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Neuronal plasticity deficits underlie many of the neurobehavioral problems seen 

in Fetal Alcohol Spectrum Disorders (FASD). Recently, we showed that third trimester 

alcohol exposure lead to a persistent disruption in ocular dominance (OD) plasticity. For 

instance, few days of monocular deprivation results in a robust reduction of cortical 



 

 

 

regions responsive to the deprived eye in normal animals, but not in ferrets exposed 

early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are 

treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular 

deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating 

transcription factors such as the cAMP response element binding protein (CREB) and 

the Serum response factor (SRF). SRF is important for many plasticity processes such 

as LTP, LTD, spine motility and axonal pathfinding. Here we attempt to rescue OD 

plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively 

active form of SRF during the period of monocular deprivation. Using optical imaging of 

intrinsic signals and single unit recordings we observed that overexpression of a 

constitutively active form of SRF (Sindbis SRF+), but neither its dominant negative 

(SRF-) nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this 

restoration was observed throughout the extent of the primary visual cortex and most 

cells infected by the virus were positive for GFAP rather than NeuN. Hence, we further 

tested whether overexpression of SRF exclusively in astrocytes is sufficient to restore 

OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured 

astrocytes to the SRF+, SRF- or control GFP viruses. After 24h, these astrocytes were 

implanted in the visual cortex of alcohol-exposed animals or saline controls one day 

before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals 

that were implanted with astrocytes expressing SRF, but not SRF- or GFP, showed 

robust restoration of OD plasticity in all visual cortex. These findings suggest that 

overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in 

FASD.
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Chapter 1 - Background and Significance 

 

 

I. Mechanisms of Ocular Dominance plasticity 

 

 Neuronal plasticity is the lifelong ability of the brain to make and break 

connections. This neuronal feature is crucial for the refinement of circuits that occur 

during development, for recovery after lesions and for learning and memory processes. 

Plasticity can be elicited by molecular cues or by activity (Shen and Cowan, 2010; Katz 

and Shatz, 1996). Activity-dependent plasticity is particularly important in the 

development of sensory maps (Inan and Crair, 2007; White and Fitzpatrick, 2007; 

Strotmann and Breer, 2006; Jones, 1990; Feldman, 2009). Alterations in visual, auditory 

of somatosensory experience during development can have a striking impact in the 

formation of sensory systems. A good comprehension of the mechanisms underlying 

activity-dependent neuronal plasticity is important not only for a better understanding of 

brain function, but also for the development of therapeutic interventions to ameliorate 

neurological problems. 

 Among the different sensory areas of the brain, the visual cortex is probably 

studied the most. Its circuitry has been well described and mechanisms of plasticity in 

the visual system are extensively investigated (see reviews in (Rauschecker, 1991; 
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Gordon, 1997; Berardi et al., 2003; Tropea et al., 2009; Prasad and Galetta, 2011). In 

the visual cortex of higher mammals such as the ferret, cats, monkeys and humans, eye 

specific afferents arrive in layer IV in a segregated fashion, forming the ocular 

dominance (OD) columns (Wiesel et al., 1974; Shatz and Stryker, 1978). These 

columns are anatomically and functionally dominated by projections from each eye. An 

overview of the visual system and OD columns is presented in Figure 1A. Accordingly, 

the center of a column has neurons that are responsive to a stimulus from a particular 

eye. However, in the border between columns, neurons can be driven by stimulation of 

either eye. Alteration of visual experience can dramatically affect the formation of such 

columns. For example, a misalignment of the eyes during infancy (i.e., exotropia) can 

lead to OD columns with sharper edges and a dramatic reduction in the number of 

binocular neurons (Lowel, 1994; Hohmann and Creutzfeldt, 1975; Distler and Hoffmann, 

1991). If this misalignment is corrected at a later age, and after a “critical period" (which 

is approximately between birth and seven years of age in humans (Berardi et al., 

2000)), corrective surgeries will not result in an increase in number of binocular cells 

(Raina and Wright, 1995). This condition is called strabismus and results in deficits in 

stereopsis and depth perception (Distler and Hoffmann, 1991; Steinbach, 2003). If 

instead of a misalignment, an eye is completely deprived of visual experience the 

results can be even more dramatic. One example is the case of unilateral congenital 

cataract (Ellemberg et al., 2000; Ejzenbaum et al., 2009; Chan et al., 2012; Timney, 

1983). The monocular deprivation (MD) of visual inputs can make the columns 

connected to the deprived eye to shrink and the ones connected to the experienced eye 

to expand (Figure 1B). If the cataract is not removed during the critical period, the vision 
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of that eye will have poorly developed acuity resulting in a condition called amblyopia 

(Lloyd et al., 2007; Ostrovsky et al., 2006).  

  

Figure 1. The visual system and Ocular Dominance (OD) plasticity.  A, In normal ferrets, eye-specific 

afferents go from the right eye (RE) and left eye (LE) via the lateral geniculate nucleus (LGN) into the 

primary visual cortex forming OD columns (ODC). B, A few days of MD (dark circle) results in shrinkage 

of the deprived eye (blue) columns and expansion of the experienced eye (pink) columns. C, Alcohol 

exposure (ETOH) during the third trimester-equivalent of human gestation impairs this plasticity effect 

preventing loss of responses from the deprived eye. 

 

 In the sixties Hubel and Wiesel established the experimental model of OD 

plasticity in cats and monkeys using eyelid sutures to mimic the alterations in visual 

experience (Hubel and Wiesel, 1970; Hubel et al., 1977). Since then, OD plasticity has 

been demonstrated physiologically and anatomically in different mammals including 

ferrets, tree shrews and rodents (Issa et al., 1999; Florence and Casagrande, 1986; 

Hofer et al., 2006). Although rodents do not have OD columns, they still display OD 

plasticity since a monocular deprivation in rats and mice lead to an increase and 

decrease of visual cortex responses after stimulation of the experienced and deprived 
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eye, respectively (Frenkel and Bear, 2004; Guire et al., 1999; Tropea et al., 2006). The 

prevailing theory to explain activity-dependent plasticity suggests that mechanisms exist 

to strengthen synapses, the activity of which coincides with postsynaptic depolarization 

beyond some threshold level, and to eliminate synapses, the activity of which is not 

correlated with postsynaptic activation (Katz and Shatz, 1996; Stent, 1973; Spatz, 

1996). According to this feedforward Hebbian theory, a competition between right and 

left eye inputs would regulate synaptic strength. However, studies using rodents 

suggested that this theory cannot account for all changes observed during OD plasticity. 

The OD plasticity seen in adult animals occurs solely due the potentiation of responses 

to open eye and there is hardly any reduction of deprived-eye responses (Sawtell et al., 

2003). Also, the binocular neurons maintain their original level of excitability following 

MD and monocular neurons receiving inputs only from the deprived eye increased their 

excitability (Mrsic-Flogel et al., 2007). Additionally, the deprived weak eye gets stronger 

once binocular vision is restored during the critical period (Malach et al., 1984). 

According to the Hebbian theory, persistent reduction or increase in visual activity 

should lead to unrestrained weakening or strengthening of neuronal drive, respectively. 

Since these later findings could not be explained just by simple feed-forward processes, 

additional homeostatic mechanisms needed to be uncovered. Homeostatic plasticity is a 

negative feedback mechanism that neurons use to offset excessive excitation or 

inhibition in order to keep the cellular and network excitability in check for appropriate 

information processing. These homeostatic mechanisms have been observed in various 

in-vivo and in-vitro models (Bienenstock et al., 1982; Bienenstock et al., 1982; Kirkwood 

et al., 1996; Philpot et al., 2003; Turrigiano and Nelson, 2004). As per current 
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knowledge, OD plasticity is the manifestation of a combination of feed-forward Hebbian 

and feed-back homeostatic mechanisms working together. 

 

Feed-forward excitatory mechanisms 

 Numerous studies have suggested that the MD-induced depression of the 

deprived-eye responses and potentiation of the open-eye responses are due to LTD 

and LTP, respectively, occurring in- vivo (Frenkel and Bear, 2004; Heynen et al., 2003; 

Kirkwood et al., 1995; Yoon et al., 2009). It has already been shown that ocular 

dominance of neurons can be modified artificially by pairing visual stimulus with 

neuronal activation, just like LTP and LTD can be induced in vitro by synchronous and 

asynchronous stimulation of pre- and post-synaptic neurons (Fregnac et al., 1988). This 

model has gained strength as both OD plasticity and LTP/LTD share similar molecular 

pathways, such as the activation of NMDA receptors (Sawtell et al., 2003; Roberts et 

al., 1998; Kirkwood and Bear, 1995). The ability of the NMDA receptors to induce visual 

plasticity depends on the state of excitatory currents and calcium influx through it, which 

is determined by the developmental stage of its subunit composition. The peak of the 

NR2A/NR2B ratio coincides with the end of the critical period for juvenile OD plasticity 

and it can be reopened by manipulating visual experience in adults which lowers the 

ratio back to the developmental stages (Quinlan et al., 1999; Chen and Bear, 2007).     

The molecular signals that mediate this experience-dependent plasticity are very 

complex. The calcium influx following the activation of NMDA and AMPA receptors 

triggers many signaling cascades. A number of studies have demonstrated that the 

activation of many calcium-induced protein kinases is critical for the OD shift. Some of 
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the kinases that are essential for visual plasticity are cAMP-dependent protein kinase A 

(PKA), extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent 

protein kinase II (Beaver et al., 2001; Di Cristo et al., 2001; Taha et al., 2002). These 

activated kinases can act in two ways - they can either induce rapid short-lived changes 

in synaptic efficacy by directly phosphorylating receptors in the cytoplasm near 

synapses or promote late long-lasting changes in neuronal circuitry by signaling to the 

nucleus to mediate plasticity-related gene transcription and protein synthesis. There is 

considerable overlap and cross talk among the various pathways involving these 

kinases (Figure 2) and many of these converge to activate a transcription factor, cAMP 

response element binding protein (CREB) (Impey et al., 1996; Impey et al., 1998; 

Sgambato et al., 1998). CREB is now well known to be important for the cellular 

processes of plasticity and memory (Alberini, 2009; Silva et al., 1998). In fact, blockade 

of CREB disrupts OD plasticity in the ferret (Mower et al., 2002). Another transcription 

factor that is present downstream of these plasticity pathways is Serum Response 

Factor (SRF) (Chai and Tarnawski, 2002; Knoll and Nordheim, 2009). Although CREB 

and SRF have been known to share many neuronal functions including activity-induced 

gene expressions, SRF has only recently gained importance as a factor important for 

plasticity (Knoll and Nordheim, 2009; Etkin et al., 2006).  
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         (Courtesy Medina AE, 2011) 

Figure 2. The plasticity-related signaling pathways. The cascades that lead to the expression of many 

plasticity-promoting genes. Influx of calcium following activation of NMDA receptors triggers cAMP and 

cGMP cascades, which in turn activate transcription factors like CREB and SRF via various kinases.  
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Along with visual activity, neurotrophins are also known to contribute to normal 

visual development and plasticity (Huberman and McAllister, 2002; Berardi et al., 1999; 

Caleo et al., 1999). Both overexpression and blocking experiments have shown that 

neurotrophins like nerve growth factor (NGF) and brain-derived neurotrophic factor 

(BDNF) are important for development and plasticity of the visual system (Huberman 

and McAllister, 2002; Cabelli et al., 1997; Berardi et al., 1994; Kovalchuk et al., 2002). 

When coupled with electrical activity, neurotrophins have also been shown to exert both 

fast actions (by depolarizing neurons directly) and slow actions (by regulating gene 

expression) (Berardi et al., 2003; Kafitz et al., 1999; Poo, 2001). Interestingly, localized 

BDNF application, when coupled with weak synaptic activity, leads to strong CREB-

mediated gene expression and long-lasting changes in synaptic efficacy, suggesting 

neurotrophins probably activate molecular pathways similar to those that are present 

downstream of the glutamate receptors (Berardi et al., 2003; Hu et al., 1999). 

 

Feed-forward inhibitory mechanisms 

       In addition to the excitatory connections, intracortical inhibition plays a pivotal role in 

shaping the development and plasticity of the visual cortical circuitry. A certain level of 

inhibition has been shown to be necessary for the development of the columnar 

architecture in the developing visual cortex (Hensch and Stryker, 2004). The critical 

period for OD plasticity also seems to be controlled by GABA-mediated inhibition. An 

inhibitory threshold needs to be surpassed to start the OD plasticity during the onset of 

the critical period, as shown by reduced plasticity in the transgenic mice lacking the 

GABA-synthesizing enzyme GAD65 (Hensch et al., 1998). Premature development of 
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inhibition by overexpressing BDNF or by administering benzodiazepines results in early 

opening and closure of the critical period, suggesting the existence of another higher 

inhibitory threshold that causes critical period closure (Huang et al., 1999; Fagiolini and 

Hensch, 2000). But even in adulthood, when the cortical inhibition is at its matured 

state, OD plasticity can be re-induced by fluoxetine treatment or environmental 

enrichment, which brings the level of GABAergic inhibition down (Maya Vetencourt et 

al., 2008; Baroncelli et al., 2010). Finally, fast-spiking basket cells, a type of inhibitory 

neurons, have been shown to induce a form of LTP of inhibition following MD, 

suggesting a feed-forward mechanism of deprived-eye response depression (Maffei et 

al., 2006). 

 

Feedback homeostatic mechanisms 

 In order to better explain the mechanism of the OD shift, the BCM model was 

developed (Bienenstock et al., 1982; Clothiaux et al., 1991). According to this theory, 

the open-eye response potentiation following MD is a form of feedback mechanism 

dependent on the feed-forward depression of the deprived-eye responses. The reduced 

cortical activity caused by eye-lid closure elicits a downward adjustment in the threshold 

to elicit LTP in the post-synaptic neuron. This theory proposes that a neuron tries to 

maintain homeostasis of its firing rate in the face of changing synaptic drives by sliding 

the threshold for LTP up or down. So reduced or increased level of activity makes a 

neuron, respectively, more or less plastic (metaplasticity). Various groups have 

suggested that a reduction in the NR2A/2B ratio of NMDA receptors following reduced 
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activity is responsible for this downward displacement of the threshold for LTP (Philpot 

et al., 2007; Monyer et al., 1994).  

