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Herpes simplex virus entry into cells is a multistep process that engages the host cell 

machinery. The proteasome is a large, ATP-dependent, multisubunit protease that plays a critical 

role in the maintenance of cell homeostasis. A battery of assays were used to demonstrate that 

proteasome inhibitors blocked an early step in herpes simplex virus entry that occurred after 

capsid penetration into the cytosol but prior to capsid arrival at the nuclear periphery. 

Proteasome-dependent viral entry was not reliant on host or viral protein synthesis. MG132, a 

peptide aldehyde that competitively inhibits the degradative activity of the proteasome, had a 
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reversible inhibitory effect on herpes simplex virus capsid transport. Herpes simplex virus can 

use endocytic or nonendocytic pathways to enter cells. These distinct entry routes were both 

dependent on proteasome-mediated proteolysis. In addition, herpes simplex virus successfully 

entered cells in the absence of a functional host ubiquitin-activating enzyme, suggesting that 

viral entry is ubiquitin independent.  

Herpes simplex virus immediate-early protein ICP0 is a multifunctional regulator of 

herpes simplex virus infection. Late in infection ICP0 interacts dynamically with cellular 

proteasomes. ICP0 has a RING finger domain with E3 ubiquitin ligase activity that is necessary 

for its IE functions. The fundamental and functional properties of ICP0 that is present in the 

virion tegument layer have not been well characterized. For these reasons, I sought to 

characterize tegument ICP0 and determine the role of tegument ICP0 during proteasome-

dependent entry of herpes simplex virus. Protein compositions of wild-type and ICP0 null virions 

were similar, suggesting that the absence of ICP0 does not grossly impair virion assembly. 

Virions with mutations in the RING finger domain contained greatly reduced levels of tegument 

ICP0, suggesting that the domain influences the incorporation of ICP0. Virion ICP0 was resistant 

to removal by detergent and salt and was associated with capsids, features common to inner 

tegument proteins. ICP0 mutations that resulted in the absence of ICP0 in the tegument layer, 

allow herpes simplex virus to enter cells independently of the proteasome activity. I propose that 

proteasomal degradation of virion and/or host proteins is regulated by ICP0 to allow for efficient 

delivery of incoming herpes simplex virus capsids to the nucleus. 
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I. INTRODUCTION 
 
 
 
 

A. HERPES SIMPLEX VIRUS 

 

1. Background 

 Herpesviruses are a group of DNA viruses with a distinctive viral architecture (192). 

Assignment to the herpesviridae family is made on the basis of virion morphology. Virions are 

composed of a densely packed, linear double-stranded DNA core, which is enclosed by an 

icosahedral capsid. Surrounding the capsid is a proteinaceous or tegument layer. These two viral 

structures are bounded by a host-derived envelope with embedded glycoprotein spikes. More 

than 80 herpesviruses have been identified and 8 are known human pathogens (256). Biological 

criteria were used to assign viruses to three subfamilies, the alpha-, beta- or 

gammaherpesvirinae (192) (Table I.). A common feature of herpesviruses is the ability to persist 

for the lifetime of the host (256). Alphaherpesviruses have a broad host range but primarily 

infect sensory ganglia (224). Betaherpesviruses infect secretory glands, lymphoreticular cells, 

kidneys and other tissues. Gammaherpesviruses have a limited host range and usually infect 

either T or B lymphocytes. This grouping scheme correlates with evolutionary analysis of 

herpesviral genomes (192). 

 After herpes simplex virus (HSV) comes into contact with the skin or mucous membrane, 

the virus undergoes replication at the site of infection (65). The virus can then infect sensory 



 
 

2 

Table I. Human herpesviruses 

Common Name Subfamily Common disease/Symptoms 
Herpes simplex 1 (HSV-1) α Herpes labialis, keratitis 
   
Herpes simplex 2 (HSV-2) α Herpes genitalis, neonatal encephalitis 
   
Varicella-zoster virus (VZV) α Varicella (chicken pox), herpes zoster 
   (shingles), postherpetic neuralgia 
   
Epstein-Barr virus (EBV) γ Infectious mononucleosis, oral hairy  
  leukoplakia, Burkitt's lymphoma,  
  nasopharyngeal carcinoma 
   
Human cytomegalovirus β Congenital CNS maldevelopment,  
(HCMV)  mononucleosis, posttransplant 
  and AIDS complications 
   
Human B-lympotropic virus β Infant exanthem subitum, posttransplant 
(HHV-6)   and AIDS complications 
   
Human herpesvirus 7 (HHV-7) β None known 
   
Kaposi's sarcoma- γ Kaposi's sarcoma, primary effusion  
associated virus (KHSV)  lymphoma, multicentric Castleman’s disease 

 
Table modified from (232). 
 

 

 

 

 

 

 

 



 
 

3 

neurons that innervate the entry site (268). Some neurons undergo productive (lytic) infection 

while other neurons retain the virus in a dormant (latent) state (268). HSV can remain latent for 

the lifetime of the host. HSV may also be reactivated and transported to or near the initial site of 

infection (65). Lytic gene expression is repressed during latency (84). Viral-encoded proteins are 

essential for the efficient reactivation of HSV from latency (268). 

 HSV-associated diseases are among the most widespread infections (256). HSV type 1 

(HSV-1) is the prototype alphaherpesvirus and primarily causes extragenital or oral infections 

(34).  HSV type 2 (HSV-2) is primarily associated with infection of the anogenital region. 

Although a significant percentage of primary herpes infections are subclinical, HSV infections 

are still an important public health concern (256). HSV infection affects approximately 60% to 

95% of adults worldwide (34). It is estimated that 50 million Americans are infected with HSV-2 

(99). Recent studies have shown an increase in HSV-2 causing extragenital infections and in 

HSV-1 causing anogenital infection (34). HSV infection is normally localized to the mucosal 

sites and dorsal root ganglia but disseminated infection can be a threat to immunocompromised 

individuals and neonates (99). HSV is the common cause of sporadic encephalitis worldwide. 

HSV is the most common virus to infect the human brain. Ocular HSV infection is the second 

most common cause of blindness worldwide (34). HSV-2 neonatal infections have an incidence 

of 1 in 3,000 to 1 in 20,000 births per year in the United States.   

 Acyclovir, an inhibitor of HSV DNA replication, is the most widely used antiviral for 

HSV infections (34, 256).  Acyclovir-resistant strains can develop in immunocompromised 

patients (34).  Foscarnet and Cidofovir, also DNA replication inhibitors, are used for treatment of 

HSV infections resistant to Acyclovir. Management of HSV infections does not rid the host of 

virus. Current antivirals can only prevent transmission, suppress recurrence and attenuate clinical 
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course and viral shedding (256). There is currently no approved vaccine for general 

administration. Thus, HSV-1 and HSV-2 remain serious human pathogens that are important to 

study. 

 

2. Virion structure 

HSV is a multilayered particle with an overall diameter of approximately 200 nm. 

Virions are composed of four key structural components: a genome, capsid, tegument and 

envelope (Fig. I.). Virions are comprised of more than 40 distinct proteins (180). 

The HSV genome is a linear double-stranded DNA molecule (Fig. II.). It contains 150 

kilobase pairs with a G+C content of 67% (HSV-1) or 74% (HSV-2) (191). The DNA genome is 

divided into two covalently linked segments, designated long (L) and short (S) (190). Each 

segment contains unique sequences (UL and US) flanked by a pair of inverted repeats. L and S 

segments can be inverted relative to one another, yielding four possible genome arrangements. 

The HSV genome has been sequenced and contains 74 different protein-encoding genes, 

although more have been suggested due to gene crowding (68, 190, 191, 231). 

The capsid is a protein shell with a approximate thickness of 15 nm and 125 nm diameter 

(143). Seven different proteins can compose the capsid, arranged on a icosahedral surface lattice 

(247). VP5 is the major structural protein of the 12 pentons and 150 hexons. The capsid therefore 

is comprised of a total of 960 copies of VP5. 

A proteinaceous layer resides between the capsid and the envelope. This tegument 

layer contains more than 20 viral proteins and is asymmetrically structured in extracellular  
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Figure I. Herpes simplex virus structural elements. Shown is the structure, as determined by 

cryo-electron tomography reconstruction, of the herpes simplex virion (122). The capsid, 

tegument, envelope and glycoprotein structures are indicated. 
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Figure II. HSV genome structure. The long and short unique regions (UL and US) are 

flanked by inverted repeat regions (blue boxes). The approximate map locations of the genes 

encoding tegument proteins discussed in the thesis are shown. 
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virions (180). It is currently thought that these proteins act as viral regulators to mediate 

activities during viral entry and prior to viral gene expression (212). 

The host cell-derived envelope consists of host lipids and polyamines and accommodates 

approximately 12 viral glycoproteins (113). The glycoproteins, visualized as spikes by cryo-

electron microscopy, are arrayed in dense clusters around the tegumented region and are sparsely 

populated in other regions (122). They also vary in straightness, angles and whether they are 

organized as homo- or hetero-oligomers (122, 127). 

 

3. Infectious cycle 

The reproduction cycle of HSV has been extensively studied using cell culture models. 

Envelope glycoproteins mediate attachment, binding to cell receptors and fusion of the viral 

envelope with a host membrane (134) (Fig. III.). The virus can then penetrate into the cytoplasm 

of the cell. Capsids are rapidly transported to the nucleus via dynein interaction and movement 

on cellular microtubules (67, 252). Capsid docking at the nuclear pore complex (NPC) results in 

the release of the viral genome (12, 217). The nucleus is the site where viral transcription of 

genes, genome replication and capsid assembly occur.  

HSV gene expression is a temporally regulated cascade of events. Gene expression 

begins when VP16 is released from the tegument and enters the nucleus to induce the 

transcription of immediate-early (IE) (α) genes (118, 169, 272). Several α proteins, including 

ICP4 and ICP0, act as transactivators for the transcription of early (E) (β) and late (L) (γ) HSV 

genes (58, 84). The β gene products include proteins that are involved in nucleic acid 

metabolism. Viral DNA synthesis is thought to proceed by a rolling circle mechanism (232). 

Several viral  
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Figure III. HSV infection of a model neuronal cell. HSV attaches, binds and fuses with the 

cell membrane (1.). The capsid binds to microtubules and is transported to the nuclear pore 

(2.), where the virus releases its genome (3). Virus gene expression and DNA replication 

occurs in the nucleus (4.). Genomes are packaged into empty nucleocapsids (5.). Viruses 

bud into the inner nuclear membrane and form a primary envelope (6.). The virus then fuses 

with the outer nuclear membrane and releases the capsid into the cytosol (7.). The 

maturation of virions occurs when tegumented virions bud into glycoprotein containing 

vesicles of the trans-Golgi network (TGN) (8.) and form a secondary enveloped virion (9.). 

Mature virions are released at the cell surface (9.). 
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genes are necessary and sufficient for HSV DNA replication (218). These include a DNA 

polymerase (pUL30), DNA polymerase cofactor (pUL42), an origin binding protein (pUL9), a 

single-stranded DNA-binding protein (ICP8) and a helicase-primase complex (pUL5, pUL8, and 

pUL52) (49, 117). With the onset of DNA replication, the γ genes, encoding virion structural 

proteins, are expressed. 

The newly synthesized viral glycoproteins localize to the cell surface and the inner 

nuclear membrane (INM) (232). Current studies have shown VP1-2 and VP16 presence and 

absence from the primary enveloped virions in the nucleus (24, 174, 201, 210). Whether 

tegument proteins are added to primary enveloped virions or solely to secondary enveloped 

virions is still unclear. The products of DNA synthesis are head-to-tail concatemers, which are 

cleaved into unit-length genomes and packaged into preformed nucleocapsids (147, 267). 

In the ‘envelopment-deenvelopment-reenvelopment’ model, virions leave the nucleus by 

budding at the INM, forming a primary envelope, which is followed by virions fusing with the 

outer nuclear membrane (ONM) (198). After fusion, capsids are released into the cytoplasm, the 

site of virion maturation. Tegument is acquired and virions bud into glycoprotein containing 

vesicles of the TGN, forming a secondary enveloped virion. In permissive cells, the HSV life 

cycle, from entry to viral spread to neighboring cells, takes approximately 18 to 20 hours (237). 

 

4. HSV entry 

HSV entry is a multistep process that engages the host cell machinery in a coordinated 

fashion (254). Viral entry can be broadly defined as all events leading to the deposition of the  
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uncoated virus genome into the nucleus. HSV can enter cells by multiple routes (Fig. IV.). HSV 

can utilize either the endocytic or nonendocytic pathways for productive entry into host cells 

(214). Regardless of the entry pathway, glycoprotein B (gB), glycoprotein H (gH), glycoprotein 

(gL) and glycoprotein D (gD) are required for entry. 

When introduced to target cells, HSV attaches to cell surface molecules. Both 

glycoprotein C (gC) and gB can mediate attachment to heparan sulfate moieties of cell surface 

proteoglycans, although this is not essential for entry (10, 136, 137).  

gD binding to a cognate receptor is an essential step during HSV entry (253) (Fig. IV. 1.). 

gD can bind to Nectin-1 and Nectin-2, which belong to the immunoglobulin-like cell adhesion 

superfamily (111). gD can also interact with the tumor necrosis factor receptor-like herpesvirus 

entry mediator (HVEM) and specific sites on heparan sulfate generated by certain 3-O-

sulfotransferases (202, 251). Upon receptor binding, it is suggested that the C-terminus of gD is 

displaced and activates the viral fusion machinery (107, 134, 280). Paired immunoglobulin-like 

type 2 receptor α (PILRα) is a cellular receptor of gB that appears to function in collaboration 

with gD receptors (245). Viral determinants, cellular gD-receptors, and the background of the 

target cell all seem to contribute toward the selection of entry pathway used by HSV (54, 70, 

238).  

gB and gH have been reported to play an important role in viral membrane fusion (30, 

102, 262) (Fig. IV. 2.). Several studies suggest that gB functions as a fusion protein and the 

fusion loops at the base of gB protomers are important for its function (128, 129, 135). Recent 

studies suggest that low pH-induced conformational changes in gB, together with additional 

triggers, may be important for viral fusion during endocytosis (69). gB seems to require gH/gL 

interaction and function following gB fusion loop insertion into the host membrane (8).  
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Figure IV. HSV entry pathways. On the left is the endocytic pathway or pH-dependent pathway. 

