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Periodontitis affects 10 to 15 percent of most adult populations and can contribute to 

numerous systemic diseases.  Porphyromonas gingivalis, a gram-negative anaerobic bacterium, 

is a recognized prime causative agent in periodontitis.  Studies have shown a number of small 

non-coding RNAs (sRNAs) have been related to bacterial virulence.  Many of these sRNAs 

require the facilitation of the bacterial Sm-like protein, Hfq, for optimum function.  Hfq is a RNA 

chaperone involved in RNA stability, sRNA function, and polyadenylation.  Mutants lacking in 

Hfq often show pleiotropic phenotypes, although the extent and severity of hfq null 

phenotypes is often species-specific.  Hfq has been encoded by nearly half of eubacteria, 

including pathogens.  Based on a standard BLAST search, hfq has not been detected in P. 

gingivalis.  It is highly likely, however, that the bacterium possesses an Hfq homologue due to 

its importance as an overall RNA cofactor.  The P. gingivalis hypothetical protein, PG0228, 

possesses the Sm-like protein motif, thus we believe it is an excellent Hfq candidate.  Our goal 



 

was to characterize PG0228 so we can gain a better insight into the function of this hypothetical 

protein and determine if it indeed behaves like Hfq.  Microarray analysis, growth studies, and a 

survival study were done on a Δ0228 mutant to determine the biological role of the protein 

encoded by PG0228.  PG0228 was also tagged in vivo in order to determine if the protein binds 

to RNA.  Our results show P. gingivalis deficient in PG0228 show significant similarities to other 

bacterium deficient in hfq.  The Δ0228 strain showed significant sensitivity to host defense 

mechanisms and an overall gene regulation in 15% of the genome.  In addition, the mutant is 

viable but produces a lower final cell density. Thus, we believe PG0228 is an excellent Hfq 

candidate, and suggest further studies will show PG0228 is an Hfq homologue. 
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Chapter 1: INTRODUCTION 

1.1 Periodontal Disease 

 Periodontal diseases can contribute to systemic diseases including myocardial 

infarctions, diabetes mellitus, adverse birth effects, nonhemorrhagic strokes, and 

atherosclerosis[8;40;66;77;108]. Numerous studies show the gram-negative anaerobic 

bacterium, Porphyromonas gingivalis is extremely important in initiating and progressing 

advanced periodontal diseases.  By fully understanding this bacterium and how it behaves, we 

can better treat periodontal disease by lowering levels of P. gingivalis inside the oral cavity. 

Periodontal disease is a group of infectious diseases affecting the structures surrounding 

teeth.  There are two stages of periodontal disease: gingivitis and periodontitis.  Gingivitis, 

which precedes periodontitis, is inflammation of gingival tissue resulting from accumulations of 

plaque composed primarily of bacteria along the gum lining.  Gums bleed easily during tooth 

brushing or other stimulation.  However, gingivitis is reversible with proper oral hygiene 

practices.  If left untreated, gingivitis can lead to periodontitis, the advanced stage of 

periodontal disease.  Periodontitis breaks down the supporting structures surrounding teeth, 

including periodontal ligaments and alveolar bone, leading to tooth loss[15]. 

Periodontitis affects 10 to 15 percent of most adult populations[30].  The loss of 

connective tissue surrounding the tooth increases pocket depth, a hallmark of periodontitis.  As 
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a result, the gingival tissue pulls away from the tooth enabling anaerobic bacteria to colonize in 

the sub-gingival regions[105].  This causes a larger problem because bacteria in the sub-gingival 

regions are not accessible by routine dental maintenance.  The current treatment for 

periodontitis is complete removal of the bacteria followed by treatment with antibiotics. 

Problems with the current therapy include antibiotic resistance and recurrent infections[50].  

Therefore, it is important we find new ways to treat the infections to more permanently rid the 

sub-gingival area of these aggressive bacteria. 

In severe cases of periodontitis, a highly permeable epithelial lining is the only defense 

between virulent bacteria and the host’s underlying connective tissue and blood vessels.  Once 

in the blood stream, bacterial toxins and inflammatory mediators are carried to other parts of 

the body.  Recent studies have shown there is significant evidence an association between 

periodontal infections and systemic diseases or conditions exists (see review,[28]).  It is 

suggested the periodontal pockets become a gateway for inflammatory mediators such as 

cytokines tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) to enter 

circulation, therefore linking periodontal infections with cardiovascular diseases, diabetes 

mellitus, adverse birth outcomes, and pulmonary infections [33]. 
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Figure 1.  Periodontal Diseases.  This flow chart represents the stages of periodontitis 

and examples of the systemic diseases which it is linked to. 
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1.2. Oral Microflora 

Just like other places within the digestive tract, the oral cavity houses natural microflora.  

Various bioinformatic approaches show there are over 700 species of bacteria living in the oral 

cavity[71].  These bacteria usually have beneficial properties for the host.   However, without 

proper oral hygiene, these biofilms can accumulate to levels beyond homeostasis. Oral 

microbial deposits along with extracellular components keeping microbial cells together are 

commonly referred to as dental plaques.  High level accumulations of dental plaque is 

responsible for dental caries, periodontal disease, and peri-implantitis (inflammation affecting 

tissue surrounding dental implants)[13;55].   

Bacteria were first suspected to play an important role in gingivitis and periodontitis 

starting in the 1960s (for review,[6]).  Then, it was discovered that certain bacteria in plaque are 

more important causative agents of periodontal infections.  It is not simply the number of 

plaques in the mouth but what constitutes the bacterial community.  Bacterial species 

Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter rectus, 

Micromonas micros, Streptococcus intermedius, Eubacterium nodatum, Aggregatibacter 

actinomycetemcomitans, and Prevotella intermedia were found to be important in causing 

periodontitis[6].  The three members of the red complex are Gram negative anaerobic bacteria.  

Each expresses several virulence factors allowing it to set off the host immune response[11].  It 

is essentially this host immune response that results in host tissue damage seen with 

periodontitis.  Studies have shown, the proportions of P. gingivalis, T. denticola, and T. forsythia 

from sites of periodontal disease were significantly higher than normal tissue samples and 
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therefore indicating these bacterial species are associated with local development of 

periodontitis[60].  Currently, treatment approaches for severe periodontitis includes the 

removal of these bacteria along with antibiotic treatment.  Recurrent infections are a huge 

problem with current treatment strategies because of the bacterium’s ability to become 

resistant to antibiotics[50].  Better suited approaches need to be developed to reduce the 

virulence potential of Porphyromonas gingivalis.  This can only be done once we fully 

understand this pathogenic bacterium.   

1.3. Porphyromonas gingivalis 

 Porphyromonas gingivalis is a black-pigmented, anaerobic, gram-negative bacterium 

that is a prime causative agent in periodontitis[24;50;109].   P. gingivalis is classified in the 

genus Porphyromonas, family Porphyromonadacae, order Bacteroidales, and class Bacteroides.  

It is closely related to Bacteroides fragilis, but distantly related to E. coli.  For this reason, the 

traditional E. coli model gives limited information about P. gingivalis. 

Along with diseased sites, P. gingivalis exists in healthy sites in the oral cavity such as 

the tongue, palate, and supragingival tissue[20;76].  However, the amount of P. gingivalis is 

increased in diseased and subgingival areas[63].  Several studies have stated P. gingivalis 

produces many virulence factors.  These factors modulate the host immune system and cleave 

or degrade host cell proteins and surface receptors.  This suggests that there is a delicate 

balance between the bacterium and the oral mucosa allowing the organism to commensally co-

exist with its host (see review,[109]).   
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 Pathogenic P. gingivalis can adhere to, penetrate, and replicate in its host.  The host’s 

first line of defense is epithelial tissue.  Epithelial cells have the ability to recognize and 

eliminate infections before causing harm to the host. However, P. gingivalis has developed 

ways to successfully remain viable within epithelial cells and cause severe problems.  Studies 

show the colonization of bacteria such as P. gingivalis in epithelium causes the gingival tissue to 

secrete inflammatory cytokines and antimicrobial peptides setting off host immune 

response[41].  Furthermore, P. gingivalis can replicate within the epithelium at high levels.  

However, despite the number of intracellular bacteria, Porphyromonas gingivalis are able to 

inhibit gingival epithelial cell apoptosis[110]. 

Colonizing P. gingivalis is significantly stressed when exposed to the host environment.  

The bacteria must regulate its gene expression of virulent genes to survive in torturous host 

conditions.  Sensing and responding to changes in pH, temperature, oxygen exposure, 

osmolarity, and redox potential allows for optimal growth and survival in host tissue[29].  It is 

crucial virulence genes are turned on and off during infection by gene regulation.   

Understanding gene regulation and expression in Porphyromonas gingivalis will provide better 

information on periodontal disease pathogens. 

1.4. Gene Regulation in Porphyromonas gingivalis 

The complete genome sequence of P. gingivalis strain W83 has been identified by the 

Institute for Genomic Research[68].   Less is known, however, about its gene regulation.  

Studies have shown there is expression of oxidative stress genes controlled by OxyR, a 

regulatory protein, shortly after host infection[43].  RprY regulates genes involved in transport 
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or oxidative stress[22].  Another gene, designated regT, is suggested to be involved in 

regulating activity of major proteases at higher temperatures, called gingipains, which are 

important in oxidative stress[99].  vimE (virulence-modulating gene E) is involved in modulating 

the protease activity[100].  Despite these suggested modulators, gene and protein regulation 

and activation in Porphyromonas gingivalis remains poorly understood.  It is extremely unlikely 

these few regulators are the only ones present in P. gingivalis. 

1.5. Regulatory small RNAs (sRNAs) 

Strands of RNA look similar to DNA at first glance.  However, functionally, these nucleic 

acids are very different.  RNA consists of a uracil instead of thymine and has a hydroxyl group at 

the 2’ position of the aldopentose.  DNA is double stranded leaving little room for conformation 

changes.  On the other hand, most RNA is single stranded allowing it to fold.  The ability for RNA 

to fold back on itself produces diverse structures which allow RNA to carry out several 

important cellular functions. 

 Regulatory bacterial small ribonucleic acids (sRNAs), also known as non-coding RNAs, 

are not translated into proteins. They are found in both prokaryotes and eukaryotes [7] but 

small RNAs are not ribosomal, transfer, or messenger RNAs.   It is accepted most sRNAs are vital 

post-transcriptional regulators of gene expression in response to environmental changes and 

may be involved in numerous cellular processes including cell development, growth, 

differentiation, and death by turning genes on and off[1;16;46].   

Pathogenic prokaryotic sRNAs have recently become a hot topic because some have 

been related to bacterial virulence.  It is suggested less energy is expelled by the cell using 
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sRNAs compared to synthesizing bulky regulatory proteins in response to environmental 

stress[4].  Because these RNAs are small and untranslated, they are more cost effective which 

allows for a fast response to external stimuli and fast recovery once the external stimulus is 

removed[82]. 

 In the past, gene regulation research has focused on transcriptional regulation and 

protein-protein interactions.  However, small RNAs regulate gene expression at the post 

transcriptional level by base pairing with mRNA transcripts.  This binding of sRNA with mRNA 

influences translation or mRNA stability therefore upregulating or downregulating gene 

expression[72].  

Small RNAs have been extensively studied in species like Escherichia coli.  These 

molecules range from 50-400 nucleotides long and many are evolutionary conserved.  So far, 

there have been about 80 known sRNAs identified just in E. coli.  For example, OxyS RNA acts as 

a global regulator and is activated in response to oxidative stress in E. coli.  By an antisense 

mechanism, OxyS regulates the expression of as many as 40 genes, including the rpoS σ subunit 

of RNA polymerase and fhlA.   OxyS regulates fhlA by pairing with a short segment of the Shine-

Dalgarno sequence blocking ribosome binding[5].  DsrA is another example of a sRNA 

discovered in E. coli.  DsrA regulates two transcriptional regulators: HN-S, a histone-like protein 

that silences several bacterial genes, and RpoS σ, the stationary phase sigma factor of RNA 

polymerase[4].  These are just two examples of sRNA and already there are two levels of 

regulation for just RpoS σ. The sRNA can regulate one or many target genes.  Plus, the mRNA 

targets can be regulated by several sRNAs creating extensive overlap, further complicating the 
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global regulation.  However, the molecular functions of many of these sRNAs are still not 

known[82].  Plus, even though sRNAs in E. coli have been extensively studied, little is known 

about sRNAs among distant species, specifically Porphyromonas gingivalis[72]. 

Binding sRNA with their mRNA targets influences translation or mRNA stability.  The 

antisense sRNA regulators are either cis or trans-acting.  The RNA-encoding gene overlaps with 

the target gene in cis regulators.  There is only one target gene and there is complete 

complementarity between the regulator and target. On the other hand, trans-acting regulators 

are found at loci distant to their target genes.  Trans regulators are not completely 

complementary and regulate by imperfect duplexes.  The imperfect complementation of trans-

acting sRNAs with specific mRNAs allows these sRNAs to regulate multiple targets[4].  Plus, 

extensive research has revealed there is a crucial third party to this equation, proteins.  Specific 

proteins, notably Hfq, interact with the sRNAs acting as a catalyst, induce sRNA changes in 

conformation, or are sequestered by the sNRA to inhibit protein action.  

1.6. Sm Family of RNA-Associated Proteins 

 The Sm protein family consists of Sm and Sm-like proteins that bind to RNA in bacteria, 

Archaea, and eukaryotes.  These proteins assemble in heteromorphic or homomorphic six or 

seven member ring complexes.  The Sm family is characterized by the Sm motif which allows 

the protein to bind to its neighboring subunits to form a central pore.  The central pore binds to 

short uracil-rich stretches of RNA[95]. 

 Sm proteins were first discovered in the 1960s.  A patient, Stephanie Smith, diagnosed 

with systemic lupus erythematosus (SLE), produced antibodies to a set of proteins in the 
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nucleus.  The proteins were given the name, Sm, in her honor.  It was later discovered these 

eukaryotic proteins formed protein-RNA complexes and called them small nuclear 

ribonucleoproteins (snRNPs), which are involved in a variety of RNA-processing functions.  In 

prokaryotes, structure studies reveal that Hfq possesses the Sm-motif found previously only in 

eukaryotes and archaea.   In prokaryotes, however, Hfq forms a homo-hexameric ring unlike 

the heptameric Sm rings found in eukaryotes and archaea[95]. 

