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ABSTRACT 
 
GaN heterojunction FET device Fabrication, Characterization and 

Modeling 
 

By Qian Fan, Ph.D 
 

A dissertation submitted in partial satisfaction of the preliminary examination 
requirements for the degree of Doctor of Philosophy in Electrical and Computer 

Engineering at Virginia Commonwealth University 
 

Director: Dr. Hadis Morkoç 
 

 

This dissertation is focused on the research efforts to develop the growth, processing, and 

modeling technologies for GaN-based Heterojunction Field Effect Transistors (HFETs). The 

interest in investigating GaN HFETs is motivated by the advantageous material properties of 

nitride semiconductor such as large band gap, large breakdown voltage, and high saturation 

velocity, which make it very promising for the high power and microwave applications.  

Although enormous progress has been made on GaN transistors in the past decades, the 

technologies for nitride transistors are still not mature, especially concerning the reliability and 

stability of the device. In order to improve the device performance, we first optimized the growth 

and fabrication procedures for the conventional AlGaN barrier HFET, on which high carrier 

mobility and sheet density were achieved. Second, the AlInN barrier HFET was successfully 

processed, with which we obtained improved I-V characteristics compared with conventional 

structure. The lattice-matched AlInN barrier is beneficial in the removal of strain, which leads to 

better carrier transport characteristics. Furthermore, new device structures have been examined, 

including recess-gate HFET with n+ GaN cap layer and gate-on-insulator HFET, among which 

the insertion of gate dielectrics helps to leverage both DC and microwave performances.  



In order to depict the microwave behavior of the HFET, small signal modeling 

approaches were used to extract the extrinsic and intrinsic parameters of the device. An 18-

element equivalent circuit model for GaN HFET has been proposed, from which various 

extraction methods have been tested. Combining the advantages from the cold-FET 

measurements and hot-FET optimizations, a hybrid extraction method has been developed, in 

which the parasitic capacitances were attained from the cold pinch-off measurements while the 

rest of the parameters from the optimization routine. Small simulation error can be achieved by 

this method over various bias conditions, demonstrating its capability for the circuit level design 

applications for GaN HFET.    

Device physics modeling, on the other hand, can help us to reveal the underlying physics 

for the device to operate. With the development of quantum drift-diffusion modeling, the self-

consistent solution to the Schrödinger-Poisson equations and carrier transport equations were 

fulfilled. Lots of useful information such as band diagram, potential profile, and carrier 

distribution can be retrieved. The calculated results were validated with experiments, especially 

on the AlInN layer structures after considering the influence from the parasitic Ga-rich layer on 

top of the spacer. Two dimensional cross-section simulation shows that the peak of electrical 

field locates at the gate edge towards the drain, and of different kinds of structures the device 

with gate field-plate was found to efficiently reduce the possibility of breakdown failure.  

 

 

 

 

 



Chapter 1 Introduction 

1.1 Background  

Nitride-based compound semiconductors have already played a dominant role in optical-

electronic device applications such as LEDs and LDs, covering the color spectrum ranging from 

green (530 nm) to UV (360 nm) due to the wide band gap span from 0.9 eV for InN, 3.4 eV for 

GaN and 6.2 eV for AlN1. On the other hand, the unique electrical properties of GaN material 

suggest it to be an ideal candidate for microwave power device applications too. The wide band 

gap leads to high breakdown voltage up to 10KV for GaN transistors2; strong polarization effects 

induce large sheet electron density reaching 5×1013 cm-2 for AlN/GaN heterojunction45; high 

electron saturation and overshot velocity reaches 107 cm/s3, and good thermal conductivity can 

enable the transistor work in a harsh environment with temperatures over 500ºC4. The potential 

applications can cover various fields including wireless communication, auto-electronics, 

military radar, and aerospace etc. The basic material parameters for GaN and other 

semiconductors are listed in Table 1. 1.  

 Si 6H-SiC GaAs GaN 

Bandgap (eV) 1.11 2.9 1.43 3.42 

Dielectric Constant 11.8 10 12.8 8.9 

RT Electron Mobility (cm2/Vs) 1300 600 8000 440 

Breakdown Field (V/cm) 2.5×105 2.5×106 4×105 5×106 

Thermal Conductivity (W/cmºC) 1.3 4.9 0.55 2.3 

Saturation Velocity (cm/s) 1.0×107 2.0×107 2.0×107 2.5×107 

Table 1. 1 The comparison in material properties of different semiconductors, taken from ref. 5 



 

Lots of research has been carried out to push the advancing on the GaN transistors. Among 

all kinds of device structures, the heterojunction field effect transistor is by far the most well-

developed and studied. Compared with conventional GaAs and InP HFET whose capability has 

almost been fully utilized by far, there is still substantial room for improving the device 

performance on GaN devices. For example, the best number on GaAs HFET was achieved with a 

power density of 1.4 W/mm at 8.0 GHz in 1980’s 6 . The improvement in power density 

(1.6W/mm) can be reached with sacrificing the operation frequency range (2GHz)7. The larger 

electron saturation velocity of InP enables it operate at a higher frequency band (30GHz), with 

similar power density (1.45W/mm) compared with GaAs HFET8. While for GaN, after the first 

successful demonstration on HFET device in 19949, it has been experiencing a rapid progress. 

9.4 W/mm power density has been reported on AlGaN/GaN HFET working at 10 GHz10 in 2004.  

In late 2006, Toshiba announced that their GaN HFET prototypes were working at 6.0 GHz (C-

band) with the highest recorded output power of 174W; and 81.3 W at 9.5 GHz (X-band), which 

has a six times higher power density than the conventional GaAs transistors. We can foresee that 

in near future an industrial supply chain for GaN HFET market embracing material epitaxy, 

device foundries, and system integration will be emerging.   

Besides the great accomplishments that have been achieved, many difficulties and obstacles 

still exist. First on the growth side, due to the lack of the suitable native GaN substrate, most of 

the GaN device structures are grown on foreign substrate such as Sapphire, SiC, or Si. Due to the 

lattice mismatch between GaN and the substrate, large density of defects always reside within 

the heteroeptixial GaN wafers.  How to effectively reduce the defects density of epi-layers is the 

primary goal that can fundamentally enhance device performances. For example, point defects in 



GaN always have deep energy levels and act as electron/hole traps. The trapping and de-trapping 

action has a large time constant, which means it is a relatively slow compared with the swing of 

radio frequency (RF) input signal, and therefore could retard the speed of the transistors. Other 

defects like threading dislocations always behave as the vertical conduction path, which 

increases the leakage current at the operating bias conditions. The thermal issue of the GaN 

devices is also related to the defects. The edge and screw type dislocations as non-radiative 

centers can exaggerate the self-heating, leading to the current collapse problem.  

Regarding the fabrication of GaN HFET, the processing procedures have already been 

standardized, but small and steady breakthroughs have been reported all along, including low 

resistive Ohmic contacts, low-damage plasma etching, recess gate fabrication, sub-micron T-

shape gate, gate with field plate, surface passivation, flip-chip bonding and so on. The research 

on these processing methods aims at maximizing the output performance out of the device 

capacity and solving integrations issues such as thermal managements or signal coupling. 

The device simulation for GaN HFET, on the other hand, is to predict the behavior by taking 

the insightful investigations into the device physics, so that it can help the device structure 

optimization and facilitate the circuit level design. However, the microwave performance, 

especially the large signal behavior of GaN HFET, can still not be precisely modeled. Influences 

such as large parasitic elements, self-heating or defects induced dispersion, current collapse and 

current lag cast a shadow of doubt onto the long-term device reliability, making the equivalent 

circuit extraction more difficult as well. Currently, the underlying cause that makes the modeling 

on GaN HFET differ from experiments is the incorporation of defects during high power 

operation. The establishment of the applicable device simulation methods still depends on the 



further understanding to the material, especially on the electrical behavior of the defects and their 

influence to the carrier transport.  

In this endeavor, I will present my study in this thesis on the various aspects of the GaN 

HFET, ranging from material growth to crystal characterizations; from device fabrication to 

semiconductor physical modeling.   

1.2 Device Growth 

The epitaxial growth of GaN material is often performed on SiC, Si, or Sapphire substrate, 

by molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or metalorganic 

chemical vapor deposition (MOCVD) techniques. MBE system deposits the GaN layer at ultra-

high vacuum, allowing precise control on beam fluxes and growth conditions. But the grow rate 

of MBE is slow, and due to the high vapor pressure of the precursor, the quality of GaN epi-layer 

usually is low. The HVPE system, on the other hand, has a very high GaN growth rate (more 

than 200 µm per hour). Therefore, it is often used to provide GaN bulk materials, but not capable 

of depositing nm scale device structures. Currently, MOCVD is the most widely used technique 

in GaN research because of its high growth rate (2~3 µm per hour), precise control on epi-taxy 

thickness and composition, high uniformity, and relatively easy maintenance.  

In my study, the GaN HFET structures are grown on Sapphire substrate using Emcore 

D125 MOCVD system. The schematic of this system is illustrated in Figure 1. 1. Prior to the 

growth chamber, the group III and V precursors arrive via two separate pipelines, connected to 

the chamber through a specially designed injector to ensure the growth uniformity and correct 

composition.  

Metalorganic (MO) compounds are used for the group III precursors. The metalorganic 

precursors for Ga, Al and In elements have high vapor pressure at room temperature to ensure 



enough mass is transferred into the growth chamber. They also have a good thermal stability in 

resistance to the decomposition during the storage and transport. More importantly, they can 

decompose completely on pyrolysis without leaving any solid byproducts to contaminate the 

growing layer 11,12. The parasitic gas phase reaction between some combinations of precursors 

like TMAl and NH3, and the background impurities associated with precursors such as C and O 

need to be paid attention to at certain circumstances.   

 

Figure 1. 1 A schematic illustration to the Emcore D125 MOCVD system used by this work. 

 

The flow rate of each source is controlled by the mass flow controller (MFC). The 

amount of the source supply rate, in mol/min is determined by the mass flow rate, in sccm, of 

carrier gas into the source bubbler; the vapor pressure of the metalorganic source and the total 

pressure inside the bubbler. The relationship between these parameters is: 

F (mol/min)= F(sccm) · PMO/(PBubbler · 22400) 

TMGa TMAl TMIn

H2 

NH3 SiH4N2 Chamber

Exhaust 



 Equation 1. 1 

By control over the carrier flow rate and the bubbler pressure, one can obtain correct 

composition of III-V alloys.  

High purity NH3 is used as the group III source for nitride growth. The stability of NH3 

requires a high temperature to decompose, but this would cause extra trouble to grow In alloys 

since the weak bond between In and N at high temperature. A V/III ratio typically larger than 

1000 is used for GaN growth, in order to get enough supply on III source and suppress the N loss 

at high temperature. The basic reaction that describes GaN growth in MOCVD system can be 

simply written as:  

Ga(CH3)3+NH3 = GaN+3CH4 

Equation 1. 2 

While the detailed reaction routes can be more complicated: after the MO sources and hydrides 

are injected to the reactor, the sources are mixed inside the reactor and transfer to the deposition 

area. The high temperature used in MOCVD system results in the decomposition of the group V 

sources. Other gas-phase pre-reaction will form the adduct mixtures, which if abundant could 

degrade the epi-layer quality13. The precursors are absorbed on the growth surface, and migrate 

to growth sites. The atoms incorporate into the growing film through surface reaction. Since the 

GaN growth reaction is thermodynamically driven by the change of free energy, the nucleation 

and atom diffusion are kinetic processes. Therefore, the growth temperature, related to the 

activation energy, is the main factor in determining the nucleation density. The byproducts of the 

reaction are mainly transported to the gas flow away from the deposition area, while partially 

absorbed by the surface. The main reaction routes for MOCVD grown GaN are illustrated in 

Figure 1. 2 according to ref. 11.  



 

Figure 1. 2 The reaction routes for GaN MOCVD deposition, from ref. 11 

 

The purified H2 is flowing to the reactor as the carrier gas. N2 is also used during the 

AlInN or InGaN growth to improve the In incorporation. Our MOCVD has a single two-inch 

wafer capacity. The SiC-coated graphite susceptor rotates up to 100 rpm during the growth to 

improve the uniformity of epi-layer. As well, the growth pressure is adjustable from 15 Torr to 

300 Torr. The MOCVD heater consists of one inner and one outer filament for better thermal 

uniformity across the two inch holder. The filaments are controlled separately through a 

temperature feedback system. Si is the most effective n-type dopant for nitride materials, and 

trace amount Silane (SiH4) is used as the dopant.  

One primary issue associated with the growth of high quality GaN is the lack of suitable 

substrate. Despite the 14% lattice mismatch and 80% thermal expansion coefficient difference 

Diffusion Diffusion

Adduct Formation

Adsorption 

Pyrolysis 

Desorption

Surface Reaction

NH3

Ga(CH3)3

CH3

H 



between Sapphire (0001) basal plane and GaN, it is still the most common used substrate. Direct 

growth on Sapphire results in the nucleation of isolated GaN islands rather than the continuous 

layer. In order to achieve device-quality single crystalline film, buffer layer is always required 

prior to the high temperature epitaxial growth of GaN. Nakamura first demonstrated that a low 

temperature (LT) GaN thin film can serve as good buffer14, which has been subsequently used by 

many other groups. At LT, normally in the range of 500~600 oC, the mobility of surface species 

decreases, which promotes a uniform dispersion of nuclei over the substrate. The thickness of 

buffer layer is around 20~50 nm, using low V/III ratio to increase the size of islands in the early 

stage. Afterwards, the LT buffer layer experiences a short annealing up to over 1,000°C. Then 

the epitaxial growth proceeds to micron meter thickness. A typical TEM cross-section image for 

this two-step grown GaN is shown in Figure 1. 3 (a).  

Large density of dislocation type defects can be observed from the TEM images. The 

origin of the defects is the mismatch-induced strain at the GaN and Sapphire interface. The initial 

epitaxial GaN is distorted with elastic deformation if the layer thickness is less than the critical 

value. The distortion accumulates as the layer grows thicker, and finally results in the misfit 

dislocations in order to release the strain, seen in Figure 1. 3 (b)15. As the growth evolves, the 

growth mode transfers from the pseudomorphical two-dimensional mode into the three-

dimensional one. The nucleation islands twist or tilt to each other to form a mosaic structure. 

Therefore, another type of dislocations--threading dislocations--are generated by such mosaic 

structure to accommodate the disorientation of GaN islands. These dislocations will propagate 

along the growth direction and rarely disappear. The dislocation density from this growth scheme 

can reach up to 109 – 1010 cm-2.    



 

Figure 1. 3 (a) Cross-section TEM image for two-step grown GaN on Sapphire substrate. (b) Misfit 

dislocations at the GaN/Sapphire interface, from ref. 15. 

  

Dislocations are the predominant type of defects in GaN layers that hamper the 

improvement of the devices’ performance. Accounting for the reduction of dislocations, various 

efforts have been developed; epitaxial lateral overgrowth (ELO) technique is by far the most 

effective one. The basic idea of ELO is to pattern the as-grown GaN surface with a mask layer 

typically using SiO2 or Si3N4 and then re-grow GaN on top of it. Due to the growth selectivity, 

the re-growth GaN will only continue from the open area (windows). By adjusting the growth 

parameters, the lateral growth rate out of the windows is enhanced and the surface quickly gets 

coalesced. Dislocations under the masks are blocked from propagation and the GaN layers over 

the masks would have ultra-low dislocation defect density. The schematic illustrating the ELO 

GaN on c-Sapphire is shown in Figure 1. 4. The dislocation density for ELO grown GaN is 107-

108 cm-2.  

Sapphire

HT GaN epilayer 

LT GaN buffer 

(a) (b)



 

Figure 1. 4 The schematic shows the growth procedure of ELO GaN on c-Sapphire. 

 

The ELO technique can effectively reduce the dislocation type defects compared with 

conventional two-step growth scheme and be more applicable for the LED/LD devices. However, 

neither method is suitable for HFET. Lateral conduction devices, like transistors, require 

insulating buffer beneath the channel to ensure the current pinch-off character. Otherwise if the 

electrons are not well-confined within the channel region, a large amount of microwave power 

could be dispersed through the parasitic conduction path and it will degrade the noise figure of 

the power amplifier. Within the LT GaN buffer, the concentration of oxygen shallow donor 

impurities is found to be as high as 1020 cm-3 due to the diffusion from the Sapphire substrates16, 

17 and generate a highly conductive layer. In contrast,, GaN directly grown on the SiC substrates 

without any special techniques is typically semi-insulating. ELO grown method also results the 

high Si or O incorporation into the GaN around the mask interface. Therefore, the very first task 

is to develop and optimize an appropriate growth scheme for GaN-on-Sapphire with semi-

insulating buffer by MOCVD system. 



1.3 Device Structures 

The basic device structure of GaN HFET, along with the fabrication process workflow, is 

shown in Figure 1. 5. The techniques include lithography, dry etch, metal deposition, Ohmic 

contact formation, and insulator deposition. The fabrication process for GaN devices is quite 

different with that of Si due to the different physical properties of material. For example, owing 

to the inherent stability of GaN, no suitable wet etching methods are available for the compatible 

mesa isolation or gate recess. Also, low resistance Ohmic contact for GaN material can only be 

obtained after thermal annealing.  

 

Figure 1. 5 The conventional GaN HFET structure and fabrication process work flow. 

  

The process for HFET fabrication has been standardized in a large extent. However, there 

still exists a lot of room for improvements. For example, Ohmic contact resistance is critical for 

the performance of HFET. High contact resistance can not only degrade the transconductance of 

the device and lead to power consumption on the source/drain access area18, but also retard the 

response of the device and lower the cut-off frequency19.  But the wide band gap of nitride 

semiconductors makes the formation of Ohmic contact more difficult than that on the GaAs or Si. 
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Typical Ohmic metallization scheme for GaN material involves the Ti/Al multilayer and the 

annealing process. We need to optimize the metal thickness and anneal conditions to reduce the 

specific contact resistance.  

 The dry etching of GaN materials is another issue associated with the fabrication. 

Chlorine-based reactive ion etching (RIE) and inductive coupled plasma (ICP) etching are 

normally used to give a quick, well-controlled and repeatable anisotropic etch20, 21. Since the 

mesa isolation thickness needed is relatively small (~200 nm), the etching condition is 

controllable in favor of lowing the plasma induced surface damage. Also, new device structures, 

such as the recess gate transistor, require high etching selectivity between the GaN and the 

barrier. Different gas etchant combinations should be examined and optimized.  

 The device structure also determines the empirical equivalent circuit model that describes 

the microwave behavior. Empirical device modeling method in the context of parameter 

extraction is used for circuit level application. The circuit model usually describes the device via 

a two-port network and constructs analytical expressions. It has less the computational 

complexity compared with other physical modeling methods. The equivalent circuit overlapping 

on the basic HFET layer structures can be abstracted into the model shown in Figure 1. 6.  



 

Figure 1. 6 One equivalent circuit model representing GaN HFET structure. 

 

The circuit can usually be divided into two sub-parts: first, a nonlinear and bias-

dependent intrinsic part corresponding to the inner device that excludes the contribution from the 

access regions as well as the stray capacitances, which is outlined with the dashed box; and 

second, a linear bias-independent extrinsic one corresponding to parasitic access elements.  In 

the extrinsic part, Cgsp, Cdgp and Cdsp represents the parasitic capacitances introduced by the pad 

connection and probe contacts, and Cgsi, Cdgi and Cdsi account for the interelectrode capacitances. 
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Similarly, each discrete element in the intrinsic part also has its physical significance. For 

example, a gate-source capacitor represents the capacitance of the depletion region under the 

gate; a drain-source resistor represents the output resistance of the channel; the charging 

resistance Ri represents the retarded electron response to the input gate signal in the gate 

depletion region; and the delay time τ is the time it takes for the depletion region to respond to 

the change in the gate signal.  

Relatively speaking,  the empirical circuit models could be much more flexible, despite 

their somewhat black-box nature, to provide a better fit in large-signal situations, and interpolate 

some special effects such as self-heating, trap-assisted current collapse or current lag. For 

example, table-based modeling has been studied by many groups with great interest22 ,23 ,24. 

Instead of using linear circuit components, the equivalent-circuit is described as nonlinear 

transconductances and transcapacitances. Those components are symbolized as look-up tables 

obtained from measurement data. Another hotly pursued approach utilizes the neural network to 

map the nonlinearities of equivalent-circuit25,26 and train the model through a certain algorithm 

from the measured data. All these methods, however, are based on the accurate elements 

extraction from small signal modeling. Therefore, I will focus on the small signal extraction in 

this work, trying to develop the routines applicable for GaN devices.   

