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Abstract 

CYTOKINE AND CHEMOKINE PROFILES IN A RAT MODEL OF 
HEMORRHAGIC SHOCK AFTER IMMUNO-MODULATION BY 
ANDROSTENETRIOL 

By Kristin Elizabeth Paccione, BA. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2005 

Major Director: Dr. Robert F. Diegelmann 
Professor, Department of Biochemistry 

Further understanding of the cellular and molecular mechanisms involved in traumatic 

injury, and how they are modulated during drug interaction, can facilitate novel treatment 

strategies for future trauma patients. We hypothesize that the pharmacological agent, 

Androstenetriol (AET), up regulates host immune response by modulating the continued 

expression of mediators, including cytokines. In a double-blinded experiment, rats were 

hemorrhaged, driven by volume or pressure conditions, then resuscitated with fluids and 

packed red blood cells following a subcutaneous injection of either vehicle or drug. 

Blood was collected at various time points and cytokine levels were determined by 

analyses with both multiplex and conventional ELISA assays. Both MCP-1 and 

GROKC increase in surviving animals; trauma increases IL-la levels in rat plasma, 



whereas hemorrhage decreases IL-la over time; IL-6 plasma levels measured 6 hours 

after hemorrhage may correlate with mortality; AET may act by mechanisms to modify 

specific TH1 cytokines (INF-y) to promote survival. 
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Literature Review 

I. Introduction 

1. Purpose 

With increasing warfare on both the home front and internationally, a critical need 

exists to develop innovative life-saving treatment techniques for patients suffering from 

severe hemorrhage and acute traumatic shock. Both hemorrhage and acute traumatic 

shock remain the leading cause of combat death in today's society. Studies show 68% of 

military deaths are the result of hemorrhage and at least 20% of soldiers who die in 

combat are potentially salvageable [1],[2]. Compared to treatment options for civilians 

suffering from massive bleeding, the care of hemorrhage patients on the battlefield 

presents a very distinctive challenge. Tissue injury with hemorrhage, or acute traumatic 

shock, affects the function of both tissues and organs, accompanied by an intricate 

amount of adaptive host responses [3]. Because life-threatening hemorrhage affects 

every organ system in the human body, medical professionals have an obligation to 

understand the complexity involved in a patient's response to acute traumatic shock. 

This advanced knowledge will facilitate the development of improved diagnostic and 

therapeutic strategies. Ideally, these innovative and life-saving treatments will improve 

the survival rates for combat patients suffering from a massive hemorrhage and acute 

stress. 
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2. Shock and SIRS 

The combined insult of trauma and hemorrhage triggers several protective 

mechanisms that may have adaptive value to preserve oxygenation. These mechanisms 

may eventually yield responses that depress the body's immune system and cause 

systemic inflammation. Shock is defined as inadequate organ perfusion even after 

adequate fluid resuscitation, which often presents itself as persistent hypotension or the 

need for vasoactive drugs to increase blood pressure [4]. Victims of septic shock 

experience fever, falling blood pressure, myocardial suppression, dehydration, acute renal 

failure and then respiratory arrest. A patient who has been severely injured and has 

survived initial resuscitation may develop the features of the systemic inflammatory 

response syndrome (SIRS) and may then deteriorate with features of multiple organ 

failure that is often fatal. Researchers characterize SIRS as the abnormal generalized 

inflammatory reaction in organs remote from the initial insult [5]. The fundamental 

biological mechanisms that underpin SIRS include ischaemialreperfusion injury, 

activation of the leukocyte and macrophage systems, and the deleterious effect of 

numerous mediators of inflammation, especially the cytokines. Sepsis is defined as a 

clinical syndrome of deleterious systemic response with bacterial infection. When the 

process is due to an infection, the terms sepsis and SIRS are synonymous [5]. 

Researchers have demonstrated that the mortality of patients with septicemia 

remains elevated even with advances in treatment using antibacterial agents [6]. 

According to reports in 2001, approximately 400,000 patients suffer from septicemia 

each year in the United States and ultimately 25% of those patients die of septic shock 
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and multiple organ failure [6]. More recent data, February 2004, reports that mortality 

from sepsis has increased by 90% over the last twenty years [7]. Furthermore, this 

epidemic is associated with a hospital cost of nearly 17 billion dollars a year [7]. 

3. Multiple Organ Failure 

Multiple organ failure occurs when two or more organ systems fail. From the 

progression of SIRS to multiple organ failure a patient may not present with complete 

organ failure, but individual organs may function abnormally [8]. As a result, multiple 

organ dysfunction syndrome (MODS) was termed to define the detection of altered organ 

function in an acutely ill patient where homeostasis cannot be maintained [8]. 

Approximately 10-20% of all deaths following multiple trauma remain related to the 

manifestation of irreversible multiple organ failure [9]. 

Initially, the etiology of multiple organ failure was thought to be uncontrolled 

infection and MODS was characterized as the life-threatening outcome of successful 

shock resuscitation [4]. Current research, however, concludes that multiple organ failure 

results when a host's inflammatory or anti-inflammatory response to injury acts 

excessively [4]. As illustrated [Figure 11, death usually occurs when the host response to 

injury is either excessive or insufficient [4]. It is important to note that individual 

patients vary to the extent of multiple organ failure depending on the balance between the 

specific injuries with their individual response [4]. 



[FIGURE 11 

Inflammatory Response 
Canadian Journal of Anesthesia 48502-509 (2001) 

hl-lnflammalory 

4-SI 

1 
Mulflple System Organ 
FaOtuns 

FIGURE 1: Illustrates the balance between an inadequate inflammatory response 
eventually leading to death and an excessive anti-inflammatory [CARS] or inflammatory 
response [SIRS] resulting in multiple system organ failure. Survival without multi- 
system organ failure requires a balanced systemic host response to injury or infection. 

Compensatory Anti-Inflammatory Response Syndrome [CARS], HLA-DR on monocytes 
< 30% and diminished ability of monocytes to produce inflammatory cytokines, such as 
TNF-a or IL-6 [5]. 
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4. Two-Hit Model 

Recent studies have provided the basis for the current "two hit model," a theory to 

explain how an initial injury, independently of infection, sets the scene for an 

inflammatory environment conducive to the development of multiple organ failure [lo]. 

The first hit is a result of direct cell trauma, from mechanical or thermal injury, or cell 

ischaemia, from hypovolaemic shock. This initial injury associated with the first hit 

primes the body's inflammatory machinery. Humoral systems, including coagulation and 

fibrinolysis, are activated and cellular sources, including macrophages, lymphocytes, and 

granulocytes, release potent pro- and anti- inflammatory mediators [9]. The second hit is 

common in patients suffering from severe polytrauma or burns. More specifically, the 

second insult (sepsis, additional bleeding, surgery) triggers the release of powerful 

mediators and unleashes the exaggerated clinical systemic inflammatory response, which 

leads to multiple organ failure. 

The theory suggests that the "second hit" results in autodestructive inflammation, 

which is the manifestation of severe and sometimes irreversible cell damage induced by 

mediators, such as cytokines [lo]. Inflammation is defined as the activation of 

leukocytes, the endothelium, the liver, and multiple mediator networks that under normal 

conditions are held in balance by anti-inflammatory mediators [4]. Following limited 

injury, the local inflammatory process aims to stimulate the healing process and defend 

against foreign invading organisms; an appropriate host response to the initial injury 

remains necessary for survival and recovery [9]. However, with severe trauma and 

hemorrhagic shock, the inadequate or enhanced activation of the inflammatory cascades, 
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results in the uncontrolled release of pro-inflammatory cytokines, which leads to cellular 

injury and sequential organ dysfunction [9]. Figure 2 illustrates the variety of mediators, 

cytokines/chemokines, inflammatory products, and clotting cascades that are active in 

propagating the inflammatory response [4]. 

[FIGURE 21 

Mediators Active in the Inflammatory Response. 
Canadian Journal of Anesthesia 48502-509 (2001) 

Free Radials 
tpIor 0'- ow. F#l mOCp Fkw 

FIGURE 2: Illustrates the inflammatory products that are active in the inflammatory 
response. Insult activates neutrophils, which promotes a cascade of events. Activated 
neutrophils recruit other neutrophils with chemokines, they bind to endothelial cells using 
adhesion molecules, and neutrophils produce pro-inflammatory cytokines to enhance the 
production of free radicals and proteolytic enzymes (digest proteins) [4]. The 
inflammatory response must be balanced with the expression of anti-inflammatory 
cytokines and apoptosis, programmed cell death [4]. 
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5. Overview: Role of Cytokines 

Cytokine release is a normal, healthy part of the body's response to insult or 

infection. Following a harmful insult there is an initial response mediated by the liver, 

neutrophils, macrophages and the endothelium [4]. During the macrophage response, a 

variety of inflammatory cytokines, including tumor necrosis factor, interleukin-1, and 

interleukin-6, are released and these mediators then up regulate receptors on neutrophils 

and endothelial cells, that in turn stimulate transmigration [4]. As a result of 

transmigration, other effector molecules (reactive free radical species, endopeptidases) 

are released by neutrophils, which causes organ damage and further recruitment of 

activated neutrophils to the injury site [Figure 21 [4]. Researchers have established that 

septic shock induced by gram-negative bacilli is the result of inflammatory cytokine 

overproduction, especially tumor necrosis factor (TNF) and interleukin-1 (IL-I), from 

monocytes and macrophages [6]. 

Even though current research studies suggest that multiple organ failure is 

induced through a complex cytokine cascade triggered by pro-inflammatory cytokines, 

attempts have not been successful in suppressing the actions of these cytokines. Timing 

and complexity of expression underline the difficulty in therapeutic intervention. The 

therapeutic challenge in attempting to modulate these pathways is that there are numerous 

and redundant mediators involved in the progression of multiple organ failure [4]. 

Cytokines and chemokines often function in multiple complexes where the function of 

one inflammatory product induces the expression of another in a cascading effect [I I]. 

Furthermore, the expression of these mediators varies over a period of time during the 
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course of the illness [4]. Adding to the confusion includes the fact that each patient has a 

highly complex, rigidly regulated network of receptor antagonists and other regulatory 

agents that continuously modulate the effects of cytokine release [ 5 ] .  

The ability to monitor a patient's inflammatory and immune response following 

hemorrhagic trauma through cytokine and chemokine measurements remains significant 

in modern medicine. Animal models reproduce traumatic shock and hemorrhage for the 

purpose of modulating the cytokine cascade. Therefore, tools to measure the 

immunelinflammatory response are valuable for animal hemorrhage models. However, 

modern technology must maintain high sensitivity, specificity, and precision standards in 

order to produce physiological relevant data. 

11. Cytokines 

1. Introduction 

Cytokines are important immunoregulators that play a critical role in immune 

responses, hematopoiesis, inflammation, wound healing, and trauma [l l] .  In addition, 

cytokines have recognized systemic effects, that translate into fever, intravascular 

coagulation, and shock [ll].  Generally, the pro-inflammatory cytokines worsen disease 

states in trauma patients, whereas anti-inflammatory cytokines serve to reduce 

inflammation and promote healing. The balance between the effects of pro-inflammatory 

and anti-inflammatory cytokines is thought to determine the disease outcome for patients. 

Recent studies suggest that susceptibility to disease is genetically determined by the 

expression of either pro-inflammatory or anti-inflammatory cytokines [12]. Normally, 



9 

most cytokines are not detectable in healthy individuals; however, during critical illness 

many studies identified elevated levels of cytokines [8]. 

Cytokines form a family of relatively small, secreted proteins that control many 

aspects of growth and differentiation for specific types of cells. The small proteins have 

molecular weights ranging from 8 to 40,000 d [12]. Originally, these proteins were 

described as lymphokines and monokines to indicate their cellular sources [12]. 

Researchers quickly determined that the term cytokine was the best description for these 

proteins because practically all nucleated cells are capable of synthesizing cytokines and 

therefore able to respond to these proteins [12]. Although it is known that these secreted 

proteins generally contain around 160 amino acids, no amino acid sequence motif or 

three-dimensional structure exists to categorize cytokines; rather, it is their biological 

activities that determine their different groups. 

2. Pro-Intammatory Cytokines 

Interleukin-1 1 - 1 ,  tumor necrosis factor (TNF), interleukin-2 (IL-2), 

interleukin-8 (IL-8), interleukin-6 (IL-6), and interferon-gamma (INF-y) are classified as 

pro-inflammatory cytokines, which promote inflammation. When these pro-inflammatory 

cytokines are administered to humans, symptoms such as fever, inflammation, and tissue 

destruction are observed and in some cases these symptoms manifest into shock and 

result in death. In addition, these monocyte and lympohocyte proteins (interleukin- 1, 

interleukin-6, and TNF-a) mediate the negative nitrogen balance of injured patients [13]. 

Reperfusion after ischemia generates high levels of free radicals composed of both 

reactive oxygen intermediates and nitric oxide (NO). When generated in sufficient 
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concentrations, free radicals directly injure the myocardium and may even cause cell 

death [12]. Free radicals activate redox-sensitive transcription factors, including nuclear 

factor-KB (NF-KB), and trigger the expression of interleukin (1L)-IP, tumor necrosis 

factor (TNF)-a, and other inflammatory mediators. According to recent research, pro- 

inflammatory cytokines seem responsible for the wasting symptoms noted in chronic 

infections [12], such as human immunodeficiency virus (HIV). 

A. Interleukin-1 

Interleukin-1 is the general name for two distinct proteins, IL-la and IL-1 P. 

Interleukin- 1 a and interleukin-1 P are biologically equivalent pleiotrophic factors that act 

locally and also systemically. Locally, this prototypical pro-inflammatory cytokine plays 

a significant role in the up- and down-regulation of acute inflammation. Systemically, 

interleukin-1 is a highly toxic compound; minute amounts of IL-1 can induce septic 

shock. In addition to causing fever, as well as a number of other metabolic changes, 

interleukin-1 also activates systemic proteolysis in skeletal muscle. Monocytes are the 

main cellular source of secreted IL-1. Specifically, monocytes predominantly express IL- 

1 while human keratinocytes express large amounts of IL-la. Not only is IL-1 

responsible for fibroblast and keratinocyte chemotaxis, the pro-inflammatory cytokine 

also stimulates vascular endothelial cells to express adhesion molecules such as ICAM-1 

(intercellular adhesion molecule), E-Selectin, and VCAM- 1. Interleukin- 1 promotes the 

adhesion of neutrophils, monocytes, T-cells, and B-cells by enhancing the expression of 

CAM-1 and ELAM (endothelial leukocyte adhesion molecule). ICAM-1 remains 

essential for neutrophil recruitment, which results in injury to end organs after endotoxin 
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exposure [14]. Additionally, IL-1 activates nuclear factor (NF)-KB in various cell 

populations [l4]. 