In this pathway, virions are taken up by cellular vesicles and then escape the endocytic pathway 

at a vesicle of the appropriate low pH. On the right is the nonendocytic pathway or pH-

independent pathway. In this pathway, virions fuse directly with the plasma membrane. Once 

virions penetrate into the cytoplasm, they are transported to the nucleus, where they dock and 

release their genome. Model cell lines for each pathway are indicated at the bottom in 

parentheses. For HSV pathogenesis, our lab has proposed that the endocytic and nonendocytic 

pathways are used for distinct cell types, as indicated at the bottom (213). Numbers indicate the 

entry steps of HSV: 1. Binding, 2. Penetration/Fusion, 3. Capsid transport 4. Gene expression. 
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Endocytic uptake of virions is required for entry of HSV into v cells and epithelial cells, 

e.g. keratinocytes (213, 214) (Fig. IV. left). CHO cells are inherently resistant to HSV infection 

(215). Thus expression of gD receptors, such as HveA (HVEM), nectin-1, or nectin-2, are 

necessary for efficient entry and infection (111, 202). In CHO-nectin-1 cells, capsid uptake is 

rapid and half of input virus escapes the endocytic machinery by ~30 minutes (min) (215). 

Cellular phosphatidylinositol 3-kinase activity facilitates endocytic trafficking of HSV and 

notably is not required for HSV entry via the direct penetration at the cell surface.  

In cell types such as neuronal or Vero cells, HSV penetrates directly through the plasma 

membrane and releases capsids into the cytosol (166, 213) (Fig. IV. right). In Vero cells, capsid 

penetration occurs within minutes and is complete by ~30 min (166, 214, 252) 

After the viral envelope fuses, the bulk of the tegument appears to remain with the cell 

membrane (188). The HSV capsid that is released into the cytosol utilizes the minus-end-directed 

motor complex dynein/dynactin to travel on microtubules to the nuclear periphery (67, 252) (Fig. 

IV. 3.). Capsids then dock at the nuclear pore and release their DNA genome into the nucleus, 

the site of replication for herpesviruses (Fig. IV. 4.). 

 

B. HSV TEGUMENT LAYER 

All herpesviruses have the tegument layer between the capsid and envelope (198) (Table 

II.). The tegument layer is composed of mainly viral proteins. Based on the number of peptides 

detected by mass spectrometry, the tegument layer makes up more than half the virion (180). In 

extracellular herpes simplex virus, the tegument layer is asymmetrical (122, 212). At late times 

postinfection (p.i.), the HSV tegument undergoes a change from a symmetrical organized 

tegument layer that is sensitive to detergent removal to an asymmetrical tegument layer that is  
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Table II. Conservation of HSV-1 tegument proteins 

HSV-1 
Tegument     

Gene conserved in Herpesvirinae 
subfamily    

protein alpha beta gamma 
pUL7 YES YES YES 
pUL11 YES YES YES 
pUL13 YES YES YES 
pUL14 YES YES YES 
pUL16 YES YES YES 
pUL21 YES YES YES 
pUL23 YES No YES 
VP1/2 YES YES YES 
pUL37 YES YES YES 
VHS YES No No 
VP11/12 YES No No 
VP13/14 YES No No 
VP16 YES No No 
VP22 YES No No 
pUL50 YES No No 
pUL51 YES YES YES 
pUL55 YES No No 
pUS2 No No No 
pUS3 YES No No 
pUS10 No No No 
pUS11 No No No 
ICP34.5 No No No 
ICP0 YES No No 
ICP4 YES No No 

 
Bold indicates protein identified in virions by mass spectroscopy. 

Table modified from (157). 
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resistant to tegument removal. This causes the capsid to be separated from the envelope by 30 to 

35 nm of tegument on one side of the virion (122). It is currently thought that the virus carries 

these viral regulators to mediate activities prior to gene expression (212). Tegument proteins also 

have key roles in viral gene expression and egress of mature virions. 

 

1. Composition and structure 

In the mature herpes virion, there are 23 potential viral proteins and at most 49 host 

proteins in the tegument layer (180) (Table III.). The host proteins found in virions are expected 

to be in low abundance and their functions are currently unknown. The predominant viral 

proteins, more than 800 copies per virion, are VP16, VP22 and UL47 (131, 180). In contrast, 

VP1-2, UL37 (pUL37), ICP0 and ICP4 proteins are found in lower abundance, 100 copies or 

less, in virions (131, 180, 275, 276).  

The tegument can be divided into inner and outer tegument proteins; a designation that is 

often based on the ease of experimental detergent removal of tegument proteins from mature 

virions (184, 203). By structural analysis, inner tegument proteins are icosahedrally arranged, 

centered on the capsid pentons (283). VP1-2 protein is suggested to be in the inner, capsid-

associated part of the tegument layer due to the interaction with capsid bound pUL25 (48). 

Another inner tegument protein, pUL37 protein, interacts with the N-terminus of VP1-2 (200).  

While VP1-2 and pUL37 are present in stoichiometric amounts, the amount of outer 

tegument proteins appears to vary (45). The link between the tegument layer and the virion 

envelope is thought to mainly depend on pUL11 and the internal domains of gD, gH and gE (97, 

153, 278). Currently, VP16 is thought to be the link between inner and outer tegument proteins 

(206).  
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Table III. Properties and functions of HSV-1 tegument proteins 

Tegument Required Previously Functions and potential roles 
proteina for growthb describedc  

pUL7 NE No Regulates a mitochondrial function during egress 
pUL11 NE Yes Secondary envelopment 
pUL13 NE Yes Protein kinase, tegument release, regulates 

   pUS3, inhibits IFN response 
pUL14 NE Yes Nuclear import, regulates apoptosis, 

   nuclear targeting of VP16 and capsids 
pUL16 NE Yes Secondary envelopment 
pUL21 NE Yes Secondary envelopment, regulates microtubule 

   assembly 
pUL23 NE No Thymidine kinase, viral DNA replication 
VP1/2 E Yes Capsid transport, secondary envelopment, 

   release of viral DNA, DUB activity 
pUL37 E Yes Secondary envelopment, regulates viral 

   replication 
VHS NE Yes Regulates translation and immune response 

VP11/12 NE Yes Regulates pUL48-dependent transcription 
VP13/14 NE Yes Secondary envelopment, regulates 

   pUL48-dependent transcription 
VP16 E Yes Secondary envelopment, regulates viral 

   transcription 
VP22 NE Yes Secondary envelopment, regulates microtubule 

   assembly 
pUL50 NE No dUTPase, viral DNA replication 
pUL51 NE Yes Secondary envelopment 
pUL55 NE No Unknown 
pUS2 NE Yes Unknown 
pUS3 NE Yes Protein kinase, primary deenvelopment, tegument 

   release, regulates actin assembly and apoptosis 
pUS10 NE Yes Unknown 
pUS11 NE Yes Regulates host translation, capsid transport 

ICP34.5 NE Yes Regulates host translation, viral DNA 
   replication, and immune response 

ICP0 NE Yes Regulates capsid transport 
ICP4 E Yes Regulates viral transcription 
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a Identified HSV-1 in virions by mass spectroscopy (180). 

b Essential (E) or Nonessential (NE). 

c Based on studies prior to mass spectroscopy study (199, 237). 

Table modified from (157). 
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2. Functional properties 

Although knowledge of virion associated proteins has been broadened in recent years, the 

complete composition of the tegument layer awaits more comprehensive characterization (180). 

A few of the HSV tegument proteins have distinct functions during HSV infection, but the 

majority of the tegument proteins have potential functions or unclear mechanisms. Several 

studies suggest that tegument proteins play multiple roles throughout HSV infection. 

 

a. Pre-immediate early events 

 Upon binding to a cellular receptor, there appears to be a transmission of a signal across 

the virus envelope causing tegument rearrangement (194). UL16 is capsid-associated in 

extracellular viruses and upon viral binding to cellular receptors UL16 is released from capsids 

(194, 198). This restructuring could prepare the tegument for release into the cytosol following 

viral fusion. 

Virion host shutoff (VHS) protein of HSV is an RNase that degrades mRNA species 

(101, 168, 234). VHS is synthesized late in infection but is also found in the tegument layer of 

virions (101, 168). Thus VHS can immediately perform its functions following viral fusion. 

In vitro and in vivo, inner tegument proteins promote capsid motility (183, 270). VP1-2 

and pUL37 remain associated with capsids during the microtubule transport of capsids to the 

NPC. VP1-2 was shown to be required for capsid motility (183). While pUL37 is not essential 

for capsid transport, it is required for efficient transport (167, 183). However, no functional 

interaction between inner tegument proteins and cellular motor proteins have been identified 

(198).  
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After capsids are transported on microtubules, they bind to the NPC. VP1-2 has been 

suggested to play a role in the process due to the study of a temperature sensitive VP1-2 mutant, 

tsb7. At nonpermissive temperature, tsb7 capsids bind to the NPC but do not release their DNA 

(12). In a recent report, VP1-2 was shown to undergo cleavage after docking at the NPC, which 

was essential for DNA release (148).  

 

b. HSV gene expression 

Following viral penetration and release of tegument proteins, VP16 forms a complex with 

cellular cofactor HCF-1 (169). This allows for subsequent interaction with OCT-1 and assembly 

onto HSV IE promoters (272). OCT-1 is essential at low multiplicity of infection (MOI) while 

HCF-1 is key for IE gene expression (211, 216). The acidic C-terminal domain of VP16 is 

important for recruitment of host RNA polymerase II and initiation components (118). Viral 

transactivators and tegument proteins ICP0 and ICP4 may also aid in stimulation of IE gene 

expression but this has yet to be determined. 

 

c. Primary envelopment and nuclear egress 

 After capsid assembly in the nucleus, the virus buds into the INM.  HSV tegument 

pUL31 and pUL34 are required and sufficient for the budding process at the INM (164). Cellular 

and viral kinases are also recruited by pUL31 and pUL34 to disrupt nuclear lamins and allow for 

viral contact with the INM (207, 221). pUL34 is integrated into the primary envelope of virions 

interacting with tegument pUL31 but neither are included in mature virions (198).  

The mechanism of fusion of the primary envelope at the ONM is currently unclear (198).  

pUL31 and pUL34 also appear to be involved in the deenvelopment stage (164). Mutagenesis 
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studies have also suggested that gB, gH and inner tegument protein pUS3 kinase may also be 

involved in HSV nuclear egress (98, 154). The phosphorylation of the cytoplasmic domain of gB 

seems to be important for this process (154).  

 

d. Egress 

Like entry, VP1-2 is required for capsid transport during egress (183). VP1-2 may also be 

involved in vesicular transport of secondary enveloped virions (250). In contrast to entry, UL37 

is essential for egress and secondary envelopment since deletion of UL37 blocks formation of 

mature virions (61). How directionality is selected, dynein-mediated for entry and kinesin-

mediated for egress, has yet to be determined. 

pUL11, pUL20 and gK, all seem to play an important role in secondary envelopment. 

Deletion of UL11 results in cytoplasmic aggregates of capsids that contain tegument-like 

material (106). pUL11 localizes to TGN membranes (9). Due to this localization, the known 

interaction between pUL11 and tegument pUL16 might facilitate binding of tegumented capsids 

to TGN membranes (106, 177). pUL20 and gK are essential for cytoplasmic virion 

morphogenesis, since deletion of either protein results in cytoplasmic virions unable to acquire 

the secondary envelope (106). pUL11 functions are dependent on the functions of pUL20 and 

gK, that occur earlier in egress. 

 

C. INFECTED CELL PROTEIN 0 

HSV infected cell protein 0 (ICP0) is a 110-kDa multifunctional phosphoprotein 

expressed with IE kinetics (1, 84) (Table IV.). Although, ICP0 is not essential for infection, it is 

needed for efficient progression to lytic infection (84, 125, 242, 257). ICP0 null viruses exhibit a  



 
 

20 

Table IV. Functional properties of ICP0 proteins 
Virus Activationa Growth 

Efficiencya 
ND10 

Disruptiona 
Colocalize E3 

Activity 
in vitroc 

ICP0 in 
Tegumentd Conjugated 

Ubiquitin in 
vivob 

17+ +++ +++ +++ +++ +++ +++ 
FXE - - - - - - 

K144E - - - - +++ -/+ 
N151D -/+ - + + +++ +++ 

 

a  Activation was determined by measuring the induction of chloramphenicol acetyltransferase 

(CAT) activity after cotransfection of a UL39 promoter-CAT plasmid and a plasmid-

expressing an ICP0 protein. Growth efficiency was measured using single-step growth curves. 

Cells were infected with the desired virus, harvested at various times and then titered. ND10 

disruption ability was determined by transfection of plasmids-expressing ICP0 proteins and 

detecting PML by immunoflouresence microscopy (78). 

b  Colocalizing conjugated ubiquitin was the ability of the ICP0 protein expressed by plasmid 

to induce increased conjugated ubiquitin staining as detetected by immunoflouresence 

microscopy in vivo (83). 

c E3 ligase activity was the ability of the ICP0 protein expressed by plasmid to stimulate the 

production  polyubiquitin chains in vitro (21). 

d ICP0 in the tegument was the ICP0 content of extracellular virus detected by Western blot 

(56). 
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reduction in infectivity and have similar particle numbers to wild type (WT) (257). This gives 

ICP0 null viruses a higher particle/PFU ratio than WT. ICP0 null viruses also exhibit a growth 

defect at low-multiplicity but can replicate efficiently at a high input multiplicity (242, 257). 

ICP0 is also needed for efficient reactivation from latency (229, 244, 257). It has been proposed 

that ICP0 might be a regulator in the switch between productive infection and latent infection 

(28, 175). ICP0 inhibits the antiviral response to cellular interferons and may help the virus 

bypass innate cellular repression pathways (125, 205). Bovine herpesvirus 1 (BHV-1), Equine 

herpes virus 1 (EHV-1), Pseudorabies virus (PRV) and Varicella Zoster virus (VZV) also 

express ICP0-related proteins (222).  

 

1. Structural properties of newly expressed infected cell protein 0 

Through mutagenesis studies, the N-terminal zinc-binding domain, a nuclear localization 

signal (NLS) and the C-terminal sequence were found to be important for many of the ICP0 

functions (80, 82) (Fig. V.).  

