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Lung cancer is the leading cause of cancer-related deaths worldwide.  Radiotherapy is one 

of the main treatment modalities of lung cancer.  However, the achievable accuracy of 

radiotherapy treatment is limited for lung-based tumors due to respiratory motion.  Four-

dimensional radiotherapy explicitly accounts for anatomic motion by characterizing the 

motion, creating a treatment plan that accounts for this motion, and delivering this plan to 

the moving anatomy.  This thesis focuses on the current problems and solutions throughout 

the course of four-dimensional radiotherapy.  For characterization of respiratory-induced 

motion, patient tumor motion data were analyzed.  It is shown that tumor motion can be 



 

significant during radiotherapy treatment, and its extent, direction, and linearity vary 

considerably between patients, between treatment fractions, and between respiratory cycles.  

After this, approaches to four-dimensional intensity-modulated radiation therapy treatment 

planning were developed and investigated.  Among the techniques to manage respiratory 

motion, tumor tracking using a dynamic multileaf collimator delivery technique was 

chosen as a promising method.  A formalism to solve a general four-dimensional intensity-

modulated radiation therapy treatment-planning problem was developed.  Specific 

solutions to this problem accounting for tumor motion initially in one dimension and 

extending this to three dimensions were developed and investigated using four-

dimensional computed tomography planning scans of lung cancer patients.  For four-

dimensional radiotherapy treatment delivery, accuracy of two-dimensional projection 

imaging methods was investigated.  Geometric uncertainty due to the limitation of two-

dimensional imaging in monitoring three-dimensional tumor motion during treatment 

delivery was quantified.  This geometric uncertainty can be used to estimate proper 

margins when a single two-dimensional projection imager is used for four-dimensional 

treatment delivery.  Lastly, tumor-tracking delivery using a moving average algorithm was 

investigated as an alternative delivery technique that reduces mechanical motion 

constraints of a multileaf collimator.  Moving average tracking provides an approximate 

solution that can be immediately implemented for delivery of four-dimensional intensity-

modulated radiation therapy treatment.  The clinical implementation of four-dimensional 

guidance, intensity-modulated radiation therapy treatment planning, and dynamic multileaf 

collimator tracking delivery may have a positive impact on the treatment of lung cancer.

 



 

 

 
 
 
PREFACE 

 

 

 

This preface gives an outline of this thesis. 

Chapter 1 is an introduction to this thesis and explains the terms in its title, four-

dimensional intensity-modulated radiation therapy treatment planning.  The literature 

related to the subjects of the thesis is briefly reviewed; and the rationale is presented.  

Four-dimensional radiotherapy consists of three tasks: characterization of respiratory-

induced motion, creation of a treatment plan, and delivery of the treatment.  Chapter 2 is 

assigned to the first task, quantifying and characterizing respiratory tumor motion; 

Chapters 3-5 are to the second task, four-dimensional intensity-modulated radiation 

therapy treatment planning; and Chapters 6 and 7 are to the third task, monitoring anatomic 

motion during treatment delivery and delivering four-dimensional radiotherapy treatment, 

respectively. 

Chapter 2 shows an analysis of respiratory-induced motion using thoracic and 

abdominal tumor motion data.  This has been published in Physics in Medicine and 

Biology (Appendix A). 

 



 

Chapter 3 demonstrates the background and significance of four-dimensional 

intensity-modulated radiation therapy treatment planning using dynamic multileaf 

collimator tracking and its framework.  The literature is reviewed and a formalism to solve 

a general four-dimensional intensity-modulated radiation therapy treatment-planning 

problem is presented. 

Chapters 4 and 5 show two specific solutions to four-dimensional intensity-

modulated radiation therapy treatment planning by extending three-dimensional treatment 

planning to four-dimensional treatment planning with deliverable constraints.  Chapter 4 is 

a four-dimensional intensity-modulated radiation therapy treatment-planning method to 

account for one-dimensional tumor motion.  This has been published in Int. J. Radiation 

Oncology, Biology, Physics (Appendix B).  Chapter 5 is a four-dimensional intensity-

modulated radiation therapy treatment-planning method to account for three-dimensional 

motion.  This has been accepted for publication in Physics in Medicine and Biology 

(Appendix C). 

Chapter 6 is dedicated to quantification of the geometric uncertainty of two-

dimensional projection imaging in monitoring three-dimensional tumor motion.  This has 

been published in Physics in Medicine and Biology (Appendix D).  Chapter 7 shows an 

alternative technique of tumor-tracking delivery using a moving average algorithm.  This 

has been published in Medical Physics (Appendix E). 

Chapter 8 describes ongoing and future work as extension of the work performed in 

this thesis. 
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CHAPTER 1 INTRODUCTION 
 

 

 

This chapter provides an introduction to this thesis.  Several topics are discussed to explain 

the overall rationale for carrying out the research for the thesis. 

A brief description of radiotherapy and four-dimensional (4D) radiotherapy is 

given; and the subject is narrowed down to the main topics, 4D radiotherapy treatment 

planning, dynamic multileaf collimator (DMLC) tracking, and intensity-modulated 

radiation therapy (IMRT).  Respiratory-induced motion relevant to radiotherapy and 

techniques to manage this motion during radiotherapy are reviewed; and lung cancer is 

briefly discussed as the main clinical application of this research.  Then, utilizing 

respiratory tumor motion as a degree of freedom is shown.  Finally, the rationale to 

develop and investigate 4D IMRT treatment planning using DMLC tracking is presented.  

 

1.1. Four-dimensional radiotherapy 

Radiotherapy is an important modality in the treatment of cancer.  About 50% of all cancer 

patients are treated with the treatments that include radiotherapy [http://www.cancer.gov]. 

The goal of radiotherapy is to apply radiation to eradicate a tumor, while sparing 

normal tissues.  This goal is not always achievable due to different types of uncertainties 



 

introduced throughout the course of external beam radiotherapy.  These are likely from (1) 

patient setup, (2) anatomic motion and deformation, and (3) target volume definition due to 

imaging quality, uncertainty about tumor extent, and/or inter-observer delineation variation.  

Among these sources of uncertainties originating from the tumor-identifying to the beam-

irradiating stage, patient anatomic motion 1, 2 is the primary focus of this thesis.  Non-rigid 

anatomy and physiological motion, such as motion from breathing, heart-beating, or the 

digestive system, of a patient are possible sources of anatomic motion.  The motion 

complicates tumor localization for external beam radiotherapy; and thus “time” has been 

introduced as the fourth dimension in radiotherapy and 4D radiotherapy is to explicitly 

include anatomic motion during imaging, treatment planning, and treatment delivery of 

radiotherapy 3, 4.  Effective motion management is especially important for the radiotherapy 

treatment of thoracic and abdominal regions, wherein respiratory-induced motion is shown 

to contribute most to patient anatomic motion during radiotherapy and to be a significant 

factor causing geometric uncertainties during imaging, treatment planning, and treatment 

delivery of radiotherapy 4, 5. 

 

1.2. Four-dimensional radiotherapy treatment planning 

Four-dimensional radiotherapy that incorporates anatomic motion consists of three tasks: 

(1) characterizing the motion, (2) creating a treatment plan that accounts for this motion, 

and (3) delivering this treatment plan to the moving anatomy.  The first task has been 

greatly facilitated through the increased use of 4D computed tomography (CT) 6, 7.  Four-

dimensional CT provides more accurate anatomic motion information than the 

 18



 

conventional CT, and suggests that the motion information can be used to improve 

accuracy of radiotherapy treatment.  However, how to utilize this extra information in an 

optimal way to create a treatment plan that accounts for anatomic motion remains 

challenging.  The third task has been investigated and/or clinically implemented using 

different types of motion management techniques (discussed in Section 1.5).  For a linear 

accelerator equipped with a multileaf collimator (MLC), DMLC delivery is shown to be a 

promising method to deliver 4D radiotherapy treatment 8-22.  However, how to include 

mechanical constraints of delivery devices in a treatment plan that accounts for anatomic 

motion also continues to be a challenge. 

 

1.3. Dynamic multileaf collimator tracking 

An introduction of a computer-controlled MLC consisting of multiple narrow leaves that 

can move independently in and out of a radiation beam path allows conformal shaping of 

the beam to match the border of a tumor.  A DMLC delivery technique which dynamically 

moves MLC leaves during treatment delivery allows the radiation beam to follow a 

moving tumor by continuously changing both positions and shapes of treatment beam 

apertures.  Tumor tracking using DMLC delivery has been investigated and experimentally 

demonstrated for rigid or deforming, mobile tumors 8-22.  It is suggested that real-time 

DMLC tumor tracking has potential to improve radiotherapy treatment by reducing 

geometric uncertainties of a tumor due to anatomic motion and thus increasing dosimetric 

accuracy. 
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1.4. Intensity-modulated radiation therapy 

Three-dimensional (3D) conformal radiation therapy focuses on increasing a local tumor 

control rate and thus a survival rate, by achieving spatial localization of a high-dose 

irradiation volume 23.  This treatment technique often does not produce a satisfactory 

treatment plan when a tumor has a complex volume shape or critical structures are in close 

proximity.  Intensity-modulated radiation therapy aims to keep a radiation dose to 

surrounding normal tissues low by modulating beam intensity within each beam delivery.  

The improved sparing of normal tissues allows increasing a radiation dose delivered to a 

tumor.  It has been shown that using an IMRT treatment technique increases a tumor 

control rate and lowers local toxicity and complications associated with high-dose 

radiation 24-28.  The capability of delivering the highly conformal dose to the tumor with a 

tighter margin while sparing normal tissues also indicates that IMRT can be more 

susceptible to anatomic motion. 

Delivery of an IMRT treatment has been facilitated by the use of MLCs.  Multiple 

fixed gantry angle IMRT uses a number of fixed beam directions; and at each beam 

direction, a desired beam intensity pattern is achieved by (1) alternating segments between 

MLC leaf motion and dose delivery (a step-and-shoot technique) or (2) moving MLC 

leaves during dose delivery (a sliding-window technique).  Modulation of beam intensity 

may also be achieved by using one or more gantry arcs with continuously varying MLC 

leaf positions, dose rate, and gantry rotation speed (intensity-modulated arc therapy or 

volumetric modulated arc therapy) 29. 

 

 20



 

1.5. Respiratory-induced motion in radiotherapy 

Extent of respiratory-induced motion 

Many studies show that respiratory motion for thoracic and abdominal tumors can be as 

large as 2-3 cm, and shows intra- and inter-fractional variations 1, 4, 30, 31.  The American 

Association of Physicists in Medicine (AAPM) Task Group 76 4 summarizes lung tumor 

motion data and finds that the greatest lung tumor motion is generally in the superior-

inferior (SI) direction, whereas the least motion is in the left-right (LR) direction.  Lung 

tumor motion tends to increase from the upper lobes to the lower lobes of the lungs.  The 

maximum motion extent documented is 5 cm 32.  Ekberg et al. 33 showed relatively small 

motion in which the mean extent was 0.4 cm at most, while Erridge et al. 34 reported 

relatively large motion with the mean extent being 1.3 cm in the SI direction.  The extent 

and the degree of wide variations in motion are acknowledged in the literature; however, 

no consensus is apparent regarding respiratory motion management.  The AAPM Task 

Group 76 
4 recommends that respiratory motion management techniques should be 

considered when the tumor motion range in any direction is greater than 0.5 cm.  

 

Techniques to manage respiratory-induced motion 

Several techniques have been developed to manage respiratory tumor motion, such as 

motion-encompassing, abdominal compression, breath-hold, respiratory-gating, and tumor-

tracking techniques 4. 

Creating a treatment volume that encompasses the motion of a tumor is the simplest 

idea to manage respiratory tumor motion 35, 36.  This motion-encompassing technique is 
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agreeable with the aim of radiotherapy in an initial stage, eradicating the tumor.  However, 

with the complications due to excessive irradiation to critical structures, the importance of 

normal tissue sparing started to be acknowledged.  The advent of 4D CT provides accurate 

information of tumor positions within a respiratory cycle, which helps design more optimal 

margins 6, 7 compared with conventional margin expansion. 

Another simple approach is an abdominal compression technique.  Pressing down 

patient’s abdomen restricts the amount of abdominal motion and thus reduces respiratory 

tumor motion.  An abdomen-pressing plate with an arc and scaled screw is a commercial 

abdominal compression device included in Stereotactic Body Frame® (Elekta, Stockholm, 

Sweden) 37.  For patient immobilization, it is equipped with a rigid-body frame and a 

vacuum pillow in a body shell, and laser markers attached to the frame.  An air-injected 

blanket also is developed as an abdomen-pressing device 38.  By inflating the urethane 

pillow that is spread over patient’s abdomen, even pressure is applied to the abdominal 

area to reduce the motion.  Abdominal compression techniques are relatively simple and 

easy to implement, and the device is inexpensive.  Patient discomfort can be an issue, and 

reproducibility of pressure and positions of a device are in question. 

Breath-hold techniques minimize respiratory tumor motion by controlling patient’s 

breathing actively or passively.  Active breathing control 39, 40 and deep inspiration breath 

hold 41 make use of filling the lungs with deep inspiration breath holding.  This has two 

benefits.  First, deep inspiration increases a lung volume, thus reduces a normal tissue 

volume in a treatment volume and reproducibly moves a tumor volume away from critical 

structures.  Second, breath holding effectively immobilizes a tumor, thus margins can be 
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reduced significantly while maintaining a constant lung volume.  These techniques require 

compliance and active participation of patients; and breath holding might not be well 

tolerated or performed by patients with compromised lung functions, which often happens 

to lung cancer patients 41, 42.  Also, breath-hold techniques require additional treatment 

time (17-33 min reported) compared with free-breathing approaches.  Active breathing 

control temporarily closes inspiration and expiration paths of an airflow using a ventilator, 

while a patient breathes only through a mouth with a nose clip on.  As a portable system, it 

can be compatible with any kind of treatment machines and treatment modalities.  A 

commercial system, Active Breathing CoordinatorTM (Elekta, Stockholm, Sweden), aids a 

patient to maintain a consistent and reproducible breath-hold volume by controlling a 

balloon valve that allows a specified volume of air to be inhaled or exhaled and by 

showing a patient the respiratory trace on a screen.  Deep inspiration breath hold involves 

coaching a patient to reproduce a deep inspiration level.  Initially a patient is brought to 

quiet breathing only through a mouth to a spirometer with a nose clip on, while looking at 

a screen displaying a volume of air breathed in and out.  Then verbal coaching to maneuver 

deep inspiration breath hold is given to a patient to follow a slow deep inspiration, a slow 

deep expiration, a second slow deep inspiration, and a breath hold.  One more type of a 

breath-hold technique is held-breath self gating, a voluntary breath-hold technique 43.  A 

patient activates a hand-held buzzer when the patient feels that a breath hold is 

maintainable; then a therapist activates the treatment beam.  Patients perform the functions 

of a sensor, a detector, and a beam controller, so that this technique requires safety features.  
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Both a therapist and a patient can inactivate the treatment beam, but only a therapist can 

activate the beam directly with the patient cooperation. 

The last two techniques, respiratory gating and tumor tracking, are relatively new 

and have been shown to be promising with the advent of image-guided radiation therapy 4.  

Given that success of these techniques depends on how accurately a tumor is localized, 

quantification and characterization of tumor motion is important. 

Respiratory-gating techniques synchronize beam exposure with the pre-determined 

portion of a patient’s respiratory cycle 5, 44-47.  To perform this technique, the displacement 

and the phase of tumor motion within a respiratory cycle needs to be determined; and an 

external surrogate or internal fiducial markers are used to monitor respiratory tumor 

motion.  Two types of respiratory-gating techniques are available: (1) displacement gating 

activates the beam only when the displacement of respiratory signals is between the two 

pre-set displacement limits and (2) phase gating activates the beam only when the phase of 

respiratory signals is between the two pre-set phase limits.  That is, imaging or delivery 

devices are triggered according to the displacement or the phase of a patient’s respiratory 

trace monitored.  This technique does not cause patient discomfort as patients do not need 

to hold their breaths; but “gating” increases treatment time considerably as the beam 

repeatedly turns on and off, and it requires accurate information on the internal tumor 

position as the beam is on within the pre-set gating window only. 

Finally, a technique to synchronously follow a tumor with the radiation beam has 

been suggested as an optimal solution to manage respiratory tumor motion, compared with 

all other techniques discussed above 48-50.  By continuously tracking a moving tumor, the 

 24



 

tumor can remain static in a beam’s eye view (BEV).  Consequently, there is potential to 

yield a more accurate treatment within less time as the beam is always on and follows the 

tumor with a smaller margin than when the aforementioned techniques are used.  This 

technique is first implemented in a robotic radiosurgery system using a robotic arm to 

move the entire linear accelerator to track the tumor 50-56.  Tumor tracking can also be 

performed by repositioning the radiation beam using an MLC 8-22 or a treatment couch 57.  

The requirements for a tumor-tracking technique include accurate and fast detection of 

tumor positions during treatment delivery (to follow the tumor in real time) and/or good 

reproducibility of a patient’s respiratory pattern (to overcome the mechanical time delay to 

reposition the beam) 12.  This is obvious because the information on internal tumor 

positions is crucial to track the moving tumor.  Then again, it reveals that if accurate tumor 

positions are not provided, tumor tracking may result in a worse outcome than when no 

motion management techniques are used.  In this regard, there have been studies to train or 

force a patient to achieve regular and reproducible breathing 22, 58-61.  This helps reduce the 

problems of free breathing for tumor tracking, such as residual motion and baseline shifts.  

Regular and reproducible breathing also is helpful for a respiratory-gating technique 

providing accurate information on internal tumor motion. 
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1.6. Lung cancer 

Cancer occurs when cells in a part of the body begin to grow out of control, and lung 

cancer is a cancer that starts in the lungs.  Lung cancer is the leading cause of cancer 

deaths in the United States and worldwide for both men and women, even though prostate 

cancer for men and breast cancer for women are most diagnosed 62.  According to 

American Cancer Society Cancer Facts and Figures 2008, it was estimated that there were 

215 020 new lung cancer cases (114 690 in men and 100 330 in women) and 161 840 

deaths from lung cancer (90 810 men and 71 030 women) in 2008.  The average chance in 

a lifetime that a person will develop lung cancer is about 1/13 for a man and 1/16 for a 

woman.  The five-year survival rate, an estimate of the cancer prognosis, is only 15% for 

all stages of lung cancer, compared with more than 60% for all cancer sites. 

The most common treatment options of lung cancer include: (1) surgery to remove 

the tumor; (2) chemotherapy to use anti-cancer drugs injected onto a vein or taken by 

mouth; and (3) radiotherapy to kill or shrink cancerous cells with ionizing radiation.  More 

than one kind of treatment modality may be used.  

 

1.7. Utilizing respiratory-induced motion as a degree of freedom 

The objective of this thesis is to utilize anatomic motion to benefit radiotherapy treatment 

instead of seeing the motion as an obstacle to radiotherapy.   

Figure 1-1 shows a tumor with normal anatomy at two different respiratory phases 

in two different beam angles.  The first column is from a beam angle where the tumor 

projection overlaps spinal cord, while the second column is where the tumor projection 
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overlaps esophagus.  While targeting a moving tumor with the radiation beam, a dose from 

a given beam angle can be spread over different parts of normal anatomy; thus, without 

compromising the tumor dose, the maximum dose to normal tissues is lower than when the 

other treatment approaches, such as motion-encompassing or respiratory-gating techniques, 

are used.  The treatments using these two techniques would give approximately same 

amount of a radiation dose to normal tissues as the tumor from the particular beam angle, 

and therefore do not have flexibility to spare normal anatomy within a single beam 

delivery.  This is particularly beneficial for serial structures such as spinal cord or 

esophagus.  

 

 

 

Figure 1-1. A tumor (red at end exhale phase and blue at end inhale phase) with normal anatomy 
(spinal cord in yellow, esophagus in green, and heart in pink) at two different respiratory phases in two 
different beam angles: the tumor projection overlaps spinal cord in beam angle 1 and the tumor 
projection overlaps esophagus in beam angle 2. 
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To demonstrate a principle of utilizing anatomic motion as a degree of freedom to 

improve radiotherapy treatment, a highly constrained IMRT treatment plan was designed, 

in that three beam angles were chosen with beam angle arrangement of the first beam 

passing through spinal cord to the tumor, the second through esophagus to the tumor, and 

the third through the tumor only.  For a single lung cancer patient 4D CT planning scan 

(tumor motion of 2.1 cm and tumor volume of 3 cm3), treatment planning was performed 

using three different treatment approaches: (1) a respiratory-gating technique at end exhale 

(exhale gating) or at end inhale (inhale gating) with the target on end exhale phase or on 

end inhale phase CT image, respectively (Figure 1-1); (2) a motion-encompassing 

technique with the target encompassing the gross tumor volumes (GTVs) for all phases of 

the 4D CT planning scan (Figure 1-2); and (3) a 4D approach, where 50% of the treatment 

is performed on end exhale phase and the rest 50% on end inhale phase (Figure 1-2).  The 

IMRT treatment plan using the 4D approach was created by accumulating the resultant 

doses from the IMRT treatment plans on end exhale phase and on end inhale phase onto 

the reference phase CT image using deformable dose summation 63-68. 
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Figure 1-2. Treatment approaches shown at two different respiratory phases in two different beam 
angles.  For a motion-encompassing technique, a target is defined to cover the GTVs for all phases of 
the 4D CT planning scan (shown in sky-blue with normal anatomy of spinal cord in yellow, esophagus 
in green, and heart in pink).  A 4D approach is defined as 50% of the treatment to be delivered on end 
exhale phase and the rest on end inhale phase. 

 

 

The mean and maximum doses to serial structures are significantly decreased in the 

IMRT treatment plan using the 4D approach compared with the plans using other methods, 

as shown in dose-volume histograms (DVHs) in Figure 1-3.  Dose received by 5% of the 

volume, , is reduced by 38%, 40%, and 36% for spinal cord and by 29%, 33%, and 

35% for esophagus, compared with the plans using exhale-gating, inhale-gating, and 

motion-encompassing techniques, respectively.  This improvement is likely highest for 

small, mobile tumors as those found in lung stereotactic body radiotherapy (as in this 

example case), so that it is not a general conclusion; rather it shows a single data point 

illustrating potential of including anatomic changes in time as an additional degree of 

freedom to improve radiotherapy treatment by maximizing tumor dose and minimizing 

normal tissue doses 16, 69. 

5%D

 29



 

 

Figure 1-3. DVHs of serial structures, spinal cord and esophagus, for the IMRT treatment plans using 
different treatment approaches, showing significant decrease of the maximum dose when utilizing 
anatomic motion as a degree of freedom. 
 

 

The results reveal that anatomic motion does not have to hinder radiotherapy 

treatment, but it can be seen as an opportunity to improve the treatment.  That is, 

considering anatomic changes in time as an additional degree of freedom and including the 

motion as a function of time in radiotherapy treatment planning has potential to improve 

the treatment plans. 
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1.8. Rationale 

Lung cancer is clinically significant but the overall prognosis is poor (Section 1.6).  

Although it is reported that increasing a radiation dose helps achieve a better local control 

rate and an improved survival rate for lung cancer patients 70-72, it is also shown that 

administering a higher radiation dose results in an increased risk of lung toxicity and 

complications 73-76.  An IMRT treatment technique is a good candidate for the treatment of 

lung cancer, because of its highly conformal tumor coverage allowing more sparing of 

surrounding normal tissues (Section 1.4) 77, 78.  However, lungs are one of the sites affected 

most by respiratory-induced motion, which compromises the quality of an IMRT treatment 

by causing geometric and dosimetric uncertainties (Sections 1.1 and 1.5). 

Although the recent advances in imaging and treatment delivery techniques show 

potential to manage anatomic motion in radiotherapy, how to utilize these to improve 

treatment planning has yet to be fully resolved (Section 1.2).   

Tumor motion management has been actively studied for the last decade.  

Especially, the first four techniques in Section 1.5 have been intensively investigated 

and/or implemented.  Despite technical difficulties to be overcome and quality assurance 

issues to be solved, there has been much attention to tumor tracking using a DMLC 

delivery technique as a promising method (Sections 1.3 and 1.5). 

This thesis presents the issues and the solutions in 4D radiotherapy mainly focusing 

on methods of 4D IMRT treatment planning using DMLC tracking for 4D CT image sets 

of lung cancer patients. 
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CHAPTER 2 QUANTIFICATION OF THE EXTENT OF 

RESPIRATORY-INDUCED MOTION 
 

 

 

2.1. Introduction 

Four-dimensional radiotherapy starts at quantification and characterization of respiratory-

induced motion.  It is important to quantify the extent of anatomic motion, as it is one of 

potential sources of geometric uncertainties during imaging, treatment planning, and 

treatment delivery of radiotherapy.  Anatomic motion information is necessary for both 

designing a treatment plan that accounts for the motion and delivering the treatment to the 

moving anatomy.  This chapter presents how substantial and how regular (or irregular) 

respiratory tumor motion is for a large patient population over an extended time period. 

The aim of this study was to analyze more than 70 hours of thoracic and abdominal 

tumor motion for stereotactic body radiotherapy patients.  The details of this chapter have 

been published in Physics in Medicine and Biology, which is included as Appendix A 31. 

 



 

2.2. Methods and materials 

Tumor motion data from 143 treatment fractions for 42 thoracic and abdominal cancer 

patients treated with Cyberknife Synchrony (G3 System with delivery software version 

6.2.3, Accuray Incorporated, Sunnyvale, CA) in Georgetown University Hospital from 

July 2005 to January 2006 were used in this study.  The use of the data for research 

purposes was approved by the Georgetown Institutional Review Board (IRB, 2005-309).  

In order to compensate for tumor motion, Synchrony, the tracking system, estimates 

internal tumor positions by a correlation between external patient motion and internal 

fiducial locations, as well as by a prediction algorithm.  That is, the patient tumor motion 

data used in this study were derived from the external/internal correlation model and 

recorded at 25 Hz by the tracking system. 

It is important to note that the tumor motion analyzed is not actual but estimated 

from the correlation model of the tracking system that is based on periodic stereoscopic x-

ray images.  The uncertainty of the tracking system motion data was assessed by 

estimation errors of the correlation model, which the Synchrony system recorded every 

time two orthogonal x-ray images were acquired and internal fiducial locations were 

measured.  The vector error for each internal fiducial was quantified: the mean and the 

standard deviation (SD) of 3D positional estimation root-mean-square (RMS) errors of the 

tracking system over 143 treatment fractions is 1.5 ± 0.8 mm.  The estimation errors could 

be due to inaccuracy of the correlation model, or temporal variations in the correlation 

model between measurements 55, 79, 80.  
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Creation of a database of patient tumor motion 

The tracking system motion data included portions that might be from sources other than 

tumor motion, so that these data were processed to extract the estimated tumor motion 

from the tracking system motion data; and subsequently, for each of 143 treatment 

fractions, the longest single contiguous data set was created by excluding (1) data points 

showing no motion, (2) significantly large motion at the beginning of the tracking system 

motion data, (3) large time intervals (more than 5 s) where no data were recorded, and (4) 

data points showing the large motion change in one direction only out of three directions. 

 

Separation of individual respiratory cycles 

To break the respiratory tumor motion data into individual cycles, the system noise was 

first removed by filtering the tracking system motion data using the first-order Butterworth 

low-pass filter with a cut-off frequency of 2.5 Hz.  Then, the respiratory-induced peak-to-

trough distance and period were determined by (1) generating smoothed data (with a 

moving average over 1 s) and a moving average baseline (with a moving average over 8 s) 

from the filtered tracking system motion data, (2) searching intersections between the two 

curves, (3) determining peaks and troughs between the intersections, and (4) calculating 

peak-to-trough distance and period (Figure 2-1). 

 

Analysis of respiratory motion data 

Once separated into individual respiratory cycles, the tumor motion data were analyzed to 

obtain useful information on respiratory tumor motion: (1) respiratory-induced peak-to-
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trough distance, (2) respiratory period, (3) per cent contributions to 3D motion from 

motion in the LR, anterior-posterior (AP), and SI directions, and (4) motion nonlinearity 

and hysteresis. 

 

 

 

Figure 2-1. Separation of individual respiratory cycles: (a) the black solid curve represents the filtered 
tracking system motion data, the blue dashed curve represents the smoothed data (moving average over 
1 s), and the red dot-dashed curve represents a moving average baseline (moving average over 8 s); (b) 
the circles mark intersections between the blue dashed and red dot-dashed curves, and the triangles and 
inverted triangles represent peak and trough points, which are the maximum and minimum points 
between adjacent intersections, respectively. 
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2.3. Results and discussion 

Creation of a database of patient tumor motion 

The mean duration time of the extracted motion data is 30 min (5-86 min), and the total 

duration time is approximately 72 hours.  The mean ratio of duration time in the tracking 

system motion data and that in the extracted motion data is 0.42 (0.07-0.99). 

 

Separation of individual respiratory cycles 

Due to substantial temporal changes in respiratory tumor motion, developing a robust 

algorithm to separate individual respiratory cycles is challenging.  The moving average 

curves, which can remove the effect of possible signal drifts and noises, were used for the 

algorithm to separate individual respiratory cycles.  For all treatment fractions, 70 218 

individual respiratory cycles were examined after separating individual cycles and used to 

further characterize respiratory tumor motion. 

 

Analysis of respiratory motion data 

Figure 2-2 summarizes the information on the respiratory-induced tumor motion data 

analyzed.  The overall mean respiratory-induced peak-to-trough distance is 0.48 cm, with 

individual treatment fraction means ranging from 0.02 to 1.44 cm.  The overall mean 

respiratory period is 3.8 s, with individual treatment fraction means ranging from 2.2 to 6.4 

s.  The mean of individual treatment fraction SDs for the peak-to-trough distance and 

period is 0.15 cm (0.01-0.73 cm) and 0.8 s (0.2-1.7 s), respectively [Figures 2-2(a) and (b)]. 
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One of the conditions where respiratory management techniques should be 

considered in regard to the recommendations made by the AAPM Task Group 76 4 is when 

the tumor motion range in any direction is greater than 0.5 cm.  Fifty-seven treatment 

fractions (40%) show the mean peak-to-trough distance to be greater than 0.5 cm: 44 (42% 

of all lung tumor fractions) from 16 lung patients and 13 (34% of all retroperitoneal tumor 

fractions) from 7 retroperitoneal patients. 

Twenty-six treatment fractions (18%) show the dominant RL motion, 32 (22%) 

show the dominant AP motion, and 85 (60%) show the dominant SI motion.  Individual 

treatment fraction means for per cent contributions to 3D motion from the LR, AP, and SI 

motion range 3-73%, 8-84%, and 5-77%, respectively [Figure 2-2(c)]. 

Motion nonlinearity and hysteresis are important characteristics of respiratory 

tumor motion, but no consensus on how to quantify their extent has been reached.  In this 

study, principal components analysis (PCA) is applied to quantify the motion nonlinearity 

and hysteresis.  The first principal component that PCA generates is expressed as a 

normalized percentage (ranging from 33 to 100%), where 100% indicates pure linear 

motion, and the lower the percentage, the more nonlinear motion and/or more hysteresis.  

Given that for many of the treatment fractions the mean of the first principal component is 

greater than 90%, the motion nonlinearity and hysteresis usually are not significant; 

however, they are not negligible, either [Figure 2-2(d)]. 

 37



 

 

Figure 2-2. Summary of the information on the respiratory-induced tumor motion analyzed: for each of 
30 lung patients (left) and 12 retroperitoneal patients (right), (a) mean and SD of the respiratory-induced 
peak-to-trough distance, (b) mean and SD of the respiratory period, (c) mean of the per cent 
contributions to 3D motion from the motion in the LR (sky blue), AP (white), and SI (pink) directions, 
and (d) mean and SD of the first principal component (normalized percentage) showing motion 
nonlinearity and hysteresis. 
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2.4. Conclusions 

This study shows that (1) respiratory-induced tumor motion can be a significant factor of 

accuracy for the radiotherapy treatment of thoracic and abdominal tumors and (2) for the 

extent, direction, and linearity of the motion, large variations are observed from patient to 

patient, from fraction to fraction, and from cycle to cycle. 

Due to normal tissue dose tolerances, accommodating the variable tumor position 

merely by adding large margins around the tumor limits the therapeutic dose that can be 

delivered.  A potential solution for this is to both plan and deliver the 4D radiotherapy 

treatment for the tumors that move with respiration. 
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CHAPTER 3 FOUR-DIMENSIONAL INTENSITY-MODULATED 

RADIATION THERAPY TREATMENT PLANNING, 

A GENERAL SOLUTION 
 

 

 

3.1. Introduction 

Intensity-modulated radiation therapy is shown to have better normal tissue sparing and 

target coverage compared with 3D conformal radiation therapy treatment techniques 25-27.  

For IMRT treatment delivery, a DMLC technique is being used as it is reliable and 

efficient 81-83.  However, IMRT is known to be more susceptible to the motion of tumor 

and normal structures because the motion limits knowledge of both the position of the 

anatomy and the dose received by the anatomy 26.  This is especially the case with an 

IMRT treatment delivered using a DMLC technique 25, 27.  In addition, DMLC IMRT 

delivered to moving anatomy results in variations in the delivered dose distribution from 

the planned due to the interplay between anatomic motion and MLC leaf motion 84-91.  

Dosimetric impact from the interplay may be insignificant for IMRT with multiple 

treatment fractions, but it increases with motion extent 84, 87, 89, 91. 

A DMLC technique has been investigated for delivery of a 4D IMRT treatment, 

and several techniques to incorporate positional changes of anatomy into an IMRT 
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treatment delivered using a DMLC technique have been proposed (discussed later in this 

section).  However, the finite mechanical motion capabilities of an MLC impose 

constraints on leaf sequencing for a 4D IMRT treatment because during treatment delivery 

MLC leaves need to both follow tumor motion (4D) and modulate beam intensity (IMRT).  

Besides, a constraint on 4D IMRT treatment planning, which is not found in 3D IMRT 

cases, is that leaf sequences need to be specifically designed such that the maximum leaf 

dynamics (velocity and acceleration/deceleration) are not exceeded when tracking 

anatomic motion using an MLC.  This mechanical leaf motion constraint adds additional 

complexity in IMRT treatment planning on 4D CT image sets.  Therefore, how to create 

DMLC leaf sequences to generate an IMRT treatment plan in the presence of moving 

anatomy has not been developed yet. 