In short, fabrication process is a key step to maximize the output from GaN HFET, which 

needs to be optimized accordingly on different structures. The device structures also determine 

the equivalent circuit model that can offer the flexibility to describe the microwave behavior. 

When properly defined and extracted, the equivalent circuit modeling is very practical for circuit 

design purposes. 



1.4 Device Physics 

The device physics theory at non-equilibrium condition is often built up on the 

description of carrier transport mechanism. The drift-diffusion (DD) transport theory is by now 

the most widely used one for device physics simulation. The DD model is derived from the 

Bolzmann equations and the basic principles of irreversible thermodynamics. The electron and 

hole current densities in the semiconductor at certain applied potential are given by27:  

nqDnqJ nnn ∇+∇⋅= ϕμ  

Equation 1. 3 

pqDpqJ ppp ∇−∇⋅= ϕμ  

Equation 1. 4 

where µ is mobility; n and p are carrier density; D is the diffusivity and related with temperature 

of carrier at thermal equilibrium (may not be equal the lattice temperature) conditions by:  

carrier
B T
q

k
D

μ
=  

Equation 1. 5 

In the conventional DD model, it seldom incorporates the phenomena of quantum confinement 

caused by the heterojunctions. Classical carrier statistic is often utilized, which works well for 

large scale or narrow band semiconductor devices. However, in GaN HFET, large band 

discontinuities and strong polarization effect will cause substantial confinement to the carriers. 

Quantum corrections must be applied to DD model to improve the simulation accuracy.  

One major difference between GaN and GaAs material is the polarization effect, which is 

very important to understand the unique behavior of GaN HFET. Polarization is found to be very 

strong in wurtzite structure crystals like GaN, AlN or InN, including both spontaneous and 



piezoelectric components28, 29. In fact, polarization is the main reason for the formation of strong 

two dimensional electron gas (2DEG) at the GaN and AlGaN or AlInN heterojunction interface. 

The naturally induced polarization or so called spontaneous polarization exists because 

the bond between the Ga and N atoms is not purely covalent. There is a displacement of the 

electron charge cloud towards one atom in the bond. It forms a dipolar pointing from Ga site to 

N site. Owing to the asymmetry of wurtzite crystal in c-axis, a net dipolar vector always exists 

along this direction. For the GaN layer grown in MOCVD system, it always introduces the Ga-

face on the top surface. Therefore the spontaneous polarization within the nitride points from top 

surface to the bottom, as shown in Figure 1. 7(a). The lattice parameters and spontaneous 

polarization for GaN, AlN and InN are listed in Table 1. 2.  

 GaN AlN InN 

a0 (A) 3.189 3.112 3.54 

c0 (A) 5.185 4.982 5.705 

Psp (C/cm2) 0.029 0.081 0.032 

Table 1. 2 The comparison in lattice constant and spontaneous polarization between GaN, AlN and InN 



 

Figure 1. 7 Schematics to illustrate the origin of (a) spontaneous and (b) piezoelectric polarization in nitride 

semiconductor 

 

Another type of polarization: piezoelectric polarization, is induced by strain between 

barrier and buffer. The Al-alloy barrier grown on the GaN experiences a strong tensile strain due 

to its smaller lattice constant. This lattice distortion alters the net dipolar vector at the interface 

and produces a large piezoelectric polarization correspondingly.  As illustrated in Figure 1. 7 (b), 

the piezoelectric polarization in the strained AlGaN barrier also points from top surface toward 

the interface. The magnitude of piezoelectric polarization can be calculated by:  
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where a and a0 are the lattice constant of the GaN and the barrier, and the other parameters are 

listed below for different materials. 

 GaN AlN InN 

e31 (C/m2) -0.49  -0.6 -0.57 

e33 (C/m2) 0.73  1.46 0.97 

C31 (GPa) 379  395 182 

C13 (GPa) 70  120 121 

Table 1. 3 The piezoelectric coefficients for GaN, AlN and InN 

 Therefore, both spontaneous and piezoelectric polarizations work together to attract 

electrons gathering at the heterointerface to form a high density electron sheet as illustrated in 

Figure 1. 8 (a). The density can go up to 1013 cm-2, much higher than the traditional GaAs device 

structures at which the 2DEG is mainly confined due to the conduction band discontinuity. The 

existence of the strong polarization will cast a profound change on the band distribution in GaN 

HFET, as shown in Figure 1. 8 (b). The detailed calculation on the band diagram and carrier 

profile, by solving the Schrödinger and Poisson equations self-consistently, will be discussed in 

Chapter 4.  



 

Figure 1. 8 Schematics to illustrate (a) the formation of 2DEG due to spontaneous and piezoelectric 

polarization; (b) the band diagram within a AlGaN/GaN HFET structure with gate metal. 

 

By studying the theoretical device physics, the underline mechanisms that determine the 

device behavior can be revealed. The simulation can also provide us the preliminary guides in 

optimizing the device performances at certain configuration. The simulation should be based on 

drift-diffusion model with the correction from quantum physics, plus the special consideration on 

polarization effects in nitride semiconductor.  

1.5 Dissertation synopsis 

This dissertation will present the experiments and calculations done on the GaN HFET 

with AlGaN and AlInN barriers, covering the MOCVD growth, material characterization, device 

fabrication, empirical and physics based device modeling. The organization of this thesis is:  

 

(a) (b)



Chapter 1 - Introduction  

An overview on GaN and related alloy material growth by MOCVD; device structure and circuit 

model; and device physics is introduced.   

 

Chapter 2 – MOCVD growth 

The detailed MOCVD growth scheme on semi-insulating AlN buffer, GaN template, AlGaN and 

AlInN barrier layers are described, followed by the layer characterizations obtained from X-ray 

diffraction (XRD), atomic force microscopy (AFM), and in-situ reflection measurements.    

  

Chapter 3 –HFET Fabrication and Characterization 

This chapter gives the device fabrication details, especially the optimizations performed on 

Ohmic contact and plasma dry etch. The measurements on device transport properties, DC 

characterizations, and microwave and capacitance/voltage results are presented. Experiments on 

two new device structures: recess gate HFET and metal-insulator-semiconductor (MIS) HFET 

are introduced.  

  

Chapter 4 –Small Signal Modeling 

The equivalent circuit modeling is studied to analyze the microwave performance of the HFET. 

A new 18-element equivalent circuit model is proposed. Different extraction methods covering 

cold- and hot-FET modeling schemes are reviewed. A hybrid extraction method is developed 

combining the virtue from the both methods. It provides high fitting accuracy to simulate the 

measured data.   

 



Chapter 5 –Physics Modeling 

Quantum DD modeling theory is implemented for GaN HFET, simulating carrier distributions, 

energy band diagram, potential profiles, and I-V characteristics, in one- and two-dimensionally. 

The solver provides self-consistent numerical solution to the Schrödinger, Poisson and current 

equations, using Newton iteration method. The simulation results are validated with 

experimental results, especially on the data measured from AlInN barrier structures.  

  

 Chapter 6 –Summary and Future Works 

This chapter will summarize the key contributions of this dissertation and foresee the future work 

on the GaN transistor devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 MOCVD Growth 

A typical layer structure for our GaN HFET device is shown in Figure 2. 1. It is grown on c-

Sapphire substrate, with about 300 nm AlN first deposited as the semi-insulating buffer. About 3 

µm un-doped GaN, its top acting as the 2DEG channel, is then grown on the buffer. Before the 

barrier growth, a thin AlN layer is deposited as the spacer to improve the mobility. The barrier 

we tested includes AlGaN and AlInN. Usually the barrier is divided into un-doped and Si-doped 

sub-layers. The doping concentration varies from 1017 to 1018 cm-3, and the total thickness is in 

20 ~ 40 nm. On the top of the barrier, an un-doped thin GaN about 2nm is placed to reduce 

surface leakage and improve the Ohmic contact. In this chapter, the growth detail for each layer 

will be presented.   

 

Figure 2. 1 The layer structures used in this work 

  



2.1 GaN growth 

2.1.1 Semi-insulating AlN buffer 

Since the GaN layer is the electron channel for HFET devices, high crystal quality with 

less defects is important to suppress dispersion effects30. On the other hand, transistor devices 

also require none lateral conduction through the bulk, because the layers under the channel serve 

as the back barrier against which the gate can deplete the channel and perform the modulation. A 

conductive buffer will cause the capacitive coupling and result a large parasitic parameter that 

degrades the RF performance.  

To achieve the semi-insulating buffer, different growth techniques have been reported. 

One method is the compensation. The residual donors in GaN have to be compensated by 

acceptor states from carbon impurities, or transition metals such as Cr or Fe31, 32, 33. However, it 

will leave high concentration of point defects or extended defects that are undesirable. An 

alternative approach is to use the AlN buffer. Because of the large band gap of AlN, it behaves as 

insulator in nature. Another advantage is its higher thermal conductivity. Furthermore, the AlN 

buffer introduces the compressive strain to the top GaN that could restrain the generation of 

cracks and reduce the dislocation density.  

There are several challenges for high quality AlN buffer grown by MOCVD. First, due to 

the high binding energy between Al and N, the surface mobility of Al source atom is very small. 

The AlN growth is preferable in 3D mode, forming the islands of varying orientations with 

respect to the substrate. Most of the epitaxial AlN thin films on Sapphire were reported with 

large threading dislocation density and domain boundaries. Its typical dislocation density is 

about 1010-1011
 cm-2.  In order to enhance the surface migration of Al source, high growth 



temperature is preferable34.  Second, in the MOCVD system, the gas phase pre-reaction between 

ammonia and TMAl is considerably strong, which is the main cause for the low growth rate of 

AlN. Normally, lower chamber pressure is desired to suppress this parasitic reaction. If the 

“flow-modulation” growth method is applied, namely the III and V group sources are supplied 

alternatively into the reaction chamber, the step flow growth mode of AlN can be achieved 

easily35. 

In order to reduce the gas-phase pre-reaction between TMAl and ammonia, low chamber 

pressure (30 torr) and III group flow rate (7 sccm) are used along with high growth temperature 

at about 1030°C. Since the mobility of Al atoms on the surface is low, high temperature is 

recommended during growth. Also, the high nucleation temperature will improve the crystal 

quality of islands, and reduce the formation of screw-type dislocation. Figure 2. 2 shows the AlN 

buffer surface morphology evolution on Sapphire substrates. At the beginning stage, the grain-

like islands are formed on the surface. With further growth, the islands evolve from a three-

dimensional growth mode at first to finally form a continuous film covered with pin holes. The 

porous structures on AlN buffer could enhance the micro ELO growth effect for GaN epi-layer 

that followed 36.  

The AlN buffer was examined by rocking curve XRD with a narrow full-width at half 

maximum (FWHM) about 80 arcsec on (002) direction, but 600 arcsec on (102) direction. This 

indicates that the AlN buffer layer has a very low density of screw-type threading dislocations, 

but high for the edge-type.  

 



 
Figure 2. 2 Surface morphology evolution for AlN buffer layer on sapphire 

 

2.1.2 GaN growth optimization  

The conventional growth scheme for GaN on Sapphire consists of two steps: low-

temperature (LT) buffer layer growth and high-temperature (HT) epi-layer growth. The purpose 

of the low temperature buffer layer, which contains various phase and disorder structures, is to 

optimize the transition between the Sapphire substrate and the GaN device layers. The high 

interfacial energy between GaN layer and Sapphire leads to 3D island growth. The annealing 

process is inevitable, which performs the thermal ramping under H2 ambient to etch the as-

deposited nucleation layer into isolated islands with (0 0 0 1) facet. Those nucleation sites 

enhance the lateral growth and suppress threading dislocations during the high temperature 2D 

growth mode that after.  

The direct growth of GaN on AlN buffer similarly includes the mid-temperature 

nucleation stage and high-temperature epi-growth stage. The quality of GaN template is believed 

to be highly dependent on the nucleation growth conditions37, 38.  In order to achieve the high 



quality GaN template, the nucleation stage should be carefully controlled in terms of:  

a. Temperature – About 900ºC-950ºC growth temperature is normally reported from 

different groups. Since the wetting of GaN on an AlN surface is much better than on a 

Sapphire, the nucleation temperature can be much higher than the LT GaN case. 

b. Chamber pressure – High pressure over 100 torr is preferred, Associated with larger 

gallium diffusion rate, high pressure may facilitate the lateral expansion of large 

nuclei with lower density, and improve the epi-layer with fewer extended defects. 

Appropriate chamber pressure is picked subjected to the trade-off between less nuclei 

density and the less conductive GaN layer which need lower pressure instead. 

c. V/III ratio – Moderate V/III ratio is needed, since the larger ratio in the initial growth 

stage causes a higher yellow luminescence in photoluminescence (PL) measurement; 

a increasing in FWHM in XRD measurement; and the decreasing in electron mobility. 

But too small ratio also will result in a large incorporation of shallow donor 

impurities that is undesired.  



 

Figure 2. 3 Growth scheme for GaN layer in HFET structure. 

 

As shown in Figure 2. 3, the initial layer and epi-layer have the thicknesses around 300 

nm, 1.5 μm respectively. The initial seeding layer growth is critical in determining the GaN 

crystal quality. It is often grown at moderate temperature with high chamber pressure and slight 

low V/III ratio, under which conditions the nucleation density is reduced and lateral growth can 

be enhanced for the following epi-layer growth. We tested different growth conditions as shown 

in Table 2. 1. In terms of XRD, there is an obvious trend in reducing the FWHM, which relates 

to the reduction of edge type dislocations, with higher growth pressure and lower V/III ratio. The 



best condition is determined as 300 Torr and 2000 V/III ratio, noting that a too-low ratio will 

result in a higher concentration of residual donors thus causing the buffer leakage. The SEM 

picture in Figure 2. 3 shows the surface morphology of seeding layer after the 10-minute.growth 

on the AlN buffer, from which we could tell the nucleation is randomly distributed in an obvious 

hexagonal shape and the growth mode is three-dimensional.    

AlN buffer GaN seeding layer GaN epi-layer quality 

Pressure V/III ratio XRD (002) arcmin XRD (102) arcmin 

76 torr 2000 4.3 16.7 

200 torr 2000 6.0 9.5 

200 torr 3000 5.3 7.4 

200 torr 4000 5.6 8.0 

300 torr 2000 5.0 5.9 

 

400nm 

@30 Torr 

1030 °C 

300 torr 1000 4.7 5.1 

Table 2. 1.  XRD characterized GaN template quality on different seeding layer growth conditions 

The epi-growth stage is carried out normally at high temperature with large V/III ratio 

and high growth rate (~ 2μm/hour) that is similar to conventional ELO GaN. Different growth 

pressure has been tested at 30, 76 and 200 Torr. With lower chamber pressure, it is reported to 

increase the carbon impurity incorporation that has deep energy levels and makes GaN layer 

more resistive39. Our experiments on leakage current measurement comparing different growth 

pressures confirmed this trend, while the 200-Torr-grown sample still gives acceptable leakage 

current level.  

A high quality GaN channel layer on the top of epi-layer serving as the 2DEG channel 

can effectively increase the carrier mobility40.  Therefore, a 300 nm channel layer is grown on 



the top at 300 torr pressure and 960°C. Higher chamber pressure helps to suppress the 

background impurity related to deep level defects. With the insertion of this channel layer, the 

2DEG mobility for AllGaN/GaN heterojunction increases from 1200 cm2/Vs upto 1500 cm2/Vs, 

given the same barrier conditions.   
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Figure 2. 4 The in-situ laser reflectivity measured during the HFET growth. 

  



In-situ laser reflectance monitoring equipment has been utilized during our MOCVD 

GaN growth to record the surface morphological evolution. From the change of the reflectivity, 

we can obtain the qualitative measurement on surface roughness, and furthermore extract the 

information such as growth rate and alloy composition.  A typical reflectivity data traced during 

the HFET growth is shown in Figure 2. 4. Each growth stage can be clearly distinguished. An 

immediate oscillation is seen at stage (i) representing the growth of AlN buffer, which has a 

small surface roughness. It followed by the GaN initial growth stage (ii) on top of AlN buffer, 

and the surface is roughened due to the nucleation. As the growth proceeded, the islands coalesce 

and result in the recovery of reflectance. Two-dimensional growth mode is achieved during the 

epi-layer growth stage (iii) and clear reflectance oscillation is observed. From the period of the 

oscillation, the growth rate is estimated close to 1.8 μm per hour. When the channel layer growth 

begins (iv), a transition in reflectance is observed and the growth rate at 300 torr reduces to 1.1 

um per hour due to the increase of parasitic pre-reaction.    

2.2 Barrier growth 

2.2.1 Spacer growth 

Prior to the barrier growth, a thin layer of spacer is deposited on the top of channel that 

usually employs an un-doped material with larger band gap, which tends to isolate the source of 

electrons away from the channel. For GaN devices, the insertion of an ultra-thin AlN spacer 

layer has been reported to increase the mobility of 2DEG41.  The improvement in mobility is 

ascribed to the better confinement of 2DEG and thus the associated suppression of alloy 

scattering42,43 and possibly scattering by defects/ionized donors in the barrier.  



We found the spacer layer thickness is an influential parameter to change the electron 

transport characteristics of GaN heterojunction. It has been reported that the thicker AlN spacer 

can introduce higher density of 2DEG at the AlGaN/GaN structure due to the strong polarization 

of AlN material43.  However, a contradictory result was reported in AlInN/GaN case44, even 

though the barrier doping is kept at the same level. AlN thickness also affects the mobility of 

2DEG dramatically. A high mobility window exists for 2DEG at ultra-thin AlN/GaN 

heterojunction 45 , and the lower mobility with thick spacer is probably due to long range 

scattering originating from large-density defects in AlN. Our experiments indicate ~1 nm is the 

optimum AlN spacer thickness to achieve the best transport properties. Therefore, the growth 

rate of AlN spacer is critical in order to attain this very thin layer.  

The growth conditions for AlN are 1020ºC, 30 torr chamber pressure, and V/III ratio 

around 800. The growth rate for the AlN at such conditions can be calibrated from the AlN/GaN 

superlattices (SLs) growth. As shown in Figure 2. 5, a 10-pair AlN/GaN SLs structure was 

measured by 2θ-ω XRD scan. In observing the sharp satellite peaks from the XRD of SLs, we 

can conclude the abrupt interface between GaN and AlN is achieved Here the clear satellite peak 

positions match with the simulation, which corresponds to the 2 nm/ 1.3 nm (AlN/GaN) pair 

thicknesses and growth rate is determined as 3 nm per minute. The AlN growth conditions were 

applied onto the HFET structures. 



 

Figure 2. 5 XRD 2θ-ω scan of 10 pairs AlN/GaN SLs to determine AlN growth rate 

2.2.2 AlGaN growth 

The quality of AlGaN barrier layer also depends upon the beneath GaN layer. For 

example, the penetrating threading dislocation from the buffer layer can cause Al segregation 

around the dislocations up to 70% Al composition46, and indubitably form the current leakage 

path. So the crystalline quality of AlGaN can be significantly improved if it is grown on high-

quality GaN. Also, due to the lattice mismatch and different thermal expansion coefficients 

between GaN and AlGaN, more dislocations will be generated especially at large Al fractions 

situation even though it helps to induce more carriers in the GaN. It is also difficult to attain 
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good Ohmic contact on AlGaN due to the larger band gap. Therefore, the optimum Al 

composition is around 20~40 percent according to the literatures.  

 The thickness of the AlGaN barrier is another issue of concern. A thinner barrier can 

improve the transconductance of the device, but it can also increase the gate capacitance (Cgs) 

and make gate current easier to tunnel into the channel. Furthermore, both simulations and 

experiments have shown that the thin barrier can not induce sufficient high sheet carrier density 

and limit the saturation current that the device can achieve. On the other hand, a too-thick AlGaN 

will introduce serious cracking problem when its thickness exceeds a critical value47, which 

originates from the tensile stress between AlGaN and GaN.  

 The growth conditions for high quality AlGaN by MOCVD is similar to that of AlN, with 

high growth temperature and low chamber pressure48. The accompanied gas-phase pre-reaction 

between Al-source and N-source needs to be suppressed by reducing ammonia flow and chamber 

pressure. Otherwise it can significantly deteriorate the group-III deposition efficiency and bring 

rough interface that reduces the mobility of the 2DEG. The barrier is grown under 30 Torr 

pressure with temperature around 1,000 ºC.   