The structure of the C3HC4 motif or RING finger domain of equine herpes virus EICP0 

was solved with two-dimensional H-NMR (11) (Fig. VI.). The RING finger domain contains an 

amphipathic α- helix that spans the length of the triple-stranded β-sheet. Four pairs of metal-

binding residues sequester two zinc atoms and form an interleaving structure. Site-directed 

mutagenesis has shown that the α-helix is important for transactivation activities of ICP0 (11, 

78). At the time, mutagenesis studies and the structure of the RING finger domain led 

investigators to believe that ICP0 family members bound DNA like classical RING domains 

(11). Later studies demonstrated that ICP0 belongs to the E3 ubiquitin ligase RING finger group 

(21).  
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Figure V. ICP0 domains. A map of the 775-amino acid (aa) ICP0 protein, demonstrating the 

identified structural domains (84). Phosphorylation sites (blue) indicate three 

phosphorylated regions that have 11 putative phosphorylation sites (19, 52). RING finger 

domain (yellow) has the E3 ubiquitin ligase activity (11, 21). The NLS (orange) has the 

nuclear localization signal (80, 208). The USP7 binding domain (purple) is required for 

USP7 interactions (92, 196). The C-terminal sequence (red) is required for localization to 

ND10 and also required for incorporation into tegument of mature virions (80, 184, 196). 

Oligomerization sequences (upper bracket) indicate the domain that is required for self-

multimerization (44, 196). The residue numbers of N-terminal and C-terminal portions of 

the protein are indicated.  
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Figure VI. RING finger domain protein structure. A ribbon diagram showing the folding of 

the EICP0 RING finger domain of equine herpes virus. Zinc atoms are shown in blue.  The 

zinc binding residues are represented as “ball-and-stick” (11). 
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Towards the center of the protein, a short 7-amino acid (aa) basic motif in ICP0 specifies 

the nuclear localization (80, 208). The last 125 aa of the ICP0 C-terminus function as an 

intranuclear localization site (80, 196). The C-terminal region of ICP0 is also important for 

ICP0s incorporation into the tegument layer (184). 

Early studies suggested that ICP0 is dynamically phosphorylated (1). Three 

phosphorylation sites on ICP0 were identified and they were found to influence the localization, 

ND10 dispersal, stability, and transactivation characteristics of ICP0 (19, 52). However, the three 

phosphorylation sites do not appear to influence ICP0s E3 ubiquitin ligase activity in vitro (19).  

During HSV infection, ICP0 strongly binds, using aa 593-633, to a cellular ubiquitin-

specific protease enzyme USP7 (HAUSP) (92, 196). Interacting with USP7 protects ICP0 from 

auto-ubiquitination in vitro and proteasome-dependent degradation during infection (32). 

Although ICP0 and USP7 interaction can lead to ubiquitination and proteasome-dependent 

degradation of USP7, the stabilization of ICP0 seems to be the dominant function of the 

interaction (18). ICP0 can also form dimers and oligomers, using C-terminal aa 617-711, during 

HSV infection (44, 196). Both USP7 and oligomer formation seem to be important for HSV 

infection (196). 

 

2. Functional properties of newly expressed infected cell protein 0 

There are now numerous studies on IE ICP0 but the fundamental details of its functions 

are still unanswered. The link between in vitro ICP0 E3 ligase activity and in vivo activity has 

yet to be demonstrated. ICP0 E3 ligase activities have been suggested to repel the cellular 

response to HSV infection and help prepare for gene expression but still there is no direct 



 
 

25 

evidence. If ICP0 does have E3 ligase activity in vivo, then the identity of target substrates will 

have to found. Even so, ICP0 activities during infection and incorporation into the tegument 

layer have been extensively characterized.  

 

a. Gene expression  

ICP0 has been described as a promiscuous transactivator of viral and cellular genes (84, 

85, 230). This is due to ICP0 being able to activate transcription from HSV or heterologous 

promoters independently of cis-elements (29, 93, 114, 125, 189). ICP0 appears to play a limited 

role in IE expression and a more prominent role in enhancing E and L expression (29). However, 

in the absence of viral proteins, ICP0 is required for maximum IE expression.   

ICP4 is expressed with IE kinetics and is a major transactivator of early and late genes 

(58). ICP0 activates transcription of viral genes independently or in synergy with ICP4 (79, 85, 

110, 230). ICP0 and ICP4 interact and this interaction is believed to have a synergistic effect on 

gene expression (110, 230). 

 

b. E3 ligase activity 

The ICP0 RING finger domain functions as an E3 ubiquitin ligase in vitro (21). The ICP0 

RING finger is important for inducing the accumulation of conjugated ubiquitin at ND10 and 

centromeres in vivo (83). Newly synthesized ICP0 induces the proteasome-dependent 

degradation of ND10 components Promyelocytic leukemia (PML) and Sp100, centromere 

proteins CENP-A, CENP-B, and CENP-C, the catalytic subunit of DNA-PK, and p53 (20, 35, 

88, 89, 176, 223). The induction of degradation is dependent on the RING finger domain of 

ICP0. This provides additional evidence that ICP0 may function as an E3 ubiquitin ligase in vivo 
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(20). Other alphaherpesvirus members have ICP0-related proteins that have E3 ubiquitin ligase 

activity in vitro and inhibit recruitment of ND10 proteins to HSV replication sites (86). 

 

c. ND10 disruption 

The cellular nucleus has an average of 10 subdomains, called ND10, with a diameter of 

0.3 – 0.5 µm (7). PML and SP100 are major components of ND10 (108, 259). ND10 might be 

involved in such processes as cellular chromatin structure, transcription, and DNA repair (16). 

Early in infection, ICP0 can be found in discrete nuclear sites using immunofluorescence 

microscopy (82). The ICP0 foci are adjacent but separate from the replication compartments that 

include the HSV genome, ICP8, VP13/14 and VP22 (146, 187). These ICP0 foci colocalize with 

ND10, although, this colocalization is transient since the staining of ND10 is subsequently lost 

(186). The RING finger domain of ICP0 is required for the disruption of ND10 and degradation 

of PML; however, the C-terminal region is required for ND10 interaction (89, 185).  

 The disruption of ND10 structures is thought to facilitate HSV gene expression (187). The 

current hypothesis is that ND10 might be an intrinsic cellular antiviral response and have a 

repressive effect on gene expression (94). The depletion of PML and/or SP100 increases the 

infectivity of ICP0-null viruses (94, 95). However, ICP0-null virus is still not complemented to 

WT levels, suggesting that other factors may be involved in the repression mechanism. 

Interferon (IFN) is used as a cellular antiviral response and has been shown to increase PML 

expression (36, 171). ICP0-null virus is more sensitive than WT virus to IFN pretreatment of 

cells (130, 205).  
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3. Properties of tegument infected cell protein 0   
 

Although initially defined as proteins expressed exclusively by the infected cell, ICP0 

and ICP4 are detected in the virion tegument by Western blotting and mass spectrometry but not 

by protein staining (72, 74, 180, 219, 248, 255, 274-276, 282). Some properties of tegument 

ICP0 have been evaluated. Newly expressed ICP0 is localized in the nucleus early in infection 

(1, 90). Later in infection, IE ICP0 relocalizes to discrete cytoplasmic domains, where ICP0 may 

be incorporated into virions (74, 156, 178, 248). Cytoplasmic localization of ICP0 does not seem 

to be sufficient for incorporation into virions (184). In the absence of VP22, ICP0 is translocated 

to the cytoplasm but is not incorporated into virions (74, 184). Recently, it was found that ICP0 

incorporation into virions correlates with the ability of ICP0 to form a complex with VP22 (184). 

IE protein ICP27 has also been suggested to be required for the cytoplasmic localization and 

incorporation of ICP0 and ICP4 into mature virions (248). Prior to the data presented here, the 

role of ICP0 in virion assembly was not known. The position of ICP0 in the tegument layer had 

not been characterized. Little was known about the ICP0 that is brought in with the infecting 

virion. It was not clear whether tegument ICP0 functions in a manner similar to its IE 

counterpart. 

 

D. UBIQUITIN-PROTEASOME SYSTEM 

Due to the high content of proteases, the lysosome was assumed to be the main site of 

proteolysis (53). Support for another proteolytic system came with the discovery of a cell extract 

containing an ATP-dependent and non-membrane-associated cellular proteolytic system that 

functioned at neutral pH (77). A component of the cell extract, ATP-dependent proteolysis 

factor-1 (APF1), was found to be conjugated to target substrates when incubated with the other 
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fractions and ATP (42, 139). APF1 was later shown to be ubiquitin, an 76 aa cellular protein that 

is added to substrates in order to target their degradation (41). The final component of this non-

lysosomal system came with the discovery of a high molecular weight protease that degrades 

only ubiquitin tagged substrates in an ATP-dependent manner (144). This protease would later 

be known as the cellular proteasome. The ubiquitin-proteasome system (UPS) is currently known 

to be critical for maintenance of cell homeostasis, regulating processes such as cell cycle, 

apoptosis and antigen presentation (116, 163). The cellular proteasome also functions 

nonproteolytically during transcription, DNA repair, and chromatin remodeling (59). 

 

1. Cellular proteasome 

The 26S proteasome is an approximately 2.5 MDa cylindrical, multisubunit complex 

found in the cytosol and nucleus of cells (246) (Fig. VII.).  

The cellular proteasome is responsible for degrading regulatory and misfolded proteins.  

It is composed of three complexes, a 20S catalytic core and two 19S regulatory complexes (Fig. 

VII.). The 20S catalytic core is composed of four heptameric rings that are stacked on top of 

each other, forming the hollow cylinder structure (120, 181). The two outer rings are comprised 

of seven different α-subunits while the inner rings contain seven different β-subunits (133). The 

four heptameric rings enclose three chambers, two fore chambers between the α-and β-rings and 

a central proteolytic chamber between the β-rings (120). The proteolytic active sites of the 20S 

core are on β-subunits and face the interior chamber of the cylinder structure. The entrance to the 

fore chamber is autoinhibited by the N-terminal tails of the α-ring subunits (119). Binding of the 

regulatory particle relieves the block imposed by the α-subunit N-terminal tails. 

Three β-subunits demonstrate proteolytic activity: β1, β2 and β5 (Fig. VII.). Each of the 
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Figure VII. 26S and 20S proteasome structure. On the left, a representation of the 26S 

particle composed of a 20S catalytic core and two 19S regulatory complexes. The 20S 

catalytic core is composed of four rings of α-subunits and β-subunits stacked on top of each 

other. The 19S regulatory complex is composed of a base (B) and a lid (L). On the right, a 

cross-section of the 20S catalytic core showing the location of the three active sites.  

 

 

 

 

 

 

 

 



 
 

30 

three β-subunits has a different proteolytic activity (5, 132). β2 cleaves after hydrophobic 

residues and is described as having a chymotrypsin-like activity. β5 has a trypsin-like activity 

that preferentially cleaves after basic residues. β1 cleaves bonds after acidic residues. All of the 

proteolytic sites in the 20S catalytic core utilize a unique catalytic mechanism, where a N-

terminal threonine is used for catalysis (249) (Fig. VIII.). Proteins degraded by the proteasome 

are released as oligopeptides, ranging between 3 and 24 residues (3, 161). 

The 19S regulatory particle or PA700 is also a multisubunit complex (39). 19S seems to 

be involved in substrate recognition, unfolding and translocation of target substrates and 

controlling access to the proteolytic channel (22, 63, 119). The 19S subunit can be divided into 

base and lid components (115). The 19S base has a ring-like structure and has been shown to 

have ATPase activity. The ATPase component of 19S base, which regulates the opening to the 

proteasome, also controls the length of peptide products (165). Interferon-γ induces the 

formation of immunoproteasomes that have an alternate regulatory cap, 11S, and three different 

β-subunits (2, 13, 104, 235). This complex is believed to generate larger amounts of antigenic 

peptide for MHC class I presentation (15, 258). 

 

2. Ubiquitin machinery 

Ubiquitination is the covalent modification of cellular proteins with 8-kDa ubiquitin 

protein(s). Target substrates are modified with ubiquitin by a series of proteins, the El ubiquitin-

activating enzyme, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin-protein ligases (141) 

(Fig. IX.). The formation of the isopeptide bond between an ubiquitin molecule and the target  
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Figure VIII. 20S catalytic mechanism. Target substrate is in black, proteasome N-terminal 

residue is in light blue and bonds formed during catalysis are in purple (163). 
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Figure IX. Overview of the ubiquitin-proteasome system. Three enzymes are required for adding 

ubiquitin (UB) to target substrates: E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating 

enzyme and E3 ubiquitin-protein ligating enzyme. E1 activates ubiquitin in an ATP-dependent 

manner while E3 recognizes the substrate. One ubiquitination cycle results in a 

monoubiquitinated substrate. The process can be repeated to form a polyubiquitin chain. The 

polyubiquitin chain allows for recognition by the 19S regulatory unit and subsequent degradation 

by the 20S catalytic core. 
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substrate requires ATP in order to activate the C-terminal carboxyl group of ubiquitin (43, 124). 

The activated ubiquitin molecule is transferred from E1 to thiol site of one of a family of E2 

enzymes (226). The target substrate is bound by E3 ubiquitin ligases, which mediate the transfer 

of ubiquitin to a lysine residue on the substrate protein (141). E3 confers substrate specificity by 

recognizing and binding target proteins (142). There are thousands of cellular E3 ubiquitin 

ligases, each one specific for certain substrates (149). Some E2 enzymes, however, can transfer 

ubiquitin directly to target proteins, independently of E3 (37, 123). Deubiquitinating enzymes 

(DUBs) participate in the UPS by removing ubiquitin from inappropriately targeted proteins, 

recycling of ubiquitin from ubiquitin tagged proteins and disassembly of unanchored 

polyubiquitin chains (4, 170). 

E3 ubiquitin ligases can be divided into two classes: Those homologous to the E6-AP 

Carboxyl Terminus (HECT) E3 ubiquitin ligases and Really Interesting New Gene (RING) E3 

ubiquitin ligases (158). With the HECT ubiquitin ligase system, ubiquitin is transferred from E2 

to E3 ligases and finally from E3 ligases to the target substrate. RING ubiquitin ligases play a 

more passive role, since ubiquitin is transferred directly from E2 to the target substrate. 

