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ABSTRACT 

 

THE ROLE OF THE CONSERVED RESIDUES IN THE PROPEPTIDE OF ELASTASE 

SECRETED FROM PSEUDOMONAS AERUGINOSA 

 

By Emily Nicole Boice, Ph.D. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2011 

 

Major Director: Dennis E. Ohman 

Professor and Chair, Department of Microbiology and Immunology 

 

Pseudomonas aeruginosa secretes several proteases associated with pathogenesis, but the most 

abundant and active is elastase (M4 metalloendopeptidase). Elastase (lasB), is first synthesized 

as a preproenzyme, with a signal peptide, an 18-kDa N-terminal propeptide, and a 33-kDa 

mature domain.  The propeptide functions as an intramolecular chaperone that is required for the 

folding and secretion of elastase, but ultimately is proteolytically removed and degraded.  

Previous research has identified the conserved residues in the propeptide of elastase as compared 

to other M4 protease precursors and showed some among them to be important for the 

production of active elastase.  In this project, the ability of the propeptide alone to fold into a 

defined secondary structure was explored and a molecular model was created.  Furthermore, the 

effects of substitutions on conserved residues in the propeptide of plasmid-encoded lasB pro 

alleles were assessed by expressing them in a lasB propeptide mutant.  The kinetics of elastase 

activity in culture supernatants was quantitated using a fluorescent substrate, Abz-AGLA-p-

Nitro-Benzyl-Amide, to provide an accurate assessment of the effects of mutant propeptides.  In 
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vitro refolding studies were also performed to determine the effects of specific substitutions on 

foldase activity of the propeptide. When wild-type propeptide and mature elastase were 

denatured as separate proteins in guanidine-HCl buffer and renatured together, restoration of 

activity of the refolded elastase was measured, which was propeptide-dependent. Several mutant 

propeptides have now been shown to have defects using this in vitro foldase assay.  Additional 

mutants were near wild-type activity level suggesting their role in recognition by the secretion 

apparatus.  Residue locations were determined on a molecular model of the complex and 

confirmed the role of the secretion mutants as residues on the exterior.  Residues that had 

diminished ability to refold in the in vitro assay were found to be in the interior parts of the 

complex, confirming their ability to be critical residues at the interface of the proteins or 

important in the stability of the propeptide’s intrinsic structure.  The goal was to perform a series 

of comprehensive analyses of the propeptide and its conserved residues in order to determine its 

role as an intramolecular chaperone.  
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INTRODUCTION 

Pseudomonas aeruginosa infections 

 In January of 2009, Pseudomonas aeruginosa made international headlines in the medical 

community (Bradley Brooks, 2009).  A beautiful young woman arrived in a Brazilian hospital in 

septic shock.  Within two weeks, her feet and hands were amputated and she passed away days 

later.  Mariana Bridi da Costa, a 20-year old Brazilian model and Miss World Finalist, had gone 

to the hospital right before the New Year complaining of kidney pain.  She was quickly 

diagnosed with kidney stones and sent home.  Within four days, her blood pressure had 

plummeted and her body went into septic shock.  The Pseudomonas aeruginosa organism had 

entered her bloodstream and was quickly spreading through her body.  In an effort to control the 

spread, her necrotic limbs were amputated but she succumbed to the infection in less than a 

month after the initial complaint. 

 Pseudomonas aeruginosa is a microorganism that exploits the human body to initiate a 

fatal infection.  P. aeruginosa is a Gram-negative, aerobic bacillus of the Gammaproteobacteria 

class(Iglewski, 1996).  This particular bacterium is the quintessential opportunistic pathogen of 

humans.  It can infect nearly every tissue and system in the human body but rarely infects a 

healthy host.  Furthermore, it is resistant to many antibiotics, and can mutate rapidly to become 

resistant to new drugs.  This is a grave problem in patients that are hospitalized, particularly 

those with cancer, cystic fibrosis, and burns, where the noscomial infection fatality rate is 

50%(Lyczak, Cannon, & Pier, 2000).  In addition to these immune-compromised conditions, P. 

aeruginosa can cause a number of other diseases such as urinary tract infections, endocarditis, 

pneumonia, corneal infections, and ear infections.  
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   Hospital-acquired infections are costly to the health-care system and a target of 

numerous strategies.  This bacterium is particularly troublesome for hospitals because it is 

physically adaptive to diverse conditions.  While its optimum growth temperature is 37°C, it is 

able to grow in lower and higher temperatures (Silo-Suh, Elmore, Ohman, & Suh, 2009).  It is 

resistant to high salt concentrations and has very simple nutritional needs, requiring only acetate 

as a source of carbon and ammonium sulfate as a source of nitrogen.  This organism can grow in 

soil and moist environments(Stratton, 1983) including hospital reservoirs: bottles of 

disinfectants, respiratory equipment, food, sinks, taps, toilets, showers and mops.  It is constantly 

reintroduced into the hospital environment through fruits, plants, vegetables, as well by visitors 

and patients transferring from other facilities (Pitten, Panzig, Schroder, Tietze, & Kramer, 2001). 

Spread occurs from patient to patient through the hands of hospital personnel, by direct patient 

contact with contaminated reservoirs and by the ingestion of contaminated foods and water. The 

bacteria can form persistent biofilms. In its planktonic form it is free swimming, constantly 

looking for its next safe harbor (Jensen, Givskov, Bjarnsholt, & Moser, 2010). The spread of P. 

aeruginosa can best be controlled by observing proper isolation procedures, aseptic technique, 

and careful cleaning and monitoring of respirators, catheters, and other instruments (Pitten et al., 

2001). Topical therapy of burn wounds with antibacterial agents such as silver sulfadiazine, 

coupled with surgical debridement, dramatically reduces the incidence of P. aeruginosa sepsis in 

burn patients(Shanmugasundaram, Uma, Ramyaa Lakshmi, & Babu, 2009). 

Besides its ability to thrive in a number of hospital settings, Pseudomonas aeruginosa is 

notorious for its antibiotic resistance.  The Gram-negative outer membrane affords the first level 

of antibiotic resistance to the organism. Additionally, its ability to form biofilms allows the 

species protection for its inner microcolonies, since the antibiotic would need to diffuse through 
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the extracellular matrix in order to affect the organisms (Davies & Bilton, 2009). Pseudomonas 

is able to maintain antibiotic resistance plasmids and transfer resistance genes by horizontal gene 

transfer via transduction and conjugation (Qiu, Kulasekara, & Lory, 2009).  A limited number of 

antibiotics are successful against Pseudomonas aeruginosa (Wiener-Kronish & Pittet, 2011).  

These include fluoroquinolones, gentamicin, and imipenem but even these are not effective on 

all the strains. Several types of vaccines are being tested, but none are currently available for 

general use. 

 Diagnosis of P. aeruginosa infection depends upon isolation and laboratory identification 

of the bacterium. It grows well on most laboratory media and commonly is isolated on blood 

agar or eosin-methylthionine blue agar (Tielen et al., 2011). It is identified on the basis of its 

Gram stain morphology, inability to ferment lactose, a positive oxidase reaction, its fruity odor, 

and its ability to grow at 42°C (Tomlin, Coll, & Ceri, 2001).  The colonies also fluoresce under 

ultraviolet light.  This can be used to diagnose P. aeruginosa in wounds. 

 In addition to the ability of the organism to live in even the most harshest of 

environmental conditions, P. aeruginosa employs a number of virulence factors.  A number of 

virulence factors (Figure 1) aid in adhesion. The bacterium has a single polar flagellum utilized 

for motility and dissemination (Conrad et al., 2011).  The manner in which P. aeruginosa uses 

these virulence factors is resourceful.  To first colonize, the organism needs the host to have a 

significant break in the first line of defense.  This can include surgical trauma, tears and 

abrasions, or burns in the skin or mucosal areas (Pruitt, McManus, Kim, & Goodwin, 1998).  

Additionally, this can occur with the disruption of the normal human flora through the use of 

broad-spectrum antibiotics or a lapse in the immunologic defense mechanisms. Such a lapse can 

result from chemotherapy-induced neutropenia or the inability to clear mucus in the lungs of a  
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Figure 1. Virulence Factors of Pseudomonas aeruginosa 
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Figure 1. Virulence Factors of Pseudomonas aeruginosa. 

(A) The virulence factors associated with the bacterium, Pseudomonas aeruginosa.  They are 

classified by how the organism uses them to exploit the host to first colonize (adhesions), 

evade the host immune system (invasions), and move deeper into the host (motility and 

toxins). These individual virulence factors can play multiple roles in pathogenesis. Some 

of these are listed in the right-hand column. 

(B) An illustration of the location of those some of the key virulence factors of Pseudomonas 

aeruginosa.   
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cystic fibrosis patient (Fujitani, Sun, Yu, & Weingarten, 2011).  The first step in colonization is 

the “opportunisitic adherence” of the bacteria to compromised epithelium, typically using the 

bacteria’s pili (Hertle, Mrsny, & Fitzgerald, 2001).  The pili of Pseudomonas aeruginosa can 

adhere to the epithelial cells. The adhesins bind to specific galactose or mannose or sialic acid 

receptors on epithelial cells (Heiniger, Winther-Larsen, Pickles, Koomey, & Wolfgang, 2010).  

Colonization can also be aided by proteases which degrade fibronectin to further expose the pili 

receptor on the epithelial cell surface (Azghani, Kondepudi, & Johnson, 1992).  After initial 

adhesion, pathogenesis can cause a chronic infection or an acute infection.    

During a chronic lung infection seen in P. aeruginosa colonized patients with cystic fibrosis, 

the organism produces only low levels of non-cell associated virulence factors, such as toxins 

and proteases (Tingpej et al., 2007).  This allows the bacteria to have sustainability in the host, 

using precious energy only to gather nutrients and build protective microcolonies (Mabrouk, 

Deffuant, Tolker-Nielsen, & Lobry, 2010).  These microcolonies are protected further by the 

cell-associated virulence factors like alginate (Hay, Gatland, Campisano, Jordens, & Rehm, 

2009), an exopolysaccharide that can aid in adhesion. Alginate allows for reduced clearance of 

the bacteria from the lung (Boucher, Yu, Mudd, & Deretic, 1997).  It works to anchor the cells to 

their environment and, in medical situations, it protects the bacteria from the host defenses such 

as lymphocytes, phagocytes, the ciliary action of the respiratory tract, antibodies and 

complement (Song et al., 2003). The alginate allows for the P. aeruginosa infection to persist in 

the host for years.  

However in acute infections, the ability of Pseudomonas aeruginosa to invade host tissues 

depends upon production of extracellular enzymes and toxins that break down physical barriers 

and damage host cells, as well as provide resistance to phagocytosis and the host immune 
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defenses (Adekoya & Sylte, 2009).  Oftentimes, these acute infections can be introduced in the 

hospital setting.  The introduction of bacteria into burn wounds is quite easy if non-sterile 

techniques are used.  This can provide efficient bacterial colonization of the exposed, 

compromised epithelial tissues.  The bacteria now use cell-to-cell signaling to amplify the 

extracellular virulence factors, such as toxins and proteases, to aid in dissemination (Parsek & 

Greenberg, 2000).  These proteases can break down tissue integrity and inactivate host response 

molecules to allow the organism to migrate into the other tissues and the bloodstream. 

 This is however, a small view of the destructive capabilities of the organism.  

Pseudomonas aeruginosa can cause a number of other debilitating diseases.  The organism 

infects heart valves of IV drug users as well as prosthetic heart valves by establishing itself on 

the endocardium by direct invasion from the blood stream(Reyes, Ali, Mendes, & Biedenbach, 

2009).  Respiratory infections caused by Pseudomonas aeruginosa occur almost exclusively in 

individuals with a compromised lower respiratory tract or a compromised systemic defense 

mechanism (Zemanick, Sagel, & Harris, 2011) . Primary pneumonia occurs in patients with 

chronic lung disease and congestive heart failure(Sun, Fujitani, Quintiliani, & Yu, 2011). 

Bacteremic pneumonia commonly occurs in neutropenic cancer patients undergoing 

chemotherapy (Fujita, Gu, Kishida, Okinaka, & Ohmagari, 2010).  Lower respiratory tract 

colonization of cystic fibrosis patients by mucoid strains of Pseudomonas aeruginosa is quite 

common and difficult, if not impossible, to eradicate (Zemanick et al., 2011). 

Pseudomonas aeruginosa can cause bacteremia primarily in immunocompromised 

patients and is acquired in hospitals and nursing homes (Fujimura, Nakano, Takane, Kikuchi, & 

Watanabe, 2011). Predisposing conditions include immunodeficiency resulting from AIDS, 

neutropenia, diabetes mellitus, and severe burns (Winsor et al., 2009).  
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This organism also causes meningitis and brain abscesses (Mena & Gerba, 2009). It 

invades the CNS from a nearby structure such as the inner ear or paranasal sinus (Suzuki, 

Nishiyama, Sugiyama, Miyamoto, & Baba, 1996). It can be inoculated directly by means of head 

trauma, surgery or invasive diagnostic procedures, or spreads from a distant site of infection such 

as the urinary tract (Chang et al., 2010).    