A 4D IMRT treatment-planning optimization and its delivery using a DMLC 

technique has been investigated in the literature.  

Trofimov et al. compared different 4D IMRT optimization schemes with respect to 

a full optimization and sorted them by increasing complexity of delivery: (1) using an 

internal target volume on the basis of a 4D CT scan, (2) using the convolution of a pencil 

beam kernel that describes dose deposition from individual beamlets with a probability 

density function that describes tumor motion, to compensate for respiratory motion, (3) 

respiratory gating, and (4) tumor tracking 92.  They showed that tumor tracking was better 

than the other techniques; and provided a good framework of formulating 4D IMRT 

treatment-planning optimization problems.  They did not investigate a robustness of the 

optimization methods with respect to the delivery methods, thus their study did not create 
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leaf sequences nor include mechanical limitations of a treatment machine, such as MLC 

leaf motion constraints. 

Webb et al. developed motion-compensated DMLC techniques to deliver an IMRT 

treatment.  They initially proposed practical methods to account for one-dimensional (1D) 

rigid-body translation in the MLC leaf travel direction 93 and two-dimensional (2D) rigid-

body translation 11, which was based on a modification of the DMLC IMRT technique 

whereby MLC leaves were arranged to change according to the patient respiratory pattern.  

It is shown that applying these techniques to tumor-tracking delivery benefits improvement 

of tumor dose conformality and reduction of PTV margins.  They then implemented 

strategies to find leaf trajectories that minimized geometric mismatch between MLC leaf 

and non-rigid anatomic locations in one dimension 94 and in two dimensions 8, including 

the maximum leaf velocity constraint.  Their strategy was not a full 4D optimization as it 

matched geometric mismatch, not dosimetric mismatch, and they did not yet demonstrate 

implementation with a cohort of patients. 

Papiez et al. developed algorithms for optimized DMLC IMRT delivery for mobile, 

deforming targets.  They demonstrated DMLC leaf sequencing for target motion in real 

time and when a priori motion information was available in one dimension, but as of yet 

not for three dimensions 10, 14-18, 20.  Recently, they applied a real-time DMLC leaf-pair 

optimal control algorithm for IMRT treatment delivery to targets moving two-

dimensionally in a BEV, using a leaf-pair shifting technique 9, 19.  Their optimization 

algorithms were designed to deliver the given radiation beam intensity, to minimize the 

beam-on time, and not to exceed the maximum MLC leaf velocity.  Their investigations 

 42



 

focused on real-time delivery of an IMRT treatment, and thus they did not perform 

treatment planning for DMLC IMRT. 

Zhang et al. incorporated respiratory tumor motion and deformation into a 

treatment-planning optimization for helical tomotherapy delivery 66.  For a beamlet-based 

optimization, beamlets can be calculated using 4D CT.  For each beamlet, time-dependent 

dose calculation was performed.  Then, a set of deformed beamlets was obtained by 

mapping the calculated dose back to the primary phase, and an optimization incorporating 

motion was performed.  This method provided breathing-correlated delivery as the 

correlation between treatment delivery and a respiratory cycle was set in treatment 

planning; thus with the help of guided breathing, this optimization method on a moving 

tumor resulted in a highly conformal dose distribution.  Their study was based on a binary 

MLC, and limited to a phantom and one lung case. 

Schlaefer et al. showed an approach to consider the relative motion of organs to 

avoid overdoses during treatment planning for robotic radiosurgery 95.  On the basis of the 

periodic nature of respiratory motion, organ motion can be described as the organ position 

at each state in a respiratory cycle.  That is, the relative motion of organs is handled by 

discretizing the motion in the temporal or spatial dimensions and computing dose 

coefficients for each discrete state separately.  Then these dose coefficients are 

incorporated into the optimization of beam weights to take into account the motion of both 

the organs and the beams.  This method resulted in improved conformality of the treatment 

without increasing the overall dose and the treatment time considerably, and has been 
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clinically released.  Their study did not include MLC motion constraints as their system 

does not have an MLC, and it was restricted to a phantom case. 

Alasti et al. suggested a 4D-weighted radiotherapy by using a weighting factor to 

account for tumor motion during treatment planning and delivery 96.  The 4D-weighted 

MLC treatment field was a weighted sum of the MLC position for the static field and the 

dynamic MLC position for the 4D dynamic field, which allowed MLC leaves to follow a 

moving tumor.  The weighting factor was chosen depending on the reliability of patient 

respiration and the limitations of the delivery system.  They provided a simple 4D 

radiotherapy treatment planning and delivery method that reduced PTV margins and the 

irradiated lung volume, and thus this method may benefit safe application of IMRT.  Their 

4D MLC leaf sequence was not created by optimal leaf sequencing, rather by a weighted 

sum of leaf positions for the static and dynamic field, thus it was not a full 4D optimization.  

Their study was phantom-based. 

Tewatia et al. proposed procedures of treatment planning for a breathing-

synchronized delivery technique and its delivery 97.  Motion was directly overlaid to the 

DMLC leaf position, and violations of the mechanical limitations of the hardware were 

avoided during treatment planning.  Their results showed that the delivered dose 

distribution was similar to the planned by compensating respiratory tumor motion without 

requiring hardware modification, and thus breathing-synchronized delivery can be easily 

applied in clinic.  As motion is incorporated into treatment planning after a plan 

optimization by superimposing target displacement on the leaf positions, their method was 

not a full 4D optimization.  This study was also phantom-based. 
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To date, no other groups have reported techniques that develop leaf sequences as a 

function of respiratory phase; and thus a DMLC IMRT treatment-planning method for 4D 

CT image sets, which includes MLC leaf motion constraints and is robust to the variations 

of fractional time spent in respiratory phases within a 4D CT scan has yet to be developed. 

 

3.2. Specific aim 

The aim of this study was to develop and investigate 4D IMRT treatment planning with 

DMLC tracking including MLC leaf motion constraints, which takes respiratory-induced 

anatomic motion into account and is robust to the variations of fractional time spent in 

respiratory phases within a given 4D CT planning scan.  Reducing phase-to-phase 

variation in dose distributions is an advantage during treatment delivery, because it would 

result in dose distributions close to the planned dose distributions even when a patient 

spends a different fraction of time in each respiratory phase from the planned (as in a 4D 

CT planning scan). 
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Variables not included (outside the scope of this thesis, but might affect the final clinical 

implementation) in the analysis are as follows. 

 Day-to-day and cycle-to-cycle variation of patient respiratory motion was not 

included, as there was no further information about the patient respiratory motion 

beyond a single 4D CT planning scan.  Thus, only the changes in respiratory motion 

within one respiratory cycle from a 4D CT image set for a given patient were 

included, whereas variables such as day-to-day and cycle-to-cycle changes in tumor 

positions with respect to skeletal anatomy or out-of-phase variation were not. 

 Dose calculation was performed with a superposition-convolution algorithm using a 

commercial radiotherapy treatment-planning system, as it is the “most-accurate 

easily-available” method.  Dose calculation using other methods like Monte Carlo 

was not included in the analysis.  The aim was to develop and investigate 4D IMRT 

treatment-planning methods.  Changing dose calculation algorithms, more 

specifically, using a Monte Carlo dose calculation may slightly change the resulted 

dose distributions, but it should not significantly affect relative plan rankings for the 

five 4D IMRT treatment-planning methods studied. 

 Deformable registration between a 4D image set for dose summation was performed 

using a single algorithm and assumed to be accurate.  Comparing different 

displacement vector fields, registration algorithms, or dose summation methods was 

beyond the scope of this study. 

 Dose-mass histograms were not included in the analysis.  Only DVHs were used for 

comparing and evaluating treatment plans. 
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3.3. Research design 

Treatment scenario 

Three-dimensional IMRT treatment planning is to create a treatment plan from one CT 

image, resulting in an MLC leaf sequence, L , as a function of monitor units ( MU ), i.e., 

.  Four-dimensional IMRT, wherein modulating the radiation beam to temporally 

changing anatomy is explicitly included, aims to create a treatment plan on a CT image set 

of multiple respiratory phases, resulting in an MLC leaf sequence as a function of 

(L MU )

MU  

and respiratory phase, θ , i.e., L M( U , )θ .  A 4D radiotherapy treatment scenario 

investigated is to obtain a 4D treatment plan from a 4D CT planning scan and to have 

delivery flexible enough to account for changes in tumor positions, tumor drifts, and/or 

respiratory patterns during treatment delivery. 

It is important to note that like currently available 3D radiotherapy, some 

approximations are being made for 4D radiotherapy treatment planning and delivery.  

Four-dimensional radiotherapy treatment planning is based on a single 4D CT planning 

scan, which is usually taken long before actual delivery of treatment.  Guckenberger et al. 

showed that respiratory motion assessed by a single 4D CT image set was reproducible 

during a time period corresponding to a high-dose stereotactic treatment, and concluded 

that for the majority of lung cancer patients studied, treatment planning on the basis of a 

4D CT planning scan appeared to be reliable 98.  On the other hand, Minn et al. showed 

that a 4D CT planning scan cannot accurately predict pancreatic tumor motion during 

treatment delivery for radiosurgery 99.  That is, it is not always true that a single 4D CT 

image set represents the location and the motion of patient’s anatomy during treatment 
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delivery; rather, the anatomic motion pattern would likely change between imaging and 

delivery.  Nevertheless, the patient anatomic motion during the 4D CT planning scan is at 

this time the best possible estimation for what it will be during treatment delivery.  Beyond 

one single 4D CT planning scan, no further information on the anatomic motion pattern is 

known as it is often the case in clinic, this estimation is necessary.  If 4D cone-beam CT 

100-102 or 4D magnetic resonance imaging 103, 104 is available, the most recent information 

on the patient anatomic location can be used.  Even when the updated information is 

available, the assumption to correlate the anatomic location during imaging to that during 

delivery is still required.  With a 4D radiotherapy treatment plan, 4D radiotherapy 

treatment delivery assumes that during delivery there exists real-time information on both 

the tumor location and the respiratory phase of tumor motion, which is from either 

measurement or estimation. 

 

A general framework 

Figure 3-1 shows various approaches to 4D radiotherapy treatment planning.  The most 

general approach to determine radiotherapy treatment planning for 4D anatomy is to allow 

MLC leaves to vary as a function of dose delivered (i.e., MU ) and time (i.e., respiratory 

phase), while also allowing for beam on/off at different respiratory phases.  This is a gated 

4D IMRT treatment-planning method.  When posed in this manner, other approaches to 4D 

radiotherapy treatment planning become subsets of a solution space of the gated 4D IMRT 

as in Figure 3-1.  Thus, a main challenge is to solve the gated 4D IMRT treatment-

planning optimization problem.  Once this problem is solved, limiting the degrees of 
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freedom (or adding additional constraints) and reducing the solution space further to solve 

for other methods described in Figure 3-1 can be straightforward. 

 

 

 

Figure 3-1. Solution space of 4D radiotherapy treatment planning and delivery methods: gated IMRT 
and conventional IMRT are currently available.  RT = radiation therapy. 
 

 

A general framework is to solve and investigate the contributions of the various 

degrees of freedom of a 4D radiotherapy treatment-planning optimization problem shown 

in Figure 3-1, including (1) MLC leaf motion as a function of respiratory phase (4D IMRT 

vs. conventional IMRT), (2) MLC leaf motion as a function of MU  (4D IMRT vs. 4D 

conformal radiation therapy), and (3) beam on/off at different respiratory phases (4D 

IMRT vs. gated IMRT). 
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While a 3D optimization of IMRT treatment planning results in , 

optimizing IMRT treatment planning for 4D anatomy adds an extra variable of respiratory 

phase, resulting in 

( )L MU

( ,L MU )θ .  A mathematical description of a 4D IMRT treatment-

planning optimization is then to find a deliverable leaf sequence as a function of MU  and 

θ , ( ,L MU )θ , and beam on/off status, , to satisfy H

({ ) }min ( , ),f D L MU Hθ⎡⎣ ⎤⎦

)

,    (1) 

where the 4D dose distribution to be delivered, , is as follows:  D

(
1

, , ( ), ( , )
P

i i i i ref i i
i

D H D I I u L MUλ θ
=

= ∑ θ ,  (2) 

with the nomenclature used shown in Table 3-1.  A dose of each respiratory phase, , is 

computed on a given phase image, 

iD

iI , on the basis of ( , )iL MU θ , and then deformed to the 

reference phase image, refI , by the displacement vector field, (u )iθ , using a tri-linear dose 

interpolation algorithm 64, 67, 68.  All individual phase doses computed are accumulated on 

refI  using deformable dose summation 63-66, and a deformable dose-summed 4D dose is 

obtained. 

 

Compared to a 3D IMRT treatment-planning optimization, additional complexities for a 

4D IMRT treatment-planning optimization are as follows. 

 The optimization is performed over a number of CT images. 

 The MLC leaf motion is constrained by the maximum leaf velocity. 
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Table 3-1. Description and typical type, range, and size of the variables used in a general framework to solve 4D IMRT treatment-planning 
optimization problems. 
 

 Description Typical type, range, and size 

f  Mathematical cost function representation of a clinical objective
An arbitrary form for evaluating the dose in segmented 
anatomy, typically on the basis of dose, dose-volume, or 
estimated outcome 

i  Respiratory phase index from 1 to maximum phase number, P Discrete index of typical size 10, i.e., 10P =  

I  

4D CT image set, where iI  represents the CT image for phase 

i  and refI  is the reference phase CT image, which is used for 

deformable dose summation 

4D density distribution of typically 107 voxels 
Pat  time points 

 
( )iu θ
 

Displacement vector field for phase , which is computed i
using a deformable image registration mapping iI  to refI  3D vector field of typically 107 vectors 

iD  Dose distribution of a treatment plan on iI  3D density distribution of typically 106 voxels 

D  Deformable-summed dose distribution, or 4D dose 3D density distribution of typically 106 voxels 

iH  

 

Heavyside function for phase , which indicates beam  
on/off status for the given phase 

i Binary; 
0iH =  corresponds to beam-off and 1iH =  to beam-on 

iλ  

Fractional time spent per each phase, which is normalized 

such that  
1

1
P

i i
i

H λ
=

=∑
Continuous variable of typical size 10, assumed to be the 
same for all respiratory phases 

L  
Leaf sequence consisting of the position of each MLC leaf tip 
for each beam planned, which can change with MU  for each 
respiratory phase.   

Continuous variable for each of 
the respiratory phases (typically, 10 phases), 
the beams (typically, 5-9 beams), 
the MU  control points (typically, 5-200 control points), 
the MLC leaves (typically, 80-160 leaves) 



 

` 

Given this complexity, the current practice to decouple dose calculation and leaf 

sequencing is undesirable because the planned dose distribution with the constraints may 

be quite different from those without constraints.  Despite an additional computational 

burden, coupling dose calculation and leaf sequencing ensures that coupled plans are at 

least as good as decoupled plans.  Also, so-called “optimized” plans prior to leaf 

sequencing, which cannot be delivered, are not used for plan evaluation. 

52

Multileaf collimator leaf velocity constraints 

Because MLC leaf acceleration, which has been measured to be about 50 cm s-2, is 

assumed to be sufficient for a currently used DMLC leaf-sequencing algorithm 11, 105, only 

maximum leaf velocity, measured to be 3.3-3.9 cm s-1 105, is used as a constraint for leaf 

sequencing.  For the current leaf-sequencing algorithms where MLC leaf positions vary 

with MU max, leaf velocity is constrained to the maximum leaf velocity, v , i.e., 

max( )dL MU dt v≤ .  For Equation (2), dL max( , )iMU dt vθ ≤  is an additional complexity 

for the phases where the beam is on, i.e., 1iH = .  It is important to note that this constraint 

is not just for motion along the MLC leaf travel direction, but also for motion 

perpendicular to the leaf travel direction; hence adjacent leaf ends should not be further 

apart than the maximum leaf velocity in a given phase transition.  This constraint has been 

studied 8, 10 and is similar to synchronization to reduce the MLC tongue-and-groove effects 

11, 20.  The addition of beam hold allows this constraint to be violated when a dosimetric 

penalty of the constraint is too high. 



 

For the phase i , leaf j , and control point k , leaf velocity constraint in terms of 

MU  is as follows: 
 

, , , , 1 max ( / )i j k i j kL L v MU t MU−− < ⋅Δ ⋅ ,   (3) 

 

where MUΔ  is MU  difference between control points of 1k −  and .  Leaf velocity 

constraint in terms of phase is divided into two constraints, which are constraints for 

parallel and perpendicular to the target motion: 

k

 

  , 1, max

, , 1 max

Parallel constraint:            

Perpendicular constraint:  
i j i j i

i j i j i

L L v

L L v

λ

λ
−

−

− < ⋅

− < ⋅
.  (4) 

 

Note that violating these constraints occasionally is acceptable, although it results in lower 

efficiency (longer treatment time); however it is better not to violate the constraints often. 

In this study, the maximum MLC leaf velocity is assumed to be 3.3 cm s-1, which is 

a reasonable measurement-base estimate 105.  Given that the mean patient respiratory 

period is about 4 s (ranging 1 to 8 s) 31, 106, the time interval between the adjacent 

respiratory phases is assumed to be 0.4 s.  Consequently, the maximum possible leaf 

motion range from one phase to the next is 1.32 cm. 

Besides the maximum velocity of MLC leaves, the constraints from using an MLC 

are as follows.  

 Two opposing leaves should not be overlapped. 

  If two opposing leaves are open, any of the two should not move behind the jaws. 
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Deliverables 

Main deliverables of this research are: 

 to develop a formalism for a general 4D IMRT treatment-planning optimization, and 

 to develop and investigate specific solutions for 4D IMRT treatment planning. 

 

3.4. Methods and materials 

Patient four-dimensional computed tomography data 

The 4D CT image sets of 12 lung cancer patients acquired on a 16-slice CT scanner in a 

cine mode (GE Healthcare Technologies, Waukesha, WI) were used 107, 108.  The 

acquisition was performed as a part of an IRB-approved study (protocol 00-202) at the 

University of Texas M. D. Anderson Cancer Center.  On the basis of the respiratory signals 

from a respiration monitoring system (Real-time Position ManagementTM, Varian Medical 

Systems, Palo Alto, CA), a respiratory cycle of a patient was divided into 10 phases of 

equal duration.  The respiratory phase indices of 0 and 5 represent the end inhale phase and 

the end exhale phase, respectively.  The tumor classifications ranged from T1N0 to T4N0, 

and the tumors were located in the upper lobes for 9 patients and in the lower lobes for 3 

patients with peripheral (3 patients) and central (9 patients) tumor localizations.  The 

means of volume and centroid motion extent of the GTV were 49.2 cm3 and 0.7 cm, 

respectively (Table 3-2). 
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Table 3-2. Volume and centroid motion extent of the GTV quantified from 4D CT planning scans for 
12 patients. 
 

Patient GTV volume (cm3) GTV centroid motion (cm) 

1  3.0  2.1 

2  61.0  0.4 

3  12.5  0.5 

4  1.0  0.6 

5  20.4  0.1 

6  5.2  0.4 

7  323.6  0.2 

8  23.0  0.3 

9  6.1  0.2 

10  7.5  0.5 

11  119.2  1.3 

12  7.5  1.1 

Mean (minimum, maximum) 49.2 (1.0, 323.6) 0.7 (0.1, 2.1) 

 

 

Anatomy segmentation, treatment-planning preparation, and plan evaluation 

Anatomy segmentation, treatment-planning preparation, and plan evaluation were 

performed using a commercially available treatment-planning system (Pinnacle 7.9 and 

8.1; Philips Healthcare, Milpitas, CA).  On the basis of the manually segmented contours 

on Phase 0, contours on the other phases of the 4D CT scan were automatically generated 

using the large deformation diffeomorphic image registration algorithm developed at the 

University of North Carolina 64, 67, 68.  The clinical target volume (CTV) enclosed the GTV 

with an isotropic 0.8-cm margin 109, and a 0.5-cm margin was added to create the planning 
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target volume (PTV).  Further details, reviews, and analyses of the manual and 

automatically-generated contours are described elsewhere 108, 110, 111. 

For the IMRT treatment plans of lung tumors, the prescribed dose was 74 Gy (2 Gy 

per fraction, 5 times per week) to cover at least 95% of the PTV, within a dose range of 90 

to 120% of the prescribed dose.  For the organs at risk (OARs), the plan objective was 

designed to limit the maximum or minimum dose or DVH with the corresponding 

weighting factor for each OAR or planning OAR volume (PRV; OAR with margins for 

setup and/or organ motion): (1) no more than 45 Gy to the spinal cord PRV; (2) no more 

than 20 Gy (V20) to 30% of the normal lung volume (both lungs without the GTV); (3) no 

more than 55 Gy (V55) to 30% of the esophagus PRV; (4) no more than 40 Gy (V40) to 

50% of the heart volume; and (5) no more than 80 Gy to the entire normal thorax (entire 

thorax without the PTV).  The objectives for lung IMRT treatment plans used in this study 

are summarized in Table 3-3.  Beam arrangements were six coplanar, non-opposed, 

predominantly anterior-posterior, with beam angles adjusted depending on the tumor 

locations.  Objectives and details about IMRT treatment plans have been reviewed by one 

radiation oncologist and described elsewhere 107. 
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Table 3-3. Objectives for lung IMRT treatment plans and plan evaluation for the PTV and each OAR or 
PRV. 
  

Regions of interest Type Dose (Gy) Volume (%) Weighting factor

PTV Minimum DVH 74 95 100 

 Maximum dose 74 -   10 

 Minimum dose 74 -   10 

 Minimum dose    66.6 -   40 

 Maximum dose    88.8 -   40 

Spinal cord PRV Maximum dose 45 -   50 

Normal lung Maximum DVH 20 30   20 

 Maximum DVH 20 15     1 

Esophagus PRV Maximum DVH 55 30   40 

 Maximum DVH 40 30     1 

Heart Maximum DVH 40 50   20 

 Maximum DVH 40 25     1 

Entire normal thorax Maximum dose 80 - 100 

 

 

The same GTV motion in three dimensions has different 2D motion from the BEVs 

of different beam angles as shown in Figure 3-2.  On the basis of the GTV centroid 

position for each respiratory phase quantified from a 4D CT planning scan, a major axis of 

tumor motion was automatically determined for each BEV using a least-squares fit.  Then, 

for each beam, the collimator was rotated to align the MLC leaf travel direction parallel to 

the major axis.  This was performed because of the known decrease in delivery efficiency 

for the motion perpendicular to the MLC leaf travel direction 21. 
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Figure 3-2. Collimator rotation: the same GTV motion in three dimensions has different 2D motion 
from the BEVs of different beam angles, such as gantry angles of 0o and 120o.  On the basis of the GTV 
centroid positions in a given BEV, a major axis (dashed arrows) of tumor motion is determined for each 
beam: collimator angles are 41o and 106o for the gantry angle of 0o and 120o, respectively. 
 

 

To calculate a 4D dose distribution, D , in Equation (2), a deformable dose-

summed 4D plan was created by accumulating the resultant doses from all individual phase 

plans on the reference phase CT image (Phase 0) using deformable dose summation 64, 67, 68, 

112-115. 

Individual phase plans and deformable dose-summed 4D plans were evaluated and 

compared using composite objective values (COVs) and dose-volume evaluation metrics 

derived from DVHs.  As being calculated on the basis of the plan objectives in Table 3-3, 

the COV, a single number, is an indicator of plan quality that takes into account the 

actually achieved dose distribution for the PTV and OARs/PRVs after the plan 

optimization, relative to the initial constraints 107.  The COV is the only single quantitative 

metric that is considered during the IMRT treatment-planning optimization.  The smaller 

the COV, the better the treatment plan. 
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3.5. Specific solutions 

An “ideal” 4D IMRT treatment-planning method would be one optimized over the 

continuous motion of target and surrounding normal structures, which may be deliverable; 

however, there are no solutions for this type of deliverable-based optimization yet.  Before 

solving the general solution to 4D IMRT treatment planning, two specific solutions, which 

extend 3D IMRT treatment planning to 4D IMRT treatment planning with deliverable 

constraints, have been proposed.  The reason for taking this approach is that it provides 

feasible solutions that use the current planning technology (performed using Pinnacle 

treatment-planning system), and therefore it has a clear path to clinical application.  In the 

solution space in Figure 3-1, these solutions are the subsets of “4D IMRT.”  The specific 

solutions are to account for 1D motion along the major axis and 3D motion by applying a 

DMLC motion-tracking algorithm, respectively (Figure 3-3).  The first solution is to show 

that accounting for 1D tumor translation is practical and also provides a reasonable 

approximation to compensating complex tumor motion and deformation (presented in 

Chapter 4); and the second solution is to show that accounting for more complex, 3D 

tumor motion yields better results and integrating deliverable treatment planning with 

DMLC tumor-tracking delivery has a clear path to clinical implementation (presented in 

Chapter 5).  The patient 4D CT image sets described in this chapter were used for 

treatment planning in Chapters 4 and 5, with the same details on anatomy segmentation, 

treatment-planning preparation, and plan evaluation. 
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Figure 3-3. Comparison of two specific solutions to 4D IMRT treatment planning by extending 3D 
IMRT treatment planning with deliverable constraints: using 1D translation of MLC leaves from the 
reference phase (solid red) to a given phase (dashed red) (left) and using a DMLC motion-tracking 
algorithm to move MLC leaves to track 3D tumor motion (right).  For the first solution, only the motion 
along the MLC leaf travel direction, 1DT , is accounted for (left), whereas for the second solution, 3D 

tumor motion, 3DT , is accounted for (right). 
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CHAPTER 4 FOUR-DIMENSIONAL INTENSITY-MODULATED 

RADIATION THERAPY TREATMENT PLANNING, 

A SPECIFIC SOLUTION I: Extending 3D IMRT 

Treatment Planning to 4D IMRT Treatment Planning  

by Accounting for 1D Motion 
 

 

 

4.1. Introduction 

As one of the specific solutions to 4D IMRT treatment planning that extend 3D IMRT 

treatment planning to 4D with deliverable constraints, this chapter presents a method to 

account for 1D motion.  The method incorporates MLC leaf motion constraints into 4D 

IMRT treatment planning by accounting for 1D translation of rigid-body tumor motion 

along the major axis of a tumor trajectory.  After rotating the collimator (as discussed in 

Figure 3-2), only tumor motion along the MLC leaf travel direction is considered, whereas 

tumor motion in the other directions from tumor deformation or rotation and nonlinear 

motion or hysteresis is ignored.  This simplification is reasonable because respiratory 

tumor motion is predominantly linear as shown in Chapter 2. 

The aim of this study was to develop a deliverable 4D IMRT treatment-planning 

method for DMLC tumor-tracking delivery.  The details of this chapter have been 
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published in Int. J. Radiation Oncology, Biology, Physics, which is included as Appendix 

B 116. 

 

4.2. Methods and materials 

A framework to solve 

A deliverable 4D IMRT treatment-planning method to solve Equation (2) is to account for 

rigid-body tumor motion along the MLC leaf travel direction only, as well as to ensure that 

MLC leaf motion does not exceed the maximum leaf velocity 105.  The deliverable method 

first finds a deliverable leaf sequence on the reference phase CT image, ( , )refL MU θ , to 

satisfy Equation (1) with  for all the respiratory phases (beam is always on): 1H =

)({ }min ( , )reff D L MU θ⎡ ⎤⎣ ⎦ , where ( ), ( , )ref ref refD D I L MU θ=

i

.  For rigid-body tumor 

translation, the solutions for other respiratory phases then become 

( , ) ( , )iL MU L MU ( )ref gθ θ= θ+ , where ( )ig θ  is tumor centroid displacement from the 

reference phase to phase i  along the major axis of tumor motion in a given BEV. 

A benchmark method is a 3D optimal treatment-planning scheme, which finds an 

optimal leaf sequence for each respiratory phase independently, i.e., to find ( , )iL MU θ  to 

satisfy ({ ) }min ( , )i if D L MU θ⎡⎣ ⎤⎦ .  The 3D optimal approach accounts for tumor 

deformation or rotation and nonlinear motion or hysteresis but ignores MLC leaf motion 

constraints; and thus it is deliverable only if the MLC leaf velocity is infinite.  It is 

important to note that the sum of individually optimized dose distributions does not 
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guarantee an optimal dose distribution (i.e., an optimal 4D treatment plan) because 

({ ) }min ( , )f D L MU θ⎡⎣ ⎤⎦  is a subset of ( ){ }
1

min ( , )
P

i i
i

f D L MU θ
=

⎡ ⎤⎣ ⎦∑ . 

 

Four-dimensional intensity-modulated radiation therapy treatment planning 

Figure 4-1 shows the deliverable and 3D optimal method of 4D IMRT treatment planning.  

For 12 patient 4D CT image sets described in Chapter 4, the two methods were applied. 

 

 

 

Figure 4-1. Methods of deliverable and 3D optimal IMRT treatment planning on the 4D CT image sets. 
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For individual phase plans, the mean and SD of dose-volume metric ratios were 

averaged over all 10 phases for all 12 patients: 

, ,
M N

i j i j
del opt

i jdel
opt

X X
X

M N
=

⋅

∑∑
 and 

( )2
, ,

del
opt

M N
i j i j del
del opt opt

i j

X

X X X

M N
σ

−
=

⋅

∑∑
, 

where  is a dose-volume metric computed from the DVHs of plans using the deliverable 

(

X

delX ) or 3D optimal ( ) methods,  is a patient number, and optX i j  is a phase number.  For 

deformable dose-summed 4D plans, the mean and SD of dose-volume metric ratios were 

averaged over all 12 patients:  

  

M
i i
del opt

del i
opt

X X
X

M
=
∑

 and 
( )2

del
opt

M
i i del
del opt opt

i
X

X X X

M
σ

−
=
∑

. 

 

A one-tailed Student’s t-test with the null hypothesis of 0 : opt delH X X=  and the alternative 

hypothesis of :A opt delH X X>  was used to evaluate whether the two methods were 

statistically different (statistically different if 0.05p < ).   
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4.3. Results and discussion 

Figure 4-2 and Figures 4-3 and 4-4 show the COVs and the DVHs, respectively, of all 10 

individual phase plans and deformable dose-summed 4D plans using the deliverable and 

3D optimal methods.  The two Phase 5 plans using each method are identical.  For the 

other phase plans and deformable dose-summed 4D plans, the 3D optimal method always 

yields better plans.  Variation in plan quality is generally larger for phase-to-phase 

compared with that for method-to-method.  The deformable dose-summed 4D plan is 

similar to an average over individual phase plans. 

The outliers are Patients 1, 4, and 11.  Patients 1 and 4 show significant 

discrepancy in quality of individual phase plans using the deliverable method due to the 

artifacts in the 4D CT image set and the largest tumor volume variation during the 

respiratory cycle, respectively.  Patient 1 also shows degraded 4D plans for both methods 

due to large gradients of the displacement vector field across the PTV.  Patient 11 shows 

the most method-to-method and phase-to-phase discrepancy in the DVHs, which is due to 

the tumor with the most hysteresis, the second most motion, and the second biggest 

volume. 
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Figure 4-2. Overall plan quality (COVs) of individual phase plans using the deliverable (solid) and 3D 
optimal (dashed) methods and those of deformable dose-summed 4D plans using the deliverable (Del, 
filled circles) and 3D optimal (Opt, empty circles) method for each of 12 patients.  The smaller the 
COV, the better the treatment plan.  The two methods have identical COVs for Phase 5.  For the other 
phases, the 3D optimal method always yields better plans.  The COV of a deformable dose-summed 4D 
plan for each method is an approximate average value over all individual phase plans per patient. 
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Figure 4-3. DVHs of individual phase plans (thin colored) and a deformable dose-summed 4D plan 
(black thick) using the deliverable method for each of 12 patients. 
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Figure 4-4. DVHs of individual phase plans (thin colored) and a deformable dose-summed 4D plan 
(black thick) using the 3D optimal method for each of 12 patients. 
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Figure 4-5. Issues due to large gradients of the displacement vector field across the PTV in deformable 
registration: isodose distributions for (a) Phase 0 plans and (b) Phase 5 plans, and (c) 4D plans (on 
Phase 0 CT image) using the deliverable and 3D optimal method in a sagittal view for Patient 1.  Note 
that Phase 5 plans are identical for both methods.  Whereas dose distributions of Phase 0 and Phase 5 
plans look reasonable, the 4D plans have inconsistent dose distributions for both methods.  (d) This is 
due to large gradients of the displacement vector field across the PTV.  Because the vector field is large 
in the lungs (white arrows) and small in the chest wall (black arrows), deforming the PTV generates 
unrealistic appearance of the PTV after deformable image registration (aqua star).  Deforming the GTV 
and expanding it to create the PTV results in inconsistent dose distributions after deformable dose 
summation (green star).  In (a)-(c), the GTV is shaded in yellow and the PTV in red, and blue isodose 
curves indicate 74 Gy, green 40 Gy, and pink 20 Gy.  In (d), the GTV is shaded in red, blue indicates 
the PTV, and pink illustrates the isodose curves. 
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Two important findings are as follows. 

 The deliverable method is dosimetrically robust to the variations of fractional time 

spent within respiratory phases on a 4D CT planning scan.  Given that the dose 

distributions of individual phase plans using the deliverable method are very similar 

to one another, the deliverable method would result in the dose distribution close to 

the planned dose distribution, even when a patient spends more time on one phase 

(e.g., end exhale) than the other phases during treatment delivery.  In addition, for 

deformable dose-summed 4D plans, the deliverable method yields dosimetric values 

statistically similar to those with the 3D optimal method ( 0.05p >  for all dose-

volume metrics compared).  This indicates not only that the deliverable method is 

dosimetrically robust but also that the target deformation or rotation and nonlinear 

motion or hysteresis generally have little dosimetric impact for the 12-patient series 

studied. 

 Both methods are affected by high vector field variations from deformable 

registration.  The deformable dose-summed 4D plans for Patient 1 are significantly 

inferior to individual phase plans for both methods, mostly due to PTV coverage.  

Although the dose distributions for Phase 0 and Phase 5 plans look reasonable, 4D 

plans have inconsistent dose distributions for both methods (Figure 4-5).  This is 

explained by large gradients of the displacement vector field across the PTV.  