 

Figure 2. 6 Growth scheme for 30 nm Al0.3Ga0.7N barrier. 

 

The detailed growth scheme is illustrated in Figure 2. 6. In this figure, if the gas line is in 

“vent” status, the source flowing is bypassed into the exhaust right before get into the chamber. 

And the “idle” status means the gas flowing is blocked. In this configuration, the flow rate of 

TMAl and TMGa source ensure the appropriate Al concentration. The surface morphology 

measured by AFM is shown in Figure 2. 7. The dislocation density for the AlGaN barrier under 

these conditions is estimated to be around 109 cm-2. The XRD  ω-2θ scan shows clear peaks for 

the GaN template, AlGaN barrier and AlN buffer. The thickness of the AlGaN is about 30 nm 

calculated from the thickness fringes; the Al concentration is 27% from the AlGaN peak position. 

The top 20 nm barrier is normally doped with Si into middle 1017 cm-3 range.  



 

Figure 2. 7. The surface morphology and XRD ω-2θ for Al0.27Ga0.73N barrier device. 

2.2.3 AlInN growth 

 Indium-related ternary has been widely used for III-V HFETs, for example the GaAs p-

HEMT. The advantage is to bring larger band gap discontinuity between the In-ternary channel 

and Al-ternary barrier producing higher carrier density. Also, InGaAs has a higher electron 

mobility and saturation velocity than the GaAs channel.  

The same situation seems to be also applicable for nitride HFET. The incorporation of 

Indium is found to have a profound influence on electrical properties in the nitride 

semiconductor devices, especially for the LEDs. Due to the large ionic radii of Indium as 

compared to that of Al / Ga, the isoelectronic Indium atoms can occupy the vacancy sites along 

the dislocation core sites in the growing films49. The enhancement of optical and electrical 

properties is generally attributed to the reduction of non-zero c-component dislocations50. A thin 

InGaN layer is also reported to be placed beneath the GaN channel to form the back-barrier for 

HFET, in order to provide better confinement to 2DEG and suppress the buffer leakage51.   
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 Indium ternary can also be used in replacing the conventional AlGaN barrier, namely the 

AlInN barrier with large In composition. Considering the benefit from Al0.82In0.18N matches the 

lattice of GaN, the barrier layer has much reduced strain compared with AlGaN and thus can 

reduce the possibility of dislocations generation. As well, lattice matching leaves no piezoelectric 

polarization but only spontaneous component. The device reliability is expected to be enhanced 

since less strain is present or even nonexistent. Even for AlGaN barrier, the addition of Indium 

with trace amount is reported to be beneficial. The threading dislocation density is lowered as 

Indium composition increases with a corresponding increase in lateral coherence length52.   

 However, high quality Indium ternary alloys are relatively more difficult to grow in 

MOCVD than GaN or AlGaN materials. The high equilibrium pressure of N on InN requires the 

relatively low growth temperatures. The substrate temperature used ranges from 650 to 900°C as 

reported53. Indium ternary is also subjected to thermal instability. Phase separation is a serious 

problem for InGaN and AlInN growth, which may be caused by the large disparities between In 

and other group III materials, like the differences in atomic radii, equilibrium nitrogen pressure, 

surface diffusion barrier and so on.  

 The growth of Indium ternary alloys with correct concentration requires precise control 

over the temperature, since the high dependency between these two. Indium concentration goes 

down quickly with the increase of temperature. Also, carrier gas is another factor to be 

considered. N2 combining with H2 has been reported54 to improve the Indium incorporation 

efficiency. 



 

Figure 2. 8 Growth scheme for 20 nm Al0.72In0.18N barrier.  

 

Lattice-matched Al0.82In0.18N barrier HFET structure was successfully grown with high 

carrier mobility being achieved. The growth scheme is shown in Figure 2. 8. After the spacer, H2 

is switched to N2 as the carrier gas. Meanwhile the growth temperature ramp down from 1,000ºC 

to 780ºC, which takes about 6 minutes. The composition of Indium is mainly controlled by the 

changing the growth temperature, and found to be very sensitive to the temperature. For nearly 

lattice-matched AlInN barrier, the typical growth conditions are 50 torr, 780ºC, and 4,000 V/III 

ratio. Under these conditions, the growth rate of AlInN is around 120 nm/hour. As shown in 

Figure 2. 9, the surface of AlInN is very smooth, with RMS in 0.3~0.6 nm, but large amount of 



defects still can be seen. From the XRD measurements, the composition and the thickness of 

AlInN can be estimated. In order to reduce the Indium composition variation across the wafer, 

fine tuning on the heaters (inner and outer one) power and high sample rotation speed are 

necessary.  

 

Figure 2. 9 The surface morphology and XRD ω-2θ for Al0.82In0.18N barrier device 

 

 

 
 

 

 

 



Chapter 3 HFET Fabrication and Characterization 

3.1 Device Fabrication 

3.1.1 Basic procedures 

The fabrication procedures for GaN HFET normally involve three major steps, namely the 

source-drain Ohmic metal formation, device isolation, and gate pattern metal deposition. Within 

each step, either photolithography or electron-beam (e-beam) lithography method can be used to 

define the patterns.  

Prior to the fabrication, the sample needs to be degreased by organic cleaning and surface-

iron-removal by trace metal clean reagent. Photolithography is often used to define the source 

and drain liftoff pattern and the mesa etch pattern. Also, it is capable of making >1 µm gate 

length structure. For deep sub-micron gate length, the e-beam lithography method has to be 

utilized. The photoresist used by contact aligner is AZ-P4110, and the Polymethyl Methacrylate 

(PMMA) with 950K molecular weight is used for e-beam lithography. The photoresist is 

exposed under 436nm g-line UV light. E-beam lithography is performed in LEO-440 scanning 

electron microscope by direct writing, for which the pattern is designed in CAD-2000. After the 

exposure, we use Microposit MF™-CD-26 to develop the photolithography sample, and 

MIBK:IPA (1:3) mixed solution for the e-beam lithography sample. The detailed procedures are 

listed in Table 3. 1.  

Sample cleaning • Acetone, methanol, DI-water ultrasonic cleaning for 
3 minutes each.  
• Clean in boiling aqua regia for 10 minutes, followed 
by DI-water rinse for 3 minutes.  
• De-hydration bake for 3 min in 160ºC oven.  



Photoresist coating • Spin AZ-P4110 photoresist for 40 seconds at 5000 
rpm. 
• Soft bake for 10 minutes in 90ºC oven.  

Exposure and developing • Exposure in 436nm UV light for 90 seconds with 
power intensity of 6 mW/cm-2.  
• Develop in MF-CD-26 for 40 seconds, rinse in DI 
water for 1 minute.  

Metal deposition and lift off • Deposit Ti/Al/Ni/Au metals with thickness of 
30/1000/30/50 nm in the pressure of 10-6 Torr.  
• Soak the sample in acetone for 2 hours, apply 
ultrasonic appropriately for through metal lift-off.  
• Clean the sample in acetone, methanol, DI-water 3 
minutes each, and dry it with N2 blow.  

Annealing • 850ºC 1 minute in N2 ambient for rapid thermal 
annealing. 

(a) 

 

Sample cleaning • Acetone, methanol, DI-water ultrasonic cleaning for 
3 minutes each.  
• De-hydration bake for 3 min in 160ºC oven. 

Photo-resist coating Same as that in table (a) 

Alignment, exposure and developing Same as that in table (a) 

RIE etch • Etch in ICP system for 5 minutes, with BCl3/Cl2/Ar 
flow rate is 20/10/5 sccm; chamber pressure is 0.6 Pa, 
and RIE/ICP power is 80/15 W. 

(b) 

Sample cleaning Same as that in table (b) 

Photoresist coating Same as that in table (a) 

Alignment, exposure and developing Same as that in table (a) 

Metal deposition and lift off • Deposit Ni/Au metals with thickness of 30/50 nm in 
the pressure of 10-6 Torr.  
• Lift-off is the same as what in table (a) 

(c) 

 



Sample cleaning Same as that in table (b) 

PMMA coating • PMMA 950K spin for 40 second at 4000 rpm. 
• Soft bake for 40 minutes in 160ºC oven 

Pattern writing and developing • Write the pattern in SEM with pressure around 10-7 
Torr, magnification is 1148, beam current is 10 pA. 
The mostly used line dose is 2.7 pC/cm, area dose is 
260 nC/cm2.  
• Develop the sample in MIBK:IPA (1:3) for 80 
second, IPA for 20 second and rinse in DI water for 1 
minute.  

Metal deposition and lift off Same as that in (c) 

(d) 
Table 3. 1 Summary for GaN HFET fabrication process: (a) Source/drain metal deposition; (b) Mesa 

isolation; (c) Gate defining and metal deposition (by photo-lithography); (d) Gate defining and metal 

deposition (by e-beam lithography) 

 

(a) (b)

(c) 

Drain

Source Source

Gate

Channel
7 µm  

Source Drain Gate 

Current 

(d)



Figure 3. 1 SEM images for devices (a) HFET top view; (b) HFET fabricated by photo-lithography method, 

the channel length is 7 µm, gate length is 2µm; (b) HFET fabricated by E-beam lithography method, the 

channel length is 5µm, gate length is 200 nm; (d) schematic illustrate the cross section view of a HFET device. 

Typical HFET devices after the fabrication are shown in Figure 3. 1. The Ohmic metal 

deposition scheme is Ti/Al/Ni/Au, in which Ti and Ni are e-beam evaporated and the rest metals 

are thermal evaporated, followed by rapid thermal annealing (RTA) in N2 ambient for 1 minute. 

Mesa device isolation is performed in RIE/ICP etching system using Cl2/BCl3/Ar plasma, and the 

typical etching rate is 30~50 nm/min. The gate definition process can utilize either 

photolithography or e-beam lithography with 100 nm gate length being achieved. The gate 

Schottky metal is Ni because of its large working function. The typical source-drain spacing 

varying from 5~ 8 μm, and gate width can be 40; 80 or 140 μm. The gate length defined by 

photo-lithography is around 1~2 μm, and 100-400 nm for the e-beam lithography.   

3.1.2 Metallization and dry etch optimization 

To effectively reduce the Ohmic contact resistance is very important for the improvement 

on the device DC and RF performance. The main mechanism of Ohmic contact formation on 

GaN is caused by the reaction between Ti and N and Ti-Al alloy formation55, 56. During our 

Ohmic contact optimization, two types of metallization scheme were tested: Ti/Al/Ti/Au and 

Ti/Al/Ni/Au, and different annealing temperature are examined respectively.  

The reaction of Ti-N will generate N vacancies on the metal interface to GaN, which are 

known to be the shallow donor type defects. Therefore, the interfacial region becomes highly 

doped, which provides good tunneling path for the formation of Ohmic contact. Also the alloying 

between Ti-Al can decrease the resistivity in comparison with the metallization with only Ti. The 

role of Ni or 2nd Ti is the interlayer preventing the diffusion of Al into the top gold who serves as 



the cap layer to avoid oxidization.  

The method to determine the specific contact resistance of an Ohmic contact is the 

Transmission Line Modeling (TLM) method57. A linear array of contacts with various spacing is 

fabricated and the resistances between different contacts are measured. The specific contact 

resistance is calculated by the linear interpolation on those resistances. As shown in Figure 3. 2, 

TLM patterns are fabricated on 30 nm, 1017 cm-3 doped AlGaN barrier HFET samples. The 

conventional Ti/Al/Ti/Au (30/100/30/50 nm) rapidly thermal annealed (RTA) at 800ºC in N2 

ambient leads to typical contact resistance about 3.0 Ωmm, and specific contact resistance is 

around 5.4×10-5 Ωcm2. Alternative Ti/Al/Ni/Au (25/125/30/50 nm) metallization scheme can 

improve the Ohmic contact property with contact resistance 1.2 Ωmm and specific contact 

resistance 2.0×10-5 Ωcm2. Different anneal temperature was also examined from 780 ~ 900ºC, 

and the optimized temperature is confirmed to be 800ºC.  
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Figure 3. 2 Contact resistance measured in TLM configuration for different metallization schemes. 

 

Most of etching processing for GaN devices is currently conducted by dry plasma etching. 



Take RIE dry etch, for example, a typical etch system configuration is shown in Figure 3. 3. 

When applying the RF field between the gas showerhead and bottom electrode, the molecule of 

the etchant gas can be dissociated or ionized to form radicals, atoms, and ions during the 

collision. The active Chlorine-based radicals are accelerated and proceed onto the sample surface 

where they are absorbed and react.  

 

Figure 3. 3 The schematic for a RIE system for GaN dry etch. 

 

Figure 3. 4 shows the relationships between the etch rate versus RIE power, chamber 

pressure, and gas flow rate. When the RF power increases, the etch rate increased from 10 to 60 

nm/min while the surface roughness also increased from 0.4 to 1.4 nm. The degradation in 

surface smoothness is attributed to higher power levels, giving higher dissociation efficiency for 

the reactive radicals. Also high RF power will elevate the energy of ions and enhance the 

bombardment effect in dry etching. 

On the other hand, the etch rate shows an almost linear decrease with chamber pressure. 

Both decrease58 and increase59 in etch rate as a function of pressure have been reported for 



different dry etching systems. Much lower pressures may also reduce the reactive radical 

concentration which could lower the etch rate. But in the high-pressure regime, the mean-free 

path of the reactive ions is shorter due to collisions and therefore gives rise to the weaker 

bombardment effect. Also the sputtering desorption or re-deposition phenomena at high-pressure 

regime may also be the reason to the decrease of etch rate60.  

 

Figure 3. 4 (a) GaN dry etch rate in RIE system under different power, chamber pressure, and BCl3 flow rate. 

(b), (c), (d) Surface morphology under 200, 300, and 400 W RIE etch power. 

 

High-density plasma or energetic ion assisted etching were used to get a smooth etch 

surface and highly anisotropic sidewalls with high etch rates. But there are several disadvantages 

of dry etching, including the generation of ion-induced damage and difficulty in obtaining 

(a) 



smooth etched sidewalls. After dry etching, the surface potential always drops as measured from 

the scanning Kelvin probe microscopy (SKPM) measurements, which means the introduction in 

a large amount of surface states. Different surface treatments have been reported including N2 

plasma, thermal annealing, and KOH solution wet etch. From our observation, the leakage 

current of the Schottky contact can be reduced on some after-treated samples. KOH solution 

always provides the best treatment among all methods, for more detail please refer to ref. 61. In 

our new ICP system, the etchant is the combination of BCl3, Cl2 and Ar. The etch rate is 

controlled to be 50 nm/min, with a much smaller RF power to minimize the surface damage.  

3.2 Device Characterization 

3.2.1 Transport properties 

Prior to the device I-V measurements, the most important carrier transport properties of 

the GaN heterojunction, including temperature-dependent sheet carrier concentration and 

mobility, are examined by Hall measurements. The Van der Pauw pattern is defined on the 

rectangular shape samples (~8×8 mm2), followed by Ohmic metal deposition and rapid thermal 

annealing. The samples are measured in the LakeshoreTM Hall Measurement System.  

2DEG sheet carrier density and electron mobility under different barrier doping level and 

barrier thickness are shown in Figure 3. 5. Picture (a) is for 40 nm AlGaN barrier. With 1017 cm-3 

level doping, the room temperature sheet carrier concentration approximates to 1.0~1.1×1013 cm-

2 and mobility is 1400~1600 cm2/Vs. While for higher doping concentration (1018 cm-3) these 

numbers become 1.3~1.5×1013 cm-2 and 1000~1200 cm2/Vs. Notice that the higher doping 

introduces certain parallel conduction, which does not contribute to the 2DEG at room 

temperature and is frozen out under low temperature. The 1017 cm-3 doping sample shows almost 



no temperature dependency in sheet electron density, which means the conduction comes only 

from the degenerated electron population or 2DEG. It also indicates that there exists no parallel 

conduction path and furthermore proving the semi-insulating properties of buffer layer. Figure 3. 

5 (b) shows the change of sheet carrier density with different AlGaN barrier thickness and an 

almost linearly relation is observed.  

AlInN barrier with near lattice matched In% (19%) and 20 nm thickness was also 

characterized by Hall measurement as shown in Figure 3. 5 (c). The room temperature mobility 

is comparable with that of the AlGaN sample, while the low temperature (12K) one is improved 

to 21000 cm2/Vs. With the same growth scheme on GaN buffer, we assumed this is due to the 

elimination on piezoelectric field and the reduction of the defects within the barrier.    
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Figure 3. 5  (a) Temperature dependent sheet carrier density and mobility with different doping for 40 nm 

Al0.3Ga0.7N barrier. (b) The relation between different barrier thickness and sheet carrier density for 

Al0.3Ga0.7N barrier with 1017 cm-3 doping. (c) Temperature dependent sheet carrier density and mobility for 

20 nm Al0.81In0.19N barrier with 1018 cm-3 doping.  

 

The logarithm plot on the temperature dependent 2DEG mobility on both AlInN and AlGaN 

barrier samples is shown in Figure 3. 6. By linearly fitting the mobility onto temperature regime, 

similar dependence coefficients are obtained for both samples. The mobility has a dependence of 

T-0.17 at low temperature, and T-2.41 at high temperature. We may infer from this coefficient that 

the piezoelectric scattering mechanism may be dominant in determining the low temperature 

mobility62. Since the GaN channel for both AlInN and AlGaN samples is grown at the same 

condition, so the ionized impurities scattering should be similar in both sets. The higher low 

temperature mobility for lattice-matched AlInN HFET indicates the reduction in the piezoelectric 

scattering effect. As for the room temperature mobility, from the coefficient we can infer it is 

limited by the polar optical phonon scattering mechanism.  
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Figure 3. 6 The logarithm plot of carrier mobility vs. temperature for both AlInN and AlGaN barrier 

structure. 

 

3.2.2 DC characterizations 

The IV and CV characterizations of the HFET are measured using the Keithley parameter 

analyzer. For the typical AlGaN barrier HFET, IDS-VDS, gate leakage current, transconductance, 

and gate capacitance properties are shown in Figure 3. 7. Good channel pinch-off is observed at -

3 ~ -4 V gate bias, and low knee voltage appears around 2 - 4 V.  At the large drain bias case, an 

obvious current drop is always observed due to the rising of channel temperature by the self-

heating effect. The gate leakage current is around μA range even without surface passivation. 

The maximum transconductance for a typical 40 μm gate width device is around 170~200 

mS/mm reached when drain bias is 3~5 V. From the CV measurements, a sharp transition is 

observed and the threshold voltage is consistent with pinch-off voltage from IV measurements.  
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Figure 3. 7 IV characteristics of a 30 nm Al0.3Ga0.7N barrier HFET (a) IDS vs. VDS (b) IGS vs VGS (leakage 

current) on different gate width (c) IDS vs. VGS and transconductance (at VDS = 3V). (d) gate capacitance for 

40 µm gate width device, measured at 1.0 MHz frequency.  

 

Compared with AlGaN barrier HFET, the AlInN barrier device with In% = 18% has 



higher saturation current since both ns and mobility are improved. The transconductance reaches 

260 mS/mm at 5V drain bias for 20 nm barrier sample, as seen in Figure 3. 8.  Good current 

pinch-off can be obtained at -4 ~ -8V, depends on the thickness of the barrier. The gate leakage 

is similar to AlGaN case within μA range for 40 μm wide gate device.  
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Figure 3. 8 IV characteristics for 20 nm Al0.82In0.18N barrier HFET. 

 

Drain current collapse can significantly affect the performance of nitride HFET. We also 

checked the DC current collapse for both AlGaN and AlInN HFETs. As shown in Figure 3. 9(a), 

drain current always collapse after turning off the visible light excitation, which makes us 

believe the light helps to generate extra free electrons from deep levels defects. The extent of 

current collapse varies from sample to sample, regardless if it has AlGaN or AlInN barrier. The 

collapse is observed even when gate is absent. On the gate-less structure, there is a significant 

reduction in current between two consecutive drain voltage sweeping up scan, as shown in 

Figure 3. 9(b). The drain current tends to have less reduction at high drain bias among the scans.  

It has been reported this instance is related to the trapping effect in the buffer layer, which was 



interpreted in terms of deep traps formed under the high-resistivity GaN growth conditions63, 64. 

The collapse was not observed in the devices grown on conducting substrates in which case the 

traps are already filled by electrons from shallow donors65. 

