 38639 68.43 %
5-9 1336 15.19 % 5137 10.78 % 6473 11.46 %
10-19 1211 13.77 % 3449 7.23% 4660 8.25 %
20-49 1187 13.50 % 2648 5.55 % 3835 6.79 %
50-99 527 5.99 % 1020 2.14 % 1547 2.74 %
100-249 371 4.22 % 539 1.13% 910 1.61 %
250-499 140 1.59 % 126 0.26 % 266 0.47 %
500-999 46 0.52 % 38 0.08 % 84 0.15%
>= 1,000 34 0.39 % 18 0.04 % 52 0.09 %
Total 8793 100.0 % 47673 100.0 % 56466 100.0 %

Even as larger companies increasingly adopt a service model for interactions between internal
business units, insights into the mechanics of small teams may hold true regardless of whether
small teams are located within large companies or small firms (Cusumano et al. 1997;
Kostamovaara et al. 2007). Therefore, the study of small teams is valid because of and despite

what is suggested by the data in Table 8.

54

Fayad et al. (2000) impacts of team size on software engineering method are shown in

Table 9:

Table 9 Factors Relating Team Size and Software Development Method Use

Factor Impact

Company Size As was shown in Table 8, the number of
companies requiring software development
methodologies for small teams is in the
majority.

Development Mode While agile methods have challenged the
efficacy of the contract model for software
development (which a clear customer for
whom the work is being done), those
developing COTS software or those providing
non-contract services within an organization do
not fit the contract model. Methodologies for
small teams will have to go beyond the
contract model.

Development Speed While innovations in software development
methodologies since the 1990s have largely
focused on agility and adaptation, there is a
very real need for rapid application
development: competition and connectivity.
With the Internet, barriers to market entry with
software are extremely low, the volatility of
markets is high (software piracy) and customer
expectation (competition) is fierce. Small
companies need to get products to customers
and receive billing monthly and/or quarterly,
not multi-year.

Development Size Modern code configuration and management
tools, in addition to deep code libraries and
intelligent editors, allow a small team to
produce a larger number of well-tested and
effective lines of code. Furthermore, frequent
and iterative updates and version is often
expected.

55

The literature on software engineering (and information systems development) commonly
misjudges these aspects of small-team development. Especially in the case of small teams in the
small-shop environment (where the team is the company) or within startup companies®, the
considerations for the selection of a software development methodology may not be in step with
the literature on software engineering. Some desirable properties in a software development

methodology for the small-team or small-shop are show in Table 10 (Fayad et al. 2000):

Table 10 Desirable Properties of a SD Methodology for Small-Teams and Small-Shops (Fayad et al. 2000)

Method Property | Desirability for the Small Team

Reuse While reuse is a tenet of modern and modularized development, a small
team may get more value by concentrating on iteratively releasing a
working product. A small team may not be able to afford the luxury of the
time required to perfectly engineer their code base when schedules are
tight. Furthermore, especially in the case of web development, requisite
technologies to fulfill customer demand may have shifted; rendering an old
codebase obsolete’.

Cost estimation Extrapolating across prior projects may be difficult unless templates are
used. If innovation and competition based on novelty is required, as is
typically the case when developing web applications, then traditional cost
estimating strategies are confounded.

Requirements Rapid competition and customer expectations for quick product delivery
Stability make advice on traditional requirements gathering somewhat passé for
many small teams. For many agile methods, requirements are solicited
from the customer incrementally and through frequent releases of working

software.
Limited In a small team, especially those operating within small companies, the
Resources traditional divisions of labor favored by large-scale development

methodologies are not possible. The developers in the small team must
wear many hats and understand a multitude of roles.

® In the late 1990s and throughout the 2000s, many of the most impactful and innovative software has arisen from

small startup software development teams and companies.

7 Imagine the Perl CGI programmer when she then had to transition to PHP or the PHP programmer who then had
to transition to AJAX and Ruby-on-Rails. These codebases are not reusable across the technologies and could, at

best, be reused as mashups.

56

Incremental and | Small teams need to regularly release software or they are not paid. In this
Frequent situation a full run of traditional analysis and design techniques is not
Releases possible. It is not uncommon for unfinished and/or beta-stage software to
be released and then subsequently patched after release. A small team
can’t afford to wait until the software is perfect®.

It is clear that Fayad et al. (2000) have well-anticipated the advent of agile software development
methodologies by clearly spelling out the needs of small teams over methods which focus on

larger-scale projects.

2.4.1 Appropriate Software Development Methods for Small Teams and Small Shops

If the majority of large-scale and large-team methodologies are inappropriate for small
teams, then criteria for small-team development method selection is required. Furthermore, it
would be important to distinguish, through classification, the nature and character of a software
development methodology in regards to team size. Some have suggested that methodology
selection can be linked to team size, project size and project criticality by classifying methods on
a continuum from lightweight methodologies to heavyweight methodologies (Cockburn 2000).
When all of the constructs affecting team size are considered, it becomes clear that a set of
principles can provide a rubric by which a small team could find the best methodological fit for
their specific situation. Cockburn (2000) depicts relationships between the elements of a

software development methodology in Figure 6.

& This phenomenon is very apparent in the computer games industry

57

Figure 6 Elements of a Software Development Methodology (Cockburn 2000)

— Processes Milestones —
Team
\ // values
Quality Activities —| Teams
|I _— E_HH'““-E
\ Products |— Techniques — Roles People /
! | ——=——T
Standards || Tools || Skills Personality
T —

Cockburn (2000) suggests that adopting a set of principles strikes the right balance

between the various methodological elements:

e Size — Methodology size depends on project size; heavyweight for larger projects and
lightweight for smaller projects. This also means that more elements from the model
in Figure 6 would be present in a larger methodology.

e Criticality — If a system failure will cause significant losses to comfort, property,
money and/or life, a heavyweight method is required.

e Cost — Increases in methodology size add exponentially to cost (see Figure 7).

e Communication Richness — Methodologies which allow for interactive and face-to-
face communication will be the most effective (see Figure 8).

e Project Priorities — The degree to which the customer wants the project completed in
a timely manner, defect-free and transparent/visible will influence method selection.

e Embedded Assumptions on Risk — Methodologies are largely risk mitigations

against known adversities. Project risk tolerance can be matched to the risk
assumptions inherent within a methodology.

58

Figure 7 Problem Size and Increases in People Costs (Cockburn 2000)

/

Number of people needed

v

Heavyweight
methodology

Medium-weight
methodology

Lightweight methadology

Problem size

Cockburn (2000) uses these principles to influence his framework for method selection for small
teams. Cockburn’s (2000) framework for small-team software development methodology
selection allows for differentiation according to the principles discussed above and project

elements related to size, criticality and priorities. As shown in Figure 9, each cell contains

values for the methodology selection variables, where any

methodologies. The principles discussed above would guide method selection within the

framework. If multiple methodologies occupy a cell, then team culture and project priority

would likely be deciding factors.

59

given cell can contain multiple

Figure 8 Communication Richness and Methodology Effectiveness (Cockburn 2000)

2 people at
whiteboard

2 people
on phone
2 people

on email Videotape

Communication effectiveness

Audiotape

Form of communication

Figure 9 Cockburn's Methodology Selection Framework (2000)

‘ | ‘ | |PLiuritizedJurlegalliLhilitv| | | |

| | Prioritized for productivity and tolerance

)

Life

L L6 L20

Essential

money
(E) E6 E20

Discretionary|

money (D
v(D) D6 D20

Comfort

(C)

Criticality (defects cause loss of ..

C6 C20 C40

Number of people involved = 20%

1-6 7-20 21-40 41-100 101-200 201-500 501-1,000

60

While Cockburn’s (2000) methodology selection framework is one among many possible
approaches to method selection for small teams, Cockburn’s framework is principle-driven and
illustrates the considerations which a small team would face. Furthermore, Cockburn enjoys a
modicum of prestige and is renown in the area of methodology development (Boehm et al. 2004;

Cockburn 2002; Cockburn et al. 2001).

2.4.2 Human Factors in Small-Team and Small-Shop Software Development

Practitioners in a small shop will commonly share and assume a multitude of
responsibilities and roles; the practitioners’ individual strengths and capabilities become
important (Blackburn et al. 1996; Cragg et al. 1993; Cusumano et al. 1997; Ginige et al. 2001,
Gorla et al. 2004; Kraut et al. 1995; Lehman 1998; Rettig et al. 1993). Gorla and Lam (2004)
recommend personality assessment for small teams in order to maximize effectiveness:
“personality type analysis can help take the guesswork out of putting together a high-
performance software project team” (p. 79). In several studies, it has been demonstrated that
human considerations outweigh technical considerations as factors for project success (Gorla et
al. 2004). Gorla and Lam (2004) conduct survey research to determine the effects of personality

type in small software development teams using the Myers-Briggs Type Indicator (MBTI).

The utility of Gorla and Lam (2004) study is the degree to which developer personality
and team culture influence team effectiveness. The results of the study reveal the influence

personality type in Figure 10.

61

Figure 10 Personality Type and Small Team Performance (Gorla and Lam 2004)

Criterion Personality Dimension | Team Performance® | R-Square | Significance
Team Leader Infermartion Gathering Intuitive = Sensing 0.297 0130
Decision Making Feeling = Thinking 0.297 0130
Systern Analyst Decizsion Making Thinking = Feeling 0.482 0038
Programmer Interaction with the'Werld | Extrovert = Introvert 0.505 0020
Heterogeneity Interaction with the world | Extrovert—Introvert 0.18l 0612
Leader-Member || formation Gathering Intuitive~Sensing 0.595 0001
Heterogeneity All dimensions -- -- Met
Member-Member significant

* = means outperforms, ~ means differenca.

Gorla and Lam (2004) suggest that a small team (or small shop), lacking a strong hierarchical
political and leadership structure, must establish a team culture which carefully balances and
accommodates personality types. In this sense, a small team needs personality heterogeneity
between a team leader and other team members (Gorla et al. 2004: 82). Specifically, Gorla and
Lam (2004) find that MBT]I personality categories are vital to ensure personality heterogeneity in

the team.

An equally important consideration in method selection is an individual team member’s
skill level; a small team in a small shop must rely on limited resources endemic to their team size
and available man-hours to devote to a task (Boehm et al. 2004; Brooks 1995). For this reason, a
software development methodology for the team in a small shop demands a greater amount of
skill from individual team members (Boehm et al. 2004: 46). Cockburn (2002) classifies the
degrees of individual software development methodology comprehension into three levels; each
level indicates advancement in the ability to utilize a method effectively, adaptively and
creatively. Boehm and Turner (2004) extend Cockburn’s (2002) original levels to further stratify

the first level (Table 11). In essence, both argue that a small team will operate effectively when

62

the degrees of freedom are high; a method with extensive planning and predictive requirements

will not likely suit advanced users (those at a higher level).

Table 11 Levels of Software Method Understanding and Use (Boehm and Turner 2004)

Level Characteristics of the Level

3 Able to revise a method (break its rules) to fit an unprecedented new situation.

2 Able to tailor a method to fit a precedented new situation.

1A With training, able to perform discretionary method steps (changing the nature
of a method’s steps). With experience, can achieve level 2.

1B With training, able to perform procedural method steps (sticking to the plan).
With experience can master some level 1A skills.

-1 May have technical skills, but unable or unwilling to collaborate or follow
shared methods.

Cockburn (2000) states: a methodology denotes “...everything about how a team
repeatedly produces and delivers systems; whom they hire and why, what people expect from
coworkers, the processes they follow, their conventions, work products, and even their seating
arrangements” (Cockburn 2000: 65). Additionally, Cockburn (2000) suggests that methods
entail “...techniques and drawing notations” for the activities, processes and techniques, skills
and tools embedded within a software methodology (Cockburn 2000). While Figure 6 appears to
place a team’s values as an outlier in the model, it seems clear that team values in a small shop
are related to personality mix, skill mix, experience, knowledge of standards, and effectiveness.
Large-scale and heavyweight software development methodologies often seek to control these
human aspects. However, in some cases practitioners may find comfort in the predictability, the
prescriptions, the proscriptions and clarity embedded in the policies and procedures of process-
heavy and heavyweight methods. This “production-line” environment, where each person’s
tasks are well-defined, may be preferable in cases where user skill is low (Boehm et al. 2004:

49).

63

2.4.3 Process Diversity in Small-Team and Small-Shop Software Development

Cockburn’s (2000) framework for software development methodology selection can be
used as a guide to understand process diversity. Process diversity promotes the idea that no
single methodology will fit all software development project needs. Instead of focusing on what
a particular methodology does, Cockburn’s (2000) principles (Figure 6) allows a team to select
multiple methodologies on multiple dimensions of the model. In this sense, method selection,
adoption and adaptation embodies the environmental and structural aspects of team culture, team
size, and problem characteristics. Often, a methodology is judged by the effectiveness of its
outcomes than on the particulars of its processes and structural elements (Lindvall et al. 2000).
In the end, a small team uses a methodology to produce a software artifact which pleases the

customer — whatever methodology which accomplishes this is a successful methodology.

While it is desirable to gauge the utility of a methodology for small team software
development on its ability to facilitate a viable and successful software development process, an
aspect of that viability is in team development. A method could be ill-suited to the team but
capable of producing a viable product. Thus, while creating a working product which makes the
customer happy is clearly paramount, adopting methods which enhance team development and
learning is perhaps equally important. It is important to distinguish process from methodology
as a small team’s software process can contain a number of methodologies to facilitate the
delivery of successful software. While Cockburn’s (2000) framework suggests a means for
arriving at a methodology selection, the dynamics of the problem space and the dynamics of the

team may suggest hybrid approaches. Any method for small-team software development should

64

not confine and restrict that team’s process and, moreover, the selected method or methods

should promote team building and learning.

In 2000, two special issues of IEEE Computer focused on matters relevant to small-team
software development methods and processes: one issue on process diversity (Cockburn 2000;
Florac et al. 2000; Johnson et al. 2000; Rising et al. 2000; Sutton 2000; Williams et al. 2000b);
and one issue on software engineering in-the-small (Dyba 2000; Nunes et al. 2000; Rajlich 2000;
Russ et al. 2000). These special issues are notable for their content and timing. These special
issues were published as agile software development methodologies were on the cusp of wider
demand and also the popularization in increased demand for a dynamic and commerce-driven

World Wide Web.

2.4.4 Critical Factors and “Home Grounds” for Small-Team Software Development

Boehm and Turner (2004) offer five critical factors for the selection of a suitable small-
team software development methodology. Table 12 depicts these factors and their implications

for small teams and large teams.

Table 12 Small Team and Large Team Methodology ""Home Grounds' (Boehm and Turner 2004)

Characteristics Small Team Oriented Large Team Oriented

Application

Primary Goals Rapid value; responding to Predictability, stability, high assurance
change

Size Smaller teams and projects Larger teams and projects

Environment Turbulent; high change; project- | Stable; low-change; project/organization
focused focused

Management

Customer Dedicated on-site customers; As-needed customer interactions;

Relations focused on prioritized increments | focused on contract provisions

Planning and Internalized plans; qualitative Documented plans, quantitative control

Control control

65

Communications \ Tacit interpersonal knowledge

| Explicit documented knowledge

Technical

Requirements

Prioritized informal stories and
test cases; undergoing
unforeseeable change

Formalized project, capability, interface,
quality, foreseeable evolution
requirements

Development

Simple design; short increment;
refactoring assumed inexpensive

Extensive design; longer increments;
refactoring assumed expensive

Test Executable test cases define Documented test plans and procedures
requirements, testing

Personnel

Customers Dedicated, collocated CRACK* | CRACK™* performers, not always
performers collocated

Developers At least 30% full-time Cockburn | 50% Cockburn Level 2 and 3s early;
level 2 and 3 experts; no Level 10% throughout; 30% Level 1B’s
1B or -1 personnel** workable; no Level -1s**

Culture Comfort and empowerment via Comfort and empowerment via

many degrees of freedom
(thriving on chaos)

framework of policies and procedures
(thriving on order)

* Collaborative, Representative, Authorized, Committed, Knowledgeable
** These numbers will particularly vary with the complexity of the application

Figure 11 depicts relationships between the dimensions in Table 12. While the original
diagram in Boehm and Turner discusses agile vs. plan-driven methodologies (discussed in the
next section of this chapter), these characteristics are approximately true for small vs. large-scale
software development as agility and adaptation are among the more valuable traits for a useful
small-team software development methodology. Thus a small team will best utilize methods

when developers are skilled individuals who are adaptive to change and possess the intuition and

Figure 11 Dimensions Affecting Method Selection (Boehm and Turner 2004)

judgment to adopt and adapt a methodology as is required in the problem space.

66

(% Level 1B)

40 7

30

20

Criticality
(Loss due to impact of defects)

Many
Lives Single

Life Essential

Discretionary
Funds

Funds
Comfort

300
Size
(# of personnel)

Personnel

(% Level 2&3)
15

20

25

30

Dynamism
(% Requirements-change/month)

Culture
(% thriving on chaos vs. order)

We can conclude this section by stating that a successful software development

methodology for a small team will balance factors on personnel, dynamism, culture, criticality

and size. Thus, there is no single methodological aspect which guarantees small team success.

As Frederick Brooks intimates in his seminal paper “No Silver Bullets”:

...The central question of how to improve the software art centers, as it always has, on
people... We can get good designs by following good practices instead of poor ones.
Good design practices can be taught. Programmers are among the most intelligent part
of the population, so they can learn good practice. (Brooks 1995: 202)

In the case of selecting a software development methodology for small teams, it is human factors

which will most likely determine the degree to which a software development method will

enable or disable team effectiveness.

67

2.5 Comprehending Agile Software Development Processes

This section is concerned with the following fundamental questions related to agile
methods: What are agile methods? How are agile methods similar to and different from existing
systems development methods? Are agile methods better than existing methods and, if so, why?
Lastly, in what settings and for what purposes would agile methods be most appropriate? In
developing possible answers to these questions, this section proceeds in the following manner.
First, an overall introduction to the agile methods movement is offered. This introduction will
use, as much as is possible, the language, thoughts and ideas of practitioners and researchers
most responsible for creating the agile methods movement. Next, agile methods are contrasted
to other software development methods such that a general taxonomic understanding of software
and systems development methods is developed. We then progress to a discussion on the prima
facie merits and limitations of agile methods. Next, the conditions under which agile methods
would be most suitable are discussed. The section will then conclude with final thoughts

concerning the future of agile methods and possible new directions for the agile movement.

2.5.1 Background on Agile Methods

The agile software development movement arose out of dissatisfaction with traditional
software engineering methods (Martin 2003). Although the literature on agile methods reveals a
curious retention of the language of software engineering, apparently framing these methods in

the metaphor and paradigm of engineering, the literature also makes it clear that agile methods

68

constitute a break from the dominant paradigm of engineering. This paradox is a primary

motivator of this research.

Early examples of agile methods are Scrum, Crystal Clear, Extreme Programming,
Adaptive Software Development, DSDM and others (Boehm et al. 2004). All are considered to
be faster and more people-centric than the more traditional waterfall model of the SDLC. With
agile methods, customers are satisfied by rapid and continuous delivery of software in the short
term. Time scales are in units of days and weeks rather than months and years. Changes to
requirements are always welcome due to the iterative nature of the methods. Agile methods are
people-centric as they value close and daily cooperation between business people and
developers; this daily cooperation is usually conducted face-to-face. The motivated individual,
and self-organizing teams of motivated individuals, typically finds the most success with agile
methods as their focus on the individual emphasizes inter-personal trust over contracts and other

legal inducements.

If agile can be summarized in a phrase, that phrase would be “people over process.” In
this sense, as a framework, agile methods provide principles, patterns and practices for the
software developer to follow. However, according to Alistair Cockburn, an authority on agile
methods, ... process and technology are second-order effects... The first-order effect is people”
(Martin 2003: 1). Thus the goal of most agile development methods is to foster the development

of collaborative and self-organizing teams.

Table 13 Manifesto for Agile Software Development (Fowler et al. 2001)

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

e Individuals and interactions over processes and tools

69

e Working software over comprehensive documentation
e Customer collaboration over contract negotiation
e Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more (Fowler
et al. 2001).

Table 14 Principles behind the Agile Manifesto (Fowler et al. 2001)

Principles behind the Agile Manifesto

o Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

e Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage.

o Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter time scale.

o Business people and developers must work together daily throughout the project.

o Build projects around motivated individuals. Give them the environment and support they need,
and trust them to get the job done.

o The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

e Working software is the primary measure of success.

e Agile processes promote sustainable development. The sponsors, developers and users should be
able to maintain a constant pace indefinitely.

e Continuous attention to technical excellence and good design enhances agility.
e Simplicity--the art of maximizing the amount of work not done--is essential.
e The best architectures, requirements, and designs emerge from self-organizing teams.

e Atregular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

Many of the most popular and accepted agile software development methods were created and
perfected by the authors of the Agile Manifesto in Table 13 and the principles behind the
manifesto in Table 14. Some of these methods authored by these practitioners include SCRUM,
Crystal, Feature Driven Development, Test Driven Development, Adaptive Software

Development and, most significantly, Extreme Programming (XP).

70

2.5.2 Selecting an Agile Method for Small-Team Software Development

Each of the commonly-recognized agile methods has a different organizational scope,

SDLC focus and set of constraints (Boehm et al. 2004). Table 15 provides a brief list and

description of the more popular agile and iterative methods. Table 15 provides background on

several of the more popular agile methods and provides a rationale for selecting the agile method

traits best suited to small teams.

Table 15 Comparison of Agile and Iterative Methods

Agile Method

Method Synopsis

Applicability to Small-

Scrum (Schwaber et
al. 2002)

Generally a project-management approach
which borrows from a rugby metaphor.
Emphasizes 30-day cycles and daily 30-
minute meetings. Agility is implied in
limited planning no further than the scrum
cycle.

Team Development
Indirect

Adaptive Software
Development
(Highsmith 2000)

An evolution from Rapid Application
Development which provides for a
speculate-collaborate-learn cycle which
specifies continuous learning and
adaptation.

Indirect and omits
individual developers.

Lean Development
(Womack et al.
1991)

A project-management approach based on
risk management and lean manufacturing.

None

Crystal (Cockburn
2002)

A framework of related methods that
address the variability of environment and
the specific characteristics of projects.
Methods vary by colors indicating team
size and criticality of the project.

Direct in the case of single
teams.

Extreme
Programming (Beck
1999)

The most widely-recognized and used agile
method. Value based approach focusing
on communication, simplicity, feedback
and courage. Very principle-driven and
closely related to the agile manifesto.

Direct and tailored to
small teams and
individuals.

Dynamic Systems
Development
Method (Stapleton

A large framework of methods with a large
European user base. Has a strong process
management emphasis operating through a

Direct in the case of single
teams.

71

Agile Method

Method Synopsis

Applicability to Small-

1997)

five-phase process

Team Development

Rational Unified
Process (Jacobson et
al. 1999)

Oriented towards Rational/IBM’s Unified
Modeling Language. Streamlines
predictive methods using risk-driven spiral
processes. Focus on a four-phase life cycle
with exit criteria and phase milestones.
Risk management techniques are
emphasized.

Direct in the case of single
teams.

Team Software
Process (Humphrey
2000)

A configurable plan-driven development
process for teams. Templated and focuses
on concrete roles and scripts. Clings to
plan-driven approaches.

Strong emphasis on single
team.

Feature-Driven
Development
(Palmer et al. 2002)

Simple processes, efficient modeling and
short iterative cycles focusing on the
customer. Has an architectural emphasis
on eliciting the best design upfront.

Weak — Emphasis on
Multi-teams.

Capability Maturity
Model Integration
(Ahern et al. 2001)

A high-level model on which the
Capability Maturity Model for Software is
built. Provides and extensible framework
for methods. Includes systems
engineering, supplier selection and
integrated process and product
development. Provides a reference model
rather than a method.

While not a method, does
provide some direction for
single teams.

Capability Maturity
Model for Software

(SW-CMM) (Paulk

et al. 1995)

Serves as a checklist/roadmap for maturing
software development processes. Specifies
five levels of maturity and tends to result
in heavyweight processes. Distills a wide
range of best practices for software
development

Direct in the case of single
teams. Not entirely agile.

Personal Software
Process (Humphrey
1995)

Provides an operationalization for
individual developers involved in SW-
CMM. Seeks improvement for individual
programming skills. Specifies four levels
of improvement.

Direct in the case of the
Individual.

Cleanroom (Prowell
et al. 1999)

Uses mathematical proofs for verification
and reliability certification. The object is
to develop defect-free code upfront.
Specifies a complete discipline across the
entire SDLC. Creates high standards
which are difficult to achieve.

Direct. Focuses on single
teams and individuals.

72

2.5.3 Positioning Agile Methods

Agile methods can be situated within a wider spectrum of software development methods
in order to understand where agile methods “fit.” One common theme emerges whereupon agile
methods were often developed in response to perceived deficiencies inherent within the

"% software engineering methods were

prevailing software engineering methods. The “predictive
increasingly viewed as inappropriate in face of rapid and constant change. The literature
suggests that agile methods reside on the adaptive end of a spectrum running back towards
predictive methodologies (Abrahamsson et al. 2003; Fowler 2005; Williams et al. 2003). This

spectrum is represented in Figure 12 below where software development methods are classified

as either adaptive or predictive in nature (Abrahamsson et al. 2003).

Figure 12 Classifying Software Development Methodologies from Predictive to Adaptive (Abrahamsson et al. 2003;
McConnell 2004b)

Agile Iterative Rapid Spiral Waterfall

Adaptive < » Predictive

The predictive-adaptive continuum could give the impression that agile methods
represent step-wise refinement in a natural progression from older methods to newer methods.
In this sense, new methods will arise in response to changes in the environment which render
older methods less effective. The literature on agile methods support this concept both explicitly
and implicitly (Cockburn et al. 2001; Fowler 2005; Fowler et al. 2001; Highsmith 2002;

Lindstrom et al. 2004; Nerur et al. 2005; Newkirk 2002; Subramaniam et al. 2006; Williams et

° The waterfall model is predictive as it seeks to manage risk and costs to mitigate for the effects of change

73

al. 2003). This progression supports the premise that agile methods represent a paradigm shift

away from engineering and process-driven methods towards an emergent adaptive paradigm.

It would require several volumes to recount the history of systems and software
development methodologies; such an effort would be beyond the requirements of this literature
review. However, we must situate agile methods within the larger scope of systems development
methods if we are to appreciate the advantages and disadvantages which agile methods have to
offer. In this section, the impetus for the arrival of adaptive and agile processes is traced and
presented as a paradigmatic shift born of the necessity of practice. The work of Fred Brooks is
also used to reflect on the reasons why methods which worked very well in the 1970s had

themselves become challenged by the 1990s (Brooks 1995:264).

Scholars such as Boehm and Brooks offer rich insight into the nascent era of systems
development throughout the 1950s, 1960s and into the 1970s. They chronicle the development of
engineering-oriented methods which addressed the “software crisis” when several software
development projects had experienced atrocious cost overruns and delays. At the time, process
and engineering-oriented solutions were adopted such that software projects were more
maintainable (Boehm 1996). These plan-driven and engineering-oriented solutions entailed
discrete project milestones and phases, well expressed within the waterfall software and systems
process model, which provided a systematic means of managing software development projects.
Figure 13 depicts the familiar and common steps of the waterfall software and systems
development process model which is exemplary of engineering-oriented software development

processes.

74

Figure 13 The Waterfall Model of the SDLC

Requirements H—w

Design

]

Implementation

Verification ﬁ—]

Maintenance

The waterfall model was generally sufficient for many years subsequent to its introduction in the
1970s (Boehm 1996). The waterfall process model expresses a software life-cycle where each
discrete step leads towards the completion of a subsequent step culminating in a finished
product. With the metaphor of a product life-cycle, revision and refinement would require re-

entry into the entire waterfall process model in a linear fashion (Boehm 1996).

Of course, few projects in reality are as linear as the waterfall model would suggest —
therefore adjustments to the basic tenets of the model began to arise (Boehm 1996). The steps
suggested by the waterfall model may, in practice, run parallel to each other or require sub-
processes which themselves utilize the steps of the waterfall model. Over time, the waterfall
model was modified in a series of compromises motivated and wrought by the empirical

experience of practice.

75

The spiral model is one such compromise which was developed to address the
deficiencies of the abstractions of the waterfall model (Boehm 1988; Boehm 1996). In a cyclical
fashion, we can observe that changes and challenges in the environment of practice led to the
initial development and adoption of the process-driven, plan-driven and engineering models for
software and systems. If the environment of business and practice were fairly stable and static,
the waterfall model would have continued to provide a “...sequence of milestones around which
people could plan, organize, monitor, and control their projects” (Boehm 1996: 73). However,
“...Just as the waterfall model was becoming fully elaborated, people were finding that its
milestones did not fit an increasing number of project situations” (Boehm 1996: 73). We can
interpret this to mean that the context and frame, or the understanding of the context and frame,
under which the waterfall method had been developed was changing. We can trace this trend
throughout the software and systems development literature of the 1970s, 1980s and 1990s as
evidenced by the many hybrid variations on the waterfall model which introduced the idea of

iterations between and among the discrete steps of the waterfall model (Boehm 1996).

2.5.4 Cracks and Fissures in the Old Paradigm

Agile methods reject the prevailing paradigm of software engineering (which is founded
in the Positivist ontology, theory, models, epistemology and paradigmatically reinforced in the
Positivist social ontology) as inadequate and inappropriate in some, but not all, cases. In this
sense, agile methods do not exclude the prevailing paradigm entirely, but rather illustrate where
the prevailing paradigm is less important to the emerging paradigm of agility. This begs the
question: is the advent of agile software development methods an instance and example of

Kuhn’s paradigmatic revolution? There are various reasons to answer this question in the

76

affirmative and the negative. One possible reason why agile methods do not represent a Kuhnian
revolution is that the inertia and dominance of the engineering metaphor overshadows the agile
metaphor. In this sense, agile methods are often used within the software engineering framework
and paradigm. However, there is also ample reason to consider agile methods as representative

of a new paradigm more representative of agile processes, values and principles.

In many ways, the agile methods movement has all the hallmarks of a Kuhnian paradigm
shift whereupon new ideals, goals and values have arisen as an older paradigm fails to explain
and predict the experience of practice. In this sense the agile methods movement has
characteristically rejected an entire class of heavyweight processes in favor of lightweight
processes. These lightweight processes espouse the values of iterative production, interactions
with customers, rapid prototyping and agile responses to change (Fowler et al. 2001; Lindstrom
et al. 2004:42). Moreover, the principles informing the agile movement did not appear
overnight; the conditions supporting this movement are the result of reactions, accumulated over

time, to the use of traditional software development methods (Larman et al. 2003).

Fred Brooks, in revisiting his seminal book The Mythical Man Month, (1995) provides
many after-the-fact insights as to why the process-driven, plan-oriented models such as the
waterfall model, had become increasingly inadequate in practice (Brooks 1995). In a
retrospective and closer examination, Brooks highlights a number of cracks and fissures which
appear in process-oriented and plan-driven software and systems development approaches.
When “...existing institutions have ceased to adequately meet the problems posed by an
environment that they have in part created” (Kuhn 1996:92), a pre-requisite to a paradigmatic
shift presents itself. Kuhn would also explain why many modifications to the waterfall model
did not break away entirely from the prevailing paradigm of plan-driven and process-oriented

7

methodologies. Whereas feedback in practice suggested that modifications to the waterfall
model were cause to question the fundamental premises of the engineering paradigm, most
adjustments were made within the prevailing paradigm inherent in the waterfall model. Thus,
the fundamental paradigm wasn’t challenged and new action strategies arose from unchanged
beliefs. However, a parallel series of ideas, entirely contrary to the plan-driven and process-
oriented engineering methods, also came to prominence in the 1990s; those being categorized as

agile methods today.

Brooks (1995) summarizes “...the basic fallacy of the waterfall model” as a problem of

flexibility and adaptability (Brooks 1995:266). In the waterfall model, it is assumed that

...one builds a whole system at once, combining the pieces for an end-to-end system test
after all the implementation design, most of the coding, and much of the component
testing has been done. (Brooks 1995:266)

Brooks, and others, have since realized that while the abstract dependencies between the
waterfall model’s steps might be true in concept, actual software development experiences
iterations within and between these steps, and, in general, non-linear movement within and
among these steps. Brooks (1995) had come to recognize that iterative sub-cycles within the
development cycle are a reality; that regular and iterative builds, such as those advocated in agile
methods, are appropriate (McConnell 2004a); and that the various incremental-build/rapid-
prototyping software and systems development approaches met with greater successes than the

waterfall model (Brooks 1995).