Pseudomonas aeruginosa is the predominant bacterial pathogen in some cases of external 

otitis, including "swimmer's ear" (Reid & Porter, 1981). Pseudomonas aeruginosa can cause 

devastating infections in the human eye. It is one of the most common causes of bacterial 

keratitis (Stewart et al., 2011). Pseudomonas can colonize the ocular epithelium by means of a 

fimbrial attachment to sialic acid receptors (Wong, Sethu, Louafi, & Hossain, 2011). If the 

defenses of the environment are compromised in any way, the bacterium can proliferate rapidly 

through the production of enzymes such as elastase, alkaline protease and exotoxin A, and cause 

a rapidly destructive infection that can lead to loss of the entire eye (Twining, Kirschner, 

Mahnke, & Frank, 1993).   

Urinary tract infections (UTI) caused by Pseudomonas aeruginosa are usually hospital-

acquired and related to urinary tract catheterization, instrumentation or surgery. Pseudomonas 

aeruginosa is the third leading cause of hospital-acquired UTIs, accounting for about 12 percent 

of all infections of this type (Tielen et al., 2011). The bacterium appears to be among the most 

adherent of common urinary pathogens found in the bladder uroepithelium. In addition, 

Pseudomonas can invade the bloodstream through the urinary tract. Such infections account for 

nearly 40 percent of all Pseudomonas bacteremias infections (Shigemura et al., 2006), such as 

the patient in the introduction.   
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Pseudomonas aeruginosa can produce disease in any part of the gastrointestinal tract in 

immune-compromised individuals from the oropharynx to the rectum (Koh et al., 2010). It can 

also cause a variety of skin infections, both localized and diffuse. The common predisposing 

factors include a invasion of the integument which may result from burns, trauma or dermatitis; 

high moisture conditions such as those found in the ear of swimmers and the toe webs of 

athletes, hikers and combat troops, in the perineal region and under diapers of infants, and on the 

skin of whirlpool and hot tub users. Pseudomonas has also been implicated in folliculitis and 

unmanageable forms of acne vulgaris (Yu, Cheng, Wang, Dunne, & Bayliss, 2007). 

 

Significance of Pseudomonas proteases 

In a number of these disease types, bacterial proteases are often utilized in the organism’s 

pathogenesis.  Pseudomonas aeruginosa secretes several exoproteases, including elastase, lasA 

protease, and alkaline protease (Doring et al., 1987; Galloway, 1991). These are critical virulence 

factors, that work together to destroy tissue and damage host cell functions.   Specifically 

elastase, an M4 metallopeptidase, has been shown to cleave the different components of tissue 

structure, including fibrin, collagen and elastin (El-Bazza, Moroz, Glatman, Samoilenko, & 

Terekhov, 1988), while it can also impair host proteases and defense mechanisms (Dulon et al., 

2005).  This protease is the most abundant extracellular endopeptidase secreted by P. aeruginosa 

and allows the bacteria to circulate further through the host (Kessler, E., and D. Ohman., 2004) . 

 

Elastase: Function and Utility 

Elastase is named for its ability to digest elastin (Kessler, E., and D. Ohman., 2004).  

Elastin is one of the most abundant components of almost every type of tissue, i.e., blood vessel 
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walls, lung, skin, and the bladder.  It is a connective fiber with elastic properties which allow the 

tissue to retain its shape after contraction and expansion.  Elastin also is primarily composed of 

four amino acids: glycine, valine, alanine, and proline.  Elastin fibers are linked together to make 

a large, insoluble, resilient cross-linked array and this mesh is notoriously difficult to degrade 

(Heck, Morihara, & Abrahamson, 1986).  Elastase is produced by over 80% of clinical isolates 

of P. aeruginosa (Wretlind, Heden, Sjoberg, & Wadstrom, 1973).  Second to the ability to 

destroy elastin, elastase has the ability to degrade fibrin and collagen barriers as well as 

inactivate additional host proteins, including alpha-1-proteinase inhibitor, bronchial mucus 

proteinase inhibitor, lysozyme, complement components, IgG and IgA, along with inactivating 

signal inflammation cascades (Doring, Obernesser, & Botzenhart, 1981; Heck et al., 1990; 

Holder & Neely, 1989; Jacquot, Tournier, & Puchelle, 1985; Johnson, Carter-Hamm, & Dralle, 

1982; Morihara, Tsuzuki, & Oda, 1979; Schultz & Miller, 1974).  In addition to pulmonary 

tissue, corneal tissue, urinary tract, and vascular destruction have been linked to elastase activity  

(Gray & Kreger, 1975; Heck, Morihara, McRae, & Miller, 1986; Shigemura et al., 2006).    

Elastase works syngergistically with LasA protease (E. Kessler, Safrin, Olson, & Ohman, 1993), 

a serine protease that nicks the elastin and renders it susceptible to other enzymes like elastase. 

Most of the destructive tissue pathogenesis of P. aeruginosa can be attributed to these secreted 

enzymes (Wretlind & Pavlovskis, 1983). 

  Regulation of the production of many of the Pseudomonas aeruginosa virulence factors, 

including these enzymes, is tightly controlled by a mechanism which monitors bacterial cell 

density and provides communication between the bacteria by cell-to-cell signaling.  Many gram-

negative and gram-positive bacteria have developed the ability to sense their environmental 

conditions and populations through cell-to-cell signaling, also called quorum sensing(Parsek & 
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Greenberg, 2000).  This enables the bacteria to secrete the virulence factors only at optimal times 

for the pathogenesis.  The bacteria do this by producing a small molecule called an autoinducer 

(AI) which is free to diffuse through the cell membrane and away from the cell.  In low density 

populations, the AI diffuses away from the cell into the media and becomes diluted.  With 

increasing bacterial cell density, the concentration of this AI accumulates and reaches a threshold 

level. The small molecule is now able to bind a transcriptional activator protein, forming a 

complex which is able to bind DNA sequences upstream of target genes enhancing their 

transcription.  In Pseudomonas aeruginosa, there are two circuit systems that interact to ensure 

the precise and abundant production of elastase (Pearson, Pesci, & Iglewski, 1997).  The 

autoinducers responsible for elastase synthesis are 3-oxo-C12-HSL (N-[3-oxododecaolyl]-L-

homoserine lactone) and C4-HSL (N-butyrylhomoserine lactone)(Passador, Cook, Gambello, 

Rust, & Iglewski, 1993; Passador et al., 1996).  The AI synthase gene responsible for the first AI 

(3-oxo-C12-HSL), is lasI and the lasR gene codes for the transcriptional activator protein 

(Sappington, Dandekar, Oinuma, & Greenberg, 2011).  Additionally, the las system has been 

shown to activate the genes necessary for the transport of these enzymes from the cell (Rust, 

Pesci, & Iglewski, 1996).  

 The organism has a backup mechanism in the second circuit, the rhl system(Wilder, 

Diggle, & Schuster, 2011).  The second AI (C4-HSL) is encoded by the rhlI, the AI synthase 

gene, while the rhlR gene encodes the transcriptional activator protein (Netotea et al., 2009).  

This circuit has the ability to activate production of some of the same virulence factors but the 

preferred promoters are the las promoters.  
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Figure 2. The three domain polypeptide is illustrated.  The purple domain is the pre domain 

(called the signal sequence), the green domain is the propeptide domain, and on the carboxyl end 

is the mature domain indicated in red.  The residues highlighted on the mature domain (red) are 

those involved in the HEXXH motif (H140, E141, V142, S143, final H144), and additionally 

those needed for substrate binding (Y155 and H223). The catalytic residue E141.  
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System (Wilder et al., 2011).  This intricate circuitry allows for the production of the virulence 

factors to be most beneficial for the organism.  

Additionally, the bacteria have evolved another way to control the mechanism of action 

of elastase.  Most prokaryotic proteases are synthesized as zymogens or inactive precursors 

(proenzymes) (Khan & James, 1998).  Both LasA protease and elastase secreted are proenzymes 

by P. aeruginosa (E. Kessler, Safrin, Gustin, & Ohman, 1998). These zymogens are normally 

activated only after the polypeptide has been localized to its predestined site of action, which can 

be either intracellularly or extracellulary.  Elastase is one of these zymogens and is encoded by 

lasB (Pseudomonas aeruginosa locus PA3742) (Stover et al., 2000; Winsor et al., 2009; Winsor 

et al., 2011).  This gene is located between 4170483 – 4168987 Mbp on the genome of strain 

PAO1 and encodes a 498 amino acid (53.6-kDa) protein, called pre-proLasB (Bever & Iglewski, 

1988; Fukushima et al., 1989).  This larger precursor (Figure 2) is composed of a 2.6 kDa (23 

residues) signal peptide that is followed by an 18 kDa (174 residues) propeptide and the 33 kDa 

mature domain (301 residues) (Bever & Iglewski, 1988).  However, only a 33-kDa protein is 

found in the culture supernatant (Wolz et al., 1991).  The aim of this project is to elucidate the 

role of the propeptide domain in folding and activating the mature domain. 

Initially all three domains are synthesized within the cytoplasm (Figure 3).  The signal 

peptide is removed upon secretion from the Sec system into the periplasm (Braun, Bitter, & 

Tommassen, 2000).  Once within the periplasm, the propeptide is autocatalytically cleaved and 

forms a non-covalent complex with the mature domain.  The mature domain also forms 

disulphide bonds within the periplasm (Braun et al., 2001).  This complex is recognized by the 

Type II secretion system (T2SS) and secreted into the extracellular
 
environment (Braun, 

Tommassen, & Filloux, 1996). T2SSs are complex machines consisting of 12–16
 
components,  
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Figure 3. The folding and secretion model of the zymogen known as Elastase.  Within the 

bacterial cytoplasm, all three domains of the polypeptide are seen.  The “pre” domain (signal 

sequence) is lost upon secretion into the periplasm via the Sec transport system.  The propeptide 

domain and the mature domain within the periplasm are then autocatalytically cleaved and 

folded into an inhibited complex.  Here the disulphide bonds also form in the mature domain.  

This inhibited complex is recognized by the Type II secretion system (Xcp transport system in 

Pseudomonas).  The inhibited complex is then transported extracellularly and the propeptide 

domain dissociates from the mature domain. It is degraded by the now active elastase and other 

extracellular proteases.  
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which are generically named Gsp, or Xcp in the
 
case of the main T2SS in Pseudomonas 

aeruginosa (Filloux, Michel, & Bally, 1998). The Xcp system of P. aeruginosa is important for 

the secretion
 
of many different proteins, including elastase, lipase, phospholipases,

 
chitin-binding 

protein and exotoxin A (Koster, Bitter, & Tommassen, 2000). The system is encoded
 
by 12 xcp 

genes.  Production of the system is regulated by quorum sensing and it has been
 
estimated that 

50–100 Xcp complexes are present in the
 
cell at high cell densities (Russel, 1998). 

Initially the complex is seen outside the cell. However, after a short period of time, the 

abundant protein is found to be the 33-kDa mature domain (E. Kessler & Safrin, 1994).  Current 

research suggests that the propeptide appears to be critical for folding within the periplasm and 

secretion but not for the activity of the enzyme.  This function proposes a need for understanding 

the propeptide-mediated folding of the mature domain and catalysis of the individual complex 

components which are both required for final enzyme activation.   

 

Elastase: Structure 

Elastase is a member of the M4 family of Thermolysin-like Neutral zinc-metallo 

Proteases (TNP).  This protease has previously been termed Pseudolysin (EC 3.4.24.26), due to 

its 49% simillarity to Thermolysin, an M4 metalloprotease secreted by Bacillus 

thermoproteolyticus (Kessler, E., and D. Ohman., 2004). The crystal structure of the mature 

active enzyme has been solved to 1.5 angstrom resolution (Figure 4) (Thayer, Flaherty, & 

McKay, 1991).  Both proteases, elastase and thermolysin, contain a single zinc atom essential for 

activity, observed by metal chelation experiments inhibiting enzymatic activity (E. Kessler, 

Israel, Landshman, Chechick, & Blumberg, 1982).  The active site catalytic residue (Glu-141) 

for elastase has been determined along with the zinc coordination residues (His-142, His-146,  
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Figure 4. (A) Shown is a ribbon diagram of the crystal structure of the mature domain of elastase 

(PDB 1EZM) by Dr. McKay in published in 1991.  The grey sphere in the middle right is the 

zinc ion, the left one is the calcium ion.  The two globular regions are shown by the presence of 

alpha helices and the beta strands. The amino terminus of the enzyme is seen at the bottom of the 

structure (bottom – left, second beta sheet in).  The carboxyl terminus is on the top (attached to 

the furthest red alpha helix).  