  An additional mechanism of feedback homeostatic plasticity, demonstrated both 

in vitro and in vivo in various areas of the brain, is synaptic scaling (Turrigiano and 

Nelson, 2004; Turrigiano, 2008).  It also states that cortical neurons have a preferred 

average firing rate, and any change in network activity that perturbs this firing rate 

causes the neuron to regulate the strengths of all its synapses up or down proportionally 

without changing the relative synaptic weights. This brings the firing rates back to the 

preferred levels, thus providing a mechanism for network stability during developmental 

and learning-related plasticity processes. In contrast to the traditional BCM concept, 

which is based on homosynaptic changes, there is a global (heterosynatic) change in 

responsiveness in scaling. Current evidence suggests that neurons can detect changes 

in their own firing rates by sensing changes in calcium influx using calcium-dependent 

kinases (like the CaMK family), which can then regulate the trafficking of glutamate-

receptors (specially the AMPA receptors) at synapses (Thiagarajan et al., 2002; Lissin 

et al., 1998). Many different classes of molecules have been shown to influence 

synaptic scaling, including BDNF, TNFalpha (a cytokine) and Arc (an immediate early 

gene) (Rutherford et al., 1998; Stellwagen and Malenka, 2006; Shepherd et al., 2006). It 

remains to be seen if they work independently or are part of a complex network of 

signaling pathways interacting with each other.  
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Structural changes during plasticity: the role of extracellular environment 

 As mentioned before, studies in different sensory areas have shown that sensory 

deprivation dramatically affects neuronal function and morphology. For instance, in 

rodents whisker trimming reduces protrusive spine motility in deprived regions of the 

barrel cortex (Lendvai et al., 2000). In the visual cortex, the dendritic spines were 

imaged in-vivo during the critical period following MD of the contralateral eye (Oray et 

al., 2004).  Here, spine motility (measured as µm/min) was found to be significantly 

higher than in non-deprived animals. Additionally, robust pruning of dendritic protrusions 

was also observed in the binocular visual area following MD during the critical period 

(Mataga et al., 2004). These spine dynamics are to a great extent regulated by factors 

that are present in the extracellular matrix. Tissue plasminogen activator (tPA) is an 

extracellular protease whose activity increases during MD (Mataga et al., 2004; Mataga 

et al., 2002). tPA has many targets including the extracellular matrix proteins and cell-

adhesion molecules (Gravanis and Tsirka, 2005; Endo et al., 1999; Nagai et al., 1999). 

Attenuation of MD-induced OD shift following tPA inhibition (Mataga et al., 2002) 

suggests that tPA degrades the extracellular matrix structures to permit structural 

reorganization of the synaptic connections. Chondroitin-sulfate proteoglycans (CSPGs) 

are a class of extracellular matrix proteins that form perineuronal nets (PNNs) around 

neurons in the adult CNS and hinder neurite outgrowth (Karetko and Skangiel-Kramska, 

2009). Additionally, the maturation of PNNs coincides with the closure of the critical 

period, suggesting the role of PNNs in restricting OD plasticity in adults (McRae et al., 

2007). This possibility is bolstered by the fact that degradation of PNNs by using 
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enzyme chondroitinase ABC reactivates the OD shift following MD in adult animals 

(Pizzorusso et al., 2002). 

 

Role of Glia: Astrocytes, the new cellular processors of plasticity 

 A final consideration needs to be given to the emerging role of glia in neuronal 

plasticity. Astrocytes have become very important in this regard, showing that they not 

only process synaptic information, but also regulate synaptic plasticity by releasing 

neuroactive factors called ‘gliotransmitters’ (Perea et al., 2009; Fellin, 2009). Astrocytes 

have been shown to affect synaptic plasticity by releasing various kinds of neuroactive 

molecules, such as glutamate, D-serine, GABA, TNFalpha and thrombospondins 

(Stellwagen and Malenka, 2006; Jourdain et al., 2007; Henneberger et al., 2010; Liauw 

et al., 2008b).  Notably, release of NMDAR coagonist D-serine is essential for LTP at 

nearby excitatory synapses (Henneberger et al., 2010) and release of thrombospondins 

is necessary for structural plasticity and functional recovery after stroke (Liauw et al., 

2008a). In the developing visual cortex, the closure of the critical period of OD plasticity 

coincides with the maturation of cortical astrocytes. The relationship of these events 

was investigated by Muller and Best (Muller and Best, 1989). They showed that 

implantation of immature astrocytes into the visual cortex of an adult cat reopens the 

critical period. However, the mechanisms underlying this effect remain unknown. 

 In conclusion it can be said be that OD plasticity is a complex phenomenon 

resulting from different forms of plasticity working together at the molecular, 

physiological, morphological and circuit levels, including synapse-specific/cell-wide 
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biochemical adjustments, LTP/LTD-like changes and pruning/sprouting of cellular 

processes. 
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II. Techniques of assessing OD plasticity 

 

 There are various methods for visualizing OD plasticity both anatomically and 

functionally. One of the ways to anatomically observe changes in OD columns is by 

doing anterograde tracer injections in the visual pathways following visual deprivation 

(LeVay et al., 1980). But it does not provide any information about changes in the 

physiological properties of the neurons or functional architecture of the visual cortex.  In 

order to understand the functional changes in the cortex in response to visual 

manipulation, in-vivo electrophysiological recording and functional imaging techniques 

are often used. Some of the physiological techniques of studying OD plasticity are 

Single Unit recording, Optical Imaging of intrinsic signals and Visually Evoked potentials 

(VEP). In the following sections the prior two techniques are described. 

 

Single Unit electrophysiological recordings 

 Single Unit recordings is a method of recording extracellular responses of single 

neurons. The activity-induced response can be visualized as spikes registered by a 

microelectrode system (Figure 3). A single unit is defined as a distinct firing neuron 

whose action potentials are isolated from nearby neurons based on the shape of the 

spike (Green, 1958). As an action potential propagates through the cell, it creates a 

measurable, changing voltage potential within and outside of the cell. When a 

microelectrode is close to the cell surface, it measures this voltage change in response 

to activity, giving spiking information. The microelectrodes are fine-tipped high 

impedance conductors which are primarily glass micropipettes or metal microelectrodes 
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made of platinum or tungsten (Wiesel And Hubel, 1963). This technique can be used to 

receive information about various response properties of neurons, such as degree of 

responsiveness and spontaneous activity, receptive field size, orientation and direction 

selectivity, spatial and temporal frequency selectivity and ocular dominance preference 

(Shatz and Stryker, 1978; Hubel And Wiesel, 1962; Sherk and Stryker, 1976; Yu et al., 

2010).  

 One of the biggest advantages of this technique is that it provides very precise 

recordings at the level of single neurons. So it provides high spatial and temporal 

resolutions. On the other hand, it does not provide an instant visualization of the 

response properties of the whole cortical area. It requires multiple penetrations before 

an adequate number of cells can be sampled, which makes it a time-consuming 

procedure. In this regard, the use of multichannel single unit recording systems has 

been useful to increase the number of cells sampled as well as reduce the duration of 

the experiment (Rousche et al., 1999). Multichannel systems have several electrode 

shanks, each containing multiple recording sites. So it can not only furnish a better 

sampling of cells in a shorter time, it can also provide information about the neuronal 

circuitry of the recording area. 
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Figure 3. Single Unit recording. A, An anesthetized animal is kept in a stereotaxic frame. Its visual area 

is exposed and a microelectrode is inserted into the primary visual area. B, The electrode is connected to 

a recording software, which registers spikes in response to visual stimulation by a bar of light to each eye 

alternately.  
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Optical Imaging of intrinsic signals 

 Even though multichannel electrode systems offer better sampling and 

resolutions, they are not ideal for studying the functional properties of neuronal 

assemblies over a large cortical area. One of the fastest and most effective techniques 

of visualizing the functional architecture of a whole cortical area is by Optical Imaging of 

intrinsic signals (Figure 4). This technique is based on the changes in the intrinsic 

optical properties of areas of cortical tissue that respond to sensory activity versus those 

areas that do not respond (Ts'o et al., 1990).  

  It has been known for decades that there is strong coupling between neuronal 

activity, local oxidative metabolic activity and blood flow, which results in small highly 

localized changes in the optical properties of the brain tissue (Vanzetta and Grinvald, 

1999; Frostig et al., 1990). It was shown recently that this spatially restricted coupling 

between neuronal activity and the hemodynamic changes is brought about by the 

activation of astrocytes (Schummers et al., 2008). Blocking activity of the astrocytes, 

that are present nearby visually-stimulated neurons, disrupted the hemodynamically 

generated optical signals. There can be several sources of these activity-dependent 

intrinsic optical signals. One component of the signal originates from the activity-

dependent changes in the oxygen saturation of hemoglobin (Vanzetta and Grinvald, 

1999; Malonek and Grinvald, 1996). This change in oxygenation itself has two parts - an 

early increase in the deoxy-hemoglobin resulting from elevated oxygen consumption by 

the activated neurons (which causes a darkening of the cortex), and a delayed increase 

in local blood flow causing a decrease in the deoxy-hemoglobin concentration. A 

second component of signal originates from changes in blood volume in the local 
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capillaries. These blood-related components dominate the intrinsic signals at optical 

wavelengths of around 600nm (Mayhew et al., 2000). Another significant component of 

intrinsic signals arises from changes in light scattering accompanying electrical 

activation of cortical tissue (Arnoldussen et al., 2000). This is caused by ion and water 

movement, expansion and contraction of extracellular spaces, capillary expansion or 

neurotransmitter release. This scattering component becomes prominent at higher 

wavelengths and dominates the intrinsic signal at around 800nm (Frostig et al., 1990). 

Although these intrinsic signals have different sources at different wavelengths, it has 

been shown that functional maps obtained at different wavelengths are similar (Frostig 

et al., 1990). We use a red light (~700nm) for our optical imaging experiments. This 

longer wavelength also provides deeper penetration into the tissue, and so can 

sometimes image from the granular layers of the cortex. In order to relate activity maps 

to anatomical landmarks, a picture of the blood vasculature pattern is obtained at the 

beginning. This pattern is can be seen particularly well if the cortex is illuminated with a 

green light (~550nm). 

 As action potentials in neurons create oxygen demand and change blood flow 

and light-scatter properties, it has been shown that the intrinsic optical signals primarily 

measures spiking activity (Toth et al., 1996). The amplitude of intrinsic signals has been 

found to be well correlated with spike rates in the visual (Shmuel and Grinvald, 1996) 

and somatosensory areas (Grinvald et al., 1994). Some reports suggest that they also 

reflect subthreshold synaptic potentials (Das and Gilbert, 1995).  
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Figure 4. Optical Imaging of intrinsic signals. A, An anesthetized animal is kept in a stereotaxic frame. 

A camera takes pictures of the exposed visual cortex that is illuminated with a red light (~700nm) when 

the animal is presented moving gratings of light to each eye alternately using eye shutters. B, As the 

animal is shown moving gratings of light at different orientations using a monitor, the camera takes 

pictures of intrinsic optical signals of the visual cortex and transfers to the Vdaq software, which creates 

the monocular response maps. 
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 Finally, it can be said that while Single Unit recording directly assesses spiking 

activity at the level of single neurons, Optical Imaging provides an indirect measurement 

of the activity of a population of neurons simultaneously in a whole region of cortex. The 

methodologies for performing each technique of measuring OD plasticity has been 

discussed in detail in the subsequent chapters.  
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III. Early alcohol exposure impairs neuronal plasticity 

  

 The detrimental effects of alcohol abuse have been a matter of concern and 

study for a long time. Some of the most profound effects of alcohol are seen when the 

exposure occurs early in life.  

 

Fetal Alcohol Spectrum Disorders (FASD) 

 When alcohol is consumed during pregnancy, the offspring may exhibit signs of 

what is now known as Fetal Alcohol Spectrum Disorders (FASD). FASD encompasses 

a continuum of effects observed in children exposed to alcohol during prenatal stages, 

ranging from minor behavioral problems to major malformations, growth deficiency and 

CNS dysfunctions.  

 Although this condition is preventable, it remains a leading cause of mental 

retardation and other neurobehavioral problems in the western world. Prevalence 

estimates of FASD vary greatly depending on the period of study, the method used and 

the region reported. But the most quoted figure is 9.1 cases per 1000 live births in US, 

which makes it approximately 40,000 new cases of FASD each year (May et al., 2009; 

Klug and Burd, 2003). This prevalence rate far surpasses the combined figures of two 

other major conditions that present similar problems, namely, Spina bifida and Down’s 

syndrome (Parker et al., 2010; Shin et al., 2010). This high prevalence also adds a huge 

cost to the healthcare system (Lupton et al., 2004).  

 Since the time Jones and Smith first described the main features of Fetal Alcohol 

Syndrome (FAS), many terms have been used to describe the different effects of fetal 
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alcohol exposure. FAS is the most classical form of FASD in which children present with 

stunted pre- or postnatal growth, deficient brain growth and some characteristic facial 

anomalies including small palpebral fissures, indistinct philtrum, thin upper lip, flat mid-

face and low nasal bridge (May et al., 2009; Hoyme et al., 2005). Some children also 

show other associated features like epicanthal folds, short upturned nose, ear 

anomalies giving a 'railroad track' appearance, 'hockey stick shaped' palmar crease, 

etc. (Wattendorf and Muenke, 2005; Sampson et al., 1997). Partial FAS (pFAS) is a less 

severe form in which individuals show at least two facial features and either growth 

deficits or complex pattern of behavioral or cognitive abnormalities. Both FAS and pFAS 

do not require confirmation of maternal of alcohol consumption for the establishment of 

the diagnoses. Another less defined class is Alcohol-related neurodevelopmental 

disorders (ARND), in which a child must have documented prenatal exposure and 

display neurological and complex behavioral problems. A yet another category of 

diagnosis is Alcohol-related Birth Defects (ARBD), in which a child presents with at least 

two of the characteristic facial anomalies and congenital structural defects, along with 

evidence of maternal alcohol consumption. Since many prenatally alcohol-exposed 

children lack the discriminatory facial anomalies, and present with only a range of 

neurobehavioral problems, it becomes difficult to confirm FASD in them by the process 

of elimination of other congenital neurological disorders having overlapping signs. This 

is a reason why many FASD children remain undiagnosed.  

 The neurological deficits in FASD can range from extreme physical changes in 

the CNS to minor behavioral problems. Some of the more consistent changes in the 

brain structure are reduction in the size of the overall cranial vault and brain 
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(microcephaly) (Archibald et al., 2001), agenesis of the corpus callosum and anterior 

commissure (Swayze et al., 1997), cerebellar and brainstem anomalies (Mattson et al., 

1992). Even in the absence of gross brain defects, FASD presents with a wide range of 

neuropsychological deficits, including impairments in overall IQ, learning and memory, 

language, attention, reaction time, executive functioning, fine and gross motor skills, 

and social and adaptive functioning (Mattson and Riley, 1998; Steinhausen and Spohr, 

1998). There is good evidence showing that some of these deficits are caused by 

impairments in sensory processing, including visual, verbal and somatosensory deficits 

(Franklin et al., 2008; Manji et al., 2009; Stromland, 2004). Since age-appropriate 

cognitive functions rely on proper integration of stimuli from the environment, altered 

sensory modulation in children with FASD may explain the mal-adaptive behaviors and 

neuropsychological problems mentioned above (Carr et al., 2010; Whaley et al., 2001). 