However, RING ligase activity can be regulated by phosphorylation, ubiquitination, and 

pseudosubstrates (62). C3HC4 or RING “finger” domains use conserved cysteine and histidine 

residues to bind to two zinc atoms and stabilize the structure (11, 17, 62). The zinc atoms in the 

RING domain are interleaved, hence  “finger”, to maintain a platform for protein-protein 

interaction.  

The best understood function of ubiquitin modification is for selective protein 

degradation. The majority of proteins destined for proteasomal degradation are tagged with 

chains of ubiquitin (138). The minimal signal necessary for proteasomal recognition is a chain of 
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four ubiquitin molecules (260). The signal strength appears to increases with the number of 

tetraubiquitin units. E2 ubiquitin-conjugating enzymes seem to be at the heart of 

polyubiquitination by regulating the length and topology of the chain and processivity of chain 

formation (277). Typically, the α-carboxyl group of ubiquitin glycine-76 forms an isopeptide 

bond with the ε-amino group of lysine residue of the target substrate (26). Ubiquitin can also be 

added to the N-terminal residues or cysteines of cellular proteins (27, 40). In the classical view, 

multiubiquitin chains are formed with additional ubiquitin monomers being added to the lysine-

48 of previous ubiquitin modifications (33, 140). However, each ubiquitin molecule has seven 

lysines, which allows for polyubiquitin chains to form through alternative linkages (243). 

Proteins can also be monoubiquitinated and this modification is important for regulation of 

histone function, in DNA repair pathways and in intracellular transport of membrane proteins 

(204).  

 

3. Targeting a protein for the proteasome 

Degrons are degradation signals on the target substrate that allow for UPS and/ or 

proteasome recognition (246). 

The degrons necessary for ubiquitin machinery recognition involve N-degrons, post-

translational modifications and protein folding. The N-degron involves those proteins that have 

an N-terminal destabilizing residue and an accessible lysine for ubiquitination (265). Post-

translation modifications such as phosphorylation of specific serine and cysteine residues, 

hydroxylation of specific prolyl residues and glycosylation can target proteins for proteasomal 

degradation. Specific cellular chaperones can be used to recognize misfolded proteins and 

position them for ubiquitination. 
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The degrons necessary for proteasomal recognition and degradation involve the ubiquitin 

signal and unstructured regions. Ubiquitinated proteins are fairly stable unless they contain an 

unstructured region (228). The unstructured region in these proteins serves as an initiation site 

for proteasomal degradation. Typically the ubiquitin signal and the unstructured region are on the 

same protein, however, ubiquitination and unstructured regions can work in trans when 

separated onto different interacting proteins (227). 

An ubiquitin-independent pathway can also degrade target proteins. In some 

circumstances, an unstructured region can serve as an initiation site by itself, in the absence of 

ubiquitin (246). Alternatively targeting can occur through a trans mechanism, where an 

ubiquitinated adaptor shuttles the substrate to the proteasome and the unstructured region of the 

substrate signals for degradation (14, 51, 227, 233). Although the adaptor would bind to the 

proteasome, it avoids degradation because the protein lacks a strong unstructured region (227).  

 

4. Proteasomal inhibitors 

Inhibitors have been a vital tool for understanding the unique proteolytic mechanism of 

the 20S catalytic core (249). Inhibitors of proteases are typically composed of a short peptide 

linked to a pharmacophore, a structure that interacts with enzymatic active sites and blocks its 

biological activity (163). The short peptide of these compounds associates with the substrate 

binding site. Inhibitors do not have to block all protease active sites in order to be effective. For 

example, inhibition or mutation of the chymotrypsin site causes a large reduction in protein 

breakdown while inhibition of the trypsin- or caspase-like sites has had little effect on overall 

proteolysis (5, 132, 160, 236). 
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Peptide aldehydes were the first group of proteasomal inhibitors and still are the most 

widely used (236, 266) (Fig. X.). Although these inhibitors bind slowly to the 20S chymotrypsin- 

like site, they still have a high degree of selectivity and potency for the chymotrypsin-like 

activity (266). These inhibitors can also inhibit cysteine and serine proteases. Due to fast 

dissociation rates and oxidation into inactive acids in cells, the effects of these inhibitors can be 

reversed upon removal of inhibitors (163, 173). MG132 (Z-Leu-Leu-Leu-al) is a commonly used 

peptide aldehyde. MG132 is a highly potent and selective inhibitor, since inhibition of calpains 

and cathepsins requires at least 10-fold higher concentrations than what is needed to block the 

proteasome (261).    

Lactacystin is more selective in inhibition of the proteasome activity than peptide 

aldehyde inhibitors (Fig. X.). In contrast to synthetic peptide aldehydes, lactacystin is a 

Streptomyces lactacystinaeus metabolite. Lactacystin was found to irreversibly inhibit the 

proteasome chymotrypsin- and trypsin-like activities while reversibly inhibiting peptidyl 

glutamyl peptide hydrolyzing activity (100). Subsequent studies showed that lactacystin itself 

does not inhibit the proteasome but rather its neutral pH decomposition product, clasto-

lactacystin-β-lactone, is responsible for inhibition (64). Lactacystin does not inhibit most serine 

proteases (109, 220) 

 Epoxyketones are the most selective inhibitors because of their unique mechanism of 

inhibiting 20S activity (Fig. X.). Since these compounds react with both the hydroxyl and amino 

group of N-threonine, they cannot inhibit cysteine or serine proteases (121, 195). The 

epoxyketone inhibitor, epoxomicin is an Actinomycete product (126).  
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Figure X. Proteasome inhibitor mechanisms. Inhibitors are in black. Inhibitor 

pharmacophores are in red. The proteasome is in light blue, and newly formed bonds are 

purple (163). 

 

 

 

 

 

 

 

 



 
 

38 

E. AIM OF CURRENT WORK 

The cellular proteasome activity has been shown to be important for the endocytic entry 

of several viruses. The overall goal of this research was to demonstrate a role for the cellular 

proteasome during HSV entry and then begin to detail the mechanism of proteasome-dependent 

entry. In the first section, I demonstrated that the proteasome activity was required early in HSV 

entry using β-galactosidase assays and time of addition experiments. Various proteasome 

inhibitors were used to determine which of the 20S β-subunits is required for HSV entry. A 

thermosensitive cell system was used to address whether the ubiquitin machinery is important for 

this process. I then sought to determine when the proteasome activity is required during HSV 

entry using binding, capsid transport, citrate inactivation, fluorescence protease protection, and 

fusion-from-without assays. Due to the IE ICP0’s E3 ubiquitin ligase activity and dynamic 

interaction with the proteasome, I sought to address the fundamental properties of tegument ICP0 

and determine the role of tegument ICP0 during proteasome-dependent entry of HSV. For the 

second section, I sought to characterize ICP0 in the virion tegument layer. The overall protein 

content of virions without tegument ICP0 was compared to WT to determine whether the 

absence of ICP0 influences assembly of mature virions. To address whether the RING finger 

domain of ICP0 is necessary for tegument ICP0 incorporation, the tegument ICP0 content of 

ICP0 mutant HSVs were analyzed via Western blot. A tegument release assay was used to 

discern whether ICP0 is an inner or outer tegument protein. In the last section, I begin to address 

ICP0’s role in proteasome-dependent HSV entry using β-galactosidase reporter assays. The 

majority of the work presented in this thesis has been published or is in preparation for 

submission (55-57). 
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II. MATERIALS AND METHODS 
 
 
 
 

A. CELLS AND MEDIA 

Vero cells and U2OS cells (American Type Culture Collection, Rockville, MD) were 

propagated in Dulbecco modified Eagle medium (Invitrogen, Grand Island, NY) supplemented 

with 10% fetal bovine serum (Gemini Bio-Products, West Sacramento, CA). CHO-nectin-1 cells 

(M3A cells) are CHO-K1 cells stably transformed with the human nectin-1 gene and the 

Escherichia coli lacZ gene under the control of the HSV ICP4 promoter (M3A cells provided by 

G. Cohen and R. Eisenberg, University of Pennsylvania) (111). The cells were propagated in 

Ham F-12 nutrient mixture (Invitrogen) supplemented with 10% fetal bovine serum, 150 g of 

puromycin (Sigma, St. Louis, MO)/ml, and 250 g of G418 sulfate (Fisher Scientific, Fair Lawn, 

NJ)/ml. Cells were subcultured in nonselective medium prior to use in experiments. Mouse ts20 

cells (obtained from Harvey S. Ozer, University of Medicine and Dentistry of New Jersey) are 

derived from BALB/c 3T3 fibroblasts and contain a temperature-sensitive E1 enzyme. BALB/c 

3T3 cells (American Type Culture Collection (ATCC), Manassas, VA) and ts20 cells were 

maintained at the permissive temperature of 35°C (38, 281). The nonpermissive temperature is 

39°C.  

 

B. VIRUSES 

Parental WT HSV-1 strain KOS and its derivative 7134, which has the lacZ gene in place 
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of both inverted repeat copies of the IE ICP0 gene, were obtained from T. Holland (Wayne State 

University) and P. Schaffer (Harvard University) (31). HSV-1 KOS-tk12 (provided by Patricia 

Spear, Northwestern University) contains the lacZ gene under control of the ICP4 promoter 

(269). HSV-1 KOS K26GFP contains green fluorescent protein (GFP) fused to the N terminus of 

the VP26 capsid protein (60) (provided by Prashant Desai, Johns Hopkins University). HSV-1 

strain ANG path was obtained from Thomas Holland, Wayne State University (150). WT HSV-2 

strain G was obtained from ATCC (73). The additional parental WT HSV-1 and mutant strains 

were kindly provided by Roger D. Everett (MRC Virology Unit, Glasgow, U.K.) (Table V.). The 

additional WT HSV-1 virus used in this study was Glasgow strain 17 syn+ (17+) (23). The mutant 

dl1403 virus has a 2 kB lesion in ICP0 (257). The FXE virus has a defined lesion in the ICP0 

RING finger domain (80-82, 103). Rescued d11403 and FXE viruses were obtained by 

transfection of mutant virion DNA with a plasmid containing a fragment specifying the ICP0 

gene (81, 241). The K144E and N155D viruses have single aa substitutions in the ICP0 RING 

finger putative alpha helix (78). M1 virus has a double aa substitution in ICP0 that reduces USP7 

interaction while D12 has a deletion in the ICP0 C-terminus that inhibits USP7 binding (91, 

196). Rescued M1 viruses were obtained by transfection of mutant virion DNA with fragment of 

the ICP0 gene that includes the locations of the M1 mutation (18). For Section III, viruses were 

propagated and titered on Vero cells. For Sections IV-V, viruses were propagated and titered on 

U2OS cells. 

 
C. POLYCLONAL AND MONOCLONAL ANTIBODIES 

Anti-p53 mouse monoclonal antibody (MAb) pab421 was purchased from EMD 

Chemicals, Inc. (Darmstadt, Germany). MAb 11060, which is specific for the exon 2 sequences 

of ICP0, was kindly provided by Roger D. Everett (MRC Virology Unit, Glasgow, U.K.) (87). 
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Table V. Details of ICP0 proteins expressed by viruses 

 

a Parental virus HSV-1 Glasgow strain 17 syn+ (17+) (23). 

b Has a 2 kb lesion in both inverted repeat copies of the ICP0 gene (257). 

c    Rescued virus was obtained by cotransfection with mutant virion DNA and a plasmid 

containing a fragment specifying the ICP0 gene (81, 241). 

d Has a defined lesion in the ICP0 RING finger domain yielding a deletion of 45 amino acids 

(80-82, 103). 

e Has a single amino acid substitution in the alpha helix of the ICP0 RING finger (78). 
f  Has a deletion in the ICP0 C-terminus USP7 binding domain (196). 

g Has a double amino acid substitution in the USP7 binding domain (91).  

h Rescued virus was obtained by cotransfection of mutant virion DNA with fragment of the 

ICP0 gene (18).   

 
 
 
 

Virus 
 

ICP0 structure 
 

Description 
 

17+ a 1-775 Wild type 

dl1403b 1-105 ICP0 null mutant 
 

dl1403Rc 1-775 ICP0 rescuant 

FXEd 1-105::150-775 RING finger deletion 

FXERc 1-775 RING finger rescuant 

K144E e aa 144 point mutation Substitution in RING finger helix 
N151De aa 151 point mutation Substitution in RING finger helix 

D12f 1-593::634-775 USP7 binding region deletion 

M1g R623L, K624I USP7 binding negative substitution 

M1Rh 1-775 USP7 binding rescuant 
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Anti-p53 MAb pab421 was purchased from EMD Chemicals, Inc. (Darmstadt, Germany). MAb 

11060, which is specific for the exon 2 sequences of ICP0, was kindly provided by Roger D. 

Everett (MRC Virology Unit, Glasgow, U.K.) (87). Rabbit polyclonal antibody (RAb) is against 

the N-terminus of VP1-2 (R27B4, a gift of R. Courtney). Anti-actin MAb AC-74 and anti-alpha-

tubulin MAb DM1A were purchased from Sigma (St. Louis, MO). Anti-ICP0 MAb H1A027, 

anti-gB MAb H1817, anti-ICP4 MAb HIA021, anti-VP16 MAb 1-21 and VP5 MAb HA018 

were purchased from Virusys (North Berwick, ME). MAb 1-21 specific for VP16 was purchased 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, California) (193). Anti-gD MAb DL6 (47) and 

anti-gH-gL RAb R137 (225), were gifts of R. Eisenberg and G. Cohen. 

 

D. CHEMICALS 

 Stocks of 0.5 M cycloheximide (Sigma), 1 mM epoxomicin (Peptides International, 

Louisville, KY), 4 mM MG132 (Sigma) and 10 mM N-tosyl-L-phenylalanine 

chloromethylketone (TPCK; Fisher Scientific) stocks were prepared in ethanol. 1 mM 

Lactacystin (Peptides International), 5 mM N-a-tosyl-L-lysinyl-chloromethylketone (TLCK; 

Sigma) and 0.2 mM YU102 (Biomol International, Plymouth Meeting, PA) stocks were prepared 

in dimethyl sulfoxide (Sigma). 0.5 mg of heparin (Sigma)/ml was prepared in water. All stocks 

were stored at 20°C.  