Lastly, Brooks (1995) concludes his revisit of changes in software and systems
development over a 20 year period from 1975 to 1995 with the realization that methodologies

will continue to address the same problem domain regardless of the particulars of any single

78

method or changes in the environment. Brooks indicates that “...the distinctive concerns of

software engineering are” (Brooks 1995:288):

e “How to design and build a set of programs into a system”

e “How to design and build a program or system into a robust, tested, documented,
supported product”

e “How to maintain intellectual control over complexity in large doses”

Thus, Brooks suggests that the fundamental aims of software and systems development
methodologies will remain the same, despite paradigmatic shifts in method use. This section has
established the fertile ground necessary for a paradigmatic shift towards agile methods. The next
section will discuss agile methods as a philosophical embodiment of a number of adaptive and

iterative methods.

2.5.5 The Emergence of Adaptive and Iterative Methods

Larman and Basili (2003) trace the roots of agile development in a digest of 70-plus years
of Iterative and Incremental Development (1ID) and highlight key moments in the development
agile methods. Larman and Basili (2003) make it clear that the waterfall method was never
intended to provide a strict guideline and formula for software development: The waterfall
model is an ideal which abstracts the software and systems development process for management
rather than for developers (Parnas et al. 1986). For decades, researchers and practitioners of
software and systems development have been acutely aware that “the picture of the software
designer deriving his design in a rational, error-free way from a statement of requirements is
quite unrealistic” (Parnas et al. 1986). In this sense, it is unfair to castigate the waterfall model

as the sole hindrance of progress: process-oriented approaches serve a purpose and should be

79

used when appropriate. Despite this, the dichotomy between 11D and waterfall-oriented methods

is very real and has created an atmosphere ripe for a statement such as the Agile Manifesto.

Abrahamsson et al. (2003) provide a thorough comparative analysis of 11D methods and
how they came to be called “agile” methods. Their work is valuable as it provides advice to
software developers and software project managers on when and why agile methods should be
used. If a manager or developer asks themselves “are agile methods just a fad or will agile
methods provide substantial guidance over and above existing and accepted methods?”

Abrahamsson et al.’s (2003) comparative analysis provides substantial responses to this question.

As is made clear in the Larman and Basili (2003) paper, the family of methods now
known as agile methods each arose at different points in time, evolved at different rates, and
arose under different circumstances and for different reasons. As agile methods progressed and
developed, a single and consistent theme arose in their use: the “...document-driven single-pass
sequential life cycle” had somehow failed (Larman et al. 2003:55). In a 1998 study of 23,000
software development projects, the “...top reasons for project failure... were associated with
waterfall practices”; the report goes on to mention that “...11D practices tended to ameliorate the
failures” which arose from over-reliance on the waterfall model (Larman et al. 2003:54). Again,
this is not a failure of the waterfall process model so much as it is an industry relying too heavily

on simplistic and parsimonious conceptions of the software and systems development process.

The period during which the majority of 11D methods emerged and blossomed was during
the 1990s. Adaptive Software Development, Agile Modeling, Crystal Family, Dynamic Systems
Development Method, Extreme Programming, Feature-driven Development and Internet-speed

Development, among others, all emerged and took shape in the 1990s. Again, it is quite likely

80

that the explosion of computer users brought on by the popularization of the Internet via the
World Wide Web has a key reason for the emergence of 11D methods. Figure 14 presents an

evolutionary map of these methods (Abrahamsson et al. 2002; Abrahamsson et al. 2003).

Figure 14 Evolutionary Map of Agile Methods (Abrahamsson et al. 2003)

Fistion aof universal methoda
(Maloum und Landry, 1983}
Prodotypimg methodology
(e.8., Lamz, 1586)
Spiral model
Evolutionary life-cycle (Bochm, 1986)
(Gl 1688)
Mew product developrment game
(Takeuchi and Monaks, 1986)
Cyect oriented \ /
approaches
199 1 Rapid application Tntemet rechnofogies, Mglll|nda!ngy .
development (RALY distributed softemns Engineening Amethodological 15
(.5, Martin, 1991} development (Kumar snd development
Welke, 1992) (Baskerville, 1992,
Truem et al, 2001}
Scrum development
process,
RADical software [Schwaber, 1995; Open Saurce
development (Rayer - Sehwaber and Synch-and-stabilize Sofrware (OSS)
- : Trynamia sy stems. -
and Highsmith, 1954) developmens method Beedls, 2041) :gm Tmh‘; 1095: developerent
v {DSDM, 1995) 1' 1957 ' "
Ulniified miode) !
tanguage (UML} Crysial family |
1
m::ms; 2000} Extrems Programaming (XF) | 13 development in
(Beck, 1599} I emergent organizations
M | Internet-speed development [Truvex et al., 1999)
*, Adaptive Software Development | | i {Cusumano and Yoffie, 1999,
. + ahamith, 2000 | ' Baskerville et al., 2001; —
2000 = Rational Unified v, | 1ASD) (Highsmith, 2000) ! i)
Proocss (RUP} e ; N — Baskerville and Prex Heje, 3001)
{Kruchten, 2000) Y L P":i::::': _____
Apile menfesto Progenatic
Feature-Driven (Becketal, 2001y 7770 progrunming (PP)
Dievelopment {FDD) {Hunt and Thomas,
(Palmer and Felying, 2002) Agile Modeling (AM) 000y
o | (Ambler, 2002)
L J

Figure 14 should make it quite clear that agile methods did not suddenly appear in a cataclysmic
and violent revolution against traditional methods. In the Kuhnian (1996) sense, the emergence
of these iterative and incremental development methodologies arose in incremental steps as
reactions to inconsistencies in the prevailing paradigm. Furthermore, agile methods are a
collection of ideas and activities from a community of scholars and practitioners; their activities
are “pre-paradigmatic” in nature. It is difficult to determine if agile methods represent a

paradigm shift, however, the Abrahamsson et al. (2003) illustrate how the formal declaration of

81

agile methods in the Agile Manifesto was preceded by many subtle methodological challenges
which have emerged during what was otherwise a period of “normal science.” (Kuhn 1996)
Moreover, Kuhn gets to the crux of the agile-as-paradigm question with respect to a community
of science and practice by asking: “What do its members share that accounts for the relative
fullness of professional communication and the relative unanimity of their professional
judgments” (Kuhn 1996:183)? Kuhn’s own answer to this is that this community shares a
disciplinary matrix of symbols, models and values. In the case of the agile software
development community, it is their shared values that are most indicative of paradigm shift as

these values have been concretely expressed and attested to by many of those cited in Figure 14.

The real challenge for the agile paradigm is the degree to which the agile movement
provides new methods and concepts which do a better job than the methods and concepts of the
prevailing paradigm. Although Einsteinian concepts of physics have supplanted Newtonian
concepts, it is still easier, in some circumstances, to use what was correct about Newtonian
concepts (Kuhn 1996:102). In this sense, Abrahamsson et al. (2003) provide five analytical

lenses for analyzing agile methods:

e Software development life-cycle — The advantage of referring to a life-cycle for
software and systems development exists within the life-cycle’s ability to demarcate
discrete phases and steps which allow developers to locate their progress. Whether the
life-cycle is pursued iteratively or sequentially does not change the usefulness of the life-
cycle concept.

e Project management — All software projects require some form of management — this is
the case for very large projects and small one-or-two person teams. Along with the life-
cycle, project management allows for progress to be located and optimized.

e Abstract principles vs. concrete practices — To what degree does a method prescribe

and proscribe practice? Are tangible steps offered or are values and ideals expected to
translate into action?

82

e Universally predefined vs. situation appropriate — Perhaps this is the inverse to the
previous analytic lens. It would seem that the more proscriptive and prescriptive a
method is, the more universally predefined and applicable it would be. However, one
could construe the purpose of a principle as providing a flexible framework for acting in
a situationally appropriate manner.

e Empirical evidence — how many times has this method been demonstrated to work in a
real-world setting?

This analysis, grounded in the literature, is useful for the purpose of assessing agile
methods. Rather than focusing on Abrahamsson et al.’s (2003) analysis of each method, their
summary assessment of an aggregate of agile methods illuminates what agile methods have and
have not done thus far. If agile represents a new paradigm, then the period of “normal science”
such that representative methods can be honed and improved has been a relatively short one or
has not yet emerged. Wider adoption and use of agile methods should serve to not only iron
these methods out, but also expose weaknesses in the methods which will either be resolved
within the agile paradigm or serve as the basis for further paradigmatic shift. Table 16 below

summarizes Abrahamsson et al.’s (2003) findings.

83

Table 16 Results of Abrahamsson et al.’s (2003) Comparative Analysis

Perspective Description of the results Implications

SDLC Methods, without Life-cycle coverage needs to
rationalization, cover different | be explained. Life-cycle
phases of the lifecycle. phases not covered need to be

clarified.

Project Management While most methods appear to | Conceptual harmonization is
cover project management, needed. Project management
true support is missing. cannot be neglected.

Abstract principles vs. Abstract principles dominate | Emphasis should be placed on

concrete guidance the literature and developers’ | enabling practitioners to
minds. utilize the suggestions made.

Universally predefined vs. Universal solutions dominate | More work on how to adopt

situation appropriate the literature. agile methods in different

development situations is
needed.

Empirical support Empirical evidence is limited; | More empirical, situation-
most of the research is at specific, experimental work is
conceptual level. needed; results need to be

publicly available.

The Abrahamsson et al. (2003) comparative analysis makes clear the fact that agile
processes are not a panacea. It would seem that a question certainly enters into the mind of a
project manager, developer or even customer with respect to agile methods: are agile methods
right for my project? Such questions are only answered when the bounds of agile processes are

known. The next section addresses the strengths and limitations of agile processes.

2.5.7 Strengths and Limitations of Agile Processes

As is often the case with any technique, process or method, strength can also be a

weakness; strengths and weaknesses also underscore fundamental questions regarding suitability.

84

When strengths and weaknesses are known, a method or technique is more bounded and better

understood. On this topic Fowler (2005) has the following to say:

One of the open questions about agile methods is where the boundary conditions lie. One
of the problems with any new technique is that you aren't really aware of where the
boundary conditions are until you cross over them and fail. Agile methods are still too
young to see enough action to get a sense of where the boundaries are. This is further
compounded by the fact that it's so hard to decide what success and failure mean in
software development, as well as too many varying factors to easily pin down the source
of problems.

Generally, Fowler (2005) also suggests that some motivation and proclivity towards agile
development, on the part of a development team, on the part of the customer and perhaps
inherent within the nature of the project itself, is required in order for agile to be a worthy
“experiment.” A general acceptance of change, possibly in a radical sense as opposed to an
incremental sense, is required in order for any impacting benefits of agile to be evident (Fowler

2005; Orlikowski 1992).

Turk et al. (2002) offer insight into the limitations of agile processes. Limitations are
best understood when the original premise of a technique or method is known and explicit. The

assumptions of agile processes are stated thusly (Turk et al. 2002):

Customers are co-located with developers and readily accessible

Developers are co-located and readily accessible

Documentation is not essential

Software requirements will evolve

Dynamically adaptive processes will create better software

Developers have the experience and professionalism required to define an adapt their

processes

Timely and frequent product delivery is a primary success factor

e Quality assurance is possible through frequent informal reviews and testing

e Reusability and generalizability are ancillary goals of application and domain-specific
software

e The cost of change is fairly constant

e Software can be developed incrementally

e Design does not need to change as change is addressed in refactoring

85

While the advent of the World Wide Web and popularization of the Internet offers some

rationale behind these assumptions, it should be immediately obvious that these assumptions and

conditions cannot be met in all circumstances. This would suggest that agile methods are not

suited for all project types and all products.

In light of these assumptions, Turk et al. (2002)

outline some limitations of agile processes and suggest that agile processes are not suitable for

all projects (Table 17).

Table 17 Limitations of Agile Methods (Turk et al. 2002)

Limitation Description

Limited support for
distributed
development
environments

The assumption that customers and other developers are readily
accessible for face-to-face meetings is challenged by increasingly
distributed development environments. Offshoring to India is one
example of this. Developing web-oriented applications for a customer in
another location is yet another example of this. However, the same
technologies that allow for distributed development can also provide
opportunities for rich interaction using information and communication
technology as a substitute for face-to-face communication. The work of
Lee (1994) and Ngwenyama and Lee (1997) support this.

Limited support for
outsourcing/subcon
tracting

If an agile project is light on specification and light on documentation,
the basis for agreements related to subcontracting is sparse. As the
manifesto stresses relationships over contracts — this would open up
many legal issues which subsume well-intended values.

Limited support for
reusable artifacts

With a focus on rapid application development and shorter development
cycles, the high-level, long-range planning often required to create
appropriate re-usable modules may be lost. A seasoned developer may
not have trouble “seeing” where reusability is worthwhile, but an
inexperienced developer might not see “the forest for the trees.”

Limited support for
large teams

A large degree of specification and formalization allows larger teams to
work together with the brevity of communication required for
coordination and control. With a large project/team, a point of
diminishing returns is inevitable when face-to-face and informal
communications are the norm.

Limited support for
developing high
levels of quality
assurance and
safety

When software safeguards against direct injury to humans or excessive
financial loss are required, the informal quality-control mechanisms of
agile processes have yet to be proven. While the test-first orientation,
early/frequent iterations of working code, and pair-programming
component of some agile methods can be effective towards quality
control, these approaches lack a formal specification which can be tied to

86

Limitation Description

legal consequence. This problem can be addressed, but some
applications are better suited to process and plan orientation.

Limited support for | While the Larman and Basili (2003) history of Iterative and Incremental
developing large, Development (IDD) provides evidence to the contrary, there is a category
complex software of complex software which does not lend itself well to code refactoring
as the principle component of architectural change management. Large
and complex projects have so many structural interdependencies that
laissez-faire and agile change management techniques could be
disastrous.

This assessment of the strengths and limitations of agile methods informs this question:
under what circumstances does an adaptive and agile approach make sense as compared to a
plan-driven approach? Boehm and Turner (2003, 2004) offer guidance which generalizes the
appropriate features of both plan-driven and agile processes by conducting risk analysis. When
the risks surrounding each development approach are known, these risks can be extrapolated to
the particulars of a given organizational and systems developmental context. Generally, three
categories of risk are analyzed such that a balanced decision for or against any given

methodological approach is possible (Boehm et al. 2003; Boehm et al. 2004).

Table 18 Risk-based Analysis of Methodologies (Boehm and Turner 2004)

Risk Type Risks

General Environmental Risks e Technology uncertainty
e Diverse stakeholders

e Complex systems
Risks of a plan-driven approach e Emerging requirements
e Constant change

Need for rapid results
Staff skills

Scalability

Criticality

Design simplicity

Staff turnover/continuity
Staff skills

Risks of an agile approach

87

The Boehm and Turner (2004) analysis provides a useful framework for undertaking a
serious assessment of which method to pursue; in some cases, these approaches are not
incommensurate. Another use of the Boehm and Turner (2004) risk framework is to identify
which aspects of a project most are sympathetic to a particular software development method.
Table 19 approaches the Boehm and Turner (2004) risk analysis categories in a more prescriptive

manner.

Table 19 Prescriptions for Method Use (Boehm and Turner 2004)

Use agile methods in case of: Use plan-driven methods in case of:

Low criticality

Senior developers

High requirements change

Small number of developers

Culture amenable to chaotic conditions

High criticality

Junior developers

Low requirements change
Large number of developers
Culture requiring order

As is the case with research methods, systems and software development methods have
optimal conditions to which they are most suited. It is also possible to consider, as is the case
with Information Systems research, mixed-method approaches where some elements of agile
methods and some elements of plan-based methods are combined. A great deal of skill and
experience may be required in order to undertake a mixed-method approach successfully, yet the
Larman and Basili (2003) historical analysis suggests that mixed-method approaches have been

successfully implemented for decades.

Software development methods are not the sole basis for success in software
development; their benefits are accrued as governing principles and philosophies in order to
ensure progress and success. Methods for systems and software development suggest ways of
seeing and not seeing much as is the case with the methods and methodologies that scholars use

to research various phenomena. This idea allows for an entirely different assessment of plan-

88

oriented and agile methodologies. A scholar of ISD or SE might also approach software

development methods from a philosophical, epistemological and methodological perspective.

2.5.8 Philosophical Reflections on Agile Methods

Thus far, this dissertation has proposed that the agile methods movement has every
appearance of being an example of a Kuhnian paradigmatic shift. We can better understand the
role that agile methods serves for practitioners and scholars if we consider the philosophy
(ontology, epistemology and methodology) guiding these methods. As “...all research is based
on some underlying assumptions about what constitutes valid research and which research
methods are appropriate” (Myers et al. 2002:5), there also similar underlying assumptions in the
use of agile methods. We can also trace the path to a philosophy for agile methods in
epistemology. For example, in Information Systems research, there are qualitative and
quantitative approaches to research methods which are guided by an underlying epistemology.
Thus, just as methods for research are guided by an underlying epistemology, agile methods are
also guided by epistemology. Thus, an epistemology holds underlying *...assumptions about

knowledge and how it can be obtained” (Myers et al. 2002:5).

Lee (2004) suggests that a guiding philosophy is comprised of an ontology, epistemology
and methodology: An ontology is the “...foundational beliefs about the empirical world” which
the members of a community of science or practice share and an epistemology is a “...a broad
and high-level outline of the reasoning process by which...” a school of thought or practice
“...performs its empirical and logical work” (p.6). It would be hard to argue that software and

systems development are NOT both logical and empirical work. Lastly, Lee (2004) refers to a

89

methodology as “...a more specific manner in which to do empirical and logical work” (p.6).
While these concepts and terms were not intended for a community of practice, these concepts

provide a means from which the agile methods movement can be understood as a paradigm.

The practitioner literature on agile methods contains numerous value-laden statements
concerning agile methods in a philosophical and epistemological manner. This implies that, as is
the case with communities of science, the community agile methods practitioners socially
construct their knowledge. This socially-constructed knowledge is *...not immutable but under
our power as a community... to question, amend, correct and improve” (Lee 2004:7). In the
development of agile methods, the community of agile practitioners has undoubtedly questioned,
amended, corrected and improved upon engineering and plan-based methods. In doing so, agile
practitioners have constructed a new disciplinary matrix. If the values and beliefs held in the
community of agile practitioners are part of their disciplinary matrix, it then falls on a
community of scholars to develop “...post hoc logical reconstructions of actual logics-in-use”

(Lee 2004:7) in order to theorize on the paradigmatic nature of agile methods.

Scholars of software engineering have already begun to theorize on the success of agile
methods in search of a philosophical grounding for agile methods (Hazzan et al. 2003; Hazzan et
al. 2004a; Hazzan et al. 2004b; Nerur et al. 2007; Nerur et al. 2005; Socha et al. 2006; Tomayko
et al. 2004). There is an emerging recognition that the collective work of Argyris and Schon
(1974, 1978, 1996) and Schon (1983, 1987), grounded in the philosophies of pragmatism and
phenomenology, provides an adequate theoretical and conceptual basis for agility in design as an
emergent epistemology of practice (Nerur et al. 2007:79; Rajlich 2006). Thus, understanding

agile method success in small shop software development will require a closer examination of

90

the epistemology guiding the agile phenomenon. This theorizing has only recently begun in

earnest and this dissertation is intended to move this process of understanding forward.

Nerur and Balijepally (2007:81) suggest that agile methods represent a new metaphor for
design founded in disciplines such as architecture, where flexibility and responsiveness are
perhaps more important than optimization. This focus on design as a philosophical and
epistemological reference for software and systems development is gaining recognition amongst
scholars of Information Systems, Computer Science, and beyond (Hevner et al. 2004; Lee 2007;
March et al. 1995; Schon et al. 1996; Simon 1996). Therefore, in order to further theorize on
these epistemological underpinnings, and in order to provide a theoretical basis for the
Reflective-Agile Learning Model and Method, the work of Argyris and Schon, and Schén

warrants further discussion.

2.6 Reflection, Reflective Practice and the Reflective Practitioner

This dissertation has, as among its objectives, a goal to promulgate a reflective
practitioner approach to the professional practice of small-team software development. The
reflective practitioner approach is outlined by Donald Schon as an epistemology of practice
conducive to systematic learning in two books: The Reflective Practitioner (1983) and Educating
the Reflective Practitioner (1987). The overarching intent and purpose in much of Schén’s work
has been theorizing on learning, reflection and change. Schon, along with Chris Argyris,
theorize on the theories of action for Organizational Learning to account for how change occurs
at the personal, organizational and societal levels (Argyris et al. 1978; Argyris et al. 1996;

Argyris et al. 1974). Schoén’s work on Organizational Learning was preceded by work

91

concerning change and the need for systematic and ongoing learning for adaptation (Schon 1967;
Schon 1973). Others have theorized on organizational change and Organizational Learning

(Keen 1981; Senge 1994; Simon 1991).

2.6.1 Antecedent Work and Thinking

Donald Schon characterizes the impetus for Organizational Learning in Beyond the
Stable State (1973): “...our society and all of its institutions are in continuing processes of
transformation. We cannot expect new stable states will endure even for our own lifetimes”
(p.30). Thus, Schon suggests a need for consistent systems for ongoing learning: “...We invent
and develop institutions which are ‘learning systems,” that is to say, systems capable of bringing
about their own continuing transformation” (p.30). This imperative for continuous
Organizational Learning is often challenged by dynamic conservatism: the natural resistance a
system has to change as change presents a threat to the actors within a system (Schon 1973: 51).
Dynamic conservatism is important as it is a disruptive force which confounds change
management and learning. Rather than hope to eradicate dynamic conservatism, a learning

system accommodates and minimizes the effects of dynamic conservatism:

A learning system... must be one in which dynamic conservatism operates at such a level
and in such a way as to permit change of state without intolerable threat to the essential
functions the system fulfils for the self. Our systems need to maintain their identity, and
their ability to support the self-identity of those who belong to them, but they must at the
same time be capable of transforming themselves. (Schon 1973: 57)

Schon presents a model for how innovations can be used in a learning organization which
differs from a product-centric and static concept of learning through innovation diffusion (Table
20).

92

Table 20 Diffusion of Innovation in Traditional and Learning Systems (Schon 1973)

Classical models for the diffusion of Learning systems’ models around the
innovations diffusion of innovations

The unit of innovation is a product or The unit of innovation is a functional system
technique

The pattern of innovation is center to periphery | The pattern of diffusion is systems
transformation

Relatively fixed, central and hierarchical Flexible and ad hoc leadership
leadership

Signaled as a stable replication of a centralized | Evolving message from a team of shared ideas
message

Scope limited by the resources and will from Scope limited by the infrastructural technology

the center; emanates via “spokes” from the to carry the change message; increases in
center to the periphery connectivity increase the scope

Feedback from the periphery to the center and | Feedback operates equally at local and

back universal levels throughout a system’s network

Schon’s model of diffusion in a learning system clearly presages the connectivity made possible
by the Internet. Thus, the required elements of a learning system, which diffuses the innovations
of learning, are networks, flexibility, feedback mechanisms and organizational transformation
(Smith 2001). A learning system places importance on individual learning and systemic learning
where learning is a social act among members of the learning system: “...A social system learns
whenever it acquires new capacity for behavior, and learning may take the form of undirected
interaction between systems...” (Schon 1973: 109). Many of the interactions within and
between systems would facilitate learning at the periphery (among the actors) rather than from
center to periphery and back (Schén 1973: 165). Furthermore, a learning system would inform
the center as a result of learning at the periphery; aggregate wisdom is collected from the
experiences of actors within the system rather than by axiomatic and rational norms and
standards issued from the center. Thus, the center is the facilitator and legitimizer of change and

not the tutor (Schon 1973: 166).

93

Schén’s early work on learning systems transitioned naturally into work with Chris
Argyris on theories of action for Organizational Learning. Important themes which emerge later
in the epistemology of Reflective Practice are first examined in Schon’s work with Argyris
(1974, 1978, 1996). A learning system relies on the ability of actors within the system to learn
and, subsequently, transmit this learning within the system. Thus, in taking action, actors within
a learning system work from mental maps also called “tacit knowing” (Polanyi 1983: 9). Argyris
and Schon’s work focuses specifically on the tacit knowledge of held by professional
practitioners and how this knowledge results in and informs action. While a practitioner offers
espoused theories (informed by professional training, social environment and other
indoctrinations) explaining their action, Argyris and Schon argue that action is mostly informed
by a tacit Theory-in-use (Argyris et al. 1974: 29). These are the two “theories of action” which

influence Organizational Learning.

Implicit and tacit theories-in-use are influenced by the practitioner’s beliefs and values
concerning a set of governing variables which drive their action planning and action taking
(Argyris et al. 1974). Differentiating between Espoused Theory and Theory-in-use is vital not
only to understand and affect a learning system, but to also understand how professionals think
in action. Argyris and Schon (1974, 1978, and 1996) also propose that a practitioner’s theory of
action influences mechanisms for Organizational Learning called Double-Loop and Single-Loop
Learning. In detecting and correcting errors evident in the consequences of action, a practitioner
and/or organization will either choose to reconsider and question their beliefs and attitudes
concerning governing variables or they will continue to seek alternative action-strategies without
any changes in attitudes and beliefs concerning their governing variables. To question attitudes

and beliefs concerning governing variables as the result of the consequences of action-taking is

94

to engage in Double-Loop Learning. A failure to question governing variables is to engage in
Single-Loop Learning; learning which does not result in a learning system (Argyris et al. 1978;

Argyris et al. 1996).

This antecedent thinking and theorizing occurred in the 1960s and 1970s; by the 1980s,
Schon had developed new thinking on learning systems which centered on the individual
professional practitioner and professional practice. As professional practice is where the “rubber
meets the road,” a focus on professionals and professional institutions is a natural progression in
theorizing on learning systems. Schén’s work in the 1980s on professional practice, collected
primarily in The Reflective Practitioner (1983) and Educating the Reflective Practitioner (1987),
serves as the cornerstone to Schon’s overall program on learning and change. In these books,
Schon introduces an epistemology of Reflective Practice and its importance in reflective action
and effective professional practice. The following section outlines Schon’s epistemology of

reflective professional practice.

2.6.2 Reflecting on the Reflective Practitioner

In The Reflective Practitioner (1983) and Educating the Reflective Practitioner (1987),
Schon outlines a reflective epistemology of practice in contrast and opposition to the positivist
epistemology of practice, Technical Rationality, and underscores the importance of reflective
practice for the development of learning systems in the professions and throughout society. As
an epistemology is an aspect of philosophy (usually philosophy of science), a quick review of
epistemology is warranted. Whereas an ontology comprises the foundational beliefs about the

empirical “real” world amongst a community of practice or science, an epistemology is “...a

95

broad and high-level outline of the reasoning processes by which a school of thought performs
its empirical and logical work™ (Lee 2004: 6). From this definition we can determine that an

epistemology assists in how we reason about truth and how truth is justified through reasoning.

2.6.2.1 Technical Rationality: The Positivist Epistemology of Professional Practice

Technical Rationality is Schon’s characterization of the positivist epistemology of
practice. Technical Rationality holds that “...professional activity consists in instrumental
problem solving made rigorous by the application of scientific theory and technique” (Schon
1983: 21). Technical Rationality presents a system for regarding the truth and verity of
professional knowledge and professional practitioners’ knowledge base. In Technical
Rationality, a professional’s knowledge base is specialized, firmly bounded, scientific and

standardized. This knowledge base has three principle components:

e Basic Science - An underlying discipline or basic science component upon which
practice rests or from which it is developed.

e Applied Science - An applied science of “engineering” component form which many
of the day-to-day diagnostic procedures and problem solutions are derived.

e Body of Knowledge - A skills and attitudinal component that concerns the actual

performance of services to the client, using the underlying basic and applied
knowledge.

Thus, the epistemological view of Technical Rationality is hierarchically embedded in the
institutional context of professional life; it is embedded in the distinctions between research and
practice, in professional education and in attitudes towards learning and change. From the
perspective of Technical Rationality, research and practice are separate activities where

researchers provide basic and applied scientific knowledge from which practitioners derive their

96

techniques and knowledge for practice. In turn, practitioners furnish a problem environment
from which researchers learn. Any art or craft which might be a functional part of professional
practice is omitted or controlled in favor of knowledge developed from scientific and rigorous

hypothetico-deductive hypothesis testing.

Schon critiques and challenges Technical Rationality as it focuses on professional
practice as an endeavor of problem-solving rather than problem-setting. Schén presents this
distinction as being problematic: “...in real-world practice, problems do not present themselves
to the practitioner as givens. They must be constructed from the materials of problematic
situations which are puzzling, troubling and uncertain” (Schon 1983: 40). According to Schon,
professionals “...are coming to recognize that although problem setting is a necessary condition
for technical problem solving, it is not itself a technical problem” (p. 40). Rather, “...problem
setting is a process in which, interactively; we name the things to which we will attend and frame
the context in which we will attend to them” (p.40). Thus, whereas “...Technical Rationality
depends on agreements about ends... a conflict of ends cannot be resolved by the use of
techniques derived from applied research...” (p.41). In Reflective Practice, Schon favors the
non-technical processes related to naming, framing, seeing-as and metaphor which govern
problem setting. Problem setting is a necessary pre-cursor to a positivist learning system of
Technical Rationality, “...it is through the non-technical process of framing the problematic
situation that we may organize and clarify both the ends to be achieved and the possible means

for achieving them” (p.41).

Schon describes problem-setting as fraught with uncertainty, uniqueness, instability and
value conflicts of the sort that Technical Rationality is ill-equipped to handle. Thus, an

alternative epistemology which allows for problem setting is required in order to establish a

97

learning system. Problems cannot be set from a known constellation of scientifically vetted
truth; problems are dynamic and require a dynamic response. Thus, if the ability to define a
problem’s setting is somewhat of an art, then any artistic and creative approach not codified in
the central knowledge of the positivist tradition would be considered non-rigorous: this becomes

another means of framing the rigor vs. relevance debate. Schon describes the situation thusly:

In the varied topography of professional practice, there is a high, hard ground where
practitioners can make effective use of research-based theory and technique, and there is
a swampy lowland where situations are confusing ‘messes’ incapable of technical
solution. The difficulty is that the problems of the high ground, however great their
technical interest, are often relatively unimportant to clients of the larger society, while
in the swamp are the problems of greatest human concern. Shall the practitioner stay on
the high, hard ground where he can practice rigorously, as he understands rigor, but
where he is constrained to deal with problems of relatively little social importance? Or
shall he descend to the swamp where he can engage the most important and challenging
problems if he is willing to forsake technical rigor? (Schon 1983)

A rather tepid reaction to this dilemma is to mold the situation of practice to fit the constraints of
technical knowledge: models are changed to suit the data; systems are built irrespective of their
consequence; failures are cast off as “affect” and thus marginalized. A variation on this behavior
is to mold the situation of practice around available and sanctioned techniques rather than
develop techniques which reflect the truth of the problem setting. Thus, Schén summarizes the
degree to which Technical Rationality (the positivist epistemology of professional practice)

raises a dilemma:

It seems clear, however, that the dilemma which afflicts the professions hinges not on
science per se but on the Positivist view of science. From this perspective, we tend to see
science, after the fact, as a body of established propositions derived from research.
When we recognize their limited utility in practice, we experience the dilemma of rigor or
relevance. (Schén 1983: 49)

In response, Donald Schon offers an alternative epistemology of professional practice which
embodies the implicit, tacit, artistic and intuitive processes practitioners bring to problem setting.