(B) Shown is a space filling model of the enzyme.  The residues in the substrate cleft are shown 

in black.  The grey sphere is the coordinated zinc atom.  
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and Glu-166) (Kawamoto et al., 1993).  Elastase also requires calcium ions for stabilization 

(Olson & Ohman, 1992).  Additionally, substantial conformational differences were observed 

when the enzyme was either in the absence of ligand or in the presence of a covalent 

noncompetitive inhibitor as compared to tight-binding competitive inhibitors (McKay, Thayer, 

Flaherty, Pley, & Benvegnu, 1992).  The first group maintains an “open” substrate binding cleft 

while competitive inhibitors allow the cleft to close. 

Elastase favors certain residues for its substrate specificity.  Hydrophobic or aromatic 

amino acid residues are optimal for the residue that is just to the carboxyl terminus of the 

substrate cleavage site (P1' position).  The order of preference for residues at P1’ is Phe >Leu 

>Tyr >Val >Ile. Aromatic residues seem to be preferred to aliphatic residues (Kessler, E., and D. 

Ohman., 2004). Ala is favored at the P1 (the residue at the position amino terminal to the 

substrate cleavage) and P2' (carboxy to the P1’ residue) positions, and elongation of the substrate 

to the P2 and P2' positions results in a marked increase in the rate of hydrolysis (Kessler, E., and 

D. Ohman., 2004).  

The family of M4 metalloproteases is classified based on a number of characteristics.  

According to the MEROPS peptidase database, elastase is a member of the MA clan of 

peptidases.  The members of this clan have water bound by a single zinc ion which in turn is 

ligated to two His residues and Glu residue, and an additional His or Asp (Rawlings & Barrett, 

1993).  This clan contains a variety of metallopeptidases and all have the conserved HEXXH 

motif where the two His residues coordinate a zinc ion and the Glu has a catalytic function 

(Rawlings, Barrett, & Bateman, 2010).  Elastase is further classified within the M4 family of the 

MA clan.  Unique to the M4 family is the fact that the endopeptidases all bind a single zinc ion 

and use a Glu residue further towards the C-terminus of the HEXXH motif in the protein’s 
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mature domain (Jongeneel, Bouvier, & Bairoch, 1989).  The zinc ion is tetrahedrally co-

ordinated and the fourth ligand is activated water, which forms the nucleophile in the catalysis 

reaction (Rawlings & Barrett, 1993). Most of the M4 family members are active at a neutral pH 

and degrade substrates with the preference of cleaving after hydrophobic residues and before 

Leu, Phe, Ile and Val (MEROPS).  Of the 22 members identified in this family, five have been 

crystallized, (thermolysin PDB: 1NPC, vibriolysin PDB: 3NQX, elastase PDB: 1EZM, 

aureolysin PDB: 1BQB, and protealysin PDB: 2VQX)(Banbula et al., 1998; Demidyuk et al., 

2010; Gao et al., 2010; Stark, Pauptit, Wilson, & Jansonius, 1992; Thayer et al., 1991).  The 

mature genetic domains have a two globular domain structure with the active site between the 

structural domains. They have N-terminal propeptides that are autocatalytically removed upon 

secretion of the enzymes from the cells.  However little is known about their propeptide 

domains.  The propeptide of elastase has two folds, identified by sequence homology in the Pfam 

protein fold database: PepSY and FTP (Braun et al., 2000).  The PepSY fold is likely to have a 

protease inhibitor function and the Fungalysin/Thermolysin Propeptide Motif fold (FTP) is likely 

to either inhibit the peptidase by preventing premature activation or acts as a chaperone for the 

mature domain. 

Currently, we understand that the propeptide is secreted with the enzyme and processing 

of the mature domain is autocatalytic (McIver, Kessler, Olson, & Ohman, 1995).  During this 

initial secretion time period, short-term Pseudomonas aeruginosa cultures showed that inactive 

elastase-propeptide complex is secreted from the cells (E. Kessler & Safrin, 1994).  Immunoblots 

(Figure 5) of these washed cell cultures, to limit proteolysis, confirm the presence of the 

propeptide in the supernatant for up to one hour, followed by degradation (E. Kessler & Safrin, 

1994). After the secretion of the complex occurs (by 60 minutes), the propeptide is degraded  
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Figure 5.  Washed cell culture assays were used to identify the time frame propeptide seen in the 

supernatant of cultures, modified from (E. Kessler & Safrin, 1994).  Cultures of P. aeruginosa 

were grown for 18 hrs and the cells were washed and resuspended in fresh media and protease 

inhibitors.  Aliquots of the culture were taken at designated time points (shown in minutes) and 

spun.  The supernatants were TCA precipitated and run on an SDS-PAGE and transferred.  

These immunoblots were probed with anti-Elastase antibodies (top panel) and anti-Propeptide 

antibodies (bottom panel).  Propeptide was found for up to an hour after induction, as seen by the 

band in the bottom panel. Afterwards, it is degraded.  This provides evidence that propeptide is 

required for secretion into the extracellular space.  
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extracellularly by elastase and other secreted active proteases (E. Kessler et al., 1998).  

Propeptide alone is not secreted from the cell (data not shown).  In vitro zymogram experiments 

have shown the propeptide acting as an effective inhibitor of the protease (E. Kessler & Safrin, 

1994).  When elastase is mixed with increasing volumes of periplasmic fractions (which contain 

the propeptide), and run on a zymogram using skim milk as a substrate, the elastase loses its 

activity. 

To further examine the interaction between the propeptide and elastase, studies were performed 

to overexpress the two components in trans in E. coli (McIver et al., 1995). While E. coli K12 

cannot secrete the active enzyme past the outer membrane due to the lack of Xcp transport 

machinery, the propeptide-enzyme complex is autoprocessed to an active enzyme form (33-kDa) 

while remaining in the periplasm, confirming the propeptide processing from the enzyme is 

autocatalytic.  A propeptide deletion allele (lasB6) was exchanged into the Pseudomonas 

chromosome and complemented with the propeptide expressed in trans (lasB7).  This system 

(Figure 6) showed elastase activity measured outside the cell. When the lasB6 allele, encoding a 

pre-mature segment without the propeptide, is expressed in E. coli, the enzyme product is 

inactive.  Expression of this propeptide deleted allele also resulted in the accumulation of the 

inactive enzyme within the cell.  The only way to restore activity of the enzyme was through co-

expression of the lasB7 allele encoding the pre-propeptide.  Therefore the propeptide is needed 

in cis or in trans for the secretion of the mature enzyme as well as for its activation.  

When specific amino acid residues on the mature domain, such as His-223 (substrate-

binding residue) are changed to Asp (lasB1) or Tyr (lasB2) in order to block proteolytic activity, 

the 51-kDa precursor accumulates in the cell with the signal peptide removed, associating with  
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Figure 6. The propeptide has been shown to interact with the mature domain in cis and in trans.  

Experiments examined the presence and absence of the propeptide domain (shown in green) on 

the ability to see active elastase.  When the propeptide was deleted (lasB6 allele), elastase 

activity was lost.  Complementing the propeptide back (lasB7 allele) on a plasmid, recovered the 

elastase activity.  
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the membrane fraction(McIver, Olson, & Ohman, 1993).  These mature domain residues appear 

to be critical for autocatalysis of the propeptide from the mature domain.   

These experiments provided initial insight into the propeptide domain acting as an 

intramolecular chaperone (IMC) (McIver et al., 1995).  An IMC is typically a region of a protein 

that mediates a conformational change to that protein.  This includes the ability of that region 

(the propeptide) to be essential for proper folding and secretion of the propeptide-mature 

complex.  A number of the M4 propeptides have been thought to function as IMCs.  

These previous experiments were initially demonstrated that a TNP family member is an IMC-

containing protease.  Additionally if this propeptide is a chaperone to the enzyme, it would be 

expected that the two components would have direct interactions.  This was confirmed with co-

immunoprecipitation experiments (McIver et al., 1995).  Elastase/anti-elastase 

immunoprecipitates contain the propeptide, as determined by Western blots using propeptide-

specific antibodies (data not shown).  Furthermore, the non-covalent complex remains associated 

to permit the complex secretion across the outer membrane (McIver et al., 1995). 

The next step involved determining the residues within the propeptide that are required 

for chaperone activity (McIver, Kessler, & Ohman, 2004).  Homology alignments were 

performed, comparing the propeptide domain with propeptides of other TNPs sequenced at the 

time. Two regions of interest were found.  The first motif, ProM, is near the middle of the 

propeptide and contains hydrophilic residues. The second motif, ProC, is located at the C-

terminus and contains more hydrophobic residues.  This conservation suggests an evolutionary 

relationship of the TNP propeptides to retain essential folding functions.  To test whether these 

conserved motifs were important, single residue substitutions at eight conserved amino acids 

were introduced on the full-length 3-domain polypeptide and effects were examined.  Within the 
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ProM motif, substitution at R74 resulted in an accumulation of propeptide-mature complex 

within the cell, suggesting a secretion defect.  Substitution at N68 reduced the amount of enzyme 

in the supernatant as a result of reduced stability of the propeptide-mature complex within the 

cell.  Within the ProC motif, mutations at I181 and A183 again decreased the accumulation of 

the active enzyme in the supernatant.  These mutations generated a phenotype consistent with a 

defect due to protein folding or stability. Further research on these mutants could elucidate the 

defective role of these residues as either folding or important for secretion. 

α – Lytic Protease and Other Examples of Propeptide-Mediated Folding    

The biological behavior of all proteins is managed by adopting specific 3D structures, 

and understanding these protein-folding mechanisms is currently a noteworthy area of research.  

Specifically, researchers are examining structure-function relationships.  Proteins have been 

shown to unfold and refold in vitro, restoring activity (Wolynes, Onuchic, & Thirumalai, 1995).  

However, a large group of proteins fail to refold correctly without aid.  These molecular 

chaperones can use peptide-chaperone functions to guide proper folding or ATP hydrolysis to 

refold misfolded proteins (Nirasawa, Nakajima, Zhang, Yoshida, & Hayashi, 1999; Shinde & 

Inouye, 1993; Shinde & Inouye, 1996; Shinde & Inouye, 2000; Xu, Horwich, & Sigler, 1997).  

Propeptide domains are produced by both prokaryotic and eukaryotic organisms (Khalil, 1999). 

The amino-terminal propeptides are usually located between a signal peptide and then the mature 

domain.  After mediating folding of the mature domain, the propeptides are removed and the 

properly folded mature domain is found to be at an energy minimum, a state which cannot be 

attained without the chaperone aid.  Detailed examinations have been performed on α-lytic 

protease to examine its propeptide folding mechanism (Baker, Silen, & Agard, 1992; Baker, 

Sohl, & Agard, 1992; Sauter, Mau, Rader, & Agard, 1998; Silen, McGrath, Smith, & Agard, 



 

 

29 

 

1988; Silen & Agard, 1989; Silen, Frank, Fujishige, Bone, & Agard, 1989; Sohl, Shiau, Rader, 

Wilk, & Agard, 1997; Sohl, Jaswal, & Agard, 1998).   

α-lytic protease (Figure 7) and its propeptide have been extensively examined for its folding and 

activation mechanism.  The presence of the propeptide has been found necessary for secretion 

and activity of the mature domain by lowering the kinetic barrier of the mature to fold (Silen et 

al., 1989). A common assumption in protein folding is that native protein states are at a global 

energy minimum.  Alpha-lytic protease, an extracellular serine protease from Lysobacter 

enzymogenes, shatters that assumption.  Research has shown that, in vivo and in vitro, its 

propeptide region (166 amino acids) is required for the correct folding of the mature domain 

(199 amino acids) either in cis or in trans (Silen & Agard, 1989).  Experiments aimed at 

examining the in vitro refolding chemically-denatured the mature domain in the absence of pro 

(Baker, Sohl et al., 1992).  This resulted in a folded intermediate.  The presence of the propeptide 

domain led to the rapid formation of the native state of the mature domain.  Without the 

propeptide, the progression of the intermediate to the native folded conformation is blocked by a 

large kinetic barrier.  The rate of folding without the propeptide was measured to be t1/2  of 

~2,000 years, corresponding to a folding barrier of 30 kcal mol
–1

.  The addition of the propeptide 

accelerates the rate of mature enzyme folding by a factor of 3 x 10
9
.  Furthermore, the rate of 

unfolding of the native state appears to be slow as well (t1/2  of ~1 year), suggesting it is not 

energetically favorable to unfold once folded correctly.  The propeptide is making the mature 

domain stable and is actually a potent inhibitor of the mature enzyme (Ki ~ 10
-10

 M). 
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Figure 7.  (A) The ribbon diagram of the propeptide alone of alpha-lytic protease from the 

bacterium Lysobacter enzymongenes. 

