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 The field of smart materials is an increasingly growing area of research. 

In aerodynamics applications especially, transducers have to fulfill a series of 

requirements such as light weight, size, energy consumption, robustness and durability.  

Piezoelectric transducers, devices which transform an electrical signal into motion, 

fulfill many of these requirements.  Specifically, piezoelectric composites are of interest 

due to their added toughness and ease of integration into a structure. Resulting 

composites have a characteristic initial curvature with accompanying residual stresses 

that are responsible for enhanced performance, relative to flat actuators, when the active 

material is energized.  

A number of transducer designs based on composites have been developed. Two of 

these piezoelectric composites called Thunder® and Lipca are analyzed. Thunder is a 
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composite of steel, polyimide adhesive, PZT, polyimide adhesive, and aluminum; and 

Lipca is a composite of fiberglass epoxy, carbon/epoxy, PZT, and fiberglass epoxy. 

 Room temperature shapes of circular and rectangular Thunder® and Lipca 

actuators are predicted by using the Rayleigh-Ritz model.  This technique is based on 

the assumption that the stable geometric configuration developed in the actuator after 

manufacturing, is the configuration that minimizes the total potential energy.  This 

energy is a function of the displacement field which can be approximated by two 

functions, a four term model, and a twenty-three term model. The coefficients in the 

models are determined by minimizing the total potential energy of the actuator.  The 

actuator deformations are assumed to obey the Kirchhoff hypothesis and the actuator 

layers are assumed to be in the state of plane stress. 

The four coefficient model produces results not comparable to three-

dimensional surface topology maps. The twenty-three coefficient model however, is 

shown to have generally good agreement with the data for all studied actuators. To 

quantify the difference, at the cross section of each actuator, a profile is fitted by using a 

quadratic equation obtaining regression coefficients above 99%. For all actuators, the 

error between experimental and the calculated centerline data is less than 6%. For the 

6R model however, the error is approximately 25%. One of the possible reasons for the 

error may be the tolerance of the thickness of the PZT layer.  By changing the PZT 

thickness ±6% of the nominal value, over predicts the experimental dome height by 

20%. Another possible reason for the discrepancy is the thickness of the actuator, 

thicker than all actuators used in this study, which might contradict the validity of the 
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thin actuator assumption.  Furthermore, by calculating the side-length-to-thickness ratio, 

115 in this case, as stated by Aimmanee & Hyer (2004), may cause instability, and 

could result in unexpected behavior. 

 The neutral axis position, calculated by using a force balance at equilibrium 

under the assumption of pure bending, for all actuators used in this study is determined 

and compared to the ceramic layer position. The results indicated that for all Thunder® 

models the neutral axis is located below the ceramic layer indicating that the PZT wafer 

may be in total tension. For the Lipca C2 device however, the neutral axis is found to be 

above the ceramic layer, indicating that the piezoelectric layer may be in total 

compression. 

 Strain fields are also predicted with contradicting results when compared to the 

theory that the ceramic is in tension in the Thunder actuators.  The contradiction on the 

strain calculations can be explained by the manner the strain field is derived: by 

differentiating and squaring the high-order polynomials of the approximated 

displacement component losing accuracy when it comes to predicting normal and shear 

strains. 

The Rayleigh-Ritz technique can become a tool to perform parametric studies of 

the key elements for manufacturing to optimize specific features of the actuators. 
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CHAPTER 1 INTRODUCTION 
 

 
 
1.1 History and Background 

The field of smart materials has been an emerging area of research for the last 

years.  A smart system, sometimes called adaptive or intelligent is defined as ensembles 

whose dynamics can be modified by distributed sensors and actuators to accommodate 

changing environmental conditions (Smith, 2005). For applications in fields such as 

aerodynamics, a transducer must fulfill a series of requirements such as weight, size, 

and energy consumption.  In this manner, smart actuators and sensors can be used for 

vehicle health monitoring.  Many actuators and sensors are available that can become 

part of a system to make it smart.  Many of these components fulfill some of the 

requirements depending on the specific application.  A review of conventional actuators 

and smart actuators is presented next.        

1.2 Conventional Actuators 

 Three main types of actuation have been the core of motion and force power for 

all robotic systems. They are hydraulic, pneumatic, and electric actuators.  These three 

actuators come from two main types of power conversion.  The hydraulic and 

pneumatic are considered fluid machines because they use fluid to create mechanical 

motion whereas the electric motor converts electrical energy into mechanical energy.  

The following will briefly describe each actuation method with its advantages and 
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disadvantages.  Detailed description of these actuators can be found in many robotics 

textbooks such as (Stadler, 1995; Burdea, 1996).  

1.2.1 Hydraulic Actuators 

  A hydraulic actuator works by changes in volume caused by pressure changes.  

This system can be used in both linear and rotary actuation.  The general linear 

mechanism consists of a piston encased in a chamber with a piston rod protruding from 

the chamber.  The piston rod serves as the power transmission link between the piston 

inside the chamber and the external world.  Hydraulic manipulators are mainly used in 

applications where large robotic systems with high payload capability are needed 

(Schilling, 1999).  Examples are nuclear and underwater applications.  One of the main 

advantages of hydraulic actuators is that these systems can deliver a great deal of power 

compared to their inertia. However, the concern with hydraulic systems is the 

containment of the fluid within the actuation system.  This not only leads to the 

contamination of the surrounding environment, but the leakage can also contaminate the 

oil, and possibly lead to damage of interior surfaces. Additionally, the hydraulic fluid is 

flammable and pressurized so leaks could pose an extreme hazard to equipment and 

personnel.  This adds the undesirable aspect of additional maintenance to maintain a 

clean sealed system.  Other drawbacks include lags in the control of the system due to 

the transmission lines and oil viscosity changes from temperature. 
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1.2.2 Pneumatic Actuators 

 These types of actuators are the direct descendents of the hydraulic systems.  

The difference between the two is that pneumatic systems use a compressible gas (i.e. 

air) as the medium for energy transmission.  This makes the pneumatic system more 

passively compliant than the hydraulic system.  With pneumatic actuators, the pressure 

within the chambers is lower than that of hydraulic systems resulting in lower force 

capabilities. Though the lack of hydraulic fluid makes this system cleaner, it has the 

disadvantage of not having a self-lubricating actuator.  This generally means that 

pneumatic systems have a high friction force to overcome in order to maneuver and the 

diversion of power to combat friction gives these systems a lower working force. 

1.2.3 Electric Actuators 
 
 Of the three types of conventional actuator systems, electric motors have the 

largest variety of possible devices such as:  Direct Current (DC) motors, Alternate 

Current (AC) motors, Induction Motors, and Stepping Motors.  The principle behind an 

electric motor is simple; application of magnetic fields to a ferrous core and thereby 

inducing motion. 

Since the energy medium for electric motors is easily stored and re-supplied by 

recharging batteries if mobility is needed, this makes electric motors the best choice 

when it comes to portability. The major disadvantage of electrical motors is that they 

produce very small torques compared to their size and weight. 
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1.3 Smart Actuators 

Smart material actuators are being investigated for use in a variety of areas, 

including flow control of fluids (Pack and Joslin, 1998), shape control of surfaces 

(Austin and Van Nostrand, 1995) and many other applications. Significant research in 

smart material actuators has taken place in the past decade because of their high power 

density as compared with conventional actuators (Herakovic, 1998).  

 A material, which can sense and respond to one or more external stimuli such as 

pressure, temperature, voltage, electric and magnetic fields, chemicals etc., can be 

called as an active material.  Active materials (also sometimes called smart materials) 

and structures integrated with these materials have gained worldwide attention in the 

past few decades because of their application in every branch of engineering. 

For example, smart materials have 100 to 1000 times as much deliverable 

mechanical work per unit volume  (energy change) and 10 times as much energy per 

mass as conventional (i.e., electromagnetic, hydraulic, or pneumatic) actuators 

(Culshaw, 1996).   

Materials research has focused on the development of single crystal materials 

which exhibit strains approaching 1% while extensive polymer research led to the 

production of polyimides, elastomeric and amorphous polymers and biological 

polymers.  From 1980 through the present time, research on material development for 

the design of high performance aerospace, aeronautic, industrial and biomedical 

applications, based on ferroelectric and piezoelectric compounds, has burgeoned 

(Smith, 2005). 
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1.3.1 Piezoelectric Materials 

  Pierre and Jack Curie discovered piezoelectricity, which literally means 

“pressure electricity” from the Greek word “piezo” for pressure, in 1880.  In studies 

initially focused on tourmaline and later extended to quartz, the Curie brothers were 

able to demonstrate the generation of electric charge in response to applied pressure or 

stresses.  This is the direct piezoelectric effect, which, in present materials, can produce 

voltages ranging from a fraction of a volt to several thousand volts.  The converse 

effect, which constitutes the generation of strains or displacements in the material in 

response to applied fields, was subsequently justified using thermodynamic principles.  