98

2.6.2.2 Elements of Reflective Practice

Schon’s epistemology of Reflective Practice focuses on the situatedness of action and the
knowing-in-action which governs the decision-making and action-taking of most professionals in
their daily work. This knowing-in-action is mostly tacit and implicit in patterns of action and
evident when practitioners “think on their feet.” Therefore, the practitioner’s mental maps, his or
her theories-in-use, are the product of Reflection-in-action, where “tacit knowing” is “in” the
action (Polanyi 1983; Schon 1983) . Thus, a sketch of Schdn’s epistemology begins to take shape

in the following terms and concepts:

e Tacit knowing — These are actions, recognitions, and judgments which we know how
to carry out spontaneously; we do not have to think about them prior to or during
their performance. (Schon 1983: 54)

e Knowing-in-action — Our knowing is ordinarily tacit, implicit in our patterns of
action and in our feel for the stuff with which we are dealing... our knowing is in
action. (Schoén 1983: 49)

e Knowing-in-practice: ... [A practitioner] develops a repertoire of expectations,
images and techniques. He learns what to look for and how to respond to what he
finds. (Schon 1983: 60)

e Overlearning: As long as practice is stable, in the sense that it brings the same types
of cases, [the practitioner] becomes less and less subject to surprise... Knowing-in-
practice tends to become increasingly tacit, spontaneous and automatic, thereby
conferring the benefits of specialization. (Schon 1983: 60)

...As practice becomes more repetitive and routine, and as knowing-in-practice
becomes increasingly tacit and spontaneous, the practitioner may miss important
opportunities to think about what he is doing. (Schén 1983: 61)

e Reflection-in-practice — A practitioner’s reflection can serve as a corrective to over-
learning. Through reflection, he can surface and criticize the tacit understandings
that have grown up around the repetitive experiences of a specialized practice, and
can make new sense of the situations of uncertainty or uniqueness... (Schon 1983: 61)

99

0 Reflecting-in-action — If common-sense recognizes knowing-in-action, it also
recognizes that we sometimes think about what we are doing. Phrases like
‘thinking on your feet,” “keeping your wits about you,” and ‘learning by doing’
suggest not only that we can think about doing but that we can think about
doing something while doing it. Some of the most interesting examples of this
process occur in the midst of a performance. (Schén 1983: 54)

o0 Reflecting-on-action — Practitioners do reflect on their knowing-in-practice.
Sometimes, in the relative tranquility of a postmortem, they think back on a
project they have undertaken, a situation they have lived through, and they
explore the understandings they have brought to their handling of the case.
(Schon 1983: 61)

Naming-and-framing — When phenomenon at hand eludes the ordinary categories of
knowledge-in-practice, presenting itself as unique or unstable, the practitioner may
surface and criticize his initial understanding of the phenomenon, construct a new
description of it, and test the new description by an on-the-spot experiment.
Sometimes he arrives at a new theory of the phenomenon by articulating a feeling he
has about it. When he finds himself stuck in a problematic situation which he cannot
readily convert to a manageable problem, he may construct a new way of setting the
problem — a new frame which ... he tries to impose on the situation. (Schon 1983: 63)

Frame-experiment — Practitioners ...encounter a problematic situation whose reality
they must construct. As they frame the problem of the situation, they determine the
features to which they will attend, the order they will attempt to impose on the
situation, the directions in which they will try to change it. In this process, they
identify both the ends to be sought and the means to be employed. In the ensuing
inquiry, action on the situation is integral with deciding, and problem-solving is a
part of the larger experiment in problem setting. (Schén 1983: 165)

Repertoire —...examples, images, understandings and actions... (which) includes the
whole of his experience insofar as it is accessible to him for understanding and
action. (Schon 1983: 138)

Seeing-as and generative metaphor — When a practitioner makes sense of a
situation he perceives to be unique, he sees it as something already present in his
repertoire. (Schon 1983: 138)

Once a new problem is seen to be analogous to a problem previously solved..., then

metaphor is being used to generate new conceptions from experience. When the two
things seen as similar are initially very different from one another, falling into what
are usually considered different domains of experience, then seeing-as takes a form

[called] “generative metaphor.” (Schon 1983: 183)

...Seeing A as B where A and B are initially perceived, named and understood as very
different things — so different that it would ordinarily pass as a mistake to describe

100

one as another. It is the restructuring of the perception of the phenomena A and B
which enables us to call ‘metaphor’ what we might have otherwise called ‘mistake’.
(Schon 1983: 185)

e Theory-in-action — A learning system uses reflection to reflection on the governing
variables within a problem setting.

These elements of Schén’s epistemology fit together in the following summary: A practitioner
uses tacit knowledge and knowing-in-action when problem setting; generally, a practitioner’s
repertoire will cover day-to-day situations and extend expertise. However, novel situations call
for the use of reflection-in-practice (reflection in and on action) in order to conduct frame
experiments whereby novel situations are comprehended and added to repertoire; By
approaching a new situation using generative metaphor, and by using reflection-in-practice, a

reflective practitioner is able to contribute to a learning system.

2.6.3 Acceptance and Critique of Reflective-Practice

Schoén’s epistemology of Reflective Practice has received considerable attention and
traction within several disciplines: Education (Bryant et al. 1997; Freidus 2002; Garlan et al.
1997; Hazzan 2002; Hazzan et al. 2004c; Mathiassen et al. 2002; Smith 1994), Management
(Daudelin 1996; Heiskanen 1995; Jones 2002; Lalle 2003; Rosier 2002; Ulrich 2000; Vince
2002) , Nursing (Jarvis 1992), and Industrial and Engineering training (Cheetham et al. 1996;
Garlan et al. 1997; Kuhn 1998), to name a few. Several researchers and scholars in areas of
design have also recognized the utility of Reflective Practice (Anderson et al. 1993; Atwood et
al. 2002; Dorst et al. 1995; Fallman 2003; Hazzan et al. 2004a; Hill et al. 2002; Louridas et al.
2000; Stempfle et al. 2002; Vessey 2006; Wakkary 2005). In nearly all cases, the popularity of

Reflective Practice is in mature disciplines with a strong professional identity and a focus on

101

education. Reflective Practice has resonated with areas of professional education largely due to
Schon’s 1987 follow up book, Educating the Reflective Practitioner, which focuses on
techniques for implementing Reflective Practice in educational settings. This focus on

“pedagogy” is among the bases for many of the criticisms of Reflective Practice.

While there are many criticisms of Reflective Practice, Smith (2001) summarizes the

three major criticisms:

e Distinguishing Reflection “in” and *“on” practice — Some feel that the possible
scope for reflective practice is extremely limited when time is tight. Schon (1983)
does address this on page 275 where he asserts that reflection, regardless of time
allotted, need not inhibit action: a tennis player would learn to reflect on moments
past and upcoming moments when planning a shot.

e Relating reflective practice to praxis — Some complain that reflective practice it not
prescriptive (and/or proscriptive) enough to have meaningful impact on praxis. Such
a critiqgue comes from a reader who may not have been able to suspend disbelief long
enough (presumably due to positivist indoctrination) to realize that “... The ability to
draw upon a repertoire of metaphors and images that allow for different ways of
framing a situation is clearly important to creative practice and is a crucial insight”
(Smith 1994: 142-145).

e Lack of a rigorous analysis of the epistemology — Bryant et al. (1997) summarize
thusly: “...what we do not find in Schon is a reflection by him on his own textual

practice in giving some kind of account of that he does of Reflection-in-action and the
reflective practicum... He does not interrogate his own method.”

2.6.4 Situating the Utility of Reflective Action

Donald Schon’s epistemology of Reflective Practice significantly influenced professional
training and education for teachers, nurses and engineers (Bryant et al. 1997; Hazzan et al.
2004a; Jarvis 1992; Tomayko et al. 2004). In the field of education, there is a sense that

Reflective Practice has become a part of that discipline’s canon; it demonstrates frequent utility

102

for educators in a variety of professions (Bryant et al. 1997). However, it is important to note
that in most uses, practitioners are encouraged to “apply” Reflective Practice, in a prescriptive
manner, to their own situations and experiences (Smith 1994). Schén seems to have intended
Reflective Practice not as a method to be applied but as an epistemology, or methodology, which

provides a framework for situated and reflective action.

It is equally important to keep in mind that Reflective Practice is very connected to
Argyris and Schon’s work on Organizational Learning, learning organizations and learning
systems. It is argued that it is Donald Schon’s work on learning systems that still provides the
most thorough theoretical treatment on the matter (Smith 2001). Reflective Practice is a means
to harness individual practitioner repertoire which contributes to a learning system: Reflective
Practice is not a recipe or formula to be applied. In Educating the Reflective Practitioner
(1987), Schon does provide some procedural and methodical hints for adopting Reflective

Practice.

2.7 Synthesizing the Literature: Emerging Themes

The reviewed literatures reveal certain patterns which can serve as a basis to justify the
legitimacy of the research questions: the professional practice of software development is still
nascent and evolving; small teams do have unique needs and require software development
methods suited to their size; there are multiple approaches available for assessing software
development methodologies; agile methods represent a paradigmatic break from software
engineering’s past and are well-suited to small-team software development. Among these

themes, the critical element is Schon’s epistemology of Reflective Practice. The literature

103

review concludes with a summarization of the importance Reflective Practice with respect to the

research questions and objectives of this dissertation.

2.7.1 Understanding Agility through Reflective Action

It is evident in the literature that the agile methods movement came to a head as a
response to disconnect between the experiences of practice and the guidance of the Software
Engineering paradigm and metaphor. Throughout the 1990s and up to the present, rapid change,
wrought by advances in information technologies and user expectations arising out of these
advances, have created discord between daily experience and the guidance of traditional software
development methods. Thus, parallels between Technical Rationality and Reflective Practice
and between Software Engineering and agile development methods are palpable. Each shows
how the experience of practice questions generalized knowledge in the dominant paradigm.
Whereas a natural response to this dilemma would be to update theory to reflect reality, Kuhn
suggests that such transitions are not so simple; the inertia the Positivist epistemology of
Technical Rationality is hard to overcome. This is what Schon (1973) described as Dynamic

Conservatism.

Kuhn (1996) also tells us that it is often a revolution which creates the total change
necessary to bring theory into alignment with a critically and fundamentally changed
environment of practice. In developing RALMM in a Dialogical AR Partnership, this
dissertation theorizes on how the software development has been permanently changed by the
Internet and the World Wide Web and how this affects small software development shops.

Figure 15 below suggests the relationship between Technical Rationality and software

104

engineering. Figure 15 also suggests a connection between Schon’s Reflective Practice and the
agile methods movement and illustrates the frame conflict between engineering and artisanship

in agile methods.

If agile methods are an evolutionary step, we can use Reflective Practice as a

theoretical lens to suggest new models for IT practice.

Figure 15 Progression Towards a Craftsmanship Model of IT Practice

Evoluti Revolutionary Change:
. volutionary New Paradigm
Dominant Change
Paradigm
YL LT
o "5%‘ “.“‘ v,
Schén’s & \‘ v * %\
. K .

Epistemology of - Te(_:hnlc_al \‘ % F_\’eflect_lon
Professional) Rationality \ f in Action |\
Practice) \ R 1 - \
L] ! g ‘! . N %
L] \ < % / t
% o " i
— H o i
Software H % . - Reflective- v
Y Software L Agile s Al :
Developmept 1 Engineering |—#% | Methods - gile ¥

Methodologies % % * % | Methods

“ "‘ “ ,," ‘ﬂ 1%
¥ ‘.v“ “v o “5 “v“
'iili““ "lu---‘ * "iil“‘

2.7.3 Considering the Artisan Frame

One possible professional frame and metaphor for agile methods is that of the artisan. In
his epistemology of Reflective Practice, Schon (1983) characterizes the reflective practitioner as
one who draws as much as, if not more, from art as he or she does from science. Whereas the

concept and viability of artisan as skillful master of a trade has been supplanted by the science,

105

engineering, and Taylorism (Chau et al. 2003; Melnik et al. 2004), Schon proposes that the

epistemology of Reflective Practice reconsider art and craft:

Among philosophers of science, no one wants any longer to be called a Positivist, and
there is a rebirth of interest in the ancient topics of craft, artistry and myth — topics
whose fate Positivism once claimed to have sealed. It seems clear, however, that the
dilemma which afflicts the professions hinges not on science per se but on the Positivist
view of science. From this perspective, we tend to see science, after the fact, as a body of
established propositions derived from research. When we recognize their limited utility
in practice, we experience the dilemma of rigor and relevance... Let us search, instead,
for an epistemology of practice implicit in the artistic, intuitive processes which some
practitioners do bring to situations of uncertainty, instability, uniqueness, and value
conflict.(Schén 1983:49)

It may be that newer forms of communication and organizing, made possible by
information technology, have modified frames and metaphors for the professional practice of
software development towards reflective and artful craft. Thus, the question may be asked: can
the agile methods movement promote new a understanding of software development, from the
frame and metaphor of the artisan rather than the engineer? This question is a prime motivator
of this dissertation. The development of the Reflective-Agile Learning Model and Method will,

among other things, provide empirical evidence to support this postulation.

While the traditional concept of the artisan is that of the skilled manual worker, what
about the skilled knowledge worker? As artisans were the dominant producers of goods before
the Industrial Revolution, what of the skilled knowledge worker in the Information Age? An
artisan creates artifacts based on skills mixed with intuitive and creative thinking: so too does the
knowledge worker. Thus, the focus on Reflective Practice as the theoretical stimulus in this
research may open up argument that tomorrow’s skilled information technology worker may be

understood as an artisan and a professional. Thus, the professions are so tied up in the dogma of

106

Positivism that very concept of “the professional” may hinder advancement in the professional

practice of software development.

2.7.4 Using Reflective-Agile as a Generative Metaphor for Small Teams

In appropriating Reflective Practice as a theoretical lens, this research relies heavily on
the concept of metaphor as a structuring force of design. Metaphors are often used as a device to
understand the unknown from the perspective of known frameworks. Metaphor is also a
communications technique which is helpful in managing change. In this sense, metaphors
become “... central to the task of accounting for our perspectives on the world: how we think
about things, makes sense of reality, and set the problems we later try to solve” (Schén 1979).
We use metaphors to “frame” phenomena by classifying them where these frames cast a new
perspective on phenomena. Metaphors are used as a short-hand for understanding and also to
cast new light on a subject; revealing according to the metaphor and hiding what the metaphor
does not account for'®. Metaphor is also abstraction: the details of new phenomena are often
subsumed by the already-accepted lessons of a priori experience which illuminate the new
phenomena and anchor them to an existing frame. Carrying over an existing frame to another
domain of experience is often used to “tame” this new domain and subsume it into an existing

philosophical, ontological, epistemological and methodological tradition (Barrett et al. 2001).

'%Consider the story of the drunkard and the lamppost: “A policeman saw a drunk searching for something under a
lamppost. “What have you lost, my friend?’ the policeman asked. ‘My keys’, said the drunk. The policeman then
helped the drunk look for his keys and finally asked him: ‘Where exactly did you drop them?’ ‘Over there’,
responded the drunk, pointing toward the dark street. The policeman then asked: “Why are you looking here?” The

drunk immediately replied: ‘Because the light is so much brighter here.’

107

Software development began as the handiwork and intellectual craft of a select and gifted
few practitioners privy to the esoteric computing systems available at the time. The importance
of computing and data processing demanded more computer programming for which an artful
and craft-oriented practice of computer programming was not ready. Technical Rationality had
tamed problems in so many other domains and disciplines that the advent of computer science
and software engineering are understandable responses. In order to “clean up” the mess that
software development had become, engineering was proffered as a generative metaphor: a way
of “seeing” software development in a new light: the applied science of engineering. According

to the Accreditation Board for Engineering and Technology®, engineering is

...the creative application of scientific principles to design or develop structures,
machines, apparatus, or manufacturing processes, or works utilizing them singly or in
combination; or to construct or operate the same with full cognizance of their design; or
to forecast their behavior under specific operating conditions; all as respects an intended
function, economics of operation and safety to life and property.

These are concepts and notions bounded by rationality; thus, we can consider engineering as an

instantiation of Technical Rationality.

Engineering has a central mission of problem-solving. Certainly problem-solving is a
goal-seeking activity which is congruent to the purposes of computers and computer programs:
we want that these artifacts to work on our behalf. It is less clear that the practice of software
development is entirely bound by the rational problem-solving of engineering. The actions of an
effective software development practitioner may go beyond those prescribed by the engineering
model. Once all of the problems of the software developer are cast in the generative metaphor

of engineering, the engineering becomes the only legitimate and validating measure of success.

" http://www.abet.org

108

Thus, Schon suggests that a generative metaphor casts a “spell” under which certain things
become “good” and others “bad.” (Schon 1979) Software engineering was “generated” out of

the engineering metaphor and used to create the discipline of software engineering anew.

This dissertation, in using Reflective Practice as a theoretical lens, is also concerned with
the metaphors used to understand the professional practice of small-team software development
in the small-shop environment. Agility is an obvious metaphor guiding agile methods, and
reflection is an obvious metaphor guiding Schoén’s epistemology of Reflective Practice. Thus,
the conjunctive, Reflective-Agile, is used as a generative metaphor as the paradigmatic
implications combining Reflective Practice and agile methods to explore a learning system in

small-team and small-shop software development.

109

CHAPTER 3 Description of the Baseline Reflective-Agile Method

Dialogical AR is an interpretive research approach used in this dissertation to design and
develop a design science artifact starting from a baseline Reflective-Agile method for small-team
software development in the small-shop environment. An action research approach promises to
“...produce highly relevant research results, because it is grounded in practical action, aimed at
solving an immediate problem situation while carefully informing theory” (Baskerville 1999).
Further, action research well-suited for researching IS phenomena as action research is “... one
of the few valid research approaches that researchers can legitimately employ to study the effects

of specific alterations in system development methodologies” (Baskerville et al. 1996).

The designed artifact developed in this research, the Reflective-Agile Learning Model
and Method, is a synthesis Extreme Programming (XP) and Don Schén’s (1983, 1987)
epistemology of Reflective Practice. XP is used as a baseline agile method which is iteratively
modified to include Reflective Practice. ~ The Dialogical AR cycle provides an empirical basis
to specifying learning for the both the practitioner and researcher in the research outcomes and

provides feedback to the theoretical foundations of the interventions.

The remaining sections of this chapter are presented as follows. First, criteria for the
selection of XP as the baseline agile method are examined. Next, each of the major elements,
XP and Reflective Practice, of the baseline Reflective-Agile method are discussed, followed by a

description of the final synthesized approach. Next, the theoretical bases of the proposed

110

interventions are discussed. Lastly, the baseline Reflective-Agile learning approach for small-

team and small-shop software development is outlined and described.

3.1 Criteria for the Selection of Extreme Programming

In considering an agile method for small-team software development, a selection based
on team size is logical given the proposed Dialogical AR setting. From the list in Table 15 in the
previous chapter, the Extreme Programming (XP), Team Software Process (TSP), Personal
Software Process (PSP) and Cleanroom agile software development methods are best suited as
they specifically and directly address small teams and individuals. Crystal, DSDM and RUP
hold promise yet lack an explicit emphasis on small teams and individuals based on the literature
(Boehm et al. 2004). With the selection of any agile method, it is important to consider the
degree to which the individual programmer is addressed as a smaller team will focus at

individual level.

Beyond a focus on the individual, an agile software development method for small teams
should also widely address the SDLC. Whereas Extreme Programming, PSP and Cleanroom
each address the individual and/or the small team, XP also covers a wide range of the SDLC
(Boehm et al. 2004). Thus, candidate methodologies for a baseline Reflective-Agile method are
now narrowed to XP, PSP and Cleanroom. Of these choices, XP most applicably fits due to its
organizational emphasis and breadth of life-cycle coverage. According to Boehm and Turner
(2004) the most agile method is that which places the fewest constraints on method adoption.

However, as methods guide activity and practice, a method necessarily constrains through its

111

guidance and in its use. Boehm and Turner’s (2004) definition of an agile method as a method
most free from constraints would favor Scrum, Adaptive Software Development and Lean
Development; however, the least-constrained of the small-team agile methods is Extreme
Programming. By way of this logic, it follows that Extreme Programming meets several criteria
making the method a valid candidate as a baseline for the Reflective-Agile method for small-

team software development:

e XP has an emphasis on individuals and small teams

e XP addresses a wide range of the SDLC

e XP is not overly constraining and, thus, according to Boehm and Turner (2004), XP is
agile

e XP is widely adopted and has been the subject of extensive practitioner use

e XP has been well critiqued and evaluated by way of extensive practitioner use

e XP has been proven as an appropriate method for small teams and individuals

Thus, this Extreme Programming was selected as a baseline method for the Reflective-Agile
method. Also, this research secondarily considers TSP and PSP if there are problems with the
use of XP. While these methods are less agile, they are rigorous and directly address the
concerns of small-team software development. At best, TSP and PSP would provide critical
balance to XP in much the same way that Reflective Practice will augment and enhance XP in
the development of the Reflective-Agile method. The following section further explores and

examines the XP methods.

3.2 Examining the Baseline Reflective-Agile Method

112

The baseline Reflective-Agile method for small-team software development involves the
introduction of the epistemology of Reflective Practice to Extreme Programming. Thus, at its
core, the baseline Reflective-Agile method is Extreme Programming. The baseline Reflective-
Agile method appropriates modifications and activities suggested by Hazzan (2002, 2004) and
Hazzan and Tomayko (2004) to introduce the reflective practitioner approach to agile software
development. The use of Dialogical AR will allow for iterative and empirical evaluation the

interventions related to Reflective Practice and will guide appropriate changes (if any) to XP.

3.2.1 The Agile Element: Extreme Programming Examined

XP has enjoyed a high profile among agile methods and is among the most controversial
of agile methods (Boehm 2002a). XP is actually based on 12 practices, Table 21 examines these

practices.

Table 21 Extreme Programming Practices (Beck 1999; Wake 2002)

XP Practice Practice Description

Planning

User stories As requirements often change over time and as a project grows,
user stories are mnemonics which capture short phrases which the
customer gives to express intentions. The developers also record a
short phrase and reconcile this with the customer.

Planning Game At the beginning of each iteration, the customer and the developer
choose features required for the next iteration.

Short Cycles Delivers working software every two weeks.

Iteration Plan Developers set a budget for what can be accomplished during an
iteration and obtain agreement with the customer partner.

Release Plan A calendar/map of upcoming iterations towards completion and
acceptance.

Designing

Simple Design Design follows simple user stories created for a given iteration.

Use a system metaphor This creates an overall sense of what the software is in abstract
terms which allows for conceptual connections to be quickly
established. This has a lot to do with naming and framing.

113

XP Practice Practice Description

Refactor often Systems and software are living things which are subject to
change. Reuse and modularity are principles which at times are at
odds with the evolution necessary to keep up with a dynamic
system. When developers remove redundancy, eliminate unused
functionality, and rejuvenate obsolete designs, they are refactoring

Coding

Customer Team Member The customer is an integral part of the team

Pair Programming Production code is created by two programmers working at the
same work station

Continuous Integration As cycles are short, new versions and fixes should be integrated
into the working software quickly.

Testing

Test-Driven Development | All production code is written to previous and new unit tests
ensuring that rapid feature additions does not break existing code

Figure 16 Elements of Extreme Programming (Wells 2000)

Architectural User
Spike Stories
System
metaphor Test Scenarios
Uncertain
Estimates
< Release

4

Spike »| Planning
Confident
Estimates Release Plan New User Story
A 4
Iteration
Latest
Version Bugs/Next
¥ Iteration
Acceptance
Tests <

Customer l

Approval

Small
Releases

114

The general steps and flow of an XP development project are seen in Figure 16 as modeled by
Wells (2000). XP has a clear emphasis and applicability to small-team software development.
Furthermore, XP addresses a significant portion of the Software Development Life Cycle within

its methodological steps.

The general elements of the XP method in Figure 16 correspond with the XP practices
explicated in Table 21. Each phase of the method describes discrete actions and specifies
meaning for these actions. The following sections provide a step-wise narrative describing the

general flow of the XP method as specified in Figure 16.

3.2.1.1 Specifying the System

The general flow of the XP method begins with User Stories, which are written by the
customer in order to describe the things that the customer system needs to do for them.
Generally, these are in the form of a few sentences which are free from jargon and technical

language. Thus, User Stories specify the requirements which the system/software must satisfy.

As User Stories are collected, Architectural Spikes are used to demonstrate solutions to
technical problems based on the User Stories and for prototyping. Architectural Spikes are
prototypes which may not end up in a final project, but which test feasibility and the technical
capability to achieve the system requirements as specified in the User Stories. This activity
reduces the risks associated with technical hurdles. The prototyping phase is also the time to

specify a System Metaphor. It is thought that a System Metaphor creates object and naming

115

consistency. Essentially, this is a naming and framing exercise which encourages cohesion in

architectural modeling.

3.2.1.2 Planning the Releases

User Stories and Architectural Spikes lead to a Release Plan which lays out the overall
structure of the project. From the Release Plan several Iteration Plans will emerge. Release
Planning allows each stakeholder to make decisions appropriate to their role and responsibility
in the project: developers make technical decisions and customers make business/domain
decisions. Release Planning accounts for each User Story and estimates the amount of time
required to program each story. These time estimates assume, aside from testing, complete
devotion to the completion of that User Story. Typically, User Stories are usually written on
index cards and arranged, using the Planning Game technique, during Release Planning. Project
Velocity describes the rate at development activities which development and implement User
Stories requirements are completed. New Spike Solutions may emerge during Release Planning
as dependencies emerge between User Stories. Time estimates may be uncertain during Release

Planning, such that new Spike Solutions are required in order to make confident estimates.

3.2.1.3 lterations

The Iteration is a phase whereupon User Stories are developed into working software.
XP revolves around Iterations as Iterations are at the heart of this method and most other agile
methods. User Stories from the Release Plan, known bugs from failed Acceptance Tests,

deferred User Stories and Project Velocity all influence Iteration Planning. The Iteration Plan

116

specifies and schedules development for an Iteration, if any tasks are not completed during the
Iteration, these tasks are carried over to the next Iteration Plan. Given the close and frequent
customer contact encouraged in XP, it is possible for User Stories to change such that new User
Stories emerge during the Iteration. The outcome of Iterations tests the new functionality which
contributes to Small and Frequent Releases of Working Software. Figure 17 highlights elements

of the Iteration phase.

Figure 17 Iteration Phase of XP (Wells 2000)

N

| [teration @Zoom out
xtreme Programming
New User Story,
Release Project Velocity
Plan User Stories
Unfinished Tasks Learn and
Communicate —_—
Next f«!ﬁiiﬁi Iteration “e;?;fn _enclonaly Latest
Iteration Planning _ Developm ent_. '\ﬂg—ﬁ"e—i" Version
Failed Acceptance @\ o~
V’ Day hy Day
Bugs Copyright 2000 J. Doavan Well

3.2.1.4 Development

An important part of XP is face-to-face communication. This communication happens
within an XP team and between the team and the customer. XP calls for a Daily Standup
Meeting among developers which fosters open communication of problems, ideas, solutions and
new directions. More importantly, the Daily Standup Meeting facilitates learning and promotes

the refactoring which is such an essential element of the XP approach. A unique and

117

controversial approach prescribed in the XP method is Pair Programming. Pair Programming
suggests that all production code is to be created with two people working together at a single
workstation to increase software quality. Many consider this approach is unconventional and it
is a source of controversy (Aiken 2004; McBreen 2002a). Figure 18 relates the principles

phases of the development phase.

Figure 18 The Development Phase of XP (Wells 2000)

N

| Developl‘nent @Zoom Out
xtreme Programming
Learn and
Communicate
Unfinished Pair Programming
Iteration Tasks Refactor Mercilessly Neiw
Move People Around . .
Plan — TooMuch /Share Functionality
To Do CRC Cards /
. 100% Unit
4 —_—» :
, Meeting NextTask | Code Ownership
Failed Acceptance & or Failed F=
TEV' N Acceptance Test S ﬁccepm.
Test Passed "
Da’y by Da'y Copynght 2000 J. Doavan Wells Bug lees

Several XP development practices are peripheral and orbital to Pair Programming: Unit
Tests, team rotation, Refactoring, and continuous integration; Figure 19 demonstrates the
relationship among these practices. Unit Tests are written by the XP team developers as a testing
framework for the modules of functionality within the project. Unit Tests give immediate
feedback concerning the viability of a module. This is a test-driven and test-first philosophy
which permeates through many of the agile software development methods. Team rotation
suggests that it is easier for the entire team to get a sense of the project if people are rotated

among different development roles. For XP this means changing pairs and seeking help.

118

Refactoring is activity which takes complex (yet working) code and seeks to simplify this
code as often as possible. Refactoring looks for patterns of redundancy, unused functionality,
and obsolete design and prunes them from the codebase. Lastly, the development stage specifies
Continuous Integration of new working code into the working code from the previous iteration.
This Continuous Integration is made possible by subjecting functionality to Unit Tests and
Acceptance Tests. If all Unit Tests and Acceptance Tests, both from the current iteration and all
prior iterations passes, then the current iteration’s code becomes a part of working software

which is then used by the customer.

Figure 19 Programming Practices within XP (Wells 2000)

N

4 Collective Code Ownership @gzoom Out
xtreme Programming
Move People
o Around 100%
Cards Unit
Simple
Design change | |7 Tests
COmpIaX pair| [Need Passed
Falen Failed Help Run All Unit
Next Task Pair Create Unit . New Unit . Tests
or Failed Up : Pair _Tests _Continuous |Run
aUmt«P—d T — : Failed
Acceptance Test fﬁﬁ? Programming New IIntegratlon Acceptance
Test @\ Test Functionality Test
Simple Complex
Code Code
Acceptance
Test
Ref'fwtor Passed
Copyright 2000 1. Deavan Well Mercilessly

3.2.1.5 Acceptance and Small Release Cycles

119

An important part of XP is the concept of Customer as Team Member, where the
customer is directly involved throughout the project. In XP, the customer does not review the
“final” software after months or years of development and give a binary answer concerning
acceptance; XP specifies that the customer is a part of the process. The initial Release Planning
allows the customer and developer to elicit requirements through the User Stories and Release
Planning. Release Planning does not imply a negotiation for a final project delivery date;
Release Planning involves setting a timetable and expectations for continuous integration of
working software into the customer’s organization. New features go operational as they are
ready rather than waiting for a single monolithic application at project conclusion. Quality
assurance for each incremental release comes from Unit Tests and Acceptance Tests. Acceptance
Tests are derived directly from User Stories to remain consistent with the original intent of the
system. User Stories are not complete until all Acceptance Tests are passed. This processes
serves as a reminder that agile methods are adaptive methods. Part of this adaptability requires
that User Stories and all tests used to validate quality against these stories can be changed at
anytime should the environment or the customer require it. XP, as is the case with many of the
agile methods, is designed to iteratively accommodate change. Figure 20 demonstrates the

importance of iterative cycles throughout the XP development cycle.

120

Figure 20 The Iterative Nature of XP (Wells 2000)

4 h Planning/Feedback Loops &#omo

utroAme Programming REICa,SC Plaﬂ
Months

Iteration Plan
Weeks

Acceptance Test
Days
Stand Up Meeting

One Day
Pair Negotiation

Hnurs/

Unit Test

Minutes

Pair Programming

Code

3.2.1.6 Reflecting on Extreme Programming

Copyright 2001 J. Donovan Wells

On closer inspection, XP looks to be an appropriate method for small-team software
development as it was specifically designed for small teams (Beck 1999). XP’s iterations keep a
developer on task and coordinate the efforts of a software team. However, as the goal for this
research is a Reflective-Agile learning method for small-team software development, there are
aspects of XP which may or may not be required. For instance, how important or vital is Pair
Programming? Many have advocated for and or argued against this element of the XP method

as practitioners and researchers have come to grips with XP.

121

3.3 Introducing Elements of Reflective Practice

The principle strategy for developing the proposed Reflective-Agile learning method is a
synthesized approach which matches elements of Extreme Programming (XP) with Schon’s
epistemology of Reflective Practice. This synthesis has been proposed by Hazzan and Tomayko
in numerous papers and books (Hazzan 2002; Hazzan et al. 2003; Hazzan et al. 2004a; Hazzan et
al. 2004b; Hazzan et al. 2004c; Hazzan et al. 2005; Tomayko et al. 2004) and implied by others
(Highsmith 2000; Nerur et al. 2007). The initial Reflective-Agile methodology for small-team
development is derived from Extreme Programming and Hazzan and Tomayko’s work which
introduces Schon’s reflective practice (Schon 1983) to Extreme Programming (Beck 1999) and
software development in general. By introducing Reflective Practice to an agile software
development method, this research can specify the impacts of this introduction on small-team

software development, agile methods and the Reflective Practitioner framework in general.

The interventions, related to Reflective Practice, to be introduced in the Dialogical AR
setting consist of: daily use of journals (web logs) for Reflection-on-action (Mathiassen 1998;
Mathiassen et al. 2002); a team wiki for Organizational Learning and Reflection-on-action (Leuf
et al. 2001); and the use of the Ladder of Reflection to facilitate Reflection-in-action (Tomayko et
al. 2004). Each of these interventions is grounded in the epistemology of Reflective Practice and

design.