Because the tumor of Patient 1 is next to the chest wall and moves 2.1 cm, the vector 

field, which differs significantly across the PTV, is used for deformable image 

registration and dose summation.  The vector field tends to be large in the lungs 
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(white arrows) and small in the chest wall (black arrows) as in Figure 4-5.  As a 

result, some portion of the PTV (in the chest wall) deforms differently from its other 

portion (in the lungs).  Thus, deforming the PTV differs from deforming the GTV 

and expanding it to create the PTV, because the former may generate unrealistic 

appearance of the PTV after deformable image registration; however, when the dose 

is deformed back to Phase 0, the latter may result in inconsistent dose distributions 

after deformable dose summation, as shown in Figure 4-5(d).  

 

4.4. Conclusions 

A deliverable 4D IMRT treatment-planning method that involves aligning the MLC leaf 

travel direction parallel to the major axis of a tumor trajectory and translating MLC leaf 

positions by the difference in the tumor centroid position between respiratory phases of the 

4D CT scan has been developed.  It shows that accounting for 1D tumor translation is 

practical and provides a reasonable approximation to compensating complex tumor motion 

and deformation.  The 1D approach yields a planning scheme that is not optimal but, 

importantly, is deliverable with currently available technology. 

A simplification of 3D motion of a deforming, rotating tumor to 1D rigid-body 

tumor translation is sensible; however, since tumor motion is known to exhibit nonlinear 

behavior and hysteresis as shown in Chapter 2, incorporating more complex, 3D tumor 

motion into 4D IMRT treatment-planning might provide a better solution.  
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CHAPTER 5 FOUR-DIMENSIONAL INTENSITY-MODULATED 

RADIATION THERAPY TREATMENT PLANNING, 

A SPECIFIC SOLUTION II: Extending 3D IMRT 

Treatment Planning to 4D IMRT Treatment Planning  

by Accounting for 3D Motion 
 

 

 

5.1. Introduction 

The other specific solution to 4D IMRT treatment planning that extends 3D IMRT 

treatment planning to 4D with deliverable constraints is a method to account for 3D tumor 

motion.  This method utilizes an algorithm developed for real-time DMLC motion tracking 

21 in an offline manner to create 4D IMRT treatment plans.  It allows 4D radiotherapy 

treatment planning and delivery using the same underlying algorithm.  A treatment plan 

created using this algorithm explicitly accounts for 3D tumor motion and consequently 

nonlinear motion and hysteresis 31, 117, and it also is deliverable on a treatment machine.  

The aim of this study was to develop a 4D IMRT treatment-planning method by 

modifying and applying a DMLC motion-tracking algorithm.  The details of this chapter 

are accepted for publication in Physics in Medicine and Biology, which is included as 

Appendix C. 
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5.2. Methods and materials 

A dynamic multileaf collimator motion-tracking algorithm 

A DMLC motion-tracking algorithm 21 is designed to (a) read initial MLC leaf positions as 

a function of MU  from an MLC leaf sequence derived from a treatment plan; (b) 

dynamically calculate MLC leaf positions to account for target position changes using real-

time 3D target location data from a position-monitoring system; (c) generate new MLC 

leaf positions as a function of MU  and 3D target location using (a) and (b); and (d) send 

the generated MLC leaf sequence to a treatment machine to reposition the beam in real 

time.  For 4D treatment planning, the DMLC motion-tracking algorithm was modified to 

include the respiratory phase as an additional parameter and to be used in an offline mode. 

 

Four-dimensional intensity-modulated radiation therapy treatment planning 

The DMLC motion-tracking algorithm requires two inputs: an initial MLC leaf sequence 

and real-time 3D target location and phase information. 

 An initial MLC leaf sequence is derived from an IMRT treatment plan created on the 

reference phase CT image.  

 From the delivery perspective, real-time target location and phase information is 

necessary to reposition the beam in real time; for planning purposes, 3D offsets of 

the tumor centroid position for each phase i  relative to that for the reference phase 

are calculated as the motion parallel to the major axis, the motion perpendicular to 

the major axis, and the motion along the beam direction, ( , , | )i iT x y z θ .  
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Figure 5-1. Use of a DMLC motion-tracking algorithm for both planning and delivery of 4D 
radiotherapy treatment, where T  is 3D target position and phase information.  Dashed lines indicate 
real-time processes and solid lines are not real time. 
 

 

Figure 5-1 shows a flow diagram of using the same algorithm for both planning and 

delivery of 4D radiotherapy treatment, and how a 4D IMRT treatment plan is created using 

the DMLC motion-tracking algorithm.  The DMLC motion-tracking software generates a 

set of MLC leaf sequences for each phase, which is used to create plans for individual 

phases; then the leaf sequences of individual phase plans are merged to create a leaf 

sequence for a 4D plan, 4D ( ,L MU )θ  (bottom left in Figure 5-1), which is used as an initial 
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leaf sequence on the delivery side.  For 12 patient 4D CT image sets described in Chapter 

4, the 4D IMRT treatment-planning method using a DMLC motion-tracking algorithm was 

applied.  

 

5.3. Results and discussion 

Figures 5-2 and 5-3 show the DVHs and the COVs, respectively, of all 10 individual phase 

plans with a deformable dose-summed 4D plan generated using the DMLC motion-

tracking algorithm.  In general, individual phase plans have similar overall quality (COVs) 

to the reference phase plans, as well as to a deformable dose-summed 4D plan; and a 

deformable dose-summed 4D plan for each patient is similar to an average over individual 

phase plans.  The DVHs of the PTV show similar target coverage from phase to phase, 

whereas the DVHs for OARs show variation.  This variation is due to an intrinsic 

drawback of all tumor-tracking methods, which only track the tumor motion, not the 

motion of whole patient anatomy 108.  That is, individual phase plans generated using the 

DMLC motion-tracking algorithm do not account for the phase-to-phase positional 

changes of OARs with respect to the tumor and/or to the BEV. 

Using this method, the DVHs and isodose distributions of an IMRT treatment plan 

for every phase of the 4D CT scan were, in general, similar to those of the reference phase 

plan, as well as the deformable dose-summed 4D plan, for each patient.  This indicates that 

the method is dosimetrically robust to the variations of fractional time spent in respiratory 

phases on a given 4D CT planning scan. 
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Figure 5-2. DVHs of individual phase plans (thin colored) and a deformable dose-summed 4D plan 
(black thick) for each of 12 patients. 
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Figure 5-3. Overall plan quality (COVs) of individual phase plans and a deformable dose-summed 4D 
plan for each of 12 patients.  The smaller the COV, the better the treatment plan.  The COV of a 
deformable dose-summed 4D plan for each patient is an approximate average value over all individual 
phase plans per patient. 
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In two patients out of twelve, this method was affected by the tumor volume 

changes from phase to phase.  These changes can be attributed to either artifacts in the 4D 

CT image set as in Patient 1, or tumor volume variations throughout the respiratory phases 

as in Patient 4.  Also, large gradients of the displacement vector field across the PTV 

deteriorate target coverage resulting in a deformable dose-summed 4D plan much worse 

than all individual phase plans for Patient 1 (as described in Chapter 4).  Patient 11 shows 

the most phase-to-phase discrepancy in the DVHs of both the PTV and OARs.  The tumor 

of Patient 11 shows the most hysteresis, the second most motion, and the second biggest 

volume, all of which cause phase-to-phase variations in treatment plans.  The tumor 

motion and hysteresis change the geometric relation between the tumor and normal 

anatomy from phase to phase, which affects the resulted treatment plans; and the large 

tumor volume makes an optimization algorithm difficult to be balanced with given 

optimization constraints, which causes variations in the treatment plans from phase to 

phase. 
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5.4. Conclusions 

A 4D IMRT treatment-planning method using a DMLC motion-tracking algorithm that 

creates a treatment plan to explicitly account for 3D tumor motion and thus nonlinear 

motion and hysteresis, and to be deliverable on a treatment machine has been developed.  

This method allows the same algorithm to be used for both planning and delivery of 4D 

radiotherapy treatment.  This symmetry between planning and delivery for determining 

MLC leaf sequences lends itself to clinical viability.  This method integrates deliverable 

4D IMRT treatment planning with DMLC tumor-tracking delivery, and thus has a clear 

path to clinical implementation. 

Accounting for 3D tumor motion (including nonlinear motion and hysteresis) gives 

a better solution than accounting for 1D tumor translation (Chapter 4); yet, the results show 

little advantages to adding an additional degree of freedom because nonlinear motion and 

hysteresis are not significant in the patient 4D CT image sets available for this study.  The 

greater the nonlinear motion and the hysteresis, the greater the improvement in a resultant 

treatment plan will be when the off-axis motion of tumor is taken into account.  In addition, 

as this treatment-planning method is based on the assumptions that a tumor is rigid and 

does not undergo deformation and in- or out-plane rotation, and that the entire anatomy 

moves, deformation and rotation of a tumor within a respiratory cycle and the relative 

motion between a tumor and normal anatomy are not accounted for.  Therefore, a general 

solution to 4D IMRT treatment-planning, which is a full 4D optimization to account for all 

of the above, is being investigated as an extension of the specific solutions (Chapter 8).  
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CHAPTER 6 DETECTION OF ANATOMIC MOTION DURING 

RADIOTHERAPY TREATMENT DELIVERY 
 

 

 

6.1. Introduction 

A 4D radiotherapy treatment scenario involves delivering a 4D treatment plan, but with 

flexibility to account for changes in tumor positions, tumor drifts, or respiratory patterns 

during actual treatment delivery (Chapter 3).  That is, there should be some kind of 

monitoring methods to observe tumor motion and/or to acquire tumor positions during 

treatment delivery.  This chapter presents the limitation of acquiring tumor position 

information with a single 2D x-ray imager for the patients with implanted markers. 

If 3D tumor motion is monitored with 2D projection imaging, there is unresolved 

motion because 2D projection is limited in its ability to resolve the motion along the 

imaging beam axis 118-120.  As 2D projection imaging, two different geometric relationships 

between the imaging beam and the treatment beam were considered as shown in Figure 6-

1: (1) an inline orientation, where the imaging beam is parallel to the treatment beam, and 

(2) an orthogonal orientation, where the imaging beam is orthogonal (by a 90o gantry 

rotation) to the treatment beam.  When gantry and couch angles are set to 0o, a 2D imager 

in the inline orientation is limited to resolving AP tumor motion as this motion is in the 
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imaging beam axis, while for a 2D imager in the orthogonal orientation LR tumor motion 

cannot be resolved. 

 

 

 

Figure 6-1. Two different geometric relationships between the imaging beam and the treatment beam: 
(a) an inline orientation, where the imaging beam is parallel to the treatment beam, and (b) an 
orthogonal orientation, where the imaging beam is orthogonal (by a 90o gantry rotation) to the treatment 
beam. 

` 81



 

The aim of this study was to investigate the accuracy of 2D projection imaging 

methods in 3D tumor motion monitoring by evaluating the motion that 2D imagers in each 

of the two orientations, inline and orthogonal, fail to resolve, which can be one important 

error source in respiratory motion management.  The details of this chapter have been 

published in Physics in Medicine and Biology, which is included as Appendix D 121. 

 

6.2. Methods and materials 

This study relies on two assumptions, common to the work by Nill et al. 120: 

 The setup error will be very small since a possible setup correction on the basis of 

the acquired images could be performed prior to treatment delivery.  This assumption 

is necessary to set a common 2D to 3D framework from which to analyze the 

limitations of 2D imaging. 

 For a given imaging beam angle, a 2D projection system fails to detect one direction 

of 3D tumor motion. 

 

Calculation of the unresolved motion 

From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal 

cancer patients analyzed in Chapter 2, the unresolved motion (i.e., motion in the imaging 

beam axis) due to the limitation of 2D projection imaging to monitor motion in three 

dimensions was calculated for each treatment fraction.  The geometric uncertainty is 

shown schematically in Figure 6-2 for a tumor moving only in the AP direction and a 2D 

projection imager in an inline orientation to monitor the motion.  If gantry and couch 
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angles are 0o as in Figure 6-2(a), the tumor looks static for the imager in this orientation as 

shown in the imager’s view even though the tumor is moving.  If the gantry angle is 90o 

and the couch angle is 0o as in Figure 6-2(c), the imager resolves the full motion of the 

tumor. 

 

 

 

Figure 6-2. Unresolved motion from the limitation of 2D projection imaging to monitor 3D motion: red 
dots indicate the tumor motion (only AP motion for example), dashed arrows the unresolved motion, 
and solid arrows the resolved motion for an inline orientation.  (a) When gantry and couch angles are 0o, 
the tumor looks static for the imager in this orientation as shown in an imager’s view even though it is 
moving (no solid arrow).  However, (c) when gantry angle is 90o and couch angle is 0o, the imager 
resolves the full motion (no dashed arrow).  (b) If gantry angle is 45o with couch angle 0o, the imager 
resolves part of the motion (solid arrow) while failing to detect the motion in the imaging beam axis 
(dashed arrow).  All plots are in arbitrary units. 
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As for different treatment beam-patient alignments, 216 beam angles were 

considered (24 gantry angles from 0o to 360o in 15o increments and 9 couch angles from -

60o to 60o in 15o increments).  The unresolved motion as a function of only gantry angle 

while couch angle is 0o was also calculated as most conventional thoracic and abdominal 

treatments are coplanar.  Also, to look at the unresolved motion for different time intervals, 

0-1, 0-10, and 0-30 min, were considered. 

 

Quantification of the geometric uncertainty 

The geometric uncertainty in monitoring 3D tumor motion with a 2D projection imager 

due to the unresolved motion was statistically quantified using the RMS uncertainty of the 

unresolved motion.  To investigate the geometric uncertainty for the cohort of patients 

studied, let U  be the unresolved motion of 2D projection imaging:  is the 

unresolved motion as a function of gantry angle for coplanar treatments (zero couch angle) 

and U g  is the unresolved motion as a function of gantry and couch angle for non-

coplanar treatments, where couch angles vary from -60o to 60o.  For each fraction i , the 

RMS uncertainty of , which is 

( , 0)U g c =

( , c)

( , 0)U g c = , ,g t iR , and the RMS uncertainty of , 

which is 

( ,U g )c

, , ,g c t iR , for each of the time intervals t , where t  is 0-1, 0-10, and 0-30 min, were 

calculated.  Then, the RMS, minimum, and maximum values of , ,g t iR  and , , ,g c tR i  were 

calculated, respectively, and these were repeated for the fractions whose average 

respiratory peak-to-trough distances were more than 0.5 cm, in regard to the 

recommendations by the AAPM Task Group 76 4.  As shown in Figure 6-3, and obvious 
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from Figure 6-1, the geometric uncertainty of 2D projection imaging in the orthogonal 

orientation from the treatment beam perspective is simply a 90o gantry rotation from that in 

the inline orientation; so o, , , 90 , , ,
orthogonal inline
g c t i g c t i

R R
+

= . 

 

 

 

Figure 6-3. RMS uncertainty of the unresolved motion for uni-directional unit amplitude sinusoidal 
motion: (a) LR, (b) AP, and (c) SI motion for an inline orientation and (d) LR, (e) AP, and (f) SI motion 
for an orthogonal orientation.  Note that plots for an orthogonal orientation are simply rotated by 90o in 
the axis of gantry angle from those for an inline orientation.  The red color indicates the higher value 
and the blue is the lower value as in a color bar.  All plots are in arbitrary units. 
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6.3. Results and discussion 

Figure 6-3 shows the RMS uncertainty of the unresolved motion as a function of gantry 

and couch angle for theoretical motion (uni-directional unit amplitude sinusoidal motion) 

for 2D projection imaging for each orientation.  If there is only LR motion as in Figure 6-

3(a), the 2D projection in the inline orientation can resolve the LR motion for the case 

when gantry and couch angles are 0o, so there is no uncertainty; but for the case when 

gantry angle is 90o while couch angle is 0o, the 2D projection in this orientation cannot 

resolve the LR motion, so the uncertainty is the highest. 

Given that all three plots for the orthogonal orientation are shifted by 90o in the 

gantry angle axis from those for the inline orientation, the geometric uncertainty for both 

orientations is the same.  However, in the orthogonal orientation the geometric uncertainty 

from the unresolved motion can be in a high dose gradient direction, whereas in the inline 

orientation it is along the dose fall-off in the beam direction where the gradient is lower.  

Therefore, the dosimetric impact of the unresolved motion is generally higher for the 

orthogonal orientation. 

Overall RMS values of the RMS uncertainty of the unresolved motion was around 

0.13 cm for all treatment fractions, 0.10 cm for all coplanar treatment fractions, 0.18 cm 

for the fractions whose average respiratory peak-to-trough distances were more than 0.5 

cm, and 0.13 cm for coplanar treatment fractions whose average respiratory peak-to-trough 

distances were more than 0.5 cm. 

Figure 6-4 shows the cumulative probability of the distributions of the RMS of 

, , ,g c t iR  or , ,g t iR  for different time intervals.  All four plots show the similar patterns for the 
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different time intervals, still showing a tendency that the shorter the time interval the 

smaller the RMS, in general.  One noticeable thing is that patient-to-patient variations are 

much larger than variations from different time intervals. 

 

6.4. Conclusions 

Geometric uncertainty of 2D projection imaging due to the unresolved motion is 0.13 cm 

for all treatment fractions and 0.18 cm for the treatment fractions whose average 

respiratory peak-to-trough distances are more than 0.5 cm; and it is smaller for coplanar 

treatments than non-coplanar treatments, as SI tumor motion, the predominant motion from 

patient respiration, is always resolved for coplanar treatments.  Geometric uncertainty 

varies depending on the tumor site, tumor motion extent, time interval, and beam angle, as 

well as between patients, between fractions, and within a fraction. 

Geometric uncertainty of 2D imaging methods quantified in this study can be used 

to estimate proper margins when a single 2D projection imager is used for 4D radiotherapy 

treatment delivery.  In order to have delivery flexible enough to account for any changes 

that are occurred during actual treatment delivery, but not incorporated into treatment 

planning, various types of monitoring systems may be used; and the use of a single 2D 

imager to monitor internal tumor positions will require margins of the order of 0.3 cm, 

which is about twice the RMS of , , ,g c t iR  or , ,g t iR .  
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Figure 6-4. Cumulative probability of the distributions of the RMS of , , ,g c t iR  (RMS uncertainty of the 
unresolved motion for each fraction  and for each time interval t  for non-coplanar treatments) [(a) and 
(c)] and of 

i
, ,g t iR  (RMS uncertainty of the unresolved motion for each fraction i  and for each time 

interval t  for coplanar treatments) [(b) and (d)] for 0-1 (red), 0-10 (blue), and 0-30 (green) min for an 
inline orientation: (a) all fractions for non-coplanar treatments, (b) all fractions for coplanar treatments, 
(c) fractions whose average respiratory peak-to-trough distances are more than 0.5 cm for non-coplanar 
treatments, and (d) fractions whose average respiratory peak-to-trough distances are more than 0.5 cm 
for coplanar treatments. 
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CHAPTER 7 DELIVERY OF FOUR-DIMENSIONAL 

RADIOTHERAPY TREATMENT 
 

 

 

7.1. Introduction 

Real-time tumor tracking using DMLC delivery is shown to have potential to improve 

radiotherapy treatment by reducing positional uncertainties due to anatomic motion and 

thus increasing dosimetric accuracy.  Current limitations for an MLC to continuously align 

the radiation beam with a moving tumor include mechanical motion constraints.  In 

addition, Sawant et al. shows that efficiency of IMRT delivery for the tumor motion 

perpendicular to the MLC leaf travel direction is significantly lower than that for the 

motion parallel to the MLC leaf travel direction 21. 

Using a moving average algorithm for tumor-tracking delivery eliminates a 

systematic tracking error and treats respiratory motion as a residual random error.  In 

addition, tumor tracking using a moving average algorithm significantly reduces 

mechanical requirements on an MLC compared with real-time tumor tracking, and can be 

combined with a respiratory-gating technique. 
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The aim of this study was to investigate an alternative technique of radiotherapy 

treatment delivery for tumor tracking that uses a moving average algorithm.  The details of 

this chapter have been published in Medical Physics, which is included as Appendix E 122. 

 

7.2. Methods and materials 

Two sets of respiratory motion data were used. 

 External respiratory motion data: 331 four-minute abdominal wall AP motion traces 

from 24 lung cancer patients using a Real-time Position ManagementTM system.  

Each patient was initially asked to breathe without any instructions, which is called 

free breathing, and the respiratory motion was recorded.  Then, audio coaching was 

given followed by audio-visual biofeedback on the basis of the displacement and the 

period of respiratory motion during the free-breathing session.  Therefore the data 

consist of (1) free-breathing, (2) audio-coaching, and (3) audio-visual biofeedback 

sessions. 

 Implanted fiducial motion data: 3D tumor motion data from 160 treatment fractions 

for 46 thoracic and abdominal cancer patients analyzed in Chapter 2. 

 

Different treatment delivery scenarios 

Figure 7-1 shows the five different radiotherapy treatment delivery scenarios compared.  It 

is assumed that a real-time tumor position-monitoring system is present for all scenarios.  
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Moving average tracking.  The beam position at time t  is calculated as the mean 

tumor position during the past m  s (15 s was chosen as it represents an average 

amount of time that a patient takes to settle on a treatment table and breathes 

normally).  The number of points included in a moving average was m , where f×

f  is a sampling frequency (30 Hz for the external respiratory motion data and 25 Hz 

for the implanted fiducial motion data).  The estimated tumor position, estx , at time t  

for moving average tracking is 

( )
( )

t RT

act
i t m f RT

est

x i
x t

m f

−

= − × −=
×

∑
, 

where actx  is an actual position, i  indicates an increment of the points from 1 to 

, and m× f RT  is the number of sample points during a system response time (0.16 

s).  That is, the beam position is calculated as the mean of the past 15 s of the tumor 

position information. 

 

Real-time tracking.  Without any prediction algorithm, the estimated tumor position 

at time  for real-time tracking is the beam position after a system response time: t

( ) ( )est actx t x t RT= − . 

 

Respiratory gating at exhale and at inhale.  A duty cycle of 40% is utilized for a 

respiratory-gating technique: 30-70% for exhale gating and 80-20% for inhale gating.  

The beam position at time t  is calculated as the mean tumor position in a gating 
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window during the first n  s.  The estimated tumor position at time t  for respiratory 

gating at both exhale and inhale is calculated by  

1

1

( )
( )

n f

act
i

x
est n f

i

i H
x t

H

×

=
×

=

=
∑

∑

×
, 

where  is a Heavyside function that equals 1 when a respiratory phase is within the 

gating window and 0 otherwise.  That is, the beam position is calculated as the mean 

of the first  s of the tumor position information within the duty cycle.  

H

n

 

Moving average gating at exhale and inhale.  Moving average gating uses a moving 

average algorithm over the respiratory motion in a gating window.  The estimated 

tumor position at time t  for moving average gating at both exhale and inhale is 

( )
( )

t RT

act
i t m f RT

x

est t RT

i t m f RT

i H
x t

H

−

= − × −
−

= − × −

=
∑

∑

×
. 

The tumor position is updated every 15 s similar to moving average tracking.  That is, 

the beam position is calculated as the mean of the most recent n  s (i.e., from 

 to t R ) of the tumor position information within the duty cycle. t m f RT− × − T−

 

Static beam delivery with online pre-treatment tumor-beam alignment.  The first n  s 

of the tumor position information is used to align the beam with the tumor before 

treatment, but the beam does not respond to the tumor motion during treatment 
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delivery.  The tumor position at time t  for static beam delivery is determined as the 

mean tumor position during the first  s:  n

1

( )
( )

n f

i
est

xact i
x t

×

==
∑

n f×
.  

That is, the beam position is calculated as the mean of the first n  s of the tumor 

position information. 

 

 

 

Figure 7-1. Different treatment delivery scenarios compared: (1) moving average tracking, (2) real-time 
tracking, (3) gating at exhale and at inhale, (4) moving average gating at exhale and at inhale, and (5) 
static beam delivery. 
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The metrics evaluated to compare the five treatment delivery scenarios are the group 

systematic error, M , the SD of the systematic error, Σ , and the RMS of the random error, 

σ , calculated as in Table 7-1 123. 

 

 

Table 7-1. Formalisms to calculate the group systematic error, M , the SD of the systematic error, Σ , 
and the RMS of the random error, σ , where Δ  is displacement between the beam and the tumor at a 
given time and ( , )j iP FΔ  is a set of displacement for a given fraction  for a given patient iF jP  . 
 

 Patient 1 Patient 2 ... Formalisms 

Fraction 1 1 1( , )P FΔ  2 1( , )P FΔ    

Fraction 2 1 2( , )P FΔ  2 2( , )P FΔ    

...     

Mean  1 1( , ... )NP F FΔ 2 1( , ... )NP F FΔ   

1 1( ... , ... )M NM P P F F= Δ  

( )1 1( ... , ... )M NSD P P F FΣ = Δ  

SD ( )1 1( , ... )NSD P F FΔ  ( )2 1( , ... )NSD P F FΔ  ( )1 1( ... , ... )M NRMS P P F Fσ = Δ  

 

 

Margin calculations 

For the implanted fiducial motion data, margins were calculated using the formula by 

Stroom et al. 123: (1) optimistic case, when no other error contributions, 2 0.7σΣ + , and (2) 

realistic case, when 0.3-cm systematic and 0.3-cm random error contributions from other 

sources, . 2 2 22( 0.3 ) 0.7( 0.3 )σΣ + + + 2
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7.3. Results and discussion 

External respiratory motion  

For real-time tracking, moving average tracking, and moving average gating, M  and Σ  

are negligible (Tables 7-2 and 7-3).  Moving average gating improves gating at both exhale 

and inhale.  Real-time tracking and moving average tracking have slightly lower σ  than 

static beam delivery.  Moving average gating results in improved σ  compared with 

moving average tracking.   

 

Implanted fiducial motion 

For moving average tracking, M  and Σ  are negligible compared with static beam delivery 

(Tables 7-2 and 7-3).  Moving average gating results in improved σ  compared with 

moving average tracking over the entire respiratory traces.  On the basis of margin 

calculations without error, the different treatment delivery scenarios is ranked as follows: 

(1) real-time tracking; (2) moving average gating at exhale; (3) moving average gating at 

inhale; (4) moving average tracking; (5) gating at exhale; (6) static beam delivery with 

online pre-treatment tumor-beam alignment; and (7) gating at inhale. 

 

Margin calculations 

The cumulative probability plots in Figure 7-2 show how appropriate (or inappropriate) 

applying a population margin to an individual patient is, indicating a proper amount of a 

margin for each patient.  These cumulative probability plots are useful to determine what 

percentage of the patients fall into a particular margin range. 
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Group systematic error, M (cm) 
External respiratory motion Treatment delivery techniques 

Free breathing Audio coaching Audio-visual biofeedback 
Implanted fiducial 

motion 

Moving average tracking  -0.01  -0.01  0.00  0.00 

Real-time tracking 0.00 0.00  0.00  0.00 

Gating at exhale  -0.11 -0.05 -0.03 -0.05 

Gating at inhale  -0.16 -0.12 -0.02  0.16 

Moving average gating at exhale  -0.01 -0.01  0.00  0.00 

Moving average gating at inhale  -0.01  0.00  0.00  0.00 

Static beam delivery  -0.13 -0.17 -0.06  0.02 

Table 7-2. Group systematic error calculated for different treatment delivery techniques. 

 



 
Table 7-3. SD of the systematic error and RMS of the random error calculated for different treatment delivery techniques.  In parentheses are 
the minimum and maximum values.  

SD of the systematic error, Σ  (cm) 
External respiratory motion Treatment delivery techniques 

Free breathing Audio coaching Audio-visual biofeedback 
Implanted fiducial 

motion 

Moving average tracking 0.01 (-0.03-0.02) 0.01 (-0.03-0.01) 0.01 (-0.03-0.01) 0.00 (-0.01-0.01) 

Real-time tracking 0.00 (  0.00-0.00) 0.00 (  0.00-0.00) 0.00 (  0.00-0.00) 0.00 (  0.00-0.00) 

Gating at exhale 0.18 (-0.52-0.48) 0.12 (-0.28-0.25) 0.06 (-0.18-0.11) 0.17 (-0.73-0.60) 

Gating at inhale 0.23 (-0.64-0.41) 0.18 (-0.52-0.21) 0.07 (-0.19-0.15) 0.26 (-0.53-1.23) 

Moving average gating at exhale 0.01 (-0.03-0.04) 0.01 (-0.03-0.01) 0.01 (-0.03-0.01) 0.00 (-0.01-0.01) 

Moving average gating at inhale 0.02 (-0.04-0.05) 0.01 (-0.03-0.02) 0.01 (-0.02-0.03) 0.00 (-0.02-0.01) 

Static beam delivery 0.21 (-0.52-0.45) 0.24 (-0.55-0.36) 0.18 (-0.77-0.12) 0.16 (-0.56-0.84) 
 

RMS of the random error, σ  (cm) 
External respiratory motion Treatment delivery techniques 

Free breathing Audio coaching Audio-visual biofeedback 
Implanted fiducial 

motion 

Moving average tracking 0.46 (0.14-0.80) 0.53 (0.22-0.90) 0.54 (0.23-0.88) 0.22 (0.01-0.63) 

Real-time tracking 0.13 (0.07-0.25) 0.14 (0.06-0.26) 0.16 (0.08-0.32) 0.07 (0.00-0.18) 

Gating at exhale 0.30 (0.11-0.58) 0.29 (0.14-0.50) 0.27 (0.13-0.49) 0.15 (0.01-0.75) 

Gating at inhale 0.44 (0.15-0.77) 0.44 (0.21-0.67) 0.36 (0.13-0.68) 0.23 (0.01-0.83) 

Moving average gating at exhale 0.21 (0.08-0.43) 0.21 (0.09-0.31) 0.22 (0.12-0.37) 0.10 (0.00-0.53) 

Moving average gating at inhale 0.35 (0.13-0.57) 0.35 (0.17-0.58) 0.32 (0.12-0.61) 0.17 (0.01-0.68) 

Static beam delivery 0.47 (0.18-0.81) 0.54 (0.21-0.86) 0.55 (0.23-0.88) 0.24 (0.01-0.82) 
 

` 
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Figure 7-2. Margins calculated for different treatment scenarios for implanted fiducial motion, without 
other error components and with the addition of 0.3-cm systematic and 0.3-cm random error 
contribution from other sources. 
 



 

7.4. Conclusions 

Tumor-tracking delivery using a moving average algorithm has been developed as an 

alternative technique of radiotherapy treatment delivery for tumor tracking.  Moving 

average tracking accounts for variations in the average tumor position; but tumor position 

variations about this average due to respiratory motion are ignored during treatment 

delivery and can be treated as a random error during treatment planning.  Moving average 

tracking shows (1) margin reduction compared with gating and static beam delivery with 

online pre-treatment beam-tumor alignment, (2) practical advantages over real-time 

tracking as the motion is slower and smoother, (3) mechanical advantages over real-time 

tracking when the beam is aligned to the tumor, and (4) patient compliance advantages 

over real-time tracking when the tumor is align to the beam. 

Mechanical constraints of an MLC may hinder delivery of 4D radiotherapy 

treatment.  This can be worse for delivery of 4D IMRT treatment, because MLC leaves 

need to both follow tumor motion and modulate beam intensity during treatment delivery.  

Using a moving average algorithm to deliver a 4D IMRT treatment plan provides an 

approximate solution that can be immediately implemented.  Moving average tracking will 

require an additional margin compared with real-time tracking.  For moving average 

tracking, population margins calculated are 0.15 cm (without any other errors) and 0.86 cm 

(with 0.3-cm systematic and 0.3-cm random error contributions from other sources), 

compared with 0.05 cm and 0.82 cm, respectively, for real-time tracking.  
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CHAPTER 8 ONGOING AND FUTURE WORK 

 

 

 

8.1. Ongoing work to solve a general solution 

The ongoing work is to investigate a general 4D IMRT treatment-planning optimization by 

solving Equation (1) in Chapter 3.  The framework for solving the general solution will be 

used to solve for other approaches in the solution space in Figure 3-1, by removing degrees 

of freedom.  Solving all of the treatment approaches proposed within a common 

framework has an advantage, in that the only difference between the approaches being 

compared is the variable of interest.  For the 4D CT planning scans of lung cancer patients, 

4D IMRT treatment planning will be performed using the different treatment approaches, 

and the results will be compared and evaluated. 

 

An optimization tool 

The planned optimization tool to solve the optimization problems is SNOPT (Sparse 

Nonlinear OPTimizer) from Stanford Systems Optimization Lab 124, 125.  SNOPT is a 

general-purpose system to solve optimization problems involving many variables and 

constraints.  It is suitable for large-scale linear and nonlinear programming and for linearly 

constrained optimization; and especially effective for nonlinear problems whose objective 
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and/or constraint functions and their gradients are expensive to evaluate.  This is why 

SNOPT is chosen for a probable method to solve the 4D IMRT treatment-planning 

optimization problem, which deals with constrained MLC leaf sequences due to the MLC 

leaf velocity constraint and is a large scale involving many variables to handle the 4D 

problem. 

SNOPT is implemented as a library of Fortran 77 subroutines.  The Fortran source 

code can be converted to C code by a f2c translator 126.  The snOptA interface minimizes a 

linear or nonlinear objective function, , subject to constant bounds, l  and , on 

both variables, 

( )objF x u

x , and a number of sparse linear and/or nonlinear constraint functions, 

: ( )F x

 

minimize ( )

subject to and ( )≤ ≤ ≤ ≤

objx

x x F

F x

l x u l F x uF

. 

 

Suppose { }( )iF x  is a set of problem functions that includes both the objective and 

constraint functions.  Ideally, the first derivatives (gradients) of all  are coded and 

provided by the user; but if not all gradients are known, snOptA estimates the missing ones 

by finite differences. 

( )iF x

In general,  is a sum of linear and nonlinear functions, such that 

, where 

( )iF x

ijA x
1

( ) ( )
n

i i
j

F x f x
=

= +∑ j ( )if x  is a nonlinear function and  is a constant.  Then, ijA
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the Jacobian of  is ( )iF x ( ) ( )i i ijF x f x A′ ′= + .  Let ( ) ( )i iG x f x′=  and  is a matrix with 

the elements of 

{ }ijA

ijA , i.e.,  and iG { }ijA  are two sparse matrices of the same size, then 

( ) ( )i i ijF x G x′ = A+ .  In a user-coded function, x , { , and the nonzero elements of ( )}iF x

{ }ijA  and  (as many as possible) should be provided to snOptA. iG

To solve the nonlinear problems, a sparse sequential quadratic programming (SQP) 

method 124, 127 is applied.  The SQP algorithm basically involves major and minor iterations.  