Both effects are due to the non-centro-symmetric nature of certain ceramics, polymers 

and biological systems and it is this property, which also produces the switching-

induced hysteresis and constitutive nonlinearities inherent to ferroelectric and 

piezoelectric materials. 

 Piezoelectric materials come in a variety of forms, ranging from rectangular 

patches, thin disks, and tubes to very complex shapes using injection molding (Bowen 

and French, 1992; Alexander et al., 2001).  Because of its crystalline structure, a 

piezoelectric material expands and contracts when an electric field is applied, as shown 

in Figure 1. 

 



6 

  

 
Figure 1:  A Piezoelectric Response to an Electric Field 

 
 
 Various active materials have been investigated for aerospace and other 

applications. Among the different types of materials developed are polymer films such 

as polyvinyl fluoride, PVDF, electrostrictive materials, PMN, shape memory alloys 

(Nitinol), and PZT, Lead zirconate titanate, among others. Piezo-polymer films (PVDF) 

are robust to damage, but lack high stiffness. Electrostrictive materials (PMN) have low 

hysteresis losses and moderate stiffness, but have poor temperature stability, and require 

high currents to operate due to their high material dielectric.  Shape memory alloys 

(Nitinol) are capable of very high strains, but are limited to ultra-low bandwidth 

applications (< 5 Hz) due to the time needed for thermal dissipation/heating.  Finally, 

magneto-strictive actuators (Terfenol-D) have similar actuation energy density and 

bandwidth as piezo-ceramics, but are very heavy when the coils and flux path materials 

are accounted for. 

 All of these actuators and sensors are incorporated onto and into the host 

structures in many different forms depending upon the environmental and operating 

requirements of the overall system.  Beams, truss structures, plate and shell-like 
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structures are frequently used host structures for piezoelectric sensors and actuators for 

vibration and noise control applications.  Several have been conceived experimentally 

such as vibration control for plates (Bayer et al., 1991); for beams (Bailey and Hubbard, 

1985), and buckling control (Thompson and Loughlan, 1995). The actuators and sensors 

could either be surface bonded or embedded inside the layers in the form of lamina or 

fibers (Bent, 1997) of the host laminate. 

Applications utilizing the piezoelectric effect include MEMS, micro electronic 

mechanical systems, based flow sensors and actuators for drag reduction in an airplane 

wing, pressure transducers as in Figure 2. 

                       
Figure 2:  Piezoelectric Pressure Transducers (Endevco, 2005) 

 

Piezoceramic nanopositioners (Smith et al., 2003), gas igniters, accelerometers 

employing PZT disks which play a central role in automotive airbag systems, and 

mode-specific sensors based on geometrically-configured PVDF films. Commercial 

actuator applications include dot matrix printer heads, auto-tracking devices for VCR’s, 

which avoid magnetic noise, shutter mechanisms and auto-focus motors for cameras, 

and the PZT-based Toyota Electronic Modulated Suspension that was produced in 1989 
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to augment shock absorber capabilities.  Piezo-actuators have also played a pivotal role 

in nanotechnology starting with their use as positioning elements in scanning tunneling 

microscopes in 1982 and atomic force microscopes in 1985 and continuing to the 

present in essentially all nanopositioner applications. 

1.3.2 Piezoelectric Actuators 

 A piezoelectric transducer that can generate large displacement (Newnham and 

Rushau, 1991) while withstanding a sizable load is essential for actuator applications 

(Uchino, 2000).  However, the electric-field-induced displacements of those materials 

are much less than 1%, and in most cases, they are too small for some applications 

(Schwartz et al., 2000).  In order to enhance the displacement, various types of actuators 

based on piezoelectric ceramics have been developed.  These ceramics are usually 

plates (Channel Industries, 1999) of various size and shapes.  When a voltage is applied 

across the electrodes the material changes thickness.  The amplitude of the change is 

related to the applied voltage through a piezoelectric coefficient that, for PZT materials, is 

less than 600 × 10-12 m/V.  One way to increase the displacement is to use a bending 

actuator.  Basically, a bending actuator is composed of a piezoelectric plate that is bonded 

to an inactive substrate layer (Smits, 1990).  When a voltage is applied, the piezoelectric 

plate expands or contracts whereas the non-piezoelectric plate keeps the same geometry, 

causing the actuator to bend as a differential stress field is developed.  

A number of transducer designs based on this principle have been developed to 

augment strain force, or drive level capabilities of the constituent piezoelectric materials 
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through curvature enhancement, pre-stress augmentation or strain enhancement 

mechanism.   

Among the many types of piezoelectric actuators are the pre-stressed multilayer 

piezoelectric composites types such as Rainbows (Reduced and Internally Biased Oxide 

Wafers) which are chemically reduced piezoelectric wafers (Haertling et al., 1994); 

Cymbals which consists of one layer of PZT placed between two concave metal end 

caps (Fernandez et al., 1998); Thunder® devices (Thin Unimorph ferroelectric driver 

and sensor) which are multilayer composites of metal and PZT (Hellbaum et al., 1997); 

and Lipcas, which are composites of fiberglass, carbon, and PZT (Goo and Yoon, 

2003). 

Rainbow:  The working principle of Rainbow actuators consists in placing a PZT 

disk on a graphite piece and to heat the system up to 975 °C (1787 °F), such that the 

carbon can diffuse in the bottom of the PZT.  This way, one side of the piezoelectric 

disk becomes inactive whereas the other side remains active. 

 
Figure 3:  Rainbow Actuator 
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Cymbals:  This actuator as shown in Figure 4 consists of a piezoelectric disk sandwiched 

between two truncated conical metal endcaps. The radial motion of the piezoelectric ceramic 

is converted into flextensional and rotational motions in the metal endcap. 

 
 

 
Figure 4:  Cymbal Actuator (Dogan et al., 1997) 

 
Thunder®: Thunder® (Thin Layer Unimorph Ferroelectric Driver and Sensor) 

unimorph actuator, as shown in Figure 5, is made of a piezoelectric (PZT) plate bonded 

to a stainless steel plate. 
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Figure 5:  Thunder® Unimorph Actuator 

 

 A thin aluminum foil covers the PZT to keep the entire top surface connected in 

case of cracking and serves as an electrode (Mossi et al., 1998). 

Lipca: (Yoon et al., 2001, 2002, and 2003) used composite materials to 

manufacture Lightweight Piezo-Composite Curved Actuators (LIPCA).  (Lynch et al., 

1996) proposed a duel function bending actuator called Gradient Enhanced piezoelectric 

Actuators (GEPAC).  The actuators are ultra thin piezoelectric plates embedded 

between two or more composite layers of fiber reinforced polymer composite materials. 

 

 
 

Figure 6:  Lipca Unimorph Actuator 
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1.4 Mathematical Simulations 

 Stress-biased actuators, specifically Thunder®, are the subject of intense 

investigation (Capozzoli et al., 1999) due to their unique performance characteristics 

compared to Unimorph® and Bimorph devices, as well as traditional direct extensional 

actuators.  These stress-biased devices are composite structures that incorporate a 

piezoelectric layer bonded to a metal, glass/epoxy or cermet layer, such as Lipca.  

While the specifics of the fabrication procedures differ for those actuators, for all, a 

domed structure is formed after processing with varying degrees of curvature. 

 The driving force for the doming of the devices is the thermal expansion 

mismatch between the two layers.  During cooling, the devices dome upward, yielding a 

device that has a convex shape when viewed from the top.  As the devices dome, lateral 

stresses of high magnitude, both tensile and compressive, are developed. 

 There have been a number of studies (Benjeddou, Trindade and Ohayan, 1997) 

that have attempted to investigate the factors that contribute to the improved 

performance of these devices.  Device aspects such as mass loading, engineering 

mechanics, hysteresis (Smith et al., 2003) and enhanced domain switching (due to the 

presence of tensile stresses within the upper portion of the piezoelectric layer) have all 

been reported as contributing to the increased displacement response that is observed.  

While further work is required to better understand the relative importance of these 

different factors, a number of studies (Wieman et al., 2001) have been carried out that 

have begun to provide insight in this area.  These studies have employed a range of 

techniques, including finite element analysis, (Goo et al., 2005; Taleghani and 
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Campbell, 1999) equivalent circuit modeling, (Nothwang, Shwartz and Ballato, 2000) 

and the use of Unimorph theory to predict device shape and electromechanical response 

(Ballato, Schwartz and Ballato, 2001). 

 Unimorph theory is a technique that was originally developed to characterize the 

displacement and tip force response of planar piezoelectric/metal structures. (Smits, 

Dalke and Cooney, 1991).  