As already mentioned, cytokines function in multiple complexes. In the immune 

response, interleukin-1 stimulates T-helper cells that are induced to secrete interleukin-2 

and to express IL-2 receptors. Together, IL-1 acts directly on B-cells, promoting their 

proliferation and the synthesis of immunoglobulins. This interaction hnctions as one of 

the priming factors that make B-cells responsive to interleukin-5. In the cytokine 

cascade, interleukin-1 is needed for the efficient production of IFN-y and IL-1 also 

induces capillary endothelial cells to secrete chemokines (MCP-1). The synthesis of IL-1 

can be induced by other cytokines (TNF-a, INF-y) and also by bacterial endotoxins, 

viruses, mitogens, and antigens. In the inflammatory response, interleukin-1 is capable of 

inhibiting or promoting its own synthesis, depending on conditions and cell types; the 

synthesis of interleukin-1 is controlled by a complex feedback loop. 

B. Interleukind 

In the blood, circulating IL-6 levels are slightly elevated during a woman's menstrual 

cycle, moderately raised in patients with certain cancers (melanoma), and large IL-6 

elevations are present following surgery. Previous research has suggested that 

interleukin-6 serves as both a marker and a mediator for the severity of sepsis [15]. The 

controversy however questions whether or not IL-6 in sepsis serves as a marker of 

inflammation, an inducer of altered physiology, or a mediator of organ insult in multi- 

system organ failure. Remick, et. a1 suggests that this pro-inflammatory cytokine 

functions as an important and sensitive indicator of systemic inflammation; plasma levels 
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of interleukin-6 correlate with mortality in septic patients [15]. According to Remick, 

studies have shown improved survival statistics in bacterium-derived sepsis models with 

antibody inhibition of IL-6 [15]. Furthermore, Remick states that a correct antibody dose 

to interleukin-6 will improve survival in patients diagnosed with sepsis [15]. Current 

literature has also demonstrated that IL-6 mRNA and protein is produced in the lungs, 

liver, and intestinal tracts of rats subjected to resuscitated hemorrhagic shock [16]. 

Interestingly, both the ischemic and reperfusion phases of resuscitated hemorrhagic shock 

are required for the production of this particular cytokine [16]. 

Interleukin-6 plays a significant role in several aspects of the inflammatory response, 

including temperature regulation and metabolic activity. IL-6 is easily detectable in 

multiple tissues and the circulation of resuscitated hemorrhagic shock individuals [17]. 

Many different cell types produce this pro-inflammatory cytokine; however, the main 

sources in vivo are stimulated monocytes, fibroblasts, and endothelial cells. 

Systemically, interleukin-6 contributes to the initial response after trauma. IL-6 is known 

to change neutrophil deformability by inducing an accelerated release of immature 

neutrophils from the bone marrow with higher F-actin content and decreased 

deformability. Locally, IL-6 increases neutrophil sequestration in the lung. Interleukin- 

6, a cytokine with numerous biological activities, helps control the induction of the acute- 

phase response [15]. In addition, interleukin-6 mediates the immunoglobulin class 

switching. Finally, interleukin-6 stimulates the synthesis of a number of hepatic proteins 

called acute phase reactants by the liver and induces fibroblast proliferation. In the 
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cytokine cascade, IL-6 is essential for the regulation of the inflammatory response to the 

inflammatory stimulus tumor necrosis factor. 

Interestingly, a net effect of IL-6 exists in the host inflammatory response. Although 

IL-6 is mainly regarded as a pro-inflammatory cytokine, literature states that the final 

effect of IL-6 on the inflammatory response is a result of two countereffective 

mechanisms [18]. A paracrine response stimulates the inflammatory response, while a 

endocrine effect diminishes inflammation [18]. However, IL-6 is widely regarded as 

detrimental because the up-regulation of interleukin-6 correlates with mortality and 

multiple organ failure in numerous clinical studies 1171. 

C. Tumor Necrosis Factor-Alpha 

In animal models of sepsis, there is a direct correlation between a significant increase 

in TNF-a synthesis and the development of shock and multiple organ failure. Originally 

sepsis was believed to result directly from the invading bacteria, but research later 

recognized that host system proteins, such as TNF-a, induced sepsis. The pleiotropic 

inflammatory cytokine, TNF-a, is released very early after shock and has a number of 

cellular functions. Quiescent cells produce this 17.5 malton, 157 amino acid protein in 

extremely small quantities, whereas TNF-a is a major secreted factor in activated cells. 

Tumor necrosis factor alpha suppresses adipocyte triacylglycerol synthesis, prevents 

uptake of circulating triacylglycerol by inhibiting lipoprotein lipase, stimulates lipolysis, 

inhibits release of insulin, and promotes insulin resistance. Recently, Irshad H. Chaudry 

published findings which suggest that female hormones, such as estrogen, play a crucial 

role in stabilizing immune responses after trauma-hemorrhage by suppressing the 
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amplification of TNF-a [I?]. This inhibition was shown to prevent the increased 

lethality from subsequent sepsis [19]. From his results, Chaudry proposes that female sex 

hormones may be useful in preventing trauma-induced irnmunodepression through the 

modulation of TNF-a [19]. It should be noted that efforts to measure TNF-a in the 

clinical setting remain unsuccessful due to the highly variable and inconsistent 

occurrence of TNF-a in the blood stream [9]. Johannes Frank noted in 2002 that a 

correlation between plasma TNF-a concentrations and tissue injury, multiple organ 

failure, or outcome in trauma patients does not exist [9]. 

This acute phase protein, considered a proximal mediator of the inflammatory 

cascade, initiates and regulates the synthesis of several other cytokines and chemokines 

and increases vascular permeability, thereby recruiting macrophage and neutrophils to a 

site of infection. Both IL- 1 and TNF are inducers of endothelial adhesion molecules [ 121. 

These molecules are necessary for the adhesion of leukocytes to the endothelial surface 

prior to emigration into the tissues. Whether provoked by an infection, trauma, ischemia, 

or immune-activated T cells, research indicates that interleukin-1 and tumor necrosis 

factor start the cascade of inflammatory mediators by targeting the endothelium [12]. 

D. Interleukin-2 

Another pro-inflammatory cytokine, interleukin-2 (IL-2), exerts a key role in the 

immune system. Specifically, IL-2 is necessary for the proliferation and functioning of T 

cells by influencing T-cell differentiation and supporting the growth of cytotoxic T cells. 

In addition, interleukin-2 has an essential role in the induction of lymphokine-activated 

killer cells. Systemically, interleukin-2 induces activated cells to enter a preapoptotic 
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phase, increases the levels of production for pro-inflammatory cytokines, enhances the 

cytotoxicity of natural killer (NK) cells, and increases fibroblast infiltration and 

metabolism. NK cells compose a small fraction (-2%) of the lymphocytes circulating in 

the blood that are neither T cells nor B cells. They are identified as natural killer cells 

because these lymphocytes are already specialized to kill certain types of target cells. 

E. Interferon-Gamma 

Specific cytokines influence the development of many cell types. Interferon-gamma 

is a prime example of the pleiotropic nature of cytokines. Secreted interferons, such as 

INF-a, INF-P, INF-y, act on neighboring cells to stimulate enzymes that render cells 

more resistant to virus infection. Specifically, interferons are cytokines that instruct cells 

to produce proteins, which makes the cells less susceptible to viruses. INF- [Gamma] not 

only possesses antiviral activity, but this cytokine also activates the pathway that leads to 

cytotoxic T cells [12]. INF-y is classified as a pro-inflammatory cytokine because it 

induces nitric oxide (NO) and supplements TNF activity. In particular, INF-y activates 

alveolar macrophages to produce a variety of substances including reactive oxygen and 

nitrogen species that are involved in growth inhibition and killing of mycobacteria. 

3. Anti-Inflammatory Cytokines 

Anti-inflammatory cytokines are grouped according to their ability to suppress 

genes for pro-inflammatory cytokines and the chemokines. In particular, anti- 

inflammatory cytokines suppress the intensity of the inflammatory mediator cascade [12]. 

Research indicates that anti-inflammatory cytokines, such as IL-4 and IL-10, suppress the 

production of IL-1, TNF, chemokines (IL-8), and vascular adhesion molecules [12]. 
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Adhesion molecules aid in the retention of neutrophils during transmigration as these 

large cells are transiently retained in the microvasculature by purely mechanical factors 

[4]. The actions of pro-inflammatory cytokines are limited by auto regulatory 

mechanisms, the anti-inflammatory cytokines; however, the very short half-lives restrict 

the duration of action [8]. 

A. Interleukin-4 

Although interleukin-4 is essential for the formation of functional antibody-producing 

B cells and a close relative of interleukin-2, it is also an effective anti-inflammatory agent 

[12]. IL-4 is a potent, pleiotropic cytokine that directs cellular activation, differentiation, 

and rescue from apoptosis. In mast cells, interleukin-4 induces the down-regulation of 

activation receptors and promotes cell death. 

B. Interleukin-10 

Anti-inflammatory cytokines suppress the activity of pro-inflammatory cytokines. 

Interleukin-10 was first described as a TH2 cytokine that inhibited IFN-y and GM-CSF 

cytokine production by TH1 cells in mice. At the present time, IL-10 is known to inhibit 

the synthesis of a number of cytokines including INF-y, IL-2, and TNF-P. Specifically, 

interleukin-1 0 suppresses IL-2 production following activation and inhibits apoptosis in T 

cells. For mast cells, interleukin-10 induces histamine release while blocking GM-CSF 

and TNF-a release. Additionally, interleukin-10 acts as a co-stimulator in the 

proliferation of mast cells with IL-4 present. IL-10 promotes TNF-a and GM-CSF 

production in NK cells, potentiates IL-2 induced NK cell proliferation, and facilitates 

IFN-y secretion in NK cells primed by IL-18. In neutrophils, interleukin-10 inhibits the 
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secretion of the chemokines MIP-la, MIP-la and IL-8, blocks production of the pro- 

inflammatory mediators IL-la and TNF-a, and decreases the ability of neutrophils to 

produce superoxide. 

4. Other Cytokines 

Some cytokines induce the formation of important blood cells. 

Granulocyte/macrophage colony-stimulating factor (GM-CSF) stimulates a specific 

progenitor cell in the bone marrow to divide several times and then differentiate into 

granulocytes. Granulocytes are a type of white blood cells that inactivate bacteria and 

other pathogens. This pro-inflammatory cytokine is secreted by cells of the 

monocyte/macrophage lineage. GM-CSF also activates and enhances the production and 

survival of neutrophils, eosinophils, and macrophages that have key roles in the innate 

immune response. 



. - 
[FIGURE 31 

Pro-Inflammatory Cytokine Cascade 

Pro-inflammatory Cytokines 

FIGURE 3: Illustrates the pro-inflammatory cytokine cascade. This diagram reinforces 
the cellular sources and biological activity for each pro-inflammatory cytokine. Used 
with permission from Dr. Nathan Menke, Department of Biochemistry, Virginia 
Commonwealth UniversityIMedical College of Virginia. 



. . [FIGURE 41 

Anti-Inflammatory Cytokine Cascade 

Anti-inflammatory Cytokines 

FIGURE 4: Illustrates the anti-inflammatory cytokine cascade. This diagram reinforces 
the cellular sources and biological activity for interleukin-4 and interleukin-10 as 
explained in detail above. Used with permission from Dr. Nathan Menke, Department of 
Biochemistry, Virginia Commonwealth Universityhledical College of Virginia. 
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5. Chemokines 

Chemokines are small peptides (8,000 d) that facilitate the passage of leukocytes 

from circulation into the tissues [12]. More specifically, chemokines are chemotactic 

cytokines that mediate inflammation and provide directional clues for the movement of 

leukocytes in development, homeostasis, and inflammation. Chemotactic agents attract 

adhesion molecules and cytotoxic agents assist these cells in driving the process. The 

increased secretion of chemokines during inflammation results in the selective 

recruitment of leukocytes into inflamed tissue. Most alpha [a] chemokines are 

chemoattractants for neutrophils, whereas beta [PI chemokines generally attract 

monocytes, lymphocytes, basophils, and eosinophils. Chemokines have been detected 

during inflammation in most organs, including the skin, lungs, kidneys, GI track, and 

brain. The main stimuli for chemokine production are early pro-inflammatory cytokines, 

such as interleukin-1 and TNF-a. 

A. Interleukin-8 

IL-8, a pro-inflammatory chemotactic and angiogenic C-X-C chemokine, is 

synthesized by resident and inflammatory cells [20]. Current literature, considers the 

neutrophil chemoattractant, interleukin-8, as a prime example of the chemokine family. 

More specifically, IL-8 activates neutrophils to degranulate and cause tissue damage [12]. 

As a chemokine, IL-8 mediates macrophage and neutrophil chemotaxis, whereas the 

immunoregulator promotes keratinocyte maturation as a pro-inflammatory cytokine. 

Johannes Frank reports that IL-8 consistently increases in injured patients during the first 

24 hours after injury and IL-8 levels remain elevated for several days following severe 
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trauma [9]. In the cytokine cascade, pro-inflammatory mediators including, IL-1, TNF- 

a ,  INF-y, and GM-CSF, induce interleukin-8 [20]. 

B. Monocyte Chemoattractant Protein-1 

MCP-1, an example of a prototypical pro-inflammatory chemokine, belongs to the 

family of chemotactic cytokines known as C-C, or beta-chemokines [21]. Specifically, a 

highly conserved single gene at chromosome 17q11.2-q21.1 encodes this 76 amino acid 

basic glycoprotein. A wide variety of cell types including, monocytes, vascular 

endothelial cells, smooth muscle cells, glomular mesangial cells, osteoblastic cells, and 

articular chondrocytes, synthesize MCP-1. In addition, MCP-1 is produced in response 

to pro-inflammatory cytokines such as IL-1, IL-6, TNF-a, and INF-y in the cytokine 

cascade. During inflammatory responses, MCP-1 is highly chemotatic for monocytes, T 

lymphocytes, basophils, and NK cells. MCP-1 also regulates adhesion molecule 

expression and cytokine production in monocytes. Additionally, MCP-1 can induce the 

proliferation of other effector cells of the immune system. Finally, monocyte 

chemoattractant protein-1 appears to possess a protective role in ischemia reperfusion 

injury because MCP-1 has the ability to protect monocytes from hypoxia-mediated 

apoptosis [17]. 