We define the extent of current collapse by the maximum current drop percentage 

between two consecutive scans on a gate-less structure when light is OFF. The samples with high 

buffer growth pressure (200 Torr) always provide lower current collapse number compared with 

the low pressure (30 Torr) ones. This is because the low growth pressure facilitates the formation 

of deep level traps such as carbon impurity incorporation.  
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Figure 3. 9 DC Current collapse phenomena for (a) AlGaN FET, and(b) gate-less AlInN FET. 

 

3.2.3 RF characterizations 

The equipments used for RF measurements include HP 8510B network analyzer, HP 

6629A DC power supply system, wafer prober, HP8514B S-parameters test set that goes from 45 

MHz to 20 GHz and HP 33150A bias tees. The network analyzer measures the magnitude and 

the phase of the S-parameters. The S-parameters test set terminates the HFET device in the 



required impedance. The bias tees consist of an inductor and a capacitor; the inductor keeps the 

AC signal from leaking into the DC power supply; and the capacitor keeps the DC power from 

interfering with the network analyzer.  Figure 3. 10 shows a block diagram of the setup used in 

this measurement.  

 
Figure 3. 10 Block diagram of the S-parameter measurement equipment 

 

Before the measurements could be made, the probes had to be calibrated. There are two 

probes: one accesses the gate side of the device and the other accesses the drain side of the 

device. Calibration involves removing the parasitic effects of the probes, the cables, and the 

connectors in order to evaluate the only S-parameters of the device. A set of calibration standards 

exists. First, the response of the system to a “Short” is measured. This involves placing the probe 

on a strip of metallization; all the contacts are shorted. Next, the response of the probe to an 



“Open” is measured, and for this, the probe is left in the air and is not contacting anything. The 

Load calibration involves placing the probe contacts on two 100 Ω resistors that are in parallel. 

Finally, the response of a “Load,” which is a resistive 50 Ω transmission line is measured. These 

measurements are applied to an error correction term, which has been programmed into the 

network analyzer. In the Smith Chart display of the HP vector network analyzer, the Short is 

seen as a dot where the reflection coefficient Γ is, Γ = −1. Also, when the Open is measured, it is 

displayed a dot where Γ = 1. The Load used is the characteristic impedance of the line and it 

displays a dot at Γ = 0. Finally, for an independent verification, the calibration is verified with an 

inductor. This traces out a smooth curve of inductive reactance as the frequency is swept. 

After the calibration, the device is properly biased and the S-parameters are measured 

with the frequency ranging from 2GHz to 20 GHz. Figure 3. 11 gives the typical S-parameters 

measured on Lg = 1 um, Lw = 40 um device, 



 

Figure 3. 11 Typical S-parameters for 1µm gate length, 40 um gate width device, frequency from 2G to 

20GHz.  

 

After converting S-parameters into H-parameters, we could extract the current cut-off 

frequency (fT) as seen in Figure 3. 12. Three different gate width devices are compared. The e-

beam lithography sample has 200 nm gate length (Lg) and 40 µm gate width, whose fT reaches up 

to 21 GHz. From the relationship:  
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the electron saturation velocity of the device is close to 107 cm/s.  

 

Figure 3. 12 Current gain (H21) for HFETs fabricated by e-beam lithography and photolithography. 

 

3.3 New Device Structures 

3.3.1 Recess gate HFET 

In the usual GaN HFET structure, the barrier is moderately doped and the surface donor 

states are believed to provide most of the electrons in 2DEG. However, the density of surface 

states can hardly to be monitored throughout the experiments. It also means the device 

performance is sensitive to the surface condition which hampers the improvement on the stability. 

In order to eliminate the influence from surface states, we can either intentionally increase 

the barrier thickness, or put another heavily doped (n+) cap layer to provide enough electrons 

instead. The increasing in barrier thickness do provide more electrons from doping45, but it also 



gives less electron mobility due to the long range scattering effect. Also, the highly doped barrier 

introduces the problem of leakage current and parallel conduction. Therefore, the n+ cap layer 

plus the recess gate fabrication seems to be more applicable for HFET.   

If looking at the GaAs devices, the effect of surface trapping effects in GaAs MESFETs 

was reduced to manageable level through the control on the recess gate geometry, proper 

dielectric passivation and modifications to the epitaxial layer doping profile66, 67.  For HFET 

devices, by employing an n+ GaAs cap layer on the conventional heterojunction device structure, 

one can mitigate the impact of charging and discharging from surface states and reduce the 

dispersion effect. The gate recess fabrication technique must be applied in order to reduce the 

gate leakage and maximize the transconductance. The similar structure has been applied to GaN 

to improve the device performance with lower parasitic resistances and better breakdown 

characteristics 68, 69. Additionally, the insertion of n+ cap layer beneath the source and drain 

electrodes can effectively improve the Ohmic contact property. The typical device structure is 

shown in Figure 3. 13. To process the recess gate GaN HFET, plasma dry etch with enhanced 

selectivity is the key. Also sub-micron lithography method is preferred to define the gate.  

 

Figure 3. 13 The n+ cap HFET device structure with recess gate. 



 

Figure 3. 14 shows the fabrication procedures for a recess gate HFET. There are two kinds of 

processing methods: selectively dry etch method and cap layer re-growth method. For the first 

one, etch has to be controlled precisely to stop at the cap/barrier interface. The traditional GaN 

ICP/RIE dry etch employs Chlorine-based plasma, which can hardly be used for recess gate 

fabrication because of its low etching selectivity between the cap and the barrier. An introduction 

of sulfide or oxygen into the gas etchant may improve the selectivity and the etch rate for Al- 

ternary in such case is usually slow. For the other method, after the growth of the conventional 

HFET, the patterned SiO2 film covering the channel area is ex-situ deposited as the re-growth 

mask. Then the sample is loaded back into MOCVD for the n+ GaN cap layer re-growth. After 

that, the SiO2 is removed and the regular fabrication procedures will be conducted on the re-

growth sample. In the following, I will present the experimental results from both methods done 

on AlInN barrier devices. 



 

Figure 3. 14 The fabrication procedures for recess gate HFET, (a) selectively dry etch method; (b) n+ cap 

layer re-growth method. 

 

(a) Selectively dry etch method 

When growing the AlInN/AlN/GaN devices, I kept the 20 nm AlInN layer undoped followed 

by a 60 nm mid-1018 cm-3 doped GaN cap layer. Figure 3. 15 shows the temperature dependent 

mobility and sheet carrier density on this device structure. The sample gives the sheet carrier 

concentration about 1.2×1013 cm-2 at 10 K, which we believe only come from the carriers in 

channel.  
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Figure 3. 15 Temperature dependent mobility and sheet carrier density from a 20 nm AlInN barrier structure 

with 60 nm n+GaN cap layer. 

According to ref. 70 , the measured total mobility and sheet carrier density for a 

semiconductor consist of two parallel conduction paths can be expressed as: 
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Equation 3. 2 

Here in the n+ cap structure, it assumes the 2DEG all comes from the ionized donor in cap layer, 

and part of the cap is still un-depleted. In Equation 3.2, one conduction path is 2DEG, and the 

other comes from the top un-depleted n+ GaN. At room temperature, as seen from Figure 3. 15, 

we take the overall μ and n to be 1000 cm2/Vs and 2.1×1013 cm-2. And 2DEG has μ1 and n1 equal 

to 1200 cm2/Vs and 1.5×1013 cm-2 from the low temperature data. Then the calculated un-



depleted n+ cap is about 20 nm thick, and estimated to have doping level around 4.5×1018 cm-3
, 

which is consistent with the growth data.  

 It has been reported the adding of SF6 into the BCl3 plasma using the ICP etching system 

will improve the etch selectivity at GaN/AlGaN interface71, 72. A very thin AlFx layer is believed 

to form when the etch-front reaches AlGaN barrier revealed from XPS73. Consequently, this 

layer provides protection to prevent further ion bombardment and plasma etching on AlGaN. The 

etching rate of AlGaN layer will be retarded and the etching selectivity between GaN and AlGaN 

materials can be enhanced. Various etch schemes are reported and usually the composition of 

SF6 is around 20% to reach the maximum etch selectivity ranging from 25 to 80, which is 

defined as the ratio between etch rate of GaN and AlGaN at this gas combination. Meanwhile, 

the post dry etch treatment (CF4/O2 plasma) may be useful to reduce gate leakage and increase 

breakdown voltage74.  

In our ICP/RIE dry etch system, I tried BCl3/Ar/SF6 mixture aiming at the high etch 

selectivity on n+ cap device structure. The etch rate under different SF6 flowrate was tested on 

on a thick AlInN sample and a GaN sample respectively. As shown in Figure 3. 16 (a), it is 

obviously that the introduction of SF6 will significantly reduce the etch rate for both material, 

more pronounce on AlInN. The selectivity plotted in Figure 3. 16(b) increases when more SF6 

involved while the GaN etch rate also experiences a fast drop. The roughness of AlInN surface 

after etch is plotted the same figure that varies from 0.5 to 1.7 nm. The optimized SF6 flow rate I 

used here is 6 sccm, since it gives largest selectivity meanwhile does not deteriorate the etch rate 

on GaN layer too much as well.  
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Figure 3. 16 The influence of SF6 flow rate on (a) the etch rate of GaN and AlInN; (b) the selectivity, and stop 

layer surface roughness of a AlInN with n+ GaN cap.   

The same receipt was applied on the AlInN sample with 60 nm n+ GaN cap layer shown in 

Figure 3. 15. The etching time was 3.5 min that is controlled to ensure the 60~70 nm etch depth. 

The surface morphology of the etching stop layer was confirmed from AFM measurement, as 

shown in Figure 3. 17.  



 

Figure 3. 17 Surface morphology channel after selectively dry etch. 

  

After the dry etch, the gate metal was directly deposited and lifted off, without removing 

the photo-resist etch mask. The fabricated device has I-V characterization shown in Figure 3. 18. 

Compared with conventional HFET, the saturation current and transconductance are much lower, 

while the gate leakage is higher (See Figure 3. 20 (c)). The current pinch-off property is getting 

worse and channel breakdown phenomenon appears at lower bias. It has been reported the 

fluorine-based plasma can introduce strong immobile negative charges in the channel and 

effectively raising the potential of barrier. Normal-off enhance mode HFET has been fabricated 

by applying fluorine plasma treatment75. Therefore, we suspect that the adding of SF6 during dry 

etch, although it can improve the selectivity of dry etch process, introduce extra defects in the 
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barrier that dramatically downgrade the performance of the device.  
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Figure 3. 18 I-V characterization for a Al0.82In0.18N HFET sample with 60 nm n+ GaN cap, fabricated by 

selectively dry etch method. 

(b) Cap layer re-growth method 

 In this method, the formation of the patterned SiO2 mask is done on the conventional 

AlInN barrier structure with the following steps: (1) GaN dry etch to form the device mesa and 

alignment marks; (2) deposition of 100 nm SiO2 layer by UHVCVD; (3) photo-lithography to 

open windows on source and drain region; (4) oxide dry etch in CF4 plasma; (5) photo-resist 

cleaning for re-growth. The process details are shown in Figure 3. 19. During the oxide dry etch, 

RIE power is set to zero to reduce surface damage, and the etching time is prolonged to over-etch 

the oxide laterally. A 60 nm GaN cap layer is re-grown from the open source and drain window 



with 1018 doping level. After re-growth, the source/drain and gate metallization are fabricated in 

the same way as the conventional HFET.  

 

Figure 3. 19 Details on the formation of SiO2 overgrowth mask: (1) mesa isolation, (2) SiO2 deposition, (3) 

photo-lithography and plasma dry etch. 

 

The DC I-V characteristics of the recess-gate HFET fabricated in this method are listed in 

Figure 3. 20. Both recess gate device (by re-growth method) and reference device (no n+ cap, 

barrier is doped to 1017 cm-3) demonstrate good channel pinch-off. The saturation current of 

recess gate HFET is similar to the reference sample, however the saturation voltage is higher due 

to the extra access resistance under the source and drain pads. There is an obvious current kink 

observed on recess gate HFET, which we believed is introduced from the electron traps existing 

in the channel region76, 77. The transconductances of both devices at 5V drain bias are compared 

in Figure 3. 20 (b); both have peak value around 200 mS/mm. Also, the gate leakages are shown 

among all three types of devices with same device dimension. The conventional HFET give the 

lowest leakage current, which is below 10-3 mA for 40 µm wide gate. The dry etched method 
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leaves the largest gate leakage probably due to plasma-induced surface damages.   
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Figure 3. 20  The compare in IV characteristics between reference AlInN HFET and recess gate HFET (a) Ids 

– Vds of reference and recess gate samples by fabricated by re-growth method; (b) transconductances of 



reference and recess gate samples by fabricated by re-growth method; (c) gate leakage current of reference 

and recess gate samples by fabricated by re-growth method and selectively dry etch method.  

 From the experiments done above, the recess gate fabrication procedures can easily 

introduce surface states or etch damages at the gate region. The identification of those defects 

needs to be further investigated by pulse measurements. The re-growth processing method brings 

less influence on devices structure, but no obvious improvements in DC characteristics are 

observed.   

3.3.2 MIS HFET 

It has been reported that the GaN metal-insulator-semiconductor HFET (MISHFET) can 

significantly decreased gate leakage current and increased breakdown voltage compared to the 

conventional structures. Different insulator materials such as SiO2, Si3N4, Al2O3, ZrO2, AlN and 

HfO2 have been examined and discussed respectively in ref. 78 , 79 , 80 . The insertion of 

dielectric layer under the gate would reduce the transconductance and the gate capacitance. On 

the other hand, some insulators can serve as surface passivation layers to reduce the density of 

surface states, leading to smaller current collapse effect81, 82.  The RF performance of MISHFET 

is often reported to exceed that of normal AlGaN/GaN HFET 83 , 84 . The state-of-the-art 

MISHFET has demonstrated current gain cut-off frequency (fT) of 181 GHz and maximum 

oscillation frequency (fmax) of 186 GHz by using an ultra-thin Si3N4 gate dielectric layer85. The 

improvement of RF performance might be ascribed to the screening of the Coulomb scattering 

from the charged surface defects by the dielectric layer86.  However, the question of which 

insulator is the best material still stands. High dielectric constant (κ) materials such as ZrO2 and 

PZT have more potential by providing less gate capacitance and the ability to use thicker layers 

to further reduce leakage current. But the imperfection of the material quality due to different 



crystalline structure and large lattice mismatch between the high-κ insulators and GaN, and the 

difficulty of integrating them into nitride device fabrication processes are the major obstacles to 

be overcome.   

Hereby MISHFET devices on AlGaN/GaN structure were fabricated and characterized. 

Various gate dielectrics including SiO2, Si3N4, ZrO2 and Pb(Zr, Ti)O3 (PZT) were tested, 

deposited by PECVD,  MBE, and sputtering system respectively. For SiO2 or Si3N4 gate 

dielectrics, their thicknesses are usually around 2~5 nm, which could be deposited at relatively 

low temperature after source/drain metallization. The short deposition time, low deposition 

temperature and low density plasma will not degrade the Ohmic contacts on the devices. On the 

other hand, the deposition of high-κ dielectric materials such as ZrO2 and PZT requires active 

oxygen plasma source and much higher growth temperatures (~600 ºC), which can ruin the 

devices by quickly oxidizing the Ohmic contacts. To address this problem, we proposed and 

optimized the fabrication procedure shown in Figure 3. 21. Prior to the dielectric growth, a thick 

(~200 nm) amorphous SiO2 layer was selectively deposited on the top of source and drain 

contacts by e-beam evaporation. This oxide layer can protect the metal contact during the 

insulator deposition. The 3 nm SiO2 and Si3N4 were deposited by plasma enhanced chemical 

vapor deposition (PECVD) at 300ºC; the 2 nm ZrO2 was grown by MBE; the 50 nm PZT was 

grown in RF magnetron sputtering system. The growth details can be found in ref. 87, 88, 89. 

Then, the samples were re-patterned so that the channel area was covered by photo resist, and 

dry etched in CF4 plasma to remove the SiO2 protection layer. After cleaning, at last gate pattern 

was defined and a Ni/Au (30/50 nm) gate was deposited. 



 

Figure 3. 21 Fabrication procedures for MISHFET. 

 

As examined by the TLM measurements, the Ohmic contact property does not degrade 

after the insulator deposition – the average Ohmic contact resistance before and after this 

fabrication processes remained the same at about 3 Ω·mm. Therefore, it proved that the SiO2 

protection layer works effectively. Also, a test sample that followed these procedures but 

removed the gate dielectric before gate metallization showed the same saturation current and 

pinch-off voltage, compared with conventional fabricated HFET control sample, so the 

deposition of gate insulator does not damage the channel notably. 

 Figure 3. 22 shows the typical I-V and gate leakage current characteristics on all control 



and MISHFET samples at room temperature. The data are all from devices with gate 

length/width of 2/40 μm and source-drain spacing of 6 μm. For the control sample, positive gate 

bias will induce significant leakage current that limits the input signal’s dynamic range, while all 

MISHFETs shows orders of magnitude in decrease of leakage current. Si3N4 and PZT samples 

show similar leakage current range as low as 10 pA at -8 V gate bias, but it is worth mentioning 

that the uniformity of Si3N4 sample is better than PZT sample, showing a higher crystal quality 

achieved by the PECVD system.   

 

 



 

 

Figure 3. 22 Typical leakage current and IV characteristics on control and different MISHFET. 

 

The reference sample shows good pinch-off and saturation properties. The reduction of 

the drain-source current is due to the self-heating. All MISHFETs can be applied up to +5 V gate 

bias without notable leakage current except the ZrO2 sample. Under +3 V gate bias, the 

maximum current level can be enhanced, with the best reaching 700 mA/mm on the SiO2 sample. 

Compared with the control sample, some of the MISHFETs also show higher saturation current 

at the zero bias, probably because of the passivation effect. No increase, except the PZT sample, 

in pinch-off voltage is observed for the MISHFET due to the use of very thin dielectrics layers.  

Under the fix drain bias (+3V), the dependence of drain-source current on the gate bias and the 

transconductance properties of all FETs are shown in Figure 3. 23. It is found that the thin Si3N4 

and ZrO2 gate dielectrics samples have a slightly reduction in transconductance, while the 

threshold voltage is unaffected as compared with control sample. The SiO2 gate dielectric 

improves both the transconductance and the saturation current by around 10~15 %, probably 

caused by the effectively removing of surface states. On the other hand, transconductance drops 



from 170 mS/mm to 120 mS/mm on PZT sample, which is considered as the result of the larger 

separation between the gate and the 2DEG channel with the presence of dielectrics. However, 

considering that the thickness of PZT is much larger than the other insulators, the decrease in 

transconductance is less significant due to the high- κ nature of PZT. 

 

Figure 3. 23 Drain current and transconductance at VDS = 3V on control and all MISHFETs 

 Figure 3. 24 (a) shows the C-V measurements at 1 MHz on control and MISHFET samples 

with the same dimension. A sharp transition could be observed at the threshold voltage 

consistent with the values obtained from I-V measurements. For MISHFET, at the 2DEG 

accumulation stage, the total capacitance can be expressed as:  

111 −−− += insulatorFETtotal CCC  

Equation 3. 3 

Under the zero gate bias condition, the thickness of insulators and the total capacitance are 

related by:  
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Equation 3. 4 

 
Figure 3. 24 (a) C-V measurements at 1 MHz; (b) current cut-off frequency obtained from RF S-parameter 

measured at 2GHz ~ 20 GHz. 

 

Given the values of dielectric constants, the thickness of each gate insulator can be 

calculated, and we assume the constant for PZT to be 20090. The calculated SiO2 and Si3N4 

thicknesses agrees with experimental data, while the calculated PZT and ZrO2 thicknesses are 

much larger. This may be accounted by the reduction of the actual dielectric constant, due to the 

different crystallization conditions of those high- κ materials on GaN.  

The on-wafer RF measurements were also performed to determine the cut-off frequency 

(fT) of those MISHFETs. The drain bias was set around 6~7 V and gate bias used 2~3 V on 

different samples. As seen from Figure 3. 24 (b), fT of all MISHFETs are enhanced with the 

highest one achieved by PZT sample. Notice that the transconductance of PZT sample is lower, 

therefore the gate capacitance of it needs to be even smaller to increase fT, which is consistently 

observed from C-V data shown in Figure 3. 24 (a). 