1.7. Hfq protein 

Sm-like proteins are important in RNA processing, splicing, and messenger RNA decay.  

One Sm-like protein, Hfq, has been identified in bacteria and bears a striking resemblance to 

Sm-like proteins both structurally and functionally[61;78].  Hfq is an RNA chaperone involved 

RNA stability, small RNA function and polyadenylation[48].  Hfq (also known as HF-I) was 

originally identified as a host factor required for the replication of the bacteriophage Qβ-RNA in 

the 1960s[31;32;81].   Following its discovery, decades of research focused on the protein’s 

binding features[21;79].   At this time, it was suspected this highly conserved protein must hold 

an important role in cellular function. Why else would bacteria conserve a protein if its sole 

purpose is to allow for viral infection?  It wasn’t until the early 1990s, Hfq received significant 

attention when it was discovered that it acts as a key global regulator of gene 

expression[65;97].  New functions of this fascinating regulator are being identified all the time 

but it could be years until we fully understand its limits.   

The Hfq gene is highly conserved among bacteria but has been extensively researched in 

E. coli [90] and was first discovered as a gene regulator when geneticists disrupted the gene in 
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E. coli.  The hfq null mutant showed pleiotropic phenotypes, including decreased yields, 

increased cell size, osmosensitivity, and increased sensitivity to UV light[97].  Interestingly, 

some of these phenotypes caused by the hfq null mutant were the same as defects caused by 

rpoS (gene encodes stationary phase sigma factor, σS) mutations.  The E. coli σS activates genes 

involved in stress-protective functions including resistance against oxidative stress, UV 

irradiation, and hyperosmolarity[42].  It was then found that Hfq was involved in the regulation 

of expression of σS subunit of RNA polymerase and therefore all σS-independent genes in E. coli 

and Salmonella typhimurium[65].   The E. coli Hfq binds the sRNAs transcribed by genes rprA, 

dsrA, and oxyS.  All three of these sRNAs regulate the translation of rpoS gene, which encodes 

the σS subunit, thus having indirect control of σS translation.  

However, some pleiotropic phenotypes caused by the hfq null mutant could not be 

explained by a lack of rpoS expression indicating Hfq does more than regulate translation of 

rpoS gene.   Further experiments showed that Hfq’s interaction with other RNAs, thus allowing 

these small RNAs to interact with their targets[59;61].  For instance, Hfq represses the 

translation of E. coli ompA gene by interfering with ribosomal binding, resulting in degradation 

of ompA messenger RNA[61].  It was also shown Hfq is involved in poly(A) tail metabolism by 

stimulating polyadenylation and is essential for growth at temperatures of 45°C and 

above[9;39;96]. 

Hfq is considered to act as a global gene regulator, its primary function facilitating the 

interaction of sRNAs with their target mRNAs.  Inactivation of Hfq reduces the translation of 

stress σS factor, induces the σ E-dependent envelope stress response in Salmonella enterica and 
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E. coli, and reduces expression of the σ32 mediated cytoplasmic stress response[26;37;94].  

There have also been reports Hfq interacts with tRNAs[14].  Since then, several more sRNAs 

have been shown to associate with Hfq or need Hfq for transcriptional control of its target 

mRNAs[104].  For example, DsrA and RyhB require Hfq for their stabilization[56;83].  Hfq 

binding protects DsrA and RyhB from cleavage by RNase E, which is an endonuclease involved in 

mRNA decay and tRNA processing.  Hfq may bind to other riboregulators as well because Hfq 

may bind to the same sites as RNase E (see review,[98]).   

Hfq also directly facilitates the interaction between sRNA and their RNA target as it does 

with OxyS and Spot 42[61].  As previously stated, OxyS RNA is transcribed in response to 

oxidative stress.  Importantly, Hfq increases the efficiency of OxyS by increasing the interaction 

between OxyS and its target mRNAs by directly facilitating OxyS but Hfq does not affect OxyS 

stability.  Meaning, Hfq does not stabilize OxyS but Hfq is extremely important for OxyS to do its 

job.  OxyS downregulates the translation of rpoS and fhlA and therefore translation of rpoS and 

fhlA would be upregulated without Hfq regulation.  Moreover, the upregulation of rpoS and 

fhlA could not be restored by mutating OxyS[111].  Spot 42 regulates gene expression of the 

galactose operon by antisense mechanism on galK.  Hfq also binds to galK but Hfq does not 

change the structure of Spot 42 RNA.  It is suggested Hfq and Spot 42 RNA both bind to target 

RNA, galK, producing a complex including RNA-RNA and RNA-protein interactions[62].  The 

third gene in the galactose operon, galK, is targeted by Spot 42 RNA repressing translation.  In 

the presence of Hfq, there is a 150 fold increase in the interaction between Spot 42 and galK 

compared to the absence of Hfq. 
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Figure 2.  Examples of Hfq regulation in E. coli 
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The expression of Hfq is regulated by transcriptional and post-transcriptional control (no 

evidence for post-translational control).  Its internal promoters ensure Hfq is expressed during 

stress conditions (see review,[98]).  During stress conditions, there is a greater incidence of 

misfolded proteins intracellularly, therefore becoming detrimental to the bacteria’s health.  

Experiments also demonstrate Hfq has the ability to modulate the rate of its own expression.  

Modulation is done by decreasing the stability of its mRNA.  This suggests there is a negative 

feedback mechanism decreasing expression when Hfq accumulates[102].  The expression rate 

of Hfq during stress responses has competing results. Azam et al showed there are a large 

number of Hfq molecules per cell expressed during log phase reaching 50,000-60,000.  This 

number decreases by half during transition to stationary phase (phase when growth and death 

rate are equal)[2].  However, studies have shown Hfq is elevated during transition to stationary 

phase and times of slow growth in comparison to log phase[103].   

The function of Hfq may also be regulated by its interaction with other proteins.  Hfq 

interacts with several proteins including RNases, helicases, Rho-factor, ribosomal proteins, RNA 

polymerase in the presence of S1 protein, and poly(A)polymerase (PAP I)[17;64;89].  Hfq 

stimulates the synthesis of poly(A) tails by protecting the poly(A) tails from degradation by 

exoribonucleolytic degradation[73].  Plus, studies have shown the majority of Hfq associated 

with translational machinery inside the cell but a small percentage is present associated with 

the nucleoid.  Hfq has been identified as a DNA binding protein that affects negative 

supercoiling[93]. 
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Like it is with most proteins, the function of Hfq is related to its structure.  As stated, Hfq 

can associate with a variety of RNAs by binding to their A/U-rich sequences and is largely 

nonpolar[78].  Hfq forms a homo-hexameric ring with each subunit consisting of a five-stranded 

antiparallel β-sheet with an N-terminal α-helix[78].  It is interesting to note, even though there 

is little sequence homology between Hfq and Sm/Lsm monomers, their structures are quite 

similar.  RNA binds in a circular shape inside the pore of the Hfq hexameric protein.  The 

sequence recognized by Sm proteins is 5’-AUUUUUG-3’ and it binds to six binding pockets 

within Hfq’s pore (excluding the 3’G).  Although there have been specific sequences identified 

for Hfq targets ompA, DsrA, OxyS, and Spot 42, no single motif has been identified.  There are 

two proposed mechanisms of how Hfq-RNA interactions allow for Hfq to act as a facilitator of 

RNA.  First, the target site of single-stranded RNA is unwound when interacting with the pore of 

Hfq, most likely destabilizing surrounding nucleotides on the RNA strand.  This would allow for 

these surrounding RNA nucleotides to create new RNA-RNA interactions.  Second, there are six 

identical binding pockets within the Hfq pore which would suggest Hfq can bind to more than 

one RNA at a time.  This would jumpstart interactions between sRNAs and their target mRNAs if 

both bound to the Hfq facilitator (See review,[98]).   
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Figure 3.  Structure Summary of Hfq From Pseudomonas aeruginosa.  Structures from the (a) 

front and (b) side are shown.  The sequence and alignment (c) of all six sequences are also 

shown.  Information has been taken from NCBI (http://www.ncbi.nlm.nih.gov/Structure). 

(a) 

(b) 

(c) 
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Given the numerous studies on Hfq, one can infer Hfq acts an important cofactor for 

regulatory RNAs; for a review, see[98].  Hfq interacts with many trans-encoded RNAs.  As 

stated, these regulatory RNAs do not have complementary interactions with their targets thus 

allowing them to recognize many target strands.   Hfq enables these sRNAs to more efficiently 

act on targets by changing the RNA’s structure, affect stability, and facilitate complex 

formation. This is most likely the reason Hfq acts in such a species-specific manner, making it is 

hard to predict the exact genes Hfq will regulate within each bacterial species. 

Hfq is continually being discovered in a wide range of bacteria.  So, far, Hfq candidates 

have been identified in at least half of all sequenced bacterial genomes[18].  Among bacterial 

species, the protein varies in length from 70-100 amino acids but the Sm motif is located in the 

N-terminal in all cases implying the C terminal is not important for the function of the protein.  

Interestingly, the species Novosphingobium aromaticivorans encodes tandem Hfq sequences 

(193 amino acids) that form dimers instead of homo-hexamers.  Plus, duplicated copies of Hfq 

are found in species Bacillus anthracis and Ralstonia metallidurans[90].  Even though Hfq is 

highly conserved among bacteria, Porphyromonas gingivalis does not appear to have Hfq.  

Based on BLAST searches, there is no open reading frame encoding Hfq in P. gingivalis, 

Cyanobacteria, green sulphur bacteria, some proteobacteria, several Gram-positive bacteria, 

and Chlamydia[18].  It is unlikely this information means there are no Hfq orthologues in these 

bacteria. Several trans encoded sRNAs are highly conserved among bacteria and numerous 

studies show Hfq is imperative to their function.  Plus, the level of sequence homology is varied 

considerably within the Sm/Lsm family, including a low sequence homology between species-

specific Hfq proteins.  The motif consists of four to seven highly conserved amino acids and a 
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pattern of hydrophobic and hydrophilic residues.  Also, studies have shown different residues 

can bind to RNA.  For instance, one of the Hfq proteins in Bacillus anthracis and Ralstonia 

metallidurans contains a Lys-His sequence that binds to RNA while the other Hfq protein in 

these bacteria both contain a Lys-Gln or Lys-Arg conserved sequence.  Even though both of 

these sequences on Hfq bind RNA, a standard BLAST search would not reveal both Hfq 

proteins[98]. As stated, new Hfq candidates are being discovered with new combinations of 

sequences that still form perfect conservation of the Sm motif similar to those of the S. aureus 

and E. coli Hfq structures that were first discovered.  This further suggests the amino acid 

sequence of Hfq can differ extensively between bacterial species making it impossible to 

determine certain species don’t have Hfq based solely on a BLAST search.   Because of this 

information, we believe Porphyromonas gingivalis protein PG0228 is an excellent Hfq 

candidate.  PG0228 does not have sequence homology with “traditional” Hfq. However, 

structure analysis shows this conserved hypothetical protein has a Sm-like motif, one of the few 

things Hfq proteins from different bacteria have in common.  By characterizing PG0228 in this 

study, we will be able to determine if it indeed behaves like Hfq. 

  



19 
 

  

Figure 4a.  Presence or absence of an hfq gene in completed genomes of 

bacterial pathogens.  Data were obtained from NCBIGenome database in July 2009.  

Table has been taken from Chao et al. [18]. 
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Figure 4b.  

Summary of 

Phenotypes of 

hfq Mutants of 

Pathogenic 

Bacteria.  Table 

has been taken 

from  Chao et 

al. [18]. 
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Chapter 2: MATERIALS AND METHODS 

2.1. Project Aims 

1. Determine the biological role of the protein encoded by PG0228. 

a. PGΔ0228 mutant (abbreviated Δ0228) is generated by fusion PCR techniques.  

Areas downstream and upstream of PG0228 on the chromosome are amplified 

using P. gingivalis W83 strain genomic DNA and general PCR methods.  Then, 

ermF cassette is inserted in between the two amplified segments therefore 

deleting the PG0228 from the W83 DNA segment.  The DNA segment is ligated 

into a plasmid vector and then inserted into the W83 genome by a double cross-

over into the chromosome thus replacing PG0228 with ermF.  The 0228 null 

mutant is verified by PCR amplification, enzyme digestion, and sequencing. 

b. A growth curve is done to assess the growth of the Δ0228 mutant compared to 

the wild type.  Both the growth rates and overall densities of the two strains are 

compared. 

c. Then, changes in transcription profile are studied using microarray analysis.  

Both W83 and Δ0228 are grown under the same conditions together.  Their RNA 

is isolated and reverse transcribed into cDNA and labeled.  The cDNAs from both 

strains are mixed and hybridized onto microarray slides containing probes for all 
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ORF present on the W83 genome. Microarray slides are scanned and analyzed to 

identify the genes upregulated and downregulated in the Δ0228 mutant. 

d. Changes in host invasion rates and survival can be measured by a survival study.  

Epithelial cells are infected with wild type and Δ0228 Porphyromonas gingivalis 

for 30 minutes.  Bacteria sticking on the surface of epithelial cells are washed off 

and then killed with an antibiotic while internalized bacteria remain unaffected.  

Epithelial cells are then lysed and their contents are plated onto Blood agar 

plates in anaerobic conditions.  The viable intracellular bacteria grow a certain 

number of colonies, therefore indicating if PG0228 has influence on bacterial 

survival during host invasion. 

2. Determine if the protein binds to RNA 

a. The 0228-tagged fusion mutant (0228-HaLo) is also generated by fusion PCR 

techniques.  PG0228 is inserted into a Halo plasmid vector containing “tag”.  Erm 

cassette (ermF-ermAM) is then inserted.  DNA segment containing gene, tag, and 

erm is amplified by general PCR along with a segment downstream of PG0228.  

The two segments are ligated by Fusion PCR methods.  The DNA construct is 

then ligated into a plasmid vector and inserted into the W83 genome by a 

double cross-over into the chromosome.  The 0228-HaLo strain is verified by PCR 

amplification and sequencing. 

b. 0228-HaLo strain is treated with formaldehyde and immunoprecipitation is 

carried out to study RNA-protein interactions in vivo.  The cross-linked 0228/RNA 

is immunoprecipitated using the HaLoTag Resin.  The RNA bound to PG0228 is 
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then sequenced, therefore indicating if PG0228 is a RNA binding protein and if 

so, the identities of these bound RNAs.   
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Figure 5.  Project Aims.  This is a flow chart identifying the focus of this study.  

