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Abstract 

 
 

NETWORK ANALYSIS AND COMPARATIVE PHYLOGENOMICS OF MICRORNAS 
AND THEIR RESPECTIVE MESSENGER RNA TARGETS USING TWELVE 
DROSOPHILA SPECIES  
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Philosophy at Virginia Commonwealth University 
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Danail G. Bonchev, Ph.D., D.Sc., 
Professor of Mathematical Sciences 

  
MicroRNAs represent a special class of small (~21–25 nucleotides) non-coding RNA 

molecules which exert powerful post-transcriptional control over gene expression in eukaryotes.  

Indeed microRNAs likely represent the most abundant class of regulators in animal gene 

regulatory networks.  This study describes the recovery and network analyses of a suite of 

homologous microRNA targets recovered through two different predicition methods for whole 

gene regions across twelve Drosophila species.  Phylogenetic criteria under an accepted tree 

topology were used as a reference frame to 1) make inference into microRNA-target predictions, 

2) study mathematical properties of microRNA-gene regulatory networks, 3) and conduct novel 

phylogenetic analyses using character data derived from weighted edges of the microRNA-target 

networks. This study investigates the evidences of natural selection and phylogenetic signatures 

inherent within the microRNA regulatory networks and quantifies time and mutation necessary 

to rewire a microRNA regulatory network.  Selective factors that appear to operate upon seed 

aptamers include cooperativity (redundancy) of interactions and transcript length. Topological 

analyses of microRNA regulatory networks recovered significant enrichment for a motif 

possessing a redundant link in all twelve species sampled. This would suggest that optimization 

of the whole interactome topology itself has been historically subject to natural selection where 

resilience to attack have offered selective advantage.  It seems that only a modest number of 

microRNA–mRNA interactions exhibit conservation over Drosophila cladogenesis.  The 
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decrease in conserved microRNA-target interactions with increasing phylogenetic distance 

exhibited a cure typical of a saturation phenomena. Scale free properties of a network 

intersection of microRNA target predictions methods were found to transect taxonomic 

hierarchy. 
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THESIS OVERVIEW 

 

MicroRNAs represent a special class of small (~21–25 nucleotides) non-coding RNA molecules 

which exert powerful post-transcriptional control over gene expression in eukaryotes.  Indeed 

microRNAs likely represent the most abundant class of regulators in animal gene regulatory 

networks.  In animals, microRNAs bind with partial to complete complementarity to target 

regions in the sequence of messenger RNAs. Subsequently, these interactions can forcibly 

regulate gene expression by stalling protein production from messenger RNAs or inducing 

wholesale breakdown of the messenger RNA itself.  The outcome of these regulatory interactions 

appears to play key roles in processes of cellular differentiation, maintenance of tissue identity, 

and optimize genetic programming to confer robust tolerance against environmental fluctuations.  

MicroRNA regulatory networks are dense, with most messenger RNAs targeted by multiple 

microRNAs, which in turn enables precise coordinated control of targets and wide regulatory 

versatility. 

MicroRNA genes have been broadly conserved across various animal groups and the 

ancestral acquisition of microRNAs appear strongly correlated to physical modifications of 

animal groups across geologic time.  Therefore it seems that microRNA-mediated gene 

regulation in animals has likely played an essential role in the origins of complex body plans.  

The microRNA repertoire has no doubt modulated the use of a substantial fraction of the animal 

transcriptome and provides a crucial operator upon the sequence evolution of all messenger 

RNAs (Bartel & Chen, 2004).  But while microRNA genes are themselves strongly conserved, 

the microRNA–target interactions seem to exhibit high plasticity across animal groups. Thus, 

while both microRNAs and target genes may be individually conserved, the interaction between 

the two elements may not be conserved. 

In light of the proceeding, several global questions arise regarding the development of 

microRNA regulatory networks through natural history.  What role may the length of the entire 

transcript play in the natural selection for microRNA targets?  What respective relationships 

exist for conservation of regulatory network structure, is the network consistent throughout 

natural history or does structure alter in some fashion consistent with phylogenetic history?  If 

the later is true, then is the signature of phylogeny found embedded within network structure? 
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The central purpose of this research thesis has been to study microRNA gene regulation, 

combining principles and bioinformatic tools of networks biology, comparative genomics, 

phylogeny, and whole genome data available for twelve closely related fruit fly (Drosophila) 

species. The fruit fly model (order Diptera: family Drosophilidae) represent as logical choice for 

study as it is arguably the best studied multi-cellular animal. It has formed the core of more than 

a century of biological study in phylogenetics and population genetics. Moreover, the available 

Drosophila genome sequences provide an unprecedented dataset to contrast conservation history, 

coding genes, and regulatory genes across the well-defined phylogeny of the sequenced species 

(Drosophila 12 Genomes Consortium, 2007). This study, presented in five CHAPTERS, 

investigates the evidences of natural selection and phylogenetic signatures inherent within the 

microRNA regulatory networks in twelve Drosophila species. It is among the goals of this 

project to address quantification of time and mutation necessary to rewire a microRNA 

regulatory network. Phylogenetic criteria under an accepted tree topology were used as a 

reference frame to 1) make inference into microRNA-target predictions, 2) study mathematical 

properties of microRNA-gene regulatory networks, 3) and conduct novel phylogenetic analyses 

using character data derived from weighted edges of the microRNA-target networks.  
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ABSTRACT 

 

MicroRNA regulatory networks are dense with most target genes targeted by multiple 

microRNAs, and exhibit precise combinatorial control of targets giving increased regulatory 

versatility. This study describes the recovery and network analyses of a suite of homologous 

microRNA targets recovered through two different predicition methods for whole gene regions 

across twelve Drosophila species.  Data recovered from microRNA target prediction were 

integrated with data from taxonomic hierarchical conservation and molecular phylogeny through 

a MySQL database of linked tables called “musca”.  TargetScan output (61.9GB) recovered a 

network of 14,860 targets, 1,090,221 microRNA-target interactions, 11,302,034 unique aptamer 

site interactions, and 112 microRNA families.  Output form the MiRanda algorithm (2.96GB) 

recovered a network of 14,583 targets, 241,861 microRNA-target interactions, 390,560 unique 

aptamer site interactions, and 121 microRNA families.  The network intersection of target 

prediction methods recovered a network of 12,616 targets, 78,280 microRNA-target interactions, 

226,270 unique aptamer site interactions, and 112 microRNAs. The intersection of microRNA 

target prediction methods produced networks of increased potential biological relevance 

compared to respective parent networks.  The sizable target datasets produced in this study are 

applicable for continuing research in Drosophila molecular biology and could be biochemically 

verified using whole genome microarray analyses and miRNP immunopurification. Moreover 

differential microRNA enrichment patterns by prediction method would seem to indicate that 

selective factors presiding over regulation by compensatory aptamers (MiRanda) and seed 

regions aptamers (TargetScan) are different. Selective factors that appear to operate upon seed 

aptamers include cooperativity (redundancy) of interactions and transcript length. As transcript 

length increases the likelihood of acquisition of a seed-type aptamer binding site also increases. 
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INTRODUCTION 

 

MicroRNAs represent short (generally 21–25 nucleotides) endogenously expressed single-

stranded non-coding RNA molecules derived from larger stem-loop precursors.  In animals, 

microRNAs bind with variable complementarity to the aligned 3’ untranslated regions (3’UTR) 

and other sites of target messenger RNAs (mRNAs); subsequently gene expression is regulated 

by mRNA cleavage induction or translational rate control using the cells innate RNA-

Interference (RNAi) pathway (Lu et al., 2008; Stark et al., 2007b).  Each microRNA may target 

transcripts for hundreds of genes (that are unrelated to the loci that encode the microRNAs 

themselves), but multiple microRNAs might need to bind to a particular transcript to achieve 

repression; in principle, this could even be accomplished by the combinatorial action of different 

microRNA species (Bartel & Chen, 2004; Lewis et al., 2005).  Thus the microRNA milieu, 

unique to each cell type, productively dampens the expression of thousands of gene transcripts 

and provides important natural selective force operative upon all metazoan messenger RNA 

sequences (Bartel & Chen, 2004).  The biological importance of microRNA is evidenced by high 

conservation across phylogeny and by the many life processes in which they are implicated; 

including developmental timing, cell proliferation, apoptosis, metabolism, cell differentiation, 

and morphogenesis (Ambros, 2004; Bartel & Chen, 2004; Stark et al., 2005).  Indeed, 

MicroRNAs probably represent the most abundant classes of regulators of animal gene networks 

(Sempere et al., 2007, Stark et al., 2007a).  Approximately 20% of transcription in Drosophila 

melanogaster seems to be unassociated with protein-coding genes; and microRNA expression 

would be included among the later value (Drosophila 12 Genomes Consortium, 2007). 

Genome-wide metazoan microRNA target predictions indicate that thousands of genes 

(perhaps 20-60% of all genes) are likely to come under regulation (Friedman et al., 2009; Lewis 

et al., 2005; Stark et al., 2005).  Experimental evidence indicates that the most crucial aspect to 

microRNA-target hybridization is a seed region (~7 nucleotides) on the 5’end of a mature 

microRNA (Grün et al., 2005; Lewis et al., 2005; Lu et al., 2008; Rajewsky, 2006; Wang et al., 

2008).  Admittedly, there is a continuum of 3' pairing quality between and within microRNA 

aptamers, but principally microRNA-target site interactions can be classified into three type 

classes: 5’-dominant canonical, 5’-dominant seed only and 3’-compensatory (Brennecke et al., 

2005; Sethupathy, et al., 2006).  Canonical sites have perfect complementarity to the seed 
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portion of the 5’ end of the microRNA and extensive base pairing along the 3’ end of the 

microRNA (Brennecke et al., 2005; Sethupathy, et al., 2006).  Conversely, seed-type interactions 

have perfect base pairing to the seed portion of the 5’ end of the microRNA but limited base 

pairing along the 3’ end of the microRNA (Brennecke et al., 2005).  Lastly, the 3’-compensatory 

sites have extensive base pairing along the 3’ end of the microRNA to compensate for imperfect 

or a shorter stretch of base pairing to the seed portion of the microRNA (Brennecke et al., 2005; 

Sethupathy, et al., 2006). 

Available multiple species microRNA target predictions for Drosophila have been 

extensively drawn from alignments of 3’UTRs (Grün et al., 2005; Huynh et al., 2006; Megraw et 

al., 2007).  There are, however, reasons to suspect that these predicted targets represent only a 

small fraction of the total targets and have likely overlooked a sizeable body of important 

microRNA targets present in protein coding regions and potentially present in 5’UTRs and 

introns (Bartel & Chen, 2004; Grün et al., 2005, Kheradpour et al., 2007, Lytle et al., 2007, 

Smalheiser & Torvik, 2006, Stark et al., 2007b).  Indeed drosophilid heptamers complementary 

to different positions in mature microRNAs demonstrate a distinctive conservation pattern; 

indicative of functional targeting in coding regions and similar to that found in 3’UTRs 

(correlation coefficient 0.96; Stark et al., 2007b).  These microRNA motifs exhibit high 

conservation in all three reading frames; suggesting that they are specifically selected within 

coding regions for their RNA-level function.  Likewise, other studies have shown that 

microRNA motifs in coding regions are preferentially conserved in vertebrates, can lead to 

repression in experimental assays, and are avoided in genes co-expressed with the microRNA 

(Farh et al., 2005; Grimson et al., 2007; Kloosterman et al., 2004; Lewis et al., 2005). 

This study details the recovery and network analyses of a suite of homologous 

microRNA targets recovered for whole gene regions across twelve Drosophila species.  In 

particular these data will be valuable for comparison to the microRNA predictions for seven 

Drosophila species drawn from older genome alignments of 3’UTRs, to complement twelve 

species comparisons using only 3’UTR regions, and to complement whole genome microRNA 

target predictions prepared under other methods (Grün et al., 2005; Kheradpour et al., 2007; 

Stark et al., 2007b).  To these ends, the central software selected for microRNA target prediction 

were MiRanda and TargetScan (Enright et al., 2003; Lewis et al., 2005).  These tools were 

chosen in light of performance review comparing sensitivity and specificity of five microRNA 
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target prediction methods using verified interaction data where TargetScan, PicTar and MiRanda 

recovered best performance, with sensitivity values ranging between 65% and 68% (Grün et al., 

2005, Maziere & Enright, 2007, Sethupathy, et al., 2006). 

 

METHODS 

 

Selection of a Drosophila Multiple Sequence Alignment.  The initiation of this project required 

selection of a suitable multiple sequence alignment set for the twelve Drosophila species using 

phylogenetic criteria (APPENDIX I, TABLE 8).  Nine separate multiple sequence alignments 

were produced for a trial data set of eleven Drosophila genes coding for enzymes involved in 

glycolysis (Clark & Wang, 1994).  These genes were selected as a proxy sample of the 

Drosophila genome on the basis of their established use in allozyme studies, expected selective 

neutrality, and general consistency between molecular phylogeny and metabolic character data 

(Burkhart et al., 1984; Clark & Wang, 1994; Ko, et al., 2003; Pollard et al., 2006).  Gene regions 

were extracted directly from three published multiple sequence alignments for twelve 

Drosophila species; namely PECAN/Mercator, MAVID/Mercator, and MULTIZ alignments 

available from UCSC (Blanchette et al., 2004; Dewey, 2007, Kent et al., 2002; Paten et al., 

2008; Stark et al., 2007b).  PECAN is a consistency based multiple-alignment program that 

favors global optimization of alignment while still inherently working in a pairwise fashion 

(Paten et al., 2008).  The MAVID program utilizes a progressive-alignment approach 

incorporating maximum-likelihood inference of ancestral sequences, automatic guide-tree 

construction, and constraints derived from a global homology map of the sequences (Bray & 

Pachter, 2004).  Mercator represents an orthology mapping method designed to identify blocks 

of synteny (conserved gene order) from pairwise similarity scores between sets of non-

overlapping genome (Dewey & Pachter, 2006).  The MULTIZ approach uses pairwise 

alignments of orthologous sequences produced by BLASTZ, filters these to select the best 

matches to specified reference sequences, and conducts guided alignment of multiple reference 

blocksets in order to recover a union blockset of the original query sequences (Blanchette et al., 

2004). 

Novel reconstructions were produced to isolate alignment method variables, enable 

comparison of published alignments, and to evaluate the prospective value of generating novel 
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large-scale genome reconciliations for the molecular analyses of the project.  Three additional 

multiple sequence alignments were produced through 1) novel re-alignment of MULTIZ 

sequence data using the multiple sequence alignment program MAFFT, 2) production of a three-

way reconciliation of whole published alignments in one-step with production of a consensus 

sequence, and 3) through three-way reconciliation of published alignments in a species-by-

species (twelve separate sub-alignments) manner and recovering a sequence consensus (Katoh & 

Toh, 2008; see APPENDIX I, TABLE 8).  Multiple sequence alignment reconciliation was 

implemented through ClustalW using the BioEdit freeware package where input gaps were 

locked and gap insertion penalties set to zero (Hall, 1999).  Any resultant gap-only positions 

were extracted using the MEGA software package (Kumar et al., 2008).  These methods 

recovered a reconciled alignment geometry accommodating the original structure of all input 

alignments. 

Given the fundamental premise that alignment position of infers homology, tree metrics 

were utilized to provide a quantitative means to evaluate alignments against one another on the 

basis of internal consistency, resolution of tree topology, support for the reference tree 

(CHAPTER III, FIGURE 22).  Criteria from phylogenetic reconstruction considered in selection 

of a multiple sequence alignment were evaluated for sequence information content and for 

statistical best fit to one of 56 models of nucleotide sequence evolution through PAUP* and 

Modeltest (Posada & Crandall, 1998; Swofford, 2002).  Phylogenetic reconstructions from all 

alignments were conducted under distance with neighbor-joining and standard parsimony using 

PAUP*, and under Bayesian inference through MrBayes software (Huelsenbeck & Ronquist, 

2005; Swofford, 2002).  The suite of resulting phylogenetic trees were statistically evaluated to 

high confidence limits using bootstrap, jackknife, posterior probability, tree consistency indices, 

likelihood score, sensitivity to concavity-parameter alteration (k=0, 10, 100), topology-

dependent permutation test against the established Drosophila phylogeny, and partition 

homogeneity of component genes in the dataset (Bull et al., 1993; Faith, 1991; Goloboff, 1993). 
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FIGURE 1.  Flowchart of bioinformatic tools and processing for microRNA-target data.  

Methods appear boxed to match specific project aims and arrows indicate dataflow originating 

from a list of 14,925 microRNA targets.  Criteria from phylogenetic reconstruction considered in 

selection of the MULTIZ multiple sequence alignment appear in APPENDIX I, TABLE 8.  A 

MySQL database of linked tables called “musca” acted as central repository for parameters 

recovered from microRNA target prediction, hierarchical conservation, and molecular 

phylogeny.  Elementary microRNA-Target network properties are described in CHAPTER I, 

whereas CHAPTERS II, III, IV, and V of this document detail properties of microRNA-Target 

conservation, natural history and phylogeny.  Data output from network adjacency and distance 

quantification in GRAFMAN are extensively utilized in CHAPTER I, II, & V.  Natural historical 

commentary relevant to analysis of network topology through FANMOD are given in 
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CHAPTER IV.  Output data of molecular phylogenetic reconstructions are utilized in 

CHAPTERS II & IV, while phylogenetic reconstructions using network edges are described in 

CHAPTER III.  Both molecular and network edge phylogenies using PAUP* made comparison 

to the reference tree illustrated in CHAPTER III, FIGURE 22.  The hierarchical conservation 

sampling regime of microRNAs and targets is displayed in FIGURE 27 and discussed in 

CHAPTER V. 
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Primary Data Manipulation.  Project methodology followed the generalized flowchart 

illustrated in FIGURE 1 subsequent to multiple sequence alignment selection.   

The number of predicted targets varies considerably according to method with only limited 

overlap in the top-ranking targets, indicating that individual methods might only capture subsets 

of real targets and/or may include a high number of background matches (Brennecke et al., 

2005).  Thus all accessible microRNA target predictions were treated as potentially 

complementary and a total non-redundant set 16,204 putative microRNA targets was generated 

(Ambros, 2004; Megraw et al., 2007; Rajewsky, 2006).  The total dataset included the union of 

nearly 50 published target prediction sets from D. melanogaster alone (15,016 genes recovered; 

92.67% of the total).  The prospective microRNA target gene list was further supplemented 

through interologous extrapolation from cross species interactant comparison using nearly 300 

individual microRNA target prediction sets published for 22 different organisms compiled and 

converted into Drosophila homologs with the aid of BioMART server for Ensembl (Flannick et 

al., 2006; Matthews et al., 2001; Sharan & Ideker, 2006; Smedley, et al., 2009; Suthram et al., 

2005).  Chromosomal locations of known or putative microRNAs were isolated in the whole 

genome sequence for all twelve Drosophila species through the DroSpeGe database and genes 

adjacent to microRNA loci within 50 kilobases (1,690 genes; 121 clusters found) were likewise 

catalogued into the putative microRNA target list (Gilbert, 2007).  Impetus for the later search 

strategy was taken from experimental evidence for frequent co-expression of microRNAs with 

neighboring genes (Baskerville & Bartel, 2005). 

Large-scale bioinformatic data processing was initiated to extract multiple sequence 

alignments data for all putative microRNA target genes.  Genomic coordinates of D. 

melanogaster for gene regions (including 5’UTRs, coding sequence, introns, and 3’UTRs) for 

15,082 non-redundant genes of the total putative microRNA target were extracted through 

FlyBase batch download and the BioMart server (Smedley, et al., 2009, Wilson et al., 2008).  

These data were used to define extraction regions from the whole Drosophila genome alignment 

accessible through the MULTIZ table of the UCSC Genome Bioinformatics Site (Kuhn et al., 

2007).  The extracted output were uploaded directly to the Galaxy server (Giardine et al., 2005).  

This server is a refined interface allowing users to conduct and save independent queries of 

genomic data from different sources, and perform sequential large-scale calculations using 

operators such as join, union, intersection, and subtraction (Giardine et al., 2005).  A gene region 
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output was recovered where gap-only columns and non-Drosophila species were removed and 

only species of interest were included, ordered consistently, and oriented according to open 

reading frames.  Thereafter, 1,202,106 KB of Galaxy output was modified using a MySQL 

database and Perl scripts to extract alignment data for user-defined regions of interest and 

produce files formatted for microRNA target prediction (FIGURE 1; Giardine et al., 2005; Sun 

Microsystems, Inc. 2008-2009). 

 

MicroRNA Target Prediction. Sequence data for each putative target gene was subjected to 

batch microRNA target predication for 121 drosophilid microRNA families using MiRanda and 

TargetScan (Enright et al., 2003; Lewis et al., 2005).  Both target prediction methods were 

produced through the Fenn supercomputing cluster of Virginia Commonwealth University.  

There were 830 MB of MULTIZ extracted FASTA sequences input into MiRanda.  Likewise, 

7.04 GB of tab delimited data were input for TargetScan.  The dynamic programming algorithm 

MiRanda examined canonical microRNA interactions by optimizing and recovering all non-

overlapping hybridization alignments between microRNA and input sequence according to the 

nucleotide complementarity score set to some user-defined cutoff value (Enright et al., 2003).  

The default setting for Gibbs free energy of nucleotide hybridization in MiRanda is ∆G = -20 

kcal/mol (Enright et al., 2003).  To ensure higher target specificity in these analyses, the 

hybridization energy threshold for MiRanda was set to ∆G = -25 kcal/mol.  There were 146 

mature microRNA sequences input into MiRanda and correspondingly there were 121 

microRNA families input into TargetScan. The TargetScan algorithm predicted microRNA 

targets by searching for the presence of conserved octamer and heptamer sites matching a 

microRNA seed region (Lewis et al., 2005; Sethupathy, et al., 2006).  Notably, TargetScan 

features an efficient reduction in the false-positive rate, but an increased false-negative rate due 

to requirements of strict complementation in the seed region (Maziere & Enright, 2007).  There 

were 2.9 GB and 12.0 GB of microRNA target prediction data recovered from MiRanda and 

TargetScan respectively.   

Additional microRNA target predictions were conducted through MiRanda and 

TargetScan using the entire putative target gene and 13 deuterostome-specific microRNAs from 

Homo sapiens with no known homologs to Drosophila (Berezikov et al., 2010; Gilbert, 2007; 

Griffiths-Jones et al., 2006; Hertel et al., 2006; Lu et al., 2008; Sempere et al., 2007; Sethupathy, 
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et al., 2006).  Specifically, the deuterostome microRNAs input were:  hsa-miR-126, hsa-miR-

135a, hsa-miR-141, hsa-miR-148a, hsa-miR-153, hsa-miR-183, hsa-miR-200b, hsa-miR-21, hsa-

miR-216a, hsa-miR-217, hsa-miR-338-3p, hsa-miR-93, and hsa-miR-96.  These analyses 

functioned as a provisional negative control of the target prediction methods where any 

Drosophila target to a hsa-miR would represent a false positive.  MiRanda and TargetScan 

respectively produced 164 KB and 2.96 MB of output.  Computational performance of target 

prediction methods was gauged for sensitivity from the proceeding output.  Sensitivity was 

defined by dividing the average targets recovered per endogenous Drosophila microRNAs by the 

sum of the averages retrieved both alien and endogenous microRNAs ({sensitivity = average 

targets per dme-miR / (average targets per dme-miR + average targets per hsa-miR) }; compare 

Sethupathy, et al., 2006). 

 

MicroRNA Regulatory Network Adjacency & Distance Quantification.  A MySQL database 

of linked tables called “musca” was created to act as central repository for microRNA target 

prediction data and hierarchical conservation, and molecular phylogeny parameters recovered in 

other analyses (Sun Microsystems, Inc.  2008-2009).  Collectively, 31 GB of data were input 

data into musca, recovering a database of 33,818,624 KB.  A total of 41 regulatory networks in 

111 MB were formatted out of the musca database for TargetScan, MiRanda and the intersection 

of methods and analyzed for descriptive properties.  The network quantification and distance 

analyses were performed using in-house GRAFMAN software available under Linux on the 

Watson supercomputer cluster of Virginia Commonwealth University (FIGURE 1; APPENDIX 

III, TABLE 9; Karabunarliev & Bonchev, 2002).  Connectivity-based network descriptors 

calculated through GRAFMAN included: total number of vertices, total number of edges, total 

adjacency, average vertex degree, network connectedness, and information index for vertex 

degree distribution.  Likewise, distance-based measurements calculated through GRAFMAN 

included: total distance, average distance per node (network radius), average distance, Shannon 

information index, and information index for distance degree distribution.  The vertex degree 

defines the number of interactions (or the number of nearest neighbors).  Two vertices are 

adjacent where an edge exists between them. An adjacency matrix represents a table that encodes 

the directed structure of a network.  Network connectedness quantifies the density of a network.  

Node distance or vertex distance degree represents the sum of distances from an individual node 
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to all other vertices in the network.  Thus the distance between two non-neighboring nodes is 

equal to the number of edges along the shortest path that connects them.  Consequently the total 

distance of the graph is defined as the sum of distances between all pairs of vertices.  The radius 

of a network is the smallest eccentricity of any vertex where the eccentricity of a vertex is the 

length of the longest minimal path from that vertex to some vertex in the graph.  A path is not 

minimal if the two vertices at its endpoints could be connected by a shorter path.  Information is 

innate to any system in which elements can be grouped according to one or more criteria.  This 

Information is a measure of system’s diversity; the more complex a system is the larger its innate 

information content (Bonchev, 1983; Shannon & Weaver, 1949).  Total GRAFMAN output was 

represented in 37.8 KB. 

 

RESULTS 

 

Molecular source data for this project was selected from the MULTIZ sequence alignment 

published for Drosophila on the basis of the strict consensus of tree metrics recovered for a trial 

data set of eleven coding genes coding for glycolytic enzymes (Blanchette et al., 2004 Clark & 

Wang, 1994).  The consensus of all test criteria favored the MULTIZ alignment over other 

published and novel reconciled alignments (APPENDIX I, TABLE 8).  A non-redundant set of 

16,204 putative microRNA targets was generated for Drosophila through extensive literature 

review and the compilation of 1572 separate datasets.  A set of 15,082 non-redundant genes of 

the total putative microRNA target could be extracted through FlyBase batch download and the 

BioMart server.  There were 14,925 genes which recovered target prediction data through 

MiRanda and/or TargetScan and of these, 95.11% (14,195) correspond to protein coding genes. 

Networks generated were strictly bipartite in which a node (or vertex or point) may 

represent an individual microRNA or a target gene transcript.  The flow of information in vivo 

progresses from microRNA to target gene transcript and therefore all networks recovered must 

be represented as a directed graph (or directed network).  Accordingly, all interactions (links or 

edges) were directed solely from microRNA to target.  An example illustration of a microRNA-

target interaction network a representing 1.66% of the total microRNA target dataset is contained 

in FIGURE 37 of APPENDIX II.  The term “aptamer” describes an individual binding site 

interaction between a microRNA and a select target gene transcript region. Thus, there may be 
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multiple aptamers per individual target gene transcript and microRNA-aptamer networks 

describe each unique microRNA-aptamer interaction.  Conversely, microRNA-target networks 

consider only the presence or absence of any interaction (inferred regulation) regardless of 

transcript binding region(s).  Consequently, all aptamer interactions per target transcript become 

synonymized in microRNA-target networks.  The distribution of network nodes according to the 

number of their connections is illustrated for targets and aptamers in FIGURE 2 and FIGURE 4 

respectively.  A double-logarithmic plot of data illustrated in FIGUREs 2C and 2F is presented in 

FIGURE 3.  A comparison of numbers of unique microRNAs to numbers of aptamer sites 

observed per target transcript is presented by method across the union of twelve Drosophila 

species in FIGURE 5.  Likewise a comparison of target transcript nucleotide length to the 

numbers of unique microRNA regulators observed is presented by method across the union of 

twelve Drosophila species in FIGURE 6.  It is of note that similar analyses have only considered 

the 3'UTR of Drosophila; conversely this study examines nucleotide length for the entire 

messenger RNA transcripts  (Stark et al., 2005).  Similarly a comparison of target transcript 

nucleotide length to numbers of aptamer sites observed is presented in FIGURE 7.  Additionally, 

a percent target distribution profile of microRNAs by prediction method is illustrated in FIGURE 

8. 

 

TargetScan output (61.9GB) recovered a network of 14,860 targets, 1,090,221 microRNA-

target interactions, 11,302,034 unique aptamer site interactions, and 112 microRNA families 

across the union of twelve Drosophila species (FIGURE 1).  TargetScan percent network 

composition per single microRNA ranged from 0.59 to 1.12%.  When considering the twelve 

species individually, the numbers of targets under regulation per single microRNA ranged from 

1,145 to 7,166 with an average of 3,885.55.  However the union of twelve Drosophila species 

was substantially enriched with a range of 6,379 to 12,193 targets per microRNA; with 9,734.11 

as an average.  There were 9 microRNA families not recovered through TargetScan; namely: 

dme-miR-1003/1004, dme-miR-10-3p/1006, dme-miR-275/306, dme-miR-279/286/996, dme-miR-

285/995/998, dme-miR-2a-1/6/11/13/306, dme-miR-2a-2/2c, dme miR-3/309/318, and dme-miR-

92/310/311/312/31. 