The major iterations generate a sequence of iterations that satisfy the linear constraints and 

converge to a point satisfying the nonlinear constraints and the first-order conditions for 

optimality.  At each of this iteration, the SQP algorithm obtains search directions towards 

the next iteration from a sequence of minor iterations, quadratic programming (QP) sub-

problems.  Each QP sub-problem minimizes a quadratic model of a certain Lagrangian 

function subject to a linearization of the constraints.  An augmented Lagrangian merit 

function is reduced along each search direction to ensure convergence from any starting 

point.  After a QP sub-problem is solved, new estimates of the nonlinear problem solution 

are computed using a line-search on the augmented Lagrangian merit function. 
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Optimization 

For a general 4D IMRT treatment-planning optimization problem, the variables to be 

solved are  and iH ( , )iL MU θ .  For the treatment efficiency, beam should be on for the 

minimum of four adjacent respiratory phases during treatment, i.e., .  Due to 

mechanical constraints, MLC leaf motion is limited by the maximum leaf velocity, , 

i.e., 

4i
i

H ≥∑

maxv

maxv( , i

dt
)dL MU θ
≤  when 1iH = , where t  is time in second and ( )d MU

dt
 is the pre-

planned dose rate. 

To find , whether the beam is on or not for each phase has to be decided.  To 

decide if the beam is on for phase , the 

iH

k f  values from 1

P

i
i

D
D

P
==
∑

 and 1

1

P

i k
k i

D D
D

P
=

−
=

−

∑
 

(i.e.,  is a deformable-summed dose except for phase  plan dose) are compared.  If the kD k

f  value from  is greater than the D f  value from , then phase k  is used for the 

treatment.  To find 

kD

( , )iL MU θ  with the variables of respiratory phases, beams, control 

points, and MLC leaves in Equation (1), SNOPT is used to minimize f . 

An intensity map of an MLC-based IMRT treatment plan can be decomposed into a 

set of MLC-formed beam apertures.  Thus, an IMRT treatment plan to be delivered using a 

DMLC technique is basically a series of MLC leaf positions, i.e., MLC leaf sequences as a 

function of MU .  The MLC leaf sequence is recorded in a computer file, which is then 

used to control the MLC leaf motion to deliver the treatment plan.  In the research system 

of Pinnacle, MLC leaf sequence files can be imported into a certain treatment plan; with all 
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other requirements for dose computation set, a dose for the treatment plan with imported 

MLC leaf sequences can be computed. 

Therefore, the tool to solve 4D IMRT treatment-planning optimization problems is 

developed by integrating Pinnacle and SNOPT as in Figure 8-1.  SNOPT performs the 

optimization to find the two variables, L  and , and passes those to Pinnacle after each 

iteration; in Pinnacle, on the basis of L  and  passed from SNOPT, the doses for 

individual phase plans are computed and summed to yield a deformable dose-summed 4D 

plan; then, Pinnacle passes the information on dose-volume evaluation metrics and plan 

quality (e.g., COVs) of individual phase plans and a deformable dose-summed 4D plan to 

SNOPT; with the information passed from Pinnacle, SNOPT decides to continue the 

optimization or not.  

H

H

 

 

 

Figure 8-1. Integration of Pinnacle and SNOPT for a 4D IMRT treatment-planning optimization. 
 

 

For initialization of the optimization, the MLC leaf sequences, ( , )iL MU θ , from 

the deliverable IMRT treatment plans (presented in Chapter 4) are used; and  is set to 1 

for all respiratory phases, so that beam is always on.  The maximum field size is defined on 

iH
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the basis of both tumor size and tumor motion extent quantified from the 4D CT planning 

scan for each patient.  Then the openings of the carriages and the jaws are decided, which 

limit the number of leaves to be used and the possible motion ranges of those leaves during 

the optimization.  The jaw positions are adjusted to cover the PTVs in all respiratory 

phases of the 4D CT planning scan with 1-cm margin added for penumbra.  

 

8.2. Future outlook 

The longer term goal of this work is the conjecture on the need for clinical studies to assess 

the clinical benefit of the 4D IMRT treatment-planning method with DMLC tracking for 

the radiotherapy treatment of thoracic and abdominal tumors.  The framework can be 

further extended for online adaptive 4D radiotherapy planning, and potentially real-time 

adaptation. 
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Abstract
An analysis of thoracic and abdominal tumour motion for stereotactic body
radiotherapy patients was performed using more than 70 h of tumour motion
estimated from the correlation between the external and internal motion for 143
treatment fractions in 42 patients. The tumour sites included lungs (30 patients)
and retroperitoneum (12 patients). The overall mean respiratory-induced peak-
to-trough distance was 0.48 cm, with individual treatment fraction means
ranging from 0.02 to 1.44 cm. The overall mean respiratory period was
3.8 s, with individual treatment fraction means ranging from 2.2 to 6.4 s.
In 57 treatment fractions (40%), the mean respiratory-induced peak-to-trough
distance was greater than 0.5 cm. In general, tumour motion was predominantly
superior–inferior (60% of all the treatment fractions), while anterior–posterior
and left–right motion were 22% and 18%, respectively. The motion was
predominantly linear, and the overall mean of the first principal component was
94%. However, for motion magnitude, direction and linearity, large variations
were observed from patient to patient, fraction to fraction and cycle to cycle.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the course of radiotherapy, patient motion results in anatomic changes that complicate
targeted treatment of tumours. Among possible sources of motion, respiration is a significant
factor causing uncertainty during imaging, planning and delivery of radiotherapy, particularly
for thoracic and abdominal tumours. Several techniques have been developed to manage
respiratory tumour motion, such as motion encompassing, breath holding, respiratory gating
and tumour tracking (Keall et al 2006). Respiratory gating and tumour tracking are relatively
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new and more promising techniques with the advent of image-guided radiotherapy. Given
that the success of these techniques depends on precisely localizing the tumour, an accurate
characterization of tumour motion is important during imaging and delivery of radiotherapy.

Many studies show that respiratory tumour motion can be up to 2–3 cm, and it varies with
intra- and inter-fractional motion. Both the AAPM Task Group 76 report (Keall et al 2006)
and a study by Langen and Jones (2001) summarize tumour motion data in the literature.
Although the extent and degree of wide variations in motion were acknowledged in these
reports, no consensus was apparent regarding respiratory tumour motion management.

Tumour motion data for a large population of patients over a long period of time have
not yet been published. In this study, the tumour motion data estimated from the correlation
between the external and internal motion for 143 treatment fractions in 42 patients over time
periods corresponding to stereotactic body radiotherapy were used. The aim of this work
was to analyse thoracic and abdominal tumour motion for a large patient population over an
extended period of time.

2. Materials and methods

This study was divided into three main tasks. First, a database of patient tumour motion
was created from input tracking system motion data; second, the tumour motion data were
separated into individual respiratory cycles; third, patient respiratory tumour motion was
analysed.

2.1. Creation of a database of patient tumour motion

2.1.1. Tracking system motion data. Tumour motion data from 143 treatment fractions
for 42 thoracic and abdominal cancer patients treated with the Cyberknife Synchrony (G3
System with delivery software version 6.2.3, Accuray Incorporated, Sunnyvale, CA) in
Georgetown University Hospital from July 2005 to January 2006 were used in this study.
The tumour locations were lungs (30 patients) and retroperitoneum (12 patients) with one
to seven treatment fractions for each patient. The use of the data for research purposes was
approved by the Georgetown Institutional Review Board (IRB-2005-309). Synchrony is a
subsystem of respiratory tumour tracking in the Cyberknife system (Adler et al 1997, Murphy
et al 2000, Schweikard et al 2000, 2004, Murphy 2004, Dieterich 2005, Seppenwoolde et al
2007). In order to compensate for tumour motion, the tracking system estimates internal
tumour positions by a correlation between the external patient motion and internal fiducial
locations, as well as by a prediction algorithm. For the external patient motion, charge-coupled
device (CCD) cameras are used to monitor the multiple light emitting diodes (LEDs) on the
patient’s chest and abdomen at 32 frames per second. For the internal fiducial locations, two
orthogonal diagnostic x-ray systems monitor the implanted markers periodically (e.g., every
30 s or every two beams). The patient tumour motion data used in this study were derived
from the correlation model and recorded at 25 Hz by the tracking system. The data contained
patient four-dimensional (4D) tumour motion information (3D positions of the tumour versus
time) with the format of t:x y z, where t is time in seconds and x, y and z are tumour positions
estimated from the correlation model in millimetres (mm). The system accuracy is on the order
of 0.5 mm with the uncertainty of 0.3 mm for an end-to-end test on a motion platform, which
is the difference between the centre of the planned dose distribution and that of the delivered
dose distribution measured by a film (Wong et al 2007). The technical tracking accuracy is
much better (i.e. on the order of 0.6 mm), while fluctuations in the correlation model on the
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timescale of minutes add much more uncertainty clinically. Typically, the correlation model
is rebuilt if an error is 3 mm or more for two images in a row.

It is important to note that the tumour motion analysed in this study is not actual
but estimated from the correlation model of the tracking system that is based on periodic
stereoscopic x-ray images. The uncertainty of the tracking system motion data was assessed
by estimation errors of the correlation model, which the Synchrony system recorded every
time two orthogonal x-ray images were acquired and internal fiducial locations were measured.
The vector error for each internal fiducial is quantified. The mean and standard deviation (SD)
of 3D positional estimation root-mean-square (RMS) errors of the tracking system over 143
treatment fractions was 1.5 ± 0.8 mm. The estimation errors could be due to inaccuracy of
the correlation models of the tracking system, or temporal variations in the internal/external
correlation model between measurements (Murphy 2004, Korreman et al 2008, Nishioka et al
2008). The uncertainty obtained for the current data set (1.5 ± 0.8 mm) is consistent with
the values published by Seppenwoolde et al (2007), who simulated the Synchrony method
using respiratory and orthogonal fluoroscopic measured data in an eight-patient study. They
concluded from their data that the systematic error of the position estimation was less than
1 mm for all patients and the mean 3D error was less than 2 mm for over 80% of the time.

2.1.2. Creation of a database. The tracking system motion data included portions with
either no motion or significantly large motion, gaps or spikes that might be from sources
other than tumour motion (explained in detail in section 2.1.3). These data were processed to
extract the estimated tumour motion from the tracking system motion data and subsequently,
the longest single contiguous data set was created according to the criteria for each of 143
treatment fractions. Aside from tumour motion, other possible sources of motion included
the motion of a patient or a couch, fiducial mistracking or non-tracking, all of which led to
stopping treatment and/or rebuilding or resetting the correlation model, and the learning time
of the internal tumour position estimator.

2.1.3. Criteria to create a database. Each of the tracking system motion data was visually
inspected to identify possible areas of exclusion and to select the longest single contiguous
data set among the remaining data. The data exclusion criteria were as follows.

(1) Data points showing no motion, which may indicate that the treatment was stopped or the
correlation was reset (figure 1(a)).

(2) Significantly large motion at the beginning of the tracking system motion data, which
may reflect the learning time of the internal tumour position estimator (figure 1(b)).

(3) Large time intervals (more than 5 s) where no data were recorded, which may indicate
that the treatment was stopped or paused, problems with the external imaging occurred or
the system might be unable to track the fiducials (e.g., maybe something was in the way
of the tracking beam) (figure 1(c)).

(4) Data points showing the large motion change in one direction only out of three directions
because there possibly were large changes in couch motion, or fiducials were mistracked
or not tracked (figure 2(a)). Note that data points showing the large motion changes in
two directions simultaneously while maintaining the motion in the third direction were
included (figure 2(b)).

2.2. Separation of individual respiratory cycles

The starting point in analysing the respiratory tumour motion data begins with breaking
the data into individual respiratory cycles to obtain the information on motion, such as a
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(a) (b)

(c)

Figure 1. Examples of data exclusion criteria in a new data set: data points showing (a) no motion,
(b) significantly large motion at the beginning of the tracking system motion data and (c) large
time intervals where no data were recorded.

respiratory-induced peak-to-trough distance and period. First of all, the system noise was
removed by filtering the tracking system motion data using the first-order Butterworth low-
pass filter with a cut-off frequency of 2.5 Hz, assuming that anything greater than ten times
average respiratory frequency (∼0.25 Hz) (Seppenwoolde et al 2002, George et al 2005) was
noise or due to sources other than respiration. High-frequency noise was also evident in the
data. To separate individual respiratory cycles, 3D tumour motion, R =

√
LR2 + AP2 + SI2,

where LR was motion in the left–right (LR) direction, AP in the anterior–posterior (AP)
direction and SI in the superior–inferior (SI) direction, was calculated. This approach is more
reasonable than using either LR, AP or SI motion, since the correlation coefficients between
any two of them are not always one. Before calculating R, a new coordinate system was
determined in which the correlations between each two motion directions were positive and
the minimum values of LR, AP and SI motion corresponded to zero. The motion data in
each direction were then moved to a new coordinate system where inhalation corresponded
to maximum R and exhalation to minimum R, and all motion was positive. Then, the
respiratory-induced peak-to-trough distance and period were determined as follows.

(1) Generating smoothed data and a moving average baseline from the filtered tracking
system motion data. In figure 3(a), the black solid curve is the filtered tracking system
motion data versus time and the blue dashed curve is the smoothed data versus time. The
smoothed data were created by smoothing the filtered tracking system data (recorded
25 times per second) with the moving average of 25 points that correspond to 1 s
(∼minimum period of patient free breathing). This idea is from Seppenwoolde et al
(2002) and Neicu et al (2003), where the raw data (recorded 30 times per second) were
filtered with the 30-point median filter. The red dot-dashed curve is a moving average
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(a) (b)

Figure 2. Examples of data exclusion and inclusion criteria in a new data set: data points showing
(a) large motion change in one direction only (see an arrow) out of three directions were excluded,
but (b) large motion changes in two directions simultaneously (see two arrows) while maintaining
the motion in the third direction were included. Tumour motion in the same timescale is shown
in the left–right (LR) (top), anterior–posterior (AP) (middle) and superior–inferior (SI) (bottom)
directions.

baseline versus time (figure 3(a)), which was created by smoothing the filtered tracking
system data with the moving average of 200 points that correspond to 8 s (∼double the
mean period of patient free breathing) (Lu et al 2006).

(2) Searching intersections between the two curves. To find intersections of the smoothed
data (blue dashed curve) and the moving average baseline (red dot-dashed curve), the
differences between them were calculated. By using the signs of displacement differences,
intersections of the blue dashed and red dot-dashed curves were found (circled in
figure 3(b)).

(3) Determining peaks and troughs between the intersections. Once intersections were found,
peaks (triangles) as maximum points and troughs (inverted triangles) as minimum points
were determined between adjacent intersections (circles), as shown in figure 3(b). When
searching peaks and troughs, only time intervals of more than 0.4 s from a peak to a trough
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(a) (b)

Figure 3. Separation of individual respiratory cycles: (a) the black solid curve represents the
filtered tracking system motion data, the blue dashed curve represents the smoothed data and
the red dot-dashed curve represents a moving average baseline; (b) the circles mark intersections
between the blue dashed and red dot-dashed curves, and the triangles and inverted triangles
represent peak and trough points, which are the maximum and minimum points between adjacent
intersections, respectively.

or from a trough to a peak were accepted, assuming that the patient minimum breathing
period was around 0.8 s. Otherwise, the peaks and troughs were ignored because they
were considered not to be real peaks or troughs, but instead they were regarded as errors,
such as small bumps or unremoved noise. This minimum breathing period is based on
the patient population data from George et al (2005), who stated that the mean period for
free breathing was 3.8 s and that the fifth percentile of the variations of this period was
2.13 s (i.e. twice the SD from the mean). Extrapolating 3 SD from the mean gave 0.8 s or
0.4 s for each of inhalation and exhalation. Varying this value from 0.4 s to either 0.3 or
0.5 s had little impact on the overall results, which indicated moderate insensitivity to the
choice of parameter values. If more than one maximum or one minimum point existed
between adjacent intersections (same y values, but different x values in the figure 3 plots),
the time values were averaged to minimize the effect on calculating the respiratory period.

(4) Calculating peak-to-trough distance and period. The respiratory-induced peak-to-trough
distance was calculated as the displacement difference between the consecutive peak and
trough points and the respiratory period as the time difference from one peak to the next
peak.

2.3. Analysis of respiratory motion data

Once separated into individual respiratory cycles, the patient tumour motion data were analysed
to obtain useful information on respiratory tumour motion for large patient population data.
The data analysed in this study were as follows: (1) respiratory-induced peak-to-trough
distance, (2) respiratory period, (3) per cent contributions to 3D motion (R) from motion in
the LR, AP and SI directions and (4) motion nonlinearity and hysteresis.

Tumour motion hysteresis occurs when a tumour follows different paths between inhale
and exhale phases during a respiratory cycle (Seppenwoolde et al 2002, Manke et al 2003,
Mageras et al 2004, Blackall et al 2006, Wolthaus et al 2006, Boldea et al 2007, Mori et al
2007). Nonlinearity and hysteresis of patient tumour motion were quantified using principal
component analysis (PCA). The first principal component that PCA generates is a single axis
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in space. When each data point is projected on that axis, the resulting values form a new
variable, and the variance of this new variable is the maximum among all possible choices of
the first axis (Jackson 1991, Wall et al 2003). The first principal component was expressed
as a normalized percentage (ranging from 33% to 100%), where 100% indicated pure linear
motion, and the lower the percentage, the more nonlinear motion and/or more hysteresis. For
each of 143 treatment fractions, the first principal components of individual respiratory cycles
were calculated.

3. Results

3.1. Creation of a database of patient tumour motion

Extracted motion data are the longest single contiguous data set selected for each of 143
treatment fractions. The mean duration time of the extracted data is 30 min, ranging from 5 to
86 min, and the total duration time is approximately 72 h. The mean ratio of duration time in
the tracking system motion data and that in the extracted motion data is 0.42, and ranges from
0.07 to 0.99.

3.2. Separation of individual respiratory cycles

Figure 4 illustrates typical respiratory tumour motion, where the algorithm correctly determines
peaks and troughs. By using the smoothed data and the moving average baseline, even very
irregular respiratory tumour motion is correctly separated into individual cycles. The algorithm
successfully separates the respiratory traces with significant fluctuations (figure 4(c)),
considerable noise (figures 4(d) and (e)) or a large peak (figure 4(f)) into individual respiratory
cycles. However, there are some cases where the algorithm fails to determine correct peaks
or troughs, as shown in figure 5. When there are repeated very small peaks and troughs
(figure 5(a)) or very fast respiratory cycles (figure 5(b)), the algorithm fails to separate the
motion data into individual cycles correctly.

Using the intersections of the smoothed curves and the moving average baseline curves
alone, 70 696 individual respiratory cycles are detected for all treatment fractions analysed. By
enforcing the minimum 0.4 s peak-to-trough or trough-to-peak rule, 478 cycles are removed,
leaving 70 218 cycles for further analyses. Included in the final respiratory cycles are three
cycles with negative peak-to-trough distances, as well as 27 cycles with a trough-to-peak
time of less than 0.4 s, despite shorter cycles being removed by the previous rule. These are
explained by the design of an algorithm used to separate the tumour motion into individual
cycles. The algorithm initializes from a peak and locates the following trough and peak. Only
when the time intervals between the initial peak and trough and between the trough and the
next peak are more than 0.4 s, the algorithm accepts the initial peak and the trough as a pair.

3.3. Analysis of respiratory motion data

The overall mean respiratory-induced peak-to-trough distance is 0.48 cm, with individual
treatment fraction means ranging from 0.02 to 1.44 cm. The overall mean respiratory period
is 3.8 s, with individual treatment fraction means ranging from 2.2 to 6.4 s. The mean of
the individual treatment fraction SDs for the peak-to-trough distance and period is 0.15 cm
(0.01–0.73) and 0.8 s (0.2–1.7), respectively. Detailed statistics are given in appendix A.

Tables 1 and 2 show the mean of individual treatment fraction means and SDs for the
peak-to-trough distance and respiratory period for each of 30 lung and 12 retroperitoneal
tumour patients, respectively. On average, the peak-to-trough distance is slightly larger for
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(a) (b)

(c) (d)

(e) (f )

Figure 4. Examples of respiratory tumour motion where the algorithm correctly determines peaks
and troughs and thus separates the motion data into individual cycles despite significant respiratory
irregularity: typical respiratory tumour motion ((a) and (b)), irregular motion, which represents
the respiratory traces with (c) significant fluctuations, (d) and (e) considerable noise and (f) a large
peak. The black solid curve is the filtered tracking system motion data, the blue dashed curve is
the smoothed data and the red dot-dashed curve is a moving average baseline. The triangles and
inverted triangles are peak and trough points, respectively.

lung tumours, while the period is slightly longer for retroperitoneal tumours. However, the
differences of the peak-to-trough distance and period between lung and retroperitoneal tumours
are not significant; rather these vary from patient to patient, as shown in figures 6(a) and (b).
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(a) (b)

Figure 5. Examples of respiratory tumour motion where the algorithm fails to separate the motion
data into individual cycles correctly: the respiratory traces with (a) repeated small peaks and
troughs and (b) fast respiratory cycles. The black solid curve is the filtered tracking system motion
data, the blue dashed curve is the smoothed data and the red dot-dashed curve is a moving average
baseline. The triangles and inverted triangles are peak and trough points, respectively.

Table 3 shows patient tumour motion data sorted by motion extent. Out of 143 treatment
fractions, 57 show the mean peak-to-trough distance to be greater than 0.5 cm (40%): 44
treatment fractions (42% of all lung tumour fractions) from 16 lung tumour patients and 13
fractions (34% of all retroperitoneal tumour fractions) from 7 retroperitoneal patients. The
mean of individual fraction means for the peak-to-trough distance for lung and retroperitoneal
tumours is 0.81 cm and 0.74 cm, respectively, for motion greater than 0.5 cm, and 0.28 cm
and 0.27 cm, respectively, for motion less than/equal to 0.5 cm. The lung tumours are sorted
to seven different tumour locations in the lungs, as shown in table 4. As expected, tumours in
the lower lobes of the lungs show more motion than those in the upper lobes.

The respiratory period, however, does not show any trends dependent on motion extent
or tumour sites. The longest mean period (6.1 s) occurs in a retroperitoneal tumour patient,
whose three treatment fractions are the top three individual treatment fraction means for the
respiratory period (6.4, 6.3 and 5.8 s) (table 2). The second and third longest mean periods
are from lung tumour patients (5.2 and 5.1 s) (table 1). The details for tables 1–3 are given in
appendices B and C.

Figure 6(c) shows the mean per cent contributions to 3D motion (R) from motion in the
LR, AP and SI directions for each of 30 lung and 12 retroperitoneal tumour patients. Out of
143 treatment fractions, 26 fractions (18%) show the dominant RL motion, 32 fractions (22%)
show the dominant AP motion and 85 fractions (60%) show the dominant SI motion. The
per cent contributions do not show any trends dependent on motion extent or tumour sites.
The RL motion is dominant in 16% of 105 lung tumour treatment fractions, the AP motion
is in 27% and the SI motion is in 57%. For 38 retroperitoneal treatment fractions, the RL
motion is dominant in 24% of the fractions, the AP motion is in 10% and the SI motion is
in 66%. For all 143 treatment fractions, the individual treatment fraction means for per cent
contributions from the LR, AP and SI motion range 3–73%, 8–84% and 5–77%, respectively.
There are no noticeable differences between the lung and retroperitoneal tumours in terms
of per cent contribution. The individual treatment fraction means for lung tumours range
3–73% in the LR motion, 8–67% in the AP motion and 5–77% in the SI motion, and those
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Table 1. Tumour motion data for each of 30 lung tumour patients: the mean of individual treatment
fraction means and standard deviations (SD) for the peak-to-trough distance and period. Note that
patients 5 and 27 included more than one tumour sites.

Number of Peak-to-trough distance (cm) Period (s)
Patient treatments Mean ± SD Mean ± SD

Patient 1 3 0.71 ± 0.18 2.8 ± 0.6
Patient 3 4 0.29 ± 0.09 2.9 ± 0.4
Patient 5 3/7 0.37 ± 0.14 3.8 ± 0.6

3/7 0.91 ± 0.20 3.5 ± 0.6
1/7 0.43 ± 0.12 4.3 ± 0.8

Patient 6 2 0.55 ± 0.19 3.5 ± 0.7
Patient 8 3 0.18 ± 0.07 3.8 ± 0.9
Patient 9 3 0.45 ± 0.13 4.4 ± 0.8
Patient 10 3 0.45 ± 0.17 2.9 ± 0.8
Patient 11 3 0.65 ± 0.19 4.9 ± 1.0
Patient 12 3 0.22 ± 0.09 4.3 ± 0.7
Patient 13 3 0.32 ± 0.11 3.1 ± 0.7
Patient 14 5 0.27 ± 0.07 3.5 ± 0.5
Patient 15 3 1.24 ± 0.18 3.3 ± 0.5
Patient 19 3 1.07 ± 0.24 2.6 ± 0.3
Patient 20 3 0.08 ± 0.03 3.8 ± 0.9
Patient 21 3 0.81 ± 0.46 3.6 ± 1.2
Patient 22 3 0.39 ± 0.09 4.5 ± 0.9
Patient 23 3 0.37 ± 0.14 3.6 ± 1.0
Patient 25 3 0.84 ± 0.15 3.7 ± 0.5
Patient 26 3 0.50 ± 0.18 4.5 ± 0.8
Patient 27 4/5 0.87 ± 0.21 5.2 ± 1.1

1/5 0.81 ± 0.23 5.1 ± 1.0
Patient 28 5 0.25 ± 0.07 3.8 ± 0.8
Patient 29 3 0.03 ± 0.01 3.8 ± 0.7
Patient 30 3 0.28 ± 0.11 2.6 ± 1.2
Patient 31 5 0.78 ± 0.22 3.9 ± 0.6
Patient 32 3 0.30 ± 0.11 3.7 ± 0.6
Patient 33 3 0.33 ± 0.07 3.6 ± 0.4
Patient 35 3 0.40 ± 0.15 3.1 ± 0.6
Patient 37 3 0.31 ± 0.18 4.0 ± 1.3
Patient 39 4 0.55 ± 0.35 2.9 ± 1.3
Patient 40 5 0.69 ± 0.25 3.5 ± 0.7

Total 105 0.50 ± 0.16 3.7 ± 0.8

for retroperitoneal tumours range 7–64% in the LR motion, 11–84% in the AP motion and
5–69% in the SI motion.

Figure 6(d) shows the mean and SD of the first principal component (normalized
percentage) showing motion nonlinearity and hysteresis for each treatment fraction. The
overall mean of the first principal component for all treatment fractions is 94%, with individual
treatment fraction means ranging from 69% to 100%. The overall mean and range of the
first principal component for lung and retroperitoneal tumours are 93% (69–100) and 98%
(85–100), respectively. Only seven treatment fractions out of 143 (5%) have the means
of the first principal component less than 80%, all of which are from four lung tumour
patients. On the other hand, 89 treatment fractions (62%) have the means of the first principal
component greater than 95%. These are from 56 treatment fractions (53% of all lung tumour
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Table 2. Tumour motion data for each of 12 retroperitoneal tumour patients: the mean of individual
treatment fraction means and standard deviations (SD) for the peak-to-trough distance and period.

Number of Peak-to-trough distance (cm) Period (s)
Patient treatments Mean ± SD Mean ± SD

Patient 2 3 0.65 ± 0.09 3.5 ± 0.3
Patient 4 6 0.38 ± 0.12 4.4 ± 0.9
Patient 7 5 0.19 ± 0.05 4.1 ± 0.5
Patient 16 3 0.91 ± 0.39 4.8 ± 1.3
Patient 17 1 0.63 ± 0.25 4.5 ± 0.7
Patient 18 3 0.03 ± 0.02 4.3 ± 0.9
Patient 24 3 0.44 ± 0.18 4.2 ± 0.6
Patient 34 2 0.22 ± 0.06 3.2 ± 0.9
Patient 36 3 0.38 ± 0.21 3.1 ± 1.0
Patient 38 3 0.24 ± 0.09 3.4 ± 0.6
Patient 41 3 0.91 ± 0.20 3.6 ± 0.4
Patient 42 3 0.50 ± 0.14 6.1 ± 1.3

Total 38 0.44 ± 0.14 4.1 ± 0.8

Table 3. Tumour motion data sorted by motion extent (greater than 0.5 cm or less than/equal to
0.5 cm): the mean of individual treatment fraction means and standard deviations (SD) for the
peak-to-trough distance and period. There are 44 treatment fractions from 16 lung patients and
13 treatment fractions from 7 retroperitoneal patients whose mean peak-to-trough distance is
greater than 0.5 cm.

Peak-to-trough distance (cm) Period (s)
Mean ± SD Mean ± SD

Lungs
>0.5 cm 0.81 ± 0.24 3.7 ± 0.8
�0.5 cm 0.28 ± 0.10 3.6 ± 0.8

Retroperitoneum
>0.5 cm 0.74 ± 0.22 4.4 ± 0.9
�0.5 cm 0.27 ± 0.09 4.0 ± 0.7

Table 4. Tumour motion data sorted by tumour sites in the lungs with the number of treatment
fractions: the mean of individual treatment fraction means and standard deviations (SD) for the
peak-to-trough distance and period.

Peak-to-trough distance (cm) Period (s)
Mean ± SD Mean ± SD

Left lower lobe (10) 0.73 ± 0.23 3.7 ± 0.7
Left upper lobe (35) 0.36 ± 0.15 3.7 ± 0.8
Right lower lobe (15) 0.87 ± 0.18 3.1 ± 0.6
Right middle lobe (13) 0.36 ± 0.12 3.7 ± 0.7
Right upper lobe (15) 0.39 ± 0.16 3.5 ± 0.7
Hilum (15) 0.54 ± 0.13 4.1 ± 0.9
Others (2) 0.62 ± 0.18 4.7 ± 0.9

fractions) from 22 lung tumour patients and 33 fractions (87% of all retroperitoneal tumour
fractions) from 11 retroperitoneal patients. Figure 7 shows the examples of motion nonlinearity
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(a)

(b)

(c)

(d)

Figure 6. For each of 30 lung tumour patients (left) and 12 retroperitoneal tumour patients (right),
(a) mean and standard deviation (SD) of the respiratory-induced peak-to-trough distance, (b) mean
and SD of the respiratory period, (c) mean of the per cent contributions to 3D motion (R) from the
motion in the LR (sky blue), AP (white) and SI (pink) directions, and (d) mean and SD of the first
principal component (normalized percentage) showing motion nonlinearity and hysteresis.

and hysteresis during individual respiratory cycles. The normalized percentages of the first
principal component are 100% for linear tumour motion with no hysteresis (figure 7(a)), 97%
for nonlinear tumour motion with no hysteresis (figure 7(b)), and between 95% and 69% for
tumour motion with hysteresis (figures 7(c)–(f)).
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(a) (b) (c)

(d) (e) (f)

Figure 7. Examples of motion nonlinearity and hysteresis during individual respiratory cycles:
(a) linear motion with no hysteresis, (b) nonlinear motion with no hysteresis and (c)–(f) motion
with hysteresis. Individual cycles start at green asterisks and end at blue asterisks. The normalized
percentages of the first principal component are (a) 100%, (b) 97%, (c) 95%, (d) 90%, (e) 79% and
(f) 69%.

4. Discussion

The respiratory-induced tumour motion estimated from the correlation between the external
and internal motion for a large patient population over long time periods was analysed and
characterized. The algorithm to separate individual respiratory cycles is similar to that
presented by Lu et al (2006), which makes use of moving average curves to identify the
intersections. Similar to their conclusions, this study shows that using the moving average
curves instead of the derivatives can remove the effect of possible signal drift and noise.
Lu et al showed a 99% success rate in detection of the extremes, but this only represents
307 peaks and troughs. In this study, 70 218 respiratory cycles were examined after separating
individual cycles and used to further characterize respiratory tumour motion. The algorithm
worked well, even for the significant irregularity of respiratory tumour motion (figure 4);
however, it failed in some cases (figure 5), which indicated that separating the individual cycles
is a complex problem. Due to substantial temporal changes in respiratory tumour motion,
developing a robust algorithm to separate the individual respiratory cycles is challenging.

The AAPM Task Group 76 (Keall et al 2006) summarized lung tumour motion and showed
that the greatest lung tumour motion is generally in the SI direction, whereas the least motion
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is in the LR direction. The lung tumour motion tends to increase from the upper lobes to the
lower lobes. The maximum extent of the motion documented was 5 cm (Chen et al 2001).
Ekberg et al (1998) showed relatively small motion in which the mean extent was 0.4 cm at the
most, while Erridge et al (2003) reported relatively large motion with the mean extent being
1.3 cm in the SI direction. In our study, the mean extent of lung tumour motion is 0.50 cm
(0.02–1.44) (appendix B), which is comparable to that reported in the literature. As shown in
table 4, the mean extent of lung tumour motion in the lower lobes is more than twice as much
as that in the middle and upper lobes. The mean tumour motion extent in the hilum is 0.54 cm,
which is between that in the middle/upper lobes and that in the lower lobes (table 4).

For retroperitoneal tumour motion, two older studies showed similar extent of motion
in which the mean was 2 cm (1–3) from a large patient population (36 subjects (Bryan et al
1984) and 50 subjects (Suramo et al 1984)). The mean extent of retroperitoneal tumour
motion observed in our study (38 treatment fractions for 12 patients) is 0.44 cm (0.03–0.98)
(appendix B). This result is somewhat smaller than the observations made in the older studies
mentioned above; however, it is comparable to a more recent published study by Gierga et al
(2004) that reported the mean tumour motion of 0.7 cm in the SI direction and 0.4 cm in the
AP direction.