 AIM 1:  Determine the biological role of the protein encoded by PG0228 

 AIM 2:  Determine if the protein binds to RNA 
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2.2.  Bacterial Strains and Plasmids 

Porphyromonas gingivalis W83 strain was used as the wild type for this study.  This strain is 

known to contain a compliment of known virulent factors.  Strain W83 (also known as strain 

HG66) was sequenced by The Institute for Genomic Research (TIGR) and general properties can 

be found at the Los Almos National Laboratory Bioinformatics (ORALGEN) 

(http://www.oralgen.lanl.gov).  The genomic DNA sequence includes 2, 343,479 base pairs with 

a G+C content of 49%. 

For cloning purposes, the pCR2.1-TOPO Vector (Figure 6) or pFC20K T7 SP6 Flexi Vector 

(Figure 7) was mixed with the desired PCR product for ligation.  All transformations were 

performed using One Shot TOP10 Chemically Competent Escherichia coli.     

2.3.   Growth Conditions and Media 

All P. gingivalis strains were grown on blood agar plates (TSA II, 5% Sheep Blood) (BBL, 

Cockeysville, MD) containing 0.5-1% clindamycin.  The liquid cultures were grown in BHI (brain 

heart infusion, Difco Laboratories, Detroit, MI) media supplemented with hemin (2µg/mL) 

(Sigma-Aldrich, St. Louis, MO) added.  P. gingivalis was grown in anaerobic conditions in an 

atmosphere composed of 10 % Hydrogen, 10% Carbon dioxide, and 80% of Nitrogen at 37° 

Celsius. 

  

http://www.oralgen.lanl.gov/
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Figure 6.  pCR2.1 TOPO Vector.  Vector used to introduce mutant PCR fragment into TOP 10 

E. coli chemically competent cells.  The vector equals 3.9 kb and includes 3’-T overhangs for 

ligation PCR products using Taq Polymerase.  EcoRI sites flank the PCR product insertion site 

for easy excision of inserts.  The vector also contains kanamycin and ampicillin resistance 

genes for selection in E. coli. 
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Figure 7.  pFC20K (HaLoTag 7) T7 SP6 Flexi Vector.  The HaLoTag was used to introduce 

0228 with HaLoTag and ermF-ermAM  into TOP 10 E. coli chemically competent cells.  The 

vector itself is 4.4 kb.  The insertion of the PCR product (0228) is added between the SgfI 

and EcoICRI sites.  The vector can only be introduced to E. coli once the lethal barnase 

gene is replaced with the PCR gene of interest.  The vector also contains a kanamycin-

resistance gene for selection purposes.   
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Segment Name Primer Sequence Tm (°C) 

Mut1 
Mut1F 5’ GTC CCG AAA GAC GGA GAA T 3’ 55.2 

Mut1R 5’ CCC CCG GGG GCC CCC CTG TCG AAG C 3’ 75.4 

Mut2 
Mut2F 5’ GGG GGG GGG GGG GGG TAG TCA TGG 3’ 74.1 

Mut2R 5’ TTG AGG AAC TCT CCG CTT  GT 3’ 56.2 

Ext 
ExtF 5’ GGG GGG GGG GGG GGG ATC GCT GGC 3’ 73.5 

ExtR 5’ CTC TTC GGC ATC AGG AGT TC 3’ 55.3 

ermF 
ErmF1 5’ CGA TAG CTT CCG CTA TTG CT 3’ 54.8 

ErmR2 5’ CCC CCC CCC CCC CCC TTT TAC GTT TC 3’ 73.2 

PG0228 
CF2 5’ GAC TGC AGC TAG TCT AGA GCT CCC GA 3’ 66.2 

CR2 5’ GAA TCA GAT CGC AGC TGC AGG TCG C 3’ 69.1 

ermF-
ermAM 

RP-Erm 5’ GTC CAC CAT GGG AAG CTG TCA GTA GT 3’ 63.2 

FP-Erm 5’ GTC GAC ATA TGC CGA TAG CTT CCG CT 3’ 64.0 

Table 1.  Primer Sequences. 
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2.4.  Generation of P. gingivalis Mutant Strains 

Two mutant strains, labeled Δ0228 and 0228-HaLo, were constructed for the purpose of this 

study in order to characterize gene PG0228.  The Δ0228 strain was obtained for the purpose of 

characterizing a genetic knockout of PG0228 compared to wild type strain, W83.  The 0228-

HaLo was created to see if protein PG0228 is an RNA binding protein.  Each mutant strain was 

verified by gel electrophoresis, PCR, restriction enzyme digestion, and sequencing. 

Fusion PCR techniques [91]  can be used to replace genes, tag genes, or replace promoters 

by introducing the proper selective cassette, thus, was the major method used to generate 

both mutants.  For each round of PCR amplification, W83 genomic DNA was used as the DNA 

template and Platinum Taq HiFidelity Polymerase (Invitrogen, Carlsbad, California) was the 

enzyme chosen.  All PCR purifications of PCR products were done using the MinElute PCR 

Purification kit from QIAGEN (Valencia, CA) or the GeneJET PCR Purification Kit from Fermentas 

(Glen Burnie, MD).  Both worked equally well for all experiments.   

2.5. Generation of Δ0228 Mutant Porphyromonas gingivalis Strain 

P. gingivalis genomic DNA was used to amplify flanking DNA fragments (labeled Mut1 and 

Mut2 for reference).  Primers Mut1F and Mut1R (see Table 1 for primer sequences) were used 

to amplify fragment Mut1 and primers Mut2F and Mut2R were used to amplify Mut2.  The 

vector, pV2198 carries the 2kb ermF-ermAM antibiotic resistant gene cassette[27], therefore, 

was the template DNA used to amplify erm cassette.  The first 1kb of this cassette containing 

clindamycin resistance was amplified, labeled ermF, using primers ErmF1 and ErmR2.   
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The Platinum Taq DNA Polymerase High Fidelity protocol was followed with a sample size of 

25µL.  Each PCR sample contained 2.5 µL of 10X High Fidelity PCR Buffer, 0.5µL of 10mM dNTP 

mixture, 2µL of 50mM MgSO4, approximately 100ng of Genomic DNA, 0.2µL of Platinum Taq 

HiFidelity polymerase, and autoclaved, distilled water. The tubes were then capped and 

centrifuged for a short time to mix all the contents.  The thermal cycler was run for 30 cycles.  

The first cycle heated the sample to 94°C for 2 minutes.  Cycles 2-30 included denaturing the 

sample at 94°C, annealing the strands at 55°C, and extending strands for 2 minutes at 68°C.   

Next, 5µL of the PCR products were run on a 1% agarose gel electrophoresis using 1X TAE 

buffer.  For visualization of DNA strands, the gel was stained with ethidium bromide.  The 

desired PCR products were then purified using the MinElute PCR Purification kit from QIAGEN. 

The purified flanking DNA fragments from the first round of general PCR were annealed 

together through fusion PCR techniques [91] using Mut1, ermF, and Mut2 fragments as 

template DNA.  Fragment Mut1 sits upstream of ermF and Mut2 sits downstream of ermF 

totaling a length of 2.1kb.  The original primers Mut1F and Mut2R were used for amplification 

of the desired fusion PCR product.  

The Platinum Taq DNA Polymerase High Fidelity protocol was followed with a sample size of 

25µL.  Each PCR sample contained 2.5µL of 10X High Fidelity PCR Buffer, 0.5µL of 10mM dNTP 

mixture, 2µL of 50mM MgSO4, approximately 100ng of Genomic DNA, 0.4µL of Platinum Taq 

HiFidelity, and autoclaved, distilled water. The tubes were then capped and centrifuged for a 

short time to mix all the contents.  The thermal cycler was run for 35 cycles.  Cycle 1 heated the 

sample to 94°C for 2 minutes.  Cycles 2-35 denatured the sample at 94°C, annealed at 57°C, and 
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had an extension time of four and a half minutes with a temperature of 68°C.  The size of the 

PCR product was confirmed on a 1% agarose gel, and purified.  

Transformation and Cloning 

Once the desired PCR fragment was produced, the product was cloned into the pCR2.1-

TOPO Vector (Figure 6) according to the manufacturer’s protocol (Invitrogen).  First, a reaction 

containing PCR products, vector, salt, and sterile water were combined and incubated for five 

minutes at room temperature.  The reaction was then placed on ice until transformation.  The 

TOPO cloning reaction was added to One Shot TOP10 Chemically Competent Escherichia coli 

and gently mixed.  Then, the mixture was placed on ice and incubated for 30 minutes.  The cells 

were heat-shocked at 42°C for 30 seconds and transferred back on ice.  S.O.C. medium was 

added in sterile conditions.   The culture was grown at 37°C in a shaker for one hour.  The 

transformation was then spread onto a pre-warmed selective LB plate supplemented with X-gal 

and kanamycin (50µg/mL) and grown overnight at 37 °C.   

Positive white colonies were cultured in LB media overnight at 37°C in a shaker.  Plasmids 

were isolated from the E.coli using QIAprep Spin Miniprep kit and digested with EcoRI enzyme.  

The digestion incubated at 37°C for approximately 2 hrs and then separated on a 1% agarose 

gel in 1X TAE buffer.  Correct PCR plasmids were verified by sequencing done by DNA Core 

(MCV-VCU Nucleic Acids Research Facilities, Richmond, VA).   
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Electroporation of DNA into P. gingivalis 

Transformation of the desired PCR products was done using electroporation into P. 

gingivalis to obtain the Δ0228 mutant strain.  A 10µL sample of construct DNA was added to 

100µL of EP competent cells.  A control containing only EP cells was also used.  These samples 

were incubated on ice for around five minutes.  The samples were electroporated for several 

seconds at 2.5 volts.  The low range registered 400 and high range registered 800.  Immediately, 

500µL of BHI + hemin was  added to the mixtures within the anaerobic chamber to grow 

overnight.  The cultures were then plated on blood agar plates with 1% clindamycin to grow for 

up to one week.  Colonies obtained on the plates were characterized for the presence of 

correct organization of the genetic locus as described below.  

 Colonies on the blood agar plate were labeled and inoculated on two new blood agar 

plates; one plate contained 1% clindamycin antibiotic and one plate contained no clindamycin.  

The plate containing the antibiotic was left inside the anaerobic incubator.   The plate with no 

antibiotic was taken out of anaerobic conditions and was incubated at 37°C to check for aerobic 

bacterial contamination.  The positive colonies from the electroporation were also cultured into 

8mL of BHI + hemin to grow overnight.  3mL of the culture was saved at -80°C in DMSO and 5mL 

was used for genomic DNA isolation. 

Genomic DNA isolation 

 The 5mL of culture was spun down at 6000rpm for ten minutes to form a pellet.  The 

supernatant was extracted.  The genomic DNA was isolated using Puregene DNA Purification 

System (Gentra Systems, Minneapolis, MN) according to manufacturer’s protocol.  Then, 3mL of 
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lysis solution was added to pellet and mixed until cells are suspended.  The cells were lysed at 

80°C for 5 min and 15µL of RNase solution (product from Sigma-Aldrich, St. Louis, MO) was 

added to the suspension.  It was mixed by inversion, and then incubated for 15-60min at 37°C.  

Then, 1mL of protein precipitation solution was added to the lysate after solution cooled back 

to room temperature.  Mixture was then vortexed at high speed for 20 seconds to mix solution 

with cell lysate.   

Protein and cell fragments were separated from DNA by centrifuging at 6000rpm for 13 

minutes.  The supernatant containing DNA was extracted and put into clean 15mL tube 

containing 3mL of 100% isopropanol.  Contents were mixed by inverting and then centrifuged 

at 2000rpm for 3 minutes.  This caused DNA to form a small white pellet.  Supernatant was 

removed and drained on clean absorbent paper.  Next, 3mL of 70% ethanol was added to wash 

the DNA.  The sample was again centrifuged for 1min at 2000rpm.  Ethanol was removed and 

drained on clean absorbent paper.  Then, 500µL of DNA hydration solution was added and 

incubated for 1hr at 65°C and overnight at room temperature.   

The isolated genomic DNA was run through a PCR to check for correct band size.  The PCR 

was run with an annealing temperature of 57°C and extension time of 4 minutes using 

AccuPrime Taq DNA Polymerase (Invitrogen).  The size of the PCR product was confirmed on a 

1% agarose gel and then purified.  The PCR samples were verified by sequencing done by DNA 

Core (MCV-VCU Nucleic Acids Research Facilities, Richmond, VA).   
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Figure 8. Schematic Diagram of Δ0228 Strain Generation.  Upstream and downstream 

regions of PG0228 were amplified.  ermF cassette is inserted using fusion PCR.  

Desired fragment is integrated into the W83 genome by electroporation.  The map of 

PG0228 genomic locus is adapted from Oralgen (http://www.oralgen.lanl.gov). 

http://www.oralgen.lanl.gov/
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2.6. Generation of 0228-HaLo Porphyromonas gingivalis Strain 

The 0228-HaLo mutant was created in order to determine whether or not the protein 

PG0228 indeed binds to RNA.  0228-HaLo does not contain any genetic deletions and behaves 

as wild type.  0228-HaLo contains an additional manufacturer-engineered HaLoTag (1Kb) 

(Promega, Madison, WI) downstream of PG0228 and an insert of the ermF cassette (1Kb) for 

mutant selection.  The HaLoTag was added for specific protein selection by HaloLink Resin (also 

engineered by Promega) according to manufacturer’s protocol during immunoprecipitation.   

First, the primers CF2 and CR2 (see Table 1 for sequences) were used to amplify PG0228 

using general PCR.  Specific primers were selected based on manufacturer’s suggestions.  

Specific primers for PG0228 were intended to produce 3’ overhangs for easy insertion into our 

desired vector, pFC20K (HaLoTag 7) T7 SP6 Flexi Vector between SgfI and EcoICRI restriction 

sites (Figure 2.2).  The size of this PCR product was confirmed on a 1% agarose gel.  After 

pFC20K was digested with SgfI and EcolCRI, PG0228 was inserted between SgfI and EcoICRI 

sites. 