Network descriptors for TargetScan across the union of twelve Drosophila species are 

presented in APPENDIX III, TABLE 9.  The total network adjacency was 2180442.  The 
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average TargetScan target vertex degree distribution was 146.732.  The TargetScan network 

connectivity was 0.00987498.  The Shannon information index for the Drosophila union 

TargetScan network was 4.56 x108 bits.  The total TargetScan network distance was 445,660,532 

and the network radius was 29,990.6.  Thus a minimum path of 29,990.6 steps are required to 

transect the entire network.  The average distance per target in the TargetScan network was 2.02; 

thus any given set of target transcripts are removed from one another by an average of roughly 

two microRNA regulators. 

The overlap for genes undergoing microRNA regulation of the TargetScan dataset to 

previously published microRNA prediction sets ranged from 94.86 to 96.81%.  These later data 

were for Drosophila melanogaster from MiRGen, PicTar, and RNA22 represented 6.37 to 

23.13% of the total candidate microRNA targets (Grün et al., 2005; Huynh et al., 2006; Megraw 

et al., 2007).  There were 10.82% of the TargetScan targets possessing an aptamer sites in 

3’UTR for D. melanogaster.  Likewise, 4.91% of TargetScan targets in D. melanogaster 

uncovered an aptamer in the 5’UTR.  Control data for the TargetScan union of twelve 

Drosophila species using 13 deuterostome microRNAs recovered a network of 14,358 vertices, 

and 128,821 interactions (APPENDIX III, TABLE 9).  The numbers of targets per alien 

microRNA ranged from 6,050 to 11,535, with 9,909.32 as an average.  Thus the calculated 

computational sensitivity of TargetScan was 49.55%. 

 

MiRanda output (2.96GB) recovered a network of 14,583 targets, 241,861 microRNA-target 

interactions, 390,560 unique aptamer site interactions, and 121 microRNA families across the 

union of twelve Drosophila species (FIGURE 1).  The percent network composition per single 

microRNA ranged from 0.01 to 3.23%.  For individual Drosophila species, the numbers of 

targets under regulation per single microRNA ranged from 0 to 1,052 with an average of 205.92.  

The union of twelve Drosophila species was enriched with a range of 14 to 8,624 targets per 

microRNA, with an average of 2384.75.  Using a hybridization energy cutoff of -25 kcal/mol, an 

average ∆G of -26.4 kcal/mol was recovered across the union of twelve Drosophila species.  For 

Drosophila melanogaster, 3.94% of MiRanda targets held an aptamer binding region within 

3UTR.  Conversely, 4.24% of D. melanogaster targets had aptamers recovered within 5UTRs.  

There was a 25.04 to 27.81% overlap for MiRanda to published microRNA prediction data 

(Grün et al., 2005; Huynh et al., 2006; Megraw et al., 2007).  Control data by MiRanda for the 
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union of twelve Drosophila species using 13 microRNAs of Homo sapiens recovered a network 

of 10,242 vertices, and, 19,450 interactions (APPENDIX III, TABLE 9).  The numbers of targets 

per alien microRNA ranged from 357 to 3,892, with 1,496.15 as an average.  Thus the calculated 

computational sensitivity of MiRanda was 61.45 %. 

Network descriptors for MiRanda across the union of twelve Drosophila species are 

presented in APPENDIX III, TABLE 9.  The total network adjacency was 483,722.  The average 

MiRanda target vertex degree was 33.1703.  The MiRanda network connectivity was 

0.00227474.  The Shannon information index for the Drosophila union MiRanda network was 

5.23 x108 bits.  The total MiRanda network distance was 458,029,284 and the network radius 

was 31,408.4.The average distance per target in the MiRanda network was 2.15392. 

 

Intersection of target prediction methods across the union of twelve Drosophila species 

recovered a network of 12,616 targets, 78,280 microRNA-target interactions, 226,270 unique 

aptamer site interactions, and 112 microRNAs (APPENDIX III, TABLE 9).  Intersection percent 

network composition per single microRNA ranged from 0.014 to 3.71%.  Notably, both parent 

methods and their intersection recovered the same average network composition per single 

microRNA regulator of an average of 0.89%.  The numbers of targets under regulation per single 

microRNA in individual species ranged from 0 to 412 with an average of 376.84.  The union of 

twelve Drosophila species was enriched with a target range of 11 to 2,901 targets per 

microRNA; with 698.93 as an average.  Aptamer binding sites in the 3UTR were recovered for 

2.02% the targets in the D. melanogaster intersection set.  Similarly, aptamer binding sites in 

5UTRs of D. melanogaster were represented in 2.51% of the intersection target dataset. 

Network descriptors for the intersection of methods across the union of twelve 

Drosophila species are located in APPENDIX III, TABLE 9.  The total network adjacency was 

156,560; this was a respective 327,162 and 2,023,882 step decrease for MiRanda and 

TargetScan.  The average intersection target vertex degree was 12.41; a 20.76 and 134.32 degree 

reduction over MiRanda and TargetScan respectively.  The intersection network connectivity 

reduced from parent methods to 0.000983721.  The total intersection network distance was 

52,6424,944; this was an increase of 68,395,660 and 80,764,412 steps for MiRanda and 

TargetScan respectively.  The intersection network radius was 41,726.8; this represented a 

10318.4 and 11,736.2 step increase from MiRanda and TargetScan. The average distance per 
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target increased from roughly 2 to 3.31 with the intersection of methods.  Thus, any two given 

target transcripts are removed from one another by an average of three microRNA regulators.  

The Shannon information index for the Drosophila union TargetScan network was 9.42x108 bits.  

The later value represents a 4.19 x108 and 4.86 x 08 bit information (complexity) increase over 

the MiRanda and TargetScan networks. 

There was a 6.24% overlap in aptamer sites between the TargetScan and MiRanda 

datasets and a 74.97% overlap recovered for the number of genes undergoing microRNA 

regulation. The seed regions of multiple microRNAs in the same family would be homologous 

(and presumably functionally equivalent) and thus the network intersection recovers multiple hits 

for MiRanda (from mature microRNAs of individual species) to TargetScan aptamers 

(microRNA seed regions). Three-way intersection of MiRanda and TargetScan to other 

microRNA target datasets recovered a 16.70 to 18.64% overlap (Grün et al., 2005; Huynh et al., 

2006; Megraw et al., 2007).  The numbers of targets per hsa-miR ranged from 33 to 211, with an 

average of 92.23.  The calculated computational sensitivity of network intersection of MiRanda 

and TargetScan was 88.34%; a 26.89 and 38.79% increase over parent respective method 

sensitivity. 

The TargetScan prediction dataset include microRNA-target interactions of both the 5’-

dominant canonical and 5’-dominant seed only types (Sethupathy, et al., 2006).  MiRanda target 

predictions would include both the 5’-dominant canonical and 3’-compensatory microRNA-

target interactions having extensive base pairing along the 3’ end of the microRNA (Sethupathy, 

et al., 2006).  The network intersection of MiRanda and TargetScan prediction methods defines a 

set of 78,280 microRNA interactions with perfect complementarity to the seed portion of the 5’ 

end of the microRNA and extensive base pairing along the 3’ end of the microRNA; namely the 

5’-dominant canonical microRNA targets.  Conversely, those 163,581 microRNA interactions 

included in MiRanda but not in the intersection of methods would be those having extensive base 

pairing to the 3’ end of the microRNA to compensate for imperfect or a shorter stretch of base 

pairing to the seed portion of the microRNA; namely, to the 3’-compensatory sites.  Likewise, 

those 1,011,941 microRNA interactions included in TargetScan but excluded from the 

intersection of methods would be of the 5’-dominant seed only type. 

 



 28 

 

 
FIGURE 2.  Vertex degree distribution and network abundance of microRNAs per target 

gene.  MicroRNA targets are predicted across twelve Drosophila species according to (A) 

TargetScan (B) MiRanda and (C) the network intersection of methods.  Likewise microRNA 

targets networks predicted for D. melanogaster alone are also presented for (D) TargetScan (E) 

MiRanda and (E) the intersection of methods.  All data are unbinned.  MicroRNA targets 

predicted across the union of twelve Drosophila species included:  

(A) 14,760 from TargetScan; (B) 14,462 from MiRanda; and (C) 12,498 targets from the 

network intersection of methods.  Unique microRNA-target interactions predicted across the 

union of twelve Drosophila species included: (A) 1,090,221 from TargetScan; (B) 241,861 from 

MiRanda; and (C) 78, 280 from the network intersection of methods.  Power-law trend lines with 

functions for the target maxima across comparison of twelve Drosophila species recovered non-

linear regression coefficients of (A) TargetScan: R2 = 0.77, p < 10-5;  (B) MiRanda: R2 = 0.81, p 

< 10-5; and (C) for the network intersection of methods: R2 = 0.90, p < 10-5.  Trend line functions 

and non-linear regression coefficient of determination were recovered for the target maxima 

across comparison of twelve Drosophila species for (A) TargetScan: y = 0.0672 x2 - 11.035x + 

491.05, R2 = 0.93, p < 10-5;  (B) MiRanda: y = 13952e -0.6282x, R2 = 0.96, p < 10-5; and (C) for the 

network intersection of methods:  y = 6723.9e -0.8026x, R2 = 0.97, p < 10-5.  Power-law trend lines 
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with non-linear regressions for target minima across comparison of twelve Drosophila species 

were as follows: (A) TargetScan: R2 = 0.7372, p < 10-5; (B) MiRanda: R2 = 0.71, p < 10-5; and 

(C) for the network intersection of methods: R2 = 0.90, p < 10-5.  Target minima across 

comparison of twelve Drosophila species recovered trend lines with functions and non-linear 

regressions as follows: (A) TargetScan: y = 0.0568 x2 - 9.5342 x + 432.06, R2 = 0.90,  p < 10-5; 

(B) MiRanda: y = 5274.5e -0.649x, R2 = 0.93, p < 10-5; and (C) for the network intersection of 

methods: y = 3555.7e -0.963x, R2 = 1.00, p = 4.5x10-5.  The average MicroRNA targets predicted 

across twelve Drosophila species generated the following non-linear regressions under power-

law trendlines: (A) TargetScan: R2 = 0.77, p < 10-5; (B) MiRanda: R2 = 0.77, p < 10-5; and (C) 

for the network intersection of methods:  R2 = 0.879, p < 10-5.  MicroRNA targets predicted for 

the average across twelve Drosophila species generated the following trend lines and non-linear 

regression: (A) TargetScan: y = 0.0554 x2 - 9.464 x + 427.7, R2 = 0.90, p < 10-5; (B) MiRanda: y 

=  24601e -0.7959x, R2 = 0.97, p < 10-5; and (C) for the network intersection of methods: y = 

9862.2e -1.0045x, R2 = 0.99, p < 10-5.  MicroRNA targets networks predicted for D. melanogaster 

alone produced trend lines and non-linear regressions of (D) y = 0.0554 x2 - 9.464 x + 427.7, R2 

= 0.90, p < 10-5, from TargetScan; (E) y = 7043.2e -0.7157x, R2 = 0.95, p < 10-5, from MiRanda; 

and (F) y = 23370.4e -0.9363x, R2 = 0.99, p = 1.5 x10-3, from the network intersection of methods.  

Power-law trend non-linear regressions for MicroRNA targets networks predicted for D. 

melanogaster alone were (D) R2 = 0.77, p < 10-5, from TargetScan; (E) R2 = 0.73, p < 10-5, from 

MiRanda; and (F) R2 = 0.90, p < 10-5,  from the network intersection of methods. 
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FIGURE 3. Double-logarithmic plot of vertex degree distribution and network abundance 

of microRNAs per target gene.  A linear case was to be expected but predicted for Drosophila 

melanogaster alone produced a power-law trend line and non-linear regression of y = -2.8162 x 

+ 3.3908, R2 = 0.90 which was not statistically significant. 



 31 

 
FIGURE 4.  Distribution of aptamers per target transcript according to their abundance in 

microRNA networks.  MicroRNA targets are predicted across the union of twelve Drosophila 

species according to (A) TargetScan (B) MiRanda and (C) the network intersection of methods.  

Accordingly for 112 microRNA families, unique microRNA aptamer sites predicted included: 

(A) 11,302,034 from TargetScan; (B) 390,560 from MiRanda; and (C) 226,270 aptamers from 

the network intersection of methods.  All data are unbinned.  The plotted curves represent power-

law trend lines with functions and non-linear regression coefficient of determination for (A) 

TargetScan:  y = 782.23 x -0.8019, R2 = 0.68, p < 10-5; and (C) for the network intersection of 

methods: y = 9787.7 x -1.5973, R2 = 0.90, p < 10-5.  Pearson correlation coefficients according to 

method were as follows: (A) TargetScan: -0.42; (B) MiRanda: -0.62; (C) network intersection of 

methods: -0.33.  Note that the vertex degree range for aptamer binding sites appears greater in 

intersection of methods than in the MiRanda alone due to the overlap of multiple TargetScan 

aptamers (microRNA seed regions) to aptamer sites recovered from MiRanda. 
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FIGURE 5.  Comparison numbers of unique microRNAs to numbers of aptamer sites 

observed per target transcript.  MicroRNA targets are predicted across the union of twelve 

Drosophila species according to (A) TargetScan (B) MiRanda and (C) the network intersection 

of methods.  Accordingly for 112 microRNA families, unique microRNA aptamer sites predicted 

included: (A) 11,302,034  from TargetScan; (B) 390,560 from MiRanda; and (C) 226,270 

aptamers from the network intersection of methods.  The plotted curves demonstrate power-law 

trend lines with functions and non-linear regression coefficient of determination for (A) 

TargetScan:  y = 0.0428 x 2.1138, R2 = 0.73; (B) MiRanda: y = 1.4688 x 1.0277, R2 = 0.90, p < 10-5; 

and (C) for the network intersection of methods:y = 1.1291 x 1.3003, R2= 0.89.  Additionnally 

TargetScan data A) recovered better fot with an exponential trend line of y = 15.793 e 0.04 x, R2 = 

0.85, p < 10-5.  The network intersection data C) could also be described by a polynomial 

function of y = 0.2976 x2 - 1.4734x + 5.5451, R2 = 0.74, p < 10-5.  Pearson correlation 

coefficients according to target prediction method were as follows: (A) TargetScan: 0.47; (B) 

MiRanda: 0.92; (C) network intersection of methods: 0.78.  Note that the range of the numbers 

of aptamer binding sites appears greater in intersection of methods than in the MiRanda alone 

due to the overlap of multiple TargetScan aptamers (microRNA seed regions) to aptamer sites 

recovered from MiRanda. 
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FIGURE 6.  Comparison of target transcript nucleotide length to numbers of unique 

microRNA regulators observed.  MicroRNA targets are predicted for 14195 protein coding 

genes across the union of twelve Drosophila species according to (A) TargetScan (B) MiRanda 

and (C) the network intersection of methods.  Accordingly for 112 microRNA families, unique 

microRNA-protein coding target interactions predicted included: (A) 1,082,224 from 

TargetScan; (B) 240,394 from MiRanda; and (C) 77,900 from the network intersection of 

methods.  Pearson correlation coefficients retrieved according to method were as follows: (A) 

TargetScan: 0.45; (B) MiRanda: 0.44; (C) network intersection of methods: 0.72. 
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FIGURE 7.  Comparison of target transcript nucleotide length to numbers of aptamer sites 

observed.  MicroRNA targets are predicted for 14195 protein-coding genes across the union of 

twelve Drosophila species according to (A) TargetScan (B) MiRanda and (C) the network 

intersection of methods.  Accordingly, for 112 microRNA families, aptamer sites predicted 

included: (A) 11,246,285 from TargetScan; (B) 386,954 from MiRanda; and (C) 225,152 

aptamers from the network intersection of methods.  (A) TargetScan data recovered a power-law 

trend lines with functions and non-linear regression coefficient of  y = 0.1229 x 1.0026, R2 = 0.96, 

p < 10-5.  Additionally TargetScan data could also be well described by a linear trend line of y = 

0.1167 x + 42.403; R2 = 0.98, p < 10-5.   Likewise the network intersection data could also be 

described by a linear trend line of y = 0.0023 x + 1.3649; R2 = 0.84.  (C) The network 

intersection of methods was fitted to a power-law trend lines of y = 0.0028 x 0.9755, R2 = 0.76, p < 

10-5.  Respective Pearson correlation coefficients recovered according to method were as 

follows: (A) TargetScan: 0.99; (B) MiRanda: 0.33; (C) network intersection of methods: 0.92. 
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FIGURE 8.  Percent target distribution profile of microRNAs by prediction method.  

Results are color-coded by microRNA.  Each category represents the target dataset union across 

twelve Drosophila species.  The Intersect category represents the network intersection of 

MiRanda and TargetScan microRNA target prediction data.  Accordingly, targets predicted 

included:  (A) 14,760 from TargetScan; (B) 14,462 from MiRanda; and (C) 12,498 targets from 

the network intersection of methods. Unique microRNA-target interactions predicted Included: 

(A) 1,090,221 from TargetScan; (B) 241,861 from MiRanda; and (C) 78, 280 from the network 

intersection of methods. 
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DISCUSSION 

 

MicroRNA Regulatory Network Properties.  Complex natural patterns may display 

underlying simplicity through scale-invariance (Albert, 2005; Barabasi & Albert, 1999; Gavin et 

al., 2006; Hastings et al., 1993).  Scale-invariance indicates that a pattern remains unchanged 

regardless of magnification or contraction and in turn, scaling rules follow forms characterized 

under power law functions.  Given a function, f(x) = A * x b , where “A” and “b” are constants: 

any scaling of the variable “x” by a constant “A” incurrs proportionate scaling of the function 

itself.  Thus, all power laws of set scaling exponent “b” are equivalent up to constant factors; 

each is essentially a scaled version of the others.  Many natural networks are scale free having 

constant properties irregardless of network size and demonstrate power-law behavior for their 

vertex degree frequency distribution (Barabasi & Albert, 1999).  In such cases node network 

abundance may decline expontially with increasing vertex degree.  Typically, the constant “b” 

within biological networks is within a range of -2 to -3 (Barabasi & Albert, 1999).  Moreover, 

where such power law behavior is present then a double-logarithmic plot of log f(x) against log x 

is linear.  Nevertheless other functions asides power-law may accurately expression the non-

linear scale-free nature of the network (Dorogovtsev & Mendes, 2003). 

The nature of network power-law behavior varied according to microRNA prediction 

method.  Nevertheless, node network abundance displayed a general exponential decline as the 

number of targets or aptamers per transcript increases (FIGUREs 2 & 4).  Power-law trend lines 

values for “b” from TargetScan aptamer-degree-frequency and target-degree-frequency 

distributions fall below normal biological range (b = -0.74 to -0.83; FIGUREs 4A, 2A, & 2D).  

MiRanda aptamer and target-degree-frequency distributions recovered power-law trend lines 

values for “b” that partially cross the biological range of -2 to -3 (b = -0.23 to -4.06; FIGUREs 

4B, 2B & 2E).  Likewise target-degree-frequency distribution for the intersection of microRNA 

target prediction methods produce exponential values falling within biological range (b = -2.82 

to -4.22; FIGUREs 2C & 2F).  Aptamer-degree-frequency distribution for the intersection of 

target prediction methods exponential values falling below biological range (b = -1.5973; 

FIGUREs 4C).  Coefficients of determination for fit to a power-law function displayed an 

increase for the intersection (R2 = 0.88 to 0.90) over both parent methods (MiRanda, R2 = 0.71-

0.81; TargetScan, R2 = 0.73-0.77) across minima, maxima and averages of twelve Drosophila 
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species (FIGURE 2A, FIGUREs 2B & 2C).  Similarly for Drosophila melanogaster data alone, 

power-law trend line coefficients of determination increase for the intersection (R2 = 0.90) over 

parent methods (MiRanda, R2 = 0.73; TargetScan, R2 = 0.77).  Likewise coefficients of 

determination for power-law trend line fit using apatamer-degree-freqeuncy distribution 

increased for the intersection (R2 = 0.90) over parent methods (MiRanda, R2 = 0.23; TargetScan, 

R2 = 0.68) across the union of twelve Drosophila species (FIGURE 4).  It should be recalled that 

all these microRNA target and aptamer data are unbinned and further binning the data into 

frequency groups of 3 or 5 could bring the exponential interval into natural range.  Nevertheless, 

a clear linear relationship between the two axes indicative of power-law behavior was expected 

and visible for the intersection of MiRanda and TargetScan networks in Drosophila 

melanogaster alone (R2 = 0.90; FIGURE 3) but is not statsically signifcant. 

From the proceeding it can be reasoned that, compared to respective parent networks, the 

intersection of microRNA target prediction methods produces target networks of increased 

potential biological relevance.  The intersection network outperformed parent methods exhibiting 

a 1.44 to 1.78 fold increase in target sensitivity.  Therefore the network intersection of methods 

appears to have increased discriminatory power over its parent methods.  Moreover the network 

intersection encoded 9.42x108 bits of information.  This was nearly double in innate complexity 

of the parent methods.  Thus the network intersection is a smaller, but substantially richer set of 

data compared to its parent methods. 

 

Prospectives for MicroRNA-Target Verification.  Genome-wide microRNA target predictions 

in animals have estimated that between 20 to 60% of all genes are likely to come under 

regulation (Friedman et al., 2009; Lewis et al., 2005; Stark et al., 2005).  This study recovered 

target prediction data though MiRanda and/or TargetScan for 14,925 genes (>90% Drosophila 

genome); and of these, 95.11% correspond to protein coding transcripts.  The sizable target 

datasets produced in this study are applicable for continuing research in Drosophila molecular 

biology.  Accordingly, it is suggested that the vast numbers of potential interactions proposed for 

all methods by these bioinformatic studies could be biochemically verified using whole genome 

microarray analyses and miRNP immunopurification.  The later method effectively identifies 

microRNA targets based on their in vivo physical association with mature microRNAs bound to 

Argonaute protein-containing effector complexes (Easow, Teleman, & Cohen, 2007). 
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MicroRNA Regulatory Network in the Context of Natural Selection.  The animal microRNA 

repertoire has operated upon the sequence evolution of all messenger RNAs, modulating the use 

of a substantial fraction of the transcriptome (Bartel & Chen, 2004).  Notably, quantitative 

relationships between microRNA regulators and aptamer binding sites per target transcripts 

differed between microRNA target prediction methods.  A positive correlation between numbers 

of unique microRNAs and numbers of aptamer sites was weak for TargetScan (Pearson 

correlation coefficient = 0.47), moderate for network intersection of methods (0.78) and strong 

for MiRanda data (0.92; FIGURE 5).  These values likely reflect differential selective forces 

operative upon the seed- and canonical-type microRNA interactions predicted by TargetScan and 

MiRanda, respectively (Lewis et al., 2005).  Moreover, differences could be expected where the 

respective microRNA aptamer types participate in different molecular responses; potentially 

where canonical interactions induce RNA transcript cleavage while seed-type interactions stall 

translation of protein by physically blocking the ribosome assembly (Lu et al., 2008; Stark et al., 

2007b).  Increasing diversity of microRNA regulators per transcript requires increasing diversity 

of unique canonical-type aptamer binding sites (FIGURE 5B).  Conversely, even with increased 

diversity of microRNA regulators per transcript, there is substantial redundancy of seed-type 

aptamer binding sites (FIGURE 5A).  Stringent regulation by a single microRNA is rare: single 

sites contained in most targets do not appear to be sufficient to confer strong repression (Stark et 

al., 2005).  Moreover this makes a switch-like relationship unlikely and microRNAs might not 

primarily be involved in developmental decision-making (Stark et al., 2005).  Accordingly, the 

findings of this study are consistent with the principle of canalization: Drosophila genes selected 

for greatest microRNA coordinate control with seed-type interactions also have greater aptamer 

redundancy wired into the regulation (Hornstein, & Shomron, 2006). 

 

Messenger RNA Transcript Length.  The length of an entire target transcript appears to 

represent another factor exerting selective influence upon the microRNA interactome.  Increase 

in target transcript length and increased number of interacting microRNAs targeting the 

transcript were only weakly correlated for all methods (Pearson correlation coefficients range 

0.44 to 0.72; FIGURE 6).  In contrast, a strong Pearson correlation coefficients was observed 

between increasing target transcript length and number of aptamer binding sites per transcript 



 39 

was observed for TargetScan data (0.99) and network intersection of methods ( 0.92; FIGURES 

7A & 7B).  Thus it stands to reason that as transcript length increases the likelihood of 

acquisition of a seed-type aptamer binding site also increases.  These findings for the entire 

messenger RNA transcript agree with conclusions of other detailed analysis which have 

considered only the 3’UTR of Drosophila messenger RNAs (Stark et al., 2005).  In the later 

case, genes with more microRNA sites have both average longer 3’UTRs and significantly more 

binding sites per kilobase of 3’UTR sequence.  Reciprocally, a large set of genes involved in 

basic cellular processes avoid microRNA regulation due to short 3’UTRs that are specifically 

depleted of microRNA binding sites (Stark et al., 2005).  Moreover, the lengthening of 3’UTRs 

by alternative polyadenylation during mouse embryonic development is predicted to significantly 

augment microRNA-mediated posttranscriptional control (Ji et al., 2009).  Rapidly proliferating 

murid T-lymphoctye cells express messenger RNAs with shortened 3’UTRS and fewer available 

microRNA aptamers (Sanberg et al., 2008).  Such trends collectively indicate that transcripts 

operate under length selection to acquire or eliminate microRNA aptamer sites (Stark et al., 

2005).  Over the course of natural history functional aptamers will appear randomly and genes 

presented with microRNA regulation come under selection to specifically avoid or utilize 

regulation.  Regulatory avoidance would be expected for genes normally expressed at high levels 

in which microRNA-mediated repression would be detrimental (Bartel & Chen, 2004; Stark et 

al., 2005). 

 

A Model of MicroRNA Aptamer Sequence Evolution.  Representation of individual 

microRNAs in the regulatory interactome differed according to method.  Cursory visual scan of 

bars in FIGURE 8 reveals a nearly uniform distribution of microRNAs across the TargetScan 

dataset while the MiRanda dataset displays differential target enrichment by microRNA.   

These findings for TargetScan data contradict a hypothesis that the number of seed sites might 

grow over natural history such that ancient microRNAs would tend to have more targets than 

those more recently acquired (Brennecke et al., 2005).  The percent target distribution profile for 

the intersection of prediction methods reflects similar differential microRNA enrichment pattern 

to that presented by the parent MiRanda interactome. As with quantitative relationships between 

microRNA regulators and aptamer binding sites (FIGURE 5), differential microRNA enrichment 
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patterns by method may reflect separate selective forces operating upon the seed- and canonical-

type microRNA interactions (Lewis et al., 2005). 

A widespread natural occurrence of heptamers matching microRNA seed regions in the 

Drosophila genome may account for the even microRNA-target distribution profile of 

TargetScan data.  Indeed other genomic analyses of Drosophila have indicated that a majority of 

microRNA target sites lack substantial pairing in the 3' end in nearby sequences (Brennecke et 

al., 2005).  Given this, then it seems reasonable to accept a model of microRNA target 

acquisition that initiates with the chance acquisition of a functional seed region with only seven 

or eight bases complementary to a microRNA (Brennecke et al., 2005).  Over the course of 

sequence evolution, each aptamer site adapts to increase or decrease its pairing to the microRNA 

regulator, and in this way, fine-tunes the degree of repression in cells that express the 

corresponding microRNA species (Bartel & Chen, 2004).  Subsequently, if the initial seed-type 

microRNA regulatory interaction is positively reinforced by natural selection, then later 

mutations may expand the binding site region along the 3’ end of the microRNA in order to 

confer stronger repression and optimize the regulation (Brennecke et al., 2005).  Thus a 5’-

dominant canonical interaction may be produced.  Further mutation along the aptamer may alter 

the original seed region and a 3’ compensatory microRNA target would remain (Sethupathy, et 

al., 2006).  Canonical sites can thus be seen as an extension of the seed type with enhanced 3' 

pairing in addition to a sufficient 5' seed or as an extension of the 3' compensatory type with 

improved 5' seed quality in addition to sufficient 3' pairing (Brennecke et al., 2005).   

