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Abstract

AN ISOMORPHISM THEOREM FOR GRAPHS

By Laura Jean Culp, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Director: Richard Hammack, Associate Professor, Department of Mathematics and Applied
Mathematics.

In the 1970’s, L. Lovász proved that two graphs G and H are isomorphic if and only

if for every graph X , the number of homomorphisms from X → G equals the number of

homomorphisms from X → H. He used this result to deduce cancellation properties of the

direct product of graphs.

We develop a result analogous to Lovász’s theorem, but in the class of graphs without loops

and with weak homomorphisms. We apply it prove a general cancellation property for the

strong product of graphs.
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Preliminaries

In this chapter we present some introductory Graph theory that is required for later chapters.

Many elementary definitions are presented without reference, but may be found in one or

more of the texts listed in the Bibliography, especially that by Diestel [1]. In the final section

of this chapter, we prove a version of a theorem by Lovász in a new context. The collection

of lemmas and propositions presented in the final section of this chapter will be used as a

template for the proof of our main result in Chapter 2.

1.1 Elementary Definitions

DEFINITION 1.1. A graph G = (V (G),E(G)) is a pair of sets V (G) and E(G) such that

V (G) is nonempty and E(G) is the subset of unordered pairs of elements in V (G). The

elements of V (G) are called vertices (or nodes or points). The elements of E(G) are called

edges (or lines). A graph has a visual interpretation in which vertices are points and edges

are arcs joining points.

Note that we abbreviate the edge {a,b} as ab or ba.

DEFINITION 1.2. The number of vertices of a graph G is its order and is written as |G|.

Graphs are f inite, in f inite, countable and so on according to their order. All graphs under

discussion in this thesis will be of finite order.
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EXAMPLE 1.3. Figure 1.1 shows one rendering of the graph G with vertex set V (G) =

{ 1,2,3,4,5,6,7,8,9 } and edge set E = { {1,2}, {1,3} , {2,3} , {4,5} , {6,7} , {6,8} }.

1

2 3

4 5

6

7

8

9

Figure 1.1: An example of a Graph

DEFINITION 1.4. In a graph G, two vertices are said to be adjacent if there is an edge

between them and two edges are adjacent if they share a common vertex.

DEFINITION 1.5. A loop is an edge that joins a vertex to itself.

Figure 1.2 depicts a graph with four loops.

a

b
c

d

e

f

g

h

i

Figure 1.2: An example of a graph with four loops

This brings us to an important property that divides graphs into two broad classifications

according to whether or not loops are admitted.
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DEFINITION 1.6. The class of graphs which may contain loops is denoted as Γ0 while the

class of graphs in which there are no loops is denoted as Γ.

This distinction has consequences regarding the definition of the structure-preserving

mappings between graphs, as we shall see in what follows.

1.2 Partitions and Quotients of Graphs

Partitions and quotients will play a major role in the proof of Lovász’s Theorem. We

therefore present a detailed analysis of both concepts here.

DEFINITION 1.7. A partition Θ of a set V is a set of subsets of V , such that the union of

all the subsets equals V and the intersection of any two subsets is /0.

DEFINITION 1.8. Suppose we have a graph G = (V (G),E(G)) ∈ Γ0 and a partition Θ of

V (G). The quotient of G by Θ taken in Γ0 is another graph, which we denote as G/Θ. It is

defined as follows. Its vertex set is V (G/Θ) = Θ. The edge set is E(G/Θ) = {XY : X ,Y ∈Θ

and there is an edge xy ∈ E(G) with x ∈ X , y ∈ Y}.

We now illustrate this concept with a graph G with V (G) = { a,b,c,d,e, f ,g } and

E(G) = { ab,ac,bd,cd,ce,c f ,eg,g f , f d } as shown in Figure 1.3.

a c

e

b d

f

g

G

Figure 1.3: The Graph G
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Consider a partition Θ of V (G), where Θ = {{a},{b},{c,d, f},{e,g}}. So G/Θ has

four vertices, one for each element of Θ. Label the vertices as follows.

A = {a} B = {b} C = {c,d, f} D = {e,g}

Let’s look at an example using the same G and Θ in the previous example. By definition of

the quotient in Γ0, we have

V (G/Θ) = {A,B,C,D}

E(G/Θ) = {AB,AC,BC,CC,CD,DD}

Figure 1.4 shows the graph G alongside the graph G/Θ for the above partition Θ. Note that

there is a loop at C and at D due to the edges cd,c f ,d f ∈ E(G) and the edge eg ∈ E(G)

whose vertices belong to the same subsets, C = { c,d, f } and D = { e,g } in the partition Θ.

a c

e

b d

f

g

G

A

B

C D

G/Θ

Figure 1.4: The graphs G and G/Θ in Γo

Now let us look at the definition of a quotient graph in Γ. The definition is basically the

same as the previous definition except that we disallow loops.

DEFINITION 1.9. Suppose we have a graph G = (V (G),E(G)) ∈ Γ and a partition Θ of

V (G). The quotient of G by Θ taken in Γ is another graph, which we denote as G/Θ. It is
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defined as follows. Its vertex set is V (G/Θ) = Θ. The edge set is E(G/Θ) = {XY : X ,Y ∈Θ

and there is an edge xy ∈ E(G) with x ∈ X , y ∈ Y and X 6= Y }

By definition of the quotient in Γ, we have

V (G/Θ) = {A,B,C,D}

E(G/Θ) = {AB,AC,BC,CD}

Figure 1.5 shows G alongside G/Θ in Γ. Note there is no loop at C or D.

a c

e

b d

f

g

G

A

B

C D

G/Θ

Figure 1.5: The graph G and G/Θ in Γ

1.3 Binary Operations on Graphs

Graph products will play an important role for us as applications of our theorems. There are

three principal types of graph products–Cartesian, direct, and strong–whose definitions are

given below.

DEFINITION 1.10. The Cartesian Product of two graphs G and H is the graph G�H

with vertex set V (G�H) = {(g,h) | g ∈ V (G) and h ∈ V (H)} and edge set E(G�H) =

{(g,h)(g′,h′) | (gg′ ∈ E(G) and h = h′) or (hh′ ∈ E(H) and g = g′)}.
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Figure 1.6 pictures an example of the Cartesian product of two graphs G and H. In this

first picture of product graphs, the vertices are labeled to illustrate the naming of vertices.

(1,a)

(1,b)

(1,c)

(2,a)

(2,b)

(2,c)

(3,a)

(3,b)

(3,c)

(1,d) (2,d) (3,d)

1 2 3

a

b

c

d

H

G

Figure 1.6: The Cartesian Product: G � H

DEFINITION 1.11. The direct product of two graphs G and H is the graph G×H with

vertex set V (G × H) = {(g,h) | g ∈ V (G) and h ∈ V (H)} and edge set E(G × H) =

{(g,h)(g′,h′) | (gg′ ∈ E(G) and hh′ ∈ E(H)}.

Figure 1.7 pictures an example of the Direct product of the same two graphs G and H

used in the example of a Cartesian product.

DEFINITION 1.12. The strong product of two graphs G and H is the graph G � H

with vertex set V (G × H) = {(g,h) | g ∈V (G) and h ∈V (H)} and edge set E(G � H) =

E(G×H)
⋃

E(G � H).
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H

G

Figure 1.7: The direct product: G×H

Figure 1.8 pictures an example of the Strong product of the same two graphs G and H

used in the examples of a Cartesian and of a Direct product.

