
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2008

WIRELESS INTELLIGENT STRUCTURAL
HEALTH MONITORING SYSTEM
Belle Ashwin
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/1626

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1626?utm_source=scholarscompass.vcu.edu%2Fetd%2F1626&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

WIRELESS INTELLIGENT STRUCTURAL HEALTH MONITORING SYSTEM

A thesis submitted in partial fulfillment of the requirements for the degree of Master

Computer Science at Virginia Commonwealth University.

by

ASHWIN BELLE

Bachelor of Engineering, Dayananda Sagar College of Engineering, India.

Director: DR JU WANG

ASSISTANT PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE

Virginia Commonwealth University

Richmond, Virginia

December, 2008

Acknowledgement

First and foremost, I would like to thank Dr. Ju Wang for being such a great advisor and a

great friend. I would also like to thank Dr. Ramana M. Pidaparti for having given me

several great opportunities to work alongside him on his projects. I would like to give my

special thanks to Dr. James E. Ames for providing me with all the resources throughout

my graduate studies. In addition, I would like to thank the faculty of the Computer

Science Department for facilitating the excellent academic experience that I have had

here at Virginia Commonwealth University. I would also like to extend my thanks to

National Science Foundation for having facilitated the project with their support and

funding for this project.

I would also like to thank my family for their everlasting support. Finally I would like to

thank Paras M Gandhi for his supportive, friendly nature and expert help with the Linux

system.

ii

Table of Contents

Page

Acknowledgements .. i

Table of Contents…………………………………………………………………………ii

List of Figures .. iv

Abstract ……………………………………………………………………………..........v

Chapter

1 Introduction ..1

2 The System Ideology ...4

3 Embedded System Interface – The First Design ..6

3.1 The First Design Setup ..7

3.2 Design Faults of the First Setup ..15

4 Embedded System Interface – The Second Design ...16

4.1 Revised Design Setup ..17

4.2 Processor Module ..19

4.3 Expansion Boards ..21

4.4 Installing Linux Image On Gumstix ..24

4.5 Camera Module Installation ..27

4.6 Wireless Module ..29

4.7 Packaging of the Components ...31

iii

5 Software Design and Development ...33

 5.1 Software Design and Development ...41

6 Server Side Configuration and Data Upload Access42

7 Future Work and Conclusion ...44

References ..45

Appendices ...48

iv

List of Figures

Page

Figure 1: ATMega1281 pin diagram .. 7

Figure 2: AVR Studio Programming enviornment ... 8

Figure 3: Block Diagram of the Camera Module ... 9

Figure 4: C328 camera module ... 11

Figure 5: Wireless Zigbee Module (Transreceiver). ... 13

Figure 6: Verdex pro XL6P processor module ... 20

Figure 7: LCD 16-vx expansion module .. 21

Figure 8: samsung LCD touch-screen panel ... 22

Figure 9: NetmicroSD-vx expansion board .. 23

Figure 10: Ubuntu Linux Operating System ... 24

Figure 11: Complete Gumstix Setup... 26

Figure 12: Logitech QuickCam Pro 9000 ... 27

Figure 13: Seirra Wireless AirCard 595U by Sprint ... 29

Figure 14: Resin casing for Gumstix .. 31

Figure 15: Home Page .. 35

Figure 16: Corrosion Assessment Page .. 37

Figure 17: Browse Page .. 38

Figure 18: Processing stages of Input Image .. 40

Abstract

WIRELESS INTELLIGENT STRUCTURAL HEALTH MONITORING SYSTEM

By Ashwin Belle

A Thesis submitted in partial fulfillment of the requirements for the degree of Master

Computer Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2008

Major Director: Dr Ju Wang, Assistant Professor, Department of Computer Science

Metal structures are susceptible to various types of damages, including corrosion,

stress damage, pillowing deformation, cracks etc. These kinds of damages in the metal

structures occur mainly due to operational conditions and exposure to the environment.

Our research involves a portable integrated wireless sensor system with video camera and

ultrasound capabilities which is being developed to investigate corrosion damage on real

structures in real time. This system uses images of the metal surfaces, which are captured

from an integrated wireless sensor and then quantified and analyzed using computational

intelligence. The quantification of the obtained images is done with specialized component

analysis software which enhances and performs wavelet transforms on the received

images. Through this quantized analysis of the images we can detect and isolate regions of

degradation on the metal surface. We believe that the final developed system will allow us

to detect damage in metallic structures in its early stages, thereby ensuring proper safety

and maintenance of its structural health.

This system will further be targeted towards medical applications with capabilities

of remote health monitoring. The initial target areas being bone structure and cancer

detection and analysis. Applying such a wireless data capture system in these areas will

reveal a broad spectrum of the usage of such an application system.

1

1. Introduction

Damage and degradation of metal is a major mechanism affecting the structural

integrity, public safety and economy of industries around the world. Metal structures are

susceptible to various types of such damages, including corrosion, stress damage pillowing

deformation, cracks etc. These kinds of damages in the metal structures of the vehicles

occur mainly due to its operational conditions and exposure to the environment. Our

research involves a portable integrated wireless sensor system with optical sensor and

ultrasound capabilities which is being developed to investigate corrosion damage on real

structures in real time.

Several Nondestructive evaluation (NDE) systems (eddy current inspection

systems, enhanced visual inspection system or stereographic system, acoustic emission,

and others) have been used to detect the cracks/damage in aging structures and materials
1-4

.

Nondestructive evaluation procedures involve establishing correlations between measured

properties and quantitative information about anomalies. Also, because of damage

tolerance requirements, detecting and quantifying even the smallest damages is a critical

aspect of NDE systems. Manual identification and quantification of damages based on

NDE images is a tedious and subjective task. There have also been several studies dealing

with structural health monitoring using fiber optic sensors
5

and wavelet methods
6
. To

complement existing methods of structural health assessment, computational intelligence

methods can also be used. This system that we are developing uses images of the metal

2

surfaces which act as two dimensional signals and can be more informative than one

dimensional data for analysis and detection of corrosion. The image can be derived from

various sensors such as ‘Eddy current’, ‘Ultrasound’ and “Optical Sensor”. Such NDE

procedures involve establishing correlation between measured properties and quantitative

information about anomalies.

This research is based on the development of an embedded handheld wireless

computing system which is capable of capturing images with an image sensor and relaying

the captured images wirelessly to remote locations for analysis
7, 8

. The device is equipped

with a high resolution image sensor, which can dynamically capture JPEG image at

different resolutions. The device is also being designed such that various other forms of

sensors can be attached onto it and used to capture data for analysis. The device contains a

wireless interfaces ‘W-CDMA’ long range interface to transport the data directly to our

image server. Once the captured images are received by a server station wirelessly, these

images are sent through specialized component analysis software. This software

automatically detects and quantifies corrosion by enhancing and performing wavelet

transforms on the received images. A principle component analysis is done on the data to

reveal aspects such as trends, breakpoints, discontinuity, and similarities. Based on the

resulting quantified values a decision can be made upon the necessary actions to be taken

on the surface subject. Finally after analysis of the image some key Analyzed Information

is relayed to the technician on the aircraft about the analyzed metal surface. This is done

with the W-CDMA wireless transmission from the server station back to the handheld

computing device. A user-interface has been developed on the handheld device to show

3

raw images, analyzed data and provide guidance/instructions pertaining to the required

actions.

The developed system allows us to detect damages in the metal structures in its

early stages thereby allowing us to ensure proper safety and structural health maintenance

of engineering structures such as pipelines, nuclear reactors, mines etc.

The developed system may also find applications in the healthcare area. The system

can be further developed into finding applications in certain key areas of healthcare. An

example application of this device with healthcare would be using the portable handheld

device to capture images if possible bone fracture victims in remote areas and then,

relaying them wirelessly in real time to hospitals of doctors who can diagnose the problem

without having to be present with the victim. Thereby allowing physicians to make life

saving decisions for the patients in real time without wasting valuable time.

4

2. The system ideology

The following example is designed to further explain the working model of the

whole system based on the design developed for the experimental purposes. The example

is illustrated based on how the system is designed to be used from start to end in a typical

usage scenario.