 

 



Chapter 4 Small Signal Modeling 

4.1 Equivalent circuit for GaN HFET 

Modeling to the HFET is essential from the engineering point of view, not only because it 

can provide an accurate prediction on the circuit performance under the operating conditions, but 

also it facilitates the design and integration routines in conjunction with microwave applications 

such as amplifiers, mixers, oscillators or filters that are widely used in burgeoning 

communication systems. In general, the various modeling methods fall into two categories: 

physical and empirical models. The traditional empirical device modeling methods are based on 

the equivalent-circuit description to the transistors, and the determination of the each discrete 

circuit elements.  

The transistor is first properly DC biased so that the device is working at a quiescent 

point (Q-point) at which the VDS determines the saturated output current, and VGS is well away 

from the pinch-off value that determines the depletion width and channel resistances. If the input 

signal is small, then it will not affect the Q-point of the device. A small input voltage will 

produce approximately a linear response in the drain-source current. As well, the equivalent 

circuit has linear response in the frequency domain without higher orders of harmonics. The 

output of the device has same frequency components as the input signal, only the phase and 

amplitude of the signal might be different.  

Standard small signal extraction methods have been well-established for GaAs HFETs or 

SiC MESFETs91, 92. Basically, the equivalent circuit can be divided into the intrinsic part, for 

which the value of each element is a function of bias, and the extrinsic part that has no 

dependence on the bias instead. Usually each element is obtained by fitting the scattering 



parameters measured directly from the device. The determination of the equivalent circuit always 

requires accurate S-parameter measurements, so that the extracted values can have physical 

significance. The basic procedure is to conduct “cold” measurements under channel pinch-off 

bias conditions (VDS = 0V, VGS ≤ 0), at which the intrinsic circuit part can be simplified, to 

extract the bias-independent extrinsic parameters such as parasitic resistances or capacitances. 

Similar extraction methods have been tested on GaN HFET93, 94. The circuit model is 

often more complicated than others because of the unique behavior from GaN devices such as 

the gate leakage current, self-heating, or defect-induced dispersion effects 95 , 96 . The most 

comprehensive model for GaN HFET was proposed by Jamdal and Kompa 97 and consists of 22 

distributed elements, which is reliable, general, and applicable for large signal construction, as 

shown in Figure 4. 1. As a three-terminal device, the extrinsic circuit for the HFET must include 

three parasitic resistances and inductances associated with each contact and wire connection. In 

principle, these elements should be as small as possible, although for wide band gap 

semiconductor, the obtaining on good Ohmic contact is still a technical difficulty. 



 

Figure 4. 1 A 22-element equivalent circuit model for GaN HFET from ref. 97. 

 

Regarding the extrinsic capacitances, Cgsp, Cdgp and Cdsp represent the parasitic 

capacitances introduced by the pad connection and probe contacts, and Cgsi, Cdgi and Cdsi account 

for the interelectrode capacitances. They are all considered in ref. 97, while the de-embedding 

procedure (an optimization-based routine) requires the initial values estimated from empirical 

assumptions. To reduce the complexity of the modeling procedure, the inter-electrode 

capacitances are often neglected by many reports98, 99, since these values are always relatively 

small. In our effort, we propose an equivalent circuit for the GaN HFET shown in Figure 4. 2,  in 

which the Cdgp is also neglected in favor of the extraction simplicity.  
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Figure 4. 2 The proposed 18-elements small signal equivalent circuit for GaN HFET, within the dashed box is 

the intrinsic part. 

 

For the intrinsic circuit part in this model, the consistency between GaN HFET and GaAs 

or SiC power transistors is obvious. The traditional model often consists of 8 elements with 

explicit physical significance. But for GaN HFET, the scenario is little more complicated. The 

differential resistances introduced in ref. 99, Rfdg and Rfgs, are necessary for characterizing the 

current conduction through the gate diode. Reference 98 even considered the possible existence 

of time delays in the output conductance element (Rds). The adding of more elements into the 

intrinsic circuit, however, will give an over-determined system of equations. Hereby we choose a 

10-element intrinsic circuit model similar to ref. 97, which is believed to have enough accuracy 

and applicable for large signal analysis as well. 
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4.2 Circuit parameters extraction methodology 

The key for the small signal de-embedding methodology is the determination of extrinsic 

circuit elements, because it is easier for the intrinsic part with the analytical expressions available. 

Once the extrinsic elements are successfully extracted, by fitting through the y-parameters of a 

two terminal network, one can easily extract the value of intrinsic elements. Taken the equivalent 

circuit proposed in Figure 4. 2 for example, the y-matrix of the intrinsic part can be written as: 
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Equation 4. 1 

At low frequencies (in the megahertz range), the capacitance terms in 11y  and 12y  of  Equation 4. 

1 approach zero so that fgsR  and fdgR can be easily determined at this condition:  

1
12Re( )fdg fdgR g y− = ≈ −  and )Re( 1112

1 yygR fgsfgs +≈=−  

Equation 4. 2 

Then the real and imaginary parts of Equation 4. 1 can be equated to obtain the rest 8 intrinsic 

elements: 
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Equation 4. 3 
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Equation 4. 5 
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Therefore, the problem is reduced to the determination for the intrinsic y parameters, 

which depends on the extraction of extrinsic parameters. To ensure one can get unique and 



representative solution set, namely the extrinsic elements are bias-independent and intrinsic 

elements are frequency independent, many types of measurements are made to attain as much 

confidence as possible.  

 The extrinsic elements could be determined through either measurement-based methods 

or optimization-based methods. The former is more prevalent and utilizes the S-parameter 

measurement measured in the cold conditions, or in another word, under 0V drain-source bias 

conditions. In the following sections we will examine many different extraction methods 

applying to our AlGaN/GaN devices.  

4.3 Cold-FET methods 

The cold-FET methods that determine the parasitics always include two sets of 

measurements conducted at different frequency ranges. In the low frequency range, the influence 

from the inductances can be neglected. Meanwhile, the device is biased under a pinched-off 

condition (VDS = 0, VGS <<0), so very small current is conducting through the device. Therefore, 

the channel conductivity is negligible and the S-parameters measure exhibit capacitive properties. 

At the high frequency range, the impedance of the circuit is dominated by the inductances. Also 

the device is biased under a strongly forward gate bias condition (VDS = 0, VGS >>0), in order to 

reduce the channel depletion capacitance to a large extent. Thus the parasitic resistances and 

inductances are easily calculated. The following are the detailed experimenting methodologies. 

4.3.1 Determination of extrinsic capacitances 

Under the pinch-off cold-FET conditions, the equivalent circuit for the circuit model in 

Figure 4. 2 can be reduced as shown in the inset to Figure 4. 3 if considering only the imaginary 

part of the y-parameters92. For our AlGaN barrier HFET sample, the device is biased under VDS 



= 0 V, VGS = -7 V, and the RF measurements are performed in the frequencies ranging from 150 

MHz to 1.0 GHz.  
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Figure 4. 3 Reduced equivalent circuit for pinch-off Cold-FET condition, and the parasitic pad capacitances 

determined by linear regression at VDS = 0 V, VGS = -7 V, frequencies from 150 MHz to 1.0 GHz. 

 

With the assumption that the gate depletion region is symmetric at the pinch-off 

condition, it quickly leads to the following relationships: 

)2()Im( 11 bgsp CCY ⋅+= ω    

Equation 4. 11 

bCY ω−=)Im( 12  

Equation 4. 12 



)()Im( 22 bdsp CCY += ω  

Equation 4. 13 

Here bC is the residual coupling capacitance between the gate and the source and drain regions.  

 

By linearly fitting the imaginary part of the y-parameters over this frequency range, 

shown in Figure 4. 3 for a typical device, we can extract the pad capacitances as: Cgsp = 0.069 pF; 

Cdsp = 0.062 pF. 

Pad capacitances extracted from a typical device under different bias conditions are also 

tested and listed in Table 4. 1. Higher applied biases result in stable, settled values of these 

parasitics. As suggested also in ref. 100 , high gate bias is desired to suppress differential 

resistance and obtain the accurate parasitics.  But high gate bias may also introduce surface state-

assisted tunneling current flow and subsequent gate breakdown problems, which, as we observed, 

fail to produce reliable capacitances value on some devices.    

Gate Bias (V) Cgsp (pF) Cdsp (pF)  

-5 0.095 0.102 

-6 0.081 0.054 

-7 0.069 0.062 

-8 0.063 0.061 

-9 0.067 0.057 

Table 4. 1 The extracted pad capacitances under different pinch-off bias. 

4.3.2 Determination of extrinsic resistances and inductances 

The inductances and resistances are determined under strong forward gate biased cold 



condition, at which the z-parameters for the remaining circuits with parasitic capacitances 

removed should exhibit inductive properties92. However, it has been pointed out by many groups 

that this bias condition may not be applicable to the inductance extraction on the GaN HFET101. 

The forward gate bias conditions for GaN devices may easily cause damages to the channel, and 

the results that after could differ from the ones under the normal operating conditions. The more 

prevalent methods for GaN HFET in extracting these inductances and resistances are often 

conducted at zero or small negative gate bias conditions97 (VDS = 0, VGS ~0). After removing the 

measured pad capacitances, the corresponding equivalent circuit is shown in Figure 4. 4.  

 

Figure 4. 4 Reduced equivalent circuit for the determination of parasitic inductances and resistances at VDS = 

0, VGS ~0 bias condition, after removing the pad capacitances. 

Here the residual intrinsic impedance terms (ΔZi) in Figure 4. 4 are always treated as 

channel resistances. The applicable z-parameters can be expressed in terms of parasitic 

resistances and inductances:  
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In this manner, the residual terms show no influence on the imaginary part of the z-parameters, 

from which the parasitic inductances are determined by linearly fitting Im(ωZij) over ω2:   
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Figure 4. 5 Parasitic inductances determined from cold measurement at VDS = 0 V, VGS = 0 V, at frequencies 

from 10 GHz to 20 GHz. 

 

On the devices from which we extracted pad capacitances, we calculated parasitic 

inductances from z-parameters measured at VDS = 0 V, VGS = 0 V conditions. The data were 

collected over the high frequency range from 10 GHz to 20 GHz to minimize the error from 

residual capacitive terms. Figure 4. 5 shows the linear fit of ωIm(Z) vs. ω2, and the parasitic 

inductances are determined as Ls = 6.82pH, Ld = 36.99pH, Lg = 52.19pH. 

 The extraction of parasitic resistances, on the other hand, depends on ΔZi which is 

expressed in various ways in different reports. For example, from zero to low negative gate bias 

range described in ref. 97, it follows: 

gs RRZ +=)Re( 11           



Equation 4. 20 

2/)Re( 12 chs RRZ +=          

Equation 4. 21 

chds RRRZ ++=)Re( 22  

Equation 4. 22 

In order to determine four unknowns out of three equations, various bias points need to be 

measured to interpolate Rs+Rd. But we could not obtain reliable consistency in the extracted 

resistances under multiple bias conditions, which was beautifully done in ref. 93. Hereby, we 

neglected the channel resistance at zero gate bias condition, as suggested in ref. 97, making the 

determination of parasitic resistances much easier. Here we extract the parasitic resistances by 

multiplying with ω to further eliminate the influence from the residual terms.  

)Re()( 11zRR sg ωω =+  

Equation 4. 23 

)Re()( 22zRR sd ωω =+  

Equation 4. 24 

)Re( 12zRs ωω =  

Equation 4. 25 

As seen in Figure 4. 6, we can linearly fit the data and obtain the parasitic resistances from the 

slope, the corresponding results are: Rs = 4.45Ω, Rd = 5.47Ω, Rg = 3.69Ω. 
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Figure 4. 6 Parasitic resistances determined for the same device under the same bias condition. 

 

From Figure 4. 6, the curve fittings for gate parasitics show larger variation compared 

with that of source and drain. They are also more sensitive to the frequency range where the 

fitting is done, similar to what was observed in 102. This cold measurement method gives more 

accuracy and confidence on source and drain parasitic resistances and inductances than those of 

the gate. 

4.3.3 Fitting on the intrinsic parameters 

 Once the extrinsic parameters are predetermined, the intrinsic parameters can be 

calculated by Equation 4. 2 to Equation 4. 10. Similarly some equations are multiplied by  ω to 

make the linear fitting easier. The differential resistances are determined in the frequency 200 



MHz to 1 GHz. Some of the parameter fittings are shown in Figure 4. 7.  
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Figure 4. 7 The linear fittings on the intrinsic parameters (a) Cdg, Cgs and Cds; (b) Rdg, Ri and Rds; (c) gm; (d) τ.  

 

The calculated intrinsic parameters for the same device are listed in Table 4. 2, where ΔS 

refers to the average error between calculated and measured S-parameters over the whole 

frequency range. The bias condition for intrinsic parameters extraction is VDS = 4 V, VGS = -3 V. 

For some parameters, such as Cds, the slope of the linear fitting is negative then the value is set to 



be zero.  

Rs (Ω) 

Rd (Ω) 

Rg (Ω) 

4.45 

5.47 

3.69 

Ls (pH) 

Ld (pH) 

Lg (pH) 

6.82 

36.99 

52.19 

Cgsp(fF) 

Cdsp(fF) 

69.0 

62.0 

Rfgs (kΩ) 

Rfdg (kΩ) 

0.91 

6.84 

Cgs (fF) 

Cds (fF) 

Cdg (fF) 

571.06 

0.00 

76.44 

Ri (Ω) 

Rds (Ω) 

Rdg (Ω) 

8.62 

153.33 

23.02 

gm (mS) 

τ (ps) 

41.57 

1.38 

ΔS 9.82% 

Table 4. 2 The extracted extrinsic parameters from cold-FET measurements, and intrinsic parameters from 

determined S-parameters measured at VDS = 4 V, VGS = -3 V. 

 

4.4 Hot-FET methods 

The determination of parasitic circuit elements, as we can see, is fundamental in the 

whole de-embedding procedure. Instead of cold-FET measurements, there are many other 

optimization-based extraction methods that attempt to find out the parasitic parameters only at 

the biased conditions (hot-FET methods), because of speculations on the dependence of the 

parasitics on bias103. Especially for the access resistances, they have been reported to be more 

critical in GaN HFET than in other material systems101. Also, the relatively slow trapping and 

thus the associated dispersion effects could substantially be affected by the bias conditions 

according to pulsed I-V measurements, and in turn trapping can also affect the effective bias 



conditions. Therefore, it stands to reason that these values are bias-dependent. Hereby we will 

examine two hot-FET extraction methods proposed by Manohar et al. and Shirakawa et al. in ref. 

104 and 105. The first method is analytic-based, while the second is optimization-based.  

4.4.1 Analytical method 

The analytical expressions can be derived if the circuit model contains less components 

and simpler. One of such method was developed in ref. 104 for SiC MESFETs. The equivalent 

circuit used by this method is shown in Figure 4. 8.  

 

Figure 4. 8 Circuit model after parasitic capacitances de-embedded for analytical extraction method 

proposed in 104. 

  

Assuming the pad capacitances are known and de-embedded, the parasitic resistances and 

inductances can then be correlated with the z- parameters of the rest circuit. Taking the source 

pad for example, it has the following relationship:  
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Equation 4. 28 
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Equation 4. 29 

Therefore by linearly fitting Im(z12)/ω on X1 and Re(z12) on X2, the source Rs and Ls can 

be extracted by extrapolation. Once Rs and Ls are determined, the rest of the parasitic resistances 

and inductances can be extracted in a similar manner by fitting the real and imaginary part of the 

following equations: 
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Equation 4. 31 

Noting that the validity of Equation 4. 26 and Equation 4. 27 is based on the assumption 



that (ωRiCgs)2 ~ 0, the linear regression is better to be done under 5 GHz frequency. The 

transition time τ is initially set to be 1ps, and updated at each iteration. For example, the linear 

regression in determining the source resistance is illustrated in Figure 4. 9, from the data 

measured on the same device and conditions.  
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Figure 4. 9 The illustration of analytical method to determine source parasitic resistance. 

 

The rest extrinsic parameters are fitted in the similar ways. After the de-embedding of 

extrinsic part, the intrinsic parameters are calculated consequently and listed in Table 4. 3.  Here, 

some of the extracted parasitic resistances and inductances are comparable with the results from 

cold measurements. However, the parasitic inductances exhibit large variations and fit errors, 

from our observations. The calculated inductances vary significantly when different frequency 

ranges are used. Sometimes the parasitics obtained by this method are negative without any 

physical representations, even though careful calibrations and measurements were conducted. 



Besides the possible reason that the pad parasitics may change at hot-FET conditions compared 

with cold-FET, the omission of the gate differential resistances (Rfdg and Rfgs)  , especially when 

they are in the few kΩ range, may bring considerable error on to the analytical expressions  

Equation 4. 26 and Equation 4. 27.      

Rs (Ω) 

Rd (Ω) 

Rg (Ω) 

3.58 

6.12 

0.00 

Ls (pH) 

Ld (pH) 

Lg (pH) 

85.54 

216.72 

112.65 

Cgsp(fF) 

Cdsp(fF) 

69.0 

62.0 

  

Cgs (fF) 

Cds (fF) 

Cdg (fF) 

415.90 

0.98 

71.23 

Ri (Ω) 

Rds (Ω) 

 

11.07 

215.33 

 

gm (mS) 

τ (ps) 

28.84 

0.89 

ΔS 14.8% 

Table 4. 3 The calculated circuit parameters with analytical method, directly from hot-FET measurements 

data. 

 

4.4.2 Optimization method  

Shirakawa et al. have proposed a simple small signal equivalent circuit model for the 

conventional GaAs HFET, same as what is shown in Figure 4. 8, along with a pure optimization 

method to extract extrinsic and intrinsic parameters simultaneously.  Our optimization routine is 

based on their algorithm with some modifications so that it can work on the more complicated 

the equivalent circuit shown in Figure 4. 2.  



 Differential resistances, Rfdg and Rfgs should not be omitted for GaN HFET as in the 

Shirakawa model. However, the incorporation with extra elements will present some challenges 

in the complexity of the optimization as we will see later.  

Still the pad parasitic capacitances, Cgsp and Cdsp, are considered using the value from 

cold measurements. After de-embedding the parasitic capacitances, the z-parameters for the total 

remaining circuit and intrinsic part are related by:  
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Equation 4. 32 

where zij represents the z-parameter of the total device with the pad capacitances removed. 

The basic idea of the optimization procedure is to express all of the intrinsic elements as 

functions of ω and an extrinsic vector, zext (Rd, Rg, Rs, Ld, Lg, Ls). By assuming that all intrinsic 

elements are frequency independent, through minimizing their variance over frequency we will 

obtain the optimized value for both the extrinsic and intrinsic parameters. 

Given a specific value on zext, the intrinsic z or y parameters can be determined from the 

measured data. From Equation 4. 2 to Equation 4. 10, every the intrinsic parameters can be 

calculated except Rfdg and Rfgs , which are determined at low frequency range. Since the number 

of intrinsic parameters is 10, it is actually impossible to express all 10 variables solely as a 

function of single ω in light of the fact that there are only 4 measured pieces of data, including 

real and imaginary parts, at each frequency point. Our solution is to find expressions for each of 

the intrinsic circuit elements in terms of the intrinsic y-parameters at multiple frequency points. 

In another words, we chose a proper ∆ω so that at each frequency ω, all elements are determined 

from both y(ω) and y(ω+∆ω). Taking the Rfgs, Ri, Cgs sub-circuit as an example, the feedback 



resistances and its corresponding RC sub-circuit will follow: 
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Moreover we can find out: 
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where  int,12int,111 yyY += . Similarly, the Rfdg, Rdg, Cdg sub-circuit follows: 
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Equation 4. 38 

where  int,122 yY −= . When programming, we also smoothed the calculated values by averaging 

them within several adjacent data points in order to reduce the scatter caused by the error from 

the measurement. The rest four intrinsic elements will be:  
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To minimizing the variance of each parameter over frequency, we first define the variance as:  
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Equation 4. 43 

Here fi represents the analytical expressions of each intrinsic parameter obtained from Equation 4. 