(B) The ribbon diagram of the propeptide complexed with the mature domain.  The two globular 

regions of the mature domain are shown in purple and blue.  The carboxyl terminal residues of 

the propeptide (green) reside in the active site between the two globular regions.  
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Deletions made to the propeptide residues, specifically the C-terminal residues, indicate 

that these residues actively participate in the stabilizing of the intermediate state (Peters et al., 

1998; Sohl et al., 1997).  The crystal structure of the complex revealed that the propeptide is 

“C”-shaped and completely surrounds the carboxyl domain of the mature enzyme, protecting the 

mature domain and allowing it to fold correctly.  The propeptide’s C-terminal residues actually 

sit in the active site.  The final steps of mature folding take place within the active site.  Once 

complete, the active site cleaves the flexible loop containing the propeptide C-terminal residues; 

thus the loop is acting as an Achilles heel.  This allows for the propeptide to dismantle its foldase 

role safely from the mature. This important step is followed by rapid proteolytic destruction of 

the rest of the propeptide, thus releasing the active enzyme. 

Scope of this Project 

 This thesis describes how I further characterized the propeptide of elastase as a “foldase”.  

The proteolytic activity and secretion of elastase is dependent on the ability of the propeptide to 

act as a chaperone, to aid in the folding of the mature domain, and to works as an inhibitor in 

order to prevent the activity of the enzyme before secretion.  Understanding folding mechanisms 

can be difficult due to the short-lived intermediate states. However, the two individual 

components can be manipulated independently and synergistically.   

 Initial experiments suggest that the propeptide domain alone has a native folded structure.  

This was accomplished through a number of biochemical and theoretical approaches.  The 

propeptide was examined with circular dichroism and crystallization screens to identify the 

presence and nature of its secondary structure.  Molecular homology modeling provided a visual 

of what that structure looked like.  This model was then used to dock to the crystal structure of 

the mature domain in order to gain a visual of what the complex could look like.  Further 
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experiments were utilized to characterize the protein-protein interactions between the elastase 

and propeptide complex. Alignments to other M4 metallopeptidases found a number of 

conserved residues in the propeptide domain.  Numerous alanine substitutions were made and 

tested for in vitro and in vivo effects on the ability of the mutated propeptide to aid in folding and 

secretion of the complex.  By testing for both in vivo and in vitro effects, the mutations could 

suggest the roles of individual residues as specific for folding or secretion.  Furthermore, the 

residues could be localized on the model to see if these critical residues could be reasonable 

folding mutants or secretion mutants.  The identification of the critical residues in the propeptide 

could lead to a better understanding of how the propeptide acts as a foldase for the mature, 

working to aid in correct folding and secretion of the complex. 
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METHODS 

 

Strains used, culture media and conditions. P. aeruginosa PAO1 is a clinical isolate from a 

burn wound used in the Ohman laboratory.  P. aeruginosa PDO426 [ propeptide] contains
 
a 

chromosomal deletion of the propeptide domain only of lasB in the lab standard strain PAO1. 

This was used
 
as an elastase-deficient strain background for expression of

 
the propeptide alleles 

with mutations. Escherichia
 
coli DH5α fhuA2Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 

gyrA96 recA1 relA1 endA1 thi-1 hsdR17 (New England Biolabs) was used to propagate DNA 

which
 
was subjected to site-directed mutagenesis and used in the manipulation of recombinant 

plasmids. Bacteria
 
were cultured in L broth (1% tryptone, 0.5 % yeast extract,

 
0.5 % NaCl, 

pH 7·5) in shaking cultures at 37°C. Unless specified otherwise,
 
antibiotics were used at the 

following concentrations: ampicillin,
 
100 µg ml

–1
 for E. coli; carbenicillin, 100 µg ml

–1 
for P. 

aeruginosa.
 
  

 

General PCR and recombinant DNA methods. Most routine DNA manipulations were 

performed as described by
 
Maniatis et al. (T. Maniatis, E. F. Fritsch, J. Sambrook, 1982). DNA 

sequences were determined by the
 
automated technique with custom oligonucleotides (ACGT, 

Inc). Sequence
 
comparisons were performed using the basic local alignment search

 
tool 

(BLAST) algorithm, aligned with ClustalW programs and visualized with GoCore software. 

Enzymes belonging
 
to the TNP family had significant homologies within

 
the protease domain of 

their molecules.
   

 

Recombinant Propeptide Purification. The propeptide domain (lacking pre and mature 

domains) were over expressed in plasmids pET28b at the NcoI and HindIII sites and encoding an 
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amino terminal His-6 tag, in E. coli BL21 (DE3). Strains were
 
grown to mid-log phase (A580, 0.5 

to 0.8). Isopropyl-β-D-thiogalactopyranoside
 
(IPTG) was added to a final concentration of 1 mM 

and cultures
 
were incubated for an additional 4 h at 37°C with shaking.

 
250 ml of pelleted cells 

were resuspended in 10.0 ml fractionation buffer with
 
8M urea (10 mM Tris-HCl [pH 8.0], 100 

mM NaCl). The suspension was stored at –70°C overnight,
 
thawed, and lysed with a French 

press (twice at 14,000 lb/in
2
;
 
Thermo Electron). Cells were centrifuged at 4°C twice at

 
14,000 x g 

for 20 min. The supernatant was filtered through
 
a 0.45-µm acrodisc filter, and 10.0 ml were 

applied to an equilibrated nickel resin column (Qiagen). The
 
liquid was allowed to drain by 

gravity flow. The column was
 
washed four times with 10 ml of wash buffer (fractionation buffer 

with 50 mM imidazole). His6-Propeptide was eluted stepwise with 500 µl
 
of 1.0 M imidazole in 

fractionation buffer. Elutes were pooled
 
and dialyzed overnight at 4°C against 10 mM Tris-HCl 

[pH 8.0], 100 mM NaCl buffer to remove imidazole.
 
 

Production of Propeptide Antibody.  Polyclonal antisera against recombinant His6-Propeptide 

(over expressed as above and sent in a SDS-PAGE piece sample) was generated
 
in New Zealand 

White rabbits (Immunodynamics, Inc.) and used
 
in a Western immunoblot analysis at a dilution 

of 1:10,000.
 
Signal detection with chemiluminescent reagents was performed

 
according to the 

instructions of the manufacturer (Pierce).  

 

Polyacrylamide gel electrophoresis and immunoblot analysis. Protein samples were separated 

and analyzed on a 12% SDS-polyacrylamide gel electrophoresis (PAGE) (Laemmli, 1970). 

Protein samples were prepared for SDS-PAGE by heating for 5 min at 100°C in an equal volume 

of 2X sample buffer (0.1 M Tris-HCl, 5 % SDS, 0.9 % 2-mercaptoethanol (2ME), 20 % glycerol, 

pH 6.8). Gels were stained with 0.2 % (w/v) Coomassie brilliant blue R-250 (Sigma, St. Louis, 
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MO) in ethanol: acetic acid: water (30:10:60, v/v/v). A broad-range protein weight marker (Bio-

Rad, Hercules, CA) was used for protein size determination. For western blot analysis, proteins 

were similarly separated by SDS-PAGE and electrophoretically transferred to a nitrocellulose 

membrane by electroblotting using a Bio-Rad Immuno-Blot assay kit. Antiserum against the 

purified propeptide was raised in rabbits as described previously.  Antiserum against purified 

elastase was obtained previously in the lab. Detection of the primary antibody on nitrocellulose 

membranes was revealed with horseradish-peroxidase conjugated goat anti-mouse IgG (Bio-

Rad) at a 1:40,000 dilution. Thermo Scientific SuperSignal chemiluminescence reagents were 

used according to manufacturer’s instructions 

 

Purification of active elastase. A lasB over expression vector was created by double digestion 

with NcoI and HindIII of the PCR product wild-type lasB gene and placed into a broad host 

range expression vector pMF54 containing the trc promoter and lacI
Q
 for IPTG induction.  When 

this plasmid (pALH79) was expressed in the ΔlasB strain, PDO240, and induced, ten times more 

elastase was secreted as compared to wild-type.  Three liters of this strain was then grown in L 

broth with maximum aeration at 37°C for 18 hours.  Cells were collected by centrifugation and 

resuspended in fresh media containing IPTG for four hours of protein induction.  Cells were 

removed by centrifugation and the supernatant is filtered to remove cellular debris.  Elastase was 

then precipitated by 60% ammonium sulfate saturation and the pellet was collected by 

centrifugation.  The pellet was resuspended in small volume of 10mM Tris buffer, pH 7.5, 

dialyzed and applied to an equilibrated DEAE-sepharose column.  The column was washed with 

buffer and then elastase was eluted off with an increase in salt concentration.  The fractions 
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containing the elastase were collected and analyzed for protein concentration via the Bradford 

assay, activity, and purity.  

Elastase Activity Substrates.  Proteolytic activity from Pseudomonas can be assayed with 

casein or azocasein whereas elastinolytic activity is determined with elastin–Congo Red or 

orcein–elastin (Rust, Messing, & Iglewski, 1994).  Elastin nutrient agar plate assays can also be 

used to detect elastase production by P. aeruginosa (Rust et al., 1994). However, specific and 

sensitive elastase activity was determined spectrophotometrically with the fluorogenic substrate 

Abz-Ala-Gly-Leu-Ala-Nba (Abz: o-aminobenzoyl; Nba: 4-nitrobenzylamide) (Bachem).  

 

Assay of in vivo enzymatic activity. To obtain standardized cultures of P. aeruginosa strains, L
 

broth was inoculated (1:100) with an overnight culture and
 
then grown once the cultures reached 

an OD600 of 0.5. This was then used to
 
inoculate (1:100) 10 ml of L broth and incubated at 37

 
°C 

with aeration for 18 h into early stationary phase,
 
at which time extracellular elastase is stable 

and has reached
 
a plateau. Elastolytic activity in 18 h culture supernatants

 
was determined using 

a fluorogenic substrate, Abz-Ala-Gly-Leu-Ala-p-Nitro-Benzyl-Amide (Pepnet), which contained 

a short span of amino acids susceptible to cleavage by elastase surrounded by donor and 

quencher fluorophores.  When this substrate was in the presence of enzyme, the quencher 

fluorophore was removed and the donor emission is determined.  Various concentrations of 

substrate (final assay concentration = 0.0125 mM - 0.2mM) were prepared in DMSO and added 

to 0.05M TrisHCl, pH 7.5, 2.5mM CaCl2 buffer in black Costar 96 well plates and prepared in 

the BioTek FLx800 fluorescence microplate reader.  Aliquots of supernatants were added and 

fluorescence was determined immediately, every 11 seconds for 20 minutes.  The excitation and 

emission wavelengths were 320 and 415 nm respectively.  The device was standardized using 2.5 

μM quinine sulfate solution.  The reaction rates (Relative Fluorescence Units/time) for each 
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substrate concentration was determined and Lineweaver-Burk plots were constructed to 

determine Km values for each propeptide mutant. These values were expressed in molarity (μM).  

Biological samples were obtained from four different experiments and averaged. 
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SECTION THREE 

The propeptide domain alone folds into a defined structure. 

 

Introduction to Vibriolysin 

 The M4 family of proteases has been classified in the MEROPS database.  Within this 

family, several of these proteases are initially synthesized as zymogens.  These zymogen forms 

contain propeptides that are essential for proper folding of the mature enzymes.  These 

propeptides are defined as intramolecular chaperones (McIver et al., 1995; Nickerson, Joag, & 

McGavin, 2008).  Members of this family are generally synthesized as pre-proenzymes with an 

amino-terminal (pre) signal sequence.  This domain is then followed by a propeptide domain and 

finally a mature enzyme domain on the carboxy-terminus. 

 In addition to elastase, another family member has recently been crystallized that shares 

homology (51% identity, 68% similarity) to the zymogen form of elastase (Gao et al., 2010).  

This new zymogen is vibriolysin, a thermolysin-like protease.  Vibriolysin MCP-02 was isolated 

from Pseudoalteromonas species SM9913: the mature domain and inactive complex were 

crystallized and archived in the Protein Database (mature: 3NQX, inactive complex: 3NQY).  

The zymogen structure of vibriolysin is similar to the zymogen of pro-elastase. Both have a 23 

amino acid signal peptide at the amino-terminus.  Both have a long propeptide (vibriolysin’s is 

180 amino acids while elastase’s is 174) that contains the two fold regions of conservation: the 

FTP (fungalysin/thermolysin propeptide) domain and the PepSY (peptidase propeptide inhibitor) 

domain.  Vibriolysin’s mature domain is 315 amino acids in length, and it is composed of two 

globular domains linked together.  Between the two globular domains is the conserved HEXXH 

motif that coordinates zinc atom.  The catalytic residue Glu346 is the second residue in the 
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HEXXH motif, similar in elastase. Vibriolysin, however, contains an additional carboxyl-

terminal domain, PPC (bacterial pre-peptidase C-terminal domain).  These crystallization and 

biochemical studies however were performed with variations of the enzymes that lacked this 

PPC domain.  The domain has been found at the carboxyl-terminus of certain secreted bacterial 

peptidases, but these are not present in the active peptidase form. 