 Let us consider that there is an aircraft which is now stationed in a remote part of

the world. The technicians on the flight believe that there might be some damage on the

metal structure of the plane due to its age. Now consider that the technician on board is

equipped with the handheld device which is being developed as a part of this project. The

technician can directly go to the region on the plane where the metal surface seems to have

some wear and tear or some abnormalities. He can then capture images using the handheld

unit of the metal surface which needs analysis and decision in terms of what has to be done

with that area of the metal structure. These images can then be wirelessly transferred by the

handheld unit to the server which may be present in the headquarters of the airline

company half way around the world.

These images are then received by the server machine at the headquarters where qualified

engineers trained to analyze such metal corrosion and structure defect are present. The

received images automatically get store in a repository with the details of when it was

taken and where it originated from. Based on this the images received are then sent through

the Component analysis software present on the server machine. The component analysis

software performs detailed image processing on the acquired image, thereby being able to

5

extract and segment those regions of the metal surface which is suspected to be corroded.

The software also gives a quantitative value of how much corrosion and material loss has

taken place on each particular area of corrosion. Based on these values the engineers

analyze the quantitative data and come to a decision based on what further action is to be

done on the corroded region.

The decision here can be based on various aspects which the engineers understand through

their accumulated knowledge of the system and the structure from which they received the

images. Based on what decision they would then relay back the instruction to the

technician on board the aircraft to work on the metal surface accordingly. An example of

such a decision could be that the engineers after analyzing the data realize that there is too

much damage on the metal surface thereby requiring a complete change of that metal sheet

so as to not compromise the integrity of the metal structure any further.

 The feedback from the engineers from the headquarters would be presented

to the onboard technician on the handheld unit in a very easy to understand and presentable

manner. This kind of a system allows for a technician who is not as qualified to be able to

actually work and repair structure based on expert decisions which are wirelessly relayed

to him from remote locations. Thus, allowing precise decision making skill and real-time

problem solving to be implemented on critical situations.

6

3. Embedded System Interface - the first design

 For the development of a handheld device module of the proposed system, we had

to first recognize the needs of the different applications the system will be used for. The

idea was to make the handheld unit as simple and versatile as possible, while ensuring

reliability and efficiency. One of the key aspects of a handheld unit such as this would

always be its portability. So keeping this in mind, the development of the device was

targeted towards a simple wireless computational device which was specifically designed

to capture images with the necessary sensors and transfer them wirelessly to the server.

7

3.1 The First Design Setup

The most important part of the device would be its processor and its computational

capabilities. During the first stages of the development the processor chosen for this was

the Atmel Mega1281. The ATmega1281 is a low-power CMOS 8-bit microcontroller

based on the AVR enhanced RISC architecture
15

. ATmega1281 is a powerful

microcontroller that provides a highly flexible and cost effective solution to many

embedded control applications. By executing powerful instructions in a single clock cycle,

the ATmega1281 achieves throughputs approaching 1 MIPS per MHz allowing the system

designed to optimize power consumption versus processing speed.

Figure 1: ATMega1281 pin diagram

8

Being a low power consuming microprocessor along with the AVR core having a

rich instruction set and 32 general purpose working registers, it was found ideal to be used

for this application. In order to program the wireless sensors, we use AVR Studio. This is a

programming platform provided by Atmel, the manufacturer of the microcontroller used in the

wireless sensors.

Figure 2: AVR Studio Programming enviornment

The AVR programming is done using Embedded C programming language. It is

similar to C but the programs are specifically designed for target architecture. In this case

the architecture being the ATmega1281. Once the program is developed the program is

9

then converted to a hex format which is then fed into the ATmega microcontroller. The

code that was developed for the application was designed to talk to the camera module

which was integrated to the system and capture images. After having captured the image

the picture would then be transmitted wirelessly using a popular wireless protocol to a

remote server for analysis.

To capture images the system has been given a broad spectrum design such that

various kinds of sensors can be employed in the system to capture the data that can be

analyzed. For the initial developmental stage however the optic sensor was as the method

for experimental data capture. The sensor selected for the integration into the handheld unit

was the C328-7640 JPEG Compression VGA Camera Module.

Figure 3: Block Diagram of the Camera Module

The C328 JPEG compression module performs as a video camera or a JPEG

compressed still camera and can be attached to a wireless or PDA host. Users can send out

10

a snapshot command from the host in order to capture a full resolution single-frame still

picture. The picture is then compressed by the JPEG engine and transferred to the host.

The C328 camera module is a low power, low cost solution for integrating an optic sensor

into the system. Its built in compression engine enabled us to get either raw data or JPEG

compressed data as and when required. Furthermore its small size and good image quality

made it an ideal choice as an optical data capture agent

For initial experimental setup the wireless data transmission was done using

ZigBee™/IEEE 802.15.4- Transceiver. Zigbee is IEEE 802.15.4 standard for wireless data

transmission. It can be operated with very low-power consumption. It operates in the 2.4

GHz frequency spectrum which is part of the ISM [Industrial, Scientific, and Medical],

thereby allowing us to freely use this standard without the need for any licensing for

operating in this frequency range. It has several different channels for choice of operation.

Transmission distance is expected to range from 10 to 75 meters, depending on power

output and environmental characteristics.

The first design implementation of this Portable Integrated Wireless Sensor System

operated in several discrete but interdependent steps. The stage of capturing the images and

replaying it to remote server wirelessly was integrated using the above mentioned device

interfaces. As mentioned earlier our chosen method for Nondestructive Evaluation is based

on images captured of the metal surfaces under observation. This capture stage consists of

a camera, micro-controller and a wireless transmitter of data. The required images can be

11

obtained using various sensors such as ‘Eddy current’, ‘Ultrasound’, ‘Video Camera’,

‘Eddy current’, ‘X-ray’ etc. Our experimental system is primarily being developed with a

video camera sensor to capture direct images of the surfaces to be investigated. This same

concept can be extended in the system to include other sensors mentioned as well.

Figure 4: C328 camera module

The C328R is a VGA camera module. It functions as a JPEG compressed still

camera and can be attached to a wireless or PDA host. The camera can send out a snapshot

command from the host in order to capture a full resolution single-frame still picture. The

picture is then compressed by the JPEG engine and transferred to the host through a serial

port. The camera is capable of capturing images in various resolution formats ranging from

80x64 pixels to 640x480 pixels
14

. These resolutions can be preset or changed based on

operational modes. There are three different capture modes present on the camera,

Snapshot picture, Preview (video streaming) and JPEG Preview Picture. The pictures

obtained can either be compresses on uncompressed.

12

• Start
o Power up the camera

o Send SYNC message. (Synchronize) x 30

o Receive ACK from camera

(Acknowledgment).

o Receive SYNC from camera

(Synchronize feedback)

o Send Ack. (Acknowledge feedback).

• Send Initialize packet.

o Receive ACK from camera

• Send Set Package Size Packet.

o Receive ACK from camera

• Send Get Picture packet

o Receive ACK from camera.

o Receive the JPEG compressed picture

packets.

The camera module does not operate by itself as required. To operate the camera

module a program was developed for the microcontroller chip. This microcontroller chip

initiates the camera and interacts with it with specific commands. The sequence of

commands is based on a preset binary language code which the camera has been trained to

respond to.

When an image is to be captured the microcontroller chip does a capture image

routine with the camera. As shown in the step wise operation procedure the microcontroller

first powers up the camera and then it initiates the camera by sending a Synchronization

command (SYNC). The camera responds by sending back an Acknowledge command.

Then the microcontroller sends the camera specific commands which instruct the camera

about the type of picture, picture quality and size. Then the camera sends the Get Picture

13

command. Upon receiving this Get Picture command, the camera takes a still shot capture

through the sensor and records the data in its memory. The recorded image is then

compressed into the JPEG (Joint Photographic Experts Group) format by the camera

before relaying the image data to the microcontroller.

Figure 5: Wireless Zigbee Module (Transreceiver).

The microcontroller at this point has the acquired image and this has to be sent

back to the server station where the image is to be analyzed and quantized. The data

transmission here has been designed such that the server station can be in a completely

remote location. For the wireless transmission we have developed a Dual ZigBee wireless

transceivers board. ZigBee is the name of a specification for a suite of high level

communication protocols using small, low-power digital radios based on the IEEE

802.15.4 standard for wireless personal area networks (WPANs). To implement the Zigbee

protocol, we have built the wireless module with an Atmel AT86RF230
9
. The AT86RF230

is a low-power 2.4 GHz transceiver specially designed for low cost ZigBee/IEEE802.15.4

applications. This Zibee is an ideal platform for the basic implementation of our system

since it has a relatively reliable wireless communication stack structure. Also this allows us

14

to transmit the data through the wireless module and manage it with a buffer management

system as well as stores it in a database for future use and record maintenance. Hence the

wireless integrated board and camera module together form the components of the first

stage of the system. The images captured at this stage are then relayed to the next stage, the

Analysis stage.