C. GROIKC 

Rat GROKC (also known as Rat KC or CINC) promotes neutrophil chemotaxis and 

degranulation. A cytokine-induced neutrophil chemoattractant (GROICINC), which 

belongs to the interleukin (1L)-8 family, acts as a functional chemoattractant for 

neutrophils in rats. Members of the CXC branch include chemokines that have four 



invariant cysteines, where the first two cysteines are separated by one other amino acid 

(X). Those chemokines containing a glutamic acid-leucine-arginine sequence (ELR) 

immediately prior to the CXC motif are defined as potent neutrophil chemoattractants. In 

humans, seven ELR+CXC chemokines have been identified including, interleukin-8 (IL- 

8) and growth-related oncogenes (GR0)-a, -P, and -y. Specifically, the GRO proteins 

chemoattract and activate both neutrophils and basophils. All chemokines in the CXC 

family play a significant role in the recruitment of neutrophils to tissue in various 

infectious and inflammatory conditions [22]. KC is defined as a homologue of the human 

GROImelanoma growth-stimulatory activity family [23]. Since rats lack an IL-8 

homologue, they provide a good model for investigating the roles of other rat ELR+CXC 

chemokines, including cytokine-induced neutrophil chemoattractant (KC). 

6. Cellular Sources 

Leukocytes (white blood cells), including neutrophils, macrophages, and 

lymphocytes, are required in a patient's immune response. Macrophages ingest large 

particles and cells by phagocytosis. A monocyte is defined as a white blood cell that can 

ingest dead or damaged cells and provide immunological defenses against many 

infectious organisms. In particular, circulating monocytes can migrate into tissues, 

become fixed tissue monocytes, and then develop into macrophages. During shock, the 

prolonged stimulation of macrophages results in excessive production of cytokines [INF- 

y, TNF-a, IL-1, IL-8, IL-6, IL-4, IL-101 and other inflammatory mediators [17]. A 

neutrophil is a type of white blood cell filled with neutral staining granules and tiny sacs 

of enzymes that help the neutrophil kill and digest microorganisms it has engulfed by 
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phagocytosis. Neutrophils form the primary defense against bacterial infection and are 

produced in the bone marrow. Neutrophils circulate in the bloodstream and then move 

out of blood vessels into infected tissue in order to attack foreign substances. After 

neutrophils reach the tissues, they release oxygen metabolites, proteolytic enzymes, and 

other cytotoxic agents from their granules [14]. Mast cells are important effector cells 

providing granule and membrane mediators as well as cytokines in inflammatory 

diseases. Mast cells contain metachromatic granules that store a variety of inflammatory 

mediators including, histamine and serotonin, proteolytic enzymes that destroy tissue or 

cleave complement components, and chemotactic factors. Under normal conditions, mast 

cells are not found in circulation. Mediators released from mast cells are responsible for 

the four cardinal signs of inflammation: redness, heat, swelling, and pain. 

7. Immune Response 

The immune response includes two different subsets of T cells, namely TH1 and 

TH2. THl lymphocytes are characterized by the synthesis and release of IL-2, INF-y, 

and IL- 12; TH1 lymphocytes drive the inflammatory reaction. Conversely, TH2 

cytokines (IL-4, IL-5, IL-10, IL-13) determine an inhibitory immune response. T 

lymphocytes (T cells) are composed of two groups of cells, the cytotoxic killer T cells 

(Tc) and the helper T cells (TH), while B lymphocytes (B cells) produce and secrete 

antibodies. In response to a viral infection, Tc cells with the proper specificity proliferate 

to destroy large numbers of virus-infected cells. Tc cells interact with infected host cells 

through receptors on the T-cell surface. While the infected cell is being destroyed by the 

killer T cell, Tc and TH cells bound to the infected cell mature and proliferate, which is 
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stimulated by interleukins. TH cells interact with macrophages and secrete cytokines 

(interleukins) that stimulate Tc, TH, and B cells to proliferate. Interleukins, which are 

produced and secreted by a variety of cells, stimulate the proliferation of only those T and 

B cells with the required interleukin receptors. It should be noted that T and B cells 

produce interleukin receptors only when they are complexed with an antigen. Therefore, 

only the immune system cells that have the ability to respond to the antigen proliferate. 

Populations of activated helper T cells secrete interleukin-2, which in turn stimulates 

proliferation of neighboring killer T cells and helper T cells having the appropriate 

interleukin receptors. As a result of this secretion and proliferation series, the number of 

immune system cells available to recognize and respond to the antigen increases. 

Another subpopulation of activated helper T cells complexed to macrophages or B 

lymphocytes secrete interleukin-4. The B cells, stimulated by the interleukins, proliferate 

and produce soluble antibodies that recognize the antigen. 

8. Cytokine Receptors and Signaling Pathways 

The structural homology conserved amongst the different cytokines provides 

significant evidence that all cytokines evolved from a common ancestral protein. 

Similarly, it has been determined that the various receptors evolved from a single 

common ancestor as well. All cytokines have a similar tertiary structure, which consists 

of four long conserved alpha helices folded together in a specific orientation. The 

structures of cytokine receptors are similar with their extracellular domains constructed 

of two subdomains, each of which contains seven conserved beta strands folded together 

in a typical fashion. 



FIGURE 5 

Pathway of Signal Transduction 
CDLI, November 2002, p. 1153-1 159, Vol. 9, No. 6 

FIGURE 5: Pathway of signal transduction fiom cytokine binding on a receptor to the 
nucleus via the JAWSTAT pathway [24]. 
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Cytokines, or local mediators, bind to receptors that activate gene regulatory 

proteins, which are held in a latent state at the plasma membrane [Figure 51. After 

activation, these regulatory proteins move straight to the nucleus, where the transcription 

of specific genes is stimulated. Activation of transcription factors causes an increase or 

decrease in the expression of particular target genes. Because cytokine receptors have no 

intrinsic enzyme activity, they are instead associated with cytoplasmic tyrosine kinases 

called JAKs, which are activated when a cytokine binds to its receptor. Upon activation, 

the JAKs phosphorylate and consequently activate cytoplasmic gene regulatory proteins 

called STATs. These regulatory proteins then migrate to the nucleus, where the STATs 

stimulate transcription of specific target genes. Different cytokine receptors evoke 

various cellular responses by activating different regulatory proteins or STATs. The 

cytokine signal is ultimately turned off by protein phosphatases that remove the 

phosphate groups from the activated signaling proteins. Tumor necrosis factor (TNF) is 

an example of a cytokine family that utilizes this JAWSTAT signaling pathway. 

Interluekin-6 activates the mitogen-activated protein kinases (MAPKs) intracellular 

signaling cascade [25]. MAPKs have the responsibility of relaying and coordinating the 

delivery of environmental stress signals to the genome, with ensuing alternation in gene 

expression [25]. Whether or not a cell responds to a particular cytokine depends on the 

cell expression of the corresponding receptor. Despite the fact that all cytokine receptors 

activate similar intracellular signaling pathways, the response of any particular cell to a 

cytokine signal depends on the cell's collection of transcription factors. 



111. Androstenetriol 

Both multiple trauma and hemorrhage activate the hypothalamic-pituitary-adrenal 

axis (HPA) as a defensive mechanism to prevent cell death. It appears that a loss of 

balance between the hypothalamic-pituitary-adrenal systems is responsible for the 

deleterious effects observed in the victims of severe hemorrhage and trauma [17]. The 

hypothalamic pituitary-adrenal axis mediates a cascade of neurohormonal changes whose 

activation is associated with immuno-suppression. In particular, prolonged activation of 

the HPA axis shifts a patient's response from immuno-stimulated to irnmuno-suppressed. 

As already described in great detail, inadequate or excessive host defenses can be self- 

destructive, resulting in multiple organ system failure and ultimately death. 

Androstenetriol (AET), a physiological metabolite of DHEA, up regulates host 

immune response, prevents immune suppression and modulates inflammation. The 

significance of AET came from a discovery that DHEA has the ability to regulate the 

immune response and protect against lethal bacterial infection and irradiation. DHEA, 

dehydroepiandrosterone, is a natural steroid hormone produced from cholesterol by the 

adrenal glands. The testicles, ovaries, and brain also produce DHEA. DHEA is 

chemically similar to testosterone and estrogen; dehydroepiandrosterone is carried to the 

tissues and cells where it is easily converted into these sex hormones. DHEA is 

metabolized along the pathway DHEA AED - AET. Androstenetriol (AET) is 

derived fiom androstenediol (AED) by the addition of a third hydroxyl group at position 

7 of ring B. According to recent literature, androstenediol is ten thousand times more 
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effective than DHEA in preventing infection, and AET is up to one hundred thousand 

times more potent than DHEA [26]. 

Traditionally, the immune system is treated as a separate physiological system 

from the endocrine and nervous systems. However, in 1988 Loria et. al. reported that 

DHEA could regulate immune responses against lethal virus and bacterial infections [27]. 

DHEA and particularly, AED and beta AET, have been shown to protect mice from viral, 

bacterial, and parasitic infections. In a trauma-hemorrhage model, AED improved organ 

function and altered cytokine production [26]. Literature reports that beta AET up- 

regulates immunity to increase resistance against lethal infection and lethal radiation [26]. 

In addition, the beta androstene steroid mediates a rapid recovery of hematopoietic 

precursor cells after radiation injury. 



[FIGURE 61 

AET and HPA Axis Interaction in Traumatic-Hemorrhage 
The Japanese Journal of Clinical Pathology 46:6:505-517 (1998) 

MACRO- 

FIGURE 6: Illustrates the possible roles of AET, specifically those that modulate 
inflammatory cytokines, to counteract the effects of glucocorticoids on the immune 
system. 
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AET was reported to counteract the immune suppressive effects of hydrocortisone 

(cortisol). Therefore, androstenetriol may in part exert its physiological function by 

neuroimmunological regulatory mechanisms. In the body, these three hormones (DHEA, 

AED, & AET) balance the widely accepted immunosuppressive action of 

glucocorticoids, suggesting a possible new immune regulation mechanism. 

Hydrocortisone classically is used to suppress excessive inflammation in cells treated 

with an immune challenge. According to published research, DHEA and its metabolites, 

androstenediol (5-androstene-3 beta-17 beta-diol, AED) and androstenetriol (5- 

androstene-3 beta-7 beta-17 beta-triol, beta AET), counteract the stress-induced 

immunosuppressive action of glucocorticoids [15]. Specifically, Dr. Loria concluded in 

1997 that DHEA was unable to counteract the immunosuppressive effects of cortisol, 

while androstenediol counteracted it only at high doses [26]. Conversely, androstenetriol 

significantly counteracted the immunosuppressive effects of the glucocorticoid on 

lymphocyte proliferation and cytokine production [15]. In particular, beta androstenetriol 

increases the levels of TH1 cytokines (IL-2, IL-3, IFN-7) and counteracts hydrocortisone 

mediated immune suppression [26]. In rodents, administration of AED during traumatic 

shock demonstrated a reduction in interleukin-6 circulating levels [17]. Research 

indicates that in vivo, DHEA, 5AD, and 5AT may have some similar functions; while in 

cell culture their effects are dramatically different from one another. It is important to 

emphasize the fact that both androstenediol and androstenetriol have the ability to 

suppress inflammation, comparable to other glucocorticoid steroid hormones. However, 
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AED and AET suppress inflammation through mechanisms that do not induce immune 

suppression. 

Corticosteroids are critical in the inflammatory process because of their various 

roles including the ability to prevent complement activation, illhibit the inducible form of 

nitric oxide synthesis, and prevent neutrophil adherence induced by endotoxin [17]. In 

the cytokine pathway, corticosteroids decrease the transcription of TNF and other pro- 

inflammatory cytokines [17]. On the contrary, corticosteroids increase the transcription 

of anti-inflammatory cytokines such as IL-1 receptor antagonist [17]. In addition, 

corticosteroids are known to decrease the release of adhesion molecules [17]. 

Not only does androstenetriol possess anti-inflammatory properties, the steroid 

can also potentiate the cellular and humoral immune responses in numerous local and 

lethal systemic insults. As already mentioned, AET has been shown in recent 

experiments to improve outcomes from systemic insults such as overwhelming bacterial 

and viral infections [26]. Through AET regulation, the chronic inilammation associated 

V 

with both infection and sepsis can be control. Consequently, the morbidity and mortality 

that normally results from this uncontrolled inflammation becomes reduced or prevented. 

Current research recognizes that the nuclear receptor factor peroxisome proliferator 

(PPAR) and prostaglandins have a major role in regulating immune response, 

inflammation, and wound healing [28]. AET was utilized as the pharmacological agent 

in this study because it is proposed that AET has the ability to modulate the PPAR 

betaldelta balance and as result reduce inflammation, which in turn may reduce SIRS, 

prevent systemic sepsis, and decrease multiple organ failure mortality. 



Materials and Methods 

I. Sample Preparation 

Blood was collected from adult male Sprague-Dawley rats for cytokine analysis. 

Under sterile condition, the surgeon placed two catheters using PE 50 and PE 90 tubing 

in the carotid and jugular vein. A ventral midline laparotomy was performed to induce 

soft tissue injury before the onset of hemorrhage. After recovery, 40% of the rat's total 

blood volume was hemorrhaged using the carotid catheter over a time period of 

approximately 15 minutes [Volume Model]. A specific formula was used to calculate the 

total blood volume for each rat. After 45 minutes from the onset of hemorrhage, 

resuscitation was initiated with lactated Ringers and packed red blood cells were returned 

to the rat in intervals over 2.5 hours. At the start of resuscitation, rats were randomized to 

receive a single subcutaneous injection of AET or vehicle (methylcellulose). Following 

resuscitation, rats were observed for 4 hours and then returned to the vivarium. Rats 

were monitored at 24, 48, and 72 hours and any rats surviving to 72 hours were 

euthanized using Euthasol. 

Arterial blood (0.5 mL) was taken from the rat using the carotid catheter at three 

different time points, baseline, 24 hours, and 72 hours. More specifically, the first blood 

draw was at the on-set of hemorrhage; therefore baseline is considered pre-hemorrhage 

Ipre-resuscitation. The blood was placed in a heparin coated microcentrifuge tube and 
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immediately spun at 15,000 rotations per minute for 5 minutes. The supernatant was then 

extracted using a 100 pL pipette while the pellet was discarded. The supernatant was 

divided into three labeled plain microcentrifuge tubes and the samples were place in a 

-20°C freezer. Following final sample preparation for all time points, plasma samples 

were stored in a -80°C freezer until thawed for cytokine analysis. 