122

3.3.1 The Ladder of Reflection

Hazzan and Tomayko (2004) offer a method for introducing Reflective Practice to
Extreme Programming by utilizing Schén’s Ladder of Reflection. (1987, p.115) Schén (1987)
describes the Ladder of Reflection as is a process by which a reflective dialog on designing, and
with the materials of designing, transpires. The rungs of the reflective ladder are as follows

(movement is from the bottom to the top and back down as necessary):

Table 22 Rungs on the Ladder of Reflection

Rungs on the Ladder of Reflection

Reflection on the Reflection on the Description of Designing
(reflecting on the dialog itself) [Meta-level to reflection]

Reflection on the Description of Designing (What does the
description mean?) [Meta-level to description]

Description of the Designing (appreciation, critique, advice)

Designing (Reflection-in-action)

The reflective ladder works by moving “up” from designing (at the bottom) through to reflection
on reflection on description of designing (at the top) as a means of eliciting theories-in-use and
the tacit understandings of practice (Hazzan 2002; Hazzan et al. 2003; Hazzan et al. 2004a;
Schon 1987; Tomayko et al. 2004). While Schon (1987) extensively illustrates the reflective
ladder using an architecture design studio example, Tomayko and Hazzan (2004) illustrate the
use of the reflective ladder with Extreme Programming examples. For many, techniques such as
the reflective ladder appear as over-simple and non-rigorous, however, the purpose of the

technique is to discover the tacit understandings inherent in action. Table 23 demonstrates one

123

possible use of the reflective ladder during the Extreme Programming activity of pair

programming.

Table 23 A Ladder of Reflection: The Case of Pair Programming (Tomayko et al. 2004)

Reflective Ladder Rungs Pair Programming Dialog

Designing (Reflection-in-action)

Programmer A: “I’m going to use a stack here.
Does this make sense?”

Description of the Designing (appreciation,
advice, criticism, etc.)

Programmer B: “Good question. Let’s explore
the nature of the algorithm. Do you remember
that in the last retrospective session we
discussed a similar problem? What was it
about?”

Reflection on the Description of Designing
(reflection on the meanings behind the
original description of designing).

Programmer A: “You are right. I’m trying to
recall. We started by comparing the nature of
two projects and concluded that the project we
discussed in that retrospective session is
similar to what we developed last year. After
that, we did a lot of reuse.”

Reflection on Reflection on description of
designing (each in the dialog reflects on the
content of the dialog)

Programmer B: “And, | remember more clearly
that following this retrospective session, we
decided to change the format of our
retrospective session. But more specifically,
on the code level, we decided to change the
design. Let’s try to think in these directions:
redesign and reuse. | guess they will save us a
lot of time eventually.”

Hazzan and Tomayko (2005) describe further uses for the reflective ladder within the Extreme

Programming method and also within areas of customer and team interaction. This reflective

ladder technique is an operationalization and instantiation of Schon’s (1983, 1987) Reflection-in-

action and Reflection-on-action.

The reflective ladder is used to elicit an explication of a

practitioner’s knowing-in-action; the practitioner’s Theory-in-use becomes clear and enhances

understanding of action and beliefs regarding governing variables.

Theories and models of

124

learning and action are all critical to the successful adoption, use and iterative refinement to the
baseline Reflective-Agile method. In this sense Argyris and Schon (1974), Schon (1983; 1987)
and Senge (1994) each underscore the importance of an adaptive learning strategy within an
organization; this dissertation will support that this is no different for organizations engaged in
small-team software development. The following sections discuss appropriate models and
patterns for learning which will assist in the introduction and development of the Reflective-

Agile method.

3.3.2 The Learning Organization

In order to successfully introduce the reflective ladder to XP, a small team must be
willing to accept that Reflective Practice will directly result in an improvement of their
development processes. Tomayko and Hazzan (2005) suggest a learning organization (Argyris
et al. 1974; Schon 1983; Schon 1987) as an environment which best supports and promotes
Reflective Practice. A learning organization acknowledges the importance of knowledge and
information within the organization and the need to manage these assets (Senge 1994; Tomayko
et al. 2004). A learning organization values the professional development of each member of the
organization, realizing that effective people will make an effective product. A learning
organization also values the accumulation of individual repertoire for Double-Loop Learning.
Thus, according to Senge (1994), a learning organization provides a working environment in
which learning is an integral part of everyday work. In essence, the introduction of Reflective
Practice should facilitate a learning system where the particulars of a given methodological

element are not as important as an ability to adapt and develop repertoire appropriate to the team.

125

3.3.3 Models and Theories for Organizational Learning and Agility

Argyris and Schon (1974) present a set of widely-accepted and adopted views on how
professionals think and behave in a given problem setting. According to Argyris and Schon
(1974) there are two theories of action which govern the mental maps practitioners use to guide
their actions: Espoused Theory and Theory-in-use. An Espoused Theory is the manner in which
a practitioner outwardly expresses what it is that he or she does in action. Espoused Theories are
embedded in the language we use to describe what it is we do to others or what it is we’ d like
others to think it is that we do. A Theory-in-use, however, consists of the mental maps and
strategies that implicitly and tacitly guide action. Put more simply, these two theories of action
(Espoused theory and theory-in-use) represent a disconnect between theory and action in

professional behavior.

It would seem that explicating a Theory-in-use would be the most helpful by-product of
using Schon’s (1987) reflective ladder. Argyris and Schon (1974) identify three critical elements

for effective learning:

e Governing Variables: These are goals and ideals which the practitioner, through
satisficing,™? keeps within acceptable parameters (i.e. “Goal-setting,” "Maximize winning
and minimize losing,” ”"Minimize generating or expressing negative feelings,” “Be
rational”) (Argyris et al. 1974:66). Governing variables are personal exhortations to
“stay on task, on message and on plan.”

e Action Strategies: Actions and plans for keeping governing variables within an
acceptable range of possibilities or states (i.e. “Design and Manage environment
unilaterally,” “own and control task,” “unilaterally protect others,” “unilaterally protect

12 This is a word coined by Herbert Simon as a portmanteau of “satisfy” and “suffice.” This represents attempts to

reach an adequate balance between optimal solutions and constraints.

126

self”).

e Consequences: The intended and unintended results of action for the practitioner and
others.

Argyris and Schon (1974) map a relationship to determine whether a practitioner uses the
consequences of action to reexamine their action strategies or reexamine both their action
strategies and their beliefs regarding governing variables. The distinction between these two
approaches to regarding the consequence of action is inherent in what Argyris and Schon (1974)
call Model | and Model Il behavior. Model | behavior is exemplified by the exclusive use of
Single-Loop Learning: learning whereupon only action strategies are changed as a result of
consequences to action (Argyris et al. 1974:18). Model Il behavior incorporates Double-Loop
Learning, where both action plans and governing variables may be adjusted as the result of the
consequences of action. The relationship between Double-Loop Learning and Single-Loop

Learning is illustrated in Figure 21.

Figure 21 Single-Loop and Double-Loop Learning (Argyris et al. 1974)

Governing Action Strategy Consequences

Single-Loop Learning

Double-Loop Learning

These theories of action and learning illustrate how a theoretical framework concerning
change, learning and action is critical to the introduction of Reflective Practice to XP. The

reflective ladder will not be effective if an environment receptive to learning and change is not

127

also established. Without an ongoing reflective dialog, it is possible for a small team to be lulled

into false assumptions gathered from working closely and informally.

3.4 Summarizing the Elements of the Reflective-Agile Methodology

The preceding sections of this chapter have described the components of a baseline
Reflective-Agile method for small-team software development. This section will summarize
each of the elements of the baseline Reflective-Agile method in order to tie them together in a
comprehensive manner. Figure 16 shows the general steps of the Extreme Programming method
and demonstrates areas where the ladder of reflection can be applied. Figure 22 reviews Schon’s

(1987) reflective ladder:

Figure 22 The Ladder of Reflection (Schén 1987)

Reflection on Reflection
on description of

/ designing /
Reflection on description
of designing

/Description of designing /

/ Designing (action) /

Increasing levels of reflection

128

The practitioners will utilize the ladder during Pair Programming in order to explicate tacit
understanding and reflect on theories-in-use. Thus, the reflective ladder enables a reflective
conversation with designing and the materials of design. Many of the steps in the XP process
can be enhanced by use of the reflective ladder, but this research will focus on Pair
Programming. Pair programming is particularly interesting as the technique practically
demands reflection and discussion between the pair (Beck 1999; Boehm et al. 2004; Tomayko et
al. 2004). Design is also an area of XP which may benefit from the reflective ladder.
Architectural Spikes, User Stories, the Daily Standup Meeting and a System Metaphor are all XP
activities would benefit from reflective collaboration amongst the team. The System Metaphor
should capture tacit understanding and theories-in-use from the development team and the

customer.

All of the elements of the baseline Reflective-Agile method are now in place. The

general structure and requirements for the method are listed below in Table 24.

Table 24 The Baseline Reflective-Agile Software Development Method

Elements of the Baseline Reflective-Agile Software Development Method

1. Learning organization: Establish and commit to a learning environment

2. XP: Adopt and use the Extreme Programming method

3. Reflective Practice: adopt and use reflective ladders in at least the following stages of
XP:

User stories
Architectural spikes
System metaphor
Release planning
Iteration planning
Daily Standup Meeting
Pair programming

@+oao0 T

129

CHAPTER 4 Research Methodology

The dissertation utilizes a mixed-method research approach which combines Lee’s (2007
Design Science and Action Research (DSAR) framework and Dialogical action research
(Dialogical AR) (Martensson et al. 2004). Additionally, Straus and Corbin’s (1998) Grounded
Theory is used as a mode of analysis for collecting, analyzing and interpreting the dialogical
evidence in order to evaluate the outcomes of the theoretical interventions introduced in the

Dialogical AR Partnership. The mixed-methods research approach consists of three parts:

e Dialogical Action Research — This is a variant of action research explored and proposed
by Martensson and Lee (2004) which focuses on reflective dialog between a practitioner
and researcher in order to mitigate the dichotomous nature of theory-based knowledge
and practitioner knowledge and to balance rigor and relevance

e Design Science — A research paradigm grounded in engineering and design conducted to
theorize in the development of artifacts. Design science is concerned with problem-
solving strategies, practices and techniques related to activities of design: analysis,
design, implementation, management and use (Hevner et al. 2004)

e Interpretive Coding of Qualitative Data — In order to specify learning in the Dialogical
AR cycle, qualitative evidence will be collected and analyzed throughout the dialogs and
interventions. The Strauss and Corbin (1998) Grounded theory mode of analysis is used
to collect and analyze qualitative evidence from dialogs in the Dialogical AR Partnership

As to design science, March and Smith (1995) offer a simple prescription for conducting design
science research: (1) develop and build artifacts and (2) justify and evaluate these artifacts. Also,
March and Smith (1995) and Hevner et al. (2004) have suggested validation criteria for artifact
building, evaluation and justification. Additionally, Lee (2007) illustrates a framework which

promotes the benefits of both action research and design science such that each supports the

other in developing and/or testing theories in Information Systems research in a rigorous and

130

relevant manner. The designed artifact will be evaluated according to the Hevner et al. (2004)
criteria as well as the March and Smith (1995) criteria.

The remaining sections of this chapter are as follows: first, there is an introduction to
Dialogical AR and its background and applicability in information systems research; this is
followed by an outline of the Lee’s (2007) framework for coordinating design science and action
research and the use of Dialogical AR as a method of inquiry. Next, a justification is offered for
the mixed-methods approach taken, which conducts design science research in the interpretive
mode of Dialogical AR. Last is a brief discussion on the generalizability of research outcomes

using DSAR and Dialogical AR.

4.1 Investigating IS Phenomenon with Dialogical Action Research

In any research effort, there are bound to be questions regarding the rigor and relevance
of research methods used versus the real-world applicability of the research outputs (Applegate
1999; Applegate et al. 1999; Davenport et al. 1999; Lee 1999). Action research is a research
method which aims to include both rigor and relevance. In action research, the researcher works
jointly with practitioner(s) to address the practitioners’ problems. Together they analyze the
situation at hand, evaluate the issues and reframe the problem and the solution space in an
iterative manner. Dialogical AR offers a means to integrate the knowledge of the organizational
actor (referred to as praxis) (Martensson et al. 2002: 5; Martensson et al. 2004) and the scientific
knowledge of the outside researcher (referred to as theoria) (Martensson et al. 2002: 6) to

promote both knowledge heterogeneity and knowledge contextuality in their mutual problem

131

solving. Dialogical AR also offers the added advantage of improving the knowledge and

expertise of the researcher and the practitioner while addressing a real world problem.

Dialogical AR goes beyond Canonical AR by recognizing the importance and the role of
knowledge heterogeneity and contextuality in the research partnership with the practitioners
(Martensson et al. 2004). Knowledge heterogeneity recognizes that the practitioner’s knowledge
and the scientist’s knowledge are two disparate domains of knowledge and are both equally
important. Knowledge contextuality suggests that knowledge loses its meaning when detached

from its social context (Martensson et al. 2004).

4.2 The Dialogical Action Research Cycle

For the purposes of this dissertation, the Dialogical AR method consists of two principle
phases which include some of the steps of the Canonical AR cycle (Baskerville 1999). First,
there is a diagnosis and planning phase used to determine the nature of the practitioners’
problems. In this phase, the researcher seeks to identify the practitioners’ Espoused Theories and
consequently derive and speculate upon their Theory-in-use (Argyris et al. 1978; Argyris et al.
1974). The modus operandi for achieving this goal is to thoroughly transcribe, review and
analyze the dialogical evidence and field notes. The transcripts and field notes comprise the
qualitative evidence the researcher uses to interpret and understand the practitioners’ Espoused
Theory. The transcription process also allows the researcher to reflect on the tone of the dialogs
in order to develop better interpretations. The practitioner’s Theory-in-use cannot be estimated

by direct inquiry, Theories-in-use are constructed from the researchers observations and

132

interpretations of the practitioner’s behavior and the transcribed evidence (Argyris et al. 1978;

Schon 1983). .

The second phase of Dialogical AR uses the results from diagnosis iteratively in the
Canonical AR cycle. The Canonical AR cycle is also augmented with the Dialogical AR
concepts of knowledge heterogeneity and knowledge contextuality. The outcome of this phase
serves the dual purpose of learning for both the practitioner and the researcher and the
development of solutions for the practitioners’ problem(s). During this process, the practitioner
tries theory-driven actions and interventions based on theories the researcher feels are
appropriate to the problem. The evaluation phase of the Canonical AR cycle is also used by the
researcher to test the validity of the theories used and thereby augment learning. The learning
process provides the researcher an opportunity to improve and strengthen the selected theory and
offer progress and learning back to his scientific community. In order to specify this learning,
the researcher must identify the assumptions that envelop the practitioner’s theories-in-use and
then use an established scientific theory from his community of science to interpret the
practitioner’s problem in her own context. Success in this process perpetuates the learning cycle
and potentially augments existing information systems theory. Repeated dialogs with the
practitioner are therefore essential for constructive and continuous evaluation of the problem
domain: in this sense, the action research cycle should be traversed a few times for the method to

be truly effective.

This section is intended to illuminate the positive outcomes possible for both the
practitioner and the researcher when using Dialogical AR. Positive outcomes for the practitioner
would be solutions to her problem and for the researcher, an opportunity to improve existing

theories. Therefore, a researcher who plans to use Dialogical AR as a means to research

133

information systems phenomena must be prepared to gather in-depth and detailed information

via intimate dialogs with the practitioner.

The principle steps involved in the Dialogical AR method (Figure 23), as used in this
dissertation, are a based on two pilot studies conducted during and subsequent to Ph.D. seminar
in action research given by Dr. Allen Lee in 2003 and 2004. Thus, the methodological steps
used in this study are not exactly those described by Martensson and Lee (2004), but rather a
post hoc operationalization of Dialogical AR developed as a result of the pilot studies. As these
pilot studies were used as a pedagogical learning device, neither pilot study represents actual
research. Nonetheless, the experience was useful in understanding Dialogical AR method for the
purposes of this research. During this research, the processes developed during the pilot studies,
the processes described by Martensson and Lee (2004) and the processes of Canonical AR were
each used as methodological guidance during the field work and dialogs. Thus, Dialogical AR,
as outlined by Martensson and Lee (2004), was used as the primary methodological guide
throughout the study whereupon this study self-identifies with the Dialogical AR method and its

philosophical assumptions.

134

Figure 23 Steps in the Dialogical AR Process

Diagnosis Dialog

Evaluate and Learn

Intervention Dialog Feedback

Review and Refine

4.3 The Rigor and Relevance of Dialogical Action Research

The following question often follows when one is first exposed to action research (Straub
et al. 1998): isn’t this just consulting? If we frame Dialogical AR as a variant of action research,
which aims to balance rigor and relevance in research outcomes, then it appears that the more
difficult of the two concepts to “prove” would be the method’s rigor. Questions related to the
design, development, deployment and use of an IT artifact are certainly topics worthy of
investigation by IS scholars (Benbasat et al. 2003); however, the question is: is Dialogical AR

the appropriate vehicle?

135

As it has been suggested that IS research demonstrate more relevance to practitioners
(Benbasat et al. 1999), the IS researcher is left to sort out which methods are appropriate such
that research outcomes balance rigor and relevance: clearly the practitioner prefers research
outcomes that they can use immediately. The use of action research in information systems
research is certainly not a new proposal (Baskerville et al. 1998; Baskerville 1999; Baskerville et
al. 1996; Martensson et al. 2004; Myers 1997; Straub et al. 1998); the specific issue addressed in

this dissertation is whether Dialogical AR offers sufficient methodological rigor.

4.3.1 Why Action Research is an Appropriate Research Method

Information Systems is an applied discipline similar in nature to professions such as
architecture. Thus, it would follow that practical outcomes are desirable and expected of
research in information systems. While a Positivist research approach informed by the natural
science model minimizes the impact and influence of the researcher, realizing relevant research
outcomes may call upon information systems researchers to directly effect change in an
organization (Baskerville et al. 2004: 329; Martensson et al. 2004: 515). In this sense,
information systems researchers would purposefully induce “Hawthorne Effects” whereby the
actions of the researcher are meant to positively influence outcomes for the subjects of research.
If the introduction of an information system is meant to change the organization for the better, it

may be necessary for the researcher to “dirty” their hands.

If we accept that information systems research should encourage transformative effects in

an organization as a research outcome, then action research is indeed an appropriate research

136

method. In this regard, Baskerville and Myers (2004) make a compelling argument for why

action research is appropriate for investigating information systems:

...Itis strongly oriented toward collaboration and change involving both researchers and
subjects. Typically it is an iterative research process that capitalizes on learning by both
researchers and subjects within the context of the subjects’ social system. It is a clinical
method that puts IS researchers in a helping role with practitioners. (Baskerville et al.
2004)

If benefit to organizations is seen as a key outcome of information systems research, then
the organization can be considered as a unit of analysis in most information systems research
endeavors (Scott 2003); in most cases, action research uses the organization as a unit of analysis.
The origins of action research can be traced to advances in social psychology and operations
research (Emery 1997; Lewin 1947). Social Psychology is concerned, to a degree, with the
effect the organizational actor has on the organization itself. From the Tavistock socio-technical
perspective, the organizational actor is included as a part of a wider system which encompasses
both a social and technical system (Emery 1997). If we accept this socio-technical antecedent
for action research, then we would necessarily distinguish between the "technological system™
and the "social structure,” which consists of occupational roles and their institutionalization

within the organization (Emery 1997: 4).

As action research is a means to produce rigorous and relevant research outcomes when
investigating socio-technical systems, Baskerville and Myers (2004) suggest four key premises
of action research which underscore why action research is an appropriate information systems
research method. The four premises of action research are: consequences define human
concepts; practical outcomes embody truth; the logic of controlled inquiry; the social context of
action. We can also relate these premises to key principles of socio-technical systems analysis

where an information system is viewed as an emergent structure resulting from the interactions

137

between the people and the technology within the system. We now examine these four premises

from the socio-technical perspective.

4.3.2 The Consequences of Experience

A pragmatic premise of action research suggests that it is only through the consequences
of experience (first hand or derived) that we conceive of reality (Baskerville et al. 2004). We
can only understand the technical and social elements in an information system if the purpose of
each component is fully rationalized. Thus, we must conceive of each part as being meaningful
as the interrelation of the parts in an information system is clearer when each individual part has
meaning (Emery 1997). In keeping with the principle of the Hermeneutic Circle, action research
aims to understand the emergence of the whole, as a result of studying the “parts” of the
information system (Baskerville 1999: 2). We can also simplify this premise by accepting

Baskerville’s (1999) position that “action brings understanding.”

4.3.3 Truth in Practical Outcomes

Another premise of action research suggests that we derive truth in accordance with the
practical and observable outcomes of action. If theory is a process used to approximate and
predict real behaviors and outcomes, then research methods advocating direct action, such as
action research, are certainly conducive to theory building (Weick 1995). We can appreciate an
innate human quest for truth from a psychological perspective and propose that action is the only

proven means to realize truth which is generalizable and widely accepted. As an information

138

system is an emergent system, the process of direct investigation used in action research is a

logical choice for deriving truth in research outcomes.

4.3.4 The Logic of Controlled Inquiry

Action research holds as one of its central tenets that the researcher must specify learning
which contributes to a body of knowledge held by a community of science. Learning can be
considered the primary means by which the social and technological structures in an information
system are created (Baskerville et al. 2004: 332). John Dewey’s principles of controlled inquiry,
the process by which we establish the facts that govern our operating model of the world, has
influenced the steps in the action research cycle. Thus, it is through controlled inquiry that
research is able to specify the learning which builds and sustains the elements of an information
system. Dewey’s principles of controlled inquiry are: (1) intermediate situation; (2) problem
development; (3) find a solution; (4) reasoning; (5) operationalization of facts (Dewey in

Baskerville et al. 2004: 332).

139

Figure 24 Action Research Cycle (Baskerville 1999)

o '\._\

L Acticn
Specifing Planiing
Learning

N
o . 1"___ J."' \"'.__‘__-".-l

Client-System
Infrastru-ure

When Dewey’s principles of controlled inquiry are contrasted against the action research, we can

see the similarities between Baskerville’s (199) stages of the action research cycle (Figure 24)

and Dewey’s controlled inquiry process.

4.3.5 Social Context of Action

The last of Baskerville and Myers’ (2004) premises of action research is directly related
to Dialogical AR. This premise suggests “...that any human behavior that elicits a response
from another individual constitutes a social act” (Mead in Baskerville et al. 2004: 332).
Therefore, this premise holds that it is social interactions which create the context from which all

actions are based. As Dialogical AR focuses on knowledge contextuality and heterogeneity in

140

the practitioner/researcher partnership, the actions and interventions undertaken in the
partnership consider the social and historical context of emergent solutions to the practitioners’

problems (Martensson et al. 2004: 517).

4.4 Dialogical AR is both Scientific and Rigorous

Baskerville and Myers’ (2004) four action research premises are offered as justification
for using action research as an appropriate method for investigating information systems.
However, the justification for the method’s scientific rigor has yet to be made. To this end,
Baskerville (1999), Baskerville and Wood-Harper (1996), Myers (1997) and Straub and Welke
(1998) have each offered explanations for how action research is a scientific and rigorous
research method. The aims of Dialogical AR are no different than any other scientific endeavor:
the method examines responses to experimental stimulus in real-world situations in order to
derive evidence to confirm or disconfirm scientific theory and also provide remedies for the “real
world” problem (Martensson et al. 2004: 3). Thus, it is the reflective and iterative nature of
Dialogical AR which facilitates a scientific process of inquiry (Baskerville 1999; Martensson et
al. 2004). A key criticism levied against action research is that the method can easily be
confused with consulting; this is likely due to the involved and applied nature of the method.
Martensson and Lee (2002, 2004) provide the following defense against any such accusations in

asserting that Dialogical AR:

e Specifies self-learning in contribution to a community of science while consulting does
not

e Dictates a partnership whereas a consultant is a service provider

141

e Encourages learning from negative results in an iterative fashion until leaning and
remedy can be achieved

Dialogical AR is distinguished from “normal” Canonical AR based on a few key philosophical

perspectives (Martensson et al. 2004: 6-7):

e Dialogical AR differentiates between the scientific attitude (using a theoretical body of
knowledge [theoria] and a systematic manner of reasoning) and the natural attitude of
everyday life (practical common sense and tacit knowledge [praxis])

e Dialogical AR recognizes the role of the social and historical context within an
organization and seeks to understand this context in how the organization is structured

This focus on knowledge contextuality is central to the Dialogical AR approach as scientists
need awareness of the organizational context in order to properly theorize and prescribe remedies

for the practitioners’ problems (Martensson et al. 2004: 8).

Ultimately, the justification for Dialogical AR’s scientific rigor can be made on
philosophical and logical grounds with respect to the philosophy on science. Adopting a
phenomenological position of Schutz and Berger and Luckmann, Lee argues in Martensson and
Lee (2004) that context holds the key for any rigorous scientific method. This assertion is in
reference to the fact that scientific endeavor, outside the context of a particular community of
science, is neither scientific nor rigorous. Concepts such as truth, rigor and science are social
constructions to which members of a community of science or practice accede through
socialization (Berger et al. 1967). Plainly, this principle is similar to the colloquialism: one
man’s trash is another man’s treasure. The assertion is made that science, outside the social
context of a community of scholarship and its attendant discipline, can hardly be called as such

(Berger et al. 1967; Martensson et al. 2004: 9; Schutz 1967).

142

Martensson and Lee (2004) provide seven points (Table 25) which defend the

rigorousness of Dialogical AR and demonstrate how a single-site case study can be scientific,

rigorous and generalizable (Lee et al. 2003; Martensson et al. 2004).

Table 25 Supporting the Scientific Rigor of Dialogical AR (Méartensson and Lee 2004)

Justification Description

Phenomenology

Dialogical AR is rooted in a phenomenological conception of science where the
practitioner holds first-level constructs: sense-making and tacit knowing. The
scientist holds second-level constructs: scientific theorizing based on observation
of the practitioner’s first-level constructs. Whether the domain is the social
sciences or the natural sciences, the concept of second-level constructs
(theorizing on that which is observed) is logically consistent in all scientific
endeavors. Studying actors within in a system in action is just as scientifically
valid through strictures of logic and empirical testing.

Contextuality of
knowledge

The contextuality of science, as a social construction, ensures that the
scientific attitude will not corrupt the natural attitude of everyday life in
the conduction of Dialogical AR. Theoria cannot enter into the context of
practice until this knowledge is appropriated by the practitioner on her
own terms and understanding.

Weltanschauung

Theoria and Praxis present two different cultural worlds that are distant
enough such that “contamination” is never possible while appropriation is
and would constitute learning.

First and Second-
level constructs

The practitioner, being from another “culture” can’t truly perceive of the
researcher’s actions and interventions as experimental stimulus. This is
also true of the researcher.

Building shared
context

Team building occurs through the dialog in order to establish shared
context. The meetings form a partnership whereby the scientist is allowed
to interpret and diagnose and the practitioner is afforded some assistance
with her problems.

Culturally distinct

As members of separate cultures, the scientist and practitioner each have
their own language, logic and terminology.

Knowledge
heterogeneity

Dialogical AR recognizes that theoria has no dominance over praxis in
importance: both collude to benefit and learn from each other.

On the face of logic, the justifications for the scientific rigor in Dialogical AR suggest that, given

the proper scientific attitude and conduct, Dialogical AR can be used in a rigorous manner. As

with any research, the quality and rigor rest in the manner with which a method is used as a tool

of scientific inquiry.

143

4.5 Validating the Designed Artifact using Design Science and Action Research

In the iterative development of a Reflective-Agile learning method, this dissertation is
concerned with software development methods as a design process more so than a design
product. While the qualities of the designed artifact are important, this dissertation is concerned
with how a small-team software development learns in their use of the designed artifact. This
raises the question: in what way is a method important to a small software development shop? Is
the benefit in the process or product? Thus, the Dialogical AR method is used to iteratively
illuminate the effect Reflective Practice has on a small team’s learning processes as they use XP.
The utility of introducing Reflective Practice is that Reflective Practice describes a process of

learning and reflection.

There is growing recognition that Information Systems is a discipline centrally focused
on IT artifacts and the design thereof (Benbasat et al. 2003; Hevner et al. 2004; March et al.
1995; Orlikowski et al. 2001). The act of designing is meant to produce artifacts, these artifacts
may include constructs, models, methods and instantiations (Hevner et al. 2004). Hevner et al.
(2004) emphasize that building design artifacts provides a means of validating design artifacts.
Whereas Hevner et al. (2004) suggest that we seek to prove the utility of a design rather than the
behavioral-science goal of truth, there is a link between truth and utility in a design such that
each influences and informs the other. Moreover, many of “wicked problems” related to
technology-induced change arise out of human factors in the problem. It is these “wicked
problems” that Hevner et al. (2004) propose design science research should address. Thus, the
designed artifact in this research is both a model and method intended to provide utility to
practitioners in addressing the very human goal of Organizational Learning. In order to assess

144

the correctness and utility of a design science artifact, Hevner, et al. (2004) offer seven

guidelines and criteria for the purpose of assessing the model as an IT artifact (Table 26).

Table 26 Guidelines for Design Science Research (Hevner et al. 2004)

Guideline

Guideline 1: Design as an artifact

Description
The designed artifact must be formally stated and
address construct, model and method.

Guideline 2: Problem Relevance

The designed artifact must yield utility. The need
for this model is demonstrated by the emergence of
the Agile Software Movement.

Guideline 3: Design Evaluation

A method for demonstrating the utility of the model
is required. Likely choices are Observational and
Descriptive design evaluation methods.

Guideline 4: Research Contributions

The problem which the designed artifact addresses
must be demonstrated as valid and pressing. The
designed artifact should be innovative or at least be
efficient and effective in contrast to existing
models.

Guideline 5: Research Rigor

The development designed artifact must be
distinguished from the common practice of and
established as design research via formal and
coherent means

Guideline 6: Design as a Search Process

In designing the artifact, the problem space must be
illustrated such that the designed artifact can be
recognized as a valid solution.

Guideline 7: Communication of Research

The designed artifact must be clearly conveyed in a
manner which could be useful to practitioners,
researchers and managers.

Further to Hevner et al.’s (2004) guidelines, above, is a general design science research

framework suggested by March and Smith (1995). Figure 25 demonstrates the relationship

between design science research activities and design science research outputs. The cells in this

model represent research activities

allow for both relevance and rigor.

145

Figure 25 Research Framework for Design Science (March and Smith 1995)

Research Activities

Build | Evaluate | Theorize | Justify

Research Constructs

Outputs Model
Method
Instantiation

The utility of design science is its research outputs: models, methods and instantiations. As is
the case with action research, the researcher using design science intervenes in the problem
setting. Thus researcher does not act as an impartial and unbiased observer but rather actively
participates and takes an active role in order to demonstrate utility in efficient and effective

designs (Lee 2007:48).

As evidenced in Table 26, Hevner et al. (2004) also emphasize the importance of
evaluating a design after its construction. On the subject of evaluation, Hevner et al. (2004)
exhort “...The selection of evaluation methods must be matched appropriately with the designed
artifact and the selected evaluation metrics” (Hevner et al. 2004:86). With intent to demonstrate
the *...goodness and efficacy of an artifact...,” Hevner et al. (2004: 86) suggest the researcher
carefully selection an evaluation method such that the quality of the artifact can be demonstrated.
Measurement of quality is somewhat challenging as “...the measurement of style lies in the
realm of human perception and taste (p. 86). Therefore, efforts to measure the quality of a
methodology are used to inform the “theorize and justify” columns of March and Smith’s

research framework for design science (Figure 26). To the end of evaluation Hevner et al.

146

(2004) suggest various evaluation methods (Figure 26); these evaluation methods are various and

attempt to cover a wide range of artifacts.

Figure 26 Design Science Research Evaluation Methods (Hevner et al. 2004)

1. Observational

Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact in multiple projects

2. Analytical

Static Analysis: Examine structure of artifact for static qualities (e.g_,
complexity)

Architecture Analysis: Study fit of artifact into technical 1S architecture

Optimization: Demonstrate inherent optimal properties of artifact or provide
optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities (e.g.,
performance)

3. Experimental

Controlled Experiment: Study artifact in controlled environment for qualities
(e.q., usability)

Simulation — Execute artifact with artificial data

4 Testing

Functional (Black Box) Testing: Execute artifact interfaces to discover
failures and identify defects

Structural (White Box) Testing: Perform coverage testing of some metric
(e.qg., execution paths) in the artifact implementation

5. Descriptive

Informed Argument:. Use information from the knowledge base (e.qg.,
relevant research) to build a convincing argument for the artifact's utility

Scenarios: Construct detailed scenarios around the artifact to demonstrate
its utility

As a Lee’s (2007) DSAR framework will be used to iteratively develop the Reflective-Agile

learning method, and since Dialogical AR is rooted phenomenology, then an observational and

descriptive evaluation method would be most appropriate for the designed artifact in this

research.