 The similarity between the two zymogens suggested the propeptide from elastase would 

function by an analogous mechanism.  The two propeptide domains (Figure 8) aligned with a 

high degree of identity (32%) and similarity (52%), particularly in the two conserved fold 

regions, FTP and PepSY.  When the whole zymogens were aligned (Figure 9), the sequence 

identity was 51% and the sequence similarity was 68%.  This provided a strong rationale for 

performing a number of biochemical experiments to determine if the propeptide from elastase 

had native structure.  The first approach utilized was circular dichroism. 

Circular dichroism results 

 Circular dichroism (CD) is the differential absorption of left- and right-handed circularly 

polarized light.  When polarized light (at selected wavelengths) reaches the molecule, the two 

types are absorbed to different extents, and this difference is measured yielding the CD spectrum 

of the sample (Dodero, Quirolo, & Sequeira, 2011).  Three recombinant amino terminal histidine 

tagged propeptide samples were purified and dialyzed overnight in 5 mM phosphate buffer, and 

the CD spectrum average (Figure 10) was then obtained using a Jasco J-720 spectrometer 

equipped with a thermal peltier temperature control module (University of Richmond, Dr. 

Dattelbaum).  All the measurements were performed using protein solutions of 1 uM in 5 mM 

phosphate buffer (pH 7.0 at 25°C) and analyzed by the spectrometer’s Spectra Manager software  
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Figure 8.  This is the sequence alignment of the propeptide domain of elastase (LasB) and the 

propeptide domain of vibriolysin.  The residues in orange are those in the Fungalysin-

Thermolysin propeptide domain, and those in green are in the PepSY domain.  The ProM region 

is highlighted above the residues indicated in red.  The ProC region is highlighted in blue.  

Residues that were identical were labeled with an “*”.  Those residues that were conserved in the 

alignment were labeled with an “:”.  
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Figure 9.  Shown is the alignment of the mature domains of elastase and vibriolysin.  The 

propeptide region is shown in Figure 8 and remains the same when the whole gene product is 

aligned.  Residues that were identical were labeled with an “*” and conserved in the alignment 

were labeled with an “:”.  
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Figure 10. The circular dichroism analysis of the purified recombinant propeptide, which 

suggests has a predominantly beta strand conformation.  The graph shows the wavelengths 

across the x axis at which the ellipticity (y axis) was obtained.  This is an average of three 

measurements on propeptide samples performed in 5 mM phosphate buffer (pH 7.0) at room 

temperature.  
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(ver. 5.1.0.0). This confirmed it was composed primarily of beta strands. The circular dichroism 

signature is 51% beta strands; the remaining is alpha helices and random coils.  Further analysis 

(K2d web server algorithms) of the propeptide’s raw data suggests this CD signature is 

composed of primarily beta strands.  The circular dichroism data obtained gave confidence to 

proceed to the next biochemical step which would focus on identifying if the propeptide domain 

alone could grow crystals as for x-ray crystallization. 

Crystallization screen results 

Based on the suggested presence of a defined structure for the propeptide domain alone, 

recombinant propeptide was purified and sent to Hauptman-Woodward Medical Research 

Institute for inclusion in their high-throughput screening (HTS) laboratory (Luft et al., 2003).  

The lab prepares crystal-growth screening experiments in 1536-well microassay plates for 

propeptide crystallization screening.  Amino terminal histidine tagged propeptide samples (600 

microliters) at a concentration of 10 mg/ml were prepared and sent to the institute.  Aliquots of 

the propeptide protein were then mixed individually with 1536 unique crystallization cocktails 

(provided by Hampton Research) by a robotic system for the microbatch-under-oil crystallization 

method.  Each cocktail condition, each in its own well, was then imaged several times (at day 1, 

week 1, week 2, week 3, week 4, week 5, and week 6).  These images could then be viewed and 

determined if crystals have grown. 

 Several conditions produced crystals, and these crystals grew larger as the weeks passed.  

The largest of the crystals (Figure 11A) was seen at week 4.  The cocktail reagent for this well 

was 1.6 M Ammonium Sulfate, 0.1 M MES monohydrate, 10% 1,4-Dioxane.  Additional wells 

produced large crystals, and some of these can be seen in Figure 11B-E.  The ability of the 

propeptide to generate crystals under a variety of conditions suggests the propeptide has a  
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Figure 11.  Images of elastase were obtained of the different crystallization cocktails at week 4.  

These are shown as A-E.  The dimension of the well are as labeled.  The diameter of each well is 

0.9 mm.  Cocktail condition for well A is 1.6 M Ammonium Sulfate, 0.1 M MES monohydrate, 

10% 1,4-Dioxane.  The cocktail condition for well B is HR Grid Screen Salt HT-A10 -- 1.6 M 

Ammonium sulfate, 0.1 M HEPES, pH 7.0.  The cocktail condition for well C is HR Grid Screen 

Salt HT-B2 – 2.4 M Ammonium sulfate, 0.1 M Citric acid, pH 5.0.  The cocktail condition for 

well D is HR Grid Screen Salt HT-H12 – 4 M Sodium chloride, 0.1 M BICINE, pH 9.0.  Finally, 

the cocktail condition for well E is HR HT Screen G8 – 0.1 M Sodium Chloride, 0.1 M HEPES, 

1.6 M Ammonium Sulfate, pH 7.5.  
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defined structure.  To examine what the structure could look like, molecular modeling methods 

were next employed.   

 

Molecular modeling results 

Having already determined that the propeptide sequence of elastase aligns with the 

sequence of the propeptide of vibriolysin from Pseudoalteromonas sp. SM9913, this allowed me 

to use molecular modeling techniques to obtain a structure for the propeptide of elastase.  This 

was accomplished using FUGUE. FUGUE assesses sequence similarity, but then quantifies these 

similarities in the context of a known 3D structure; it defines a structural environment in terms of 

main-chain conformation, secondary structure, solvent accessibility and also hydrogen bonding 

status. FUGUE uses environmentally specific substitution tables and structure-dependent gap 

penalties, where scores for amino acid matching and insertions/deletions are evaluated depending 

on the local environment of each amino acid residue in a known structure (Shi, Blundell, & 

Mizuguchi, 2001).  Utilizing the ORCHESTRAR homology modeling program in the SYBYL 

software package, a 3D model of the propeptide was built by first modeling conserved cores, 

then variable regions (loops),  based on the FUGUE predicted homolog. Side chains were added 

and finally the energy was minimized in SYBYL, which is able to remove steric clashes at the 

subunit interfaces (Dolan, Keil, & Baker, 2008).  

The FUGUE database scans all the structures in the Protein Database and provided a 

structural homolog with a high homology score (28.5).  A FUGUE Z-score of 6 gives a 99% 

confidence analysis the unknown structure will align to the known structure (Shi et al., 2001). 

The propeptide sequence was 32% identity with its identified homolog, vibriolysin from 

Pseudoalteromonas sp. SM9913.  FUGUE analyzed the two propeptides that contained both the  
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Figure 12. A model of elastase based on the structure of the vibriolysin propeptide was created of 

the propeptide domain alone. (A) Shown is a ribbon diagram with the beta strands and alpha 

helices highlighted.  (B) Shown is a space filled representation, with amino-terminal alanine 

residue highlighted in red and the carboxy-terminal histidine residue highlighted in yellow. 
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FTP and PepSY folds.  Modeling programs then built the structure of the propeptide around the 

known crystal structure of vibriolysin’s propeptide and assessed the fit. The propeptide of 

elastase has a high confidence analysis when analyzed by I-TASSER program (Zhang, 2008) as 

well.  This I- TASSER server performs the same search as FUGUE and generates a model 

(Figure 12).  It then matches the predicted 3D model to the known structures in 3 independent 

libraries (consisting of proteins of known enzyme classification number, gene ontology 

vocabulary, and finally ligand-binding sites) and generates a TM-score in a range of -5 to +2.  

The TM-score for the model of the elastase propeptide was +0.93.  The model also confirmed the 

presence of primarily beta strands (Figure 12A indicated with large wide arrows). 

Molecular model Docking results 

 Once a model of the propeptide’s 3D structure was generated and analyzed, it could then 

be used to predict the propeptide-mature complex structure.  The Hex protein docking server 

constrains a structure in a 3D field and uses charge and size of the residues on the structures to fit 

the other structure into a predicted 3D complex (Ritchie, 2008).  In this case, the crystal structure 

of mature elastase was constrained, and the propeptide model was assessed at various positions 

around the mature domain.  One such resulting complex (Figure 13A) was very similar to the 

complex (Figure 13B) of the propeptide and mature domains of Vibriolysin.  In both these 

structures, the propeptide’s carboxy-terminal residue is a histidine and it resides in the active site 

of the mature domains.  In addition, the propeptides appear to be a “C” shape, which cups around 

carboxyl globular domain of the mature. 

 To confirm that the propeptide of elastase can function as an intramolecular chaperone, it 

was critical to first establish that it has a native structure providing stability to the complex.  A 

number of biochemical and theoretical approaches were utilized to determine the presence of a  
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Figure 13.  The elastase propeptide model was docked to the 3D structure of the mature active 

enzyme using the Hex protein docking server.  Space filling representations were used for both 

the (A) propeptide-elastase complex and the (B) propeptide-vibriolysin complex.  The propeptide 

domains are shown in green with its amino-terminal residue show in dark orange and its 

carboxy-terminal residue in yellow.  The mature domains are shown in red with the active site 

residues in black and the carboxy-terminal residue in purple.   
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native secondary structure and its type.  The evidence from the circular dichroism experiments 

and molecular modeling suggest the propeptide primarily has a beta sheet conformation.  The 

docking model enables a visual interpretation of how the propeptide could be interacting with the 

mature domain and these will be helpful in the next series of experiments in which the roles of 

individual conserved residues in the propeptide domain are determined. 
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SECTION 4 

The propeptide has conserved residues that affect folding and activation of the mature 

 

Alignment of the propeptide to other M4 metalloprotease propeptides 

 The previous research on the role of elastase’s propeptide established that it was required 

for folding and secretion of the mature domain.  From my previous experiments that suggest the 

propeptide had a defined structure, one could deduce that there are critical residues in this 

structure important for the folding and activation of the mature domain.  To narrow down the 

residues which could be critical, a sequence alignment of the propeptide from elastase to other 

propeptides of M4 metalloproteases was performed in order to identify those conserved among 

the different propeptides. 

Propeptides with homology to the elastase propeptide were first identified by a search of 

the protein database using Basic Local Alignment Search Tool (BLAST). The amino acid 

sequences for the propeptide were then aligned (Figure 14) to the elastase propeptide according 

to the BLAST results using the NCBI ClustalW server(Thompson, Higgins, & Gibson, 1994).  

The sequences found by the BLAST are: elastase LasB of P. aeruginosa (LasB); Class 4 

metalloprotease of Chromobacterium violaceum ( Class 4 metalloprotease); metalloprotease 

from Listonella anguillarum (metalloproteinase); neutral protease/zince metalloprotease from 

Salinivibrio proteolyticus (neutral protease); VtpA protease from Vibrio tubiashii (VTPA); 

hemagglutinin/proteinase of V. cholerae (hemagglutinin/proteinase); protease from Aeromonas 

punctata (protease); proaminopeptidase protease from Aeromonas punctata (pro-

aminopeptidase); and M4 peptidase or thermolysin like enzyme from Shewanella baltica (M4 

peptidase/thermolysin). 
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Figure 14. A BLAST search with the elastase propeptide sequence and ClustalW alignment 

indicates there are conserved residues among the propeptides.  A “*” symbol indicates amino 

acid identity; a “:” symbol indicates similarity; empty spaces represent gaps in similarity 

introduced by the ClustalW alignment program.  Residues in bold are those chosen based on 

conservation and selected for mutation.  The regions were designated ProM and ProC, and the 

signal sequence is depicted with the first residue of the propeptide numbered 24. The sequences 

shown are the propeptides of : elastase LasB of P. aeruginosa (LasB); Class 4 metalloprotease of 

Chromobacterium violaceum ( Class 4 metalloprotease); metalloprotease from Listonella 

anguillarum (metalloproteinase); neutral protease/zince metalloprotease from Salinivibrio 

proteolyticus (neutral protease); VtpA protease from Vibrio tubiashii (VTPA); 

hemagglutinin/proteinase of V. cholerae (hemagglutinin/proteinase); protease from Aeromonas 

punctata (protease); proaminopeptidase protease from Aeromonas punctata (pro-

aminopeptidase); and M4 peptidase or thermolysin like enzyme from Shewanella baltica (M4 

peptidase/thermolysin). 
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Those residues boxed in grey were then chosen based on conservation and were mutated to 

alanines.  By investigating the phenotype of the conserved residues, the ability of the propeptide 

to fold and activate the mature domain will be indicated in the final elastase activity.   