Three studies included the period of respiratory motion: one reported 16 5-min respiratory
tumour motion traces for each of 20 lung cancer patients (Seppenwoolde et al 2002) that
showed that the mean period was 3.6 ± 0.8 s (SD). George et al (2005) reported that the mean
period was 3.8 ± 1.1 s (SD) from 331 4-min respiratory motion traces for 24 free-breathing
lung cancer patients. Lu et al (2006) showed that the respiratory waveforms (575.3 s long)
for 20 thoracic or upper abdominal cancer patients resulted in the mean respiratory period of
4.1 ± 0.9 s (SD). The overall mean respiratory period of lung tumour in our study is 3.7 ±
0.8 s (SD), which is comparable to that cited in the literature. Unlike the peak-to-trough
distance, the respiratory period does not show any trends that are dependent on the location of
tumour sites in the lungs; instead, they are similar to one another, with individual treatment
fraction means ranging from 2.2 to 5.6 s (table 4).

The signal complexity and non-stationarity of respiratory tumour motion result in a phase
difference in the motion in each of the three directions. Thus, the correlation coefficients
between tumour motion in any two directions are not one. This shows that the respiratory
period resulting from each of the three directions may be different from one another if the
tumour motion is treated separately in the LR, AP and SI directions. To avoid ambiguity, the
period was computed from the 3D motion vector. Therefore, this study presents the 3D extent
of tumour motion (R), while most studies tend to report tumour motion along the separate 1D
components of direction (LR, AP and SI motion).

Still, the per cent contributions to 3D motion (R) from the motion extent in each of the
three directions are important, and so they are also presented in this study. A recent study by
Britton et al (2007) showed that tumour motion from the 4D computed tomography (4D CT)
data sets was mostly in the SI direction. The findings of Britton et al are also consistent with
data presented in the other literature in which the greatest respiratory tumour motion was in
the SI direction.

Likewise in our study, the mean per cent contribution to 3D motion from the SI motion
is the greatest in 85 out of 143 treatment fractions (60%) when compared to the AP (22%)
and LR (18%) motion, which is the smallest. However, the ranges of individual treatment
fraction means for three motion directions are similar (from 5% to 75%), and show the
large individual variations in the directions and extent of motion. Although it is true that
respiratory tumour motion is generally the greatest in the SI direction, some patient treatment
fractions show predominate motion in the LR or AP direction, as shown in figure 6(c).
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These findings were discussed in a previous work using the same tumour motion data (Suh
et al 2007), where substantial patient-to-patient respiratory tumour motion variation was
observed.

One of the conditions where the respiratory management techniques should be considered
in regard to the recommendations made by the AAPM Task Group 76 (Keall et al 2006) is
when the tumour motion range in any direction is greater than 0.5 cm. Thus, tumour motion
data are sorted by the motion extent that is either greater than 0.5 cm or less than/equal to
0.5 cm, as shown in table 3. Fifty-seven (57) treatment fractions out of 143 show motion
extent greater than 0.5 cm, with the mean of individual treatment fraction means for the peak-
to-trough distance being 0.81 cm for lung tumours and 0.74 cm for retroperitoneal tumours
(table 3). Again, the means of the respiratory period are similar between the motion extent
greater than 0.5 cm and that less than/equal to 0.5 cm.

The motion nonlinearity and hysteresis are important characteristics of respiratory tumour
motion, but no consensus on how to quantify their extent has been reached. Seppenwoolde
et al (2002) calculated the hysteresis as a phase difference between the fitted parameterized
curves of the average breathing cycles of two directions. From 3D tumour trajectories, they
showed that the hysteresis ranged from 0.1 to 0.5 cm for 10 out of 21 tumours. Based on
these findings, Seppenwoolde et al concluded that the extent of hysteresis remained rather
constant during the treatment. In our study, PCA is used to quantify the motion nonlinearity
and hysteresis. Another application of PCA in radiotherapy includes quantification of the
variability in a data set of dose–volume histograms (Dawson et al 2005, Bauer et al 2006,
Skala et al 2007, Sohn et al 2007). Figure 7 shows the motion nonlinearity and hysteresis
of individual respiratory cycles with the corresponding first principal components of PCA.
As the normalized percentages of the first principal components become smaller, the motion
nonlinearity and hysteresis increase. The two paths of tumour, one from exhale to inhale
and the other from inhale to exhale, are often quite different and show motion hysteresis.
Given that for many of the treatment fractions the means of the first principal component are
greater than 90%, the motion nonlinearity and hysteresis usually are not significant; however,
they are not negligible, either. PCA can be used to separate nonlinear and hysteresis motion
from linear motion, but it cannot be used to differentiate between motion nonlinearity and
hysteresis, which is one weakness in using this method.

5. Conclusions

The analysis and characterization of patient respiratory tumour motion were performed using
more than 70 h of tumour motion data for 143 treatment fractions in 42 stereotactic body
radiotherapy patients. Individual treatment fraction means of tumour motion ranged from 0.02
to 1.44 cm and were greater than 0.5 cm in 57 (40%) of the treatment fractions. Generally,
tumour motion was predominantly SI (60% of all the treatment fractions) while predominant
AP and LR motion being 22% and 18%, respectively. The motion was predominantly linear,
with the overall mean of the first principal component being 94%. However, for motion
magnitude, direction and linearity, large variations were observed from patient to patient,
fraction to fraction and cycle to cycle. Beyond the quantification and analysis of the tumour
motion, there are a number of ongoing uses of this data set, including the use of monoscopic
imaging to quantify motion (Suh et al 2007), along with the development and continuing
investigations of motion prediction. In addition to this ongoing work, there are many further
potential applications of the data. For investigators wishing to pursue novel applications of
the data, it is available from one of the authors, Sonja Dieterich, by request.
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Appendix A

Tumour motion data from 70 218 respiratory cycles for 143 treatment fractions in 42
stereotactic body radiotherapy patients: mean and range of individual treatment fraction
means, standard deviations (SD), maximums (max), minimums (min) and root mean squares
(RMS) for the peak-to-trough distance and period.

Peak-to-trough distance (cm) Period (s)

Mean 0.48 (0.02–1.44) 3.8 (2.2–6.4)
SD 0.15 (0.01–0.73) 0.8 (0.2–1.7)
Max 1.36 (0.06–5.12) 8.1 (4.3–19.5)
Min 0.13 (0.00–0.71) 1.9 (1.0–3.4)
RMS 0.51 (0.02–1.45) 3.9 (2.3–6.4)

Appendix B

Tumour motion data of 30 lung and 12 retroperitoneal tumour patients: mean and range of
individual treatment fraction means, standard deviations (SD), maximums (max), minimums
(min) and root mean squares (RMS) for the peak-to-trough distance and period (details for
tables 1 and 2).

Lungs Peak-to-trough distance (cm) Period (s)

Mean 0.50 (0.02–1.44) 3.7 (2.2–5.6)
SD 0.16 (0.01–0.73) 0.8 (0.2–1.7)
Max 1.43 (0.08–5.12) 8.0 (4.3–19.5)
Min 0.14 (0.00–0.71) 1.8 (1.0–3.3)
RMS 0.53 (0.02–1.45) 3.8 (2.3–5.7)

Retroperitoneum Peak-to-trough distance (cm) Period (s)

Mean 0.44 (0.03–0.98) 4.1 (2.5–6.4)
SD 0.14 (0.01–0.46) 0.8 (0.2–1.6)
Max 1.19 (0.06–4.07) 8.4 (4.5–16.0)
Min 0.11 (0.00–0.44) 2.1 (1.1–3.4)
RMS 0.46 (0.03–1.05) 4.2 (2.6–6.4)

Appendix C

Tumour motion data of lung and retroperitoneal tumour patients sorted by motion extent
(greater than 0.5 cm or less than/equal to 0.5 cm): mean and range of individual treatment
fraction means, standard deviations (SD), maximums (max), minimums (min) and root mean
squares (RMS) for the peak-to-trough distance and period (details for table 3).
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Lungs > 0.5 cm Peak-to-trough distance (cm) Period (s)

Mean 0.81 (0.50–1.44) 3.7 (2.5–5.6)
SD 0.24 (0.12–0.73) 0.8 (0.2–1.7)
Max 2.29 (5.12–0.97) 8.0 (5.3–14.2)
Min 0.24 (0.00–0.71) 1.9 (1.0–3.3)
RMS 0.85 (0.53–1.45) 3.8 (2.5–5.7)

Lungs � 0.5 cm Peak-to-trough distance (cm) Period (s)

Mean 0.28 (0.02–0.47) 3.6 (2.2–4.9)
SD 0.10 (0.01–0.25) 0.8 (0.2–1.6)
Max 0.80 (0.08–2.90) 8.0 (4.3–19.5)
Min 0.07 (0.00–0.25) 1.7 (1.0–3.1)
RMS 0.30 (0.02–0.49) 3.7 (2.3–5.0)

Retroperitoneum > 0.5 cm Peak-to-trough distance (cm) Period (s)

Mean 0.74 (0.51–0.98) 4.4 (3.2–6.4)
SD 0.22 (0.06–0.46) 0.9 (0.2–1.5)
Max 1.69 (0.71–2.84) 8.4 (4.8–12.6)
Min 0.16 (0.02–0.44) 2.2 (1.2–3.4)
RMS 0.78 (0.54–1.05) 4.5 (3.2–6.4)

Retroperitoneum � 0.5 cm Peak-to-trough distance (cm) Period (s)

Mean 0.27 (0.03–0.49) 4.0 (2.5–6.3)
SD 0.09 (0.01–0.38) 0.7 (0.3–1.6)
Max 0.92 (0.06–4.07) 8.3 (4.5–16.0)
Min 0.09 (0.00–0.31) 2.1 (1.1–3.1)
RMS 0.29 (0.03–0.53) 4.1 (2.6–6.4)
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A DELIVERABLE FOUR-DIMENSIONAL INTENSITY-MODULATED RADIATION
THERAPY-PLANNING METHOD FOR DYNAMIC MULTILEAF COLLIMATOR

TUMOR TRACKING DELIVERY

YELIN SUH, M.S.,*y ELISABETH WEISS, M.D.,* HUALIANG ZHONG, PH.D.,* MIREK FATYGA, PH.D.,*

JEFFREY V. SIEBERS, PH.D.,* AND PAUL J. KEALL, PH.D.y

*Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA; and yDepartment of
Radiation Oncology, Stanford University, Stanford, CA

Purpose: To develop a deliverable four-dimensional (4D) intensity-modulated radiation therapy (IMRT) planning
method for dynamic multileaf collimator (MLC) tumor tracking delivery.
Methods and Materials: The deliverable 4D IMRT planning method involves aligning MLC leaf motion parallel to
the major axis of target motion and translating MLC leaf positions by the difference in the target centroid position
between respiratory phases of the 4D CT scan. This method ignores nonlinear respiratory motion and deforma-
tion. A three-dimensional (3D) optimal method whereby an IMRT plan on each respiratory phase of the 4D CT
scan was independently optimized was used for comparison. For 12 lung cancer patient 4D CT scans, individual
phase plans and deformable dose-summed 4D plans using the two methods were created and compared.
Results: For each of the individual phase plans, the deliverable method yielded similar isodose distributions and
dose–volume histograms. The deliverable and 3D optimal methods yielded statistically equivalent dose–volume
metrics for both individual phase plans and 4D plans (p > 0.05 for all metrics compared). The deliverable method
was affected by 4D CT artifacts in one case. Both methods were affected by high vector field variations from
deformable registration.
Conclusions: The deliverable method yielded similar dose distributions for each of the individual phase plans and
statistically equivalent dosimetric values compared with the 3D optimal method, indicating that the deliverable
method is dosimetrically robust to the variations of fractional time spent in respiratory phases on a given 4D CT
scan. Nonlinear target motion and deformation did not cause significant dose discrepancies. � 2008 Elsevier Inc.

Lung cancer, IMRT, 4D CT, DMLC tracking.

INTRODUCTION

Radiation treatment that explicitly accommodates temporal

changes of anatomy, called four-dimensional (4D) radiother-

apy, is an intense area of study in radiation oncology (1, 2).

Recent development of 4D computed tomography (CT) pro-

vides better understanding of anatomic motion. How to use

this extra information to further improve target coverage

and spare normal tissue in an optimal way is still a challenge.

Intensity-modulated radiation therapy (IMRT) is shown

to have better normal tissue sparing and target dose confor-

mality compared with conventional treatment techniques

(3), and use of the dynamic multileaf collimator (DMLC) is

shown to be a reliable and efficient IMRT delivery technique

(4). Dynamic MLC also has been investigated to deliver 4D

IMRT, and several techniques to incorporate anatomic

changes into DMLC IMRT have been proposed (5–21).

However, the finite mechanical motion capabilities of an

MLC impose constraints on the leaf sequence of 4D radio-

therapy because the MLC leaves need to both follow the tu-

mor motion during treatment and move to modulate the beam

fluence to perform IMRT.

The complexity of IMRT using the DMLC delivery tech-

nique on 4D CT data sets has been investigated (5–21). Tro-

fimov et al. (16) compared different 4D IMRT optimization

schemes, with respect to the full optimization, and showed

tumor tracking to be marginally better than other techniques.

They showed a good framework of formulating a 4D IM-

RT planning problem. However, their investigations did

not account for the design specifications of delivery devices

and additional complexities of leaf motion constraints.
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Webb et al. (6, 8, 17–19) showed strategies to find the

optimal leaf trajectories by minimizing the geometric mis-

match of MLC leaf and organ motion in one dimension

and two dimensions, including leaf motion constraints for

the motion-compensated DMLC IMRT planning. They ap-

plied their strategies to a motion model constructed from

a patient 4D CT but did not demonstrate implementation

beyond a single patient. Papiez et al. (7, 10–14) developed

algorithms for DMLC leaf-pair optimal control IMRT deliv-

ery to moving and deforming targets. They demonstrated

their algorithms for the target motion in real time and

when a priori motion information is known for one dimen-

sion, but as of yet not for three dimensions. Zhang et al.
(20, 21) investigated plan optimization incorporating respi-

ratory target motion and deformation with helical tomother-

apy but with only one lung case. Schlaefer et al. (15)

showed the feasibility of an approach to consider the rela-

tive motion of organs during treatment planning for robotic

radiosurgery. Their study was based on the assumptions of

perfect target tracking and regular respiratory motion and

was not applied to real patients. Because of the complexity

of the 4D IMRT problem, an optimal IMRT planning

method based on the 4D CT scan that combines MLC

leaf motion constraints and MLC transport characteristics

with an approach robust to respiratory-induced motion dur-

ing treatment has not yet been developed.

To incorporate the MLC leaf motion constraints into 4D

IMRT planning using DMLC, this study is focused on a sim-

plification of rigid body target translation. Only target motion

along the MLC leaf motion direction is considered, whereas

target motion perpendicular to the MLC leaf motion caused

by target deformation/rotation and motion nonlinearity/hys-

teresis is ignored. This approach yields a planning scheme

that is not optimal but, importantly, is deliverable with cur-

rently available technology. For comparison, a three-dimen-

sional (3D) optimal scheme also is shown, in which the dose

distribution in each phase of the 4D CT scan is independently

optimized. A given phase represents what could be achieved

using respiratory gating. The 3D optimal approach accounts

for target deformation/rotation and motion nonlinearity/

hysteresis but ignores MLC leaf motion constraints and

thus is deliverable only if the MLC leaf velocity is infinite.

METHODS AND MATERIALS

Formalism for 4D IMRT planning optimization
The aim of 4D IMRT planning optimization for DMLC tumor

tracking is to find the deliverable leaf sequence, L(MU,q), as a func-

tion of monitor unit, MU, and respiratory phase, q, to satisfy min

{f[D(L(MU,q))]}, where f is a mathematical cost function re-

presentation of a clinical objective, and D is the prescribed dose

distribution:

D ¼
XP

q¼0

lq Dq

�
IðqÞ; Iref ; uðqÞ; LðMU; qÞ

�
; (1)

where lq is time spent per each phase, Dq is dose for a given phase,

I is a 4D CT image of anatomy where I(q) represents a given 3D

instance for phase q and Iref the image used for dose summation,

and u is a displacement vector field computed using deformable

registration mapping images from a given to the reference phase.

To obtain Dq, the dose is computed on I(q) on the basis of

L(MU,q) and then deformed to Iref using u(q).

A deliverable 4D IMRT planning method to solve Eq. (1) pro-

posed in this study is to account for rigid body target motion along

the MLC leaf direction only, as well as to ensure that MLC leaf

motion does not exceed the maximum leaf velocity (22). The

deliverable method finds the deliverable leaf sequence on the refer-

ence phase, L(MU,qref), to satisfy min{f[D(L(MU,qref))]}, where

D ¼ Dqref
ðIref ; LðMU; qref ÞÞ and qref is the reference phase. For

the rigid body target translation, the solutions for other phases be-

come L(MU,q) = L(MU, qref) + g(q), where g(q) is the target centroid

displacement from the reference phase to phase q along the major

axis of target motion in a given beam’s eye view (BEV).

A benchmark method is a 3D optimal method, which finds the

optimal leaf sequence, L(MU,q), to satisfy min{f[Dq(L(MU,q))]}

for each phase independently.

4D CT data and patient characteristics
The 4D CT data of 12 lung cancer patients acquired on a 16-slice

CT scanner in a cine mode (GE Healthcare Technologies, Waukesha,

WI) were used (23, 24). The acquisition was performed as a part of an

institutional review board–approved study (protocol 00-202) at the

University of Texas M. D. Anderson Cancer Center. On the basis

of the respiratory signal from a respiration monitoring system

(RPM; Varian Medical Systems, Palo Alto, CA), the respiratory cy-

cle was divided into 10 phases of equal duration, with Phase 0 repre-

senting end-inhale and Phase 5 approximately end-exhale. The tumor

classifications ranged from T1N0 to T4N0, and tumors were located

in the upper lobes for 9 patients and in the lower lobes for 3 patients

with peripheral (3 patients) and central (9 patients) tumor localiza-

tions. The means of gross tumor volume (GTV) and GTV centroid

motion range were 49.2 cm3 and 0.7 cm, respectively (Table 1).

Contouring and IMRT planning
Contouring and planning were performed using a commercially

available planning system (Pinnacle 7.9; Philips Medical Systems,

Milpitas, CA). On the basis of the manually segmented contours

on Phase 0, the contours on the other 9 phases of the 4D CT scan

were automatically generated using large deformation diffeomor-

phic image registration (25, 26). The GTV was expanded by an

8-mm margin to yield the clinical target volume (27), and a 5-mm

margin was added to create the planning target volume (PTV). The

prescribed dose to PTV was 74 Gy, and beam arrangements were

six coplanar, non-opposed, predominantly anterior–posterior, with

beam angles adjusted depending on the tumor locations. Further

details for planning and optimization are described elsewhere (23).

Methods of the deliverable and 3D optimal IMRT planning
on the 4D CT scans

The deliverable 4D IMRT planning method involves four steps

for each patient (Fig. 1). From Steps 1 through 3, individual phase

plans were created, and in Step 4 deformable dose-summed 4D

plans were created.

Step 1. The appropriate beam angle arrangement for an IMRT

plan was determined. The target centroid position for each phase

was quantified from a 4D CT image set. The major axis of target mo-

tion was determined in each BEV. Then, for each beam, the collima-

tor was rotated to align MLC leaf motion parallel to the major axis.

Figure 2 shows this key step in the deliverable 4D IMRT planning

method. The same target motion in 3D (Fig. 2a) has different

Deliverable 4D IMRT planning for DMLC tracking d Y. SUH et al. 1527



two-dimensional motion in the BEVs of different beam angles

(Fig. 2b). On the basis of the target positions in a given BEV, the

major axis (dashed arrows in Fig. 2b) of target motion was automat-

ically determined for each beam using a least-squares fit.

Step 2. For the reference phase (end-exhale was used as the most

stable phase during respiration [28]), an appropriate IMRT plan was

created with the rotated collimator, creating MLC leaf positions for

each beam.

Step 3. For each of the other phases, an IMRT plan was created

by copying the MLC leaf positions for the reference phase and trans-

lating them by the relative displacement of target centroid for each

phase, while keeping the collimator angle for each beam the same.

For example, for a given phase plan, a beam aperture was shifted

from the reference phase (dashed red in Fig. 2c) to the given phase

(solid red in Fig. 2c) by the difference in the target centroid position

between the two phases, as seen in the BEV. All 10 individual phase

plans for a given patient using the deliverable method were exactly

the same except for the MLC leaf positions translated.

Step 4. For each patient, a deformable dose-summed 4D plan was

created by accumulating the resultant doses from all individual

phase plans on the Phase 0 CT image using deformable dose sum-

mation (5, 20, 25, 26).

For comparison, the 3D optimal method, which was the same as

the deliverable method except for Step 3, was also applied (Fig. 1).

For the other phases, with the same IMRT beam angle arrangement

and collimator angles as the deliverable plans, the 3D optimal

method was to independently optimize an IMRT plan on each phase

of the 4D CT images. All 10 individual phase plans for a given pa-

tient using the 3D optimal method can be different except for beam

and collimator angles.

The deliverable method was compared with the 3D optimal

method using composite objective values and dose–volume evalua-

tion metrics derived from the dose–volume histogram (DVH). The

composite objective value, a single number, is an indicator of plan

quality that takes into account the actually achieved dose distribu-

tion for the PTV and organs at risk (OARs) after plan optimization,

relative to the initial constraints (23). The smaller the composite

objective value, the better the plan. For individual phase plans, the

mean and SD of dose–volume metric ratios were averaged over

all 10 phases for all 12 patients:

Xdel
opt ¼

PM
i

PN
j

Xi;j
del=Xi;j

opt

M$N
and s

Xdel
opt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i

PN
j

�
Xi;j

del=Xi;j
opt � Xdel

opt

�2

M$N

vuuut
;

where X was a dose–volume metric computed from the DVHs of

plans using the deliverable (Xdel) or 3D optimal (Xopt) methods, i
was a patient number, and j was a phase number. For 4D plans, those

were averaged over all 12 patients:

Xdel
opt ¼

PM
i

Xi
del=Xi

opt

M
and s

Xdel
opt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i

�
Xi

del=Xi
opt � Xdel

opt

�2

M

vuuut
:

A one-tailed Student’s t-test with the null hypothesis of H0 : Xopt =

Xdel and the alternative hypothesis of HA : Xopt > Xdel was used to

evaluate whether two methods were statistically different (statisti-

cally different if p < 0.05).

Table 1. Patient gross tumor volume (GTV), GTV centroid
motion range, and motion range in major axis

Patient no.
GTV

volume (cm3)
GTV centroid
motion (cm)

Motion
in major
axis (cm)

1 3.0 2.1 1.6
2 61.0 0.4 0.4
3 12.5 0.5 0.5
4 1.0 0.6 0.6
5 20.4 0.1 0.1
6 5.2 0.4 0.4
7 323.6 0.2 0.2
8 23.0 0.3 0.2
9 6.1 0.2 0.2

10 7.5 0.5 0.4
11 119.2 1.3 1.1
12 7.5 1.1 0.9
Mean (minimum,

maximum)
49.2

(1.0, 323.6)
0.7

(0.1, 2.1)
0.6

(0.1, 1.6)

Fig. 1. Flowchart of the methods of deliverable and three-dimensional (3D) optimal intensity-modulated radiation therapy
(IMRT) planning on the four-dimensional computed tomography (4D CT) scans. MLC = multileaf collimator; BEV =
beam’s eye view.
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RESULTS

Individual phase plans
Figure 3 shows the composite objective values of individ-

ual phase plans using the deliverable and 3D optimal

methods for each patient. The two methods have identical ob-

jective values for Phase 5. For the other phases, the 3D opti-

mal method always yields smaller values (better plan

quality). Variation in plan quality is generally larger for

phase-to-phase compared with that for method-to-method.

Patient 1 shows significant discrepancy in the composite

objective values between the two methods for some phases

(red in Fig. 3). There are artifacts in the 4D CT image set

for this patient, including division of the tumor into two parts

for three phases. The artifacts deteriorate target coverage

when the deliverable method is used, resulting in discrepancy

in both PTV coverage and OAR sparing between the two

methods (Fig. 4a). Figure 4a shows the DVHs and isodose

distributions for Patient 1, which illustrates the second-worst

agreement case in terms of the composite objective values

(value ratio of 18.1). Patient 4 also shows significant discrep-

ancies in the composite objective values between the two

methods throughout the phases (blue in Fig. 3), which is

Fig. 2. Determination of the major axis of target motion. (a) The same target motion in three dimensions has (b) different
two-dimensional motion in the beam’s eye view (BEV) of different beam angles, such as gantry angles of 0� and 120�. On
the basis of the target positions in a given BEV, the major axis (dashed arrows) of target motion is automatically determined
for each beam: collimator angles are 41� and 106� for the gantry of 0� and 120�, respectively. (c) For the gantry angle of
0� in (b), the collimator is rotated by 41� to align multileaf collimator leaf motion parallel to the major axis. For a given
phase plan, a beam aperture is translated from the reference (dashed red) to a given (solid red) phase by the difference in the
target centroid position between the two phases, as seen in the BEV.
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explained by the largest variation in tumor volume during the

respiratory cycle. Even though Phase 0 plans using the two

methods for Patient 4 show the worst agreement in terms of

the composite objective value (value ratio of 18.4), there is

discrepancy only in the DVHs of the PTV (Fig. 4b). The

74-Gy isodose curve (blue) does not cover the whole PTV

in the deliverable plan, unlike in the 3D optimal plan. Patient

7, whose tumor has almost no motion during respiration,

shows the best agreement of the composite objective values

between the two methods for all phases (grey in Fig. 3).

Figure 3 also shows phase-to-phase variation in plan qual-

ity. Whereas the composite objective values for the 3D opti-

mal method do not vary much from phase to phase, those for

the deliverable method do vary. There is significant phase-to-

phase variation in plan quality using the deliverable method

for Patients 1 and 4 (red and blue in Fig. 3). Again, Patient 1

has artifacts in the 4D CT images, and Patient 4 has the larg-

est tumor volume variation. Patient 4 also shows a trend in

that the farther the respiratory phases are from Phase 5, the

worse the deliverable plan quality becomes (blue in Fig. 3).

The significant variation in tumor volume causes inferior

PTV coverage in the deliverable plans, especially for the

phases further away from Phase 5. Figure 5a shows the

DVHs of all 10 individual phase plans using the two methods

for Patient 1. Although the composite objective values do not

vary significantly, there are phase-to-phase variations of the

DVHs in the 3D optimal plans, especially for the OARs.

Because the composite objective value is a numeric indica-

tor of plan quality and does not indicate the plan details, a pa-

tient showing the most discrepancy in the DVHs between

methods and between phases is chosen by visually inspecting

the DVHs. Despite relatively good agreement of plan quality

(pink in Fig. 3), Patient 11 shows the most discrepancy in the

DVHs between methods and between phases (Fig. 5b) be-

cause the tumor shows the most hysteresis during respiration

(24, 28), the second biggest volume, and the second most mo-

tion. These attributes also cause the largest difference in PTV

D95% (dose received by 95% of the PTV) and lung Dmean

(mean dose to the lungs) between the two methods.

Table 2 shows dose–volume metric ratios of individual

phase plans. All mean values of the dose and volume metric

ratios are very close to 1.00, indicating that the deliverable

Fig. 3. Composite objective values of individual phase plans using the deliverable (solid) and three-dimensional (3D) op-
timal (dashed) methods and those of four-dimensional (4D) plans using the deliverable (Del, filled circles) and 3D optimal
(Opt, empty circles) methods for each patient. The smaller the value, the better the plan. The two methods have identical
objective values for Phase 5. For the other phases, the 3D optimal method always yields better plans. The 4D composite
objective values for each method are similar to the average values over individual phase plans per patient.
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and 3D optimal methods yield similar dose–volume character-

istics. No evaluated dose–volume metric is statistically differ-

ent between the methods (p > 0.05 for all metrics compared),

whereas PTV coverage shows more variation than OARs.

Deformable dose-summed 4D plans (4D plans)
Figure 3 also shows the composite objective values of 4D

plans using the two methods for each patient. The 3D optimal

method always yields better plans. The 4D composite

Fig. 5. Dose–volume histograms (DVHs) of all 10 individual phase plans with four-dimensional (4D) plans (black thick
curves) for the deliverable (left column) and three-dimensional (3D) optimal (right column) methods: (a) significant phase-
to-phase variation with degraded planning target volume (PTV) coverage in 4D plans; and (b) significant phase-to-phase
variation, but with reasonable DVHs (about the averages over individual phase plans) in 4D plans. Solid DVHs are for the
deliverable method and dashed for the 3D optimal method. GTV = gross tumor volume.

Fig. 4. Dose–volume histograms (DVHs) and isodose distributions of individual phase plans showing discrepancy in the
composite objective values between the two methods: (a) the second-worst agreement case (objective value ratio of 18.1)
due to the artifacts in the 4D CT scan; and (b) the worst agreement case (objective value ratio of 18.4) due to significant
variation in tumor volume during the respiratory cycle. Solid DVHs are for the deliverable method and dashed for the 3D
optimal method. The planning target volume (PTV) is shaded in red; blue isodose curves indicate 74 Gy, green 40 Gy, and
pink 20 Gy. GTV = gross tumor volume.
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objective values for each method are similar to the average

values over individual phase plans per patient.

However, 4D plans for Patient 1 are significantly worse

than individual phase plans for both methods (red in

Fig. 3). Degraded 4D plans for Patient 1 also are evident in

Fig. 5a, mainly owing to inferior PTV coverage. Figure 6

shows the isodose distributions of individual phase plans

on Phase 0 and Phase 5, as well as 4D plans for Patient 1. Al-

though the dose distributions for Phase 0 and Phase 5 plans

look reasonable (Fig. 6a and b), 4D plans have inconsistent

dose distributions (Fig. 6c) for both methods. This is ex-

plained by large gradients of the deformation vector field

across the PTV. Because the tumor of Patient 1 is next to

the chest wall and moves 2.1 cm, the vector field, which

differs significantly across the PTV, is used for deformable

image registration and dose summation. As shown schemat-

ically in Fig. 6d, the vector field tends to be large in the lungs

(white arrows) and small in the chest wall (black arrows). As

a result, some portion of the PTV (in the chest wall) deforms

differently from its other portion (in the lungs). Thus,

deforming the PTV differs from deforming the GTV and ex-

panding it to create the PTV, because the former may gener-

ate unrealistic appearance of the PTV after deformable image

registration (aqua star in Fig. 6d). However, when the dose is

deformed back to Phase 0, the latter may result in inconsistent

dose distributions after deformable dose summation (green

star in Fig. 6d). Because this occurs in both methods, the

composite objective values for the two 4D plans are similar

(red in Fig. 3), and the DVHs do not show significant discrep-

ancy, especially for PTV coverage (Fig. 7c).

On the other hand, Patient 4 shows the largest difference in

the composite objective values between the two 4D plans (blue

in Fig. 3), whereas the composite objective value for each 4D

plan is an average of individual phase plans, respectively.

Again, this is due to the most variation in tumor volume, which

results in poor PTV coverage in the deliverable plans (Fig. 7f).

As shown in Fig. 5b, Patient 11 has significant phase-to-

phase variation in the DVHs for individual phase plans but

shows reasonable DVHs for the two 4D plans, each of which

is an approximate average of the DVHs for individual phase

plans. The composite objective values for the two 4D plans

are better than the average of those values over individual phase

plans (pink in Fig. 3). Between the two 4D plans, however, Pa-

tient 11 shows the most discrepancy in the DVHs (Fig. 7a). The

tumor of this patient has the most hysteresis (0.35 cm) (24),

whereas Patient 9 with the least hysteresis (0 cm) shows two

DVH sets on the top of each other, indicating good agreement

between the two 4D plans (Fig. 7b). Patient 9 actually shows

the best agreement between the two methods (Fig. 7b).

In terms of tumor motion, both of the patients with the most

motion (2.1 cm) (Fig. 7c) and the least motion (0.1 cm)

(Fig. 7d) show discrepancies in the DVHs. In terms of tumor

volume, both of the patients with the largest tumor volume

(323.6 cm3) (Fig. 7e) and the smallest tumor volume (1.0

cm3) (Fig. 7f) show relatively good agreement in the DVHs.

Table 3 shows dose–volume metric ratios of 4D plans. As

in Table 2, all mean values are very close to 1.00, indicating
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that the two methods yield similar dose–volume characteris-

tics. Again, no evaluated dose–volume metric is statistically

different between the methods (p > 0.05 for all metrics com-

pared), whereas PTV coverage shows more difference than

OARs. The difference in PTV coverage between the two

methods is smaller than that for individual phase plans.

DISCUSSION

An ‘‘ideal’’ 4D IMRT planning would be one optimized

over the continuous motion of target and surrounding normal

tissues, which may be deliverable; however, there are no so-

lutions for this type of deliverable-based optimization yet.

This study proposed a ‘‘deliverable’’ 4D IMRT planning

method. The reason for taking this approach is that it provides

a feasible solution that uses current planning technology and

thus has a clear path to clinical application. Though this ap-

proach is clearly not optimal, given the assumption made,

Trofimov et al. (16) showed that tumor tracking yielded better

results than the gated technique, and both methods improved

treatment compared with the motion-inclusive technique. The

planned clinical application involves integrating the linear ac-

celerator with a real-time target position monitoring system.

As the target position information is obtained, the appropriate

corrections are made to the leaf positions in real time. A ‘‘3D

optimal’’ method that involved an independent 3D IMRT op-

timization for each phase of the 4D CT scan also is proposed

as a benchmark method. It is important to note that the sum of

Fig. 6. Isodose distributions for (a) Phase 0 plans and (b) Phase 5 plans, and (c) four-dimensional (4D) plans (on Phase
0 CT image) using the two methods in a sagittal view for Patient 1. Note that Phase 5 plans are identical for both methods.
Whereas the dose distributions of Phase 0 and Phase 5 plans look reasonable (a, b), the 4D plans have inconsistent dose
distributions (c) for both methods. (d) This is due to large gradients of the deformation vector field across the planning
target volume (PTV). Because the vector field is large in the lungs (white arrows) and small in the chest wall (black arrows),
deforming the PTV generates unrealistic appearance of the PTV after deformable image registration (aqua star). Deforming
the gross tumor volume (GTV) and expanding it to create the PTV results in inconsistent dose distributions after deform-
able dose summation (green star). See text for more details. In (a–c) the PTV is shaded in red and the GTV in yellow, and
blue isodose curves indicate 74 Gy, green 40 Gy, and pink 20 Gy. In (d) the GTV is shaded in red, blue indicates the PTV,
and pink illustrates the isodose curves.
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individually optimized dose distributions does not guarantee

an optimal dose distribution because min{f[D(L(MU,q))]} is

a subset of
P

q

min{f ½DqðLðMU; qÞÞ }� .