 

E. PLAQUE ASSAY 

Vero cells were grown in 24-well dishes overnight. Cells were mock treated or treated 

with MG132. HSV-1 KOS was added (100 PFU/well) in the presence or absence of MG132. At 

3 hours (h)  post-infection, medium was removed and sodium citrate buffer (135 mM NaCl, 40 
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mM C6H5Na3O7, 10 mM KCl [pH 3.0]) or phosphate-buffered saline (PBS) warmed to 37°C was 

added. At 18 to 24 h p.i., culture medium was removed, and cells were fixed with an ice-cold 

methanol-acetone solution (2:1 ratio) for 20 min at 20°C and air dried. Virus titers were 

determined by immunoperoxidase staining with anti-HSV polyclonal antibody HR50 (Fitzgerald 

Industries, Concord, MA).  

 

F. CITRATE INACTIVATION ASSAY 

Vero cells were grown in 24-well dishes overnight. Cells were mock treated or treated 

with MG132 for 30 min at 37°C. HSV-1 KOS was added (100 PFU/well) in the presence or 

absence of MG132 for various times at 37°C. Sodium citrate buffer or PBS warmed to 37°C was 

added for 1 min at 37°C. Culture medium was added, or cells were subjected to four 5 min 

washes with warmed medium. Infection proceeded for 18 to 24 h, and plaque formation was 

quantified.  

 

G. β-GALACTOSIDASE REPORTER ASSAY 

Confluent cell monolayers grown in 96-well dishes were treated with medium containing 

proteasome inhibitors or vehicle controls for 15 to 30 min at 37°C. HSV-1 KOS or KOS-tk12  

(MOI of 4, unless otherwise indicated) was added. Cells were incubated in the constant presence 

of proteasome inhibitors for 6 to 7.5 h. 0.5% Nonidet P-40 (Sigma) cell lysates were prepared, 

chlorophenol red--D-galacto-pyranoside (Roche Diagnostic, Indianapolis, IN) was added, and 

the β-galactosidase activity was read at 595 nm with an ELx808 microtiter plate reader (BioTek 

Instruments, Winooski, VT). β-Galactosidase activity indicated successful entry. Similar results 
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were obtained at an MOI of 1. Mean results and standard errors were calculated for four replicate 

samples.  

 

H. CELL VIABILITY 

Cell cultures in 96-well dishes were treated with culture medium plus inhibitor or mock-

treated for 7.5 h. Cell monolayers were treated with trypsin and resuspended in a 0.07% solution 

of trypan blue (Sigma). Cells were counted on a hemacytometer by using light microscopy. The 

100% viability was equal to the number of cells that exclude trypan blue/total number of cells in 

mock-treated samples. Mean results and the standard error were calculated for four replicate 

samples.  

 

I. CELL BINDING ASSAY 

Vero cells were grown overnight on glass coverslips in 24-well dishes. Cells were treated 

with the indicated inhibitor for 15 min at 37°C. Cultures were then chilled on ice, and HSV-1 

K26GFP was added at an MOI of 30. Dishes were centrifuged at 200 g for 1 h at 4°C to enhance 

virus binding. Cells were washed with ice-cold PBS (Invitrogen) and then fixed with 3% 

paraformaldehyde (Thomas Scientific, Swedesboro, NJ) in PBS prior to confocal microscopy.  

 

J. SUBCELLULAR LOCALIZATION OF HSV BY CONFOCAL MICROSCROPY 

Vero cells were grown overnight on glass coverslips in 24-well dishes. Cells were treated 

with proteasome inhibitor or vehicle control in the presence of 0.5 mM cycloheximide for 15 min 

at 37°C. Cultures were rapidly chilled on ice, and then a supernatant preparation of HSV-1 KOS 

K26GFP was added (MOI of 10) in the continued presence of agent. Virus was spinoculated onto 
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the cell surface by centrifugation at 200 g for 1 h at 4°C. Entry was initiated by shifting dishes to 

37°C for 2.5 h in the continued presence of agent. Cells were washed three times with PBS and 

fixed in 3% paraformaldehyde in PBS prior to confocal microscopy. 

Paraformaldehyde-fixed cells on cover-slips were permeabilized with 0.2% Triton X-100 

(Fisher Scientific) in PBS for 8 min. Cells were then blocked with PBS containing 1% bovine 

serum albumin (Sigma) for 20 min. Nuclei were counterstained with DAPI (4,6-diamidino-2-

phenylindole; Roche). Coverslips were washed with PBS, mounted with Fluoromount G 

(Electron Microscopy Sciences), and viewed with a Zeiss LSM 510 Meta microscope equipped 

with a 63 oil immersion objective lens. Digital images were processed with Adobe Photoshop 

CS2 version 9.  

 

K. FLUORESCENCE PROTEASE PROTECTION ASSAY 

Modified from (179). HSV entry into Vero cells proceeded in the presence of 25 µM 

MG132 for 2.5 h as described above for subcellular localization of GFP-tagged HSV. Cells were 

then chilled and washed twice with ice-cold KHM buffer (110 mM KC2H3O2, 20 mM HEPES, 

2 mM MgCl2 [pH 7.2]). For protease treatment, 100 µg of ice-cold proteinase K (Invitrogen)/ml 

in KHM buffer was added to live cells for 2.5 min on ice. Proteolysis was halted with 4 mM 

phenylmethylsulfonyl fluoride (Sigma) and 1% bovine serum albumin in KHM buffer. For 

permeabilized samples, digitonin (EMD Chemicals, Inc.) in KHM buffer was added to cells for 3 

min at 37°C prior to proteinase K treatment. Cells were washed twice with ice-cold PBS, fixed 

with 3% paraformaldehyde, and then visualized by confocal microscopy.   
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L. FUSION-FROM-WITHOUT ASSAY 

As described previously (54), Vero cells were pretreated with growth medium containing 

0.5 mM cycloheximide with or without 50 µM MG132 for 15 min. Cell-free supernatant 

preparations of HSV-1 ANG path were added to cells (MOI of 50) for 3 h at 37°C in the constant 

presence of 0.5 mM cycloheximide. Cells were rinsed with PBS and then fixed in 100% 

methanol. Monolayers were air dried, and then nuclei were stained with Giemsa (Sigma). 

Micrographs were taken with a Zeiss Axiovert 40C microscope equipped with a Canon 

PowerShot G6 digital camera. Digital images were processed with Adobe Photoshop CS2 

version 9.0. To quantitate fusion, photomicrographs of random fields from triplicate wells (500 

cells/well) were scored. The number of nuclei present in clusters of four or more divided by the 

total number of nuclei yielded the percent fusion.  

 

M. THERMOSENSITIVE E1 UBIQUITIN-ACTIVATING ENZYME ASSAY 

Modified from (38). Confluent cell monolayers grown in 96-well dishes of BALB/c 3T3 

or ts20 cells were maintained at 35°C or transferred to 39°C for 18 h. HSV-1 KOS-tk12 was 

diluted in media and warmed at 39°C for 1 h. Virus was then added to cells and incubated in the 

constant temperature for 6 h. 0.5% Nonidet P-40 (Sigma) cell lysates were prepared, 

chlorophenol red-D-galacto-pyranoside (Roche Diagnostic, Indianapolis, IN) was added, and the 

β-galactosidase activity was read. 

 

N. SODIUM-DODECYL POLYACRYLAMIDE ELECTROPHORESIS 

Samples in Laemmli buffer were separated by sodium dodecyl sulfate (SDS)–10% 

polyacrylamide gel electrophoresis (PAGE), blotted onto nitrocellulose and probed for p53 or 
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alpha-tubulin. For the remaining experiments, samples in Laemmli buffer were separated by 

SDS–4-20% polyacrylamide gel electrophoresis. Nitrocellulose membranes were then incubated 

with horseradish peroxidase-conjugated goat anti-mouse or anti-rabbit immunoglobulin G 

(Pierce, Rockford, IL), developed with enhanced chemiluminescence detection reagents (Pierce), 

and exposed to X-ray film (Kodak). 

 

O. PREPARATION OF UNINFECTED AND INFECTED CELL LYSATES 

Modified from (38). BALB/c 3T3 or ts20 cells were maintained at 35°C or transferred to 

39°C for 18 h. Lysates were prepared in radioimmunoprecipitation assay buffer (100 mM NaCl, 

25 mM Tris [pH 7.5], 2% Nonidet P-40, 0.5% sodium deoxycholate, 0.2% SDS containing 

protease inhibitor cocktail (Roche). 

U2OS cells were infected with the indicated virus (based on 17+ MOI of 1) for 18 h. 

Lysates were prepared in NP-40 buffer (150 mM NaCl, 50 mM Tris [pH 7.2], 1% Nonidet P-40, 

and 2 mM EDTA) containing protease inhibitor cocktail (Roche). Cell lysates were analyzed by 

SDS-PAGE followed by Western blotting with MAb H1A027 to ICP0. 

 

P. TEGUMENT RELEASE ASSAY 

Modified from (203). Extracellular 17+ virions (3 x 109 PFU) were resuspended in 0.2 ml 

lysis buffer (50 mM HEPES [pH 7.4] and 1% Triton X-100) containing 0.1, 0.5, or 1 M NaCl. 

The reactions were then incubated for 30 min at 37°C.  The reaction mixtures were centrifuged at 

14,000 rpm for 30 min through a 0.5 ml 35% sucrose cushion. The 200 µl supernatant above the 

sucrose cushion was recovered. Released proteins in the supernatant were heat precipitated and 

resuspended in Laemmli buffer. The sucrose cushion was removed, and the pellet, containing 
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capsids and capsid-associated tegument proteins, was resuspended in Laemmli buffer. Pelleted 

(pellet) and released (sup) fractions were analyzed by SDS-PAGE and immunoblotting with 

antibodies to ICP0, VP1-2, ICP4, VP16, gB, or VP5. 
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III. PROTEASOME ACTIVITY IS REQUIRED FOR HSV ENTRY AT A POST-
PENETRATION STEP 

 
 
 
 

A. INTRODUCTION 
 

The major classes of cellular proteases include cysteine, serine, aspartic acid 

metalloproteases and the proteasome. Viruses take advantage of cellular proteases for viral entry 

and infection. Endosomal cysteine protease cleavage of Ebola virus glycoprotein facilitates viral 

interaction with cellular receptors (152). The 26S proteasome is important for the entry of 

several other viruses (159, 239, 240, 279), all of which utilize endocytic pathways. For studies 

with murine hepatitis and minute virus, pulse MG132 treatment of infected cells showed that 

proteasome activity is required early in viral entry (239, 240, 279).  Influenza virus and murine 

hepatitis virus both require the proteasome activity prior to viral penetration (159, 279). MG132 

traps influenza virus in what are thought to be sorting endosomes (159). Murine hepatitis virus is 

blocked in an endocytic compartment, prior to penetration (279). In contrast, MG132-arrested 

virions of the nonenveloped minute virus of mice appear in the nuclear periphery, after they have 

escaped or penetrated the endosomal membrane (239, 240). There have been several studies on 

the role of the proteasome in HSV infection of cultured cells (25, 35, 50, 76, 84, 89, 125, 178). 

These studies were carried out under postentry conditions and at times in which newly expressed 

viral gene products are active. 
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Our lab used a panel of protease inhibitors to evaluate whether HSV uses cellular 

proteases to facilitate entry into host cells. Only the proteasomal inhibitor lactacystin blocked 

HSV entry (unpublished data). The requirement for the proteasomal activity during HSV entry 

was then confirmed and characterized. Cell-type dependence on the proteasome activity during 

HSV entry was evaluated using model cell lines for endocytic and nonendocytic entry pathways. 

I also examined whether the proteasome-dependence during entry is strain- or serotype-

dependent. I performed time of addition experiments with MG132 to demonstrate that the 

proteasome-dependence was with HSV entry and not with downstream events. The active site of 

the 20S proteasome required for HSV entry was examined. Potential interplay between the 

proteasome and ubiquitin machinery during HSV entry was also evaluated using a 

thermosensitive cell line.  

The time of addition experiments suggested that proteasome activity is required for an 

early HSV step, either for binding to the cell surface, fusion or capsid transport. Although, the 

examples of virions that require the proteasome for entry do not appear to require the proteasome 

activity for binding, the possibility still remained and had to be tested. To define more precisely 

the step in viral entry that is influenced by proteasome activity, the effect of MG132 on steps 

prior to gene expression were analyzed by confocal microscopy. In confocal experiments, HSV 

was added to cells in the presence of cycloheximide, a protein synthesis inhibitor, to ensure that 

the entry steps being evaluated were independent of downstream events. 
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B. RESULTS 
 
 
 
 

1. Early HSV infection is blocked by proteasomal inhibitors 

 
The presence of MG132 during the first 3 h of infection inhibited HSV plaque formation 

by 60% (Fig. XI. A.). HSV-induced expression of β-galactosidase is frequently used as a 

measure of successful viral entry. HSV-1 KOS-tk12 entry into Vero cells, as measured by a β- 

galactosidase reporter assay, was inhibited by MG132 in a concentration-dependent manner (Fig. 

XI. B.). Epoxomicin also blocked HSV-induced β-galactosidase activity (Fig. XI. C.). The 

inhibitors were effective at concentrations that were not toxic to the cells, as measured by a cell 

viability assay (Fig. XI.). Since reporter gene activity is measured at 6 to 7.5 h p.i., it is important 

to note that steps up to and including IE gene expression might be affected in this assay. 

Together, the data suggested a role for the proteasome in HSV entry and infection.  