A similar procedure was used to collect plasma from rats where blood was 

removed during a 60-minute hemorrhage while maintaining the mean arterial pressure 

(MAP) between 35-40 mmHg [Pressure Model]. Specifically, blood was hemorrhaged 

during the first 15 minutes until the blood pressure was controlled at 35-40 rnrnHg. This 

blood pressure was then sustained for the remainder 45 minutes. A third animal model, 

utilized the pressure-driven hemorrhage procedure, however the subcutaneous injection 

of either AET or vehicle was delivered 24 hours prior to the start of hemorrhage [Pre- 

treatment model]. For these two experiments, arterial blood was taken using the carotid 

artery at four different time points, baseline (post-hemorrhage), 6 hours, 24 hours, and 48 

hours. The blood was then treated as described above and the rat plasma was stored in a 

-80°C freezer until thawed for cytokine analysis. 

11. Cytokine Analysis 

1. Rat Cytokine/Chemokine Premixed LINCOpIex Kit 

The LINCOplex@ kit (RCYTO-80K) [St. Charles, Missouri] enabled the 

simultaneous multi-analyte detection and measurement of fourteen rat 

cytokine/chemokines. All reagents and components were included in each kit. The 

overnight assay required at least 5 pL of rat plasma to measure a premixed 14-plex panel. 
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The rat cytokinelchemokine panel included: IL-la, IL-1P, IL-2, IL-4, IL-5, IL-6, IL-10, 

IL-12p70, IL-18, GM-CSF, GROIKC, INF-y, MCP-1, and TNF-a. The standard curve 

for this particular assay ranges between 6.4 and 20,000 pglml. Performance 

characteristics include, sensitivity for plasma is 1-20 pglml and accuracy is between 92.8 

and 108.6%. Accuracy describes the amount of uncertainty that exists in a measurement 

with respect to the relevant absolute standard and sensitivity describes the smallest 

absolute amount of change that can be detected by a measurement. The intra-assay 

precision is less than 15%, while the inter-assay precision is less than 10%. Furthermore, 

the cytokine antibodies in this multiplex do not cross react to other analytes in the panel. 

Luminex Corporation's xMAPTM Technology involves a patented technology that 

internally dyes polystyrene microspheres with two spectrally distinct fluorochromes. 

LINCOplex kits utilize these beads as the foundation for their multiplexed 

irnmunoassays. Each signature bead is conjugated to an analyte specific antibody. The 

rat cytokinelchemokine assay is based on the conventional two-site sandwich method 

where the mixed beads are incubated with a standard or biological sample in a 96-well 

plate format. More specifically, each set of beads is coupled with a specific capture 

antibody. The capture antibody then binds to its specific analyte, followed by the binding 

of the biotinylated detection antibody. The final result is amplified through incubation 

with a reporter conjugate, streptavidin-phycoerythrin; the streptavidin-phycoerythrin 

(SA-PE) binds to the biotinylated reporter and emits a fluorescent signal [Appendix 1: 

LINCOplex Schematic]. 
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Following incubation, the contents of each microplate well were drawn into a 

Bio-Plex array reader (1 71-000005) and precision fluidics aligned the beads in single file 

through a flow cell where two lasers excite the beads individually. A red classification 

and a green reporter laser illuminated individual beads to identify each bead's color code 

and quantify the associated reporter signal. 

2. Bio-Rad's Bio-Plex Cytokine Assay 

Bio-Rad's Bio-Plex cytokine assay (1 71 -K11070) [Hercules, California] is a 

multiplex bead-bead assay designed to quantitate multiple cytokines in diverse matrices 

including rat plasma. One 96-well included coupled beads, detection antibodies, and 

standards for the detection of IL-lalpha, IL-lbeta, IL-2, IL-4, IL-6, IL-10, GM-CSF, 

IFN-gamma, and TNF-alpha. Premixed multiplex panels test for the presence of a 

predetermined set of cytokines in a single sample. The Bio-Plex suspension array system 

utilizes patented multiplexing technology similar to that of LINCO. The Bio-Plex system 

uses up to 100 color-coded bead sets, each of which can be conjugated with a different 

specific reactant and each reactant is specific for a different target molecule. This 

technology is designed in a capture sandwich immunoassay format. The antibody for the 

specific cytokine of interest in covalently coupled to color-coded polystyrene beads. The 

antibody-coupled beads are then allowed to incubate and react with a plasma sample 

(containing an unknown amount of cytokine) or with a standard solution provided from 

the company (containing a know amount of cytokine). According to technical support at 

Bio-Rad, rat standards (recombinant protein) are not always standardized, whereas mouse 

and human standards for multi-plex assays are obtained from commercial sources. A 
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Linco representative stated that commercial sources provide a Certificate of Analysis to 

confirm purity and mass equivalence of products. Bio-Rad also notes that in some cases 

rat recombinant standards from different companies are better models than theirs in terms 

of the absolute values. 

Unbound protein was removed by a series of washes and a biotinylated detection 

antibody specific for a different epitope on the cytokine was added to the beads in each 

well. As a result, a sandwich of antibodies formed around the cytokine and the reaction 

mixture was detected using streptavidin-phycoerythrin (streptavidin-PE), which binds to 

the biotinylated detection antibodies. As with the LINCOplex, the constituents of each 

well in the Bio-Plex assay were drawn up into a flow-based Bio-Plex suspension array 

system and the identity and quantity of each specific reaction was determined using bead 

color and fluorescence. Fluorescently labeled reported molecules associated with each 

target protein were used to measure the magnitude of the reaction. 

3. Bio-Plex Manager Software 

The Bio-Plex Manager software uses a standard curve derived from a 

recombinant cytokine standard to calculate unknown cytokine concentrations. Bio-Plex 

system software employs StatLIA 4PL and 5PL curve fitting and provides percentage 

recover calculations. Data produced by the software were analyzed and imported into 

Statistical Package for the Social Sciences (SPSS) for statistical analysis. Except for the 

bead set, default settings were used in the Bio-Plex system software. Any data point in 

the Bio-Plex System software with a CV% of less than or equal to 50% was included in 

the final data analysis. Furthermore, any data point above or below the standard curve, 
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within two standard deviations of the lowest or highest standard, was also included. 

Triplicate biological samples were used to quantifjr the cytokinelchemokine amounts. 

Using the outlier feature in the Bio-Plex system software, one data point in the triplicate 

was excluded to make the CV% as close to zero as possible. If there was no fluorescence 

for a particular sample, no outliers were determined and only a duplicate was used in the 

final analysis. If all samples combined produced the lowest CV% then the entire 

triplicate data was utilized. Finally, outliers in the standard curve were determined by 

removing the data point that kept the overall average of the observedexpected * 100 as 

close to 100% as possible. The range for observedexpected * 100 was any number 

between or equal to 100 + 30 (70-130). 

4. Titer ZymeB ELA 

Enzyme Imm~lnometric Assay Kit (EIA) (Catalog No. 900-086) [Ann Arbor, 

Michigan]. The TNF-a ELISA Assay employed to measure rat plasma included all 

materials for the quantitative determination of rat TNF-a in biological fluids. The kit 

manufactured by Assay Designs utilized a polyclonal antibody to rat TNF-a immobilized 

on a microtiter plate, which binds the rat TNF-a in the biological sample. Following a 

short incubation, excess sample was washed away and a monoclonal antibody to rat TNF- 

a labeled with the enzyme Horseradish peroxidase was added to each well. The antibody 

binds to the rat TNF-a captured on the plate. Another short incubation was required, the 

excess labeled antibody was washed out using a wash buffer, and the substrate solution 

was then added. The substrate reacts with the labeled antibody bound to the rat TNF-a 

captured on the plate. Finally, a stop solution was added, which turns the blue color in 
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each well to yellow, and the color generated with the substrate was read at 450 nm. 

Using standards provided in the kit to draw a standard curve, the optical density reading 

is directly proportional to the concentration of rat TNF-a in the sample. 

Assay Designs' rat MCP-1 TiterZymeO Enzyme Immunometric Assay (EIA) 

(Catalog No. 900-077) kit is a complete kit for the quantitative determination of rat MCP- 

1 in biological fluids. The MCP-1 ELISA assay utilizes the same techniques and 

protocol as described above. The measured optical density is directly proportional to the 

concentration of rat MCP-1 in either provided standards or biological samples. 



Experimental Results 

I. Statistical Analysis 

The chemokine and cytokine measurements were analyzed using Independent 

Sample T-test and Chi-Square statistics; a p value I 0.05 was considered significant. 

11. Chemokine and Cytokine Measurements 

Comparisons between the enzyme-linked irnmunosorbent assays (ELISA) and 

multi-plex plates assessed the precision and accuracy of the multiplex technology and 

evaluated the sensitivity of each assay. A uniform comparison was executed using 

plasma samples from the pressure model to appraise two respectable multi-plex assays 

employed in the biochemical field. After numerous experiments utilizing both the 

LINCOplex and Bio-Plex plates, two specific cytokines were selected for the assessment. 

We determined that it is important to first screen a h l l  panel of cytokines during pilot 

studies because not all cytokines are measurable in every assay. The researcher can then 

choose specific cytokines that give reliable responses.to customize fiture panels for a 

truncated list. Utilizing pilot study data, it was determined to customize the LINCOplex 

kit to include IL- 1 a ,  MCP- 1, IL-6, IL- 10, IL- 12~70,  INF-6, IL-18, and GRO-KC. While 

five cytokines, IL-10, IL-2, IL-6, IL-10, and TNF-a, were selected for Bio-Rad's Bio- 

Plex plate. In particular, interleukin- 1 0 (IL- 1 0) and interleukin-6 (IL-6), produced 
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reliable data from previous experiments for both plates of interest. As a result, these two 

cytokines were used for the uniform comparison. 

Table 1 demonstrates that many of the baseline (B) values for AET and VEH 

animals were undetectable when employing Bio-Rad's multi-plex assay to measure IL-6 

levels. As noted in the left column [Table I], only two baseline levels are recorded. The 

other nine cells are blank because baseline IL-6 levels for these animals were either 

below the limit of detection or noted non-detectable due to experimental error andfor high 

%CV. Table 1 illustrates the average or mean (AV) and standard deviation (SD) for each 

data set. In statistics, a normal distribution does not exist when the standard deviation is 

greater than the mean. Outlying values can be removed, however, outliers make the data 

hard to analyze. Without a large sample size, researchers cannot conclude that outliers 

result from test variation, rather than biological variation. 

Table 1 illustrates the variation between two reputable multi-plex assays. The 

Bio-Plex assay recorded 262.63 pg/mL for plasma sample 64-148759-6 as opposed to 

87.82 pg/mL observed by the Lincoplex kit, almost a 3-fold difference for measurable IL- 

6. For a second plasma sample (65-148760-6), Bio-Rad's assay measured 249.96 pg/mL 

while 32.15 pg/mL (approximately an 8-fold disparity) was documented using Linco's 

plate. The cytokine values observed for IL-10 [Table 21 also demonstrated incontinences. 

Rat 64-148759-B had a cytokine level of 717.93 pg/mL with the Bio-Plex kit and 53.35 

pg/mL with Linco. For the biological sample, 53-147134-6, 1162.71 pg/mL was 

recorded using Bio-Rad's assay, whereas the Lincoplex plate observed the value of 

1 94.8 1 pg/mL for circulating plasma levels of interleukin- 10. 



Bio-Rad's Bio-Plex 

l~escription B 6hr  I 
47-145726-8 AET 
47-145726-6 AET 792.3 
64-148759-8 AET 145.52 
64-148759-6 AET 262.63 
65-148760-8 AET 
65-1 48760-6 AET 249.96 
67-1491 26-8 AET 
67-149126-6 AET 145.52 
71-149456-8 AET 
71 -1 49456-6 AET 145.52 

270.25 

66-149125-8 VEH 
66-149125-6 VEH 
74-149767-8 VEH 
74-1 49767-6 VEH 237.22 
52-1471 36-8 VEH 
52-1471 36-6 VEH 275.23 
53-1471 34-8 VEH 
53-1471 34-6 VEH 145.52 
54-1471 35-8 VEH 262.63 
54-147135-6 VEH 959.02 
60-148238-8 VEH 
60-148238-6 VEH 

331.02 

l~escription B 6 hr 1 
47-145726-8 AET 6697.34 
47-1 45726-6 AET 
64-148759-8 AET 
64-148759-6 AET 
65-148760-8 AET 
65-148760-6 AET 
67-149126-8 AET 
67-149126-6 AET 
71 -149456-8 AET 
71 -1 49456-6 AET 

VEH 
VEH 99.76 
VEH 38.57 
VEH 276.72 
VEH 18.96 
VEH 430.05 
VEH 1293.03 
VEH 146.64 
VEH 1395.26 
VEH 1334 
VEH 111.6 

260.03 
571.48 424.53 
707.11 460.15 

[TABLE 11 

Uniform Comparison: IL-6 

TABLE 1 : [Pressure Model] 
Identical plasma samples were analyzed using both the Bio-Plex and Lincoplex 

multi-plex technology to measure interleukin-6. AV = average; SD = standard 
deviation; B = baseline time point; 6 hr = six hour time point; blank cell = value not 
detectable in assay; concentration values [pg/mL]. Note the inconsistencies between 
both plates. 