According to the previous model, 5' dominant canonical and seed sites should be 

responsive to all members of a given microRNA family, whereas 3' compensatory sites should 

differ in their sensitivity to different microRNA family members depending on the degree of 3' 

complementarity (Brennecke et al., 2005).  Thus the 3' compensatory class of target sites may be 

utilized in vivo to discriminate among individual microRNA family members (Brennecke et al., 

2005).  Experimental results in Drosophila suggest that a functional seed requires a continuous 

sequence of at least 4 or 5 nucleotides and that there is some position dependence to the pairing, 

since sites that produce comparable pairing energies differ in their ability to function (Brennecke 

et al., 2005).  Conversely for 3’ compensatory sites, extensive 3' pairing of up to 17 nucleotides 

in the absence of the minimal 5' element is not sufficient to confer regulation (Brennecke et al., 

2005).  This suggests that the sequences that could pair to the 3' end of the microRNAs are not 
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important for regulation as they do not appear to be under selective pressure (Brennecke et al., 

2005).  Nevertheless, deep conservation of 3' complementarity suggests that these aptamer sites 

are likely to be a functionally important in some sense (Brennecke et al., 2005).  It is here 

prosposed that many of the 3’compensatory sites are likely to be biologically functional and that 

many predicted 3'compensatory targets of MiRanda data could potentially recover a 5' seed (and 

thus would need to be reclassified as 5' dominant cannonical type aptamers) if one were also to 

consider microRNAs that have undergone adenosine-to-inosine (A-to-I) editing (Habig, Dale, & 

Bass, 2007).   

Future work from these data should empirically examine aptamer site sequence evolution 

in greater detail.  To these ends, sequence regions from the Drosophila multiple sequence 

alignment exhibiting all three classes of microRNA-target sites will be isolated.  Thereafter, 

molecular phylogenetic analysis will be conducted to map nucleotide character states changes 

within sequence regions against the established Drosophila phylogeny.  In this way molecular 

phylogenetics may verify  the historical transition from 5’-dominant seed to 5’-dominant 

canonical to 3’-compensatory for microRNA aptamers. 

 

Continuing Research.  The preceeding analyses provide abundant source material for 

continuing research.  The methodology outlined in FIGURE 1 can be readily reproduced for 

other organisms.  To date 14.0 GB of microRNA target data have already been output for 

MiRanda and TargetScan using 525, 731 KB of sequence data for 28,123 genes and 67 

microRNAs for six species of nematode, namely: Caenorhabditis brenneri, C. briggsae, C. 

elegans, C. japonica, C. remanei, and Pristionchus  pacificus. Future research will examine the 

influence of incremental increase of threshold values for hybridization energy upon the node-

degree-frequency distribution plot of MiRanda microRNA target networks: the average Gibbs 

Free energy value for the MiRanda of -26.4 kcal/mol indicates that the majority of MicroRNA 

targets recovered approach the threshold ∆G value of -25.  It has been previously hypothesized 

that ranking microRNA target sites according to overall complementarity or free energy of 

duplex formation might not reflect their biological activity (Brennecke et al., 2005).  Moreover 

the network behavior of discrete classes of microRNA aptamers should be considered further.  

MicroRNA networks for MiRanda and TargetScan targets not conserved in the other method 

should be generated.  These later networks together with the network intersection of methods 
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would represent exlcusive networks of the 5’-seed, 3’-compensatory, and 5’-dominant canonical 

type aptamers.  Comparison of these three networks may provide further insights into natural 

selective forces operative upon microRNA interactions. Network properties in this study may 

also have been influenced by the presence of 47 microRNAs exhibiting lineage specific 

expansion for in Drosophila (Berezikov et al., 2010).  Restriction of the networks under 

microRNAs strictly conserved within the genus Drosophila also increased calculated sensitivity 

rates for MiRanda and the intersection of both prediction methods to 65.29 and 89.94%, 

respectively.   

Further study for deuterostome specific microRNAs with no homologs in Drosophila is 

also warranted.  Natural selective principles governing network expansion with de novo 

microRNA acquisition might be discerned though a contrast of descriptive and topological 

network properties for microRNAs endogenous and alien to Drosophila (APPENDIX III, 

TABLE 8).  Given that a transcriptome cannot have target selection operative for genes not part 

of their microRNA repertoire, it is reasonable to assume that each alien would effectively behave 

in the Drosophila regulatory network much as a newly acquired microRNA.  The relative 

simplicity of microRNA genes, together with their gene family sequence diversity and their 

independent acquisition in plant and animal lineages, indicates that acquisition of de novo 

microRNA genes (with their consequent impact on transcript regulation) might occur with 

relative frequency over course of natural history (Bartel & Chen, 2004). 
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ABSTRACT  

 

Strict patterns of conservation of interaction between microRNAs and targets remain unclear. 

This study considers the interrelated topics of 1) aptamer sequence evolution, 2) microRNA-

target interaction conservation (interology), 3) the conservation of microRNA target regulation 

across species and 4) time since species divergence.  Molecular phylogenetic reconstructions 

using standard parsimony (MP) were conducted through PAUP* under a constrained tree 

topology matching the expected phylogeny of the genus Drosophila for a total of 14,929 putative 

microRNA target genes.  A molecular clock rate of 1,579,192 unweighted maximum parsimony 

steps per million years was recovered. This represents the first comprehensive study to directly 

relate molecular sequence evolution and phylogeny with microRNA regulatory network 

interology in Drosophila. MicroRNA regulatory network structure was found to change over 

time and across species. The decrease in conserved microRNA-target interactions with 

increasing phylogenetic distance exhibited a cure typical of a saturation phenomena. It seems 

that only a modest number of microRNA–mRNA interactions exhibit conservation over 

Drosophila cladogenesis. The minimal numbers of conserved microRNA-target interactions 

retained throughout all taxa were 1,839 from MiRanda, 13,357 from TargetScan, and 135 for the 

intersection of both methods. These later values likely represent the presence of a functionally-

constrained core of microRNA-target interactions essential to Drosophila. These findings 

represent the first comprehensive study to directly relate molecular sequence evolution and 

phylogeny with microRNA regulatory network interology in Drosophila.  



 45 

INTRODUCTION 

 

MicroRNA regulatory networks are dense, with most target genes targeted by multiple 

microRNAs, and they exhibit precise combinatorial control of targets giving increased regulatory 

versatility (Enright et al., 2003; Grün et al., 2005; Lewis et al., 2005; Sempere et al., 2007; Stark 

et al., 2005; Stark et al., 2007a).  The ease by which novel microRNAs target sites can be altered 

or lost, coupled to the profound consequences in developmental processes, provides powerful 

source variation upon which selection can operate (Stark et al., 2005).  Strict patterns of 

conservation of interaction between microRNAs and targets remain unclear. MicroRNA seed 

sequences remain largely invariant over large phylogenetic distance and likewise, about 50% of 

octanucleotide blocks in vertebrate 3’UTRs are conserved and complementary to known 

microRNAs (Lu et al., 2008; Stark et al., 2005; Xie et al., 2005).  Bayesian phylogenetic 

modeling for microRNA target sites in mammals suggests that target repertoires of some 

microRNAs have been largely conserved since mammalian origin, while other target repertoires 

of microRNAs have accumulated significant changes (Gaidatzis et al., 2007).  Lineage specific 

microRNAs exhibit far fewer conserved targets and lower expression than do the more broadly 

conserved microRNAs; even when considering only more recently emerged targets (Friedman et 

al., 2009; Grün et al., 2005; Stark et al., 2007a).  Thus it seems that although both microRNA 

and target genes may be conserved, the interactions between them may not (Lee et al., 2007, 

Matthews et al., 2001).  Further refinement in the study of dual microRNAs and target 

conservation is necessary. 

Selective pressures for conserving functional target sites between related species may 

differ significantly: functional target sites for one microRNA may be preferentially conserved in 

one species, while functional sites for another microRNA may be preferentially conserved in 

another species (Gaidatzis et al., 2007).  For instance, the polymorphism pattern of miR-310s in 

Drosophila indicates lineage specific differentiation under positive selection for D. melanogaster 

in comparison to other species (Lu et al., 2008).  The degree of divergence of microRNA  

regulatory networks could likely dictate clade-specific reproductive isolation, and principally, the 

conservation between microRNA-target interactions may be viewed to indicate what kinds of 

genetic programs have been conserved between species (Lee et al., 2007; Prochnik et al., 2007).  

Moreover, microRNAs are also likely involved in adaptive regulatory circuit extension where 
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organisms expand the functional portion of their genome as they also incorporate survival 

information about their niche (Lee et al., 2007).  Under this model, it is possible that recently 

acquired species-specific microRNAs would be most involved in fine-tuning gene expression to 

adapt organisms to different environments, rather than supporting more ancient developmental 

programs (Stark et al., 2005).  Among the 78 microRNAs reported in Drosophila before 2007, 

only 5 are confirmed to be newly emerged in the genus, but these have likely accumulated many 

adaptive changes during a surprisingly long period (roughly 55 million years) of natural history 

(Lu et al., 2008; Stark et al., 2007a ).  Effectively the divergence spanned by the genus 

Drosophila exceeds that of the entire mammalian radiation when generation time is considered 

(Drosophila 12 Genomes Consortium).  This study considers the interrelated topics of 1) aptamer 

sequence evolution, 2) microRNA-target interaction conservation (interology), 3) the 

conservation of microRNA target regulation across species and 4) time since species divergence. 

Notably, the findings presented here represent the first comprehensive study to directly relate 

molecular sequence evolution and phylogeny with microRNA regulatory network interology in 

Drosophila.  Likewise, this study addresses the relationships between regulation conservation 

and nucleotide length for the entire messenger RNA transcripts where similar analyses prior have 

only briefly considered regulatory conservation relative the 3'UTR of Drosophila (Stark et al., 

2005). 

 

METHODS 

 

Multiple sequence alignments from MULTIZ  available from UCSC  for a total of 14929 

putative microRNA target genes were formatted into a Nexus file with command line for 

phylogenetic analyses (16.2 GB data produced) and subjected in batch to molecular phylogenetic 

reconstructions through PAUP* (CHAPTER I, FIGURE 1; Blanchette et al., 2004; Swofford, 

2002).  Molecular phylogenetic reconstructions using standard parsimony (MP) were conducted 

under a constrained tree topology matching the expected phylogeny of the genus Drosophila 

(CHAPTER III, FIGURE 22) with accelerated transformation of characters optimized on the 

tree(s) in memory (ACCTRAN) with gaps coded as a 5th character state and rooted assigning D. 

grimshawi as an outgroup.  Parametric scores for Consistency Index (CI), Retention Index (RI), 

Rescaled Consistency Index (RC), Homoplasy Index (HI), and Goloboff-fits (G-fit) and tree 
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length (L) were extracted from 1.05 GB of PAUP* output files using Perl scripts. Further 

molecular phylogenies constrained to the reference tree were conducted under maximum 

likelihood (ML) criteria under a general time reversible model with gamma distributed rates and 

invariant sites (GTR + I + G Model; Lanave et al., 1984; Swofford, 2002).  Likelihood scores 

and base frequencies were extracted from 4.81 GB of PAUP* output files using Perl scripts.  

There were a total of 30.3 KB of parametric score data from MP and ML molecular phylogenetic 

analyses extracted. These were input incorporated into the musca MySQL database and 

integrated to microRNA target data from TargetScan, MiRanda and the network intersection of 

target predictions method through joint table queries (CHAPTER I, FIGURE 1).  Query of the 

musca database recovered percent conservation of microRNA-target interactions, microRNA-

aptamer site interactions, species, and transcript length. Moreover, interspecific comparisons of 

microRNA network interactions and target data were conducted directly through the musca 

database using the network intersection for all unique (66) cross-species combinations of 

Drosophila sampled (164 network Files recovered in 1.04 KB). Additionally, molecular clock 

estimates of Drosophila divergence times were extrapolated using cross-species comparisons 

from phylogenetic reconstruction under maximum parsimony across 14926 genes, and a 

calibrated divergence time of 12.8 MYA for D. melanogaster from D. yakuba based on inference 

from African biogeography (Lachaise et al., 1988). 

 

RESULTS 

 

Molecular Phylogenetics.  The entire dataset of 14,925 genes represented 91,915,264 total 

characters; of which 64,748,176 (70.44 %) were potentially parsimony informative, 14,690,262 

(15.98 %) characters were constant, and 12,217,058 (13.29 %) characters were variable but 

uninformative.  The parsimony based reconstructions for the total dataset recovered average 

parametric scores per target gene as follows: Consistency Index (CI) = 0.721, Retention Index 

(RI) = 0.50, Rescaled Consistency Index (RC) = 0.277, and Homoplasy Index (HI) = 0.277 (see 

APPENDIX III, TABLE 12).  Reconstruction using maximum likelihood recovered an average 

percent GC content per gene of 50.1%, an average percent invariable rate of 20.8%, and an 

average gamma rate of 2.578.  The observed total GC content was on par with previously 

established estimates for the genus Drosophila (Rodrigiuez-Trelles, Tarroi, & Ayala, 2000).  The 
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average ln Likelihood score was -38815.36.  There was an average of 0.017 bits of information 

per base position per gene.   

The total target data recovered total parametric scores for parsimony based 

reconstructions as follows:  CI = 0.724, RI =  0.462, RC = 0.276, HI = 0.276 (see APPENDIX 

III, TABLE 13).  The total tree length of the entire dataset was 203,694,546 steps.  

Reconstruction using maximum likelihood recovered a total GC content was 0.50%, total 

invariable rate pf 20.4%, and a total gamma of 2.126.  The average –ln Likelihood score was 

137,036.648.  The total overall bits per base position 0.016.  A total of 245 genes were recovered 

with a consistency index greater than or equal to 90% to the reference phylogeny (CHAPTER 

III, FIGURE 22).  Within this later set there were 52 protein coding genes, 4 processed 

psuedogenes, 146 t-RNAs, and 11 small nuclear RNAs, and 27 microRNAs.  In finer scale, the 

potential phylogenetic utility for whole gene regions under the control tree topology could be 

addressed through comparison of likelihood and parametric scores like consistency index and 

homoplasy index, the number of potentially parsimony informative sites out of the total gene 

region (see CHAPTER IV).   

Comparisons of mutational steps under maximum parsimony to numbers of microRNA 

target and network edges recovered are presented in FIGURE 20.  Maximum parsimony steps 

between species represent interspecific difference between the sum of the fit of 91,915,264  

characters across 14,925 genes to the reference phylogeny (of combined length 203,694,546; see 

topology CHAPTER III, FIGURE 22) as inferred through a branch-bound search using 

accelerated character state transformation with Gaps coded as a 5th character state.  The range of 

maximum parsimony steps ranged from 9,731,085 (Drosophila simulans vs. D. sechellia) to 

98,103,533 (Drosophila simulans vs. D. willistoni) with an average of 67,253,867. Comparisons 

of calculated divergence time to numbers of microRNA target and network edges recovered are 

diagramed in FIGURE 21.  The recovered molecular clock rate was 1,579,192 unweighted 

maximum parsimony steps per million years 

 

Interspecific Regulatory Network Comparison under TargetScan data.  The range of 

TargetScan targets across species was from 14,001 in Drosophila grimshawi to 14,543 in D. 

melanogaster with an average of 14,325 targets per individual species regulatory network. A 

comparison of microRNA targets to regulatory network edges for TargetScan across 66 
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interspecific network comparisons in Drosophila is displayed in FIGURE 9A.  The percent 

conservation of microRNA targets to percent conservation of regulatory network edges across all 

Drosophila interspecific network comparisons is displayed in FIGURE 11.  Relationships 

conservation for both microRNA targets and regulatory network edges were well described using 

a subtle curvilinear plot for both TargetScan and MiRanda (R2 = 0.99; FIGURE 11).  TargetScan 

exhibited a much higher conservation profile than MiRanda for both microRNA targets and 

regulatory network edges (FIGURE 11). 

The minimal number of cross-species conserved TargetScan targets retrieved through 

direct cross-species comparison through network intersection was 12,383 for Drosophila 

mojavensis vs. D. persimilis.  This later species pair had a 77.68% conservation of targets.  The 

maximum number of shared targets observed for TargetScan was 14,437 for the intersection of 

Drosophila melanogaster vs. D. sechellia.  This later species combination had a 98.62% target 

conservation.  Direct cross-species comparison through network intersection across all 

TargetScan networks returned an average of 2,066 targets with a 83.62% conservation between 

species. 

Drosophila species conservation of microRNA regulation per target gene by TargetScan 

is represented in the orange bars of FIGURE 12.  These data present the regulation of a given 

target gene by some microRNA; regardless of the identity of the microRNA.  Across all 

Drosophila species, there were only 89 (0.6%) targets apomorphic to one species. Conversely, 

there were 13357 (90.76%) targets fully in regulation by some microRNA for all twelve 

Drosophila species.  A conservation comparison for Drosophila species to microRNA regulators 

for TargetScan is presented in FIGURE 13A.  Likewise a conservation comparison for 

Drosophila species to aptamer sites predicted through TargetScan is contained in FIGURE 14A. 

The TargetScan conservation for gene regulatory interaction per individual microRNA 

was 27.25 to 50.51%.  This later conservation for gene regulatory interaction was had a 39.44% 

average per individual microRNA.  A comparasion of unique microRNAs observed through 

TargetScan to percent conservation of microRNA interactions is presented in FIGURE 15A.  

Similarly, comparison of aptamer sites observed to maximum percent conservation of aptamer 

sites is presented in FIGURE 17A.  Additionally, a comparison of aptamer sites observed 

through TargetScan to percent conservation of microRNA interactions is drawn in FIGURE 16A.  
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TargetScan regulatory network microRNA-target interactions ranged from 373,916 in 

Drosophila mojavensis to 494,131 interactions in D. melanogaster.  There was an average of 

434,423 interactions across twelve Drosophila species.  Direct cross-species comparision 

through network intersection revealed that the lowest numbers of conserved microRNA-target 

regulatory interactions were 204,984 in Drosophila mojavensis vs. D. persimilis with a 35.56% 

conservation between species.  Conversely, the highest number of conserved microRNA-target 

regulatory interactions for TargetScan were 428,713 in Drosophila simulans vs. D. sechellia 

(compare tree topology in CHAPTER III, FIGURE 22).  There was an 81.52% conservation of 

microRNA-target interaction between these later to sister species.  TargetScan regulatory 

networks recovered an average of 255,602 microRNA-Target interactions with a 42.07% 

conservation rate across twelve Drosophila species. 

 

Interspecific Regulatory Network Comparison using MiRanda data. MiRanda targets across 

species ranged from 4,509 in D. melanogaster to 12,632 in D. simulans with an average of 

11,460 targets per individual species regulatory network.  A comparison of microRNA targets to 

regulatory network edges for MiRanda across 66 interspecific network comparisons in 

Drosophila is displayed in FIGURE 9B.  The percent conservation of microRNA targets to 

percent conservation of regulatory network edges across all Drosophila interspecific network 

comparisons is displayed in FIGURE 11. 

The minimal number of cross-species conserved MiRanda targets recovered by direct 

cross-species comparision through network intersection was 416 for Drosophila melanogaster 

vs. D. willistoni.  This later species pair had a 2.75% conservation of targets.  The maximum 

number of shared targets observed for MiRanda was 10,561 for the intersection of Drosophila 

pseudoobscura vs. D. persimilis.  This later pairing of sister species from the D. obscura group 

had a 75.47% target conservation.  Direct cross-species comparision through network 

intersection across all MiRanda networks returned an average of 2,066 targets with a 10.72% 

conservation between species. 

Drosophila species conservation of microRNA regulation per target gene by MiRanda is 

represented in the green bars of FIGURE 12.  Across all Drosophila species, there were only 144 

(1.0%) targets apomorphic to a single species.  Conversely, there were 1,839 (12.71%) targets 

fully conserved in regulation by some microRNA.  A conservation comparison for Drosophila 
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species to microRNA regulators for MiRanda is presented in FIGURE 13B.  Likewise a 

conservation comparison for Drosophila species to aptamer sites predicted through MiRanda is 

contained in FIGURE 14B. 

The MiRanda conservation for individual target interaction per microRNA was much 

lower than TargetScan at 2.40 to 10.99% with 8.21% as an average.  A comparasion of unique 

microRNAs observed through MiRanda to percent conservation of microRNA interactions is 

held in FIGURE 15B.  Similarly, comparison of aptamer sites observed to maximum percent 

conservation of aptamer sites is presented in FIGURE 17B.  Additionally, a comparison of 

aptamer sites observed through MiRanda to percent conservation of microRNA interactions is 

drawn in FIGURE 16B. 

MiRanda regulatory network microRNA-target interactions ranged from 13,044 in 

Drosophila mojavensis to 36,844 interactions in D. melanogaster.  There was an average 32,550 

interactions across all twelve Drosophila species.  Direct cross-species comparision through 

network intersection revealed that the lowest numbers of conserved microRNA-target regulatory 

interactions were 462 in Drosophila melanogaster vs. D. willistoni; with a 1.13% conservation 

between species.  Conversely, the highest number of conserved microRNA-target regulatory 

interactions for MiRanda was 23,505 in Drosophila pseudoobscura vs. D. persimilis.  There was 

an 47.74% conservation of microRNA-target interaction between these later to sister species. 

MiRanda regulatory networks recovered an average of 2789 microRNA-Target interactions with 

a 4.74% conservation rate across twelve Drosophila species.  It is of potential biological 

significance that this average conservation rate for MiRanda is almost an order of magnitude 

lower than the rate recovered from TargetScan data (FIGURE 11). 

 

Additional Interspecific Network Comparisons.  Interspecific network comparisons 

byTargetScan and MiRanda according to microRNA target and network edges recovered are 

presented in FIGURE 10.  A species–specific trend is observed where R2 values decline with 

decreasing relatedness to Drosophila melanogaster in FIGURE 10 (see CHAPTER III, FIGURE 

22).  It is also notable that among four sets of closest sister species of taxa sampled, (namely 

Drosophila erecta - D. yakuba, D. mojavensis – D. virilis, D. persimilis – D. pseudoobscura, and 

D. sechelia – D. similans; compare CHAPTER III, FIGURE 22).  The interspecific conservation 

of microRNA interactions ranged from 4.5 to 40.1% for MiRanda and 31.3 to 81.5% for 
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TargetScan.  Thus the recovered ranges of shared interactions were 9,648 to 20,813 for MiRanda 

and 220,436 to 428,713 interactions for TargetScan.  Conversely, non-conserved microRNA 

interactions between closest sampled Drosophila sister species ranged 445 to 5,558 interactions 

for MiRanda and from 97,170 to 356,004 interactions for TargetScan.  

Drosophila species conservation of microRNA regulation per target gene by network 

intersection of prediction methods is represented in the blue bars of FIGURE 12.  Across all 

Drosophila species, there were 1,676 (13.4%) targets apomorphic to a single species.  There 

were only 135 (1.08%) targets fully conserved in regulation by some microRNA across all 

species.  A conservation comparison for Drosophila species to microRNA regulators for network 

intersection of prediction methods is presented in FIGURE 13C.  Likewise a conservation 

comparison for Drosophila species to aptamer sites predicted is contained in FIGURE 14C.  A 

comparasion of unique microRNAs observed through the network intersection of prediction 

methods to percent conservation of microRNA interactions is held in FIGURE 15C.  Similarly, 

comparison of aptamer sites observed to maximum percent conservation of aptamer sites is 

presented in FIGURE 17C.  Additionally, a comparison of aptamer sites observed through 

network intersection of prediction methods to percent conservation of microRNA interactions is 

drawn in FIGURE 16C. 

A comparison of target transcript nucleotide length to maximum percent conservation of 

predicted aptamer sites is illustrated in FIGURE 18.  Likewise target transcript nucleotide length 

is compared to percent conservation of microRNAs in FIGURE 19.  Increasing length and 

conservation were positively correlated for TargetScan but weakly negatively correlated for data 

from MiRanda and network intersection of prediction methods (FIGURE 19).  Likewise, aptamer 

site conservation was weakly negatively correlated to transcript length (FIGURE 18) 
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FIGURE 9.  Comparison of microRNA targets to regulatory network edges by prediction 

method across twelve interspecific network comparisons to Drosophila melanogaster.  Trend 

line plots functions and coefficients of determination recovered are presented for D. 

melanogaster alone (Dmel). (A) TargetScan data recovered a power-law trend line with 

functions and non-linear regression coefficient of (Dmel) y = 671.54 x 0.2382, R2 = 0.98, p = 0.64. 

(B) MiRanda data recovered a power-law trend line with functions and non-linear regression 

coefficient of (Dmel) y = 2.8927 x 0.8193, R2 = 0.997 , p = 0.02.  Pearson correlation coefficients 

recovered according to method were as follows: (A) TargetScan: 0.98; (B) MiRanda: 0.98.  



 54 

 
FIGURE 10.  Interspecific network comparisons by TargetScan and MiRanda according to 

numbers of microRNA target and network edges recovered.  MicroRNA target prediction 

method results are directly compared across 66 interspecific comparisons of twelve Drosophila 

species according to (A) the numbers of targets and (B) the numbers of network edges output.  

Trend line plots functions and coefficients of determination recovered are color coded according 

to select species. Drosophila species are abbreviated respectively: Dere) erecta; Dmel) 

melanogaster; Dsec) sechellia; Dsim) simulans; Dyak) yakuba. (A) Data for targets by species 

recovered power-law trend lines with functions and non-linear regression as follows:  

melanogaster)  y = 8547.8 x 0.0662, R2 = 0.93, p < 10-5;    

sechellia)  y = 7833.7 x 0.0689, R2 = 0.80, p < 10-5;   

simulans)  y = 7523.3 x 0.0733, R2 = 0.81, p < 10-5;   

(B) Data for microRNA-target interactions by select species recovered power-law trend lines 

with functions and non-linear regression as follows:  

erecta)  y = 40144 x 0.2447, R2 = 0.79, p < 10-5;   

melanogaster)  y = 57514 x 0.2297, R2 = 0.97, p < 10-5;   

sechellia)  y = 37919 x 0.2517, R2 = 0.87, p < 10-5;    

simulans)  y = 33687 x 0.2639, R2 = 0.88, p < 10-5;   

yakuba)  y = 40611 x 0.2433, R2 = 0.78, p < 10-5;   
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FIGURE 11.  Percent conservation of microRNA targets to percent conservation of 

regulatory network edges across 66 interspecific network comparisons in Drosophila.  

Accordingly, microRNA targets predicted across the union of twelve Drosophila species 

included: 14,760 from TargetScan and 14,462 from MiRanda.  Accordingly for 112 microRNA 

families, unique microRNA-target interactions species predicted included 1,090,221 from 

TargetScan and 241,861 from MiRanda.  TargetScan network data demonstrated a power-law 

trend lines with functions and non-linear regression coefficient of determination of y = 25.856 x 
0.3155, R2 = 0.93, p = 1.  MiRanda network data recovered a power-law trend line function and 

non-linear regression coefficient of determination of y = 0.3028 x 1.1226, R2 = 0.99, p = 1. Pearson 

correlation coefficients recovered according to method were as follows: TargetScan) 0.96 and 

MiRanda) 0.26.  

 

 

 

 

 



 56 

 
FIGURE 12. Drosophila species conservation of microRNA regulation per target gene by 

prediction method.  Counts of Drosophila species exhibiting any microRNA regulation for 

individual target genes appear on the x-axis and are color-coded by microRNA-target prediction 

method.  Representative percentages of each species category per microRNA-target prediction 

method each appear on the y-axis.  Accordingly, total microRNA targets predicted included: (A) 

14,760 from TargetScan; (B) 14,462 from MiRanda; and (C) 12,498 targets from the network 

intersection of methods. 
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FIGURE 13.  Conservation comparison for Drosophila species to microRNA regulators.  

The count of Drosophila species exhibiting any microRNA regulation for individual target genes 

appear on the x-axes, while the percent conservation of unique microRNA-target interaction 

combinations appear on the y-axes.  Accordingly for 112 microRNA families, unique 

microRNA-target interactions predicted included: (A) 1,090,221 from TargetScan; (B) 241,861 

from MiRanda; and (C) 78, 280 from the network intersection of methods.  Respective Pearson 

correlation coefficients recovered according to method were as follows: (A) TargetScan: 0.21; 

(B) MiRanda: 0.15; (C) network intersection of methods: 0.21. 
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FIGURE 14.  Conservation comparison for Drosophila species to aptamer sites.  The count 

of Drosophila species exhibiting any microRNA regulation for individual target genes appear on 

the x-axes, while the maximum percent conservation of unique microRNA-aptamer interaction 

combinations appear on the y-axes.  There may be many unique aptamer sites interactions per 

individual microRNA-target combination.  Accordingly for 112 microRNA families, unique 

microRNA aptamer sites predicted included: (A) 11,302,034  from TargetScan; (B) 390,560 

from MiRanda; and (C) 226,270 aptamers from the network intersection of methods.  Pearson 

correlation coefficients retrieved according to method were as follows: (A) TargetScan: -0.85; 

(B) MiRanda: -0.76; (C) network intersection of methods: -0.76.   
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FIGURE 15.  Comparasion of unique microRNAs observed to percent conservation of 

microRNA interactions.  MicroRNA targets are predicted for 14195 protein coding genes 

across the union of twelve Drosophila species according to (A) TargetScan (B) MiRanda and (C) 

the network intersection of methods.  Accordingly for a total 112 microRNA families, unique 

microRNA-protein coding target interactions predicted included: (A) 1,082,224 from 

TargetScan; (B) 240,394 from MiRanda; and (C) 77,900 from the network intersection of 

methods.  Pearson correlation coefficients retrieved according to method were as follows:  (A) 

TargetScan: 0.753752; (B) MiRanda: -0.021; (C) network intersection of methods: -0.009. 