1.4 Structure-preserving Mappings

Now we turn to definitions of structure-preserving mappings. There are three types under

consideration for this thesis.

DEFINITION 1.13. A homomorphism f : G→ H from a graph G to a graph H is a map

f : V (G)→V (H) for which xy ∈ E(G) implies f (x) f (y) ∈ E(H).

DEFINITION 1.14. A weak homomorphism f : G→ H from a graph G to a graph H is a

map f : V (G)→V (H) for which xy ∈ E(G) implies f (x) f (y) ∈ E(H) or f (x) = f (y).

We now turn to an example of a homomorphism. Let G and H be the graphs in Figure

1.9 and consider a map f : V (G)→V (H) as defined in the Table 1.1. The effect of f (i.e.

f (a) = j, f (b) = j, etc.) on edges is shown in Table 1.2.
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H

G

Figure 1.8: The strong product: G�H

Table 1.1: Homomorphic Vertex Mapping

Graph Vertex Mappings

G a b c d e f g

H A B C C D C D

The edge mappings corresponding the vertex mappings in Table 1.1 are shown in Table

1.2.

Table 1.2: Homomorphic Edge Mapping

Graph Edge Mappings

G ab bd ac cd cf df ce fg eg

H AB BC AC CC CC CC CD CD DD

The mapping in Table 1.1 is illustrated in Figure 1.9.
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a c

e

b d

f

g

G

A

B

C D

H

Figure 1.9: A homomorphism f : G→ H

DEFINITION 1.15. Given graphs G and H, we denote the set of all homomorphisms from G

to H by Hom(G,H) and the set of all weak homomorphisms from G to H by Homw(G,H).

DEFINITION 1.16. Given graphs G and H, we denote the number of weak homomorphisms

from G to H by homw(G,H), the number of homomorphisms from G to H by hom(G,H)

and the number of injective homomorphisms from G to H inj(G,H). Note that we show

that any injective weak homomorphism is a homomorphism in Lemma 2.1, so there is no

necessity for defining injw(G,H).

For example, consider the following equations. (The first two are pictured in Figures
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1.10 and 1.11):

hom(K2,K3) = 6

homw(K2,K3) = 9

hom(K3,K2) = 0

homw(K3,K2) = 8

In general, the number of weak homomorphisms will exceed the number of homomor-

phisms. This is due to a relaxing of the requirement that an edge map to an edge–with weak

homomorphisms, we can collapse two vertices into one without the necessity of a loop at

that vertex. Thus, there are no homomorphisms from K3 to K2. However, the number of

weak homomorphisms is equal to the number of ways all three vertices in K3 can be mapped

to two vertices. The set of all weak homomorphisms from K3 to K2 is pictured in Figure

1.12.

Figure 1.10: All homomorphisms from K2 to K3

In addition to the homomorphisms pictured in Figure 1.10, the number of weak homo-

morphisms from K2 to K3 include those pictured in Figure 1.11.
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Figure 1.11: Additional weak homomorphisms from K2 to K3

Figure 1.12: Weak homomorphisms from K3 to K2

DEFINITION 1.17. Two graphs G and H in Γ are isomorphic if there is a bijection f :

V (G)→ V (H) satisfying xy ∈ E(G) if and only if f (x) f (y) ∈ E(H). The function f is

called an isomorphism from G to H.
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EXAMPLE 1.18. The two graphs in Figure 1.13 are isomorphic. An isomorphism f : G→H

is defined by the vertex mapping in Table 1.3. The corresponding edge mappings are shown

in Table 1.4.

Table 1.3: Isomorphic Vertex Mapping

Graph Vertex Mappings

G a b c d e f g h

H i j n m l k o p

The edge mappings corresponding to the vertex mappings in Table 1.3 are shown in

Table 1.4.

Table 1.4: Isomorphic Edge Mapping

Graph Edge Mappings

G ab ad ae bf bc fg ef eh gh cd cg dh

H ij im il jk jn ko lk lp op nm no mp

Figure 1.13 illustrates the isomorphism defined in Tables 1.3 and 1.4.

a

b c

d

e

f g

h

i

j k

l

m

n o

p

G H

Figure 1.13: Isomorphic graphs G and H
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EXAMPLE 1.19. The two graphs A and B in Figure 1.14 are isomorphic where the isomor-

phism f : A→ B is defined as defined in Table 1.5 with corresponding edge mappings as

shown in Table 1.6.

Table 1.5: Isomorphic Vertex Mapping

Graph Vertex Mappings

A a b c d e f

B g i k h j l

Table 1.6: Isomorphic Edge Mapping

Graph Edge Mappings

A ad ae af bd be bf cf ce cd

B gh gj gl ih ij il kl kj kh

a

b

c

d

e

f

g

h

l

i

k

j

A B

Figure 1.14: Isomorphic graphs A and B



14

1.5 Development of Lovász’s Theorem

We will now prove a celebrated Theorem of Lovász which states that G∼= H if and only if

hom(X ,G) = hom(X ,H) for all graphs X in Γ0.

Before proving the theorem, we need some lemmas and propositions. In Chapter 2, we

will examine this same sequence of lemmas and propositions in the context of Γ and prove a

version of Lovász’s Theorem where weak homomorphisms replace homomorphisms..

Recall that two graphs G and H are isomorphic if and only if there is a one-to-one

correspondence between the vertices and edges and the graphs are structurally the same, i.e.,

there exists vertex mappings from G to H and H to G such that adjacency is preserved. For

example, in Figure 1.15, the graphs G and H have the same number of vertices and edges,

but the graphs are not isomorphic due to the fact that structurally they are very different.

To see this, note that G has a loop while H does not and that G is disconnected while H is

connected.

�

G H

Figure 1.15: Non-isomorphic Graphs

Intuitively it seems reasonable that if the number of homomorphisms from some graph

X is different for the two fixed graphs G and H whose number of vertices and edges are the

same, then there is something structurally different. Using the same graphs in Figure 1.15,

we can demonstrate this difference quite easily using X = K3 as shown in 1.16 for the graph

G and in 1.17 for the graph H.

Figure 1.17 illustrates an instance where there are no homomorphisms from K3 to H
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K3 G K3 G

Figure 1.16: Homomorphisms between K3 and G

K3 H

no homomorphisms!

Figure 1.17: Homomorphisms from K3 to H

Thus we come to the the overall strategy whereby we first establish certain properties of

injective homomorphisms and then the relationships that exist between counts of homomor-

phisms and counts of injective homomorphisms. Once this has been accomplished, all the

tools necessary for proving the Lovász’s Theorem for undirected graphs are in place and we

can proceed with the proof.

1.5.1 Properties of Injective Homomorphisms in the class Γ0

In this section, lemmas are presented and proven which establish the necessary conditions

under which an injective homomorphism implies isomorphism.