Bio-Rad's Bio-Plex 

l~escri~t ion B 6 hr 
47-1 45726-B AET 248.68 
47-145726-6 AET 1813.12 
64-148759-8 AET 71 7.93 
64-148759-6 AET 2855.08 
65-148760-B AET 774.91 
65-148760-6 AET 1583.21 
67-149126-B AET 176.25 
67-149126-6 AET 882.29 
71 -149456-8 AET 307.92 
71 -149456-6 AET 11 23.28 

445.14 1651.40 
279.68 766.50 

66-149125-B VEH 1189 
66-149125-6 VEH 1686.13 
74-149767-B VEH 231.1 3 
74-149767-6 VEH 3918.6 
52-1471 36-B VEH 1 10.38 
52-1471 36-6 VEH 6661.94 
53-1471 34-B VEH 283.79 
53-1471 34-6 VEH 1162.71 
54-147135-B VEH 525.04 
54-147135-6 VEH 7969.96 
60-148238-8 VEH 182.84 
60-148238-6 VEH 3896.72 

420.36 4216.01 
402.17 2682.84 

AET 
AET 
AET 
AET 
AET 
AET 
AET 
AET 
AET 
AET 

66-149125-B VEH 43.98 
66-149125-6 VEH 102.91 
74-1 49767-B VEH 
74-149767-6 VEH 324.08 
52-1 471 36-8 VEH 
52-147136-6 VEH 382.01 
53-1471 34-B VEH 
53-1 471 34-6 VEH 194.81 
54-1471 35-B VEH 
54-147135-6 VEH 821.05 
60-148238-B VEH 57.58 
60-148238-6 VEH 224.77 

50.78 341.61 
9.62 254.55 

[TABLE 21 

Uniform Comparison: IL- 10 

TABLE 2: [Pressure Model] 
Identical Plasma samples were analyzed using both the Bio-Plex and Lincoplex 

multi-plex technology to measure interleukin-10. AV = average; SD = standard 
deviation; B = baseline time point; 6 hr = six hour time point; blank cell = value not 
detectable in assay; concentration values [pg/mL]. Note the inconsistencies between 
both plates. 
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As noted in the introduction the importance of monitoring chemokine and 

cytokines levels in response to trauma and hemorrhage may be very important for 

predicting survival. However, in order to make conclusions regarding the physiological 

relevance of measured cytokine levels, modern methodologies must first prove to have 

high sensitivity, specificity, and precision. The variation between these two respectable 

assays validates concerns regarding .the credibility and reliability of rat assays in general 

and this data questions the legitimacy of cytokine concentrations measured using the 

multi-plex technology. Therefore, the remaining experimental results presented in this 

thesis must be regarded as preliminary because of the variation noted when utilizing 

modern techniques. 

A total of 24 animals were used in the volume study. Specifically, 12 rats were 

randomized in the blinded experiment to receive AET while the other 12 rats were 

injected with vehicle. Chemokine and cytokine analyses utilized plasma from both AET 

and vehicle rats that survived to 72 hours. All rats randomized to receive AET survived 

the hemorrhage and resuscitation, whereas only 9 of 12 rats receiving the vehicle 

injection survived to 72 hours. Even though the difference in mortality is statistically 

significant, it should be noted that analysis was performed using a smaller number of 

vehicle treated animals. 

Preliminary results illustrate a trend in the cytokine and chemokine responses 

following hemorrhagic trauma. In the volume model, those animals surviving 

hemorrhagic shock and resuscitation had elevated levels of both MCP-1 [Figure 71 and 

GROIKC [Figure 91 as compared to baseline chemokine measurements from vehicle 
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treated animals at the 24-hour time point. As already mentioned, the absolute 

standardization of both chemokines and cytokines using rat antibodies is problematic. 

Therefore, an ELISA assay [Figure 81 was used to verify the trend of MCP-1 to validate 

the chemokine measurements obtained from the Lincoplex kit. 

Based on measurements using the Lincoplex kit, analysis indicated that there was 

an increase of MCP-1 levels in animals surviving hemorrhagic trauma and shock [Figure 

71 at 72 hours (VEH 1501.57 pg/mL; AET 1336.00 pg/mL) as compared to baseline 

MCP-1 levels (105.55 pgImL). Since drug was not injected prior to taking the pre- 

hemorrhagelpre-resuscitation plasma sample, the sample size for baseline measurements 

is 17 (combination of AET + VEH animals). This 13-fold increase of MCP-1 in 

surviving AET animals is statistically significant with a P value of < 0.0001 (Independent 

Sample Test). Likewise, there was an increase of MCP-1 in both AET and VEH 

survivors at 72 hours compared to MCP-1 VEH measurements at 24 hours (156.93 

pg/mL). The 8.51 increase between AET 72 and VEH 24 is statistically significant with 

a P value of <0.000 1. 

Based on measurements using the MCP-1 TiterZymeO Enzyme Irnrnunometric 

Assay [Figure 81, levels of MCP-1 are approximately 350 times higher in surviving 

animals at 72 hours (VEH 94.36 ng/mL; AET 131.13 ng/mL) compared to baseline 

animals (0.326 ng/mL). The increase of MCP-1 in surviving AET animals is statistically 

significant with a P value of < 0.001 (Independent Sample Test). The increase of MCP-1 

in surviving vehicle animals is statistically significant with a P value of < 0.109. Even 

though the absolute values of MCP-1 varied greatly between the muli-plex and ELISA 
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assays, it is possible to conclude that levels of this chemokine are significantly higher in 

animals surviving hemorrhagic trauma. 

[FIGURE 71 

Survival Trend of MCP- 1 

Effect of Hemorrhagic-Trauma on Monocyte 
Chemoattractant Protein-1 (MCP-1) Plasma Levels 

pre-hem (n=17) VEH 24 (n=2) VEH 72 (n=3) AET 72 (n=7) 

FIGURE 7: [Volume Model] 
Analysis indicated that there was an increase of MCP-1 levels in animals 

surviving hemorrhagic trauma and shock at 72 hours as compared to baseline and VEH 
24 MCP-1 levels. 



. - 
[FIGURE 81 

MCP- 1 : Survival Trend Validation 

Effect of Hemorrhagic-Trauma on Monocyte 
Chemoattractant Protein-I (MCP-1) 

Pre-hem (n=12) VEH 72 (n=4) AET 72 (n=5) 

FIGURE 8: [Volume Model] 
Trend confirmation; levels of MCP-1 were elevated in surviving animals at 72 

hours compared to baseline measurements. 
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Based on measurements using the Lincoplex kit, analysis indicated that there was 

a 2.2 increase of GROKC in animals surviving hemorrhagic trauma and shock compared 

to baseline GROKC levels [Figure 91. Surviving animals had higher levels of this 

chemokine (365.67 pg/mL) at 72 hours compared to the mean concentration of 164.47 

pg/mL for pre-hemorrhaged baseline animals. This 2-fold increase is statistically 

significant with a P value of < 0.05 (Independent Sample Test). The GROKC 

measurement for survivors was also notably higher than the 120.36 pg/mL observed in 

vehicle treated animals 24 hours post trauma and hemorrhage. This 3-fold increase is 

statistically significant with a P value of I 0.03. As noted, the survivor group included 

both AET and vehicle treated animals; therefore, the elevation of GROIKC in survivors 

cannot be attributed to drug treatment. 



[FIGURE 91 

GROKC and Survival 

Association of Growth-Related Oncogene (GROIKC) 
with Survival 

- I pre-hem (n=13) I VEH 24 (n=2) I Survivors (n=7) I 

FIGURE 9: [Volume Model] 
Animals surviving hemorrhage had higher levels of GROKC at 72 hours 

compared to chemokine measurements for both pre-hemorrhage traumatized animals and 
vehicle treated animals at 24 hours. 
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IL-la levels were significantly reduced in untreated animals 24 hours and 72 

hours after trauma and hemorrhage as compared to the baseline value for animals in the 

volume model [Figure 101. In addition, AET surviving animals had markedly higher 

levels of IL-la than the vehicle treated animals surviving 24 hours and 72 hours after 

injury. Based on measurements using the Lincoplex kit, analysis indicated that there was 

a 2.5 increase of IL-la in AET animals surviving hemorrhagic trauma and shock at 72 

hours (1 8 1.37 pg/mL) as compared to levels of vehicle treated animals at 24 hours (72.1 1 

pg/mL). This increase for AET survivors at 72 hours versus VEH 24 hours is statistically 

significant with a P value of = 0.017. Likewise, the 3-fold increase of surviving AET 

animals versus vehicle treated animals at 72 hours (56.99 pg/mL) is statistically 

significant with a P value of < 0.01. Interestingly, AET treated animals mediated a 

restoration of IL-la levels at 72 hours; however the mean concentration for AET 

survivors was not higher than the mean baseline value reported (246.17 pg/mL). Using 

an independent sample test, P = 0.212 for AET 72 hours versus pre-hemorrhage levels. 

Normal levels of IL-1 are below detection of any assay [39]. Therefore, these results 

may indicate that trauma induces IL-la because the pre-hemorrhage levels after surgery 

[placement of three catheters and midline laparotomy] averages 246.17 pg/mL, whereas 

hemorrhage decreases IL-la because both the VEH 24 and VEH 72 means after 

hemorrhage and resuscitation are below pre-hemorrhage levels. The 3-fold decrease 

between vehicle animals at 24 hours and pre-hemorrhage animals at baseline is 

significant with a P value < 0.008. The 4.3 1 decrease of IL-la between surviving vehicle 
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animals at 72 hours and baseline (pre-hemorrhage) animals is statistically significant with 

a P value of < 0.005. 

[FIGURE lo] 

Effect of AET on IL- 1 a 

Effect of Androstenetriol on the Pro-Inflammatory Cytokine 
IL-I alpha (IL-I alpha) 

pre-hem (n=7) VEH 24 (n=2) VEH 72 (n=3) AET 72 (n=3) 

FIGURE 10: [Volume Model] 
IL-la levels were significantly reduced in vehicle animals 24 hours and 72 hours 

after trauma and hemorrhage as compared to the baseline value. AET treated animals at 
72 hours had markedly higher levels of IL-1 a than the vehicle treated animals surviving 
24 hours and 72 hours. 
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As demonstrated, by previous results, various rat assays (multi-plex vs. multi-plex 

and multi-plex vs. ELISA) report different cytokine measurements for .the same plasma 

samples. The validity of modern methodologies remains to be determined; therefore, 

measurements representing the actual physiological cytokine or chemokine levels present 

in rat plasma are not reliable at this time. Presently, we elected to base our conclusions 

on the trends between samples. In the case of MCP-1, the ELISA [Figure 81 was more 

sensitive than the LINCOplex plate [Figure 71, however ELISA assays are not always 

more sensitive then the multi-plex technology. With TNFa, preliminary results using 

Bio-Rad's Bio-Plex Cytokine Assay reported values [Figure 111 ranging from 50 pg/mL 

to approximately 250 pg/mL. On the contrary, the ELISA assay did not detect any 

measurable levels for this particular cytokine. Plasma samples diluted in 1 :2 ratio were 

below detectable limits using the TNF-a Titer Zyme@ EIA; the manufacturer suggested 

that a 1 :5 dilution was adequate for measuring rat plasma. It is important to note that all 

assay protocols discourage running "neat samples" because of the matrix effect 

associated with plasma or serum biological samples. 



[FIGURE 111 

TNFa Bio-Plex Measurements 

Values of TNF-alpha 

Baseline 6 hour 24 hour 48 hour 

FIGURE 1 1 : [Pre-Tx Model] 
Values for TNF-a range from 50 pg/mL to a little over 250 pg/mL. Note these 

measurements should be regarded as preliminary because of the small sample size for 
both AET and Vehicle animals. 
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According to Daniel Remick, several clinical studies have proven that the 

circulating plasma levels of interleukin-6 (IL-6) predict outcome for septic patients [29]. 

More specifically, higher levels of IL-6 indicate increased mortality significantly in 

patients[29]. In his research, Remick concluded that even though multiple different 

studies have been performed on various cytokines, IL-6 is the only cytokine that has 

given reproducible results to indicate it is the best predictor of mortality [29]. Mice that 

died during the first 3 days (n=19) of the experiment had significantly high levels of IL-6 

as compared to those mice that lived (n=60). However, Remick notes that there was 

significant heterogeneity in individual animal response. 

[TABLE 31 

IL-6 as a Marker of Prognosis in Trauma 

Degrees of freedom: 1 
Chi-square = 8.76 

p is less than or equal to 0.01. 
The distribution is significant. 

TABLE 3: [Pressure Model] 
Analysis indicated that plasma levels of IL-6 > 400 pg/mL may correlate with 

mortality in rats. 
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In accordance with Remick's research, rats were employed fiom the pressure- 

driven hemorrhage and resuscitation model to determine whether IL-6 measured 6 hours 

after surgery could predict survival outcome. It should be noted that Remick tested his 

hypothesis using a sepsis model in mice, while the 60% cytokine production data was 

determined using rat plasma fiom a non-infectious hemorrhage model. Twenty-eight rats 

were divided into two groups [Table 31, those that survived 24 hours post hemorrhage 

and resuscitation (n=16) [16/28; 57%] and those that died prior to the 24-hour benchmark 

(n=12) [12/28; 43%]. Based on measurements using the Lincoplex assay, analysis 

demonstrated that the survival group had fewer rats (20%) with plasma IL-6 levels > 400 

pg/mL than the non-survival group (80%). Consequently, 14 out of the 16 rats (88%) 

who survived the hemorrhage and resuscitation had plasma levels of IL-6 < 400 pg/mL, 

whereas only 4 out of the 12 rats (33%) that did not survive past 24 hours had similar 

measurements. Using a chi-square statistical analysis, the distribution is statistically 

significant with a P value I 0.01. 

Experimental results from the pre-treatment experiment also illustrate trends in 

the cytokine and chemokine responses following hemorrhagic trauma. A total of 15 

animals were used in the pre-treatment study. Specifically, 5 rats were randomized in the 

blinded experiment to receive AET while the other 10 rats were injected with vehicle. 

Four rats randomized to receive AET survived the hemorrhage and resuscitation, whereas 

7 rats receiving the vehicle injection survived to 48 hours. The AET animal died at 24 

hours compared to in the VEH group one animal died at 3 hours, one at 6 hours, and one 

at 24 hours. Because of the poor difference in surviving data, i.e. 70% in vehicle animals 



55 
and 80% in AET animals, conclusions are "risky." Rats were sick with rat respiratory 

virus (RRV) and we could not complete the experiment. 

Similar to the volume model, pre-treatment data [Figure 121 also indicated that 

increased MCP-1 chemokine levels promote survival. From this experiment, we cannot 

prove an AET effect on survival. Based on measurements using the Lincoplex kit, 

analysis demonstrated that MCP-1 plasma levels increased over time. The elevation of 

MCP-1 cannot be attributed to drug alone, however the trend demonstrates that surviving 

animals (those that lived to 48 hours) had increased circulating plasma levels of MCP-1. 

Rats were utilized from the pre-treatment hemorrhage and resuscitation model to 

determine whether or not AET had an effect on INF-)I and survival. Figure 13 

demonstrates that for all time points (baseline, 6 hours, 24 hours, 48 hours) INF-)I plasma 

levels were remarkably elevated in AET animals. After combining the mean INF-)I 

concentrations from the four different time periods [Figure 141, analysis indicated that the 

average circulating plasma level for AET animals (7943.88 pg/mL) was notably different 

that the average circulating plasma level for VEH animals (97.01 pg/mL). The results 

were statistically significant with a P value of 5 0.01. 



