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Several studies have shown cellular replacement therapy as a treatment strategy of myocardial 

infarction but results have been limited.  Therefore, enhancing the therapeutic potential of stem 

cells injected into ischemic microenvironments by novel preconditioning (PC) techniques is 

critical for improving cellular therapy.  Recent studies have shown that inhibition of 

phosphodiesterase-5 (PDE-5) is a powerful strategy to precondition the heart and 

cardiomyocytes against ischemia/reperfusion injury.  We therefore tested the hypothesis that 

inhibition of PDE-5 with sildenafil (Viagra®) or selective knockdown with a silencing vector in 
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adipose derived stem cells (ASCs) would improve their survival after ischemia/reoxygenation in 

vitro and enhance cardiac function following myocardial implantation in vivo.   

ASCs were treated with sildenafil or infected with PDE-5 silencing vector shRNA 

(shRNA
PDE-5

). The cells were subjected to simulated ischemia (SI) and reoxygenation (RO). 

Both sildenafil and shRNA
PDE-5

 significantly reduced cell injury, as shown by improved 

viability, decreased lactate dehydrogenase, and apoptosis. The preconditioned ASCs also 

demonstrated an increase in the release of growth factors including VEGF, b-FGF, and IGF. The 

protective effect against SI/RO injury was abolished by inhibition of protein kinase G (PKG) 

using both a pharmacological inhibitor and selective knockdown with shRNA
PKG1α 

suggesting a
 

PKG-mediated mechanism. To show the effect of preconditioned ASCs in vivo, adult male CD-1 

mice underwent myocardial infarction (MI) by occlusion of the left descending coronary artery, 

followed by direct injection of PBS (control), non-preconditioned ASCs, or preconditioned 

ASCs (4x10
5
) ASCs into the left ventricle (LV). Preconditioned ASC-treated hearts showed 

consistently superior cardiac function by all measures as compared with PBS and non-

preconditioned ASCs after 4 weeks of treatment.   Post-mortem histological analysis 

demonstrated that preconditioned ASC-treated mice had significantly reduced fibrosis, increased 

vascular density and reduced resident myocyte apoptosis as compared to mice receiving non-

preconditioned ASCs or PBS. VEGF, b-FGF, and Ang-1 were also significantly elevated 4 

weeks after cell therapy with preconditioned ASCs.  Our data suggests that genetic or 

pharmacological inhibition of PDE-5 is a powerful new approach to improve stem cell therapy 

following myocardial infarction.



 

1 

 

 

CHAPTER 1  

INTRODUCTION 

 

 

 

Cardiovascular disease remains a leading cause of morbidity and mortality in the United 

States, affecting approximately 5–6 million Americans, particularly those of age 65 and older. A 

continually aging population is expected to result in an increased number of people afflicted with 

heart-related conditions, requiring costly long-term medical management with an unpredictable 

effect on quality of life.  The most common cardiovascular disease in the United States is 

coronary heart disease, which often appears as an acute myocardial infarction (MI) caused by the 

sudden occlusion of the coronary artery. In 2010, an estimated 785,000 Americans had a new 

coronary attack, and about 470,000 had a recurrent attack.  About every 25 seconds, an 

American will have a coronary event, and about one every minute will die from one (1). Despite 

advances in treatment of MI that result in reduced mortality, congestive heart failure secondary 

to infarction continues to be a major complication.  MI is projected to remain one of leading 

causes of death for years to come; therefore, there is a continuous demand for safe and efficient 

preventive or therapeutic strategies (2).   

 

Etiologies of heart failure development are numerous and involve complex molecular 

mechanisms, not entirely understood. However, recent advances have expanded our knowledge 

and understanding of the cellular and molecular mechanisms involved in the development of 
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heart failure.  The occlusion of an artery creates an ischemic microenvironment by depriving 

areas of the myocardium of blood, oxygen and nutrients, which if maintained for any significant 

amount of time will trigger a cascade changing the cellular metabolism and function within the 

tissue primarily from decreased amounts of energy produced in the form of ATP. The lack of 

sufficient amounts of ATP can eventually lead to severe cellular and tissue damage such as 

myocyte hypertrophy, myocyte death, and disruption of matrix metalloproteinase balance (3).  

The degree of injury is dependent on the period for which the myocardium is subjected to 

ischemia, with a longer duration leading to a decreased chance of recovery (4). Prolonged bouts 

of ischemia leads to a variety of pathophysiological states such as a decrease in force generation, 

contracture, arrhythmias, calcium overload, a decrease in pH of the tissue and eventual cell death 

(5). The loss of contracting myocardium and a resulting increase in the workload on the viable 

myocardium causes cardiac overload due to increased energy usage and supply-demand 

imbalance (ATP depletion), which lead to cellular necrosis and apoptosis. This subsequently 

promotes acute and chronic transformation of both the necrotic infarct zone and the nonnecrotic, 

peri-infarct tissue, leading to global alterations that have collectively been termed ―ventricular 

remodeling‖ (6, 7). Progressive cardiac hypertrophy that occurs in response to MI is known to 

increase the risk of heart failure, although it is believed to be compensatory at the initial stages of 

remodeling (8). Because of the loss of cardiomyocytes during an MI, the heart, as a result, is 

unable to maintain a cardiac output appropriate for the requirements of the body. 

  The main factor leading to the progression of heart failure is the irreversible loss of 

cardiomyocytes due to necrosis and apoptosis. To overcome myocyte loss and the heart’s limited 

self-regeneration capacity, mesenchymal stem cell-based therapies are becoming increasingly 



3 

recognized for their potential to repair the damaged myocardium post injury. Mesenchymal stem 

cells are characterized for their self-renewing capacity and ability to undergo multi-lineage 

differentiation. However, the use of mesenchymal stem cells for the purpose of regenerative 

medicine should adhere to the following set of criteria: (i) available in abundant quantities; (ii) 

collected and harvested by a minimally invasive procedure; (iii) differentiated along multiple cell 

lineage pathways in a reproducible manner; (iv) can be safely and effectively transplanted to 

either an autologous or allogeneic host (9).   

Typically, mesenchymal stem cells are isolated from either bone marrow or adipose 

tissue.  Adipose tissue is an attractive source of mesenchymal stem cells for researchers and 

clinicians due to the simple surgical procedure, the abundance of subcutaneous adipose tissue, 

and the easy enzyme-based isolation procedures (10, 11). Adipose tissue-derived stem cells 

(ASCs) have the ability to differentiate into multiple lineages of tissues, such as skeletal muscle, 

bone, and fat, using specific culturing conditions containing hormones or growth factors (12-14). 

Interestingly, ASCs have been shown to differentiate into spontaneous contractile myocytes (15). 

Transplanted stem cells function through paracrine mechanisms to promote endogenous repair of 

cardiac tissue (16-18). Moreover, differentiation of ASCs into endothelial cells has been shown 

to have a strong regenerative angiogenic potential because of their ability to secrete angiogenic 

and pro-survival paracrine factors (19, 20). Due to their multi-lineage differentiation potential, 

ASCs are becoming a widely studied alternative to bone marrow-derived stem cells (BMSCs) for 

therapeutic treatment of cardiac diseases. 
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Characterization of Adipose Tissue-Derived Stem Cells 

Numerous experiments have documented the benefits of BMSCs for treating myocardial 

infarction (21, 22).  Yet, only in the past few years have groups started to study the benefits of 

cells obtained from adipose tissue for treating heart disease. Interestingly, there are several 

advantages of using adipose tissue versus bone marrow-derived cells.  It is known that ASCs, 

along with BMSCs, can be maintained in vitro for extended periods of time with a stable 

population doubling time and low senescence levels, thus implying that there is no deterioration 

in their proliferation rate (23).  Multipotent stem cells from adipose tissue can be harvested from 

patients by a simple surgical procedure that is less expensive and minimally invasive when 

compared to obtaining cells from bone marrow.  In fact, a greater frequency and yield of 

multipotent stem cells from adipose tissue was reported when compared to bone marrow 

isolations, approximately 5 x 10
5
 cells versus 1 x 10

5
, respectively (24). Neither the type of 

surgical procedure nor the anatomical site of the adipose tissue affects the total number of viable 

cells that can be obtained in the stroma vascular fraction (25).  Furthermore, it has been shown 

that ASCs possess a higher stem cell proliferation rate than BMSCs (24).  Moreover, ASCs can 

be held in culture for up to 1 month without passage while maintaining their proliferation and 

differentiation potential, thus minimizing time and expenses of tissue culture maintenance. The 

high yield of isolation, proliferation rate, and maintenance of differentiation potential suggests 

that it is possible to obtain an autologous line of ASCs from patients undergoing elective 

liposuction. Cells can also be cryogenically frozen for storage or transplanted either immediately 

or after expansion in culture if needed for treatment of cardiac injury.  
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The frequency and yield of ASCs and BMSCs cellular preparations are different, but they 

share similar biology.  It is imperative to determine the gene and protein expression profile of 

ASCs to improve culturing conditions, lineage-specific differentiation, and enrichment of the 

stem cell population prior to transplantation. Using fluorescence-activated cell sorting analysis, 

the surface immunophenotype of ASCs was determined to resemble the phenotypes of BMSCs, 

stromal cells, or skeletal muscle-derived cells (25-27).  Previously reported immunophenotypes 

of human ASCs and human BMSCs show them to be approximately 90% identical (28).  Both 

cell populations display similar mitogen-activated protein kinase (MAPK) phosphorylation in 

response to tumor necrosis factor, adiponectin and leptin secretion, and lipolytic response to 

adrenergic agents (13).  Unfortunately, studies comparing the direct gene and protein expression 

profile of ASCs and BMSCs are extremely rare. However, an important comparative micro-array 

analysis of mesenchymal stem cells obtained from bone marrow, adipose tissue, and umbilical 

cord clearly showed that no significant differences in morphology, immune phenotype, and 

differentiation capacity were apparent between the groups (29).  When compared to fibroblasts, 

25 genes overlapped and were up-regulated in all cellular preparations (29).  No phenotypic 

differences could be determined comparing 22 surface antigens.  Interestingly, hundreds of 

expressed sequence tags that were differentially expressed between groups. There is some 

controversy in the literature regarding the expression of the widely used marker of hematopoietic 

stem cells, CD34, in ASCs (30-32).  Data suggest that CD34 is absent in cultured ASCs but, by 

contrast, higher levels of expression especially early in passage or lower subculture number have 

been documented (32).  The Stro-1 antigen, a typical BMSC surface antigen, has also been 

reported to have controversial expression levels as it has been described to be absent and present 
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in human ASCs (13, 33).  The conflicting data might be due to the differences in either the 

epitope recognized, the duration in culture, hematopoietic cell contamination, or the detection 

methods, typically flow cytometry or immunohistochemistry. While both cell types share 

numerous surface markers, there are some differences in protein expression between the groups 

as seen when comparing ASCs and BMSCs taken from the same individual.  BMSCs express the 

marker CD106 while ASCs do not, but conversely ASCs express CD49d unlike bone marrow 

cells (33).  

The expression of important transcription factors in cultured ASCs is still present even 

after 30 passages.  The mRNA expression of Nanog, Oct-4, and Sox-2 was determined at 

passage 30 with the expression levels of all genes being significantly lower than passage 4, yet 

still detectable (24).  These factors have been shown to play an important role in differentiation 

of ASCs (24).  Furthermore, gene expression is also affected by the time spent in culture between 

passages.  Culturing of cells every 14 days instead of the typical 5 days resulted in increased 

expression of the stem cell-related genes thus suggesting that these cells might have a stronger 

differentiation potential.  Therefore, the ideal cells for therapeutic transplantation would be of a 

low passage with a longer time spent in between passages. 

It is important for transplanted cells not to induce an immune response from the host.  

Like cells isolated from bone marrow, ASCs do not provoke in vitro alloreactivity of 

incompatible lymphocytes, and they suppress mixed lymphocyte reaction and lymphocyte 

proliferative response to mitogens in a dose and time dependent manner (34). This is most likely 

due to the fact that less than 1% of ASCs express the HLA-DR protein, which is known to 

mediate the rejection of transplanted tissue in the graft-versus-host immune response (35).  
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Moreover, Rodiguez et al (35) demonstrated that adipose derived cells are immunopriviledged in 

vitro and in vivo being relatively resistant to rejection after transplantation. These findings 

support the idea that ASCs share immunosuppressive properties with BMSCs and therefore 

might represent an alternative cellular source suitable for allogenic transplantation procedures 

lacking the risk of tissue rejection. 

 

Differentiation Capacity 

In order for ASC transplantation to function properly and repair the damaged 

myocardium, ASCs must have the capability to differentiate into cardiac cells thus being able to 

repopulate cellular loss after infarction due to ischemia.  Fortunately, differentiation of ASCs 

into cells that phenotypically resemble myocytes has been detailed in several in vitro 

experiments (36-38).  Lineage specific differentiation of stem cells can be controlled by chemical 

treatment, co-incubation with other cells, or adding growth factors to the culture medium.  It has 

been demonstrated that treatment with the commonly used DNA demethylating agent, 5-

azacytadine (9 μmol/L for 24 hours), results in differentiation of ASCs isolated from New 

Zealand White rabbits into myocytes after 3 weeks in culture.   The differentiated cells were 

multinucleated, began to beat spontaneously in culture and positively expressed myosin heavy 

chain, α-actinin, and Troponin-I (39).   

Besides chemical treatment, addition of growth factors to the culture medium will also 

influence the differentiation pathway. It has been documented that medium supplemented with 

interlueukin-3,-6, and stem cell factor induces differentiation of ASCs taken from male 

C57Bl/6N mice into myocytes that also have pacemaker activity (15).  After 24 days in culture, 
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cells were beating in unison independently of 5-azacytidine treatment and clones expressed 

several cardiac-specific mRNA such as GATA-4, Nkx2.5, ventricular and atrial myosin light 

chains.  Clones were also positive for the cardiac markers: myosin-enhancing factor 2C, α-

actinin, myosin heavy chain and connexin 43, while being negative for skeletal muscle markers.  

Structural analysis by electron microscopy revealed multinuclear cells with morphology 

consistent with cardiac myocytes.  Cellular electrical activity was recorded on cells in a current 

clamp and revealed an action potential characteristic to cardiac pacemaker cells.  The 

differentiated cells were also capable of responding to both adrenergic and cholinergic agonists. 