33 through Equation 4. 42. We define a global weighted scalar as the objective function for the 

optimization routine: 
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Equation 4. 44 

The weighting factors are selected from the normalization of minimum variance 

according to the optimization procedure performed on each intrinsic parameter. Or, if )(⋅ℜ  

denotes the optimization routine, its output will give both the minimized variance and 



corresponding optimized extrinsic vector:  
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Equation 4. 45 

Then Wi is defined as:  
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Equation 4. 46 

To avoid non-physical convergence, we also strengthen the optimization routine by imposing the 

following inequality constraints: 

0],,,[0],,,[ 1021 ≥≥ fffandLRR sgd LL  

Equation 4. 47 

In a short summary, our hybrid extraction method firstly removes the contributions from 

the pad capacitances, achieved via a cold pinch-off measurement. In order to find the weighting 

factors, the routine is run to minimize the variance for each intrinsic element individually. Then 

the weighted average is set to be the objective function, and the routine is run again to obtain the 

globally optimized extrinsic vector. Finally, the calculated S-parameters are evaluated with 

measured data. The flow chart demonstrating this extraction procedure is shown in Figure 4. 10.  



 

Figure 4. 10 Working flow for the extraction procedure 

 

A sequential quadratic programming (SQP) algorithm, which is a generalization of 

Newton’s method106, is utilized in solving this constrained optimization problem. The objective 

function and the constraints are replaced with quadratic and linear approximation respectively. 

The convergence properties of the algorithm can be improved by using line search with penalty 

parameters recommended in ref. 107. Noting that it is a gradient-based method, the convergence 

of the program relies on the continuity of the objective function. Therefore the measurements 

should be carefully conducted to avoid noise or movements of the reference planes. 

 For the same device as measured in cold measurements, we still take the pad capacitances 

as: Cgsp = 0.069 pF; Cdsp = 0.062 pF. In Figure 4. 11 we demonstrate the intrinsic parameters 



obtained from the optimization routine, using the measured data taken at VDS = 4V, VGS = -3V in 

the frequency range from 2 GHz to 20 GHz. 
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Figure 4. 11 Optimized intrinsic elements from the data measured at VDS = 4 V, VGS = -3 V, and frequencies 

from 2 GHz to 20 GHz. (a) Ri and Rdg,  with and without the differential resistances Rfdg and Rfgs  considered. 

(b) Cdg, Cgs, and Cds . (c) gm and τ. (d) Measured (×) and simulated (line) S parameters. 

 



The calculated intrinsic parameters have shown good frequency invariance properties. In 

order to demonstrate the importance of the differential resistance values, we also optimized and 

simulated a simplified intrinsic circuit model without the differential resistances. Neglecting 

them imparts a profound effect onto Rdg and Ri at lower frequencies as shown in Figure 4. 11 (a). 

A good agreement is achieved between measured and simulated S-parameters with only a 3.86% 

average error in this frequency range at such a bias condition. The calculated intrinsic and 

extrinsic parameters are listed in Table 4. 4.  

Rs (Ω) 

Rd (Ω) 

Rg (Ω) 

2.80 

3.94 

0.00 

Ls (pH) 

Ld (pH) 

Lg (pH) 

81.55 

180.91 

13.61 

Cgsp(fF) 

Cdsp(fF) 

69.0 

62.0 

Rfgs (kΩ) 

Rfdg (kΩ) 

0.93 

22.96 

Cgs (fF) 

Cds (fF) 

Cdg (fF) 

489.26 

0.00 

76.56 

Ri (Ω) 

Rds (Ω) 

Rdg (Ω) 

3.30 

197.17 

72.72 

gm (mS) 

τ (ps) 

32.92 

0.51 

ΔS 3.86% 

Table 4. 4 The extracted extrinsic and intrinsic parameters optimized from the hot-FET measurements data, 

same conditions as the cold-FET. 

 

As seen above, the equivalent circuit for a GaN HFET is more complicated than the 

conventional models for GaAs or SiC devices. The involvement of the gate differential 

resistances is necessary, which under the reverse bias conditions represent leakage current paths 



of the gate Schottky diode. Due to the defects and dislocations in the crystal and assistance from 

surface states or traps, the leakage current term is always non-negligible. Especially at low 

frequencies where the value of ωC is small, the differential resistance term will be predominant 

in total conductance. Although the increase in the number of circuit elements brings extra 

complexity in hot-FET extraction, the intrinsic parameters can still be calculated via the 

strengthened optimization routine. 

By analyzing and comparing different small signal modeling methods, we could examine 

the validity and consistency of the results. In our GaN HFET device, the parasitic resistances 

extracted under different techniques are consistent, while the parasitic inductances show large 

variation. Basically, the inductances calculated from hot-FET models are always larger than that 

from cold-FET measurements. This difference may reflect the change of the pad parasitic at hot 

conditions compared with cold conditions. Also for GaN HFET, more profound material defects 

related reasons may be also involved since the frequency range used for extrinsic subtractions 

between hot and cold methods are different.  The error generated in cold measurements could 

propagate, affecting the accuracy of the intrinsic parameters obtained thereafter. 

From a mathematical point of view, the optimization-based extraction routine will 

undoubtedly produce the smallest error at one certain condition, compared to the other 

techniques. However, it is more meaningful to evaluate the validity of this method at various bias 

conditions. Thus we verified its stability first by testing whether the results depended on the 

initial values at each bias condition. By selecting all zeroes, random numbers, and results from 

the cold measurement as the initial values for zext, we found that at each bias, the routine led to 

the same results regardless of the initial values chosen. Second, 15 different bias conditions were 

tested for one device as shown in Table 5. The overall simulation error is seen as approximately 



5%. In contrary, this number rises up to more than 10% for the corresponding bias points using 

the constant extrinsic parameters from cold measurements. In favor of the large signal device 

nonlinearity analysis, it is usually convenient to assume the extrinsic parameters to be constant. 

If one were to do so by taking the mean value of the extrinsic parameters over all bias points as 

the set of bias-independent extrinsic parameters, the error will increase, remaining below 9% for 

every bias condition. 

       VGS (V) 

 

 

VDS (V) 

-2.5 -3.0 -3.5 

3.0 8.21, 0.93, 3.32 

4.47% 

8.34, 3.26, 4.19 

6.71% 

0.00, 8.73, 2.64 

4.00% 

4.0 2.72, 11.67, 3.95 

5.47% 

2.80, 3.94, 0.00 

3.86% 

3.43, 7.78, 1.13 

5.73% 

5.0 4.36, 6.32, 2.19 

4.32% 

0.00, 4.45, 3.58 

5.32% 

0.00, 4.83, 3.58 

5.39% 

6.0 0.00, 14.67, 3.63 

5.42% 

2.14, 6.65, 1.05 

5.46% 

2.20, 9.09, 2.50 

5.34% 

7.0 0.00, 4.19, 0.00 

2.64% 

0.00, 11.24, 2.44 

5.76% 

0.00, 0.00, 2.89 

4.50% 

 Rs , Rd , Rg (Ω) 

ΔS 

Rs , Rd , Rg (Ω) 

ΔS 

Rs , Rd , Rg (Ω) 

ΔS 

Average: Rs = 2.28 Ω, Rd ＝ 6.52 Ω, , Rg ＝2.47Ω 

Table 4. 5 The parasitic resistances and calculated S-parameters simulation error for different bias 

conditions, from optimization method. 

 

In conclusion, when simulating the S-parameters of the GaN HFET, our hybrid extraction 



method provides a high accuracy with an overall error of approximately 5% without any initial-

value dependence compared with traditional cold measurement methods. The extracted extrinsic 

parameters show a notable dependency on applied biases.  We believe that the cold measurement 

method may not be able to generate accurate enough parasitic parameters especially on 

inductances that can be used for intrinsic parameter extraction at operation voltages. As such, our 

hybrid optimization routine can give more reliable extrinsic and intrinsic values for the small 

signal equivalent circuit for GaN HFET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 Physics Modeling 

The physics model which the most of the simulation tools are now based on is the drift-

diffusion (DD) model. The basic theories include semiconductor carrier statistics, Poisson 

equation, and carrier transport mechanism.  

First, let’s look at the Poisson equation, which is derived from the Gauss’s law for electricity:  

ρ=⋅∇ D
r

 

Equation 5. 1 

Where D is the electric displacement, ρ is the free charge density. Furthermore, the displacement 

is related with electric field and polarization field:  

PFD
rrr

+= ε  

Equation 5. 2 

Since the electric field is the derivative of potential field, so finally we obtain the Poisson 

equation as:  

ρϕε =⋅∇+∇∇ P
r

)(  

Equation 5. 3 

Here we should pay much attention to the polarization field, which is not zero across a GaN 

heterojunction. It causes profound change to the charge and potential distribution. 

 The way to calculate the carrier population is one of the major differences between 

classical drift-diffusion model and quantum corrected drift-diffusion model. The traditional DD 

model utilizes the classic carrier statistics, which allow carriers momentum to be any direction. 

For example, the electron density within the non-degenerated semiconductor is:   
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EE
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Equation 5. 4 

However, in the heterojunction devices, the potential wells or barriers are presented at the 

interfaces due to the discontinuity of energy bands. The movement of carriers is confined by the 

heterojunctions. Thus the classical carrier statistics are not accurate anymore within those 

regions. Take two-dimensional heterojunction structures for example, the carriers are confined 

on discrete energy sub-bands, and the density of state for each sub-band is a constant:  

2

*

2
hπ

ρ m
D =  

Equation 5. 5 

The density of state theory gives the electron distribution function as: 

∑∫
∞

=
m

E mD
m

dEEfn 2
2 )( ψρ  

Equation 5. 6 

Here the ψm is the wave function of the mth sub-band, and f is the distribution function, which 

usually takes Fermi-Dirac distribution. Therefore, Schrondinger equation has to be solved to 

obtain correct carrier distribution. With the quantum correction, the calculated carrier 

distribution can be quite different from the classical method, seeing Figure 5. 1 as an example for 

Si MOSFET.   



 

Figure 5. 1 A schematic that represents the different results from quantum DD model and classic DD model. 

  

When the external field is applied onto the device, DD model expresses the current 

density as a sum of two components: The drift component which is driven by the field and the 

diffusion component caused by the gradient of the carrier concentration. Here for HFET, we 

consider only electrons.  

nqDnqjn ∇+∇= ϕμ  

Equation 5. 7 

In the non-equilibrium case, the Fermi level inside the semiconductor is not a constant anymore, 

and quasi-Fermi level is introduced to describe the carrier population displaced from equilibrium. 

Furthermore, the current density is considered as proportional to the gradient of the quasi-Fermi 

level:   

Fnn Enqj ∇= μ  

Equation 5. 8 



 Another important expression is the current continuity equation, which defines the 

change of current within the semiconductor to be related with the carrier recombination rate U:  

qUjn =⋅∇   

qUj p −=⋅∇  

Equation 5. 9 

There are several kind of recombination mechanisms, such as the electron-hole Shockley-Read-

Hall (SRH) recombination, Auger recombination, direct radiative recombination, which are of 

important in the modeling of solid-state lighting devices such as LEDs and LDs. However, here 

we assume that there exists no recombination in HFET at the working conditions. Thus the 

current density across the entire device is a constant.  

 It is difficult to give a general optimum solution out of the equations above, since in most 

circumstances it depends on the device details. Based on a specified device structure and the 

information we are interested in, one can make several assumptions on HFET device and draw 

some general conclusions on the methodology.    

 

5.1 Methodology to solve the quantum DD model   

The quantum DD model based on the Boltzmann transport equation and quantum effects 

describes the movement of carriers at the non-equilibrium state within a semiconductor. It needs 

to handle the following relationships:  

1. Poisson equation 

2. Schrödinger equation and carrier statistics  

3. Current equations 



4.  Continuity equations 

Unfortunately, most of those equations are non-linear set, and it is impossible to give a direct and 

neat solution. The most popular methods are iteration-based Gummel algorithm108 and Newton-

Raphson algorithm109.  In this work, I will use the Newton method, which is best known for its 

fastest converging performance.  

Since the variables are correlated with each other in those equations, it’s important first to 

choose the minimum set of unknowns as the independent variables of Newton method. One 

choice is to select potential and quasi-Fermi levels:  (φ, Efn, Efp). Then I can define the residual 

errors for each independent variable as:   
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Equation 5. 10 

Here (φ*, Efn*, Efp*) are estimation values calculated from current iteration. According to the 

Newton method, giving a initial value on (φ0, Efn
0, Efp

0 ), the next iteration could be expressed as:  
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Equation 5. 11 

In this relation, J denotes for the Jacobian matrix of the residual errors:  
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Equation 5. 12 

The speed of convergence for Newton method is at least quadratic at the neighborhood of 

roots. In most cases, the algorithm can convergence within 20-30 iterations, to get enough small 

residual error, which in another words means to reach the solution of  (φ, Efn, Efp). 

 For the estimations value (φ*, Efn*, Efp*), first I assume no hole is taken into account in 

as carrier within the HFET device. Therefore variable Efp and Efp* are neglected. Referring to 

Equation 5. 1 to Equation 5. 6, the estimated potential φ* is calculated from (φ, Efn) as:  
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Equation 5. 13 

The Schrödinger equation is based on single electron approximation within the semiconductor. 

The wave functions ψ and discrete energy levels should be obtained, and feed into the second 

equation for carrier statistics (n) calculation. Then the estimation φ* is solved from the Poisson 

equation. Furthermore, the derivatives of φ* are computed in stack: 
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Equation 5. 14 

 Another variable Efn* is calculated from current equations by combining Equation 5. 8 

and Equation 5. 9, assuming no recombination in the HFET: 

0)( =∗∇⋅⋅∇ FnEn μ  

Equation 5. 15 

And the derivatives of EFn* can be calculated similarly.    

 In short, given an initial value on (φ, Efn), the algorithm first computes the wave function 

from the Schrödinger equation solver. Then the carrier distribution n is determined within the 

quantum confined region. The estimated potential and Fermi level are obtained by solving the 

Poisson equation and the current equation. This estimation values are feed into Newton module 

to calculate the Jacobian matrix and update (φ, Efn), and loop back for next iteration until exit 

criteria meets. However, almost all above equations are high order partial differential equations 

(PDEs) with only numerical solution, which makes the determination on the Jacobian matrix 

complicate. Another difficulty lies in the tremendous computational efforts. In case of a two 

dimensional device modeling with N2 grid points, the size of Jacobian matrix reaches 2N2×2N2.  

Without fast computing method, the matrix operation is too time-consuming to afford.  

Unlike LEDs or RTDs, GaN HFET is a lateral conduction device. The materials along the 

plane perpendicular to the growth direction have homogeneous property giving no confinements 

to carriers. Also, the lateral device geometries are much larger than the dimensions of vertical 

layer structures. Therefore, usually the distributions of carriers and conduction band along c-GaN 



direction are of interest than the other directions.  

An important assumption is the Fermi level along c-GaN is a constant, even with the 

presence of the gate and applied bias. This implies that the vertical conduction is negligible. This 

assumption is based on the fact that the gate is usually reversely biased, and the vertical current 

flowing from gate is much smaller compared with the lateral conduction from source to drain.   

To unify the nomenclatures in one-dimensional and two-dimensional simulations, the 

basic layer structure and the axis directions are shown in Figure 5. 2. 

 

Figure 5. 2 A schematic showing the axis definitions and nomenclatures used for modeling. 

 

In the following sections, I will first focus on the 1D solution along c-GaN. It can give us 

plenty of useful information such as the device band diagram and carrier distribution. Besides, it 

also paves the way for the 2D device simulations to investigate the cross-section profile around 

the channel. 
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5.2 One-dimensional modeling 

5.2.1 Self-consistent solution to Schrödinger-Poisson equations 

The one-dimensional Schrödinger equation across the heterojunction can be written as110, 

111: 
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Equation 5. 16 

where )(yme  is the electron effective mass, it is position dependent; Em is the eigenenergy for 

mth subband; mψ  is the wavefunction corresponds to this eigenenergy; y is opposite to c-GaN 

direction; and EC is the  energy band that incorporates with conduction band discontinuity and 

static potential φ by: 

CC EyqyE Δ+−= )()( ϕ  

Equation 5. 17 

Here CEΔ  is the conduction band discontinuity at the interface. The Schrödinger equation in 

Equation 5. 16 can be also expressed as:  

ψψ mEH =  

Equation 5. 18 



where H is the Hamiltonian operator. In single electron approximation, electron energy is 

admissible on stationary eigenvalue Em.  After mesh xNxi Δ⊂ ),1( , and the discretatization on H 

matrix would be: 
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Equation 5. 19 

Therefore, the problem of solving the descret energy spectrum Em  and wave function would 

become the determination of eigenvalue/eigenvector of H matrix. Note that the size of H matrix 

is (N-2)×(N-2).  

Once the wave functions are obtained, the carrier distribution can be calculated from 

Equation 5. 6. Applying the Fermi-Dirac distribution, the expression will become:   
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Equation 5. 20 

If we consider both ionized shallow and deep donors as the source of charges within the 

semiconductor, then the one-dimensional Poisson equation is written as:  
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Equation 5. 21 

where ε  is the dielectric of each layer, n(y) is the electrons from previous equation. Similar to 



Schrödinger equation, 1D Poisson equation has a matrix form expression and the solving is 

equivalent to the matrix inversion operation. The polarization charge term dP(y)/dy become a 

delta function, with nonzero values only at the interface. Similar to Equation 5. 21, the Poisson 

equation after discretization also has a linear algebra expression. Basically to solve it is 

equivalent to solve the linear system equation Ax=b.   

Since we assume the Fermi level is a constant across each layer, usually it is fixed at the 

zero level in 1D simulation. Therefore, potential is the only variable to be calculated, and the 

Jacobian matrix reduces to one term ϕϕ ∂∗∂ / . Equation 5. 14 is used to compute the Jacobian 

matrix. Take ϕψ ∂∂ /  for example, once the Green matrix of the Schrödinger equation is 

determined, this derivative can be expressed as:  
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Equation 5. 22 

here I is identity matrix; φ needs to be expand into diagonal matrix. With grid size N, all 

matrixes are N×N square one.  

The basic flow chart of the numerical calculation procedure is shown in Figure 5. 3. 

Starting with a trial value on potential, the Schrödinger equation is first solved to obtain the wave 

functions and eigen-energy levels. Then, the carrier distribution n and sheet density ns can be 

calculated as the input to the Poisson equation. The newly estimated potential φ* is then 

compared with the starting value. If the error between the two is within a predefined criterion, 

one then ends the iteration. Otherwise φ is updated by compute the Jacobian matrix out of each 

equation. 



 

Figure 5. 3 Flow chart of the numerical calculation procedure for Self-consistent Schrödinger-Poisson 

equations. 

 

5.2.2 Other considerations  

Several more treatments that are related to the unique properties of GaN material can 

applied to the modeling, provide us better understanding to the device performance. 

 

1.  Strain induced band gap shrink 

For AlGaN/GaN heterojunction, the uniaxial strain existed at the interface will cause the 

conduction and valence band edge shift. Therefore the conduction band gap is slightly smaller 

than the  caused by. The reduction of conduction band discontinuity is given by: 

Cεε 3133 2aaE +=Δ ⊥   



Equation 5. 23 

Where 
c

c

a
aa −

=Cε , and Cεε
33

132
C
C

−=⊥ . The deformation potential for wurtzite semiconductors 

can be found in 112. In general, the band gap of tensile strained AlN or AlGaN shrinks that 

lowers energy barrier and reduces sheet carrier concentration consequently. 

 

2. Electromechanical coupling effect 

During the calculation of piezoelectrical polarization, it is assumed that this kind of 

polarization is induced by strain due to the lattice mismatch between AlGaN barrier and GaN 

buffer. However, since the presence of strong electrical field at the interface, the effect of electric 

field induced strain that causes the change of piezoelectricity in AlGaN, which is often referred 

to as the electromechanical coupling, should be considered.  

According to the Hooke’s law, the displacement that used in the uncoupled case must be 

replaced with the coupled pair. The coupled formulation is based on the linear piezoelectric 

constitutive equations for stress and electric displacement113: 
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Equation 5. 24 

where σij is the stress tensor, Cijkl is the fourth rank elastic stiffness tensor, εkl is the strain tensor, 

eijk is the third ranked piezoelectric coefficient tensor, κij is the second rank permittivity tensor, 

Di is the electric displacement, Fk is the electric field, and S
iP  is the spontaneous polarization. 