 Wang et al., (Wang, 1999 and Cross, 1999) have developed equations that 

clearly identify the impact of variables such as device geometry on actuator response.  

Wang et al., used their approach to model the effects of device geometry on 

displacement response by fabricating Rainbow actuators with different reduced 

layer/piezoelectric layer thickness ratios and characterizing tip displacement with a fiber 

optic probe. Summarizing their study, Wang et al. had shown that non-constant 

variations between predicted and observed electromechanical response were observed.  

This implies that mechanics aspects alone cannot satisfactorily explain observed 

performance of the devices. 

 A modified approach based on Unimorph theory was later used by Schwartz et al. 

to quantify the mechanics contributions to Rainbow performance (Schwartz, Cross and 

Wang, 2000). Depending upon device fabrication conditions, the mechanics contribution 

to overall performance was observed to vary from a high of 72% to a low of 53%, for an 

applied electric field of 10kV/cm. 

 The present work comes among the efforts made to understand the dynamic 

behavior of stress-biased actuators. 
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1.5 Scope of the thesis 

This study shows an analytical model to predict the shape of thin piezoelectric 

composites after manufacturing. Results are validated with experimental data.  Additional 

background information on piezoelectricity and piezoelectric actuator modeling is also 

included. 

 To that end, some background and perspective on piezoelectricity and 

piezoelectric actuators modeling is included.  Next, two pre-stressed piezoelectric 

actuators are discussed in particular including their manufacturing process with the design 

and justification of design parameters.  The shape modeling of each device is discussed 

and the modeled shapes are compared to experimental data.  Then results and conclusions 

are presented. 
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CHAPTER 2 DEVELOPMENT OF ANALYSIS 
 

2.1 Introduction 

 During the past decade, modeling of pre-stressed piezoelectric actuators has 

become an important area of research.  To date, there have been some modeling 

(Suleman and Venkayya, 1995) efforts to understand the dynamic behavior of 

piezoelectric actuators.  The development of this field is supported by the advancement 

in the field of actuator packaging and in the field of control.  The major parameters that 

determine the behavior of piezoelectric actuators are the type of PZT used, the physical 

properties and the thickness of constituent layers, the initial shape and the 

manufacturing process. 

2.2 Composite Materials  

 The composite laminates of the actuators used throughout this study consist of 

thin layers of PZT, adhesives (for a Thunder® type actuator) and backing materials as 

presented in the previous sections.  In order to bond and cure these composite laminates, 

they are heated under pressure.  “A symmetric laminate actuator is an actuator in which 

for every layer to one side of the actuator reference surface with a specific thickness and 

specific material properties, there is another layer the identical distance on the opposite 

side of the reference surface with the identical thickness and material properties.” 

(Hyer, 1998)   
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Hence, thermally induced stresses developed in these unsymmetric actuators, 

will cause curvature to develop as the panel cools.  The actuators of interest in the 

present study are thin unsymmetric laminates with at least one stable equilibrium state 

at room temperature. 

2.3 Existing Models for Piezoelectric Actuators 

The main focus of this study is to develop a model that can predict thin pre-

stressed actuators initial shape and displacement at room temperature due to an applied 

electric field. This model will be helpful in uncovering various parameters affecting the 

predicted displacement and in optimizing their performance in the manufacturing stage. 

Various modeling methods and control schemes have already been proposed to 

enhance the controllability of piezoelectric actuators. (Takashi, 1986)  For example, 

(Crawley & de Luis, 1987) and (Crawley & Anderson, 1989) proposed an analytical 

model for segmented piezoelectric actuators.  The model consists in a Bernoulli-Euler 

beam with piezoelectric actuators bonded to the surface or embedded in a laminate.  

Crawley and Anderson also examined the effect of a finite-thickness bond layer 

between the beam and the actuator. 

 Numerical models (Saravanos, 1997) using Finite-Element (Hwang and Park, 

1993) approach were also used to predict the actuator shape such as the work done by 

(Soderkvist, 1996) for the beam case, (Smith, 2005) for the plate model and (Mulling et 

al., 2001) who modeled the shapes of five types of Thunder® actuators with a 

percentage of accuracy varied between 0.5 and 40.8. 
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When a mechanical stress or an electric field is applied to a piezo-electric 

material, the domain structure (size, shape and density) in the material will change to 

maintain the domain energy at a minimum. (Mukherjee et al., 2002) showed that when a 

compressive stress along the poling direction is applied to a PZT ceramic sample, new 

non-180° domain walls are created due to domain switching, which results in an 

increase in the piezoelectric and dielectric responses of the specimen. This is a 

reversible effect with the domain walls mobility returning to near their original values 

when the applied stress is removed. This will be verified by comparing the displacement 

performance of two different actuators (Thunder® and Lipca). By determining the 

neutral axis position for each actuator, it will be shown whether the PZT layer is in 

compression or in tension. 

 In a previous work, (Ball et al., 2003) determined the position of the neutral axis 

for a Thunder® type actuator consisting of only two layers (steel and PZT) and 

neglecting the two adhesive layers that bond the piezoelectric layer to the substrate; 

Even if the adhesive layer thickness is much thinner than the piezo-electric and the 

substrate layers, it was thought to be useful to include it and investigate how it would 

effect the neutral axis position. The following section is an expanded analysis including 

the two adhesive layers and the top aluminum layer of the pre-stressed actuator.  

2.4 Neutral Axis Calculation 

 In order to calculate the location of a neutral axis, that is the location of zero 

strain, the following assumptions were made:  
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2.4.1 Assumptions 

1. Plates are defined as thin when the ratio of the thickness to the smallest span 

length is less than 0.05. All actuators studied meet this criterion. 

2. For each layer, straight lines initially normal to the mid-surface remain straight 

and normal to that surface subsequent to bending. This means that the vertical 

shear strains γxz and γyz are negligible. The deflection of the plate is thus 

associated principally with bending strain, with the implication that the normal 

strain εz (owing to vertical loading) may also be neglected (Kirchhoff 

Hypothesis). 

3. The component of stress normal to the mid surface for each layer, σz, is 

negligible. 

4. As a result of bending, the neutral surface (see section II) will not encounter any 

stretching or contraction. 

2.4.2 Neutral Axis Analysis 

 A Stress-biased actuator is typically comprised of a piezo-ceramic wafer 

sandwiched between two backing materials. The composite is assumed to be comprised 

of N layers, which are the stainless steel, the adhesive, the PZT and the aluminum for 

the Thunder® actuator; Ei and αi are respectively the modulus of elasticity and the 

coefficient of thermal expansion for the ith layer. The rectangular x-y-z 

coordinate system is used for the analysis and it is oriented so that the backing 

layer lies in the x-y plane with z = 0 corresponding to the outer edge of the 



19 

  

backing layer as shown in Figure 7. The ith layer is wi wide and hi denotes the z 

coordinate of the top edge of the ith layer.  The strain at z = 0 and the curvature at 

the neutral axis are respectively denoted by ε0 and κ. 

 

Figure 7:  Cross-Sectional Geometry of a Piezoelectric Composite 

 

The behavior of any deformable plate (ANSI/IEEE) subjected to a bending 

moment causes the material at the bottom portion of the plate to compress, and 

the material within the top portion to stretch. Consequently, between these two 

regions there must be a surface, called the neutral surface, in which longitudinal 

fibers of the material will not undergo any change in length, Figure 8. 

 
Layer 3 
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Layer 1 
x 

z = z0 

z = z1 

z = z2 

z = z3 
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Figure 8:  Neutral Axis Position 

 

Four assumptions are made regarding the way the stress deforms the 

material. First, the longitudinal axis x, which lies within the neutral surface, Figure 

8, does not experience any change in length. Rather the moment will tend to deform 

the actuator so that this line becomes a curve that lies in the x-z plane of symmetry. 

Second, all cross-sections of the actuator remain plane and perpendicular to the 

longitudinal axis during the deformation. Third, any deformation of the cross section 

within its own plane will be neglected. And forth, the displacement is assumed to be 

linear in the thickness direction, to satisfy the Kirchhoff hypothesis, as detailed in 

the next section. 
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Therefore, for a layer having a cross sectional area Ai, the forces due to 

elastic stresses are:  

∫=
iA

i dAF σ      (2.1) 

A force balance at equilibrium under the assumption of pure bending yields: 

∑ ∫
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where, 

hi is the z coordinate of the ith layer in m 

κ is the curvature in m-1 

zns is the neutral surface position 

Yi is the Young modulus of the ith layer in N/m2 

 The position of the neutral axis on the cross section can be located by satisfying the 

condition that the resultant force produced by the stress distribution over the cross-sectional 

area must be equal to zero.  