 



 60 

 
FIGURE 16.  Comparison of aptamer sites observed to percent conservation of microRNA 

interactions.  MicroRNA target sites are predicted for 14195 protein coding genes across the 

union of twelve Drosophila species according to (A) TargetScan (B) MiRanda and (C) the 

network intersection of methods.  Accordingly for 112 microRNA families, unique microRNA-

protein coding target interactions predicted included: (A) 1,082,224 from TargetScan; (B) 

240,394 from MiRanda; and (C) 77,900 from the network intersection of methods.  Likewise, 

aptamer sites on protein-coding transcripts predicted included: (A) 11,246,285 from TargetScan; 

(B) 386,954 from MiRanda; and (C) 225,152 aptamers from the network intersection of methods. 

There may be many unique aptamer sites interactions per individual microRNA-target 

combination.  A) TargetScan data could also be described with a logarithmic trend line of  

y = 13.816 Ln(x) - 49.465; R2 = 0.87, p < 10-5.  Pearson correlation coefficients retrieved 

according to method were as follows: (A) TargetScan: 0.79811; (B) MiRanda: 0.31; (C) network 

intersection of methods: 0.038. 
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FIGURE 17.  Comparison of aptamer sites observed to maximum percent conservation of 

aptamer sites.  MicroRNA target sites are predicted for 14195 protein coding genes across the 

union of twelve Drosophila species according to (A) TargetScan (B) MiRanda and (C) the 

network intersection of methods.  There may be many unique aptamer sites interactions per 

individual microRNA-target combination.  Accordingly, aptamer sites on protein-coding 

transcripts predicted included: (A) 11,246,285 from TargetScan; (B) 386,954 from MiRanda; and 

(C) 225,152 aptamers from the network intersection of methods.  Pearson correlation coefficients 

retrieved according to method were as follows: (A) TargetScan: -0.16; (B) MiRanda: -0.55; (C) 

network intersection of methods: -0.32. 
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FIGURE 18.  Comparison of target transcript nucleotide length to maximum percent 

conservation of aptamer sites.  MicroRNA target sites are predicted for 14195 protein coding 

genes across the union of twelve Drosophila species according to (A) TargetScan (B) MiRanda 

and (C) the network intersection of methods.  Accordingly, for 112 microRNA families, aptamer 

sites on protein-coding transcripts predicted included: (A) 11,246,285 from TargetScan; (B) 

386,954 from MiRanda; and (C) 225,152 aptamers from the network intersection of methods.  

There may be many unique aptamer sites interactions per individual microRNA-target 

combination.  Pearson correlation coefficients retrieved according to method were as follows: 

(A) TargetScan: -0.13; (B) MiRanda: -0.14; (C) network intersection of methods: -0.28. 
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FIGURE 19.  Comparison of target transcript nucleotide length to percent conservation of 

microRNA interactions.  MicroRNA target sites are predicted for 14195 protein coding genes 

across the union of twelve Drosophila species according to (A) TargetScan (B) MiRanda and (C) 

the network intersection of methods.  Accordingly for 112 microRNA families, unique 

microRNA-protein coding target interactions predicted included: (A) 1,082,224 from 

TargetScan; (B) 240,394 from MiRanda; and (C) 77,900 from the network intersection of 

methods.  A) TargetScan data could be described with a logarithmic trend line of y = 14.171 

Ln(x) - 80.94; R2 = 0.87, p = 1.  Pearson correlation coefficients retrieved according to method 

were as follows: (A) TargetScan: 0.78; (B) MiRanda: -0.12; (C) network intersection of 

methods: -0.02. 
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FIGURE 20.  Comparisons of mutational steps under maximum parsimony to numbers of 

microRNA target and network edges recovered.  Conserved microRNA regulatory network 

edges (A & B) edges and (C & D) nodes are presented across 66 interspecific comparisons of 

twelve Drosophila species.  Trend line plots functions and coefficients of determination 

recovered are color coded according to select species.  Drosophila species are abbreviated 

respectively: Dere) erecta; Dmel) melanogaster; Dsec) sechellia; Dsim) simulans; Dspp) the 

union of twelve Drosophila species; Dyak) yakuba.  
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(A) TargetScan target data for species recovered power-law trend lines with functions and non-

linear regression as follows:  

erecta)  y = 5x1010 x -0.9413, R2 = 0.83, p < 10-5;  

melanogaster)  y = 7x1011  x -1.1478, R2 = 0.99, p < 10-5; 

sechellia)  y = 4x1010 x-0.9295, R2 = 0.82, p < 10-5;  

simulans)  y = 1x1011 x -0.9765, R2 = 0.897, p < 10-5; 

yakuba)  y = 40611 x 0.2433, R2 = 0.78, p < 10-5;  

 (B) MiRanda target data for species recovered power-law trend lines with functions and non-

linear regression as follows:  

erecta)  y = 2x109 x -0.7755, R2 = 0.77, p < 10-5;   

melanogaster)  y = 1x1010 x -0.9393, R2 = 0.98, p < 10-5; 

sechellia)  y = 8x108 x -0.7195, R2 = 0.81, p < 10-5;  

simulans)  y = 1x109 x -0.742, R2 = 0.83, p < 10-5;  

yakuba)  y = 2x109 x -0.7597, R2 = 0.76, p < 10-5; 

(C) TargetScan network interaction data for species recovered power-law trend lines with 

functions and non-linear regression as follows:  

erecta)  y = 46837 x -0.0709, R2 = 0.89, p < 10-4;  

melanogaster)  y = 40014 x -0.0618, R2 = 0.91, p < 10-4; 

sechellia)  y = 37026 x -0.0575, R2 = 0.88, p < 10-4;  

simulans)  y = 39633 x -0.0615, R2 = 0.87, p < 10-4; 

yakuba)  y = 45503 x -0.0693, R2 = 0.91, p < 10-4;  

 (D) TargetScan network interaction data for species recovered power-law trend lines with 

functions and non-linear regression as follows:  

erecta)  y = 4x107 x -0.276, R2 = 0.93, p < 10-5;   

melanogaster) y = 3x107 x -0.2629, R2 = 0.95, p < 10-5; 

sechellia)  y = 3x107 x -0.2645, R2 = 0.94, p < 10-5;  

simulans)  y = 4x107  x -0.2809, R2 = 0.94; , p < 10-5  

yakuba)  y = 4x107 x -0.2736, R2 = 0.93, p < 10-5;  

 (A-D) All other species when fitted to power law function presented linear regression R2 values 

less than 0.75. 
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FIGURE 21.  Comparisons of calculated divergence time to numbers of microRNA target 

and network edges recovered.  Conserved microRNA regulatory network edges (A & B) edges 

and (C & D) nodes are presented across 66 interspecific comparisons of twelve Drosophila 

species.  Trend line plots functions and coefficients of determination recovered are color coded 

according to select species. Drosophila species are abbreviated respectively: Dere) erecta; Dmel) 

melanogaster; Dsec) sechellia; Dsim) simulans; Dspp) the union of twelve Drosophila species; 

Dyak) yakuba.  
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(A) TargetScan target data for species recovered power-law trend lines with functions and non-

linear regression as follows:  

erecta)  y = 67393 x -0.9413,  R2 = 0.83, p < 10-5;  

melanogaster)  y = 55231 x -1.1478,  R2 = 0.99, p < 10-5; 

sechellia)  y = 75283 x -0.9484,  R2 = 0.88, p < 10-5;  

simulans)  y = 88185 x -0.9765,  R2 = 0.90, p < 10-5;  

yakuba)  y = 65205 x -0.931,  R2 = 0.82, p < 10-5;  

(B) MiRanda target data for species recovered power-law trend lines with functions and non-

linear regression as follows:  

erecta)  y = 31819 x -0.7755, R2 = 0.77, p < 10-5;  

melanogaster)  y = 22138 x -0.9393, R2 = 0.98, p < 10-5; 

sechellia)  y = 27583 x -0.7195, R2 = 0.81, p < 10-5;  

simulans)  y = 31273 x -0.742, R2 = 0.83, p < 10-5;  

yakuba)  y = 30287 x -0.7606, R2 = 0.76, p < 10-5; 

 (C) TargetScan network interaction data for species recovered power-law trend lines with 

functions and non-linear regression as follows:  

erecta)  y = 17015 x -0.0709, R2 = 0.89, p < 10-4;  

melanogaster)  y = 16556 x -0.0618, R2 = 0.91, p < 10-4; 

sechellia)  y = 16288 x -0.0575, R2 = 0.88, p < 10-4;  

simulans)  y = 16468 x -0.0615, R2 = 0.873, p < 10-4;  

yakuba)  y = 16932 x -0.0693, R2 = 0.91, p < 10-4; 

 (D) TargetScan network interaction data for species recovered power-law trend lines with 

functions and non-linear regression as follows:  

erecta)  y = 711679 x -0.276, R2 = 0.93, p < 10-5;  

melanogaster)  y = 704699 x -0.2629, R2 = 0.95, p < 10-5; 

sechellia)  y = 699347 x -0.2645, R2 = 0.94, p < 10-5;  

simulans)  y = 736558 x -0.2809, R2 = 0.94, p < 10-5;  

yakuba)  y = 706918 x -0.2736, R2 = 0.93, p < 10-5; 

 (A-D) All other species when fitted to power law function presented linear regression R2 values 

less than 0.75. 
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DISCUSSION 

 

Patterns & Models of MicroRNA Aptamer Site Evolution.  The exquisite simplicity of 

microRNAs and their shared stem-loop structure makes these non-coding RNAs particularly 

amenable to phylogenetic analysis (Drosophila 12 Genomes Consortium, 2007).  Pre-microRNA 

sequences are also highly conserved, evolving at about 10% of the rate of synonymous sites 

(Drosophila 12 Genomes Consortium, 2007).  It is notable then that there were 27 microRNAs 

among a total 245 genes recovered with a consistency greater than or equal to 90% for the 

reference tree topology (CHAPTER III, FIGURE 22).  These findings are consistent with 

previous analyses where microRNA conservation enables ready reconstruction of sequence 

evolution such that microRNAs may be utilized as molecular markers to resolve taxonomic 

disputes, and phylogenetic shadowing can be used to elucidate new microRNA genes (Boffelli et 

al., 2003; Heimberg et al., 2008; Rota-Stabelli et al., 2010; Sempere et al., 2007). 

The patterns of counts of Drosophila species exhibiting any microRNA regulation for 

individual target genes appear reversed for the network intersection over parent methods 

(FIGURE 12).  An interplay of complex factors appears to operate in conservation for 

microRNA regulation per target gene (FIGURE 12).  It may be readily discerned that a seed is 

well conserved and likewise a compensatory region is also well conserved; but the possession of 

regions in an aptamer is not well conserved (FIGURE 12).  Moreover, it would seem that 

selective factors presiding over regulation by compensatory aptamers (MiRanda) and seed 

regions aptamers (TargetScan) are different (CHAPTER I; Lewis et al., 2005).  Consequently, 

the different aptamer classes (seed vs. compensatory) have also differentially wired the 

microRNA regulatory network in abundance, density and regulatory circuit conservation 

(CHAPTER I FIGUREs 8 & 4; CHAPTER II FIGUREs 11 & 16).  Selective factors that appear 

to operate upon seed aptamers include cooperativity (redundancy) of interactions and transcript 

length.  Applying the proposed model of aptamer sequence evolution (5’-seed ↔ 5’-dominant ↔ 

3’-compensatory; CHAPTER I; Brennecke et al., 2005), this could indicate that the 5’-dominant 

microRNA aptamers represented in the intersection are highly species-specific (hence the high 

observed apomorphy), acquired with difficulty and/or easily lost to become 3’-compensatory 

sites when a mutation alters the seed region of the aptamer. 
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Seed-type regulations appear to work cooperatively: as numbers and diversity of 

microRNAs increase, the density and conservation of aptamers is increased (FIGURE 15A & 

16A).  While complementarity of seven or more bases to the 5' end microRNA is sufficient to 

confer regulation, seed sites are expected to be more effective when present in more than one 

copy due to their lower hybridization energies (Brennecke et al., 2005).  Similarly experimental 

results in Drosophila observed that the magnitude of regulation for octamer and heptamer seeds 

was strongly increased when two copies of the site were introduced into a 3’UTR (Brennecke et 

al., 2005). 

Likewise there is increasing selection pressure to acquire microRNA regulation through a 

seed-type interaction with increasing transcript length (FIGURE 19A).  Indeed as noted 

previously, transcript length increases, the likelihood of acquisition of a seed-type aptamer 

binding site also increases and targets transcript may their alter in selective response to a need for 

up- or down-regulation (CHAPTER I, FIGURE 7).  Therefore increasing length increases the 

likelihood of conservation of microRNA regulation using some seed-type aptamer, but the 

conservation of any given seed-type aptamer site is negatively correlated to transcript length 

(FIGURE, 18).  The aforementioned study also hypothesized a widespread natural occurrence of 

heptamers matching microRNA seeds to account for an even microRNA-target distribution 

profile of TargetScan data (CHAPTER I, FIGURE 8).  If the later hypothesis is correct, then 

TargetScan data (FIGURE14A) also indicates that all such microRNA seed matching heptamers 

are moderately conserved; with between < 10 to 30% percent of all individual aptamer sites 

conserved across all twelve Drosophila species studied.   

It would seem that regulation through seed-type interactions is highly favored once 

acquired with 90.76% of such targets fully in regulation by some microRNA for all twelve 

Drosophila species (FIGURE 12).  These findings indicate that seed sites are a biologically 

meaningful subgroup within the 5' dominant site category (Brennecke et al., 2005).  It is of great 

potential biological significance that this average conservation rate for MiRanda is almost an 

order of magnitude lower than the rate recovered from TargetScan data (FIGURE 11).  Indeed 

even the minimum cross-species conservation (77.68%) is higher than the maximum range 

(75.47%) of conservation with compensatory type regulations (FIGURE 11).  Likewise, direct 

comparison of prediction methods across all unique Drosophila species combinations clearly 

revealed that more targets and network interactions were conserved for microRNAs employing 
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seed-type aptamers (TargetScan) over compensatory binding sites (FIGURE 10).  It has been 

suggested from the results of functional assays in Drosophila that any site with a heptamer or 

octamer seed should to be regarded with high likelihood of validity —especially when the seed is 

conserved through phylogeny (Brennecke et al., 2005). 

Compensatory type interactions appear to have selection pressures relaxed with 

increasing participation of microRNAs (FIGURE 15B, 16B).  This is observed where 

conservation declines as numbers of microRNAs increases (FIGURE 15B).  Likewise, an 

increase in target transcript length has a moderate reduction in the conservation of compensatory 

type interactions (Pearson correlation -0.13; FIGURE 19B).  Nevertheless, deep conservation of 

regulation with 3' complementarity suggests that some of these aptamer sites are likely to be  

functionally important (FIGURE 11 & 12; Brennecke et al., 2005).  Moreover the compensatory 

nature of a 5’-dominant canonical regulation appears to outweigh its seed-type nature in terms of 

selective pressure (compare FIGURE 15 & 16 where profile of C matches B).  The acquision of 

a compensatory region could confer an advantage by allowing a site to become differentially 

regulated by microRNA family members, but the findings of this study contradict a hypothesis 

that compensatory sites are acquired to allow a target gene to acquire a dependence on inputs 

from multiple microRNAs (Brennecke et al., 2005).  Thus from a natural selective perspective, 

target regulation is functionally adequate provided one or a few compensatory aptamers are 

operational.  Individually, canonical sites are likely to be more effective than other site types 

because of their higher pairing energy, and may be functional with a single aptamer (Brennecke 

et al., 2005).  Between two-thirds to one-half of the seed sites seem biologically relevant 

(Brennecke et al., 2005).  The later values are on par with the predicted sensitivity of TargetScan 

at 49.55% (see Results CHAPTER I). 

Weak positive correlation was observed for conservation of microRNA regulation by 

species across all prediction methods (Pearson coefficient 0.15 to 0.21; FIGURE 13).  But 

conversely, moderate to strong negative correlations for conservation of individual aptamers are 

observed for all methods (-0.85 to -0.76; FIGURE 14).  Moreover weak negative correlation was 

observed across all prediction methods for conservation of aptamer interactions with numbers of 

aptamer sites (Pearson coefficient -0.16 to -0.55; FIGURE 17).  Therefore any given aptamer site 

is not strictly conserved.  Thus is seems that once microRNA regulation of a target transcript has 

been acquired, it comes under strong selection to maintain this regulation in some fashion 
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(FIGURE 13, 16); but the individual microRNA regulator and site of regulation involved need 

not be strictly conserved (FIGURE 14, 17, 18).  This pragmatic biological strategy could be 

succinctly described: ‘once [transcript] regulated, continually regulated; regardless of how 

regulated’.  Such a patterns would be predicted where the microRNA regulatory network must 

develop as an integrated whole rather than an assemblage of independent interactions (see 

DISCUSSION, CHAPTER III) and exherts force for phenotype canalization (see DISCUSSION, 

CHAPTER IV).  Future work in microRNA-target conservation history should examine the 

aptamer sequence mutation rate for evidence of positive selection by comparing frequency of 

mutations synonymous to microRNA binding against mutations non-synonymous to microRNA 

binding (i.e. mutation eliminates microRNA binding site). 

 

Regulatory Network Conservation across Drosophila species.  A consistent set relationship of 

targets and interactions was retained for both microRNA target prediction methods across all 

interspecific comparisons: a strong positive correlation was observed for the increase of 

regulatory network edges relative to targets across interspecific comparison for both MiRanda 

and TargetScan (Pearson correlations = 0.98; FIGURE 9).  Relationships for these datasets could 

be well explained using subtle curvilinear plots (values R2 = 0.96 to 0.99; FIGURE 9).  The 

recovered molecular clock rate was 1,579,192 unweighted maximum parsimony steps per 

million years.  Estimated timings for most drosophilid divergence events under a molecular clock 

were within the ranges of previously published molecular times scales, inferences from 

biogeography, and fossil records (Tamura, Subramanian, and Kumar, 2004).  Notable 

expectations, however, were the substantially older estimates for divergences of D. melanogaster 

vs. D. simulans at 9.32 MYA, and D. psueudoobscura vs. D. persimilis at 22.1 MYA.  These 

dates which deviate from the expected divergence occur in natural history after the calibration 

point event.  Previous molecular study has estimated the D. melanogaster vs. D. simulans 

divergence at 5.4 ± 1.1 MYA and the divergence of D. psueudoobscura from D. persimilis at 

0.85 ± 0.27 MYA (Tamura, Subramanian, and Kumar, 2004). 

The curvilinear shape recovered for trend lines in interspecific comparisons indicates 

(implies) that network change over time is constrained to retain some core functionality 

(FIGURES 20, FIGURE 21).  This kind of curve with increasing phylogenetic distance is typical 

of a saturation phenomena.  In such a case, networks of seed-type microRNA aptamers 
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(TargetScan data) saturates less rapidly than networks of compensatory microRNA aptamers 

(MiRanda data) (FIGURES 20, FIGURE 21).  Additionally, this saturation difference may 

impact utility of microRNA interaction data as a phylogenetic marker (See CHAPTER III).  It 

seems that only a modest number of microRNA–mRNA interactions may exhibit conservation 

over Drosophila cladogenesis (Grün et al., 2005).  Labile interactions irrespective of microRNA 

or target conservation history challenge interologous cross-species comparison as premise for 

microRNA target prediction (Matthews et al., 2001).  It is expected that lineage-specific genes 

arising in some drosophilid species subsets are those that exhibit greatest microRNA interaction 

plasticity (Drosophila 12 Genomes Consortium, 2007).  

The degree of microRNA regulatory network divergence could likely dictate clade-

specific reproductive isolation; and principally, the conservation between microRNAs may be 

viewed to indicate what kinds of genetic programs have been conserved between species (Lee et 

al., 2007; Prochnik et al., 2007).  The minimal numbers of conserved microRNA-target 

interactions retained throughout all taxa were 1,839 from MiRanda, 13,357 from TargetScan, and 

135 for the intersection of both methods.  These later values likely represent the presence of a 

functionally-constrained core of microRNA-target interactions essential to Drosophila.  

Conversely, the minimal number of divergent microRNA-target interactions acquired since 

speciation of sampled Drosophila sister species was 445 and 97,170 for MiRanda and 

TargetScan, respectively.  Notably, hybrids are viable among some of these combinations of 

sister species and future studies of microRNA network interaction conservation could consider 

relationships to quantified postzygotic isolation between Drosophila species (Coyne and Orr, 

1989; Coyne and Orr, 1997).  Any significant observations from such a study would have 

implications toward the Dobzhansky-Muller hypothesis in Drosophila hybridization 

(Dobzhansky, 1936; Muller, 1942).  According to the Dobzhansky–Muller model in interspecific 

hybridizations, gene interactions will be disrupted by different incompatible allele combinations 

that are fixed in diverged species, consequently leading to hybrid sterility or inviability 

(Dobzhansky, 1936; Johnson and Porter, 2000; Orr, 1997; Muller, 1942).  Clearly, the alteration 

of regulatory genetic pathways plays an important role in speciation, and these pathways can 

provide a plausible source for the epistatic variation implicated in the acquisition of postzygotic 

reproductive isolation (Johnson and Porter, 2000).  Indeed computational models indicate that 

hybrid fitness reduction occurs more often as the number of loci in the pathway increase and as 
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the binding site interactions become more complex; conversely, less hybrid fitness reduction is 

observed when the populations start with imperfect pathway bindings (Johnson and Porter, 

2000). 

A powerful taxonomic bias is observed in FIGURES 10, 20 and 21 where R2 values 

decline with decreasing relatedness to Drosophila melanogaster (CHAPTER III, FIGURE 22).  

Factors potentially compounding these analyses include the original genome assembly, predicted 

gene content, lineage specific expansion of the microRNA repertoire, and maturation rate 

heterogeneity.  Of the twelve Drosophila genomes which have reached comparative assembly 

freeze 1 (CAF1) status, D. sechellia and D. persimilis were sequenced at 4X coverage level, and 

most others at 8X level.  The D. simulans assembly was an exception, that is a mosaic from 

several different strains at 1X to 4X coverage (Drosophila 12 Genomes Consortium, 2007; 

Gilbert, 2007 Wilson et al., 2008).  These assemblies are very similar but differ subtly.  The 

manual curation and reconciliation process has clearly improved areas of each assembly, but may 

have altered some manually curated regions and these assembly qualities affect results of 

comparative genomic interpretations (Drosophila 12 Genomes Consortium, 2007; Gilbert, 2007 

Wilson et al., 2008).  Additionally, the non melanogaster species have many more predicted 

lineage-specific genes than Drosophila melanogaster; total protein-coding sequence ranges from 

38.9 Megabases in D. melanogaster to 65.4 Megabases in D. willistoni (Drosophila 12 Genomes 

Consortium, 2007).  Network properties may also be influenced by the presence of 47 

microRNAs exhibiting specific expansion for palearctic Drosophila (10 microRNAs), the 

melanogaster subgroup (20 microRNAs), and melanogaster alone (17 microRNAs; Berezikov et 

al., 2010).  Removal of lineage-enriched microRNAs from further network analysis may mitigate 

the observed melanogaster species lineage bias.  Future microRNA network conservation studies 

will limit analyses to 65 microRNA regulators strictly conserved within the genus Drosophila 

(Berezikov et al., 2010).  Additionally, mutational biases in Drosophila have been shown to be 

unequal and to fluctuate broadly among even relatively closely related species; in turn these 

factors have generated extensive nucleotide composition differences and differences in major 

codon preferences (Akashi, Kliman, and Eyre-Walker, 1998; Rodrigiuez-Trelles, Tarroi, & 

Ayala, 2000).  Non-coding genome regions are likely to reflect greater compositional affects 

from mutational biases than other regions that are constrained by natural selection to maintain 

functionality of encoded proteins (Sueoka, 1988; Rodrigiuez-Trelles, Tarroi, & Ayala, 2000).  
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Future work will examine Drosophila conservation across multiple scales comparing microRNA 

regulatory network and protein-protein interaction data across species (see APPENDIX V). 

Further research will examine microRNA regulatory network conservation through study 

of reconstructed ancestral states of microRNA-target interactions.  Specifically, microRNA 

targets observed for reconstructed ancestral sequences from molecular data will be contrasted 

against expected microRNA regulatory interactions derived from internal nodes of microRNA 

regulatory network phylogenies (CHAPTER III).  To date 71 sequence sets (in 5.05 GB) for 9 

hypothetical ancestors have been prepared.  These taxa include ancestors to 1) the subgenus 

Drosophila, 2) the subgenus Sophophora, 3) palearctic Drosophila, 3) the Drosophila obscura 

group, 4) the Drosophila melanogaster subgroup, 5) the Drosophila melanogaster group, and 6) 

the ancestor to Drosophila erecta + yakuba, 7) the ancestor to Drosophila sechellia + D. 

simulans; 8) the ancestor to Drosophila melanogaster + D. sechellia + D. simulans, and 9) the 

ancestor of the Drosophila virilis + repleta groups.  Some ancestral state sequences were derived 

from PAUP* output of the interior nodes of molecular phylogenies of putative target genes using 

maximum likelihood with a GTR+I+G model.  Other ancestral state sequences were derived with 

Gaps coded as a 5th character state under six variants of maximum parsimony, namely: 1) 

DOLLO parsimony, 2) irreversible character states (IRREV), 3, 4) Lundberg and Midpoint 

rooting methods, 5) standard parsimony with outgroup rooting using Drosophila grimshawi and 

"accelerated transformation" (ACCTRAN), and 6) and "delayed transformation" (DELTRAN) of 

characters optimized on the tree(s) in memory.  Moreover, TargetScan and MiRanda predictions 

have been completed for reconstructed hypothetical ancestors produced from both standard 

parsimony with (ACCTRAN) and maximum likelihood (9.0 GB TargetScan data; 15.1 GB 

MiRanda data).
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ABSTRACT  

 

Trace evidences of natural history are persevered, not only in the sequences of genes 

andproteins, but also in the functional wiring of biological networks. Indeed as complements to 

gene-based phylogenies, there is a vast potential to accurately reconstruct phylogeny using 

abstract, modular representations of regulatory interactions. The specific aim of this project was 

to advance the methodology of making phylogenetic inference directly from network structure 

using microRNA interaction network data reconstructed from fruit flies (Drosophila). The 

presence or absence of individual microRNA aptamers were coded in a binary character state (0 

or 1) using source data for microRNA-target aptamer predictions retrieved from the musca 

MYSQL database.  Phylogenetic analyses were conducted through PAUP* under standard 

parsimony (MP) and distance using neighbor joining (NJ) algorithm.  The signature of 

Drosophila phylogeny was found embedded within the microRNA regulatory network structure.  

TThe phenetic approach of Neighbor Joining recovers better signal for the reference tree toplogy 

over character-based standard parsimony. Consistent congruence of regulatory network 

phylogenies to reference species tree topology also has strong implications to understanding 

microRNA-target natural history that phylogenetic history were best represented when the 

regulatory network was treated as single entity rather than a series of separable parts.  The 

findings of this study represent the first documented inference of phylogeny from microRNA 

regulatory network structure and demonstrate the potential to accurately reconstruct phylogeny 

using abstract representations from network architecture.  It is expected that microRNA 

interactome network data could serve as a useful counterpart to complement or supplement DNA 

sequence and morphology for phylogeny.  
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INTRODUCTION 

 

Evidence of common descent is persevered not only in gene and protein sequences, but also in 

the details of functional module wiring (Mazurie et al., 2008).  Multiple network alignment has 

been advanced as a promising means by which to infer homology between species using higher 

order functional data (Hartwell et al., 1999).  Research along these lines has steadily progressed, 

starting from manual alignments of metabolic pathways, to pairwise BLAST hit score based 

guided-alignments, to probabilistic formulations for alignment and multiple-species 

identification of conserved functional modules (Altschul et al., 1997; Dandekar et al., 1999; 

Flannick et al., 2006; Forst & Schulten, 2001;Kelley et al., 2003; Koyuturk et al., 2005; Ogata et 

al., 2000; Matthews et al., 2001; Stuart et al., 2003).  Similarly, with the proliferation of genomic 

data from multiple organisms, higher level functional components are being advanced as 

complements to gene-based phylogenies (Mazurie et al., 2008).  For example, phylogenetic 

inference has been demonstrated from the presence or absence of enzymes in the genomes (either 

alone or in combination with the metabolic network structure), from the similarity or functional 

annotation of enzyme sequences in combination with the comparison of their direct neighbors, 

from the presence or absence of pathways across species, from metabolic network graph-kernels, 

and from the completeness of pathways across species (Clemente et al., 2007; Forst et al., 2006; 

Forst & Schulten, 2001; Heymans & Singh, 2003; Hong et al., 2004; Liao et al., 2002; Ma & 

Zeng, 2004; Mazurie et al., 2008; Oh et al., 2006; Zhang et al., 2006).  In one Drosophila-

specific case, weighted edge network data derived from glycolytic enzyme interactions had 

success in recovering a phenogram largely consistent with the expected phylogeny (Clark & 

Wang, 1994). 