LEMMA 1.20. Suppose G and H are graphs in Γ0 for which |V (G)|= |V (H)| and |E(G)|=

|E(H)|. Moreover, suppose there is a homomorphism, f : G→ H, which is injective. Then

G∼= H.
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Proof. We are given that f is a homomorphism so for all xy ∈ E(G), it follows that

f (x) f (y) ∈ E(H). We begin by showing f is an onto function by assuming the contrary. Let

h ∈V (H) such that h /∈ f (G). Since f is also injective, this implies that |V (G)|< |V (H)|

which contradicts our assumption that |V (G)|= |V (H)| so f must be an onto function. Now

since f is onto and injective f−1 : H → G exists and is also injective. We claim f is an

isomorphism. Suppose f is not an isomorphism. Then there exists ab ∈ E(H) such that

f−1(a) f−1(b) /∈ E(G). This implies |E(G)| < |E(H)| which contradicts our assumption

that |E(G)| = |E(H)|. Therefore f−1(a) f−1(b) ∈ E(G). Now f is a bijection satisfying

g1g2 ∈ E(G) if and only if f (g1) f (g2) ∈ E(H). Thus f : G→ H is an isomorphism and

G∼= H.

LEMMA 1.21. Suppose G and H are graphs in Γ0. If inj(G,H) > 0 and inj(H,G) > 0, then

G∼= H.

Proof. If we can show (1) that |V (G)| = |V (H)| and (2) that |E(G)| = |E(H)|, then by

Lemma 1.20, G ∼= H since inj(G,H) > 0 implies that there exists at least one injective

homomorphism from G into H.

(1) Note that inj(H,G) > 0 implies there exists at least one injective homomorphism

from H into G. This, in turn, implies that |V (H)| ≤ |V (G)| and that |E(H)| ≤ |E(G)|.

To see that |E(H)| ≤ |E(G)|, observe that xy ∈ E(H) implies f (x) f (y) ∈ E(G) since f

is a homomorphism. So each edge in H is mapped to an edge in G which implies that

|E(H)| ≤ |E(G)|.

(2) Also note that inj(G,H) > 0 implies there exists at least one injective homomorphism

from G into H. This, in turn, implies that |V (G)| ≤ |V (H)| and that |E(G)| ≤ |E(H)|. To

see that |E(G)| ≤ |E(H)|, observe that xy ∈ E(G) implies f (x) f (y) ∈ E(H) since f is

a homomorphism. So each edge in G is mapped to an edge in H which implies that

|E(G)| ≤ |E(H)|.
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From (1) and (2), we may conclude that |V (G)|= |V (H)| and |E(H)|= |E(G)| and the

proof is complete.

1.5.2 Injections and Partitions in the class Γ0

In this section, we explore the relationships between homomorphisms, partitions, and

injective homomorphisms. The lemmas presented here will be critical to the final proof of

our theorem.

LEMMA 1.22. Let G ∈ Γ0 and let Θ be a partition of G. Let λΘ : G → G/Θ be the

function that sends each vertex x ∈ V (G) to the set X ∈ Θ that contains x. Then λΘ is a

homomorphism.

Proof. Let Θ be a partition of G and xy∈E(G). We need to show that λΘ(x)λΘ(y) ∈ E(G/Θ).

Let x ∈ X and let y ∈ Y where X ,Y ∈Θ. Then λΘ(x)λΘ(y) = XY ∈ E(G/Θ) so xy ∈ E(G)

implies XY ∈ E(G/Θ). Thus λΘ is a homomorphism.

a c

e

b d

f

g

G

A

B

C D

G/Θ taken in Γ0

Figure 1.18: Homomorphism from G into G/Θ in Γ0
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LEMMA 1.23. Let f : G→ H be a homomorphism and consider the partition of V (G),

Θ = { f−1(h) : h ∈ f (G)⊆V (H)}. Notice that there is a well-defined map f ∗ : G/Θ→ H

defined as f ∗(X) = f (x) for any x ∈ X . Then f ∗ is an injective homomorphism.

Proof. Let X ,Y ∈ G/Θ. Suppose f ∗(X) = f ∗(Y ) = h. Then f−1(h)⊆ X and f−1(h)⊆ Y .

So X
⋂

Y 6= /0 and therefore X = Y . So f ∗ is injective. To see that f ∗ is a homomorphism, let

XY ∈ E(G/Θ). Then xy ∈ E(G) for some x ∈ X and y ∈ Y . So f ∗(X) f ∗(Y ) = f (x) f (y) ∈

E(H) since f is a homomorphism and thus f ∗ is a homomorphism.

EXAMPLE 1.24. To illustrate Lemma 1.23, let G and H be the graphs in Figure 1.19 and let

the homomorphism f : G→H be defined by the Table 1.7. Observe that f : G→H induces

a partition Θ = { {x1,x2} {x3} {x4,x5} {x6} } and that the function f ∗ : G/Θ→ H is then

one to one.

Table 1.7: Homomorphic Vertex Mapping

Graph Vertex Mappings

G x1 x2 x3 x4 x5 x6

H y1 y1 y2 y3 y3 y4

LEMMA 1.25. For every partition Θ of V (G) and injective homomorphism f ∗ : G/Θ→ H

there is a homomorphism f : G→ H defined as f (x) = f ∗(X) where x ∈ X ∈ G/Θ and

Θ = { f−1(h) : h ∈V (H) }.

Proof. Let Θ be a partition of V (G) and f ∗ : G/Θ→ H an injective homomorphism. Let

f : G→ H be defined as f (x) = f ∗(X) where x ∈ X ∈ G/Θ. Now let xy ∈ E(G). So

XY ∈ E(G/Θ) where x ∈ X ∈ Θ and y ∈ Y ∈ Θ. We need to show that f (x) f (y) ∈ E(H).

By definition, f (x) f (y) = f ∗(X) f ∗(Y ) ∈ E(H) since f ∗ is given to be a homomorphism.

Now we will show that Θ = { f−1(h) : h ∈ f (G) ⊆ V (H)}. Suppose X ∈ Θ and say

f ∗(X) = h. For any x ∈ X we have f (x) = f ∗(X) = h which means x ∈ f−1(h), so X ⊆
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x5

x6

x4

x1

x3

x2

y1 y2

y4

y3

G H

Figure 1.19: The graphs G and H in Example 1.24

f−1(h). On the other hand, suppose x ∈ f−1(h). This means f (x) = h. Suppose x ∈ Y ∈Θ.

Then f ∗(Y ) = f (x) = h. Thus f ∗(X) = f ∗(Y ) so Y = X by injectivity of f ∗. Thus x∈Y = X .

We have shown x ∈ f−1(h) implies x ∈ X so f−1(h) ⊆ X . Therefore X = f−1(h) and

Θ = { f−1(h) : h ∈ f (G)⊆V (H)}.

Thus for each partition Θ of V (G) and f ∗ : G/Θ→ H, there is a homomorphism f and

the proof is complete.

PROPOSITION 1.26. Let G and H be graphs in Γ and suppose f : G→H is a homomorphism.

Then there is a unique pair (Θ f , f ∗) where Θ f is a partition of V (G) and f ∗ : G/Θ→ H is

an injective homomorphism for which f = f ∗λΘf where λΘ f : G→ G/Θ f is as defined in

Lemma 1.22.

Proof. Suppose f : G→ H is a homomorphism. Let Θ f = { f−1(h) : h ∈ f (G) ⊆ V (H)}.