As expected for myocyte-like cells, isoproterenol, a β-agonist, induced a dose-dependent 

increase of the spontaneous contraction rate while propranolol, a nonselective β-adrenergic 

antagonist, reversed the effects.  In contrast, the nonselective acetylcholine agonist, 

carbamylcholine stopped the spontaneous contractions. Furthermore, reversibly permeabilized 

human ASCs co-incubated with nuclear and cytoplasmic extracts from neonatal rat myocytes 

resulted in differentiation into binucleated striated spontaneously beating myocytes (39).  

Finally, it has been reported by Song et al (41), using standard culture conditions without any 

addition of growth factors or cytokines, that ASCs isolated from humans can spontaneously 

differentiate into myocytes after 12 days in culture.  Vascular endothelial growth factor (VEGF) 

was identified as being critical for cardiomyogenesis (41).  In fact, significant amounts of VEGF 

were found in the conditioned medium which is known to significantly enhance MHC-α, cTN-I, 

and Nkx2.5 expression in differentiated embryonic stem cells suggesting that VEGF is partly 

responsible for the differentiation into cardiac cells via a paracrine mechanism.  It has been 

clearly demonstrated that ASCs will differentiate into cardiac myocytes in vitro, but a limited 
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number of studies have detailed differentiation in an in vivo animal model of myocardial 

infarction.  Injection of ASCs taken from β-galactosidase transgene expressing Rosa26 mice into 

B61295 mice immediately after permanent occlusion resulted in β-galactosidase positive cells 

expressing the cardiac specific genes, myosin heavy chain, Nkx2.5, and Tropinin I (26).  Similar 

results were obtained when using green fluorescent protein (GFP) labeled ASCs in a rat model of 

heart failure in which cells were immunohistochemically stained positive for cardiac markers 30 

days post surgery (40).  Moreover, it has been reported that ASCs grown in temperature 

responsive culture dishes formed a monolayer sheet due to cell-to-cell adhesions that, when 

transplanted onto the ligated myocardium 4 weeks post surgery, resulted in a thickened layer of 

newly generated vessels and mycoytes over the damaged area that were positive for Tropinin I 

and desmin (41).  These data strongly suggest that there is a great potential for ASC cellular 

therapy as a treatment to repopulate the injured myocardium with differentiated cells that have a 

functional pacemaker activity while phenotypically and structurally resemble myocytes. 

Therapeutic enhancement of neovascularization is an important strategy needed to limit 

the complications of post ischemic injury. Stem cell therapy has been shown to be promising in 

neoangiogenesis in models of hind-leg ischemia (19, 42).  The ability to differentiate into mature 

endothelial cells, which is critical for formation of new blood vessels, gives ASCs great 

angiogenic potential. Planat-Benard et al (43) observed vascular-like structure formation in 

Matrigel plug using ASCs taken from mice.  Cells were positive for the endothelial markers: 

CD31, VE-cadherin, and von Willebrand factor.  Moreover, the cells formed branching 

networks, consistent with the formation of vascular structures that lead to enhancement of the 

neovascularization reaction in ischemic tissue.  It has also been shown that ASCs can form 
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numerous tube-like structures, and, while in the presence of erythrocytes, demonstrated the 

existence of a functional vascular structure (44).  Similarly, CD31 expression and differentiation 

into vascular structures is enhanced by VEGF.  If VEGF were added to the growth medium, 

human ASCs display an endothelial phenotype (45).  All these results clearly demonstrate that 

there is a relationship between VEGF and lineage specific differentiation.  In vivo studies also 

support the potential of endothelial differentiation. Using a model of hind-limb ischemia in rats, 

transplantation of ASCs improves angiogenesis and recovery of vascular blood supply (19).  

Several groups have reported similar results that transplanted ASCs can integrate as fully 

functional and differentiated endothelial cells (26, 46-48).  Furthermore, Zhang et al (48) 

demonstrated that BrdU-labeled ASCs differentiate into myocytes and endothelial cells that 

participate in vessel-like structure formation.  It is clear that cellular transplantation of stem cells 

derived from adipose tissue is a viable option for repairing damaged myocardium through 

differentiation into myocytes and endothelial cells that become an integral part of new vascular 

structures.   

 

Potential for Myocardial Regeneration 

Over the past several years, experimental findings suggest there is a therapeutic potential 

for cellular replacement therapy as treatment of MI and other progressive chronic cardiac 

diseases such as left ventricular (LV) remodeling and heart failure. Since cardiovascular disease 

remains a worldwide problem, the development of novel effective cell-based therapies is crucial 

to improve patient outcome post MI. Current treatment of MI still leaves a significant number of 

patients with impaired cardiac function that leads to more severe LV dysfunction and adverse 
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remodeling.  Remodeling of the ventricle is a result of increased apoptosis in the ischemic zones 

after infarction.  While apoptosis influences remodeling, the other form of cellular death that 

occurs in the heart, necrosis, provokes inflammatory reactions, neoangiogenesis, fibroblast 

activation, and scar formation.  To date, most of the cellular based therapies have involved the 

use of myoblasts or BMSCs that often result in an improvement in LV function but have little 

effect on preventing LV remodeling (22, 49, 50). Recently, studies have shown that ASCs have 

become a viable alternative option to further limit remodeling and the progression to LV 

dysfunction post MI (29, 47, 48, 51, 52). In a model of acute MI, rats underwent ligation of the 

left anterior descending coronary artery for 45 minutes, then were allowed to reperfuse for 15 

minutes before receiving an intramyocardial injection of GFP-labeled ASCs.  Interestingly, 12 

weeks later, there was very poor engraftment, but cell-treated animals had more capillaries and 

arterioles per mm
2
 in the infarct border zone with a similar trend in the infarct area. The 

remodeling seen in the control animals was not detected in the ASC-treated group (51).  

Furthermore, a significant increase in LV ejection fraction and fractional shortening compared to 

control mice at 2 weeks following permanent occlusion of the coronary artery has been reported.  

The improvement in cardiac function also correlated with a significant decrease in LV end-

systolic diameter (53).  Interestingly, reversed wall thinning in the scar area has been seen at 30 

days after permanent ligation (40).  The reconstruction of thick myocardial tissue reduces the 

stress on the LV wall subsequently improving cardiac function.  Similar results from a direct 

comparison of intracoronary injection of ASCs and BMSCs in a porcine model of MI revealed 

that ASC treatment substantially improved LV perfusion, function and attenuated adverse 

remodeling.  The capillary vessel density was found to be greater in the ASC treatment group 
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versus the group receiving BMSCs (40).  This data suggest that angiogenesis may contribute to 

the maintenance of cardiac function by preservation of the remaining viable myocytes and 

through neovascularization, thus protecting the myocardium in the border zone that would 

normally undergo apoptosis. 

 

Mechanisms of Action 

There are three proposed mechanisms through which ASCs can be used to repair and 

regenerate damaged myocardium: myocyte regeneration, vasculogenesis, and paracrine actions.   

Cell therapy as treatment of cardiovascular diseases was originally thought to repopulate the 

myocardium, but growing evidence supports the hypothesis that paracrine mechanisms play an 

essential role in repairing the damaged myocardium.  Paracrine factors are released from 

endogenous cells of the heart in response to injury.  These pro-survival growth factors or 

cytokines mediate multiple mechanisms such as increased blood flow to ischemic tissue, 

reduction in myocyte apoptosis, regulation of inflammatory response, and recruiting endogenous 

stem cells to regenerate injured tissue.  Additionally, administration of conditioned media from 

hypoxic ASCs significantly increased endothelial cell growth and reduced endothelial cell 

apoptosis, while transplantation of these cells into ischemic hind limbs led to improved 

perfusion, suggesting that paracrine factors from these cells promote neovascularization (54). 

Similar effects have been seen in the heart as injection of conditioned media decreased apoptosis, 

fibrosis, and LV dilatation and increased myocardial thickness after infarction (48).  The absence 

of cells in the treatment proves that a paracrine mechanism from growth factors released in the 

conditioned media plays an important beneficial role in repairing the damaged myocardium. 
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Induction of neovascularization is crucial for limiting the damage in ischemic tissue; however, 

studies suggest that only a small number of blood vessels contain transplanted donor cells. It is 

known that angiogenesis and arteriogenesis typically involve mediators such as nitric oxide, 

VEGF, basic fibroblast growth factor (b-FGF), hepatocyte growth factor (HGF), interleukin-1β 

(IL-1), tumor necrosis factor-α (TNF-) and the angiopoietins. Interestingly, hypoxic 

preconditioning of cells induces expression of activated Akt and endothelial nitric oxide synthase 

(eNOS), while also secreting higher levels of VEGF, b-FGF, HGF, insulin-like growth factor 

(IGF)-1 when compared to cells cultured under normal culture conditions.  The transplantation of 

the cells led to a significant increase in blood vessel density (55). The release of the angiogenic 

factors augmented the vessel number without incorporation into mature vessels.  Tissue levels of 

VEGF and b-FGF are significantly increased in infarcted hearts that are treated with ASCs (56).  

Moreover, the expression of these growth factors correlated with increased angiogenesis and 

reduction in infarct size.   

Besides the increase in new blood vessel formation, it is important that the paracrine 

factors function to protect resident cells, particularly myocytes, from apoptosis.  Transplantation 

of ASCs along with their secretion of VEGF, b-FGF, IGF, and SDF-1 has been shown to 

upregulate the anti-apoptotic protein, Bcl-2, which results in the decrease in myocyte apoptosis 

in vitro and in vivo (57).  Furthermore, intramyocardial injection of adenoviruses over-expressing 

VEGF or b-FGF decreases infarct size and increases expression of Bcl-2 (21).  It has been shown 

that stem cells over-expressing Akt led to a decline in myocyte apoptosis in vitro and that 

transplantation led to a decrease in infarct size (57, 59).  The Akt over-expressing cells secreted 

several paracrine factors such as VEGF, b-FGF, thymosin 4 (TB4) and HGF.  HGF has been 
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shown to have anti-apoptotic effects in acute MI (60).  Additionally, transplantation of ASCs 

over-expressing HGF into MI rat models induced myocardial angiogenesis, suppressed fibrosis 

and improved cardiac function better than transplantation of ASCs alone (61). Also the G-actin 

sequestering peptide, TB4, promotes survival of embryonic and postnatal cardiac myocytes, and 

treatment results in enhanced myocardial survival suggesting that ASCs protect the myocardium 

from apoptosis through paracrine effects (62). Myocardial injury provokes an inflammatory 

response resulting in an increased expression of a variety of both pro-inflammatory and anti-

inflammatory cytokines.  Initially, inflammatory cytokine expression is necessary for 

maintaining homeostasis in the heart after stress or injury, however, sustained upregulation of 

certain cytokines leads to adverse remodeling and heart failure (63).  There is increasing 

evidence that ASCs secrete cytokines that may directly act to limit deleterious, sustained 

endogenous inflammation.  In fact, cellular administration led to a downregulation of TNF-, IL-

1, and IL-6, which are involved in adverse LV remodeling (64).  Furthermore, cell 

transplantation attenuated myocardial dysfunction in a rat model of acute myocarditis (65).  

Also, conditioned media protected isolated adult rat cardiac myocytes from MCP-1 induced 

injury, suggesting that the anti-inflammatory effects were due to paracrine factors.  Data also 

suggests that ASCs may directly modulate T lymphocyte function in the heart, possibly leading 

to protection against their cytotoxicity or alternatively modulate their role in cardiac remodeling.  

T lymphocytes co-cultured with cardiac fibroblasts led to an increase in fibroblast pro-collagen 

expression, suggesting that suppression of T lymphocyte accumulation may inhibit fibrosis (66).  

Therefore, alterations in the immune response by cellular therapy may serve to improve LV 

function and attenuate adverse LV remodeling. 



15 

The direct effect on fibrosis by stem cell therapy has been demonstrated.  Conditioned 

media significantly attenuated proliferation of cardiac fibroblasts and up-regulated elastin, 

myocardin, and DNA-damage inducible transcript 3 (67).  Furthermore, type I and III collagen 

expression and type III collagen promoter activity were significantly down-regulated.  Gene 

expression analysis revealed that stem cells had several matrix-modulating factors up-regulated 

such as matrix metalloproteinase-2 (MMP-2), tissue inhibitors of matrix metalloproteinases 

(TIMP)-1 and TIMP-2, thrombospondin-1, and tenacin C, suggesting a direct effect on 

extracellular matrix remodeling (68).  A reduction in fibrosis, along with a reduction in levels of 

MMP-2 and MMP-9, has been documented after injection of ASCs in models of MI (68).  IL-1, 

which is secreted by ASCs, has a direct anti-proliferative effect on cardiac fibroblasts (20).  The 

paracrine factors secreted by ASCs may play a crucial role in extracellular matrix remodeling 

that contributes to improvements in LV function.  Figure 1 depicts the proposed mechanism of 

how ASC transplantation mediates cardioprotection through differentiation, neovascularization, 

and paracrine effects on the host cells. 
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Figure 1. Proposed mechanism(s) of ASC transplantation in mediating cardioprotection.  

Addition of growth factors to the medium, preconditioning with hypoxia or adenoviral over-

expression of Akt or HGF enhances differentiation into cardiomyocytes or endothelial cells 

while also inducing a greater survival paracrine effect in host cells. 
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Preconditioning of Stem Cells 

Various animal studies show the potential to regenerate myocardium, improve perfusion 

to the infarct area, and improve cardiac function (69-72). Phase II and III clinical studies indicate 

that stem cell transplantation is feasible and may have beneficial effects on ventricular 

remodeling after myocardial infarction. However, the majority of transplanted cells are readily 

lost after transplantation because of the poor blood supply, ischemia/reperfusion injury, and 

inflammatory factors.  Disconcerting reports have shown that up to 99% of transplanted cells are 

lost within the first 24 hours (73). Therefore, enhancing cell viability and reduction of apoptosis 

of ASCs in an ischemic microenvironment of the infarcted heart is critical for improving the 

efficiency of cell therapy.  To improve the effectiveness of stem cell transplantation various 

methods have been employed to increase cell survival.  Recently, Zhang et al. demonstrated that 

ischemic preconditioning of stem cells attenuated apoptosis induced by simulated ischemia (SI) 

and re-oxygenation (RO) (74).    Subjecting cells to sublethal bouts of hypoxia prior to SI/RO 

resulted in preconditioning that correlated with stabilized membrane potential, upregulation of 

Bcl-2 and VEGF.  Furthermore, there was an increased phosphorylation of ERK and Akt (74). 