These preceeding findings demonstrate that network structure is not just strongly 

correlated to phylogeny but underscore the vast potential to accurately reconstruct phylogeny 

using abstract, modular representations of metabolic reactions (Mazurie et al., 2008, Suthram et 

al., 2005).  By extension, the presence of phylogenetic information within microRNA-target 

network architecture is anticipated.  Large sets of microRNA-target interactions of a regulatory 

network could represent valuable phylogenetic markers because while individual regulatory 

reactions may be subject to strong positive or negative selection, it is hypothesized based on 
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microArray expression data that a neutral selective property presides over the entire interactome, 

where the rate of transcriptome change is proportional to time and the majority of gene 

expression differences within and between species are not functional adaptations, but selectively 

neutral or nearly neutral. (Khaitovich et al., 2004; Rajewsky, 2006).  Consistent congruence of 

regulatory network phylogenies to a reference species tree topology will have strong implications 

to understanding microRNA-target natural history.  Thus far, pilot studies have recovered 

phylogenetic information from the weighted edges of microRNA networks and produced species 

tree topologies fully (or mostly) congruent with an expected topology (APPENDIX IV, FIGURE 

38).  Moreover, a whole genome regulatory network phylogeny  advances the methodology of 

making phylogenetic inference directly from network structure, and provides a valuable medium 

to investigate gene regulatory interactions in Drosophila speciation (Gompel et al., 2005, 

Mazurie et al., 2008; McGregor et al., 2007; Sucena & Stern, 2000; Suthram et al., 2005).  

Therefore, the purpose of this study was to recover novel phylogenetic reconstructions from 

binary character data of microRNA-target regulatory networks.  Indeed the findings presented 

here represent the first documented inference of phylogeny from microRNA regulatory network 

structure. 

 

METHODS 

 

The presence or absence of individual microRNA aptamers were coded in a binary character 

state (0 or 1) using source data for microRNA-target aptamer predictions (described in 

CHAPTER I) retrieved from the musca MYSQL database (FIGURE 1).  Data extracted from 

musca database were formatted into Nexus file with command line for phylogenetic analyses.  

Nexus file lengths were of 241,939 lines for MiRanda, 1,090,302 lines for TargetScan, and 

783,56 for the network intersection of prediction methods.  Phylogenetic analyses conducted 

through PAUP* under standard parsimony (MP) and distance using neighbor joining (NJ) 

algorithm.  The single most parsimonious rooted tree retrieved from parsimony reconstruction 

under a branch-and-bound search with outgroup rooting using Drosophila grimshawi and 

accelerated transformation of characters optimized on the tree(s) in memory.  Other 

reconstructions were conducted for select datasets under DOLLO parsimony and parsimony with 

irreversible character states.  Additional tests performed under parsimony criteria included a 
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constrained-tree topology-dependent permutation tail probability test to the reference tree (Faith, 

1991) where 10,000 randomized matrices were used to generate a null distribution.  The T-PTP 

test statistic is calculated by subtracting minimum tree length under constrained monophyly from 

minimal unconstrained tree length (ΔL = range of steps; *L = length difference for unpermuted 

data), can be interpreted as significant support for a specified monophyly (Carpenter et al., 1998; 

Faith and Trueman, 1996, Swofford et al., 1996).  Branch supports of trees were evaluated by 

nonparametric bootstrap (BP), third- and half-delete jackknife (JK) calculated to high confidence 

levels using 10,000 replicates. 

 

RESULTS 

 

TargetScan MicroRNA-Target Network Data generated an aligned matrix of 1,090,221 

binary characters; of which 82,388 (7.56%) characters were constant, 293,774 (26.95 %) 

characters were variable but parsimony-uninformative, and 714,059 (65.50%) characters were 

potentially parsimony-informative.  The sum of minimum possible lengths was 1,007,833 and 

the sum of maximum possible lengths was 2,846,378.  The parsimony based reconstructions for 

TargetScan data recovered 1 shortest tree of 194,5742 steps in length (FIGURE 23) with 

Consistency Index (CI) = 0.518, Retention Index (RI) = 0.490, Rescaled Consistency Index (RC) 

= 0.254, Homoplasy Index (HI) = 0.482, and Goloboff-fits (G-fit) of -518,490.732. Likewise the 

distance-based reconstructions for the TargetScan dataset recovered NJ tree (FIGURE 24) of 

1,945,742 steps in length and parsimony scores of CI = 0.518, RI = 0.490, RC = 0.254, HI = 

0.482, and G-fit = -518,490.732.  Notably the trees recovered for maximum parsimony and 

neighbor joining were identical in topology, length, and parametric scores.  The recovered tree 

topology of both reconstruction methods was extensively congruent to the established 

drosophilid phylogenies (FIGURE 22) and differing only in the placement of Drosophila erecta 

and D. yakuba.  These trees were also well supported with bootstap and jackknife frequencies of 

100% for all nodes.  Additionally, in comparison to the other datasets, the TargetScan data 

demonstrate the best reconstruction to the reference phylogeny (FIGURE 22) under maximum 

parsimony criteria 
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MiRanda MicroRNA-Target Network Data recovered an aligned matrix of 241,861 binary 

characters.  There was 1 (4.13x10-4%) constant character, 157,494 (65.12 %) characters which 

were variable but parsimony-uninformative, and 84,366 (34.88%) characters that were 

potentially parsimony-informative.  The sum of minimum possible lengths was 241,860 and the 

sum of maximum possible lengths was 375,468.  The parsimony based reconstructions for 

MiRanda data recovered 1 shortest tree of 310,994 steps in length (FIGURE 23) with CI = 0.778, 

RI =  0.483, RC = 0.375, HI = 0.222, and G-fit =  –68,707.139.  The parsimony tree was largely 

incongruent to the established Drosophila phylogeny. It differed in 1) the placement of 

Drosophila ananassae as sister to the D. obscura group, 2) the placement of D. melanogaster as 

sister to other species of the melanogaster subgroup, 3) the placement of Drosophila willistoni 

with species of the subgenus Drosophila, 4) and in the placement of Drosophila erecta and D. 

yakuba nearest sisters.  Nevertheless, this tree shape was highly reproducible with bootstrap and 

jackknife frequencies of 99 to 100% for all nodes. 

Distance-based reconstructions for the MiRanda dataset recovered NJ tree (FIGURE 24) 

of 312,404 steps in length.  This tree recovered parsimony scores of CI = 0.774, RI = 0.472, RC 

= 0.365, HI = 0.226, and G-fit = -68,374.746.  In contrast to maximum parsimony, the neighbor-

joining method produced a tree that was largely congruent to the reference tree for Drosophila 

and differing only in the union of D. erecta and D. yakuba into a clade.  This tree was highly 

supported with bootstrap and jackknife frequencies of 100% for all nodes. 

 

Intersection of MicroRNA Target prediction methods Network Data produced an aligned 

binary matrix of 78,280 characters.  Of these, 3,405 (4.35%) characters were constant, 61,184 

(78.16%) characters were variable but parsimony-uninformative, and 13,691 (17.49%) characters 

were potentially parsimony-informative.  The sum of minimum possible lengths was 74,875 and 

the sum of maximum possible lengths was 93,785.  The parsimony based reconstructions for 

network intersection data recovered 1 shortest tree of 85,050 steps in length (FIGURE 23) with 

CI = 0.880, RI =  0.462, RC = 0.407, HI = 0.120, and G-fit =  -11,276.436.  This parsimony tree 

was largely incongruent to the reference phylogeny and substantially differed in 1) the 

dissolution of the Drosophila obscura group clade, 2) the placement of Drosophila ananassae as 

sister to the D. persimilis, 3) and in the placement of D. erecta and D. yakuba nearest sisters, and 

4) the placement of the Drosophila mojavensis and D. virilis clade embedded into the subgenus 
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Sophophora as sister to Drosophila persimilis and D. ananassae.  Node supports were variable 

by bootstrap and jackknife ranging from < 75 to 100 %.  Furthermore, tree topology did not alter 

with reconstruction by other character-based settings; namely DOLLO parsimony and parsimony 

with irreversible character states.  A topology-dependent permutation test for the dataset against 

the established Drosophila phylogeny indicated significant incongruence of the data for the 

expected topology (T-PTP *L= -1,470, ΔL = - 803 to -1,121, P = 1). 

Neighbor-Joining reconstructions for the network intersection dataset recovered a tree 

(FIGURE 24) of 85,223 steps in length and parsimony scores of CI = 0.879, RI = 0.453, RC = 

0.398, HI = 0.121, and G-fit = -11,230.950.  Congruence to the reference phylogeny improved 

with neighbor-joining over standard parsimony.  Nevertheless, the NJ tree deviated from the 

expected phylogeny in 1) the dissolution of the Drosophila obscura group clade, 2) the 

placement of Drosophila ananassae as sister to the D. persimilis, 3) the placement of D. 

melanogaster as sister to other species of the melanogaster subgroup, 4) and in the placement of 

Drosophila erecta and D. yakuba nearest sisters.  Bootstrap and jackknife support values were 

variable across the tree, ranging for < 75 to 100 %. 
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FIGURE 22. Reference phylogeny of the genus Drosophila.  Included species are those with 

complete genome sequences available. Illustrated example species are underscored in color 

according to their respective branch (Gilbert, 2007, Wilson et al., 2008).  This phylogeny is 

consistent with data from chromosome homology, species morphology, and concatenated gene 

sequence data.  Alternate phylogenies place Drosophila erecta and D. yakuba in a clade sister to 

D. melanogaster, D. sechellia, and D. simulans (Ko, et al., 2003; Pollard et al., 2006). 
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FIGURE 23. Cladograms of the shortest tree recovered from maximum parsimony using 

microRNA-target interaction data from MiRanda, TargetScan and the network 

intersection of prediction methods.  These cladogram represent the single most parsimonious 

rooted tree retrieved from parsimony reconstruction under a branch-and-bound search with 

outgroup rooting using Drosophila grimshawi and accelerated transformation of characters 

optimized on the tree(s) in memory.  Drosophila species are abbreviated respectively: DANA) 

ananassae; DERE) erecta; DMEL) melanogaster; DMOJ) mojavensis; DPER) persimilis; 

DPSE) pseudoobscura; DSEC) sechellia; DSIM) simulans; DVIR) virilis; DYAK) yakuba.  

Bootstrap values >75% appear near their respective branches.  Branches are color-coded to 

match the reference phylogeny of the genus Drosophila presented in FIGURE 22.  The 

cladograms derived MiRanda and TargetScan network data are congruent to the reference tree 

expect for the cladal placement of D. yakuba and D.erecta as nearest sisters. 
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FIGURE 24. Cladograms recovered from Neighbor-Joining using microRNA-target 

interaction data from MiRanda, TargetScan and the network intersection of prediction 

methods.  Drosophila species are abbreviated respectively: DANA) ananassae; DERE) erecta; 

DMEL) melanogaster; DMOJ) mojavensis; DPER) persimilis; DPSE) pseudoobscura; DSEC) 

sechellia; DSIM) simulans; DVIR) virilis; DYAK) yakuba.  Bootstrap values >75% appear near 

their respective branches.  Branches are color-coded to match the reference phylogeny of the 

genus Drosophila presented in FIGURE 22.  The cladograms derived MiRanda and TargetScan 

network data are congruent to the reference tree expect for the cladal placement of Drosophila 

yakuba and D. erecta as nearest sisters. 
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DISCUSSION 

 

The findings of this study represent the first documented inference of phylogeny from 

unweighted microRNA regulatory network structure and demonstrate the potential to accurately 

reconstruct phylogeny using abstract representations from network architecture (Mazurie et al., 

2008, Suthram et al., 2005).  Likewise pilot studies using character data derived from weighted 

edges of a microRNA-Target network also recovered support a hypothesis that weighted edge 

microRNA network structure itself can be directly utilized for phylogenetic inference (see 

APPENDIX IV, FIGURE 38).  Differences in recovered tree topologies likely reflected the 

influence of underlying methodological biases incurred when analyzing numerical character of 

data.  As much (99% or more) of the apparent support for an “optimal” tree can originate from 

an inherent methodological bias rather than actual phylogenetic signal (Swofford et al., 2001).   

The only recourse then is to sample a wide range of methods (Swofford et al., 2001).  

Nevertheless, consistent congruence of regulatory network phylogenies to a reference species 

tree topology has strong implications to understanding microRNA-target natural history.  

The consistent recovery of Drosophila yakuba and D. erecta as nearest sisters for all 

datasets is not unexpected.  The exact phylogenetic relationship between the later species has 

been a subject of some controversy (Ko, et al., 2003; Pollard et al., 2006).  Alternate phylogenies 

to the reference tree place Drosophila erecta and D. yakuba in a clade sister to D. melanogaster, 

D. sechellia, and D. simulans (Ko, et al., 2003; Pollard et al., 2006).  Indeed it would seem that 

the later phyloegentic hypothesis is strongly favored by phylogenetic reconstruction using 

regulatory network data.  Molecular phylogenetic analyses with special focus on Drosophila 

erecta and D. yakuba recovered widespread, statistically significant, and robust incongruence in 

nucleotide and amino acid substitutions, insertions and deletions.  These results are consistent 

with a hypothesis of incomplete lineage sorting between Drosophila erecta and D. yakuba where 

the same ancestral polymorphisms became fixed during the two rapid speciation events that led 

to these species (Pollard et al., 2006). 

The neighbor-joining method is rooted in phenetic philosophy and is based on the 

minimum-evolution criterion for phylogenetic trees (Saitou & Nei, 1987).  Phenetics, also known 

as taximetrics, attempts organismal classification through overall similarity (or variation; Sneath 

& Sokal, 1973).  The neighbor-joining method has become the most widely used distance 
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method for building phylogenetic trees; indeed the original paper has been cited about 13,000 

times (Gascuel & Steel, 2006).  But because it is a greedy algorithm that constructs the tree in a 

step-wise fashion and may not find a tree topology with least total branch length, the neighbor-

joining method has been extensively superseded in phylogenetics by methods that do not rely on 

distance measures (Mihaescu, Levy, & Pachter, 2006; Saitou & Nei, 1987).  Even so, where the 

method has it has been extensively tested it usually finds a tree that is quite close to the optimal 

tree (Mihaescu, Levy, & Pachter, 2006).  In the case of this study it is apparent that the phenetic 

approach of Neighbor Joining recovers better signal for the reference tree toplogy (FIGURE 22) 

over the character-based approach of standard parsimony (compare MiRanda in FIGURE 23 & 

24).  This would only be expected if phylogenetic history were best reconstructed when the 

regulatory network was treated as the sum of total interactions rather than a series of separated 

interactions.  Indeed, along these lines it has been hypothesized that while individual regulatory 

reactions may be subject to strong positive or negative selection, a property of selective 

neutrality presides over the entire interactome (Khaitovich et al., 2004; Rajewsky, 2006).  Thus it 

seems that microRNA networks have formed as a tightly integrated unit rather than an 

assemblage of independent interactions.  This view harmonizes to earlier findings for 

considering conservation of microRNA regulation and conservation of individual aptamers (see 

CHAPTER II commentary on FIGURE 13 & 14). 

Separate consideration of seed (TargetScan) and compensatory (MiRanda) aptamer data 

appears to perform better for phylogenetic reconstruction than consideration of aptamers in both 

categories (5'dominant cannonical; network intersection data).  The results of the topology 

dependent permutation test indicate that that network intersection interactome data could not be 

reconciled to accommodate the shape of the reference phylogeny.  The source of the 

incongruence is not clear at this time.  Much phylogenetic signal appears to be lost and 

relationships are with the overall network conservation at less than 10% across all species 

(CHAPTER II FIGURE 12).  Nevertheless, relationships of some nearest sister species were 

resolvable for network intersection data.  It is anticipated though that reduction of the dataset to 

65 microRNAs strictly conserved in all Drosophila may improve topological congruence of an 

intersection network phylogeny to the reference tree (Berezikov et al., 2010).  Future research 

will also examine the influence of incremental increase of threshold values for hybridization 

energy upon phylogenetic reconstruction using MiRanda microRNA target networks.  It is 
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hypothesized that congruence to reference tree topology will improve with more stringent values 

for Gibbs free energy.  Further phylogenetic reconstructions should also be conducted using 

Bayesian inference through MrBayes software (Huelsenbeck & Ronquist, 2005; Swofford, 

2002).  Differing methods of reconstruction are expected to recover phylogenetic topologies with 

the differing levels of resolution.   

The utility of microRNA-target interactions as characters for phylogenetic analyses may 

also be applied to selection of novel molecular markers.  Polymerase Chain Reaction (PCR) 

amplification using primers matching conserved microRNA seeds could be produced and 

utilized in a manner similar to the use of retrotransposon marker data for the reconstruction of 

phylogeny (Shedlock and Okada, 2000).  In the later case, PCR oligonucleotide primers facing 

outwards from retrotransposons are made to amplify between two retroelements inserted into the 

genome; the number and sizes of fragments amplified differ between lineages and inter-

retrotransposons amplified polymorphisms (IRAPs) can be used as phylogenetic markers (see 

Flavell et al. 1999; Kalendar et al. 1999; Kumar & Hirochika 2001). 

It is expected that microRNA interactome network data could serve as a useful 

counterpart to complement DNA sequence and morphology for phylogeny.  Additionally 

microRNA regulatory network phylogenies may be combined and contrasted to other 

phylogenies derived from protein-protein interactions.  To date additional phylogenetic analyses 

have been were initiated for a sample of protein interaction and paralogy data constructed from 

reciprocal BLAST data of 12 Drosophila species using whole mRNA libraries, EISE_exonerate, 

EISE_genemapper, EISE_genewise, and GLEANR computationally predicted annotations 

accessible through FlyBase and DroSpeGe (Birney, et al., 2004; Chatterji and Pachter, 2006; 

Heger and Ponting, 2006; Mackey et al., 2006; Slater and Birney, 2005).  Pilot studies for 

phylogenetic reconstruction using protein-protein network interaction data are described in 

APPENDIX V.  These approaches continue to advance the methodology of making phylogenetic 

inference directly from network structure, and provides a valuable medium to further investigate 

gene regulatory interactions in Drosophila speciation (Gompel et al., 2005, Mazurie et al., 2008; 

McGregor et al., 2007; Sucena & Stern, 2000; Suthram et al., 2005).   
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ABSTRACT 

 

While a strong case can be substantiated for microRNA-moderated control over basic of animal 

anatomy, roles of microRNA regulation for details of fly anatomy remain largely unexplored. 

Data form molecular phylogeny and network topology were integrated with select subnetworks 

and emergent implications to natural selection were considered. To these ends, associations for 

regions of major chromosomal synteny across twelve Drosophila species were prepared and 

literature review for genes linked to anatomical features and physiological processes features 

used to diagnose species within the genus Drosophila.  Directed networks from the intersection 

of MicroRNA prediction methods were enumerated under FANMOD for subgraphs of size 3 and 

4 using 1000 replicates and 10,000 random network samples. Topological analyses of microRNA 

regulatory networks recovered significant enrichment for the S2T2 motif possessing a redundant 

link (motif-204) in all twelve species sampled for many Muller elements. The network 

enrichment of motifs possessing partial internal redundancy would have powerful implications 

toward understanding Drosophila speciation at the level of microRNA-gene regulatory 

interactions: this would suggest that optimization of the whole interactome topology itself has 

been historically subject to natural selection where resilience to attack have offered selective 

advantage. The findings presented in this study represent a novel intergration of microRNA 

regulatory network topology to chromsomal synteny and genes linked to species diagnostic 

phenotypes. Collective patterns observed indicate that respective Muller element networks have 

developed within the Drosophila transcriptome as separate regulatory modules. The repeating 

motif patterns across elements observed would not be expected if Muller elements were not a 

natural subdivision of the total Drosophila regulatory network. Given the results of this study, 

implications toward the genetic basis of Haldane’s rule are discussed.  
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INTRODUCTION 

 

It is hypothesized that certain reoccurring subgraphs will be over-represented for all microRNA-

target networks in Drosophila.  These later subgraphs represent network motifs where they occur 

in complex networks at frequencies much higher than those in randomized networks; potentially 

any network subgraph can be a motif if it obeys this definition.  Such motifs are present in 

networks from biochemistry, neurobiology, ecology, and engineering (Milo et al., 2002).  

Notably, the larger the network, the more significant the presence of the motif and these motifs 

may serve as a fingerprint of network functionality; thus for instance, conserved proteome 

network motifs allow for prediction of protein-protein interactions (Albert & Albert, 2004).  

Motifs may thus define universal classes of networks (Milo et al., 2002).  

Previous network based approaches have included a genome-scale Caenorhabditis 

elegans microRNA regulatory networks that contained experimentally-mapped computationally 

predicted transcription factor and microRNA interactions (Martinez et al., 2008).  The integrated 

microRNA network recovered 23 high flux capacity composite feedback loops in which a 

transcription factor controls a microRNA that is itself regulated by that same microRNA; such 

loops occurred more frequently than expected by chance and likely constitute a genuine network 

motif (Martinez et al., 2008).  Similarly, 17 significant motifs, of which the regulated feedback 

loop was the most significantly overrepresented, were recovered from microRNA and 

transcription factor integrated networks built from MiRanda and PicTar mammalian prediction 

data (Yu et al., 2008). 

While the aforementioned studies have revealed several network motifs relating 

microRNAs to other regulatory factors, there has been considerably less emphasis on examining 

the selective functionality of network motifs (Yu et al., 2008).  To these ends, data form 

molecular phylogeny and network topology were integrated with select subnetworks and 

emergent implications to natural selection were considered.  In the case of drosophilid regulatory 

networks, the motifs expected to exhibit enrichment are those possessing partial internal 

redundancy (Bonchev et al., 2009; Martinez et al., 2008; Tsang et al., 2007).  The presence of 

such motifs would have powerful implications toward understanding Drosophila speciation at 

the level of microRNA-gene regulatory interactions: this would suggest that optimization of the 

whole interactome topology itself has been historically subject to natural selection where 
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resilience to attack have offered selective advantage (Hornstein, & Shomron, 2006; Martinez et 

al., 2008; Tsang et al., 2007; Yu et al., 2008).  Specific focus was directed to Drosophila 

chromosome elements and genes linked to species diagnostic phenotypes.  Notably, the findings 

presented in this study represent a novel intergration of microRNA regulatory network topology 

to chromsomal synteny and genes linked to species diagnostic phenotypes.  Moreover, these 

analyses in network architecture will complement the existing whole genome network analyses 

of Mammalian and Caenorhabditis microRNA targets, and further the study of drosophilid 

speciation within the scope of gene-regulatory networks (Hornstein, & Shomron, 2006; Martinez 

et al., 2008; Tsang et al., 2007; Yu et al., 2008).  Additionally, the evaluation of gene region 

phylogenetic utility under the reference tree would have great potential applications to 

rationalizing selection of molecular markers or morphological characters for Drosophila 

systematics. 

 

METHODS 

 

Associations for regions of major chromosomal synteny across twelve Drosophila species were 

prepared for the total putative microRNA target dataset of using genome scaffold information 

available through DroSpeGe database (14570 genes; Gilbert, 2007).  Although Drosophila 

species vary in their number of chromosomes, there are six fundamental chromosome arms 

common to all species (Drosophila 12 Genomes Consortium, 2007; Sturtevant & Novitski, 

1941).  Most pairs of orthologous genes are found on the same Muller element, but there is 

extensive gene shuffling within Muller elements between even moderately diverged genomes 

(Sturtevant & Novitski, 1941; Drosophila 12 Genomes Consortium, 2007). The nomenclature 

suggested by Muller (1940) remains the prevailing convention.  According to this system the 

recognizable elements are lettered, in the sequence familiar in melanogaster: the X-chromosome 

of that species becomes A; 2L, B; 2R, C; 3L, D; 3R, E; 4, F (TABLE 1; Sturtevant & Novitski, 

1941).  A configuration like that found in D. virilis (where all six elements are separate) likely 

reflects the ancestral karyotype of Drosophila (Sturtevant & Novitski, 1941).  The provisional 

chromosome “U” contains 34,630 small scaffolds produced by the Celera shotgun assembler 

which could not be consistently joined with larger scaffolds (Wilson et al., 2008).  Genes 

relegated to the U-Muller element are to be regarded as unsorted. Because their position is not 
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assigned, U-Muller associated target genes were regarded as a control or baseline for the 

transcriptome irrespective of chromosome loci. 

 

 
 

TABLE 1.  Standard chromosome numbering and Muller element associations for regions 

of conserved synteny across twelve species of Drosophila.  Chromosomes are numbered in 

descending order by length where chromosome 1 is also the X heterosome for all Drosophila 

species.  The designations L and R represent the long and short chromosomal arms respectively.  

The haploid number of chromosomes in Drosophila varies from three to six and five acrocentric 

rod chromosomes is the ancestral state for the genus.  Recombinant chromosomes relative to D. 

melanogaster are colored grey and participating Muller elements are indicated. Drosophila 

erecta and D. yakuba exhibit a pericentric inversion of chromosome 2 where Muller elements B 

and C reordered B / C and C / B from telomere to centromere. Muller elements A and D are 

fused and pericentrically inverted to form a metacentric X for Drosophila pseudoobscura and D. 

persimilis. A similar A / D Muller element fusion lacking inversion/transposition is observed for 

Drosophila willistoni.  Additionally for Drosophila willistoni there is a fusion of Muller element 

F into the distal end of the E element (Drosophila 12 Genomes Consortium, 2007; Muller, 1940; 

Sturtevant & Novitski, 1941; Wilson et al., 2008). 
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Literature review for anatomical features and physiological processes features used to 

diagnose species within the genus Drosophila, recovered a novel list of 118 FlyBase anatomy 

terms (FBbt) and 93 gene ontology (GO) categories (see APPENDIX VI; Grimaldi, 1990; 

Markow & O’Grady, 2005; Wilson et al., 2008).  Batch downloads were conducted for each 

FBbt and GO through FlyBase for genes known to influence phenotypes specific to the term 

(2,331 genes recovered; matching 14.38% of the total potential microRNA target dataset; Wilson 

et al., 2008).  By convention of this paper the data for suite of genes associated to species 

diagnostic phenotypes are abbreviated as “FBbt”.  Gene associations by Muller element and 

FBbt data were imported as tables into musca MySQL database.  Parametric scores derived from 

molecular phylogeny (see CHAPTER II) for these user-defined subnetworks of interest were 

recovered through the musca database (see APPENDIX III, TABLE 12). 

Using source data for the intersection of microRNA-Target methods detailed in 

CHAPTER I, network data for was downloaded from the musca database for the FBbt and 

Muller element datasets. Network topolgy analyses were conducted through FANMOD using the 

Godel supercomputing cluster in the VCU Center for the Study of Biological Complexity and 

451 KB of data were output (CHAPTER I, FIGURE 1).  FANMOD is a tool for network motif 

detection that implements at orders of magnitude faster than any other existing algorithm for this 

task; facilitating the detection of larger motifs in bigger networks than otherwise feasible 

(Wernicke & Rasche, 2006).  By convention of this paper, motifs are identified by the number of 

starting (S) and terminating points (T) and an adjective identification defined from FANMOD. 

The network motifs are those patterns for which the probability of appearing in a randomized 

network an equal or greater number of times than in the real network is lower than a cutoff value 

(Milo et al., 2002).  Additionally FANMOD makes use of a Z-score parameter to quantify the 

difference from normal of a recovered motif. Directed networks from the intersection of 

MicroRNA prediction methods were enumerated under FANMOD for subgraphs of size 3 and 4 

using 1000 replicates and 10,000 random network samples. Study was limited to data from the 

intersection of target prediction methods due to the computational limits of FANMOD. Further 

network quantification and distance analyses were performed using in-house GRAFMAN 

software available under Linux on the Watson supercomputer cluster of Virginia Commonwealth 

University (FIGURE 1; Karabunarliev & Bonchev, 2002).  Data recovered from the musca 
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database in the form of 143 network files (5.71MB) were input to GRAFMAN and 360KB of 

data were output (see APPENDIX III, TABLE 9). 

 

RESULTS 

Network adjacency, distance quantification, and parametric score tables for microRNA 

regulatory from  Muller element and FBbt data are presented in APPENDIX III, TABLEs 9 & 

12.  Informative characters sets made up 70% of the Drosophila genome, with 58 to 82% 

informative characters for user defined subnetworks of interest (APPENDIX III, TABLE 12).  

Molecular phylogenies with these subnetworks of genes would recover < 1 to 42% of total tree 

length. Likewise subnetworks of genes of interest gave <1 to 90.4 % coverage of total gene 

content.  The drosophilid life cycle marking stage-specific numbers of FlyBase anatomy terms 

(FBbt) and Gene Ontology (GO) categories features available to diagnose Drosophila species is 

presented in FIGURE 25.  Likewise individual FlyBase terms are described and cross-listed with 

life stage in APPENDIX VI, TABLE 13.  It is also of note that the 1355 genes of the FBbt 

dataset (12% total genome characters) recovered the following average parametric scores per 

gene when molecular phylogeny was constrained to the topology of the reference tree: CI = 

0.726, HI = 0.274, RC = 0.274, RI = 0.504, Goloboff-fit = -4461.012, gamma rate = 2.944 

gamma rate, invariable sites rate = 0.227 invariable sites rate, -ln likelihood score = 47128.40, 

and 0.018 average bits of information per base (See Methods of CHAPTER II; FIGURE 22; 

APPENDIX III, TABLE 12).  Comparable parametric score values are displayed in TABLE 12 

(APPENDIX III) for 155 molecular markers taken from 590 operational taxonomic units (OTUs, 

typically species) available through Genbank (NCBI; 187 FlyBase records available, 1% total 

dataset).  Network node distribution frequencies according to Muller elements and FBbt data are 

illustrated for microRNA targets of Drosophila melanogaster in FIGURE 26. 