Define f ∗ : G/Θ→ H as f ∗(X) = f (x) where x ∈ X . By Lemma 1.23 this is well-defined

and an injective homomorphism and satisfies f = f ∗λΘ f where λΘ f : G→ G/Θ f .
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Now we confirm uniqueness. Suppose there is a pair (Θ,g) for which g : G/Θ→H is an

injective homomorphism, and f = gλΘ. Observe that (Θ,g) = (Θ f , f ∗), as follows. Using

the facts that f = gλΘ and g is injective, we see that two vertices x,y are in the same class of

Θ f if and only if f (x) = f (y), if and only if gλΘ(x) = gλΘ(y), if and only if λΘ(x) = λΘ(y),

if and only if x and y are in the same class in Θ. Thus Θ f = Θ. To confirm f ∗(X) = g(X)

for any X , take x ∈ X and note f ∗(X) = f (x) = gλΘ f (x) = gλΘ(x) = g(X).

PROPOSITION 1.27. Suppose that G and H are graphs in Γ0 and that P is the set of all

partitions of V (G). Then

hom(G,H) = ∑
Θ∈P

inj(G/Θ,H).

Proof. Let Hom(G,H) be the set of all homomorphisms from G to H, so its cardinality

is hom(G,H). Let ϒ = {(Θ, f ∗) : Θ ∈ P, f ∗ ∈ Inj(G/Θ,H)}, so |ϒ |= ∑
Θ∈P

inj(G/Θ,H).

Let β : Hom(G,H)→ϒ be defined as β ( f ) = ({ f−1 : h ∈ f (G)⊆V (H)}, f ∗ : G/Θ→H))

where f ∗(X) = f (x) for x ∈ X .

By Proposition 1.26, any f ∈ Hom(G,H) is associated with a unique pair (Θ, f ∗) ∈ϒ ,

where Θ f = { f−1(h) : h ∈ V (H)} and f ∗ : G/Θ f → H is defined as f ∗(X) = f (x) for

X ∈ G/Θ. Thus we have a injection β : Hom(G,H)→ϒ defined as β ( f ) = (Θ, f ∗).

To see that β is surjective, take any (Θ, f ∗)∈ϒ . By Lemma 1.25, there is a f ∈ Hom(G,H)

with β ( f ) = (Θ, f ∗).

Now we have shown β : Hom(G,H)→ϒ is one to one and onto, so β ( f ) = (Θ, f ∗) and

therefore the cardinality of the sets Hom(G,H) and (Θ, f ∗) is the same. Thus hom(G,H) =

∑Θ∈P inj(G/Θ,H).
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1.5.3 Lovász’s Isomorphism Theorem

We are now ready for the proof of the Lovász’s Isomorphism Theorem for undirected graphs

in the class Γ0.

THEOREM 1.28. Let G and H be fixed graphs in Γ0 and X any graph in Γ0. Then G∼= H if

and only if hom(X ,G) = hom(X ,H) for every graph X ∈ Γ.

Proof. Let X be any graph and let G and H be fixed graphs. We begin by showing that G∼= H

implies hom(X ,G) = hom(X ,H). By definition, G∼= H implies there exists an isomorphism

from G onto H, so let k : G→ H be an isomorphism. Since k is a bijection, it is also true

that k−1 : H → G is an isomorphism. Now let g : X → G be any homomorphism from X

into G and let h : X → H be any homomorphism from X into H. Then the composition of

functions kg : X → H and functions k−1h : X → G are both homomorphisms. To see this,

note that g maps an edge in X to and edge in G and k maps an edge to an edge , so kg is

a homomorphism. A corresponding argument applies to k−1h. Note also that kg : X → H

and kh : X → G, implies there is a one-to-one correspondence between any homomorphism

from X into G with any homomorphism from X into H. Thus, hom(X ,G) = hom(X ,H).

To show that hom(X ,G) = hom(X ,H) implies G∼= H we begin by showing a preliminary

result: that G∼= H if inj(X ,G) = inj(X ,H) for every graph X . To see that this implies our

result, let inj(X ,G) = inj(X ,H) for every graph X . Since G and H are graphs, we may

substitute G and H for X so that inj(G,G) = inj(G,H) and inj(H,G) = inj(H,H). Let

gI : G→ G be the identity map from G to G and hI : H → H be the identity map from

H to H. Then both Ig and Ih are injective automorphisms. So inj(G,G) = inj(G,H) > 0

implies inj(X ,G) > 0 and inj(H,H) = inj(H,G) > 0 implies inj(X ,H) > 0. By Lemma

1.21, G∼= H.

Now we assume hom(X ,G) = hom(X ,H) for every graph X and show that inj(X ,G) =

inj(X ,H) using induction on |V (X)|.
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If |V (X)| = 1 then hom(X ,G) = inj(X ,G) = |V (G)| and hom(X ,H) = inj(X ,H) =

|V (H)| because a function cannot fail to be injective if its domain has just one vertex. So,

hom(X ,G) = hom(X ,H) implies that inj(X ,G) = inj(X ,H).

Now we let X be a graph with |V (X)|= n > 1 and assume that inj(X ′,G) = inj(X ′,H) for

all graphs X ′ with |V (X ′)|< n. By Proposition 1.27, the equation hom(X ,G) = hom(X ,H)

implies that

∑
Θ∈P

inj(X/Θ,G) = ∑
Θ∈P

inj(X/Θ,H)

where P is the set of all partitions of V (X). Let t ∈ P be the trivial partition of V (X) such

that each set in t contains a single vertex, so that X/t ∼= X . Then

∑
Θ∈P

inj(X/Θ,G) = ∑
Θ∈P

inj(X/Θ,H)

can be rewritten as

inj(x/t,G)+ ∑
Θ−{t}∈P

inj(X/Θ,G) = inj(x/t,H)+ ∑
Θ−{t}∈P

inj(X/Θ,H).

Since |V (X/Θ)|< n for Θ−{t} ∈ P, by the inductive hypothesis we have

∑
Θ−{t}∈P

inj(X/Θ,G) = ∑
Θ−{t}∈P

inj(X/Θ,H)

Therefore, inj(X/t,G) = inj(X ,G) = inj(X/t,H) = inj(X ,H) and the proof is complete.

1.6 Applications of Lovász’s Theorem to the Direct Product

We will now apply Lovász’s Theorem to deduce a cancellation property for the direct

product.
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LEMMA 1.29. Consider the projection mappings π1 and π2:

π1 : V (G×H)→V (G) defined as π1(g,h) = g

π2 : V (G×H)→V (G) defined as π2(g,h) = h.

Then π1 is a homomorphism from G×H into G and π2 is a homomorphism from G×H

into H.

Proof. Let (g1,h1)(g2,h2) ∈ E(G×H). By the definition of the direct product, both g1g2 ∈

E(G) and h1h2 ∈ E(H). So g1g2 ∈ E(G) implies

π1((g1,h1)(g2,h2)) = π1(g1,h1)π1(g2,h2) = g1g2 ∈ E(G).

Therefore π1 is a homomorphism. The corresponding reasoning applies to π2.

LEMMA 1.30. The composition of two homomorphisms is again a homomorphism.

Proof. Let X ,G,H be graphs in Γ0 and let f : X → G and h : G→ H be homomorphisms.