[FIGURE: 121 

MCP- I Production and Survival 

Effect of Hemorrhagic-Trauma on Monocyte 
Chemoattractant Protein-I (MCP-1) 

0 
Baseline 6 hrs 24 hrs 48 hrs 

FIGURE 12: [Pre-Tx Model] 
Analysis indicated that increased MCP-1 levels promote survival, although the 

elevation of MCP-1 in survivors cannot be attributed to drug alone. VEH sample size: 
baseline (4), 6 hrs (3), 24 hrs (3), 48 hrs (2). AET sample size: baseline (3), 6 hrs (3), 24 
hrs (3), 48 hrs (3). 



[FIGURE: 131 

Effect of AET on INF-y 

Effect of Androstenetriol on the Pro-Inflammatory Cytokine 
INF-g (Interferon-gamma) 

0 
VEH AET 

Baseline n 6 hrs Ell 24 hrs M48 hrs 

FIGURE 1 3 : [Pre-Tx Model] 
Based on measurements using the Lincoplex kit, analysis indicated that AET 

animals had notably elevated INF-y plasma levels as compared to VEH animals in the 
same pre-treatment experiment. 

Baseline 
6hrs 
24 hrs 
48 hrs 

VEH AET 
mean 

210.72 
94.65 
42.04 
40.65 

stdev 
62.27489 

96.2443 
15.11794 

n 
2 
2 
2 
1 

mean 
7087.0 
6154.3 

10074.5 
8459.8 

stdev 
2420.526 
4309.597 
9902.415 
6148.258 

n 
2 
2 
2 
2 



[FIGURE: 141 

Effect of AET on INF-y 
Across All Time-Points 

Effect of Androstenetriol on the Pro-Inflammatory Cytokine 
INF-g (Interferon-Gamma) 

VEH (n=7) AET (n=8) 

FIGURE 14: [Pre-Tx Model] 
Based on measurements using the Lincoplex kit, analysis indicated that the 

average circulating INF- y plasma level for AET animals was significantly different than 
the average circulating INF- y plasma level for VEH animals across all time-points. 



Discussion 

I. Assay Comparison 

A uniform comparison [Table 1 & Table 21 was performed using plasma samples 

from the pressure model to evaluate various assays employed in the biochemical field 

that determine cytokine concentrations. After numerous experiments run on both the 

LINCOplex and Bio-Plex plates, two specific cytokines were selected for the assessment. 

In particular, interleukin-1 0 and interleukin-6, had produced reliable data in previous 

pilot experiments for both plates of interest. Therefore, these two cytokines were used 

for the uniform comparison. In addition, a second comparison was generated using an 

enzyme-linked imrnunosorbent assay (ELISA) for MCP-1 [Figure 81 and TNF-a to 

assess the precision and accuracy of the multiplex technology. 

11. Pilot Study 

Prior to the uniform experiment, a pilot study produced results that questioned the 

validity of modem methodologies. Especially concerning to our research group was the 

determination that the research and development (R&D) department at Bio-Rad does not 

differentiate between rat plasma and serum for dilution and measurement purposes. 

According to the literature, Bio-Plex cytokine assays are multiplex bead assays that 

quantitate human, mouse, or rat cytokines in diverse matrices, including cell culture 

supernatants, serum, or plasma. To reduce the matrix effect of the assay, the protocol 
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requires the researcher to dilute a serum or plasma biological sample using Bio-Rad's 

Serum Diluent Kit [171-3050081. 

The matrix effect is defined as a type of interference caused by a constituent of 

the sample itself. This usually relates to the pH, osmolarity, or composition of the 

sample. When sample characteristics exceed the limitations tolerated by the assay, a 

matrix effect will result and sample detection becomes non-linear. Plasma is defined as 

the clear, yellowish fluid portion of blood in which cells are suspended. Plasma differs 

from serum in that it contains fibrin and other soluble clotting elements. Plasma is 

composed of 92% water, 7% protein and 1% minerals. The chief proteins in plasma are: 

albumin (60%), globulins (alpha-1, alpha-2, beta and gamma globulins) and clotting 

proteins, especially fibrinogen. These proteins function to maintain the oncotic pressure 

and transport substances such as lipids, hormones, medications, vitamins, and other 

nutrients. The proteins are also part of the immune system (immunoglobulins), aid in 

blood clotting (clotting factors), maintain pH balance, and are enzymes in chemical 

reactions throughout the body. Serum is defined as the non-cellular portion of blood that 

remains after the coagulation of whole blood or plasma. Serum is equivalent to plasma 

without its clotting elements. Our cytokine analyses utilized rat plasma as the biological 

sample of choice because in vivo plasma is the component of blood that flows throughout 

the circulatory system. Serum is not physiologically relevant to clinical treatment models 

because serum is the fluid portion of the blood after it has clotted and the cells have been 

removed. 
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Because pilot data using Bio-Rad's Bio-Plex technology did not produce precise 

and accurate results, we asked technical support to provide us with validation statistics 

for the rat cytokine assay. Through personal communication with Bio-Rad, it was 

determined that the person who performed the rat validation has since left the conipany 

and according to technical support, they cannot produce validation statistics for rat 

plasma. Bio-Rad's explanation for this oversight is necessity; marketing data shows 

minimal use of rat plasma and even less utilization of rat cytokine kits altogether. 

According to a sales representative, our research team was only the second group to 

experiment with the rat multiplex kit. The other group evaluated a plate during their 

demo in which they tested a non-validated kidney perfusate (interstitial fluid) and 

produced mixed results. After confirmation that Bio-Rad's assay was not validated for 

plasma, it was suggested by technical support to precipitate out the larger proteins in the 

plasma sample for the purpose of reducing the matrix effect; therefore, making the 

substance more resemble serum. A Linco representative, however, concluded that 

precipitating out larger proteins could remove some of the larger cytokines as well, 

including those that are bound to carrier proteins (e.g. soluble receptors, etc.). 

Another issue that surfaced during our pilot study involved the sensitivity of the 

rat antibodies as compared to antibodies for human and mouse assays. Bio-Rad 

concludes that both the rat multi-plex cytokine assays and the traditional rat ELISA 

assays are notoriously less sensitive than the mouse or human multi-plex assays and 

ELISAs. The reasoning for this decreased sensitivity results in fact that antibodies used 

for the rat assays are not of high quality because of the rarity associated with the rat 
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model; therefore, the rat antibodies are less sensitive in their kinetic profile. Bio-Rad 

concludes that the antibodies available for rats require more research, which ultimately 

affects the validity of our results. 

111. Evaluating Assays 

Plasma samples from the same animals were run on two different multi-plex 

assays, Bio-Rad's Bio-Plex and Linco's Lincoplex assay. The variation between the two 

plates caused concern for our research group. For example in Table 1 VEH rat 54- 

147135-B had a concentration level of 262.63 pg/mL for IL-6 on the Bio-Rad plate as 

con~pared to 1395.26 pg/mL measured using the Linco assay. This 5-fold difference in 

concentration questions the sensitivity associated with both assays. For IL-10 the 

uniform comparison demonstrated bigger discrepancies in cytokine concentration 

measurements. Table 2 illustrates that for the AET plasma sample, 47-145726-B, the 

concentration level of IL-10 using the Bio-Plex assay was 248.68 pg/mL, whereas the 

Linco plate measured the concentration level of IL-10 as 6,096.81 pg/mL. When 

comparing measurements from a multi-plex assay to an ELISA, variation also existed. In 

Figure 7, the mean concentration of MCP-1 for surviving AET animals at 72 hours was 

1,336.00 pg/mL in the Linco-plex cytokine assay, whereas the ELISA plate from Assay 

Designs [Figure 81 produced a mean concentration of 13 1,13 1.13 pg/mL for the same 

group of animals. This 98-fold different for measured MCP-1 is concerning. Through 

our research we determined that when comparing any antibody driven test to another 

(ELISA vs. ELISA, ELISA vs. multi-plex, or multi-plex vs. multi-plex), the absolute 

values calculated by the standard curves from two different assays are not comparable. 
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The reasoning behind this conclusion comes from experimental data and the 

determination that each assay uses different recombinant standards and different 

antibodies. 

The standards from one company have different purities and recombinant 

structures than standards fiom another company; consequently, the various standards 

have different binding kinetics to the same antibody. This phenomenon implies that the 

recombinants between companies are of different genetic construction and produce 

slightly different products. As a result, the inconsistency between standards influences 

different curve shapes and different signal intensities because various amounts of the 

standards bind to the antibodies. 

The World Health Organization (WHO) and The National Institute of Standards 

and Controls set an international calibration method; the WHO assigns an international 

unit based on a bioassay of the standard, for instance 1000 IUIpg. Most cytokine 

standards are compared to the WHO bioassay units; however, according to technical 

support at Bio-Rad not all standards are tested. Additionally, the WHO numbers for 

different manufacturer standards can differ up to a 1000 fold, while 10 fold is more 

typical. For example, one assay can calculate 10 pg/ml for one sample and another 

company can measure 1 pg/ml for the same sample because the standards between 

manufacturers have different biological or kinetic activity with the antibody. 

Nevertheless, this does not make one assay more sensitive than the other; the numbers on 

the curve are relative and importance lies in the trends between samples. 
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Recommendations for fiture experiments include purchasing an internal cytokine 

standard from an independent company and running that standard on the various assays 

utilized to measure cytokines. Therefore, a known amount of a particular cytokine is 

analyzed on multiple assays and depending on the observed measurement, the accuracy, 

precision, and specificity of an assay can be determined. Furthermore, observed 

measurements for the biological samples can be modified depending on the ratio between 

the known amount of standard added and the observed meas~uement for that standard. 

Our research suggested that the various modem methodologies utilize different 

antibodies, which also cause significant differences. Contrary to the standards, the 

differences between manufacturer antibodies can affect sensitivity. When an antibody 

cannot bind a significant amount of target at low concentrations due to its inferior binding 

kinetics, as compared to an antibody with stronger affinity, a loss in detectability at the 

low-end results. Accordingly, our research determined that, measurements from ELISA 

plates do excel in some cases when compared to a multi-plex assay; this usually, 

however, is only limited to one particular target. We concluded that the key for 

determining sensitivity between assays is to compare the lowest detectable sample on 

both assays and verify where it falls on the standard curve. If a sample can be detected 

on one curve and not another, then that particular assay has a sensitivity advantage 

assuming the results are reproducible. 

Literature states that each antibody pair is made against different epitopes on 

recombinant antigens. Therefore, even if all the standards match between comparable 

assays, the results may still vary because of several factors. Inconsistent data results from 
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inherent components among different assays including, various antibody pairs may not 

bind to an antigen in its native form with the same affinity, antibody pairs may be binding 

to a labile site that is easily truncated by serum proteases, and the affinity may be 

impaired by soluble receptors. Our research also determined that within a single rat mult- 

plex assay, antibodies are not equally sensitive. We discovered through experimentation 

that although Bio-Rad's technical support generally guarantees detection for all 

antibodies to 10-12 pgImL, most antibodies in the rat Bio-Plex plate are not quality 

controlled (QC'd) below 50 pg/mL. Because most analyzed cytokine levels fall towards 

the lower end of the standard curve, we concluded that in the future researchers must first 

verify QC'd statistics before purchasing a kit. 

IV. MCP-1 Results 

Chemokines include low-molecular-weight polypeptides (8 to 16 kDa) that 

mediate the migration of leukocyte populations toward imrnunelinflammatory stimuli 

[30]. Monocyte Chemoattractant Protein-1 (MCP-1) is associated with chronic vascular 

disorders, such as arteriosclerosis, and congestive heart failure, as well as inflammatory 

states [31]. According to recent literature, the most potent chemotactic activity of this 

chemokine involves mononuclear phagocyte activation [3 11. Initial studies in a murine 

model of septic peritonitis demonstrate that the cecal ligation and puncture procedure 

induces a dramatic increase in MCP-1 production in the peritoneum, followed by an 

increase in the recruitment of leukocytes [32]. Furthermore, MCP-1 blockade with anti- 

MCP-1 antiserum significantly decreases the survival rate for rats following surgery and 

the lack of MCP-1 results in the enhanced recovery of viable bacteria from the 
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peritoneum [32]. Results from the volume-driven hemorrhage model and pre-treatment 

hemorrhage model demonstrate that MCP- 1 levels increase in surviving animals. MCP- 1 

is known to counteract hypoxia-mediated apoptosis and attract monocytes. The elevation 

of MCP-1 in both AET and VEH survival animals [Figure 7 & Figure 121 suggests that 

the effects of this cytokine may benefit individuals recovering from hemorrhagic trauma 

and shock. Although the effect of drug cannot be determined at this time, our results 

indicate that MCP-1 may initiate an inflammatory response to increase survival. As 

discussed earlier, instead of relying on actual MCP-1 values, researchers are encouraged 

to relate assays as a relative increase or decrease. The measurements in the volume 

model using the MCP-1 TiterZymeQ Enzyme Imrnunometric Assay [Figure 81 and 

Lincoplex Assay follow the same trend, along with the results from the pre-treatment rat 

hemorrhage model [Figure 121. All three studies provide data to indicate that the 

chemokine MCP-1 may play a significant role in the inflammatory survival response after 

trauma and hemorrhage. 

V. GROIKC Results 

The rat chemokine GROKC (also known as Rat KC or CINC) promotes 

neutrophil chemotaxis and degranulation. Rats lack the IL-8 homologue; current research 

concludes that rat CINC has a closer sequence homology to GRO than to IL-8, therefore 

CINC is the rat equivalent of human GRO but not of IL-8 (22). All three isoforms of 

GRO are CXC chemokines that can signal through the CXCR2 receptor. Recombinant 

rat GROKC is a 7.8 kDa protein consisting of 70 amino acids including the ELR motif 

common to the CXC chemokine family that bind to CXCRl or CXCR2. Current 
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research provides strong evidence that neutrophils have a role in mediating pathology 

during reperfusion of ischemic tissues [21]. More specifically, CXC chemokines, 

including interleukin-8 and KCIGROa, guide neutrophils to tissue sites of inflammation 

[21]. Our results should be regarded as preliminary and hture experiments to verify our 

multi-plex data should include analyses from the growth-regulated oncogenelcytokine- 

induced neutrophil chemoattractant- 1 (GROICINC- 1) ELISA assay [3 31. [Assay Designs 

~ i t e r ~ ~ m e @  Kit (ELISA) cat. #: 900-0741. For the volume-driven hemorrhage model, 

measurements using the Lincoplex kit [Figure 91 demonstrated that there is a significant 

increase of GROKC in animals surviving hemorrhagic trauma and shock as compared to 

baseline GROIKC levels. These measurements indicate that increased levels of GROIKC 

may promote survival following trauma and hemorrhage; however, the production of 

GROIKC cannot be attributed to drug treatment. 