15

3.2 Design Faults of the First Design

As the experiments were performed under this initial setup, the various pitfalls of

this system were soon apparent. One of the biggest concerns that arose during the

development of this handheld unit was that of the inefficient operation of the camera

module with the ATmega1281 processor. There were a lot of issues experienced with the

proper integration of the camera sensor. The problem was the instability of the sensors

operation. It was found extremely troublesome to sometimes get the camera operational

and in sync with the processor.

Another problem with this system was the wireless aspects. Although Zigbee

seemed like a very easy and efficient choice, its range and reliability of service was an

obvious hindrance for the complete mobility of the handheld system in its true sense.

So considering the various design faults and implementation issues that were encountered

in this first experimental setup, a new setup was designed for this system.

16

4 Embedded System Interface - the Second design

Due to some key features being compromised in the first design of the embedded

handheld device, it was then decided to develop a newer revised version of the handheld

unit. The focus again was on the most important aspects that the device was being

designed for. Some of the aspects that were more emphasized on with the revision of the

handheld unit were the wireless technology, the processing capabilities and the sensor

module.

The plan was to develop the device and make it as portable as possible with

exceptional computing power for such a small device, at the same time keeping the

usability of the device to as elementary as possible so that anybody with just little training

should be able to operate it.

17

4.1 Revised Design Setup

For the new experiment setup a few essential changes were made to encompass the

performance requirements and integration of the system. The first big change over the old

system was the usage of the Gumstix micro computer for the processing needs of the

system as compared to the ARV Atmel chipset. For the camera sensor a new and improved

version of a Logitech PC webcam was used which was integrated into the working of the

Gumstix processor. Finally with the wireless front the decision was made to use the

WCDMA commercial unit for reliable and highly portable data transfer.

With our first design setup a lot had been learnt with its inadequacies when it

comes to the essential needs of a portable handheld unit such as this. It was very clear that

processing power is a key requirement to have a powerful system. Moreover, the processor

also needs to be versatile since easy interfacing would be required to run various sensor

modules on it. Another clear aspect was that for experiment and demonstration purposes

also, we would require a better camera sensor which would first and foremost be more

reliable than the older one and secondly would give us a better quality data thereby making

the system a better benchmark for quantitative analysis.

18

Finally it was certain that to actually have a truly portable system a better and more

reliable wireless protocol would be required in the system. Thus, allowing the user to fully

make use of its portability and usability.

19

4.2. Processor Module

Gumstix motherboards drive a fully function, gum stick size Linux computers.

Each gumstix motherboard is packed with the power and performance of much larger

SBCs (Single Board Computers), making gumstix motherboards perfect as the brains of

network management appliances, handheld devices, industrial monitors, robotics and much

more.

Gumstix motherboards come in two active product lines; the smaller than a gum

stick, Overo™ series based on Texas Instrument OMAP® 3503 and gum stick size verdex

pro using Marvell® PXA270 with XScale™. For the development of this project the

Verdex pro with the Marvell chipset seemed ideal and has hence been chosen as the

primary processing module. Every motherboard comes pre-flashed with Linux 2.6 and

Linux OpenEmbedded and has been designed to run standalone, or with additional

function available via optional expansion boards.

These motherboards are ARM®-based platform which run on low cost Linux system

images. By using Linux the design could also take advantage of the 256MB low power

DDR RAM, 256MB NAND flash, an on-board microSD adapter, a 24-pin Hirose FH26-

27S connector for camera control signals and two (2) x 70-pin AVX 5602-14 connectors

for a wide range of functional options in expansion board design.

Verdex pro motherboard offers on-board storage with microSD and flexibility by

way of adding two expansion boards: one on each side of the motherboard.

20

The Gumstix processor is the Verdex pro XLP6. The XLP6 is a fast motherboard in

the PXA270-driven verdex pro product line. With the on-board memory slot and optional

10/100 and wifi connectivity, this verdex pro motherboard becomes the heart inside

demanding mobile, remote and engineering devices.

Figure 6: Verdex pro XL6P processor module

The processor has a 600Mhz Marvell® PXA270 with XScale™ as the CPU. For

the higher memory requirement of this system the processor has been expanded with a

2GB micro SD Card. The Linux Image has been built onto the SD card for easy booting

and expansion. The implemented Linux kernel is the 2.6.21 version. The device has been

setup such that the booting can directly take place from the SD card.

21

4.3. Expansion boards

Figure 7: LCD 16-vx expansion module

The console LCD16-vx is an expansion board for the touch resistive LCD color

panel. This board allows us to integrate the Samsung LCD panel with resistive touch

screen overlay. This touch screen adds a level of sophistication as well as usability to the

overall system. The console LCD16-vx expansion board comes along with three RS-232

ports on miniDIN8 connectors. Thus, allowing several I/O interaction capabilities. It also

hosts a USB mini-B connector with USB Host signals. The boards come LCD-ready along

with a built in Touch screen controller. The board also provides GPIO lines and an I2C

port, allowing us to connect various kinds of peripheral devices to the system.

22

Figure 8: samsung LCD touch-screen panel

The Samsung LCD is a 4.3" diagonal screen. 480x272 pixels, max 8 bits each of

R,G,B with resistive touch screen overlay. The touch screen allows a very high level of

interaction between the user and the system.

23

Figure 9: NetmicroSD-vx expansion board

The NetmicroSD-vx expansion board facilitates the system with networking interfaces

such as LAN and optional Wifi. Also another important aspect of the expansion board is

the Mirco SD card memory expander. This allows us to simply increase the memory

capacity of the board from 128MB to up to 2GB.

24

4.4. Installing the Linux image in the Gumstix

It is to be noted that the gumstix is of the ARM architecture. So each operation and

the Linux image itself must be cross compiled onto the arm architecture before being

flashed onto the gumstix board. For an Ubuntu 7.10 Linux was first setup on a Desktop in

our lab. This desktop is used as the server for the cross compilation and the image

processing.

Figure 10: Ubuntu Linux Operating System

For the actual cross compilation platform the gumstix supports the OpenEmbedded

toolchain. The OpenEmbedded Project (OE for short) is a software framework to create

Linux distributions aimed for embedded devices. Primarily, the project maintains and

25

develops a collection of BitBake recipes, similar to Gentoo's ebuilds. The bitbakes consist

of the source URL of the package, dependencies and compile or install options. During the

build process they are used to track dependencies, cross-compile the package and pack it

up, suitable to be installed on the target device. It's also possible to create complete images,

consisting of root file system and kernel.

As part of the build process Gumstix OE downloads source code tarballs for the

linux kernel and other software packages. This step sets up a global system cache for these

tarballs so that they only need to be downloaded once. Setting up a global cache may seem

like a lot of trouble for a single user system, but it is often quite useful to set up an

autobuilder that runs as a cron job under a separate user account.

Although the gumstix has a prebuilt image ready to go out of the box, a new image

had to be built for the more sophisticated needs of the system under development. Hence

the newer Linux image was built with the target application in mind. The newer image has

the GUI (Graphics User Interfacing) interfacing rather than just a command line interaction

setup. The newer image also supports the touch screen feedback thereby enhancing the

user interaction with ease of use while making this happen in a more presentable manner.

Due to the enhancements in the new image, the actual size of the image was found

to be considerably larger than the standard pre built image. Thus a MicroSD card of size

2GB was installed to expand the memory space so as to accommodate the larger sized

Linux image.

The MicroSd Card is of size 2GB. It had to be partitioned into two separate drives

for proper separation of the file system and the kernel image. The first partition is a 64MB

26

partition. Its file system is formatted to the Fat16 variant. The Linux boot script and the

Linux boot image are stored in this first partition. As the system boots the Built in Uboot

of the gumstix module recognizes the image on the MSD card and automatically loads the

boot script to load the kernel.

The second partition occupies the rest of the storage space and is formatted to the

EXT2 type file system. This partition will host the root file system of the Linux OS.

The whole assembly of the gumstix including the Linux image and the LCD screen

looks as follows. This is the picture of the actually computer on module that we care using

for the system.