Then h f : X → H. Let xy ∈ E(X). Then h( f (x) f (y)) where f (x) f (y) ∈ E(G) since f is a

homomorphism. So h( f (x) f (y)) = h( f (x))h( f (y)) ∈ E(H) since h is a homomorphism and

thus h f is a homomorphism.

LEMMA 1.31. Given homomorphisms g : V (X)→V (G) and h : V (X)→V (H), the map

f : V (X)→V (G×H) defined as f (x) = (g(x),h(x)) is a homomorphism.

Proof. Let x1x2 ∈ E(X) and note f (x1x2) = (g1,h1)(g2,h2). We need to show that

(g1,h1)(g2,h2) ∈ E(G×H). Now (g1,h1)(g2,h2) ∈ E(G×H) whenever g1g2 ∈ E(G) and

h1h2 ∈ E(H). Since g is a homomorphism, g(x1x2) = g(x1)g(x2) ∈ E(G) . Since h is a
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homomorphism, h(x1x2) = h(x1)h(x2) ∈ E(H). Therefore

f (x1) f (x2) = (g(x1),h(x1))(g(x2),h(x2)) ∈ E(G×H)

and thus f is a homomorphism.

PROPOSITION 1.32. For any graphs X , G, and H, hom(X ,G×H) = hom(X ,G) ·hom(X ,H)

Proof. Let f : X → G×H be a homomorphism and let x1x2 be any edge in X . If we let

g = π1 f and h = π2 f , then any homomorphism f : X → G×H becomes an ordered pair of

homomorphisms from X into G and from X into H, defined as f (x) = (g(x),h(x)). It is also

true that any ordered pair of homomorphisms from X into G and from X into H constitute a

homomorphism from X into G×H. Thus,

hom(X ,G×H) = |{ (g,h) : g : X → G and h : X → H are homomorphisms }|

= hom(X ,G) ·hom(X ,H)

and the proof is complete.

We can now state our cancellation theorem.

THEOREM 1.33. Let A, B, C be graphs in Γ0 where C has a loop. Then A×C ∼= B×C

implies that A∼= B

Proof. By Theorem 2.10 A×C ∼= B×C implies that hom(X ,A×C) = hom(X ,B×C). So

hom(X ,A) ·hom(X ,C) = hom(X ,B) ·hom(X ,C) by Proposition 1.32.

Now, hom(X ,C) > 0 since if C is a graph with a loop in Γ0 and X is any graph, then

there is always at least one homomorphism f : X → C. To see this, let c ∈ V (C) where

cc ∈ E(C) is a loop. Then, for all x1x2 ∈ E(X), the mapping f : X →C, defined as f (x) = c

for all x∈V (X) is a homomorphism since f (x1x2) = f (x1) f (x2) = cc. Thus hom(X ,C) 6= 0.
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So hom(X ,A) · hom(X ,C) = hom(X ,B) · hom(X ,C) implies hom(X ,A) = hom(X ,B) and

therefore A∼= B by Theorem 1.28
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Isomorphism Theorem for Graphs With No Loops

What follows is the development of the principal result of this paper that shows the two

graphs G and H in Γ to be isomorphic if, and only if, the number of weak homomorphisms

between any graph X and two graphs G and H are equal. We are thus showing that Lovász’s

Theorem holds for graphs in Γ when we replace homomorphism by weak homomorphisms.

For the remainder of this paper, all graphs are in Γ, the class of graphs without loops.

2.1 Preliminaries

In this section, we establish that an injective weak homomorphism is in fact a homomor-

phism.

LEMMA 2.1. Given graphs G,H ∈ Γ and an injective weak homormorphism f : G→ H,

then f is a homomorphism.

Proof. Let f : G→H be an injective weak homomorphism. Then for all xy∈E(G), f (x) f (y)∈

E(H) or f (x) = f (y). Since f is injective, f (x) 6= f (y) for each x,y ∈V (G) and x 6= y. Fur-

ther, xy ∈ E(G) implies x 6= y since G ∈ Γ. Therefore, xy ∈ E(G) implies f (x) f (y) ∈ E(H)

and thus f is a homomorphism.

2.2 Properties of Injective Weak Homomorphisms

Here lemmas are presented and proven which establish the necessary conditions under which

an injective weak homomorphism is an isomorphism.
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LEMMA 2.2. Suppose G and H are graphs in Γ for which |V (G)|= |V (H)| and |E(G)|=

|E(H)|. Moreover, suppose there is a weak homomorphism, f : G→ H, which is injective.

Then G∼= H.

Proof. By Lemma 2.1, we know that if f is an injective weak homomorphism then for all

xy ∈ E(G), it follows that f (x) f (y) ∈ E(H). We begin by showing f is an onto function by

assuming the contrary. Let h ∈V (H) such that h /∈ f (G). This implies that |V (G)|< |V (H)|

since f is injective. This contradicts our assumption that |V (G)| = |V (H)| so f must

be an onto function. Now since f is onto and injective f−1 : H → G exists and is also

injective. We claim f is an isomorphism. Suppose f is not an isomorphism. Then there

exists ab ∈ E(H) such that f−1(a) f−1(b) /∈ E(G). This implies |E(G)| < |E(H)| which

contradicts our assumption that |E(G)|= |E(H)|. Therefore f−1(a) f−1(b) ∈ E(G). Now f

is a bijection satisfying g1g2 ∈ E(G) if and only if f (g1) f (g2) ∈ E(H). Thus f : G→ H is

an isomorphism and G∼= H.

a c

e

b d

f

g

G

A

B

C D

G/Θ

Figure 2.1: Weak homomorphism from G to G/Θ in Γ
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By Lemma 2.1 there is no need to reprove Lemma 1.21 so we shall only restate it here.

LEMMA 2.3. If G and H are graphs and inj(G,H) > 0 and inj(H,G) > 0, then G∼= H.

2.3 Injections and Partitions

In this section, we explore the relationships between weak homomorphisms, partitions, and

injective weak homomorphisms. The lemmas presented here will be critical to the final

proof of our theorem.

LEMMA 2.4. Let G ∈ Γ and let Θ be a partition of G. Let λΘ : G→ G/Θ be the function

that sends each vertex x ∈ V (G) to the set X ∈ Θ that contains x. Then λΘ is a weak

homomorphism.

Proof. Let Θ be a partition of G and xy ∈ E(G). We need to show that either λΘ(x)λΘ(y) ∈

E(G/Θ) or that λΘ(x) = λΘ(y). There are two cases to consider: either x and y are elements

of the same or of a different class in Θ.

In the first case we let x, y ∈ X ∈ Θ. Then λΘ(x) = λΘ(y) = X . In the second case, we

let x ∈ X and let y ∈ Y where X ,Y ∈ Θ and X 6= Y . Then λΘ(x)λΘ(y) = XY ∈ E(G/Θ) by

definition of G/Θ. So xy ∈ E(G) implies XY ∈ E(G/Θ. Thus λΘ(x)λΘ(y) ∈ E(G/Θ) or

λΘ(x) = λΘ(y) implies λΘ is a weak homomorphism.

LEMMA 2.5. Let f : G→ H be a weak homomorphism and consider the partition Θ =

{ f−1(h) : h∈ f (G)⊆V (H)} of V (G). Notice that there is a well-defined map f ∗ : G/Θ→H

defined as f ∗(X) = f (x) for any x ∈ X . Then f ∗ is an injective homomorphism.