To insert the ermF-ermAM cassette into pFC20K between EcoRI and XbaI, pV2198 was 

digested with EcoRI and XbaI.  The digestion mixture incubated at 37 °C for 2 hours and was 

confirmed on a 1% agarose gel.  The 2.1kb band ermF-ermAM was extracted under UV light 

from the pV2198 digestion and purified using the MinElute Gel Extraction Kit (QIAGEN) 

protocol.  Six volumes of QG buffer per volume of gel were added.  The surrounding gel was 

dissolved with an incubation of 50°C for 10 minutes, mixing every 2 minutes.   One volume of 

isopropanol was added to the mixture, mixed, and placed into a MinElute column.  The column 
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was centrifuged for 1 minute at 14,000rpm and the flow through was discarded.  Next, 500µL of 

buffer QG was added.  The column was again centrifuged for 1 minute and flow through was 

discarded.  Next, 750µL of Buffer PE was added to wash, then centrifuged, and flow through 

was discarded.  The column was centrifuged for 2 minutes to empty out the residual buffer.  

The column was placed in a new tube and 10µL of EB Buffer was added.  The mixture was left 

for one minute and then centrifuged for one minute.  This time the flow through was kept 

because it contained the ermF-ermAM fragment. 

The plasmid pFC20K T7 SP6 Flexi Vector (Promega Corporation, Madison, WI) contains the 

HaLoTag and was also digested.  Digestion of plasmid pFC20K T7 SP6 with EcoRI and XbaI 

allowed ermF-ermAM antibiotic resistant gene to be inserted into the pFC20K vector 

downstream of the HaLoTag fusion protein.   

The DNA plasmid pFC20K T7 was then transformed into One Shot TOP10 Chemically 

Competent Escherichia coli according to the Invitrogen protocol (as described above).  Positive 

white colonies were cultured in LB media overnight at 37°C shaking.  Plasmids were then 

isolated from the E.coli using QIAprep Spin Miniprep kit (QIAGEN). 

Next, a general PCR was run to amplify the DNA of interest.  CF2 and ermR2 primers (see 

Table 1 for primer sequences) were used to amplify PG0228, HaLoTag, and ermF (ermF is only 

the first 1kb of the 2.1kb ermF-ermAM cassette containing clindamycin resistance).  The PCR 

was run at an annealing temperature of 55°C, extension time of 3 minutes, and an enzyme 

temperature of 68°C.  The size of the PCR product was confirmed on a 1% agarose gel and then 

purified.  
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The gene downstream was then added to the PCR fragment to ensure a double crossover.  

First, a general PCR was run to amplify the gene downstream of PG0228, PG0229 (nusA).  Both 

ExtF/ExtR primers (see Table 1 for sequences) were used for the PCR.   The PCR was run at an 

annealing temperature of 55°C, an extension time of 2 minutes, and at an enzyme temperature 

of 68°C.  The size of the PCR product was confirmed on a 1% agarose gel and then purified.   

A fusion PCR was then run to anneal the fragments together[91].  The fusion PCR included 

primers CF2 and ExtR, an annealing temperature of 58°C, and an extension time of 5 minutes at 

68°C.  The fragment was confirmed on a 1% agarose gel.  The product was cloned into the 

pCR2.1-TOPO vector according to the protocol (Invitrogen).  The TOPO cloning reaction was 

then added to One Shot TOP10 Chemically Competent Escherichia coli.  Positive colonies were 

cultured overnight and plasmids were isolated by mini prep.  Correct PCR plasmids were 

verified by sequencing done by Retrogen Inc. (San Diego, CA). 

The Fusion PCR products were also electroporated into P. gingivalis using the protocol 

described previously.  A fraction of the LB culture was frozen at -80°C and another fraction 

harvested for genomic DNA isolation.  The isolated genomic DNA was run through a PCR to 

check for correct band size.  The PCR was run with an annealing temperature of 58°C and 

extension time of 3 minutes using Platinum Taq HiFidelity polymerase.  The size of the PCR 

product was confirmed on a 1% agarose gel electrophoresis using 1X TAE buffer.    
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Figure 9.  Schematic Diagram of 0228-HaLo Strain Generation.  PG0228 and ermF-ermAM 

are inserted into pFC20K.  PG0228, HaLoTag, and ermF are amplified along with the 5’ of 

nusA.  Both strands are annealed together by fusion PCR.  The desired fragment is 

transformed into W83 genome by electroporation. 
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2.7.  Growth Curve of Δ0228 Mutant 

A growth curve was done to assess the growth of the mutant compared to the wild type.  

Each culture was left to grow overnight.  Quantitative results were obtained by checking optical 

density at 660nm.  Each sample was diluted to an optical density (OD660nm) of 0.1 in a total of 

7mL of BHI + hemin media.  Both W83 and Δ0228 were grown in triplicates.  The growth was 

measured for 24hrs in 4hr increments (8hrs for the 16-24hr time block).    

2.8.  Microarray Analysis of Δ0228 Mutant 

RNA Isolation 

        Overnight cultures of W83 and Δ0228 were diluted to an OD660nm of 0.2 and grown to an 

OD660nm of 0.5.  First, 5mL cultures were collected by centrifugation for 15 minutes @4°C, and 

spun at 6000rpm. Cells were then saved in -80°C freezer.  Total RNA was isolated from pelleted 

cultures (protocol from Karl M. Thompson, Ph.D.).  Pellets were resuspended in 500µL of 1X 

lysis buffer and placed on ice.  An equal volume of hot acid phenol-chloroform was added to 

samples.  Then, samples were placed on a heat block at 65°C for 10 minutes.  Solution was 

mixed by inversion every two minutes during heating process.  Samples were spun for 10 

minutes at 10,000rpm.  The supernatant was transferred to a new Eppendorf tube, and then 

mixed with an equal volume of acid phenol-chloroform. This step was repeated until there was 

no interface visible.   

       The sample was then mixed with two volumes of ice cold 100% ethanol and precipitated at 

-80°C overnight. The mixture was spun at 14,000rpm for 30 minutes at 4°C.  Supernatant was 
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discarded and pellet was washed with ice cold 70% ethanol. Residual ethanol was removed.  

The RNA pellet was resuspended in RNase free water and saved at -80°C.   

 cDNA Generation 

       Then, cDNA was generated using the Fairplay III Microarray Labeling Kit (Stratagene Co.).  

The RNA concentration was determined with the NanoDrop Spectrophotometer by Thermo 

Fischer Scientific.  3µL of Random primers were added to 10ug of W83 and Δ0228 RNA samples.  

The volume of the samples was brought up to 15µL with RNase free water.   Samples were then 

incubated at 70°C for 10 minutes.  Samples were cooled to room temperature.  2.2µL of 10X 

Affinity Script RT buffer, 1µL 20X dNTP mix, 1.5µL 0.1M DTT, 0.5µL RNAse block, 2µL Affinity 

Script HCRT, and 2µL Superscript III (Invitrogen) Reverse Transcriptase were added.  The 

mixture was incubated overnight at 42°C.  The next day, 10µL of 1N NaOH was added.  The 

mixture was incubated for 10 minutes at 70°C.  Samples were cooled to room temperature.  

10µL of 1M HCl was added to neutralize the reaction.  The DNA was isolated using MinElute 

PCR Purification kit from QIAGEN.  During wash step, fresh TIGR was buffer was used instead of 

buffer supplied by QIAGEN.  The TIGR wash buffer consists of 125µL KPO4 (pH 8.5), 3.8mL MilliQ 

H20, and 21.0mL of 100% ethanol per 25mL.  The samples were eluted twice into 10µL of 

Sodium bicarbonate (pH 9.3) making the final volume 20µL for both W83 and Δ0228.  Now 

cDNAs were ready for labeling. 

       The samples were labeled for hybridization using cyanide-labeled probes (GE Healthcare).  

Wild type (W83) was labeled with Cy-3 dye and the mutant (Δ0228) with Cy-5 dye.  The samples 

were placed in the dark to protect the light sensitive dyes.  Samples were incubated for one and 
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a half hours at room temperature.  Next, 5µL of 4M Hydroxylamine was added to stop the 

reaction.  The cDNA was isolated using the QIAGEN MinElute PCR Purification kit in the dark.  

1µL of 0.1M DTT was added to each sample.  Samples were saved at -20°C for pre-hybridization. 

 Hybridization 

       First, 350mL of Pre-hybridization buffer (87.5mL 20X SSC, 3.5mL 10% Sodium Dodecyl 

Sulfate, 3.5g BSA powder, and 259mL MilliQ water) was prepared then filtered with a 0.22µm 

Mini-Miser Filter.  The buffer was pre-heated in water bath at 42°C for 30-40 minutes.   The pre-

hybridization buffer was poured over microarray slides (containing the P. gingivalis genome) 

and incubated at 42°C for at least 2 hours.  Then, the pre-hybridization buffer was removed and 

washed with MilliQ Water by gently shaking. 

       Three different pre-hybridization buffers were prepared.  The pre-hybridized microarray 

slides were washed in each buffer.  Buffer 1 consisted of 100mL of 20X SSC and 20mL 10% SDS.  

Buffer 2 consisted of 100mL 20X SSC.  Buffer 3 consisted of 10mL of 20X SSC and 25µL of 

100mM DTT.  Each buffer was brought up to a 1 Liter volume with MilliQ water and placed in a 

water bath at exactly 55°C until needed.  The pre-hybridized microarray slides were placed in a 

clean glass container and approximately 500mL of Buffer 1 was added.  The container was 

wrapped up with an absorbent cloth and placed on a shaker for 15minutes at room 

temperature.  This step was repeated with new Buffer 1.  This process was repeated with Buffer 

2 (10 min. incubation) and then with Buffer 3 (5 min. incubation).  After washing, the slides 

were centrifuged at 1000rpm for 30 seconds to dry.  If the slides contained any streaks or spots 

they were rewashed.   
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       For microarray hybridization, both labeled W83 and labeled Δ0228 were combined (in the 

dark) and purified using the QIAGEN MinElute purification kit.  The DNA was then spun in a 

speedvac centrifuge for approximately 10 minutes to form a DNA pellet.   

       A hybridization buffer was made consisting of 400µL formamide, 250µL 20X SSC, 10µL 10% 

SDS, 1µL 0.1M DTT, 60µL of salmon sperm, and 339µL of MilliQ water.  The hybridization buffer 

was added using a 1mL syringe through a 0.45µM filter.  Then, 50µL of the filtered hybridization 

buffer was added to the hybridized sample containing both W83 and Δ0228.  The mixture was 

centrifuged for 30 seconds, vortexed, and heated at 95°C for 5 minutes.  This last step was 

repeated.  These labeled probes were now ready to hybridize to the pre-hybridized microarray 

slides.   

       Next, 24mm x 60mm microscope glass cover slips were gently placed of the area on the 

slide containing the probes.  Care was taken to make sure there were no air bubbles.  50µL of 

sample containing labeled W83 and Δ0228 was added to the edge of the microarray slide.  The 

samples covered the entire slide by capillary action.  The slides were then placed into the 

hybridization chamber overnight at 42°C. 

       The microarray slides were then washed with 3 post-hybridization buffers.  Buffer 1 

contained 100mL 20X SSC, 20mL 10% SDS, and 25µL of 100mM DTT.  Buffer 2 contained 100mL 

20X SSC and 25µL 100mM DTT.  Buffer 3 contained 10mL 20X SSC.  Each buffer mixture was 

brought to a final volume of 1 liter by adding MilliQ water.  The buffers were preheated to 55°C.  

The slides were washed in Buffer 1 and shaken until the cover slide fell off.  The slides stayed in 

this buffer for 10 minutes.  The slides were transferred to new Buffer 1 for an incubation time 



43 
 

of 10 minutes.  The slides were washed in Buffer 2 for 10 minutes twice.  Then, the slides were 

washed in Buffer 3 for 10 minutes twice.  Then the slides were centrifuged for 30 seconds to 

dry the slides.  At this point, the slides were ready to be analyzed by scanning.   

 Microarray Analysis 

       The Axon 4200 Scanner Program GenePix pro v6 was used to scan and analyze the 

hybridization signals from the microarray slides.  The slides were placed in the scanner and first 

previewed to adjust wavelength and brightness conditions to optimize data.  Actual data 

scanning followed.  The signal intensities from each probe (gene) were analyzed using 

ArrayAssist software (Stratagene Co. La Jolla, CA).  Each array contained 5 probes for each gene 

representing the entire P. gingivalis genome. 
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Figure 10. Schematic Diagram of Microarray Analysis.   
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2.9.  Survival of Δ0228 Mutant Strain with Eukaryotic Cells 

       A survival was done with Δ0228 to analyze any changes in sensitivity to host defense 

mechanisms compared to its wild type (W83).  Overnight cultures of Δ0228 and W83 were 

diluted to an OD660nm 0.2.  The cultures were grown to an OD660nm of about 0.5 to ensure cells 

were in log phase.  HN4 cells were also grown in a 6 well plate to a density of 4 X 105 epithelial 

cells/well.  Both P. gingivalis cultures and the HN4 cells were washed twice with PBS.  Each 

bacterial strain was resuspended in their appropriate volume of antibiotic-free HN4 media.   

       Three wells containing HN4 cells were infected with W83 cells and 3 wells containing HN4 

cells were infected with Δ0228 cells.  The HN4 cells were infected at a 100:1 MOI (bacteria:host 

cell ratio).  This meant 4 X 107 bacteria had to be added to each appropriate well.  The HN4 cells 

were infected inside the anaerobic chamber at 37°C for 30 minutes.  The wells were then 

washed 3X with PBS media inside the anaerobic chamber to wash away the bacteria on the HN4 

cell surface.  A media containing 440µg/mL metronidozole and 300µg/mL gentamycin was 

added to each well.  These antibiotics were used to kill the bacteria left on the surface of the 

HN4 cells.  This was done to ensure we were left with only P. gingivalis bacteria that invaded 

the HN4 cells.  The cells were incubated with the antibiotics at 37°C for 60 minutes inside the 

anaerobic chamber.  The cells were again washed three times with PBS. 

       One mL of BHI supplemented with 1% saponin was added to each well.  This mixture was 

incubated for 15 minutes at 37°C in the anaerobic chamber.  Each well was then scratched 

using a cell scraper to ensure all cells were lysed.  The contents of each well were added to 

separate tubes of 3mL BHI media.  200µL of this sample was then diluted into a tube containing 
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2mL of BHI media.  Therefore, the resulting dilutions were 1:4 and 1:10.  200µL of each sample 

was inoculated on to a blood agar plate totaling 12 plates (6W83/6Δ0228). 