  

Plasticity deficits in FASD 

 There is growing evidence showing that deficits in neuronal plasticity underlie the 

sensory and neurobehavioral problems observed in the FASD (Hamilton et al., 2010; 

Wheeler et al., 2011; Roebuck-Spencer and Mattson, 2004; Jacobson et al., 2008; 

Harris et al., 1995; Ferrer et al., 1989). Numerous studies from different groups have 

shown that various forms of neuronal plasticity are impaired in animal models of FASD, 

including LTP, LTD, learning and memory and barrel cortex plasticity (Puglia and 

Valenzuela, 2010; Su et al., 2010; Petkov et al., 1991; Rema and Ebner, 1999; Servais 

et al., 2007; Toso et al., 2006). Although alcohol exposure at any time during the 

gestation period can have various detrimental effects on development, the effects of 
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alcohol on developmental plasticity are particularly severe during the third trimester, 

when the neocortex is starting to develop and major anatomical and functional 

refinement is taking place (Katz and Shatz, 1996). Alcohol exposure can disrupt several 

critical processes, including neuronal differentiation and migration, synaptogenesis, 

neuroglial interactions, neuronal circuit formation and remodeling, that characterize this 

period of gestation (Guerri, 1998; Goodlett et al., 2005).  

 

OD plasticity is disrupted in a ferret model of FASD 

 Ferrets are particularly good models for studying effects of insults during the 

third trimester-equivalent of human gestation because in these animals this phase 

occurs after birth in a period roughly corresponding to postnatal days (P) 10 to P30 

(Clancy et al., 2001). For instance, the thalamocortical synapses start to form in the 

layer IV of the cortex during the second postnatal week (Herrmann et al., 1994). Some 

neurogenesis and migration (in layer II-III) continue to occur until P21 (Jackson et al., 

1989). Ocular dominance columns start to form during the third postnatal week (Crowley 

and Katz, 2000). Importantly, neurons in the visual system start showing properties like 

spontaneous activity (Maffei and Galli-Resta, 1990), response to visual stimulation 

(Krug et al., 2001) and orientation selectivity (Chapman and Stryker, 1993) before eye 

opening (around P32) through closed eyelids.  

In order to study the effects of alcohol during the third trimester-equivalent of 

human gestation, our group exposed ferret neonates to alcohol (3.5 g/Kg, i.p. in 25% of 

saline) from P10 to P30 and then assessed OD plasticity. They found that OD plasticity 

is impaired during the peak of critical period (P40 to P60) (Medina et al., 2003), as in 
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these animals, three days of monocular deprivation (MD) had minimal effect and most 

of the visual cortical neurons as they continued to respond to both eyes comparably. 

This is in contrast to the normal animals, where 3 days of MD produced a significant 

shift in responses towards the undeprived (experienced) eye. Interestingly, this 

impairment in plasticity occurs only when alcohol was administered during a specific 

period of development for a sufficient period of time. When ferrets were exposed to 

alcohol either at a different period (P20 to P40) or for a shorter duration (P10 to P25), 

they did not show impairment in OD plasticity. Importantly, this impairment was not 

caused by a decrease of visual responsiveness since the number of spikes after a 

visual stimulus as well as the spontaneous activity of the cortical neurons was similar 

between groups. This selective effect on plasticity, while sparing general visual 

responses, indicated that early alcohol exposure disrupts a specific mechanism. 

Over the years, various studies have shown that alcohol exposure can affect 

many steps of the plasticity-related pathways mentioned previously (Figure 2). For 

instance, NMDA receptor levels remain reduced for several weeks after fetal alcohol 

exposure (Savage et al., 1992; Valles et al., 1995) and show delayed developmental 

switch of its subunits (Nixon et al., 2002; Snell et al., 2001). Alcohol also disrupts the 

activation of various protein kinases that are present downstream of NMDA activation, 

including MAP kinase (Samudio-Ruiz et al., 2009) and CaM kinase IV (Misra et al., 

2001). The effect of alcohol on the second messenger cyclic GMP has also been 

reported (Butters et al., 2003). Moreover, the activity of CREB is also found to be 

severely attenuated after chronic alcohol exposure (Misra et al., 2001).  
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In order to rescue OD plasticity in ferrets subjected to early alcohol exposure, our 

group initially used phosphodiesterase (PDE) inhibitors to activate transcription factors 

that are involved in the expression of plasticity-related genes. PDE inhibition can 

increase intracellular concentrations of cAMP and/or cGMP by stopping their 

degradation. These nucleotides can act as second messengers in cascades that result 

in phosphorylation of the transcription factors CREB and SRF (refer to Figure 2). One 

example of a PDE inhibitor that is involved with plasticity enhancement is the alkaloid 

vinpocetine. Vinpocetine is an inhibitor of the PDE1, which acts on the turnover of both 

cAMP and cGMP. It has been shown to facilitate LTP (Molnar and Gaal, 1992) and 

enhance structural dynamics of dendritic spines (Lendvai et al., 2003).  Recently, our 

group showed that deficits in OD plasticity caused by early alcohol exposure can be 

reversed if vinpocetine is given during the period of MD (Medina et al., 2006). 

Interestingly, if the treatment is done with inhibitors of PDEs type 4 or 5, which are 

specific for cAMP and cGMP respectively, plasticity is not restored (Krahe et al., 2009b), 

(Lantz, Wang and Medina under review). The effectiveness of vinpocetine in restoring 

plasticity can be attributed to a simultaneous increase in cAMP and cGMP (Lugnier, 

2006; van Staveren et al., 2001; Marte et al., 2008). It is conceivable that this increase 

activates both the transcription factors CREB and SRF (Pilz and Casteel, 2003). 
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IV. Improving neuronal plasticity by targeting Serum Response Factor 

(SRF) 

               

 SRF was named so because it was first found to be responsible for the 

transcriptional activation of immediate early genes (IEGs) like c-fos following stimulation 

by serum (Treisman, 1985). Many of these IEGs like c-fos, egr-1, and junB are linked to 

activity-induced gene expression in neuronal plasticity (Cole et al., 1989; Ramanan et 

al., 2005; Wisden et al., 1990). SRF-dependent transcription occurs when this 

transcription factor binds to a promoter region known as Serum Response Element 

(SRE) (Norman et al., 1988). The SRE is an A/T rich core flanked by an inverted repeat, 

CCATATTAGG, also referred to as the CArG box (Treisman, 1992). To date, about 30 

genes have been identified to contain the CArG box sequence and they include many 

IEGs, neuronal genes, growth and neurotropic factor genes, muscle genes and other 

cytoskeletal genes (Chai and Tarnawski, 2002; Etkin et al., 2006; Knoll et al., 2006). 

The SRF protein is a member of the MADS box superfamily of transcription 

factors and the human SRF contains 508 amino acids. It is a ubiquitous nuclear protein 

containing three major domains: 1) a SRE DNA binding and dimerization domain, 2) a 

transactivation domain, and 3) several phosphorylation sites (Chai and Tarnawski, 

2002). Deletion analysis showed that the 90-amino acid domain (between amino acids 

133 and 222) is sufficient for DNA binding, dimerization and interaction with other 

partner proteins necessary for transcriptional activation (Norman et al., 1988; Johansen 

and Prywes, 1994). The best studied SRF partner proteins are the Ternary Complex 
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Factors (TCFs) like Elk-1 and members of the myocardin family of transcriptional 

cofactors (MRTFs) like MRTF-A/MAL/MLK1, MRTF-B. 

 

Activation and Regulation of SRF 

 Besides serum, SRF can be activated by a variety of agents including mitogens, 

cytokines, lipopolysaccharide (LPS), agents that elevate intracellular calcium, tumor 

necrosis factor-α (TNFα) as well as by extracellular stimuli like antioxidants and UV light 

(Chai and Tarnawski, 2002). 

In the nervous system, SRF has been shown to respond to synaptic activity, 

triggered by neurotransmitters like glutamate (Bading et al., 1993; Johnson et al., 1997; 

Xia et al., 1996) and kainate (Herdegen et al., 1997) via activation of NMDA receptors 

or by KCl via activation of voltage-sensitive calcium channels (Misra et al., 1994). These 

events lead to entry to Ca2+ into the cytosol. From here the Ca2+ signal can activate SRF 

either directly by Ca2+/ calmodulin-dependent kinases (Misra et al., 1994; Miranti et al., 

1995) or indirectly by activating SRF cofactors like TCFs (Kalita et al., 2006) or MRTFs 

(Posern and Treisman, 2006) via the MAP kinase pathway (refer to Figure 2). 

Neurotrophic factors like BDNF and NGF also activate SRF-mediated transcription 

(Kalita et al., 2006; Chang et al., 2004; Wickramasinghe et al., 2008) and enhance SRF 

expression (Kalita et al., 2006) via the indirect MAP kinase pathway. G proteins target 

SRF via the Rho-GTPase/actin and /or the Rho-MAP kinase pathway. In the Rho-

GTPase/actin pathway, cell stimulation activates the conversion of G-actin into F-actin 

through polymerization in the cytoplasm. The depletion of G-actin liberates MRTF-A for 

entry into nucleus, followed by SRF/MRTF interaction and transcription of SRF-
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controlled cytoskeletal genes (Miralles et al., 2003; Sotiropoulos et al., 1999; Vartiainen 

et al., 2007). There are additional kinases that have been reported to target SRF 

directly, i.e., MAPK-activated kinase 2 (MK2) (Heidenreich et al., 1999), pp90RSK 

(Rivera et al., 1993), PI3-kinase (Chang et al., 2004) and serum- and glucocorticoid-

inducible kinase (SGK) (Tyan et al., 2008). 

 

Role of SRF in the nervous system 

 SRF in neurons is responsible for various cellular activities including migration, 

differentiation and plasticity. Genome-wide transcriptomics analysis in neurons revealed 

many genes that are known to be important for motility and plasticity that are directly 

targeted by SRF. These include IEGs (c-fos, Egr-1 to Egr-3, Junb, etc.), actin 

cytoskeletal genes (Actb, Actg1, Gelsolin, Arc, etc.), axonal guidance genes (Sema3a, 

Epha4, Epha7, etc.), neurotrophin genes (Bdnf, Ngf) and genes involved in synaptic 

plasticity (Arc, Psd95, etc.) (Knoll and Nordheim, 2009; Etkin et al., 2006; Knoll et al., 

2006; Wickramasinghe et al., 2008). 

In the developing nervous system, SRF plays an important role in orchestrating 

neuronal migration and morphological differentiation. SRF gene control and actin 

treadmilling are linked by regulatory feedback mechanisms whereby actin dynamics 

modulates SRF-directed gene expression and the latter influences actin polymerization 

by both transcriptional and post-translational inputs (Posern and Treisman, 2006; 

Miralles et al., 2003; Sotiropoulos et al., 1999; Miano et al., 2007). Accordingly, all 

neuronal functions relying on actin-based motility were severely impaired in conditional 

neuron-restricted srf mutants (Knoll et al., 2006). Conditional SRF ablation in late-
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prenatal and early-postnatal stages resulted in severe neurological phenotypes 

including ataxia, hydrocephalus and loss of body weight, leading to death at around P21 

in rodents (Knoll et al., 2006; Alberti et al., 2005). The first in vivo defect described in srf 

mutant brain was impaired tangential cell migration along the rostral migratory stream, 

resulting in ectopic accumulation of progenitor cells in SVZ (Alberti et al., 2005). 

Subsequently, neurite outgrowth, axon versus dendrite differentiation and axon 

guidance were likewise found to be affected in srf mutants (Knoll et al., 2006; 

Wickramasinghe et al., 2008). In addition, an entire set of genes associated with 

oligodendrocyte development/myelination was found to be downregulated in neuronal 

srf mutants, suggesting that neuronal SRF affects development of neighboring glial cells 

by a paracrine mechanism (Stritt et al., 2009). 

SRF ablation in the adult revealed crucial roles of SRF in neuronal-activity-

induced gene expression, synaptic plasticity, learning and memory (Etkin et al., 2006; 

Ramanan et al., 2005; Tyan et al., 2008; Dash et al., 2005; Lindecke et al., 2006; Nikitin 

and Kozyrev, 2007). Adult srf mutants have normal basal excitatory synaptic 

transmission, but LTP (Ramanan et al., 2005) and LTD (Etkin et al., 2006) are shown to 

be impaired. It is not yet fully understood how neuronal activity, mediated by SRF-

directed IEG responses, is converted into persistent structural synaptic modifications. 