Proof. Let X ,Y ∈ G/Θ. Suppose f ∗(X) = f ∗(Y ) = h. Then f−1(h)⊆ X and f−1(h)⊆ Y

which implies that X
⋂

Y 6= /0 and thus X = Y . So f ∗ is injective. To see that f ∗ is a

weak homomorphism, let XY ∈ E(G/Θ). Then xy ∈ E(G) for some x ∈ X and y ∈ Y .

So f ∗(X) f ∗(Y ) = f (x) f (y) ∈ E(H) or f ∗(X) = f (x) = f (y) = f ∗(Y ) since f is a weak
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homomorphism and thus f ∗ is a weak homomorphism. Since f ∗ is also injective, by Lemma

2.1, we have that f ∗ is an injective homomorphism as required.

g1

gi

gi+1

gi+m

gi+m+1

gi+m+n

H

h1

h2

h3

hi

hi+k

h j

h j+m

f

f

f

G/Θ

and G

X =

Y =

Z =

f−1

f−1

f−1

f ∗

f ∗

f ∗

Figure 2.2: Illustration of Lemma 2.5

LEMMA 2.6. For every partition Θ of V (G) and injective homomorphism f ∗ : G/Θ→ H

there is a weak homomorphism f : G→ H defined as f (x) = f (X) where x ∈ X ∈G/Θ and

Θ = { f−1(h) : h ∈ f (G)⊆V (H) }.

Proof. Let Θ be a partition of V (G) and f ∗ : G/Θ→ H an injective homomorphism. Let

f : G→ H be defined as f (x) = f ∗(X) where x ∈ X ∈ G/Θ. Now let xy ∈ E(G). We need

to show that either f (x) f (y) ∈ E(H) or f (x) = f (y). If x ∈ X and y ∈ Y where X 6= Y , then

by definition, f (x) f (y) = f ∗(X) f ∗(Y ) ∈ E(H) since f ∗ is given to be a homomorphism.

Therefore f is a weak homomorphism.

Now we will show that Θ = { f−1(h) : h ∈ f (G) ⊆ V (H)}. Suppose X ∈ Θ and say

f ∗(X) = h. For any x ∈ X we have f (x) = f ∗(X) = h which means x ∈ f−1(h), so X ⊆
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f−1(h). On the other hand, suppose x ∈ f−1(h). This means f (x) = h. Suppose x ∈ Y ∈Θ.

Then f ∗(Y ) = f (x) = h. Thus f ∗(X) = f ∗(Y ) so Y = X by injectivity of f ∗. Thus x∈Y = X .

We have shown x ∈ f−1(h) implies x ∈ X so f−1(h) ⊆ X . Therefore X = f−1(h) and

Θ = { f−1(h) : h ∈ f (G)⊆V (H)}.

Thus for each partition Θ of V (G) and f ∗ : G/Θ→ H there is a weak homomorphism f

and the proof is complete.

g1

gi

gi+1

gi+m

gi+m+1

gi+m+n
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h1

h2

h3

hi
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h j

h j+m

f

f

f

G/Θ = {X ,Y,Z}

X
||

Y
||

Z
||

f ∗

f ∗

f ∗

Figure 2.3: Illustration of Lemma 2.6

PROPOSITION 2.7. Let G and H be graphs in Γ and suppose f : G→ H is a weak ho-

momorphism. Then there is a unique pair (Θ f , f ∗) where Θ f is a partition of V (G) and

f ∗ : G/Θ f →H is an injective homomorphism for which f = f ∗λΘ f where λΘ f : G→G/Θ f

is defined by λΘ f (x) = X such that x ∈ X ∈ G/Θ f and Θ = { f−1(h) : h ∈ f (G)⊆V (H) }.

Proof. Suppose f : G→ H is a weak homomorphism.

Let Θ f = { f−1(h) : h ∈ f (G) ⊆ V (H)}. Define f ∗ : G/Θ→ H as f ∗(X) = f (x) where
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x ∈ X . This is well-defined and by Lemma 2.5 it is an injective homomorphism and thus

satisfies f = f ∗λΘ f since λΘ f (x) = X and f ∗(X) = f (x) where x ∈ X ∈ G/Θ f and λΘ f is a

weak homomorphism by Lemma 2.4.

Now we confirm uniqueness. Suppose there is a pair (Θ,g) for which g : G/Θ→H is an

injective homomorphism, and f = gλΘ. Observe that (Θ,g) = (Θ f , f ∗), as follows. Using

the facts that f = gλΘ and g is injective, we see that two vertices x,y are in the same class of

Θ f if and only if f (x) = f (y), if and only if gλΘ(x) = gλΘ(y), if and only if λΘ(x) = λΘ(y),

if and only if x and y are in the same class in Θ. Thus Θ f = Θ. To confirm f ∗(X) = g(X)

for any X , take x ∈ X and note f ∗(X) = f (x) = gλΘ f (x) = gλΘ(x) = g(X).

G

g1

gi

gi+1

gi+m

gi+m+1

gi+m+n

H

h1

h2

h3

f

f

f

G/Θ
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λ

λ

λ

H

h1

h2

h3

f ∗

f ∗

f ∗

Figure 2.4: Illustration of Proposition 2.7

LEMMA 2.8. Suppose G and H are graphs in Γ and that P is the set of all partitions of

V (G). Then

homw(G,H) = ∑
Θ∈P

inj(G/Θ,H).
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Proof. Let Homw(G,H) be the set of all weak homomorphisms from G to H, so its cardinal-

ity is homw(G,H). Letϒ = {(Θ, f ∗) : Θ∈P, f ∗ ∈ Inj(G/Θ,H)}, so |ϒ |= ∑
Θ∈P

inj(G/Θ,H).

To see this, consider a partition Θ. Depending on G/Θ and H there will be n≥ 0 injective

homomorphisms f ∗ from G/Θ to H. Notice that n = inj(G/Θ,H) for a particular Θ. So if

there are m partitions in P, we have

|ϒ |= inj(G/Θ1,H)+ · · ·+ inj(G/Θm,H) = ∑
Θ∈P

inj(G/Θ,H)

Let β : Homw(G,H)→ϒ be defined as

β ( f ) = ({ f−1 : h ∈ f (G)⊆V (H)}, f ∗ : G/Θ→ H))

where f ∗(X) = f (x) for x ∈ X . By Proposition 2.7, any f ∈ Homw(G,H) is associated with

a unique pair (Θ f , f ∗) ∈ϒ , where Θ f = { f−1(h) : h ∈ f (G) ⊆ V (H)} and f ∗(X) = f (x)

for x ∈ X . By Lemma 2.6 there is a weak homomorphism f : G→ H for every partition

Θ f and injective homomorphism f ∗ : G/Θ f → H defined by f ∗(X) = f (x) for X ∈ G/Θ f .

Thus we have a injection β : Homw(G,H)→ϒ defined as β ( f ) = (Θ f , f ∗).

To see that β is surjective, take any (Θ, f ∗)∈ϒ . By Lemma 2.4, there is a f ∈ Homw(G,H)

with β ( f ) = (Θ, f ∗).