 The force balance for the type of actuator studied here is then given by equation 2.3: 
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Ys, Yg, Ype and Ya are respectively the Young modulus of the steel, glue, PZT and 

aluminum layers.  
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Integrating through the thickness and solving for zns: 
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2.4.3 Determination of the Radius of Curvature 

 The radius of curvature R is calculated utilizing geometry and experimental 

measurements of the dome height h that is the distance between the flat surface on 

which the actuator rests in simply supported conditions and the highest point on the 

actuator as shown in Figure 9.  

 The arc-length of the tabs and PZT, denoted t and s, as shown in Figure 9, the 

dome height and the radius of curvature (at the top of the aluminum layer) are related 

by: 

 

)
2

sin()]
2

cos(1[
R
st

R
sRh +−=   (2.5) 

 

This is a non linear equation where the radius of curvature can be determined by 

experimental measurements of the dome height (using MathCAD). 
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Figure 9:  Actuator geometry with flat tabs 

 

2.5 Potential Energy Formulation 

2.5.1 Theoretical Approach 

 The analysis to predict the shape of cooled actuators such as Thunder® as 

presented by Aimmanee & Hyer (2004) and Lipca as presented Zhang & Sun (1999) is 

based on a Rayleigh-Ritz approach (Young, 1950).  This approach minimizes the total 

potential energy of the actuator and assumes that the stable configuration developed in 

the actuator due to cooling will be the configuration that minimizes the total potential 

energy of the actuator.  

Here, the Rayleigh-Ritz technique (Hyer and Jiliani, 1998) is used, whereby the 

functional form of the displacement field due to cooling is approximated by known 

functions multiplied by unknown coefficients.  

PZT

t 

0 
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Aimmanee & Hyer (2004) have used this technique to model the shape of 

Rainbow and Thunder® specialty actuators. They compared the results to those obtained 

with a finite element simulation. In this work, revisions were made to their work 

regarding the effective in-plane force resultant and the effective bending moment 

resultant as detailed in the following sections. Furthermore, results were validated with 

experimental data. 

For the purpose of a better understanding of some of the major issues with 

piezoelectric actuators and their ability to produce displacements when they are under 

an electric field, an analytical model is developed. This model is intended to provide a 

broad overview of the concept of using piezoelectric actuators with unsymmetric 

composite laminate layers. 

The Rayleigh-Ritz technique and classical lamination theory with the inclusion 

of geometric nonlinearities are used to predict the room-temperature shapes of the 

actuator.  The code is written using the programming software Mathematica and built 

upon the work done by Dano & Hyer (1998, 1982, 1981). 

2.5.2 Modified Classical Lamination Theory 

 The classical lamination theory is an expansion of classical linear Kirchhoff 

theory for homogeneous plates to laminated plates. Hyer (1982, 1981) showed that 

classical lamination theory cannot always accurately predict the room-temperature 

shapes of unsymmetric laminates (Lee, 1990). However, if geometric nonlinearities are 

included in the theory, by using nonlinear strain-displacement equations, the shape 
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could be predicted more accurately. For this reason, nonlinear strain-displacement 

equations are used in the present work. 

In classical lamination theory, (Bank, Smith and Wang, 1996) a number of 

simplifying assumptions are made, including the following Kirchhoff assumptions: 

1-The actuator thickness is very small in comparison with the other dimensions 

such as radius of curvature and length. This condition is important to thin plate theory, 

which states that the ratio of the actuator thickness to the smallest radius of curvature is 

small as compared to unity. For all Thunder® and Lipca actuators used in this study, this 

condition was satisfied. 

2- The actuator deformations are sufficiently small (the deflection is much less 

than the thickness, that is w/t << 1). Since piezoelectric actuators often vibrate at large 

amplitudes, the linear theory is not adequate; therefore this hypothesis is relaxed and 

nonlinear Von Karman terms are included in the strain formulation. 

3- Transverse normal stresses are small compared to the other normal stresses in 

the actuator and hence can be neglected. In other words, the stress in the direction 

normal to the thin dimension is taken to be negligible. This assumption, in combination 

with the fourth, deals with the constitutive properties of thin shells and allows the three-

dimensional elasticity problem to be reduced into a two-dimensional one. 

4- A line which is originally normal to the shell reference surface will remain 

normal to the deformed reference surface and will remain unstrained.  
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2.6 Basic Assumptions and Potential Energy Minimization 

In order to simplify the formulation procedure, the following assumptions are 

introduced: 

1- In each layer, the normal stress is assumed to vanish. 

2- The interfaces between adjacent layers are perfectly bonded. 

3- The layers are assumed to be in a state of plane stress. 

4- The deformations of the actuator are assumed to obey the Kirchhoff hypothesis 

5- The stable dome like configuration developed in the actuator due to the 

coefficients of thermal expansion mismatch is the configuration that minimizes 

the potential energy of the actuator. 

6- Isotropic material behavior for each layer. 

7- Tabs are included in the construction of the actuator by making the backbone 

(bottom) layer longer than the other layers. Holes or slots are then machined in 

the extensions in order to attach the actuator with small screws or other 

mechanical fasteners. The modeling of the actuators’ shape will not include the 

attachment tabs.  

The Cartesian coordinate system is used for the analysis and the origin of the coordinate 

system is chosen at the geometric center of the actuator as shown in Figure 10. 
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Figure 10:  (a) Initial and (b) Cooled Shapes of an Actuator and Coordinate System 

 

The total potential energy of the actuator,Π , is given as in equation (2.6): 
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Where the integral is over the volume of the actuator σ  represents the stress in the x, y 

and z directions, σ T represents the thermally induced stresses and ε  and xyγ  are the 

normal and shear strains in the actuator. 

Assuming isotropic material behavior for each layer, the stress-strain relations 

for a given layer are defined as in equation (2.7a): 
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Where: 

21 ν−
Υ

=Q         and  TQT Δ+= ανσ )1(   (2.7b)  

         

 

In the above, Υ is the Young’s modulus of the material, and ν and α are the Poisson 

ratio and the coefficient of thermal expansion, respectively. The temperature change 

due to cooling is ∆T and is assumed to be spatially uniform. The material properties are 

assumed to be temperature independent. 

 In equation (2.8), if the integration with respect to z is carried out, the total 

potential energy becomes: 
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Where Ns and Ms are respectively the force and the moment resultants within the 

actuator and are given by: 
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The quantities A, Av, B, Bv, D and Dv are material properties that can be expressed in 

terms of the Young modulus, Poisson ratio and the interface locations of each layer as: 
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 Where the subscripts k on the material properties identifies the material 

properties with the kth layer and N is the total number of layers, which is equal to five 

for Lipca and Thunder® actuators. NT and MT are also material properties that involve, 

additionally, the coefficients of thermal expansion of each layer and are given by 

Equation 2.11. 
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It’s noticed here that the denominator for both quantities just defined, is 1-vk and not  

1-vk
2 as mentioned in Hyer, (2004). 

The strain field is given by the Kirchhoff hypothesis as in equation (2.12): 
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Where the reference surface strain including the non linear Von Karman terms are 

defined as in equation (2.13):  
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The reference surface curvatures are given as in equation (2.14): 
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So the strains in the layers are taken to be: 
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Where uo, vo and  wo are the three components of displacement of a point on the 

reference surface in the x, y and z directions, respectively, given by the Rayleigh-Ritz 

approximations for the 23 coefficients model as shown in equations (2.16): 
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And for a reduced order model, a four-coefficient approximation can be represented 

by Equation 2.17: 
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2.7 Four Coefficient Model 

 The approximate displacement relations presented in equation (2.17) have four 

undetermined parameters, or coefficients, which will be varied to minimize the total potential 

energy. After substituting equations (2.17) into equations (2.13) and (2.14), the mid plane 

strains and curvatures become as shown by equations (2.18) and (2.19) 
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 It should be noted that, as shown in equation (2.19), coefficients a, and b are just 

the negative of the curvatures in the x and y directions, respectively. 

Once equations (2.18) and (2.19) are substituted into equation (2.9) and, in turn, into 

equation (2.8) and the spatial integrals are carried out, the equation for the total 

potential energy is reduced to an algebraic equation, in terms of the undetermined 

coefficients, (a, b, c, d). Stationary solutions of Π  are found by setting the first 

variation of the total potential energy, Π∂ , to zero. This reduces to solving a series of 

simultaneous algebraic equations for the undetermined coefficients, specifically, by 
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setting the partial derivatives of Π  with respect to a,b,c and d equal to zero, and solving 

for a,b,c and d from: 
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d     (2.20) 

These solutions correspond to the equilibrium shapes of the actuator. If Π  has been 

minimized, the equilibrium solution is a stable solution, and if the Π  has not been 

minimized, the solution is unstable (which means that it couldn’t be observed in 

reality). 