However, SRF influences actin dynamics by regulating genes encoding actin-binding 

proteins (Actb, Actg1, Gelsolin, Arc, etc.), which can provide a cytoskeletal machinery to 

explain the morphological synapse modifications (Dillon and Goda, 2005; Matus, 2000).            
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Abstract 

 

Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in Fetal 

Alcohol Spectrum Disorders (FASD). Recently, we showed that third trimester alcohol 

exposure lead to a persistent disruption in ocular dominance (OD) plasticity. For 

instance, few days of monocular deprivation results in a robust reduction of cortical 

regions responsive to the deprived eye in normal animals, but not in ferrets exposed 

early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are 

treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular 

deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating 

transcription factors such as the cAMP response element binding protein (CREB) and 

the Serum response factor (SRF). SRF is important for many plasticity processes such 

as LTP, LTD, spine motility and axonal pathfinding. Here we attempt to rescue OD 

plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively 

active form of SRF during the period of monocular deprivation. Using optical imaging of 

intrinsic signals and single unit recordings we observed that overexpression of a 

constitutively active form of SRF, but neither its dominant negative nor GFP, restored 

OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed 

throughout the extent of the primary visual cortex and most cells infected by the virus 

were positive for GFAP rather than NeuN. This finding suggests that overexpression of 

SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of 

FASD.  
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Introduction 

 

Fetal Alcohol Spectrum Disorders (FASD) is considered the leading cause of 

mental retardation in the western world with as many as 40,000 cases per year in the 

United States (Klug and Burd, 2003). The sensory cortex is one of the most affected 

areas in FASD and children with this condition present altered somatosensory, auditory 

and visual processing. There is growing evidence indicating that these sensory 

problems may be related to poor cortical map refinement, organization and plasticity 

(Rema and Ebner, 1999; Medina et al., 2003; Medina et al., 2005; Powrozek and Zhou, 

2005; Margret et al., 2006). We have developed a ferret model of FASD that provides a 

novel approach to test mechanistically how early alcohol exposure can impair sensory 

cortex function. We showed that ferrets exposed to alcohol during the third trimester 

equivalent of human gestation present disorganization of orientation selectivity columns 

and impaired ocular dominance (OD) plasticity (Medina et al., 2003; Medina et al., 2005; 

Medina and Ramoa, 2005; Medina and Krahe, 2008). Importantly, both of these cortical 

features can be rescued by vinpocetine, a phosphodiesterase type 1 inhibitor, even 

several weeks after alcohol exposure (Medina et al., 2006; Krahe et al., 2009a). The 

efficacy of vinpocetine can be attributed by an increase in cAMP and cGMP levels, 

which in turn, would result in activation of the transcription factors cAMP/Ca2+ response 

element-binding protein (CREB) and Serum response factor (SRF) (Chai and 

Tarnawski, 2002; Kornhauser et al., 2002). Importantly, while cross talks between the 

cascades exist it is safe to say the CREB and SRF can be preferentially activated by 

cAMP and cGMP respectively. Recently, we discovered that, contrary to what was 
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observed with vinpocetine, Rolipram, a PDE type 4 inhibitor failed to restore OD 

plasticity in the ferret model of FASD (Krahe et al., 2009b). Since Rolipram increases 

only cAMP levels and not cGMP, one may suggest that the restoration of plasticity seen 

earlier is due to SRF activation. While the association of CREB with neuronal plasticity 

has been in the spotlight for decades (Silva et al., 1998; Frank and Greenberg, 1994; 

Shaywitz and Greenberg, 1999; Lamprecht, 1999), much less is known regarding SRF. 

This is surprising, given that many genes necessary for plasticity-related events require 

activation of both of these transcription factors (Chai and Tarnawski, 2002; Montminy et 

al., 1990; Platenik et al., 2000). Recently many studies have shown the importance of 

SRF for LTP, LTD, spine motility and axonal pathfinding (Etkin et al., 2006; Ramanan et 

al., 2005; Knoll et al., 2006; Alberti et al., 2005). In fact SRF can mediate the expression 

of many plasticity-related factors such as neurotrophins, immediate early genes, 

cytoskeletal proteins and thrombospondins (Chai and Tarnawski, 2002; Ramanan et al., 

2005; Knoll et al., 2006; Stritt et al., 2009; Morris et al., 1999; Schratt et al., 2002; 

Christopherson et al., 2005). Here, we use viral-mediated gene transfer to overexpress 

a constitutively active form of SRF in visual cortex, in order to reverse the OD plasticity 

deficits seen in a ferret model of FASD. 

 

Materials and Methods 

 

 All procedures described in this paper were approved by the Institutional Animal 

Care and Use Committee at Virginia Commonwealth University. For a summary of our 

experimental design see supplemental figure 5A. Briefly, ferrets were treated with 3.5 
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g/kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal 

days (P) 10 to P30. This alcohol treatment led to a blood alcohol level of approximately 

250 mg/dl for 1-5 h after injection (Medina et al., 2003). At the peak of critical period of 

the OD plasticity (P38-P45) animals were injected in V1 with a Sindbis virus carrying a 

constitutively active form of SRF, a dominant negative (SRF-), or a control GFP. Viruses 

were made and kindly provided by Drs Amit Etkin and Eric Kandel (Columbia University, 

New York, NY). The construct was made by fusing the dimerization and DNA binding 

domains of SRF (aa 90-222) with the HSV VP16 transactivation domain (aa 363-490). 

The resulting fused construct was inserted in a Sindbis vector. One day after the viral 

transfection, animals were monocularly deprived by eye lid suture for 4 d. For the virus 

injection, a small hole was drilled in the skull and the tip of a 31 gauge Hamilton Syringe 

(Hamilton Company, Reno, Nevada) containing the Sindbis virus (titer = 4.0 x 107 

infectious units/mL) was stereotaxically positioned at an angle of 15-22° from the 

midline and lowered 1mm into the binocular region of the primary visual cortex. A 

volume of 2µl was injected at a rate of 0.1μl every 30 s. Each animal received two 

injections ~1mm apart. After the period of monocular deprivation (MD), the animals 

were anesthetized, the deprived eye opened and either an optical imaging of intrinsic 

signals or a single unit recording experiment was conducted. After the physiology 

experiments animals were perfused, the visual cortex collected and overexpression of 

the virus was assessed by immunohistochemistry. 
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Figure 5. A, Experimental design. Ferrets were exposed to alcohol or saline every other day between 

P10-P30. After a prolonged alcohol-free period animals were injected with Sindbis/SRF+; Sindbis/GFP or 

Sindbis/SRF-. One day after virus injection animals, were monocularly deprived by eye lid suture for 4 d. 

After this period, the deprived eye was opened and either optical imaging of intrinsic signals or single unit 

recordings were conducted. B, The red arrow indicates the typical location of a virus injection. C, 

Epifluorescence revealed expression of GFP in the primary visual cortex 4 d after injections with 

Sindbis/GFP. The lateral and medial injection had volumes of 1.5 and 3 µl respectively. D, Site of a 

Sindbis/SRF+ injection. Cells were stained for VP16 transactivation domain.  
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Preparation for optical imaging of intrinsic signals or single unit recordings 

 Animals were premedicated by subcutaneous injection of a tranquilizer 

(acepromazine, 1 mg/kg), and a muscarinic antagonist (methyl atropine bromide, 0.2 

mg/kg) to reduce bronchial secretion, as well as dexamethasone sodium phosphate (0.5 

mg/kg) to reduce inflammation. Animals were then anesthetized using sodium 

pentobarbital (35 mg/kg, Abbott Laboratories, North Chicago, IL) and placed in a 

stereotaxic frame. No procedures were started until the animal was sufficiently 

anesthetized, as ascertained by the loss of withdrawal and cornea-blink reflexes. A 

tracheal cannulation was performed, and the animal was placed on a ventilator and 

paralyzed using pancuronium bromide (0.2 mg/kg, i.p.). To comply with NIH guidelines 

for use of paralytic agents and to certify that the animals were maintained at an 

appropriate level of anesthesia, use of muscle relaxants was omitted in some 

experiments and withdrawal reflexes were monitored in these animals. Similar 

procedures have been previously described and shown to be appropriate for visual 

physiology studies conducted in ferrets (Medina et al., 2003; Medina et al., 2006; 

Medina et al., 2005; Krahe et al., 2005). Heart rate, expired CO2 and arterial blood 

oxygen saturation (SpO2) were monitored continuously and maintained at approximately 

270 bpm, 4.0% and above 90%, respectively. Body temperature was maintained at 

38oC using a homeostatic blanket. Supplemental doses of pentobarbital (12 mg/kg) 

were given every hour throughout the experiment or when heart rate or expired CO2 

increased, a procedure previously shown to preserve visual responses over time 

(Medina et al., 2003). Nictitating membranes were retracted using phenylephrine 
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hydrochloride (2.5%), the pupils were dilated with atropine sulfate (1%) and contact 

lenses were placed on the corneas. Subcutaneous injections of 10% dextrose and 0.9% 

saline were given to prevent dehydration.  

 

Optical imaging of intrinsic signals 

 Optical imaging of intrinsic signals was performed with Imager 3001 VSD+ 

(Optical Imaging System) by using imaging methods slightly modified from those 

described previously (Medina et al., 2003; Medina et al., 2006; Medina and Ramoa, 

2005; Krahe et al., 2005).  An image of the vascular pattern was first obtained by 

illuminating the cortical surface with a green filter (approximately 550 nm) using a 

tungsten-halogen light source.  Next, images of intrinsic signals were obtained using a 

red filter (~ 700 nm).  Visual stimulation consisted of high-contrast square wave gratings 

(8.75º dark phase/1.25º light phase) generated by a 21-inch monitor (Sony Trinitron) 

using SGT+ graphics board and STIM software. Gratings were presented to each eye at 

an angle of 0º, 45º, 90º or 135º and drifted (22.5º/s) in both directions along the axis 

orthogonal to the orientation of the grating.  A single trial consisted of these four 

gratings and a blank screen presented to each eye for 9 s in a pseudorandom 

sequence, with data acquisition during the last 8 s.  A total of 20 trials were performed 

for each eye and the summed images were used to obtain single condition maps by 

subtracting responses to each eye from responses to a blank screen. In these images, 

dark areas correspond to regions that are visually responsive. In addition, differential 

maps (or ocular dominance images) were obtained by subtracting left eye from right eye 

single condition maps. In this images dark and light regions correspond to areas 
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responsive to right and left eye stimulation, respectively. Unfiltered ocular dominance 

images were first clipped at 2 SD, then a mean filter used to minimize high frequency 

noise. Then, a region of interest (ROI) outlining the primary visual cortex (V1) was 

drawn manually by an investigator who was blind to the animal’s treatment. The 

contralateral eye band, which marks the anterior border of V1 and lies caudal to V2 

ipsilateral big domains (Medina et al., 2006; White et al., 1999), was used as an anterior 

reference to draw the ROI. The posterior reference was the caudal pole. The 

approximate location of the border between V1 and V2 was still distinguishable after 4 

days of monocular deprivation (MD). After defining the ROI, we created ocular 

dominance histograms based on the scale of gray values of 0 –255 that was divided 

into five class intervals, where 0–50 and 204–255 correspond to classes containing the 

darkest and lightest pixels, respectively.  

 

In vivo electrophysiology 

 Single-unit recordings were conducted using a glass-coated tungsten 

microelectrode with a 5 µm exposed tip lowered into the primary visual cortex at ~20º to 

the vertical axis.  To minimize sampling bias, single-units used in this study were 

separated by at least 100 µm along the electrode track.  After the isolation of a single-

unit, the receptive field was mapped and the optimal stimulus orientation, direction and 

velocity were determined qualitatively using a moving bar of light projected onto a 

tangent screen.  OD, spontaneous activity and number of spikes per stimulus were then 

quantitatively determined for each cell by presenting a computer-controlled bar of light 

to each eye.  Each stimulus presentation consisted of the bar of light moving across the 
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receptive field at the optimal orientation in one direction and back across in the opposite 

direction. To assess OD, the moving bar of light was presented to each eye separately 

at the optimal orientation.  Spikes were collected during the 10 stimulus presentations 

by a computer using Spike 2 software (Cambridge Electronics Design) and peristimulus 

histograms were generated.  Spontaneous activity was determined by recording activity 

in the absence of stimulation. At the conclusion of the experiment, ferrets were 

sacrificed with Euthasol, (0.6 ml/kg, i.p.; Delmarva).  

 

Immunohistochemistry and Confocal microscopy 

 Ferrets were perfused with cold saline followed by cold 4% paraformaldehyde 

solution. After dissection of the occipital cortex, 50µm sections were obtained with a 

vibratome. For immunohistochemistry the following primary antibodies were used at a 

concentration of 1:200: NeuN (Neuronal marker, mouse; Millipore Bioscience Research 

Reagents); GFAP (Astrocytic marker, rabbit, Dako); VP16 (Sindbis/SRF+ expression 

marker, mouse, Santa Cruz Biotechnology), VP16 (Rabbit, Sigma-Aldrich); Flag 

(Sindbis/SRF- expression marker). The secondary antibodies were goat anti-rabbit 

(1:400, Alexa Fluor 594) and goat anti-mouse (1:200, Alexa Fluor 488). Tissue sections 

are alternately stained for VP16/GFAP and VP16/NeuN. Sections were analyzed in a 

Leica TCS-SP2 AOBS confocal laser scanning microscope (inverted) with a 

spectrophotometer scan head, a high resolution Märzhäuser MCX-2 motorized XY 

stage and three confocal detectors. The system has five lasers: blue diode (405 nm), 

Argon (458, 476, 488, 514 nm), green HeNe (543 nm), orange HeNe (594 nm) and red 

HeNe (633 nm). Double staining (colocalization) was evaluated by two mutually 
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reinforcing techniques: Particle analysis and Z-Stack counting. To perform particle 

analysis we first selected the two adjacent sections (VP16/GFAP, VP16/NeuN; one pair 

of sections for each animal; 3 animals used) that presented the greater number of 

infected cells. Confocal microscope tile scan images (20 X magnification) were taken 

and analyzed using the IPLab software. To confirm the results obtained with the particle 

analysis, two independent observers evaluated 14 Z-Stacks (seven VP16/GFAP; seven 

VP16/NeuN) from three animals. A typical Z-Stack had the dimensions of x = 170 µm, y 

= 170 µm, z = 30 µm. The stack was covered by a 10 x 7 grid and each independent 

observer assessed whether a VP16 positive cell had double labeling (with GFAP or 

NeuN) or not. The total number of VP16 positive cells in VP16/GFAP and VP16/NeuN 

Z-Stacks were 433 and 293 respectively.  

 

Results 

 

 We investigated whether overexpression of SRF by Sindbis virus would improve 

OD plasticity in ferrets exposed to alcohol during the third trimester equivalent of human 

gestation, which is approximately P10-P30 in the ferret (Clancy et al., 2001; Medina and 

Ramoa, 2005). A summary of our experimental design can be seen in Figure 5. After a 

prolonged alcohol-free period animals were injected with Sindbis/SRF+; Sindbis/GFP or 

Sindbis/SRF in V1/V2 (Fig. 5B, C). We used optical imaging of intrinsic signals to create 

differential maps to assess changes in OD after monocular deprivation. Fig. 6A shows 

the left visual cortex of representative cases from each group analyzed. Dark and light 

areas in OD (differential) maps represent regions that respond preferentially to 
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stimulation of the right and left eye respectively. In monocular response (single 

condition) maps, dark regions represent areas that display strong responses to visual 

stimulation. Note that nondeprived animals (both saline and alcohol-treated) (Fig. 6A) 

present the typical contralateral bias observed in ferrets (Issa et al., 1999; Medina et al., 

2003; White et al., 1999).  

 

Figure 6. Optical Imaging and Single Unit recording results. Optical imaging of intrinsic signals shows 

that SRF overexpression restores plasticity in alcohol-exposed animals. A, First column shows ocular 
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dominance maps of representative cases of each experimental group. Dark and light areas represent 

regions dominated by the right and left eye respectively. In animals overexpressing SRF, monocular 

deprivation of the right eye resulted in a shift in dominance towards the left eye. In contrast, in both 

animals overexpressing either GFP or a dominant negative form of SRF, the deprived eye remained 

responsive. B, Histograms display the percentage of pixels fitting in a grayscale (0, black; 255, white). 