Construction of mutants in the propeptide alleles to operate in trans 

 The construction of these alleles encoding the alanine substitutions in the propeptide 

sequence was performed via oligonucleotide-directed site-specific mutagenesis.  This PCR 

technique was based on the QuikChange Site-Directed Mutagenesis system (Stratagene) as 

described by the manufacturer.  Single-base-pair substitutions
 
encoding mutant propeptide 

residues were introduced within
 
the plasmid pVM8.  This template plasmid contained the

 
wild-

type lasB gene signal sequence domain and regulatory region on a 2·5 kb
 
EcoRI–PstI fragment in 

pUCP19 and lacked the mature domain of the gene and encoded for a stop codon after the 

propeptide domain. The original wild-type methylated plasmid, pVM8, was used in the PCR 

steps.  DpnI was then used to cleave the template strain and the mutated plasmid was 

transformed into DH5α cells.  Site-specific
 
substitutions were verified by DNA sequence 

analysis to generate the pEB40 series of plasmids. These pEB40 clones were mobilized into the 

P. aeruginosa lasB-deficient
 
strain PDO426 by triparental mating with HB101 

(pRK2013)(Figure 15). Plasmid pVM8, with the wild-type
 
lasB propeptide domain in the 

plasmid pUCP19, was used as a positive control.  The empty vector pUCP19 was used as a 

negative control.  

 The utilization of the ability of the propeptide to act in trans on the mature domain is 

beneficial to this assay.  The single substitutions of conserved residues to alanine on the 

propeptide were generated and the plasmids were introduced to the background strain.  Both the 

pre-mature and the pre-pro alleles kept the native promoter for the gene. The Pseudomonas host  
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Figure 15.  This figure depicts the schematic used to measure the effects of the mutated 

propeptides on elastase in vivo.  The background strain lacks the propeptide domain only 

(PDO426) and the propeptide is brought in trans by either pVM8 (wild-type) or the pEB40 

plasmids (alanine substituted mutant propeptide alleles).  
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used the quorum-sensing regulation systems to synthesize the two components.  The two 

components could then translocate through the inner membrane.  The mutated residues in the 

propeptide interact with the mature domain within the periplasmic space.  The complex was then 

secreted and the elastase activity was assessed in the supernatant (protocol described in the 

Methods).  A range of substrate concentrations was utilized to obtain the KM value for each 

propeptide.  This allowed for the comparison of the wild-type propeptide to the mutant 

propeptide’s ability to fold and secrete the mature domain without the final secreted enzyme 

concentration as a factor. 

Assessment of those mutant propeptides in vivo 

The ability to measure the kinetics of the enzyme (the enzyme’s affinity for the substrate) 

without the concentration of enzyme as a factor is critical for this analysis.  Those mutant 

residues that have little effect on the folding and secretion of the complex act like wild-type 

propeptide and yield similar KM values (substrate affinity values).  However, if the mutant 

propeptide residues have an effect on the ability to fold, activate and secrete the mature domain, 

the effect could be so drastic that the misfolded complex accumulates in the cell and is 

eventually degraded with so little to no activity is measured outside the cell. 

First order Michaelis-Menten kinetics describes the affinity between the enzyme and the 

substrate (Kou, Cherayil, Min, English, & Xie, 2005).  The KM value is the inverse of the 

enzyme affinity for the substrate.  The enzyme affinity for the substrate will reflect how the 

propeptide aids in folding and secretion.  By harvesting the enzyme at the peak of its production, 

the enzyme is assumed to have completed its interaction with the propeptide and thus free to 

cleave the substrate.  Utilizing the sensitive fluorogenic substrate, determination of even minimal 

quantities of elastase in the medium, and quantifying of KM values was allowed. The enzyme’s  
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Figure 16.  Wild-type elastase was used to determine the affinity for the fluorogenic substrate.  A 

range of final substrate concentrations were used to determine the reaction rates and plotted in 

the (A) Michealis-Menten graph.  This graph indicates the enzyme is undergoing first-order 

single substrate enzyme kinetics.  The inverse of the reaction rates and the inverse of the 

substrate concentrations were plotted in the (B) Lineweaver-Burk plot to yield the Km value (the 

inverse of where the linear regression passes through the x axis) = 0.11 mM.  
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concentrations were nefated and comparisions of how the residues in the propeptide affected the 

enzyme’s activation were able to be made. 

Initial experiments were performed to determine the optimal substrate concentrations used to 

assay the mutants.  Wild-type elastase was tested with a range of substrate concentrations and the 

rate of each reaction at the individual substrate concentrations, was plotted in the Michaelis-

Menten diagram (Figure 16A).  The inverse of reaction rates and the inverse of the substrate 

concentrations were then plotted in a Lineweaver-Burk plot (Figure 16B) to determine the KM.  

A linear regression through the points was generated, and the inverse of the X axis value yielded 

the KM.  A previously published experiment determined the KM value for elastase and this 

specific fluorogenic substrate to be 0.11 mM (Nishino & Powers, 1980).  The value obtained was 

also 0.11 mM.  Then a range of substrate concentrations encompassing the KM were employed to 

test the different propeptide mutant alleles.  In the assay, the enzyme samples were tested with 

the final substrate concentrations of 0.0125 mM, 0.025 mM, 0.05 mM, 0.1 mM, 0.15 mM, and 

0.2 mM to provide the different reaction rates.  These rates were then assembled into 

Lineweaver-Burk plots in order to assess each mutant’s effect on mature activity.  If the 

mutatated residue in the propeptide had minimal effect, then the closer the KM value was to wild-

type.  The more damaging the effect of the mutated residue, the larger the KM value grew, 

indicating a poor average affinity of the enzyme for the substrate. 

 A bar graph (Figure 17) was constructed to display the KM values.  Because the residues 

that were chosen were conserved it is not surprising that all of the mutant propeptides had an 

impact on the KM value of resulting enzyme, with some more than others. Mutations to the G69, 

E143, P177, H178, and E187 residues had values closer to wild-type, implying these residues 

were less important for propeptide-mature interaction.   
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Figure 17. The fold change of the KM values are depicted for the in vivo analysis.  The mutant 

elastase propeptide alleles KM values were expressed as fold change from the wild-type KM 

value.  The blue asterisk indicated residues that were unable to produce enzyme activity to 

determine the KM.  
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Mutations, however, to a large number of other propeptide residues caused a large value 

change in KM, indicating that those elastase variants had less affinity for the substrate.  These 

propeptides had a diminished capacity to aid in the folding of the complex.  These propeptides 

include D25, K59, R62, L66, P67, K70, R74, Y75, E76, Q77, G81, R83, V84, V85, G105, D114, 

S118, Q127, N144, D145, L149, L153, E155, L161, V162, Y163, V165, S166, S175, I181, 

D182, A183, G186, W192, E193, G194, and L195.  Each of these mutant propeptides caused at 

least a 10-fold difference to the KM compared to wild-type. 

There were five mutants that produced so little active enzyme that the KM value could not 

be determined.  These were indicated as a blue asterisk on the bar graph “*”.  These residues 

included N68A, Q102A, R176A, T185A, and H197A.  Each of these residues appears to be polar 

and could be essential for protein-protein interactions.    

These conserved residues that were mutated and shown to affect the affinity of the 

enzyme to the substrate could be impacting mature elastase in several different ways.  There 

could be residues that are found in the interior of the propeptide and help stabilize the 

propeptide’s structure.  Residues could lie on the exterior of the propeptide and be important for 

recognition for the complex by the Type 2 transport system.  Additionally, there could be 

residues that reside at the interface of the propeptide-mature complex that provide anchors for 

the mature domain.  Disrupting any of these residues could impact the KM value of the resulting 

enzyme. 

Construction of mutant propeptides to be expressed as recombinant propeptides 

In order to separate the role of the individual residues, several residues were chosen from 

the in vivo data.  Propeptides with residues that produced fold-changes of at least 50-fold 

difference, as well as those for which KM values could not be determined, were chosen for the 
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next set of experiments.  These residues include R62, L66, P67, N68, R74, Q102, S118, Q127, 

N144, D145, R176, T185, W192, E193, G194, L195, and H197 for the Propeptide – Mediated In 

vitro Foldase Activity Assay. 

This assay (Figure 18) utilized recombinant propeptide and active elastase that were 

denatured individually and then renatured together at 4°C.  The renatured enzyme was then 

assayed as before using the fluorogenic substrate.  The active enzyme was purified from the 

supernatants of Pseudomonas cultures and tested for initial activity.  Recombinant propeptide 

(wild-type and mutants) were generated with an amino-terminal histidine tag.  However, the 

template plasmid was pEB2, which encodes a signal sequence, a histidine tag, a thombin 

cleavage site and the propeptide domain alone in the pET28b vector (see Methods).  This 

allowed for the purification of the mutant recombinant propeptides on a nickel column.   

Once the two individual components were purified, they were denatured using 6 M 

Guanidine-HCl, which allowed for the now inactive enzyme to retain its disulphide bonds.  The 

two denatured components were mixed together at a 1:1 ratio of 3 µM each and dialyzed against 

0.05 M TrisHCl (pH 7.0) at 4°C, with the buffer changed four times each hour.  An aliquot was 

taken and combined trypsin to ensure the propeptide degraded and the active site was now clear.  

The sample was then assayed using the same protocol as the in vivo assay, replacing the quantity 

of supernatant with the same quantity of refolded sample.  The enzyme was mixed with buffer, 

and the range of substrate concentrations and the KM were evaluated.  The KM value here allows 

for an assay without knowing the concentration of enzyme.   
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Figure 18.  Shown is a schematic of the propeptide-mediated in vitro foldase activity assay for 

elastase.  Active elastase enzyme is denatured with guanidine HCl.  Recombinant propeptide is 

denatured as well.  These two components are then mixed 1:1 and dialyzed against TrisHCl 

buffer to dialyze away the guanidine HCl, allowing the two proteins to complex and fold.  The 

final activity of the enzyme can then be assayed as a reflection of how well the mutant 

propeptide aided in folding alone.  
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Assessment of the mutant recombinant propeptides in vitro 

 By utilizing this in vitro assay, the effects of the propeptide on secretion can be ignored.  

This is similar to examining what is happening in the periplasm before the complex is recognized 

by the secretion system.  These mutant propeptides are only now able to fold into the 

propeptide’s secondary structure and complex with mature domain. These allowed for the 

classification of several residues in the propeptide that could be important for secretion 

recognition, i.e., these propeptides produced near wild-type KM values now they are free from 

the secretion apparatus even though in the in vivo assay they had drastic effects. 

The KM values are depicted in a bar graph (Figure 19).  Alanine substitutions at N68, 

S118, Q127, D145 and T185 had values similar to the wild-type propeptide.  This suggests that 

these substitutions only function similarly to wild-type since they aren’t required to be 

recognized by the secretion apparatus.  However, residues such as R62 L66, P67, R74, N144, 

W192, E193, G194, and L195 again had large differences between their KM values and that of 

wild-type.  These residues could be critical for the propeptide’s stability or exist at the interface 

when complexed with mature and are now unable to perform their function. 

Several residues (Q102, R176, and H197) were unable to fold elastase in vitro into native 

structure and their KM values could not be determined.  This suggests these residues are essential 

for their role in folding the mature domain into active enzyme. 

These conserved residues, discovered by alignment to other M4 metalloproteases, appear 

to be vital for the maturation and activation of the enzyme.  Diminished enzyme activity was 

found in both the in vivo and the in vitro assays. Three dimensional examination of the location 

of these residues within the complex would allow for the surrounding environment of the 

residues to be further explored.   
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Figure 19. The fold changes of the KM values for elastase variants are depicted.  The mutant 

recombinant propeptide KM values were expressed as fold change from the wild-type KM value.  

The red asterisk indicated residues that were unable to produce enzyme activity to determine the 

KM. 
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SECTION 5 

The mutant residues in the propeptide are in critical 3D locations to function. 

 

Determining the role of individual residues within the propeptide 

 Substitutions in several of the conserved residues were found to have a deleterious effect 

on the ability of the mature enzyme to fold, activate or be recognized by the secretion apparatus.  

An analysis of the ability of the propeptide within the cell to recover the mature domain’s 

activity in trans provided further confirmation that the propeptide was acting as an 

intramolecular chaperone.  Additionally, these mutant residues were examined outside the cell to 

provide insight into the individual roles the residues could be playing.   

 To further clarify the potential roles of the individual residues, a bar graph of both sets of 

data (Figure 20) was developed.  The data provided by in vivo analysis (Figure 17) is shown in 

blue bars with blue asterisks indicating values not determinable due to the absence of enzyme.  

The data provided in the in vitro analysis (Figure 19) is shown in red bars and red asterisks.  

Here one can now compare how an individual residue performed in each case.  For instance, R62 

when mutated to alanine, performed poorly in both the cell system and the cell-free system.  

Additional members of this group include L66, P67, R74, N144, W192, E193, G194, and L195.  

These propeptides with substitutions did not perform better when the enzyme and mutant 

versions of the propeptide were tested outside the cell in the in vitro assay.  This suggests that 

these residues have little or no role in secretion recognition of the complex. 