In order for the solution to be stable, the second variation, Π∂ 2 , must be positive 

definite. By definition, an n x n matrix A is called positive definite if “xTA x” is strictly 

positive for the current problem, if the matrix: 
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Is positive definite, then the equilibrium solution is stable. 
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2.8 Multiple-Coefficient Model  

Coefficients c1 through c23 from equation (2.16) are unknown but are to be 

determined by minimizing the total potential energy as seen in the last section with the 

four-coefficient model.  The polynomials used for ),(0 yxw are a linear combination of 

monomial even functions of x and y complete to order six, whereas the polynomials 

used for ),(0 yxu  ),(0 yxv are linear combinations of monomial odd functions of x and 

even functions of y complete to order five, plus the additional function of x to the 

seventh power.  

The assumed functions are intuitively selected by considering the symmetry and 

the anti-symmetry of the various components of the deformations with respect to x- and 

y- axes. 

2.9 Circular Actuator Model  

2.9.1 Problem Definition 

 A circular actuator is assumed to be flat at the curing temperature with radius R 

and total thickness H (Figure 11). The disk is made of N layers, as in the rectangular 

model, and a cylindrical coordinate system is used with its origin chosen to be the 

geometric center of the actuator. 
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Figure 11:  Circular Shape Actuator 

  

 The actuator will be considered a thin plate, so the assumptions of classical 

layered plate theory will be assumed to be still valid. The two key assumptions of thin-

plate theory are, as discussed in the previous sections (1) the Kirchhoff hypothesis is 

valid and (2) a state of plane stress exists within the actuator. 

 Since geometric nonlinearities are included in the analysis, it is highly likely that 

any derived equations governing the cool down (from the cure temperature) behavior 

would be unsolvable (Hyer, 2002). Therefore, an energy approach similar to that used 

for the rectangular actuators in the previous sections will be used.
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2.9.2 Circular Shape Potential Energy Formulation 

 

In this case, the total potential energy is written as: 
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Here, the same notation is used for the stresses and the strains which are given by the 

Kirchhoff hypothesis as: 

 

 
00

00

00

θθθ

θθθ

γγ

εε

εε

rrr

rrr

Kz

Kz

Kz

⋅+=

⋅+=

⋅+=

     (2.23) 

 

And 

θθ

θ

θ

γντ

αεαενσ
αεναεσ

rr

ry

rr

Q

TQTQ
TQTQ

)1(
2
1

)()(
)()(

−=

Δ−+Δ−=
Δ−+Δ−=

   (2.24) 

Or  

θθ

θθ

θ

γντ

σεενσ

σενεσ

rr

T
r

T
rr

Q

QQ

QQ

)1(
2
1

−=

−+=

−+=

    (2.25) 

 

Where 

   21 ν−
Υ

=Q       (2.26)   
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And 

    TQT Δ+−= ανσ )1(      (2.27) 

The reference surface strains are given by: 
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Where the terms involving wo represent the Von Karman approximation to the full 

nonlinear strain-displacement relations.  

 

The reference surface curvatures are given by: 
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Integrating with respect to z, the total potential energy becomes: 
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Redefining the force and moment resultants (N and M terms) like in the rectangular 

case: 
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The terms A, Av, B, Bv, D and Dv will be given as: 
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And the displacement relations for the circular actuator are given by a 35 coefficient 

model as follows: 
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          (2.33) 
 

As in the rectangular shape case, the total potential energy is minimized within 

the context of these unknown coefficients and the coefficients are solved for. Since the 

minimization process involves taking the first derivative of the total potential energy 

and equating it to zero, a maximum of the total potential energy, which represents an 

unstable configuration could be obtained instead.  
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Therefore, the second variation of the total potential energy is also examined to 

identify the maximums and minimums so stability can be assessed. 
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CHAPTER 3 RESULTS AND DISCUSSION 
 

  The two pre-stressed piezoelectric actuators used in this study are Thunder® and 

Lipca. Both are layered composites in which individual materials are layered on top of 

each other to form a "composite". These devices can be manufactured in a wide variety 

of useful configurations such as disks, squares, and strips from a few millimeters to 

many centimeters in size.  Depending upon the application, thickness is nominally less 

than a millimeter. A detailed description of these two actuators, the manufacturing 

process and the characteristics of their components are presented in the following 

sections.   

3.1 Thunder® Actuators 

 Thunder® (Face International Corporation) shown in Figure 12, is a composite 

laminate consisting of a metal substrate, SI adhesive, (Imitec, 1990) Lead Zirconate 

Titanate (PZT), and a top metal layer that is formed when the composite laminate is 

heated under pressure to temperatures that allow the adhesive top bond and then cooled 

to room temperature. Different equipments are needed for the construction of Thunder® 

actuators such as an oven with a vacuum fixture and an operating temperature of 350oC, 

an air brush, and an autoclave with a minimum capability of 207 kPa and 350 oC. 

The procedure for the manufacturing of Thunder® as presented by Bryant et al. (1997) 

can be described in the following steps: 
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Spray coating of the ceramic: 

LaRC-SI solution is sprayed using an air brush. Both sides of the ceramic are cleaned 

using alcohol. Two coats are then sprayed on each side of the ceramic which is then 

dried in an oven for two hours at 70 oC. 

Construction of the layers: 

The backing materials is first cleaned with alcohol, roughened with sandpaper and 

sprayed with the LaRC-SI solution. The materials are cut to the desired size.  

Assembly: 

The materials are assembled in the following order, starting from the bottom: metal, 

LaRC-SI film, ceramic wafer, LaRC-SI film, top metallic layer. 

Pre-bonding and autoclave: 

 The assembly is carefully placed on the plate. Around the edges of the plate, heat 

resistant sealant tape is placed and a vacuum port is attached inside the tape perimeter. 

Kapton™ film is placed over the tape covering the entire surface of the plate and 

pressed around the tape to ensure a good seal. The entire plate is then put into an oven 

for one hour at 325 oC When the temperature is lowered to 180 oC, the vacuum is 

released and the assembly is allowed to cool down to ambient temperature. The plate is 

now prepared in the same manner as for the oven process, and put into the autoclave. 

The temperature is raised to 320 oC at 5 oC/min intervals with a full vacuum. At 320 oC, 

a pressure of 207 kPa is placed for 30 minutes and then the plate is cooled down at 

5oC/min cooling rate until the temperature reaches 200 oC. The vacuum is then released 

and the fixture is allowed to cool to ambient temperature.         
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Figure 12:  Thunder® Lay-up 

  

 During the cooling phase, (Mossi, Shelby and Bryant, 1998) the adhesive that 

was in a highly viscous state at the bonding temperature solidifies.  Consequently, 

internal stresses are developed in the constituent materials due to differing thermal 

properties.  This produces the characteristic curved shape resulting from pre-stress.  

Additionally, the backing metal layer provides robustness that allows the generation of 

large strains without damaging the actuator.  The combination of robustness and 

curvature/pre-stress enhancement provides Thunder® with high displacement 

capabilities (Mulling et al., 2001; Schwartz and Narayanan, 2002) to give suitable 

potential for applications including high speed valve design, synthetic jets for flow 

control and linear motor component for micro robotics (Palmer et al., 2004). 
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For the specific Thunder® actuators studied here, five rectangular layers are 

considered as shown in Figure 13.   

 

Figure 13:  Thunder® Constituent Layers 

 

Some of the relevant material properties relevant to the approach studied for the 

Thunder® actuators are presented in Table 1.  The specific type of aluminum utilized is 

ASTM B209, H-18, full hard-tempered, and the stainless steel is Type 302, ASTM 

A666, full hard.  

 
Table 1:  Mechanical Properties of the Layers Used in a Thunder® Device 

Material 

Modulus of 
elasticity 
Y(N/m2) 

Poisson’s 

ratio  

ν 

CTE 

α(μm/m-°C) 

strain/field 

piezoelectric 

constant d31(m/V) 

Aluminum1 7.00 x 1010 0.33 24 - 

SI 3.45 x 109 0.40 45 - 

PZT2 6.70 x 1010 0.31 3.0 -1.7 x 10-10 

Stainless Steel3 1.93 x 1011 0.25 17 - 

 1 ASTM B209 
 2 PZT-5A CTS wireless 
 3 Stainless steel type 302, ASTM A666, full hard 

 The different dimensions of the layers mentioned for the Thunder® actuators 

used in this study are described in Tables 2 and 3. 