Other models have shown that the effect of ischemic preconditioning can be mimicked 

pharmacologically by using phopshodiesterase-5 (PDE-5) inhibitor, sildenafil (75).  Using 

mitoKATP channel opener, diazoxide, Ashraf et al. preconditioned skeletal myoblasts to promote 

their survival in the infarcted heart (76).  Diazoxide preconditioning of the cells significantly 

induced expression of p-Akt, b-FGF, HGF, and COX-2.  Treatment of cells with wortmannin 

prior to preconditioning abolished the effects and significantly reduced their survival thus 
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demonstrating the importance of the PI3K-Akt signaling cascade.  Positive results have been 

demonstrated using genetic modulation of stem cells with transgenes that overexpress angiogenic 

growth factors such as Ang-1, VEGF, or Akt to improve cell survival, neovascularization, and 

cardiac function by limiting the remodeling process in the scar while decreasing apoptosis of 

myocytes in the peri-infarct region (77, 78).  Moreover, genetically modified cells seem to 

function in autocrine and paracrine manner to confer therapeutic effects.  Transplantation of cells 

over-expressing VEGF not only were protected from apoptosis but also reduced the apoptotic 

index of host myocytes.  There was also improvement in regional blood flow in the myocardium 

leading to preservation of cells and myocardial structure.  Jian et al. (77) showed the 

cytoprotective effects of co-overexpression of Ang-1 and Akt.  Transduction with Ang-1 and Akt 

genes resulted in marked survival of the transplanted cells in vivo, their differentiation into 

myocytes and participation in neovascularization, which caused a reduced infarct size and 

optimally preserved cardiac function after MI (77). 

 

PDE-5 Inhibitors 

Phosphodiesterase type-5 (PDE-5) inhibitors are a class of vasoactive drugs that have 

been extensively used for treatment of heart failure, pulmonary hypertension, and coronary artery 

disease besides their use for the treatment of erectile dysfunction (79-82). The mechanism of 

action involves active inhibition of the PDE-5 enzyme resulting increase in cyclic guanosine 

monophosphate (cGMP) and smooth muscle relaxation in the penis. There are 11 families of 

PDEs that have been identified in mammalian tissues (83, 84). The PDEs vary in their substrate 

specificity for cyclic adenosine monophosphate (cAMP) and cGMP: PDE-5, PDE-6 and PDE-9 
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are specific for cGMP; PDE-4, PDE-7 and PDE-8 are specific for cAMP; and PDE-1, PDE-2, 

PDE-3, PDE-10 and PDE-11 have mixed specificity for cAMP/cGMP (85).  PDE-5 inhibitors 

compete with the substrate cGMP for binding to the protein at the catalytic site. Although cGMP 

binding to the catalytic site stimulates cyclic-nucleotide binding to the allosteric sites, inhibitors 

do not elicit the same property, and Ser92 phosphorylation has no effect on inhibitor binding. 

PDE-5 is the primary enzyme with cGMP-hydrolyzing activity in human corpus cavernosal 

tissue (85).  PDE-5 inhibitors have been studied extensively for their role in regulation of 

vascular tone and blood-flow balance during erection.  During erection, nitric oxide (NO) is 

released from non-cholinergic, non-adrenergic neurons and from endothelial cells. NO diffuses 

into cells, where it activates soluble guanylyl cyclase, the enzyme that converts GTP to cGMP, 

which then stimulates protein kinase G (PKG) and initiates a protein phosphorylation cascade. 

This results in a decrease in intracellular levels of Ca2+ ions, leading to dilation of the arteries 

that bring blood to the penis and compression of the corpus cavernosum. A PDE-5 inhibitor 

inhibits enzymatic hydrolysis of cGMP by binding to the cGMP-catalytic sites thereby allowing 

the accumulation of cGMP in the erectile tissue (85). 

PDEs are found in all tissues besides the human corpus cavernosal tissue, but the 

distribution of the PDEs varies among different tissues and cell types (86). PDE-5A has a wide 

distribution in the body tissues and cells where it exists in three isoforms; PDE-5A1, PDE-5A2, 

PDE-5A3 that only differ in their N-terminal sequence (87).  Immuohistochemical studies have 

demonstrated the presence of PDE-5A isoforms in vascular and bronchial smooth muscle and in 

platelets.  It is not clear whether PDE-5A is present in the human myocytes. However, a recent 

study by Senzaki et al. (88) provided evidence for PDE-5A expression in canine cardiomyocytes 
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and our laboratory reported expression in mouse heart (75). Despite these interesting 

observations, little is known about the distribution of PDE-5A in stem and progenitor cells.  

However, recently it has been reported that cultured bone marrow derived mesenchymal stem 

cells predominantly express PDE-5A (89).  

The cytoprotective effects of PDE-5 inhibitors have been observed in heart cells, neurons 

and glia, and epithelial cells.  The precise mechanisms for these protective effects are quite 

complex.  We have demonstrated that sildenafil (Viagra®) and other PDE-5 inhibitors induce 

powerful protective effect against ischemia/reperfusion injury in the rabbit and mouse heart (90-

94), DOX-induced cardiomyopathy (95, 96) and myocardial infarction-induced heart failure in 

mice (97). Furthermore, we showed that PDE-5 inhibition protects isolated adult cardiomyocytes 

from SI/RO.  The cardioprotective effect is attributed to limiting apoptosis and necrosis through 

enhanced expression of nitric oxide synthases (NOS), particularly, eNOS/iNOS, activation of 

protein kinase C and PKG, phosphorylation of ERK1/2, PKG-dependent phosphorylation of 

GSK-3β, NO-dependent upregulation of Bcl-2/Bax and opening of the mitochondrial KATP 

channels (75, 91-93, 97, 98).  

  

Nitric Oxide/cGMP/Protein Kinase G Signaling 

Nitric Oxide (NO) is well recognized as a key mediator in cell signaling processes. It is 

produced from L-arginine through chemical reaction catalyzed by at least three major isoforms 

of  nitric oxide synthase, i.e. neuronal (nNOS), inducible (iNOS), endothelial (eNOS). 

NO/cGMP/PKG signaling is a widely studied pathway in many tissues and cells, and reduced 

production and function of NO has been shown to participate in a number of disorders such as 
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cardiovascular, pulmonary, endothelial, renal, and hepatic diseases and erectile dysfunction.  NO 

is produced and released from many cell types in the body where it acts as a paracrine signal in a 

number of systems, including the vasculature. NO at nanomolar levels binds tightly to a 

prosthetic heme on the β-subunit of NO-GC, also known as the soluble guanylyl cyclase, and 

causes activation of the enzyme (99, 100).  Activation of NO-GC increases conversion of GTP to 

cGMP, resulting in elevation of cGMP, which initiates the cGMP-signaling pathway and 

subsequent physiological changes (101). NO-induced elevation of cGMP regulates numerous 

physiological processes including: relaxation of vascular smooth muscle, inhibition of platelet 

aggregation, inhibition of cytokine production, blunting of cardiac hypertrophy, and protection 

against myocardial ischemia/reperfusion injury (102-104).  At the cellular level NO and cGMP 

regulate important processes such as growth, survival, differentiation, proliferation, and 

migration. These effects are largely mediated through activation of cGMP dependent protein 

kinase I, PKG. (105-108).  cGMP-gated channels, PDEs and PKGII are also important targets for 

cGMP actions. 

PKG is a serine/threonine protein kinase and is one of the major intracellular receptors 

for cGMP. PKG is present in high concentrations in smooth muscle, platelets, cerebellum, 

hippocampus, dorsal root ganglia, neuromuscular end plate, and the kidney vasculature (109). 

PKGI isozymes (PKGIα and PKGIβ) are products of alternative splicing and differ only in the N-

terminal amino acids (110, 111). PKG Iα is more sensitive to activation by cGMP. The activation 

of PKG phosphorylates many intracellular proteins and regulates important physiological 

functions such as relaxation of vascular smooth muscle, inhibition of cell differentiation and 

proliferation, and inhibition of platelet aggregation and apoptosis (109, 112). PKG also plays an 
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important role in the cardiovascular system.  Recently, we reported that sildenafil-induced 

protection is dependent upon activation of PKG in adult mouse heart and cardiomyocytes (113). 

This notion is based on the fact that PKG inhibitors and selective knockdown of PKG by 

adenoviral vector containing short-hairpin RNA of PKG abolished the antinecrotic and 

antiapoptotic effect of sildenafil in cardiomyocytes, and PKG inhibition also abrogated the 

infarct size reduction by sildenafil in isolated mouse hearts. Furthermore, our labroratory also 

has shown the effect of PKG Iα overexpression in protecting cardiomyocytes from SI/RO 

induced necrosis and apoptosis (114).    

Although research on stem cells has increased dramatically in recent years, there are very 

few studies on the role of the NO/cGMP/PKG pathway in stem cells (115- 121). It has been 

reported that the NO/cGMP/PKG signaling pathway has been proposed to promote stem cell-like 

characteristics in glioma cells in the tumor perivascular niche of medulloglioma (118).  

Interestingly, enhanced endogenous NO generation has been shown to positively regulate 

proliferation of neural progenitor cells through activation of cGMP/PKG signaling pathway 

(119).  Recent studies have suggested the role cGMP-mediated NO signaling plays in the 

differentiation of embroyonic stem cells into myocardial cells (120, 121).  Furthermore, 

expressions of mRNA and protein levels of the three NOSs and sGC, along with expression of 

PKG have been shown to increase during differentiation (116). However, the role of 

NO/cGMP/PKG signaling in protection of ASCs against ischemia has not been investigated. 
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Rationale for Study: 

The present study, a series of novel investigations designed to examine the feasibility of 

effect of PDE-5 inhibition as a strategy to precondition human ASCs for improving their efficacy 

in vivo after cardiac transplantation.  The rationale for this approach was the established 

powerful preconditioning-like effect of PDE-5 inhibitors in cardiomyocytes (75, 98, 114) and 

against ischemia/reperfusion injury in heart (92-94) previously established by our laboratory.  

The purpose of the following study is to investigate the effect of PDE-5 inhibition of ASCs for 

transplantation to attenuate adverse cardiac remodeling and preserve of cardiac function in a 

chronic model of MI.  Furthermore, we wanted to attain a better understanding of the signaling 

pathways involved, which ultimately lead to enhancement of stem cell therapy. 

Accordingly, the main aims of the present study were: 

Aim #1)  to investigate whether PDE-5 inhibition could confer cytoprotection of ASCs 

against SI/RO injury in vitro; 

Aim #2)  to demonstrate the role of cGMP-dependent PKG signaling in protection of 

ASCs; 

Aim #3)  to show that in vivo transplantation of ASCs after ex vivo PDE-5 inhibition 

improve LV function following myocardial infarction; 

Aim #4)  to examine the possible role of paracrine mechanism in enhancing the 

cytoprotective effects of PDE-5 inhibition. 
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CHAPTER 2 

PDE-5 Inhibition Protects Adipose-Tissue Derived Stems Cells Against Ischemia Through 

a PKG-dependent Mechanism 

 

 

ABSTRACT 

Several studies have implicated cellular replacement therapy as a treatment strategy for 

myocardial infarction, although the results have been limited.  Therefore, enhancing the 

therapeutic potential of stem cells injected into ischemic microenvironments by novel 

preconditioning strategies is critical for improving cellular therapy.  We tested the hypothesis 

that inhibition of PDE-5 with sildenafil (Viagra®) or selective knockdown with a silencing 

vector in adipose derived stem cells (ASCs) would improve their survival after simulated 

ischemia/reoxygenation (SI/RO).  ASCs were treated with sildenafil or infected with a PDE-5 

silencing vector shRNA (shRNA
PDE-5

) and subjected to SI/RO. Both sildenafil and shRNA
PDE-5 

significantly reduced cell injury with improved viability, decreased lactate
 
dehydrogenase release 

and reduced apoptosis.  The preconditioned ASCs demonstrated an increase in the release of 

nitric oxide metabolites and growth factors including VEGF, b-FGF, and IGF into conditioned 

medium in which treatment protected adult cardiomyocytes from SI/RO. The cytoprotective 

effect seen in ASCs against SI/RO injury was abolished by inhibition of protein kinase G (PKG) 

with a pharmacological inhibitor and selective knockdown with shRNA
PKG

. Our data shows that 

in vitro inhibition of PDE-5 using either genetic of pharmacological approaches can improve 

stem cell therapy following myocardial infarction.  
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Introduction 

The main factor leading to the progression of heart failure is the irreversible loss of 

cardiomyocytes due to necrosis and apoptosis following ischemic injury. To overcome myocyte 

loss and the heart’s limited self-regeneration capacity, recent research has focused on 

transplantation of stem cells to differentiate and replenish the loss of myocytes. Various animal 

studies have shown the potential to regenerate myocardium, improve perfusion to the infarct 

area, and improve cardiac function (69-72). Although cardiac performance by cell-based therapy 

has improved, unsatisfactory cell retention and transplant survival still plague this technique.  

The available transplantation strategies achieve modest engraftment of donor stem cells in the 

infarcted myocardium, primarily due to the rapid and massive loss of donor stem cells (122, 

123). Several factors influence the accelerated cell death in the infarcted myocardium, including 

the ischemic and cytokine-rich microenvironment, mechanical injury, maladaptation, and the 

origin and quality of the donor cell preparation (124). Therefore, strategies targeted toward 

enhancing stem cell survival in the ischemic microenvironment are of paramount importance for 

improving cardiac regeneration. Previous studies have shown that treatment of bone marrow 

stem cells (BMSCs) with hypoxia improved survival post engraftment in the infarcted heart 

(125), increased proliferation rates and differentiation, and modulated their paracrine activity 

(126).  In addition, various pharmacological preconditioning agents including diazoxide, an 

opener of mitochondrial KATP channel (77), vascular endothelial growth factor 2 (127), and IGF-

1 (128) have been shown to promote myogenic response of stem cells following transplantation 

in the myocardium.  Nevertheless, progressive strategies to improve the regenerative potential of 

stem cells are critical for their utility. 
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In the present study, we tested the hypothesis whether PDE-5 inhibition could improve 

the survival of adipose derived stem cells (ASCs,) leading to enhanced cardiac function 

following myocardial infarction in mice.  Specifically we addressed the following questions: 1) 

Does PDE-5 inhibition by sildenafil or genetic knock-down with a silencing vector improve 

survival following simulated ischemia/reoxygenation (SI/RO) injury in vitro?; 2) What is the role 

of cGMP-dependent PKG signaling pathway in protection of ASCs?; 3) What is the role of 

paracrine mechanisms for enhancing cytoprotective effects of PDE-5 inhibition?  Our results 

show that preconditioning of ASCs enhances release of cytokines such as VEGF, b-FGF, and 

IGF-1, stimulates NO metabolites, activates PKG, and increases cell viability after SI/RO, all of 

which were was abolished with PKG inhibition. 
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Materials and Methods 

Isolation of Adipose Derived Stem Cells 

Epicardial adipose tissue was harvested from voluntary patients undergoing transplant. 