Note the predominance of lighter pixels in animals infected with the virus carrying the constitutively active 

form of SRF (SRF+), which indicates left (experienced) eye dominance. In contrast, note the 

predominance of black and gray pixels in animals infected with the virus carrying either GFP or a 

dominant negative form of SRF (SRF-), which indicates that the right (deprived) eye is still responsive. 

Saline (SAL) (no MD), n = 4; ethanol (ET) (No MD), n = 5; SAL (MD), n = 5; ET/SRF+ (MD), n = 5; 

ET/GFP (MD), n = 5; ET/SRF- (MD), n = 3. C, Mean contralateral bias indexes for all groups. Squares 

indicate individual animals. SRF+ animals presented significantly lower CBIois than GFP and SRF- (one-

way ANOVA followed by Bonferroni, p<0.05). These findings indicate that SRF+ rescues OD plasticity in 

alcohol-treated animals. D, Single-unit recordings show that SRF+ overexpression restores plasticity in 

alcohol-exposed animals. Cumulative number of cells (as percentage) plotted as a function of the OD 

index for animals that received either SRF+ or GFP. Note that in SRF+ animals, the curve was skewed to 

the right, indicating an OD shift (most cells respond better to left eye stimulation). In contrast in a GFP 

animal many cells were still responsive to the right (deprived) eye. ET/SRF+, n = 68 neurons from three 

animals. ET/GFP, n = 26 neurons from one animal. E, Single unit recordings reveal that SRF+ expression 

rescued ocular dominance plasticity even far away from the injection site. 

 

As expected, 4 d of MD in saline-treated animals lead to a striking shift in ocular 

dominance towards the experienced eye (Fig. 6A). Remarkably, after the same period 

of MD, alcohol-treated animals that received the Sindbis/SRF+ virus presented a similar 

shift (Fig.  6A), which indicates that OD plasticity was restored. Surprisingly, while the 

virus infected area was around a radius of ~2 mm, the shift in OD was observed along 
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all the caudal extension of the visual cortex (V1, ~6-10 mm medial to lateral) (Figs. 5B, 

C, 6A). In contrast, alcohol-treated animals that received either Sindbis/GFP or 

Sindbis/SRF- presented only a very mild change in OD (Fig.  6A), which confirm our 

previous findings that early alcohol exposure impairs OD plasticity (Medina et al., 2003; 

Medina and Ramoa, 2005). To quantify OD (differential) maps we calculated the pixel 

distribution along a 256 gray scale, divided in five class intervals, where 0-50 and 204-

255 correspond to classes containing the darkest and lightest pixels, respectively. 

Accordingly, nondeprived animals (either saline or ethanol treated) presented 

histograms skewed to the left, which indicates contralateral eye dominance (Fig.  6B). In 

contrast, after 4 d of contralateral eye lid suture, saline-treated animals, as well as 

alcohol-treated animals that received Sindbis/SRF+, presented OD profiles skewed to 

the right, indicating the dominance of the ipsilateral eye (Fig.  6B). In contrast, alcohol-

treated animals that received either Sindbis/GFP or Sindbis/SRF- presented only 

modest changes in the OD profile. To further quantify these changes we created a 

contralateral bias index (CBI) (Fig. 6C). This index is defined as follows: [(P0–50 - P204–

255) + [(P51–101 - P153–203)/2] + 100}/200, where PA–B denotes the percentage of pixels 

with gray values between A and B. A CBI close to 1.0 indicates a prevalence of darker 

pixels and right eye dominance. A CBI close to 0.0 indicates a prevalence of lighter 

pixels and left eye dominance. An ANOVA showed a significant (F = 10.09, df = 2, p = 

0.001) effect of treatment (SRF+, GFP or SRF-). Post hoc analysis showed that alcohol-

treated animals that received Sindbis/SRF+ had significantly smaller CBIs than animals 

that received GFP (Bonferroni, p=0.01) or SRF- (Bonferroni, p = 0.004). To further 

assess the effects of SRF in improving OD plasticity we conducted single unit 
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recordings experiments. The virus injection sites were easily identified in each animal 

and it was used as a landmark to place the electrode. Successful expression of the 

virus was confirmed by immunohistochemistry after the experiment. We created an OD 

index for each cell recorded using the following equation: LE/(LE+RE), where LE and 

RE stand for number of spikes elicited by stimulation of left and right eye, respectively. 

An OD index of 1.0 indicates a neuron that is responsive only to the left eye whereas an 

OD index of 0.0 indicates responses only to the right eye. Figure 6D shows the 

cumulative distributions of neurons from alcohol-treated animals that were injected with 

Sindbis/SRF+ or Sindbis/GFP. Note that the curve of SRF+ animals is completely 

skewed to the right when compared to GFP controls. This finding confirms our results 

with optical imaging showing that SRF restores OD plasticity in alcohol-treated animals. 

Interestingly, these results were observed even when recordings were made far from 

the injection site (Fig.  2E). A dominance of the experienced (ipsilateral) eye was 

present even when cells were recorded 3.5-5.5 mm from the injection site.  

 To confirm the expression of the virus we conducted immunohistochemistry in 

tandem with confocal laser microscopy. Figure 7A shows the typical pattern of 

expression of the Sindbis/SRF+ virus. Note that cells positive for the VP16 

transactivation domain can be seen in both gray and white matter (Fig.  7A). The 

presence of VP16 positive cells was observed in several sections and we calculated 

that the virus infection had an average diameter of 2300 µm (SEM ± 220, n = 3 

animals). Interestingly, most VP16 positive cells could be identified as astrocytes due to 

double labeling with GFAP (Figs. 7B and C). Further quantification using two different 

techniques showed that most infected cells could be identified as astrocytes (Fig.  7D).    
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Figure 7. Laser confocal microscopy. It reveals that a cortical injection of Sindbis/SRF virus leads to 

successful expression of the transgenes. Most infected cells are astrocytes rather than neurons. A, 

Typical spread pattern of a Sindbis/SRF virus injection. Staining for the VP16 transactivation domain 

shows that the infection is present through all the columnar extent of the gray matter. Expression in the 

white matter (delimited by white lines) seems to be denser and spreads horizontally. B, Most cells positive 

for VP16 are also positive for the astrocyte marker GFAP. This was true for both gray and white matter 

(first and second rows, respectively). C, Image of an infected astrocyte. D, Quantification either by particle 
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analysis (PA) or Z-Stack double-labeling counting (ZS) shows that most of the cells infected by 

Sindbis/SRF virus are astrocytes rather than neurons. VP16/GFAP colocalization: PA = 64.4%, ZS = 60.8 

%. VP16/NeuN colocalization: PA = 3.6%, ZS = 7.1%. E, Just 24 h after Sindbis/SRF+ injection, most of 

the VP16 positive cells are still positive for GFAP.  

 

Surprisingly, only a small proportion of infected cells were positive for NeuN, a typical 

neuronal marker. One possible explanation for this difference is that the Sindbis virus 

could have infected and killed neurons during the first days of the infection. However, 

this possibility is unlikely since a similar pattern of infection (predominance of infected 

astrocytes rather than neurons) was observed after 24 h of the virus injection (Figure 

7E). To evaluate the extension of the “plasticity enhancing” effect of SRF we made the 

virus injection on the contralateral (right) hemisphere of three alcohol-treated animals. 

After 4 d of MD, optical imaging of intrinsic signals of the left hemisphere was performed 

to assess changes in OD. In the animal showed in Figure 8A, no change in the typical 

ferret OD profile was observed. However, the virus injection was not successful as 

revealed by immunohistochemistry for VP16. In the second animal, a partial shift in OD 

and a moderate virus infection was observed (Fig. 8B). Finally, in the third animal, a 

strong shift in OD and a high degree of infection (in the white matter) was observed 

(Fig. 8C). These findings indicate a high correlation between Sindbis infection and OD 

shift, suggesting that overexpression of SRF might improve plasticity in contralateral 

hemisphere. The higher variability of the virus infection observed in this experiment 

might be due to the fact that all our equipment had to be adjusted to make the injections 

on the right hemisphere. 
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Figure 8. Effects of Sindbis/SRF injection on contralateral hemisphere, in three alcohol-treated 

animals (A-C), First column shows differential maps obtained with optical imaging of intrinsic signals after 

4 d of MD. Second column shows areas of highest virus infection revealed by immunohistochemistry for 

VP16. Third column shows magnifications of insert boxes. Note the high correlation between infection 

area and experienced eye dominance (white areas in differential maps). 

 

 While it is known that SRF is normally expressed in the brain (Knoll and 

Nordheim, 2009; Stringer et al., 2002), we decided to assess whether endogenous 
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levels of this transcription factor could be detected in visual cortex (Figs. 9A-K). To 

accomplish that, we used a SRF antibody that tags to an amino acid sequence (aa 209-

508, see Materials and Methods) that is not present in our SRF construct (Fig. 9G and 

H). Figure 9A shows strong SRF expression in all cortical layers. While SRF expression 

was also observed in white matter, staining was drastically reduced. This antibody does 

not stain our SRF construct, and no colocalization between SRF and VP16 was 

observed. Endogenous SRF expression was also observed in animals that have not 

received Sindbis-SRF injection (data not shown). We also confirmed previous 

observations (Knoll and Nordheim, 2009; Stringer et al., 2002) showing the SRF has a 

high and low expression in neurons and astrocytes respectively (Fig. 9D-F). Next we 

wanted to confirm that our Sindbis-SRF virus lead to SRF expression. To accomplish 

that we used an antibody that tags the amino acids around the lysine 99 

phosphorylation sites (aa 97-101). This region is present in our SRF construct (Fig. 9G, 

H). Figures 9I-K show a high SRF expression in VP16 positive cells. This finding 

confirms that our construct induces expression of SRF and supports the use of VP16 as 

a marker in our previous experiments.  As Sindbis virus is well known to infect neurons 

in rodents (Ehrengruber, 2002), we sought to test whether this preference for astrocytes 

in ferrets is due to species differences. Confirming previous results in rodents, the 

typical preference of the Sindbis virus for neurons was observed in cortex and 

hippocampus (Figure 10).  
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Figure 9. Expression of endogenous SRF in the brain and the expression of SRF-VP16 by the 

virus. A, Tile scan of the visual cortex of the ferret using an anti-SRF antibody (Santa Cruz 

Biotechnology). This antibody attaches to the 209-508 amino acid sequence of the SRF transactivation 

domain. B, Immunostaining for VP16 transactivation domain, which indicates cells infected by the virus. 

C, Merge of the 2 pictures. Note that there is no colocalization of the endogenous SRF with the cells 

infected. Laser confocal microscopy reveals that SRF is abundant in neurons and is also present in some 

astrocytes. D-F, Note that NeuN positive cells (E, red) are rich in SRF (F, green). White arrows in E and F 

indicate same cells. In GFAP positive cells (D, magenta) SRF expression is either reduced or absent. 

Yellow arrows point to same cells. G and H, Schematic representation of the SRF molecule (H) and our 

constitutively active SRF construct (H). The construct was made by fusing the dimerization and DNA 

binding domains of SRF (aa 90-222) with the HSV VP16 transactivation domain (aa 363-490). The 

resulting fused construct was inserted into a Sindbis vector. Note that the construct lacks most of the 
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sequence that is recognized by the SRF antibody used in B (aa 209-508). I-K, Using an SRF antibody 

that targets a sequence of amino acids that is present in our construct (aa 97-101, Anti-SRF, ABCam), we 

were able to demonstrate that overexpression of our construct indeed increases SRF expression, and 

that VP16 could be a good marker. I, VP16; J, SRF; K, merge. 

 

 

 

Figure 10. Cell preference of the Sindbis virus is species dependent. A-C, Intraventricular injection of 

3µl of the sindbis virus resulted in a massive infection of visual cortex neurons in the mouse. A, NeuN; B, 

SRF; C, merge. D-F, Hippocampal injection of 1.5µl of the Sindbis virus resulted in a massive infection of 

neurons in the mouse hippocampus. D, NeuN; E, SRF; F, merge. 
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Discussion 

 

Here we showed that overexpression of SRF by Sindbis virus, long after the 

period of alcohol exposure, rescues OD plasticity in the ferret model of FASD. In 

addition to this exciting result, we obtained two intriguing findings: First, in ferrets we did 

not see the Sindbis preference for neurons that was described for rodents 

(Ehrengruber, 2002). In fact our results showed that most of the cells infected were 

astrocytes rather than neurons. The preference for astrocytes seen here is probably due 

to species differences, since in mice the virus infected mostly neurons (Fig. 10). 

Second, plasticity restoration was observed in almost all V1 rather than being restricted 

to the area within the infection site. A possible interpretation is that released SRF 

products may diffuse through the neuropil, or are transported by the blood or CSF. 

While surprising, the capacity of brain cells to release signaling molecules and affect a 

large area had been demonstrated before. It was shown by independent groups that 

implantation of astrocytes overexpressing glial cell line-derived neurotrophic factor 

(GDNF) provide extensive neuroprotection to dopaminergic neurons (Cunningham and 

Su, 2002; Ericson et al., 2005). Moreover, the effects observed in these studies were 

not restricted to the injected site and increased levels of GDNF were observed even in 

the contralateral hemisphere (Cunningham and Su, 2002; Ericson et al., 2005). 

Recently, Stritt and colleagues provided evidence that activation of SRF can mediate 

the release of signaling molecules. They showed that lentiviral-mediated transfer of a 

constitutively active SRF construct in neurons dramatically affects maturation of 

oligodendrocytes (Stritt et al., 2009). In our present study, while most of the cells 
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infected by the Sindbis-SRF construct were astrocytes, we observed an effect on 

neuronal plasticity. This finding suggests the intriguing possibility that activation of SRF 

in astrocytes may result in the production and release of plasticity-related factors, 

boosting neuronal plasticity in an extensive cortical area. However, we cannot discard 

the possibility that the few infected neurons are actually either the major players or 

significantly contribute to the SRF-mediated restoration of ocular dominance plasticity in 

alcohol-treated animals. 