 However several residues, N68, S118, Q127, D145, and T185, might have a critical role 

in secretion recognition.  These mutant propeptides performed poorly and diminished the 

enzyme’s extracellular activity.  Some completely abolished the activity (N68 and T185) using  
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Figure 20. The fold change values found in Figures 17 and 19 were simplified and plotted with 

corresponding colors.  The in vivo assay produced fold change values indicated by the blue bars 

and blue asterisks.  The in vitro assay produced fold change values indicated by the red bars and 

red asterisks.  
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the in vivo assay.  These substitutions still allowed the ability of the propeptide to fold and 

activate the mature domain but only if free from the cell and the secretion apparatus.  

There were three residues, Q102, R176, and H197, which appear to have lost all ability to 

fold the mature domain into an active enzyme, both in vivo and in vitro.  In the cell, the effects of 

enzyme production could not be measured using the refolding assay.  This suggests these 

residues are intrinsically important for the ability of the enzyme to fold.  These polar residues 

were hypothesized to form essential protein interactions at the interface of the complex. 

 Examining the location of these conserved residues on the model of the complex 

provided a rationale for how these residues were impacting the structure and stability.  The 

residues found to be critical for secretion (N68, S118, Q127, D145, and T185) can be seen near 

the exterior of the complex (Figure 21).  The three dimensional placement of these residues 

suggests they are free to interact with the secretion apparatus, thus signaling the cell that the 

complex is ready to be secreted. 

 Those mutant propeptides that diminished all ability for the enzyme to activate elastase in 

both the in vivo and the in vitro analysis (Q102, R176, and H197) were located on the complex 

model as well.  All three residues were found (Figure 22) to be at the interface of the complex, 

potentially making protein-protein interactions with the mature domain.  The H197 residue in the 

elastase- propeptide complex appears to be in the same location as the final histidine residue on 

the complex of Vibriolysin and its propeptide (Gao et al., 2010).  In that case, the vibriolysin 

propeptide acts as an inhibitor as the C terminus of the propeptide inserts into the catalytic cleft.  

The carboxyl group of that final histidine actually replaces the activated water molecule in the 

mature enzyme.  This enables the histidine residue to act as a ligand to the zinc ion.  Without that 

water molecule in the catalytic cleft, the enzyme lacks the nucleophile to initiate peptide 
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Figure 21.  The critical propeptide residues implicated in secretion are N68, S118, Q127, D145, 

and T185.  These images of the models are depicted where the mature domain is red, the 

propeptide is green.  The active site residues of the mature domain are colored black.  The amino 

terminal residue of the propeptide is colored orange; the carboxy terminal is yellow.  The amino 

terminal residue of the mature domain is colored blue and the carboxy terminal residue is purple.  

The residues that are implicated in secretion are depicted as a grey residue in each model.  
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Figure 22.  The critical propeptide residues implicated in elastase activation are Q102, R176, and 

H197.  These images of the models are depicted where the mature domain is red, the propeptide 

is green.  The active site residues of the mature domain are colored black.  The amino terminal 

residue of the propeptide is colored orange; the carboxyl terminal is yellow.  The amino terminal 

residue of the mature domain is colored blue and the carboxyl terminal residue is purple.  The 

residues that are implicated in secretion are depicted as a grey residue in each model. 
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hydrolysis in addition to the propeptide physically blocking the cleft.  The propeptide thus is 

inhibiting activity of the mature domain in the propeptide-vibriolysin complex.   

In addition to those residues, there were a number of mutant propeptide residues that 

performed poorly in the in vivo assays as well as the in vitro assays.  These residues (R62, L66, 

P67, N144, W192, E193, G194, and L195) could have either of the roles listed previously or 

could help control the propeptide stability.  These models (Figure 23) provided some 

explanations.  The R62, L66, P67, and N144 residues all appear to reside near the interface of the 

complex.  Changing these residues to alanines diminished their ability to provide a fully 

functional interface for the mature domain to be activated.  The residues closer to the carboxyl-

terminus of the propeptide (W192, E193, G194, and L195) could be important in aiding the final 

histidine residue (H197) in blocking the catalytic cleft.  Substituting any of these residues for an 

alanine could make the C-terminal tail less rigid, unable to act as an inhibitor while the mature 

domain folds and activates completely. 

System for the production of stable propeptide-mature complexes. 

These models provide a valuable tool for providing explanations for the individual 

residues’ roles.  But a clearer picture can be developed from future structure studies.  To generate 

a complex such as the crystallized propeptide-vibriolysin complex, an inactive mature domain 

was needed (Figure 24).  For easier purification of this complex, a Strep-Tag was employed.  An 

allele containing the upstream region containing the lasB promoter, the pre signal domain, the 

mature domain with an E141D mutation (inactive), the Strep-Tag (EMD4Biosciences), and 

downstream region to allow for homologous recombination was generated using splicing by 

overlap-extension PCR(Horton et al., 1993; Mergulhao, Kelly, Monteiro, Taipa, & Cabral, 1999; 

Vallejo, Pogulis, & Pease, 2008).  This allele was cloned into a suicide construct pEX18ApGW  
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Figure 23.  The critical residues implicated in unknown yet important function are R62, L66, 

P67, N144, W192, E193, G194, and L195.  These images of the models are depicted where the 

mature domain is red, the propeptide is green.  The active site residues of the mature domain are 

colored black.  The amino terminal residue of the propeptide is colored orange, the carboxy 

terminal is yellow.  The amino terminal residue of the mature domain is colored blue and the 

carboxy terminal residue is purple.  The residues that are implicated in secretion are depicted as a 

grey residue in each model.  
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Figure 24. A schematic of a genetic approach to produce tagged inactive propeptide-elastase 

complex for purification.  The top illustration is the gene diagram seen in a previous figure 

but helps to orientate.  The pre-inactive mature-strep tag construct was produced using 

SOEing and cloned into the suicide vector, pEX18ApGW.  This suicide construct was then 

conjugated into a lasB deficient strain to cross into the host chromosome.  The pre-pro allele 

was brought back in trans.  The inactive mature strep-tagged domain was then capable of 

forming a complex with the propeptide in the periplasm.  
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(Choi & Schweizer, 2005) and conjugated into a Pseudomonas ΔlasB strain for homologous 

recombination.  A vector containing the upstream regulatory region of lasB, the pre signal 

sequence and the propeptide domain was generated and conjugated into the new strain.  

Now the inactive tagged mature domain and the propeptide domain can fold within the 

periplasm to make an inactive complex for easy purification.  This inactive tagged complex 

of mature and propeptide, where the propeptide won’t be degraded, can now be used for a 

number of biochemical studies such as hydrogen/deuterium exchange mass spectrometry in 

order to determine the residues at the interface of the complex or  x-ray crystallography in 

order to determine the entire complex’s structure.   

           The modeling of the propeptide domain to the mature provided a visual representation to 

support the residue mutations and explain the data.  Several of the propeptide residues when 

substituted were shown to be on the exterior of the complex were unable to recover the ability of 

the enzyme to be active in the in vivo assay while the activity was able to be recovered in the in 

vitro assay.  Residues that showed diminished capability to aid in the mature domain’s ability to 

activate were also shown to be localized to the interface and interior of the propeptide, providing 

stability to the propeptide’s native structure and stability and inhibition to the mature domain.  

To further elucidate just how these residues at the interface interact with the mature domain, a 

new construct was developed to harness a tagged version of the inactive complex.  Together, 

these results indicate there are critical residues within the propeptide that should be studied 

further.    
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SECTION 6 

Summary and future directions 

 

 This dissertation contains research elucidating the ability of the propeptide of elastase, an 

M4 metalloprotease secreted by Pseudomonas aeruginosa, to act as an intramolecular chaperone 

through the use of several individual investigations into the structure of the propeptide and the 

role of individual residues (McIver et al., 1995).  Each independent project resulted in new 

discoveries of the mechanisms required by the propeptide to aid in folding, activation and 

secretion of the mature domain.  The following summarizes the findings from each project 

culminating with a discussion regarding future studies. 

 Previous research on similar zymogens has shown that the propeptide can act as an 

intramolecular chaperone for the mature domain, controlling the enzyme’s activation and 

secretion.  To elucidate just how the propeptide from elastase performs this function, a number 

of biochemical techniques were employed.  It is currently unknown whether propeptide is 

capable of folding into a defined structure in order to aid mature activation within the complexed 

form of the two proteins.  The recombinant propeptide was generated in E. coli to enable easier 

attainment than harvesting the native protein from periplasmic fractions or carefully timed, 

washed cellular supernatants.  This recombinant propeptide allowed for milligram quantities to 

be purified quickly using affinity chromatography.  Utilizing this purified form of recombinant 

propeptide, a series of circular dichroism measurements were obtained.  The analysis of the 

signatures revealed the recombinant propeptide had a primarily beta sheet secondary structure.  

The purified recombinant propeptide was also subjected to a microassay-based system of 

crystallization screens.  Further discovery of the ability of propeptide alone to form crystals in 
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certain crystallization cocktails supports the conclusion that the propeptide has native secondary 

structure.  Molecular modeling techniques were then utilized to determine what this propeptide 

could look like.  Database searches returned a crystallized structure of the propeptide-vibriolysin 

complex and a high degree of homology of both domains to the sequence of elastase and its 

propeptide.  Homology modeling provided a three dimensional illustration of what the 

propeptide could look like based on the known propeptide structure from vibriolysin.  The 3D 

model was analyzed based on the sequence homology and the score resulted in a 99% confidence 

analysis that the predicted structure is the correct structure.  These investigations provided 

convincing evidence that the propeptide domain alone folds into a defined structure.  The ability 

of the propeptide to have its own defined structure supports the mechanism employed by the 

propeptide studied extensively in the α-lytic protease activation(Anderson, Peters, Wilk, & 

Agard, 1999; Baker et al., 1992; Baker, Sohl et al., 1992; Bone, Frank, Kettner, & Agard, 1989; 

Bone, Fujishige, Kettner, & Agard, 1991; Cunningham, Jaswal, Sohl, & Agard, 1999; 

Cunningham, Mau, Truhlar, & Agard, 2002; Derman & Agard, 2000; Fuhrmann, Kelch, Ota, & 

Agard, 2004; Fujishige, Smith, Silen, & Agard, 1992; Jaswal, Sohl, Davis, & Agard, 2002; 

Jaswal, Truhlar, Dill, & Agard, 2005; Mace & Agard, 1995; Mace, Wilk, & Agard, 1995; Peters 

et al., 1998; Rader & Agard, 1997; Sauter et al., 1998; Silen et al., 1988; Silen & Agard, 1989; 

Silen et al., 1989; Sohl et al., 1997; Sohl et al., 1998; Truhlar & Agard, 2005).  For alpha-lytic 

protease, the structured propeptide (“C” shaped or cup shaped) allows for the propeptide to 

encompass the carboxyl terminal domain of the mature domain.  The mature domain is then 

protected to fold and activate.   

 In order to examine the purpose of the specific residues within the propeptide, a ClustalW 

alignment was performed to identify conserved residues among different propeptides within 
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other M4 metalloprotease sequences.  This alignment produced a large number (47 residues) of 

conserved residues that were then individually substituted with alanine.  These mutant 

propeptide alleles were expressed in trans within a Pseudomonas ΔlasB propeptide host.  The 

mutant propeptides were synthesized by the cell and free to interact with the mature domain in 

the periplasm.  Utilizing this system, the activity was measured outside the cell as a reflection of 

how the mutant propeptides were aiding the mature domain in its ability to aid in folding, 

activation and secretion.  Each of these mutant propeptides had an effect on the ability to act as 

an intramolecular chaperone for the mature domain, some more than others.  Certain substituted 

residues, such as G69, K70, E143, P177, and E187 had only a small effect on the mature domain, 

resulting in KM values closer to wild-type.  Other residues like N68, Q102, R176, T185, and 

H197 had such drastic effects on the mature domain folding and secretion that no mature was 

secreted and the KM value could not be determined.  Other mutant residues resulted in large 

changes to the KM value, suggesting these residues are critical as well.   

 To examine more clearly the role of each residue, one can employ a technique to 

eliminate one role.  This technique will negate the effect of the residue to be recognized by the 

secretion apparatus.  The residues within the propeptide could have been contributing to the 

stability of the propeptide’s secondary structure, sustaining interactions at the interface of the 

complex or being critical for the recognition of the Type 2 secretion system.  The propeptide-

mediated in vitro foldase assay utilized mutant recombinant propeptides and active enzyme.  The 

two components were individually purified, denatured, and recombined to renature into complex 

form.  The activity detected was then descriptive of the ability of the propeptide to act as an aid 

to folding and activation, not secretion.  Residues were identified that had been poor in the vivo 

assay, but activity of the enzyme was recovered in the vitro assay (N68, S118, Q127, D145, and 
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T185).  These residues were suggested to be essential for recognition by the secretion apparatus.  