Figure 11: Complete Gumstix Setup

27

4.5. Camera Module Installation

For the Image capturing the Logitech QuickCam Pro 9000 was chosen. This webcam is a

high resolution webcam with a 2 mega pixel resolution. The QuickCam Pro 9000 is built

with a Carl Zeiss® lens, with the Ultra-high resolution 2-megapixel sensor using the

RightLight™2 Technology. The camera can capture images with a frame rate of up to 30

frames per second. It’s a well designed highly compact image capture device.

Figure 12: Logitech QuickCam Pro 9000

Although it has been primarily designed to work on the windows PC platform, there are

certain open source drivers available that will integrate this webcam to work with a linux

platform. But in this case not only did the camera have to work with the linux image that

had been built specifically for gumstix, it also had to be integrated onto the arm

28

architecture. Hence using the BitBake OpenEmbedded cross compiler, the open source

driver for this called the UVC driver was crossed compiled to work on the gumstix

platform with the new image.

For a webcam such as this to work on a gumstix Linux package certain special

drivers and library functions are essential. The one that was found needed here was the

V4L framework or also known as the Video4Linux framework. Video4Linux or V4L is a

video capture application programming interface for Linux. Several USB webcams, TV

tuners, and other devices are supported. Video4Linux is closely integrated with the Linux

kernel.

 Upon installing the needed framework and drivers onto the Linux platform we had

the Logitech webcam operational on the gumstix. Thus allowing us to capture images and

store them on the local memory.

29

4.6. Wireless Module

The previous design model had ZigBee as its wireless protocol. For experimental

purposes the Zigbee was chosen as a good wireless protocol due to its ease of operation

and effectiveness. But due to its shortcoming such as its short range and lesser reliability, it

was decided that a different wireless protocol would be necessary to be implemented for

use in this system.

So, the CDMA protocol was chosen. In this newer design frame we have

incorporated a commercially available wireless data card by Sprint. This wireless data card

functions on the CDMA technology and can be used in all places where the CDMA

network reception is available.

Figure 13: Seirra Wireless AirCard 595U by Sprint

30

The AirCard® 595U USB Wireless modem is a stylish, compact and highly reliable. the

AirCard 595U USB modem can either plug directly into any USB port, or can be

connected via the included docking cradle. It was designed to be primarily compatible with

Microsoft Windows and Mac OS X operating systems, but there are some support pages

available for it to be run on the Linux OS.

 The AirCard supports wireless data transfer at max speeds of 3.1 Mbs downlink

and 1.8 Mbps uplink, It had the EV-DO Rev A networks High performance internal

antenna for measurable improvements in data speed, signal acquisition and retention. It

supports Dual-band, 800 and 1900 MHz, with built-in GPS antenna
16

.

The AirCard support for Linux users is facilitated using a sierra.c driver(v.1.0.6)

which is compatible with Linux kernel version 2.6.17 or higher. To make it run on the

gumstix it was required to have certain PPPD scripts running. PPPD is the Point-to-Point

Protocol daemon which is used to manage network connections between two nodes on

Unix-like operating systems.

31

4.7. Packaging of the components into a single handheld unit

 To encompass the several different components of the whole system as a one single

handheld unit a packaging prototype was designed and built for the system.

Figure 14: Resin casing for Gumstix

The above figure shows the simple handheld unit casing that was developed to contain the

several different components of the system. The casing allows the handheld unit to be used

as a standalone portable unit with ease of carrying and data porting. The body structure of

the casing has been developed in such a way that the attachment of the peripheral devices

and sensors can be done through the various input output cable openings that have been

provided. Also for easy assembly and disassembly the top of the casing has a slid cover

upon which the LCD screen resides.

The casing was developed in VCU itself, with the help of the Mechanical Department. The

modeling for the casing was done in a modeling software called ‘Solid Works’. To put the

32

casing model into use we developed a model of it with rapid prototyping techniques. The

working prototype was developed using solidification of liquid resin by laser. To do this

we feed the prototyping computer with the software copy of the model designed. The

model is then prepared by an automated process which produces it layer by layer by

solidifying liquid resin at each stage.

 The dimensions are based on the size of the Gumstix computer on module. It took

roughly 16 hours to produce such a rapid prototype of a working model of the handheld

unit.

33

5 Software Design and Development

Once the handheld device has captured the data through its sensor it then relays this

information to the server system wirelessly. The computational intelligence for

quantification and analysis of the NDE (Non Destructive Evaluation) images is done with a

java based Program code specifically designed for image analysis and corrosion detection.

At the heart of the analysis structure is the Wavelength transform technique. In the

past, wavelet transforms have been used for structural health monitoring primarily based

on signal processing related to detecting damage in structures
10

. In our study, we have

incorporated it into out computational analysis stage to process the obtained NDE images

from the Capture stage.

Usually, images obtained through conventional NDE methods are not suitable for

direct identification and quantification of damaged regions in aging aircraft structures due

to variability of various NDE techniques. The Analysis stage begins with the Zigbee based

wireless interface receiving the NDE images from the wireless camera module in the first

stage. The received image is then fed as the input to the analysis software running in the

server station. To increase efficiency of the wavelength transform analysis, the image is

first enhanced. The enhancement is a software based pixel enhancement method. The

wavelength transform method is then applied onto the enhanced image
11

. Wavelet features

have been used for texture segmentation and for estimating the material loss due to

corrosion since wavelet analysis is capable of revealing aspects of data that other signal

34

analysis techniques lack, such as trends, breakdown points, discontinuities in higher order

derivatives, and self-similarity
12

. After applying the image wavelength transform we still

have to identify those portions of the surface image that are suffering from corrosion. For

this purpose, we apply identification and segmentation routine which is based on the

quantitative values obtained from the wavelength transform. It separates out only the

corroded and damaged section of the target surface in the image. The quantitative analysis

also associates each of the identified segments with an estimation of the percentage of

metal loss at the damaged region.

Conventional Non-Destructive Evaluation techniques using signals from ultrasound

and eddy current methods contribute to poor signal-to-noise ratio and interfere with the

damage signals. Further, it is not possible to determine parameters such as thickness or the

morphological properties of the damage. This poses a problem for accurate

characterization and quantification of damage due to corrosion and widespread fatigue in

aging metal structures.

Hence we to address the analysis of one type of damage that appears on most

structures, that is corrosion. Corrosion identification and analysis can be considered as

texture analysis process. It is particularly famous in the field on artificial intelligence.

Several methods are being researched and developed in the field of artificial intelligence.

The computational intelligence that can be applied to such texture analysis methods allow

us to apply this in automated inspection problems in various fields such as corrosion

35

detection, medical applications etc. This also incorporates a sense of remote based sensing

and analysis
1
.

The java program that is being developed is designed with respect to a broad region

of application possibilities that this system can be subjected to. But for the experimentation

and demonstration purposes the completed entities are now just with the corrosion

detection aspects. The program is designed in a user friendly manner with a pleasing GUI

(Graphics User Interface) and a very interactive interface.

The program once compiled and run will first come up with the home page. The

Home page of the software looks as follows;

Figure 15: Home Page

36

Here we have a choice of which functional aspect we choose to work with. The

three available choices at this point of time are corrosion, bone and cancer. The corrosion

button leads you to the options of analyzing and prediction metal corrosion with images

obtained from the remote handheld sensor. The Bone button is designed for medical

applications pertaining towards bone structure analysis which is something that will be

developed in the next stages of the system development. Similarly the cancer button is for

medical applications pertaining towards cancer detection and analysis. This is for later

development as well.

Upon selecting the Corrosion button we more on to the Structural health

assessment page in the software.

37

Figure 16: Corrosion Assessment Page

 Here we can choose the various sensor devices and its captured images and send it

through analysis. As per the design setup the images which were captured from various

sensors from remote locations are relayed and stored in the database on the server system.

From here we get to choose the images by clicking on the type of image we want and then

sending them for processing.

Suppose the camera images button is chosen then we move to the browse page

where the subsequent directories are allowed to be browsed for selection and analysis.

38

Figure 17: Browse Page

Once we have selected the image to be analyzed, it is sent through a set of

procedures for damage identification and quantification. The overall process of

identification and quantification is essentially involves two stages, first being the

classification of various regions in the image as corroded or un-corroded. Second being the

prediction of the material loss of the corroded regions.

The classification process involves segmenting the image into various regions.