 

2. Early HSV infection by endocytic or nonendocytic routes are proteasome-dependent 

Vero cells support nonendocytic entry via direct fusion at the plasma membrane (105, 

166, 214, 252). In contrast, CHO-nectin-1 cells are a prototype line that supports HSV entry via 

fusion with an internal membrane after endocytosis (214). Both MG132 and lactacystin impaired 

HSV KOS-tk12 infection of CHO-nectin-1 cells, as measured by HSV-induced β-galactosidase 

activity (Fig. XI. D.-E.). Lactacystin appears to have a greater effect than MG132 or epoxomicin  
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Figure XI. Effect of proteasomal inhibitors on early HSV infection. (A) Effect of MG132 on 

HSV plaque formation. HSV-1 KOS (100 PFU/well) was added to Vero cells in the 

presence of MG132. At 3 h post-infection, medium was removed, extracellular virus was 

acid-inactivated, and plates were incubated for 24 h. Plaques were detected by 

immunoperoxidase staining and quantified. Data are means of quadruplicate determinations 

with standard error. Vero cells (B, C) or CHO cells expressing nectin-1, containing a lacz 

gene cassette, (D, E, F) were treated with the indicated concentrations of inhibitor for 15 

min.  HSV-1 KOS-tk12, containing a lacz gene cassette, (B-E) was added for 7.5 h in the 

continued presence of inhibitor. HSV-1 KOS, HSV-1 17+, HSV-2 G (F) were added for 6 h 

in the continued presence of inhibitor. Entry was measured as the % of beta-galactosidase 

activity relative to that obtained in the absence of agent. Data are means of quadruplicate 

determinations with standard error. The effect of inhibitor on cell viability was measured by 

trypan blue exclusion. Viability in the absence of inhibitor was set to 100%. The mean 

viability and standard error of quadruplicate samples is shown. 
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in CHO-nectin-1 and Vero cells (Fig. XI. D.-E. and data not shown). This may be because 

the efficacy of a proteasome inhibitor can differ depending on the substrate being degraded 

(162). The data suggests that HSV infection is dependent on proteasomal degradation, 

regardless of whether endocytic or nonendocytic entry routes are utilized. 

 

3. Proteasome-dependence is strain and serotype independent 

The HSV-1 KOS strain was used to demonstrate a role for the cellular proteasome during 

HSV entry (55). For the ICP0-tegument studies, the HSV-1 17+ strain is the background for all 

of the ICP0 mutants. Before performing experiments with HSV-1 ICP0 mutants, I had to confirm 

that WT 17+ entered host cells via a proteasome-dependent pathway. KOS and 17+ were added 

to CHO-nectin-1 in the presence of MG132 and then β-galactosidase activity was measured at 6 

p.i. KOS and 17+ were inhibited in a very similar concentration-dependent manner (Fig. XI. F.). 

Since HSV-2 G strain was also inhibited by MG132  (Fig. XI. F.), the data suggests that 

proteasome-dependent entry may be independent of HSV strain or serotype (55). 

 

4. Inhibitors act directly on the cellular proteasome  

Herpesviruses mimic a myriad of cellular functions (237). It was possible that in the 

previous experiments, the proteasome inhibitors were interfering with a virus-encoded function 

of HSV that is needed for entry. To determine whether this was the case, I took advantage of the 

known irreversible effect of lactacystin on the proteasome. Once lactacystin binds to 20S 

subunits, its inhibitory effect on the proteasome cannot be reversed by washing the cells. CHO- 

nectin-1 cells were pretreated with medium containing lactacystin. Medium was removed, and 

cells were washed prior to addition of HSV. Lactacystin inhibited HSV-induced β-galactosidase 
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activity in an equivalent manner, whether the cells were washed prior to infection or whether 

lactacystin was present for the duration of the assay (Fig. XII. A.). This result is consistent with 

the inhibitor acting directly on the proteasome itself and not on a function of HSV. If lactacystin 

were affecting HSV directly, then infection would have resumed after the removal and washout 

of lactacystin. This was not the case (Fig. XII. A.). In contrast to lactacystin, MG132 is a 

reversible inhibitor (173). Cells that were treated with MG132 and then washed prior to addition 

of virus were much more susceptible to HSV than the cells that were not washed (Fig. XII. B.). 

The effect of MG132 was 85% reversible in this cell system.  

 

5. Proteasome activity is required at an early step of HSV entry 

To begin to identify the viral process that involves proteasomal degradation, cells were 

infected with HSV, and then MG132 was added at different times postinfection. The later the 

MG132 was added, the less of an inhibitory effect there was on HSV infection of either Vero or 

CHO-nectin-1 cells (Fig. XIII.). MG132 was most effective at blocking virus-induced β-

galactosidase activity when added to Vero cells during the 1st h p.i. or when added to CHO-

nectin-1 cells during the first 2 h p.i. (Fig. XIII.). The results suggest that an early event in HSV 

infection, such as viral entry, requires the proteasome.  

 

6. Chymotrypsin-like proteasome active site required for HSV entry 

The 20S catalytic core contains three different proteolytic sites, chymotrypsin-, trypsin- 

and caspase-like active sites (162). The minute virus of mice, which also interacts with the 

proteasome for a post-penetration step, specifically requires the chymotrypsin-like site (239). 

Thus, I examined which of the 20S active sites was required for HSV entry. To address this  
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Figure XII. Lactacystin acts directly on the cell proteasome, not on an HSV-specific function.  

CHO-nectin-1 cells were treated with lactacystin (A) or MG132 (B) for 30 min at 37˚C. Medium 

was removed. Cells were either washed four times for 5 min with culture medium, and then 

HSV-1 KOS-tk12 (MOI of 1) was added in medium without inhibitor (Wash), or virus was 

added in the continued presence of agent (No Wash). Beta-galactosidase activity was measured 

at 6 h p.i. as an indication of viral entry (as in Fig. XI). Data are means of quadruplicate 

determinations with standard error. 
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Figure XIII. MG132 is most effective when added early in infection. HSV-1 KOS-tk12 or KOS 

was bound to Vero or CHO-nectin-1 cells, respectively, for 1 h at 4˚C. Cells were rapidly 

warmed to 37˚C to initiate infection. At the indicated times, 25 μΜ MG132 was added to the 

cells.  Beta-galactosidase activity was measured at 6 h p.i. as an indication of viral entry (as in 

Fig. XI). N, no MG132 added. Data are means of quadruplicate determinations with standard 

error. 
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question, the proteasomal chymotrypsin-, trypsin- and caspase-like activities were specifically 

inhibited with N-tosyl-L-phenylalanine chloromethylketone (TPCK), N-α-tosyl-L-lysinyl-

chloromethylketone (TLCK) and YU102, respectively. Concentrations known to inhibit 

proteasome activity were used. TLCK and YU102 had no effect on early HSV infection (Fig. 

XIV.). Similar results were seen with leupeptin, a trypsin-like active site inhibitor (date not 

shown). A dose-dependent decrease in HSV-induced expression of β-galactosidase was only 

observed with TPCK (Fig. XIV.). Similar results were seen with the other chymotrypsin-like 

inhibitors MG132 (Fig. XI. B. and D.), lactacystin (Fig. XI. E.) and Epoxomicin (data not 

shown). These results suggest that the predominant active site of the proteasome required for 

HSV entry is the chymotrypsin-like site. 

 

7. HSV entry is independent of the E1 ubiquitin-activating enzyme 

I then determined whether the host ubiquitination machinery is required for HSV entry. 

To assess HSV entry under conditions where ubiquitin monomers are not activated, a mouse ts20 

cell line was used (38), which is derived from BALB/c 3T3 fibroblasts. These cells have a 

temperature-sensitive E1 enzyme, which is nonfunctional at 39°C. 

I first verified that E1 is nonfunctional in ts20 cells at the nonpermissive temperature by 

using a p53 stability assay. The transcription factor p53 is a regulator of cell proliferation, 

differentiation, and apoptosis (172). Wild-type p53 has a short half-life and is degraded by the 

UPS (38). p53 was stabilized in ts20 cells at the restrictive temperature (Fig. XV. A.), confirming 

inactivation of E1.  

Notably, HSV-1 KOS-tk12 expressed β-galactosidase in ts20 cells at 39°C in a manner 
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Figure XIV. Effect of inhibitors of the distinct proteolytic activities on the 20S β-subunit. 

Vero cells were treated with TLCK, YU102 or TPCK for 15 min at 37˚C. KOS-tk12 virus 

was added for 6 hr in the continued presence of inhibitor. The percent β-galactosidase 

activity relative to that obtained in the absence of agent is indicated. The data are means of 

quadruplicate determinations with the standard errors. 
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Figure XV. Role of a cellular E1 ubiquitin-activating enzyme in HSV entry. ts20 or BALB/c 3T3 

cells were cultured at 35˚C or 39˚C for 18 h.  (A) p53 is not degraded in ts20 cells at the non-

permissive temperature. Lysates were prepared and analyzed by SDS-PAGE and immunoblotted 

for p53 or α-tubulin (Tub).  (B-C)  HSV enters cells with an inactive E1 ubiquitin-activating 

enzyme. HSV-1 KOS-tk12 was added to cells cultured at 35˚C (B) or 39˚C (C). Beta-

galactosidase activity was determined at 6 h p.i. (D-E)  E1 ubiquitin-activating enzyme-

independent entry of HSV still requires proteasome activity. ts20 cells maintained at 39˚C were 
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treated with MG132 (D) or lactacystin (E) for 15 min. HSV-1 KOS-tk12 was added in the 

presence of inhibitor. Beta-galactosidase activity was measured at 6 h p.i. (as in Fig. 1).  Data are 

means of quadruplicate determinations with standard errors. 
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similar to that seen at 35°C (Fig. XV. B.-C.). Thus, viral entry proceeded under conditions that 

inhibited a cellular E1 ubiquitin-activating enzyme (Fig. XV. A. and C.). HSV also infected 

control BALB/c 3T3 cells at both temperatures (Fig. XV. B.-C.). Virus-induced gene expression 

in ts20 cells at the nonpermissive temperature was inhibited by MG132 and lactacystin (Fig. XV. 

D.-E.), indicating that entry is still reliant on active proteasomes. Although MG132 and 

lactacystin seem to be slightly less effective in ts20 cells than CHO-nectin-1 cells (Fig. XI. D.-E. 

and Fig. XV. D.-E.). Together, the results suggest that HSV may enter cells in a proteasome-

dependent, ubiquitin-independent manner.  

 

8. Binding of HSV to the cell surface is independent of proteasome activity 

First, I determined whether proteasome inhibitors disrupted HSV binding to Vero cells. 

Vero cells were treated with MG132, and then HSV-1 K26GFP was added for 1 h at 4°C. Each 

punctate fluorescent signal is an individual K26GFP virion. MG132 treatment had no discernible 

inhibitory effect on HSV binding to cells (Fig. XVI. A.-B.). In contrast, control treatment with 1 

g of heparin/ml blocked virus binding to cells by more than 80% (Fig. XVI. C.-D.) (271). This 

suggested that the proteasome is not needed for virus binding to the cell surface.  

 

9. MG132 affects an entry step prior to capsid transport 

I investigated the role of the proteasome in the delivery of incoming HSV-1 K26GFP 

capsids to the nucleus during entry. In HSV-infected Vero cells, the bulk of the GFP signal is 

detected at or near the nucleus by 2.5 h p.i. (Fig. XVI. E.). In the continued presence of MG132, 

lactacystin, or epoxomicin, GFP-tagged capsids were not effectively transported to the nuclear 

periphery (Fig. XVI. F.-H.). Instead, the bulk of GFP-tagged viral particles appeared to be 
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Figure XVI. Effect of proteasomal inhibitors on binding and capsid transport. (A-D) Effect of 

MG132 on virus binding to cells. HSV-1 KOS K26GFP (MOI of 30) was added to pre-chilled 

Vero cells for 1 h at 4oC in the presence of no inhibitor (A), 25 μΜ MG132 (B), or 1 μg/ml 

heparin (C). Cells were fixed and confocal images were obtained. Bar, 100 microns. (D) The 

number of bound GFP-tagged virions was quantified by three observers blinded to experimental 

conditions (Virions). Data are the mean with standard error.  In parallel, mean GFP intensity was 

measured by the Histogram function of Adobe Photoshop. Binding in the absence of inhibitor 

was set to 100%. (E-H) Effect of proteasome inhibitors on incoming capsid transport to the 
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nuclear periphery. Vero cells were mock-treated (E) or treated with 25 μΜ MG132 (F), 10 μΜ 

lactacystin (G), or 10 μΜ epoxomicin (H) for 15 min at 37oC. HSV-1 KOS K26GFP (MOI of 

10) was added for 2.5 h in the constant presence of agent and 0.5 mM cycloheximide. Cells were 

fixed, and confocal images were obtained. Images are representative of cell population. Bar, 10 

microns.  
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trapped at the cell periphery. Since these experiments were performed in the presence of 

cycloheximide, these results suggests that newly synthesized viral factors do not affect the 

proteasome dependence of entry. Whether our findings bear on downstream, proteasome-

mediated events in HSV infection remains to be seen. Together, the results suggest that 

proteasome activity is needed for a step in HSV entry that occurs after cell binding but prior to 

capsid arrival at the nucleus.  

 

10. MG132 block on capsid transport is partially reversible 

MG132 can be washed out of cells prior to addition of virus, resulting in a much-reduced 

inhibitory effect (Fig. XII. B.). This is consistent with the reversible effect of MG132 on the  

proteasome. I then determined whether the block to capsid transport imposed by MG132 could 

be reversed by washout. Vero cells were infected with HSV-1 K26GFP for 2 h in the presence of 

MG132 (Fig. XVII. B.). After washout of MG132 and incubation for an additional hour, GFP-

tagged capsids appeared to migrate toward the nucleus (Fig. XVII. C.). Punctate GFP signals 

were visualized at an intermediate site between the cell periphery and the nucleus and in the 

perinuclear region (Fig. XVII. C.). This is in line with the known reversible effect of MG132 on 

the 20S proteasome.  

 

11. HSV entry relies on proteasome activity at a postpenetration step 

From the fluorescence microscopy experiments (Fig. XVI. F. and XVII. B.), the location 

of MG132-arrested virions in Vero cells cannot be ascertained unambiguously. The GFP signal 

may represent either enveloped virions that have bound but not yet fused or capsids that are 

halted in the cytosol. I utilized multiple approaches to determine the location of these virions.  



 
 

65 

 

 
 

Figure XVII. Effect of washout on the MG132 block of capsid transport. Vero cells were mock-

treated (A) or treated with 25 μΜ MG132 (B, C) for 15 min at 37oC. HSV-1 KOS K26GFP was 

allowed to infect cells for 2 h in the absence (A) or presence of MG132 (B-C). Cells were fixed 

(B) or were washed four times 5 min with culture medium, and returned to 37oC for an additional 

hour in normal culture medium prior to fixation (C). Bar, 10 microns.   
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First, a citrate inactivation assay was used to determine whether MG132-arrested virions 

were bound to the cell surface. Sodium citrate buffer (pH 3.0) inactivates cell-bound HSV that 

has not penetrated into the cytosol (145). For example, the infectivity of HSV that is bound to 

vero cells at 4°C is completely inactivated by citrate treatment (Fig. XVIII. A.). In these 

experiments, MG132 was washed out after citrate or PBS treatment to allow infection. When 

citrate buffer was added to the surface of infected cells treated with MG132, HSV infectivity was  

not significantly affected (Fig. XVIII. B.). Similar infectivity was observed in the control cells 

that received PBS treatment (Fig. XVIII. B.). The resistance to citrate inactivation supports the 

notion that HSV penetrates into the cytosol of Vero cells in the presence of MG132.  