147

4.5.1 Appropriating Lee’s Design Science and Action Research Framework

The commonality between action research and design science is that both research
methods focus on balancing rigor and relevance. This balance can be attributed to the “real
world” focus espoused in each research approach (Benbasat et al. 1999; Lee 2007). Relevance is
thought to be the degree to which the outcomes of research have direct and evident applicability
to the problems faced by individuals, organizations and societies (Lee 2007:44). In facilitating
relevant outcomes, action research requires that the researcher enters directly into the problem
setting such that direct observation and intervention is possible. Similarly, design science
provides relevance in that the IT artifacts designed and implemented are required to address a
relevant and nontrivial problem. In both methods, there is no ambiguity in the provision for
relevance; both methods have relevance embedded in their fabric making these two research

methods complementary (Lee 2007).

Lee’s (2007) DSAR framework builds on the March and Smith (1995) design science
research framework and enhances this framework with action research. In using the DSAR
framework, the designed artifact will be iteratively designed and evaluated using Dialogical AR.
Lee’s (2007) DSAR framework fuses both research approaches in a manner appropriate to this
dissertation. The principle argument Lee makes in proposing the DSAR framework is his
assertion that action, itself, is a product and process of design as designing is a human activity.
When engaged in designing are the result of artificial processes; our designs and designing are
conscious actions taken to produce that which does not naturally exist. ~ Thus, action is an

artifact as it is human-made; action and artifacts, wrought by design science and action research,

148

are by-products of willful and intentional human intervention to achieve goals and solve

problems (Lee 2007:49).

Using Lee’s DSAR framework, the phases of the action research cycle specified in Figure
24 are used to conduct and guide the design science research activities in the March and Smith
(1995) framework shown in Figure 25. Lee’s (2007) DSAR framework acts as a direct extension
and “actuator” of the March and Smith (1995) design science framework. Lee (2007) suggests
that complementary fit between these two approaches is possible in that they have similar aims
and goals: to present relevant solutions to “real world” problems. Thus, action research is a
means of operationalizing the March and Smith (1995) design science framework in a

methodological sense.

Figure 27 Lee's Design Science and Action Research Framework (2007)

Design-Science Research Activities in Action-
Research Cycle N
Build Evaluate Theorize Justify
Action - Constructs
Researcher | & g © £ | Model
2 S & 5| Method
S 3 & 3 | Instantiation
Practitioner - Constructs
¢ g © £ | Model
2 S & 2| Method
S 3 & 3 | Instantiation

Figure 27 depicts Lee’s (2007) DSAR framework for integrating design science and
action research. Each of the design science research outputs can be divided between the
practitioner and researcher during an action research cycle. This is necessary as action requires
that progress and/or learning is specified for both the practitioner and researcher. Furthermore,

each member of the Dialogical AR Partnership brings with them different yet complementary

149

skills which makes the division of labor across the design science research outputs and activities
practical. This superimposition of both research approaches is mutually beneficial: action
research assists the specific problem domain of design research and design science is

methodologically operationalized by action research.

For the purposes of this dissertation, it is apparent that Lee’s DSAR framework is well
suited to the iterative development and use of the designed artifact. By all accepted accounts on
design science, the Reflective-Agile Learning Model and Method is indeed an artifact (Hevner et

al. 2004; Lee 2007; March et al. 1995; Simon 1996).

4.5.2 The Benefits of using an Action Research Partnership in Design Science

The provisional DSAR framework shown in Figure 27 is incomplete as it does not
describe which roles required of the researcher and practitioner. Lee (2007) recommends a
division of labor which is appropriate to expertise of the participant; Lee divides this expertise
as theoria and praxis (Lee 2007; Martensson et al. 2004). Accordingly, the DSAR framework
(Figure 27) divides design science research outputs between the practitioner and the researcher.
Similarly, it is not necessary that the practitioner and researcher to participate in all of the
research activities and/or outputs in the DSAR framework. The research outputs are the purview
of the researcher and are of no concern to the practitioner. Also, there are activities related to
instantiation that the researcher need not take part. The areas of the DSAR framework most

appropriate for either the practitioner or researcher are evident in Figure 28.

150

Figure 28 Adjusted DSAR Framework (Lee 2007)

Design-Science Research Activities in Action-
Research Cycle N
Build Evaluate | Theorize | Justify

Action - Constructs
Researcher | & & © £ | Model

25 8 & | Method

S 3 & 3 | Instantiation
Practitioner - Constructs

¢ g 2 £ | Model

2 & 8 5| Method

S 3 & 3 | Instantiation

Figure 28 demonstrates the nature of the partnership between researcher and practitioner in
the DSAR framework. In the Dialogical AR Partnership, the researcher takes greater
responsibility in specifying theory-based interventions for research outputs related to constructs,
models and methods, whereas the practitioner would be concerned with areas of method and
instantiation. This division of labor focuses the researcher on matters pertaining to theoria and

focuses the practitioner on matters pertaining to praxis.

A noteworthy aspect of Lee’s (2007) framework is manifested in the equivalence
between action, artifact, intervention, treatment and stimulus. The actions taken by the
practitioner partner are treated as artifacts just as the software development method used is
treated as an artifact. The practitioners’ action, awareness of their actions (which would be
enhanced by Reflective Practice) and the researcher’s observations of the practitioner’s actions

each become artifacts subject to the phases and steps of the DSAR framework (Lee 2007:54).

151

4.6 Using the Design Science and Action Research Framework

This section describes how the DSAR framework is used to iteratively develop,
implement and refine the designed artifact. The Dialogical AR team will develop constructs,
models and methods which the practitioner then instantiates using the researcher’s suggested
interventions for guidance. The researcher bases interventions on theory-driven constructs,
models and methods. Lee (2007) suggests several possible data collection and analysis
techniques which can be used to evaluate the artifact(s). Yin’s (1994) case study research
techniques could be used to build constructs. The open, axial and selective coding in Strauss and
Corbin’s (1998) Grounded Theory could also be utilized to elicit constructs. The categories
which emerge from Grounded Theory’s coding activities could then be used as the constructs
described by March and Smith (1995). Lee (2007) further describes how a Grounded Theory
mode of analysis can be used to evaluate constructs. In Grounded Theory, a category is
“saturated” when no further coding can contribute further to a category. Thus, when “...no new
properties, dimensions, conditions, actions/interactions, or consequences are seen in the data...”
a category is said to be saturated (Strauss et al. 1998:136); thus, a saturated category could be a

thoroughly evaluated construct.

A researcher using the DSAR framework may want to develop a model which relates the
various constructs. This model can be likened to theory: An action researcher will prescribe
theory-driven interventions with the intention of improving upon, modifying or amending this
model (Lee 2007:55). Whether the researcher uses existing theory or builds and develops new

theory, there are well-accepted theory validation criteria for those assuming a qualitative,

152

quantitative or critical perspective. Among the possible choices, Lee (2007) suggests using Lee

(1991) or Yin (1994).

The method is a design science research output which guides the practitioner’s
instantiations. This is not the research method the researcher uses to do his or her research; this
is a method which the practitioner uses to develop the artifact. A method is usually a set of steps
and techniques to reach a goal or desired end-state: to build an instantiation. In the case of
Dialogical AR, the action-planning phase of the action research cycle would be appropriate for
method development. In their dialog, the researcher and practitioner plan the specific “moves”
which the practitioner will use during the action-taking instantiation phase of the DSAR

framework (Lee 2007:56; Schon 1983:158).

The remaining DSAR activities are the responsibility of the researcher: to theorize and
justify. Given the construct and model-building stages, the action researcher would react to the
practitioner’s instantiation and determine the implications the instantiation has for the constructs
and model (i.e. the implications for theory). Subsequently, the action researcher specifies
learning in two ways: (1) in diagnosis and suggested remedies in the next action-taking phase;
and (2) in offering explanations regarding what did and did not work in the previous iteration and
suggesting how the constructs, models and methods might change in result. Generally,
theorizing and specifying learning (the justify phase in the DSAR framework) are needed as the
consequences of action should help ot identify short-comings and failures in the model and

constructs (Lee 2007).

153

4.6.1 Fitting the DSAR Framework to the Research Approach

The constructs influencing the model and methods are principally drawn from the work
of Argyris and Schon (1978, 1996) and Schon (1983, 1987) concerning theories of action for

Organizational Learning and how professionals think in and on action. These constructs are:

e Learning organization: An organizational environment committed to Double-Loop
Learning

e Reflective Practice: A system for Reflection-in-action an Reflection-on-action which
facilitates Double-Loop Learning

These constructs will inform a model and method for small teams to learn in their use of one or
more software development methods. A basic and initial sketch of the model suggests that the
actors within a learning organization would engage in reflective practice, elucidated and
supported by the reflective ladder and XP, in order to reflect in a regular and systematic manner,
on the consequences of their actions. Reflection-in-action and Reflection-on-action are used to
regularly consider the consequences of action with respect to their beliefs regarding their
governing variables. Thus, the learning model and method will promote Double-Loop Learning.
Reflective Practice promotes Double-Loop Learning as it exposes the Theories-in-use which
connect individual action to beliefs regarding governing variables. Often, the practitioners’
Espoused Theories of action reflect unrealistic or inappropriate attitudes concerning governing
variables. Learning is confounded by discrepancies between Theories-in-use and Espoused

Theories such that only Single-Loop Learning rather than Double-Loop Learning occurs.

154

Figure 29 Initial Model of Constructs for the Reflective-Agile Method and Methodology

The Learning \
Organization

Governing
Variables

Action Strategy Consequences

Single-Loop Learning

Double-Loop Learning

Reflection on Reflection
on description of

designing s
: Reflection on description 2
! of designing L
| 5
|)
/Description of designing / s
5 E
i 2
. o
: 2

/ Designing (action) /

Figure 29 depicts an initial model which relates the theory-based constructs. In the

Dialogical AR Partnership, the model will be applied as the practitioners adopt Extreme

155

Programming. During this process, the Dialogical AR Partnership will utilize the DSAR
framework and develop constructs, models, methods and instantiations according to the DSAR
matrix. Also, the Dialogical AR method allows for an iterative exploration of the constructs,
model and method for continuous refinement. The action research cycle will be used to move
the Dialogical AR Partnership through the DSAR framework until such time that the researcher
can sufficiently prescribe learning for both practice and theory and the practitioners’ problems
are addressed; endless pursuit of the action research cycle is not practical for the practitioner nor

is it practical for the researcher.

Figure 30 Filling in the DSAR Matrix

Design-Science Research Activities in Action-
Research Cycle N
Build Evaluate Theorize Justify
Action - Constructs | A E E
Researcher | & & © £ | Model B E E
2 S & 2| Method C F F
8 3 & 3 | Instantiation F
Practitioner - Constructs
¢ g 2 £ | Model
2> S & 2 | Method C F
8 3 & 3 | Instantiation | D F

A. Constructs:
a. Learning Organization
b. Reflective Practice

B. Model: The working model of the reflective practitioner approach for the learning
organization

C. Method: The reflective-agile method
a. Extreme Programming
b. Ladder of Reflection
D. Instantiation: The first introduction of the Reflective-Agile method

E. Evaluation (Constructs and Model): A Strauss and Corbin approach to coding and

156

categorizing

F. Evaluation (Method): Use of the Dialogical AR cycle to diagnose, act, specify,
learn.

Figure 30 demonstrates the anticipated use of the DSAR framework matrix for this dissertation
and describes the activities and outcomes to be pursued in the matrix. The “justify” column is
grayed out as those activities are not within the scope of this research effort. As this is an initial
effort in this area, the outcomes of this research should inform future research where one or more
new practitioner settings could be used to justify the designed artifact. Thus, it may not be
entirely appropriate to justify the designed artifact in the same Dialogical AR Partnership used to

design and develop the artifact.

4.6.2 Taking the Interpretivist Mode of Inquiry for Evaluation

A hypothetico-deductive approach is commonly used to develop and test theory (Lee
1991). This approach is appropriate for quantitative research conducted in a Positivist tradition
as well as qualitative research conducted in an Interpretive tradition (Lee 1991: 355). Using a
hypothetico-deductive approach, where the researcher enters into research informed a priori by
one or more theoretical constructs, raises questions as action research appears to be inductive. It
would be possible to conduct action research from a Grounded Theory research perspective,
where theory emerges as a result of the action research effort. Addressing this issue predicates
on whether a Positivist (“knowledge is ‘out there” awaiting discovery) or an Interpretivist
(“knowledge is subjectively and socially constructed — knowledge is ‘in here’ awaiting

experience) mode of inquiry is adopted.

157

This dissertation adopts an Interpretivist mode of inquiry. As Grounded Theory will be
used as a mode of analysis to develop and review aspects of the designed artifact, this
dissertation takes the position that interpretation is a form of deduction (Strauss et al. 1998:137).
Therefore, “...although statements of relationship or hypothesis do evolve from data (... from
the specific case to the general), whenever we conceptualize data or develop hypothesis, we are
interpreting to some degree” (Strauss et al. 1998:137). Therein lies the importance of the
evaluate, theorize and justify portions of the DSAR framework: we must constantly validate
interpretations by “...constantly comparing one piece of data to another” (Strauss et al.
1998:137). Taking this position recognizes the necessity of the human element in interpretive
analysis and the potential threat the human element poses with respect to distorted meanings and
misinterpretation. Thus, rather than relying solely on induction, this dissertation uses a priori
theoretical constructs from Argyris and Schon (1974, 1978, 1996) and Schon (1983, 1987) to
develop and introduce theory-driven interventions in the Dialogical AR Partnership. In starting
from theory, this research starts on a deductive footing based on extant theory. From this point,
the iterative nature of action research will enable further deductive reasoning derived from the

interpretation and analysis.

4.6.3 The Generalizability of the Research Outputs

Lee and Baskerville (2003) provide an extensive analysis of generalizability in IS
research which can be used to determine the generalizability of the research outputs from this
research. Lee and Baskerville (2003) provide an account of several classes of generalizability
and an exposition on Hume’s truism such that increases in sample size “... does not establish the

generalizability of sample estimates to population characteristics, but can only establish the

158

generalizability of sample points to the sample estimate” (p. 235). In this sense, Hume’s truism,
“...a theory may never be scientifically generalized to a setting where it has not yet been
empirically tested and confirmed” (p. 240), holds significance for this dissertation in terms of the

generalizability of results arising from a single-site and longitudinal research effort.

One possible response to and critique of using Dialogical AR in a single-site setting
would encourage further confirmatory work by adding additional case sites. However, according
to Lee and Baskerville (2004), neither an increase in the sample size in a statistical study nor an
increase in the number of sites in a multisite case study would be indicator of greater
generalizability of a theory to new settings. Yin (1994: 37) instead encourages the researcher to
“...generalize findings to ‘theory,” analogous to the way a scientist generalizes from experimental
results to theory.” According to Lee and Baskerville’s analysis of Hume’s truism, “...there is
only one scientifically acceptable way to establish a theory’s generalizability to a new setting: It
is for the theory to survive an empirical test in that setting” (p. 241). Thus, theorizing on
designed artifact would provide an interpretive understanding which can be further utilized to

develop a Positivist understanding or enhance a subjective understanding (Lee 2002).

Lee and Baskerville (2003) provide a generalizability framework whereby most forms of
generalizing are discussed. Table 27 demonstrates the Lee and Baskerville (2003)
generalizability framework where generalizing is from or to empirical statements (field work and

observations), or, from or to theory.

159

Table 27 Lee and Baskerville's (2003) Generalizability Framework

Generalizing to Empirical
Statements

Generalizing to Theoretical
Statements

Generalizing from Empirical
Statements

(EE) Generalizing from data
to description

(ET) Generalizing from
description to theory

Generalizing form
Theoretical Statements

(ET) Generalizing from
theory to description

(TT) Generalizing from
concepts to theory

According to the Lee and Baskerville (2004) framework, this dissertation would use type ET
generalizing: generalizing from description to theory. The action learning phase in Dialogical
AR involves generalizing form description to theory where, when using the DSAR framework,
any theorizing done when the designed artifact does not meet expectations involves type ET
generalization. Furthermore, Lee and Baskerville (2003) provide examples of ET generalizing
from several sources in the literature cited in this dissertation (Klein et al. 1999; Strauss et al.
1998; Walsham 2002; Yin 1994). Yin (1994) encourages a case study researcher to aim for
analytical generalizability where the researcher makes what he calls “level two” inferences from
descriptions of the case results to theory. Thus, a basis for theorizing also exists within “thick”
descriptions of the case setting (Walsham 2002), such as a detailed account and analysis of
researcher-practitioner reflection (Lee et al. 2003: 236). In Grounded Theory, Strauss and
Corbin (1998) suggest that theory should emerge entirely from observations and descriptions.

Thus, the theorizing research activities within the DSAR framework have ample support in the

literature as opportunities to generalize from description to theory.

160

CHAPTER 5 Evidence from the Action Research Partnership

If Reflective Practice and design are to be considered as a philosophical, epistemological
and theoretical basis for the success of agile methods in the small shop setting, then the
Reflective-Agile Learning Model and Method should be supported by empirical evidence. This
chapter provides a qualitative description of the evidence from the Dialogical AR Partnership
and study conducted with a small web-development team in a small shop in Central Virginia,

USA.

The sections of this chapter are as follows. First, a description of the Dialogical AR
setting is given. Next follows is a summary of the iterations of the Dialogical AR cycle.
Subsequent sections present a broad account of the evidence from the Diagnosis and Action

phases of the Dialogical AR cycle.

5.1 Description of the Dialogical Action Research Setting

The practitioners in the Dialogical AR team consisted of a software development team of
four practitioners in a single-site small web development company in central Virginia, USA. Lee
and Baskerville (2003) suggest that interpretive field studies, such as Dialogical AR, provide in-
depth, rich and “thick” descriptions from which generalizations to theory can be made. As this
research outlines progress towards a method and methodology for learning in small software

development teams, which is aligned with the theoretical work of Argyris and Schon (1974,

161

1978, 1996), and Schon (1983 and 1987), regarding the nature of organizational and individual

learning, then action research is a method of inquiry well-suited to this task.

The remaining subsections on this section discuss the particulars of the Dialogical AR
setting and the Dialogical AR Partnership. As a necessary condition of diagnosis, a portrait of
the practitioners’ extant software development methods, habits and processes is developed and
illustrated. These extant methods are used as contrast for the emergent themes and issues which

arose during diagnosis.

5.1.1 The Practitioners and the Practitioner Setting

For the purposes of this report, |1 will refer to the company and team of practitioners as
“SSC”*3 and refer to the author as “the researcher.” SSC consists of two software developers,
Johnny and Fred, a web designer/developer, Velma, and the company owner and lead developer,
Daphne. Pursuant to Internal Review Board procedures on confidentiality, the identities of all
companies and individuals have been changed to provide a degree of anonymity for the
practitioners who participated in the Dialogical AR effort and to also protect the identities of

SSC’s clients.

SSC was started by Daphne as a graphics design company in 1998 and, in the ensuing
decade, has steadily transformed into an IT solutions company which focuses on custom web

applications and IT services and integration, which typically involves connecting back office and

B In the interest of confidentiality, the names of individuals and organizations discussed in this report are all

pseudonyms

162

ERP software with a dynamic web front end. SSC evolved toward this business model in 2005

and has steadily acquired additional employees since that time: Velma in 2005 and Johnny and

Fred in 2007. All of SSC’s developers have professional and/or university training: Daphne

holds a Bachelor’s Degree in Graphic Design and a professional certificate in Information

Systems and has started coursework on an MBA; Velma has community college training in Web

Design; Fred holds both a bachelor’s and master’s degree in Information Systems and is trained

in application and web development; and Johnny holds a bachelor’s degree in Information

Systems and is trained in application development. The combined work experience in web and

applications development across the team is approximately 40 years.

SSC is a good case for investigating the research questions posed in this dissertation for

the following reasons:

Small Team, Small Company: SSC is a small team working in a small-shop
environment. While there are small teams within large organizations, a small
team operating within a small company determine and shape their organizational
culture and learning in ways that are independent of the influence of a larger
organizational culture present in larger companies. Thus, organizational and
individual learning may be different in a small-team setting.

No Professed Method: Daphne, who is a former student of the researcher,
professed a desire for a formal method suited to the nature of her business and the
size of her company and team in 2005. While SSC was using some method, no
external (and thus externally valid) method was in use at SSC at the onset of this
research.

Web Development: The literature on web development and web engineering
suggests that most web development is accomplished within small teams
(McDonald et al. 2001b; Pressman 1998; Reifer 2000). Thus, SSC’s business
model is suited to an investigation of small-team software development. With the
increasing demand for web application development, a better understanding of
methods for small team is warranted (Ginige et al. 2001).

163

Understanding Daphne’s desire for a formal and valid external method, the researcher suggested
the suitability of agile methods and Extreme Programming in particular. To this end, the
researcher suggested the possibility of forming a Dialogical AR Partnership using the Dialogical
AR method. Upon her consent, the researcher clarified and explained the practitioner’s role in
the researcher/practitioner partnership. With this understanding in place, the Dialogical AR team
was formed and the research took place over a period of nine months from July 2008 to February

20009.

5.1.2 Description of the Dialogical Action Research Team

With the ethics of full disclosure in mind, it should be clear that each practitioner was a
student in at least one of the researcher’s courses at some point. Furthermore, the researcher
coached two of the practitioners, Johnny and Daphne, when they, as students, were competitors
in a national student software development competition.”* During the course of this research,
none of the practitioners were students in any of the researcher’s courses; this should clarify any
ethical questions related to power. The researcher obtained signed statements of informed
consent from all practitioner participants at the onset of the research partnership and, at the onset
of the research effort, further clarified each party’s respective roles in the Dialogical AR team.
This section will now focus on the steps taken to develop the Dialogical AR team with an

emphasis placed on establishing an attitude of equality amongst the practitioner and researcher.

! Johnny and Daphne did not compete on the same team, nor did they compete in the same year against each

other

164

Daphne, as the company owner and team lead, was of particular interest and focus during
the Dialogical AR. Martensson and Lee (2004) remind the researcher who investigates
phenomenon using Dialogical AR to maintain an equitable partnership such that, through dialog,
the practitioner and researcher work together to explore the issues facing the practitioner.
Furthermore, this arrangement must take care to accept and respect the role of social and

historical context inherent within the practitioner’s problems (Martensson et al. 2004).

Thus, it was incumbent upon the researcher to establish and elaborate on the principles of
Dialogical AR as early as possible during the research effort. Toward this end, Daphne was
apprised of these matters prior to the start of the research and she, once duly informed, consented

to the arrangement.

5.2 Iterations in the Dialogical Action Research Process

During the nine-month Dialogical AR Partnership, the researcher worked regularly with
the practitioners in their everyday setting and, at times, met with the practitioners outside of their
everyday setting. In this section, a chronological account of the iterations of the Dialogical AR
cycle is given. Next, a rationale for grouping the deep and descriptive details of the evidence into

the steps of the Dialogical AR cycle is discussed.

5.2.1 Timeline of the Dialogical Action Research Iterations

Several Dialogical AR cycles were undertaken during the course of the Dialogical AR
Partnership (see Figure 24). Most of these cycles lasted for about a month although the duration

varied with some cycles lasting a month and some cycles lasting a week or two. The initial

165

diagnosis phase, lasting for about two months, was the longest phase. Among the goals of the

diagnosis phase was to develop a sketch of the company, the team, the practitioners and the

extant methods in place. Subsequent phases of the Dialogical AR cycle use the outcomes of the

previous cycle as inputs to the current cycle.

Figure 31 Iterative Improvements in Expertise (Martensson and Lee 2004)

at timet=1

research er'S\
expertise

practitioner’s
expertise

real world
problem

attimet=2

improved
researcher’s
expertise

solved or
remedied real
world problem

improved
practitioner's

\ expertise

In Figure 31, Martensson and Lee (2004) demonstrate the emergence achieved overtime as the

researcher and practitioner explore the problem space over time. The following sub sections

organize the overall timeline of the Dialogical AR cycles over the course of the study. Figure 32

shows a timeline of the four major Dialogical AR cycles.

166

Figure 32 Timeline of the Dialogical AR Iterations

Towards
Reflective
.Adaptmgxp Practice {January
(December 2008 and Febryary
and January 2009}
) 2009
.AdoptmgXP !
{October and
November 2008
.Early Discovory
and Diagnosis
{July 2008 to
September
2008}

5.2.1.1 Discovery and Diagnosis in the Early Period

The initial diagnosis phase of this research can arguably be traced back several years to
discussions between the researcher and Daphne as she started her own business. Thus, the
researcher has been somewhat privy to some of the issues Daphne faced at the time she decided
to start a web software development company. Given the informal nature of these discussions,

taken in the natural attitude of everyday life, these discussions were not included as evidence.

In July of 2008, shortly after receiving Internal Review Board approval, the researcher
entered into the Dialogical AR Setting. During this month the researcher began collecting
evidence via observations during SSC’s weekly company meetings. The researcher also

observed the practitioners’ daily routines and consulted with Daphne as questions arose

167

concerning the nature of SSC’s work. The field notes from this period are included in the
evidence, and analysis thereof, none of the discussions or meetings during this period were
recorded or transcribed. Thus, the activities of July 2008 were devoted to developing a profile of

SSC and the practitioners on the team.

During August and September of 2008, Daphne and the researcher began their first set of
recorded dialogs. These dialogs were transcribed and coded to promote a richer and fuller
understanding of the social and historical context of SSC and their extant methods came into
focus. These initial diagnoses and subsequent plans for action found both the researcher and
practitioner in agreement that an agile method would be worth consideration. Moving forward,
the researcher presented Extreme Programming (XP) as the most viable choice for SSC. Thus

the action plan was to adopt XP.

5.2.1.2 Adopting Extreme Programming

By the end of September 2008, the researcher had introduced the basics of the agile
philosophy in general and the major mechanics of XP. While the researcher had no prior
experience in teaching XP, the researcher did have adequate undergraduate teaching experience
in software development methods. The researcher refrained, as much as possible, from an overly
didactic and pedantic approach as he taught the practitioners XP using presentations, dialogs,
observations and retrospective/feedback sessions. Remarkably, as the practitioners’ immediately
perceived benefit in the “analysis” phases of XP - User Stories and Architectural Spikes - the
practitioners did not at this stage, or any subsequent stage, actually undertake any formal training

in the use of XP. This raises questions and has several potential implications for the

168

practitioners’ attitudes towards learning which will be discussed in the analysis and discussion

portion of this report.

By October 2008, the researcher was intensively recording and transcribing multiple
dialogs in addition to copious field notes as the activities of the Dialogical AR Partnership were
in full swing. Many of the major themes for subsequent interpretation, analysis and learning
specification emerged during this period. During the period of October 2008 to November 2008
the practitioners progressed to the Release Planning and Iteration activities of the XP method. It
is also apparent to the researcher that the practitioners are unable to fully adopt XP in an
orthodox manner due to external issues with strategic partnerships and internal issues related to
the social and historical context of the team. During this cycle, the researcher sees early
evidence that Argyris and Schon’s (1974, 1978, 1996) and Schén’s (1983, 1987), theories on
learning and reflection have bearing in this case. Also at this time, the practitioners report early
and palpable successes where productivity, expressed as billable hours, had markedly increased
due to their use of User Stories. By the end of November 2008, the pattern by which the
practitioners had adopted and adapted XP are readily apparent; and it was conclusively clear that

they would adapt XP rather than adopt it outright.

5.2.1.3 Adapting Extreme Programming

By late November 2008 and into December 2008, most of the XP method had been
introduced to varying degrees of success. While the method’s authors clearly state that piecemeal
adoption can be okay (Beck 1999), some of the essential philosophical, and thus methodological,

tenets of XP are not smoothly adopted in this case. Issues related to individual and team learning

169

had also surfaced and would serve as the basis for further diagnosis. Many practices endemic to
Daphne’s original and informal method thwarted total adoption of XP. Thus, the SSC
practitioners adapted the XP method to create a blend of old and new. None-the-less, by the
middle of December, SSC had tried the majority of the XP and their feedback was very positive

overall; the practitioners have realized tangible benefits in their adapted form of XP.

Along with the matters of trying and using XP, a sizable portion of the dialogs were
devoted to internal and external issues not seemingly related directly to the use of XP. By this
point, the majority of the dialogs have been one-on-one with Daphne and the remaining dialogs
consisted of various combinations of Daphne, Fred, Johnny and Velma. There is increasing
evidence, somewhat grounded in the team’s internal and external problems, that the
epistemology of Reflective Practice and the concepts of Theory of Action and the Learning
Organization are applicable. By this period, the researcher has described the basic outline of
ideas within these theories and had explained the applicability of these theoretical perspectives to
their problems. It was also apparent in mid-December that a further, and last, iteration involving
interventions based on these theories, was warranted. These interventions, and the adaptations of
XP, became the basis for the design science artifact discussed in the penultimate chapter of this

report.

5.2.1.4 Achieving Reflective Practice

From mid-December 2008 until February 2009, the practitioners considered a number of
theory-influenced interventions related to learning and reflective practice. It was also during this

period that internal and external issues, mostly related to power, communication and team

170

dynamics had come to a head. Ongoing and simmering, many of these issues are related to one
of SSC’s strategic partnerships. By January 2009, the practitioners were in crisis mode due to
problems which slowly mounted over the duration of the study. These issues were apparent to
the practitioners at the onset of our work together, but the root causes of these problems are not
directly addressed in any apparent manner. At this time, the researcher noted that some of the
most important and theory-based interventions, were also the least considered and tried by the
practitioners. The practitioners espoused a serious consideration of the theory-based

interventions, but seemed to lack the time required to strongly consider any potential benefits.

Also, during this time, the researcher received advice that it may have been wiser to
introduce the theory-based interventions in a new Dialogical AR Partnership; this counsel is
being considered for future research. By the end of February 2009, the practitioners provided
feedback which indicated that they had tried the theory-based interventions sufficiently for the
purpose of completing the last iteration and exiting the Dialogical AR Partnership. In research,
failures can also produce learning and, while it is inaccurate to characterize the outcomes of the
last iteration as a failure, the researcher looks forward to trying interventions based on the

designed artifact in a new Dialogical AR Partnership.

5.2.2 Reducing the Data: Synthesizing the Dialogical Action Research Iterations

The preceding sections offered a brief synopsis and timeline of the Dialogical AR
iterations. Subsequent sections provide richer and detailed descriptions of the experiences
Dialogical AR Partnership. The evidence from the dialogs is used to amplify and illuminate the

outcomes and issues from the diagnoses, interventions and evaluations. The evidence provides

171

support for the effectiveness of the theory-based interventions and also supports the designed

artifact discussed in the penultimate chapter of this report.

There are several motivations for providing a deeper description of the evidence
synthesized into themes rather than a linear and chronological account. These longer
descriptions focus on the details of the practitioners’ natural setting and a basis for an
interpretation of the practitioners’ meanings (and the first- and second-level constructs derived
from these meanings). A longer description provides for a holistic approach to convey rich
interpretations, and underscores the emergent and iterative nature of the theoretical lens applied
(Creswell 2009; Wolcott 2009). The sections that follow in this chapter divide the descriptions

and analyses along the principle phases of Canonical AR.

5.3 Diagnosis

Diagnosis is a critical phase of Dialogical AR which steers and shapes all subsequent
phases. Diagnosis is also the entry-point into the Researcher-Practitioner partnership and an
opportunity for arising and reflection. The goals set forth for the Dialogical AR process are also
subject to change and reconsideration during the diagnosis phase (Avison et al. 1999:96). Thus,
the working hypotheses and nascent propositions gleaned from reflection and self-interpretation
in the diagnosis phase stand to set the tone for the remainder of the Dialogical AR study

(Baskerville 1999:15).

Here, at the entrance to what Davison et al. (2004) call the Cyclical Process Model
(CPM) of action research, the diagnosis phase is an early test of the Researcher-Client

Agreement (RCA). In Dialogical AR, the practitioner must be informed of the respective roles

172

in the researcher-practitioner partnership and be reassured of the researcher’s commitment to
privacy, trust and ethical behavior in the research setting. The diagnosis phase provides the
researcher with the problems and opportunities for empirical observation and interpretation
which frames the relevance of the study. Conversely, early patterns of inquiry, observation and

data collection establish rigor in process of analysis, adding validity to the research.