Multi-resolution wavelet analysis is performed on the NDI images to obtain a set of

39

wavelet coefficients as feature vectors. These features will be used for the identification of

the damaged regions on the images using clustering techniques.

Each of the segments on the segmented image would correspond to a damaged

region or an undamaged region. There are several algorithms available for segmentation

process based on images. Amongst these however texture based segmentation on wavelets

is considered a powerful technique. After the image is segmented, histogram features are

extracted from each segment.

After the damaged segments are indentified, a number of features are extracted

from each identified segment and a back propagation neural network is used to quantify the

damage. Neural networks are capable of realizing a variety of nonlinear relationships of

considerable complexity and are effectively used in this research. The quantification of

damage is based on the extent material loss.

After sending it through the image based analysis steps and procedures the software

then shows the images that were produced during processed such as original image,

segmented image, identified regions image and wavelet transforms image.

40

Figure 18: Processing stages of Input Image

These images along with some quantified values can be used to identify and quantify the

corrosion of the metal surfaces that are being analyzed. The personnel analyzing these

images can then make a decision on what is has to be done with the metal surface under

analysis.

41

5.1 Installing the Java Virtual Machine on the gumstix

A programming environment had to be setup on the gumstix so as to be able to

write target application programs that could be run on the gumstix as well. For this java

was the proffered the programming language, due to its graphical interface development

and its ease of programming.

To setup Java on the gumstix a proper java environment was required to be able to

run java virtual machine on the gumstix architecture. For the Gumstix a recommended java

virtual machine is “JamVM”. It is small and very efficient for the arm architecture.

These were the following ipkg packages that were installed onto the gumstix kernel

to setup a java virtual machine and programming environment onto it;

 ‘classpath_0.96.1-r2_armv5te.ipk ‘

‘classpath-common_0.96.1-r2_armv5te.ipk‘

 jamvm-dev_1.5.0-r0_armv5te.ipk

jamvm-dbg_1.5.0-r0_armv5te.ipk

jikes_1.22-r1_armv5te.ipk

classpath-dbg_0.96.1-r2_armv5te.ipk

classpath-dev_0.96.1-r2_armv5te.ipk

classpath-doc_0.96.1-r2_armv5te.ipk

classpath-examples_0.96.1-r2_armv5te.ipk

classpath-gconf_0.96.1-r2_armv5te.ipk

classpath-gtk_0.96.1-r2_armv5te.ipk

classpath-tools-doc_0.96.1-r2_armv5te.ipk

classpath-tools_0.96.1-r2_armv5te.ipk

This enabled us to get java programs running on gumstix handheld unit.

42

6. Server Side Configuration and Data Upload Access

The server side configuration primarily involves the method in which the data that

is being relayed by the handheld device is stored on the server machine for processing

them with the computational analysis software. The idea is to facilitate real time upload of

data which is initiated from the handheld device as and when it captures a new image or

related data from its sensors.

To enable such kind of real time uploads from the handheld device a web-server

was setup on the server machine. A web server is a computer program that is responsible

for accepting HTTP requests from web clients, which are known as web browsers, and

serving them HTTP responses along with optional data contents, which usually are web

pages such as HTML documents and linked objects (images, etc.).

The scripting for such a server setup is done with PHP. PHP is a widely-used

general-purpose scripting language that is especially suited for web development and can

be embedded into HTML. It generally runs on a web server, taking PHP code as its input

and creating web pages as output. It can be deployed on most web servers and on almost

every operating system and platform free of charge.

43

The server machine that has been setup for experimental purpose for this system is

a Unix based Ubuntu Linux machine. The Ubuntu OS has a webserver in it by default. The

default webserver in it was Apache.

44

7. Future Work and Conclusion

There is a broad range of applications that these kinds of a wireless handheld

sensor system can be implemented in. For experimental purposes it was chose to first run

trial analysis with corrosion detection on metal surfaces. The test are planned to be

conducted on certain bridges in Virginia. Based on these test and its corresponding

success, the next plan is to extend the application of this device onto other fields.

One big area of interest is in the field of medical application. The idea is to enable

the handheld unit with x sensors capable of capturing images of bone and cancer. Thus

considering a scenario of a accident victim the developed handheld device can be used at

the site of the accident itself by the ambulance personal, and then relay the images captured

to the nearest hospital where the doctor get to study and analyze the patients condition

without the patient having to be there. Thus enabling the doctor to get right into helping the

patient out when he does arrive.

 Similar plans of application can be put forward in cancer detection and

monitoring. Ultimately the system can be implemented where ever remote analysis and

data retrieval is required. Thus the intention of this project is to build a strong foundation

for developing different kinds of such handheld unit capable of performing several tasks.

45

Literature Cited

46

Literature Cited

1
 Bartelds, G. (1998). Aircraft structural health monitoring, prospects for smart solutions

from a European

viewpoint. Journal of Intelligent Material Systems and Structures, 9, 906–910.

2

Finlayson, R. D.; Friesel, M. A.; Carlos, M. F.; Miller, R.; Godinez, V. (2000): Acoustic

Emission Structural Health Management Systems (AE-SHMS). Proceedings of SPIE - The

International Society for Optical Engineering, v 3994, pp. 128-137.

3
 Haugse, E.; Leeks, T.; Ikegami, R.; Johnson, P.; Ziola, S.; Dorighi, J.; May, S.; Phelps,

N. (1999): Crack growth detection and monitoring using broadband acoustic emission

techniques. Proceedings of SPIE - The International Society for Optical Engineering, vol.

3586, pp. 32-40.

4
 Rong-Sheng, G. (2004): Evaluation of calendar damage of aircraft structures using

acoustic emission. Key Engineering Materials, v 270-273, No. I, pp. 503-509.

5
 Wilson, D. S.; Hagemaier, D. J. (1999): ABCs of NDT development and adoption for

aging aircraft. Materials Evaluation, vol. 57, No. 3, pp. 336-346.

6
 Reda Taha, M. M., Noureldin, A., Lucero, J. L. and Baca, T. J. (2006) Wavelet

Transform for Structural Health Monitoring: A Compendium of Uses and Features.

Structural Health Monitoring, 5: 267-295.

7
 J.Wang, M. Mbonisi and J. Liu, ``Supporting Video Data in Wireless Sensor Networks,"

IEEE International Symposium on Multimedia, 2007.

8
 J.Wang and J. Liu, ``Uplink Relaying in Wireless Networks with Out-of-cell Interference

Reduction," ACM Journal of Wireless Network, accepted.

9
 ZigBee™/IEEE 802.15.4-Transceiver AT86RF230, Datasheet

10

 Chopard, B. and Droz, M. (1998). Cellular Automata

Modeling of Physical Systems, Cambridge University

Press, England.

11

 Malik, J. and Perona, P. (1990). Preattentive texture

discrimination with early vision mechanisms. J. Opt.

Soc. Am. Series, A7, 923–932.

12

 Turner, M.R. (1986). Texture discrimination by Gabor

47

functions. Biol. Cybern., 55, 71–82.
13

 M.J. Palak, R. M. V. Pidaparti, S. Rebbapragada, Intelligent computational methods for

corrosion damage assessment, AIAA journal, Vol. 39, No. 10, October 2001.

14

 C328-7640 Data Sheet

15
 ATmega1280/V, ATmega1281/V datasheet

16

 Sierra Wireless AIRCARD® 595U USB MODEM

48

APPENDIX A

Code for homepage.java

import java.awt.Toolkit;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

//import java.applet.*;

import com.borland.jbcl.layout.*;

import java.io.*;

import java.net.*;

import java.awt.image.*;

import javax.imageio.*;

public class homePage extends JFrame

{//MainIsdas

 boolean isStandalone = false;

 int checkFlag = 2;

 //Required For Header.

 JPanel headerPanel = new JPanel();

 JLabel isdasLabel = new JLabel();

 JLabel corrLabel = new JLabel();

 JLabel VCULabel = new JLabel();

 JButton imageButton = new JButton();

 JButton analyticalButton = new JButton();

 JPanel cardPanel = new JPanel();

 CardLayout cardLayout1 = new CardLayout();

 //Required for Image Panel.