We have shown β : Homw(G,H)→ (Θ, f ∗) is one to one and onto, so β ( f ) = (Θ, f ∗)

and therefore the cardinality of the sets Homw(G,H) and (Θ, f ∗) is the same. Thus

homw(G,H) = ∑
Θ∈P

inj(G/Θ,H).
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β

f ∈ Homw(G,H)

ϒ = (Θ, f ∗)

where β ( f ) = (Θ = { f−1(h) : h ∈ f (G)⊆V (H) }, f ∗ : G/Θ → H)

Figure 2.5: Diagram of β in Lemma 2.8

EXAMPLE 2.9. To illustrate Lemma 2.5, let G and H be the graphs in Figure 2.6 and let

the homomorphism f : G→H be defined by the Table 2.1. Observe that f : G→H induces

a partition Θ = { {x1,x2} {x3} {x4,x5} {x6} } and that the function f ∗ : G/Θ→ H is then

one to one.

Table 2.1: Homomorphic Mapping

Graph Vertex Mappings

A x1 x2 x3 x4 x5 x6

B y1 y1 y2 y3 y3 y4

2.4 Isomorphism Theorem in Γ

It is now time to prove the main result of this thesis and answer the question of whether or

not a homomorphism that allows an edge to be collapsed into a single point will produce the

same result as Lovász’s Theorem.
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x5

x6

x4

x1

x3

x2

y1 y2

y4

y3

A B

Figure 2.6: The graphs A and B in Example 2.9

THEOREM 2.10. Let G and H be fixed graphs in Γ and X any graph in Γ. Then G∼= H if

and only if homw(X ,G) = homw(X ,H) for every graph X ∈ Γ.

Proof. Let X be a any graph and let G and H be fixed graphs. We begin by showing that

G∼= H implies homw(X ,G) = homw(X ,H). We know that G∼= H implies there exists an

isomorphism from G onto H, so let k : G→ H be an isomorphism. Since k is a bijection,

it is also true that k−1 : H → G is an isomorphism. Now let g : X → G be any weak

homomorphism from X into G and let h : X → H be any weak homomorphism from X into

H. Then the composition of functions kg : X → H, and of functions k−1h : X → G are both

weak homomorphisms. To see this, note that g maps an edge in X to and edge in G or to

a single vertex in G and k maps an edge to an edge and a single vertex to a single vertex,

so kg is a weak homomorphism. A corresponding argument applies to k−1h. Therefore

for any g ∈Homw(X ,G), we have h = kg ∈Homw(X ,H) and for any h ∈Homw(X ,H), we

have g = k−1h ∈ Homw(X ,G). Since k and k−1 are both bijections from G to H and H to G

respectively, there is a one-to-one correspondence between any weak homomorphism from

X into G with any weak homomorphism from X into H. Thus, homw(X ,G) = homw(X ,H).
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To show that homw(X ,G) = homw(X ,H) implies G ∼= H we begin by showing a pre-

liminary result: that G∼= H if inj(X ,G) = inj(X ,H) for every graph X . To see this implies

our result, let inj(X ,G) = inj(X ,H) for every graph X . Since G and H are graphs, we

may substitute G and H for X so that inj(G,G) = inj(G,H) and inj(H,G) = inj(H,H). Let

Ig : G→ G be the identity map from G to G and Ih : H→ H be the identity map from H to

H. Then both Ig and Ih are injective automorphisms. So inj(G,G) = inj(G,H) > 0 implies

inj(X ,G) > 0 and inj(H,H) = inj(H,G) > 0 implies inj(X ,H) > 0. By Lemma 2.3, G∼= H.

Now we assume homw(X ,G)= homw(X ,H) for every graph X and show that inj(X ,G)=

inj(X ,H) using induction on |V (X)|.

If |V (X)|= 1 then because a function cannot fail to be injective if its domain has just

one vertex, homw(X ,G) = inj(X ,G) = |V (G)| and homw(X ,H) = inj(X ,H) = |V (H)| . So,

homw(X ,G) = homw(X ,H) implies that inj(X ,G) = inj(X ,H).

Now we let X be a graph with |V (X)|= n > 1 and assume that inj(X ′,G) = inj(X ′,H)

for all graphs X ′ with |V (X ′)|< n. By Lemma 2.8, the equation homw(X ,G) = homw(X ,H)

implies that ∑
Θ∈P

inj(X/Θ,G) = ∑
Θ∈P

inj(X/Θ,H) where P is the set of all partitions of V (X).

Let t ∈ P be the trivial partition of V (X) such that each set in t contains a single vertex, so

that X/t ∼= X . Then

∑
Θ∈P

inj(X/Θ,G) = ∑
Θ∈P

inj(X/Θ,H)

can be rewritten as

inj(x/t,G)+ ∑
Θ−{t}∈P

inj(X/Θ,G) = inj(x/t,H)+ ∑
Θ−{t}∈P

inj(X/Θ,H).

Since |V (X/Θ)|< n for Θ−{t} ∈ P, by the inductive hypothesis we have

inj(X ′/Θ,G) = inj(X ′/Θ,H)
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Therefore, inj(X/t,G) = inj(X ,G) = inj(X/t,H) = inj(X ,H) and the proof is complete.

2.5 Applications to the Strong Product

We will now apply the above result to obtaining a cancellation property for the strong

product. Namely, we will show that A�C ∼= B�C implies A∼= B.

It is interesting to note that, unlike the direct product, a cancellation theorem for the

strong product will not work in Γ0. This problem is illustrated in Figure 2.7. In it we see that

although G�C∼= H �C, the graphs G and H are not isomorphic. Therefore the cancellation

theorem for graphs in Γ0 does not apply to the strong product. However, we now have the

tools to show a similar cancellation theorem in Γ.

C

G

C

H

Figure 2.7: The graph products G�C and H �C

LEMMA 2.11. Consider the projection mappings π1 and π2:

π1 : V (G�H)→V (G) defined as π1(g,h) = g

π2 : V (G�H)→V (G) defined as π2(g,h) = h.

Then π1 is a weak homomorphism from G � H into G and π2 is a weak homomorphism

from G�H into H.
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Proof. Let (g1,h1)(g2,h2) ∈ E(G�H). Then by the definition of the strong product, either

both g1g2 ∈ E(G) and h1h2 ∈ E(H), g1g2 ∈ E(G) and h1 = h2, or h1h2 ∈ E(H)and g1 =

g2. If g1g2 ∈ E(G) then π1((g1,h1)(g2,h2)) = π1(g1,h1)π1(g2,h2) = g1g2 ∈ E(G). If

g1 = g2 then π1((g1,h1)(g2,h2)) = g1 = g2. Therefore π1 is a weak homomorphism. The

corresponding reasoning applies to π2.

LEMMA 2.12. The composition of two weak homomorphisms is again a weak homomor-

phism.

Proof. Let X ,G,H be graphs in Γ and let f : X→G and h : G→H be weak homomorphisms.

Then h f : X→H. Let xy∈E(X). Then h( f (x) f (y)) where f (x) f (y)∈E(G) or f (x) = f (y).