2.10.  Immunoprecipitation with 0228-HaLo Tagged Strain 

A reversible cross-linking combined with immunoprecipitation was done with 0228-HaLo 

strain to study RNA-protein interactions in vivo.  This method is based on the chromatin 

immunoprecipitation (ChIP) assay used to study DNA-protein interactions.  Cross-linking with 

formaldehyde allows rapid preservation of interactions between the target protein and RNA.  

The cells are then lysed.  A resin based ligand, the HaloLink Resin, covalently interacts with the 

0228-HaLo protein and is precipitated out.  The cross-links are reversed using glycine and the 

RNA bound to the protein is isolated.  Then, a library of RNA is generated and sequenced for 

identification. 

The method used for this study is based on the HaloCHIP System protocol (Promega).  Both 

wild type (W83) and mutant (0228-HaLo) Porphyromonas gingivalis strains are used for this 

study.  30mL cultures were diluted to and OD660nm 0.2 and grown to and OD of 0.7.  A 1% 

concentration of formaldehyde was added to cultures and incubated at room temperature with 

gentle shaking for 20 minutes.  The crosslinking was stopped by adding a 125mM concentration 

of glycine.  Samples were then incubated for 10 minutes at room temperature.  Then, cultures 

were spun at 6000rpm for 10 minutes at 4°C to harvest.  The supernatant was discarded and 

the pellet was washed twice with ice cold PBS (pH 7.5).  Pellets were stored at -80°C until 

immunoprecipitation.  Next, 4mL of fresh ice cold lysis buffer (50mM Tris HCl-pH7.5, 150mM 

NaCl, 0.1% Sodium deoxycholate, 1% Triton X-100) was added and incubated on ice for 5 
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minutes.  The crosslinked complexes are then sonicated to help solubilize them using a 

sonicator and spun at 14000g for 5 minutes at 4°C.  Supernatant is collected.   

Next, the HaloLink Resin is prepared according to company’s protocol (Promega).  Then, 

500µL of HaloLink Resin is centrifuged at 800g for 2 minutes and supernatant is discarded.  

Immediately, 1mL of resin equilibration buffer (1X TE buffer-pH 8.0, 0.1% IGEPAL) is added to 

the resin and mixed by inverting several times.  The sample is then centrifuged at 800g for 2 

minutes and supernatant is removed.  This process is repeated two more times.  It is very 

important to keep the beads moist until sonicated samples are added.   

 The supernatant from sonication spin is collected and added to the equilibrated 

HaloLink Resin.  Samples are incubated for 3hrs with shaking at room temperature.  After 

incubation, samples are spun at 800g for 2 minutes and supernatant is removed.  Then, 5mL of 

lysis buffer is added to the resin, mixed, and spun again at 800g.  Supernatant is removed and 

nuclease free water is added, centrifuged, and removed, twice.  1mL of high salt was buffer 

(50mM Tris HCl-pH7.5, 700mM NaCl, 1% Triton X-100, 0.1% Sodium deoxycholate, and 5mM 

EDTA) is added, mixed, and incubated for 5 minutes.  Samples are then centrifuged and 

supernatant is discarded.  Next, 1mL of LiCl wash buffer (100mM Tris HCl-pH 8.0, 500mM LiCl, 

1% IGEPAL, and 1% Sodium deoxycholate) is added, mixed, centrifuged, and supernatant 

discarded.  A 1mL sample of nuclease free water is added, mixed, centrifuged, and supernatant 

discarded.  Then, 1mL of nuclease free water is added, mixed, incubated for 5 minutes, 

centrifuged, and supernatant discarded.  Next, 500µL of reversal buffer (10mM Tris HCl-pH 8.0, 

1mm EDTA, and 300mM NaCl) is added, mixed by pipetting, and incubated for 45 minutes at 
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70°C to reverse the cross-linking done by formaldehyde.  After spinning, the supernatant is 

collected followed by RNA isolation using RNA isolation protocol previously described.  Pellet of 

RNA is suspended in 10µL of RNase free water followed by a DNase treatment from Ambion Inc.   

Next, a RNA library is generated using ScriptSeq mRNA-Seq Library Preparation kit according 

to manufacturer’s directions (Epicentre Biotechnologies, Madison, WI).  Both a 1µL StarScript 

Reverse Transcriptase Buffer and 1µL of cDNA Synthesis Primer is added to the 10µL RNA 

sample.  Mixture was incubated at 85°C for five minutes and placed on ice in order to fragment 

the RNA.  Next, cDNA was generated by adding the cDNA synthesis master mix (1.5µL StarScript 

Reverse Transcriptase Buffer, 1µL dNTP PreMix, 0.5µL RiboGuard RNase inhibitor, and 0.5µL 

StarScript Reverse Transcriptase to each sample.  Samples were placed in the thermocycler at 

25°C for 5 minutes, 45°C for 20 minutes, then 1µL of Finishing Solution was added and samples 

were incubated at 37°C for 10 minutes, and 95°C for 3 minutes.  Samples were then placed on 

ice until the 3’ tagging of cDNA.  Terminal Tagging Master Mix (1µ Terminal Tagging Oligo, 0.5µL 

DTT, and 0.5µL DNA Polymerase) was added to each sample and mixed.  Samples were heated 

at 37°C for 15 minutes, 95° for 3 minutes, then 1µL of Finishing Solution was added and 

samples were incubated at 37°C for 10 minutes, and 95°C for 3 minutes before being placed on 

ice.  The di-tagged cDNA was then purified using the MinElut PCR Purification Kit (QIAGEN) and 

eluted into 20µL of EB buffer.  Next, the samples are amplified by PCR.  PCR mix (4.5µL nuclease 

free water, 25µL FailSafe PCR PreMix E, 1µL Forward Primer, 1µL RNA-Seq Barcode Primer, and 

0.5µL FailSafe PCR Enzyme) is added to cDNA and placed in the thermocycler for 12 cycles.  

Excess PCR primers are removed by adding 1µL of Exonuclease I to each reaction and incubated 
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at 37°C for 15 minutes.  Reactions are again purified using the QIAGEN MinElute PCR 

Purification Kit and sent in for sequencing. 
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Figure 11.  Broad Overview of Immunoprecipitation Using 0228-HaLo.  This study was done 

to see if the PG0228 protein (1) binds to RNA and (2) the identities of these bound RNAs.   



51 
 

2.11 Bioinformatics 

The amino acid sequence of PG0228 (PG0253, according to NCBI and TIGR designations) 

was taken from ORALGEN and inserted into BLAST protein sequence alignment program 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi)[3].  Then, the 152 amino acids sequence was then 

searched for similarities against the NCBI database.  A taxonomy report was established by 

using the Taxonomy Report tool within BLAST.  Also, a tree was established by using the 

Distance Tree of Results tool within BLAST. 
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Chapter 3: RESULTS 

3.1. Sequence Alignment with PG0228 

 According to BLAST protein sequence alignment[3], PG0228 contains a conserved Sm 

like family domain and it partially aligns with DUF150 (Figure 1seq.).  Details about the Sm like 

family can be found within the introduction under Sm Family of RNA-Associated Proteins.  

DUF150 is designated as uncharacterized BCR, within YhbC family COG0779.  The taxonomy 

report shows significant homology between PG0228 and proteins within Bacteroidetes phylum 

(Figure 1seq.).  Most proteins within this group are hypothetical proteins and therefore their 

function has not been determined.  Sequence alignment also exists with a ribosome maturation 

factor RimP for 7 species.  A tree view of sequence alignment was also established showing the 

distance between the species encoding the similar protein within the CFB group of bacteria 

(Figure 2seq.).  There was also alignment to an unnamed protein product and sea anemones.   
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(a) 

(b) 

Figure 1seq.  (a) Amino acid alignment of PG0228 (152aa) showing its conserved domains 

with the Sm like family.  (b) Taxonomy BLAST report of PG0228 protein sequence.  

Species with similar protein sequences are listed according to NCBI. 
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Figure 2seq.   Amino Acid Alignment of PG0228 in Distance Tree Formation. 



55 
 

3.2. Generation of Δ0228 Mutant Strain 

 The Δ0228 mutant strain contains a deletion of gene PG0228 (LANL gene ID) along with 

insert of ermF cassette marker (1Kb).  ErmF is an antibiotic resistance gene cassette marker for 

erythromycin and clindamycin[27].  A PCR amplification of genomic P. gingivalis fragments was 

done. Three separate PCRs were set up to amplify each flanking DNA fragment.  Samples were 

then run on a 1% agarose gel to confirm fragment length using a 1kb Plus DNA ladder (Figure 

12).  Mut1 amplification shows a length of 250bp and Mut2 amplification has a length of 750bp.  

pVA2198, containing ermF, was used as a template to amplify the ermF clindamycin resistance 

cassette.  The ermF cassette equaled a length of 1.1kb on the 1% agarose gel.  Next, the 

purified flanking DNA fragments from this general PCR were annealed together through fusion 

PCR techniques using Mut1, ermF, and Mut2 as a DNA template.  The purified DNA construct 

was run on a 1% agarose gel resulting in a length of 2.1kb, therefore indicating the three 

individual fragments annealed together in the fusion PCR.   

 The desired PCR fragment was cloned into the pCR2.1-TOPO vector (Invitrogen) that 

carries both an ampicillin (bases 2129-2989) and kanamycin (bases 1317-2111) antibiotic 

resistance-encoding gene.  Between the M13 forward primer (bases 389-404) and reverse 

primer (bases 205-221) the desired PCR fusion product was inserted.  It is also important to 

note the 3.9kb vector contained the lacZ gene.  The ligation mixture was then used to introduce 

the desired PCR fragment into TOP 10 E. coli chemically competent cells.  After the 

transformation, the mixture was spread on an LB plate supplemented with X-gal and kanamycin 

to grow overnight.  Transformed E. coli containing plasmid with kanamycin resistance gene 
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were capable of growing on the supplemented LB plate despite the presence of the antibiotic.  

Both blue and white colonies appeared on the plate after the incubation period.  Only white 

colonies were candidates for successful ligations.  E. coli containing a functional β-galactosidase 

enzyme metabolizes the galactose sugar (X-gal) forming an intermediate which is 

spontatneously oxidized to a bright blue pigment.  White colonies contain vector with foreign 

DNA inserted within the lacZ gene which disrupts the β-galactosidase enzyme, indicated by 

their lack of bright blue pigment.  

 Plasmids were isolated from 3 white E. coli colonies (designated A, B, and C) and 

digested with the EcoRI enzyme.  EcoRI restriction enzyme sites were located on both sides of 

PCR fragment insertion and will result in two DNA fragments at 3.9kb and 2.1kb if insertion is 

correct.  Digestions of all three candidates were run on an agarose gel (Figure 13).  Plasmid 

digestion of colony A shows 4 fragments on the gel equaling 1.4kb, 2.1kb, 3.9kb, and 

approximately 6kb.  Colonies in lane B and C each show one fragment on the agarose gel, 

equaling a length of 3.9kb.  3.9kb is the length of the TOPO vector alone, therefore B and C do 

not contain the insert.  A, however, contains fragments 2.1kb and 3.9kb in length, therefore 

further screening tests were done.   Sample A and W83 genomic DNA were amplified by PCR 

with the original MutF1 and MutR2 primers (Figure 14).  W83 genomic DNA was used as a 

control which resulted in a length of 1.5kb which is the length predicted of wild type.   An 

agarose gel confirmed the DNA fragment insert equals a length of 2.1kb so the isolated 

construct was sent in for plasmid sequencing.   The isolated pCR2.1-TOPO vector containing the 

PCR fusion insert was sequenced using standard M13 forward and reverse primers by DNA Core 
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(MCV-VCU Nucleic Acids Research Facilities, Richmond, VA).  Each result contained the correct 

ordered sequence of Mut1-ermF-Mut2.   

PCR fusion product was electroporated into P. gingivalis to obtain the Δ0228 mutant 

strain.  After an incubation of 7 days inside the anaerobic chamber, 8 P. gingivalis colonies were 

selected for mutant selection and plated onto both clindamycin and blood agar plates.  

Genomic DNA was isolated from each sample and mutant DNA was amplified with the original 

MutF1 and MutR2 primers (Figure 15).  Wild type W83 genomic DNA was used as a control to 

select for mutants.  Agarose gel confirmed samples 1, 2, 3, 4, 5, 7, and 8 were identical with a 

band length of 2.1kb and most likely Δ0228 mutants.  Genomic DNA amplification of wild type 

resulted in a length of 1.5kb.   Genomic DNA from sample 6 did not appear on the agarose gel.  