Our understanding of astrocyte function and its relation to neurons has 

dramatically changed in the last 20 years. Modern neuroscience considers astrocytes 

major players in brain development and plasticity rather than mere supportive cells, see 

for review (Fellin, 2009; Stevens, 2008). In addition to producing an intricate pattern of 

spontaneous and neuronal evoked calcium oscillations, astrocytes can secrete 

glutamate (Parpura et al., 1994), D-serine (which potentiates the AMPA receptor) 

(Schell et al., 1995) and a constellation of plasticity related factors. Recently, studies 

from Ben Barres’ lab provided convincing evidence that astrocytes can secrete 

molecules that can dramatically affect the establishment of synapses. For instance, this 

group showed that immature astrocytes can promote synaptogenesis through release of 

thrombospondins (Christopherson et al., 2005) and refinement of retinogeniculate 

synapses through secretion of C1q protein (Stevens et al., 2007). Astrocytes may also 

play an important role in synaptic plasticity. Recently, it was demonstrated that  glial 

release of tumor necrosis factor alpha (TNFα) mediate the compensatory changes in 

synaptic strength that occur after an increase or decrease in global activity (homeostatic 
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plasticity) (Beattie et al., 2002). In addition, TNFα KO mice have altered OD plasticity 

(Kaneko et al., 2008). 

Astrocytes have also been linked to the establishment of the critical period of 

ocular dominance plasticity. Christian Muller described that the time of the maturation of 

astrocytes is coincident with the closure of the critical period. In addition, implantation of 

immature astrocytes in the primary visual cortex of adult cats reopen the critical period 

of ocular dominance plasticity (Muller and Best, 1989). While these findings strongly 

indicated a role for astrocytes in the regulation of critical period, the mechanisms that 

underlie this process were never elucidated. Our findings here suggest that astrocytes 

may also contribute to the process of ocular dominance plasticity, perhaps through the 

release of plasticity-related factors, which could boost plasticity in neurons. 

Since early alcohol exposure affects many cascades related to SRF activation 

(Davis et al., 1999; Luo and Miller, 1999; Kalluri and Ticku, 2003; Tsuji et al., 2003; 

Tang et al., 2006), as well as the secretory capacity of astrocytes (Tomas et al., 2005), 

it is plausible that a decrease of astrocytic-released molecules may contribute to the 

plasticity deficits seen in models of FASD. One possibility is that alcohol causes a 

reduction in the production and/or release of SRF-mediated molecules and the 

overexpression of this transcription factor bring these molecules to normal levels. This 

idea is supported by findings that show that early alcohol exposure can lead to an 

alteration in pathways that are known to activate SRF such as MAPK (Davis et al., 

1999; Luo and Miller, 1999; Kalluri and Ticku, 2003; Tsuji et al., 2003; Tang et al., 2006) 

and RhoA (Joshi et al., 2006) as well as decrease the secretory capacity of astrocytes 

(Tomas et al., 2005). Alternatively, SRF function in astrocytes from alcohol-treated 
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animals might be normal, and the beneficial effects of SRF overexpression may be a 

result of a compensatory boost of plasticity caused by the release of many plasticity-

related molecules. 

In conclusion we show here that overexpression of SRF leads to a widespread 

plasticity enhancement in the visual cortex of ferrets exposed early to ethanol. 

Importantly, our results suggest the intriguing possibility that astrocytes are actually the 

major players in this restorative effect. Our findings contribute to our understanding of 

how early alcohol exposure affects astrocyte-to-neuron signaling and its effects on 

cortical plasticity. This information may be highly relevant to devise therapeutic 

interventions that will prevent or alleviate morbidity in FAS. 
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Abstract 

 

Neuronal plasticity deficits underlie many of the cognitive problems seen in Fetal 

Alcohol Spectrum Disorders (FASD). We have developed a ferret model showing that 

early alcohol exposure leads to a persistent disruption in ocular dominance (OD) 

plasticity. Recently, we showed that this deficit could be reversed by overexpression of 

serum response factor (SRF) in the primary visual cortex during the period of monocular 

deprivation (MD). Surprisingly, this restoration was observed throughout the extent of 

visual cortex and most of the cells transfected by the virus were positive for the 

astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether 

overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in 

alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to 

Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant 

negative (SRF-) or control GFP. After 24h, these astrocytes were implanted in the visual 

cortex of alcohol-exposed animals or saline controls one day before MD. Optical 

imaging of intrinsic signals showed that alcohol-exposed animals that were implanted 

with astrocytes expressing SRF, but not SRF- or GFP, showed robust restoration of OD 

plasticity in all visual cortex. These findings suggest that overexpression of SRF 

exclusively in astrocytes can improve neuronal plasticity in FASD.    
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Introduction 

 

Alcohol consumption during pregnancy can lead to fetal alcohol spectrum 

disorders (FASD). This condition is characterized by a constellation of morphological, 

cognitive and behavioral problems with possible lifelong implications (Jones and Smith, 

1973). In FASD, the sensory systems are particularly affected and learning and memory 

problems, as well as visual, somatosensory and auditory deficits are frequently 

observed (Mattson and Riley, 1998; Franklin et al., 2008; Manji et al., 2009; Coles et al., 

2002). 

The timing of alcohol exposure can be a determinant factor for the signs and 

symptoms observed in FASD. During the first-trimester equivalent of human gestation, 

alcohol exposure can alter normal development of the neural tube and crest, leading to 

microcephaly (Miller, 1996), hydrocephaly (Goez et al., 2011; Ronen and Andrews, 

1991), ocular malformations (Stromland, 2004; Cook et al., 1987), and the facial 

dysmorphology that characterizes fetal alcohol syndrome (Sulik et al., 1981), a classical 

type of FASD. In the second trimester, alcohol exposure strongly affects the proliferation 

of neuronal precursors and the formation of the radial glia leading to abnormal neuronal 

migration (Vangipuram and Lyman, 2010; Tateno and Saito, 2008; Aronne et al., 2011; 

Miller and Robertson, 1993; Siegenthaler and Miller, 2004). Finally, during the third-

trimester, alcohol can increase cell death, disrupt synaptogenesis and lead to persistent 

deficits on neuronal plasticity (Rema and Ebner, 1999; Medina et al., 2003; Climent et 

al., 2002; Moulder et al., 2002; Hoff, 1988; Isayama et al., 2009). 
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During the last decade, numerous studies have provided evidence that activity-

dependent neuronal plasticity, a process crucial for the development of sensory 

cortices, is disrupted in animal models of FASD. For instance, early alcohol exposure 

has been shown to disrupt long term potentiation (Puglia and Valenzuela, 2010), eye-

blink conditioning (Johnson et al., 2008), barrel cortex plasticity (Rema and Ebner, 

1999) and ocular dominance plasticity (ODP) (Medina et al., 2003).  

The ODP paradigm is based on the functional and anatomical changes that 

occur in the visual cortex after closing one eye by eyelid suturing (monocular 

deprivation, MD). In this paradigm, MD leads to shrinkage and expansion of OD 

columns receiving responses from the deprived (closed) eye and experienced (open) 

eye, respectively (Hubel et al., 1977; Issa et al., 1999; Wiesel And Hubel, 1963). As in 

the case of other types of activity-dependent plasticity, ODP relies on the integrity of the 

transmission of synaptic signals to the nucleus, where plasticity-related genes are 

regulated by transcription factors (Roberts et al., 1998; Beaver et al., 2001; Di Cristo et 

al., 2001; Taha et al., 2002; Mower et al., 2002). 

Early alcohol exposure has been shown to affect the activity of many molecules 

that are important for ODP such as the NMDA receptor and many activity-dependent 

kinases (Savage et al., 1992; Joshi et al., 2006; Naseer et al., 2011; Davis et al., 2000). 

Many of these molecules are part of cascades that converge towards two important 

transcription factors, namely, cAMP response element binding protein (CREB) and 

Serum Response Factor (SRF) (Chai and Tarnawski, 2002; Knoll et al., 2006; 

Whitmarsh et al., 1995). While the role of CREB on activity-dependent plasticity is quite 

established (Silva et al., 1998; Mower et al., 2002), much less is known about the 
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contribution of SRF. This is surprising since both CREB and SRF can be activated by 

neuronal activity and both can regulate the expression of plasticity-related genes (Knoll 

and Nordheim, 2009; Ramanan et al., 2005; Lamprecht, 1999; Finkbeiner et al., 1997).  

The transcription factor SRF has three functional domains: the dimerization and 

DNA binding domain, the transactivation domain and multiple phosphorylation sites 

(Chai and Tarnawski, 2002). It binds to its serum response element (SRE), which is 

present in the promoter regions of many genes. Some of the well known SRF target 

genes are IEGs (c-fos, Egr-1 to Egr-3, Junb, etc.), actin cytoskeletal genes (Actb, Actg1, 

Gelsolin, Arc, etc.), axonal guidance genes (Sema3a, Epha4, Epha7, etc.), neurotrophin 

genes (Bdnf, Ngf) and genes involved in synaptic plasticity (Arc, Psd95) (Knoll and 

Nordheim, 2009; Etkin et al., 2006; Knoll et al., 2006). SRF has already been 

demonstrated to be essential for various forms of neuronal plasticity, including LTP 

(Ramanan et al., 2005), LTD (Etkin et al., 2006) and learning and memory (Etkin et al., 

2006; Dash et al., 2005).  

 Recently, we used viral mediated gene transfer to test whether overexpression 

of SRF would reverse the disruption of ODP caused by early alcohol exposure in 

ferrets.  We observed that during the period of MD, overexpression of a constitutively 

active form of SRF, but neither its dominant negative form nor GFP, restored OD 

plasticity in alcohol-exposed animals. Surprisingly, this restoration was observed 

throughout the extent of the visual cortex instead of being limited to the area of the virus 

transfection. Moreover, an analysis of the virus expression showed that while only 7% of 

the SRF-transfected cells expressed the neuronal marker NeuN, more than 60% cells 

showed expression of the astrocytic marker GFAP. Since glial cells can secrete 
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plasticity-related molecules, and because we observed that most of the transfected cells 

were GFAP positive, we hypothesized that overexpression of SRF in astrocytes can 

affect neuronal plasticity. However, we could not discard a major contribution of the few 

SRF-transfected neurons or the unidentified cells. Here we investigate whether 

overexpression of SRF in astrocytes is sufficient for the restoration of ODP in alcohol-

exposed animals. To accomplish this, we overexpressed the constitutively active form of 

SRF in astrocyte cultures and implanted these modified cells in the visual cortex of 

ferrets exposed to alcohol during the third trimester equivalent of human gestation. 

 

Materials and Methods 

 

 All procedures that are described in this article were approved by the Institutional 

Animal Care and use Committee at Virginia Commonwealth University. The protocols 

for some of the general experimental methods are the same as described in earlier 

papers (Medina et al., 2003; Medina et al., 2005; Paul et al., 2010). Please refer to 

Figure 11 for a summary of our experimental design. Briefly, ferrets were treated with 

3.5 g/kg ethanol (25% in saline, i.p.) or saline as control every other day from postnatal 

day (P) 10 to P30. This alcohol treatment leads to a blood alcohol level of ~250 mg/dl 

for 1–5 h after injection (Medina et al., 2003). The animals were then left alcohol-free 

until the peak of the critical period of OD plasticity, which in ferrets is around P40  (Issa 

et al., 1999). Additional ferrets were sacrificed at P9/P10 and caudal portions of their 

brains containing the visual area were dissected to make pure astrocyte cultures. The 

cultures were transfected by Sindbis viruses carrying one of the following, a 
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constitutively active form of SRF (SRF+), a dominant negative form (SRF-) or control 

GFP. 

 

Figure 11. Experimental design. Pure astrocyte cultures are made from the occipital regions of ferret 

neonates (1). The astrocytes are then treated with the Sindbis SRF+, GFP or SRF- viruses for 24 hrs (2). 

These cells are implanted into the left visual cortex of animals exposed to alcohol during the third 

trimester-equivalent of human gestation (P10 – P30 in ferrets (Clancy et al., 2001). (3). Monocular 

deprivation (MD) is performed the following day by the suturing the right eyelids (4). After 4 days of MD, 

eyelids are opened and Optical Imaging of intrinsic signals are performed to assess Ocular Dominance 

plasticity (5). 

 

After 24 hours of transfection, the astrocytes were implanted into the left visual cortex of 

the alcohol-exposed animals. One day after the implantation, the right eye of the animal 

was monocularly deprived (MD) by eyelid suture for 4 days. Following MD, the animal 
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was anesthetized, the deprived eye was opened and optical imaging of intrinsic signals 

was conducted on the left primary visual area.  

 

Preparation of astrocyte cultures 

 The culture procedure is modified from the method established by McCarthy and 

de Vellis (McCarthy and de Vellis, 1980). Ferrets at P9 or P10 are sacrificed and the 

caudal portion of its brain is immediately cut out, cleaned from its meninges and put in a 

petri dish containing Hank’s Balanced Salt Solution (HBSS) in sterile conditions inside a 

biosafety hood. The tissue block is minced to smallest possible pieces using a scalpel 

blade. The minced tissue is collected in a 15ml falcon tube with 3mls of 0.5% Trypsin-

EDTA. The tube is gently agitated for 5-7 minutes. The tissue pieces are then 

mechanically triturated using a pipette to finer particles. Then serum media 

(DMEM/F12+10% fetal calf serum) is added to inactivate trypsin. The cell suspension is 

centrifuged at 3000 rpm for 3mins, resuspended in fresh serum media and plated in T-

25 culture flasks (Falcon, BD). The flasks are kept in an incubator at 370C and 5% CO2. 

The cells become confluent in 8-10 days. At that time, the flasks are agitated on an 

orbital shaker (250rpm, 370C, 12-15 hrs) in order to remove the oligodendrocytes and 

microglia. The supernatant is removed and an astrocyte purity of ~ 98% is achieved 

(McCarthy and de Vellis, 1980). 

 

Ex-vivo gene delivery procedure 

The Sindbis viral vectors were made and kindly provided by Drs. Amit Etkin, 

Angel Barco and Eric Kandel (Columbia University, New York, NY). The SRF+ construct 
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was made by fusing the dimerization and DNA binding domains of SRF (aa 90–222) 

with the transactivation domain of HSV protein VP16 (aa 363–490) (Paul et al., 2010). 

This construct was then cloned into the pSinRep5 vector (Invitrogen, Carlsbad, CA). 

The SRF- was made by fusing a FLAG epitope sequence to the N terminus of SRF (aa 

1- 272), which was been found to effectively inhibit SRF activity (Etkin et al., 2006). The 

control GFP construct was made by cloning an EGFP cDNA into the vector.  