Topologies and conversion pathways for motifs observed in Drosophila microRNA-

target interaction networks are presented in FIGURE 27.  Two types of size 3 and four types of 

size 4 motifs were observable in strictly bipartite microRNA-target interaction networks. The 

S2T1 motif-36 is superimposable upon the S3T1 motif-2184, the S2T2 motif-140 and the S2T2 

motif-204. Conversely, the S1T2 motif-6 is superimposable upon the S2T2 motif-140, the S1T3 

motif-14, and S2T2 motif-204. Motifs of subgraph size 4 are produced from the S2T1 motif-36 
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or the S1T2 motif-6 with the addition of a microRNA regulator or target node to either size 3 

subgraph. 

 

 

 
FIGURE 25. Drosophilid life cycle marking stage-specific numbers of 118 FlyBase anatomy 

terms (FBbt) and 93 Gene Ontology (GO) categories features available to diagnose Drosophila 

species (Wilson et al., 2008).  For each FBbt and GO, batch downloads were conducted through 

FlyBase for genes known to influence phenotypes specific to the term: 2331 genes were 

recovered and 1355 of these recovered microRNA targets representing 8.94% of total potential 

microRNA target dataset. Redrawn from Mertens and Hammersmith (2007). 
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FIGURE  26. Vertex degree distribution and network abundance of microRNAs per target 

gene for Muller element and FBbt data of Drosophila melanogaster.  Networks were defined 

using target prediction data derived from an intersection of MiRanda and TargetScan.  Power-

law function trend lines and data points are colored according to subnetwork of interest.  All data 

are unbinned.  The red trend line and data for Drosophila are equivalent to the network 

intersection of D. melanogaster illustrated in CHAPTER I, FIGURE 2C.  
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(A) Select Muller elements A, D, AD, and U (chromosomes X, 3L, the union of X-3L, and 

Unknown respectively) recovered trend lines with functions, non-linear regressions and 

statistical support as follows:   

Drosophila)  y 3370.4e -0.9363x, R2 = 0.99, p = 1.5 x10-3;  

A Muller)  y = 1056e -1.1939x, R2 = 0.93, p < 10-5;  

AD Muller)  y = 1314.1e -1.0352x, R2 = 0.96, p < 10-5;  

D Muller)  y = 580.85e -0.8905x, R2 = 0.95, p = 0.28;   

U Muller)  y = 76.547e -0.8921x, R2 = 0.84, p = 8 x10-3.  

(B) Select Muller elements B, C, and BC (chromosomes 2L, 2R and 2, respectively) recovered 

power-law trend lines with functions and non-linear regressions as follows:   

B Muller)  y = 520.22e -0.7959x , R2 = 0.99, p < 10-5;    

BC Muller)  y = 789.33e -0.7974x, R2 = 0.99, p < 10-5;  

C Muller)  y = 558.47e -0.7799x, R2 = 0.99, p < 10-5. 

(C) Select Muller elements E, F, and the union of E and F (chromosomes 3R, 4, the union of 4-

3R, respectively) recovered power-law trend lines with functions and non-linear regressions as 

follows:   

E Muller)  y = 890.99e-0.9613x, R2 = 0.98, p = 1 x10-3;   

EF Muller)  y = 885.59e-0.9774x, R2 = 0.97, p = 6 x10-3;  

F Muller) y = 33e-0.8292x, R2 = 0.93, p = 0.6. 

(D) The FBbt dataset recovered a power-law trend line function and non-linear regression of  

      y  = 223.97e-0.7753x, R2 = 0.93, p = 0.2.
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FIGURE 27. Topologies and conversion pathways for motifs observed in Drosophila 

microRNA-target interaction networks.  MicroRNA interaction networks were strictly 

bipartite and only these motifs were present for network subgraphs composed of three and four 

nodes.  Each motif topology is drawn to reflect the two nodal types; where black circles illustrate 

microRNAs and white circles represent targets.  Motif adjective identifications and start-to-

termination flow descriptors are reported in the upper and lower right corner of each respective 

motif box.  Connectors diagram motif conversion pathways; specifically the loss or acquisition 

of a node type or interaction necessary for motif-to-motif topology conversion. 
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S2T1 motif-36 & S1T2 motif-6. Significant scores were recovered for the S1T2 motif-6 in all 

twelve species sampled for all microRNA networks analyzed (TABLE 2).  The S1T2 motif-6 

was typically in the representative majority for all size 3 subgraphs in all microRNA networks. 

Significant scores were also recovered for the S2T1 motif-36 across all twelve species sampled 

for all microRNA networks analyzed (TABLE 3).  While the S2T1 motif-6 was typically in the 

representative minority for all size 3 subgraphs in all microRNA networks, scores indicate 

enrichment of this motif type.  Negligible z-scores ranging from -1 to 1 were recovered for 

motifs of subgraph size 3 and thus three node cases are not particularly informative for networks 

considered in this study. 

 

S1T3 motif-14. Addition of a target node produces the S1T3 motif-14 from the S1T2 motif-6 

(FIGURE 27).  Representation of the S1T3 motif-14 was variable by species and dataset 

(TABLE 4).  The S1T3 motif-14 recovered significant network presence in twelve species 

sampled for all chromosome regions elements excluding Muller element F.  Three species in the 

later dataset recovered significant S3T1 motif-2184 presence.  The unsorted genes in the U-

Muller element had seven species with significant scores for S3T1 motif-2184 while eleven 

species had significant S1T3 motif-2184 representation in the FBbt dataset network. 

 

S3T1 motif-2184.  The S3T1 motif-2184 is acquired only from the S2T1 motif-36 with the 

addition of a microRNA regulator (FIGURE 27).  Representation of the S3T1 motif-2184 varied 

by species and dataset (TABLE 5).  The S3T1 motif-2184 recovered significant network 

presence in twelve species sampled for all chromosome regions elements excluding Muller 

element F.  The later dataset recovered significant S3T1 motif-2184 presence in three species.  

The unsorted genes in the U-Muller element had seven species with significant scores for S3T1 

motif-2184 while eleven species had significant S3T1 motif-2184 representation in the FBbt 

dataset network. 

 

S2T2 motif-140.  The S2T2 motif-140 is acquired from either the S2T1 motif 36 or the S1T2 

motif 6 respectively with the addition of either a target node or a microRNA regulator (FIGURE 

27).  The S2T2 motif-140 presented no significant score for any species across all microRNA 
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networks analyzed (TABLE 6).  Thus while subgraphs S2T2 was present in networks at variable 

frequency, their representation was not significantly enriched. 

 

S2T2 motif-204.  The S2T2 motif-204 or “bi-fan” can only be acquired from the S2T2 motif-

140 with the addition of an interaction between a microRNA regulator and a target node 

(FIGURE 27).  Great diversity is observed across datasets and species for the representation of 

the S2T2 motif-204 (TABLE 7).  Among all motif observed the S2T2 motif-204 has relatively 

highest degree of enrichment with greatest average Z-scores; but in terms of absolute values the 

frequency of these motifs is low.  The S2T2 motif-240 recovered significant network presence in 

all twelve species sampled for Muller elements A, B, D, E and EF.  Significant network presence 

of the S2T2 motif-240 for ten species was recovered in Muller elements C and EF.  The number 

of species recovering significant network representation of the S2T2 motif-240 declined from 

twelve to four when chromosome regions were combined in the Muller elements AD and BC.  

The unsorted genes in the U-Muller element had only five species with significant scores for 

S2T2 motif-240, while only one species had significant S2T2 motif-240 representation in the 

FBbt dataset network. 
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TABLE 2.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S1T2 motif-6 using target prediction data derived from an intersection of MiRanda 

and TargetScan.  Rows correspond to the average, maximum, and minimum scores recovered 

from select subnetworks of interest (dataset) across a comparision of twelve Drosophila species.  

Rows are color coded according to the numbers of species in the dataset recovering significant 

P-values.  Datasets recovering significant scores for all species sampled are colored in dark 

blue. 
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TABLE 3.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S2T1 motif-36 using target prediction data derived from an intersection of 

MiRanda and TargetScan.  Rows correspond to the average, maximum, and minimum scores 

recovered from select subnetworks of interest (dataset) across a comparision of twelve 

Drosophila species.  Rows are color coded according to the numbers of species in the dataset 

recovering significant P-values.  Datasets recovering significant scores for all species sampled 

are colored in dark blue.  
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TABLE 4.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S1T3 motif-14 using target prediction data derived from an intersection of 

MiRanda and TargetScan. Rows correspond to the average, maximum, and minimum scores 

recovered from select subnetworks of interest (dataset) across a comparision of twelve 

Drosophila species. Rows are color coded according to the numbers of species in the dataset 

recovering significant P-values.  Datasets recovering significant scores for all species sampled 

are colored in dark blue.  Green rows have mixed representation of significant and non-

significant scores among species. 
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TABLE 5.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S3T1 motif-2184 using target prediction data derived from an intersection of 

MiRanda and TargetScan. Rows correspond to the average, maximum, and minimum scores 

recovered from select subnetworks of interest (dataset) across a comparision of twelve 

Drosophila species.  Rows are color coded according to the numbers of species in the dataset 

recovering significant p-values.  Datasets recovering significant scores for all species sampled 

are colored in dark blue.  Green rows have mixed representation of significant and non-

significant scores among species. 
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TABLE 6.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S2T2 motif-140 using target prediction data derived from an intersection of 

MiRanda and TargetScan. Rows correspond to the average, maximum, and minimum scores 

recovered from select subnetworks of interest (dataset) across a comparision of twelve 

Drosophila species. Rows are color coded according to the numbers of species in the dataset 

recovering significant P-values. Rows for datasets with non-significant scores for all species 

sampled are colored in red. 
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TABLE 7.  MicroRNA regulatory network topology statistics recovered from FANMOD 

for the S2T2 motif-240 using target prediction data derived from an intersection of 

MiRanda and TargetScan. Rows correspond to the average, maximum, and minimum scores 

recovered from select subnetworks of interest (dataset) across a comparision of twelve 

Drosophila species.  Rows are color coded according to the numbers of species in the dataset 

recovering significant P-values. Datasets recovering significant scores for all species sampled are 

colored in dark blue.  Green rows have mixed representation of significant and non-significant 

scores among species. 
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DISCUSSION 

 

Natural Selection across Network Topology.  The findings presented in this study represent a 

novel intergration of microRNA regulatory network topology to chromsomal synteny and genes 

linked to species diagnostic phenotypes.  Previous comprehensive research has been conducted 

using FANMOD where whole organismal networks of interacting metabolites were analyzed in 

parallel for 107 species from the database of Ma and Zheng and 251 species available from 

KEGG (Kyoto Encyclopedia of Genes; December 2007 release; Kanehisa et al., 2008; Kanehisa 

et al., 2000; Kanehisa et al., 2006; Ma & Zeng, 2003).  Additional analyses were also conducted 

using the 251 species data from KEGG for entire networks of interacting pathways.  Most 

significantly, these analyses recovered evidence high statistical support for the over-

representation of certain feed-forward and bi-parallel motifs (subgraphs) with 3 and 4 nodes 

(Bonchev et al., 2009).  These studies provide methodological demonstration and philosophical 

justification relevant to this study of drosophilid speciation using microRNA-regulatory 

networks.  The motifs exhibiting considerable enrichment were those having a redundant link.  

Similarly, microRNA network recovered significant enrichment for the S2T2 motif possessing a 

redundant link (motif-204) in all twelve species sampled for many Muller elements (TABLE 7).  

Conversely, the S2T2 motif lacking a redundant link, motif-140, presented no significant score 

for any species across all microRNA networks analyzed (TABLE 6).  Notably, the S2T2 bi-fan 

motif-204 is often represented in networks that perform information processing, even though 

they describe elements as different as biomolecules within a cell and synaptic connections 

between neurons (Milo et al., 2002).  In the context of adaptive significance, these results 

indicated that the need of higher network resilience against attacks not only compensates the 

energy price for the extra link formation but also exceeded the potential benefit of a faster 

performance (Bonchev et al., 2009). 

Representation of the S1T3 motif-14 was variable by species and dataset (TABLE 4), but 

respective S1T3 motifs enrichment might be expected to occur where there has been strong 

selection for broad regulation of suites of functionally interrelated targets.  Alternatively the 

S1T3 motif-14 may be acquired from the S1T2 motif-6 with the addition of a target node as an 

artifact of paralogous gene duplication (FIGURE 27).  Target gene duplication allows for an 

increase in phenotypic possibilities while using the same genetic repertoire by providing more 
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variability of gene expression levels (Lee et al., 2007).  In either case a single microRNA could 

effectively exert simultaneous regulatory control in cases where motif participant targets are 

synchronously expressed in vivo.  This regulatory approach would be most advantageous in 

circumstances where control is required to decisively shut down an entire biological pathway at 

several key points by enacting enzyme down-regulation at the translational level (He & Hannon, 

2004; Stark et al., 2003).  Such regulatory strategies would likely play important roles in the 

generating tissue specific differentiation, and misregulation of microRNA expression itself could 

potentially have severe developmental consequences (Li et al., 2006).  Congruently, over-

reaching biochemical control for enzymatic pathways has been well documented in Drosophila 

(He & Hannon, 2004; Stark et al., 2003).  Likewise, human microRNAs are evidenced to have 

exclusive GO term association by selectively targeting functionally distinct population of genes 

according to their transcript AT and GC content (Robins & Press, 2005). 

Representation of the S3T1 motif-2184 varied by species and dataset (TABLE 5) 

Expansion of a microRNA repertoire through paralogy could enrich S3T1 subgraphs in some 

microRNA networks.  Novel microRNAs acquired through duplication may be a simple 

mechanism for increasing microRNA cellular dosage (Lu et al., 2008; Prochnik et al., 2007; 

Stark et al., 2007a).  Sister microRNA genes would likely share ancestral target transcripts 

following their initial divergence.  However, the later scenario is not the case for the selected 

networks considered in these analyses.  These data represent network intersection of microRNA 

target prediction methods, and mature microRNA regulators are grouped according to distinct 

microRNA families.  Therefore, all S3T1 type subgraphs observed would have arisen through 

target interactions involving a trio of unrelated microRNA families.  

MicroRNAs acquired from novel families enable fine-tuning to particular target suites 

(Lu et al., 2008; Prochnik et al., 2007; Stark et al., 2007a).  Observed enrichment in S3T1 motifs 

might be expected to occur where there has been strong selection for coordinate microRNA 

control of a given target (Hornstein, & Shomron, 2006).  The nature of the coordinated target 

control would depend upon the relative strengths of separate microRNA-target interactions.  

Temporal ontogeny further complicates matters.  Given that microRNA-mediated targeting 

depends on the expression of both microRNA and targets, distinct microRNAs that have the 

same seed sequence may still have different target sets simply due to differences in their 

expression profile; even though they principally recognize the same set of target sites (Gaidatzis 
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et al., 2007).  Current research favors a ‘‘restrictive model’’ of gene regulation, where the level 

of genome regulation steadily increases throughout development: the mRNA-regulating function 

of microRNAs suggests that this trend may be due to the effects of increased expression of 

microRNA genes (Olsen & Ambros, 1999; Strauss et al., 2006). 

In cases where motif participant microRNAs are not co-expressed in vivo, a common 

target could be separately regulated according to different tissue lines (Stark et al., 2005).  

Alternatively, where multiple motif participant microRNAs are co-expressed, an increase in 

S3T1 motif abundance would imply increased selection for redundancy of control over a given 

target. The latter case could happen where different environmental circumstances produce a 

default regulatory reaction: different microRNAs could be cued to become operative and regulate 

a shared target under separate regulatory stimuli.  Indeed, both life-stage tissue-specific 

expression and microRNA mediated regulation of metabolic responses to the environment have 

been observed in Drosophila (Aravin et al., 2003; Lai et al., 2003; Stark et al., 2003).  

Additionally, where individual interactions were of variable strength (and individual regulatory 

interactions target could thus be ‘leaky’), redundant control using coexpression of multiple 

microRNAs may be necessary to keep the common target under biologically proper regulation 

(Stark et al., 2005).  

In the context of Drosophila, there is documented precedent for redundancy of control 

under co-expressed microRNAs (Lai et al., 2003; Stark et al., 2003).  Enrichment of S3T1 motifs 

would be consistent with the design principle of canalization (Hornstein, & Shomron, 2006).  

Mathematical modeling shows that microRNA motifs in mammals may stabilize feedback loops 

to resist environmental perturbation and this provides one mechanism to explain the robust 

nature of microRNA controlled developmental programs (Yu et al., 2008).  Specifically, this 

mechanism has been suggested to contribute to the canalization of genetic programs; where 

canalized traits have an increased capacity to absorb mutational variance, resist radical change, 

and effectively maintain the phenotypic reproducibility of development (Hornstein & Shomron, 

2006; Yu et al., 2008).  Canalized genotypes give rise to the same phenotype in different 

enviroments; presumably because the product (character state) of development is of adaptive 

significance.  In a canalized state, genetic variations do not readily affect phenotype (and are 

therefore not subject to the same rigorous natural selection), but upon loss of canalization, 
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genetic variations are uncovered.  Thus, canalization not only contributes to developmental 

robustness, but potentially to adaptive innovations (Hornstein & Shomron, 2006). 

Selection for coordinate control through enrichment of S3T1 motifs could have strong 

implications toward understanding molecular mechanisms underlying the acquisition of 

phenotypic plasticity (Bartel & Chen, 2004; Hornstein & Shomron, 2006).  MicroRNAs most 

likely have a critical involvement in adaptive regulatory circuit extension; where organisms 

expand the functional portion of their genome as they also incorporate survival information 

about their niche (Lee et al., 2007).  Under this model, it is possible that recently acquired 

species-specific microRNAs would be most involved in fine-tuning gene expression to adapt 

organisms to different environments, rather than supporting more ancient developmental 

programs (Stark et al., 2005).  Given suggested correlations between microRNA acquisition and 

morphological innovation, it is here hypothesized that among sets of closely related organisms 

those select taxa exhibiting greatest phenotypic plasticity among would have the greatest S3T1 

type microRNA regulatory network motif enrichment (Sempere et al., 2006).  Future network 

topology research using Drosophila should compare motif patterns for regulatory networks of 65 

conserved microRNAs against species-specific thermal tolerance ranges and other quantifiable 

indicators of species phenotypic plasticity (Berezikov et al., 2010; FIGURE 25). 

 

MicroRNA Regulatory Networks for Regions of Chromosomal Synteny (Muller Elements).   

All microRNA regulatory networks for Muller elements in Drosophila melanogaster (excluding 

the F-element) were well-described by power law trend lines (R2 = 0.82 to 0.95) with exponents 

of greater absolute value than the unsorted genes (FIGIRE 26).  Moreover the power law 

behavior of these latter networks recovered an exponential constant “b” within (or approaching) 

the biological range of -2 to -3 (Barabasi & Albert, 1999).  Thus, these user-defined Muller 

element regulatory networks would appear biologically relevant.  Notably, the mixing of 

chromosome regions for Muller element AD produces many insignificant scores through 

FANMOD (TABLE 6).  Alteration of S2T2 motif-240 enrichment patterns with the union of 

individual Muller elements (A and D vs. AD; B and C vs. BC) may be indicative that Muller 

elements operate as discrete entities within microRNA regulatory networks.  Indeed, the high 

degree of enrichment observed in the A-Muller elements is lost with the combination of the D-

Muller element.  The repeating motif patterns across elements observed would not be expected if 
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Muller elements were not a natural subdivision of the total Drosophila network.  Thus, the 

collective patterns observed indicate that respective Muller element networks have developed 

within the Drosophila transcriptome as separate regulatory modules. 

Relationships between chromosome loci and microRNA regulation have been previously 

documented on a smaller scale.  MicroRNA genes are frequently co-expressed along with their 

targets and these targets are often located within 50 kilobases (Baskerville & Bartel, 2005).  

Assuming this is an optimized genetic program, then this would in turn imply natural selection 

operative for genomic position. Future integration of karyotype loci to microRNA target data 

may shed some insights into the adaptive forces presiding over the frequent recapitulation of 

chromosome inversion groups observed across geographic clines (Hoffmann, 2004).  In these 

cases, reoccurrence of chromosome inversion races regardless of lineage sorting is attributed to 

natural selection for sets of co-adapted gene complexes; although these complexes have yet to be 

identified (Hoffmann, 2004).  Here it is proposed that microRNA genes are likely candidates 

involved in this co-adaptation.  In the observed cases of this study there were 112 microRNA 

families found participant in every Muller element regulatory network; except element F with 99 

microRNA families.  Therefore any regulatory wiring as a discrete unit for Muller element 

targets seems to operate irrespective of the location of the microRNA regulator’s source 

chromosome locus.  Future investigation will consider microRNA locus as a variable by limiting 

network topology analyses to microRNAs and targets of a single shared Muller element. 

The results of this study for regions of major chromosome synteny have powerful 

implications toward the genetic basis of Haldane’s rule.  This principle states that the 

heterogametic sex of an F1 cross of two different animal species is the most likely to be absent, 

rare, or sterile (Haldane, 1922).  This rule applies to mammals, lepidopterans, birds, orthopterans 

and dipterans; thus in Drosophila, 142 documented interspecific hybridizations yield sterile XY 

males and fertile XX females (Coyne, 1985).  One interpretation of Haldane’s rule proposes that 

X-chromosomes are tachytelic (exhibit a faster rate of change) over autosomes and in turn 

rapidly accumulate epistatic incompatibilities contributing to male-specific vs. female-specific 

sterility (Coyne, 1985).  Results of FANMOD analyses which show a similar representations of 

regulatory motif enrichment for heterosomes (Muller element A) and autosomes (Muller 

elements B-E) disagree with the later fast-X model; at least at the functional level of regulatory 

network architecture (TABLES 2 to 6).  Additionally, parametric scores from molecular 
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phylogeny for Muller elements demonstrated no outstanding elevations of average Homoplasy 

Index relative to average Retention Index (APPENDIX III, TABLE 11).  Comparable average 

gamma rate range (2.44-2.94) and average -ln Likelihood Score (30693.62 to 38035.50) were 

observed for (excluding Muller element F) under a general time reversible sequence evolution 

model with gamma rate variation and invariable sites (GTR + I + G). Excluding the F-Muller 

region, only the invariable site rate was slightly lower for the A-Muller element (0.18) over 

heterosome regions (0.20 to 0.21; APPENDIX III, TABLE 11).  Perhaps this aberrant pattern is 

related to the innate accelerated genetic drift, lower codon usage, and low levels of 

recombination documented along the F chromosome element (Kliman & Hey, 1993).  

Nevertheless, if some divergence rate deviation occurred for heterosomes relative to the 

autosomes, then a deviation of parametric scores for A-Muller relative to the other elements 

would have been anticipated.  Thus a fast-X hypothesis of Haldane’s rule may also be 

contradicted at the level of nucleotide sequence evolution.  Future research should follow the 

methodology of CHAPTER II and conduct direct microRNA network interspecific comparisons 

across separate Muller elements. 

 

MicroRNA Regulatory Networks for Genes linked to species Diagnostic Phenotype in 

Drosophila.  Drosophila species share a distinctive body plan and life cycle, but vary 

considerably in their morphology, ecology and behavior.  The twelve sequenced species 

represent indigenes from Africa, Asia, Pacific Islands, and North and South America.  There are 

cosmopolitan species that have colonized the entire planet (Drosophila melanogaster and D. 

simulans) and closely related species endemic to single islands (D. sechellia; Drosophila 12 

Genomes Consortium, 2007).  Drosophilid flies may be encountered living in deserts, in the 

tropics, on volcanic islands and, often as human commensals.  A variety of behavioral strategies 

is also encompassed by the sequenced species; ranging from feeding generalist like as 

Drosophila ananassae, to species such as D. sechellia, specialized to feed on the fruit of a single 

plant species (Drosophila 12 Genomes Consortium, 2007).  The interplay of gene regulatory 

systems to major morphological features in Drosophila species diagnosis is already well 

established (Gompel et al., 2005; McGregor et al., 2007; Sucena & Stern, 2000).  Nevertheless, 

while the case for microRNA-mediated control over basic bilaterally-symmetric morphology can 

be well substantiated for animals, the role of microRNAs in drosophilid morphology has 
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remained largely unexplored (Lu et al., 2008; Stark et al., 2007a).  Likewise, scutellar bristles 

represent a morphological trait for drosophilid species diagnosis (FBbt:00004312, APPENDIX 

VI,TABLE 13), and notably microRNAs are suggested to canalize the ontological pathway 

controlling these bristle numbers (Grimaldi, 1990; Hornstein & Shomron, 2006; Markow & 

O’Grady, 2005). These FBbt dataset of genes associated to anatomical features and physiological 

processes used to diagnose species within Drosophila could potentially represent a genome 

sample of the microRNA regulatory core underlying species diagnostic phenotypes (FIGURE 

25; APPENDIX VI, TABLE 13). 

While individual genes have each experienced their own independent history and 

widespread inconsistency of gene trees is expected, nevertheless, not all divergent gene trees will 

be mutually incompatible to one another or to a reference tree (Drosophila 12 Genomes 

Consortium, 2007; Kopp & True, 2002; Pollard et al., 2006).  Phylogenetic utility may be 

addressed within this framework and comparable parametric score values are displayed in 

APPENDIX III, TABLE 12.  The FBbt dataset recovered parametric scores comparable to 

Drosophila molecular markers available through NCBI database.  Indeed the FBbt data exhibited 

higher percentage of parsimony informative characters, lower average homoplasy and higher 

average consistency to the reference tree than NCBI molecular markers. Nevertheless the 

average likelihood score for NCBI data is more optimal over the FBbt dataset; where –ln 

Likelihood score represents the sum of the probability of the data given the tree and the tree with 

lowest negative log-transformed likelihood is preferred.  Nevertheless it seems reasonable to 

propose that the FBbt are a representative genomic sample more congruent to the reference tree 

topology than other phylogenetic markers in use for Drosophila. 

While extensive molecular studies of drosophilids have already been conducted, there 

have been few successful attempts to revise taxonomic schema to fit phylogeny; despite the 

overwhelming accumulation of evidence against traditional phenetic groups erected on the basis 

of genital structure (O’grady et al., 1998; Kwiatowski & Ayala, 1999; Kopp & True, 2002; Robe 

et al., 2005).  The Drosophilidae remain an agglomeration of non-monophyletic groups; where 

molecular data regularly present genera emerging from subgenera as a normal feature of the 

taxonomy (Robe et al., 2005).  The most notable offenders are the paradigm genus and subgenus 

of Drosophila: these have become catchall designations and are utterly useless in designating 

any biologically meaningful clade (Remsen and O’grady, 2002; Robe et al., 2005).  Drosophilid 
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taxonomy will require exhaustive systematic overhaul to accommodate monophyletic groups 

recovered from the congruencies of molecular datasets (Robe et al., 2005).  But in application, 

groupings based on morphological characters need not be discarded outright, but should rather be 

evaluated for systematic utility based on consistency to molecular datasets.  Where such 

measures have been provisionally implemented, remarkable consensus between molecular and 

morphological reconstructions have been recovered (Cameron et al., 2007; Kopp & True, 2002; 

O’grady et al., 1998).  Here it is proposed that genes of the FBbt dataset linked species 

diagnostic phenotype could be useful in rationalizing selection of suitable molecular markers or 

morphological characters for Drosophila phylogeny.  Those genes of the dataset exhibiting most 

optimum phylogenetic support to the reference topology could be used to propose suites of 

species-diagnostic morphological characters best suited for accurate phylogeny.  Any novel 

molecular address to morphological features in drosophilid species diagnosis will have great 

potential applications to Drosophila systematics. 

The phenotypic traits encoded by the genes of the FBbt regulatory network are likely to 

have adapted in relation to one another:  selection for single phenotypic traits may exert section 

for a suite of other phenotypic traits through the action of shared regulatory elements.  This 

principle has been demonstrated with foxes (Vulpes vulpes) bred for tamability in a 40-year 

experiment.  Selection for tolerance to human socialization incurred significant physical changes 

in coat color, ears, limbs, and developmental timing of these foxes (Trut, 1999).  These 

remarkable transformations essentially recapitulated the domestication of the dog; Canis lupus 

into Canis familiaris (Trut, 1999).  In the case of Drosophila, selection for one single phenotypic 

trait may exert section for a number of other traits through the regulatory force of microRNA 

regulators held in common.  Along these lines, the FBbt target dataset recovered enrichment for 

the S1T3 motif-14, and the S3T1 motif-2184 in eleven species and significant scores in S2T2 

motif-240 for one species (TABLE 4 & 5).  The patterns of species recovering significant scores 

for the FBbt target suite were different for the species profile of the unsorted (U Muller) targets. 