PCR products from mutants 1, 3, 5, and 8 were confirmed by sequencing done by DNA Core 

(MCV-VCU Nucleic Acids Research Facilities, Richmond, VA).  Each contained the correct 

ordered sequence of Mut1-ermF-Mut2.  The sequence of the determined genomic DNA can be 

found in Appendix.   
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Figure 12.  Generation of  Δ0228 Mutant DNA Fragment.  (a) General PCR to amplify each  

flanking DNA fragment.  Mut1 (A) was amplified using primers Mut1F/Mut1R.  Mut2 (B) was 

amplified using primers Mut2F/Mut2R, and ermF (C) , for mutant selection, was amplified 

using primers ErmF1/ErmR2.  P. gingivalis genomic DNA was used as a template for Mut1 and 

Mut2.  Plasmid pV2198 was used as a template for ermF.  (b) These purified DNA segments 

were annealed together by a second round of PCR.  Mut1, ermF, and Mut2 were used as 

templates in a Fusion PCR and run on a 1% agarose gel for confirmation.  
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Figure 13.  Plasmid screening with EcoRI digestion.  Plasmids were isolated 

from 3 E. coli colonies grown on LB plates supplemented with kanamycin 

and x-gal.   A, B, C plasmids isolated from 3 colonies, pCR2.1 TOPO TA  + 

insert screening.  B and C show one band indicating vector contains no 

insert.  Only A contains the DNA insert (2.1kb) band and vector band 

(3.9kb). IKb marker is included in lane on the left side of the gel, the sizes of 

corresponding bands are shown in image of 1Kb ladder. 
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Figure 14.  PCR amplification to check for mutant DNA fragment.  Isolated plasmids (B, C, 

D) and P. gingivalis genomic DNA (A) were amplified using original fusion primers MutF1 

and MutR2 and run on an agarose gel.  The isolated plasmids (B, C, D) contain  fragments 

equaling around 2.1kb while the W83 control (A) contains a fragment of 1.5kb in length 

predicted of wild type.  Plasmid constructs were therefore sent in for sequencing. 
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Figure 15.  Δ0228 Mutant Selection by Amplification of Genomic DNA.  Verified mutant 

DNA fragment was electroporated into Porphyromonas gingivalis to obtain Δ0228 

mutant strain.   Eight P. gingivalis colonies were selected for mutant screening.  Lanes 

labelled “a” are concentrated samples.  Lanes labelled “b” contain a lower concentration 

of 50ng/µL.  Genomic DNA was isolated from each sample and amplified with the 

original primers MutF1 and MutR2.  W83 genomic DNA (P.g) was used as a control to 

select for mutants.  Samples 1, 2, 3, 4, 5, 7, and 8 are potential mutants because primers 

amplified the predicted 2.1kb fragment.  Identical primers amplified  1.5kb fragments in 

the P.g control.  Samples 1,3, 5, and 8 were sent for sequencing. 
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3.3. Generation of 0228-HaLo tagged Porphyromonas gingivalis Strain 

 The 0228-HaLo tagged strain was created in order to show if protein PG0228 indeed 

binds to RNA.  The strain does not have any genetic deletions and behaves like wild type W83 

but includes an additional HaLoTag downstream of PG0228 and ermF for mutant selection.  The 

primers CF2/CR2 were used to amplify PG0228 from W83 genomic DNA.  An agarose gel 

confirmed the band length of the amplification is approximately 500bp (Figure 16).  For cloning 

purposes, PG0228 and ermF-ermAM were inserted into our desired vector, pFC20K (HaLoTag 7) 

T7 SP6 Flexi Vector.  The HaLoTag vector measures a length of 4417 base pairs, includes a 

region for PCR insertion between nucleotides 71-78, and contains an open reading frame for 

HaLoTag (507-1397).  Specific primers were selected based on manufacturer’s suggestions 

(Promega, Madison, WI).  Specific primers for PG0228 were intended to produce 3’ overhangs 

for easy insertion between SgfI and EcoICRI restriction sites (Figure 16).  Cutting the vector with 

SgfI and EcoICRI excises the lethal barnase gene from the vector, thus allowing propagation in 

E. coli.  The 2.1kb ermF-ermAM was inserted with manufacturer suggested restriction enzymes 

(Promega, Madison, WI) EcoRI and XbaI downstream of tagging region between nucleotides 

1398-1509.  Enzymes were compared and chosen based on specificity of digestion.  A list of 

acceptable enzymes needed to cut the Halo vector once but not cut our gene of interest 

(http://tools.neb.com/NEBcutter2/index.php).  The plasmid vectors, HaLoTag and pV2198, 

which contains ermF-ermAM, were digested with EcoRI and XbaI for ermF-ermAM insertion 

(Figure 17).   

http://tools.neb.com/NEBcutter2/index.php
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 The HaLoTag vector containing PG0228 and ermF-ermAM was introduced to One Shot 

TOP10 chemically competent E. coli.  Eight positive white colonies went through additional 

screening by PCR using primers FP-Erm/RP-Erm.  Figure 18 includes an agarose gel containing 

the PCR products from the 8 colonies.  Samples 1, 2, 3, and 4 show bands 2.1kb in length 

indicating these pFC20K plasmids include the 2.1kb ermF-ermAM insert.   

 The mutant construct containing PG0228, HaloTag, and ermF was amplified by PCR 

using primers CF2/ermR2.  It is important to note the ermR2 primer amplifies only the first 1kb 

of ermF-ermAM cassette containing clindamycin resistance only.  DNA agarose gel analysis of 

amplification shows band length of 2.5kb (Figure 19).  This length would agree with our 

prediction and therefore we then proceeded with the addition of the 5’ segment of PG0228’s 

downstream gene, nusA.  The 5’ segment (600bp) of nusA was added to ensure a double cross-

over into W83 genomic DNA.  Figure 3.8 shows the amplification of the nusA segment from 

W83 genomic DNA using primers ExtF/ExtR.  In order to anneal the mutant construct with the 

nusA extension, fusion PCR methods were used.  An agarose gel (Figure 20) revealed a band at 

3kb indicating the 2 flanking fragments annealed together.  

The desired PCR fragment was cloned into the pCR2.1-TOPO vector and transformed 

into One Shot TOP10 chemically competent E. coli.  Plasmids were isolated from 7 white 

colonies and verified by sequencing done by Retrogen Inc. (San Diego, CA).  Each contained the 

correct ordered sequence of PG0228-HaLo-ermF-nusA.  The sequence of the determined 

genomic DNA can be found in Appendix.   
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Electroporation into P. gingivalis was done to obtain the 0228-tagged fusion mutant 

strain.  After an incubation of 7 days inside the anaerobic chamber, 4 P. gingivalis colonies were 

selected for mutant selection and plated onto both clindamycin and blood agar plates.  

Genomic DNA was isolated from each sample and mutant DNA was amplified with FP-Erm/ExtR 

primers (Figure 21).  Wild type W83 genomic DNA and the sequenced plasmid were used as a 

control to select for mutants.  Agarose gel revealed both the amplified sequenced plasmid, 

acting as the positive control, and mutant genomic DNA showed bands at 1.6kb, confirming the 

generation of the desired 0228-tagged fusion mutant strain.  No amplification was found using 

FP-Erm/ExtR primers on wild type W83. 
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Figure 16.  Amplification of PG0228.  Agarose gel representing the amplification of the 

456bp PG0228 (Lanes A-F) using specific primers CF2 and CR2 for direct HaLoTag plasmid 

insertion.  The fragment is then inserted into the desired 4.4kb vector, pFC20K (HaLoTag 

7) T7 SP6 Flexi Vector. to add the specific 1kb C-terminal tag to the protein.  PG0228 is 

inserted into the HaLoTag vector between the SgfI and EcoICRI restriction sites. 
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Figure 17. Digestion of pFC20K and pV2198 with EcoRI and XbaI.  Undigested pFC20K 

(HaLoTag 7) T7 SP6 Flexi Vector is found in Lane A.  Both pFC20K (B) and PV2198(C-G) 

are digested with EcoRI and XbaI   in order to insert the 2.1kb ermF-ermAM into the 

pFC20K vector.  PV2198 is digested into 3 fragments .  The bottom fragment contains 

ermF-ermAM.  The 2.1kb ermF-ermAM is inserted into pFC20K downstream of tagging 

regions between nucleotides 1398-1509. 

 



67 
 

  

Figure 18.  Transformation Colony Screening.  Agarose gel confirming the insertion of 

ermF-ermAM into vector by PCR using primers FP-Erm/RP-Erm.  pFC20K plasmids were 

isolated from E. coli colonies grown on LB plates supplemented with kanamycin and x-

gal.   Four colonies(A-D) show the transformation  of DNA construct including ermF-

ermAM 2.1kb insert.   Lane I contains pV2198 also amplified with primers FP-Erm/RP-

Erm as a control. 
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Figure 19.  Amplification of the Mutant Construct Containing PG0228, HaLoTag, and ermF 

(A) and 5’nusA Extension (B).  The mutant construct containing PG0228, HaLoTag, and ermF 

(2.5kb) was amplified using primers CF2/ermR2.   The nusA extension (600bp) was amplified 

using primers ExtF/ExtR.  Only ermF was amplified from ermF-ermAM cassette because 

fusion PCR methods tend to have a higher incidence of nonspecific amplification with longer 

DNA fragments. 
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Figure 20.  Annealing 0228-HaLo Construct to nusA Extension Using Fusion PCR 

methods.  An agarose gel shows the amplification of a 3kb band using the primers 

CF/ExtR.  The 5’ segment (600bp) of nusA was added to ensure a double cross-over 

into W83 genomic DNA.  Individually, the mutant construct containing PG0228, 

HaLoTag, and ermF equals a length of 2.5kb, while the nusA extension measures a 

length of 600 base pairs.  When annealed together, the final product, 0228-HaLo DNA 

fragment, measures a length of around 3.1kb.  This 0228-HaLo DNA fragment is then 

electroporated into P. gingivalis to obtain the 0228-HaLo strain. 
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Figure 21.  PCR Confirmation of 0228-HaLo Strain.  Electroporation into P. gingivalis was 

done to obtain the 0228-HaLo strain.  P. gingivalis colonies were selected for mutant 

selection and plated onto both clindamycin and blood agar plates and their genomic DNA 

isolated.  0228-HaLo strain (A), pCR2.1-TOPO vector containing 0228-HaLo mutant DNA 

fragment (B), and W83 genomic DNA were amplified using primers FP-Erm/ExtR.  Wild type 

W83 and sequenced plasmid were used as a control to select for mutants.  Both the mutant 

strain (A) and plasmid (B) contain the 1.5kb amplification of ermF-5’ nusA, however, no 

amplification was found using FP-Erm/ExtR primers on W83 because W83 does not contain 

ermF. 

 



71 
 

3.4. Evaluation of Δ0228 Growth Compared to Wild Type W83 

 A growth study was done to assess the growth of the Δ0228 mutant strain compared to 

the W83 wild type.  Overnight cultures of both strains were diluted to an optical density of 0.1 

in BHI + hemin media.  Both W83 and Δ0228 were grown in triplicates.  The growth was 

measured for 24hrs in 4hr increments (8hrs for the 16-24hr time block).    

Table 2 contains OD recordings for WT and Δ0228.  Six time points were taken from 

both triplicates equaling 36 data points.  There were no optical densities taken at the 20hr 

incubation time point.  According to these data, the growth rate of Δ0228 strain is comparable 

to W83 for the first 8-10 hrs of incubation which is the log phase of bacterial growth for these 

strains.  The mutant bacteria, however, enters stationary phase, indicated by the loss of slope 

on the graph, at an earlier time point than W83.  The overall density of the mutant strain peaks 

at 12hrs with an OD of 0.831 average for the triplicate while W83 has not yet shown entrance 

into stationary phase at 24hrs.  At 24hrs after dilution, the average optical density of Δ0228 

strain is 0.775.  The average optical density of W83 is higher at 1.184 24hrs after dilution.  The 

growth study was repeated with data measured in 2hr and 5hr increments.  The data from both 

studies mirror data points given in this study with 4hr increments and thus confirms that the 

observation is biologically consistent.   
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 0hrs 4hrs 8hrs 12hrs 16hrs 20hrs 24hrs 

W83 (1) 0.098 0.32 0.561 1.007 1.158 N/A 1.247 

W83 (2) 0.095 0.321 0.552 0.983 1.149 N/A 1.185 

W83 (3) 0.133 0.331 0.551 0.964 1.161 N/A 1.121 

Δ0228 (1) 0.135 0.517 0.719 0.825 0.821 N/A 0.768 

Δ0228 (2) 0.131 0.519 0.695 0.844 0.823 N/A 0.791 

Δ0228 (3) 0.108 0.489 0.701 0.824 0.822 N/A 0.766 

W83 0.109 0.324 0.555 0.985 1.156 N/A 1.184 

Δ0228 0.125 0.508 0.705 0.831 0.822 N/A 0.775 

Table 2. 

(a) Optical Density of Δ0228 Compared to W83 at Specific Incubation Periods. 

 

(b) Average Optical Density of Triplicate. 
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Figure 22.  Growth Rate of Δ0228 Mutant Strain.  This figure reveals the growth 

rate of the Δ0228 mutant strain compared to its wild type.  The mutant strain lacks 

PG0228.  Both strains are grown in identical conditions and at the same time.  

Optical densities were taken by a spectrophotometer at a wavelength of 660nm at 

4hr time points.  The strains were observed for 24hrs for final density 

measurements.   (a) Strains were grown in triplicates and optical densities (b) and 

their averages were recorded.  Optical densities of triplicates were then plotted out 

on a graph for better visual representation.  No recordings were taken at 20hrs 

post dilution. 
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3.5. Differential Gene Expression Determined Using Microarray Analysis 

 The Δ0228 strain was further studied for differential gene expression using microarray 

analysis.  To gain a better insight into whether PG0228 plays a role in gene regulation, 

expression profiles of the mutant were compared to wild type.  Both W83 and Δ0228 were 

grown to an OD660 of 0.5 under the same conditions and harvested simultaneously.  Overnight 

cultures were diluted to an OD660 measurement of 0.2 and allowed to grow to an OD 

measurement of 0.5.  Final OD values of both strains were within 0.07 of each other before 

harvesting.  Previous growth studies revealed the Δ0228 strain grows at the same rate as W83 

until the mutant reaches early stationary phase around an OD of 0.7.  Thus, both strains were 

used at their logarithmic phase of growth for microarray analysis.  Also, their growth rates were 

the same thus excluding any effects of growth rate on the array results. 

 Differentially labeled cDNA from W83 (635nm) and Δ0228 (532nm) were combined and 

used to hybridize to glass slides containing probes for all genes present on the genome of P. 

gingivalis W83 strain.  The quantity of each hybridized label to gene probe was detected with 

an Axon4200 scanner.  Data from signal detection was processed for statistical significance 

using ArrayAssist software (Stratagene).   

 Each gene present on the W83 genome had 5 probes on the glass slide, thus 5 

measurements were made for each P. gingivalis gene.  Statistical analysis was taken from 4 

probes and averaged.  19 genes were found significantly upregulated (Table 3), and 60 genes 

were found significantly downregulated (Table 4) in the Δ0228 mutant strain compared to W83.  

Each gene selected had an average fold change of close to 2 or higher (1.6 < ratio 635/532 < 
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0.56).  Only genes with 4 consistent upregulated or downregulated ratios were included and 

averaged. 

 Of the 19 upregulated genes detected by microarray, 16 had an average fold change of 

greater than 2.  3 of these genes, PG007, PG1133, PG1185 are hypothetical proteins and 

therefore their function is unknown.  Other upregulated genes include those encoding proteins 

involved in metabolism including PG0195 (rubrerythrin), PG1421, PG1813, and PG1190 

(glycerate dehydrogenase): all involved in electron transport during oxidative stress. 