The remaining subsections proceed as follows: first, there is a discussion on focus and
rigor in the research process and the use of the coding techniques of Grounded Theory as a mode
of analysis; next, accounts for the use of Computer-Assisted Qualitative Data Analysis Software
(CAQDAS) during the collection and analysis of the evidence; the last subsection focuses on the

themes and problems which arose during the diagnosis phases of the iterations.

5.3.1 Directions and Rigor from Coding Dialogical and Observational Data

A systematic process of coding qualitative data, both dialogical and observational,
provided for a rigorous collection, classification and analysis of the evidence. According to
Strauss and Corbin (1996), coding qualitative data provides “standardization and rigor to the
process... (p.13)” of analyzing qualitative data such that the interplay between the researcher and
the data is facilitated. A systematic coding scheme allows the researcher to “see” patterns and
directions in the data which provide guidance for subsequent data collection and analysis. While
rigor and relevance debates are timeless (Agarwal et al. 2005; Baskerville et al. 2004; Benbasat
et al. 1999; Lee 1999; Lee et al. 2008), the presence of methodological and analytical of rigor

separates controlled and purposeful scientific inquiry from conjecture. To wit:

Without rigor, research is worthless, becomes fiction, and loses its utility. Hence, a great
deal of attention is applied to reliability and validity in all research methods. Challenges

173

to rigor in qualitative inquiry interestingly paralleled the blossoming of statistical
packages and the development of computing systems in quantitative research.
Simultaneously, lacking the certainty of hard numbers and p values, qualitative inquiry
expressed a crisis of confidence from both inside and outside the field. Rather than
explicating how rigor was attained in qualitative inquiry, a number of leading qualitative
researchers argued that reliability and validity were terms pertaining to the quantitative
paradigm and were not pertinent to qualitative inquiry. (Morse et al. 2002:2)

Thus, to ignore or argue away the importance of rigor in any scientific inquiry is to have selected
a false choice. This study relies on rigor inherent in Dialogical AR and supplements this rigor
with the coding techniques of Grounded Theory as the literature on action research is not always
explicit with respect to analytical approaches (Avison et al. 1999; Baskerville 1997; Baskerville
1999; Checkland et al. 1998; Lau 1999; Martensson et al. 2004). This research accepts a
responsibility to demonstrate the use of rigorous analysis procedures, beyond the mechanisms
inherent within action research, so as to minimize ambiguity in this regard for the reader. The
next section describes how Grounded Theory, as described by Strauss and Corbin (1996),

provides a rigorous mode of analysis for qualitative evidence form this Dialogical AR study.

5.3.1.1 Grounded Theory as a Mode of Analysis

Dialogical AR is grounded in the epistemology of phenomenology (Martensson et al.
2004). As such, possible approaches for the analysis of qualitative evidence are (but not limited
to) hermeneutics, semiotics, narrative, metaphor and other similar approaches. As qualitative
evidence consists of text and text-objects, this evidence requires analytical techniques suited to
text rather than those suited to quantification. This difference is not an occasion to forego a

systematic analytic approach, but does call for an analytic approach appropriate for textual data.

Grounded Theory is an approach to qualitative research which holds that theories

grounded in data are inherently relevant and useful. Thus, Grounded Theory “grounds” theories

174

which arise from the application of its techniques “in” the data. In many cases, Grounded
Theory inductive assumptions not suited to this research; thus, any allusion that this research is
producing a “grounded theory” are considered incorrect as this research is not Grounded Theory
nor does it claim to product a theory, grounded or otherwise. Furthermore, Grounded Theory
itself is somewhat mired in a dogmatic morass due to a schism in epistemology among its
original authors. Apart from this controversy, there is utility in Grounded Theory as a mode of

analysis for qualitative data.

Analytical techniques of Grounded Theory, such as open, selective and axial coding,
constant comparison, and memoing, are all valid and useful techniques for rigorous analysis of
qualitative data. As such, this research appropriates some, but not all, of the qualitative data
analysis techniques described by Strauss and Corbin (1996). Some advice embedded in the
doctrine of Grounded Theory, suggests that interviews should not be recorded and that no
literature review should be undertaken prior to research. This research effort has not heeded that
advice. Some variants of action research suggest an approach to diagnosis which is consistent
with Grounded Theory’s position on literature consultation prior to entering the practitioner
setting. In the case of this research, the literature, and thus theoretical guidance, was consulted
prior to entering the researcher-practitioner partnership. For this study, the nature of the research
and research questions suggested that it was appropriate to consider theory a priori. This
deviation alone would be cause to question the authenticity of this research as Grounded Theory,

which it does not claim to be.

As it is established that Grounded Theory as the mode of analysis for the qualitative
evidence in this study, a brief description of the elements Grounded Theory used is now given.

Strauss and Corbin (1996) suggest that a researcher start off with a microanalysis of their data,

175

which is a detailed line-by-line analysis where the researcher engages in open coding and axial
coding. With open coding, the researcher is conceptually classifying words, phrases and
passages of qualitative data looking for concepts and categories. As opportunities for new
coding arise, the researcher undertakes a process of constant comparison to determine how new
concepts relate to existing concepts. Along the way, the researcher makes broader hypothesis-
building and theorizing notes in a process Strauss and Corbin call memoing (p. 110). Through
constant comparison, memoing and open coding, the researcher constructs a number of
categories and sub-categories of codes. Axial coding is the process by which the researcher
relates and “aligns” codes along the axis of a category. As the researcher’s hypotheses,
theorizing and propositions begin to take shape, the research engages in selective coding where
codes are grouped to support emerging theoretical themes. There are additional techniques, such
as theoretical sampling, which are salient to the construction of a Grounded Theory, but these
additional techniques offer diminishing returns given the goals of this research. The
specification of learning, is a requisite outcome most forms of action research, is sufficiently
supported by the analytical use of Grounded Theory techniques as they assist in the
interpretations which second level constructs and a descriptive basis for identifying espoused

theories and theories-in-use.

This sub-section has discussed the importance of rigor in qualitative research and has
described the manner in which several techniques in Grounded Theory are used as a mode of
analysis for this study. The next sub-section discusses how a Computer-Assisted Qualitative
Data Analysis Software (CAQDAS) package facilitated systematic, explicit and rigorous

research process (Kelle 1997:17).

176

5.3.1.2 Computer-Assisted Qualitative Data Analysis

Dialogical AR calls on the researcher to adopt the scientific attitude when studying real-
life phenomenon in a natural setting. While the expectations and limitations of the
researcher/practitioner partnership are well described in the literature, the boundaries between
consultancy and research must be demarcated by constant vigilance on the part of the researcher.
Thus, frequent review of and reflection on the evidence - field notes, dialog transcriptions, etc. -
is necessary to keep the goals of the research in focus. Toward this end, HyperRESEARCH, a
Computer-Assisted Qualitative Data Analysis Software (CAQDAS) package, was used to code
and analyze transcripts of the dialogs in order to establish “directionality” and to ground the
interpretive analysis (Hesse-Biber et al. 1991; Lee 1995). The diagnosing, action-planning and
specifying learning stages of the Dialogical AR cycle were supported by HyperRESEARCH.
During the nine (9) months of fieldwork, the researcher was present onsite in the practitioner
setting on an average twice per week. Each visit usually lasted for a period of 1-4 hours. The
activities of the Dialogical AR Partnership typically consisted of dialogs, instruction/lecture and
team-building. In this case, the principle sources of qualitative evidence from the Dialogical AR

Partnership are:

e 26 recorded and transcribed dialogs. These recordings were averaged 1 hour in
length. Some dialogs are with the company owner and lead developer, Daphne,
and others are with various combinations of the team based on progress in a given
iteration of the Dialogical AR cycle.

e Internal SSC documents

e Field notes taken while observing the practitioners” work

177

The researcher observed the developers at SSC work in their natural setting and also observed

the practitioners’ interactions with their clients in the client’s natural setting.

HyperRESEARCH is well-suited to the analysis of qualitative data in the mode of
Grounded Theory. HyperRESEARCH facilitated open, axial and selective coding of the
transcripts and field data by utilizing the case as a unit of analysis. Figure 33 shows the study
window in HyperRESEARCH, which organizes all of the cases and codes associated with each
case. Open and axial coding are possible by using the Code List Editor in HyperRESEARCH to
assign and relate codes to sources of data, which can be text data or audio-visual media. Over
time, it is important to categorize and summarize codes as the body of qualitative evidence

expands. Figure 34 shows the Code List Editor and Figure 35 shows the Source Window.

178

Figure 33 HyperRESEARCH - The Study Window

ALP hs2 (=[]

Cases Selected: All Cases _7|
10 of 10 SelectCases w

1 1 o» ALP-DevTeam

Code Mame Source Type Reference <]
Business - Referrals due to ALP's] ALP-Dialog-WholeTes TEXT 1450,1630 -

Business - Referrals due to ALP's] ALP-Dialog-WholeTes TEXT 2343,2416
Business - Referrals due to ALP's e ALP-Dialog-WholeTez TEXT 3334,3370

‘E? Codes Selected: By Mame
4| 3 of 389 SelectCodes

[] view Annotation View Source

Thus, the case is the means for collecting, comparing and selecting codes to assist in developing
interpretations and second-level constructs from the dialog evidence. In focusing on the case,
HyperRESEARCH allows for the aggregation of codes which are ascribed to people, concepts or

any singular entity or theme.

For this study, the cases were delineated by combinations of the participants in the dialogs.

Thus, the cases in this study were:

Fred

Fred and Johnny

Fred, Johnny and Velma

Fred, Johnny and Daphne

Fred, Daphne and IMS (a client)

179

Johnny and Velma
Johnny and Daphne
Daphne

Whole Team

As interactions between practitioners during course of a dialog were important in developing
historical and social context, the particular combinations of practitioners in any given dialog
served as the basis for case selection. Across these cases there were 262 open codes which,
through axial and selective coding, and memoing were reduced to 28 categories. There were
3441 occurrences of all codes across all cases. Table 28 shows the number of codes which

contribute to each category and how many code occurrences were associated with each category.

Figure 34 HyperRESEARCH - Code List Editor

- "y

CodelistEditor [= || & |3

Edit Code w | Anclv Code _.,I
Master Code List (262 total codes)

Agile - Heavyweight Methods

Agile - Lightweight Methods

Agile - Scrum

Agile - ¥P - Acceptance Testing

Agile - ¥P - Adopting the methods
Agile - ¥P - Code Standards

Agile - ¥P - Collective Code Ownership
Agile - ¥P - CRC cards

Agile - ¥P - Customer as Team Member
Agile - ¥P - Daily Standup Meeting
Agile - ¥P - Embrace Change

Agile - ¥P - Feedback

Agile - XP - Integration Continuous
Agile - ¥P - Iteration Planning

Agile - ¥P - Metaphor

Agile - ¥P - Move people around =

= (Code Description

mil w

180

Figure 35 HyperRESEARCH - Source Window

-

ALP-Dialog-WholeTeam-09122008- Transcription-1.td
Fage Mumber

G 1of 1 O Font Settings...

=

Yeah it does.

J:

T:

m

So, whomever wants to lead first... maybe (@i§since this is your
company, maybe you can just sort of talk about how business is
drummed up and we'll take it from there with this particular example.

Business - Referrals dug | Well, we do a lot of referral business from other companies who can't

do the type of work that they get in. And this would be one of those

cases. This came from (I concepts. @l wanted a redesign

and it turned cut that they wanted to redesign some... they had some

static pages for their catalog; there was 20 of them on this website, cne
page for each product that just had a big picture on it (chuckles) | all

the text was in the picture, evenything was in the picture. They wanted E|

 |Display Codes In Context

Table 28 Code, Category and Occurrences from the Dialogical Evidence by Category

Codes Category Occurrences

39 Agile 1198

33 Clients 491

27 Team 264

21 Leadership 219

18 Project 147

17 Web Technologies 74

12 Individual 76

10 Learning 120

9 Business 148

8 Design 44

7 Company 111

7 Dialogical Action 42
Research

6 Development 81

5 Methods 32

5 Misc 11

4 Education 30

4 Professional 34

181

4 Reflective-Agile 68
4 Skills 72
4 Web Development 23
3 Craft and Creativity 14
3 Knowledge 8
3 Reflective Practice 51
3 Web Projects 4
2 Gender 1
2 Phenomenology 2
1 Pride 16
1 Quality 37

A more instructive and useful guide for problem identification and interpretation in the diagnosis
phase is to examine the frequency of occurrence in the codes constituting each category as

shown in Table 29.

Table 29 Code, Category and Occurrences from the Dialogical Evidence by Occurrences

Codes Category Occurrences
39 Agile 1198
33 Clients 491
27 Team 264
21 Leadership 219
9 Business 148
18 Project 147
10 Learning 120
7 Company 111
6 Development 81
12 Individual 76
17 Web Technologies 74
4 Skills 72
4 Reflective-Agile 68
3 Reflective Practice 51
8 Design 44
7 Dialogical Action 42
Research
1 Quality 37
4 Professional 34
5 Methods 32

182

4 Education 30
4 Web Development 23
1 Pride 16
3 Craft and Creativity 14
5 Misc 11
3 Knowledge 8
3 Web Projects 4
2 Phenomenology 2
2 Gender 1

Table 29 is far more revealing concerning the nature of the dialogs and which issues emerged
during diagnosis. For instance, the Clients, Team and Leadership categories associate with a
number of the issues which arose during diagnosis and constitute a much greater share of the
issues which arose in the middle and latter phases of the Dialogical AR cycle. The Business,
Learning and Company codes also “cluster” and constitute a set of problems which also steadily
increased throughout the study. Grounded Research techniques for analyzing interpretive data
from the dialogs allowed for these codes and categories to emerge throughout the study using a

consistent process of open, axial and selective coding, memoing and constant comparison.

HyperRESEARCH facilitated the diagnosis and evaluation phases of the Dialogical AR
process. In order to convey the principle issues are and to produce a rich account of the
researcher-practitioner partnership, these codes and cross-comparisons of these codes are used to
select the relevant passages of the dialog used in the descriptions in this chapter. Care was taken
to consider the espoused theories of actions embedded in the dialog as second-level constructs
were developed regarding the Theory-in-use of action (Argyris et al. 1996). Thus, the use of
HyperRESEARCH, enabled a rigorous analytical process from which second-level constructs
were developed which provide subsequent support to the specification of learning for practice

and the body of knowledge on Reflective Practice and agile methods.

183

While HyperRESEARCH is quite compatible and somewhat predisposed towards
Grounded Theory, the use of this software is also conducive to adopting Hermeneutics as a mode
of analysis. The Grounded Theory techniques of constant comparison and open/axial coding
facilitate whole-part understanding of texts in a manner which is consistent with the Hermeneutic
circle. Thus, it could be argued that the iterative processes of Hermeneutic analysis would have
also produced a rich basis for interpretive analysis. Even as this research is concerned with
matters of design, the very act of design, particularly with respect to reflective practice, is
concerned with whole-part reconciliation through the conversation with the situation that the
designer engages in (Schon 1983:79). Thus, an iterative process of listening and responding to
back-talk in the situation is compared to the whole. This relates to the use of CAQDAS for
interpretive analysis as either Grounded Theory of Hermeneutics would have shown promise as a

theoretical lens under which a systematic analysis of the data could be pursued.

5.3.2 Grounding the Practitioners’ Historical and Social Context

The evidence from diagnosis in the first iteration developed a profile of SSC as “found”
by the researcher and developed a picture of the practitioners’ initial concerns, needs and desires
(their “ailments™). This effort also entailed developing a biographical sketch of the company, of
the team and of Daphne. During this period Daphne related her history and the history of the
company and how she came to start her own business making custom web applications and web

sites.

Daphne started the company in 1998 as an outlet for her undergraduate training in

Graphic Design. Given her earliest career aspirations in illustration, SSC’s initial business

184

model was the creation and distribution of hand-illustrated greeting cards with a historic focus
and theme. At this stage, SSC was a part-time endeavor Daphne ran out of her home. As
Daphne possessed a gift and talent for illustration and the creative spirit that comes with such a
gift, she soon realized the possibilities of doing business on the web and designing for the web.

Customers for her greeting cards began to inquire about her ability to create websites:

That's when | started getting the question all the time: "Do you build a web page? Do you
know how to build a web page?" So, my first web page, like | said, | built for myself. In
1998, we formed the company; | already had the web page up for the Christmas cards.
We went ahead and formed the company and advertised and sold the Christmas cards
that year.

...I had been getting the question about web pages and very quickly realized that there
was a lot more to it than just putting up a pretty face, which was the graphic design
aspect. | actually started at [a local community college] (sic)... they had a 6-month
continuation education program for web programming. They had two tracks: one for
web design and one for web programming. | wasn't sure which one was going to best
suit me at the time and | ended up following the web programming track...

For Daphne, the shift to custom web applications and web sites was somewhat accidental,

however she was clearly taken with this career shift.

Daphne steadily grew her business using means which are typical in small business
growth: word-of-mouth, referrals and what Daphne terms as “website rescue.” As is usually the

case, Daphne’s road to small-business success was hard-fought:

I had formed a company and | realized that my eventual goal was to go into business for
myself at that point. But, | didn't have... | was pretty young and didn't have the
knowledge and experience.

Recognizing her inexperience and significant technical skill required to develop custom

websites, Daphne sought to improve her skills by returning to school:

And | had to pay for it out-of-pocket so there was that involved too. | had actually
decided "well, this is good stuff but I feel like I've only scratched the surface, | feel like

185

there's so much more that could be done.” So | had enrolled in [A local community
college] and started taking programming courses.

In full disclosure, it was not long after this period, in 2004 and 2005, that Daphne was a
student in a few of the researcher’s application development courses. The researcher’s
involvement in Daphne’s education continued as he coached her team in a national software
development competition sponsored by a major IT Services and Software vendor in 2005 and
2006. In the interim, as Daphne sought to improve her skills to the end of running her own web
software development company, Daphne worked fulltime creating an eCommerce and ERP
infrastructure for, TTS, a retailer of specialty products in Central Virginia. In 2005, Daphne
resigned from her fulltime job to focus on growing her business as a fulltime endeavor. She left
her job with TTS despite having been offered partnership and a stake in the company. Daphne
soon realized, more than ever, that she needed to let her propensity to give more than a 100% of

her effort work for her rather than for somebody else:

And the other thing that, you know, is true about that... | mean, you put in all that effort
for somebody and work really for that and, like I said, they just keep coming back with,
you know, what more can you do? | got the feeling that they didn't feel like | was always
giving it 100% and that | had more to give and I'm like, when I'm here, | do.

In fact, in the end, Daphne felt that her talent was not appreciated as she had important decisions
overridden by management who had hired her initially to manage technical aspects of their
operations. Furthermore, hiring decisions she made were questioned for reasons Daphne felt to

be unethical:

I had the opportunity to interview some people and they told me "well, this is your thing,
you interview people, you pick somebody" and so | was given power to do the interviews
and when it came to hiring people they were prepared to override my choice.

I understand they have the right to override my choice - they are the owners and they
have to pay the bills, but their reasons, in my estimation, were unethical...

186

One applicant was [singled out and discriminated against] and | thought:” I like her and
I think she can do the job.” That really bothered me...

I thought: "but I like her, I want to hire her" and they would not let me do it. So | said:
"okay, alright, I see just about how much power | have around here..." 1 got to thinking
about what the arrangement would be like because... what the contract would look like if
they ever agreed to sell the company to me... I'm like: "You know that's going to have so
many restrictions and provisos and..." If they're willing to do this kind of thing
unethically, I'm a little nervous about pursuing that so at that point | gave my notice and
everybody was floored.

Daphne brought with her a small-but-growing client list from past part-time endeavors,
and the promising interviewee her former employer refused to hire, Velma, and struck out as an
IT Services and custom web application development shop in 2005. Six months into pursuing
her business fulltime, Daphne came into a series of what she calls “strategic partnerships” which

persist until this day. Her first partnership was with an advertising and marketing agency, MNM,

which contacted her by way of her reputation for doing “website rescue.” Daphne characterizes

website rescue thusly:

I don't know how many times | hear when | first sit down with the client - "you know we
had another web person and it just didn't work out™ or "they promised us this and they
couldn't get it to work.” | have taken over so many projects from that level. They just
seem amazed when we actually deliver something (she laughs). We also do, we believe in
the "full-range approach™ when 1 sit with a client, because we can do everything, | am
able to sit and listen to their wildest dreams and even though we may not be able to do it
now, we can start with... we know that where we start we can always take them where
they want to go, if they want to get there. And I think that's missing from my field
because everyone thinks that what | do is easy. There is a perception out there that
building web pages is easy to do because there's a lot of things on line where you can
build your own web page and have it up in 10 minutes.

So from blank page all the way to custom application development, we can do that.
Because of that, | think we fill a real need in the market because I'd say that 80% of the
work that we do is work that other people couldn't finish or had to pass off because it was
beyond their ability.

It should be apparent that her reputation for website rescue was also backed up by a strong “can
do” attitude and a commitment to ethical practice and a high degree of quality in her work.
Through her growing reputation, Daphne expanded her opportunities by joining Business

187

Networking International. Her participation in this group allowed Daphne to pick up her second
strategic partnership with KWC. Each of her strategic partners would typically hand her jobs
that were outside of their own scope and expertise, thus creating a symbiotic relationship for both
parties. MNM, realizing her talent and potential, made an early overture to subsume Daphne’s

nascent business into their own; however, given her experiences with TTS, she declined.

Furthermore, Daphne, as evidenced by her return to school to improve her skills,
recognized the rapid change pervasive in custom web site application development and
recognized the need to stay on top of and ahead of technological change. This issue would be a

recurring theme throughout our dialogs:

...everybody realized they needed a graphic designer to build a real professional web
presence. When style sheets came out, and things like that, we were able to deliver a
much more professional look and those are all design. We had a lot of control, imagery,
Flash came on the scene, which was its own problem because everybody thought it was
the best thing since sliced bread and over-used it. But from there the next 4 or 5 years
was a cycle of "well, now what can we do?" and that's where programming came in and
now you require... a lot of the big companies have a staff of graphic of designers and a
staff of computer programmers and the two don't ever talk to each other. There's some
kind of enigmatic connection where the graphic designer does this design and hands it off
to the programmer and they're supposed to make it work exactly like what the client
wants. That carries with it another set of problems because your computer programmers
are not graphic designers and they don't know how to do that stuff and not only is there a
lot of overhead in an organization like that but delivering what the client wants is a very
long and suffering and painful process.

With a background in graphic design already in-hand, Daphne realized that she could deliver a
superior product if she coupled her design skills with development skills. In 2005 she completed
a certificate in Application Development in the Information Systems program of a major state

university in Central Virginia.

At the time of our initial diagnosis dialogs, in the summer of 2008, Daphne had indicated

that her business had doubled every year since 2005. Thus, by the end of 2006 and into 2007,

188

Daphne and Velma had more work than they could handle. In casual conversation in 2005,
Daphne mentioned to the researcher her growing need for help and her desire for methodological
guidance. By mid-2007, Daphne hired Johnny for part-time work. Johnny is also a former
student of the researcher and a recent graduate from the same undergraduate program in

Application Development in which Daphne had completed a post-graduate certificate.

Yeah, | was actually looking for somebody part-time and Johnny had a part-time
internship that was going carry through the end of December, or December 2007, so the
end of the year. So it was a very good arrangement.

With Johnny helping on smaller projects, Daphne was able to stretch out into larger projects such
as eCommerce implementations and eCommerce and ERP integration. This growth in project
size and complexity precipitated the need for another developer, but at this stage Daphne wanted
a developer with experience who was more up to her level of 10+ years of experience. In a
stroke of serendipity and coincidence, Daphne placed an advertisement on craigslist (a Web-
based advertisement exchange) and found Fred, who was a graduate of the master’s program in
Information Systems in the same department and university she had attended in Central Virginia.
It also happens that Fred had taken a course in .NET application Development with the
researcher, thus making 3 out of 4 developers at SSC former students of the researcher. Again,
during the course of this study, none of the developers at SSC was a student in any of
researcher’s courses nor were they enrolled in any class or degree-granting program at the

institution where the researcher was an instructor.

From an early stage, Daphne had settled on using Microsoft’s “Classic” ASP as her
development environment of choice and, in the early 2000s, comfortably made the transition to
Microsoft’s ASP.NET. Daphne’s coursework in her certificate program and her involvement in

software competitions also influenced her choice of Microsoft’s ASP.NET. Fred had

189

coursework in .NET and ASP.NET, and a desire to learn more, making Fred a good fit for the
company. Furthermore, Fred came from a medium-sized shop, which also made Fred’s
experience valuable to Daphne, who was eager for any methodological advice which would

streamline her processes and increase her productivity.

The software development team, as the researcher found it in the summer of 2008, had
been in place since late 2007. Throughout the course of this research team consisted of the
following practitioners: Daphne, Velma, Johnny and Fred. This was the practitioner team that
the findings and diagnoses of the Dialogical AR process were drawn from. The next subsection
moves forward to the list of needs and concerns that arose during the initial diagnosis dialogs in

the summer of 2008.

5.3.3 A List of Concerns from the Initial Diagnosis

The seed which spawned this research effort can be traced back to a casual conversation
between Daphne and the researcher in 2005. At that time, Daphne was confident in her
processes and the quality they produced, but she wanted the external validation and verification
that an extant software development method or methods could provide. The researcher had an
active interest in agile software development methods in practice and in academic literature had
previously suggested these lightweight approaches to Daphne. Some three years later, the
researcher-practitioner partnership had formed in pursuit of a method for SSC and for an artifact
which might demonstrate a theoretical basis for agile success in the small-team setting for the

researcher.

190

Despite the importance of entering into the client-researcher infrastructure of Dialogical
AR with a theoretical and epistemological perspective, it is equally important to address the
practitioners’ needs as they are revealed and discovered through the Dialogical AR Partnership
and through dialogical discourse within this partnership. Much of this initial diagnosis transpired
in the period of August 2008 through September 2008. A summary of these initial themes and

issues is given in Table 30.

191

Table 30 List of Concerns from the Initial Diagnosis

Diagnosis
1. “Every project is unique, how can that be
efficient?”

Researcher’s Interpretive Observations
SSC is looking for repeatable and successful
patterns in the face of constant change,
uncertainty and novelty inherent in creating the
tailored and customer website that their
business thrives on.

Daphne shies away from all-encompassing and
template “cookie-cutter” frameworks as they
aren't easily transferred when a client changes
hosting.

However, customizing is costly if not done
with standards in mind and Daphne believes
that a methodology will ensure consistency in
their process. Thus, Daphne wants to follow a
patterned process for repeatable results while
retaining her ability to deliver custom websites

2. ""How do we know if we are delivering
consistent quality when every project is
unique?**

Daphne is fastidiously concerned with and pre-
occupied with quality, she considers that she
goes above-beyond at all times and insists that
this quality is reflected in her work.

3. ""How do we prove we are doing quality
work?"

Among the motivators of this question is: "'l
wish | had a method that ensured a good
product in a reliable manner.” Thus, Daphne
desires in a method, reinforcement in the eyes
of others that she is following a sound process
that ensures high quality.

4. ""How do you sell a customized and
tailored website and justify the expense?**

Daphne has found it hard at times to convince
potential clients and strategic partners that her
work is worth the premium she charges for it.
The researcher relays several analogous
examples where contemporary artisans and
craftspersons unabashedly command top price
for high quality. Thus, Daphne desires a
process which demonstrates and justifies her
quality work.

5. “How can | ‘productize’ some of my
work?”

In what Daphne describes as “productization,”
Daphne is searching for opportunities for
modularity and reuse in her code and
processes.

6. “I want to adopt team standards and
norms in order to develop a team style.”

Daphne feels that 110% of the work ethic at
SSC comes from her. She often feels the
burden of being the boss and she feels that
employees will produce sub-quality work if

192

Diagnosis

Researcher’s Interpretive Observations
they are not vested.

Thus, she desires a quality and standard of
work that reflects her own. She feels that small
size of her team and company places more
burdens on each person to perform optimally
and gives as much effort as she does. Again,
Daphne seeks quality assurance in her
processes. Thus, in looking for a sense of
ownership on the part of developers, she wants
to explore the “team's way” of doing things.

7. “l am concerned with skills transfer and
skills cross training.”

Daphne often feels like she has to show her
employees how to do everything as she expects
all work to be done according to her norms and
her standards of quality. Despite this, she
wants people to know their roles and
responsibilities and act on them without
prompting. Daphne is concerned that her
developers will waste much time "figuring it
out" and she doesn’t want to “reinvent the
wheel” when not needed. Thus, Daphne wants
to transfer her knowledge, retain
Organizational Learning and develop a team
style that surpasses her own skills.

8. “How does a small team find the time to
stop, reflect and learn?”

Daphne has a desire to further develop
expertise and share and grow this expertise
among the team. She recognizes the need to
‘keep up’ in her business and wants the team to
grow and learn from their actions, be they
successes or failures.

9. “Continuity: how do I retain and transmit
institutional knowledge?”

Daphne feels that, with such a small team, the
departure of any one member could be
disastrous. Daphne asks how she can increase
the chances of team knowledge and skills
continuing and passing on to replacements.
How can the team be self-replicating even
when one or more members depart?

10. “Productivity: how do I increase billable
hours and productivity?”

Daphne feels that her extant processes are not
producing the productivity, measured in
billable hours, that she feels her team is
capable of achieving.

11. “How do I address the ‘intangible of IT’
and educate my clients about what I do and
why it has worth?”

Daphne needs a way to make her clients
understand what she does and how her
processes ensure quality, rather than having the
process and product shrouded in mystery and
often referred to as "magic."

193

The significance of this list of concerns is that they were vetted by the practitioner-researcher
team in early September 2009 as being representative of the practitioners’ initial concerns and
elicited by way of dialog. The focus of the dialog remained primarily on Daphne throughout the
Dialogical AR study. This was so as, in terms of the historical and social context of SSC and its
small team of developers, Daphne would be most representative. Dialogs with the remaining
team members are certainly very valuable and transcripts from these dialogs play a significant

role in the characterizations and descriptions in this chapter.

The next section discusses the process by which SSC’s extant methods were documented.
When the researcher entered the Dialogical AR Partnership, there was scant documentation
which would suggest what methodological steps, if any, SSC followed at the time. There is no
dispute that SSC had some implicit and tacit method, but it turns out that this method largely
existing “in Daphne’s head” and was passed on to employees in what could be described as an

oral tradition.

5.4 Documenting the Practitioners’ Extant Methods

The researcher spent his first month with SSC attending their weekly staff meeting and
observing how the practitioners did their work. Technically, the developers used sound N-tier
architectures, data access layers and contemporary tools such as Microsoft’s Visual Studio and
Adobe’s Dreamweaver to construct presentation and logic layers for all of their projects. ERD

and data modeling was done using Visio and SQL Server Management Studio. There was a

194

definite and discernable workflow to how projects were completed and a method by which

Daphne assigned projects.

The following subsections discuss SSC’s overall extant methods and processes as the

researcher discovered them in the summer of 2008.

5.4.1 Characterizing the Practitioners’ Desire for a Method (and Methodology)

Despite having an extant methodology, although not formally expressed, Daphne had
indicated a desire for a method or methods which would corroborate what she knew to be sound
processes behind her success. At this time, the researcher pondered whether Daphne’s success
may have had less to do her methods and more to do with her hard work and dedication to

excellence.

Daphne explains her motivations for exploring a well-known, tried and tested

methodology proven to work for small teams in a small shop like hers:

Researcher:

...One of the things Daphne told me two years ago, before either of you worked for her
is: "l wish I had some method to know what | am doing is right." It turns out probably a
lot of what you are doing is right. So we are just looking to ... the output of my work with
you would be a method for you, "the SSC method" we would call it.

Daphne:

Yeah, my thought process behind that, just so you know the context of that conversation,
is that | felt like I was delivering quality software, I know what I am doing, from
beginning to end, when | develop a system. | can solve business problems, but I am
competing in a field that has a lot bigger players. So, | wanted to look back and say we
followed these steps so | know what we deliver is comparable. It was done a different
way, but it comparable quality.