Second, a fluorescence protease protection assay was used to determine the accessibility 

of MG132-arrested virions to proteinase K. HSV that is bound to the cell surface can be removed 

by protease treatment; (215, 252). HSV-1 K26GFP was bound to Vero cells at 4°C (Fig. XVIII. 

C.). Proteinase K added to the cell surface effectively removed the GFP signal (Fig. XVIII. D.). 

In contrast, proteinase K did not effectively remove GFP-tagged HSV from MG132-treated cells 

(Fig. XVIII. F.), suggesting that arrested virions are not present on the cell surface. This is 

consistent with the inefficacy of citrate treatment (Fig. XVIII. B). When cells were first 

permeabilized with digitonin and then treated with protease, the GFP signal was removed more 

effectively (Fig. XVIII. G.). In this case, proteinase K may enter the permeabilized cell and act 

on cytosolic capsids such that they can be washed away or their GFP degraded. Digitonin 

treatment alone did not have an effect on retention of GFP signal (not shown). These results 

support the notions that capsids are halted in the cytosol of MG132-treated cells and that the 

proteasome is needed for a step in entry that follows penetration.  
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Figure XVIII. Effect of MG132 on pre-penetration and fusion steps. (A-B) Citrate treatment of 

the cell surface has no effect on the infectivity of MG132-arrested virions. (A) Vero cells were 

chilled on ice, and HSV-1 KOS (100 PFU/well) was added for 1 hr at 4̊ C. Cells were treated 

with warmed PBS or citrate buffer (pH 3.0). Plates were shifted to 37̊ C, and plaques were 

quantified at 24 h p.i.  (B) Vero cells were mock treated (No inhibitor) or treated with 25 μM 

MG132 for 30 min at 37̊ C. Cells were chilled, and then HSV-1 KOS (100 PFU/well) was 

added for 1 h at 4̊ C to synchronize infection. Cultures were shifted to 37̊ C, and MG132 

concentrations were maintained for 2.5 h at 37̊ C. Cells were then treated with PBS or citrate 

buffer (Citrate), and then extensively washed with culture medium to reverse the effect of 

MG132.  Plaques were quantified at 18 h p.i. Data are the mean of triplicate samples with 

standard deviation. (C-H) Permeabilization of the plasma membrane followed by treatment with 

protease allows removal of MG132-arrested virions. HSV-1 KOS K26GFP (MOI of 10) was 

bound to pre-chilled Vero cells for 1 h at 4̊ C (C), and then 100 μg/ml Proteinase K was added 

for 2.5 min (D) prior to fixation and confocal microscopy. Bar, 10 microns.  (E-G) HSV-1 KOS 

K26GFP (MOI of 10) was added to cells in the presence of 25 μM MG132 for 2.5 h p.i. at 

37 ̊ C. MG132-treated cells received no additional treatment (E), were treated with Proteinase K 

(F), or were permeabilized with digitonin followed by Proteinase K treatment (G). Cells were 

fixed and analyzed by confocal microscopy. Bar, 10 microns.  (H-K) MG132 has no effect on 

virion-induced fusion in a fusion-from-without assay. Vero cells were mock-treated (H, I) or 

treated with 50 μM MG132 (J) for 30 min at 37̊ C. Cells were left uninfected (H) or HSV-1 

ANG path (MOI of 50) was added (I, J) for 3 h in the presence of cycloheximide. Cells were 

fixed and stained with Giemsa. (K) Fusion was quantitated from photomicrographs of random 
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fields as described in Materials and Methods. Data are means of triplicate determinations with 

standard error.  
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Third, I addressed more directly the possibility that proteasome activity was needed for 

membrane fusion itself. Virus-cell fusion (or penetration) during HSV entry is refractory to 

direct study. A fusion-from-without (FFWO) assay was used as a surrogate means to measure 

virion-induced fusion (54). FFWO is the induction of target cell fusion by addition of virions to 

the monolayer surface in the absence of viral protein expression (96). A subset of syncytial 

strains of HSV-1, including the ANG path strain has FFWO activity (150). Relative to uninfected  

 (Fig. XVIII. H.), the addition of HSV-1 ANG path to Vero cell monolayers resulted in the 

clustering of nuclei, which is indicative of FFWO (Fig. XVIII. I.). I then assessed the effect of 

MG132 on FFWO. Cells treated with MG132 were susceptible to virion-induced FFWO (Fig. 

XVIII. J.) in a manner similar to untreated cells (Fig. XVIII. I. and K.), suggesting that the 

proteasome is not needed for the fusion activity of the virion. Together, the results are consistent 

with a role for the proteasome in delivering penetrated capsids to the nucleus. 
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IV.  FUNDAMENTAL PROPERTIES OF TEGUMENT ICP0 

 

 

A. INTRODUCTION 

The function of tegument ICP0 during the earliest steps of HSV infection, prior to IE 

gene expression, has not been evaluated. IE ICP0 has known interactions with the cellular 

proteasome late in infection and also has E3 ubiquitin ligase activity. Thus ICP0 was a strong 

candidate for being involved in proteasome-dependent entry and merited analysis. 

Prior to determining tegument ICP0’s function, some fundamental questions about 

tegument ICP0 had to be addressed. If mutations in tegument ICP0 caused the loss of other 

structural proteins in mature virions, future experimental conclusions could not be attributed 

solely to mutations in tegument ICP0. If mutations caused ICP0 to no longer be incorporated into 

virions, then results in future experiments would be based on the absence of ICP0 and not on 

altered function of tegument ICP0. The position of a protein in the tegument layer, inner or outer, 

can be important for its function during early HSV infection. The position of ICP0 in the 

tegument could influence the interpretation of future experimental results. To address these 

questions, we looked at the protein and ICP0 content of WT compared to mutant ICP0 virions. 

We performed a tegument release assay in order to distinguish whether ICP0 is an outer or inner 

tegument protein. 
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B. RESULTS 

 

1. Absence of ICP0 does not alter mature virion protein composition 

I investigated whether ICP0 influences the protein composition of mature extracellular 

virions. One µg (Fig. XIX. A., left) or equivalent VP5 units (Fig. XIX. A., right) of virions of 

parental virus HSV-1 Glasgow strain 17+ syn (herein referred to as 17+) or virions of ICP0 null 

mutant dl1403 (Table V.) were analyzed by SDS-PAGE followed by Coomassie blue staining 

(23). For each structural protein of the 17+ virions that was detectable by Coomassie blue 

staining, there was a counterpart protein detected in dl1403. Although several proteins were 

detected at various levels, the overall protein profile of virions released from U2OS cells was not 

grossly altered by the absence of ICP0 (Fig. XIX. A.). 

Equivalent VP5 units of extracellular virions were analyzed by Western blotting with 

antibodies to glycoproteins, tegument proteins and a major capsid protein. The envelope 

glycoproteins and tegument proteins tested did not appear to be reduced in the absence of ICP0 

(Fig. XIX. B.). By these measures, ICP0 does not appear to grossly affect the protein content of 

mature virions.  

 

2. Really interesting new gene domain influences tegument ICP0 incorporation 

Next, I determined whether the RING finger domain influences ICP0 incorporation into 

the tegument layer. First, the relative amounts of VP5 in various ICP0 mutant virions (Table V.) 

propagated on U2OS cells were determined for each preparation of virus (Fig. XX. A.). The 

ICP0 contents of virions were then analyzed by SDS-PAGE followed by Western blotting with 

an antibody to ICP0. As expected, WT 17+ contained tegument ICP0 (Fig. XX. A., lane 17+) 



 
 

73 

 
 
Figure XIX. Protein content of extracellular wild type and ICP0 null mature virions. (A) 1 µg 

(left) or equivalent VP5 units (right) of HSV-1 wild type (17+) or ΔICP0 (dl1403) were analyzed 

by SDS-PAGE followed by Coomassie blue staining. Locations of several HSV structural 

proteins are indicated at the right. (B) Equivalent VP5 units of extracellular virions were 

analyzed by SDS-PAGE followed by Western blotting with antibodies against the indicated 

tegument protein or glycoprotein. 
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Figure XX. Effect of RING finger mutations on the incorporation of ICP0 into virions. Tegument 

ICP0 content of ICP0 mutants. (A) Incorporation of tegument ICP0 into HSV-1 mutants. The 

indicated extracellular virions were analyzed by SDS-PAGE followed by Western blotting with 

an antibody to ICP0. In parallel, VP5 was detected by Coomassie staining to demonstrate 

equivalent particle loading. (B) Expression of ICP0 in cells infected with WT or mutant viruses. 

U20S cells were infected with the indicated virus (based on MOI = 1 for 17+) for 18 hr. Cell 

lysates were analyzed by SDS-PAGE followed by Western blotting with an antibodies to ICP0 

and β-actin. 
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while the dl1403 mutant did not (Fig. XX. A., lane dl1403). FXE virions did not contain ICP0 

(Fig. XX. A., lane FXE), suggesting that the RING finger domain is important for the association 

of ICP0 with mature virions. ICP0 was detected in dl1403 and FXE rescuants (Fig. XX. A., lanes 

dl1403R and FXER), both of which bear the restored ICP0 gene. ICP0 was also detected in 

USP7 binding domain mutants M1, M1 rescuant and D12 (Fig. XX. A., lane M1, M1R and 

D12). This indicates that the USP7 binding region is not required for ICP0 incorporation, a result 

recently confirmed by Maringer and Elliot (184). Interestingly, K144E virions had greatly 

reduced levels of tegument ICP0 whereas N151D virions had WT levels (Fig. XX. A., lanes 

K144E and N151D). Trace amounts of ICP0 were reproducibly detected in K144E virions upon 

longer exposure to film. To confirm that the reduction in tegument ICP0 in FXE and K144E 

viruses was not due to lack of expression of mutant ICP0 in infected cells, the expression of 

ICP0 during mutant virus infection was compared to that during WT 17+ infection. Mutant ICP0 

was readily detected in cells infected with FXE or the K144E mutant (Fig. XX. B.), albeit at 

lower levels as reported previously (78, 81). Thus, the results suggest that the RING finger plays 

an important role in the incorporation of ICP0 into virions.  

 

3. Tegument infected cell protein 0 is capsid associated 

To determine the position of ICP0 within the tegument layer, a tegument release assay 

was employed (6, 203, 270). This is a measure of how readily detergent and salt can remove a 

structural protein from the virion. Typically, outer tegument proteins are partially released from 

virions following treatment with Triton X-100 and up to 1 M NaCl, but capsid-associated or 

inner tegument proteins are resistant to such treatment. For these experiments, extracellular 

virions were resuspended in lysis buffer then layered onto a sucrose cushion and centrifuged. 
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The supernatant above the sucrose cushion was recovered, and the pellet, containing capsids and 

capsid-associated tegument proteins, was resuspended in Laemmli buffer. Pelleted and released 

samples were separated by SDS-PAGE and blotted onto nitrocellulose and probed with 

antibodies against envelope proteins, known inner and outer tegument proteins, ICP0 and ICP4. 

As expected, gB was detected in the supernatant, indicating that it was removed along 

with the virion envelope (Fig. XXI.). In contrast, ICP0 remained in the pellet along with VP5, 

the major capsid component, even at high salt concentrations (Fig. XXI.). ICP0 was not detected 

in the supernatant even after longer exposures to X-ray film (data not shown). VP1-2 is a known 

inner tegument protein and remained associated with capsids in the pellet (Fig. XXI.) (203, 209, 

270). In contrast, a fraction of VP16 was readily removed by 1% Triton X-100, consistent with 

the presence of VP16 in the outer tegument (203, 209, 270). Interestingly, detectable amounts of 

ICP4 were released by detergent and increasing salt concentrations (Fig. XXI.), suggesting that 

ICP4 is an outer tegument component.  
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Figure XXI. Position of ICP0 in the virion tegument layer. Extracellular virions were treated 

with 1% Triton X-100 in the presence of 0.1, 0.5, or 1.0 M NaCl. The reactions were then 

centrifuged through a 35% sucrose cushion. Pelleted (Pellet) and released (Sup) fractions were 

analyzed by SDS-PAGE and immunoblotting with antibodies to ICP0, VP1-2, ICP4, VP16, gB, 

or VP5. 