 Of the 60 downregulated genes detected by microarray, 50 had an average fold change 

of greater than 2.  Downregulated PG1294 (ferrous iron transport protein B), PG1551 (hmuY 

protein), and PG1552 (TonB-dependent receptor hmuR) are all involved in iron uptake.  Fifteen 

of these detected downregulated targets include enzymes and 28 hypothetical proteins. 
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Primary 
Target 

Common Name of Primary Target 
Gene 

Symbol 
Ratio (635/532) 

PG0007 hypothetical protein  0.49 

PG0079 abortive Infection protein, putative  0.44 

PG0152 carboxynorspermidine decarboxylase nspC 0.49 

PG0195 rubrerythrin  0.34 

PG0548 
pyruvate ferredoxin/flavodoxin oxidoreductase family 
protein 

 0.47 

PG0651 HDIG domain-containing protein  0.44 

PG0682 ABC transporter, permease protein, putative  0.32 

PG1048 N-acetylmuramoyl-L-alanine amidase  0.45 

PG1049 ABC transporter, permease protein, putative  0.33 

PG1133 Hypothetical protein  0.47 

PG1185 Hypothetical protein  0.46 

PG1190 glycerate dehydrogenase hprA 0.48 

PG1239 3-oxoacyl-(acyl-carrier-protein) reductase fabG 0.37 

PG1421 ferredoxin, 4Fe-4S  0.14 

PG1687 HIT family protein  0.40 

PG1688 transcription elongation factor GreA greA 0.35 

PG1765 acyl carrier protein acpP 0.53 

PG1813 ferredoxin, 4Fe-4S  0.56 

PG1956 4-hydroxybutyrate CoA-transferase abfT-2 0.51 

Table 3.  Upregulated Genes Detected in Δ0228 Strain. 



77 
 

 
  

Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG0253 Hypothetical protein   5.06 

PG0258 ABC transporter, ATP-binding protein   2.32 

PG0437 
BexD/CtrA/VexA family polysaccharide export 
protein  

 2.22 

PG0451 CBS domain-containing protein   2.01 

PG0495 Hypothetical protein   3.34 

PG0613 Hypothetical protein   2.59 

PG0768 Hypothetical protein   4.25 

PG0805 Prolipoprotein diacylglyceryl transferase  igt 2.83 

PG0838 Integrase   2.38 

PG0854 Hypothetical protein   11.57 

PG0855 Hypothetical protein   3.06 

PG0933 Elongation factor G   2.66 

PG0972 Hypothetical protein   2.91 

PG0987 Hypothetical protein   1.98 

PG1021 Hypothetical protein   1.99 

PG1029 Hypothetical protein   2.52 

PG1036 Excinuclease ABC, A subunit  uvrA-1 2.45 

PG1040 Transcriptional regulator, putative   8.03 

PG1077 Electron transfer flavoprotein, beta subunit  etfB-2 1.92 

PG1107 Hypothetical protein   4.45 

PG1110 Hypothetical protein   1.80 

Table 4.  Downgulated genes detected in Δ0228 strain. 
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Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG1128 Exodeoxyribonuclease VII large subunit  xseA 3.05 

PG1138 
Pigmentation and extracellular proteinase 
regulator  

porR 1.60 

PG1155 ADP-heptose--LPS heptosyltransferase, putative   3.09 

PG1175 ABC transporter, ATP-binding protein, putative   1.92 

PG1178 Hypothetical protein   7.24 

PG1179 Hypothetical protein   2.27 

PG1180 Hypothetical protein   5.02 

PG1181 TetR family transcriptional regulator   2.45 

PG1184 Alginate O-acetyltransferase, putative   1.88 

PG1229 Hypothetical protein   4.07 

PG1230 Hypothetical protein   2.81 

PG1294 Ferrous iron transport protein B  feoB-2 2.12 

PG1395 Rod shape-determining protein MreC   11.22 

PG1473 Conjugative transposon protein TraQ   1.97 

PG1484 Hypothetical protein   2.24 

PG1513 
Phosphoribosyltransferase, 
putative/phosphoglycerate mutase family protein  

 1.89 

PG1525 Isochorismate synthase, putative   2.49 

PG1528 Hypothetical protein   4.26 

PG1551 HmuY protein  hmuY 7.29 
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Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG1552 TonB-dependent receptor HmuR  hmuR 7.13 

PG1554 Hypothetical protein   4.12 

PG1570 Rhodanese-like domain-containing protein   11.26 

PG1662 Hypothetical protein   2.51 

PG1666 RND family efflux transporter MFP subunit   1.82 

PG1679 Hypothetical protein   2.97 

PG1733 Hypothetical protein   3.78 

PG1814 DNA primase  dnaG 2.17 

PG1842 Acetyltransferase   2.47 

PG1858 Flavodoxin FldA   9.15 

PG1892 Hypothetical protein   2.19 

PG2043 Hypothetical protein   2.51 

PG2061 Dihydrofolate reductase  folA 8.10 

PG2070 Hypothetical protein   2.55 

PG2071 Hypothetical protein   2.72 

PG2081 Biotin synthetase  bioB 6.96 

PG2102 Immunoreactive 61 kDa antigen PG91   2.01 

PG2103 Hypothetical protein   2.08 

PG2171 
D-isomer specific 2-hydroxyacid dehydrogenase 
family protein  

 3.45 

PG2189 Aspartate kinase  lysC 2.18 
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Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG0229  Transcription elongation factor  nusA nusA   

P# 1 Transcription elongation factor nusA 0.87 

P# 2 Transcription elongation factor nusA 1.02 

P# 3 Transcription elongation factor nusA 1.02 

P# 4 Transcription elongation factor nusA 1.03 

Average Transcription elongation factor nusA 0.98 

Table 5.  Transcription Profile of nusA, locus located downstream of PG0228. 
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Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG1237 LuxR Family Transcriptional Regulator luxR   

P# 1 LuxR Family Transcriptional Regulator luxR 0.73 

P# 2 LuxR Family Transcriptional Regulator luxR 1.09 

P# 3 LuxR Family Transcriptional Regulator luxR 1.02 

P# 4 LuxR Family Transcriptinoal Regulator luxR 1.12 

Average LuxR Family Transcriptional Regulator luxR 0.99 

Table 6. Transcription Profile of LuxR transcriptional regulator. 

 



82 
 

 
  

Primary 
Target  

Common Name of Primary Target  
Gene 
Symbol  

Ratio (635/532)  

PG0498 Ribosylhomocysteinase luxS  

P# 1 Ribosylhomocysteinase luxS 1.25 

P# 2 Ribosylhomocysteinase luxS 1.34 

P# 3 Ribosylhomocysteinase luxS 1.35 

P# 4 Ribosylhomocysteinase luxS 1.35 

Average Ribosylhomocysteinase luxS 1.32 

Table 7. Transcription Profile of luxS 
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3.6. Analysis of Δ0228’s Ability to Survive with Host Cells 

 A survival was done with Δ0228 to analyze its ability to handle changes in environment.  

In order to expose the strains to host environmental conditions, bacteria were introduced to 

HN4 epithelial cells at a 100:1 MOI.  Δ0228 and W83 cultures were grown to an OD660nm of 

about 0.5 to ensure cells were in log phase (Figure 23).  It is important to note there has been 

no evidence of changes in epithelial invasion rate between the two strains.  Thus, the number 

of invading bacteria into the HN4 cells is theoretically identical.  Studies have shown a small 

percentage of W83 bacteria will invade the HN4 cell if introduced.  4 X 105 HN4 cells are 

infected at a 100:1 MOI in triplicates, resulting in 6 HN4 wells.  In order to evaluate only the 

bacteria inside the epithelial cells, the HN4 cells were incubated with an antibiotic to kill 

extracellular bacteria.  Therefore, only bacteria inside the HN4 cells are analyzed.  After the 30 

minute infection, the HN4 cells are lysed.  The lysate containing the invading bacteria is plated 

at a 1:4 and 1:10 dilution on BHI + He plates.  Seven-to-ten days later, viable colonies are 

counted. Table 8 represents the number of colonies of each strain after incubation period.   

 The number of resulting Δ0228 colonies after incubation period ranged from 0-6 from 

the 1:4 dilutions, and ranged between 0-2 from the 1:10 dilutions.  The number of resulting 

W83 colonies was significantly higher ranging from 4-94 from the 1:4 dilutions and 0-35 from 

the 1:10 dilutions.  2.3 (Δ0228) and 40.7 (W83) are the average number of colonies appearing 

on the BHI + hemin plates from the 1:4 dilutions (Figure 25).   
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Figure 23.  Survival Schematic.  This figure demonstrates a simplistic protocol of the 

survival study done with HN4 cells. 
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Figure 24.  Photo of Δ0228 and W83 Colonies for Survival Study.   A survival study 

was completed to analyze any changes in sensitivity to host defense mechanisms 

compared to W83.  Photo represents the differences in viability between the two 

strains post epithelial invasion. The top photo is the Δ0228 strain seven days after 

invasion.  The bottom photo is the W83 strain seven days after invasion. 
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Strain Dilution Range Average # of 
Colonies 

Δ0228 1:4 0-6 2.3 

W83 1:4 4-94 40.7 

Δ0228 1:10 0-2 0.67 

W83 1:10 0-35 12.3 

  

Strain Dilution # of Colonies 

Δ0228a 1:4 1 

Δ0228b 1:4 6 

Δ0228c 1:4 0 

Δ0228a 1:10 0 

Δ0228b 1:10 2 

Δ0228c 1:10 0 

W83a 1:4 24 

W83b 1:4 94 

W83c 1:4 4 

W83a 1:10 2 

W83b 1:10 35 

W83c 1:10 0 

Table 8.  The number of colonies found on the blood agar plates after HN4 invasion. 4 X 

105 HN4 cells are infected at a 100:1 MOI in triplicates.  Invading bacteria is plated at a 1:4 

and 1:10 dilution on BHI + He plates.  Seven-to-ten days later, viable colonies are counted.   
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Figure 25.  Survival Data.  Average number of colonies appearing on the BHI + 

hemin plates from both 1:10 and 1:4 dilutions from Survival 
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Chapter 4: DISCUSSION 

4.1. Δ0228 Strain  

 Several steps were completed to ensure that Δ0228 was engineered correctly.  General 

PCR methods were first used to produce individual desired fragments.  By amplifying specific 

segments of W83 genomic DNA surrounding our gene of interest, we were able to manipulate 

the sequencing within the gene.  This amplified DNA surrounding the gene of interest still 

allowed for easy integration back into the W83 genome, but it gives the added advantage of 

deleting or adding fragments between the crossover segments.   

Flanking DNA fragments were amplified using primers Mut1F and Mut1R and with 

Mut2F and Mut2R.  Mut1R and Mut2F, for instance, were designed so that the amplification 

produces fragments with tails that have the same identity as the ends of the ermF cassette.   

The Mut1 and Mut2 fragments and the pre-amplified ermF cassette are then annealed together 

through fusion PCR by Mut1F and Mut2R primers.  Numerous fusion PCR attempts were made 

before our fragment was amplified.  Because the final length of our fragment was over 2 kb and 

we were attempting to anneal 3 segments together, troubleshooting with different annealing 

temperatures, extension times, and enzyme concentrations were needed until one combination 

amplified the DNA fragment. 
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It is important to verify each step of this process to make sure the DNA is indeed being 

amplified, it is the right length, and finally, it is the desired fragment.   Figure 12 (a) confirms the 

individual DNA fragments are the correct length and (b) confirms the fusion PCR amplified a 

fragment that matches our desired length.  Although it is highly unlikely these specific primers 

amplified a different fragment coincidently the exact same length, the fragment was sequenced 

to confirm correct sequencing.  

Before the fragment was sequenced, it was cloned into the TOPO-TA Vector.  This was 

done because the DNA fragment is significantly more stable when ligated to a vector for 

storage.  Once the DNA fragment was sequenced it still needed to be integrated into the W83 

genome in order to generate a mutant strain.  Generating a mutant strain allows observation of 

many factors, including changes in phenotype and gene expression, not possible to see by 

looking at the fragment at the molecular level alone.  The fragment was therefore 

electroporated into P. gingivalis W83 for transformation.   Mutant screening was verified by 

PCR amplification and genomic DNA sequencing.  Screening with the original Mut1F and Mut2R 

primers (Figure 15) on the potential mutants and W83 will produce a longer fragment in mutant 

by 0.5kb if integration has occurred.  Even though the mutant fragment has the 456bp PG0228 

removed, it has the 1kb ermF antibiotic resistance cassette inserted in its place.  Therefore, the 

addition of the cassette in the mutant produces a 2.1kb fragment while W83 produces a 1.6kb 

fragment, as demonstrated by the agarose gel on Figures 14 and 15. 
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4.2. Differential Gene Expression 

 Microarray analysis establishes differential gene expression between Δ0228 and W83 

strains, demonstrating that PG0228 plays a significant role in gene regulation in Porphyromonas 

gingivalis.  It is uncertain to say, however, what the mechanism of this regulation is.  Of the 

2,227 loci analyzed, close to 5% of genes were found to have a fold change of near 2 or above in 

abundance of RNA transcripts (1.6 < ratio 635/532 < 0.56).  Our array has 5 probes which serve 

as technical replicates and are used to confirm accuracy of array hybridization.  For our work, 

only genes with 4 consistently detected regulated ratios were included and averaged.  More 

than 100 additional genes showed an average fold change of 2 or higher from 3 of the 5 probes, 

but are not included in the table and their differential expression will need to be confirmed by 

additional array hybridization or other experimental approaches.  However, the high level of 

regulation of those genes does suggest they are regulated, and if accounted for, the number of 

genes differentially expressed between the mutant and the parental strain would be 

approximately 15% of total genes present on the genome.   

Bacterial cells for microarray analysis were taken during log phase (OD 0.5) and higher 

Hfq levels were recorded during stationary phase compared to log phase in other bacterial 

species[103].  From this, one can infer if levels of Hfq are higher during times of slow growth, 

their effects on gene regulation would be more prominent as well.  Therefore, if analysis of 

differential expression during early stationary phase was done in addition to log phase we could 

compare the two levels of PG0228 and overall changes in regulation gaining a better insight 
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into PG0228’s overall role.   Such studies were not possible for the current time frame but are 

planned for the future. 

 According to the transcriptional profile, the transcription of the downstream gene from 

PG0228, nusA, was not altered, indicating the observed changes in mRNA levels were from 

global regulation of PG0228 and not due to polar effect of the mutation which would lead to 

altered function of nusA (see Table 4).  If PG0228 and PG0229 (nusA) were co-transcribed, some 

of the changes observed in regulation could have been due to abrogation of the nusA 

transcription, however our results show that this was not the case and thus the changes in 

transcriptional profile we see are due to deletion of PG0228. 

As previously stated, Hfq is considered to act as a key global regulator of gene 

expression and facilitate sRNA regulation on target mRNA[56;83].    This therefore, creates a 

cascade of gene regulation from changes in Hfq which affects sRNA which affects target mRNA.  