‘‘Deliverable’’ means that the plan does not have MLC leaf

motion exceeding the maximum velocity of the MLC leaves.

The average maximum leaf velocity at the isocenter plane

ranges from 3.3 to 3.9 cm/s (22). In this series of patients,

this velocity is exceeded by only 3 of 10 phase transitions in

1 of 12 patients. In Patient 1, the displacement of 2.1, 1.6,

and 1.6 cm was observed in subsequent phases (0.4 s apart),

corresponding to the velocities of 5.3, 4.0, and 4.0 cm/s for

a 4-s period, respectively. A beam hold mechanism will be

a part of DMLC tracking implementation. It is not advisable

to follow sharp position changes or coughing, providing that

the beam hold is not applied so frequently as to significantly af-

fect efficiency, which in this case would be 100% for 11 of 12

patients and 70% for Patient 1. The collimator rotation is not

planned to be changed on a daily basis. The deliverable imple-

mentation would account for some motion perpendicular to the

MLC leaf direction by readjusting the MLC positions on the ba-

sis of the plan and the estimated or measured target positions.

However, if this algorithm is included in an on-line 4D adaptive

therapy strategy, the collimator rotation could be changed day

to day. In addition, the algorithm for collimator rotation and

MLC shift is not manufacturer specific. Important MLC param-

eters required to implement this algorithm are a maximum leaf

velocity and a fast secondary position feedback system that

allows for real-time control of leaf positions.

The deliverable and 3D optimal methods were applied to

12 lung cancer patient 4D CT image sets. Two important

findings are as follows. First, the deliverable method is dosi-

metrically robust to the variations of fractional time spent in

respiratory phases on a given 4D CT scan. The deliverable

Fig. 7. Dose–volume histograms (DVHs) of four-dimensional (4D) plans using the two methods for the patients with var-
ious tumor characteristics: (a) most hysteresis (0.35 cm); (b) least hysteresis (0 cm); (c) most motion (2.1 cm); (d) least
motion (0.1 cm); (e) largest volume (323.6 cm3); and (f) smallest volume (1.0 cm3). Solid DVHs are for the deliverable
method and dashed for the three-dimensional (3D) optimal method.
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method has the same l in Eq. (1) for all phases. Given that

the dose distributions of individual phase plans using the

deliverable method are very similar to one another (Table

2), the deliverable method would result in the dose distribu-

tion close to the planned dose distribution, even when a

patient spends more time on one phase (e.g., end-exhale)

than other phases during treatment. In addition, for 4D

plans, the deliverable method yields dosimetric values sta-

tistically similar to those with the 3D optimal method

(Table 3). This indicates not only that the deliverable

method is dosimetrically robust but also that the target de-

formation/rotation and hysteresis generally have little dosi-

metric impact for the 12-patient series studied. For each

beam the collimator is rotated to align the MLC leaf motion

parallel to the major axis of target motion, which is deter-

mined from the target motion in a given BEV. Therefore,

the target motion perpendicular to the MLC leaf motion is

relatively small (0.13 cm at the most), resulting in negli-

gible impact on plan quality.

However, Patient 11 shows the most discrepancy in DVHs

for 4D plans between the two methods (Fig. 7a), indicating

that in the presence of hysteresis, the deliverable method is

susceptible to plan quality degradation. In terms of target de-

formation/rotation, Patient 4 shows discrepancy in 4D plans

between the two methods, especially for target coverage

(Fig. 7f), indicating that target deformation/rotation has

some dosimetric impact when the deliverable method is used.

The second important finding is that the PTV concept can

cause problems in 4D IMRT planning. The 4D plans for Pa-

tient 1 are significantly inferior to individual phase plans for

both methods (red in Fig. 3), mostly owing to PTV coverage

(Fig. 5a). Large gradients of the deformation vector field

across the PTV cause unrealistic appearance of the PTV after

deformable image registration and inconsistent dose distribu-

tions after deformable dose summation (Fig. 6). This problem

occurred in 1 of 12 patients in this study. Therefore, care

should be taken when there is a possibility that large deforma-

tion gradients across the PTV could occur. Eliminating the

PTV by using probabilistic planning approaches (29–31) is

one of the solutions.

As for individual phase plans, phase-to-phase variation is

generally larger than the difference between the two methods,

in terms of plan quality. A more important result is the com-

parison of 4D plans. The 4D plan quality is similar to average

quality over individual phase plans, although 3 patients have

issues. Patient 1 shows degraded 4D plans for both methods

due to large deformation gradients across the PTV (Fig. 7c),

and Patient 4 shows a degraded deliverable 4D plan due to

significant tumor volume variation (Fig. 7f). Given that Pa-

tient 11 with the most hysteresis shows the most discrepancy

in the DVHs between the two 4D plans (Fig. 7a), whereas Pa-

tient 9 with the least hysteresis shows the best agreement

(Fig. 7b), having motion hysteresis affects deliverable 4D

plans. On the other hand, no marked differences between

the two 4D plans with tumor motion or volume indicate

that both tumor motion and volume do not have a significant

effect on 4D plans using the deliverable method (Fig. 7c–f).
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CONCLUSIONS

A deliverable 4D IMRT planning method was developed

and applied to 12 patient 4D CT image sets. This method

yields similar dose distributions for each of the individual

phase plans and statistically equivalent dosimetric values

compared with the 3D optimal method, indicating that the de-

liverable method is dosimetrically robust to the variations of

fractional time spent in respiratory phases on a given 4D CT

scan. Nonlinear target motion and deformation do not cause

significant dose discrepancies.

The deliverable 4D IMRT planning method has a clear

path to clinical implementation. The clinical application

and integration with DMLC tumor tracking delivery research

is the subject of ongoing development.
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Abstract 

The purpose of this study is to develop a four-dimensional (4D) intensity-modulated 

radiation therapy (IMRT) treatment-planning method by modifying and applying a 

dynamic multileaf collimator (DMLC) motion-tracking algorithm.  The 4D radiotherapy 

treatment scenario investigated is to obtain a 4D treatment plan based on a 4D computed 

tomography (CT) planning scan and to have the delivery flexible enough to account for 

changes in tumor position during treatment delivery.  For each of 4D CT planning scans 

from 12 lung cancer patients, a reference phase plan was created; and with its MLC leaf 

positions and three-dimensional (3D) tumor motion, the DMLC motion-tracking algorithm 

generated MLC leaf sequences for the plans of other respiratory phases.  Then, a 

deformable dose-summed 4D plan was created by merging the leaf sequences of individual 

phase plans.  Individual phase plans, as well as the deformable dose-summed 4D plan are 

similar for each patient, indicating that this method is dosimetrically robust to the 

variations of fractional time spent in respiratory phases on a given 4D CT planning scan.  

The 4D IMRT treatment-planning method utilizing the DMLC motion-tracking algorithm 

explicitly accounts for 3D tumor motion and thus hysteresis and non-linear motion, and is 

deliverable on a linear accelerator. 
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1. Introduction 

Effective management of intrafraction tumor motion has been one of the outstanding issues 

in modern radiotherapy, especially for the treatment of thoracic and abdominal tumors.  

Four-dimensional (4D) radiotherapy to incorporate tumor motion strives to minimize the 

effect of temporal anatomic changes during irradiation (Keall et al. 2006).  From an 

implementation standpoint, 4D radiotherapy consists of three tasks: (1) characterizing 

anatomic motion, (2) creating a treatment plan that accounts for this motion, and (3) 

delivering this treatment plan to the moving anatomy optimally.  The first task has been 

greatly facilitated through the increased use of 4D computed tomography (CT) that 

provides accurate anatomic motion information.  The third task has been investigated 

and/or clinically implemented by breath-hold or respiratory-gating techniques, or tumor 

tracking using a dynamic multileaf collimator (DMLC) technique or a robotic couch (Keall 

et al. 2006); and repositioning the radiation beam to track the moving tumor using DMLC 

is shown to be a promising method to deliver a 4D radiotherapy treatment (Webb 2006a).  

However, creating DMLC leaf sequences to generate a treatment plan that accounts for 

moving anatomy continues to be a challenge. 

Despite its benefit of target dose conformality and normal tissue sparing, intensity-

modulated radiation therapy (IMRT) is known to be more susceptible to tumor motion 

compared with conventional treatment techniques.  This is especially the case with an 

IMRT treatment delivered by a DMLC technique (Bortfeld 2006, Webb 2006b).  In 

addition, a constraint on 4D IMRT treatment planning, which is not found in three-

dimensional (3D) IMRT cases, is that leaf sequences need to be specifically designed such 

that the maximum leaf dynamics (velocity and acceleration/deceleration) are rarely 

exceeded when tracking anatomic motion with an MLC.  This mechanical leaf motion 

constraint adds additional complexity in IMRT treatment planning on 4D CT data sets. 
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There have been studies on a 4D IMRT treatment-planning optimization and its 

delivery using a DMLC technique.  Trofimov et al. compared different approaches of a 

4D IMRT optimization sorted by increasing complexity of delivery, and showed that tumor 

tracking was better than other techniques (Trofimov et al. 2005).  They provided a good 

framework to formulate 4D IMRT treatment-planning optimization problems.  However, 

they did not investigate the robustness of the optimization methods with respect to the 

delivery methods, thus their study did not create leaf sequences nor include mechanical 

limitations of a treatment machine, such as MLC leaf motion constraints.  Webb et al. 

have developed motion-compensated DMLC techniques to deliver an IMRT treatment.  

They first proposed a method to account for one-dimensional (1D) rigid body translation, 

which was based on a modification of the DMLC IMRT technique whereby MLC leaves 

were arranged to change according to patient breathing (Webb 2005).  They then 

implemented a strategy to minimize the geometric mismatch between MLC leaf and 

anatomic locations in one dimension and two dimensions, to find the optimal leaf 

trajectories, including the maximum leaf velocity constraint (Webb and Binnie 2006, 

McClelland et al. 2007).  They also investigated a modified DMLC delivery technique for 

tumor tracking by using a leaf synchronization technique (McQuaid and Webb 2006).  

Their motion model was constructed from a patient 4D CT scan, but their strategy was not 

a full 4D optimization, and they did not demonstrate implementation with a cohort of 

patients.  Papiez et al. have developed algorithms for optimized DMLC IMRT delivery 

for mobile and deforming targets.  They demonstrated DMLC leaf sequencing for the 

target motion in real time and when a priori motion information was available in one 

dimension, but as of yet not for three dimensions (Papiez 2003, Papiez 2004, Papiez and 

Rangaraj 2005, Papiez et al. 2005, Rangaraj and Papiez 2005, McMahon et al. 2007, 

Papiez et al. 2007).  Recently, they applied a real-time DMLC control algorithm for 

IMRT treatment delivery to targets moving two-dimensionally in a beam’s eye view 
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(BEV), using a leaf-pair shifting technique (McMahon et al. 2008, Rangaraj et al. 2008).  

However, their investigations focused on real-time delivery of an IMRT treatment, and 

thus they did not look at how to create treatment plans for DMLC IMRT.  Zhang et al. 

incorporated the respiratory target motion and deformation into a treatment-planning 

optimization for helical tomotherapy delivery (Zhang et al. 2004, Zhang et al. 2007).  

They showed breathing-correlated delivery of radiation for periodic and reproducible 

breathing patterns, but only for one lung case.  Schlaefer et al. investigated an approach to 

consider the relative motion of organs during treatment planning for robotic radiosurgery 

(Schlaefer et al. 2005).  However, their study was restricted to a phantom case.  Alasti et 

al. suggested a 4D-weighted MLC position as a function of breathing phase and weighting 

factor (Alasti et al. 2006).  Their 4D-weighted MLC field was based on the MLC position 

for the static field combined with the dynamic MLC position for the 4D dynamic field, 

which allowed MLC leaves to follow a moving tumor.  However, they did not consider 

the mechanical constraints of an MLC, and their study was phantom-based.  Tewatia et al. 

proposed procedures of treatment planning for a breathing-synchronized delivery 

technique and its delivery (Tewatia et al. 2006).  The motion was directly overlaid to the 

DMLC leaf position, and violations of the mechanical limitations of the hardware were to 

be avoided at a treatment-planning stage.  However, the motion was incorporated into 

treatment planning after a plan optimization by superimposing target displacement on the 

leaf positions, which was not optimal leaf sequencing for 4D treatment planning.  This 

study was also phantom-based.  To date, no other groups have reported techniques that 

develop leaf sequences as a function of respiratory phase.  Therefore, an optimal 4D 

IMRT treatment-planning method that includes MLC leaf motion constraints and is robust 

to the variations of fractional time spent in respiratory phases within a given 4D CT 

planning scan has yet to be developed. 

In our previous study, a deliverable 4D IMRT treatment-planning method, which 
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accounted for tumor motion in only one dimension, was proposed (Suh et al. 2008b).  A 

treatment plan for each of the respiratory phases was created by shifting leaf positions of 

the reference phase plan to the given phase (from solid red to dashed red apertures on the 

left side in figure 1) along the MLC leaf travel direction.  The study showed that 

accounting for 1D tumor translation was not only practical, but also provided a reasonable 

approximation.  In this work, we describe a methodology that accounts for more complex, 

3D tumor motion (see the right side of figure 1).  This method utilizes an algorithm 

developed for real-time DMLC motion tracking (Sawant et al. 2008) in an offline manner 

in order to create 4D IMRT treatment plans.  Such a plan explicitly accounts for 3D tumor 

motion and consequently hysteresis and non-linear motion (Seppenwoolde et al. 2002, Suh 

et al. 2008a), and it is deliverable on a linear accelerator. 

Therefore, the aim of this study is to develop a 4D IMRT treatment-planning 

method by modifying and applying a DMLC motion-tracking algorithm.  

 

2. Materials and Methods 

2.1. Treatment scenario 

Three-dimensional IMRT aims to create a treatment plan from one CT image, resulting in 

MLC leaf sequences as a function of monitor units ( MU ), ( )L MU .  Four-dimensional 

IMRT, in which modulating the radiation beam to temporally changing anatomy is 

explicitly included, aims to create a treatment plan on a CT image set of multiple 

respiratory phases, resulting in leaf sequences as a function of MU  and respiratory phase 

(θ ), ( , )L MU θ .  Thus, a 4D radiotherapy treatment scenario investigated is to obtain a 

4D treatment plan from a 4D CT planning scan and to have delivery flexible enough to 

account for changes in tumor positions, tumor drift, and/or breathing patterns during 

treatment delivery. 
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Figure 1. Comparison of the creation of a four-dimensional treatment plan using one-dimensional (1D) 

translation of multileaf collimator (MLC) leaves from the reference phase (solid red) to a given phase 

(dashed red) (left) with that using the DMLC motion-tracking algorithm to move MLC leaves to track 

three-dimensional (3D) tumor motion (right).  Only the motion along the MLC leaf travel direction, 

1D
T , is accounted for on the left; whereas 3D tumor motion, 3D

T , is accounted for on the right side. 

 

2.2. DMLC motion-tracking algorithm 

The DMLC motion-tracking algorithm dynamically tracks moving targets in three 

dimensions using real-time target location data from an independent position-monitoring 

system to account for tumor motion during treatment (Sawant et al. 2008).  This 

algorithm was designed to (a) read initial MLC leaf positions as a function of MU  from 

an MLC leaf sequence derived from a treatment plan; (b) dynamically calculate MLC leaf 

positions to account for target position changes using real-time 3D target location data 

from a position-monitoring system; (c) generate new MLC leaf positions as a function of 

MU  and 3D target location by modifying the initial leaf positions in (a) with the 

calculated leaf positions in (b); and (d) send the generated MLC leaf sequence to a 

treatment machine to reposition the beam in real time.  Further details for this algorithm 
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are described previously (Sawant et al. 2008).  For 4D treatment planning, the DMLC 

motion-tracking algorithm was modified to include the respiratory phase as an additional 

parameter and to be used in an offline mode. 

 

 

 

 

Figure 2. Use of the dynamic multileaf collimator motion-tracking algorithm for both planning and 

delivery of four-dimensional radiotherapy treatment.  Dashed lines indicate real-time processes and 

solid lines are not real time.  CT = computed tomography; L  = leaf sequence; MU  = monitor 

units; θ  = respiratory phase; T  = three-dimensional target position and phase information. 
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2.3. 4D IMRT treatment planning 

The 4D CT image sets used in this study are from 12 lung cancer patients acquired as a 

part of an institutional review board-approved study (protocol 00-202) at the University of 

Texas M. D. Anderson Cancer Center.  Table 1 shows the volume and the centroid motion 

range of patients’ gross tumor volume (GTV).  A commercially available planning system 

(Pinnacle version 7.9, Philips Medical Systems, Milpitas, CA) was used for contouring, 

planning, and an IMRT optimization.  Using the manually segmented contours on the 

end-inhale phase of the 4D CT scans and large deformation diffeomorphic image 

registration (Christensen et al. 1997, Foskey et al. 2005), contours on the other respiratory 

phases were automatically generated.  The clinical target volume enclosed the GTV with 

an isotropic 8-mm margin, and then a 5-mm margin was added isotropically to create the 

planning target volume (PTV).  For IMRT treatment planning, the prescribed dose was 74 

Gy and beam arrangements were six coplanar, non-opposed, predominantly anterior-

posterior fields.  Further details for the 4D CT data set, patient characteristics, contouring, 

planning, and an IMRT optimization are described elsewhere (Weiss et al. 2007a, Weiss et 

al. 2007b, Suh et al. 2008b).  

The DMLC motion-tracking algorithm requires two inputs: an initial MLC leaf 

sequence and real-time 3D target location and phase information.  The input MLC leaf 

sequence was derived from an IMRT treatment plan that was created on the reference 

phase 4D CT image.  From a delivery perspective, real-time target location and phase 

information is necessary to reposition the beam in real time; for planning purposes, 

however, 3D offsets of the tumor centroid position for each phase relative to that for the 

reference phase were used instead.  Figure 2 shows a flow diagram of using the same 

algorithm for both planning and delivery of 4D radiotherapy treatment. 
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Table 1. Patient gross tumor volume (GTV), GTV centroid motion range, and three-dimensional (3D) 

offsets of the tumor centroid position 

 

Mean (minimum, maximum) 

3D offsets of tumor centroid position (cm) 

Mean (maximum) 

 

Patient 

no. 

GTV volume 

(cm
3
) 

GTV centroid 

motion (cm) 

Parallel  

to the 

major axis 

Perpendicular 

to the 

major axis 

Along the 

beam 

direction 

1   3.0 2.1 0.9 (2.1) 0.1 (0.1) 0.2 (0.4) 

2  61.0 0.4 0.2 (0.4) 0.1 (0.1) 0.1 (0.3) 

3  12.5 0.5 0.3 (0.5) 0.1 (0.2) 0.1 (0.2) 

4   1.0 0.6 0.3 (0.6) 0.1 (0.1) 0.2 (0.4) 

5  20.4 0.1 0.1 (0.1) 0.0 (0.0) 0.1 (0.1) 

6   5.2 0.4 0.3 (0.4) 0.1 (0.1) 0.1 (0.1) 

7 323.6 0.2 0.1 (0.2) 0.1 (0.1) 0.1 (0.1) 

8  23.0 0.3 0.1 (0.2) 0.0 (0.0) 0.1 (0.2) 

9   6.1 0.2 0.1 (0.2) 0.1 (0.1) 0.1 (0.2) 

10   7.5 0.5 0.2 (0.4) 0.1 (0.1) 0.1 (0.1) 

11 119.2 1.3 0.7 (1.3) 0.1 (0.2) 0.1 (0.2) 

12  7.5 1.1 0.5 (1.1) 0.1 (0.1) 0.1 (0.1) 

 49.2 (1.0, 323.6) 0.7 (0.1, 2.1)  

 

 

The steps to create a 4D IMRT treatment plan using the DMLC motion-tracking 

algorithm for each patient are as follows. 

(a) For an IMRT treatment plan on the reference phase CT image, an appropriate 

beam angle arrangement was determined according to the tumor locations.  

From the tumor centroid position for each respiratory phase, which was 

quantified from the 4D CT image set, a major axis of tumor motion in each BEV 

was automatically determined using a least-squares fit (Suh et al. 2008b).  Then, 
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the collimator was rotated to align the MLC leaf travel direction parallel to the 

major axis of tumor motion.  Overall mean of the collimator angles calculated 

was 88
o
, ranging from 10

o
 to 170

o
 (12 reference plans with 6 beam angles each).  

This collimator rotation was performed because of the known decrease in 

delivery efficiency for the motion perpendicular to the MLC leaf travel direction 

(Sawant et al. 2008).  As shown by Sawant et al., efficiency of IMRT delivery 

for the motion perpendicular to the MLC leaf travel direction is significantly 

lower than that for the motion parallel to the MLC leaf travel direction.  For 

each beam, 3D offsets of the tumor centroid position for each phase i  relative to 

that for the reference phase were calculated as the motion parallel to the major 

axis, the motion perpendicular to the major axis, and the motion along the beam 

direction, ( , , | )
i i

T x y z θ  (table 1).  With the rotated collimator, an appropriate 

IMRT treatment plan was created on the reference phase 4D CT image (an end-

exhale phase was used as the most stable phase during respiration (Seppenwoolde 

et al. 2002), where an initial MLC leaf sequence, ( | )
ref

L MU θ , was then 

derived.  

(b) With the MLC leaf positions from the initial leaf sequence and the 3D tumor 

centroid position offsets, the DMLC motion-tracking algorithm generated a set of 

MLC leaf sequences for each phase of the 4D CT scan, ( | )
i i

L MU θ , which then 

was used to create IMRT treatment plans for individual respiratory phases. 

(c) The leaf sequences of individual phase plans were merged to create a leaf 

sequence for a 4D plan, 4D ( , )L MU θ .  Using a deformable dose summation 

(Christensen et al. 1997, Keall et al. 2004, Zhang et al. 2004, Foskey et al. 2005), 

the resultant doses from all individual phase plans were accumulated on an end-

inhale CT image, and a deformable dose-summed 4D plan was created.  A 4D 
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dose distribution is given by 

  ( )
1

, , ( ), ( , )
P

i i i ref i i i

i

D D I I u L MUλ θ θ
=

=∑ ,  (1) 

 where i  is a respiratory phase index from 1 to the maximum number of phases, 

P  ( 10P =  in this study); 
i

λ  is fractional time spent per phase, which in this 

study was assumed to be the same for all the phases; and 
i

D  is a dose of a 

treatment plan for a given phase.  
i

D  was computed on the given phase CT 

image, 
i

I , on the basis of leaf sequences as a function of MU  and 
i

θ , 

( , )
i i

L MU θ , and then deformed to the reference phase CT image used for a dose 

summation, 
ref

I , by a displacement vector field, ( )
i

u θ , computed using 

deformable image registration. 

 

 Once the MLC leaf sequence for a 4D plan merging individual phase plans (on the 

bottom left in figure 2) was created, it was used as an initial leaf sequence on the delivery 

side as in figure 2.  The MU  and real-time 3D target position and phase, 

( , , | )T x y z θ∆ ∆ ∆ , were determined from a treatment machine and a patient position-

monitoring system, respectively.  The DMLC motion-tracking algorithm software 

interpolated the initial leaf sequence, 4D ( , )L MU θ , using both MU  and θ  to obtain a 

new leaf sequence, 'L ; and then modified 'L  using ( , , )x y z∆ ∆ ∆  to obtain the final leaf 

sequence, ''L , that accounted for 3D target motion.  The ''L  then was sent to a 

treatment machine and delivered.  The feasibility of delivery of such 4D plans using this 

method was experimentally validated in a separate work (Keall et al. 2008). 

 It is important to note that it is possible to use the reference phase plan and track 

the tumor without creating either individual phase plans or a 4D plan.  However, the 

reason we generated individual phase plans was that we wanted to have a plan that was the 
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best estimate of the dose delivered to the patient, which was a 4D plan merging all 

individual phase plans.  Possibly there is relative motion between the target and 

surrounding normal tissues from phase to phase (Weiss et al. 2007b) that could result in 

different dose distributions for individual phase plans from those for the reference plan; 

then a 4D plan also would be different from the reference plan.  As shown in our previous 

study (Suh et al. 2008b), a 4D plan was different from the plans for any single phases, at 

least slightly; and for some patients with bigger target motion or, more importantly, more 

relative motion between the target and organs, the reference plan was quite different from a 

4D plan and also from individual phase plans.  Our treatment planning method was 

developed especially for this type of patients.  Therefore, a 4D plan was generated instead 

of using the reference plan.  This 4D plan gives us an estimate of the 4D dose distribution 

for the patient.    

To evaluate the treatment plans generated, the composite objective values (COVs) 

and dose-volume evaluation metrics derived from the dose-volume histograms (DVHs) 

were used.  The COV, a single number, is an indicator of treatment plan quality that takes 

into account actually achieved dose distributions for the PTV and organs at risk (OARs) 

after the plan optimization, relative to the initial constraints (Weiss et al. 2007a, Suh et al. 

2008b).  The smaller the COV, the better the treatment plan. 

 

3. Results 

Figures 3 and 4 show the DVHs and the COVs, respectively, of all 10 individual phase 

plans with a deformable dose-summed 4D plan generated using the DMLC motion-

tracking algorithm for each patient.  The respiratory phase indices of 0 and 5 represent the 

end-inhale and end-exhale phase, respectively, with a respiratory cycle divided into 10 

phases of equal duration.  The DVHs of the plans for individual phases of the 4D CT scan 
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are, in general, similar to those of the reference phase plan, as well as to a deformable 

dose-summed 4D plan.  The target coverage is similar from phase to phase, except for 

Patients 1 and 11 (whose cases will be discussed later in this section), whereas the DVHs 

for OARs show variation.  This variation is due to an intrinsic drawback of all tumor-

tracking methods, which only track the tumor motion, not the motion of whole patient 

anatomy (Weiss et al. 2007b).  That is, individual phase plans generated using the DMLC 

motion-tracking algorithm do not account for the phase-to-phase positional changes of 

OARs with respect to the tumor and/or to the BEV.  In terms of overall plan quality (i.e., 

COV), most patients show similar plan qualities over individual phase plans (figure 4), 

except for Patients 1 and 4 (whose cases will be discussed later in this section).  Figure 4 

also indicates that a COV of a deformable dose-summed 4D plan for each patient is, in 

general, similar to the average values over all individual phase plans per patient. 

There is variation in the COVs of individual phase plans for Patients 1 and 4 (red 

and blue in figure 4).  Figure 5 shows the DVHs of plans for Phases 1, 2, and 4, which 

have worse plan quality than the other phase plans, compared with the reference phase plan, 

for Patient 1.  The isodose distributions for these phase plans are shown in figure 6.  

Compared with the Phase 5 plan, plans for Phases 1, 2, and 4 have worse PTV coverage as 

seen in the transverse, coronal, and sagittal planes.  This is due to artifacts in the 4D CT 

image set of Patient 1 and also tumor volume differences caused by the artifacts (worst for 

Phase 1 in coronal and sagittal planes as in figure 6).  The mean of relative tumor volume 

of each phase to Phase 5 is 0.96, ranging from 0.79 to 1.07.  Patient 4 shows not only 

phase-to-phase variation in plan quality but also a trend wherein the farther the respiratory 

phases are from Phase 5, the worse the plan quality becomes (blue in figure 4).  This is 

explained by the tumor volume variation during the respiratory cycle of Patient 4.  The 

mean of relative tumor volume of each phase to Phase 5 is 0.92, ranging from 0.86 to 1.00.  

The significant variation in tumor volume causes inferior PTV coverage, especially for 
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plans on the phases further away from Phase 5, as shown in the isodose distributions in 

figure 7. 

 

 

Figure 3. Dose-volume histograms (DVHs) of individual respiratory phase plans (thin colored DVHs) 

and a deformable dose-summed four-dimensional plan (black thick DVHs) for each of 12 patients.  

PTV = planning target volume; GTV = gross tumor volume. 
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Figure 4. Composite objective values (COVs) of individual respiratory phase plans and a deformable 

dose-summed four-dimensional (4D) plan for each of 12 patients.  The smaller the COV, the better the 

treatment plan.  The COV of the deformable dose-summed 4D plan for each patient is the approximate 

average value over all individual phase plans per patient. 
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Whereas Patients 1 and 4 show phase-to-phase variation in both the COVs and the 

DVHs, the COVs for Patient 11 do not vary significantly from phase to phase (pink in 

figure 4) but the DVHs do vary (figure 3).  Patient 11 actually shows the most 

discrepancy in the DVHs from phase to phase for both the PTV and OARs.  The tumor of 

Patient 11 shows the second largest volume, the second most motion, and the most 

hysteresis during respiration (table 1), which all cause phase-to-phase variation in 

treatment plans.  The large tumor volume changes treatment plans from phase to phase 

due to stressing the optimization algorithm with more constraints to balance; and the 

motion and hysteresis change treatment plans due to changes in the geometric relation 

between the tumor and normal anatomy from phase to phase.  Nonetheless, the DVHs of 

the deformable dose-summed 4D plan for Patient 11 show the approximate average of the 

DVHs for individual phase plans (figure 3). 

The deformable dose-summed 4D plan for Patient 1 is significantly worse than all 

individual phase plans (red in figure 4).  The degraded 4D plan for Patient 1 also is 

evident in the DVHs in figure 3, primarily due to inferior PTV coverage.  Large gradients 

of the deformation vector field, u , across the PTV deteriorate target coverage resulting in 

the deformable dose-summed 4D plan much worse than all individual phase plans 

discussed in the previous study (Suh et al. 2008b). 
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Figure 5. Dose-volume histograms (DVHs) of plans for Phases 1, 2, and 4 (solid DVHs), compared 

with those of Phase 5 plan (dotted DVHs) for Patient 1.  PTV = planning target volume; GTV = gross 

tumor volume. 

 

 

 

 

Figure 6. Isodose distributions of plans for Phases 1, 2, 4, and 5 for Patient 1 in transverse, coronal, and 

sagittal planes.  The planning target volume is shaded in red; blue isodose curves indicate 74 Gy, green 

40 Gy, and pink 20 Gy. 
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Figure 7. Isodose distributions of plans for Phases 0 to 5 

for Patient 4.  The planning target volume is shaded in 

red; blue isodose curves indicate 74 Gy, green 40 Gy, and 

pink 20 Gy. 
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4. Discussion 

A deliverable 4D IMRT treatment-planning method for DMLC tumor tracking delivery 

that accounts for 1D tumor translation in the major axis only was previously developed 

(Suh et al. 2008b).  It was a proof-of-principal study demonstrating that the deliverable 

4D IMRT treatment-planning method is feasible.  Though a 1D correction may be better 

than no correction, tumor motion is known to exhibit hysteresis and non-linear behavior 

(Seppenwoolde et al. 2002, Suh et al. 2008a).  The current study modified and integrated 

a DMLC tumor-tracking algorithm (Sawant et al. 2008) in the deliverable 4D IMRT 

treatment-planning method.  Thus, 3D translational tumor motion observed during the 4D 

CT planning scan is explicitly included in 4D treatment planning.  Any changes in the 

motion observed during treatment delivery can be accounted for by using the algorithm 

during delivery.  That is, the same algorithm is called for both planning and delivery of 

4D IMRT treatment.  This symmetry between planning and delivery for determining leaf 

sequences lends itself to clinical viability.   

The 4D IMRT treatment plans created using the DMLC motion-tracking algorithm 

account for 3D tumor motion, and thus implicitly account for hysteresis and non-linear 

motion.  However, the rotations or deformations within a respiratory cycle and the 

differential motion of a tumor and normal tissues are not accounted for, as this algorithm is 

based on the assumptions that a tumor is rigid and does not undergo in- or out-plane 

rotations or deformations and the entire anatomy moves.  The greater the respiratory 

tumor motion, the greater the improvement in a resultant treatment plan will be when the 

off-axis motion of tumor is taken into account.  The 4D IMRT treatment-planning method 

developed in this study creates deformable dose-summed 4D plans with a quality level 

somewhere between the deliverable and the 3D optimal treatment plans in a previous study 

(Suh et al. 2008b). 
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Like currently available 3D radiotherapy treatment, some approximations are 

being made for 4D treatment planning and delivery.  The 4D treatment planning is based 

on a 4D CT planning scan, which is usually taken long before actual delivery.  

Guckenberger et al. showed that respiratory motion assessed by a 4D CT scan was 

reproducible during a time period corresponding to a high-dose stereotactic treatment, and 

concluded that for the majority of lung cancer patients studied, treatment planning based 

on a single 4D CT scan appeared to be reliable (Guckenberger et al. 2007).  On the other 

hand, Minn et al. showed that a 4D CT planning scan cannot accurately predict pancreatic 

tumor motion during actual delivery for radiosurgery (Minn et al. in press).  Thus, it is 

not always true that the 4D CT image set represents the location and motion of patient’s 

anatomy during treatment delivery; rather, a patient’s motion pattern would most likely 

change between imaging and delivery.  Nevertheless, the patient’s anatomic motion 

during imaging is at this time the best possible estimation for what it will be during 

delivery.  As there is no further information on patient’s anatomy beyond one single 4D 

CT planning scan, as is often the case in clinic, this estimation is necessary.  If 4D cone-

beam CT (Sonke et al. 2005, Li et al. 2006a, Li et al. 2006b) or 4D magnetic resonance 

imaging (Remmert et al. 2007, von Siebenthal et al. 2007) is available, the most recent 

information on the patient’s anatomic location is used.  Even when the updated 

information is available, the assumption to correlate the anatomic location during imaging 

to that during delivery is still required.  With a 4D treatment plan, 4D treatment delivery 

assumes that during delivery there exists real-time information on both 3D target location 

and respiratory phase, which is from either measurement or estimation. 