46 

  

 

Table 2:  Characteristics of Thunder® Actuators Used in the Study 
 

Type 

Dimensions* (mm) Total thickness 

(± 0.025mm) 

PZT thickness 

(mm) 

Thunder® 5C 32.639(radius) 0.405 0.178 

Thunder® 6R 50.419 x 51.816 0.711 0.381 

Thunder® 7R 69.850 x 73.406 0.533 0.254 

Thunder® 7RX 69.850 x 24.892 0.533 0.254 

Thunder® 8R 37.846 x 13.716 0.432 0.203 

Thunder® 9R 9.398 x 10.541 0.432 0.203 

Thunder® 10R 12.624 x 13.716 0.432 0.203 

*Overall length and width excluding tabs 

 

  Table 3:  Dimensions of Thunder® Actuators’ Constituent Layers 
 

Type 

Dimensions 

(mm) 

PZT 

thickness 

(mm) 

Steel  

thickness 

 (mm) 

adhesive  

thickness 

(mm) 

Aluminum 

thickness 

(mm) 
Thunder® 5C 32.639(radius) 0.1778 0.1524 0.0254 0.0254 

Thunder® 6R 50.419 x 51.816 0.3810 0.2540 0.0254 0.0254 

Thunder® 7R 69.850 x 73.406 0.2540 0.2032 0.0254 0.0254 

Thunder® 7RX 69.850 x 24.892 0.2540 0.2032 0.0254 0.0254 

Thunder® 8R 37.846 x 13.716 0.2032 0.1524 0.0254 0.0254 

Thunder® 9R 9.398 x 10.541 0.2032 0.1524 0.0254 0.0254 

Thunder® 10R 12.624 x 13.716 0.2032 0.1524 0.0254 0.0254 

 

For applications where the weight of the actuator is an issue, the design of 

lighter actuators becomes more relevant. Studies have demonstrated that a lighter 

actuator can be manufactured by replacing the heavy metal layers of Thunder® by 
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lightweight fiber reinforced plastic layers (a Lipca type actuator in this case) without 

losing the capabilities for generating high force and large displacement. It is possible to 

save up to about 40% of the weight if the metallic backing material is replaced by a 

fiber composite layer.  Details of this device are described in the next section. 

3.2 Lipca Actuators 

Lipca is a compact light actuator device (Yoon et al., 2002, 2003) that has a 

curved shape like a typical Thunder®.  The developed Lipca device, as in Figure 14 is 

manufactured by using a floor mold without adhesive layers, as the epoxy resin also 

serves in this capacity.  Different types of layers can be used in the construction of these 

devices, with one of the most effective designated as a Lipca-C2 (Yoon et al., 2003). 

The Lipca type used in this study is a type C2 actuator. The characteristics of the 

different layers for the Lipca C2 are presented in Table 4.  Two plies of glass/ epoxy 

fabric prepreg were placed on the bottom layers on a flat base plate.  A PZT 5A ceramic 

wafer with electrode surfaces and silver epoxy bonded copper strip wires were placed 

on the glass/epoxy prepreg.  A layer of carbon/epoxy prepreg was placed over the 

ceramic wafer. The stacked layers were vacuum-bagged and cured at 177°C following 

an autoclave bagging process (Yoon et al., 2002).  

 

 

 

 

 

Figure 14:  Lipca C2 Constituent layers 
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Table 4:  Mechanical Properties for a Typical Lipca Device 

Material 

Modulus of 

elasticity 

Y(N/m2) 

Poisson’s 
ratio 
ν 

CTE 

α(μm/m-°C) 

strain/field 
piezoelectric 

constant d31(m/V) 

Glass/Epoxy1 2.17 x 1010 0.13 14.2 - 
Carbon/Epoxy2 23.1 x 1010 0.29 -1.58 - 

PZT3 6.70 x 1010 0.31 3 -1.7 x 10-10 
 1GEP-108, SK Chemicals Korea 
 2UPN-116B, SK Chemicals Korea 

 3PZT-5A, MorganMatroc Inc. Electro Ceramic Division 
  

 The dimensions of the Lipca C2 actuator used in this study are described in 

Table 5: 

Table 5:  Characteristics of Lipca Actuator 
Material Length (mm) Width (mm) Thickness (mm) 
Glass/Epoxy 100 24 0.089 
Carbon/Epoxy 71 22 0.10 
Glass/Epoxy 14 22 0.10 
PZT 72.4 23 0.254 

   

3.3 Neutral Axis Results 

 The neutral axis position is determined for the studied Thunder® and Lipca 

actuators by taking z = 0 at the bottom of the substrate layer, as shown in Figures 7 and 

Figure 8, using Equation 2.4.  In these figures, the location of the ceramic layer, zc, is 

compared with the location Zns of the neutral axis for each actuator as shown in Table 6.  

In the cases where zc is larger than Zns the neutral axis is located below the ceramic 

layer.  This indicates that the ceramic is in tension only.  This is the case for all the 

Thunder® devices.  In the case of Lipca C2, zc is smaller than Zns indicating that the 

ceramic is partially in compression.  To represent these results visually, Figures 15 and 
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16 show the location of the neutral axis with respect to the individual cross section of 

the device.  

 

Figure 15:  Neutral Axis Location for Thunder® Actuators 

 
 

 
Figure 16:  Neutral Axis Location for Lipca C2 Actuator 
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Table 6:  Neutral Axis Position for all Actuators 
Actuator type zc (mm) Zns(mm) 
Thunder® 6R 0.2794 0.2451 
Thunder® 7R 0.2286 0.1798 
Thunder® 7RX 0.2286 0.1798 
Thunder® 8R 0.1778 0.1417 
Thunder® 9R 0.1778 0.1417 
Thunder® 10R 0.1778 0.1417 
Lipca C2 0.3400 0.3643 

  

 Under the assumptions stated in section 2.4.2, the neutral axis for any Thunder® type 

actuator build with the type of layers utilized for this study, is found to be under the ceramic layer, 

which keeps the PZT in tension; for Lipca C2, the neutral axis is above the PZT layer meaning 

that the ceramic wafer is under constant compression. Mukherjee et al. (2002) showed that 

when a compressive stress along the poling direction is applied to a PZT ceramic 

sample, new non-180° domain walls are created due to domain switching, which results 

in an increase in the piezoelectric and dielectric responses of the specimen. This may 

explain qualitatively the reason a Lipca type actuator exhibit better displacement than Thunder® 

under no load conditions. 

3.4 Shape Modeling Results 

 The commercial Thunder® wafers used in this study to validate the model are illustrated 

in Figure 17. 
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Figure 17:  Thunder® Wafers 

 

 During manufacturing, (Mossi, Shelby and Bryant, 1998) Thunder®-type 

actuators are vacuum bagged in specially made molds while they are cured at an 

elevated temperature and cooled to room temperature. Though stresses develop during 

the cooling, the mold essentially forces the actuator to remain flat until the pressure is 

released after they are cool. The model presented above is formulated such that if the 

actuator was not forced to remain flat, but rather could deform freely as it was cooled, 

the shape of the actuator at any cooled temperature would be predicted. Alternatively, if 

the cured actuator was heated from the room-temperature condition, the shape as a 

function of elevated temperature could also be predicted.  

 Modeling results are obtained using specific material properties for each layer. 

The properties are given in Tables 1 and 4. To be noted is the fact that the bonding 

temperature, cT , of the adhesive for Thunder® is assumed to be C°325 and room 

temperature is assumed to be C°25 . 
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  Thus for a Thunder® actuator, the temperature at the beginning of the cooling 

process is equal to Tc of C°325 ; at the end of the cooling process, the temperature is 

equal to the room temperature of C°25 , which corresponds to CT °−=Δ 300 ; the 

adhesive solidifies at a temperature close to 260ºC. 

 For a Lipca actuator, the temperature at the beginning of the cooling process is 

equal to the curing temperature; Tc of C°170  and at the end of the cooling process, the 

temperature is equal to the room temperature of C°25 , which corresponds to 

CT °−=Δ 145 . 

3.5 Results for Four Coefficient Model 

 The results of the four terms model of a square Thunder®-type actuator do not 

closely represent its shape; in fact, the shape of a real actuator is cylindrical as depicted 

in Figure 18, while the modeled shape is nearly spherical as shown in Figure 19; also, 

the details of the deformations along the edges of the actuators are different from those 

observed.  The dome height resulting from the model without considering the tabs is 

close to that of the experimental dome height, though. 

Figure 18:  Thunder® 6R Experimental Shape 
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Figure 19:  Thunder® 6R Modeled by the Four Coefficient Method 

  

 In reality, the spherical shape is not the real picture, as the curvature is a function of x 

and y and, as stated previously, there is some twist curvature near the corners.  As a result, it is 

seen that the shape predicted by the four-term model is not in agreement with the shape of a real 

actuator. 