Adipose tissue was mechanically disrupted with a scalpel and washed twice with phosphate 

buffered saline.  Minced fat tissue was digested for an incubation period of 90 min at 37°C on a 

shaker in 20 mL of sterile filtered PBS containing 25 mg of Collagenase type VIII (Sigma-

Aldrich) and 5 mM calcium chloride. The digested tissue was filtered through a 100 μm nylon 

mesh filter (Millipore). Filtrate was centrifuged at 800 x g for 10 min. The supernatant 

containing adipocytes and debris was discarded and the pelleted cells were washed twice with 40 

mL Hank’s Balanced Salt Solution (Cellgro).  Freshly isolated ASCs were plated with α-MEM 

containing 20% FBS, 1% L-glutamine (0.2 M, Cellgro) and 1% Penicillin (10,000 U/mL) with 

Streptomycin (10 mg/mL, Cellgro).  Plastic adherent cells were named human adipose tissue 

derived stem cells (ASCs) and were grown in culture at 37° C in a humidified incubator at 5% 

CO2 followed by daily washing for three days to remove red blood cells and non-adherent 

hematopoietic cells.  ASCs were then plated after 3 days for subsequent experiments at a density 

of 1000 cells/cm
2
.   Subsequent passages were performed with a 0.25% trypsin solution 

containing 0.01% EDTA for 6 minutes at 37°C.   

 

Flow Cytometry 

Cell surface antigen phenotyping was performed on ASCs that were harvested upon 

reaching 90% confluency.  Cells were pelleted at 500 x g for 5 minutes at 4°C.  Approximately, 
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1 x 10
6
 ASCs were incubated for 1 h at 37°C with primary FITC conjugated antibodies at a 

dilution of 1:1000 for CD 14, CD29, CD44, CD45, CD105 and HLA-DR2 (Invitrogen, 

Molecular Probes.)  Mild agitation was used every 10 min to further mix the solution and prevent 

cell clumping. No antibody controls were tested for each individual antibody.  Cells were 

counted on a Beckman CoulterElite XL-MCL single-laser flow cytometer at a minimum of 

10,000 counts.  Positive results were defined as over 97% of cells expressing the surface protein 

of interest. 

 

Differentiation of ASCs 

Adipogenesis was induced in ASCs using a mesenchymal stem cell adipogenesis kit 

(Millipore) according to manufacturer’s instructions.  In brief,  ASCs were plated at a density of 

60,000 cells per well in a 24- well culture dish in 1 mL of medium and incubated at 37°C in a 

5% CO2 humidified incubator overnight.  Once reaching 100% confluence, medium was 

aspirated and 1 mL of adipogenesis induction medium (low glucose DMEM containing 10% 

FBS, 1 μM dexamethasone, 0.5 mM IBMX, insulin (10 μg/mL), 100 μM Indomethacin, and 1 % 

Pen/Strep) was added. This medium change corresponds to differentiation day 1.  Adipogenesis 

induction medium was changed every 2-3 days for 21 days. Positive staining of Oil Red-O 

indicated adipogenic phenotype.   

Osteogenesis was induced in ASCs using HyClone AdvanceSTEM Osteogenic 

Differentiation Kit (Thermo Scientific) according to manufacturer’s instructions.  In brief, ASCs 

were plated at a density of 60,000 cells per well in a 24 well culture dish with 1 mL  of medium 

and incubated at 37°C in a 5% CO2 humidified incubator overnight.  Once reaching 100% 
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confluence, medium was aspirated and 1 mL of osteogenic induction medium supplemented with 

1 nM dexamethasone, 2 mM β-glycerophosphate, and 50 μM ascorbate-2-phosphate.   ASCs 

were induced for 14 days and the the osteogenic medium was replaced every 2-3 days. 

Osteogenic mineralization was assessed after 21 days by staining with 40 mM Alizarin red 

(Sigma). 

 

Immunocytochemistry 

ASCs were cultured on sterile glass cover slips and fixed by incubation in 4% 

paraformaldehyde/ PBS for 20 min and permeabilized with 1.0% Triton X-100 in PBS for 10 

min. Intracellular staining patterns and distribution of Oct-4, Sox-2, Nanog, and PDE-5 proteins 

were analyzed by immunostaining with incubation of respective antibodies at 4°C overnight 

(1:500 dilution) followed by incubation of FITC conjugated secondary antibodies at 37°C for 1 h 

(1:1000 dilution). Staining of 4’,6-diamino-2-phenylindole (DAPI; Sigma) was used to visualize 

all nuclei. 

 

Western blot analysis 

Total soluble protein was extracted from ASCs with extraction buffer containing 50 mM 

Tris-HCl (pH 7.5), 5 mM EDTA, 10 mM EGTA, 50 μg/ml PMSF, protease inhibitor cocktail 

(10μl/ml, Sigma), 0.3% β-mercaptoethanol as described by Qiu et al. (129). Homogenate was 

centrifuged at 14,000 x g for 10 min at 4 °C, and the supernatant was recovered as the total 

cellular protein. Total protein (50 µg) from each sample was separated by SDS-PAGE, 

transferred to a nitrocellulose membrane, and then blocked with 5% nonfat dry milk in Tris-
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buffered saline. The membrane was subsequently incubated with a primary antibody at a dilution 

of 1:500 for each of the respective proteins, i.e. PDE-5A, Oct-4 (rabbit polyconal), PKG, β-actin 

(goat polyclonal, Santa Cruz), SOX-2, and Nanog (mouse monoclonal, BD Biosciences).  The 

membrane was washed and incubated with horseradish peroxidase-conjugated secondary 

antibody (1:2000 dilution, 1 h at room temperature). The membranes were developed using 

enhanced chemiluminescence system (ECL Plus; Amersham Biosciences) and exposed to X-ray 

film. 

Preparation of shRNAs  

PDE-5 gene silencing shRNA (inserted into miRNA-155 cassette) and gfp-PDE-5 fusion 

protein both coupled to a CMV promoter and incorporated into adenoviral vectors were 

generated by Zhang et al (130). In brief, short-hairpin RNAs were designed based on mouse 

PDE5A sequence  

(shRNA
PDE5-1899

: FORWARD 5′-

TGCTGTTTCAGAGCAGCAAACATGCAGTTTTGGCCACTGACTGACTGCATGTTCTGC

TCTGAAA-3′ and REVERSE 5′-

CCTGTTTCAGAGCAGAACATGCAGTCAGTCAGTGGCCAAAACTGCATGTTTGCTGCT

CTGAAAC-3′; shRNA
PDE5-2066

 FORWARD 5′-

TGCTGAAATGATGGTGTTCCATGATGGTTTTGGCCACTGACTGACCATCATGGCACC

ATCATTT-3′ and REVERSE 5′-

CCTGAAATGATGGTGCCATGATGGTCAGTCAGTGGCCAAAACCATCATGGAA-3′)  
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and  inserted into pcDNA 6.2-GW/EmGFP-miR-155 vector (Invitrogen) retaining miRNA 

regulatory sequences required for efficient shRNA processing. This was transferred by 

recombinase cloning into pAd/CMV/V5-DEST™ vector (Invitrogen) to generate AdV-gfp-

shRNA
PDE5A

. AdV was CsCl purified and titered at 1.5–3.0 x 10
10

 pfu/ml. Green fluorescent 

protein (gfp) enabled infection to be confirmed (AdV-gfp virus was the control), and the miRNA 

construct allowed use of the CMV promotor enhancing gene knock-down. 

The mouse PKGI, shRNA expression vector for PKG was constructed as described 

previously (98). In brief, to knockdown the expression of PKG, we used shRNA, targeting the 

mouse cDNA of PKG type I (GenBank™ accession number NM_001013833): corresponding to 

bases 1593 to 1611, targeting the sequence 5′-GAACAAAGGCCATGACATT-3′, synthesized 

by Dharmacon Research Inc. (Lafayette, CO). A non-targeting scrambled RNA duplex siRNA 

control (NTSC, Dharmacon) containing 21-nucleotide sequences demonstrating no homology to 

murine genes was also used as a control for transfection. Transient transfections of duplex 

siRNAs (100 nM) were performed in H9C2 cells using siPORT™ amine (Ambion). After 48 h, 

RNA was isolated by Tri-Reagent (Molecular Research Center), and RT-PCR and quantitative 

real-time PCR were performed. After confirming the significant reduction of PKG expression in 

H9C2 cells using this duplex siRNA targeting the mouse PKGI, shRNA expression vector for 

PKG was constructed using the pSilencer™ adeno1.0-CMV system from Ambion (Adenoviral 

siRNA expression Vector System). The hairpin siRNA oligonucleotide (55-mer) sequence 5′-

TCGAGGAACAAAGGCCATGACATTttcaagagaAATGTCATGGCCTTTGTTCAGA-3′ 

(mouse PKGI with sequence in capital letters and loop in lowercase italics) and its antisense with 
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XhoI and SpeI were synthesized, annealed, and subcloned into the pSilencer adeno 1.0-CMV 

shuttle vector. HEK293 cells were transfected with linearized shRNA vector together with 

adenoviral LacZ backbone to generate a recombinant adenovirus.    

 

Simulated Ischemia/Reoxygenation Protocol  

ASCs were incubated at 37 °C and 5% CO2 for 2 h, with or without 10 µM sildenafil.  

This dose was selected based on its protective effect against SI/RO injury in adult 

cardiomyocytes (75).  A subset of ASCs were treated with PKG inhibitor KT 5823 (2 µM) with 

or without sildenafil for 2 h. Another subset of ASCs were transduced with an adenoviral vector 

containing scrambled control shRNA (shRNA
Con

 ASC), PDE-5 shRNA (shRNA
PDE-5 

ASC), or 

PKG shRNA (shRNA
PKG

 ASC) in serum-free growth medium for 24 h. (Fig. 2).  The cells were 

infected with the viruses at a concentration of 1x10
3
 particles/cell.  ASCs were then subjected to 

SI for 15 h by replacing the cell medium with an ―ischemia buffer‖ that contained 118 mM NaCl, 

24 mM NaHCO3, 1.0 mM NaH2PO4, 2.5 mM CaCl2-2H2O, 1.2 mM MgCl2, 20 mM sodium 

lactate, 16 mM KCl, 10 mM 2-deoxyglucose (pH adjusted to 6.2) as reported previously (75). 

Cells were incubated in an anoxic chamber at 37°C during the entire SI period. RO was 

accomplished by replacing ischemic buffer with normal cell medium under normoxic conditions. 

Cell necrosis and apoptosis were assessed after 1 or 18 h of reoxygenation, respectively. 

 

Evaluation of Cell Viability and Apoptosis 

Cell viability, trypan blue exclusion assay and lactate dehydrogenase release into the 

medium were used to assess cell necrosis. Cell viability assessment was performed with 
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CellTiter 96® AQueous One Solution Cell Proliferation Assay Kit (Promega), per the 

manufacturer’s instructions. In brief, approximately 5,000 ASCs/well were plated into a 96-well 

dish and allowed to attach overnight prior to SI/RO protocol. Following completion of SI/RO, 

20μl of CellTiter 96® AQueous One Solution Reagent was added into each well and incubated 

for 2 h at 37°C in a 5% CO2 before recording absorbance at 490 nm using a VersaMax 

microplate reader with SoftMaxPro software (Molecular Devices).  CellTiter 96® AQueous One 

Solution uses a MTS tetrazolium compound which is bioreduced by cells into a colored 

formazan product that is soluble in tissue culture medium.  The quantity of formazan product as 

measured by the absorbance at 490 nm is directly proportional to the number of living cells in 

culture. 

ASCs were plated at a density of 2x10
5
 cells/mL in 2-well chamber slides prior to SI/RO 

protocol.  Following SI/RO, 100 μL of cellular medium was collected for LDH measurements, 

and enzyme activity was monitored spectrophotometrically using an LDH assay kit (Sigma). 

NAD+ is reduced to NADH/H+ by LDH-catalyzed conversion of lactate to pyruvate.  The 

catalyst (diaphorase) transfers H/H+ from NADH/H+ to tetrazolium salt which is reduced to 

formazan.  An increase in the number of dead cells leads to an increase in LDH activity in the 

culture medium which correlates to amount of formazan dye formed which is measured at 490 

nm. Trypan blue exclusion assay was performed as follows.  Following SI/RO, floating and 

attached cells were collected by centrifugation and cell pellets were resuspended and mixed with 

20 μl of 0.4% trypan blue (Sigma). After ∼ 5 min of equilibration, dead cells, stained by trypan 
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blue, were counted using a hemocytometer. The number of dead cells was counted from five 

randomly chosen fields and expressed as a percentage of the total number of cells.  

Apoptosis was analyzed by the terminal dUTP nick-end labeling method (TUNEL) 

staining using ApopTag® Peroxidase In Situ Apoptosis Detection Kit (Millipore) that detects 

nuclear DNA fragmentation as previously reported (98). After SI and 18 h of reoxygenation, 

cells were fixed by 4% formaldehyde/PBS at 4 °C for 25 min and subjected to TUNEL assay 

according to the manufacturer’s protocol. In brief, cells were washed twice in PBS for 5 min 

before being permeabilized with precooled ethanol:acetic acid 2:1 for 7 min at -20°C. Cells were 

washed twice in PBS for 5 min before incubation 3.0% hydrogen peroxide in PBS for 5 minutes 

at room temperature to quench endogenous peroxidase.  Cells were washed twice and incubated 

with terminal deoxynucleotidyl Transferase (TdT) enzyme for 1 h at 37°C in a humidified 

chamber.  After the 1 h incubation period, cells were washed 3 times in PBS prior to incubation 

with anti-digoxignenin conjugate for 30 min at room temperature.  Slides were developed with 

Nova Red peroxidase substrate (Vector Lab), counterstained with hemotoxylin and mounted 

using Permount solution (Fisher Scientific). Stained cells were examined under a Nikon Eclipse 

TE 800 microscope.  TdT catalyzes a template-independent addition of nucleotide triphosphates 

to the 3'- OH ends of double-stranded or single-stranded DNA. The incorporated nucleotides 

form an oligomer composed of digoxigenin-conjugated nucleotide and unlabeled nucleotide in a 

random sequence. DNA fragments which have been labeled with the digoxigenin-nucleotide are 

then allowed to bind an anti-digoxigenin antibody that is conjugated to a peroxidase reporter 

molecule.  The bound peroxidase antibody conjugate enzymatically generates a permanent, 
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intense, localized stain from chromogenic substrates, providing sensitive detection of apoptotic 

bodies. 