 Button originalImageButton = new Button();

 JPanel imagePanel = new JPanel();

 JPanel analyticalPanel = new JPanel();

 JLabel titleLabel = new JLabel();

 JTextField matlTypeText = new JTextField();

 JLabel deviceLabel = new JLabel();

49

 JComboBox deviceChoice = new JComboBox();

 JLabel frequencyLabel = new JLabel();

 JTextField frequencyText = new JTextField();

 JLabel filenameLabel = new JLabel();

 public JTextField filenameText = new JTextField();

 JButton browseButton = new JButton();

 JLabel imageTypeLabel = new JLabel();

 JLabel textLabel = new JLabel();

 JButton processButton = new JButton();

 JButton exitButton = new JButton();

 JButton corrosionButton = new JButton();

 JButton boneButton = new JButton();

 JButton cancerButton = new JButton();

 JCheckBox panelCheckBox = new JCheckBox();

 CheckboxGroup imageCheckboxGroup = new CheckboxGroup();

 JCheckBox corrodeCheckBox = new JCheckBox();

 JButton cameraButton = new JButton();

 ImageIcon icon = new ImageIcon("newimg.jpg",

 "a pretty but meaningless splat");

 JLabel imageLabel = new JLabel("", icon, JLabel.CENTER);

 ImageIcon logo = new ImageIcon("logo.jpg",

 "VCUlogo");

 JLabel logoLabel = new JLabel("", logo,JLabel.LEFT);

 XYLayout xYLayout1 = new XYLayout();

 XYLayout xYLayout2 = new XYLayout();

 XYLayout xYLayout3 = new XYLayout();

 XYLayout xYLayout4 = new XYLayout();

 //stuff for testFrame computation

 private String fileName;

 private BufferedReader input;

 private PpmReader ppmhandler;

 private int height, width;

 private ImageMatrix OriginalImage;

 private ImageMatrix SegmentedImage;

 private BufferedImage image;

 private MarkSegments markSegments;

 private String catString;

50

 private float waveMat[][];

 private float MyImage[][];

 private ImageMatrix LLImage;

//Begin of constructor Check

 public homePage(String file, String catString)

 {

 super(" Health Assessment Agent");

 }//End of contructor check

 //MAIN Method

 public static void main(String m[])

 {

 new homePage();

 }

 //Construct the application

 public homePage() {

 super("Analysis and Prediction");

 setResizable(false);

 init();

 setVisible(true);

 setSize(640,500);//pack();

 }

 //Initialize the application

 public void init() {

 try {

 jbInit();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 //Component initialization

51

 private void jbInit() throws Exception {

 Color headColor = new Color(50,50,50);

 //Header Initialization.

 corrLabel.setBackground(Color.gray);

 corrLabel.setForeground(Color.white);

 corrLabel.setFont(new java.awt.Font("Dialog", 1, 17));

 corrLabel.setName("corrLabel");

 corrLabel.setAlignmentX(1);

 corrLabel.setText("H E A L T H A S S E S S M E N T A N D P R E D I C T I

O N");

 corrLabel.setVerticalAlignment(SwingConstants.CENTER);

 this.setBackground(Color.GRAY);

 this.setLayout(xYLayout4);

 headerPanel.setBackground(headColor);

 headerPanel.setName("headerPanel");

 headerPanel.setLayout(xYLayout3);

 VCULabel.setBackground(Color.gray);

 VCULabel.setForeground(Color.yellow);

 VCULabel.setFont(new java.awt.Font("Dialog", 1, 20));

 VCULabel.setName("corrLabel");

 VCULabel.setAlignmentX(1);

 VCULabel.setText(" V C U");

 VCULabel.setVerticalAlignment(SwingConstants.CENTER);

 titleLabel.setBackground(Color.gray);

 titleLabel.setForeground(Color.green);

 titleLabel.setFont(new java.awt.Font("Dialog", 1, 20));

 titleLabel.setName("titleLabel");

 titleLabel.setAlignmentX(1);

 titleLabel.setText("Wireless Sensor And Computational Intelligence");

 titleLabel.setVerticalAlignment(SwingConstants.CENTER);

 Color bodyColor = new Color(85,85,85);

 // Card Panel Initialization.

 cardPanel.setBackground(Color.lightGray);

 cardPanel.setName("cardPanel");

52

 cardPanel.setLayout(cardLayout1);

 //Card Panel comprises of two panels : Image Panel and Analytical Panel.

 imagePanel.setBackground(bodyColor);

 imagePanel.setName("imagePanel");

 imagePanel.setLayout(xYLayout1);

 textLabel.setOpaque(true);

 textLabel.setBackground(null);

 textLabel.setFont(new Font("Dialog", 1, 14));

 textLabel.setForeground(Color.white);

 textLabel.setName("textLabel");

 //textLabel.setAlignmentX(1);

 textLabel.setText(" Click on Browse to select an image for processing");

 browseButton.setBackground(Color.darkGray);

 browseButton.setFont(new Font("Dialog", 1, 12));

 browseButton.setForeground(Color.white);

 browseButton.setName("browseButton");

 browseButton.setLabel("BROWSE");

 browseButton.addActionListener(new homePage_browseButton_actionAdapter(this));

 exitButton.setBackground(Color.darkGray);

 exitButton.setFont(new Font("Dialog", 1, 12));

 exitButton.setForeground(Color.white);

 exitButton.setName("exitButton");

 exitButton.setLabel("EXIT");

 exitButton.addActionListener(new homePage_exitButton_actionAdapter(this));

 corrosionButton.setBackground(Color.darkGray);

 corrosionButton.setFont(new Font("Dialog", 1, 12));

 corrosionButton.setForeground(Color.white);

 corrosionButton.setName("corrosionButton");

 corrosionButton.setLabel("CORROSION");

 corrosionButton.addActionListener(new

homePage_corrosionButton_actionAdapter(this));

 boneButton.setBackground(Color.darkGray);

 boneButton.setFont(new Font("Dialog", 1, 12));

 boneButton.setForeground(Color.white);

53

 boneButton.setName("boneButton");

 boneButton.setLabel("BONE");

 boneButton.addActionListener(new homePage_boneButton_actionAdapter(this));

 cancerButton.setBackground(Color.darkGray);

 cancerButton.setFont(new Font("Dialog", 1, 12));

 cancerButton.setForeground(Color.white);

 cancerButton.setName("cancerButton");

 cancerButton.setLabel("CANCER");

 cancerButton.addActionListener(new homePage_cancerButton_actionAdapter(this));

 originalImageButton.setBackground(Color.black);

 originalImageButton.setFont(new java.awt.Font("Dialog", 1, 12));

 originalImageButton.setForeground(Color.green);

 originalImageButton.setName("originalImageButton");

 originalImageButton.setLabel("Original Image");

 //originalImageButton.addActionListener(new

homePage_originalImageButton_actionAdapter(this));

 originalImageButton.addActionListener(new

java.awt.event.ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 //originalImageButton_actionPerformed(e);

 DisplayImage display = new

DisplayImage("Original_"+fileName,OriginalImage);

 }

 });

 xYLayout4.setHeight(510); //BELLE

 xYLayout4.setWidth(628);

 this.add(headerPanel, new XYConstraints(-1, 0, 634, 95));

 //headerPanel.add(isdasLabel, new XYConstraints(89, 1, 453, 23));

 headerPanel.add(corrLabel, new XYConstraints(89, 22, 500, 28));

 headerPanel.add(VCULabel, new XYConstraints(150, 55, 453, 24));

 headerPanel.add(logoLabel, new XYConstraints(6, 20, 60, 60));

 //headerPanel.add(analyticalButton, new XYConstraints(347, 57, 127, 29));

54

 //headerPanel.add(imageButton, new XYConstraints(140, 58, 119, 29));

 this.add(cardPanel, new XYConstraints(-1, 83, 634, 425));

 cardPanel.add(imagePanel, "imagePanel");

 //imagePanel.add(browseButton, new XYConstraints(70, 321, 173, 29));

 imagePanel.add(exitButton, new XYConstraints(400, 321, 173, 29));

 imagePanel.add(corrosionButton, new XYConstraints(310, 120, 173, 29));

 imagePanel.add(boneButton, new XYConstraints(310, 170, 173, 29));

 imagePanel.add(cancerButton, new XYConstraints(310, 230, 173, 29));

 //imagePanel.add(originalImageButton, new XYConstraints(91, 88, 196, 31));

 imagePanel.add(titleLabel, new XYConstraints(91, 20, 600, 31));

 //imagePanel.add(textLabel, new XYConstraints(140, 270, 360, 29));

 imagePanel.add(imageLabel, new XYConstraints(30,60,250,300));