195

In this case Daphne desires a method which conveys and routinizes the good practices she
believes she already has. Again, her know-how may have more to do with her own internal
actions, qualities and judgment and less to do with a well-documented method that her
employees can follow. In any case, notable in this dialog is her desire for reliability and
replication; Daphne wants to encapsulate good practices to demonstrate that her company’s
quality is comparable to that which is found with the “bigger players.” Despite her confidence in
her own abilities, Daphne found, as they tackled larger projects, that whatever her undocumented
processes were, they were not always efficient in the face of the larger and more complex

projects she wants to continue to attract and contract for:

Researcher:
So, please characterize the first six months of the year... (2008)
Daphne:

...Obviously the first three and a half months, through April 15th, were very much
focused on LMV [their largest contract ever], we did produce other work, but LMV was
the large focus. It was nice because we were able to organize and produce a very large
project, it was a $50,000 build, and for a small company like this, those were big
numbers. Now, when you break it up over 4 months, it didn't pay all the bills (laughs).
But, it was cool; it was a real venture into a different area.

Researcher:
Yeah, it was bigger stakes.
Daphne:

Uh huh, we learned a lot from that project. Just because of the amount of project
management that goes into a project of that size we needed to use a different multiplier
for project management...

Daphne:

Because we didn't make the margin we had planned to make on that project, but it was
still decent money.

Researcher:

So you didn't make the margin because some of your own processes...

196

Daphne:
Were not efficient enough to handle it...

As SSC grew and attracted larger customers, the extant and informal methods SSC used, largely
culled from Daphne’s past experience and handed down through direct demonstration and
explanation by Daphne, were buckling. Even as the SSC developers continued to pride
themselves on building custom websites, the growing number of larger projects, which arrived

now with greater frequency, tested this position:

Researcher:

...you started this off with "every project is unique,” but it seems to me that you're talking
about the customization that you do is better than the template-based cookie-cutter stuff,
everybody else does...

Daphne:

...we can't build everything from the ground up, every time. There has to be a format to
follow so that we know that we're keeping the work consistently good, that other people
that work here can look at it, and know what was done... | mean, once you introduce
other developers into the mix, you have to have some way of working so that, while Fred
is out of town this week I've had to fix a couple of things that were wrong with some of
the work that he's done.

Accordingly, Daphne’s reliance on an informal process for sharing the techniques “in her head”
had become intractable. Daphne realized, as her team had grown and her business had grown

that a formally expressed and documented method (and methodology) was sorely needed:

So, we need to make sure that there's some kind of standard of development. | think that
the things that need to be there are the way things are put together, even if not
necessarily, it's the same for every client, but if we follow the same pattern each time, its
repeatable and anybody here can do it.

Actually, though, that brings me to, right around to the... something that I've said to you
from the very beginning, even when | was just working by myself: "how do we know if
we're developing it from the ground up every time, that we're giving the client something
consistent?" Of consistently good quality and built in the right way? Because these
other shops that have been around for a long time have developed these frameworks that
they are using, either the systems development life cycle, or something that has been

197

around a long time, they have the staff and support and everything to do that process, to
have their process over and over again, and they've done all this...

So, the challenge that | saw from the very beginning is: | feel like we’re doing quality
work, but how do I prove it?

Here Daphne realizes that the small business she once ran out of her house had out-grown a

model centered entirely on her own intuition and habits. Daphne also indicates her desire to

compete with larger firms of the sort that she hired Fred away from. Daphne also realizes that

she needs a formally expressed and documented method just to coordinate with her own

developers and to maintain consistency in quality without her direct involvement in every

project. Her own direct involvement was previously the only means she used to ensure her own

high standards:

Daphne:

You know, ...l think | said this to you and this probably is one of the things that sparked
your interest in doing this research: "l need a method, by which, to say this is how we do
things here and | know that it generates a good product” - so that if anybody every says,
so what's your methodology? How do you arrive at your solution? Well | can say: well,
THIS is how we do it. Luckily, over the years, the past couple of years, I've been able to
compare my work to some other work that I've seen done and either find it of a similar or
better quality so I feel like, you know, the way were doing it...

And even though we haven't written a formal methodology, which | guess is just in my
head, and | have conformed Fred to what's in my head...

Luckily, he has been trainable and has listened to what | do... Johnny is going to be less
conformist and perhaps a methodology becomes more important with an employee that
likes to break out.

Fred was content with delivering back to me exactly what I asked for so I've molded Fred
into my way of thinking, so | guess the methodology is in my head.

Daphne suggests very directly and clearly that she needs a methodology which will echo her own

qualities and characteristics so that the method(s) will impute her tacit methods into her

employees. The literature on agile methods, and perhaps even small teams in general, suggests

that it is possible to sustain a team on the “cult of personality” surrounding a very strong leader.

198

However, Daphne’s goal is to run and grow her business and not in full-time development. This
being the case, there is an inherent flaw in “molding” a developer into her way of thinking as this
transfer of knowledge and skills contains no learning mechanism. Daphne needs a team that can
learn and “think on their feet.” The practitioners need a learning method which will grow and
foster a common repository of knowledge and learning. In the face of novelty, uncertainty and

change, Daphne increasingly feels the need to codify and routinize the methods “in her head”:

Researcher:

...You've told me multiple times during our sessions so far, that it’s not just the quality
that SSC brings. SSC's success is also in customizing. It is building a tailored suit each
time. The question is, the face of people coming in all shapes and sizes, and you being
the tailor, how do you efficiently accommodate the tailoring?

Daphne:

Yeah, | would like to know "is there a way that we can approach these novel ideas that is
efficient and, you know, we don't feel like we're flying by the seat of our pants all the
time." | won't say that it feels like that all the time. For whatever reason, | sit down and
look at a problem, I work through it from beginning to end mentally and | put people on
the project and it happens...

But, if I'm ever going to hand over the reins to other people, there's gotta be something in
place that explains to them how that works because they're [her employees] not inside my
head.

Daphne:

And, | don't see the jobs changing, | see them getting even more complex and new needs
and new wants... and how do we make that happen all the time? So, like you said,
keeping it sane would be of big importance.

Daphne does “get it” that she needs some help. However, one early weakness in her expressed
desire for a method is to replicate her own “moves” for success rather than bring about a method
which harnesses the synergy of talent across the team. Fred’s years of experience in a bigger
team and his Master’s degree would certainly bring some fresh perspective to the team.
Furthermore, many of the new habits and approaches that the team had adopted in the year prior

to entering the client-researcher infrastructure were practices Fred brought with him from his

199

work experience in a larger company. Daphne needs to harness this strength, not brush it aside

in favor of modeling her team in her own image.

The researcher, in an effort to stress the importance of a learning system, begins to

casually bring about ideas and themes from Schdn’s Reflective Practice in their dialog:

Researcher:

I think that with the techniques that we’ll explore [XP and Reflective Practice] you will
address that..., but the real punch line, I think for a small team, and this is where I'm
headed with our work together, is: are there ways that you can see yourself as a
professional and also conduct yourself which gives you assurance that you're developing
these things correctly? | suspect that you're already doing it anyway... It's nice to get
corroboration and validation that you're doing the right thing, but ultimately you won't
survive unless you feel that, embedded in your daily decision-making, and in your team's
daily operations, there is the ability, adaptability to know that, for the team, you're doing
the right thing all the time...

Daphne:
Uh huh
Researcher:

What if we could skip the step of method and just say, there are practices and principles
your team holds and those are going to get you through, no matter what the details are...

Daphne:
Yeah
Researcher:

If I were to fast-forward to February/March, those are conclusions I think you could be
drawing...

Here the researcher is beginning to see “through” Daphne’s problem and realize that there is just
cause for the introduction of both XP and the tenets of Reflective Practice. The researcher
realizes that Reflective Practice has great potential to assist SSC in reaching some of their goals.
In addition to some of the passages above, the researcher’s field notes contain many observations

where Daphne expressed a sincere desire to discover an SSC “team” way of doing things to

200

realize the synergy of combining the team’s talents. “Synergy” turned out to be a favorite word

and concept for Daphne.

The preceding evidence from the dialogs illustrates that SSC could use a method, well-
suited for small teams, which ensures quality and learning and which leads to synergies as the
team’s skills and knowledge are combined. The next section discusses SSC’s extant software
development processes in order to establish a baseline from which change can be discerned and

discussed.

5.4.2 The Practitioners’ Extant Software Development Process

During the initial diagnosis in the summer of 2008, the researcher undertook a careful
and methodical examination of SSC’s extant methods in order to record point of comparison for
later analysis and measurement. By mid-September 2008, the researcher had a fairly clear
picture regarding SSC’s extant methods. The steps of SSC’s extant method were discerned by
way of a post-mortem retrospective and walk-through focusing on one of SSC’s largest projects
to date. This was an IT Services project involving “all hands” for, FMA, a machinery
manufacturer located in Central Virginia. FMA’s customer base is worldwide and the extent of
the project was considerable. The researcher also asked general questions and took the
development team through a hypothetical project in an attempt to fully characterize SSC’s

development processes.

New Business: Assessing Need

New business would generally be of three types: simple websites, complex websites and
IT services. Daphne handles all initial customer contact and needs analysis. Daphne also

201

supplies a potential customer with a survey to fill out, called a “Web Needs Analysis,” and then
conducts an interview with the potential client to establish a clearer picture of their needs.
Daphne then took this information and drafted a proposal and technical requirements document
containing cost estimates based on developer hours. Once this process was completed, the
customer accepted, negotiated or rejected the proposal and the new contract would proceed, or

not, based on the outcome.

Selecting a Project Manager

Daphne then selected a project manager by assessing the size, complexity and extent of
the job and assessing each developer’s capabilities accordingly. Fred, being the most
experienced, would be assigned the most complex web projects, which usually involved
eCommerce and /or an IT Services. These IT Services jobs had steadily increased since 2005,
especially so in 2008 and 2009. Johnny would handle the overflow from jobs Fred would pass
on and was also committed to a long-term maintenance contract for a desktop application used
by a university client in Central Virginia. Both Johnny and Velma were also assigned most of
the simple website projects. In any case, whether expressed overtly or not, Daphne was a co-

manager of every project as she would start the projects off and draw up the requirements.

Initially, direct customer contact with the PM was spotty and largely depended on the
project. However, direct customer contact varied such that customer interaction on some
projects was extensive and very involved. Fred, Johnny and Daphne each agreed that projects
where the customer was more involved provided a deeper and richer understanding of the project
as a whole. However, there were some drawbacks as SSC had not established any formal

protocols concerning customer interaction. Some customers tended to use interaction with the

202

team for the purpose of micromanaging along the way, which did not help the development
process and, rather, hindered it. Fred was particularly vocal on this topic as he made significant
changes to the FMA project based on last-minute feedback from a “hidden” stakeholder. These
issues would continue to plague SSC throughout the practitioners-researcher partnership,
although the nature of these issues changed as new techniques and methods were introduced to

the team.
Layout and Design

With most website development at SSC, the “look-and-feel” of the interfaces is drawn, as
art or illustrations, in image processing software such as Adobe’s Photoshop. The website
design was either supplied by the customer or via 3" party graphic designer. This seemed odd as
Daphne had an extensive background in graphic design. However, SSC was so busy with
development that there was no time or resources to also do graphic design. Almost exclusively,
Velma would be responsible for page layout and content placement which primarily involved a
process where the images for each page, or for the overall template for all pages on the website,
would be “cut” to provide placeholder sections for content and for program and business-logic.
As Velma had worked with Daphne the longest, Velma’s layout process was very predictable
and Daphne was able to make very accurate estimates on how many hours layout would take on
any given job. Generally, Velma required 14 hours to create templates and layouts for a new

site.
Design and Code

Design and code activities primarily fell on Fred, Johnny or Daphne roughly in that order.

Fred would usually read the technical requirements document and use that, sometimes in

203

consultation with Daphne, to create an ERD. SSC has a very specific architectural approach
based on an n-tier architecture strongly resembling the Model-View-Controller design pattern.
SSC also makes extensive use of T-SQL stored procedures in a Microsoft SQL Server database.
Despite their stated desire for re-use, modularity and “productization” during the diagnosis
phase, SSC’s existing architectural approach appeared modular as is. Most code was written to
take advantage of other strategies for re-use such as ASP.NET custom controls and also .NET
class libraries for data and logic abstraction. Thus, SSC’s desire for reuse largely had to do with

identifying portions of code from previous projects that could be reused on new projects.

The coding process varied from a week to 90 days depending on the size of the project.
Most of the value and quality SSC offered in their product was developed during this phase.
Fred, having extensive experience in other development environments, was responsible for
maintaining this quality under Daphne’s watchful eye. Daphne and Fred shared some of the
same traits and approaches to coding which made the two of them the most compatible on the
team. Daphne spent considerable time training Fred to do things “her way” and Fred was usually

able to replicate Daphne’s patterns.

Test, Debug, Launch

SSC usually contracted with a client for a 30, 60 or 90 day turnaround. SSC termed the
day a website was due for public availability a “launch date” and internal Quality Assurance
(QA) processes usually ramped up a week prior to this date. SSC maintained an IBM multi-core
testing and deployment server onsite as well as utilizing managed hosting offsite which SSC then
resold to their clients. Thus, SSC used a fairly reliable and predictable testing and deployment

environment. There were some exotic and esoteric installations with several past clients, but

204

SSC, Daphne especially, demonstrated an adept ability to quickly accommodate “out of the
ordinary” installations. Frankly, SSC suggested that an “ordinary” install didn’t exist as every

website and client were different.

After an internal QA process involving the PM and Daphne, Daphne would determine if
a website was launch-ready. At this time, the customer would be invited to review and inspect
their product. Quite often, something was not right and, despite requirements specification
documents and other agreements between SSC and the client, last-minute adjustments were often
ordered. The researcher saw that SSC would benefit from an agile process in this case as agile
processes call for early and frequent customer involvement where the customer is also

considered a member on the team.

Launch, Post-launch and Maintenance

Most projects of any size, including FMA’s project, required post-launch adjustments,
feature enhancements and maintenance once the “working software” was used in its intended
environment. Sometimes images would be the wrong size, or a menu and of some other user
interface feature would be deemed “wrong” and require amendment. As for maintenance, in
some cases, the client had their own hosting or hosted within their own IT infrastructure. In

many other cases, the client was on SSC’s managed hosting and could be easily maintained.

Reminiscent of the Waterfall Model

As a sketch of SSC’s extant methods increasingly came into focus during the summer of 2008, it
was apparent that SSC followed the classic waterfall model of the Software Development
Lifecycle (SDLC). The literature on agile methods, small teams, and web development suggests
that the waterfall approach is not effective for small teams nor is it appropriate for most web

205

development (Cockburn 2000; Cockburn 2002; McDonald et al. 2001a; Pressman 1998). Figure

36 shows SSC’s extant methodology.

206

Figure 36 SSC's Extant Methodology

SSC Extant
Methodology Web — Simple

Web — Complex
IT Services

—-(New Business, Referral or Rescue Project

Needs Written Technical
Requirement * Proposal Requirements

h 4

Communication | Client

Yes

)

4 Assign PM

Usually the
SAMme person

Design and
Code

A 4

Test, Debug
and QA

Logic and Data Developer
Launch

Maintenance

¥

207

Figure 37 SSC's Extant Methodology and the Waterfall Model

SSC Extant Methodology contrasted
with the Waterfall Model of the SDLC | \eb- Simele

Web — Complex
IT Services

—-C New Business, Referral or Rescue Project
I
l |
Needs Written Technical —Eequirements
Requirement Proposal Requirements
_/'-\\

h

h 4

Job?
Communication | Client
T
- Assign PM
/,,[Design
Design P /
Usually the
Same persan] » Layout
Graphic Developer | .
3 @plementatlon
Implement))
/[Verlﬁcatlon
Test, Deb
e:nd SAUQ —Accepla
Logic and Data Develope
» Maintenance |« '{% ,_M _
] | Maintenance

208

Figure 37 shows the steps of SSC’s extant methodology as contrasted to the waterfall model of
the SDLC. In February of 2009, as the Dialogical AR Partnership was concluding, the
researcher asked SSC’s team what they remembered of their “old” method and few of the
developers remember much of it as their old method was never formalized and their newer
method was formally expressed and familiar. When Figure 36 and Figure 37 were shown to SSC
in February 2009, all developers agreed that the diagrams generally captured their methods of
operation and also agreed with the characterization of their former method as an example of the
waterfall model. The SSC developers each professed that such a sequence was “something they

learned in school.”

5.5 Addressing the Initial Diagnoses

This section, and its subsections, provides a deeper description, characterization and
discussion of the dialogical evidence from the diagnosis phases of the Dialogical AR cycles.
Also, each subsection of this section elaborates on the list of concerns (Table 30) which arose
during diagnosis throughout the Dialogical AR effort and its iterations. These subsections draw
from transcripts from practitioner-researcher dialogs in order to address the issues listed in Table
30. These are: issues related to quality (items 2, 3, 4 and 11 from Table 30); issues related to
learning (item 8 from Table 30); issues related to productivity and process (items 1, 5 and 10
from Table 30); and issues pertaining to team dynamics and leadership (issues 6, 7 and 9 from
Table 30). Additionally, some issues related to clients and other parties external to SSC are

discussed as they are salient to SSC’s adoption and use of a new method.

209

5.5.1 Issues Related to Quality

Quality was an important theme that arose during the initial diagnosis and throughout all
of the practitioner-researcher dialogs. Issues related to Quality occur four times in the list of
concerns listed in Table 30. The desire for methodological assurance of quality is demonstrated
in a previous section of this chapter. Daphne’s fastidious attention to quality assurance is a key

driver in her ability to have grown her business since 2005:

Daphne:

There are a lot of people, from the first time I got in, and | know that | mentioned this
before... there's always somebody out there to do it cheaper. So, why is it that we charge
what we charge to build a website and that's a question that | get very often and continue
to get to this day...

Researcher:

One thing that is clear to me is you really value quality and your reputation and so you
really jealously guard these. It comes up over and over in your language and that's
good.

Furthermore, Daphne expects her employees to demonstrate quality and to uphold the virtues of
quality assurance. Daphne often feels as though her employees are not capable of producing the
same quality that she is capable of. Perhaps this is partially due to the greater risk she assumes
and her greater experience or perhaps it is innate, in any case, Daphne firmly believes that only
she is capable of producing the highest quality of work in her team. Daphne feels that, among
other things, it is her desire for excellence which sets her achievements in quality apart from her

employees:

Researcher:

210

Right, so what we want to step back and ask ourselves is: Well, what is development; is it
just writing code?

Daphne:

I believe that those fall under systems analysis and design, but if my developers are to be
as well-rounded as this technique we are trying suggests and | would like to see them to
be then they have to be able to do the system analysis.

Well, they do, in fact, would you not agree that the technique does address mail system
design? The whole user story part is all about design and requirements. | would think
you should expect this given the training of your employees... but I would think you
wanted well-rounded, do-it-all people

Now, here's a question: Does system analysis and design suggest a level of maturity that
has to be present before you can put somebody into that position?

Researcher:
Perhaps.
Daphne:

Because if | applied Johnny straight into a project, | guarantee you that he would miss
details because he just hasn't learned that the details are important.

Researcher:

| agree that details are important; that's why you need the apprenticeship that pairing
[pair programming] can facilitate; or, you you’ll have to get only experienced people

Daphne:

Unfortunately, one of the ways that Johnny learns is to make mistakes and | do let him
make them.

Researcher:

Well how about you?

Daphne:

Well, that's how I learn! (Laughter)
Researcher:

I mean, you, relative to the work force, and your peers? You are the master, relative to
them. There are people out there that you are junior to. | realize that and we all realize
that we are on a journey...

Daphne:

211

That's a very important point because there is something that we touched on when | was
trying to talk about Velma’s approach... when | suggested something that I knew needed
to happen and she questioned me on it.

Um, | think what | was getting at with the whole... is raw intelligence enough? | think
there also has to be a desire for excellence.

...And the realization that there is always a new level of excellence to be achieved.
Researcher:

Uh huh, absolutely.

Daphne:

...Because | do not think without that desire for excellence that true learning can take
place.

In this exchange Daphne not only demonstrates her desire for quality, but also questions whether

others are up to her level in terms of striving for quality. Daphne continues:

Daphne:

But I think that desire for excellence easily trumps raw intelligence...
Researcher:

Maybe they both need to be there?

Daphne:

Yea, | agree with that, but... | don't want to put this in terms of just intelligence measures,
but there are measure of intelligence like 1Q and things like that. 1 don't know what
Fred's 1Q is or Johnny's 1Q or Velma's IQ. | don't know what their 1Q's are. Do | think
they are the same? No. Do | think they could all achieve the same level of ability? Yes. |
think they are all smart enough that they could all reach a level of excellence if excellent
is their goal.

Researcher:

...What matters is the ability to do this well... | would say, because they [Fred and
Johnny] both received Information Systems degrees -- | was trying to get at this earlier,
they are both Information Systems trained people -- all three of you are. There should be
some advantages to that. In fact, 1 almost think it is a test of the quality of your
[educational] program just to see what is going on here, because they were taught...
their course work forced them to see the development process from a lot of levels. | don't
think software development is all there is to it. It's also delivering the product and
maintaining it - from the twinkle in the eye to the reality, the whole deal. So you need to
hire people that can deliver the hardest part and that separates the wheat from the chaff

212

in a lot of areas, but people coming out of your [education] program... should be able to
fit your bill. If they made A’s and B’s, they should be able to fit your bill. Now, what
kind of people are they? 1 don't know? Do they strive? Are they aspirant?

Daphne:

I think part of the piece of that is that you also have to be humble enough to realize that
there is always somebody better; otherwise, you can't be trained.

It is revealing to hear Daphne speculate on the intelligence inherent in her employees, but it is
even more revealing when she suggests that a desire for excellence is sufficient to achieve
greatness and quality alone. From this dialog alone, the reader may develop the impression that
Daphne is the only practitioner who desires quality in her team, however, the researcher’s field
notes contain assertions from the rest of the team concerning the importance of quality — even if
only as a matter of survival. Daphne summarizes this sentiment as the researcher discusses the

XP philosophy of embracing change:

Researcher:

...the byline to Extreme Programming is "embracing change." This idea is supposed to
develop a culture in your team where change is okay. And sometimes people don't like
change because it is volatile and they want a safe harbor; | think that is human. The safe
harbor is the team...

Daphne:

Well, the safe harbor is knowing that by delivering quality work we ensure ourselves a
future work. (Laughter).

In offering this diffusing humor, Daphne is reasserting that a commitment to quality is the driver
for growth and success in her company and remains key to future success. Thus, Daphne will
not likely embrace any method which does not hold quality as a core principle. In general,
Daphne knows that her dedication to ensure a quality in her work that is superior to, or at least on

par with the best products available, has delivered her success.

213

5.5.1.1 Ensuring Consistent Quality

Daphne was repeatedly clear that one of her primary expectations of any formal method
was that provisions exist for maintaining quality. In an earlier dialog, Daphne relates her desire

for a method which allows her to approach novelty in way where success is repeatable:

Daphne:

But that's one of the things | really like that we do around here is that I've had to come
back and say "what's possible, what's possible,” because, like I said, MNM [a strategic
partner] is quoting these jobs and they're not an IT company, so they're like, "what can
be done?" and I'm like, "anything can be done.” And that's the answer...

It's a matter of time and money... Anything is possible.

It's just what time and money are you willing to put into it? So they, they're always
coming at me with a new idea: "this client wants to see this happen™ and "this client
wants to... can you make this happen?” And I say: "Sure, what's the budget?" (laughs)

So, I don't think novelty will ever be a problem, but novelty as far seeing new projects all
the time, seeing what people want to accomplish. Where the problem comes in is: “how
are we sure that we're approaching novelty so that it's repeatable?”

Researcher:

That's actually very related to your method. Because what you want to do is produce
high-quality... everybody wants to do this... everybody wants the highest amount of
quality in the lowest amount of time. Your billable hours... what that really means is that
the more you have to pay them versus what the job was estimated, the poorer SSC is.

Daphne:
That's right...

In this case, Daphne makes a clear connection between quality assurance and the price that she
can charge for her work. This leads to the next major issue related to quality, which is
convincing her clients that quality is worth paying for. This topic is discussed in the next

subsection.

214

5.5.1.2 Justifying Quality

Daphne frequently mentioned the need to convince her clients that quality was worth
paying for. The developers at SSC understood this point as it relates to quality; Fred often spoke
of the need to maintain quality in order to command top price for their work. Nearer to the end

of our dialogs, Fred and the researcher had the following dialog on the topic of quality:

Fred:

That's what you are paid to do, but here we are not, essentially, we are not paid to test.
We are testing for the sake, the strength of our business and our projects, which
obviously is an important thing. The question is: does it bring up an argument that at
some point maybe you ... it is so a part of what you are doing, you could argue the quality
of your work is that much greater....

Researcher:
Uh huh.
Fred:

.... that, I mean, maybe even, maybe this isn't the point -- you will be able to say "we have
to charge a little bit more for this stuff because we know we are actually delivering this
much more quality to the product to support all the extra time, because it could easily be
a part of what you do as opposed to, "Oh, man, | have to finish this junk of work; | tested
it, then I finished it, then | blogged about it, then | talked about it. We put it in the wiki...

Researcher:

Sure, great.

Fred:

But how much of that can you cover?
Researcher:

Well I think it is a classic point. ...I tried to illustrate this to Daphne through some
allegorical examples. In the guitar world, selling guitars and making guitars, the person
who makes and fixes guitars is called a "Luthier,"” that is the term for it. There are a lot
of run-of-the-mill guitars; they are legitimate and functioning guitars, they'll do the job.
But there's a higher craft guitars - hand crafted from artisans and they command big
bucks for their work. And, generally, these people who craft custom guitars aren't sitting

215

around saying, "Oh, God, | wish | had more business, I'm not going to eat next week."
They've got a waiting list over a year long. So, lesson is: well-crafted artifacts are
recognized as such and generally rewarded. Is quality risky? Sure. But you are making
the case that your practices are so tight and sound that the quality --- well, Daphne says
she already struggles with promoting and justifying quality as it is; she says that you
already do command such a premium price that a lot of potential customers just can't
stomach. But other customers, they’ll pay for quality. That's the kind of business | hear
you [SSC] want to break into and the better your habits and processes are, the more you
should expect that. All well-paid craftsmen and professionals, you don't even think twice
about commanding top dollar for top-quality work. There's not even a question about it;
if you want the best you are going to pay for it. 1 think you make a great point, when you
invest so much in the quality of your process and, therefore, it comes out in the quality of
your product, have you stepped up your game and should you bill for that? Well, I think
that is a discussion for you guys to have. | think it's a very valid point because you are
also talking about professionalism...

In this dialog, the researcher develops an understanding of the Fred’s attitudes towards quality
and shares his understanding through the metaphorical device of an allegory. Further to this

point, Fred offered his own understanding of professionalism and quality:

Fred:

I like to think of a Carpenter’s profession, | think they are up against a lot of the same
sort of project structure that we are up against. A lot of their work is where things are
custom, they have to sometimes learn as they go, face challenges, deal with the
architectural issues and structure and all this stuff.

Researcher:

Does a really great carpenter command a really good price?
Fred:

Yeah, absolutely.

Johnny:

They say a good handyman, if after you tell them the price of what they do and their
mouth doesn't drop, then you've priced it too low. That's the handyman joke.

216

In this dialog, Fred understands that other professionals share some of his burdens related to
price and quality. Johnny also demonstrates his interpretive understanding of the issue. In an

earlier dialog, Daphne and Fred were talking about quality and Daphne had this to say:

Well, one thing that I'll -- an observation that I'll give about quality is, Fred and | have
had the discussion before. He's like, "Well, we really should deliver it this way," and I'm
like "Yeah, but we really can't afford to in this scope of a project.”

I think that this, having the client involved, and accepting what we deliver every week
helps us deliver quality to their standards within the scope of the project...

...50 | think that quality becomes controlled by the interaction with the client in the scope
of the project. So, I think we will be able to tell whether we deliver something of quality
going forward.

Here, well into adopting and adapting XP, Daphne reflects on quality enhancement via client
involvement. Yet, in the earliest phases of diagnosis, Daphne clearly characterized her struggle

to justify quality:

But still found people struggling with the idea that it might cost you $2000 to have a
website built. I got to thinking about... or | had some people talk to me about other types
of advertising, the yellow pages guy comes in and you might spend $10 or $20 thousand
dollars on your annual yellow pages ad. I'm like "why would you do that?" People
nowadays do not pick up the yellow pages, they go to the Internet. So, there was that
constant struggle of trying to explain to them the use. | guess that's where the intangible
of IT meets the real world because, like it or not, a website is an IT project and even
though it has a pretty front-end, the pretty front-end was built by Velma in 14 hours, why
does the project take 30 to 40 to complete? It's the not-so-pretty code behind that makes
it actually work... because I'm always getting: "can you build an eCommerce site for
$2000?" No, not here! (Laughs)

Daphne is already demanding quite a bit out of her methodology, but her attitude is a byproduct
of her approach to her business and growing her business. Throughout our dialog, it was
abundantly clear that she jealously guarded her reputation and directly associated the quality of

her work with her reputation:

Daphne:

217

We have a deadline today; I have one and Johnny has one. And, meeting that deadline is
far more important to me than him.

And it is just... he has a very laid-back approach to everything, so we have a problem
that will be brought up in the meeting next week specifically on how important deadlines
are to the company, because we have to be perceived as someone who delivers.

Researcher:

Right. Yes, your reputation...

Daphne:

Yeah. Now, obviously that's more important to me than any of my employees.
Researcher:

Yes.

Daphne:

How do | make it mean something to them?

For Daphne, SSC’s reputation also comes down to factors such as delivering on time, providing

added value through custom-built websites and strict observance of ethical behavior. Even as

Daphne grapples with reuse and “productization,” she realizes that she needs to tread carefully so

that she isn’t “double-dipping” when she charges clients for re-usable components.

5.5.2 Issues Related to Learning

Our dialogs also revealed how important individual and team learning were for Daphne

and also highlight the scarcity of time available for learning. Learning has played a key role in

Daphne’s ability to grow her business. She has repeatedly recognized the need to learn new

skills to move her business forward and she has exerted whatever effort required to posses that

skill. Daphne learned how to create a good N-tier architecture from self-guided learning and a

die-hard inquisitive spirit:

218

The first time | actually saw an n-tier application was right before I had left the Toy
Shoppe, we had, | think I had mentioned this before, | had done a .NET upgrade with a
piece of software called .NET Storefront, we purchased the source code for that and | got
to take it apart a piece at a time. | saw how a production eCommerce package was built
and maintained. And it was a simple n-tier, it wasn't a framework, but it taught it... it
finally clicked for me exactly what they had been talking about at [school]. | began to
work toward fully achieving separation of code and presentation. | won't say that I did it
immediately but I've gotten a lot better at it over time.

At times during the dialogs, it seems as though Daphne is too hard on her employees or has

unreasonably high expectations, but these expectations are understandable not only from the

perspective of her commitment to quality, but also her commitment to excellence through

learning. Daphne identifies the learning that is possible when every project is unique in some

way.

Well, part of the challenge, but what also makes it interesting is that every project is
unique... | don't care what kind of project | work on and even though they're starting to fit
certain patterns, there's something about every project that's different... 1 wouldn't say
I've ever encountered two projects that are exactly the same, somebody always comes up
with something new that want to see done. So, because of that, a lot of people see that as
reinventing the wheel over and over again...

Daphne also recognizes the value in learning from mistakes, but she also wants her team’s use of

a new method to facilitate a learning process where lessons from mistakes don’t slip away but

are retained. On the topic of professionalism and mistakes, Daphne said:

Yeah, well, okay, "professionalism™ | would say that in my handlings of company, the
ethical way | lead my business, what | expect from my employees, the fact that | am not, |
don't beat my employees up for mistakes, but | expect for them to learn from them and |
also don't purport myself to be perfect and I try to learn from my own mistakes.

But | do think that if you refuse to learn from your mistakes and you keep beating,
bringing up the same thing over and over again; | do not consider that professional
behavior...

Daphne also feels that a level of humility is essential in order to learn from mistakes. Despite an

espoused esteem prioritization for learning, our dialogs also revealed how the entire team was

always pressed for time. In the name of professionalism, there is some expectation to learn “on

219

your own time” and during the “after hours,” but there was little to no time built-in to the
software development practices at SSC for ongoing and systematic learning. Fred realizes the
implications of the paucity of time spent on learning and, during a dialog well into the entire

Dialogical AR process; Fred relates the utility in apportioning time for learning and for reuse:

I believe there is a long-term benefit to all this because the last group | worked with, you
know, 3 1/2 years, and it always came up over and over again in meetings how we
needed to have some sort of central stash of reusable stuff and we always talked about it
but never quite put it together. For the exact reasons here: a small group sort of...so to
be able to make time for it -- it would be... it's like the prudent thing to do, like you would
have to really force yourself to do.