 

cGMP, cAMP and Protein Kinase G Activity 

cGMP activity assay was performed using cGMP Direct Immunoassay Kit (Biovision) 

which provided a direct competitive immunoassay for sensitive and quantitative determination of 

cGMP as per manufacturer’s instructions. Briefly, the cell lysate is incubated with a cGMP 

polyclonal antibody at room temperature for 1 h and the excess reagents are washed away. The 

substrate is added and after a short incubation period, the enzyme reaction was stopped and the 

yellow color intensity was measured using VersaMax microplate reader at 405nm. The intensity 

of the bound yellow color is inversely proportional to the concentration of cGMP in either 

standards or samples. The measured optical density is used to calculate the concentration of 

cGMP. Protein concentration of lysate was measured spectrophotometrically at 595 nm. The 

results are expressed as pmol/mg of protein. 

Cellular levels of cAMP were measured using bioluminescent assay, cAMP-Glo 

(Promega) as per manufacturer’s instructions.  In brief, approximately 5,000 ASCs/well were 

plated into a 96-well dish and allowed to attach overnight prior to respective treatment.  Cells 

were lysed with incubation of cAMP-Glo Lysis buffer for 15 minutes at room temperature prior 

to addition of cAMP-Glo Detection Solution.  After 20 min at room temperature, Kinase-Glo 

Reagent was added, mixed for 60 s and incubated at room temperature for 10 min.  

Luminescence was measured using VersaMax microplate reader.  Luminescence is inversely 

proportional to cAMP levels. The results are expressed as pmol/mg of protein. 
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Cardiac protein kinase G activity was examined using a commercially available PKG 

activity kit (Cyclex) in whole cell lysates (n = 4/group). Activity was measured according to the 

manufacturer’s instructions.  In brief, total soluble protein was extracted from ASCs with 

extraction buffer containing 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 10 mM EGTA, 50μg/ml 

PMSF, protease inhibitor cocktail (10μl/mL), and 0.3% β-mercaptoethanol.  Cell extracts (10 

μL) were plated in duplicate in a 96-well plate along with 90 μL of cGMP plus Kinase Reaction 

Buffer per well.  The plate was covered with plate sealer, and incubated at 30°C for 30 min.  

Wells were washed 5 times with Wash buffer prior to addition of 100 μL of HRP conjugated 

Detection Antibody 10H11.  The plate was recovered and incubated at room temperature for 60 

min. The enzyme reaction was stopped and the spectrophotometric absorbance was measured at 

450 nm. Results were normalized as per mg of protein. 

 

Measurement of VEGF, b-FGF, Ang-1and IGF by ELISA 

The levels of VEGF, b-FGF and IGF released from ASCs into culture medium were 

directly measured by ELISA kit according to manufacturer’s instructions (R & D Systems).  In 

brief, conditioned medium was added to a microplate pre-coated with the respective growth 

factors for a 2 h incubation period at room temperature.  Basal medium was used as a control.  

The plate was washed 3 times to remove any unbound substances prior to incubation with the 

respective enzyme-linked polyclonal antibody conjugate.  Following washing to remove any 

unbound antibody-enzyme reagent, substrate solution is added to the wells and color develops in 

proportion to amount bound of respective growth factor.  The absorbance was measure at 450 

and 570 nm. 
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Measurement of Nitrate, Nitrite and NOx 

ASCs were plated at a density of 2x10
5
 cells/mL in 10 mm

2
 culture dishes. ASCs were 

incubated at 37 °C and 5% CO2 for 2 h, with or without 10 µM sildenafil  A subset of ASCs 

were transduced with an adenoviral vector containing scrambled control shRNA (shRNA
Con

 

ASC), PDE-5 shRNA (shRNA
PDE-5 

ASC), in serum-free growth medium for 24 h.  Conditioned 

medium was collected 24 h after treatment and was subsequently centrifuged using Amicon 

Ultra-4 centrifugal filter devices at 7500 g in 4
o
C to eliminate large molecules (molecular weight 

>30 kDa) from the medium. The levels of nitrate and nitrite in the conditioned medium were 

measured with a SIEVERS nitric oxide analyzer (model 280NOA). The reducing agents used 

were either vanadium (III) chloride (VCl3) in 1 M HCl (for nitrate) or 1% sodium iodide (NaI) in 

glacial acetic acid (for nitrite). Five to six mL of a reagent plus 100 µL of 1:30 diluted anti-

foaming agent were loaded into the purge vessel for analysis. These reducing agents converted 

nitrite and nitrate respectively to gaseous NO at 90°C, which was quantified by the analyzer.  

The results are expressed in μM of nitrite, nitrate, and NOx (total levels of nitrate and nitrate). 

 

Isolation of Adult Mouse Ventricular Cardiomyocytes  

Adult male CD1 (Harlan Sprague Dawley) were used in this study. The animal 

experimental protocols were approved by the Institutional Animal Care and Use committee of 

Virginia Commonwealth University. The ventricular cardiomyocytes were isolated using an 

enzymatic technique modified from the previously reported method (131, 132). In brief, the 

animal was anesthetized with pentobarbital sodium (100 mg/kg, i.p.) and heart was quickly 



38 

 

removed. Within 3 min, the aortic opening was cannulated onto a Langendorff perfusion system 

and heart was retrogradely perfused (37
o

C) at a constant pressure of 55 mmHg for ~5 min with a 

Ca
2+ 

free bicarbonate-based buffer containing: 120 mM NaCl, 5.4 mM KCl, 1.2 mM MgSO4, 1.2 

mM NaH2PO4, 5.6 mM glucose, 20 mM NaHCO3, 10 mM 2,3-butanedione monoxime, and 5 

mM taurine, which was continuously bubbled with 95% O2 + 5% CO2. The enzymatic digestion 

was commenced by adding collagenase type II (Worthington, 0.5 mg/mL each) and protease type 

XIV (0.02 mg/mL) to the perfusion buffer and continued for ~15 min. 50 μM Ca
2+ 

was then 

added in to the enzyme solution for perfusing the heart for another 10-15 min. The digested 

ventricular tissue was cut into chunks and gently aspirated with a transfer pipette for facilitating 

the cell dissociation. The cell pellet was resuspended for a 3-step Ca restoration procedure (i.e. 

125, 250, 500 μM Ca). The freshly isolated cardiomyocytes were then suspended in minimal 

essential medium (Sigma) containing 1.2 mM Ca, 12 mM NaHCO3, 2.5% fetal bovine serum and 

1% penicillin-streptomycin. The cells were then plated onto the 35 mm
2
 cell culture dishes, 

which were pre-coated with 20 μg/mL mouse laminin in PBS + 1% penicillin-streptomycin for 1 

hour. The cardiomyocytes were cultured in the presence of 5% CO2 for 1 hour in a humidified 

incubator at 37°C, which allowed cardiomyocytes to attach to the dish surface prior to the 

experimental protocol.  

 

In Vitro Experiments with Conditioned Medium 

Conditioned medium was generated as follows: 90% confluent ASCs were treated with or 

without 10 µM sildenafil for 2 h prior to being subjected to 15 h SI and 1 h RO. The medium 
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was then collected and used for in vitro experiments. Adult mice cardiomyocytes were obtained 

from Langendorff-perfused hearts of adult CD-1 mice, as described previously.  Cells were 

seeded in 2-well chamber slides precoated with laminin (30 µg/ml in PBS) and left to attach for 1 

h.  After attachment, the α-MEM medium was replaced with serum- free α-MEM (normal 

medium) or conditioned medium from either control or sildenafil-treated ASCs. The 

cardiomyocytes were then subjected to 40 min SI and 1 h RO for necrosis studies and 18 h RO 

for apoptosis studies. 

Cardiomyocyte Viability and Apoptosis  

Cell viability was assessed by trypan blue exclusion assay as reported previously (75, 

98). Cardiomyocyte apoptosis was evaluated via TUNEL that detects nuclear DNA 

fragmentation via a fluorescence assay as previously reported (75, 98) using the ApoAlert™ 

DNA Fragmentation Assay Kit (BD Biosciences) according to manufacturer’s instructions. In 

brief, after SI and 18 h of reoxygenation, cardiomyocytes in two chamber slides were fixed by 

4% formaldehyde/phosphate-buffered saline at 4°C for 25 min and subjected to TUNEL assay 

according to the manufacturer’s protocol. The slides were then counterstained with Vectashield 

mounting medium with 4’,6-diamidino-2-phenylindole (a DNA intercalating dye for visualizing 

nuclei in fixed cells, Vector Laboratories). The stained cells were examined under an Olympus 

IX70 fluorescence microscope. Apoptotic index (AI) was determined from counting TUNEL-

positive myocyte nuclei from ten separate fields per treatment and expressed as a percentage. 
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Data Analysis and Statistics 

Data are presented as mean ± S.E. The differences between groups were analyzed with 

one way analysis of variance followed by Student-Newman-Keuls post hoc test for pair-wise 

comparison. P<0.05 was considered to be statistically significant. 
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Group 1- Control 
Group 2- SI-RO 
Group 3- SI-RO + Sildenafil (Sil) ASC
Group 4- SI-RO + Sil + KT 5823 ASC
Group 5- SI-RO + shRNACON ASC
Group 6- SI/RO + Sil shRNACON ASC
Group 7- SI/RO + Sil shRNAPKG ASC
Group 8- SI/RO + shRNAPDE-5 ASC

15 h Simulated 
Ischemia

Reoxygentation

1 hour
•Trypan Blue Exclusion
•LDH release
•MTS
•Growth Factor Release 
(conditioned medium collection)

18 hours
•TUNEL

•cAMP Accumulation
•cGMP Accumulation
•PKG Activity

24 hours adenoviral infection
prior to sildenafil treatment 
(10μM for 2 hours); 
KT 5823 (2 μM) given at time of 
sildenafil treatment

 

Figure 2. Experimental protocol.  In vitro protocol, arrows indicate time points for treatment, 

performance of simulated ischemia/reoxygenation, and measurement of various parameters for 

each experimental group.  
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Results 

Characterization of ASCs 

Fluorescence activated cell sorting analysis showed that isolated ASCs expressed 

common surface expression markers CD29 (immune response), CD44 (cell-cell interactions, cell 

adhesion and migration), and CD105 (angiogenesis).  The cells were devoid of markers such as 

CD14 (monocytes), CD45 (hematopoietic cells), and Human Leukocyte Antigen receptor DR2 

(HLA-DR2) (Table 1).  Immunostaining showed intense nuclear and cytosolic expression of the 

pluripotent stem cell transcription factors including Oct-4, Sox-2 and Nanog in the ASCs (Fig. 

3A). The expression of these proteins was also confirmed by Western blot analysis.  Treatment 

with sildenafil did not alter their expression (Fig. 3B).  To demonstrate the differentiation 

capacity of ASCs in vitro, adipogenic and osteogenic lineage specific induction factors were 

used in the normal culture conditions. Adipogenic and osteogenic phenotype was determined by 

staining monolayers of ASCs with Oil Red-O and Alizarin Red respectively. The ASCs showed 

multiple intracellular lipid filled droplets in ~30% of cells confirming adipogenic differentiation 

(Fig. 3C) and calcium deposition with Alizarin Red confirming osteogenic differentiation (Fig. 

3D).  
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Table 1. Surface 

Characterization of 

Isolated ASCs. Surface 

Marker  

Positive or Negative  Involvement  

CD29  + immune response  

C105  + angiogenesis  

CD44  + cell-cell interactions, cell 

adhesion and migration  

CD14  - monocytes  

CD45  - hematopoietic cells  

Human Leukocyte Antigen 

receptor DR2 (HLA-DR2)  

- graft vs. host immune 

response  

 

Positive results were defined as over 97% of cells expressing the surface protein of interest. 
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Figure 3. Expression of transcription factors and differentiation of ASCs.  (A) 

Immunohistochemical staining of Alexa 488 labeled Oct-4 (left panel- green), Sox-2 (middle 

panel- green), and Nanog (right panel- green) overlayed with DAPI staining of nuclei (blue). (B) 

Western Blot analysis from ASC lysate show expression of stem cell transcription factors Oct-4, 

Sox-2 and Nanog.  Treatment with sildenafil (SIL) did not alter their expression. (C) 

Adipogenesis and lipid vesicle formation was determined by Oil Red-O staining. (D) 

Mineralization was detected in osteogenic-differentiated ASCs using Alizarin red staining.  
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Cytoprotection by PDE-5 Inhibition 

Immunostaining showed that ASCs express PDE-5, which was localized within the 

cytoplasm (Fig. 4).  Moreover, adenoviral infection was confirmed by the presence of GFP 

expression in shRNA
CON

 and shRNA
PDE-5

. PDE-5 expression was also confirmed by Western 

blot and real time-PCR.  shRNA
PDE-5 

efficiently silenced PDE-5 in ASCs at gene and protein 

expression levels (Figs. 4 and 5).   Adenovirally transduced or normal cultured ASCs were 

treated with or without 10 µM sildenafil for 2 h.  The percentage of trypan blue-positive 

(necrotic) cells increased to 24.2±3.7 as compared to non-SI/RO controls (0.6±0.1) following SI 

(15 h)/RO (1 h) (n=8; p<0.01).  Sildenafil treatment reduced cell death as measured by MTS-

based cell incorporation (Fig. 6A) and necrosis as shown by decrease in trypan blue-positive 

cells to 5.7 ±1.6% (n=8; p<0.01, Fig. 5B). PDE-5 knockdown by shRNA
PDE-5 

conferred a similar 

protective effect when compared to the scrambled shRNA
CON

 ASCs (7.1 ±0.9 vs. 29.3 ±1.3%, p 

< 0.01, n = 8; Fig. 6).  Also, combination of shRNA
CON

 with sildenafil increased cell viability 

and reduced necrosis (Fig. 6).  Similar results were obtained when lactate dehydrogenase (LDH) 

release in the medium was used as a marker of necrosis in ASCs (Fig. 6C).   