The indices i, j,k, and l run over the Cartesian coordinates 1, 2, and 3 (x, y, and z). Einstein’s rule 

of summation over repeated indices is implied. The symmetry of the wurtzite crystal structure of 



GaN and AlGaN reduces the number of independent elastic and piezoelectric moduli. In the 

devices considered here, the crystals are grown with the c axis normal to the surface in the z 

direction, we make the common assumption that the thick GaN layer is unstrained, and the 

biaxial strain of the thin AlGaN layer satisfies ( ) /xx yy GaN AlGaN AlGaNa a aε ε= = − , where GaNa  

and AlGaNa are the c-plane lattice constants of each material constituting the heterojunction. The 

absence of stress along the growth direction (z-direction), in the barrier AlGaN layer, allows us 

to express the strain along the growth direction as114: 
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Equation 5. 25 

where Ez AlGaN is the z-directed electric field in the barrier AlGaN layer and we have expressed 

the elastic and piezoelectric moduli in matrix notation115. The equivalent sheet charge density 

due to PE polarization in AlGaN is given by ref. 114  
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Equation 5. 26 

The electric field on both side of interface satisfies the conservation on electric displacement,   

while the field on the channel side can be deduced from the Poisson equation by neglecting the 

impurity and hole concentration as follows:  
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Equation 5. 27 

where κ is used as the permittivity of material, instead of the usual ε to avoid confusion with 

strain, and 2DEGσ  is the two-dimensional electron gas charge density. Therefore, it will have:  
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Equation 5. 28 

where AlGaN
SP

GaN
SPSP PPP −=Δ  represents the differential spontaneous polarization between the 

AlGaN barrier and GaN channel. Put the modified term of AlGaN piezoelectric polarization into 

Equation 5. 28, then we could get the electrical field at AlGaN side:  
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Equation 5. 29 

Furthermore, the piezoelectric polarization in AlGaN can be rewritten as:  
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Equation 5. 30 

where 
33
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κ
α  and represents the electromechanical coupling. Setting α = 0 brings 

us back to the polarization charge with no coupling which can be obtained from Hooke’s law and 

piezoelectric polarization in an uncoupled case. 

 

3. Surface donor states 

The solving for any differential equations requires the determination on boundary 

condition. On the top surface without Schottky gate, the value of surface potential served as the 



boundary conditions for Poisson equation is important yet hard to specify. The Fermi level at the 

GaN surface is often found to be pinned due to the existence of surface donor states116. At the 

surface, the total number of surface states could be enormously large because of the dangling 

bond of the semiconductor atoms, as was noted in the venerable Si case many decades ago117. 

More interestingly it is surface states that is often believed to be the main source of electrons in 

the 2DEG at the channel118, 119. For a conventional AlGaN/GaN structure, the barrier is mid- or 

even un-doped. The intrinsic or the intended doping level is within 1016 ~ 1018 cm-3. However, 

the 2DEG density is commonly around 1013 cm-2. Even all of the donors are fully ionized, it can 

not provide enough electrons into the 2DEG. Therefore, the determination of surface potential 

depends on the population of ionized surface states, and furthermore relates to the carrier density 

of the system.  

Very first consideration for any equilibrium system to satisfy is the conservation of the 

charges. Similar to that proposed in reference120, we can take a simplifying treatment as follows: 

neglecting the hole and acceptor concentrations in the semiconductor and considering only the 

donor states, the charge neutrality condition is expressed as:  

sDsf ndNn =+ ++   

Equation 5. 31 

with ns is the sheet electron density. We assume the density of ionized surface donor states sfn+   

follows the Fermi-Dirac distribution, and there is a single surface states energy level Esd. Then it 

follows 
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Equation 5. 32 

The degeneracy factor g is 2 and surface donor state’s energy level is approximately 1.2 

eV below the conduction band according to Scanning Kelvin Probe Microscopy measurement. 

Given a certain surface potential boundary value, carrier distribution and sheet density can be 

calculated. Furthermore, this value should satisfy Equation 5. 31 and Equation 5. 32 and update 

iteratively. The density of total surface donor state nsf can be assumed to be up to 1015 cm-2,  and 

the calculation shows that EF at the surface is often pinned to the energy level of surface donor.  

If a Schottky gate is present, then the surface states will be depleted and the potential at 

the surface will be fixed by the barrier height and applied voltage. Thus the potential boundary 

value is easy to be determined.  

 

5.3 One-dimensional modeling results 

5.3.1 Band diagram and carrier distribution  

 The ionized donor states at the AlGaN surface have been reported to reach 1013 cm-2eV-1 

with distributed in energy within 1~1.8eV below the conduction band121. During the simulation, 

the surface state density was assumed to be extremely large up to 1015 cm-2, with single donor 

energy level locate at 1.2eV to make sufficient number of electrons are available from this source 

alone for the system to reach equilibrium. Additionally assumed shallow and deep donors in the 

barrier layer have concentrations of 8×1017 cm-3 and 5×1017 cm-3, and the ionization energy 

levels are 30 meV and 1.0 eV below the conduction band respectively. Both AlGaN and AlInN 

barrier structures are investigated, with the 25% and 82% Al mole fraction in each case. The 



barrier thickness is 20 nm. The spontaneous and piezoelectric polarizations are calculated as 

introduced in Chapter 1.4, for which the detailed steps could also be found in 122, 123. For 

lattice matched Al0.82In0.18N barrier, neither piezoelectric polarization nor conduction band 

reduction exists since the varnish of the strain.  

 For the solving of Schrödinger equation, the y-range of wavefunction into the bulk GaN 

is 100 nm, and the first 10 energy eigen-states are considered. For AlGaN barrier structure, the 

room temperature total sheet electron density is approximately 1 ×1013 cm-2. The band diagram 

and electron distribution are shown in Figure 5. 4 (a).  The eigen-energies and the wave functions 

of first three sub-bands are also shown. As can be seen, the most of the 2DEG is confined within 

a 5 nm channel under the interface. The ground energy state level (~100 meV) is consistent with 

the experiments results from Shubnikov-de Haas (SdH) measurements124, 125.  The conduction 

band edge diagram and electron distribution for an AlGaN/GaN system with an AlN spacer layer 

is shown in Figure 5. 4 (b). Compared with the normal AlGaN/GaN heterojunction with the same 

Al mole fraction and doping concentration, the AlN spacer provides a better confinement with 

smaller proportion of the electron wavefunction spilling into the barrier. The total sheet carrier 

concentration increase from 1.1×1013 cm-2 to 1.3×1013 cm-2
.  



 

(a) 

 

(b) 



Figure 5. 4 (a) Calculated conduction band profile, electron distribution, and eigenenergy for the first three 

subbands in an AlGaN/GaN heterojunction, wavefunctions are shown in the insert (b) Band structure for 

AlGaN/GaN HFET structure with and without an AlN spacer; electron density distributions are shown in the 

insert. 

Taking the electromechanical coupling effect into account, the change of band diagram is 

small, as shown in Figure 5. 5. Also, the total sheet carrier concentration changes only from 

1.19×1013 cm-2 to 1.17×1013 cm-2.  This is due to the small built-in electrical field in the barrier 

layer ( AlGaN
ZF ) in the absence of Schottky metal and applied voltage on the surface. 

 

Figure 5. 5 Conduction band profile with and without the electromechanical coupling in an AlGaN/GaN 

heterojunction. 

 



The electron distribution in the AlGaN/GaN HFET structure with 10, 20, 30, and 40% Al 

mole fractions is shown in Figure 5. 6 (a). Increasing the Al content induces a larger polarization 

charge at the AlGaN/GaN interface and consequently a higher channel electron concentration at 

equilibrium. The distribution of electrons in the channel with varying doping (1017 cm-3 ~ 1019 

cm-3) in the barrier is shown in Figure 5. 6 (b). Increasing the doping in the barrier supplies more 

electrons to the channel and thus increases the total sheet density. However, it comes with side-

effects such as the decreased mobility and the increase of gate leakage current126.  

 

(a) 



 

(b) 

Figure 5. 6 Carrier distribution for (a) different Al% and, (b) different shallow donor concentrations in the 

AlGaN/GaN HFET structure. 

 

Experiments have been reported in which the thickness of the AlGaN barrier in the HFET 

structures has been shown to have a significant influence on the channel carrier density and 

device performance43,127, especially regarding the reliability128. The associated interpretation 

assumes the source of electrons to be the surface states. The calculated total sheet carrier 

concentration ns as a function of the AlGaN barrier thickness is shown in Figure 5. 7 (a), for both 

with and without 1 nm AlN spacer layer cases. The increase of ns with thicker barrier is because 

when the AlGaN thickness increases, the potential well at the interface becomes deeper. The 

build-in electrical field on the channel side is stronger, which is proportional to the 2DEG sheet 

density. In addition, insertion of an AlN barrier increases the piezoelectric-induced polarization 



(the spontaneous polarization is not influenced in net). Moreover, with the help of AlN spacer, ns 

has a weakened dependence on the barrier thickness. The calculated data are in good agreement 

with those reported in ref. 43.  The reason of this phenomenon is that the large band gap 

discontinuity between AlN and GaN serves to “buffer” the change in potential energy caused by 

the variation of barrier thickness, thus lessens the impact on the potential well profile in the 

channel. 

 

(a) 



 

(b) 

Figure 5. 7 (a) Sheet carrier density dependence on AlGaN barrier thickness, with and without 1 nm AlN 

spacer. (b)  Sheet carrier density dependence on AlN thickness in AlGaN/AlN/GaN HFET structure, the 

electrical field distribution in AlGaN/AlN/GaN HFET structure with 1nm AlN spacer is shown also. 

 

Because of the strong polarization induced large lattice mismatch between AlN and GaN, 

and the associated compositional gradient at the interface insertion of the AlN spacer layer 

increases the sheet electron density. Very high carrier density (5×1013 cm-2) and strong internal 

electrical fields (109 V/m) at the AlN/GaN interface have been observed or calculated 45, 129, 130. 

The dependence of sheet density and AlN spacer thickness for AlGaN/GaN HFET structures is 

plotted in Figure 5. 7 (b). The electrical field distribution for 1nm AlN spacer case is also plotted 

in the figure. While the AlN spacer layer helps to improve the low field transport properties by 

providing higher electron concentration and mobility, and lower leakage current, the strong built-

in electrical field may cause breakdown to occur in the spacer and therefore reduce the long term 



reliability of the device. Experimental data involving a large number of HFETs with and without 

the AlN layers seem to unequivocally indicate that the presence of AlN causes more rapid 

degradation131 in terms of the leakage current and output power under RF stress. 

By far the theoretical calculation is all focused on the AlGaN barrier device structure. 

From the Hall measurements seen in Chapter 3.2.1, the calculated results are consistent with the 

experiments, especially the total sheet carrier density and its dependence on barrier thickness. 

For AlInN barrier case, the calculation is similar to AlGaN structure, while the total sheet carrier 

density is much larger reaching 2~3×1013 cm-2 range due to the larger band gap and stronger 

polarization. However, the experimental results do not match with the calculations for AlInN 

device. More details will be discussed in Chapter 5.5.  

5.4.2 Electrical characteristics  

If considering the real device structure with the presence of Schottky gate, the applied 

negatively gate voltage will deplete the barrier and lower the ns. We assume the Schottky barrier 

height Bφ  keeps constant of 1eV. The Figure 5. 8 gives the detailed band diagram at -2.0 V gate 

bias condition. The conduction band of barrier is lifted up and the potential well is shallower, 

which lead to less sheet carrier density. As bias keep on increasing to pinch-off voltage, the 

conduction band in the channel turns to be more flat the potential well can no longer concentrate 

2DEG.  



 

Figure 5. 8 The band diagram for an AlGaN/GaN HFET structure with AlN spacer, when the Schottky gate is 

negatively biased for -2.0V.  

 

In Figure 5. 9 (a) we show the calculated sheet carrier density on the applied gate voltage. 

The ns almost linearly decreased on the gate bias before the channel is pinched off. The pinch-off 

voltage, which in the figure corresponds to the onset of invariance of ns, for AlGaN/GaN 

structure with 1nm AlN spacer is around 3.6 V. It is necessary to mention, although not shown in 

the figure, that without considering the coupling effect, the pinch-off voltage increase about 4%. 

With this dependence, one can easily calculate the CV characteristics of gate: 

dV
qdn

VC s=)(
 

Equation 5. 33 

and it is plotted in Figure 5. 9 (b). The measured CV data is also shown in the same figure, which 

is about 4~6 times larger than the theoretical predication. It may be caused by the error of 



effective area, also the measured the capacitance represents the total charges within all layers 

include traps and defect states while in our calculations we considered only free carriers.  
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(b) 

Figure 5. 9 In the AlGaN/GaN HFET structure with 1nm AlN spacer,  (a) the dependence of sheet carrier 

density on the applied gate voltage. (b) The calculated and measured capacitance on applied gate voltage. 

 

Once the pinch off voltage is determined, the IV characteristics for a HFET can be 

expressed as110:  
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Equation 5. 34 

Here the gate length L=1 μm, low field electron mobility μ=1000 cm2/Vs, saturation 

velocity vs=105m/s. Shown in Figure 5. 10, the maximum source-drain current reaches 680 

mA/mm saturated at 2V, which will increase if neglect the coupling effect. But the actual 

device’s DC characteristics, as seen from Chapter 3.2.2, can hardly get close to this level due to 



the influences from the Ohmic contact resistance, leakage current, self-heating, etc.  
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Figure 5. 10 Ideal I-V characteristics for AlGaN/GaN HFET with 1nm AlN spacer. 

 

As an important process accounting for the current dispersion, some preliminary studies 

on self-heating is presented here as well. The self-heating effect at large drain bias will increase 

the channel temperature due to the power that dissipated inside the device. It can decrease the 

carrier mobility and saturation velocities by increasing the electron phonon scattering132, 133.  As 

a result, the transconductance and output current will be reduced. In general, the self-heating 

plays a dominant role at low frequency range account for current dispersion. While at relatively 

higher frequencies, the dispersion is mainly caused by trapping effect from defects. Relatively 

slow process the dispersion effect is, though, compared with the microwave input signal, it still 

significantly affect the device’s RF performance by producing the inter-modulations harmonics 



in the amplifier application for example134, 135. 

In order to quantify the current dispersion due to the self-heating, basic electrothermal 

calculation has been applied to Equation 5. 34. Since the self-heating is caused by power 

dissipated within the device, people often utilize a thermal sub-circuit to characterize136 the 

relation between temperature and power. For FET devices, the thermal sub-circuit is shown in 

Figure 5. 11. The thermal resistance Rth denotes for the temperature rising per power applied, 

whose unit is K/W. The thermal capacitance Cth describes the time response of temperature on 

the given input wave from. Then the static channel temperature would be:  

0TPRT th +=  

Equation 5. 35 

Here T0 is the environment temperature, P is the DC component of power signal p(t).  

 

Figure 5. 11 The electrothermal sub-circuit account for self-heating effect. 

 

Thermal resistance has been reported to be related with the substrate for GaN HFET, 

device dimension and geometry. It can be measured by pulse measurements so that the self-

heating effect is eliminated. Typical values for Rth on different substrate and device size are 

listed in Table 5. 1.  



Rth (K/W) Reference Material/Substrate Gate Dimension 

70 137 AlGaN/GaN on Si 0.5 μm ×150 μm 

250 136 GaAs pHEMT 4×0.15 μm ×50 μm 

45.7 140 AlGaN/GaN on SiC 0.35 μm ×250 μm 

123 138 GaAs MESFET 6×0.5 μm ×300 μm 

135 139 AlGaN/GaN on Sapphire 2×0.8 μm ×94 μm 

Table 5. 1 Comparison of thermal resistance on different device structures. 

Many methods have been proposed to describe the change of current on channel 

temperature. Except Monte Carlo simulation133, large signal models usually use analytical 

expression to incorporate the temperature dependent terms into drain current140. Other methods 

include transient thermal model137  and Laplace heat spread model141 , 139.  Here, I use the 

following expression to separate the self-heating part from isothermal model from ref.142:  

)](*)(1)[,()( thtpTtItI thoDSODS ⋅−= δ  

Equation 5. 36 

here * denotes for convolution, T0 is the environment temperature, IDSO is the isothermal current, 

and  hth(t) is the impulse response of the electrothermal sub-circuit. 

For I-V characteristics, we assume the source and drain contact resistivity is 1.2 Ωmm, 

obtained from the TLM measurements states in Chapter 3.1.2. Environment temperature T0 = 

300K. Using δ = 0.2 W-1 as 142 indicated, Rth = 70 K/W, and IDSO is the current model from 

Equation 5. 34. The calculated I-V characteristics are shown in Figure 5. 12 (a) as the dashed line. 

After considering the self-heating effect, the apparent collapse on IDS is clearly observed, which 

is consistent with the measurement data. Figure 5. 12 (b) gives the channel temperature at the 

corresponding DC conditions. The highest temperature can reach 340 K at about 6W/mm output 



power level.   
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(b) 

Figure 5. 12 For AlGaN/GaN HFET with 1nm AlN spacer, (a) the calculated IV characterization considering 

accessing resistances (solid line) and self-heating (dash); (b) channel temperature at different bias conditions. 

 

5.4.2 AlInN HFET structures  

Similar to AlGaN HFET, lattice matched AlInN barrier structure were modeled. The 

larger conduction band discontinuity (0.84 eV) between barrier and GaN, along with stronger 

spontaneous polarization (0.036 C/m2) will induce higher sheet electron density.  The calculated 

band diagram for 20 nm AlInN barrier structure with 1 nm AlN spacer is shown in Figure 5. 13, 

along with the carrier distribution. The barrier is doped to 8×1017 cm-3
, and surface states are still 

considered as the main resource for the 2DEG.  

 

Figure 5. 13 The calculated conduction band diagram and electron distribution for 20 nm AlInN/GaN HFET 

structure with 1 nm AlN spacer. The total sheet density is 2.56×1013 cm-2
. 



From this Figure, we could see the sheet electron density in AlInN barrier device is much 

larger than the AlGaN case. The 2DEG has a wider distribution with a channel depth around 10 

nm below the interface. AlN still helps to confine the electron within the channel and the first 

two energy sub-bands are both filled. However, refer to the measured carrier transport properties 

shown in Chapter 3.2.1, the actual 2DEG density is much smaller than our anticipated value that 

is nearly twice more. It is possible some structural difference from the ideal situation may exist 

and therefore alter the distribution of carriers, which need to be confirmed by other means.   

 In order to reveal the cause for this difference, annular dark-field STEM images were 

taken on the cross section of an AlInN barrier structure as shown in Figure 5. 14 (a). An extra 

layer is clearly observed on the top of the AlN spacer. As confirmed by EDX measurements, it is 

a Ga- rich region with thickness around 4 nm. The formation of this Ga- rich layer is believed to 

be due to the interruption of growth between the AlN and AlInN layer needed for ramping down 

the temperature and switching the carrier gas from H2 to N2, during which time the GaN 

inadvertently appears to have been deposited from the residual TMG source within the system. 

This Ga- rich layer which has a smaller band gap in the barrier can easily trap a high 

concentration of electrons to form a second channel. The electron profile extracted from CV 

measurements shows a double-peak distribution in the AlInN sample, while no clear second peak 

is observed in the AlGaN sample for which the barrier growth interruption period is much shorter.   



   

(a)       (b) 
Figure 5. 14.  (a). Cross section annular dark-field STEM image for AlInN barrier HFET structure. Each 

numbered layer is 1) GaN template; 2) AlN spacer; 3) Ga- rich layer; 4) AlInN barrier; 5) GaN cap layer.   (b) 

Carrier profile for AlGaN and AlInN samples calculated from CV measurements. 

 

The simulations we performed show that the sheet electron density within the top parallel 

channel can reach up to 9×1012 cm-2, assuming the top channel consists of 4 nm un-doped GaN. 

The 2DEG density within the real channel is much reduced, as shown in Figure 5. 15 (a). Both 

channels will contribute to the measured conductivity in the way described by Equation 3.2. It is 

quite possible the electrons in the top channel have relatively lower mobility, therefore the 

overall carrier density and mobility are mainly determined by those of the real channel. 

 In our experiments, we also investigated the influence of the spacer thickness on the 

carrier transport properties for AlInN barrier cases. As shown in Figure 5. 15 (b), a very thin AlN 

spacer (0.3 nm) can hardly help to confine 2DEG and thus a relatively lower mobility results. 