The astrocyte media is replaced by serum-free DMEM and 10µls of a solution of 

the Sindbis virus carrying one of the constructs (SRF+, SRF- or GFP) (viral titer = 4.0 x 

107 infectious units/ml). The virus is allowed to transfect the cells for 24 hours inside the 

incubator. After this period, the media is discarded and the cells are washed multiple 

times to remove any free viral particles. The cells are then dissociated from each other 

using 0.5% trypsin-EDTA and lifted from the floor of the flask using a sterile cell scraper 

(Falcon, BD). Trypsin is deactivated by adding serum media to the flask. The cell 

suspension is transferred to a 15ml falcon tube. The tube is centrifuged at 3000 rpm for 

3 min and supernatant discarded. The cells are washed again with PBS. Finally, the 

cells are suspended in PBS in a 1ml microcentrifuge tube at a concentration of ~ 

10,000-15,000 cells/µl.  

These virus-transfected astrocytes are then immediately implanted into the left 

visual cortex of an alcohol or a saline-treated animal. For implantation, a small hole is 

drilled in the caudal end of the skull of an anesthetized animal. The tip of a 26 gauge 

syringe (Hamilton, Reno, NV)) containing the astrocyte suspension is stereotaxically 

positioned at an angle of 15–22° from the midline and lowered 1mm into the primary 
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visual cortex (V1). Two injections of 4µl each ~1mm apart are administered at a rate of 

10 nl/s using a hydraulic microsyringe pump controller (Micro 4, WPI, Sarasota, FL). 

  

Optical Imaging of intrinsic signals  

 Optical imaging of intrinsic signals is performed with Imager 3001 VSD+ (Optical 

Imaging Ltd., Rehovot, Israel) by using imaging methods similar to those described 

previously (Medina et al., 2003; Medina et al., 2006; Paul et al., 2010). Briefly, animals 

are premedicated with subcutaneous injections of a tranquilizer (acepromazine, 

2mg/kg), a muscarinic antagonist (methyl atropine bromide, 0.2mg/kg) to reduce 

bronchial secretion, and dexamethasone sodium phosphate (0.5mg/kg) to reduce 

inflammation. Animals are then anesthetized using sodium pentobarbital (35mg/kg, i.p., 

Abbott Laboratories) and placed in a stereotaxic frame. No procedures are performed 

until the animal is sufficiently anesthetized, as determined by the loss of withdrawal and 

corneal-blink reflexes. A tracheal cannulation is performed, and the animal is placed on 

a ventilator. Heart rate, expired CO2 and arterial blood oxygen saturation (SpO2) are 

monitored continuously and maintained at ~4% and above 90%, respectively. Body 

temperature is maintained at 38oC using a homeostatic blanket. The eyelids are 

opened, nictitating membranes are retracted using phenylephrine hydrochloride (2.5%), 

the pupils are dilated with atropine sulfate (1%), and contact lenses are placed on the 

corneas. A bigger craniotomy (3-4 mm) is performed around the hole already made for 

the astrocyte implantation to expose the dorsal area of the caudal end of occipital 

cortex. The duramater is reflected to expose the primary visual cortex, the opening is 

filled with agar (2.5% in saline) and covered with a glass coverslip.  First, an image of 
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the vascular pattern is obtained by illuminating the cortical surface with a green filter 

(~550 nm) using a tungsten-halogen light source. Next, images of intrinsic signals are 

obtained using a red filter (~700nm). Visual stimulation consisting of high-contrast 

square wave gratings (8.75° dark phase/1.25° light phase) is generated by a 21-inch 

monitor (Sony Trinitron) using SGT+ graphics board and STIM software. Gratings are 

presented to each eye at an angle of 0°, 45°, 90°, or 135° and drifted (22.5°/s) in both 

directions along the axis orthogonal to the orientation of the grating. A single trial 

consists of these four gratings and a blank screen presented to each eye for 9 s in a 

pseudorandom sequence, with data acquisition during the last 8 s. Eye shutters (Optical 

Imaging Ltd.) are used to stimulate each eye separately. A total of 20 trials are 

performed for both eyes. For each eye, a monocular response/magnitude map is 

obtained by summing the different orientation images and subtracting that from the 

responses to the blank screen. In these images, dark areas correspond to regions that 

are visually responsive. The ocular dominance/differential maps are obtained by 

subtracting the summed left eye monocular maps from the summed right eye maps. In 

these images, dark and light regions are areas that respond predominantly to right and 

left eye stimulation, respectively.  

To quantify the OD profile of each animal from the OD map, a region of interest 

(ROI) outlining V1 is drawn manually using the ImageJ software (NIH) by an investigator 

who is blind to the animal’s treatment.  The contralateral eye band, which marks the 

anterior border of V1 and lies caudal to the big V2 ipsilateral modules (White et al., 

1999), is used as the rostral reference to draw the ROI. The caudal reference is the 

caudal pole. Next, each pixel in the ROI is assigned a gray value on a grayscale of 0 – 
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255. In this scale, the darkest pixel has a value of 0 and it responds only to the right 

eye, whereas, the lightest pixel has a value of 255 and it responds only to the left eye. 

An ocular dominance histogram is created by dividing the pixels into 5 class intervals of 

gray values, namely, 0-51, 52-102, 103-153, 154-204, 205-255. 

 

Immunohistochemistry and confocal microscopy  

 Ferrets are perfused with cold saline followed by cold 4% paraformaldehyde 

solution. After dissection of the occipital cortex, 50 µm coronal sections are obtained 

using a vibratome. For immunohistochemistry, the following primary antibodies are 

used: GFAP (1:500, mature astrocytic marker, rabbit; Dako); Vimentin (1:500, Immature 

astrocytic marker, mouse-Dako, rabbit-Abcam), VP16 (1:200, Sindbis/SRF+ expression 

marker, mouse; Santa Cruz Biotechnology), FLAG (1:200, Sindbis/SRF- expression 

marker, mouse; Sigma). The secondary antibodies are Alexa Fluor 594 (1:400, anti-

rabbit, Invitrogen) and Alexa Fluor 488 (1:200, anti-mouse, Invitrogen). Tissue sections 

are alternately double-stained for VP16/GFAP and VP16/Vimentin in SRF+ astrocyte 

implanted animals, for GFAP and Vimentin in GFP astrocyte implanted animals and for 

Flag/GFAP in SRF- astrocyte implanted animals. Sections are visualized in a Leica 

TCS-SP2 AOBS confocal laser scanning microscope for colocalization of 

VP16/GFP/Flag with GFAP/Vimentin. 
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Results 

  

 We confirmed the purity of our astrocyte cultures by observing expression of 

vimentin (Dako) and GFAP (Dako) in almost all of the cells (Figure 12). Quantification 

showed that ~98% of the cells could be identified as astrocytes, Similar purity of 

astrocytes were obtained by different groups using the same protocol (Coco et al., 

2003; Guizzetti et al., 1996).  We also found that the Sindbis virus robustly transfects 

astrocytes in culture. We used an antibody against VP16 (Santacruz) to identify the 

expression of the SRF-VP16 transgene (Paul et al., 2010) (Figure 13).  

 

Figure 12. Immunohistochemistry for vimentin (red) and GFAP (green) confirms that the astrocyte 

cultures are pure. In A, the cultures are stained for Vimentin and DAPI. Quantification was done using 9 

images from 3 different culture wells, which showed that 98% of the cells are vimentin-positive. In B, the 

same astrocytes also express GFAP (marker for mature astrocytes). 
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 After transfecting the cultured astrocytes by SRF+, SRF- or GFP, cells were 

implanted in the left visual cortex of the alcohol-exposed animals. One day after the 

astrocyte implantation, the right eye of the animal was monocularly deprived for 4 days. 

After the period of MD, the deprived eye was opened and optical imaging of intrinsic 

signals was conducted on the left primary visual cortex.   

 

Figure 13.  VP16 immunoreactivity reveals that astrocytes show robust expression of SRF by the Sindbis 

virus particles after 24 hours of transfection. 

 

Figure 14A shows the left visual cortex of representative cases from each group 

of animals. Dark and light areas in OD maps represent regions that responded 

preferentially to the stimulation of the right and the left eye, respectively. In the 

magnitude maps, dark regions represent the strength with which each area responded 

to visual stimulation of each eye. As expected, MD in saline-treated control animals 

showed a clear shift in ocular dominance towards the left experienced eye, as evident 

by the predominantly light regions in the V1 area of the OD map. Notably, we saw a 

similarly prominent OD shift following MD in alcohol-exposed animals that were 

implanted by astrocytes expressing SRF+ (Figure 14A), indicating that plasticity was 
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restored. In contrast, alcohol-exposed animals that were implanted with astrocytes 

expressing SRF- or GFP continued to show responses from both eyes following MD, as 

evident from the presence of comparable amounts of light and dark areas in V1. This 

also confirmed our previous findings that early alcohol exposure impairs OD plasticity 

(Medina et al., 2003; Medina and Ramoa, 2005). To quantify the OD profile of each 

animal from the OD map, we obtained a histogram of intensity distribution of the pixels 

in the V1 area in a 0-255 grayscale.  

 

Figure 14.  Optical imaging of intrinsic signals. It shows that implantation of astrocytes that 

overexpress SRF restores ocular dominance plasticity in alcohol-exposed animals. A, The first column 

shows ocular dominance maps of representative cases of each experimental group. Dark and light areas 

represent regions dominated by the right and left eye respectively. In animals implanted by the SRF-
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overexpressing astrocytes (SRF+), monocular deprivation of the right eye resulted in a shift in dominance 

towards the left eye. In contrast, in animals implanted by astrocytes that overexpressed either GFP or the 

dominant-negative form of SRF (SRF−), the deprived eye remained responsive. B, Histograms display 

the percentage of pixels fitting in a grayscale (0-Black, 255-white). Note the predominance of lighter 

pixels in animals implanted by the SRF+ astrocytes, which indicates left (experienced) eye dominance. In 

contrast, note the predominance of black and gray pixels in animals implanted by astrocytes that were 

overexpressing either GFP or a dominant negative form of SRF, which indicates that the right (deprived) 

eye is still responsive. Saline/MD, n = 2; ET/SRF+Ast/MD, n = 4; ET/GFP Ast/MD, n = 4; 

ET/SRF−Ast/MD, n=4. C, Mean contralateral bias indexes for all groups. ET/SRF+Ast/MD animals 

presented significantly lower CBIs than ET/GFP Ast/MD or ET/SRF−Ast/MD. The statistical significance 

was established using one-way ANOVA followed by Bonferroni post-hoc analysis (*,p< 0.05 versus 

Sal/MD. ##, p<0.01 versus ET/SRF+Ast/MD). These findings indicate that overexpression of SRF in 

astrocytes can rescue plasticity in alcohol-exposed animals. 

 

We then divided this grayscale into 5 class intervals, where 0-51 and 205-255 are 

classes containing the darkest and lightest pixels, respectively. An average histogram 

distribution was calculated by combining the values of all the animals in each group 

(Figure 14B). Accordingly, after 4 days of MD of the right eye in the saline-treated 

animals, the OD histogram was skewed towards the right, indicating the dominance of 

responses from the left experienced eye. The alcohol-exposed animals that were 

implanted by the SRF+ astrocytes also presented an OD histogram skewed similarly 

towards the right following same period of MD of the right eye, indicating restoration of 

normal OD plasticity. In contrast, alcohol-exposed animals that received astrocytes 

expressing either GFP or SRF- did not show this shift, indicating that they continued to 
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show good responses from the deprived eye. In order to further quantify these 

differences, we created a contralateral bias index (CBI), which is calculated as follows: 

[(P0-51 – P205-255) + {(P52-102 – P154-204)/2} + 100]/200, where PA-B denotes the percentage 

of pixels with gray values between A and B. A CBI has values between 0 and 1. Lower 

CBI values indicate prevalence of lighter pixels and left eye dominance. Higher CBI 

values indicate prevalence of darker pixels and right eye dominance. A one-way 

ANOVA followed by Bonferroni post-hoc analysis showed that alcohol-exposed animals 

that were implanted by the SRF+ astrocytes had significantly smaller CBI values than 

the alcohol-exposed animals that received astrocytes expressing either GFP or the 

SRF- (p<0.01) (Figure 14C).  

To confirm the successful implantation of the astrocytes in the visual cortex, we 

perfused the animals after optical imaging experiments, sectioned the visual cortex 

coronally and then identified the implanted astrocytes by using immunohistochemistry 

and confocal microscopy. Implanted cells could still be observed after 5 days of 

implantation (Figures 15A and B). Figure15C shows a highly magnified image of an 

implanted astrocyte expressing SRF. To further investigate the initial spread of 

implanted cells, an additional animal was perfused after 24h of implantation. Figure 16 

shows the track of two implantation injections in a coronal section of the visual cortex as 

seen by the expression of the SRF-VP16 transgene. Figures 17A and B show the 

spread of implanted astrocytes in an adjacent section. Astrocytes were observed in all 

cortical layers and in the white matter. The reduced number of cells observed after 5 

days of implantation compared to 24h (compare Figs. 15A with 17A), suggests that 

implanted cells are labile.  
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Figure 15. Spread of implanted astrocytes after 5 days, as shown by A, the expression of SRF-VP16. 

B, A higher magnification showing the cells express GFAP. C, An implanted astrocyte expressing SRF.  
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Figure 16. Spread of implanted astrocytes after 24 h. A coronal section of the visual cortex showing 

the track of the two injections 24h after implantation. The two injections were administered from the dorsal 

surface. It shows the spread of the implanted cells as seen by the expression of the SRF-VP16. 
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Figure 17. Many of the implanted cells show good colocalization with GFAP. A, Spread pattern of 

the implanted astrocytes after 24h, expressing SRF-VP16 (same image as figure 16). B, A higher 

magnification of one of the injection sites in the boxed area of A. C, Many of the VP16 positive implanted 

cells can be identified as astrocytes by their colocalization with GFAP, as shown by magnifying the boxed 

area in B. 
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Discussion 

 

 In this study, we showed that implantation of astrocytes that overexpressed SRF 

led to restoration of OD plasticity in alcohol-exposed ferrets. These findings support our 

previous study (Paul et al., 2010) and suggest that the expression of the transcription 

factor in astrocytes is sufficient to reverse the detrimental effects of early alcohol 

exposure in the visual cortex plasticity. 

Confirming our previous findings, the optical imaging showed that the plasticity 

was restored in an extended visual area (Paul et al., 2010). Since the implanted 

astrocytes were restricted around the injected sites, it strongly suggests that astrocytes 

might be releasing neuroactive products over a wide cortical area upon activation by 

SRF. The capacity of astrocytes to produce effects in extensive areas has been 

previously demonstrated. Implantation of astrocytes that were made to constitutively 

overexpress glial cell line-derived neurotrophic factor (GDNF) using retroviral plasmids 

or lentiviral vectors, provided widespread protection of dopaminergic nigrostriatal 

neurons in mouse or rat models of Parkinson’s disease (Cunningham and Su, 2002; 

Ericson et al., 2005). Interestingly, GDNF levels were found to be increased in brain 

regions both proximal and distal to the implantation site and even in the contralateral 

hemisphere, even though astrocyte migration away from the site did not occur. 