After 15 h of SI and 18 h of RO, apoptotic nuclei (TUNEL-positive cells) increased from 

2.0±0.5 % (in non-ischemic control group) to 18.3±2.5 % of total cells (p < 0.01, n = 8;). PDE-5 

inhibition resulted in reduction of TUNEL-positive cells to 5.7± 2.1% in sildenafil-treated ASCs 

and 6.4± 0.9% in shRNA
PDE-5 

ASCs (p < 0.01 vs. SI-RO, n = 8; Fig. 7).  These results suggest 

that PDE-5 inhibition in ASCs exerts a cytoprotective against ischemic injury.   
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A.

ASC

shRNACON

ASC

shRNAPDE-5

ASC

PDE-5 GFP DAPI Merge

Figure 4. PDE-5 immunofluoresence in ASCs.  Immunohistochemical staining of PDE-5 (red), 

GFP (green), DAPI staining of nuclei (blue) and overlay in ASCs with shRNA
PDE-5 

as compared 

to shRNA
CON

 ASCs and control ASCs.  
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Figure 5.  Expression of PDE-5 in ASCs (A) Western blot analysis showing knock-down of 

PDE-5 in ASCs with shRNA
PDE-5 

as compared to shRNA
CON

 ASCs and control ASCs 

(representative lanes from contiguous blot; n=3). (B) Real-time PCR showing reduced PDE-5 

expression; (n=3).  



48 

 

 

A.

C.

B.

C
ontr

ol

SI-R
O

 

SI-R
O

 +
 S

IL
 A

SC
A
SC

C
O

N
 

SI-R
O

 +
 s

hR
N
A

 A
SC

C
O

N

SI-R
O

 +
 S

il 
sh

R
N
A

 A
SC

PD
E-5

SI-R
O

 +
 s

hR
N
A

0

5

10

15

20

25

30

35

*

*p<0.01 vs SI/RO; shRNACON ASC

*
*

T
ry

p
a
n

 B
lu

e
 P

o
s
it

iv
e
 C

e
lls

(%
 o

f 
T

o
ta

l 
C

e
lls

)

C
ontr

ol

S
I-R

O
 

S
I-R

O
 +

 S
IL

 A
S
C

A
S
C

C
O
N
 

S
I-R

O
 +

 s
hR

N
A

 A
S
C

C
O
N

S
I-R

O
 +

 S
il 

sh
R
N
A

 A
S
C

P
D
E
-5

S
I-R

O
 +

 s
hR

N
A

0

50

100

150

200

*

* p<0.01 vs SI/RO; shRNACON  ASC

*
*

L
D

H
 R

e
le

a
s
e

(%
 o

f 
c
o

n
tr

o
l)

C
ontr

ol

SI-R
O

 

SI-R
O

 +
 S

IL
 A

SC
A
SC

C
O

N
 

SI-R
O

 +
 s

hR
N
A

 A
SC

C
O

N

SI-R
O

 +
 S

il 
sh

R
N
A

 A
SC

PD
E-5

SI-R
O

 +
 s

hR
N
A

0

10

20

30

40

50

60

70

80

90

100

110

*

*p<0.01 vs. SI/RO; shRNACON  ASC

**

C
e
ll 

V
ia

b
ili

ty
 %

 

Figure 6. Effect of PDE-5 iinhibition on protection of ASCs from necrosis. Quantitative data 

showing the effect of sildenafil (SIL) or shRNA
PDE-5 

on necrosis following SI-RO as determined 

by MTS cell viability assay (A), trypan blue staining (B), and LDH release 

(C);(n=8).
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Figure 7. Effect of PDE-5 inhibition on protection of ASCs from apoptosis. Quantitative data 

showing the effect of sildenafil (SIL) or shRNA
PDE-5 

on apoptosis following SI-RO as 

determined by TUNEL assay (A) and representative images (B); n=8).  
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Effect of PDE-5 Inhibition on cGMP and PKG Activity 

PDE-5 inhibition by sildenafil or shRNA
PDE-5 

resulted in nearly identical increase in 

cGMP levels (0.9±0.01 and 0.9±0.02 pmol/mg of protein, respectively) as compared to non-

treated ASCs (0.7±0.03) and shRNA
CON

 ASCs (0.7±0.03) (p<0.05, n=4).  shRNA
CON

 had no 

effect on cGMP formation with sildenafil treatment (Fig. 8A). Both sildenafil and shRNA
PDE-5 

had no effect on cAMP levels (Fig 8B).  Also, sildenafil and shRNA
PDE-5 

increased PKG 

enzymatic activity (A450/mg protein) as compared to control ASCs (Fig. 8D).   

To determine the cause and effect relationship of PKG in sildenafil-induced survival of 

ASCs following SI/RO, we used shRNA knockdown of PKG and pharmacological inhibition 

approach as reported previously (99).  ASCs infected with shRNA
PKG

 caused at least 60% 

knock-down of PKG (Figs. 8C).  Moreover, sildenafil induced PKG activity was inhibited in 

shRNA
PKG

 ASCs or by co-treatment with PKG inhibitor, KT 5823 (Fig. 8D).  The protective 

effect of sildenafil against necrosis and apoptosis (Figs. 6, 7) were attenuated by KT 5823 and in 

shRNA
PKG

 ASCs (Figs. 9, 10) suggesting that inhibition of PDE-5 induced protection involves a 

PKG dependent pathway. 



51 

 

A
S
C

S
il 
A
S
C

K
T 

+ 
S
il 
A
S
C

 A
S
C

P
K
G

S
il 
sh

R
N
A

 A
S
C

C
O
N

sh
R
N
A

 A
S
C

C
O
N

S
il 
sh

R
N
A

 A
S
C

P
D
E
-5

sh
R
N
A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

*

*p<0.01 vs other groups

*
*

P
K

G
 A

c
ti

v
it

y

(A
4
5
0
 /

 m
g

 o
f 

p
r
o

te
in

)

A
S
C

S
il 
A
S
C

 A
S
C

C
O
N

sh
R
N
A

 A
S
C

C
O
N

S
il 
sh

R
N
A

 A
S
C

P
D
E
-5

sh
R
N
A

0.0

0.1

0.2

0.3

c
A

M
P

 (
p

m
o

l/
1
0

4
 c

e
ll

s
)

A
S
C

S
il 
A
S
C

 A
S
C

C
O
N

sh
R
N
A

 A
S
C

C
O
N

S
il 
sh

R
N
A

 A
S
C

P
D
E
-5

sh
R
N
A

0.0

0.2

0.4

0.6

0.8

1.0

* *

*p<0.05 vs shRNACON and ASC

*

c
G

M
P

 (
p

m
o

l/
m

g
 o

f 
p

r
o

te
in

)

A
S
C

 A
S
C

C
O
N

sh
R
N
A

 A
S
C

P
K
G

sh
R
N
A

0.0

0.5

1.0

1.5

*

*p<0.05 vs shRNAPKG ASC

*

P
K

G
I 

/A
c
ti

n
 R

a
ti

o

A.

D.C.

B.

PKGIα

β-Actin

ASC
shRNACON

ASC
shRNAPKG

ASC

 

Figure 8.  PDE-5 inhibition increases cGMP and PKG activity.  (A) cGMP levels in ASCs 

following preconditioning with sildenafil and shRNA
PDE-5 

as compared to shRNA
CON

 and non-

treated ASCs. (B) cAMP levels in the same groups as in A.  (C) Western blot analysis showing 

knockdown of PKG expression as compared to controls (D) PKG activity in ASCs following 

treatment with sildenafil or shRNA
PDE-5

.  Treatment with 2 µM KT 5823 (KT) or shRNA
PKG

 

inhibited PKG activity; (n=4).   



52 

 

A.

C.

B.

C
ontr

ol

S
I-R

O
 

S
I-R

O
 +

 S
il 

A
S
C
 

S
I-R

O
 +

 K
T &

 S
il 

A
S
C
 

 A
S
C

P
K
G

S
I-R

O
 +

 S
il 

sh
R
N
A

0

10

20

30

*

*p<0.01 vs  all groups

T
ry

p
a
n

 B
lu

e
 P

o
s
it

iv
e
 C

e
ll
s

(%
 o

f 
T

o
ta

l 
C

e
ll
s
)

C
ontr

ol

S
I-R

O
 

S
I-R

O
 +

 S
il 

A
S
C

S
I-R

O
 +

 K
T &

 S
il 

A
S
C
 

 A
S
C

P
K
G

S
I-R

O
 +

 S
il 

sh
R
N
A

0

50

100

150

200

* p<0.01 vs SI/RO groups

*

L
D

H
 R

e
le

a
s
e

(%
 o

f 
c
o

n
tr

o
l)

C
ontr

ol

S
I-R

O
 

S
I-R

O
 +

 S
il 

A
S
C

S
I-R

O
 +

 K
T &

 S
il 

A
S
C
 

 A
S
C

P
K
G

S
I-R

O
 +

 S
il 

sh
R
N
A

0

10

20

30

40

50

60

70

80

90

100

110

*

*P<0.01 vs. all groups

C
e
ll
 V

ia
b

il
it

y
 %

 

Figure 9. Sildenafil protects ASCs against necrosis through PKG dependent mechanism.  

Quantitative data showing cell viability as determined by MTS assay (A), cell necrosis assessed 

by trypan blue exclusion assay (B), and LDH release into the medium (C); (n=8).  
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Figure 10. Sildenafil protects ASCs against apoptosis through PKG. Quantitative data 

showing the effect of PKG inhibitor KT 5823 (KT) and shRNA
PKG

 on apoptosis following SI-

RO as determined by TUNEL assay (A) and representative images (B). The PKG inhibitor KT 

5823 (KT) and shRNA
PKG

 abolished the protective effect of sildenafil against necrosis and 

apoptosis; (n=8).  
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PDE-5 Inhibition Enhances Release of Growth Factors 

To identify potential paracrine mechanisms responsible for the therapeutic effect of 

preconditioning, we examined the effect of PDE-5 inhibition in ASCs on release of growth 

factors, VEGF, b-FGF, and IGF-1 in vitro.  No differences in their secretion was observed 

between sildenafil-treated, shRNA
PDE-5 

and non-treated ASCs under normal conditions. 

Following SI/RO, both sildenafil and knockdown with shRNA
PDE-5 

increased the release of 

basic-fibrolast growth factor (b-FGF) (1.7 fold), IGF-1 (1.5 fold) and VEGF (1.4 fold) as 

compared to SI/RO control.  Inhibition of PKG blocked the enhanced secretion of the growth 

factors (Fig. 11).  These data suggests that the high-level secretion of growth factors from 

preconditioned ASCs may provide cardioprotective and proangiogenic effects as a result of PKG 

activation. 
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Figure 11. PDE-5 inhibition increases the release of growth factors following 

ischemia/reoxygenation in ASCs.  PDE-5 inhibition by sildenafil or its knockdown with 

silencing vector shRNA
PDE-5

 augmented the release of (A) b-FGF, (B) IGF, and (C) VEGF after 

SI/RO which is blocked by PKG inhibitor KT 5823 (KT) and shRNA
PKG

. shRNA
CON

 had no 

effect; (n=4). 
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Effect of Sildenafil Preconditioning on Nitrate, Nitrite and NOx 

The concentrations of nitrate, nitrite and NOx (nitrate + nitrite) secreted into culture 

medium was examined following PDE-5 inhibition in ASCs.  Sildenafil treatment of ASCs 

resulted in significant increases of nitrate (26±1.7 μM) and NOx (30.5±0.8 μM) as compared to 

non-treated controls (17.9±1.7 μM and 22.3±1.7 μM, respectively, p<0.05, n=3).  Interestingly, 

PDE-5 inhibition through a silencing vector exhibited a trend towards enhanced secretion of 

nitrate and NOx as compared to non-treated ASCs; however, did not confer a similar increase as 

compared to ASCs infected with scrambled control vector (Fig. 12).  Furthermore, the levels of 

nitrite secreted into the medium were similar in each treatment group. 
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 Figure 12.  Increased NOx levels following sildenafil treatment. Quantitative data showing 

the effect of sildenafil (SIL) or shRNA
PDE-5 

on levels of nitrate (A); nitrite (B); and NOx (C) in 

conditioned medium; (n=3). 
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Cytoprotection of Adult Mouse Cardiomyocytes with Conditioned Medium: 

We further evaluated the possible paracrine effects of conditioned medium from cultured 

ASCs on isolated primary adult cardiomyocytes.   Our method for isolation and cell preparation 

yielded at least 85% of the cardiomyocytes with rod-shaped morphology (Fig. 13 B).  Initially, 

the mouse cardiomyocyte standard growth medium was replaced with normal α-MEM or 

conditioned medium from control or sildenafil-treated ASCs; cardiomyocytes were subsequently 

subjected to SI-RO (Fig. 13 A).  Necrosis was measured by trypan blue exclusion and LDH 

release. The percentage of trypan blue-positive (necrotic) cardiomyocytes increased to 

41.3±5.8% as compared to non-SI/RO controls (2.0±0.8%) following SI (40 min)/RO (1 h) 

(p<0.01, n=4).  Treatment with conditioned medium (CM) reduced necrosis as shown by 

decrease in trypan blue-positive cells. Although the cytoprotective effect was observed in the 

presence of both control and sildenafil-treated ASC-CM, the greater degree of protection was 

conferred by the SIL ASC-CM (24.5±2.6% vs 32.3 ±3.9%, p<0.01, n=4, Fig. 13 C). Similar 

results were obtained by measurement of LDH release in the medium (Fig. 13 D).  Furthermore, 

the relative number of apoptotic cardiomyocytes following 18 h of RO was measured by TUNEL 

analysis.  In the presence of SIL ASC-CM, the number of apoptotic nuclei was reduced to 

11.5±2.9% as compared with that of normal medium (26.3±4.2%) or the control ASC-CM 

(18.5±2.1%), respectively (Fig. 14).  Thus, these results indicate that a paracrine cytoprotective 

mechanism is involved with growth factors secreted by the ASCs under ischemic conditions. 
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Figure 13. Conditioned media attenuates necrosis of cardiomyocytes following 

ischemia/reoxygenation.  (A) In vitro protocol, arrows indicate time points for treatment, 

performance of simulated ischemia/reoxygenation, and measurement of various parameters for 

each experimental group. (B) Representative image of isolated mouse cardiomyocytes. 