 }// End of Class check

 void browseButton_actionPerformed(ActionEvent e)

 {

 //System.out.println("Stop clicking me");

 String[] args = new String[]{};

 RunFileLister rfl = new RunFileLister(args);

 Thread t = new Thread(rfl);

 t.start();

 }

void originalImageButton_actionPerformed(ActionEvent e)

 {

 DisplayImage display;

 display = new DisplayImage("Original_"+fileName,OriginalImage);

 System.out.println("HELLO Original");

 }

 void exitButton_actionPerformed(ActionEvent e)

 {

 //this.dispose();

 System.exit(0);

 }

 void corrosionButton_actionPerformed(ActionEvent e)

55

 {

 corrosionHome CH = new corrosionHome();

 }

 void boneButton_actionPerformed(ActionEvent e)

 {

 bone b = new bone();

 }

 void cancerButton_actionPerformed(ActionEvent e)

 {

 cancer c = new cancer();

 }

}//end of MainISdas

// Image Panel Related Classes.

class homePage_originalImageButton_actionAdapter implements

java.awt.event.ActionListener

 {

 homePage adaptee;

 homePage_originalImageButton_actionAdapter(homePage adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.originalImageButton_actionPerformed(e);

 }

 }

class homePage_browseButton_actionAdapter implements java.awt.event.ActionListener

{

 homePage adaptee;

 homePage_browseButton_actionAdapter(homePage adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

56

 {

 adaptee.browseButton_actionPerformed(e);

 }

}

class homePage_corrosionButton_actionAdapter implements

java.awt.event.ActionListener

{

 homePage adaptee;

 homePage_corrosionButton_actionAdapter(homePage adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.corrosionButton_actionPerformed(e);

 }

}

class homePage_boneButton_actionAdapter implements java.awt.event.ActionListener

{

 homePage adaptee;

 homePage_boneButton_actionAdapter(homePage adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.boneButton_actionPerformed(e);

 }

}

class homePage_cancerButton_actionAdapter implements java.awt.event.ActionListener

{

 homePage adaptee;

 homePage_cancerButton_actionAdapter(homePage adaptee)

 {

57

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.cancerButton_actionPerformed(e);

 }

}

class homePage_exitButton_actionAdapter implements java.awt.event.ActionListener

{

 homePage adaptee;

 homePage_exitButton_actionAdapter(homePage adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.exitButton_actionPerformed(e);

 }

}

58

Code for Corrosionhome.java

import java.awt.Toolkit;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

//import java.applet.*;

import com.borland.jbcl.layout.*;

import java.io.*;

import java.net.*;

import java.awt.image.*;

import javax.imageio.*;

public class corrosionHome extends JFrame

{//MainIsdas

 boolean isStandalone = false;

 int checkFlag = 2;

 //Required For Header.

 JPanel headerPanel = new JPanel();

 JLabel isdasLabel = new JLabel();

 JLabel corrLabel = new JLabel();

 JLabel VCULabel = new JLabel();

 JButton imageButton = new JButton();

 JButton analyticalButton = new JButton();

 JPanel cardPanel = new JPanel();

 CardLayout cardLayout1 = new CardLayout();

 //Required for Image Panel.

 Button originalImageButton = new Button();

 JPanel imagePanel = new JPanel();

 JPanel analyticalPanel = new JPanel();

 JLabel titleLabel = new JLabel();

 JTextField matlTypeText = new JTextField();

 JLabel deviceLabel = new JLabel();

 JComboBox deviceChoice = new JComboBox();

 JLabel frequencyLabel = new JLabel();

 JTextField frequencyText = new JTextField();

 JLabel filenameLabel = new JLabel();

59

 public JTextField filenameText = new JTextField();

 JButton browseButton = new JButton();

 JLabel imageTypeLabel = new JLabel();

 JLabel textLabel = new JLabel();

 JButton processButton = new JButton();

 JButton exitButton = new JButton();

 JButton analyseButton = new JButton();

 JButton cameraButton = new JButton();

 JButton boneButton = new JButton();

 JButton cancerButton = new JButton();

 JCheckBox panelCheckBox = new JCheckBox();

 CheckboxGroup imageCheckboxGroup = new CheckboxGroup();

 JCheckBox corrodeCheckBox = new JCheckBox();

 //JButton cameraButton = new JButton();

 ImageIcon icon = new ImageIcon("Structure.jpg",

 "a pretty but meaningless splat");

 JLabel imageLabel = new JLabel("", icon, JLabel.CENTER);

 ImageIcon logo = new ImageIcon("logo.jpg",

 "VCUlogo");

 JLabel logoLabel = new JLabel("", logo,JLabel.LEFT);

 XYLayout xYLayout1 = new XYLayout();

 XYLayout xYLayout2 = new XYLayout();

 XYLayout xYLayout3 = new XYLayout();

 XYLayout xYLayout4 = new XYLayout();

 //stuff for testFrame computation

 private String fileName;

 private BufferedReader input;

 private PpmReader ppmhandler;

 private int height, width;

 private ImageMatrix OriginalImage;

 private ImageMatrix SegmentedImage;

 private BufferedImage image;

 private MarkSegments markSegments;

 private String catString;

 private float waveMat[][];

 private float MyImage[][];

 private ImageMatrix LLImage;

60

//Begin of constructor Check

 public corrosionHome(String file, String catString)

 {

 super(" Health Assessment Agent");

 new corrosionHome();

 // setResizable(false);

 // init();

 // setVisible(true);

 // setSize(640,500);//pack();

 //belle

 }//End of contructor check

 //MAIN Method

 public static void main(String m[])

 {

 new corrosionHome();

 }

 //Construct the application

 public corrosionHome() {

 super("Analysis and Prediction");

 setResizable(false);

 init();

 setVisible(true);

 setSize(640,500);//pack();

 }

 //Initialize the application

 public void init() {

 try {

61

 jbInit();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 //Component initialization

 private void jbInit() throws Exception {

 Color headColor = new Color(50,50,50);

 //Header Initialization.

 corrLabel.setBackground(Color.gray);

 corrLabel.setForeground(Color.white);

 corrLabel.setFont(new java.awt.Font("Dialog", 1, 17));

 corrLabel.setName("corrLabel");

 corrLabel.setAlignmentX(1);

 corrLabel.setText("H E A L T H A S S E S S M E N T A N D P R E D I C T I

O N");

 corrLabel.setVerticalAlignment(SwingConstants.CENTER);

 this.setBackground(Color.GRAY);

 this.setLayout(xYLayout4);

 headerPanel.setBackground(headColor);

 headerPanel.setName("headerPanel");

 headerPanel.setLayout(xYLayout3);

 VCULabel.setBackground(Color.gray);

 VCULabel.setForeground(Color.yellow);

 VCULabel.setFont(new java.awt.Font("Dialog", 1, 20));

 VCULabel.setName("corrLabel");

 VCULabel.setAlignmentX(1);

 VCULabel.setText(" V C U");

 VCULabel.setVerticalAlignment(SwingConstants.CENTER);

 titleLabel.setBackground(Color.gray);

 titleLabel.setForeground(Color.green);

 titleLabel.setFont(new java.awt.Font("Dialog", 1, 20));

 titleLabel.setName("titleLabel");

 titleLabel.setAlignmentX(1);

62

 titleLabel.setText("Structural Health Assessment");

 titleLabel.setVerticalAlignment(SwingConstants.CENTER);

 Color bodyColor = new Color(85,85,85);

 // Card Panel Initialization.

 cardPanel.setBackground(Color.lightGray);

 cardPanel.setName("cardPanel");

 cardPanel.setLayout(cardLayout1);

 //Card Panel comprises of two panels : Image Panel and Analytical Panel.

 imagePanel.setBackground(bodyColor);

 imagePanel.setName("imagePanel");

 imagePanel.setLayout(xYLayout1);

 textLabel.setOpaque(true);

 textLabel.setBackground(null);

 textLabel.setFont(new Font("Dialog", 1, 14));

 textLabel.setForeground(Color.white);

 textLabel.setName("textLabel");