VI. IL-la Results 

IL- 1 is defined as a pleiotropic cytokine thought to participate in the initiation and 

regulation of the acute-phase response to injury and infection [34]. Infection, sepsis, 

often results in a significant inflammatory response; a cascade of pro-inflammatory 

cytokines including IL- 1 initiates this response [3 51. Increasing evidence suggests that 

IL- 1 has a role in the pathogenesis of Gram-negative septic shock [34]. Interleukin- 1 acts 

on nearby T lymphocytes to stimulate both IL-2 and IL-2 receptor production [8]. 

Current research demonstrates that a stab injury to the adult mouse brain elicited a 

prompt and marked increase in levels of transcripts for interleukin- 1 alpha (IL- 1 oc), 

considered one of the macrophage cytokines [36]. Specifically, microglia secrete a 
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number of cytokines, including IL- 1 a in response to trauma [37]. In other studies, IL- 1 a 

induces intestinal inflammation [37]. Literature utilizing rat serum also suggests that 

stress as determined by serum glucocorticoid levels influences cytokine expression, 

including IL- 1 a [3 81. 

Results fiom the volume-driven hemorrhage model, illustrate that trauma 

increases IL-la levels in rat plasma [Figure 101, whereas hemorrhage over time 

decreases IL-la cytokine levels especially in vehicle animals. Because normal 

circulating levels of IL-1 are undetectable in both conventional ELISA and multi-plex 

assays [39], results from the volume model may indicate that IL-la initiation occurs 

during an inflammatory response following both trauma and hemorrhage. More studies 

are necessary to confirm the role of IL-la in survival mechanisms. In future 

experiments, it seems reasonable to utilize SHAM or control rats for the purpose of 

determining normal circulating IL- 1 a levels. As already discussed, each assay [multi- 

plex vs. muli-plex vs. ELISA] analyzes biological plasma samples with different 

performance characteristics, i.e. accuracy, precision, and specificity. Instead of relying 

on the literature, future experiments should include SHAM or control rats to determine 

normal physiological levels in a particular assay. 

VII. IL-6 Results 

IL-6 remains as a cytokine with multiple biological functions on a wide variety of 

cells. Although a variety of cells types produce interleukin-6, monocytes, alveolar 

macrophages, and Kupffer cells remain the most relevad cell populations to traumatic 

hemorrhage [25]. Current research proposes that interleukin-6 plays a significant role in 
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trauma, however it remains undecided whether IL-6 acts as the culprit for producing 

multiple of organ failure or whether IL-6 is just a valuable biochemical marker for a 

patient's inflammatory response [25]. According to Dalrymple, interleukin-6 is found in 

bodily fluids as a result of severe infection, inflammation, burns, and general trauma [40]. 

Several research groups conclude that plasma levels of IL-6 correlate with severity of 

organ failure, length of ICU stay, and patient mortality [41]. Carcillo also notes that IL-6 

is a marker of tissue injury [41]. In accordance with current literature, our analysis 

indicated [Table 31 that IL-6 plasma levels measured 6 hours after injury may correlate 

with mortality in rats. Clinical researchers suggest a trend and correlation exists between 

IL-6 and mortality; measurements from the pressure-driven hemorrhage model 

demonstrate this analogous relationship. 

Researchers have also demonstrated that IL-6 mRNA and protein were produced 

in the lungs, liver, and intestinal tracts of rats subjected to resuscitated hemorrhagic shock 

[16]. Because of the complexities associated with the cytokine cascade, evolving 

concepts of the septic response give more weight to the importance of local cytokine 

production, rather than systemic production [16]. In future experiments, it seems 

reasonable to analyze cytokine production in specific organs as part of the total septic- or 

hemorrhagic-response picture. Localized cytokine levels may provide better insight into 

the inflammatory/immune response following hemorrhagic trauma. At this time, since 

we are not convinced that modem rat methodologies have dependable performance 

characteristics, cytokine levels derived from localized tissues may provide reliable and 

reproducible results. Without the matrix effect and low circulating systemic levels 
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associated with rat plasma, it seems logical to suspect that cytokine measurements from 

localized tissues will lie closer to the liner portion of the standard curve, thereby resulting 

in more consistent measurements. In future experiments it remains suggested that 

researchers concentrate more on localized responses rather than systemic. 

VIII. INF-y Results 

In the pre-treatment rat hemorrhage model, analysis indicated that the mean INF-y 

circulating plasma level for AET animals was notably higher than the mean INF-y plasma 

level for vehicle animals [Figure 191. For normal serum, INFy levels are below detection 

limits [20]. AET up regulates host immune response, prevents immune suppression and 

modulates inflammation; INF-y data in the pre-treatment experiment indicate that AET 

may also act by mechanisms that modify specific TH1 cytokines to promote survival. 

IX. TNF-a 

Current literature notes that a correlation between plasma TNF-a concentrations 

and tissue injury, multiple organ failure, or outcome in trauma patients has not been 

established [9]. In our results, based on measurements using the Bio-Plex kit, values for 

TNF-a range from 50 to 250 pg/mL [Figure 111. However, these measurements should 

be regarded as preliminary because of the small sample size for both AET and VEH 

animals. For comparison purposes, TNF-a levels in plasma samples from the pressure 

model were undetectable using both the Bio-Plex assay and the conventional ELISA 

assay. Because there are concerns regarding TNF-a assays and sensitivity, it seems 

reasonable in the future to utilize TNF-R1 and TNF-R2 to establish tends. Current 
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literature states that these two soluble TNF-a receptors demonstrate dependable and 

consistent results. Researchers have reported that TNF-Rl (55kD) and TNF-R2 (75kD), 

both part of the physiologic regulation system for TNF-a, were increased after severe 

trauma or sepsis [9]. Furthermore, elevated TNF-R1 and TNF-R2 correlated with 

multiple organ failure complications including hypoxia and infection [9]. 

X. Conclusion 

Trauma and hemorrhagic shock, resulting in multiple organ failure, has transpired 

into a significant clinical problem in the United States. Despite advances in pre-hospital 

care and improved diagnostic modalities, trauma and hemorrhage remain a leading cause 

of morbidity and mortality in the younger population. Additionally, both hemorrhage and 

acute traumatic shock are associated with the primary cause of combat death for soldiers. 

Cytokines are powerful mediators and communication molecules capable of regulating 

various biological functions, including modulation of immune responses and 

inflammation. In general, cytokines are very labile; therefore, unless a condition exists to 

stimulate selective expression, cytokines are normally degraded by serum proteases or 

removed by soluble receptors and hence undetectable. Because normal absolute amounts 

of cytokines are very low, current research suggests that hemorrhagic trauma induces the 

excessive production of cytokines to overspill into the systemic circulation, resulting in 

SIRS and multiple-organ failure [8]. Researchers note that attempts have been made to 

use cytokine levels to predict outcome in patients presenting with SIRS and multiple- 

organ failure. However, many studies have identified a wide range of cytokine responses 

in patients with similar injuries. Because polymorphic sites in cytokine genes have 



demonstrated to effect mRNA expression for some cytokines, the differences in cytokine 

production from one individual to another could be the results of genetic causes [8]. 

Furthermore, current research has established an association between gender and 

mortality among trauma patients [42]. Results conclude that sex hormones may be 

important in traumatic injury outcomes [42]. Our results specifically indicate that both 

MCP-1 and GROIKC increase in surviving animals; trauma increases IL-la levels in rat 

plasma, whereas hemorrhage decreases IL-1 a over time; IL-6 plasma levels measured 6 

hours after hemorrhage may correlate with mortality; AET may act by mechanisms to 

modify specific THl cytokines (INF-y) to promote survival. 

Although it is hypothesized that cytokines play a significant role in the 

pathogenesis of hemorrhagic shock and multiple organ failure, our experimental results 

demonstrated that numerous pitfalls accompany the measurement of cytokine levels in rat 

plasma. Consequently, at this time, ordy preliminary cytokine trends can be determined 

due to the difficulty associated with interpreting results obtained from both the multi-plex 

and ELISA assays. Tools to measure the cytokine cascade following hemorrhagic trauma 

are imperative for discovery into the immune/inflammatory response, however our results 

suggest that modern rat methodologies lack the sensitivity, specificity, and precision to 

produce physiological relevant data. The predictive role of inflammatory mediators, 

including cytokines, with respect to the manifestation of multiple organ failure after 

severe trauma seems limited. Additional studies are needed to further examine the role of 

cytokines in trauma and multiple organ failure. 
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Appendix I: 

LINCOplex Technology Schematic 
LZNCO Reseurch 

Color-coded Microspheres 

Unique microsphere sets are cobr-coded 
using a bknd of different fluorescent 

intensities of two dyes. 

Microspheres as 
Molecular Carriers 

To perform a test, thousands of probes are 

bound to !%e microsphere. 

100 Color-codes = 
100 Simultaneous Tests 

Us~ng tha method. over 100 distinct 
microsphere sets can be created. 

Capturing the 
Sample Molecule 

While suspended in a test sample, the 
bound probes collect molecules. 



Tagging the Reaction 

Flwrexentty-labeled Reporter tags 
bind to the sample molecule. 

One Laser Excites 
Molecular Tans 

Microspheres in a 
Fluid Stream 

Reactions are measured with fluorescent 
intensity and reported in real time. 

Precision fluid~cs align the microspheres in 

single file, and pass them through 

the lasers one at a time. 

Second Laser 
Excites Microsphere 

" I 

Fluorescent intensity of the microsphere 

idenflies the reaction. 



Appendix 11: 

Bio-Plex Multiplex Cytokine Assay Protocol 

Purpose: To measure the level of cytokines in a sample 
IL-la, Cl IL-IS, 0 IL-2, IL-4, IL-6, IL-10, GM-CSF, INF-y, TNF-a 

Materials: 
Bio-Plex Rat Serum Diluent Kit [Bio-Rad 171 -3050081 
Bio-Plex Rat Cytokine 9-Plex A Panel [Bio-Rad 171-K110701 
Bio-Plex Reagent Kit [Bio-Rad 171 -3040001 
Bulk Scienceware Disposable Pipetting Reservoirs [Fisher 1 3-7 12- 141 
Disposable 96 well Microtiter Plate [Fisher 34-1 6-02-0-21 
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NOTE: DO NOT FORGET TO ADD BLANKS INTO YOUR PLATE SET UP ABOVE. 
THEY ARE TREATED LIKE SAMPLES ONLY WITH SAMPLE DILUENT AND NO 
SAMPLE. 

Calculations: 

# of required wells - 

# of extra wells - (2 wells for every 8 required wells) 
- total number of wells for dilution calculations 

Bead Dilution 

50 pYwell 
2 yl of anti-cytokine bead (25x) stock solution~well 

- x 2 pl = - of anti-cytokine bead (25x) stock solution (assay module) 
total wells 

- x 48 p1= - of Bio-Plex Assay Buffer A (cytokine reagent kit) 
total wells 

- x 50 pl = - total volume 
total wells 

Detection Antibody Dilution 

Detection antibodies for premixed panels containing 2 to 9 target analytes are supplied 
in a 50x stock solution. Detection antibodies for premixed panels containing more than 
9 target analytes are supplied in a 25x stock solution. 

0 2 to 9 targets 
25 pywell 
0.5 p1 of detection antibody (50x) stock solution~well 

- x 0.5 pl = o f  detection Ab (50x) stock solution (assay module) 
total wells 

x 24.5 p1= - of Bio-Plex Detection Ab Diluent A (cytokine reagent kit) 
total wells 

x 25 pl = - total volume 
total wells 



0 > 9 targets 
. - 

25 yYwell 
1 y1 of detection antibody (25x) stock solution/well 

x 1 yl = - of detection Ab (25x) stock solution (assay module) 
total wells 

- x 24 yl = - of Bio-Plex Detection Ab Diluent A (cytokine reagent kit) 
total wells 

- x 25 p1= - total volume 
total wells 

Streptavidin-PE Dilution 

50 yYwell 
0.5 yl of streptavidin-PE (100x) stock solution/well 

- x 0.5 y1= - of streptavidin-PE (100x) stock solution (reagent kit) 
total wells 

x 49.5 y1= - of Bio-Plex Assay Buffer A (cytokine reagent kit) 
total wells 

x 50 yl = - total volume 
total wells 

REMINDERS: 

BRING ALL BUFFERS AND DILUENTS TO ROOM TEMP PRIOR TO USE. 
TURN ON THE BIO-PLEX SYSTEM NO EARLIER THAN 2 HR PRIOR TO 
PLATE READING, PROBABLY AFTER STEP 1 0  OR 1 1. 
BRING CALIBRATION BEADS TO ROOM TEMPERATURE 30 MINUTES OR 
MORE BEFORE THE ASSAY. 
RECONSTITUTE STANDARDS IMMEDIATELY AND ALLOW 30 MINUTE 
SOLUBILIZATION 
DO NOT FORGET TO ALLOW FOR 2 REPLICATE BLANKS 

PREPARE STANDARDS: 

(Use a standard curve for tissue culture supernatants ranging from 1.95 pg/ml to 32,000 
pg/ml. Use a standard curve for serum, or plasma samples ranging from 0.2 pg/ml to 
3,200 pglml.) 



1.95-32,000 ~ d m l  Standard Curve 

1) Reconstitute lyophilized multiplex cytokine standard to a stock concentration of 
500,000 pg/ml. 

(a) Add 50 p1 of sterile distilled water to lyophilized standard. 
(b) Vortex gently for 5 sec. 
(c) Incubate on ice for 30 min. 

2) Prepare a serial dilution of the 500,000 pg/ml standard stock solution. 

0.2-3200 pdml Standard Curve 

1) Reconstitute standard in 500 ul sterile water (multiplex standard stock is 50,000 
pglml) 

2) Proceed with dilution series. 

Remember: 
The calculated concentrations of samples will only be accurate, if the standards are 
diluted in the same media as samples. 

a) Tissue culture su~ernatants-use the same tissue culture media as that 
utilized to grow cells. 
b) Serum, or  plasma sam~les-use the STANDARD DILUENT from either the 
serum, or  plasma diluent kit, as appropriate. Warm the diluent bottle at 
37°C if there is any precipitate. 