3.6 Results for Multiple-Coefficient Model 

 The quantities A, Av, B, Bv, D and Dv are determined using equation (2.10) as functions 

of material properties (Young modulus, Poisson ratio) and the interface locations of each layer 

w°(m)

x(m)

y(m) 
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as presented in section 2.5. Since the minimization process involves taking the first derivative of 

the total potential energy and equating it to zero, a maximum of the total potential energy, which 

represents an unstable configuration, could be found instead. Stability is studied by taking the 

second variation with respect to the unknown coefficients, which leads to a 23 by 23 symmetric 

matrix of second derivatives of the total potential energy. The stability of the predicted shapes is 

insured if the matrix is positive definite.  

 The shapes at room temperature for Thunder® and Lipca type actuators are predicted 

with the help of Mathematic software using the multiple (23) coefficients model and are 

presented in Figures 20a  through 20e.   
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Figure 20:  Simulated Shapes of all Actuators (a-e) 
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 The shapes at room temperature as predicted by the multi (23) coefficients 

model are illustrated in Figures 20. The deformations along the edges of the actuators 

are different from those predicted with the four terms model and the overall shape of the 

actuators are cylindrical. These shapes are a close match to the real actuators’ shape, 

showing the accuracy of this model Another point that checks for accuracy, is the 

prediction of dome height, the highest point on the actuator which is predicted within 

25% for all actuators. 

 The simulated circular Thunder® actuator, as shown in Figure 21, reflects a 

spherical shape with a dome height of 0.38 mm; in reality, this actuator has a dome 

height of 1.5 mm. A possible remedy to seek better results for this circular case would 

be to adjust the approximate displacement relations by adding polynomials and cosine 

terms and minimizing the potential energy. 
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Figure 21:  Circular Thunder® Modeled by the Multi-Coefficient Method 
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3.7 Comparison to Experimental Data 

 The simulated shape for each actuator is compared to a map experimental data. 

The surface topology of each type of each wafer was measured using a Fanamation 

606040 coordinate axis machine to 8.1 µm accuracy. The surfaces of Thunder® and 

Lipca wafers were lightly sanded with 400 grit emery paper and cleaned with 

isopropanol. 

 Figure 22 illustrates a surface topology data for Thunder® 6R.  
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Figure 22:  Surface Topology Data for Thunder® 6R 
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Figure 23 compares simulated (by the 23 coefficient method) shapes of Lipca C2 to real 

data. 
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Figure 23:  Surface Topology Data for Lipca C2 

 
 For the Lipca actuator, a good agreement between the numerical model and the 

experimental data; it is to be noticed that a concave curvature is obtained instead of the 

convex curvature observed with the experimental data. 

 
 In the case on Thunder® 6R, the simulation over predicts the real data especially 

close to the center of the actuator but the over all predicted shape is fairly comparable to 

the experimental one as shown in Figure 24.  
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Figure 24:  Thunder® 6R Experimental and Simulated Shape 

  

 According to the manufacturer of Thunder® actuators, the PZT thickness may 

vary 0.0254mm around its nominal thickness; the simulations are then performed for a 

higher and lower thickness of the PZT as presented in Figure 25; It is noticed that the 

simulation results for these two cases compare slightly better with the experimental data 

and the simulated dome height over-predicts the experimental dome height by 20%, as 

discussed in the next section. 
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Figure 25:  Effect of PZT Tolerance on Thunder® 6R Simulation (3D) 

 The multi-terms model accurately fits the real shape of Thunder® actuators 7R 

and 8R as presented in Figures 26 and 27: 
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Figure 26:  Thunder® 7R Experimental and Simulated Shape 
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Figure 27:  Thunder® 8R Experimental and Simulated Shape 

 

 The next two Thunder® actuators are the smallest manufactured; a comparison 

between the multi terms model results and the real data, reveals that for the Thunder® 

9R, Figure 28, the dome height is predicted more accurately than the edges of the 

actuator where as for the Thunder® 10R case, the model is in a good agreement with the 

experimental data as shown in Figure 29. 
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Figure 28:  Thunder® 9R Experimental and Simulated Shape 
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Figure 29:  Thunder® 10R Experimental and Simulated Shape 

   

 In summary, the simulated shapes of Thunder® type actuators seem to fit the 

experimental data where the dome heights are at 90 to 95% of the observed ones. For 

the Thunder® 9R and 10R, at the regions close to the edges, the disparity is larger.  One 

of the reasons for the disparity might be due to the size versus thickness of these 

actuators. 

  Thunder®-type actuators are placed in a mold and vacuum-bagged and cured at 

an elevated temperature and cooled to room temperature; the mold forces the actuator to 

remain flat until the pressure is released after they are cool. The model presented above 
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is formulated such that if the actuator was not forced to remain flat, but rather could 

deform freely as it was cooled. 

3.8 Dome Height Comparison 

 In order to compare the experimental and simulated dome heights of the 

actuators, a two-dimensional plot at the a mid-section of each Thunder® actuator is 

presented in the following figures; a quadratic fit is evaluated, in equation 3.1, at that 

same section and compared to a fit of the simulated data. 

01
2

2 βββ +⋅+⋅= yyz    (3.1) 

 Where z represents the measured experimental values of device height and the 

calculated numerical values, and the coefficients for each actuator, β0, β1, β2 are shown 

in Table 7 for all the tested actuators. 

 

Table 7:  Quadratic Fit Coefficients for Dome Heights 
Actuator Dome Height β2 β1 β0 

zdata -2.76E-03 -1.74E-03 2.24E+00 
6R 

zsim -3.47E-03 -7.50E-03 2.77E+00 
zdata -4.10E-03 1.00E-04 5.55E+00 7R 
zsim -4.60E-03 0.00E+00 5.86E+00 
zdata -3.25E-03 8.65E-04 4.910E+00 7RX 
zsim -3.65E-03 0.01E-03 5.10E+00 
zdata -3.45E-03 2.27E-03 1.48E+00 

8R 
zsim -3.77E-03 2.65E-03 1.49E+00 
zdata -6.45E-03 1.75E-03 0.27E+00 

9R 
zsim 0 -4.72E-03 0.25E+00 
zdata -3.65E-03 -1.71E-03 0.32E+00 

10R 
zsim -3.90E-03 -2.80E-08 0.34E+00 
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 The experimental and simulated fits for the Thunder® 6R are presented in Figure 

30 where a quadratic equation fits both set of data with an R2 of 0.999. For this case, a 

6R Thunder®, as depicted in the 3D map, Figure 22, the model over-predicts the center 

of the actuator and the fit converges towards the edges of the experimental data. 
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 Figure 30:  2D Plot of Thunder® 6R Experimental and Simulated Shape 

  

 Better results are obtained for Thunder® 7R and 8R where experimental and 

simulated fits are overlapping as illustrated in Figures 31 and 32. The equations 

obtained for these devices are of the same type as shown in Equation 3.1.  For the 

Thunder® 8R, the results are in excellent agreement.  This may be due to the aspect ratio 

of this actuator. 



66 

  

Y (mm)

-40 -20 0 20 40

Z 
(m

m
)

-1

0

1

2

3

4

5

6

7

experimental data
simulated data
experimental fit
simulated fit

 
Figure 31:  2D Plot of Thunder® 7R Experimental and Simulated Shape 
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Figure 32:  2D plot of Thunder® 8R Experimental and Simulated Shape 
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  Modeled dome heights for Thunder® #9R and #10R, Figure 33 and 34, also seem 

to fit the experimental data: 

 

Figure 33:  2D Plot of Thunder® 9R Experimental and Simulated Shape 

 

 
Figure 34:  2D Plot of Thunder® 10R Experimental and Simulated Shape 
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 To calculate the dome height, highest point can be calculated by taking the 

derivative of Equation 3.1 and making it equal to zero as shown in equation 3.2 

 

012 =+⋅= ββ y
dy
dz     (3.2) 

  
 So that the value of y where z is a maximum is given by Equation 3.3.  Using 

this value a dome height can be calculated for all the pieces. 

2

1
max β

β−
=

z
y      (3.3) 

 
The dome height, maximum value of z can be calculated by using equation 3.4. 
 