While astrocytes cannot fire action potentials, they are responsive to neuronal 

activity and can influence neurotransmission. In-vivo studies have shown that astrocytes 

in the olfactory, somatosensory and visual cortex respond to sensory activity by 

transient Ca2+ increases (Schummers et al., 2008; Petzold et al., 2008; Wang et al., 
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2006). Moreover, astrocytes express a wide variety of neurotransmitter receptors, which 

upon stimulation activate phospholipase C that in turn produce inositol triphosphate 

(IP3). IP3 induces the release of Ca2+ from the intracellular stores (Fellin, 2009; Araque 

et al., 2002). The Ca2+ signal can propagate to neighboring astrocytes as intercellular 

Ca2+ waves via gap junctions involving multiple cells in an extensive area (Cornell-Bell 

et al., 1990; Scemes and Giaume, 2006; Agulhon et al., 2008). Besides being 

connected to each other, astrocytes also directly contact nearby neurons at thousands 

of synapses (Bushong et al., 2002) to process synaptic transmission and plasticity 

(Perea et al., 2009; Stevens, 2008). Intracellular calcium elevations can also stimulate 

the release of neurotransmitters from astrocytes, as has been described for glutamate 

(Reyes and Parpura, 2009), ATP (Coco et al., 2003) and D-serine (Mothet et al., 2005). 

Glutamate and ATP released from astrocytes has been shown to signal to other 

unconnected synapses by diffusing through the neuropil (Navarrete and Araque, 2010; 

Serrano et al., 2006).  

Astrocyte-released molecules have been shown to be important for various forms 

of neuronal plasticity. A prototypic form of plasticity, LTP, has also been shown to be 

influenced by the release of D-serine from astrocytes (Henneberger et al., 2010). 

Moreover, astrocyte-secreted thrombospondins, which is a product of SRF activation 

(Framson and Bornstein, 1993), has been found to be responsible for synaptic plasticity 

and functional recovery after stroke (Liauw et al., 2008a). Another study demonstrated 

that the release of TNFα from astrocytes contributes to homeostatic plasticity by 

synaptic scaling (Stellwagen and Malenka, 2006). Mostly importantly, a report showed 
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that the TNFα-mediated synaptic scaling is involved in OD plasticity (Kaneko et al., 

2008).  

It is quite established that astrocytes can produce several proteins that are 

regulated by SRF. However, it is puzzling that the basal levels of this transcription factor 

are very low in astrocytes in vivo (Knoll and Nordheim, 2009; Paul et al., 2010). One 

possibility is that SRF is expressed in astrocytes only when a particular set of proteins 

need to be produced. This possibility is supported by the fact that SRF can regulate its 

own transcription, which could lead to a rapid increase of the levels of this transcription 

factor in a positive feedback manner (Philippar et al., 2004). Another more speculative 

possibility is that astrocytes have a variant of SRF that cannot be identified by the 

commercially available antibodies. 

In conclusion, our study shows that enhancement of SRF function in astrocytes 

can rescue neuronal plasticity that is impaired by early alcohol exposure. It supports the 

prevailing theory that astrocytes actively process and modulate neuronal functions by 

releasing various kinds of neuroactive substances. Future studies investigating what 

molecules and what mechanisms underlie the restorative effect seen here may 

contribute to the development of new interventions to improve neuronal plasticity in 

FASD. 
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Chapter 4 - Conclusion and future directions 

 

 

In the first part of this project, we used a Sindbis viral vector to overexpress a 

constitutively active form of the transcription factor SRF in ferrets exposed to early 

alcohol exposure. Using optical imaging of intrinsic signals in tandem with extracellular 

electrophysiology (single-unit recordings) we showed that overexpressing SRF restored 

OD plasticity in a large area of the visual cortex in the experimental animals. 

Importantly, OD plasticity was still impaired in alcohol-treated animals that received the 

dominant negative form of SRF or the control GFP. Interestingly, we found that the 

Sindbis virus transfected mostly astrocytes and only a few transfected cells could be 

identified as neurons. This suggested a role of astrocytes in the SRF-mediated rescue 

of plasticity. But we could not discard the possibility of a role of the few transfected 

neurons in this restorative effect.  

In the second part, we investigated whether the enhancement of SRF function 

exclusively in astrocytes is sufficient to rescue the impairment in visual plasticity. Here 

we first transfected cultured astrocytes with the Sindbis SRF+ virus in vitro. Then we 

implanted these astrocytes into the visual cortex of ferrets that had been exposed to 

alcohol during the third trimester- equivalent of human gestation. Using optical imaging 

of intrinsic signals we found that implantation of 'SRF overexpressing' astrocytes 



 

81 

 

restored the plasticity deficit in our FASD model. Again, even though the implanted 

astrocytes were restricted to the injection sites, the plasticity was restored in an 

extensive visual area.  

 

General Hypothesis 

 

 The overall finding from the two parts of the project can be summarized as - 

overexpression of SRF in astrocytes results in a widespread restoration of OD plasticity 

in ferrets subjected to early alcohol exposure. This has led us to the following two 

working hypotheses regarding why plasticity was restored and why this effect was 

observed in an extensive area. In the first, we hypothesize that the SRF dependent 

restoration of plasticity is due to a cell-to-cell signaling. In the second, we hypothesize 

that this restoration is due to the production and release of SRF dependent molecules in 

the neuropil. 

 Upon stimulation by SRF, astrocytes may activate some plasticity-enhancing 

factors which spread from one to cell another through physical connections, thus having 

a cascading effect on astrocytes and neurons of a large area. This possibility is 

supported by the fact that astrocytes contact other astrocytes and neurons by gap 

junctions (Fellin, 2009; Rouach et al., 2004). Moreover, astrocytes form a highly 

interconnected network and propagate calcium signals over large distances (Fellin, 

2009). Importantly, these calcium signals can be triggered by changes in sensory 

activity, including visual stimulation (Schummers et al., 2008; Wang et al., 2006).  
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 Alternately, SRF activation may induce signaling pathways in astrocytes to 

produce and release neuroactive substances, which can diffuse through the neuropil 

and enhance plasticity in a wide area. The immense secretory capacity of astrocytes 

has been demonstrated previously. In one such experiment, ‘GDNF-overexpressing’ 

astrocytes were implanted in one cerebral hemisphere, and increased levels GDNF 

were detected even in the contralateral hemisphere in the absence of astrocyte 

migration (Cunningham and Su, 2002). Some of the plasticity-related factors  that are 

known to be secreted by astrocytes include glutamate, GABA, ATP, D-serine, BDNF, 

NGF,  thrombospondins, TNFalpha and components of extracellular matrix like matrix 

metalloproteinases (MMP) and chondroitinsulphate proteoglycans (CSPG) 

(Henneberger et al., 2010; Liauw et al., 2008a; Beattie et al., 2002; Reyes and Parpura, 

2009; Lee et al., 2011; Jean et al., 2008; Zhang et al., 2003; Faissner et al., 2010; Ralay 

Ranaivo et al., 2011; Middlemiss et al., 1995). While many of these molecules affect 

plasticity by modulating synaptic physiology (Jourdain et al., 2007; Henneberger et al., 

2010), some are involved in structural remodeling of synapses (Faissner et al., 2010). 

Among these, BDNF, NGF, thrombospondins and MMPs-2 and -9 are most probable 

candidates as they can be produced following activation of SRF (Chai and Tarnawski, 

2002; Etkin et al., 2006; Middlemiss et al., 1995). In addition, alcohol exposure has 

been shown to perturb the secretory capacity of astrocytes (Tomas et al., 2005). It was 

demonstrated that ethanol exposure led to retention of proteins in various stages of the 

secretory pathway (RER-Golgi-plasma membrane), causing delay in their release.  This 

impairment occurred because of alcohol-induced alteration of Golgi complex 

morphology, downregulation of the proteins required for vesicular trafficking and 
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disruption of microtubule assembly.  In this case, the ‘SRF overexpressing’ implanted 

astrocytes might be compensating for the damaged endogenous astrocytes. 

Both of these hypothetical processes might occur simultaneously, which could 

have a synergistic effect on the spread plasticity. 

 

Future directions 

  

Investigation of morphological and functional contacts between implanted and 

endogenous astrocytes 

One way to refute the 'cell-to-cell' hypothesis would be to demonstrate that the 

implanted astrocytes are not incorporated into the astrocytic network. Since the 

implanted astrocytes remained in the brain for only five days before we assessed OD 

plasticity, it is conceivable that they never grew functional processes and never formed 

gap junctions with adjacent cells. If this is the case, the restorative effect caused by 

SRF may not be caused by a cell-to-cell transmission, favoring our alternate hypothesis 

of the release of plasticity-related molecules in the neuropil. A possible experiment 

would be to make cultured slices from animals that were implanted with GFP-

transfected astrocytes. After locating an implanted cell, we can inject a dye that is small 

enough to pass through gap junctions (such as Fluorescein, Lucifer yellow or biocytin 

(Schools et al., 2006)) and observe the extent to which the dye reached the other 

endogenous cells. If we do not find any dye in the neighboring cells, this should indicate 

that the implanted cells were not incorporated in the network and the cell-to-cell 
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mechanism hypothesis would be unlikely. If we find the dye to spread out to other cells, 

it can provide a structural substrate for the spread of plasticity. 

 In order to show functional connectivity between the implanted and endogenous 

astrocytes, we can also implant GFP-transfected astrocytes into the visual cortex and 

make slice cultures as mentioned before. Then we can load the slices with calcium 

indicator dyes, like Fluo-3 or Oregon Green Bapta (Schummers et al., 2008; Charles et 

al., 1991b). We can then stimulate the implanted cell electrically or mechanically to 

activate it. Electrical or mechanical stimulation of astrocytes by using micropipettes 

have been used previously to produce calcium waves in neighboring astrocytes 

(Charles et al., 1991a; Rao and Sikdar, 2007; Araque et al., 1998). We can visualize the 

extent of increase in calcium activity in the neighboring astrocytes by using two-photon 

microscopy.  

 It is important to emphasize that even if we observe functional connectivity 

between implanted and endogenous cells, we cannot discard the alternate hypothesis 

of secretion of diffusible proteins from astrocytes.  

 

Investigation of release of molecules from implanted astrocytes 

In order to probe the possibility of secretion of SRF dependent molecules into the 

neuropil, we can implant astrocytes transfected by Sindbis SRF+ virus and loaded with 

radioactive amino acids like 35S-methionine or 3H-leucine (Barbin et al., 1988; Mellon 

et al., 1989). We can then implant these cells in the visual cortex. The radioactive amino 

acids would be incorporated in the proteins made by these astrocytes. If these proteins 

are released into the neuropil, we would be able to visualize the extent of their spread 
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using autoradiography (Plunkett et al., 1989). We can also counter-stain the slices with 

markers for astrocytes or neurons to detect if these proteins are taken up by 

neighboring cells. We can compare the extent of the spread of radioactivity by 

implantation of ‘SRF expressing’ astrocytes versus the control astrocytes.  

Another way to show that implanted astrocytes are releasing plasticity factors is 

by infusing conditioned media from the cultured SRF transfected astrocytes into the 

visual cortex of alcohol-exposed animals during the period of MD. This could be 

accomplished by an intracortical infusion using an osmotic minipump. A possible pitfall 

of this experiment is that the SRF dependent plasticity-related molecules might be found 

in the media in very low concentrations. We can circumvent that possibility by using 

filtration devices to produce highly concentrated media. 

 

Investigation of candidate plasticity factors released by astrocytes  

As mentioned before, some of the different class of plasticity-related factors that 

are known to be released by astrocytes are neurotransmitters (Lee et al., 2011; 

Montana et al., 2006; Panatier et al., 2006), neurotrophic factors (Jean et al., 2008), 

cytokines (Beattie et al., 2002) and other kinds of secreted extracellular proteins 

(Christopherson et al., 2005). Indeed, SRF activation has been shown to be involved in 

the production of some of these plasticity-enhancing molecules (Chai and Tarnawski, 

2002; Etkin et al., 2006; Middlemiss et al., 1995).  

In order to identify plasticity-related factors that are being released by astrocytes 

upon activation by SRF, we can collect the media from the astrocyte cultures that have 

been transfected by the SRF+ virus or the control GFP virus. We can then perform a 
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multiple antibody ELISA on the media by using a set of antibodies against the most 

probable proteins that might be released from astrocytes. An ideal set of antibodies 

would consist of a mix of neurotransmitters, neurotrophic factors, cytokines, matrix 

metalloproteinases and CSPG proteins, which are known to be released by astrocytes. 

We would compare the results of the SRF media and the control media (both SRF- and 

GFP) to determine candidate molecules. Multiple antibody ELISA kits are available 

commercially (www.raybiotech.com) and they can be custom made to detect different 

class of proteins. 

 

Investigation of the requirement of neurons in restoration of OD plasticity 

 Finally, in order to prove that astrocytes are necessary for the SRF mediated 

restoration of plasticity, we have to show that 'SRF overexpressing' neurons cannot 

restore OD plasticity in alcohol-exposed ferrets. In order to accomplish that we have 

acquired a new HSV virus that overexpress the same constitutively active form of SRF 

(HSV-SRF+) from Rachael Neve of MIT. This virus transfects mostly neurons in the 

ferret visual cortex (Figure 18). If overexpression of SRF in neurons is unable to rescue 

OD plasticity, it would mean that astrocytes are necessary for the restoration. It is 

possible that astrocytes have different cofactors that together with SRF lead to 

expression of specific proteins. If, on the other hand, the 'SRF overexpressing' neurons 

restore OD plasticity, we can say that both astrocytes and neurons are capable of 

restoring plasticity by themselves. Although this conclusion might attenuate the 

cruciality of astrocytes, our previous findings still show a role of astrocyte-to-neuron 

communication in process of neuronal plasticity          
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In conclusion, successful identification of the factors involved in the SRF 

mediated plasticity restoration would unravel a previously unknown role of astrocytes in 

neuronal plasticity. It might also bring us one step closer to finding potential therapeutic 

avenues for curing neurobehavioral deficits observed in FASD.                         

    

 

 

Figure 18. A, The HSV-SRF+ virus transfects neurons in the visual cortex of ferrets, as shown the 

expression of GFP tagged to the SRF-VP16 sequence.  B, A highly magnified image showing a pyramidal 

neuron transfected by the HSV virus. Note the colocalization between GFP and NeuN. 
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