Maximum mobility is obtained when spacer thickness is around 1 nm.  The total 2DEG sheet 

density for various AlN thicknesses is measured at low temperatures, in an effort to exclude the 



influence from any non-degenerate parallel channels. The calculated sheet carrier density 

(determined by ns2) is also plotted in the same figure, which increases with the thicker spacer 

layer similar to what was reported on AlGaN barrier cases43, 143. The experimental carrier density 

data increases when AlN spacer changes from 0.3 nm to 1 nm, while it hovers around 1.1 ~ 

1.2×1013 cm-2 with >1 nm spacer. As to what may be responsible for the lack of a clear upward 

trend, it might be possible that it is caused by the Ga- incorporation during the AlN spacer 

growth, so that the actual barrier height and polarizations for spacer is smaller. Second, although 

the critical thickness for AlN grown on GaN is not explicitly known with reported figures 

varying from atomic mono-layer range to a few nm as reported144, 145, it is true that the spacer 

quickly relaxes due to the relatively large lattice mismatch.  The partial relaxation of the spacer 

will introduce compressive strain in the AlInN barrier lattice matched to GaN, and the reduction 

in total polarization then can also cause the lower sheet electron density.   
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(b) 
Figure 5. 15  (a). Simulated conduction band diagram and carrier distribution for AlInN barrier structure 

with 4 nm Ga- rich layer on the top of spacer.   (b) Measured 2DEG mobility (room temperature) and sheet 

density (12K) of AlInN samples with 0.3, 1, 2 and 3 nm spacer. The calculated ns2 at same structure condition 

is also plotted in dashed line. 

 

5.5 Two-dimensional modeling 

The basic theories for 2D quantum DD modeling have been introduced in Chapter 5.2. 

Compared with 1D simulation, the self-consistent solution involves more partial differential 

equations that dramatically boost the complexity of the problem. For simplicity, I made the 

following treatments and assumptions:  

(1) Solve sliced 1D Schrödinger equation 

Within the HFET, since the carrier has only confinement along growth direction, it is 



reasonable to assume the quantum effects from lateral direction (x) is negligible. Also the 

dimension of devices over x direction is much larger than the layer thickness. The mesh size Δx 

is often limited by the Debye length:  

D

B
D Nq

Tk
L 2

ε
=  

Equation 5. 37 

For GaN channel, if background doping is around 1016 cm-3, then Debye length is about 120 nm. 

In my simulation, I choose Δx = 100 nm, and it is large enough to allow us describe the 

movement of carrier by classic transport theory.  

Therefore, the electron density is computed by solving the vertically sliced 1D 

Schrödinger equation.  So the solver developed in the 1D modeling procedure can be re-used.    

 

(2) Assume the electron quasi-Fermi level Efn is x-dependent only     

 The current conduction within the HFET, as we can imagine, is mainly in lateral direction 

through the 2DEG channel formed at the hetero-interface. The injection current from the gate 

into the channel, or the leak current component, is usually very small as seen from the 

experiments. Therefore at a given x grid point, I assume the Efn is a constant along the y direction.  

 This assumption helps to shrink the number of unknown Efn variables. Furthermore, it 

reduces the current equation to one dimensional case. If we denote quasi-Fermi level as Efn(x), 

then the current density should become a constant unless we take the recombination or the carrier 

emission/capture process into account:  
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Equation 5. 38 



Here ns is the electron sheet density at position x.  

 

(3) Constant carrier mobility 

 For long channel devices, the electric field within the channel is low so that the carrier 

mobility is considered as constant. With the increase of field, carrier drift velocity will saturate 

and is no longer proportional to the electric field. The empirical relationship between velocity 

and field is:    
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Equation 5. 39 

Here vs is the saturation velocity of electron. However, the including of velocity/field 

dependency into my model will sacrifice the linearity between current density jn and field dEfn/dx 

and increase a lot more complexity into the Newton iteration. Therefore, I use constant carrier 

mobility in the modeling. 

  

 (4) Preset potential boundary conditions 

 In the 2D modeling, Poisson equation become x and y correlated as:  
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Equation 5. 40 

In a given area, to solve a PDE, we need to specify the boundary conditions, or the value of 

potential along the surrounding border. It is straight forward to define potential at source side as 

zero and drain side as Vds:  
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Equation 5. 41 

The potential at top surface and bottom boundary is hard to determine. Here, I assume there are 

no surface states or bulk defects to trap charges and alter the potential distribution. Therefore, the 

potential at these three regions: source to gate (top surface); gate to drain (top surface), and 

source to drain (bottom boundary) are linearly distributed146; see Figure 5. 16  for detail.   

 

Figure 5. 16 Illustration for the potential boundary conditions.  

  

Some device parameters used for modeling are listed in Table 5. 2 

Parameter Value Parameter Value 



Lsg 2.0 μm AlxGa1-xN x = 30% 

Lg 1.0 μm ND (barrier) 1018 cm-3 

Lgd 7.0 μm ND (bulk) 1016 cm-3 

Tb 20 nm Polarization 8·1012 cm-2 

Tc 50 nm μ 1000 cm2/Vs 

Table 5. 2 Some parameters used for 2D modeling. 

In this model, only Poisson equation is a PDE. Here I use rectangle grids over the cross-

section of channel region, with constant mesh size Δx = 100 nm, Δy = 0.5 nm. After 

discretization, at a given grid point (x=iΔx, y=jΔy), the Poisson equation can be rewritten as:  
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Equation 5. 42 

The number of the unknown potential variables is (10 μm / 0.1 μm)×(70 nm / 0.5 nm) 

=14,000; and that number for Efn is 100. Therefore, the size of the Jacobian matrix for Newton 

iteration algorithm is 14,100×14,100 = 198,810,000. In computer memory, if each data is float 

point with double precision, the size for one matrix storage would reach 1 Gbyte! It is obvious 

that the demands for both data storage capacity and computation time on linear algebra 

operations are very heavy. Without proper fast algorithm, the cost for computation effort is 

unaffordable.  

 Fortunately, in most cases, the majority population of the matrix is zero or it is so-called 

sparse matrix. There are numerous fast algorithms along with optimized data structure to 

implement the linear algebra operations for sparse matrix.  



Generally speaking, the large scale sparse matrix is compressed per row (or column). The 

linked table structure is used to storage the position of non-zero elements and value. To 

efficiently condense the table and enable fast search, I employed some random hash functions to 

better distribute the data, and a rehash technique was provided for quick data indexing147. With 

the optimized data structure, the space occupied by the matrix is very small. The size for 

Jacobian matrix is usually less than 100K compared with original 1G. A co-coding on Matlab 

and C++ is implemented so that many functions can be utilized directly from Matlab. The 

function I take to solve linear system equation Ax=b is Generalized Minimal Residual Method 

(GMRES). This method approximates the solution by the vector in a Krylov subspace with 

minimum residuals, and the Arnoldi iteration is used to find this vector148. For more detail, 

please refer to the help documentation for Matlab from Mathworks.  

5.6 Two-dimensional modeling results 

5.6.1 Cross-section profile  

In this section, I will present the simulation results for the cross-section profiles of a basic 

AlGaN/GaN HFET structure with device geometry listed in Table 5. 2. Assume all the donors 

are fully ionized, and the Schottky gate has a barrier height of 1.0 eV.  



 

Figure 5. 17 Conduction band distribution at different bias condition.  

 Figure 5. 17 shows the two-dimensional electron conduction band profile throughout the 

AlGaN/GaN heterojunction, with different bias conditions.  If no source to drain bias is applied, 

the slice on the conduction band profile is identical to what was obtained from 1D simulation. 

Once the drain bias is on, 2DEG channel is lifted at the source side to guide the movement of 

electrons. With the increase of gate pinch voltage, the channel under the gate is raised to hold the 

carriers travelling from source to drain. The need for high resistivity bulk GaN is also inferred in 

these pictures. If extra carriers exist in the bulk, it could generate considerable parallel current 

since the slope of conduction band there is still large.  



 

Figure 5. 18 Cross-section potential distribution at different bias condition.  

 Figure 5. 18 is the cross-section potential profile for the HFET at the same bias 

conditions. The 2DEG channel tends to stay at the constant potential, while the increase on gate 

pinch off voltage will break this uniformity. The higher the gate voltage, the deeper the depletion 

region will be. The increase on drain voltage would also enhance the gradient of potential change 

near the gate edge. It is clear from in Figure 5. 18 that the electrical field always has a maximum 

value near the gate edge. The increase of gate or drain bias will push this maximum field position 

close to the gate, where the breakdown is believed to occur if enough high voltage is applied149.   
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Figure 5. 19 Electrical field in the channel with different bias conditions. 

  

Large gate or drain bias input caused the simulation program failure without approaching 

reliable convergence. The calculated Jacobian matrix is close to singular, so its inversion is ill- 

conditioned. Also, from Figure 5. 20, where the calculated IV characterization is plotted, we can 

see the current shows no saturation tendency. The non-linearity of carrier velocity over electrical 

field at large bias conditions should be considered to provide better accuracy.   
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Figure 5. 20 Simulated IV characteristics, drain bias from 0.5 V to 3.0 V, gate bias is -0.25V, -0.5V and -1.0V.  

 

5.6.2 Results from other simulation software  

  If we look into the commercial two- or three-dimensional device simulators, some 

industrial CAD software 150 , 151  and university-developed applications 152 , 153 , 154  have been 

successfully employed for Si-device applications. In contrast to the silicon devices, where both 

process and device level simulation tools form a continuous virtual workbench from material 

analysis to chip design, III-V simulation mainly is still focused on device physics.  

APSYS from Crosslight Inc is a general purpose 2D finite element analysis and modeling 

software especially designed for compound semiconductor devices (with silicon as the special 

case) in simulating their electronic and optoelectronic performances. The energy band structure 

is calculated by solving Schrödinger equation using 8-band k.p model within a high precision 

finite differences grid. For GaN devices, polarization charges are incorporated during the 



simulation. The kernel of APSYS simulator also solves the non-equilibrium drift-diffusion 

equations. The tunneling current transport mechanism through the quantum well and barrier is 

also modeled. Three different carrier recombination mechanisms have been implemented, 

namely direct-, SRH- and Auger-recombination, which can be used for LED and LD device 

simulations.  

For a specified semiconductor, we must first build up the micro files to specify the 

material properties such as mobility, saturation velocity, electron affinity, refractive index, and 

thermal conductivity. For example, the mobility model for GaN we used here is doping and field 

dependent:   

α

μμ
μμ

)/(1
)( minmax

min
r

n NN
N

+
−

+=  

Equation 5. 43 

sat
n vF

F
/1

)(
0

0

μ
μ

μ
+

=  

Equation 5. 44 

Where vsat is the saturation velocity, Nr is the reference doping concentration, μ0, μd, a are 

predefined parameters. The polarization that induces sheet carriers has to be treated as the 

bonded interface charge existing at the bottom of barrier. Some of the parameters used are listed 

below:  

Parameter Value Comment 

ε 9.5 Dielectric constant 

χ 4.07 Affinity 

vsat 1.91×107 cm/s Electron saturation velocity 



α 0.66 Used in Equation 5.34 

µmin 5.1)/300(295 T×  cm2/Vs Minimum mobility  

µmax 5.1)/300(1461 T×  cm2/Vs Maximum mobility 

Nr 1017 cm-3 Reference density  

An 10-32 s Electron Auger coefficient  

τ 10-10 s Electron life time 

PSP 8×1012 cm-2 Spontaneous polarization 

PPZ 4×1012 cm-2  Piezoelectric polarization  

Table 5. 3 Some parameters defined in the micro file of APSYS for the HFET simulation. 

  



  

Figure 5. 21 Device structures and dimensions used in the APSYS simulation. 

 

Three different kind of device structures are simulated based on AlGaN/GaN structure: 

conventional HFET, HFET with field plat and recess gate HFET. The cross-section device 

geometries are illustrated in Figure 5. 21. The AlGaN barrier thickness is 25 nm and the gate 

length is 0.5µm, and channel length is 4.5µm. For the n+ cap recess gate HFET, the barrier is un-

doped and the n+ GaN is 30 nm thick with 1018 cm-3 doping. For the field plate HFET, the plate 

is extended to the drain side with the length of 0.6µm. All devices are biased under VDS = 10V, 

VGS=-5V. The simulated potential and field distribution for each device are shown in Figure 5. 

22.  



 

(a) 



 

(b) 



 

(c) 

Figure 5. 22 The potential contour and field distribution along the AlGaN/GaN interface for (a) conventional 

HFET; (b) n+ cap recess gate HFET; (c) HFET with field plate under VDS = 10V, VGS=-5V bias. 

 

It can be observed from the potential contour figures that, due to the existence of 2DEG, 

the electrical field distribution is very concentrated near the gate edge. For the conventional 

HFET structure, the maximum field exists at the gate edge toward the drain side reaching 

8.5×106 V/cm, which stress the material to a considerable extent and easily cause break down to 

fail the device. The recess gate device structure doesn’t show much help in reducing this field, 



while the field at the gate-source side reduces a little. The HFET with field plate structure, as 

seen from the simulation results, efficiently helps to dispense the contour line near the gate edge. 

The maximum field at the 2DEG channel decreases to 6.0x106 V/cm, which is about 29% lower 

than the conventional structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 Conclusions 

6.1 Summaries 

The GaN HFET device growth, fabrication, characterization, and modeling have been 

investigated extensively in this work. The process development and optimization for both AlGaN 

and AlInN barrier devices have been experimented to achieve low defect density, high carrier 

mobility and large output power. Regarding the device characterization and modeling, both 

equivalent circuit analysis and quantum drift-diffusion modeling are studied. The simulations 

based can provide us plenty of useful information especially for the microwave application and 

device structure optimization.    

To exploit the potential of GaN and related alloy on device application, high quality epitaxial 

film is a must. The device operation poses strict requirements on insulate buffer layer, making 

many prevalent growth techniques like epitaxial lateral overgrowth inapplicable for HFET. Here, 

we utilize semi-insulating AlN layer on Sapphire substrate as the buffer, and optimize the growth 

for the GaN layer on top of it. In summary, the growth of GaN involves three steps, namely the 

nucleation, the epi-growth and the channel growth. It is beneficial to use the growth conditions at 

the nucleation stage that favor the formation of large, isolated GaN islands so that the density of 

edge-type dislocations are lowered. The next step is carried out with high growth rate to reduce 

the background doping preventing the formation of parallel conduction path. The top 300 nm 

GaN layer that serves as the electron channel is grown at high pressure to reduce the 

incorporation on deep level impurities and enhance the mobility of  2DEG. Very thin AlN spacer 

has been verified to better confine the carriers, reducing the alloy scattering and improve the 

mobility. The spacer thickness is critical and the optimum number is about 1 nm. For barrier 



layer, AlGaN is deposited at high temperature, for which the Al composition is controlled mainly 

by V/III ratio. On the other hand, the AlInN growth requires precisely control on temperature to 

achieve the exact Indium composition and the lattice-matched Al0.82In0.18N barrier structure was 

successfully grown.   

High carrier transport performance has been observed on both kinds of barrier structures, 

generally with the mobility of 1,200 cm2/Vs @ 300K and 10,000 cm2/Vs @ 12K for AlGaN 

barrier; and 1,500 cm2/Vs @ 300K and 20,000 cm2/Vs @ 12K for AlInN barrier respectively. 

The total sheet carrier density is around 1~2×1013 cm-2, depending on the doping, composition 

and barrier thickness. The HFET devices, which are fabricated using the optimized processes, 

have achieved the good DC to RF performances. The AlInN device has larger saturation current 

up to 800 mA/mm and higher transconductance about 220 mS/mm. We believe the reliability of 

AlInN HFET is superior since the reduction of the stress within the barrier. The RF performance 

of both type of devices are similar, with the highest cut-off frequency around 20 GHz.  

Furthermore, new device structures have been experimented including recess-gate HFET and 

MISHFET with various gate insulators. The recess-gate device is caped with n+ doped GaN. 

Two different process techniques have been tested: selectively dry etch method and the SiO2 

masked re-growth method. However, the DC characteristics of recess-gate device didn’t show 

much advantage over the conventional one. The MISHFET structures, on the other hand, have 

the improved the DC and RF characteristics. With the help of SiO2, Si3N4, ZrO2 and PZT gate 

insulators, gate leakage current was significantly reduced, enabling the device to work under 

enhanced mode. The improvement on RF performance of MIS structure, we believed is due to 

the passivation to block the surface states, especially with the high dielectric constant dielectrics.  



Device behaviors are thoroughly simulated. This research was carried out on circuit level 

category and device physics category. Various small signal device models have been well 

established for Si and GaAs transistors, but not quite applicable for GaN HFET yet due to the 

high contact resistances and defect related dispersion effects. An 18-element equivalent model 

was proposed in this work, and the circuit parameters were extracted by various means including 

cold-FET measurements and hot-FET calculations. A hybrid extraction method has been 

developed combining the parasitic capacitances extracted from cold pinch-off measurements, 

and the rest of the parameters obtained from the optimization procedure based on the working-

bias measurement data. The average S-parameter simulation error is around 5% over the 

frequency range from 2GHz to 20GHz. This method was also validated with the initial value 

independence and the multi-bias measurements. Therefore, we believe it is more suitable for the 

GaN HFET small signal modeling.   

The quantum drift-diffusion modeling of HFET, on the other hand, was based on band 

structure of GaN material and description of current transport mechanism. A solver to give self-

consistent solution of Schrödinger-Poisson equations has been developed. The influences from 

interface polarizations, surface donor states and electromechanical coupling effects have been 

included during the modeling. The one-dimensional study on different heterojunction strucutres 

is verified via experiments, especially on AlInN HFET. Furthermore, basic IV and CV 

characteristics can be calculated, considering the recess resistance and self-heating effects. Two-

dimensional simulation was also developed, fulfilling numerical calculation on partial 

differential Schrödinger-Poisson equations, drift-diffusion current, and current continuity 

equations. Visualizing the potential and field distribution cross-sectional profiles over the device 

channel region can be drawn from this modeling. We also compared various device structures 



including the conventional, the recess-gate, and the field-plate HFET using APSYS software. It 

shows that field-plate structure is more promising in effectively dispensing the highly 

concentrated field around the gate edge that may fail the device by breakdown.     

6.2 Future works 

 The improvement on the reliability of GaN HFET is the foremost important task for the 

realization of commercial application, which requires efforts on both process side and design 

side.  With the availability the free-standing GaN bulk materials, the research trend is moving 

toward to the homo-epitaxy GaN growth on those substrate, which undoubtedly could provide 

much better GaN layer for HFET. Therefore, the improvement of the device performances relies 

mainly on the quality of different barrier layers or novel device structures.   

 The lattice-matched AlInN barrier is a good candidate in obtaining higher standard of 

device reliability, as stated in our research. However, the existence of Ga-rich layer on the top of 

spacer will separate the 2DEG into two channels and significantly lower the sheet carrier density. 

The formation of this extra layer is probably caused by the parasitic deposition of GaN during 

the long temperature-ramping down. In order to eliminate this parasitic layer, modifications to 

our current growth scheme are needed.  On the other hand, the incorporation of Indium into the 

device structures is another efficient way to improve the device performance. The InGaN 

channel device structures is one of the candidates to provide higher sheet electron concentration 

and better 2DEG confinement155. The typical room temperature mobility of In0.04Ga0.96N channel 

heterojunction was found to be around 800~1100 cm2/Vs, still having much room to improve. 

The effort may need to focus on the reduction of interface roughness156 and in-plane localization 

effect due to the Indium segregation157. The trace amount incorporation of Indium into the spacer 

or barrier layer might be also a help, as often used in GaAs devices. The main advantage of the 



In-doping is to improve the spacer/barrier crystalline quality and interfacial abruptness of the 

heterojunction. Also the In-doping growth scheme avoids the drastic change in temperature and 

carrier gas, which help to maintain the optimized growth conditions on the known structures.        

 As for the device process, it has been reported that the field plate structure can help to 

enhance the output power density, the breakdown voltage and power adding efficiency, as 

confirmed also from our simulations. We need to set-up the fabrication procedures for the field 

plate device structures, which may involve optimization on the e-beam lithography. Furthermore, 

a more systematic study on the recess-gate HFET devices is needed. The selective dry etch 

conditions that we tested so far deteriorate the I-V characterization, and further optimization can 

be exerted on different plasma combination, reduced etch power, and post etch treatments 

including KOH, HCl solutions or N2 plasma .    

 In order to provide precise description on DC to RF range behavior of the device, the 

large signal modeling for GaN HFET is the only way. If the amplitude of input signal is 

increased considerably, it will shift the quiescent operating point of the transistor and the output 

drain current no longer changes linearly. Many changes on nowadays large signal modeling 

methods have to be implemented for GaN devices accounting for the dispersion effects. As for 

the drift diffusion modeling on GaN devices, some simplifications and assumptions I currently 

build can be substituted to incorporate better descriptions on the carrier transport behavior and on 

the charged defects. Besides, implementation on the fast parallel computing algorithm is also 

important for more precise simulation.        
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