Quantitative data showing cell necrosis assessed by trypan blue exclusion assay (C), and LDH 

release into the medium (D); (n=4). 
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Figure 14. Conditioned media attenuates apoptosis of cardiomyocytes following 

ischemia/reoxygenation.  Quantitative data showing the effect of conditioned medium from 

sildenafil-treated ASCs (SIL ASC-CM) or control ASCs (ASC-CM)
 
on apoptosis following SI-

RO as determined by TUNEL assay (A) and representative images (B); (n=4). 
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Discussion 

Cardiac repair via cellular transplantation has generated considerable enthusiasm in 

recent years although the optimal cells for cardiac repair remain to be identified.  We chose 

adipose-derived stromal/stem cells which have the ability to differentiate into multiple 

mesenchymal cell types including endothelial cells (45, 46) and cardiomyocytes (15, 52).  

Human ASCs have been shown to preserve heart function following myocardial infarction (133). 

In the present study, we investigated the feasibility of PDE-5 inhibition as a strategy to 

precondition human ASCs.  The rationale for this approach was the established powerful 

preconditioning-like effect of PDE-5 inhibitors in cardiomyocytes (75, 98) and against 

ischemia/reperfusion injury in heart (92-94) established by us.  Our results show preconditioning 

of ASCs by PDE-5 inhibition significantly improved their ability to survive SI/RO injury in 

vitro. Moreover, we observed significant release of pro-angiogenic/pro-survival growth factors 

including VEGF, b-FGF, and IGF-1.  More importantly, we provide the first evidence for robust 

expression of PDE-5 in the isolated ASCs.  PDE-5 knockdown with a silencing vector 

significantly reproduced the effect of sildenafil in survival against cell death as well as release of 

growth factors. These data not only rule out the potential off target effects of sildenafil in ASCs 

but also provide us a genetic approach to precondition the stem cells possibly for improving 

survival after transplantation.  To our knowledge, this is the first study showing PDE-5 as a 

target gene/enzyme to improve survival of ASCs under ischemic conditions in vitro.  These are 

clinically significant observations because improving stem cell survival by exploiting novel 

therapeutic targets with clinically approved drugs would directly impact the prognostic outcome 

of stem cell therapy in the heart.   
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We have shown that sildenafil reduced myocardial infarction in the intact heart and 

apoptosis and necrosis in cardiomyocytes subjected to simulated ischemia and reoxygenation 

through nitric oxide (NO)-dependent pathway (75).  Sildenafil induced a delayed 

cardioprotective effect in the mouse heart that involved the upregulation of iNOS and eNOS 

(91). ASCs have been shown to endogenously generate NO which can be measured in biological 

systems as metabolites of NO such as nitrite and nitrate (134).  Our results indicate a significant 

increase in concentrations of nitrate and NOx (nitrate + nitrite) in culture medium following 

sildenafil treatment of ASCs as compared to non-treated cells.  Interestingly, shRNA
PDE-5 

ASCs 

exhibited a trend towards increased NO generation as compared to control ASCs; however, there 

was not a significant difference in NO metabolites as compared the shRNA
CON

 ASCs.  The 

downstream targets and cellular actions of NO are known to be dependent on its local 

concentrations with normal in vivo concentrations of NO ranging from low nanomolar to low 

micromolar level.   Therefore, even modest increases in NO concentration can result in activation 

of the major NO receptor, soluble guanylyl cyclase which in turn elevates intracellular cGMP 

(101). Enhanced accumulation of cGMP leads to activation of PKG which has been shown to be 

involved in cardioprotective effects against I/R injury (102-104). In the present study, there is no 

clear evidence that PKG activation seen in preconditioning of ASCs is a result of increased NO 

production, although recently, we demonstrated that direct adenoviral overexpression of PKG Iα 

in cardiomyocytes induced both iNOS and eNOS and protected these cells against SI/RO injury.  

Similarly in isolated cardiomyocytes (75), sildenafil caused a significant increase in mRNA and 

protein expression of iNOS and eNOS. Also, sildenafil-induced protection against necrosis and 

apoptosis was abolished in cardiomyocytes derived from iNOS but not from eNOS gene 
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knockout mice (91).  ASCs have been shown to express all three nitric oxide synthases, iNOS 

(135), eNOS (45, 136), and nNOS (137), and endogenous generation of NO has been attenuated 

with the iNOS/eNOS inhibitor, L-NAME (134).  Therefore, it is plausible that the increase in NO 

concentrations following sildenafil treatment might be a result of a similar mechanism involving 

iNOS/eNOS up-regulation.  However, further studies are needed to delineate the exact source of 

NO in our model of ASC preconditioning with sildenafil. 

Inhibition of PDE-5 by siRNA has been documented to increase levels of cGMP and 

increase the angiogenic phenotype of endothelial cells (98, 130). PDE-5 inhibition and activation 

of cGMP has also been shown to increase mobilization and exert pro-survival effects on stem 

cells (138, 139).  In ours and other previous studies, PDE-5 inhibition lead to accumulation of 

cGMP to levels that lead to activation of PKG.  Phosphorylation of downstream proteins by PKG 

regulates such important physiological functions as relaxation of vascular smooth muscle, 

inhibition of platelet aggregation and apoptosis, and induction of VEGF (15, 97).  We have 

demonstrated previously that sildenafil induced activation of PKG and adenoviral overexpression 

of PKG in isolated cardiomyocytes resulted in attenuation from necrosis and apoptosis following 

ischemia/reoxygenation (75, 114).  The present results demonstrate that preconditioning of ASCs 

with PDE-5 inhibition exerted a similar cytoprotective effect through a PKG-dependent pathway 

as PKG inhibitor, KT 5823, and short-hairpin RNA knock-down of PKG abolished protection. 

There are at least two mechanisms contributing to the resistance of ASCs in which PDE-5 

is inhibited against hypoxic/ischemic stress.  We have previously shown that sildenafil induces a 

cytoprotective effect in cardiomyocytes through NO and cGMP dependent activation of PKG 

which results in opening of mitochondrial KATP channels (75, 98, 140).  While the 
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comprehensive cytoprotective signaling pathways following PDE-5 inhibition in ASCs remains 

to be investigated, it is clear that cGMP (but not cAMP) was elevated and PKG was involved in 

protecting ASCs against ischemic injury (Figs. 8, 9, 10).  PKG is a serine/threonine protein 

kinase that has two isozymes (type I and type II; i.e. PKGI and PKGII).  PKGIα is mainly found 

in lung, heart, platelets, and cerebellum, whereas PKGIβ is highly expressed in smooth muscles 

of uterus, vessels, intestine, and trachea (141). As discussed elsewhere, sildenafil activated PKG-

dependent signaling cascade that involved phosphorylation of ERK and inhibition of GSK-3β 

thus leading to cytoprotection (98). Moreover, gene transfer of PKGIα in cardiomyocytes in the 

absence of sildenafil or other pathophysiological stimuli (such as ischemic preconditioning) 

resulted in a cytoprotective phenotype that was associated with the phosphorylation of Akt, 

ERK, and JNK and increased Bcl-2 expression (114).  It is quite likely that a similar cascade of 

signaling events leads to survival of ASCs after SI. 

Another cytoprotective mechanism of PDE-5 inhibition in ASCs may involve the 

paracrine effects by secretion of growth factors with angiogenic potential.  The present study 

clearly demonstrated the increased secretion of VEGF, b-FGF, and IGF-1 from sildenafil- and 

shRNA
PDE-5

-treated ASCs in response to the ischemic conditions.  Moreover, the release of 

growth factors was blunted under conditions where PKG signaling was disrupted (Fig. 6) 

suggesting a critical role of cGMP-PKG pathway in their secretion. These results are supported 

by other studies on downregulation of VEGF expression with the inhibition of the downstream 

kinase of PKG, GSK3β (142), which are also activated by sildenafil treatment in cardiomyocytes 

and exert protective effect against SI/RO injury (98).  ASCs have been shown to secrete VEGF 

and HGF which possess both angiogenic and anti-apoptotic effects on both myocardial and 
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endothelial cells (47).  Furthermore, these paracrine factors from stem cells have been shown to 

protect co-cultured adult cardiomyocytes against hypoxic/ischemic stress (144-146).  

Accordingly, we observed that adult mouse cardiomyocytes cultured with conditioned medium 

from sildenafil treated ASCs survived better than those cultured with conditioned medium from 

non-treated cells.  Therefore, transplantation of ASCs preconditioned through PDE-5 inhibition 

could provide adequate magnitude and duration of VEGF, b-FGF, and IGF-1 release in the 

ischemic myocardium, which would provide cardioprotective effects leading to the salvaging of 

ischemic myocardium and decrease the infarcted area.  

In summary, this study demonstrates that preconditioning of ASCs through PDE-5 

inhibition, improved survival under conditions of ischemia/reoxygenation via PKG activation 

and enhanced paracrine action. We propose that in vitro preconditioning of ASCs by inhibition 

of PDE-5 with small molecule drugs or gene silencing vectors can be a powerful new approach 

to improve stem cell therapy following myocardial infarction in patients.   Particularly the easy 

availability of ASCs from humans combined with the preconditioning by inhibition of PDE-5 

may hold great promise for initiation of clinical trials in heart failure patients. 

 

Funding Sources: This study was supported by grants from National Institutes of Health 
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CHAPTER 3 

Preconditioning by Phosphodiesterase-5 Inhibition Improves Therapeutic Efficacy of 

Adipose Derived Stem Cells Following Myocardial Infarction 

 

 

 

ABSTRACT 

Cell-based therapies for the prevention and treatment of cardiac dysfunction offer the potential to 

significantly alter cardiac function and improve the outcome of patients with cardiovascular 

disease. To date several clinical studies have suggested the potential efficacy of stem cell 

therapy; however, the benefits have been limited and inconsistent.  We have demonstrated that 

preconditioning of adipose-derived stem cells (ASCs) through PDE-5 inhibition improves their 

viability following simulated ischemia and re-oxygenation.  We therefore tested the hypothesis 

that ex vivo preconditioning of ASCs with sildenafil (Viagra) or selective knockdown with a 

silencing vector would enhance cardiac function following myocardial implantation in vivo.  

ASCs were preconditioned by treatment with sildenafil or PDE-5 silencing vector shRNA 

(shRNA
PDE-5

).  Adult male CD-1 mice underwent myocardial infarction (MI) by occlusion of left 

descending coronary artery. Animals received PBS and preconditioned ASCs (4x10
5
) by direct 

intramyocardial injection into left ventricular wall. Cardiac function and structure were evaluated 

by serial echocardiography and histology. Preconditioned ASCs-treated hearts showed 

consistently superior cardiac function by all measures as compared with PBS and non-
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preconditioned ASCs 4 weeks after treatment.   Post-mortem histological analysis demonstrated 

that preconditioned ASCs-treated mice had significantly reduced fibrosis, increased vascular 

density and decreased resident myocyte apoptosis as compared to mice that received non-

preconditioned ASCs or PBS. Plasma levels of VEGF, b-FGF, and Ang-1 were also significantly 

elevated 4 weeks after cell therapy with preconditioned ASCs.  We conclude that ex vivo 

inhibition of PDE-5 prior to transplantation can be a potent new approach to improve stem cell 

therapy following myocardial infarction.  
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Introduction 

Over the past several years, experimental findings suggest there is a therapeutic potential 

for cellular replacement therapy as treatment of acute myocardial infarction (MI) and other 

progressive chronic cardiac diseases such as left ventricular (LV) remodeling and heart failure. 

Since cardiovascular disease remains a worldwide problem, the development of novel effective 

cell-based therapies is crucial to improve patient outcome post MI. Current therapies strive to 

limit both the loss of cardiomyocytes and adverse remodeling in order to preserve cardiac 

systolic function; however, treatment of MI still leaves a significant number of patients with 

impaired cardiac function that leads to more severe LV dysfunction and adverse remodeling.  

Remodeling of the ventricle is a result of increased cardiomyocyte apoptosis in the ischemic 

zones after infarction.  While apoptosis influences remodeling, the other form of cellular death 

that occurs in the heart, necrosis, provokes inflammatory reactions, neoangiogenesis, fibroblast 

activation, and scar formation.  Therefore, limiting myocardial apoptosis and necrosis is of 

critical importance. 

Phase II and III clinical studies indicate that stem cell transplantation is feasible and may 

have beneficial effects on ventricular remodeling after myocardial infarction. However, to date, 

most of the cellular based therapies have shown limited efficacy because the majority of 

transplanted cells are readily lost after transplantation due to poor blood supply, 

ischemia/reperfusion injury, and inflammatory factors.  Disconcerting reports have shown that 

up to 99% of transplanted cells are lost within the first 24 hours (73). Therefore, enhancing cell 

viability and reduction of apoptosis of ASCs in an ischemic microenvironment of the infarcted 

heart is critical for improving the efficiency of cell therapy.  In the previous chapter, we have 
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demonstrated that in vitro PDE-5 inhibition of ASCs by sildenafil or genetic knock-down with a 

silencing vector improved cell viability, attenuated necrosis and apoptosis following simulated 

ischemia/reoxygenation (SI/RO) through a PKG-dependent mechanism. Moreover, we 

demonstrated the increased secretion of pro-angiogenic/pro-survival growth factors: VEGF; b-

FGF; and IGF-1 from sildenafil and shRNA
PDE-5 

-treated ASCs in response to the ischemic 

conditions.  Transplantation of ASCs along with their secretion of VEGF, bFGF, and IGF-1, and 

has been shown to upregulate the anti-apoptotic protein, Bcl-2, which results in the decrease in 

cardiomyocyte apoptosis (58).  Similarly, we showed that treatment with conditioned medium 

from sildenafil-treated ASCs resulted in a cytoprotective effect on cultured adult mouse 

myocytes following SI/RO through attenuation of necrosis and apoptosis.   

In this study, we tested the hypothesis whether PDE-5 inhibition could improve the 

survival and engraftment of ASCs which may lead to enhanced cardiac function following 

myocardial infarction in mice.  Specifically we addressed the question: Whether in vivo 

transplantation of ASCs after ex vivo PDE-5 inhibition improve LV function following 

myocardial infarction. Our results show that ex vivo PDE-5 inhibition of ASCs prior to 

myocardial transplantation enhances their therapeutic potential as shown by reduced fibrosis, 

cardiomyocyte apoptosis, improved vascular density and cardiac function in mice following 

myocardial infarction. 
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Materials and Methods 

Animals 

Adult male outbred CD-1 mice (~30g) were supplied by Harlan Sprague Dawley. Upon their 

arrival, the animals were allowed to readjust to the housing environment for at least 3 days 

before any experiment. Standard food and water were freely accessible for the animals used in 

these studies. The care and use of the animals were conducted in accordance with the guidelines 

of the Institutional Animal Care and Use Committee of Virginia Commonwealth University and 

the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals 

[DHHS Publication No. (NIH) 80-23; Office of Science and Health Reports, Bethesda, MD 

20205].  