If f (x) f (y) ∈ E(G) then h( f (x) f (y)) = h( f (x))h( f (y)) ∈ E(H) or h( f (x)) = h( f (y)) and

h f is a weak homomorphism. If f (x) = f (y) then h( f (x) f (y)) = h( f (x)) = h( f (y)) and h f

is a weak homomorphism. So, in all cases, h f is a weak homomorphism.

LEMMA 2.13. Given weak homomorphisms g : V (X)→V (G) and h : V (X)→V (H), the

map f : V (X)→V (G�H) defined as f (x) = (g(x),h(x)) is a weak homomorphism.

Proof. Let x1x2 ∈ E(X) and f (x1x2) = (g1,h1)(g2,h2). For f to be a weak homomorphism,

we need to show that (g1,h1)(g2,h2) ∈ E(G � H) or (g1,h1) = (g2,h2). By definition

(g1,h1)(g2,h2) ∈ E(G�H) whenever g1g2 ∈ E(G) and h1h2 ∈ E(H), or g1g2 ∈ E(G) and

h1 = h2, or h1h2 ∈ E(H) and g1 = g2. Since g is a weak homomorphism, g(x1)g(x2) =

g1g2 ∈ E(G) or g(x1) = g1 = g(x2) = g2. Since h is a weak homomorphism, h(x1)h(x2) =

h1h2 ∈ E(H) or h(x1) = h(x2). Therefore f (x1) f (x2) = (g(x1),h(x1))(g(x2),h(x2)) ∈

E(G�H) or (g(x1),h(x1)) = (g(x2),h(x2)) and thus f is a weak homomorphism.

PROPOSITION 2.14. For any graphs X , G, and H, homw(X ,G � H) = homw(X ,G) ∗

homw(X ,H)
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Proof. Let f : X → G�H be a weak homomorphism and let x1x2 be any edge in X . If we

let g = π1 f and h = π2 f , then any weak homomorphism f : X→G�H becomes an ordered

pair of homomorphisms from X into G and from X into H, defined as f (x) = (g(x),h(x)).

It is also true that any ordered pair of weak homomorphisms from X into G and from X into

H constitute a weak homomorphism from X into G�H. Thus,

hom(X ,G�H) = |{ (g,h) : g : X → G and h : X → H are weak homomorphisms }|

= hom(X ,G) ·hom(X ,H).

THEOREM 2.15. Let A, B, C be graphs in Γ. Then A�C ∼= B�C implies that A∼= B

Proof. By Theorem 2.10, A�C ∼= B�C implies that homw(X ,A�C) = homw(X ,B�C).

So homw(X ,A)∗homw(X ,C) = homw(X ,B)∗homw(X ,C) by Proposition 2.14.

Now, homw(X ,C) > 0 since if C is a graph in Γ and X is any graph, then there is always

at least one weak homomorphism. To see this, let c ∈V (C) . Then, for all x1x2 ∈ E(X), the

mapping f : X →C, defined as f (x) = c for all x ∈V (X) is a weak homomorphism since

f (x1x2) = f (x1) = f (x2). So we can divide through by homw(X ,C). The resulting equation

homw(X ,A)∗homw(X ,C) = homw(X ,B)∗homw(X ,C) implies homw(X ,A) = homw(X ,B).

By Theorem 2.10, A∼= B.

We now examine how these results may be extended to a result involving the strong

product of n graphs.

DEFINITION 2.16. Let G1,G2, ...,Gk be graphs in Γ. Then their strong product is the

graph G1 � G2 � · · ·� Gk = �k
i=1Gi with vertex set { (a1,a2, ...,ak)| ai ∈ V (Gi) }, and

for which two distinct vertices (a1,a2, ...,ak) and (b1,b2, ...,bk) are adjacent provided that

either aibi ∈ E(Gi) or a j = b j for each i = 1,2, ...,k.
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LEMMA 2.17. Consider the projection mappings πi where πi : V (�k
i=1Gi)→V (Gi) defined

as πi(a1,a2, ...,ak) = ai ∈V (Gi) for each i = 1,2, ...,k. Then πi is a weak homomorphism

from �k
i=1Gi into Gi for each i = 1,2, ...,k.

Proof. Let (a1,a2, ...,ak)(b1,b2, ...,bk) ∈ E(�k
i=1Gi). Then for each i = 1,2, ...,k, either

aibi ∈ E(Gi) or ai = bi. So πi(a1,a2, ...,ak)πi(b1,b2, ...,bk) = aibi implies that either

πi(a1,a2, ...,ak)πi(b1,b2, ...,bk) ∈ E(Gi) or that πi(a1,a2, ...,ak) = πi(b1,b2, ...,bk). There-

fore πi is a weak homomorphism for each i = 1,2, ..,k.

LEMMA 2.18. Given weak homomorphisms gi : V (X)→ V (Gi) for each i = 1,2, ...,k ,

f : V (X)→V (�k
i=1Gi) defined as f (x) = (g1(x),g2(x), ...,gk(x)) is a weak homomorphism.

Proof. Let x1x2 ∈ E(X) and f (x1) f (x2) = (a1,a2, ...,ak)(b1,b2, ...,bk). We need to show

that (a1,a2, ...,ak)(b1,b2, ...,bk)∈E(�k
i=1G) or (a1,a2, ...,ak) = (b1,b2, ...,bk). So for each

i ∈ {1,2, ...,k}, gi a weak homomorphism implies that gi(x1x2) = gi(x1)gi(x2) ∈ E(Gi) or

gi(x1) = gi(x2). Thus, x1x2 ∈ E(X) implies

f (x1x2) = f (x1) f (x2)

= (a1,a2, ...,ak)(b1,b2, ...,bk)

= (g1(x1),g2(x1), ...,gk(x1))(g1(x2),g2(x2), ...,gk(x2))

where gi(x1)gi(x2) ∈ E(Gi) or gi(x1) = gi(x2) for each i ∈ {1,2, ...k}. Therefore

(a1,a2, ...,ak)(b1,b2, ...,bk) ∈ E(�k
i=1G) or (a1,a2, ...,ak) = (b1,b2, ...,bk).

So f (x1) f (x2) ∈ E(�k
i=1G) or f (x1) = f (x2) and thus f is a weak homomorphism.

PROPOSITION 2.19. For any graphs X ,G1,G2, ...,Gk,

homw(X ,�k
i=1G) = homw(X ,G1)∗homw(X ,G2)∗ · · · ∗homw(X ,Gk)
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Proof. Let f : X→G�H be a weak homomorphism and let x1x2 be any edge in X . If we let

gi = πi f , then any weak homomorphism f : X →�k
i=1G becomes an ordered tuple of weak

homomorphisms, gi, from X into G1,G2, ...,Gk defined as f (x) = (g1(x),g2(x), ...,gk(x)).

It is also true that any ordered tuple of weak homomorphisms from X into Gi constitutes a

weak homomorphism from X into �k
i=1G. Thus,

hom(X ,�k
i=1G) = |{ (g1,g2, ...,gk) | gi : X → Gi are weak homomorphisms }|

= hom(X ,G1) ·hom(X ,G2) · ... ·hom(X ,Gk)

and the proof is complete.

In conclusion, the original theorem as set forth by Lovász for directed graphs in Γ0 holds

for undirected graphs involving weak homomorphisms in the class Γ. In applying this result

to product graphs, it became possible to prove a cancellation theorem involving the strong

product.
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