 //textLabel.setAlignmentX(1);

 textLabel.setText(" Click on Browse to select an image for processing");

 browseButton.setBackground(Color.darkGray);

 browseButton.setFont(new Font("Dialog", 1, 12));

 browseButton.setForeground(Color.white);

 browseButton.setName("browseButton");

 browseButton.setLabel("BROWSE");

 browseButton.addActionListener(new

corrosionHome_browseButton_actionAdapter(this));

 exitButton.setBackground(Color.darkGray);

 exitButton.setFont(new Font("Dialog", 1, 12));

 exitButton.setForeground(Color.white);

 exitButton.setName("exitButton");

 exitButton.setLabel("CLOSE");

 exitButton.addActionListener(new corrosionHome_exitButton_actionAdapter(this));

 cameraButton.setBackground(Color.darkGray);

 cameraButton.setFont(new Font("Dialog", 1, 12));

63

 cameraButton.setForeground(Color.green);

 cameraButton.setName("sensor1Button");

 cameraButton.setLabel("CAMERA IMAGES");

 cameraButton.addActionListener(new

corrosionHome_cameraButton_actionAdapter(this));

 analyseButton.setBackground(Color.darkGray);

 analyseButton.setFont(new Font("Dialog", 1, 12));

 analyseButton.setForeground(Color.green);

 analyseButton.setName("analyseButton");

 analyseButton.setLabel("ANALISYS");

 analyseButton.addActionListener(new

corrosionHome_analyseButton_actionAdapter(this));

 boneButton.setBackground(Color.darkGray);

 boneButton.setFont(new Font("Dialog", 1, 12));

 boneButton.setForeground(Color.green);

 boneButton.setName("sensor2Button");

 boneButton.setLabel("ULTRASOUND IMAGES");

 //boneButton.addActionListener(new corrosionHome_exitButton_actionAdapter(this));

 cancerButton.setBackground(Color.darkGray);

 cancerButton.setFont(new Font("Dialog", 1, 12));

 cancerButton.setForeground(Color.green);

 cancerButton.setName("sensor3Button");

 cancerButton.setLabel("SENSOR 3 IMAGES");

 //cancerButton.addActionListener(new

corrosionHome_exitButton_actionAdapter(this));

 originalImageButton.setBackground(Color.black);

 originalImageButton.setFont(new java.awt.Font("Dialog", 1, 12));

 originalImageButton.setForeground(Color.green);

 originalImageButton.setName("originalImageButton");

 originalImageButton.setLabel("Original Image");

 //originalImageButton.addActionListener(new

corrosionHome_originalImageButton_actionAdapter(this));

 originalImageButton.addActionListener(new

java.awt.event.ActionListener()

 {

 public void actionPerformed(ActionEvent e)

64

 {

 //originalImageButton_actionPerformed(e);

 DisplayImage display = new

DisplayImage("Original_"+fileName,OriginalImage);

 }

 });

 xYLayout4.setHeight(510); //BELLE

 xYLayout4.setWidth(628);

 this.add(headerPanel, new XYConstraints(-1, 0, 634, 95));

 //headerPanel.add(isdasLabel, new XYConstraints(89, 1, 453, 23));

 headerPanel.add(corrLabel, new XYConstraints(89, 22, 500, 28));

 headerPanel.add(VCULabel, new XYConstraints(150, 55, 453, 24));

 headerPanel.add(logoLabel, new XYConstraints(6, 20, 60, 60));

 //headerPanel.add(analyticalButton, new XYConstraints(347, 57, 127, 29));

 //headerPanel.add(imageButton, new XYConstraints(140, 58, 119, 29));

 this.add(cardPanel, new XYConstraints(-1, 83, 634, 425));

 cardPanel.add(imagePanel, "imagePanel");

 //imagePanel.add(browseButton, new XYConstraints(70, 321, 173, 29));

 imagePanel.add(exitButton, new XYConstraints(440, 351, 173, 29));

 imagePanel.add(cameraButton, new XYConstraints(30, 300, 173, 29));

 imagePanel.add(analyseButton, new XYConstraints(240, 260, 173, 29));

 imagePanel.add(boneButton, new XYConstraints(240, 300, 173, 29));

 imagePanel.add(cancerButton, new XYConstraints(440, 300, 173, 29));

 //imagePanel.add(originalImageButton, new XYConstraints(91, 88, 196, 31));

 imagePanel.add(titleLabel, new XYConstraints(160, 20, 600, 31));

 //imagePanel.add(textLabel, new XYConstraints(140, 270, 360, 29));

 //imagePanel.add(imageLabel, new XYConstraints(150,60,300,230));

 imagePanel.add(imageLabel, new XYConstraints(10,50,600,200));

 }// End of Class check

 void browseButton_actionPerformed(ActionEvent e)

 {

 //System.out.println("Stop clicking me");

65

 String[] args = new String[]{};

 RunFileLister rfl = new RunFileLister(args);

 Thread t = new Thread(rfl);

 t.start();

 }

void originalImageButton_actionPerformed(ActionEvent e)

 {

 DisplayImage display;

 display = new DisplayImage("Original_"+fileName,OriginalImage);

 System.out.println("HELLO Original");

 }

 void cameraButton_actionPerformed(ActionEvent e)

 {

 MainIsdas M = new MainIsdas();

 }

 void analyseButton_actionPerformed(ActionEvent e)

 {

 analyse A = new analyse();

 }

 void exitButton_actionPerformed(ActionEvent e)

 {

 this.dispose();

 //System.exit(0);

 }

}//end of MainISdas

// Image Panel Related Classes.

class corrosionHome_originalImageButton_actionAdapter implements

java.awt.event.ActionListener

 {

 corrosionHome adaptee;

 corrosionHome_originalImageButton_actionAdapter(corrosionHome

adaptee)

 {

 this.adaptee = adaptee;

 }

66

 public void actionPerformed(ActionEvent e)

 {

 adaptee.originalImageButton_actionPerformed(e);

 }

 }

class corrosionHome_browseButton_actionAdapter implements

java.awt.event.ActionListener

{

 corrosionHome adaptee;

 corrosionHome_browseButton_actionAdapter(corrosionHome adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.browseButton_actionPerformed(e);

 }

}

class corrosionHome_analyseButton_actionAdapter implements

java.awt.event.ActionListener

{

 corrosionHome adaptee;

 corrosionHome_analyseButton_actionAdapter(corrosionHome adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.analyseButton_actionPerformed(e);

 }

}

class corrosionHome_cameraButton_actionAdapter implements

java.awt.event.ActionListener

{

67

 corrosionHome adaptee;

 corrosionHome_cameraButton_actionAdapter(corrosionHome adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.cameraButton_actionPerformed(e);

 }

}

class corrosionHome_exitButton_actionAdapter implements java.awt.event.ActionListener

{

 corrosionHome adaptee;

 corrosionHome_exitButton_actionAdapter(corrosionHome adaptee)

 {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e)

 {

 adaptee.exitButton_actionPerformed(e);

 }

}

68

Code for Capture.sh

#!/bin/bash

Shell scrip to send upload a file online using curl command.

uvccapture

curl -F ufile=@snap.jpg -F Submit=Upload http://128.172.192.82:3310/upload_ac.php

 echo "done"

69

Code of the Java Program on the Gumstix

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.InputEvent;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

import java.io.*;

public class ButtonActionSample {

 public static void main(String args[]) throws Exception

{

 JFrame frame = new JFrame("Button Sample");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Select Me");

 ActionListener actionListener = new ActionListener() {

 public void actionPerformed(ActionEvent actionEvent) {

 System.out.println("I was selected.");

/* try {

Process p = Runtime.getRuntime().exec("cmd /C dir"); } catch (IOException e) {

 e.printStackTrace();}

 System.out.println("done");

 }*/

 try {

 Process p = Runtime.getRuntime().exec("capture.sh");

70

 // Process p1 = Runtime.getRuntime().exec("curl -F ufile=@snap.jpg -F

Submit=Upload http://%s/upload_ac.php");

 System.out.println("Snap has been taken and uploaded online! ");

//PrintWriter pw = new PrintWriter(new OutputStreamWriter(p1.getOutputStream()));

 } catch (IOException e) {

 e.printStackTrace();

}

}

 };

 button.addActionListener(actionListener);

 Container contentPane = frame.getContentPane();

 contentPane.add(button, BorderLayout.CENTER);

 frame.setSize(300, 100);

 frame.setVisible(true);

 }

}

	Virginia Commonwealth University
	VCU Scholars Compass
	2008

	WIRELESS INTELLIGENT STRUCTURAL HEALTH MONITORING SYSTEM
	Belle Ashwin
	Downloaded from

	Microsoft Word - bin.doc