 

 

 

 

 

 

 

 



 
 

78 

 

 

 

 

V. A PRE-IMMEDIATE EARLY ROLE FOR TEGUMENT ICP0 

 

 

A. INTRODUCTION 

 For the first experimental section, the cellular proteasome is shown to be required for 

efficient capsid transport (55). In the second experimental section, ICP0 remains associated with 

capsids in the tegument release assay, a characteristic of inner tegument proteins (56). Since 

ICP0 is in the inner tegument, it may be transported with capsids on microtubules during HSV 

entry. Late in infection IE ICP0 interacts dynamically with cellular proteasomes (263). IE ICP0 

has a RING finger domain with E3 ubiquitin ligase activity that is necessary for its IE functions 

(21). With these known ICP0 functions, it is possible that tegument ICP0 regulates proteasome-

dependent capsid transport. Thus, in this last section I sought to determine the role of tegument 

ICP0 during proteasome-dependent entry of HSV. I began by looking at the effects of MG132 on 

the virus induced β-galactosidase expression or early infection of mutant ICP0 virions. 
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B. RESULTS 

 

1. In the absence of tegument ICP0, early HSV infection is resistant to MG132 

 WT HSV-1 KOS entry into CHO-nectin-1 cells was inhibited by MG132 in a 

concentration-dependent manner (Fig. XXII. A.). In contrast, 7134 entry was refractory to  

inhibition (Fig. XXII. A.). Similar results at a lower MOI suggest that the phenotype seen is 

related to entry and not to infection (data not shown). Infections with WT 17+, dl1403 rescuant, 

FXE rescuant, N151D, M1 and D12 virions were inhibited by MG132 in a dose-dependent 

manner (Fig. XXII. B.-E.). Infections with dl1403, FXE and K144E viruses were inhibited to a 

lesser extent or not at all by MG132 (Fig. XXII. B.-D.). Recall, that FXE, K144E and dl2403 

virions do not contain tegument ICP0 (Fig. XX.). Thus, these results suggest that virions 

deficient in tegument ICP0 appear to be less dependent on proteasome activity for initiation of 

infection. MG132 inhibited the efficiency of WT and N151D entry but had less of an effect on 

the efficiency of dl1403, FXE and K144E entry (Fig. XXII. F.-H.). Although at higher MG132 

concentrations, the efficiency of entry appears to be similar (Fig. XXII. F.-H.). This suggests that 

any virions that are resistant to MG132 during WT and N151D entry may enter by a similar 

pathway as dl1403, FXE and K144E virions. Notably, HSV-1 dl1403 is capable of synthesizing 

β-galactosidase in the presence of up to 50 µM MG132 (Fig. XXII. B. and F.). This suggests that 

MG132 does not directly inhibit reporter gene expression in this assay, and is consistent with the 

notion that MG132 inhibits WT HSV at the level of capsid transport (55). Importantly, these 

results suggest a functional role for tegument ICP0 in proteasome-dependent entry. 
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Figure XXII. Effect of MG132 on the entry of ICP0 mutants. (A-E) CHO-nectin-1 cells, 

containing a lacZ gene cassette, were treated with MG132 for 15 min at 37˚C. WT KOS (A), 

7134, containing a lacZ gene cassette (A), WT 17+ (B-E), dl1403 (B), dl1403R (B), FXE 

(C), FXER (C), K144E (D), N151D (D), M1 (E), M1R (E), or D12 (E) mutant viruses were 

added for 6 hr in the continued presence of inhibitor. The percent β-galactosidase activity 

relative to that obtained in the absence of agent is indicated. MG132 decreases the efficiency 

of HSV entry in the presence of ICP0. (F-G) β-galactosidase activity was taken over 12 min 

during the reading of (B-D). The data are means of quadruplicate determinations with the 

standard errors.  
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VI. DISCUSSION 
 
 
 

 
A. INTRODUCTION 

Several virus-cell interactions have been identified during the initial infection of the host 

cell by HSV. Here I show that functional proteasomes are needed for efficient entry of HSV into 

cells. Interestingly, viral entry is not dependent on the ubiquitination activity of the cell. 

Proteasome inhibitors block HSV entry into cells that mediate either endocytic or nonendocytic 

entry pathways. Together, our studies suggest that a common step in both pathways, namely the 

delivery of newly penetrated capsids to the nuclear periphery, is proteasome-dependent.  

 

B. CELL TYPE AND PROTEASOME-DEPENDENT ENTRY OF HSV 

HSV entry into Vero cells appears to be the first example of a nonendocytic viral entry 

process to require cellular proteasome activity. The viruses known to require the UPS for viral 

entry, all utilize endocytic pathways (159, 239, 240, 279). Thus, the subcellular distribution of 

MG132-arrested HSV reported here appears to be novel. In total, proteasome-mediated 

proteolysis may play multiple roles in the intracellular trafficking of viruses.  

Our results are consistent with the idea that the proteasome is also needed at a 

postpenetration step in CHO cell entry (Fig. XI.-XVIII.). However, this needs to be determined 
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conclusively. After endocytosis in CHO-nectin-1 cells, the HSV capsid penetrates from a low pH 

endocytic compartment (46, 112, 214, 215), but the precise site has not been established. Hence, 

Vero cells were more amenable to use in several aspects of our study because the penetration of 

capsid at the plasma membrane is synchronized easily and can be analyzed more directly.  

The two major target cells for HSV in the human host are mucosal epithelial cells and 

sensory neurons of the peripheral nervous system. The distance that the capsid must travel in 

order to reach the nucleus in epithelial cells, and in the cultured cells used in the present study, is 

much shorter than the distance to be traveled down the axon of an innervating neuron (75). 

While proteasome inhibitors block 60 to 90% of HSV entry into Vero, CHO-nectin-1, BALB/c 

3T3 (Fig. XI-XVIII), B78-nectin-1, HeLa, and HaCaT cells (data not shown), the proteasome 

may play an even more significant role in neuronal entry.  

 

C. ASPECTS OF TARGET SUBSTRATE 

Chymotrypsin-like active site inhibitors of the proteasome all inhibit HSV entry, while 

agents that primarily affect the trypsin-like or caspase-like catalytic sites have no effect on viral 

entry. Thus, the data suggests that the chymotrypsin-like active site is important for substrate 

proteolysis during HSV entry. To confirm the specificity of proteasome inhibitors I used, 

proteasomes isolated from inhibitor treated cells would have to be collected, and then the 

proteolytic activity of model substrates would have to be measured (162). Conclusions from such 

studies would have to be made with caution because the relative importance of a given active site 

varies with substrate. 

Entry proceeds unimpeded in cells that lack a functional form of a cellular ubiquitin-

activating enzyme, E1 (Fig. XV.). With the limitations of the ts20 cell model, I cannot rule out 
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that HSV might use a viral encoded E1 or a different cellular E1 ubiquitin-activating enzyme. 

The nature of the degradation signal involved in proteasome-dependent entry of HSV is currently 

not known. The target substrate could use a cellular or viral adaptor protein to target it to the 

proteasome. Alternately, the target substrate might be tagged with a ubiquitin-like modification. 

A number of ubiquitin-like modifications have been identified, such as sumoylation (162). 

Interestingly, PML and SP100 modified with SUMO are more sensitive to ICP0-mediated 

degradation (35, 89). It remains to be determined whether such ubiquitin-related moieties play a 

role in viral entry.  

 

D. TEGUMENT ICP0 

By the measures used, ICP0 does not appear to grossly affect the protein content of 

mature virions (Fig. XIX.). ICP4 is another transcriptional activator located in the tegument and 

it is known to interact with ICP0 during HSV gene expression. Western blot analysis was used to 

determine whether the absence of ICP0 affected the incorporation of ICP4. ICP4 was detected in 

dl1403 virions (Fig. XIX. B.). This suggests that ICP4 can be incorporated into virions 

independently of ICP0. It is important to note that these results do not rule out a role for ICP0 in 

proper virion assembly. Tegument assembly involves a complex series of protein-protein 

interactions, and individual tegument proteins may serve redundant functions (197). And based 

on the limitations of these analyses, it is still possible that one or more structural proteins in 

addition to ICP0 may be missing from the ICP0-null virus. 

While K144E and N151D mutations in the RING alpha helix both decrease the ability of 

ICP0 to activate gene expression, the K144E phenotype is more pronounced (21, 78) (Table IV.). 

Also, K144E and N151D mutants both fail to induce the colocalization of conjugated ubiquitin, 
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but ICP0 with the N151D mutation may still interact with the ubiquitin machinery (84). It is not 

clear whether these activities relate to the inclusion of the N151D mutant protein and the 

exclusion of the K144E mutant protein from the tegument (Fig. XX.).  

The RING finger of ICP0 plays a critical role in its incorporation into the tegument layer, 

a result that has recently been confirmed by Maringer and Elliot (184) (Fig. XX.). RING finger 

mutations cause ICP0 to be more readily retained in the nucleus and this would be a simple 

explanation as to why there is a reduction of tegument ICP0 (185). It is also possible that the 

reduction in ICP0 expression during FXE and K144E infection may influence ICP0 

incorporation (Fig. XX. B.). ND10 disruption and gene expression have been shown to be 

requirements for translocation of ICP0 (151, 178). Thus RING finger mutations that inactivate 

these functions could also lead to nuclear retention. In the absence of VP22, ICP0 is still 

translocated to the cytoplasm but does not become incorporated into virions (74, 184). An ICP0 

point mutant is unable to bind to cyclin D3, which might be involved in ICP0 translocation 

(264). This suggests that the RING finger mutations might block interaction with a cellular or 

viral factor important for ICP0 translocation (184). The RING finger-dependent incorporation of 

ICP0 also provides more evidence that ICP0 is specifically incorporated into viral tegument. 

Future studies could investigate the role that the RING domain plays in the relationship between 

the cellular localization of ICP0 and the incorporation of ICP0 into the tegument layer.   

During infection, ICP0 is dynamically phosphorylated, so it is possible that one or more 

of these phosphorylation sites is important for ICP0’s incorporation into virions (1). ICP0 is also 

able to autoubiquitinate itself, and such a signal could also target ICP0 to virions (32). Future 

studies could address whether ICP0 incorporated into virions is posttranslationally modified. 
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ICP0 was resistant to removal by detergent and high salt, a feature common to inner 

tegument proteins (Fig. XXI.), a result that has recently been confirmed (184). In contrast, ICP4 

was sensitive to removal by detergent and high salt, a feature common to outer tegument proteins 

(Fig. XXI.). In contrast, ICP0 is capsid associated. Although specific functions have not yet been 

ascribed to virion ICP0 and ICP4 proteins, it is tempting to speculate that their different positions 

in the tegument layer reflect distinct roles in pre-IE events. The presence of tegument ICP4 near 

the viral envelope may facilitate rapid release into the cytoplasm upon viral penetration and 

allow for ICP4 to play a pre-IE role in HSV infection. Because ICP0 appears to be an inner 

tegument protein, tegument ICP0 may be transported with capsids on microtubules and may have 

a regulatory role at the proteasome-dependent step during HSV entry. 

UL14 is a HSV protein that is expressed late in infection and is found in low amounts in 

the tegument of HSV (273). At low MOI, UL14 mutants exhibit an extended infection and have 

a defect in release of mature virions. This suggests that UL14 is important for efficient and 

productive infection. Recently, tegument UL14 has been shown to be required for efficient 

nuclear targeting of VP16 and capids during entry. UL14 in this case could be influencing the 

removal of tegument upon penetration, regulating the rate of capsid transport, or important for 

tegument-tegument interactions during capsid transport. The various correlations between UL14 

and ICP0, suggest that ICP0 may have a similar role in entry or be a key player in the capsid 

transport mechanism. 

Newly expressed ICP0 is suggested to play a role in regulating the efficiency of lytic and 

latent infection. The work presented in this thesis suggests that ICP0 also plays a role in 

regulating the efficiency of HSV entry. The current hypothesis is that HSV tegument ICP0 plays 

a pre-IE role in regulating proteasome-dependent entry at a step of capsid transport to the  
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Figure XXIII. Potential mechanism of proteasome-dependent entry of HSV. This thesis 

proposes that independent of entry pathway, HSV tegument ICP0 plays a pre-immediate 

early role in regulating proteasome-dependent entry at a step during capsid transport to the 

nucleus. 
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nucleus (Fig. XXIII.). Ongoing studies are aimed at delineating the fate and function of tegument 

ICP0 during viral entry. As shown in this work, the effect of MG132 on the entry of ICP0 mutant 

virus was evaluated by β-galactosidase. HSV containing tegument ICP0 appears to enter cells 

more efficiently than virions that are deficient in tegument ICP0 (Fig. XXII. F.-H.).  In addition, 

the majority of virions with capsid-associated ICP0 appear to enter cells via proteasome-

dependent pathway (Fig. XXII. A.-E.), while entry of HSV in the absence of ICP0 is 

proteasome-independent (Fig. XXII. B.-D.). This suggests that when tegument ICP0 is present, it 

interacts with proteasomal machinery to facilitate and enhance the efficiency of HSV entry. In 

this case, MG132 blocks the majority of capsid transport and reduces WT entry efficiency due to 

a block in tegument ICP0 and proteasome interaction. In the absence of tegument ICP0, ICP0s 

interaction with the proteasome to facilitate HSV entry would not occur. Proteasome-

independent HSV capsid transport is likely to be inefficient due to the absence of the enhancing 

effect of tegument ICP0. However, the lack of proteasome interaction would allow for capsid 

transport to occur in the presence of MG132.  

 

E. FUTURE DIRECTIONS 

Future studies will continue to evaluate the effect of MG132 on the entry of ICP0 

mutants by looking at capsid transport by immunofluorescent microscopy. The particle to PFU 

ratio of ICP0 mutants will be addressed by infecting slides with equivalent VP5 units, based on 

WT 17+ MOI of 10. Future studies will also seek to complement dl1403 and 7134 virions with 

tegument ICP0. The goal of these studies would be to restore the WT phenotype in ICP0 null 

virus with cells expressing ICP0. The subcellular localization of tegument ICP0 during HSV 

entry will also be evaluated. By following input ICP0 by immunoprecipitation our lab hopes to 
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gain additional details to the mechanism of proteasome-dependent entry of HSV. There is also 

potential for functional interaction of ICP0 with the inner tegument protein VP1-2, which has an 

N-terminal DUB domain (155). 

Efforts are under way to identify the polypeptide(s) that is degraded during HSV entry. 

Retrograde movement of herpes-virus capsids toward the nucleus likely involves the coordinated 

action of virus and cell components (66, 67, 71, 182, 183). HSV outer tegument or capsid-

associated tegument proteins are candidate substrates for the 20S proteasome. Also, cytoskeletal 

elements and their associated motor proteins and regulatory molecules are host factors that may 

be targeted for degradation. Discovery of the substrate(s) will be critical for understanding the 

mechanism of proteasome-dependent viral entry.  
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VII. CONCLUDING REMARKS 
 
 
 
 

Inhibitors and mutational analysis have been strong approaches for examining molecular 

processes. Proteasomal inhibitors have been valuable tools in discovering new substrates and 

implicating the proteasome in new aspects of viral infection. HSV interacts with many cellular 

systems during infection. The cellular 26S proteasome is a key player in HSV infection although 

its role in HSV entry is only starting to become clear. The mechanism of ICP0 regulation of 

entry will likely give further insight into the degradation signal and will aid in the discovery of 

the 26S substrate(s). Interestingly, the proteasome inhibitor, Bortezimib or Velcade, has been 

approved for treatment of multiple myeloma (116). Identification of the substrate(s) during HSV 

entry could aid in the development of a potent proteasomal inhibitor and antiviral drug. The work 

presented in this thesis indicates that the proteasome has a role in facilitating capsid transport, 

identifies new aspects of tegument ICP0 and implicates tegument ICP0 as a regulator of this 

interaction during HSV entry. 
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