Multiplex 

Medium (pl) 



PREPARE SAMPLES: 

1) Tissue Culture Suvernatants-Cytokine levels in 'neat' samples are typically above the 
range of the standard curve. Samples may therefore need to be diluted before 
assaying. 50 ul sample is added to each well. 

2) SerurnIPlasma-Dilute serum/plasma samples 1 :4 in serdplasma SAMPLE 
DILUENT as required. The sample diluent can be warmed at 37OC to dissolve 
precipitated material in the bottom of the bottle. 50 ul DILUTED sample is added to 
each well. 

3) For tissue culture supernatants, a volume of 60 ul is appropriate for microtiter plate, 
since 50 ul will be transferred to the filter plate. 

4) In the case of serum, the serum samples should be diluted 1 : 4 in serum sample 
diluent (see serum diluent kit). Place 15 ul serum and 45 ul serum sample diluent in 
each well (to give 60 ul) of microtiter plate; 50 ul will then be transferred to the filter 
plate. 

PREPARE BEADS: 

1) Determine the total number of wells that will be required. 
2) Vortex the anti-cytokine bead (25x) stock solution at medium speed for 20 sec. 
3) Prepare a 25 fold working dilution of the anti-cytokine bead (25x) stock solution in 

Bio-Plex assay buffer A. 
(a) DOCUMENT ALL VOLUME CALCULATIONS. 
(b) PROTECT THE BEADS FROM LIGHT. 
(c) KEEP ALL BEAD SOLUTIONS ON ICE WHEN NOT IN USE. 

PREPARE ASSAY: 

Cover all unneeded wells with plastic adhesive plate sealer. 

1) Pre-wet the filter plate with 100 p1 of Bio-Plex assay buffer A. 
2) Vacuum filter. 
3) Add Beads. 

i) Vortex the working Bead solution at medium speed for 20 sec and add 50 pl 
to each well. 

4) Vacuum filter. 
i) BLOT THE BOTTOM OF THE FILTER PLATE AFTER THIS AND 

EVERY VACUUM FILTRATION 
5) Filter wash 2X with 100 p1 of Bio-Plex wash buffer A. 
6) Add standards. 

i) Vortex each standard for 5 SEC and immediately add 50 pl to the appropriate 
wells. 

ii) Remember to also include the appropriate blanks. 
7) Add samples. 
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i) Vortex each sample for 5 SEC and immediately add 50 yl to the appropriate 
. ~ 

wells. 
8) Cover the wells with a fresh plastic adhesive plate sealer, and blot the bottom of the 

plate. 
9) Cover with foil and incubate for 30 min at room temperature with shaking. 

i) FIRST SHAKE THE PLATE AT 1,100 RPM FOR 30 SEC. 
ii) REDUCE SPEED TO 300 RPM FOR THE REMAINDER OF THE 

INCUBATION. 

10) TURN ON THE INSTRUMENT READER AND PLATE PLATFORM AND 
RUN THROUGH THE START UP PROCEEDURE 

PREPARE DETECTION ANTIBODY: 
/DURING PRECEEDING INCUBATION AND 10 MIN PRIOR TO USE) 

11) Determine the total number of well that will be required. 
12) GENTLY VORTEX the multiplex detection antibody stock solution. 

* Note: The concentration of the detection antibody stock solution will vary as a 
function of the degree of multiplexing for the premixed panel. 
For 2-9 premixed analytes, the detection antibodies are provided in a 50x stock solution. 
For 10 or more premixed analytes, the detection antibodies are provided in a 25x stock solution. 

13) Prepare the appropriate working dilution of the detection antibody stock solution in 
Bio-Plex detection antibody diluent A. 

(a) DOCUMENT ALL VOLUME CALCULATIONS. 
(b) PROTECT THE ANTIBODIES FROM LIGHT. 
(c) KEEP ALL DETECTION ANTIBODY SOLUTIONS ON ICE 

WHEN NOT IN USE. 

14) Remove the plate sealer and filter wash 3X with 100 yl of Bio-Plex wash buffer A. 
15) Vortex the detection antibody working dilution gently and add 25 pl to each well. 
16) Cover the wells with fresh plastic adhesive plate sealer, and blot the bottom of the 

plate. 
17) Cover with foil and incubate for 30 min at room temperature with shaking. 

i) FIRST SHAKE THE PLATE AT 1,100 RPM FOR 30 SEC. 
ii) REDUCE SPEED TO 300 RPM FOR THE REMAINDER OF THE 

INCUBATION. 

PREPARE STREPTAVIDIN-PE: 
/DURING PRECEEDING INCUBATION AND 10 MIN PRIOR TO USE) 

18) Determine the total number of well that will be required. 
19) VIGOROUSLY VORTEX the streptavidin-PE (1 00x) stock solution. 



20) Prepare a 100 fold working dilution of the streptavidin-PE (100x) stock solution in 
Bio-Plex assay buffer A. 

(a) DOCUMENT ALL VOLUME CALCULATIONS. 
(b) PROTECT THE ANTIBODIES FROM LIGHT. 
(c) KEEP ALL DETECTION ANTIBODY SOLUTIONS ON ICE 

WHEN NOT IN USE. 

21) Remove the plate sealer and filter wash 3X with 100 pl of Bio-Plex wash buffer A. 
22) Vortex the Streptavidin-PE Working Dilution and add 50 p1 to each well. 
23) Cover the wells with fresh plastic adhesive plate sealer, and blot the bottom of the 

plate. 
24) Cover with foil and incubate for 10 min at room temperature with shaking. 

i) FIRST SHAKE THE PLATE AT 1,100 RPM FOR 30 SEC. 
ii) REDUCE SPEED TO 300 RPM FOR THE REMAINDER OF THE 

INCUBATION. 
25) Remove the plate sealer and filter wash 3X with 100 p1 of Bio-Plex wash buffer A. 
26) Resuspend the beads in each well with 125 pl of Bio-Plex assay buffer A. 
27) Cover the wells with fresh plastic adhesive plate sealer, and THOROUGHLY BLOT 

THE BOTTOM OF THE PLATE. 
28) SHAKE THE PLATE AT 1,100 RPM FOR 30 SEC. 
29) REMOVE THE PLATE SEALER and read the plate. 

COUNT 100 BEADSREGION IN A SAMPLE VOLUME OF 50 UL. 



Appendix 111: 

Lincoplex Protocol 

Rat CytokineIChemokine Lincoplex Kit Protocol 

I. Preparation of Reagents for Immunoassay 

A. Preparation of Antibody-Immobilized Beads 
o Antibody-Immobilized Beads are premixed 
o Sonicate beads for 30 seconds 
o Vortex beads before use 

B. Preparation of rat Cytokine Standard Cocktail 
o Reconstitute the Rat Cytokine Standard Cocktail with 250 uL Deionized Water to 

give 20,000 pg/ml concentration of standard. 
o Invert vial several times to mix. 
o Vortex the vial for 10 seconds. 
o Allow vial to set for 5-10 minutes and transfer standard to an appropriately 

labeled polypropylene microfuge tube. 

Preparation of Working Standards 
o Label six polypropylene microfuge tubes 5000, 1250,312.5,78.13, 19.53, and 

4.88 pg/mL. 
o Add 120 uL of Assay Buffer to each of the six tubes. 
o Prepare serial dilutions by adding 40 uL of the 20,000 pg/ml reconstituted 

standard to the 5000 pg/ml tube. 
o Mix well and transfer 40 uL of the 5000 standard to the 1250 pg/mL tube. 
o Mix well and transfer 40 uL of the 1250 standard to the 3 12.5 pg/mL tube. 
o Mix well and transfer 40 uL of the 312.5 standard to the 78.13 pg/mL tube. 
o Mix well and transfer 40 uL of the 78.125 standard to the 19.53 pg/mL tube. 
o Mix well and transfer 40 uL of the 19.53 standard to the 4.88 pg/mL tube and 

mix well. 
o The 0 pg/mL standard (Background) will be Assay Buffer. 



Standard Concentration (pg/rnL) 
20,000 

D. Preparation of Controls 
o Reconstitute each Rat Cytokine Control I and Rat Cytokine Control 11 with 250 

uL deionized water. 
o Invert the vial several times to mix and vortex. 
o Allow the vial to set for 5-10 minutes and then transfer to appropriately labeled 

polypropylene microfuge tubes. 

Standard Concentration 
(Pg/mL) 

5000 
1250 
312.5 
78.13 
19.53 
4.88 

E. Preparation of Plasma Samples 
o Centrifuge samples at 3000xg for five minutes prior to assay set-up. 
o Dilute 1 part of rat plasma with 4 parts of Serum Matrix. 

i. For duplicate samples 
ii. Add 24 uL rat plasma to 96 uL of Serum Matrix 

iii. For triplicate samples 
iv. Add 48 uL rat plasma to 192 uL of Serum Matrix 

Volume of dH20 to Add 
250 UL 

F. Preparation of Wash Buffer 
o Bring the 1 OX Wash Buffer to room temperature and mix to bring all salts into 

solution. 
o Dilute 30 mL of 10X Wash Buffer with 270 mL deionized water. 

Volume of Standard to Add 
0 

Volume of assay Buffer to 
Add 

120 uL 
120 UL 
120 UL 
120 UL 
120 UL 
120 UL 

G. Preparation of Serum Matrix 
o Add 1.0 mL of deionized water to the bottle containing the lyophilized Serum 

Matrix. 
o Add 4.0 mL of Assay Buffer to the bottle containing the lyophilized Serum 

Matrix. 
o Mix and let stand for at least 10 minutes at room temperature to allow complete 

reconstitution. 
o Mix well before use. 

Volume of Standard to 
Add 

40 uL of 20,000 pg/mL 
40 uL of 5000 pg/mL 
40 uL of 1250 pg/mL 
40 uL of 3 12.5 pg/rnL 
40 uL of 78.13 pg/mL 
40 uL of 19.53 pg/mL 



11. Immunoassay Procedure 
. - 

** Allow all reagents to warm to room temperature before use in the assay. 

1) Diagramthe placement ofstandards, O(Background), 4.88, 18.53,78.13,312.5, 
1250,5000, and 20,000 pg/mL, Controls I and 11, and samples on Well Map 
Worksheet in a vertical configuration. It is recommended to run the assay in 
duplicate. 

2) Block the filter plate by pipetting 200 uL of Assay Buffer into each well of the 
microtiter plate. Seal and mix on a plate shaker for 10 minutes at room 
temperature. 

3) Remove the Assay Buffer by vacuum. 
4) Remove any excess Assay Buffer fiom the bottom of the plate by blotting on 

paper towels. 
5) Add 25 uL of Assay Buffer to the 0 Standard (Background). 
6) Add 25 uL of Assay Buffer to the Sample wells. 
7) Add 25 uL of each Standard or Control into the appropriate wells. 
8) Add 50 uL of serum matrix to the Background, Standards, and Control wells. 
9) Centrifuge samples and add 50 uL of 1 :5 diluted samples into the appropriate 

wells. 
10) Vortex Bead Bottle and add 25 uL of Mixed beads to each well. During addition 

of mixed beads, shake bead mix intermittently to avoid bead setting. 
1 1) Seal, cover with aluminum foil, and incubate with agitation on a plate shaker 

overnight (1 8-20 hours) at 2-8 "C. 



12) Gently remove fluid by vacuum filtration. 
13) Wash plate 2 times with 200 uL1well of Wash Buffer, removing Wash Buffer by 

vacuum filtration between each wash. 
14) Remove any excess Wash Buffer from the bottom of the plate using paper towels. 
15) Add 25 uL of Detection Antibody Cocktail into each well. (Note: Allow the 

Detection Antibody to w a m  to room temperature prior to addition) 
16) Seal, cover with aluminum foil, and incubate 2 hours with agitation on a plate 

shaker at room temperature. DO NOT VACUUM AFTER INCUBATION. 
17) Add 25 uL Streptavidin-Phycoerythrin to each well containing the 25 uL of 

Detection Antibody Cocktail. 
18) Seal, cover with aluminum foil, and incubate with agitation on a plate shaker for 

30 minutes at room temperature. 
19) Gently remove all contents by vacuum. 
20) Wash Plate 2 times with 200 uL1well Wash Buffer, removing Wash Buffer by 

vacuum filtration between each wash. 
21) Wipe any excess buffer on the bottom of the plate with paper towel. 
22) Add 100 uL of Sheath Fluid to all wells. 
23) Cover with aluminum foil and resuspend the beads by shaking on a plate shaker 

for 5 minutes. 
24) Run plate on Luminex. 
25) Save the data and evaluate the median fluorescence units using appropriate curve- 

fitting software. 
26) A 5 or 4-parameter logistic method is recommended. 
27) When calculating final sample concentrations, divide samples by 2 since twice the 

volume was added and the multiply by 5 since the samples were diluted 1 :5. 



Appendix IV: 

ELISA Assay Performance Characteristics 

Performance Characteristics and Sample Recoveries 
for TNF-a and MCP- 1 

Tumor Necrosis Factor-a (TNF- a )  
Performance Characteristics 

Sample Recoveries 

Assay Designs: Catalog No. 900-086 
Sensitivity: 420.7 pg/mL 
Intra Assay %CV: 

LOW - 9.7 
Medium-9.7 
High-3.9 

Inter Assay %CV 
LOW - 9.0 
Medium-3.1 
High-1.0 

Cross Reactivities: 
Rat TNF-a (1 00%) 
Other rat cytokines (less than or equal 
0.1%) 

Sample 
Tissue Culture Media 91.6 % Recovery 

= Rat Serum 87.4 % Recovery 
= Recommended Dilution 

Greater than or equal to 1 :5 



Monocyte chemoattractant protein-1 
(MCP-I) 
Performance Characteristics 

Sample Recoveries 

Assay Designs: Catalog No. 900-077 

Sensitivity: 20.45 pglmL 
Intra Assay %CV: 

Low - 5.2 
Medium - 5.9 
High - 4.6 

Inter Assay %CV 
LOW-3.5 
Medium - 3.6 
High-4.5 

Cross Reactivities: 
Rat MCP-1 (1 00%) 
Other rat cytokines (less than or equal 
0.1%) 

Sample 
Tissue Culture Media 99.6 % Recovery 
Rat Serum 93.6 % Recovery 

Recommended Dilution 
1:8- 1:128 
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