Indeed the FBbt dataset have average Z-scores higher than those observed for Muller elements 

A-F for S1T3 and S3T1 motifs.  These findings indicate that the FBbt network has developed 

under a selective regime different from those presiding over individual Muller elements or the 

overall trascriptome. Moreover considering the S2T2 motif-240 enrichment for one species, 
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lineage-specific selection seems to have been operative upon the regulation of genes linked to 

species diagnostic phenotypic traits. 



 116 

 

 

 

CHAPTER V.   

 

Nested Hierarchal Organization of Conservation for MicroRNAs 

 

and their Putative Targets to Drosophila melanogaster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords & concepts:  Biological Complexity; GRAFMAN Software; MicroRNA Repertoire 

Expansion;  MicroRNA-Target Network; Regulatory Network 

Conservation; Taxonomic Hierarchy. 



 117 

ABSTRACT 

 

It is hypothesized that microRNA-mediated transcript regulation has likely played a critical role 

in the primordial origins of complex animal body plans. Phylogenic gain in microRNA gene 

expression observed alongside the acquisition of organismal complexity is likely related to an 

increase in gene regulatory network complexity. This study examined microRNA network 

properties traced through taxonomic hierarchy considering both the acquisition of potential 

network targets and regulators.  Primary literature review and database analysis were conducted 

to establish modules of conserved microRNAs across metazoan taxonomy. A hierarchical 

schema for the conservation of microRNAs and their putative targets to Drosophila 

melanogaster was engineered through comprehensive meta-analysis combing 1131 datasets from 

325 species tracing through 207 subclades, gene homology assertion data from 12 databases, and 

160 supercomputing BLAST-N searches (E-value 1e-5) of genome trace or expressed sequence 

tag (EST) data.  Conservation history of 90.39 % of the total Drosophila dataset could be 

resolved through this hierarchical sampling regime; tracing from taxonomic order down to 

empire. The findings presented in this study represent the first documentations of Drosophila 

microRNA regulatory network behavior thorough taxonomic heirarchy.  Scale free properties of 

a network intersection of microRNA target predictions methods were found to transect 

taxonomic hierarchy. Newly acquired microRNAs from novel families reinforce the pre-existing 

regulatory network and expand the targetset incrementally to include a small number of novel 

genes. Lineage specific microRNAs were found to exhibit far fewer conserved targets than do 

the more broadly conserved microRNAs; even when considering only more recently emerged 

targets. There was a dramatic expansion in network complexity with the expansion of the 

microRNA repertoire and this corresponds to the expansion in biological complexity 
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INTRODUCTION 

 

MicroRNAs are unusual in comparison to other genetic elements in that they have been 

continually added to animal genomes.  Indeed, the observed hierarchical conservation structure 

of microRNAs over phyletic distance is only possible if acquired microRNAs become fixed in an 

animal genome and are not lost secondarily (Heimberg et al., 2008).  There is a strong positive 

correlation between microRNA acquisition and morphological complexity observed in animals 

(Lee et al., 2007).  It is hypothesized that microRNA-mediated transcript regulation has likely 

played a critical role in the primordial origins of complex animal body plans (Sempere et al., 

2006).  For instance, the dramatic expansion of the microRNA repertoire in bilaterally-

symmetric animals relative to poriferans (sponges) and jellyfish (cnidarians) suggests that 

increased microRNA-mediated gene regulation accompanied the advent of organ-containing 

body plans drawn from three primary tissue types (FIGURE 29; Prochnik et al., 2007).  

Likewise, character inference from deep phylogenetic analyses indicate potential functional 

causality between novel microRNA family acquisition and the foundation of the vertebrate 

phenotype.  In the later scenario, novel microRNA acquisition would have had to proceed any 

genome duplication event (Heimberg et al., 2008). 

The phylogenic gain in microRNA gene expression observed alongside the acquisition of 

organismal complexity is likely related to an increase in gene regulatory network complexity 

(Heimberg et al., 2008; Lee et al., 2007; Sempere et al., 2006).  Newly acquired microRNAs 

would likely reinforce the pre-existing regulatory network, but will also target a small number of 

novel genes (Sempere et al., 2007; Stark et al., 2007a).  Novel microRNAs acquired through miR 

gene duplication may be a simple mechanism for increasing microRNA cellular dosage, while 

microRNAs from novel families will enable fine-tuning to particular target suites (Lu et al., 

2008, Prochnik et al., 2007,Stark et al., 2007a).  In either case, newly acquired microRNAs will 

have a significant impact on the overall microRNA regulatory network; but a large number of 

adaptive changes over a long period of time may be essential for full network integration 

(Sempere et al., 2007; Stark et al., 2007a).  

Once integrated into a gene regulatory network, the mature microRNA sequences come 

under intense stabilizing selection ensuring conservation (Heimberg et al., 2008, Sempere et al., 
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2007).  For example, strong conservation can be found in arthropods despite great phyletic 

distance, and similarly some 30 microRNAs remain conserved across all bilaterally symmetric 

animals (Lee et al., 2007; Prochnik et al., 2007).  Generally speaking, microRNAs conserved in 

sequence are often expressed within identical tissues during analogous developmental stages in 

different organisms (Lee et al., 2007).  In considering conserved microRNAs expression patterns 

and computationally predicted targets in vertebrates and flies, it is likely that most of these 

microRNA mediated regulations control developmental pathways fundamental to bilaterally-

symmetric animals (Enright et al., 2003; Griffiths-Jones et al., 2006; Prochnik et al., 2007). 

The purpose of this study was to examine microRNA network properties traced through 

taxonomic hierarchy considering both the acquisition of potential network targets and regulators.  

Network quantification and distance calculation comparisons of microRNA target network 

modules provided a valuable reference framework within which to evaluate the hierarchical 

conservation of microRNA-target interactions (FIGURE 29).  The phyletic comparison of 

microRNA acquisition to patterns of target gene acquisition was a subject of particular interest. 

Consistent with the premise of interologous cross-species comparison, it is predicted that sets of 

well-conserved genes and ancient microRNAs will exhibit greatest interaction stability 

(Friedman et al., 2009; Matthews et al., 2001).  The observed expansion of organismal 

complexity over natural history while utilizing a very similar genetic repertoire suggests that the 

complexity of genome regulation present in the organism also correlates with its complexity (Lee 

et al., 2007; Sempere et al., 2006).  With this in view this study focused on relationships between 

microRNA acquisition and measures of network complexity.  Notably, the findings presented in 

this study represent the first documentations of Drosophila microRNA regulatory network 

behavior thorough taxonomic heirarchy. 

 

METHODS 

 

Primary literature review and database analysis were conducted to establish modules of 

conserved microRNAs across metazoan taxonomy (Gilbert, 2007, Griffiths-Jones et al., 2006; 

Hertel et al., 2006; Sempere et al., 2006; Sethupathy, et al., 2006).  Likewise a hierarchical 

schema for the conservation of microRNAs and their putative targets to Drosophila 

melanogaster was engineered through a comprehensive meta-analysis combing 1131 datasets 
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from 325 species tracing through 207 subclades, gene homology assertion data from 12 

databases, and 160 supercomputing BLAST-N searches (E-value 1e-5) of genome trace or 

expressed sequence tag (EST) data (Altschul et al., 1990; McCarter, et al., 2005; Benson et al., 

2008; Birney, et al., 2006; Chen et al., 2006 Gauthier et al., 2007, Lawson et al., 2009, Lee et 

al., 2002, Marchler-Bauer et al., 2009, Mulder et al., 2002, Nègre et al., 2006, O’Brien et al., 

2005, O’Brien et al., 2004, Remm et al., 2001, Sonnhammer, et al., 1997, Tatusov et al., 2003, 

Wheeler et al., 2006, Wu et al., 2006 ).  Collectively, the conservation history of 90.39 % of the 

total Drosophila dataset could be resolved through this hierarchical sampling regime; tracing 

from taxonomic order down to empire (FIGURE 29).  Phylogenies of taxa surveyed for 

conservation of microRNAs and targets to Drosophila melanogaster were rendered through 

TreeFam database and are presented in FIGURES 41 to 47 of APPENDIX VII (Li et al., 2006; 

Ruan et al., 2008). 
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FIGURE 29. Nested hierarchical organization of conservation for microRNAs and their 

putative targets to Drosophila melanogaster.  The taxonomic rank and its name are given (left).  

The abbreviation s.t. represents the historical sense (sensu traditionalis) of specified taxonomic 

name.  The numbers of nodes represent the numbers of genes of the total microRNA target 

dataset known to be conserved at each rank.  Taxa typically indicate species, but in some cases 

represented compilations of sets of species groups in the raw data (see APPENDIX VII).  

Subclades represent the natural groupings present for the taxa sampled at each taxonomic rank. 

Data modules indicate the number of separate sets of data sampled per each rank.  MicroRNAs 

are inferred according to the deepest rank at which they are conserved (Berezikov et al., 2010; 

Gilbert, 2007; Griffiths-Jones et al., 2006; Hertel et al., 2006; Lu et al., 2008; Sempere et al., 

2007; Sethupathy, et al., 2006). 
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Taxonomic ranks were formalized by the following systematic conventions and criteria.  

The empire Biota defines union of all organic life apart from viruses (Brands, 2005; APPENDIX 

VII, FIGURE 47).  The superkingdom Eukaryota defines life-forms with a cellular nucleus and 

membrane bound organelles (Chatton, 1925; APPENDIX V, FIGURE 47).  The superkingdom 

clade Opisthokonta comprise a grouping of eukaryotes with flagellate cells including both the 

kingdoms of animals and fungi (Cavalier-Smith, 1987; APPENDIX VII, FIGURE 43).  Sponges 

(phylum Porifera) and other multicellular animals are included in the kingdom Metazoa 

(Haeckel, 1896 APPENDIX VII, FIGURE 43).  The subkingdom rank Eumetazoa includes 

hydra, corals, and jellyfish (phylum Cnidaria) and other organisms an embryonic development 

progressing through gastrulation (Brands, 2005; APPENDIX VII, FIGURE 43). 

The Triploblastica represents the subkingdom clade including all organisms with tissue 

specific differentiation into three primary germ layers; endoderm, mesoderm, and ectoderm 

(Lankester, 1877).  The subkingdom clade Nephrozoa is a grouping exclusive to 

Nemertodermatida and Acoela flatworms but inclusive of 23 bilaterian phyla; most of which 

contain some sort of excretory nephridial structures (Jondelius et al., 2002).  The subkingdom 

rank Bilateria in the traditional sense includes flatworms (phylum Platyheminthes) and other 

organisms with a bilateral axis of body symmetry (Hatschek, 1888; APPENDIX VII, FIGURE 

45).  The subkingdom rank Coelomata, in the traditional sense, contains those organisms with a 

fluid filled body cavity (coelom); including vertebrates, echinoderms (starfish, sea urchins, etc.), 

and other deuterostomes. (Hyman 1951; APPENDIX VII, FIGURE 43 to 45).  The subkingdom 

rank Protostomia, in the traditional sense, includes of those organisms in which the blastopore 

deepens during gastrulation to become the archenteron as the first phase in the growth of the gut 

(Grobben, 1908; APPENDIX VII, FIGURE 45).  The later group is also inclusive of molluscs 

(phylum Mollusca) and segmented worms (phylum Annelida) comprising the Eutrochozoa 

(Ghiselin, 1988). 

The superphylum Ecdysozoa includes those animals which shed their exoskeleton 

(undergo ecdysis) including water bears and round worms; the phyla Tardigrada and Nematoda 

respectively (Aguinaldo et al., 1997).  The rank inclusive of arachnids, centipedes, crustaceans, 

insects, and millipedes represents the phylum Arthropoda and these organisms are distinguished 

by their exoskeleton, segmented body, and jointed appendages (Latreille, 1829; APPENDIX VII, 

FIGURE 42).  The superorder Endopterygota contains those winged insects undergoing 
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complete metamorphosis through a pupal stage and includes beetles (order Coleoptera) wasps 

(order Hymenoptera), caddisflies (order Trichoptera), butterflies and moths (order Lepidoptera), 

and fleas (order Siphonaptera; Sharp, 1898; APPENDIX VII, FIGURE 41).  Lastly, true flies, 

mosquitoes, and gnats are included in the order Diptera (Linnaeus, 1758). 

Each taxonomic module in was inclusive of the microRNAs and target data of the 

subordinate rank when tracing up from Biota to Drosophila.  These conservation data were 

imported into the musca MySQL database.  Further network quantification and distance analyses 

were performed using in-house GRAFMAN software available under Linux on the Watson 

supercomputer cluster of Virginia Commonwealth University (FIGURE 1; Karabunarliev & 

Bonchev, 2002).  Data recovered from the musca database in the form of 575 network files 

(551.4 MB) were input to GRAFMAN and 2.4 MB  of data were output (see APPENDIX III, 

TABLE 10 & 11).  Likewise parametric scores from molecular phylogeny were recovered (see 

CHAPTER II) through the musca MySQL database and are presented in APPENDIX III, 

TABLE 13. 

 

RESULTS & DISCUSSION 

MicroRNA Regulatory Network Properties across Taxonomic Hierarchy.  Vertex degree 

distribution and network abundance of microRNAs per target gene are presented by method in 

FIGURES 30, 31, & 32 for taxonomic rank specific subnetworks of microRNA-target network 

data.  A power-law function was a poor mathematical descriptor of TargetScan data traced 

through taxonomic hierarchy (R2 = 0.19 to 0.66; FIGURE 30).  These functions for TargetScan 

aptamer-degree-frequency and target-degree-frequency distributions fell below normal biological 

range of -2 to -3 (b = -0.4647 to -0.696).  Polynomial trend line functions were superior to 

power-law functions as descriptors of TargetScan data traced through taxonomic hierarchy (R2 = 

0.49 to 0.85; FIGURE 30).  Similarly, the network data from MiRanda predictions cannot be 

cannot be precisely described by a power law when tracing through taxonomic rank (R2 = 0.68 to 

0.73; FIGURE 31).  Nevertheless, MiRanda target-degree-frequency distributions consistently 

recovered power-law exponential values approaching or within biological range (b = -1.5237 to -

2.9952).  Power-law functions were suitable mathematical descriptors of target intersection 

network data traced through taxonomic hierarchy (R2  ≈ 90; FIGURE 32), while exponential 

trend line functions recoverd improved statistical support. These later data retrieved power-law 
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function exponents that fell within biological range for all taxonomic ranks (b = -2.388 to -

2.9294).  Thus it appears that the scale free properties of the network intersection transect 

taxonomic hierarchy. Moreover, eponential trend line functions represented a better descriptor of 

target intersection network data traced through taxonomic hierarchy (R2 = 0.97-0.99; FIGURE 

32). 
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FIGURE 30.  Vertex degree distribution and network abundance of microRNAs per target 

gene for taxonomic rank specific subnetworks of TargetScan microRNA-target network 

data.  MicroRNA targets are predicted across the union of twelve Drosophila species.  All data 

are unbinned.  Taxonomic ranks from empire to genus were defined according to the schema 

presented in FIGURE 29 and trend line plots, functions, and coefficients of determination 

recovered for select taxonomic ranks are color-coded accordingly.  Power-law trend line 

functions recovered non-linear regressions of 0.19 to 0.68, p < 10-4. Polynomial trend line 

functions, non-linear regressions, and statistical significance recovered by rank were as follows: 

Drosophila)  y = 0.0489 x2 - 8.3264 x + 392.97 R2 = 0.85, p < 10-5 ;     

Diptera)  y = 0.0339 x2 - 6.17 x + 321.15, R2 = 0.72, p < 10-5;  

Endopterygota)  y = 0.033 x2 - 6.0395 x + 316.34, R2 = 0.71, p < 10-5;  

Arthropoda)  y = 0.0327 x2 - 5.9989 x + 314.82, R2 = 0.71,  p < 10-5;  

Ecdysozoa to Nephrozoa)  y = 0.032 x2  - 5.9179 x + 310.79, R2 = 0.71,  p < 10-5;  

Triploblastica)  y = 0.0236 x2 - 4.6216 x + 260.08, R2 = 0.67, p < 10-5;   

Eumetazoa)  y = 0.0221 x2 - 4.3948 x + 251.38,  R2 = 0.66, p < 10-5;   

Metazoa)  y = 0.022 x2 - 4.3885 x + 251.15, R2 = 0.66, p < 10-5;    

Opisthokonta)  y = 0.0154 x2 - 3.3521 x + 209.07;   

Eukaryota)  y = 0.0134 x2 - 3.0497 x + 196.1, R2 = 0.62, p < 10-5;   

Biota)  y = -0.0006 x2  - 0.2727 x + 31.759, R2 = 0.49,  p < 10-5. 



 126 

 

 
FIGURE 31. Vertex degree distribution and network abundance of microRNAs per target 

gene for taxonomic rank specific subnetworks of MiRanda microRNA-target network data. 

MicroRNA targets are predicted across the union of twelve Drosophila species.  All data are 

unbinned.  Taxonomic ranks from empire to genus were defined according to the schema 

presented in FIGURE 29 and trend line plots, functions, and coefficients of determination 

recovered for select taxonomic ranks are color-coded accordingly.  Power-law trend line 

functions recovered non-linear regressions of 0.68 to 0.73, p < 10-4. Exponential trend line 

functions, non-linear regressions, and statistical significance recovered by rank were as follows: 

Drosophila)  y = 7043.2e -0.7157x, R2 = 0.95,  p < 10-5 ;    

Diptera)  y = 6249.2e -0.7058x, R2 = 0.95,  p < 10-5 ;   

Endopterygota)  y = 6115.6e -0.7038x, R2 = 0.95,  p < 10-5 ;  

Arthropoda)  y = .1e -0.7032x, R2 = 0.95,  p < 10-5 ;  

Ecdysozoa to Nephrozoa)  y = 5864.3e -0.7031x, R2 = 0.95,  p < 10-5 ; 

Triploblastica) y = 3685.2e -0.6291x, R2 = 0.92,  p < 10-5 ;   

Eumetazoa to Metazoa)  y = 3595.8e -0.6324x, R2 = 0.92,  p < 10-5;   

Opisthokonta)  y = 3139.1e-0.6323x, R2 = 0.92,  p < 10-5;   

Eukaryota)  y = 3074.7e -0.6443x, R2 = 0.91,  p < 10-5;   Biota)  y = 299.62e -0.4981x, R2 = 0.92,  p < 10-5.
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FIGURE 32. Vertex degree distribution and network abundance of microRNAs per target 

gene for taxonomic rank specific subnetworks from the network intersection of prediction 

methods.  MicroRNA targets are predicted across the union of twelve Drosophila species using 

the network intersection of MiRanda and TargetScan.  All data are unbinned.  Taxonomic ranks 

from empire to genus were defined according to the schema presented in FIGURE 29 and trend 

line plots, functions, and coefficients of determination recovered for select taxonomic ranks are 

color-coded accordingly.  Power-law trend line functions recovered non-linear regressions of 

0.90 to 0.93, p < 10-4. Exponential trend line functions, non-linear regressions, and statistical 

significance recovered by rank were as follows: 

Drosophila)  y = 3370.4e -0.9363x, R2 = 0.99, p = 1.5 x10-3 ;    

Diptera)  y = 3132.2e -0.9369x, R2 = 0.99, p = 2 x10-3 ;  

Endopterygota)  y = 3078.6e -0.9368x, R2 = 0.99, p = 3 x10-3 ;  

Arthropoda)  y = 3058.4e -0.9357x, R2 = 0.99, p = 3 x10-3 ;  

Ecdysozoa to Nephrozoa)  y =  2863.9e -0.9305x, R2 = 0.99, p = 0.03 ;  

Triploblastica)  y = 2689.9e -0.9662x, R2 = 0.98, p < 10-4 ; 

Eumetazoa)  y = 2624.4e -0.9702x, R2 = 0.98, p< 10-4;  Metazoa)  y = 2622.7e -0.9701x, R2 = 0.98, p< 10-4;   

Opisthokonta)  y =2164.8e -0.9463x, R2 = 0.98,  p = 10-3 ;   

Eukaryota)  y = 1998.8e -0.9428x, R2 = 0.97, p = 10-3 ;  Biota)  y = 318.53e -0.9924x, R2 = 0.99, p = 0.1. 
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Regulatory Network Targets, Interactions, and MicroRNA Regulators through Taxonomic 

Hierarchy.  The data presented here are essentially a history of the expansion of the Drosophila 

microRNA network.  MicroRNA targets, and numbers of unique microRNAs, are compared to 

regulatory network edges conserved through taxonomic hierarchy across the union of twelve 

Drosophila species in FIGURE 33.  Likewise, numbers of unique microRNAs are compared to 

microRNA targets conserved through taxonomic hierarchy across the union of twelve 

Drosophila species in FIGURE 34.  Homology sampling of taxa sharing the rankings from 

Nephrozoa to Ecdysozoa recovered the same number of targets; while the microRNA repertoire 

expands from 18 to 40 genes (FIGURE 29).  Additionally, there is a sizable gap in putative 

targets between the empire Biota and the superkingdom Eukaryota (FIGURE 29).  Nevertheless 

growth of network interactions with the expansion network of putative target genes through 

taxonomic hierarchy could be well described using subtle curvilinear plots for all prediction 

methods (values R2 = 0.99; FIGURE 33A).  Likewise total network interactions for all target 

prediction methods increased with the expansion of the microRNA repertoire through taxonomic 

hierarchy.  These data could be well accommodated using power-law trend lines (values R2 = 

0.98 to 99; FIGURE 33B).  Moreover, when cross-comparing regulatory interactions under every 

method, scaling constants and exponent values of the power-law trend lines for the microRNAs 

are larger than for targets genes.  From this information it can be reasoned that that newly 

acquired microRNAs from novel families reinforce the pre-existing regulatory network (Sempere 

et al., 2007; Stark et al., 2007a).  These data also match a hypothesis that microRNA-mediated 

regulations control developmental pathways primordial to bilaterians.  The later hypothesis was 

derived from comparison of microRNAs expression patterns and computationally predicted 

targets in vertebrates and flies (Enright et al., 2003; Griffiths-Jones et al., 2006; Prochnik et al., 

2007). 

Direct comparison of expansion of the microRNA repertoire to expansion of putative 

target genes through taxonomic hierarchy recovered relationships well described with 

logarithmic trend lines (R2 = 0.92 to 0.99; FIGURE 34).  Thus, it appears that newly acquired 

microRNAs from novel families expand the targetset incrementally to include a small number of 

novel genes (Sempere et al., 2007; Stark et al., 2007a).  Indeed, each prediction method did not 

reach regulation of all target nodes until the full microRNA complement was included in the 

genus Drosophila (FIGURE 34).  The logarithmic plots of microRNA and target data for all 
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prediction methods (FIGURE 34) are also consistent with the hypothesis that lineage specific 

microRNAs exhibit far fewer conserved targets than do the more broadly conserved microRNAs; 

even when considering only more recently emerged targets (Friedman et al., 2009; Grün et al., 

2005; Stark et al., 2007a). 

 

 
FIGURE 33. Comparison of microRNA targets, and unique microRNAs to regulatory 

network edges conserved through taxonomic hierarchy across the union of twelve 

Drosophila species.  Source network data are presented in APPENDIX III, TABLES 10 & 11.  

Part (A) represents the expansion of putative target genes through taxonomic hierarchy where 

networks at each rank were produced with 112 microRNA families held constant. From these 

data the following trend lines and non-linear regressions were recovered:  

TargetScan) y = 68.504 x 1.0129, R2 = 0.99, p < 10-5;  MiRanda) y =  13.636x1.0246, R2 = 0.99,  

p < 10-5 ; and for the network intersection of methods) y = 2.4742 x 1.0999, R2 = 0.99, p < 10-5.   

Part (B) represents the expansion of the microRNA repertoire through taxonomic hierarchy 

where a total pool of 14925 available targets was held constant. The plotted curves represent 

power-law trend lines with functions and non-linear regression coefficient of determination for: 

TargetScan) y = 5588.8x1.1238, R2 = 1.00, p < 10-5; MiRanda) y = 922.75 x 1.1897, R2 = 0.98, 

p < 10-5; and for the network intersection of methods) y = 427.41 x 1.148, R2 = 0.98, p < 10-5. 
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FIGURE 34.  Comparison of numbers unique microRNAs to microRNA targets conserved 

through taxonomic hierarchy across the union of twelve Drosophila species. Original 

network data are presented in APPENDIX III, TABLES 10 & 11.  The plotted curves 

demonstrate fit to logarithmic trend lines with functions and non-linear regression coefficient of 

determination as follows:  

TargetScan)  y = 3253.7 Ln(x) + 278.64, R2 = 0.91, p < 10-5;  

MiRanda)  y = 1527.2 Ln(x) + 7289.6, R2 = 0.92, p < 10-5;  

and for the network intersection of methods) y = 2983.4 Ln(x) - 1502.9, R2 = 1.00, p < 10-5. 
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MicroRNA Regulatory Network Information Content and Biological Complexity through 

Taxonomic Hierarchy.  A comparison of microRNA targets, and unique microRNAs to 

Shannon information index through taxonomic hierarchy is represented in FIGURE 35.  The 

Drosophila microRNA interaction network for the network intersection of methods encoded over 

9 billion bits of information (FIGURE 35A).  This was nearly double the innate complexity of 

the parent methods and these patterns are maintained as network information content is traced 

through taxonomic hierarchy.  Thus while the network intersection is a smaller dataset, it is 

substantially richer compared to its parent methods; and this quality is preserved throughout 

taxonomic hierarchy.  Futhermore these information index data may be related to structural 

increase in biological complexity with the expansion of the microRNA repertoire (Lee et al., 

2007; Sempere et al., 2006).  The increase in gene regulatory network complexity is likely 

related to phylogenic gain in the acquisition of organismal complexity (Heimberg et al., 2008; 

Lee et al., 2007; Sempere et al., 2006).  There is a dramatic expansion in network complexity 

with the expansion of the microRNA repertoire and this corresponds to the expansion in 

biological complexity from Eumetazoa to Triploblastica (FIGURE 35B).  These results 

harmonize to theories that increased microRNA-mediated gene regulation accompanied the 

advent of organ-containing body plans drawn from three primary tissue types (Prochnik et al., 

2007). 
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FIGURE 35. Comparison of microRNA targets, and unique microRNAs to Shannon 

information index for regulatory networks conserved through taxonomic hierarchy across 

the union of twelve Drosophila species.  Original network quantifications are presented in 

APPENDIX III, TABLES 10 & 11.   

Part (A) represents the expansion of putative target genes through taxonomic hierarchy. 

Networks at each rank were produced with 112 microRNA families held constant.  The plotted 

curves represent power-law trend lines with functions and non-linear regression coefficient of 

determination for: TargetScan) y = 9.1667 x 2.1226, R2 = 1, p < 10-5;  

MiRanda) y = 11.556 x 2.1041, R2 = 1.00, p < 10-5;  

and for the network intersection of methods) y = 18.636 x 2.1056, R2 = 1, p < 10-5. 

Part (B) represents the expansion of the microRNA repertoire through taxonomic hierarchy 

where a total pool of 14925 available targets was held constant. The plotted curves demonstrate 

fit to logarithmic trend lines with functions and non-linear regression coefficient of 

determination as follows:  TargetScan) y = 6x107 Ln(x) + 1x108, R2 = 0.86, p < 10-5;   

MiRanda) y = 1x108 Ln(x) + 3x107, R2 = 0.74, p < 10-5;  

and for the network intersection of methods) y = 2x108 Ln(x) - 3x108, R2 = 0.94, p < 10-5. 
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MicroRNA Regulatory Network Connectedness through Taxonomic Hierarchy.  

MicroRNA targets, and unique microRNAs are compared to regulatory network connectedness 

conserved through taxonomic hierarchy in FIGURE 36.  Network connectedness declines 

through taxonomic hierarchy with the expansion of putative target genes for all methods 

(FIGURE 36A).  Thus, as the network was expanded with increasing available targets, the 

regulatory network density decreased.  Conversely, network connectedness was variable through 

taxonomic hierarchy according to methods with the expansion of the microRNA repertoire 

(FIGURE 36B).  Notably, the connectivity behavior of TargetScan data were well described with 

a linear function (R2 = 0.98); indicating that TargetScan network density increased with the 

expansion of the microRNA repertoire. The differing behaviors for TargetScan and MiRanda 

data according to network connectivity likely reflect different selection profiles for seed-type and 

compensatory aptamers through taxonomic rank (see CHAPTER II). 
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FIGURE 36. Comparison of microRNA targets, and unique microRNAs to network 

connectedness for regulatory networks conserved through taxonomic hierarchy across the 

union of twelve Drosophila species.  Original network connectivity data are presented in 

APPENDIX III, TABLES 10 & 11.  Part (A) represents the expansion of putative target genes 

through taxonomic hierarchy. Networks at each rank were produced with 112 microRNA 

families held constant. The plotted curves represent power-law trend lines with functions and 

non-linear regression coefficient of determination for:  

TargetScan) y = 137.33 x -0.9873, R2 = 0.99, p = 1;  

MiRanda) y = 27.335 x -0.9756, R2 = 0.99, p = 1;  

and for the network intersection of methods) y = 4.9611 x -0.9004, R2 = 0.99, p = 1. 