The 4D IMRT treatment-planning method using the DMLC motion-tracking 

algorithm was applied to 12 lung cancer patient 4D CT image sets.  As for individual 

phase plans, phase-to-phase variation was generally smaller than patient-to-patient 

variation, indicating that individual phase plans were similar to one another for each 
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patient.  The deformable dose-summed 4D plan was similar to the average over 

individual phase plans, except for Patient 1.  The DVHs and dose distribution of an IMRT 

plan for every phase of the 4D CT scan were similar to those of the reference phase plan, 

as well as the deformable dose-summed 4D plan, for each patient.  This indicates that this 

method is dosimetrically robust to the variation of fractional time spent in respiratory 

phases on a given 4D CT scan.  It also reveals that this method would result in the dose 

distribution close to the planned dose distribution, even when a patient spends more time 

on one phase (e.g., the end-exhale phase) than other phases during treatment delivery. 

Similar phase-to-phase DVHs are desirable when it comes to target coverage, 

which in addition to PTV margin reduction is a primary goal of tumor-tracking methods.  

However, tumor-tracking techniques do not track the surrounding normal anatomy that 

deforms and/or moves relative to the tumor and/or in or out of BEV.  Thus, the DVHs for 

OARs of some of the plans generated by the DMLC motion-tracking algorithm show more 

variation from phase to phase than those for the PTV.  

 In two patients out of twelve, this method was affected by the changes in tumor 

volume from phase to phase.  These tumor volume changes can be attributed to either 

artifacts in the 4D CT image set as in Patient 1, or tumor volume variation throughout the 

respiratory phases as in Patient 4.  For Patient 1, severe artifacts, which possibly happen 

in real clinical cases, caused phase-to-phase variation in individual phase plans.  In one 

case, high vector field variation from a deformable registration affected this method 

(Patient 1).  This was discussed in detail in the previous study (Suh et al. 2008b).  

For each beam in the IMRT treatment plans, the collimator was rotated to align the 

MLC leaf travel direction parallel to the major axis of tumor motion, which was 

determined as seen in a given BEV.  This makes the tumor motion in the other two 

directions, the motion perpendicular to the major axis and along the beam direction, 

relatively small.  The tumor motion perpendicular to the MLC leaf travel direction and 
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along the beam direction is 0.2 and 0.4 cm, respectively, at the most (Table 1).  

Consequently, the collimator rotation minimizes the decrease in delivery efficiency for the 

motion perpendicular to the MLC leaf travel direction as much as possible. 

 

5. Conclusions 

A 4D IMRT treatment-planning method that accounts for 3D tumor motion was developed 

and investigated using 12 lung cancer patient 4D CT image sets.  A DMLC motion-

tracking algorithm previously developed for real-time tumor tracking was modified to 

allow 4D treatment planning and delivery using the same underlying algorithm.  Using 

this method, the DVHs and isodose distributions of an IMRT plan for every phase of the 

4D CT scan were, in general, similar to those of the reference phase plan, as well as the 

deformable dose-summed 4D plan.  This indicates that the method is dosimetrically 

robust to the variation of fractional time spent in respiratory phases on a given 4D CT scan.  

This method is affected by 4D CT artifacts and high vector field variation from a 

deformable registration in one case.  Creating 4D IMRT treatment plans using the DMLC 

motion-tracking algorithm explicitly accounts for 3D tumor motion and thus hysteresis and 

non-linear motion, and is deliverable on a linear accelerator.  This method integrates 

deliverable treatment planning with DMLC tumor-tracking delivery, and has a clear path to 

clinical implementation. 
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Abstract
The purpose of this study was to investigate the accuracy of two-dimensional
(2D) projection imaging methods in three-dimensional (3D) tumor motion
monitoring. Many commercial linear accelerator types have projection imaging
capabilities, and tumor motion monitoring is useful for motion inclusive,
respiratory gated or tumor tracking strategies. Since 2D projection imaging
is limited in its ability to resolve the motion along the imaging beam axis,
there is unresolved motion when monitoring 3D tumor motion. From the 3D
tumor motion data of 160 treatment fractions for 46 thoracic and abdominal
cancer patients, the unresolved motion due to the geometric limitation of 2D
projection imaging was calculated as displacement in the imaging beam axis
for different beam angles and time intervals. The geometric uncertainty to
monitor 3D motion caused by the unresolved motion of 2D imaging was
quantified using the root-mean-square (rms) metric. Geometric uncertainty
showed interfractional and intrafractional variation. Patient-to-patient variation
was much more significant than variation for different time intervals. For the
patient cohort studied, as the time intervals increase, the rms, minimum and
maximum values of the rms uncertainty show decreasing tendencies for the
lung patients but increasing for the liver and retroperitoneal patients, which
could be attributed to patient relaxation. Geometric uncertainty was smaller
for coplanar treatments than non-coplanar treatments, as superior–inferior (SI)
tumor motion, the predominant motion from patient respiration, could be
always resolved for coplanar treatments. Overall rms of the rms uncertainty
was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions
whose average breathing peak–trough ranges were more than 0.5 cm. The
geometric uncertainty for 2D imaging varies depending on the tumor site,
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tumor motion range, time interval and beam angle as well as between patients,
between fractions and within a fraction.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In order to achieve the goal of radiation treatment, which maximizes dose to the tumor while
sparing the normal tissues, target localization is an important task. Tumor motion, however,
especially from respiration, challenges the target localization, so that motion compensation
has been one of the key issues in radiotherapy (Langen and Jones 2001, Webb 2006).

Compensating for the tumor motion during the course of radiotherapy requires some kind
of monitoring methods so that target motion is observed and/or target position is acquired.
With the information from monitoring the target, its motion can be compensated for by motion
inclusive, respiratory gated (Vedam et al 2001, Kubo and Wang 2002, Ozhasoglu and Murphy
2002, Giraud et al 2003, Hugo et al 2003, Nill et al 2005, George et al 2006, Jiang 2006),
or tumor tracking (Schweikard et al 2000, 2004, Keall et al 2001, 2005, Murphy 2004, Suh
et al 2004, Papiez and Rangaraj 2005, Papiez et al 2005, Webb 2005b, 2005a, Kamino et al
2006, Neicu et al 2006, Xu et al 2006) strategies. The focus of this study is on the limitation
of acquiring target position information with a single two-dimensional (2D) x-ray imager
for patients with implanted markers. Examples of 2D imaging methods for target position
monitoring are electronic portal imaging devices (EPIDs) (Keall et al 2004, Berbeco et al
2005), combined kV/MV systems (Oelfke et al 2006), Siemens Artiste linac, Varian 21IX and
Elekta Synergy linac (Mcbain et al 2006). A summary of the application of 2D x-ray imaging
for different radiotherapy delivery systems is shown in table 1.

It should be noted that there are several other possibilities for acquiring target position
information during a treatment fraction such as real time radiotherapy (RTRT) systems
(Shimizu et al 2000), Cyberknife (Schweikard et al 2000, 2004, Murphy 2004 ) (of which data
were used for the data source in this study), ExacTrac x-ray (Weiss et al 2003, Willoughby et al
2006a), ultrasound-based systems (Langen et al 2003, Scarbrough et al 2006), positron
emission tomography (Lu et al 2006, Xu et al 2006), integrated radiotherapy imaging systems
(IRIS) (Neicu et al 2006) and electromagnetic localization systems (Willoughby et al 2006b).
Earlier work using orthogonal imaging for determining target position is described in Lam
et al (1993) and Gilhuijs et al (1996).

If 3D tumor motion is monitored with 2D projection imaging, there is unresolved motion
because 2D projection is limited in its ability to resolve the motion along the imaging beam
axis (Gilhuijs et al 1996, Berbeco et al 2004, Nill et al 2005). This unresolved motion
might cause geometric uncertainty in monitoring 3D motion and thus introduce errors in
compensating tumor motion. It is assumed that with 2D projection imaging methods resolving
the magnification of tumor from the motion in the imaging beam axis is not possible due to
the limited resolution and noise, and the ability to resolve the changes of distance between the
implanted markers (surrogates for tumor) is less than that to resolve the individual markers.
Also it is noted that 3D monitoring systems are not limited to a single 2D projection and
thus can resolve the position of tumor or implanted markers in 3D to within measurement
errors.

As 2D projection imaging, two different geometric relationships between the imaging
beam and treatment beam were considered as shown in figure 1: (1) an inline orientation,
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(a) (b)

Figure 1. Two different geometric relationships between the imaging beam and treatment beam:
(a) an inline orientation, where the imaging beam is parallel to the treatment beam, and (b) an
orthogonal orientation, where the imaging beam is orthogonal (by a 90◦ gantry rotation) to the
treatment beam. An electronic portal imaging device (EPID) is similar to orientation (a); however,
the imaging detector is below the patient and the treatment beam is used to form the images.

Table 1. Linear accelerator vendors, configuration and comments on the applicability of using a
single x-ray imager to determine target position.

Vendor/linac Configuration Comments

Accuray/Cyberknife Dual room-mounted x-ray imagers Proposed monitoring system can be used to
• allow beam positions currently prohibited

when robot obscures a single imager
• reduce imaging dose in certain situations by using

only single imaging mode rather than dual mode

BrainLab/Novalis Dual room-mounted x-ray imagers X-ray imagers cannot be used simultaneously due to
a single generator

Elekta/Synergy Single gantry-mounted x-ray imager Imager orthogonal to MV treatment beam
Siemens/Artiste Single gantry-mounted x-ray imager Imager inline with MV treatment beam
Tomotherapy/HiArt Single gantry-mounted x-ray imager Original design (Mackie et al 1993) though not in

current commercial implementation
Varian/Trilogy Single gantry-mounted x-ray imager Imager orthogonal to MV treatment beam

where the imaging beam is parallel to the treatment beam (figure 1(a)), such as EPIDs (Keall
et al 2004, Berbeco et al 2005) (note that the detector of an EPID is below the patient and the
treatment beam is used to form the images), combined kV/MV systems (Oelfke et al 2006),
and the Siemens Artiste linac, and (2) an orthogonal orientation, where the imaging beam
is orthogonal (by a 90◦ gantry rotation) to the treatment beam (figure 1(b)), such as Varian
21IX and Elekta Synergy linacs (Mcbain et al 2006). When gantry and couch angles are set
to 0◦, a 2D imager in inline orientation is limited to resolving anterior–posterior (AP) motion
as this motion is in the imaging beam axis, while for a 2D imager in orthogonal orientations
left–right (LR) motion cannot be resolved. That is, there is always some hidden motion, which
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is the limitation of 2D projection imaging systems using only one imaging beam (Gilhuijs
et al 1996, Berbeco et al 2004, Nill et al 2005).

Therefore, the aim of this study was to investigate the accuracy of 2D projection imaging
methods in 3D tumor motion monitoring by evaluating the motion that 2D imagers in each of
the two orientations, inline and orthogonal, failed to resolve, which could be one important
error source in tumor motion compensation.

2. Methods and materials

In order to evaluate the accuracy of 2D projection imaging to monitor 3D tumor motion, we
needed a 3D tumor motion data source and a method to quantify the unresolved motion due
to the limitation of 2D projection when monitoring tumor motion in 3D, as described below.
For the purpose of this study, it is assumed that the 3D patient tumor motion data acquired
from monitoring implanted markers are the gold standard, though we acknowledge that there
can be uncertainty in monitoring the markers and that implanted markers are point surrogates
for the anatomy of interest. Furthermore, these markers can migrate with respect to anatomy.
Prior to using patient data the unresolved motion of 2D imagers for three sinusoidal motion
data sets with only LR, AP and superior–inferior (SI) motion, respectively, was investigated.
This study relied on two assumptions, common to the work by Nill et al (2005).

• The setup error will be very small since a possible setup correction based on the acquired
images could be performed prior to treatment. This assumption is necessary to set a
common 2D to 3D framework from which to analyze the limitations of the 2D imaging.

• For a given imaging beam angle, the 2D projection system fails to detect one direction of
3D tumor motion.

2.1. 3D tumor motion data source

The 3D tumor motion information used in this study was from 160 treatment fractions
for 46 thoracic and abdominal cancer patients who underwent hypofractionated stereotactic
radiotherapy. The tumor locations were lungs (30 patients), liver (2), retroperitoneum (11) and
chest wall/internal mammary nodes (3). For each patient, there were one to seven treatment
fractions, and the average duration time of the fractions was 31.4 min (ranging from 5 to
106.4 min). The data were acquired under IRB-2005-309 from the Cyberknife system at
Georgetown University Hospital from July in 2005 to January in 2006. Synchrony is a
subsystem of real-time adaptive motion compensation in the Cyberknife system. In order to
compensate for the respiratory tumor motion, the system uses a hybrid tracking model of both
the external and internal motion of patients; for the external patient motion, three Flashpoint
cameras are used to monitor the multiple light emitting diodes (LEDs) on the patient’s chest
and/or abdomen and the internal fiducial locations are calculated from orthogonal diagnostic
x-ray image pairs of two to four gold implanted markers. At the beginning of the treatment,
the system makes a correlation between the external patient motion and the internal fiducial
locations. During the treatment, the system continuously (at 32 frames s–1) monitors the
external marker motion and estimates the tumor positions at 25 Hz using the current correlation.
To update the correlation during the treatment, the system periodically (approximately every
30 s) measures the implanted marker locations by acquiring x-ray images. Thus, the data we
had were the estimated 3D tumor positions versus time from the correlation, which are saved
in log files of the Synchrony system. The system accuracy is 1.5 mm with uncertainty of
0.3 mm for an end-to-end test on a motion platform, which is the difference between the center
of the plan dose distribution and that of the delivered dose distribution measured by film. The
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(a) (b) (c)

Figure 2. Calculation of the unresolved motion from the limitation of 2D projection imaging to
monitor motion in 3D: red dots indicate the tumor motion (only anterior–posterior (AP) motion
for example), dashed arrows the unresolved motion, and solid arrows the resolved motion for an
inline orientation. (a) When gantry and couch angles are 0◦, the tumor looks static for the imager
in this orientation as shown in imager’s view even though it moves (no solid arrow). However, (c)
when the gantry angle is 90◦ and the couch angle is 0◦, the imager resolves the full motion (no
dashed arrow). (b) If the gantry angle is 45◦ with the couch angle 0◦, the imager resolves part
of the motion (solid arrow) while failing to detect the motion in the imaging beam axis (dashed
arrow).

purely technical tracking accuracy is much better, which is on the order of 0.6 mm. Clinically,
changes in the patient add much more uncertainty. Typically the correlation starts to be rebuilt
if its error is more than 2.9 mm for two images in a row. The detailed information on the
Cyberknife Synchrony system is described elsewhere (Schweikard et al 2000, 2004, Murphy
2004).

2.2. Calculation of the unresolved motion of 2D projection imaging

From the estimated patient 3D tumor motion data, the unresolved motion (motion in the
imaging beam axis) due to the limitation of 2D projection imaging to monitor motion in 3D
was calculated. The motion was assumed at the isocenter plane. The geometric uncertainty
is shown schematically in figure 2 for a tumor moving only in the AP direction and a 2D
projection imager in an inline orientation to monitor the motion. If gantry and couch angles
are 0◦ (figure 2(a)), the tumor looks static for the imager in this orientation as shown in the
imager’s view even though it is moving. It should be noted that motion in the plane of the
imaging beam is theoretically detectable in an ideal situation. However with modern detectors
the centroid position of an individual marker can be resolved to within 0.5 mm in the imaging
plane. The uncertainty in the imaging plane would correspond to uncertainty of 1 cm along
the beam axis for an object of 5 cm lateral to the beam axis at 100 cm from the source. This
uncertainty is on the same order of the motion observed, and thus detecting changes along
the beam axis is not currently feasible. If the gantry angle is 90◦ and the couch angle is 0◦

(figure 2(c)), however, the imager resolves the full motion of the tumor. When the gantry
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angle is 45◦ with the couch angle 0◦ (figure 2(b)), the imager resolves part of the motion
(solid arrow) while failing to detect the motion in the imaging beam axis (dashed arrow).
We calculated the magnitude of the unresolved motion of 2D projection imaging in different
treatment beam–patient alignments for each of 160 treatment fractions.

As for the different treatment beam–patient alignments, 216 treatment beam angles were
considered by varying gantry angles from 0◦ to 360◦ in 15◦ increments (24) and couch angles
from −60◦ to 60◦ in 15◦ increments (9). The unresolved motion as a function of only gantry
angle while couch angle is 0◦ was also calculated as most conventional abdominal and thoracic
treatments are coplanar. For a given treatment beam angle with a given gantry and couch angle,
motion in the imaging beam axis, which is the unresolved motion, was calculated from the
3D tumor motion data assuming that this position of the tumor had not changed from a patient
initial setup. Also, to investigate the unresolved motion for different time intervals, 0–1, 0–10
and 0–30 minutes, were considered

2.3. Quantification of the geometric uncertainty of 2D projection imaging

The geometric uncertainty in monitoring 3D tumor motion with a 2D projection imager due to
the unresolved motion was statistically quantified using the root-mean-square (rms) uncertainty
of the unresolved motion. The rms uncertainty was used to quantify the distribution of the
geometric uncertainty since the uncertainty is not normally distributed (determined by using
a Kolmogorov–Smirnov test). For the geometric uncertainty of a single patient fraction,
the rms uncertainties of the unresolved motion for given treatment beam angles were shown
(figures 3–6). To investigate the geometric uncertainty for the cohort of patients studied, let
U be the unresolved motion of 2D projection imaging: U(g, c = 0) is the unresolved motion
as a function of gantry angle for coplanar treatments (zero couch angle) and U(g, c) is the
unresolved motion as a function of gantry and couch angle for non-coplanar treatments, where
couch angles vary from −60◦ to 60◦. For each fraction i, the rms uncertainty of U(g, c = 0),
which is Rg,t,i , and the rms uncertainty of U(g, c), which is Rg,c,t,i , for each of the time
intervals t , where t is 0–1, 0–10 and 0–30 min, were calculated. Then, the rms, minimum and
maximum values of Rg,t,i and Rg,c,t,i were calculated, respectively, and these were repeated
for the fractions whose average breathing peak–trough ranges were more than 0.5 cm. As
shown in figure 3, and obvious from figure 1, the geometric uncertainty of 2D projection
imaging in orthogonal orientations from the treatment beam perspective is simply a 90◦ gantry
rotation from that in inline orientations; so R

orthogonal
g,c,t,i = Rinline

g+90o,c,t,i . Thus the results shown in
figure 4 onwards are only for the inline orientation. The dosimetric impact of the geometric
uncertainty will be discussed in section 4 and figure 8.

3. Results

3.1. Geometric uncertainty of 2D projection imaging for uni-directional unit amplitude
sinusoidal motion with inline and orthogonal orientations

Figure 3(a) shows the rms uncertainty of the unresolved motion as a function of gantry and
couch angle, when there is only unit amplitude sinusoidal LR tumor motion for 2D projection
imaging in the inline orientation. For the case when gantry and couch angles are 0◦, the 2D
projection in the inline orientation can resolve LR motion, so there is no uncertainty; but for
the case when the gantry angle is 90◦ while the couch angle is 0◦, the 2D projection in this
orientation cannot resolve LR motion, so the uncertainty is the highest. Figure 3(b) shows the
rms uncertainty of the unresolved motion when there is only AP tumor motion; the highest
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(a) (b) (c)

(d) (e) (f)

Figure 3. The root-mean-square (rms) uncertainty of the unresolved motion for uni-directional
unit amplitude sinusoidal motion: (a) left–right (LR), (b) anterior–posterior (AP) and (c) superior–
inferior (SI) motion for an inline orientation and (d) LR, (e) AP and (f) SI motion for an orthogonal
orientation. Note that plots for an orthogonal orientation ((d)–(f)) are simply rotated by 90◦ in
the axis of gantry angle from those for an inline orientation ((a)–(c)). The red color indicates the
higher value and the blue is the lower value.

(a) (b) (c)

Figure 4. The root-mean-square (rms) uncertainty of the unresolved motion for the patients with
(a) predominantly left–right (LR) motion (patient no. 15 (right lower lung lobe), fraction no. 1 for
0–10 min), anterior–posterior (AP) motion (patient no. 42 (right upper lung lobe), fraction no. 3
for 0–10 min), or superior–inferior (SI) motion (patient no. 27 (right lower lung lobe), fraction
no. 3 for 0–10 min) for an inline orientation.

uncertainty when gantry and couch angles are 0◦ and no uncertainty when gantry is 90◦ with
couch 0◦. Figure 3(c) shows the rms uncertainty of the unresolved motion when there is only
SI motion. For the couch at 0◦ with SI motion there is no uncertainty at any gantry angles as
the motion is perpendicular to the imaging beam. Figures 3(d) and (e) show the same for the
orthogonal orientation: pure LR motion (figure 3(d)), pure AP motion (figure 3(e)) and pure
SI motion (figure 3(f)). All three plots for the orthogonal orientation are shifted by 90◦ in the
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(a) (b) (c)

(d) (e) (f)

Figure 5. Interfractional geometric uncertainty: the root-mean-square (rms) uncertainty of the
unresolved motion for an inline orientation: (a) first, (b) second and (c) third fraction for a single
patient (patient no. 4 (pancreas) for 0–10 min) and (d) first, (e) second and (f) third fraction for a
single patient (patient no. 33 (hilum) for 0–10 min).

gantry angle axis from those for the inline orientation. Due to this relationship further results
will be shown for the inline orientation only.

3.2. Geometric uncertainty of 2D projection imaging for patient motion with inline
orientation: patient-to-patient variation

Figure 3 displays the geometric uncertainty for theoretical motion (uni-directional unit
amplitude sinusoidal motion). Among the 160 fractions none of the estimated tumor
motions were purely uni-directional; however, there were tumor motion data sets showing
predominantly uni-directional motion. Examples of the geometric uncertainty for three
patients are shown in figure 4: patients with predominantly LR (figure 4(a)), AP (figure 4(b))
and SI (figure 4(c)) motion for 0–10 min.

3.3. Geometric uncertainty of 2D projection imaging for patient motion with inline
orientation: interfraction variation

Interfractional geometric uncertainty for the inline orientation is shown in figure 5.
Figures 5(a)–(c) show the rms uncertainty of the unresolved motion of the first, second
and third fraction for a single patient for 0–10 min, respectively, and figures 5(d)–(f) are
the same from another patient. The magnitude and phase of the geometric uncertainty show
variation between the fractions for the single patient and also between the patients. Patient
no. 4 showed that tumor motion predominantly in the LR direction at the first fraction
(figure 5(a)), which changed to AP-like motion combined with LR and SI motion at the second
fraction (figure 5(b)), ended up being predominantly in the SI direction at the third fraction
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(a) (b) (c)

(d) (e) (f)

Figure 6. Intrafractional geometric uncertainty: the root-mean-square (rms) uncertainty of the
unresolved motion for an inline orientation: (a) 0–10, (b) 10–20 and (c) 20–30 min for a single
patient fraction (patient no. 5 (left upper lung lobe), fraction no. 1) and (d) 0–10, (e) 10–20 and
(f) 20–30 min for a single patient fraction (patient no. 32 (right lower lung lobe), fraction no. 3).

(figure 5(c)). As for patient no. 33, the second (figure 5(e)) and third (figure 5(f)) fraction
showed the opposite phase of the geometric uncertainty; the treatment beam angle with the
lowest uncertainty at the second fraction showed the highest at the next fraction.

3.4. Geometric uncertainty of 2D projection imaging for patient motion with inline
orientation: intrafraction variation

Figure 6 shows intrafractional geometric uncertainty for the inline orientation. Figures 6(a)–
(c) show the rms uncertainty of the unresolved motion for 0–10, 10–20 and 20–30 min for
a single patient fraction, respectively, and figures 6(d)–(f) are the same from another single
patient fraction. The magnitude and phase of the geometric uncertainty show variation during
the single patient fraction and also between the patients. In the case of patient no. 5, for each
of 10 min intervals during the single fraction the uncertainty did not show significant changes
(figures 6(a)–(c)) unlike interfractional variation: all three time terms showed somewhat AP-
like motion. Still, for 10–20 min (figure 6(b)) tumor moved more in the LR direction and
for 20–30 min (figure 6(c)) more in the SI direction than for 0–10 min (figure 6(a)). For
patient no. 32, tumor motion which was predominantly in the LR direction for the first 10 min
(figure 6(d)) changed to predominantly SI motion in 10 min (figure 6(f)).

3.5. Geometric uncertainty of 2D projection imaging for the patient cohort studied

Table 2 shows the rms, minimum and maximum values of Rg,c,t,i , the rms uncertainty of the
unresolved motion for each fraction i and for each time interval t for non-coplanar treatments,
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Table 2. The root-mean-square (rms), minimum and maximum values of Rg,c,t,i (rms uncertainty
of the unresolved motion for each fraction i and for each time interval t for non-coplanar treatments)
for 0–1, 0–10 and 0–30 min by sites (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0–1 min 0–10 min 0–30 min

Lungs 30/105 0.14 (0.01, 0.64) 0.13 (0.01, 0.43) 0.12 (0.01, 0.24)
Liver 2/8 0.13 (0.04, 0.17) 0.16 (0.05, 0.27) 0.19 (0.14, 0.27)
Retroperitoneum 11/36 0.10 (0.01, 0.22) 0.11 (0.01, 0.25) 0.12 (0.02, 0.24)
Chest wall/internal 3/11 0.04 (0.02, 0.07) 0.04 (0.03, 0.06) 0.05 (0.04, 0.05)
mammary nodes

Total 46/160 0.13 (0.01, 0.64) 0.13 (0.01, 0.43) 0.12 (0.01, 0.27)

Table 3. The root-mean-square (rms), minimum and maximum values of Rg,t,i (rms uncertainty
of the unresolved motion for each fraction i and for each time interval t for coplanar treatments)
for 0–1, 0–10 and 0–30 min by sites (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0–1 min 0–10 min 0–30 min

Lungs 30/105 0.11 (0.01, 0.46) 0.11 (0.01, 0.35) 0.09 (0.01, 0.24)
Liver 2/8 0.09 (0.03, 0.13) 0.12 (0.04, 0.18) 0.14 (0.11, 0.18)
Retroperitoneum 11/36 0.07 (0.01, 0.21) 0.08 (0.01, 0.19) 0.09 (0.02, 0.18)
Chest wall/internal 3/11 0.04 (0.01, 0.07) 0.04 (0.03, 0.07) 0.05 (0.04, 0.05)
mammary nodes

Total 46/160 0.10 (0.01, 0.46) 0.10 (0.01, 0.35) 0.09 (0.01, 0.24)

Table 4. The root-mean-square (rms), minimum and maximum values of Rg,c,t,i (rms uncertainty
of the unresolved motion for each fraction i and for each time interval t for non-coplanar treatments)
for 0–1, 0–10 and 0–30 min by sites whose average breathing peak–trough ranges are more than
0.5 cm (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0–1 min 0–10 min 0–30 min

Lungs 16/45 0.19 (0.09, 0.64) 0.18 (0.10, 0.43) 0.16 (0.10, 0.24)
Liver 2/6 0.15 (0.12, 0.17) 0.18 (0.13, 0.27) 0.19 (0.14, 0.27)
Retroperitoneum 8/14 0.14 (0.08, 0.22) 0.15 (0.09, 0.25) 0.16 (0.11, 0.24)

Total 26/65 0.18 (0.08, 0.64) 0.18 (0.09, 0.43) 0.17 (0.10, 0.27)

and table 3 shows those of Rg,t,i , the rms uncertainty of the unresolved motion for each
fraction i and for each time interval t for coplanar treatments, for 0–1, 0–10 and 0–30 min
by sites. Overall rms values of Rg,c,t,i were 0.13 cm, 0.13 cm and 0.12 cm and those of
Rg,t,i were 0.10 cm, 0.10 cm and 0.09 cm for each time interval, respectively. As the time
interval increases, the rms, minimum and maximum values show decreasing tendencies for
the lungs while they show increasing tendencies for the liver and retroperitoneum, in general.
For the chest wall/internal mammary nodes, all the values are small and about the same for
different time terms. Comparing these two tables demonstrates that most values in table 3,
which is for coplanar treatments, are smaller than those in table 2, which is for non-coplanar
treatments.

Table 4 shows the rms, minimum and maximum values of Rg,c,t,i and table 5 shows those
of Rg,t,i for 0–1, 0–10 and 0–30 min by sites whose average breathing peak–trough ranges
are more than 0.5 cm. Overall rms values of Rg,c,t,i were 0.18 cm, 0.18 cm and 0.17 cm and
those of Rg,t,i were 0.14 cm, 0.13 cm and 0.12 cm for each time interval, respectively. These
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Table 5. The root-mean-square (rms), minimum and maximum values of Rg,t,i (rms uncertainty
of the unresolved motion for each fraction i and for each time interval t for coplanar treatments)
for 0–1, 0–10 and 0–30 min by sites whose average breathing peak–trough ranges are more than
0.5 cm (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0–1 min 0–10 min 0–30 min

Lungs 16/45 0.15 (0.01, 0.46) 0.14 (0.02, 0.35) 0.12 (0.03, 0.24)
Liver 2/6 0.10 (0.08, 0.13) 0.13 (0.09, 0.18) 0.14 (0.11, 0.18)
Retroperitoneum 8/14 0.10 (0.03, 0.21) 0.11 (0.03, 0.19) 0.12 (0.08, 0.18)

Total 26/65 0.14 (0.01, 0.46) 0.13 (0.02, 0.35) 0.12 (0.03, 0.24)

two tables show the same tendencies as the previous two tables. Again, all values in table 5
are smaller compared to those in table 4.

Figure 7 shows the cumulative probability of the distributions of the rms of Rg,c,t,i or
Rg,t,i for different time intervals of 0–1 (red), 0–10 (blue) and 0–30 (green) min. All four plots
show the similar patterns for the different time terms, still showing a tendency that the shorter
the time interval the smaller the rms, in general. One noticeable thing is that patient-to-patient
variation is much larger than variation from different time terms. Even for the fractions whose
average breathing peak–trough ranges are more than 0.5 cm (figures 7(c) and (d)), patient-to-
patient variation is still much larger. All the plots show the wide ranges of variation for the
rms, and even figures 7(c) and (d), which are for coplanar treatments, show wide variation.
Obviously, the geometric uncertainty is larger for non-planar treatments (figures 7(a) and (c))
and for the larger tumor motion (figures 7(c) and (d)).

4. Discussion

With the advance in radiation treatment techniques, more and more highly conformal dose
distribution is possible. This also implies that even minor geometric uncertainty can have an
effect on the tumor control and normal tissue complications (Stroom et al 1999, van Herk
2004). Consequently, target localization is more important than ever before and tumor motion
compensation is one of the demanding problems in radiation oncology field especially for
thoracic and abdominal tumors. Several techniques have been proposed to compensate for the
tumor motion, such as respiratory gating (Vedam et al 2001, Kubo and Wang 2002, Ozhasoglu
and Murphy 2002, Giraud et al 2003, Hugo et al 2003, Nill et al 2005, George et al 2006,
Jiang 2006) and tumor tracking (Schweikard et al 2000, 2004, Keall et al 2001, 2005, Murphy
2004, Suh et al 2004, Papiez and Rangaraj 2005, Papiez et al 2005, Webb 2005b, 2005a,
Kamino et al 2006, Neicu et al 2006, Xu et al 2006). In order to implement these, however,
monitoring the target is essential, and 2D x-ray imaging during treatment is a widely available
method to quantify internal motion as shown in table 1.

Nill et al (2005) compared the imaging systems in two different geometries (figure 1) in
their study to look at the possibility of using them for online correction in real-time tumor
tracking radiotherapy. They concluded that both systems had the ability to correct for most
of the motion, still inline geometry (figure 1(a)) was better. Though they did some dosimetric
studies to compare the different systems, they used only one patient with simulated AP tumor
motion. In our study, the accuracy of 2D projection imaging methods in 3D tumor motion
monitoring has been investigated by quantifying the unresolved motion due to the limitation
of 2D projection to monitor the motion in 3D, using the same assumptions as Nill et al (2005),
but with a tumor motion database of 160 treatment fractions having estimated 3D patient tumor
motion.
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(a) (b)

(d)(c)

Figure 7. Cumulative probability of the distributions of the rms of ((a) and (c)) Rg,c,t,i (rms
uncertainty of the unresolved motion for each fraction i and for each time interval t for non-
coplanar treatments) or ((b) and (d)) Rg,t,i (rms uncertainty of the unresolved motion for each
fraction i and for each time interval t for coplanar treatments) for 0–1 (red), 0–10 (blue) and 0–30
(green) min for an inline orientation: (a) all fractions for non-coplanar treatments, (b) all fractions
for coplanar treatments, (c) fractions whose average breathing peak–trough ranges are more than
0.5 cm for non-coplanar treatments, and (d) fractions whose average breathing peak–trough ranges
are more than 0.5 cm at each time term for coplanar treatments.

Berbeco et al (2004) investigated the magnitude of the localization error when a single
x-ray imager was used for tumor tracking and determined the optimal geometric configuration
of a dual x-ray imaging system. They found out that because tumor motion was 3D and
irregular a single source/imager system was ‘inadequate’ and two source/imager pairs with
angles between two imaging beam central axes of 90◦ were desirable for robust 3D target
localization. The findings from the current study agree with Berbeco et al in that a single
x-ray imaging system is limited; however, the magnitude of geometric uncertainty for a single
x-ray imaging system, an overall rms error of 0.13 cm, is not ‘inadequate’, but will be a useful
tool for estimating internal target position during radiotherapy.

In this study, the unresolved motion due to the geometric limitations of 2D projection
imaging systems was calculated as displacement in the imaging beam axis for each of given
treatment beam angles, assuming that 3D online patient positioning was performed prior to
the treatment. As other sources of geometric uncertainty are ignored, such as measurement
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(a) (b)

Figure 8. Dosimetric impact of the unresolved motion: probability density function (pdf), p(
⇀
r ),

can be divided into (a) the component parallel to the beam (along the dose fall-off), p(z), and
(b) the component perpendicular to the beam, p(x). If an anatomic point, r0, moves with the pdf

in dose distribution, Dstatic(
⇀
r ), the dose delivered to r0 is Ddelivered(r0) = ∫

p(
⇀
r )Dstatic(

⇀
r ) d

⇀
r ;

Ddelivered ≈ Dstatic for p(z) and Ddelivered �= Dstatic for some p(x).

uncertainty, imaging/treatment beam alignment etc, the geometric uncertainty quantified in
this study represents the lower limits of overall treatment uncertainty possible with a single
x-ray imager.