A different set of residues (R62, L66, P67, R74, N144, R176, W192, E193, G194, and L195) 

lacked the ability to aid in folding and activation in both assays. This suggests these residues are 

critical for the propeptide to maintain its structure and could exist at the interface of the complex. 

These kinetic analyses overwhelmingly support the critical nature of these conserved residues. 

 Developing a three dimensional model of where these conserved residues are located, 

assisted in the further assessment of the residues’ roles.  Polar residues implicated in the role of 

secretion were examined and determined to be along the exterior of the complex and could easily 

interact with components of the secretion apparatus to signal the cell to secrete the complex.  

Residues implicated in folding were also examined and were found to reside along the interior of 

the propeptide or the interior of the complex.  This suggests their critical role to stabilize the 

propeptide’s structure and create an interface for the mature domain to attach.  To further 

corroborate the role of these residues, a construct was developed to capture an inactive version of 

the complex (no degradation of the propeptide) employing a Strep-Tag. This construct could now 

be used for a variety of biochemical techniques to confirm the structure of the complex and the 

location of individual residues. 

 These examinations provided further supporting evidence to support the role of the 

propeptide as an intramolecular chaperone to the mature domain of elastase.  The ability of the 

propeptide to have a defined native structure and conserved residues verified to be critical for the 

mechanism of activation and secretion, present a clearer understanding of how the propeptide is 

aiding in folding and providing inhibition to the activity before the complex is secreted into the 

medium.  Future studies would address the folding and binding mechanism required of the 

propeptide by the mature domain. 
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 Structural studies will confirm the residues in the complex to be exterior or interior to the 

complex.  The crystal screens performed previously can be repeated and optimized to produce 

crystals large enough for diffraction.  The crystals via x-ray crystallography could provide the 

3D structure of the native propeptide protein to confirm the model.  Furthermore the crystallized 

structure of the propeptide could then be docked to the crystallized structure of the mature to 

confirm the docked complex model.  In addition purifying the inactive complex and performing 

crystallization screens, optimization, and diffraction, can be utilized for eventual x-ray 

crystallography for the determination of the whole complex structure.  A quicker approach for 

the inactive complex could yield the residues that are at the interior of the proteins and the 

complex interface.  Amide hydrogen/deuterium exchange mass spectrometry technology by the 

ExSAR Corporation would provide the residues that are buried within the complex by the 

difference in hydrogen/deuterium exchange rates (Yoshitomo Hamuro, Lora L. Hamuro, Stephen 

J. Coales, Virgil L. Woods Jr., ).  Hydrogens along the exterior of the complex will exchange 

with the deuterium faster than those on the interior.  The reaction is quenched, the complex is 

degraded, and mass spectrometry identifies the peptides that were deuterated.  These results will 

provide not only the residues within the propeptide that exist at the interface, but additionally the 

residues within the mature domain at the interface.  Mutations to mature domain would allow for 

assessment of their ability to recover or compensate mutant propeptide residues.  This structural 

data would also lead to further understanding of the mechanism employed by the propeptide to 

be an IMC for the mature domain, i.e., what’s happening within the periplasm.    

An additional examination might include studying the ability of the propeptide to 

bind to the mature domain.  If the KM value from mutant propeptides was different from the 

wild-type value, this suggests the propeptide is losing the ability to bind to the mature 
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domain to form that complex. Differential scanning calorimetry (DSC) on the recombinant 

mutant propeptides compared to wild-type would determine the relative stability of these 

mutant propeptides, confirming those residues thought to be critical for propeptide’s native 

structure(Sanchez-Ruiz, 2011).  DSC could also be important for the assessment of mutant 

propeptides in complex with mature.  The ability of the propeptides to be stabilizers to the 

complex would be reflected in this technique.  Isothermal titration calorimetry could be 

performed on an inactive mature domain and the propeptide domain to determine the 

energy involved in the binding reaction (Ladbury, 2010).  When two proteins bind, heat is 

either absorbed or generated and this thermodynamic technique measures the differences in 

heat to provide an assessment of the thermodynamic profile (the binding constants, 

enthalpy and entropy of the reaction).  Optimizing these series of experiments would also 

eventually be useful for examination of the mutant propeptides.  Moreover, this technique 

has its advantages compared to surface plasmon resonance (SPR), that it provides the 

additional thermodynamics besides the binding affinities. 

Ultimately, these experiments provide a sound basis for supporting the ability of the 

propeptide to act as an intramolecular chaperone via its structure and roles of the conserved 

residues, and a goal for future research to elucidate the steps the propeptide takes to 

perform this function.  Illuminating the way a protein proceeds from this primary amino 

acid sequence to its final native state is a current intense field of research, providing 

explanations to the structure-function relationships. 
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APPENDICES 

 

Table 1. pEB40 series and pEB41 of plasmids encoding for mutant propeptides. 

 

Name of plasmid What it is 

pEB40 pUCP19 with EcoRI-PstI fragment of the lasB region including the 

upstream regulatory region, the pre-signal sequence, the wild-type 

propeptide domain and a stop codon 

pEB40.D25A pEB40 encoding a D25A substitution within the propeptide domain 

pEB40.K59A pEB40 encoding a K59A substitution within the propeptide domain 

pEB40.R62A pEB40 encoding a R62A substitution within the propeptide domain 

pEB40.L66A pEB40 encoding a L66A substitution within the propeptide domain 

pEB40.P67A pEB40 encoding a P67A substitution within the propeptide domain 

pEB40.N68A pEB40 encoding a N68A substitution within the propeptide domain 

pEB40.G69A pEB40 encoding a G69A substitution within the propeptide domain 

pEB40.G69D pEB40 encoding a G69D substitution within the propeptide domain 

pEB40.K70A pEB40 encoding a K70A substitution within the propeptide domain 

pEB40.R74A pEB40 encoding a R74A substitution within the propeptide domain 

pEB40.Y75A pEB40 encoding a Y75A substitution within the propeptide domain 

pEB40.E76A pEB40 encoding a E76A substitution within the propeptide domain 

pEB40.Q77A pEB40 encoding a Q77A substitution within the propeptide domain 

pEB40.G81A pEB40 encoding a G81A substitution within the propeptide domain 

pEB40.R83A pEB40 encoding a R83A substitution within the propeptide domain 

pEB40.V84A pEB40 encoding a V84A substitution within the propeptide domain 

pEB40.V85A pEB40 encoding a V85A substitution within the propeptide domain 

pEB40.Q102A pEB40 encoding a Q102A substitution within the propeptide domain 

pEB40.G105A pEB40 encoding a G105A substitution within the propeptide domain 

pEB40.D114A pEB40 encoding a D114A substitution within the propeptide domain 

pEB40.S118A pEB40 encoding a S118A substitution within the propeptide domain 

pEB40.Q127A pEB40 encoding a Q127A substitution within the propeptide domain 

pEB40.E143A pEB40 encoding a E143A substitution within the propeptide domain 

pEB40.N144A pEB40 encoding a N144A substitution within the propeptide domain 

pEB40.D145A pEB40 encoding a D145A substitution within the propeptide domain 

pEB40.L149A pEB40 encoding a L149A substitution within the propeptide domain 

pEB40.L153A pEB40 encoding a L153A substitution within the propeptide domain 

pEB40.E155A pEB40 encoding a E155A substitution within the propeptide domain 

pEB40.L161A pEB40 encoding a L161A substitution within the propeptide domain 

pEB40.V162A pEB40 encoding a V162A substitution within the propeptide domain 

pEB40.Y163A pEB40 encoding a Y163A substitution within the propeptide domain 

pEB40.V165A pEB40 encoding a V165A substitution within the propeptide domain 

pEB40.S166A pEB40 encoding a S166A substitution within the propeptide domain 

pEB40.S175A pEB40 encoding a S175A substitution within the propeptide domain 

pEB40.R176A pEB40 encoding a R176A substitution within the propeptide domain 

pEB40.P177A pEB40 encoding a P177A substitution within the propeptide domain 

pEB40.H178A pEB40 encoding a H178A substitution within the propeptide domain 
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pEB40.I181A pEB40 encoding a I181A substitution within the propeptide domain 

pEB40.D182A pEB40 encoding a D182A substitution within the propeptide domain 

pEB40.A813G pEB40 encoding a A183G substitution within the propeptide domain 

pEB40.T185A pEB40 encoding a T185A substitution within the propeptide domain 

pEB40.G186A pEB40 encoding a G186A substitution within the propeptide domain 

pEB40.E187A pEB40 encoding a E187A substitution within the propeptide domain 

pEB40.W192A pEB40 encoding a W192A substitution within the propeptide domain 

pEB40.E193A pEB40 encoding a E193A substitution within the propeptide domain 

pEB40.G194A pEB40 encoding a G194A substitution within the propeptide domain 

pEB40.L195A pEB40 encoding a L195A substitution within the propeptide domain 

pEB40.H197A pEB40 encoding a H197A substitution within the propeptide domain 

pEB41 pET28b encoding for an amino terminus Histidine-6 tag, thrombin 

cleavage site and propeptide domain under expression of Ptrc 

pEB41.D25A pEB41 encoding a D25A substitution within the propeptide domain 

pEB41.K59A pEB41 encoding a K59A substitution within the propeptide domain 

pEB41.R62A pEB41 encoding a R62A substitution within the propeptide domain 

pEB41.L66A pEB41 encoding a L66A substitution within the propeptide domain 

pEB41.P67A pEB41 encoding a P67A substitution within the propeptide domain 

pEB41.N68A pEB41 encoding a N68A substitution within the propeptide domain 

pEB41.G69A pEB41 encoding a G69A substitution within the propeptide domain 

pEB41.G69D pEB41 encoding a G69D substitution within the propeptide domain 

pEB41.K70A pEB41 encoding a K70A substitution within the propeptide domain 

pEB41.R74A pEB41 encoding a R74A substitution within the propeptide domain 

pEB41.Y75A pEB41 encoding a Y75A substitution within the propeptide domain 

pEB41.E76A pEB41 encoding a E76A substitution within the propeptide domain 

pEB41.Q77A pEB41 encoding a Q77A substitution within the propeptide domain 

pEB41.G81A pEB41 encoding a G81A substitution within the propeptide domain 

pEB41.R83A pEB41 encoding a R83A substitution within the propeptide domain 

pEB41.V84A pEB41 encoding a V84A substitution within the propeptide domain 

pEB41.V85A pEB41 encoding a V85A substitution within the propeptide domain 

pEB41.Q102A pEB41 encoding a Q102A substitution within the propeptide domain 

pEB41.G105A pEB41 encoding a G105A substitution within the propeptide domain 

pEB41.D114A pEB41 encoding a D114A substitution within the propeptide domain 

pEB41.S118A pEB41 encoding a S118A substitution within the propeptide domain 

pEB41.Q127A pEB41 encoding a Q127A substitution within the propeptide domain 

pEB41.E143A pEB41 encoding a E143A substitution within the propeptide domain 

pEB41.N144A pEB41 encoding a N144A substitution within the propeptide domain 

pEB41.D145A pEB41 encoding a D145A substitution within the propeptide domain 

pEB41.L149A pEB41 encoding a L149A substitution within the propeptide domain 

pEB41.L153A pEB41 encoding a L153A substitution within the propeptide domain 

pEB41.E155A pEB41 encoding a E155A substitution within the propeptide domain 

pEB41.L161A pEB41 encoding a L161A substitution within the propeptide domain 

pEB41.V162A pEB41 encoding a V162A substitution within the propeptide domain 

pEB41.Y163A pEB41 encoding a Y163A substitution within the propeptide domain 

pEB41.V165A pEB41 encoding a V165A substitution within the propeptide domain 
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pEB41.S166A pEB41 encoding a S166A substitution within the propeptide domain 

pEB41.S175A pEB41 encoding a S175A substitution within the propeptide domain 

pEB41.R176A pEB41 encoding a R176A substitution within the propeptide domain 

pEB41.P177A pEB41 encoding a P177A substitution within the propeptide domain 

pEB41.H178A pEB41 encoding a H178A substitution within the propeptide domain 

pEB41.I181A pEB41 encoding a I181A substitution within the propeptide domain 

pEB41.D182A pEB41 encoding a D182A substitution within the propeptide domain 

pEB41.A813G pEB41 encoding a A183G substitution within the propeptide domain 

pEB41.T185A pEB41 encoding a T185A substitution within the propeptide domain 

pEB41.G186A pEB41 encoding a G186A substitution within the propeptide domain 

pEB41.E187A pEB41 encoding a E187A substitution within the propeptide domain 

pEB41.W192A pEB41 encoding a W192A substitution within the propeptide domain 

pEB41.E193A pEB41 encoding a E193A substitution within the propeptide domain 

pEB41.G194A pEB41 encoding a G194A substitution within the propeptide domain 

pEB41.L195A pEB41 encoding a L195A substitution within the propeptide domain 

pEB41.H197A pEB41 encoding a H197A substitution within the propeptide domain 
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