Part (B) represents the expansion of the microRNA repertoire through taxonomic hierarchy 

where a total pool of 14925 available targets was held constant.  The plotted curves demonstrate 

fit to linear trend lines with functions and non-linear regression coefficient of determination as 

follows: TargetScan) y = 9 x10-5 x + 0.0006, R2 = 0.98, p = 1;   

MiRanda) y = 1x10-5 x + 0.0005, R2 = 0.76, p = 1;  

and for the network intersection of methods) y = -7x10-6 x + 0.0012, R2 = 0.08, p = 1. 
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Continuing Research. Further study should examine the conservation regime (FIGURE 29) of 

Drosophila microRNA-target networks for properties of bottom-up hierarchical (nested) 

modularity (Ravasz et al., 2002).  High average clustering coefficient is required for modular 

network organization and these modules represent discrete entities of elementary components 

and (presumed) functionality.  Modular description of individual genes in regulatory networks 

allows for characterization of operon and regulon structures (Ravasz et al., 2002).  It is likely 

that most microRNA mediated regulations control developmental pathways fundamental to 

bilaterians (Enright et al., 2003; Griffiths-Jones et al., 2006; Prochnik et al., 2007).  And given 

that microRNAs conserved in sequence are often expressed within identical tissues during 

analogous developmental stages in different organisms, future work will consider the overlap of 

subnetworks of the nested hierarchical conservation regime to gene ontology expression data 

from microarrays and gauge with percent overlap if ontogeny recapitulates phylogeny at a 

molecular level (Gaidatzis et al., 2007; Haeckel, 1867; Lee et al., 2007).  In support of this 

hypothesis, certain phylogenetic signal parameters were observed to increase with taxonomic 

depth.  Total Goloboff Fit and likelihood scores to the reference tree generally became more 

optimal tracing downward from Drosophila to Biota (CHAPTER III, FIGURE 22).  Indeed the 

likelihood score for the empire Biota is most optimal over all the higher taxonomic ranks; where 

–ln Likelihood score represents the sum of the probability of the data given the tree and the tree 

with lowest negative log-transformed likelihood is preferred (APPENDIX III, TABLE 13).
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SUMMARY 

 

MicroRNA regulatory networks are dense with most target genes targeted by multiple 

microRNAs, and exhibit precise combinatorial control of targets giving increased regulatory 

versatility.  This study detailed the recovery and network analyses of a suite of homologous 

microRNA targets recovered through two different predicition methods for whole gene regions 

across twelve Drosophila species.  TargetScan output (61.9GB) recovered a network of 14,860 

targets, 1,090,221 microRNA-target interactions, 11,302,034 unique aptamer site interactions, 

and 112 microRNA families.  Output form the MiRanda algorithm (2.96GB) recovered a 

network of 14,583 targets, 241,861 microRNA-target interactions, 390,560 unique aptamer site 

interactions, and 121 microRNA families.  The network intersection of target prediction methods 

recovered a network of 12,616 targets, 78,280 microRNA-target interactions, 226,270 unique 

aptamer site interactions, and 112 microRNAs.  Data recovered from microRNA target 

prediction were integrated with data from taxonomic hierarchical conservation and molecular 

phylogeny through a MySQL database of linked tables called “musca”.  It is notable then that 

there were 27 microRNAs among a total 245 genes recovered with a consistency greater than or 

equal to 90% for the reference tree topology.  The methodology of this research outlined in 

FIGURE 1 can be readily reproduced for other organisms.  The sizable target datasets produced 

in this study are applicable for continuing research in Drosophila molecular biology and could be 

biochemically verified using whole genome microarray analyses and miRNP 

immunopurification. 

The intersection of microRNA target prediction methods produced networks of increased 

potential biological relevance compared to respective parent networks.  This later network 

contained nearly double the innate complexity of the parent methods and these patterns are 

maintained as network information content is traced through taxonomic hierarchy.  Thus while 

the network intersection is a smaller dataset, it is substantially richer compared to its parent 

methods; and this quality is preserved throughout taxonomic hierarchy.  Futhermore this increase 

in network complexity was well correlated to structural increase in biological complexity with 

the expansion of the microRNA repertoire.  These findings represent a novel documentation of 

Drosophila microRNA regulatory network behavior thorough taxonomic heirarchy. 
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MicroRNA regulatory network structure was found to change over time and across 

species.  The decrease in conserved microRNA-target interactions with increasing phylogenetic 

distance exhibited a curve typical of a saturation phenomena.  It seems that only a modest 

number of microRNA–mRNA interactions exhibit conservation over Drosophila cladogenesis.  

The minimal numbers of conserved microRNA-target interactions retained throughout all taxa 

were 1,839 from MiRanda, 13,357 from TargetScan, and 135 for the intersection of both 

methods.  These latter values likely represent the presence of a functionally-constrained core of 

microRNA-target interactions essential to Drosophila.  Networks may also have been influenced 

by the presence of 47 microRNAs exhibiting lineage specific expansion for in Drosophila.  

These collective findings represent the first comprehensive study to directly relate molecular 

sequence evolution and phylogeny with microRNA regulatory network interology in Drosophila. 

An interplay of complex factors appears to operate in species conservation for microRNA 

regulation per target gene (FIGURE 12).  Moreover, differential microRNA enrichment patterns 

by prediction method would seem that selective factors presiding over regulation by 

compensatory aptamers (MiRanda) and seed regions aptamers (TargetScan) are different 

(CHAPTER I).  Selective factors that appear to operate upon seed aptamers include cooperativity 

(redundancy) of interactions and transcript length.  Notably, these novel findings for entire 

messenger RNA transcripts are in accord with conclusions of other detailed analyses which have 

considered only the 3’UTR of Drosophila messenger RNAs (Stark et al., 2005).  As transcript 

length increases, the likelihood of acquisition of a seed-type aptamer binding site also increases.  

Support for a basic model of aptamer sequence evolution is addressed, where:   

5’-seed↔5’-dominant↔ 3’-compensatory (Brennecke et al., 2005). 

The signature of Drosophila phylogeny was found embedded within the microRNA 

regulatory network structure.  The findings of this study represent the first documented inference 

of phylogeny from microRNA regulatory network structure and demonstrate the potential to 

accurately reconstruct phylogeny using abstract representations from network architecture.  It is 

expected that microRNA interactome network data could serve as a useful counterpart to 

complement or supplement DNA sequence and morphology for phylogeny.  Consistent 

congruence of regulatory network phylogenies to reference species tree topology also has strong 

implications to understanding microRNA-target natural history.  Apparently, the phenetic 

approach of Neighbor Joining recovers better signal for the reference tree toplogy (FIGURE 22) 
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over character-based standard parsimony (compare MiRanda in FIGURE 23 & 24).  This would 

only be expected if phylogenetic history were best represented when the regulatory network was 

treated as single entity rather than a series of separable parts. 

While a strong case can be substantiated for microRNA-moderated control over the 

basics of animal anatomy, the roles of microRNA regulation for details of fly anatomy remain 

largely unexplored.  Any resulting integration of microRNA gene regulatory networks to 

chromosome or anatomical data for Drosophila species diagnosis represents an important step to 

broadening an understanding of the mechanics of speciation.  The findings presented in this 

study represent a novel intergration of microRNA regulatory network topology to chromsomal 

synteny and genes linked to species diagnostic phenotypes.  Topological analyses of microRNA 

regulatory networks recovered significant enrichment for the S2T2 motif possessing a redundant 

link (motif-204) in all twelve species sampled for many Muller elements (TABLE 7).  The 

network enrichment of motifs possessing partial internal redundancy would have powerful 

implications toward understanding Drosophila speciation at the level of microRNA-gene 

regulatory interactions: this would suggest that optimization of the whole interactome topology 

itself has been historically subject to natural selection where resilience to attack have offered 

selective advantage.  The repeating motif patterns across elements observed would not be 

expected if Muller elements were not a natural subdivision of the total Drosophila regulatory 

network.  Collective patterns observed indicate that respective Muller element networks have 

developed within the Drosophila transcriptome as separate regulatory modules.  The results of 

this study for regions of major chromosome synteny also have powerful implications toward the 

genetic basis of Haldane’s rule.  A fast-X hypothesis of Haldane’s rule may be contradicted at 

the level of network topology and nucleotide sequence evolution. 

Literature review for genes linked to anatomical features and physiological processes 

features used to diagnose species within the genus Drosophila, recovered a novel list of 2,331 

genes (14.38% total target dataset) from 118 FlyBase anatomy terms (FBbt) and 93 gene 

ontology (GO) categories.  Notably, these FBbt dataset of genes could potentially represent a 

genome sample of the microRNA regulatory core underlying species diagnostic phenotypes.  

Moreover, genes of the FBbt dataset linked species diagnostic phenotype could be useful in 

rationalizing selection of suitable molecular markers or morphological characters for Drosophila 
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phylogeny.  Motif enrichment patterns indicate that lineage-specific selection seems to have been 

operative upon the regulation of genes linked to species diagnostic phenotypic traits. 
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APPENDIX I.  Selection of Multiple Sequence Alignment using Criteria from Phylogenetic  

Reconstruction 

 

 
TABLE 8.  Selection of Multiple Sequence Alignment using Criteria from Phylogenetic 

Reconstruction.  Selection criteria used to eliminate an alignment are colored in red.  Novel 

reconstructions are abbreviated respectively: RECONS-1) re-alignment of MULTIZ sequence 

data using the multiple sequence alignment program MAFFT; RECONS-2) one-step three-way 

reconciliation of PECAN, MAVID, and MULTIZ alignments with production of a consensus 

sequence; and RECONS-3) species-by-species three-way reconciliation and consensus of the 

later three published alignments (Dewey, 2007; Katoh & Toh, 2008; Kent et al., 2002; Paten et 

al., 2008; Stark et al., 2007b).  Phylogenetic methods are abbreviated respectively:  BI) Bayesian 

Inference under general time reversible model with gamma distributed rates and invariant sites; 
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MP) standard parsimony; NJ) neighbor joining under general time reversible model with gamma 

distributed rates and invariant sites; and T-PTP) topology-dependent permutation test against the 

established Drosophila phylogeny (Faith, 1991; Huelsenbeck & Ronquist, 2005; Swofford, 

2002).  Ranges of bootstrap, jackknife, and posterior probability refer to support refer to tree 

topology for the drosophilid reference phylogeny (CHAPTER III, FIGURE 22).  
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APPENDIX II.  Example MicroRNA-Target Interactome Network 

 

 
FIGURE 37.  Example Interactome Network of MicroRNA-Target Interactions 

representing 1.66% of the total microRNA target dataset.  This network includes 248 nodes 

and represents the intersection (overlap) of two datasets for 12 microRNAs (Enright et al., 2003; 

Grün, et al., 2005). Only microRNAs (designated by miR-#) and targets (designated with CG#) 

predicted to interact with multiple microRNAs are labeled; unlabeled nodes represent predicted 

targets to a single microRNA 
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APPENDIX III.  Network Adjacency, Distance Quantification, and Parametric Score  

     Tables for    Select MicroRNA-Target Networks of Drosophila 

 

 
TABLE 9.  Network descriptors for adjacency and distance quantification in select 

microRNA-target networks.  The network quantification and distance analyses were performed 

using in-house GRAFMAN software available under Linux on the Watson supercomputer cluster 

of Virginia Commonwealth University (Karabunarliev & Bonchev, 2002).  Datasets are 

presented in alphabetical order and subgrouped separately for the union of twelve Drosophila 

species (Dspp) and D. melanogaster alone (Dmel).  The union of twelve Drosophila species 

appears in bold.  Rows are further colored according to target prediction method with MiRanda 

in green, TargetsScan in red, and the network intersection of methods in blue. 
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TABLE 10.  Network descriptors for adjacency and distance quantification in for 

taxonomic rank specific target variable subnetworks of MiRanda microRNA-target 

network data.  These network data represent the expansion of putative target genes through 

taxonomic hierarchy where networks at each rank were produced with 112 microRNA families 

held constant.  The network quantification and distance analyses were performed using in-house 

GRAFMAN software available under Linux on the Watson supercomputer cluster of Virginia 

Commonwealth University (Karabunarliev & Bonchev, 2002).  Dataset labels are color-coded to 

match the schema of selected taxonomic ranks presented in CHAPTER V, FIGURE 29.  Rows 

are further subgrouped separately and colored according to target prediction method with 

MiRanda in green, TargetsScan in red, and the network intersection of methods in blue.  
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TABLE 11.  Network descriptors for adjacency and distance quantification for taxonomic 

rank specific microRNA variable subnetworks of MiRanda microRNA-target network 

data.  These network data represent the expansion of the microRNA repertoire through 

taxonomic hierarchy where a total pool of 14925 available targets was held constant.  The 

network quantification and distance analyses were performed using in-house GRAFMAN 

software available under Linux on the Watson supercomputer cluster of Virginia Commonwealth 

University (Karabunarliev & Bonchev, 2002).  Dataset labels are color-coded to match the 

schema of selected taxonomic ranks presented in CHAPTER V, FIGURE 29.  Rows are further 

subgrouped separately and colored according to target prediction method with MiRanda in green, 

TargetsScan in red, and the network intersection of methods in blue. 
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TABLE 12.  Average parametric scores per gene from molecular phylogeny of targets 

represented in Muller element and FBbt data.  Parametric scores were calculated through 

PAUP* where molecular phylogeny was constrained to the topology of the reference tree 

(CHAPTER III, FIGURE 22; Swofford, 2002).  Likelihood scores were calculated under a under 



 156 

a under a general time reversible sequence evolution model with gamma rate variation and 

invariable sites (GTR+I+G).  The NCBI dataset represents 155 molecular markers taken from 

590 operational taxonomic units (OTUs, typically species) available through Genbank (187 

FlyBase records available, 1% total dataset). 
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TABLE 13.  Total sum parametric scores from molecular phylogeny of target genes 

represented in taxonomic rank specific subnetworks of microRNA-target network data.  

These network data represent the expansion of putative target genes through taxonomic hierarchy 

where networks at each rank were produced with 112 microRNA families held constant.  Rows 

and coloring correspond to the datasets of selected taxonomic ranks presented in CHAPTER V, 

FIGURE 29.  Parametric scores were calculated through PAUP* where molecular phylogeny 
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was constrained to the topology of the reference tree (CHAPTER III, FIGURE 22; Swofford, 

2002).  Likelihood scores were calculated under a under a under a general time reversible 

sequence evolution model with gamma rate variation and invariable sites (GTR+I+G). 
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APPENDIX IV. Phylogenetic Reconstruction from Weighted MicroRNA-Target Network  

 Edges  

 

Phylogenetic analyses have been conducted for a weighted edge network of 441 target genes 

linked to microRNA-277 predicted from the PicTar search algorithm of aligned 3’UTRs of target 

genes with medium sensitivity and specificity (setting S3; Grün et al., 2005).  Specifically, 

network edges for the free energies of microRNA-target duplex hybridization (-ΔG kcal/mol) 

were coded into a species matrix as absolute integer values and scored proportionally (by 1, 10, 

100, or 1000) according to decimal place.  Methods of phylogenetic reconstruction employed 

included standard parsimony (MP) under a heuristic search and distance criteria using the 

neighbor-joining algorithm (NJ) as implemented through PAUP* (Swofford, 2002).  Branch 

supports of trees were evaluated by nonparametric bootstrap (BP), third- and half-delete 

jackknife (JK) calculated to high confidence levels.  Both reconstruction methods recovered a 

single tree topology largely congruent to established drosophilid phylogenies and differed only in 

the placement of D. ananassae (FIGURE 38).  Nodal supports for the placement of the later taxa 

were low and itinerant (MP-BP = 57, MP-JK½ = 58, MP-JK⅓ = 63;  NJ-BP = 53, NJ-JK½ = 50, 

NJ-JK⅓ = 62), but otherwise this tree topology was well supported with bootstrap and jackknife 

values of 100.   

Under favorable conditions with roughly equal rates of change and symmetric branches, 

bootstrap values greater than 70% correspond to a probability of greater than 95% that the true 

phylogeny has been found (Hillis and Bull, 1993).  On the basis of visual inspection it is 

hypothesized that the problematic placement of D. ananassae in this analysis may stem from 

missing data or mis-inferred target site homology in the original alignment data used by PicTar 

for target prediction (Grün et al., 2005).  Recovery of phylogenetic information from the 

weighted edges of networks and the production of species tree topologies fully (or mostly) 

congruent with an expected topology under the previously described pilot studies is most 

notable.  These findings provide evidence to support a hypothesis that weighted edge microRNA 

network structure itself can be directly utilized for phylogenetic inference (Mazurie et al., 2008; 

Suthram et al., 2005). 
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FIGURE 38.  

Phylogram recovered 

using weighted edge 

dme-miR-227-target 

data derived from PicTar (Grün et al., 2005).  This phylogram represents single most 

parsimonious midpoint-rooted tree retrieved from weighted standard parsimony reconstruction 

with free energies of hybridization (-ΔG kcal/mol) for 441 mRNA transcripts targeted to miR-

277. Bootstrap proportions indicated near respective branches.  This tree recovered parsimony 

scores of length 61640 steps, CI=0.865, RI=0.592, RC=0.512, HI=0.135, and G-fit=-201.206. 

Drosophila species are abbreviated respectively: Ana) ananassae; Mel) melanogaster; Moj) 

mojavensis; Pse) pseudoobscura; Vir) virilis; Yak) yakuba. 



 161 

APPENDIX V. Phylogenetic Reconstruction using Protein-Protein Interactome Data 

 

Novel phylogenetic analyses were conducted using character data derived from weighted edges 

of protein-protein interactions networks (FIGURE 39).  This methodology was developed using 

data from DroSpeGe database for genes exhibiting statistically significant expansion or depletion 

in the twelve Drosophila species according to in functional categories by gene ontology (GO; 

Gilbert, 2007).  The published dataset consisted of copy numbers (paralogs) for a list of 1473 

genes and 100 GO terms.  Gene identifications were used as input for PathWay Studio 6.0 

(Ariadne Genomics) software, and a direct protein-protein interaction network (interactome) was 

resolved with 1000 edges and 613 nodes (Nikitin et al., 2003).  With the aid of a MySQL 

database, the direct protein-protein interactome was used as a cipher to key into the gene 

paralogy table for the original dataset (Sun Microsystems, Inc.  2008-2009).  Species-specific 

weights for 716 protein interactome edges were recovered assuming a one-to-one second order 

reaction mechanism according to the product of the copy numbers of the protein-coding genes.  

Each network edge weight was coded as a numeric character for phylogenetic analyses and 

scored proportionally (by 1, 10, 100, or 1000) according to decimal position.   

Phylogenetic analyses were performed separately and in union for gene copy numbers, 

GO terms, and edge weights of the protein-interactome.  Methods for phylogenetic 

reconstruction employed included Bayesian inference through MrBayes, standard parsimony 

(MP) and distance criteria using the neighbor-joining (NJ) algorithm as implemented through 

PAUP* (Huelsenbeck & Ronquist, 2005, Swofford, 2002).  Partition homogeneity test for gene 

copy number, GO terms, and weighted protein-protein interactions recovered no significant 

incongruence (P = 1.0); thus all data could be evaluated as part of a shared phylogenetic history 

(Bull et al., 1993)   Nevertheless, the tree topology and resolution recovered for all separate and 

combined datasets was found to differ depending upon the phylogenetic methods employed. 

Bayesian inference of the entire dataset of gene copy numbers, GO terms, and protein-

interactome edge weights recovered a tree topology fully congruent to the reference tree with 

strong posterior probability (PP) branch supports of 97-100.  A topology-dependent permutation 

test (T-PTP) for the entire dataset against the established Drosophila phylogeny indicated 

significant support of the data for the expected topology (P = 0.0168), however the most 

parsimonious tree differed from the reference tree in the placement of D. erecta and D. yakuba 



 162 

within the D. melanogaster subgroup, and the D. obscura clade outside of the subgenus 

Sophophora (CHAPTER III, FIGURE 22; Faith, 1991).  Branch supports under standard 

parsimony were variable and inconsistent between statistical measures: nonparametric bootstrap 

(BP) < 50-81; third-delete jackknife (JK⅓) = 24-82; half-delete jackknife (JK½) = 34-93.  In 

contrast under NJ, the entire dataset recovered a strongly supported (BP = 100, JK⅓ = 100, JK½ 

= 100) tree nearly congruent to the expected topology differing only in the placement of 

Drosophila yakuba relative to D. erecta.   

In comparison to the entire dataset, separate phylogenetic analyses under MP and NJ 

using only gene copy number or GO term data repeatedly recovered the same nearly congruent 

topology to the expected tree (differing only in Drosophila yakuba to D. erecta relative 

placement) with consistent BP, JK½, and JK⅓ frequencies at 100.  Similarly, separate T-PTP 

analyses of gene copy number or GO term data indicated significant support for the reference 

phylogeny (P < 10-4 and P = 0.0224), Bayesian inference for gene copy number retrieved a 

strongly supported tree topology (PP = 86-100) fully congruent to the reference tree (Faith, 

1991).  Conversely, GO term data retrieved a poorly resolved (PP = <50-100) tree incongruent to 

the expected topology. 

The protein-interactome edge weight dataset consisted of 1172 unordered characters with 

586 each of weights of 10 and 1.  There were 577 (49.2% of dataset) constant characters, 106 

(9.0% of dataset) variable but parsimony-uninformative, and 489 (41.7% of dataset) potentially 

parsimony-informative characters recovered from this data.  Bayesian inference recovered a 

well-supported tree mostly congruent to the reference topology (PP = 100) except for the unusual 

placement of D. willistoni as nearest sister to D. melanogaster (PP = 71).  Branch supports under 

standard parsimony were variable (BP = 55-100, JK⅓ = 52-100, JK½ =5 1-100) but relatively 

consistent per node, and the most parsimonious trees differed from the reference topology in the 

placement of D. erecta within the D. melanogaster subgroup.  Nevertheless, a T-PTP study 

retrieved significant support of the data for the reference Drosophila tree (P < 10-4; Faith, 1991).  

The NJ tree topology was strongly supported (BP=100, JK⅓ =  100, JK½ = 100) and nearly 

congruent to the expected tree; differing only in the placement of Drosophila yakuba relative to 

D. erecta (CHAPTER III, FIGURE 22; FIGURE 39).  These findings provide evidence to 

support a hypothesis that weighted edge protein interaction network structure itself can be 

directly utilized for phylogenetic inference.  
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Additional phylogenetic analyses were initiated for an expanded sample of paralogy data. 

A paralogy table was constructed from reciprocal BLAST data of 12 Drosophila species using 

whole mRNA libraries, EISE_exonerate, EISE_genemapper, EISE_genewise, and GLEANR 

computationally predicted annotations accessible thorough FlyBase and DroSpeGe (Birney, et 

al., 2004; Chatterji and Pachter, 2006; Heger and Ponting, 2006; Mackey et al., 2006; Slater and 

Birney, 2005).  Cytoscape freeware with BioNetBuilder and DroID plugins was utilized to build 

networks of interacting proteins for Drosophila melanogaster this network of interacting proteins 

were used as a cipher to key into each gene paralogy table. Species-specific network edge 

weights were recovered from the product of the copy numbers of the protein-coding genes. The 

edge weights were used as characters for phylogenetic reconstruction through PAUP* (FIGURE 

40). Separate phylogenetic analyses of strict paralogy, presence/absence of network edges, and 

proteome weighted edges for messenger RNA derived data under parsimony and neighbor 

joining consistently recovered tree topologies nearly congruent topology to the expected tree 

(CHAPTER III, FIGURE 22).  Branch supports by bootstrap were highly variable (>50-100%) 

while recovered jackknife robust and largely consistent between statistical measures with 

frequencies between 75 and 100.  Recovered trees differed from the reference tree due to 

itinerant placement of Drosophila ananassae and D. melanogaster (FIGURE 40).  While 

differences in recovered tree topologies from the reference tree may stem from missing data or 

mis-inferred target site homology in the source data or may indicate underlying methodological 

biases, nevertheless, the recovery of phylogenetic information from the weighted edges of 

networks and the production of species tree topologies largely congruent to the expected 

topology is most notable.  Collectively, the findings of these studies indicate that while these GO 

terms have likely been subject to positive selection, there is nevertheless the likely presence of 

phylogenetic information available in gene copy number and the inferable weighted-edge 

network structure (Drosophila 12 Genomes Consortium, 2007; Gilbert, 2007; Khaitovich et al., 

2004). 
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FIGURE 39.  Cladogram recovered from Neighbor-Joining 

using weighted edge protein-protein interactome data derived 

from the DroSpeGe database (Gilbert, 2007).  This tree recovered 

parsimony scores of length 3709 with parametric scores of 

CI=0.582, RI=0.353, RC=0.205, HI=0.418, and G-fit= -419.074. The 

NJ tree topology was strongly supported (BP=100, JK⅓ =100, 

JK½=100).  All bootstrap, half- and third-delete jackknife 

frequencies retrieved for this topology were 100. Drosophila species are abbreviated 

respectively: dana) ananassae; dere) erecta; dgri) grimshawi; dmel) melanogaster; dmoj) 

mojavensis; dper) persimilis; dpse) pseudoobscura; dsec) sechellia; dsim) simulans; dvir) virilis; 

dwil) willistoni; dyak) yakuba. 
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FIGURE 40.  Cladogram recovered from using weighted edge protein-protein interactome 

data derived from reciprocal messenger RNA BLASTs of 12 Drosophila species. This 

cladogram represents the single most parsimonious rooted tree retrieved from weighted 

parsimony reconstruction under a branch-and-bound search. This tree recovered a length of 

96,887 for 215,394 total characters; of which 20,761 (9.6% total sample) were potentially 

parsimony informative. Recovered parsimony scores included: Consistency Index (CI) of 0.875, 

Retention Index (RI) of 0.714, Rescaled Consistency Index (RC) of 0.625, Homoplasy index 

(HI) of 0.125, and Goloboff-fit (G-fit) of -19034.447. Nodal support values by bootstrap were 

highly variable (>50-100%) while recovered jackknife frequencies retrieved were high (95-

100%) for all clades expect Sophophora (61-64). 
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APPENDIX VI.  Table of Life Stage, FlyBase Terms and Description of Features Available 

   to Diagnose Drosophila species. 
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TABLE 13.  Life stage, FlyBase terms and description of features available to diagnose 

Drosophila species.  Anatomical features (FBbt) and physiological processes (gene ontology 

(GO) categories) available through FlyBase to diagnose species within the genus Drosophila 

(Grimaldi, 1990, Markow T, &  O’Grady, 2005, Wilson et al., 2008). 
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APPENDIX VII.  Phylogenies of Taxa Surveyed for Conservation of MicroRNAs and  

      Targets to Drosophila melanogaster 

 

 
FIGURE 41.  Phylogeny of insect taxa surveyed for conservation of microRNAs and targets 

to Drosophila melanogaster (Li et al., 2006; Ruan et al., 2008; Sharp, 1898). 



 173 

 
 

FIGURE 42. Phylogeny of arthropod taxa surveyed for conservation of microRNAs and 

targets to Drosophila melanogaster (Latreille, 1829; Li et al., 2006; Ruan et al., 2008). 
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FIGURE 43.  Phylogeny of opisthokont taxa surveyed for conservation of microRNAs and 

targets to Drosophila melanogaster (Li et al., 2006; Ruan et al., 2008).  This phylogeny traces 

conservation to Drosophila through the ranks of Opisthokonta, Metazoa, Eumetazoa, Bilateria in 

the traditional sense, Coelomata, and Protostomia (Brands, 2005; Cavalier-Smith, 1987; 

Grobben, 1908; Haeckel, 1896; Hatschek, 1888; Hyman, 1951). 
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FIGURE 44.  Phylogeny of deuterostome taxa surveyed for conservation of microRNAs 

and targets to Drosophila melanogaster (Li et al., 2006; Ruan et al., 2008).  Deuterostomia 

unites to Drosophila at the systematic rank of Coelomata in the traditional sense (Grobben, 1908; 

Hyman 1951). 
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FIGURE 45.  Phylogeny of mammalian taxa surveyed for conservation of microRNAs and 

targets to Drosophila melanogaster (Li et al., 2006; Ruan et al., 2008).  Mammalian taxa are 

members of the Dueterostomia (FIGURE 44) and unite to Drosophila within the Coelomata in 

the traditional sense (Grobben, 1908; Hyman 1951). 
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FIGURE 46.  Phylogeny of eukaryote taxa surveyed for conservation of microRNAs and 

targets to Drosophila melanogaster (Chatton, 1925; Li et al., 2006; Ruan et al., 2008).  
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FIGURE 47.  Phylogeny of biota surveyed for conservation of microRNAs and targets to 

Drosophila melanogaster (Brands, 2005; Li et al., 2006; Ruan et al., 2008). 
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