In figure 1, both inline and orthogonal imaging and treatment beam orientations are
shown. The geometric uncertainty for the inline and orthogonal orientation is the same;
however, how the geometric uncertainty manifests itself as dosimetric uncertainty is different
for the two orientations. The dosimetric impact of the unresolved motion is generally higher
for the orthogonal orientation (Nill et al 2005). Figure 8 shows the dosimetric impact of the
unresolved motion by the probability density function (pdf) (Bortfeld et al 2002). Let an
anatomic point move with the pdf, p, in dose distribution, Dstatic(

⇀

r ′); then the dose delivered
to any point is Ddelivered(

⇀

r) = ∫
p(

⇀

r − ⇀

r ′)Dstatic(
⇀

r ′) d
⇀

r ′. Here, p(
⇀

r − ⇀

r ′) can be divided
into the components parallel to beam, p(z) (figure 8(a)), and perpendicular to beam, p(x)

(figure 8(b)); Ddelivered ≈ Dstatic for p(z) and Ddelivered �= Dstatic for some p(x). Thus, in
the orthogonal orientation the geometric uncertainty from the unresolved motion can be in
a high dose gradient direction (figure 8(b)), whereas in the inline orientation it is along the
dose fall-off in the beam direction where the gradient is lower (figure 8(a)). Still, the dose
delivery is varying temporally as well as spatially, and the beam angles, beam modulation, and
order of beam delivery will all affect the dosimetric impact of the unresolved motion from 2D
projection imaging.

Considering that most conventional abdominal and thoracic treatments are coplanar,
the tumor motion in the SI direction is always resolved in coplanar treatments for both
orientations (Nill et al 2005) shown in figures 3(c) and (f) and 4(c). This may guarantee the
smaller geometric uncertainty from the unresolved motion for 2D projection imaging in both
orientations because the patient respiratory tumor motion is usually thought to be the largest
in the SI direction. Figure 4(a), however, shows that there are some patients whose tumor
motion is the largest in the LR direction, and figure 4(b) the largest in the AP direction, which
indicates there could be large uncertainty from LR and AP motion components as well. This
reveals that patient-to-patient variation of respiratory tumor motion is substantial, and there is
a wide variability of patient respiratory motion patterns (Chen et al 2001, Stevens et al 2001,
Seppenwoolde et al 2002, Ahn et al 2004, Mageras et al 2004). Patient-to-patient variation
is also shown in figure 7. The outspread ranges of the rms in cumulative probability of the
distributions demonstrate that patient-to-patient variation is more significant than variation
with increasing time. It is also evident for the fractions whose average breathing peak–trough
ranges are more than 0.5 cm (figures 7(c) and (d)).

Comparing the interfractional uncertainty in figure 5 and the intrafractional uncertainty in
figure 6, the changes in magnitude and phase of the geometric uncertainty are more noticeable



3452 Y Suh et al

for interfractional variation, as the scales in the axis of the rms uncertainty in figure 5 double
those in figure 6 and the shapes of the plots vary more in figure 5 than in figure 6.

Tables 2–5 show the geometric uncertainty depending on the tumor sites, tumor motion
ranges, time intervals and beam angles. Overall rms values of the rms uncertainty of the
unresolved motion was around 0.13 cm for all treatment fractions, 0.10 cm for all coplanar
treatment fractions, 0.18 cm for the fractions whose average breathing peak–trough ranges
were more than 0.5 cm, and 0.13 cm for the coplanar treatment fractions whose average
breathing peak–trough ranges were more than 0.5 cm. As the time interval increases, the
rms, minimum and maximum values show decreasing tendencies for the lung patients, but
increasing for the liver and retroperitoneal patients. This can potentially be explained by
the fact that the lung patients often have limited lung function and thus breathe heavily after
physical activity, such as climbing on the treatment couch. They relax after several minutes
and finally breathe more quietly. In contrast, the liver and retroperitoneal patients, usually
with normal lung function, may be relaxed from the start of the treatment and have abdominal
breathing. For the chest wall/internal mammary nodes, all the values are small and about the
same for different time terms. This is obvious because in general the motion of those sites
is relatively small and so results in small geometric uncertainty. In addition, interpretation of
the results is limited by small patient numbers.

The smaller values in tables 3 and 5 than in tables 2 and 4, respectively, and noticeably
larger minima of Rg,c,t,i in table 4 than those of Rg,t,i in table 5 indicate that the geometric
uncertainty is smaller for the coplanar treatments than for the non-coplanar treatments. This
means that the predominant motion is in the SI direction, which is resolved for coplanar
treatments. It also points that for the cohort of patients studied, SI tumor motion, which is
resolved in both orientations for coplanar treatments, contributes to the geometric uncertainty
most.

Clinical application for the results can be the quantification of geometric uncertainty
margins when a single 2D projection imager is used for tumor tracking. The use of a single
2D imager to estimate internal position will require margins of the order of 0.3 cm, which is
about twice the rms values of Rg,c,t,i or Rg,t,i .

The results of this study assume the acquisition of continuous x-ray images to monitor the
tumor, which would cause high dose to the patient. Alternatively, it is possible to use periodic
x-ray images and continuous optical tracking by integrating a single 2D x-ray imaging system
and 3D optical monitoring system (the commercially available Cyberknife system (Schweikard
et al 2000, 2004, Murphy 2004) integrates dual x-ray imaging with 3D optical monitoring in
the Synchrony system).
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Real-time tumor targeting involves the continuous realignment of the radiation beam with the
tumor. Real-time tumor targeting offers several advantages such as improved accuracy of tumor
treatment and reduced dose to surrounding tissue. Current limitations to this technique include
mechanical motion constraints. The purpose of this study was to investigate an alternative treatment
scenario using a moving average algorithm. The algorithm, using a suitable averaging period,
accounts for variations in the average tumor position, but respiratory induced target position varia-
tions about this average are ignored during delivery and can be treated as a random error during
planning. In order to test the method a comparison between five different treatment techniques was
performed: �1� moving average algorithm, �2� real-time motion tracking, �3� respiration motion
gating �at both inhale and exhale�, �4� moving average gating �at both inhale and exhale� and �5�
static beam delivery. Two data sets were used for the purpose of this analysis: �a� external
respiratory-motion traces using different coaching techniques included 331 respiration motion
traces from 24 lung-cancer patients acquired using three different breathing types �free breathing
�FB�, audio coaching �A� and audio-visual biofeedback �AV��; �b� 3D tumor motion included
implanted fiducial motion data for over 160 treatment fractions for 46 thoracic and abdominal
cancer patients obtained from the Cyberknife Synchrony. The metrics used for comparison were the
group systematic error �M�, the standard deviation �SD� of the systematic error ��� and the root
mean square of the random error ���. Margins were calculated using the formula by Stroom et al.
�Int. J. Radiat. Oncol., Biol., Phys. 43�4�, 905–919 �1999��: 2�+0.7�. The resultant calculations for
implanted fiducial motion traces �all values in cm� show that M and � are negligible for moving
average algorithm, moving average gating, and real-time tracking �i.e., M and �=0 cm� compared
to static beam �M =0.02 cm and �=0.16 cm� or gated beam delivery �M =−0.05 and 0.16 cm at
both exhale and inhale, respectively, and �=0.17 and 0.26 cm at both exhale and inhale, respec-
tively�. Moving average algorithm �=0.22 cm has a slightly lower random error than static beam
delivery �=0.24 cm, though gating, moving average gating, and real-time tracking have much
lower random error values for implanted fiducial motion. Similar trends were also observed for the
results using the external respiratory motion data. Moving average algorithm delivery significantly
reduces M and � compared with static beam delivery. The moving average algorithm removes the
nonstationary part of the respiration motion which is also achieved by AV, and thus the addition of
the moving average algorithm shows little improvement with AV. Overall, a moving average algo-
rithm shows margin reduction compared with gating and static beam delivery, and may have some
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mechanical advantages over real-time tracking when the beam is aligned with the target and patient
compliance advantages over real-time tracking when the target is aligned to the beam. © 2008
American Association of Physicists in Medicine. �DOI: 10.1118/1.2921131�

Key words: moving average algorithm, tumor tracking, implanted fiducial motion, external respi-
ratory motion, real time tracking, gating

I. INTRODUCTION

Radiation therapy treatment using real-time tumor targeting
offers several advantages towards the improvement of accu-
racy during radiotherapy, especially for lung cancer patients
where the tumor moves continuously throughout the
treatment.1–16 During real-time tracking, the treatment beam
continuously realigns to the tumor throughout the
treatment.17–38 The advantages to such a treatment technique
include improved accuracy of tumor treatment and reduced
dose to surrounding tissue by reducing the margin added for
tumor motion. However, currently there are certain practical
limitations to this technique.

Bortfeld et al.39 showed that if the systematic error com-
ponent of interfraction motion can be removed; according to
margin formulas the residual random error is not signifi-
cantly deleterious to the dose delivered to the patient. The
problem of the above conclusions is that the systematic error
component correction, i.e., mean target position of the in-
trafraction motion, cannot be known a priori before com-
mencing each fraction of treatment. Thus, the most accurate
static beam delivery scenario of online pretreatment target-
beam alignment may still result in systematic errors. How-
ever, by tracking using a continuously updated estimate of
the mean target position during treatment the systematic er-
ror could possibly be reduced to negligible levels.40 This
reasoning prompted the investigation of a moving average
algorithm.

Van Herk et al.41 have described systematic errors as er-
rors mainly due to the preparation of the treatment and ran-
dom errors as errors during the delivery of the treatment on
every treatment day. Using patient measurements taken on a
daily basis for a number of patients over a number of frac-
tions, three parameters were quantified: group systematic er-

ror, systematic error, and random error. Group systematic
error, M, is a mean of all the means of the daily measure-
ments and is expected to be very small. It deviates often
from mean because of imprecision in equipment and proce-
dure. Systematic error, �, is the standard deviation �SD� of
the means and is an assessment of reproducibility of the
treatment preparation. Random error, �, is the root mean
square of the SD of the daily measurements.41

Though motion exceeding mechanical constraints is pos-
sible for motion parallel and perpendicular to the leaf motion
direction, motion parallel to the leaf direction is clearly the
most sensitive. There are several options where multileaf
collimator �MLC� tracking in any direction is not possible.
An obvious solution is to ignore the motion or use gating. An
approach to essentially eliminate the systematic tracking er-
ror and treat the respiration motion as residual random error
is to use a moving average algorithm with a time scale of
several breathing periods. This approach significantly re-
duces the mechanical requirements on the MLC, and can
also be combined with respiration gating.

The moving average algorithm may be appropriate in situ-
ations of significant target motion to either:

�1� account for either mechanical limitations of MLC, linac
or treatment couch �from a number of manufacturers
whose mechanical limitations may vary� to deliver mo-
tion compensated radiotherapy where the beam and tu-
mor are continuously aligned, or

�2� for practical considerations, such as for couch tracking,
moving the patient with the negative velocity of the tu-
mor motion may be uncomfortable for the patient.

For one MLC type, Wijesooriya et al.42 estimated that
target motion parallel to leaf motion could be achieved for

FIG. 1. A demonstration of the challenge of using a multileaf collimator to track motion perpendicular to the leaf direction for conformal radiotherapy �left�
and IMRT �right�. If a target being tracked at time t moves perpendicular to the leaf motion �in this case �1.5 leaf widths for the conformal case and 1 leaf
for the IMRT case� at time t+�, then the target motion can result in a much larger motion of some of the individual leaves. The leaves with the largest motion
are light shaded, and the magnitude of motion of these leaves is shown with arrows. This problem can be further exaggerated by IMRT delivery �right�, where
the leaf sequencing process can result in adjacent leaves having positions several centimeters apart.
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up to 97% of respiratory motion, however no attempt was
made to investigate the efficiency for motion perpendicular
to the leaf direction—or the real case of motion parallel and
perpendicular to the leaf direction. A demonstration of the
challenge of using a MLC to track motion perpendicular to
the leaf direction is shown in Fig. 1. If a target being tracked
at time t moves perpendicular to the leaf motion �in this case
�1.5 leaf widths� at time t+�, then a given target motion
can result in a much larger motion of some of the individual
leaves. If the difference in position of individual leaves di-
vided by the time to achieve the motion is greater than the
maximum leaf velocity ��3.5 cm s−1�, a beam hold will oc-
cur. Any one leaf not being in position will cause a beam
hold, and thus MLC tracking efficiency is governed not by
the average maximum velocity of the leaves, but the maxi-
mum velocity of an individual leaf. If there are a significant
number of beam holds, the delivery efficiency will be sub-
stantially decreased, to the point of not being able to com-
plete a given treatment. This problem can be further exag-
gerated by IMRT delivery, where the leaf sequencing process
can result in adjacent leaves having positions several centi-
meters apart.

The study of Wijesooriya et al.42 was for only one MLC
type. It is likely that there will be variability between manu-
facturers, and even individual MLCs, so that in general it is
not valid to state that MLCs are capable of real-time tracking
of respiratory-induced target motion.

The moving average algorithm was chosen since, despite
its simplicity, the moving average algorithm is optimal for a
common task: reducing random noise while retaining a sharp
step response. This makes it the premier filter for time do-
main encoded signals.43 Though there are other options for
such filters, the moving average algorithm achieves the de-
sired goal, to essentially eliminate systematic error caused by
any nonstationary signals �e.g., base line drift� and the mo-
tion of each respiration cycle is treated as a residual random
error. Moving average can be considered as an intermediate
state between real-time tumor tracking and static beam de-
livery. While the moving average algorithm does not follow
the tumor on a moment by moment basis it does follow the
general trend of the tumor motion. This is an important ad-
vantage over static beam delivery especially during period of
base line drift where based on the theory of moving average
algorithm the beam would follow the general trend of the
motion pattern.

The advantages and disadvantages of a moving average
algorithm compared with real-time tracking and static beam
delivery with pretreatment correction are:

Advantages of moving average algorithm for tracking:

�1� More accurate than pretreatment correction.
�2� Less mechanical motion and therefore possibly longer

motor life than real-time tracking.
�3� Less issue of moving MLC leaves,19,20,22,23 linac1,17,33,34

or couch44 at high velocities since an average period is
used. The couch motion may also affect patient compli-
ance and secondary-induced skeletal motion.

�4� An additional issue for DMLC IMRT real-time tumor

tracking is that the mechanical limitations of MLC45

motion may be exceeded, and motion perpendicular to
the MLC leaf travel direction can also cause beam holds
during delivery and therefore the moving average algo-
rithm may be more efficient than real-time tumor track-
ing in terms of delivery time.

Disadvantages of moving average algorithm for tracking:

�1� Less precise than continuous tracking.
�2� Still requires feedback mechanism for target motion reg-

istration to align the beam and the target during
treatment.

Given the advantages �and disadvantages� of the moving
average algorithm listed above, the aim of this study is to
quantify the accuracy and precision of radiation therapy
treatment delivery using a moving average algorithm for
tracking in comparison with real-time tracking algorithm,
gated beam delivery, moving average gating, and static beam
delivery with online pretreatment target-beam alignment.

II. METHOD AND MATERIALS

II.A. Data acquisition

Two sets of respiration motion data were used for the
purpose of analyzing the accuracy of moving average algo-
rithm.

II.A.1. External respiratory motion

This motion data consisted of 331 4 min abdominal wall
�respiratory� anterior-posterior motion traces from 24 lung
cancer patients using the Varian RPM system. Each patient
was initially asked to breathe without instructions called free
breathing �FB� and the respiration motion was recorded.
Then audio �A� instructions were given followed by audio-
visual �AV� biofeedback based on the frequency and dis-
placement of respiration motion during the FB session. For
each type of instruction the respiration motion was recorded.
The respiration rate for this set of patients varied between 6
and 24 breaths per minute. The displacement for this set of
patients varied between 0.6 and 3 cm peak-to-peak motion.
The process was repeated five times for each patient with
each session typically spaced a week apart. Further details on
the data collected can be found in George et al.46–48 The
main application of these data was to study the link between
the systematic and random error and the breathing training
types, and it is important to note that the data are not tumor
motion, for which a separate data set described below was
used.

II.A.2. Implanted fiducial motion

This 3D target motion were was acquired from 46 tho-
racic and abdominal cancer patients treated with stereotactic
body radiotherapy using the Cyberknife Synchrony �Accuray
Inc. Sunnyvale, CA� system at Georgetown University Hos-
pital and shared under an IRB-approved protocol. Between
July 2005 and January 2006 implanted fiducial motion data
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were acquired for patients with the following tumor loca-
tions: lung �30 patients�, retroperitoneum �11�, liver �two�,
chest wall �two� and internal mammary nodes �one�. The
number of fractions for each patient was anywhere from one
to seven treatment fractions with a total of 160 treatment
fractions. The Synchrony system, which was used to acquire
the implanted fiducial motion information, is a subsystem of
respiration tumor tracking in the Cyberknife system.33,34,49,50

The Synchrony system estimates the tumor positions by a
correlation between the external patient motion and im-
planted fiducial locations and a prediction algorithm. The
data contained patient 4D target motion information �3D tar-
get positions versus time� and its duration time was 31.4 min
�5.0–106.4 min�.51 For each of 160 treatment fractions,
overall mean of the means of motion extent was 0.47 cm
�0.02–1.44 cm�, and overall means of the means of percent
contributions from left-right, anterior-posterior, and superior-
inferior motion to 3D motion were 26.6%, 30.5%, and
42.9%, respectively.

II.B. Data analysis

II.B.1. Comparison of treatment scenarios

A depiction of the five treatment delivery scenarios is
shown in Fig. 2. The study assumes a real-time target posi-
tion monitoring system is present for all five delivery sce-
narios. The target motion information is used to investigate
five treatment scenarios:

�i� Moving average algorithm for tracking: In this case
the position of the beam at time t is calculated as the mean of
the position during the past m seconds. The value for m is
assumed to be 15 s for this analysis. The number of points
included in the moving average was m� f , where f is the
sampling frequency �30 Hz for the respiratory signals and
25 Hz for the tumor motion data�. Thus, for moving average
algorithm the equation was

xest�t� =
�i=t−m�f−RT

t−RT xact�i�
m � f

,

where xest�t� is the estimated position at time t, xact is the
actual position, and RT is the number of sample points in the
system response time, assumed here to be 0.16 s.52 From the
equation above, the beam position xest�t� has been calculated
as the average of the past 15 seconds of position information.

�ii� Real-time tracking: The treatment beam responds to
the target position after a system response time RT, which is
assumed to be 0.16 s as above. No motion prediction algo-
rithm is assumed, and thus the estimated tumor position is

xest�t� = xact�t − RT� .

Therefore from the equation for real-time tracking above it
can be seen that xest�t� is the beam position after a system
response time of RT.

�iii� Gated beam delivery at inhale and exhale: Clinically
it has been suggested and also studied by various institutions
that the standard range of duty cycle for a gated patient
should be between 30% and 50%.48,53 This is in order to
provide the benefits of gating while mitigating the effects of
intra fraction motion by limiting the treatment time. Thus for
the purpose of studying respiration motion gating along with
the other techniques, a duty cycle of 40% was utilized. The
phase information for the purpose of this analysis was ob-
tained from the RPM phase file for the external respiratory
motion data. For the Cyberknife Synchrony data, the phase
was obtained by finding the motion peak for each respiratory
cycle and linearly assigning phase from 0 to 2� between
successive motion peaks. Ruan et al.54 have, however, noted
the nonstationary nature of respiration motion. Ruan et al.54

observed that various phases of respiration were predicted
with various accuracies. Similarly, in Fig. 2, which displays
the effect of the moving average algorithm with respect to
other techniques, we can see that during the base line shift
the gating window is less accurate �very slightly� as com-

FIG. 2. Five different treatment scenarios are displayed
in this figure depicting the comparison performed in
this study. Gating and moving average gating were
evaluated at both exhale and inhale.
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pared to when the base line is constant. In terms of percent-
age, inhale gating used phases from 80% to 20%, and exhale
gating 30%–70%. The real-time calculation of phase has an
associated uncertainty, particularly in the presence of varying
base line, changing period, and peak-to-trough magnitude,
and may not be centered about the peak, but is generally
close to the peak.

The position of the beam at time t is calculated as the
mean of the position during the first n seconds of gated mo-
tion. Gating beam position is calculated at both inhale and
exhale. The position of the beam is determined by

xest�t� =
�i=1

n�fxact�i� � H

�i=1
n�fH

,

where H is the Heavyside function that equals 1 when the
respiratory phase is within the gate and 0 otherwise. From
equation for gated beam delivery at inhale and exhale above,
the beam position xest�t� has been calculated as the average
of the first n seconds of beam position within the 40% duty
cycle information.

In spite of issues during base line drift, phase-based gat-
ing was used in this study for the gating techniques.
Displacement-based gating also has a problem with baseline
drift, as the gating thresholds need to be adjusted during
treatment which takes extra time, particularly if imaging
verification is required. In a previous work,48 we found a
slight advantage to displacement-based gating, however the
difference was less than 0.5 mm. Hence phase based gating
is used as it is the more viable and also currently clinically
used with the RPM system. From the study by George et
al.48 comparing phase with displacement-based gating, there
was little difference in the overall uncertainty of these two
approaches thus justifying the use of phase-based gating.

�iv� Moving average gating at inhale and exhale: The
moving average gating technique involves using a moving
average algorithm over the respiration motion in the gated
window �obtained from iii above� and is given by

xest�t� =
�i=t−m�f−RT

t−RT xact�i� � H

�i=1−m�f−RT
t−RT H

.

In this treatment scenario the position is updated every 15 s
similar to moving average tracking algorithm �Sec. II.B.1.i�.
From equation for gated beam delivery at inhale and exhale
above, the beam position xest�t� has been calculated as the

average of the most recent n seconds �i.e., from t−RT−m
� f to t−RT� of beam position within the 40% duty cycle
information.

This technique will reduce the systematic error and ran-
dom error. The velocity can be similarly calculated as for the
moving average. However, as only respiratory points at a
given breathing phase �Fig. 2� are included, the overall ve-
locity will be less for moving average gating than for the
moving average algorithm.

�v� Static beam delivery with online pretreatment target-
beam alignment: The first n seconds of target position infor-
mation is used to align the beam with the target pretreatment,
but the beam does not respond to target motion. Thus the
position of the beam is determined as the mean of the posi-
tion during the first n seconds. The position of the beam is
determined by:

xest�t� =
�i=1

n�fxact�i�
n � f

.

From equation for static beam delivery with online pretreat-
ment target-beam alignment above, the beam position xest�t�
has been calculated as the average of the first n seconds of
position information.

II.B.2. Evaluation metrics

The metrics evaluated for each of the five motion com-
pensation scenarios: the group systematic error, M, the SD of
the systematic error, �, and the root mean square of the
random error, �, were calculated as shown in Table I.41

The displacement of the beam and the target at a given
time is indicated as �. � for the purpose of this analysis was
evaluated for a given fraction Fi for a given patient Pj and is
represented as ��Pj ,Fi�. To calculate the group systematic
error, M, ��Pj ,Fi� was averaged over all fractions and over
all patients

M = ��P1 . . . PN,F1 . . . FM� .

For the SD of the systematic error, �, the first SD was ob-
tained over all fractions of each patient ��Pj ,Fi�, and then
SD was obtained over all patients

TABLE I. The formalism used to calculate the metrics M, � and �, where � is the displacement between the
beam and target at a given time, and ��Pj ,Fl� is the set of displacements for a given fraction Fi for patient Pj

�see Ref. 41� �M: mean; SD: standard deviation; RMS: root mean square�.

Patient 1 Patient 2 . . .

Fraction 1 ��P1 ,F1� ��P2 ,F2�
Fraction 2 ��P1 ,F2� ��P2 ,F2�
. . .

↗ M =��P1 . . . PM ,F1 . . .FN�
Mean ��P1 ,F1 . . .FN� ��P2 ,F1 . . .FN� → �=SD���P1 . . . PM ,F1 . . .FN��
SD SD���P1 ,F1 . . .FN�� SD���P2 ,F1 . . .FN�� → �=RMS���P1 . . . PM ,F1 . . .FN��
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� = SD���P1 . . . PN,F1 . . . FM�� .

Finally, to obtain root mean square of the random error, �,
the root mean square was calculated overall patients over all
fractions

� = RMS���P1 . . . PN,F1 . . . FM�� .

These terms were defined by van Herk,41 however, are clari-
fied here as multiple error values corresponding to each time
point instead of single error values for a given treatment.

II.B.3. Margin calculations

Margins were calculated for the implanted fiducial motion
data using the formula 2�+0.7� by Stroom et al..55 The two
assumptions were

�1� no other error contributions �optimistic case� and
�2� 0.3 cm systematic and random error contributions from

other sources �realistic case�. The margins that included

the 0.3 cm systematic and random errors were calcu-
lated in quadrature 2��2+0 .32�+0.7��2+0 .32�.

II.B.4. Averaging period and higher order
algorithms

Different choices of windows for averaging between 5
and 25 s were also explored and compared against each
other. In addition to the zeroth order �moving average filter�,
a first and a second order filter were investigated. There are a
number of additional filter choices that could be investigated
to obtain an algorithm which has the requirements of reduc-
ing systematic error and treating the respiratory signal as a
random error. These algorithms include adaptive filters, neu-
ral networks, and template matching algorithms. However, as
the results demonstrate, the simple moving average algo-
rithm fulfils the above requirements.

TABLE II. The values for M, � and � as calculated for the different treatment scenarios for each of respiration motion �see Ref. 41�. The table includes the
external respiration motion obtained from 24 lung cancer patients. In parentheses are the minimum and maximum values for systematic and random error.

Tracking algorithm

Group systematic error, M �cm�

External
Implanted fiducial

motionFB A AV

Moving average algorithm −0.01 −0.01 0.00 0.00
Real-time tracking 0.00 0.00 0.00 0.00
Gating exhale −0.11 −0.05 −0.03 −0.05
Gating inhale −0.16 −0.12 −0.02 0.16
Moving average gating at exhale −0.01 −0.01 0.00 0.00
Moving average gating at inhale −0.01 0.00 0.00 0.00
Static beam delivery −0.13 −0.17 −0.06 0.02

Tracking algorithm

SD of systematic error, � �cm�

External
Implanted fiducial

motionFB A AV

Moving average algorithm 0.01 �−0.03–0.02� 0.01 �−0.03–0.01� 0.01 �−0.03–0.01� 0.00 �−0.01–0.01�
Real-time tracking 0.00 �0.00–0.00� 0.00 �0.00–0.00� 0.00 �0.00–0.00� 0.00 �0.00–0.00�
Gating at exhale 0.18 �−0.52–0.48� 0.12 �−0.28–0.25� 0.06 �−0.18–0.11� 0.17 �−0.73–0.60�
Gating at inhale 0.23 �−0.64–0.41� 0.18 �−0.52–0.21� 0.07 �−0.19–0.15� 0.26 �−0.53–1.23�
Moving average gating at exhale 0.01 �−0.03–0.04� 0.01 �−0.03–0.01� 0.01 �−0.03–0.01� 0.00 �−0.01–0.01�
Moving average gating at inhale 0.02 �−0.04–0.05� 0.01 �−0.03–0.02� 0.01 �−0.02–0.03� 0.00 �−0.02–0.01�
Static beam delivery 0.21 �−0.52–0.45� 0.24 �−0.55–0.36� 0.18 �−0.77–0.12� 0.16 �−0.56–0.84�

Tracking algorithm

Random error, � �cm�

External
Implanted fiducial

motionFB A AV

Moving average algorithm 0.46 �0.14–0.80� 0.53 �0.22–0.90� 0.54 �0.23–0.88� 0.22 �0.01–0.63�
Real-time tracking 0.13 �0.07–0.25� 0.14 �0.06–0.26� 0.16 �0.08–0.32� 0.07 �0.00–0.18�
Gating at exhale 0.30 �0.11–0.58� 0.29 �0.14–0.50� 0.27 �0.13–0.49� 0.15 �0.01–0.75�
Gating at inhale 0.44 �0.15–0.77� 0.44 �0.21–0.67� 0.36 �0.13–0.68� 0.23 �0.01–0.83�
Moving average gating at exhale 0.21 �0.08–0.43� 0.21 �0.09–0.31� 0.22 �0.12–0.37� 0.10 �0.00–0.53�
Moving average gating at inhale 0.35 �0.13–0.57� 0.35 �0.17–0.58� 0.32 �0.12–0.61� 0.17 �0.01–0.68�
Static beam delivery 0.47 �0.18–0.81� 0.54 �0.21–0.86� 0.55 �0.23–0.88� 0.24 �0.01–0.82�
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III. RESULTS AND DISCUSSION

In this study we analyzed the feasibility delivery tech-
niques using a moving average algorithm. Though the results
obtained show a potential advantage by using moving aver-
age algorithm over static beam delivery, the need for feed-
back mechanism for target motion registration to align the
beam and the target during treatment is a current barrier to
the clinical implementation of this algorithm.

III.A. Comparison of treatment scenarios

The results for the five treatment scenarios for both exter-
nal and implanted fiducial motion are shown in Table II.
These results were obtained using n=15 s. Table II quantifies
the geometric uncertainty using three metrics for the evalu-
ation of the treatment scenarios being investigated.

III.A.1. External respiratory motion

For external respiratory motion, the group systematic er-
ror and SD of systematic error are negligible for moving
average algorithm, moving average gating, and real-time
tracking. For real-time tracking as shown by Murphy et al.56

the errors can be reduced to zero by using a good prediction
algorithm. The result of a moving average algorithm over the
gated respiration motion, i.e., moving average gating, was an
improvement to the gated respiration motion for both inhale
and exhale. The random error for real-time tracking and
moving average algorithm has a slightly lower random error
than static beam delivery. For random error, moving average
gating results showed an improvement when compared to the
moving average algorithm. AV has a lower group systematic
error and SD of systematic error for static beam delivery
over the other training types. However, for random errors �
the AV is higher. This result could be explained by the defi-
nition of random error which is the root mean square of the
SD of all the patients. Hence what we see here could be
possibly the variation of respiration motion with AV across
the patient population.

III.A.2. Implanted fiducial motion

Implanted fiducial motion data showed similar results to
external respiration motion. Moving average results for
group systematic error and SD of systematic error are negli-
gible compared to static beams. The trend for the moving
average gated respiration motion was also similar to the ex-
ternal respiration motion data where the random error com-
ponent was a lesser magnitude compared to the moving av-
erage algorithm over the entire respiration trace. Values for
this data set are listed in Table II.

For implanted fiducial motion, the different treatment
techniques can be ranked based on the margin calculation
without error as follows:

�1� Real-time tracking;
�2� Moving average gating at exhale;
�3� Moving average gating at inhale;
�4� Moving average algorithm for tracking;
�5� Gated beam delivery at exhale;

�6� Static beam delivery with online pretreatment target-
beam alignment;

�7� Gated beam delivery at inhale.

The Kuka robot used by the Cyberknife has mechanical
specifications exceeding that of respiratory motion, and this
has also been the clinical experience in that beam holds are
rare during Synchrony treatments. When beam holds occur, it
is typically due to an unacceptable variation in the internal-
external correlation model from irregular breathing. Thus the
moving average algorithm is not recommended for the Cy-
berknife as real-time tracking works well. Real-time tracking
has not been clinically implemented for MLC or couch track-
ing and there are potential limitations with respect to effi-
ciency and patient motion from these techniques. The mov-
ing average algorithm may be an acceptable path to clinical
implementation.

III.A.3. Margin calculations

Margins for the implanted fiducial motion are shown in
Fig. 3 and quantified in Table III. Table III shows the popu-

Page 24 of 25

(a)

(b)

FIG. 3. Margins calculated using the five treatment scenarios for implanted
fiducial motion �seven traces because gating and moving average gating are
split into inhale and exhale�. �a� Indicates margin calculated without other
error components while �b� indicates the addition of 0.3 cm systematic and
random error contribution from other sources. The x axis is the margin in cm
and they y axis is the cumulative probability of the number of patients.
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lation margins for the implanted fiducial motion obtained
from the 46 thoracic and abdominal cancer patients. The
overall population � and � values are provided in Table II
for the comparison of the various techniques.

Cumulative margins are shown in Fig. 3. These cumula-
tive probability plots indicate the appropriate margin for each
individual. The cumulative plots show how appropriate �or in
some cases inappropriate� applying a population margin to
an individual is. The cumulative probability plots are useful
to determine what percentage of the patients fell into a par-
ticular margin range.

III.A.4. Averaging period and higher order
algorithms

The insensitivity of three errors to different averaging pe-
riod validates the use of 15 s for the other analyses per-
formed in the study. Since there was no significant differ-
ences across these windows 15 s was chosen. Fifteen
seconds also represents and average amount of time that the
patient takes to settle on the table and breathe normally.
Along the same lines, the simplest of the three techniques,
i.e., the average of the previous n seconds or moving aver-
age, would give the best value for the new beam position as
the higher order algorithms did not show any benefit.

IV. CONCLUSIONS

A technique for tumor tracking based on a moving aver-
age algorithm for tracking has been investigated. Moving
average algorithm has accuracy advantages over online cor-
rection with static delivery and practical advantages over
real-time tracking as the motion is slower and smoother. This
has mechanical advantages when the beam is aligned to the
target and patient compliance advantages when the target is
aligned to the beam. The main findings of this work can be
summarized as:

�1� The moving average algorithm reduces the group sys-
tematic error and SD of the systematic error compared
with static beam delivery. The random error is modestly
reduced.

�2� There is a group systematic error caused by intrafraction
motion during FB �1.5 mm� and A �1 mm�.

�3� The margins required for moving average algorithm lie
between those of real-time tracking and static delivery
with pretreatment beam-target alignment. The margin re-
duction for moving average algorithm compared with
online pretreatment correction delivered with a static
beam delivery is significant for FB and A, but less no-
ticeable for AV.

�4� The margins required for moving average algorithm are
in most cases less than those of gated respiration motion.

�5� For moving average algorithm and static beam delivery
the systematic error using AV is less than that for FB and
A.

�6� The margins required for real-time tracking as studied
here are independent of breathing training type.

�7� AV and the moving average algorithm have a similar
characteristic in that they both effectively remove the
base line variations or nonstationary signal behavior.

�8� The moving average algorithm can add a further advan-
tage to gated respiration motion by reducing margins
making the margin values comparable to real-time
tracking.
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