During our dialogs, | noticed repeated mention of new and emerging technologies the team
wanted to learn, and insisted they would make time to learn. However, for the duration of the
Dialogical AR study, they did not make time to learn these new skills and technologies. Some of
these technologies, AJAX, XML, WPF/XAML and LINQ, would likely improve the quality and
competitiveness of their products and ensure greater customer satisfaction. Daphne and SSC
were certainly not ignorant of these facts, but business was thriving to the point that very little

time was available.

The researcher’s field notes are rife with annotations and memos pointing out the team’s

lack of time for research and development (R & D). At best, Daphne suggested that:

I think everybody, as an individual, ends up with a couple of hours here and there that
they could spend on learning. Unfortunately, what happens is that those are never at the
same time.

I can vividly remember the rich irony of a dialog cut short when Daphne replied with “we’ve got
to move on, time is pressing” in response to a oration where the researcher was stressing the
importance of making time for R&D. This was but one characterizing illustration of how SSC

did not afford significant time for learning. Often, Daphne would simply wait until the “hype

220

cycle” of a new technology reached a high acceptance rate before she would devote time to
approach it: “until it becomes about 60% or 70% accepted, we can’t use it.” As a hedge, Daphne

does find small provisions and excuses to at least dabble in new technologies:

Daphne:

Now I have, like with work on our own website and stuff like that, | require them to use
the newest technology, because that's where it doesn't hurt us... That's what actually
makes us look better.

Researcher:

But you're not getting any billable hours on this...

Daphne:

That's right

Researcher:

...and that's my question: How do you innovate and still balance billable time?
Daphne:

Yeah, like Fred built Gallery in AJAX and it's the latest versions of AJAX to the extent
that it doesn't run in IE6, it only runs in IE7 and Firefox2, so it is the newest AJAX out
there, which is cool...

Thus Daphne, despite her desire to spend inordinate time on learning everything new, has to

rationalize when, what and where to incorporate new technologies.

Again, | don’t believe that there is a lack of desire or concern for learning new
technologies. Daphne certainly identified the need to keep up when she submitted to additional

and continuing education beyond her bachelor’s degree in graphic design:

I was one class short of achieving the associate's degree at [a local community college]
still feeling like 1 knew very little about what it would take to program a really fantastic,
awesome website. You know, to do everything that I could see coming on the horizon for
the web... | was like: "we've just scratched the surface."” | felt like, 1 called it the
"stepping stones.” There's like stepping stones on a lake. The lake is what | need to
know. | was just getting the very highest points of what was out there.

221

Even as Daphne’s own role and responsibilities turned more towards running her business, her

need for strategies to keep SSC’s use of technology was at the forefront of her thinking:

Researcher:

Okay, so: being so small, what do you do to ensure that you, and everybody else on the
team, is at or ahead of the curve on emerging technologies? Because you are a web
development and technology company, you've proven that you've done lots of developing
web sites, interactive, high-quality websites...

So, what do you do, being such a busy person, and your staff being busy?
Daphne:

Well, see for me, I'm faced with the Bill Gates dilemma: Do | grow the business and
become wildly successful as a business owner or do | try and keep up with the
technology? 1 go back to the... I look at his example and my business idol, which is Walt
Disney, and he said: "You hire the best, you work only with the best" and that's how you
succeed.

Researcher:
And that's how you will keep up with it...?
Daphne:

Uh huh, so if I hire in new people who are the best, or who have learned the new
technologies, then I should be able to stay up with the curve that way...

Researcher:

This is an interesting thing for us to explore. So you feel the transformation of being the
technology and business leader in your company to maybe not being the technology
leader in your company; and, you foresee that and you feel that that shift is imminent?

Daphne:

Yeah, it does, it does feel that way... there's no way that | can keep up with the technology
and grow the business at the same time.

Unfortunately, this assertion conflicts with other beliefs Daphne holds about her own skills and
those of her employees, but her forward thinking in this dialog reveals healthy expectations for

the future.

222

Of course not all learning is concerned with the latest technology; some learning is about
personal and team improvement. Also, SSC does not just desire an improvement in individual
learning, but also desires a process to ensure that the team learns. Daphne, while recognizing the

importance of this type of learning, flatly and honestly answered a direct question on the matter:

Researcher:

When do you guys have the time to stop, reflect and learn?
Daphne:

We don't really...

The researcher begins to wonder if this lack of time is symptomatic of the pressures and demands
placed on all small teams in a small-shop environment. It seems as though some larger IT
companies are able to encourage and facilitate continuous learning for their employees and yet,
in this case, the spare time is just not there. SSC’s new method would also need to address this

issue of learning.

Certainly the time spent in dialog with the researcher was time away from productivity,
so it must be acknowledged that the very act of entering into the Dialogical AR Partnership was
an investment in learning. | do not fault the team or Daphne entirely, but the evidence from the
dialogs emphasizes the need for a new methodology to focus acutely on mechanisms and

processes for continuous learning.

5.5.3 Issues Related to Productivity and Process Optimization

At various times during our dialogs, Daphne felt that her initial patterns of operating,
which served her well on her path to success, were in doubt now that she had several employees

and jobs of increasing size and complexity. Often, Daphne spoke of making profit margins and

223

whether her PMs would take the initiative to bring a project under budget. Daphne recognizes
the need to incentivize her employees and also acknowledges the effects that disparities in

motivation have on the team as a whole:

And Fred has finished his part of the job waaaay under schedule and Velma just blew it
out of the water and he was not pleased... and he did not attack her or anything in a
meeting, but he brought it up, which was part of what | wanted to accomplish by making
them individual project managers, | wanted to make them personally responsible for
some of the jobs so that they would feel a sense of ownership over the job... The reward
program for bringing a job under budget and giving them some kind of bonus was part of
that...

But the other thing is, I'm not the only one constantly coming down on people. The
project manager gets to say: "well, why is this taking so long?" or gets to point out "well,
you know so and so took 10 hours longer than they were supposed to..." and we can talk
about that in the meeting, so that was my goal... you know, to have them work together as
a team...

...With a different project manager on each one, the jobs also tend to be specific toward
a certain skill set, so that usually determines who gets put on as project manager. But
that's been part of my trying to get them to see that they're responsible for that. Because
if it comes up in the meeting and it's bad work, they get all upset and everything, but I'm
like: "You know what, you're the one who turned in the work..."

Thus, Daphne expects that any method she adopts would distribute a sense of ownership across
the team and allow for efficiencies across the team. This also involves each team member

“owning” the problems and pitfalls of a project in addition to the benefits of success:

...And Fred and | have had that discussion because he will ask me: "How long should |
spend trying to figure it out?"” He wants me to say "spend two hours on it and if you can't
figure it out, then come to me..." There's really not an answer for that because | do want
him to gain experience in solving the problem... there's a certain level of experience that
can't be attained until you beat your head against the wall solving the problem, but in a
small company, you can't absorb a whole lot of that cost...

It seems clear that the practitioners at SSC most value open and direct communication in order to
maintain focus and inertia. On the subject of meetings, Daphne intimated how meetings are an

opportunity for communication and awareness:

224

They have all told me that they like the meetings because they know how much work they
have to do, they like knowing what they have to do during a day. Before the standup
meeting they'd be like they weren't always sure what they were going to be working on. It
wasn't that the work wasn't here; it was that | didn't have the time to go over it with them.

So we maintained a sense of what is going on - what it is they are expected to do and
knowing they need to deliver that work.

As her team adopted new methods during the course of the Dialogical AR Partnership, the

team’s perceived value of meetings only increased:

I think that the daily standup meeting is really helpful from the aspect that it helps me see
what | need to have available for the employees so that they can keep moving; it prevents
them from having to wait on me. Especially when there's software purchases and stuff
involved that they can't do on their own.

Apparently, the benefits of increased communication are of great importance to SSC and are an

expected byproduct of any methods they adopt.

For Daphne, the greatest and most important measure of process efficiency relates to
individual productivity, which she checks on a daily basis. Daphne’s primary metric for
individual productivity is “billable hours.” Daphne focused on any aspects of method which
afforded increased billable hours. As SSC were learning and adopting XP, the Daily Standup
Meeting was instantly attractive as it offered a means to know, on a daily basis, how all projects

were progressing and about the productivity of all employees:

Daphne:

The way that you describe the standup daily meeting... | can immediately see an
increased productivity coming from that, which is weird because | know that you thought
that it might seem something like a drain on processes.

Researcher:
Yeah, | was concerned...

Daphne:

225

But what happens a lot of time, you know, when we have the daily meeting and | always
finish the meeting, you know, the Tuesday meeting...

... I was like "okay, everybody know what they are working on today?" They are like
"Yeah™ and they take off and start working. And | think that is a good feeling for
everybody. The feedback I've gotten back is "I love Tuesday, | know exactly what | am
doing."”

Researcher:

Now you can't take an hour every day, | think you work your way into that. Maybe the
first several will take a half hour, but I feel that, if you did this for several months and |
revisited this in December, and you stuck with it and found benefit in it, that the daily
meeting wouldn't take longer than 10 minutes.

Daphne:

I do see in their timesheets, which is not something that each of them get to see (each
other's), that there is down time and lost productivity. So I am hoping... | would think
that something like that would move the process along more fully and even if there is
downtime, maybe doing some of that shared sitting around and learning from one
another.

Daphne’s focus on productivity is understandable as she personally feels the risks associated

with running her own business and her own take-home pay is affected by the actions of her

employees; when her employees are less productive, profits are down and she is paid less.

Productivity and profit are obvious goals for any business, but a small business seems to feel

variations more directly:

Daphne:

Every time you hire somebody you face the same thought.
Researcher:

So, one problem with growing... or with growth is contraction?
Daphne:

Yeah, will the work volume slow down?

I mean there have been times when Fred and Johnny were slow. Luckily, we continue
to... we pretty much break even around here, we don't make a whole lot of extra money...
we really don't make extra money. But we're in our first... what is this? Our second full
year of being in business and look at the overhead we took on starting in October of last

226

year. Fred was really the first fulltime employee on the books because Velma is
technically part-time working 30 hours a week. So, all of a sudden | had to have
Worker's compensation insurance, | had to... we had to go monthly on our taxes instead
of quarterly... you know we took on rent, we took on...

Daphne’s motivations and attention to profit and productivity are easier to understand in light of
the preceding dialog. In the month-to-month operation of her business, Daphne is acutely aware
that productivity, expressed as billable hours, makes the difference between, profit, breaking
even and losing money. These issues often come down to the actions of the individual

developers on her team.

Daphne:

Right now, in order for the company to be viable... if Fred and Velma were 100%
billable, the company would pays its bills, just the two of them. But they are not 100%
billable, so Johnny and | have to make up the difference. And with Fred out of town this
week, we're going to take a big hit on billable hours.

Despite year-on-year growth, Daphne must run close-to-the-bone margins at all times. Thus,
Daphne has high expectations that a new software development method would provide quick and
immediate effects with respect to billable hours. However, beyond profit alone, Daphne also

desires synergy in the combination of the talents on her team:

I was talking to somebody about that and they used the word "synergy.” The parts
together are more than the individual... Working together, they are much more effective
than if they were working apart.

The next subsection goes on to discuss further the ways in which the burden of leadership affects

the dynamics of Daphne’s team.

5.5.4 Issues Related to Power, Risk, Skill and Leadership

227

A small team is also an intimate team where the habits, quirks and foibles of each
individual are omnipresent. Compounding the effects of constant close association is the deep
interplay in team dynamics when the owner of the company also assumes the role of team leader.
Thus, as would be expected, Daphne must wear many hats and assumes many responsibilities
and duties. Understandably, Daphne, wary of losing control of what she has worked so hard for,
holds high standards for herself and her team and remains cautious about delegating authority.
The subsequent subsections use evidence from the practitioner-researcher dialogs to illustrate

and characterize these issues.

5.5.4.1 Power, Leadership and Running a Business

Stan Lee, creator of Marvel Comics, once quipped: “With great power comes great
responsibility.™” Issues of power, leadership and responsibility, as they relate to running a small
web software development shop and team, were a constant and recurring theme throughout the
practitioner-researcher dialogs. Thus, the burdens of leadership and decision-making were often
the subject of Daphne’s reflections. On the subject of the value of her time, relative to the sum

total of her responsibilities, she once retorted:

| said to her: "you're not getting even one of my employee's time, which is also very
valuable, you're getting MY time..." and | don't think you understand that...

Despite her time being precious and jealous of the use of her time, Daphne also conveyed the

sense of isolation that sometimes accompanies the burden of leadership:

P U

> This is paraphrased and taken from Stan Lee’s “Spider Man” comic series. The phrase originally appeared in

August 1962.

228

I was really looking for the team experience because, one of the things that's true of
being the business owner is that it is lonely at the top if you have to make all of the
decisions.

Despite the loneliness of leadership, the responsibilities of leadership often demand assertiveness

with respect to risk-taking and decision-making:

That was one of the things that people told me, if you are in charge, don't apologize for
the decisions you have to make in order for things to work. | remember having to stand
up to [an adversary] in a way that he probably didn't much care for.

Oftentimes, the daily life of SSC’s operations appeared to be chaotic and fraught with mini-
crises and “flash fires” which required constant “fire-fighting.” Thus, a take-charge attitude was
apparent in the disciplined manner in which Daphne ran her business and approached new
projects. Daphne characterized this impression as a natural response in a dialogical process with

the decision-maker and leader:

Researcher:
It seems like are a lot of crises lately.
Daphne:

I don't know; it could just be me reacting to things because you are talking to the owner
of the company, so | have to handle everything that comes up. | don't have the luxury of
ignoring anything.

These statements leave little doubt that the burden of leadership is a prime factor in Daphne’s
view on quality and how a team process would ensure a dedication to quality among team
members. Thus, the work ethic Daphne looks for in her employees is reflective of her own
propensity to give 100% (or more) in her efforts; as she once said to me: “...110% of the work

ethic around here comes from me.”

Despite Daphne’s acute awareness of being the boss, it was an issue she struggled with in

terms of what an appropriate show of authority would be in a given situation. Like any leader,

229

Daphne was often concerned with how her leadership was perceived. Later, during the action-
taking and during the adoption of the daily stand-up meeting in the XP process, Daphne
wondered how the ritual of standing up in a meeting would affect her power relationship with her

employees:

Daphne:

I think the only thing that changes, then, is the way that we roll through things is the fact
that we'd be standing up. That's an interesting dynamic. Has there been any research
into this... because I'm the shortest person here...

Researcher:

I don’t know...

Daphne:

I wonder if there is a psychological component to that?
Researcher:

I could check for you.

Daphne:

It is just a curious thing that ran through my head.
Researcher:

That’s fair.

Daphne:

Because when | stand up and they sit down, | look down. I'm the boss. Now, I don't
want to look down on people - that's not the point, but I'm going to be looking up to both
of my developers during this meeting. (Laughter).

A casual observer might dismiss Daphne’s concerns as trite, but the degree of respect afforded to
her authority is very important to Daphne. | do not think Daphne wanted to dominate over her
employees as much as she wanted respect for her authority commensurate with the deep

commitment she had for SSC’s success.

230

At times, Daphne expressed concern regarding her employees’ motivations, skills,
attention to detail and work ethic. Daphne espoused the inherent value of the diversity of skills
and working styles in the team, but Daphne’s Theory-in-use belied an expectation that her
employees should directly emulate her own qualities. In response to a list of “squawks”

regarding the short-comings of a delivered product, Daphne said the following:

Daphne:

I would say on the list, about 70% of the things that [the client] identified are things we
have just not been careful about.

Researcher:
Well then that causes you to also consider an internal process for improving your team...
Daphne:

Well, | elected at the beginning of that to forward the email that [the client] had written,
even though [the client] did not send it to Johnny, [the client] sent it to me. What |
learned with Velma was that if | shared the bad feedback with her, it did nothing for her.

Researcher:
Okay.
Daphne:

It made her an unhappy employee, basically, but | needed her to know that | was taking
the heat for her.

Researcher:
Partially appropriate, but then inappropriate if it doesn't encourage learning...
Daphne:

Right, so I felt like I'm going to involve Johnny in this process so that he knows and then |
called him into my office and we went through them one at a time and | said, "Okay, this
isn't done, why wasn't it?" So we went through that. So | imagine it was a little

% This is an aviation term often used in reference to defective items which are entered into an aircraft’s

maintenance log

231

uncomfortable for him. So he took them home and said he would do them this weekend so
that is why it is on my list today to go back and make sure he did them all.

So, partially due to the experiences of daily work, and partly due to the burden of leadership,
Daphne frequently wondered whether her employees would react to issues in a manner

consistent with her own values.

5.5.4.2 Skills, Work Ethic and the Individual

Throughout the practitioner-researcher dialogs, Daphne emphatically stated a belief that
the skills and experience of her employees were at the same level as her own. Daphne’s own

work ethic was often projected onto her employees as is evidenced in this dialog:

Ahh... I will say... well, everybody has a different work ethic... | have always been the
kind of person who gave a 110%, no matter what, which is why | ended up in business for
myself, because when | gave a 110% percent and my employer didn't think it was
enough... I was like: "I don't think you understand that I'm already giving you everything
I have..." They would just assume that | wasn't...

I guess that's because, probably, 90% of the employees out there in the world are not that
way... And, | was like, well, if that's the way it is, then | need to just be in business for
myself.

Now, because of that, | have... when | hire employees | have to realize that they're not
going to produce the same quality that I do.

I received pieces of advice like, "Hey, you're just going to let them go out and really mess
it up.” And I've had to call an employee out in a meeting before, for sub-standard work,
and they got really upset, and that was Velma... she got really, really upset. But she more
than doubled the hours on the quote and it turned out she was going through a personal
problem...

And I'm like: "You know what, it would be better for you to tell me upfront that there's a
personal problem that's going to impact you, than to deliver me sub-standard work and
let me think that you're just delivering sub-standard work..." Everybody says "well, 1
usually don't let my personal life affect my work..." well, that is not true, your personal
life DOES affect your work...

232

Given Daphne’s belief concerning the level of effort to expect from employees, it is no surprise
that Daphne would prefer if employees were to emulate her own actions and seek to acquire her

skills as it is through her actions and skills that she was able to build up her business®’.

5.5.4.3 Transferring Skills and Skills Cross-Training

Daphne often stated her belief that she had more experience and expertise than her
employees; as such, she desired a method which would promote skills cross-training and skills-
transfer among the team to bring her employees up to her skill level. Often times, Daphne
wanted work to be accomplished the way she would do things. In one of the first utterances
captured during our first dialog, Daphne illuminates her desire for a method to transfer her skills

to her employees:

If we had something in place... this is what | expect you to do. You can do it in your own
way, but here are steps... you know, here are the benchmarks along the way.

I don't care if you veer a little bit as you go along as long as you come back to the center
by the time we get to the end. We have a deadline today; | have one and Johnny has one.
And, meeting that deadline is far more important to me than him.

Furthermore, since, as previously stated, Daphne’s believes that her extant methodology is “in

her head,” whereby she wants to transfer her methods directly to her employees:

And even though we haven't written a formal methodology, which | guess is just in my
head, and | have conformed Fred to what's in my head...

Luckily, he has been trainable and has listened to what I do... Johnny is going to be less
conformist and perhaps a methodology becomes more important with an employee that
likes to break out.

7 schén (1987) would relate to differences in capabilities between Johnny, Fred, Daphne and Velma

233

Fred was content with delivering back to me exactly what I asked for so I've molded Fred
into my way of thinking, so | guess the methodology is in my head.

But, if I'm ever going to hand over the reins to other people, there has to be something in
place that explains to them how that works because they're not inside my head.

We see that Daphne would like for her employees to assume her own good work habits regarding
the transfer of her skills. However, Daphne also concedes that any new method SSC adopts must
establish a team approach. Whereas Daphne hopes that the methods SSC adopts will bolster a

team approach in the long term, Daphne has the following opinion of the near-term:

Right, and | feel like, right now, and I've said this before because I've use the term like
"babysitting" and stuff like that... | feel like I've grabbed a hold of everybody and they're
kind of dragging along behind me...

There will come a point when they will know what I know and where do we go past that?

Daphne gives a clear indication that she desires employees, or teammates, which are as strong as
she is. This has interesting ramifications addressed in the literature on agile methods; many
books and articles on the use of agile methods mentions the skill level of the individual

developer as among the key factors for agile success.

As Daphne looks forward to the day when her employees surpass her skills, she, in the
present, must remain cognizant of the differences in skills and, in most cases, look to mold her

team after her own capabilities. The next section discusses this.

5.5.4.4 Replication: Refactoring Team Habits to Align with Leader Habits

Another frequently recurring theme, and a motivation to seek the assistance of a
formalized method, is Daphne’s desire to impute her work style, habits and ethic to her
employees. Again, her Espoused Theory considers the value of a diverse team, while her

Theory-in-use suggests that she won’t have peace of mind until she knows that everyone else

234

does things in a manner which is familiar to her. This interpretation is not made in jest of her
disposition and does not pejoratively dismiss her motivations: it is no small risk to enter into
small business as it is inherently risky in terms of internal and external factors (DeLone 1988;
Everett et al. 1998; Watson et al. 1996). As with any business owner, the risks are ultimately all
on Daphne’s shoulders as her employees could always pick up and move on to new
opportunities. Thus, initially, Daphne’s apparent Theory-in-use was to seek mechanisms to
monitor and control the habits of her employees to ensure maximal quality and to mold her

employees into her own work ethic and habits.

In much the same way that a researcher taking the scientific attitude will generate second-
order constructs to explain the meanings a practitioner places on phenomenon in her daily world,
Daphne may be creating an outsized and idealized model her own qualities in what Schutz (1962,
1967) would call an “ideal type.” In this case, to impute phenomenology as it pertains to a
researcher’s actions, Daphne appears to reflect on her ideals for quality and ethical work, reflect
on her own first-order constructs of quality and ethics in a universal sense, and thus develops
second-order constructs with respect to her employees which can be considered puppet-like

“ideal types” which embody Daphne’s wider virtues (Gorman 1977: 61).

If work ethic, style and behavior are idealized in Daphne’s own understanding, then her
constructed ideal type of these qualities become the expectations Daphne has for those around
her. Thus, a common theme which emerged during our dialogs was a strong idealization of
Daphne’s own quality. Interpretively, this likely stems from the confidence required to
successfully run a business, the inherent risk in owning a business, the risk in assuming more

liabilities with new employees and a historical and contextual sense that all of Daphne’s

235

accomplishments have been hard-fought. Some examples, from the dialogs, of Daphne’s

assessment of her own skills and abilities are now examined. On the matter of her work at TTS:

I know they hired somebody in after | left, they were not able to hire somebody in for
some reason while | was still there. That person ended up not being able to deliver the
kind of work that | had delivered and they've gone through two or three people now since
I've left and | know that they've never upgraded their website. (Laughs)

Also, on the matter of her initial relationship with her first strategic partnership with MNM,

Daphne had this to say regarding the work she rescued in assistance to MNM:

Rex had left them high and dry with two websites in process; one of them being
eCommerce on the MIVA platform and the other one being an organization called [a
non-profit child-sponsorship organization] which is based right here in Richmond.... 1
think, looking back on it... Well, Rex had told them it was impossible to implement Joe's
design on the MIVA platform and | was like: "No it's not." Style sheets were coming in
around then and | knew that you could pretty much do anything with style sheets.

On the matter of her participation in a software competition project and the interest a state

agency subsequently took in the finished product:

What | saw was the respect that we got. When we worked for the [a state agency within
the Commonwealth of Virginia], | got to meet really important people over there, | got to
talk to the guy in charge of the [a state agency within the state of Georgia]. | put together
quite a book of research and had the ear of people and even though the [a state agency
within the Commonwealth of Virginia] couldn't go with us because we... you know part of
their requirements are that it has to be a company, a long-standing company, and know
that it's going to be supported over time, and that ended up being a roadblock that we
could not overcome... They now have an in-house application that does exactly what we
wrote.

I guess the ultimate... "The sincerest form of flattery is to have someone copy you?" So,
when | called and talked to the lady at the [a state agency within the Commonwealth of
Virginia], once this [other] (sic) company was established and could support the product,
I spoke with her again and she said: "Yeah, we have it already. (laughs)

Thus, Daphne continued to extol the high quality of her own skills, knowledge and ability as the

cornerstone upon which she has built a successful and growing business. Daphne relies on the

236

certitude that her traits have allowed her to double her business every year since 2005. Thus,

Daphne carries an expectation that these same standards should be met by people in her employ.

Daphne is motivated by more than personal satisfaction in her own high quality; she is
also interested that others, particularly current and potential clients, recognize her quality.
Daphne makes this clear as she told the story of how she attained her second strategic partnership

when she gave a presentation at a Business Partners International seminar:

Daphne:

...it looked like it would be a really good opportunity to get business and... but for me,
too, as a new business owner out on my own, it was other business owners... there were a
lot of other small business owners who were experiencing growing pains, had to do
certain things... hiring their first employees. So, the stories | go to hear from the other
business owners were very, very important for me. Very supportive... | had some other
people who understood what it was like to be me.

Researcher:
And would you say it did generate business?
Daphne:

Actually, it didn't generate too much business straight out of that group... really, I look
back on it and | only had 2 or 3 referrals the whole year. Part of the reason became: it
was hard to refer people to me because they didn't understand what | did.

Researcher:
How so?
Daphne:

I got my first business, I... they do something called a 10-minute presentation and after |
was able to do a 10-minute presentation | got one of the first referrals. Because | was
able to demonstrate poorly-built websites versus effective websites, that suddenly clicked
with people that what we build here is different than paying your cousin's nephew's son
who took a web design course in high school to build your website. | was able to
demonstrate that with a power point presentation and it was very effective... So effective,
actually, that one of the guys asked me for a copy of it.

Researcher:

Yeah

237

Daphne:
"That's the best 10 minutes I've ever seen!" (Laughs)

Daphne’s assertive belief in her own capabilities and a desire to make potential clients
understand and value the quality product she offers was a consistent theme which arose in many
of our dialogs, regardless of whether the dialog was focused on diagnosis, action planning or
evaluation. As Daphne continued her story regarding her presentation to the business group and
how she impressed her second strategic partner, she reveals that her belief in high standards of

quality is the reason she gets “rescue” projects and why she can charge a premium rate:

Researcher:

Now it is interesting that you say this because | think this tying into previous themes
we've worked on with "rescue.”

Daphne:

Yeah, that was when... when | started to prepare that first 10-minute; I started to realize
that was what | was seeing. | was like "you know, | do a lot of that..." | do a lot of
looking at where people had gone wrong and helping them to put it right.

Researcher:

And so this is the increasing nature of your business through the beginning portion of
200772 It's through MNM, and just picking up here and there, where largely it's about
taking something that's not so great and making a high-quality product?

Daphne:

Yeah. Because there are a lot of people, from the first time I got in, and | know that |
mentioned this before... there's always somebody out there to do it cheaper. So, why is it
that we charge what we charge to build a website? And that's a question that | get very
often and continue to get to this day, even from my employees. I've had to have that
conversation with each of my employees at one time or another. They come to me and
say, "you know, my friend needs a website, but | don't think he can afford to pay what we
charge.” So then | have to go through the conversation and explain to them why we
charge what we charge and they realize where I'm coming from. None of them has failed
to understand why it is that kind of website is not the kind of work that we want here.

Researcher:

Would you say that one function of charging more is that you might take extra time to
make a quality website?

238

Daphne:

Uhm. Actually, some people might see it that way, but the way | see it is that | refuse to
generate anything less than a quality website, so it's got to be a certain amount of work
that goes into it.

The previous passage very clearly illustrates Daphne’s perceived disconnect, in terms of the

expectations of quality, between Daphne and her employees. As Daphne began her second

strategic partnership with KWC, the dynamics of the relationship are immediately characterized

by the quality and care that Daphne feels SSC brings to a project:

Daphne:

Yeah, all these third-party contractors: they couldn't coordinate everybody and they were
getting really frustrated with the one that they had. They had some... actually it was
earlier than that... because | met with them in November... because they were supposed...
they were working with another company, they called them Data Control, it’s not a
company | was familiar with... They were supposed to have released phase one of a
three-phased project at the end of October and it didn't happen. And then when it did go
in, the woman who had built the project was in Australia for a month...

Researcher:

Okay.

Daphne:

So, they put somebody else in on it and he said it was just a disaster...
Researcher:

Oh?

Daphne:

So they brought me in November and there were three companies that bid the project, |
do not know who the other two companies were but, we received the job!

As Daphne brings new employees onboard, she carefully guides and instructs them on the

particulars and parameters of acceptable quality. In leading by example, Daphne relates the first

project she worked on with Johnny and how she demonstrated to Johnny and her client that she

was capable of bringing high standards to the work she does. In relating the particulars for a

239

project completed for a research organization located in the state university she graduated from

in Central Virginia, Daphne said:

Daphne:

Yeah. So anyway, they had a... just a God-awful process in place at the [research
organization]... it was taking 20-some hours and a 17-page document to describe what it
was that they were doing. | took that 17-page document and by mid-January, we were
able to build a system that would replace the entire 20-hours of work and my estimate for
replacing work is that it would now take less than an hour to do the 20-hours’ worth of
work. And | remember that when we first demonstrated it that they were thrilled with it
but they didn't think there was any way it would take less than an hour and I'm told now
that it takes as little as 15 or 20 minutes.

Researcher:
Wow.
Daphne:

It is the most complex business problem I have ever solved for anybody. Unfortunately, |
can't tell you anything about it. (Laughs)

We also begin to see that Daphne is just as motivated by the satisfaction she brings to her
customers when her high standards and dedication to quality are brought to bear on the projects
she undertakes. By her example, Daphne was able to demonstrate to Johnny the kind of quality
she expects. However, throughout our dialogs, this quality was idealized beyond what could be
taught by example. When Daphne desires a means by which she could “open up her head” and

“dump” what she has into her employees, she desires idealized replicas of herself.

In reference to Schutz’ concept of the “ideal type,” it appears that Daphne engages in the

development of an “ideal type” of her own work ethic:

In the process of understanding a given performance via an ideal type, the interpreter
must start with his own perceptions of someone else’s manifest act. His goal is to
discover the in-order-to and because-motives (whichever is convenient) behind that act.
He does this by interpreting the act within an objective context of meaning in the sense
that the same motive is assigned to any act that achieves the same end through the same
means. This motive is postulated as constant for the act regardless of who performs the

240

act or what his subjective experiences are at the time. For a personal ideal type,
therefore, there is one and only one typical motive for a typical act. Excluded from
consideration when we think of the personal idea type are such things as the individual’s
subjective experience of his act within his stream of consciousness, together with all the
modifications of attention and all the influences from the background of his
consciousness which such experiences may undergo. (Schutz 1967:188)

Daphne holds an Espoused Theory that a “team” process and method for software development
is desirable and something any method that the team adopts should possess. However, her
apparent Theory-in-use holds that “employee quality and standards should be my own.” The
Theory-in-use suggests that Daphne has created an ideal type to which she holds and compares

her employees to.

Schutz calls these ideal-types homunculi (little men) which are *...an idealization of
those typifications and self-typifications practiced in everyday life, and the homunculi
themselves will interact with each other in the same way actors interact in the common-sense
world...” (Gorman 1977:62). Thus, much as a researcher interpreting phenomenon observed in
the “natural attitude” will create ideal types to illustrate relationships among second-order
constructs, Daphne’s theories-in-use typically involve the homunculi of ideal types. Daphne
develops relationships between these ideal types in the case of her employees, her strategic
partnerships and her clients. There is an “ought-to” pervasive in her theories-in-use which are
not surprising when the historical and social context of her actions is considered: Daphne is used
to giving so much and working so hard, that she constructs homunculi which also rise to her
level. In adopting the Reflective-Agile Learning Model and Method, Daphne would need a
means of accepting the deviations of reality with respect to the scenes and situations in which the

homunculi of her theories-in-use act.

241

Throughout the cycles of the Dialogical AR Partnership, Daphne most valued the aspects
of methods or techniques which confirmed her theories-in-use regarding employee work ethic
and quality versus her own. Similarly, the aspects of the XP as adapted by SSC which confirmed
Daphne