2

2
1

max 4
1

β
β

⋅−=z     (3.4) 

 
 The resulting dome height comparison is then presented in the Table 6.  The percentage 

error between simulated and experimental height for most cases is within 10%.  The only case 

where the difference is higher is for the 6R model.  This may be due to the fact that this actuator is 

the thickest among all the other actuators used in this study, which might contradict the validity of 

the small thickness ratio.  In order to investigate the effect of the tolerance of the thickness of the 

PZT layer on the modeled shape of Thunder® 6R, the simulations are revised utilizing PZT 

thicknesses of 0.3556 mm and 0.4064 mm instead of the 0.381mm nominal thickness.  The 

resulting dome height, Figure 35, over predicts the experimental dome height by 20%.  Another 

possible cause for the discrepancy between the experimental and simulated dome height 

for this actuator, would be that the sidelength-to-thickness ratio is 115 which as stated 
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by Aimmanee & Hyer (2004), may cause instability, and could result in unexpected 

behavior.  A summary of the dome height comparison is shown in Table 8. 
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Figure 35:  Effect of PZT Tolerance on Thunder® 6R Simulation (2D) 

 
 

Table 8:  Actuators Dome Height Summary 
Actuator type Experimental dome height 

(mm) 

Simulated 

dome height (mm) 

% Error in 

absolute value 

Thunder® 6R 2.2350 2.7736 24.1 

Thunder® 7R 5.5541 5.8579 5.5 

Thunder® 7RX 4.897 5.161 5.4 

Thunder® 8R 1.4804 1.4942 0.9 

Thunder® 9R 0.2676 0.2531 5.4 

Thunder® 10R 0.3220 0.3351 4.1 

Lipca C2 0.83 0.90 8.4 
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3.9 Strain Calculation 

In this section, the strains in the x and y direction for the top and the bottom 

layer of the actuator will be determined using the displacement relations of the Raleigh-

Ritz approximations shown in Equation 3.6 and 3.7. 
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The displacements, u0, v0 and w0, are then substituted into the reference strain equations 

by taking, 0== yx , and using the conditions shown in Equation 3.8 where h is the total 

thickness of the actuator and z is at the top of the actuator.  In Equation 3.9 however z is 

at the bottom of the actuator.  

2
hz +

=     (3.8) 

2
hz −

=     (3.9) 

 

The strains are then obtained as shown in Equation 3.10. 
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Where c1, c2, c10 and c11 are the coefficients determined after minimizing the total 

potential energy. 

The results are presented in Table 9 for different Thunder® actuators. 

Table 9:  Simulated Strains at the Top and Bottom of Thunder® Actuators 
 Actuator type 

Strain 6R 7R 7RX 8R 9R 10R 
εx

T -0.00272 -0.004 -0.00371 -0.00363 -0.00347 -0.00343 
εy

T -0.00336 -0.00315 -0.00289 -0.0032 -0.00347 -0.00342 
εx

B -0.00763 -0.00395 -0.00631 -0.00688 -0.00694 -0.00681 

εy
B -0.00395 -0.00804 -0.00568 -0.0064 -0.00694 -0.0068 

 

 It is to be noticed here that all the strain values are negative; which means that 

the actuator is in total compression which is not comparable to the results of the neutral 

axis calculations obtained at section 3.3; this can be explained by the fact that the strain 

field is predicted by differentiating and squaring the high-order polynomials of the 

approximated displacement components. For this reason, the Rayleigh-Ritz approach 

loses accuracy when it comes to predicting normal and shear strains. 
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CHAPTER 4 CONCLUSIONS 
 

 In this study, the room temperature shapes of circular and rectangular Thunder® 

and Lipca actuators are predicted by using the Rayleigh-Ritz model.  This technique is 

based on the assumption that the stable geometric configuration developed in the 

actuator after manufacturing, is the configuration that minimizes the total potential 

energy.  This energy is a function of the displacement field which can be approximated 

by two functions, a four term model, and a twenty-three term model. The coefficients in 

the models are determined by minimizing the total potential energy of the actuator.  The 

actuator deformations are assumed to obey the Kirchhoff hypothesis and the actuator 

layers are assumed to be in the state of plane stress. 

 The Raleigh-Ritz four-coefficient model does not match the three dimensional 

surface topology maps.  The twenty-three coefficient model however, is shown to have 

generally good agreement with the data for all studied actuators. To quantify the 

difference, at the cross section of each actuator, a profile is fitted by using a quadratic 

equation obtaining regression coefficients above 99%. For all other Thunder actuators, 

the error between experimental and the calculated centerline data is less than 6%.  For 

the 6R however, the error is approximately 25%. In order to investigate the effect of the 

tolerance of the thickness of the PZT layer on the modeled shape of Thunder® 6R, the 

simulations are revised utilizing PZT thicknesses of 0.3556 mm and 0.4064 mm instead 
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of the 0.381mm nominal thickness.  The resulting dome height over predicts the 

experimental dome height by 20%. The discrepancy may be due to the fact that a 

Thunder 6R actuator is the thickest (0.711mm in thickness) among all the other 

actuators used in this study which might contradict the validity of the thin actuator 

assumption.   

 The Raleigh-Ritz technique is also used to predict strains at both surfaces of the 

actuators, however the results contradict the theory that the ceramic layer is in tension 

in the Thunder actuators.  This phenomenon can be explained by the manner the strain 

field is derived.  This field is determined by differentiating and squaring the high-order 

polynomials of the approximated displacement component losing accuracy when it 

comes to predicting normal and shear strains. 

 The neutral axis position, the location of zero strain at a cross-section of the 

actuators, is another technique to determine the state of the ceramic layer in the actuator.  

In this case, the neutral axis is calculated by using a force balance at equilibrium under 

the assumption of pure bending, for all actuators used in this study is determined and 

compared to the ceramic layer position. The results indicated that for all Thunder® 

models the neutral axis is located below the ceramic layer indicating that the PZT wafer 

is in total tension. For the Lipca C2 device however, the neutral axis is found to be 

above the ceramic layer, indicating that the piezoelectric layer is in total compression.  

This method however, does not account for any residual stresses built-in the device 

during the manufacturing cycle.  This technique is based on the final shape of the device. 
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The Rayleigh-Ritz technique presented here can be very a useful tool to perform 

parametric studies of the key elements for manufacturing and optimize the desired 

feature of the actuator.  This is especially useful for complex designs where finite-

element analysis can be cumbersome and time-consuming. In addition, this theory can 

be extended to include extensions on the actuators which is often used for attachment 

and to forecast the displacement of the actuator when subjected to a field, a specific 

load, and specific boundary conditions.   
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Appendix 1 
 

Piezoelectric Constitutive Equations 

 

Piezoelectric materials undergo a strain if an electric potential gradient (electric field) is 

applied through the material. Likewise, if a piezoelectric material is strained, it will 

create an electric potential gradient. Thus, the electric and elastic properties are coupled. 

This coupling is seen in the three-dimensional Cartesian constitutive equations as given 

by Tiersten [A1]: 
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In these equations, ijσ are components of the stress tensor, ijklC are the stiffnesses, ijε   

are the components of the infinitesimal strain tensor, ijke  are the piezoelectric 
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coefficients, Ei are the components of the electric field, Di are the electric displacements, 

and ijw  are the electric permittivities. 

 

The piezoelectric coefficient matrix given is one that characterizes a material that has 

been poled such that a potential gradient in the 3 direction causes primarily a 

dilatational strain, while a potential gradient in the 1 direction or the 2 direction will 

cause primarily shear strains. 

Poling aligns the dipoles in a piezoceramic, which magnifies the piezoelectric effect, 

and is accomplished by applying a large potential gradient within the piezoceramic.  

A piezoelectric material may be poled in any direction; if poled in the 1 or 2 direction, 

the non-zero components of the piezoelectric coefficient matrix will be rearranged. 

The infinitesimal strains are related to the displacements by the strain-displacement 

relations, namely, 
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where the iu  are the displacements. The electric field is related to the gradient in the 

electric potential by 

 

i
i x

E
∂
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   i = 1,3 

where φ  is the electric potential. 
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Appendix 2 
 

Rayleigh-Ritz coefficients for the Displacement wo in the z Direction  

 
Actuator 6R 7R 7RX 8R 9R 10R LIPCA 

C1 
-

3.45375 0.04641 -2.43313 -3.76693 -4.01757 -3.91441 -0.64867

C2 
-

0.41227 -4.58165 -2.62226 -3.70986 -4.01761 -3.91405 -0.64085

C3 
-

37.9915 -112.403 -227.441 -10.1396 0.023592 0.022066 -2.04815

C4 
-

228.519 -8.18615 -38.6471 -77.804 0.376413 0.374869 -4.86202

C5 
-

130.407 -70.0069 -274.543 -42.7302 0.143693 0.143649 -10.8242

C6 
-

0.11402 3.890398 0.000536 0.012146 0.014821 0.014822 0.093033

C7 
-

0.10425 0.418942 -0.4974 -0.00727 0.016616 0.016616 0.066913

C8 
-

0.32091 -4.34684 -0.36371 -0.26938 -0.2685 -0.2685 -0.18731

C9 
-

0.25277 -0.01075 -0.6075 0.002929 0.063742 0.063742 0.122227
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Code for Lipca C2 modeling with the multiple (23) coefficient model 
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