Small RNAs can downregulate target protein levels[106] and positively affect ribosomal binding 

to mRNA targets causing translation [35;54;101].  Furthermore, sRNAs can regulate one or 

multiple target genes while simultaneously being regulated by Hfq or transcription factors 

[54;65;97] further complicating regulation.  Many sRNAs are trans-encoded, and thus, are not 

physically linked to their target mRNAs on the genome.  In addition, most of these trans-

encoded sRNAs require Hfq for optimum function[98].  It is likely the changes in transcript 

levels of the hypothetical proteins and others are due to inefficient trans-encoded sRNA 

function because PG0228’s lack of facilitation.   
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It is also important to recall, Hfq can act alone to regulate gene expression by 

influencing polyadenylation or translation of mRNA[98].  This demonstrates Hfq’s direct gene 

regulation and therefore some genes regulated in Δ0228 could be attributed to PG0228’s direct 

regulation. 

sRNAs play a key role in regulating their mRNA targets by influencing translation or 

mRNA stability.  These sRNAs may be involved in numerous cellular processes including cell 

development, growth, differentiation, and death by turning genes on and off[1;16;46].  Of the 

79 regulated genes found from microarray analysis, 31 were hypothetical proteins, and as a 

result, it is impossible to know their function at this time.   

Among genes encoding protein of known functions were haemin-uptake encoding genes 

(hmuYR).  P. gingivalis requires haemin for growth and as a major source of iron.  High levels of 

haemin are found within humans, though it is bound to proteins and not freely available[52].  

Gram-negative pathogenic bacteria, including P. gingivalis, have developed mechanisms for 

scavenging iron from haemin bound to proteins within their host[34].  Several studies show the 

heamin-uptake mechanisms are organized into operons inside P. gingivalis ensuring these 

genes are regulated by one regulator[52;84].  Two P. gingivalis genes detected to be 

downregulated (over 7-fold) in the Δ0228 strain include PG1551 (encoding HmuY) and PG1552 

(encoding HmuR).  Both of these proteins are involved in haemin-uptake and are co-

transcribed.  The genomic locus transcribing hmuY and hmuR contains six genes (hmuYRSTUV), 

each most likely encoding proteins involved in sequestering haemin[52;107].  Downstream 

products of the operon, hmuSTUV, are labeled PG1553 thru PG1556.  Due to the fact PG1554 
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(hmuT) is encoded downstream of hmuYR and these six genes are located on an operon, it is 

assumed the transcripts hmuS is also downregulated in the Δ0228 strain.   

In times when iron is abundant, HmuY and HmuR are repressed, and when iron levels 

are low (as in dental plaque), the level of HmuY is high[70].  Consequently, the expression of 

these proteins must be regulated.  PG1237, the LuxR family transcriptional regulator, was found 

to be required for the expression of hmuY and hmuR [107] and studies show PG0498, LuxS, also 

controls the expression of genes involved in haemin uptake[19;45].  However, no changes in 

transcription were found in luxR or luxS according to our microarray analysis (see Table 5 and 

6).  Both the Δ0228 and W83 were grown in the same conditions (see section 2.8.) so the low 

levels of hmuY and hmuR found in Δ0228 strain could not be attributed an abundance of iron.  

These data would indicate the regulation of these haemin sequestering proteins is more 

complex and involves more players other than LuxR and LuxS.  We have shown transcript levels 

of hmuYRST are lower in the Δ0228 strain however, this is not due to a downregulation of luxR 

or luxS, thus the change is from a lack of PG0228, not from altered levels of luxR or luxS.  This 

suggests PG0228 plays a role in the regulation of haemin-uptake mechanisms. 

  Another gene upregulated in our study in the PG0228 deficient mutant encodes 

rubrerythrin.  Rubrerythrin is a non-haem iron protein involved in the protection from reactive 

oxygen species (ROS) and oxidative stress[53;87].  The protein is upregulated in several 

anaerobic bacteria, including P. gingivalis, during oxidative stress[67;74;92].  It is suggested 

rubrerythrin acts as a catalyst reducing intracellular hydrogen peroxide levels[92].  Interestingly, 

our data showed rubrerythrin (PG0195) to be upregulated in the Δ0228 strain.   Microarray 
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analysis also showed upregulation of loci PG1421 and PG1813, both of which encode 

ferredoxins.  Ferredoxins are a group of small iron-sulfur proteins involved in electron 

transfer[23].  Enzymes catalyze the exchange of electrons between electron carriers such as 

ferredoxins therefore serving as antioxidants during oxidative stress.  The transcrpt level of one 

such enzyme, encoded by PG0548, part of the ferredoxin oxidoreductase family, was also 

upregulated in the Δ0228 strain. In addition, a previous study subjecting P. gingivalis to 6% 

oxygen also showed downregulation of the hmu locus [51] like we have seen for Δ0228.  These 

indicate genes encoding proteins that play a role in protection from oxidative stress were 

upregulated.  A bacterium’s resistance to oxidative stress is affected by Hfq but its mechanism 

is still not understood[88].     Mutants deficient in hfq show increased oxidation of carbon 

levels, lowered tolerance to reactive nitrogen species (RNS), and reactive oxygen species 

(ROS)([88;97].  The upregulation of rubrerythrin, ferredoxins, and ferredoxin oxidorecuctase 

indicates that the Δ0228 strain has deregulated oxidative stress mechanisms and further work 

is required to examine the role of the deregulation in growth of the bacterium with oxidative 

stress. 

4.3. RNA Binding to PG0228 

Genes, like those involved in haemin-uptake and oxidative stress, need to be quickly 

turned on and off to ensure the bacterium’s survival.  Small RNAs regulate stress responses, 

virulence, metabolism, and many other complex pathways[44;49;86]. However, little is known 

about these sRNAs in P. gingivalis, particularly which targets they regulate.   It is suggested that 

less energy is expelled by the cell using sRNAs compared to synthesizing bulky regulatory 
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proteins in response to environmental stress[4].  Because these RNAs are small and 

untranslated, they are more cost effective thus allowing a fast response to external stimuli and 

fast recovery once the external stimulus is removed[82].  Most of these sRNAs require Hfq for 

optimum function, which is Hfq’s most prominent function[86].    We have shown PG0228 is 

involved in gene regulation and has numerous similarities to Hfq.  However, sRNAs are post-

transcriptional regulators, thus information as regards changes in transcripts levels resulting 

from destabilization of the mRNA can be found by microarray analysis.  Further work is required 

to examine the changes in P0228-deficient strain at protein level. 

Hfq is a RNA chaperone, therefore, is often found bound to RNA.  If it can be shown PG0228 

also binds to RNA, it will strengthen the idea PG0228 is most likely an Hfq homologue.  

Furthermore, if the identity of these bound RNAs turns out to be known regulatory sRNAs 

found in P. gingivalis, it will further strengthen PG0228’s Hfq candidacy.  The protein needs to 

be crosslinked in vivo to any bound RNA and immunoprecipitated out.  However, there is no 

known specific antibody to precipitate PG0228.  Therefore, a new approach was needed.  A 

tagged fusion protein approach was therefore used using basic concepts based on the ChIP 

assay (Promega).  This added a 3’ tag at the genomic level and would be expressed along with 

the protein.  A specific resin from the company allows our specific tagged protein to be 

retrieved in vivo to study bound RNA.  For the purpose of this study, the 0228-tagged fusion 

mutant was generated which included the 3’ HaLoTag for the bound RNA study.  

A reversible cross-linking combined with immunoprecipitation was done with the 0228-

HaLo strain to study RNA-protein interactions in vivo.  Cross-linking with formaldehyde allows 
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rapid preservation of interactions between the PG0228 protein and RNA.  The cells are then 

lysed.  A resin based ligand, the HaloLink Resin, covalently interacts with the 0228-tagged 

protein and is precipitated out.  The cross-links are reversed using glycine and the RNA bound 

to the protein is isolated.  A RNA library are then created and sent in for sequencing.  We have 

not yet received the data from this study and therefore it is not yet included at this time.  

4.4. Evaluation of Phenotypic Changes in Δ0228 

 As stated, no Hfq homologue has been identified in Porphyromonas gingivalis.  

However, it is highly likely P. gingivalis possesses an Hfq homologue due to the fact it has been 

encoded by nearly half of eubacteria, including pathogens and due to Hfq’s importance as an 

overall RNA cofactor[18].  A deficiency in Hfq greatly impacts overall bacterial virulence and 

fitness. Luckily, several phenotypic studies can be done since deficient strains are still generally 

viable[18].  First deleted in E. coli, the hfq null mutant shows pleiotropic phenotypes, including 

decreased yields, increased cell size, osmosensitivity, and increased sensitivity of UV 

light[36;88;97].  

 Growth defects in broth or on plates are generally mild and include longer lag phase 

and overall lower final density in B. abortus, E. coli, Francisella tularensis, Legionella 

pneumophila, Neisseria meningitides, and Pseudomonas aeruginosa to name a 

few[18;25;57;58;75;80;85].  Although, there were no obvious growth defects found in Gram-

positive bacteria, Listeria monocytogenes or Staphylococcus aureus [18].  As a result, a growth 

study was done on Δ0228 strain to view PG0228’s effect on W83 growth.   
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Figure 22 is an observation of the mutant growth rate compared to W83.  The final 

density of both strains is also compared after the 24hr incubation period. The growth study was 

repeated with data measured in 2hr and 5hr increments.  The data from both studies mirror 

data points given in this study with 4hr increments and therefore were not included. 

According to the results of the growth study done on Δ0228, the growth rate is 

comparable to W83 for the first 8-10 incubation hours during log phase.  The mutant bacteria, 

however, enters stationary phase, indicated by the loss of slope on the graph, at an earlier time 

point than W83.  These results match the data found in many hfq null mutants, again 

strengthening the idea that PG0228 is potentially an Hfq orthologue.   

The environmental niche of P. gingivalis is within a biofilm consisting of several bacterial 

species and experiences changes including available nutrients, pH levels, temperature, and 

osmolarity [29;38].  In addition, virulent pathogens like P. gingivalis can invade and colonize 

within gingival epithelial cells [10;47] but virulence phenotypes of hfq mutants are highly 

noticeable in Gram-negative pathogens B. abortus, Salmonella, and V. cholerae, showing high 

attenuation in mouse infections[18].  For these reasons, a survival study was done to analyze 

the mutant’s ability to handle instant changes in environment.  This was done because hfq 

mutants often are not able to adjust to changes in their environment (as stated above) with an 

exception of S. aureus hfq mutants[12].  The bacteria were exposed to host cell environment to 

mimic conditions they encounter in the oral cavity and sub-gingival regions.  Our results show 

there are no changes in invasion rates between the two strains of bacteria (data not shown), 

thus, the number of invading Δ0228 and W83 bacteria is assumed identical.  To reduce the 
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number of potential variables, only the host invading bacteria are analyzed by removing 

attached and non-invading bacteria.  This is done by treating the HN4 cells with antibiotic.  As 

expected, the Δ0228 strain was not able to handle the added stresses it encountered including 

increased oxidation levels, changes in iron availability, and changes in acid levels.  This is 

evidenced by the significantly lower number of colonies after the incubation period following 

the host invasion (Table 8).  This result again reiterates the fact that, much like Hfq, PG0228 is 

instrumental during high stress conditions, including host invasion, when genes need to be 

turned on and off quickly in order for the bacterium to survive.  

There are multiple other studies to be done such as the above-mentioned oxidative 

stress survival test or other tests that can be predicted based on the changes in transcriptional 

profile.  Another guide will be results of differentially abundant proteins when comparing the 

parental and PG0228 mutant strains.  Such studies are planned for the future. 

4.5. Alternate Hypothesis 

Although we hypothesize that PG0228 functions like Hfq, PG0228 does also have some 

sequence homology with the ribosome maturation factor, RimP.  The in vivo maturation of the 

50s and 30s ribosomal subunits requires auxiliary proteins that are not part of the mature 

ribosomes [69].  Originally found in E. coli, the RimP protein (formerly YhbC or P15a) is essential 

for the maturation of the 30S ribosomal subunit.  Coincidently, both PG0228 and rimP loci are 

found upstream from nusA.  However, rimP is co-transcribed with nusA and infB in E. coli[69].  

According to our microarray results, there was no gene regulation of the downstream nusA in 

the Δ0228 strain.  This indicates PG0228 is not co-transcribed with its downstream nusA in 
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W83, and therefore it is unlikely PG0228 is rimP.  However, PG0228 characteristics are similar 

to both Hfq and RimP.  It is not impossible PG0228 has both functions since both are 

structurally similar and bind RNA.  Future studies are needed to determine the effect of PG0228 

on ribosome maturation in P. gingivalis. 

4.6. Future Studies 

 Mutants depleted of hfq have shown regulation in 5-20% of total genes present on the 

genome depending on the bacterial species [61].  Δ0228 presents high regulation in 15% of 

genes present on the W83 genome.  PG0228 and hfq deficient strains are both viable, present a 

shorter log phase, and have lower final cell density (excluding Listeria monocytogenes and 

Staphylococcus aureus).  Furthermore, strains deficient in PG0228 and hfq are less likely to 

adapt to changes in host environment.  Without the global regulator, genes are less efficiently 

turned on or off, resulting in slow bacterial reaction.  This gives the host a better chance to rid 

themselves of the pathogen.   Immunoprecipitation studies show the identities of Hfq-bound 

RNAs.  We hypothesize the results of our completed immunoprecipitation will also show bound 

RNA.   

 In addition to the RNA sequencing results from the immunoprecipitation, data for 

protein analysis and transcriptomic mRNA are still being processed and have not been 

returned.  We believe this information will shine a bright light on gene regulation by PG0228 at 

both the transcription and post-transcription level.  

 Although we believe PG0228 is an Hfq homologue, several additional studies need to be 

completed.  An analysis of differential expression during early stationary phase should be 
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completed to compare the two levels of PG0228 and overall changes in regulation.  The survival 

study also needs to be repeated to give better insight into host defense.  Plus, more phenotypic 

changes need to be measured to compare to other Hfq mutants.  However, studies thus far 

have demonstrated PG0228 is an excellent Hfq candidate, and we hypothesize further studies 

will show PG0228 is an Hfq homologue.  Finally, additional work involving determination of the 

role of PG0228 in ribosome maturation will shed light on its possible dual role in both 

processes.  It is possible that both functions are merged in one protein in P. gingivalis which 

contains a much smaller genome and associated with that coding capacity compared with E. 

coli that can allow itself to code for two proteins. 
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