 

Myocardial Infarction (MI) Protocol 

Adult CD-1 mice underwent permanent occlusion of the left descending coronary artery 

as previously described (97). In brief, the animals were anesthetized with pentobarbital (70 

mg/kg ip), intubated orotracheally and ventilated on a positive-pressure ventilator. The tidal 

volume was set at 0.2 ml, and the respiratory rate was adjusted to 133 cycles/min. All surgical 

procedures were carried out under sterile conditions. A left thoracotomy was performed at the 

fourth intercostal space, and the heart was exposed by stripping the pericardium. The left 

descending coronary artery (LAD) was then identified and permanently occluded by a 7.0 silk 

ligature that was placed around it. After coronary artery occlusion, the air was expelled from the 

chest. The animals were extubated and then received intramuscular doses of analgesia (buprenex; 

0.02mg/kg) and antibiotic (Gentamicin; 0.7 mg/kg; for 3 days). 
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Transplantation of ASCs 

Immediately after ligation, 4x10
5
 ASCs (total of 30µL) were injected at 3 injection sites 

into anterior and lateral wall of the LV bordering the infarction. The control group was injected 

with identical volume of PBS at similar sites (Fig. 15).  To determine the fate of ASCs post 

transplantation,
 
the cells were labeled with PKH26 dye using a PKH-26 Cell Linker Kit (Sigma) 

according
 
to the supplier’s instructions.  

 
The chests were sutured, and animals were allowed

 
to 

recover.  The hearts were harvested for histological studies 4 weeks post cellular transplantation. 
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28 Days

8 week-old
CD-1
Male
Mice

•Echocardiography
•Trichrome
•TUNEL
•Markers of Differentiation
•Vascular Density
•Growth Factor Release

Group 1- Sham 
Group 2- MI + PBS
Group 3- MI+ ASC
Group 4- MI + Sil ASC
Group 5- MI + shRNACON ASC
Group 6- MI + shRNAPDE-5 ASC

Start of MI and immediate 
injection of 4 x 105 ASCs
labeled with PKH26 at 3 
sites bordering infarct

24 hours adenoviral infection;
sildenafil treatment (10μM for 2 
hours) 

 

Figure 15. Experimental protocol.  In vivo protocol, arrows indicate time points for treatment, 

performance of surgical procedures, and measurement of various parameters for each 

experimental group.  Arrowheads indicate sites of injection of adipose-derived stem cells in the 

border zone of the infarcted heart. 
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Echocardiography 

Doppler Echocardiography was performed using the Vevo770TM imaging system 

(VisualSonics Inc., Toronto, Canada) prior to surgery (baseline), and 4 weeks after surgery using 

techniques similar to those previously reported (97). Mice were anesthetized with pentobarbital 

sodium (30 mg/kg ip). The mice were placed in the supine position. The chest was carefully 

shaved, and ultrasound gel was used on the thorax to optimize visibility during the exam.  A 30-

MHz probe was used to obtain two-dimensional (B-Mode), and cross-sectional (M-mode) 

imaging from parasternal short-axis view at the level of the papillary muscles.  The M-mode 

cursor was
 
positioned perpendicular to the anterior and posterior wall

 
to measure left ventricular 

(LV) end-diastolic and end-systolic
 
diameters (LVEDD and LVESD, respectively). M-mode

 

images were then obtained at the level of the papillary muscles
 
below the mitral valve tip. LV 

fractional shortening
 

(FS) was calculated as follows: FS=(LVEDD–LVESD)/LVEDDx100.
 

Ejection fraction was calculated with the Teichholz formula.
  

 

Histology 

Following the 4 week post-MI echo, the mice were sacrificed and subsequently, the 

hearts were excised, trimmed free of the atria, vena cava, and pulmonary vessels, and prepared 

for histology. In brief, the aorta was attached to a Langendorff apparatus and the heart was 

perfused in retrograde fashion with saline to remove the residual blood. Tranverse sections of the 

median third of the LV (n = 4-6/group) were flash frozen in liquid nitrogen and sent to VCU 

Tissue and Data Acquisition and Analysis Core (TDAAC) Facility for tissue processing and 
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cryosectioning. Apoptosis was examined using TUNEL assay according to manufacturer’s 

instructions which were described in Chapter 2. The apoptotic rate was expressed as the number 

of apoptotic cells of all cardiomyocytes per field. The apoptotic rate in the peri-infarct regions 

was calculated using 10 random fields, which virtually cover the entire peri-infarct area. 

Myocardial fibrosis was examined to address prevalence of scar formation within the LV. 

Heart sections (5 μm) were stained with Masson’s trichrome (Sigma). Fibrotic area was 

computed using computer morphometry (Bioquant) and expressed as a percentage of left 

ventricle. 

 

Determination of Vascular Density 

The vascular density in the peri-infarct region of myocardial tissue was determined as 

previously described (147). In brief, tissue sections were stained using CD-31 antibody 

(Millipore) for evaluation of vascular density. Blood vessels were quantified using 

histomorphometry. Vessels were distinguished from larger arterioles and venules by deriving 

lumen diameters from area assessments of each vessel. Only vessels with diameters <10 μm and 

cut in an orthogonal fashion were considered and included in the quantification. For 

quantification of positively stained vessels, five sections within the peri-infarcted area of each 

animal were analyzed. Blood vessels were detected at low magnification, x 200. 
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Data Analysis and Statistics 

Data are presented as mean ± S.E. The differences between groups were analyzed with 

one way analysis of variance followed by Student-Newman-Keuls post hoc test for pair-wise 

comparison. P<0.05 was considered to be statistically significant. 
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Results 

PDE-5 Inhibition Enhances ASC Survival in Infarcted Hearts 

To determine the engraftment of ASCs, we examined myocardial tissue sections for the 

presence of PKH26 positive cells. Donor PKH26 positive cells were identified only in mice that 

received ASCs after treatment with sildenafil or shRNA
PDE-5

. PKH26-positive cells were present 

primarily within the epicardial layer of the infarct border zone region (Fig. 16). There was no 

evidence of engrafted ASCs in mice receiving control non-preconditioned ASCs. To determine 

endothelial cell differentiation of ASCs, we immunostained heart sections with endothelial cell 

specific marker, CD31, and assessed for co-localization of PKH26 positive cells.  Animals 

receiving ASCs treated with sildenafil or shRNA
PDE-5

 showed CD31 positive cells. 
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MI +  Sil ASC MI + shRNAPDE-5 ASC

MI +  Sil ASC MI + shRNAPDE-5 ASC

MI + shRNACON ASCMI + ASC

MI + ASCMI +  ASC MI + shRNACON ASC

 

Figure 16.  Tracking of PKH26 labeled ASCs following myocardial infarction.  ASCs were 

preconditioned with sildenafil (Sil) or shRNA
PDE-5 

and injected in the LV wall following 

myocardial infarction. (A) PKH26 labeled ASCs Labeled (red) transplanted Sil or shRNA
PDE-5 

ASCs.  DAPI (blue) was used to visualize nuclei.  (B)  Immunostaining of CD31 (green), PKH26 

(red) and DAPI (blue). 
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Preconditioned ASCs Improve Cardiac Function, Reduce Fibrosis and Apoptosis  

Figure 17A shows representative M-mode images 4 weeks after MI. Significant 

functional loss continued over the following 28 days in saline-treated hearts. Echocardiography 

recordings show that values for all measures of LV function decreased significantly in hearts 

treated with PBS post MI as compared with sham.  Conversely, hearts injected with ASCs 

demonstrated a trend toward an increase in function.  However, treatment with preconditioned 

ASCs demonstrated significant improvement in function as compared with non-preconditioned 

cells or PBS.  Specifically, LVEDD, LVESD, EF, and FS were improved significantly in mice 

receiving sildenafil-treated ASCs as compared with mice receiving non-treated ASCs at 4 weeks 

after MI (Fig. 17).  Administration of ASCs preconditioned with shRNA
PDE-5 

also caused similar 

enhanced preservation of cardiac function and attenuation of cardiac remodeling as compared to 

ASCs treated with control vector.  There were no significant differences in the echo parameters 

in mice receiving shRNA
CON

 ASCs and non-treated ASCs (Fig. 17).   

The percentage of fibrosis in the LV wall was 55 to 60% lower in hearts receiving ASCs 

preconditioned with PDE-5 inhibition as compared to non-treated ASCs (7.1±0.7% with 

sildenafil-treated ASCs; 6.8±1.7% with shRNA
PDE-5

 ASCs vs  14.9±3.8% with non-treated 

ASCs, p < .05, n=5).  All cellular treatment groups showed significant reduction in fibrosis 

compared with PBS controls (31.3±3.8%, Fig. 18).  Also, the reduction in fibrosis seen in 

sildenafil-treated and shRNA
PDE-5

 ASCs correlated with a reduction of cardiomyocyte apoptosis.  

PBS-treated mice after 4 weeks of permanent occlusion had a resident myocyte apoptotic rate of 

3.3±0.32%, which was reduced to 1.9±0.23% in non-treated ASC group.  Sildenafil-treated or 
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shRNA
PDE-5

 ASCs injected mice further reduced apoptosis (0.9±.14% with sildenafil and 

0.8±.12% with shRNA
PDE-5

 ASCs, p<0.05 vs. PBS control, n=5, Fig. 19). 
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Figure 17.  Transplantation of preconditioned ASCs improves cardiac function and 

remodeling following myocardial infarction.  (A) Representative M-mode images showing 

preservation of LV contractility of hearts treated with preconditioned ASCs as compared with 

non-treated ASCs control following myocardial infarction (MI).  Bar diagram showing 

quantitative data of hearts treated with preconditioned ASCs as compared with non-treated ASCs 

control following myocardial infarction. (B) LV end-diastolic diameter; (C) end-systolic 

diameter; (D) fractional shortening; (E) ejection fraction; (n≥5). 
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Figure 18.  Preconditioned ASCs reduces myocardial fibrosis following myocardial 

infarction. (A) Representative Masson’s trichrome staining of tissue sections and accompanying 

(B) bar diagram showing quantification of the amount of fibrosis (n=4).   
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Figure 19.  Preconditioned ASCs reduces myocardial apoptosis following myocardial 

infarction. (A) Representative TUNEL staining of sections and (B) bar diagram showing 

quatification of TUNEL positive cells; (n=4). 
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Preconditioned ASCs Increase Vascular Density and Secretion of Growth Factors 

Rapid restoration of blood supply to the ischemic region is critical for stabilizing the 

border region of the infarct and supporting viable and regenerating myocardium.  We used CD-

31 positive staining to determine the vascular density in the border zone of MI. Transplantation 

of ASCs significantly increased vascular density as compared with that of PBS-treated hearts 

(Fig. 20). However, the vascular density in sildenafil and shRNA
PDE-5

 ASCs treated mice was 

significantly enhanced as compared to non-treated ASCs mice (8.3±1.3 in sildenafil-treated 

ASCs; 7.8±0.5 shRNA
PDE-5

 ASCs vs 4.5±0.6 vessels/HPF, p<0.01, n=4) (Fig. 20). Moreover, the 

plasma levels of b-FGF, Ang-1, and VEGF were significantly increased in mice receiving 

preconditioned ASCs (with sildenafil-treated or shRNA
PDE-5

 ASCs) as compared to non-treated 

ASCs (p<0.001, n=5, Fig. 21). 
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Figure 20.  Preconditioned ASCs increases vascular density following myocardial 

infarction. (A) Representative images and (B) bar graph depicting immunostaining of sections with 

CD31 to assess vascular density; (n=4). 
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Figure 21.  Transplantation of preconditioned ASCs enhances release of growth factors 

following myocardial infarction.  Bar diagram showing blood levels of (A) b-FGF, (B) VEGF 

and (C) Ang-1  from the sham and infarcted hearts treated with PBS (MI); non-preconditioned 

ASCs (MI+ASC); preconditioned with sildenafil (MI+Sil ASCs) or PDE-5 silencing vector, 

shRNA
PDE-5 

 (MI+ shRNA
PDE-5

) 4 weeks after MI.  Note that preconditioned ASCs enhanced 

release of b-FGF, VEGF and Ang-1 as compared to control hearts; (n=5). 
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Discussion 

Current treatment of MI still leaves a significant number of patients with impaired 

cardiac function that leads to more severe LV dysfunction as the ventricle remodels. Thus, cell 

therapy has generated much excitement as a novel therapy that might provide additive benefits 

over conventional treatment to restore or prevent further LV dysfunction after MI.  Although 

there have been several reports that ASCs improve cardiac function post-MI effects have been 

limited (69-72).  This study investigated the feasibility of ex vivo preconditioning by PDE-5 

inhibition as a strategy to enhance the efficacy of stem cell therapy post-MI.  As described in 

Chapter 2, PDE-5 inhibition in ASCs confers a powerful preconditioning-like effect against 

SI/RO limiting apoptosis and necrosis thus increasing survivability. The present study shows 

significant improvement in cardiac function 4 weeks after transplantation of preconditioned 

ASCs as demonstrated by significant preservation of FS and EF as compared to other treatment 

groups.  Moreover, the superior functional improvement compared with non-preconditioned 

ASC injected group was associated with enhanced vascular density (Fig. 20), decrease in fibrosis 

and resident cardiomyocyte apoptosis (Fig. 18, 19). The observed benefits correlated with 

increased plasma levels of pro-angiogenic growth factors including VEGF, b-FGF, and Ang-1.  

Various studies have reported the beneficial effects of stem cell therapy without long-

term engraftment, and a link between donor cell-derived factors and LV recovery following 

cellular transplantation (67, 148-150).  In the present study, we also observed a very limited 

number of PKH26 positive ASCs cells that were identified only in hearts which received 

preconditioned ASCs.   PKH26-positive cells were present primarily in the epicardium of the 

border zone regions after 4 weeks (Fig. 16). The observation that only a limited number of 
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preconditioned cells were present 4 weeks post-MI is consistent with other studies that suggest 

that improving the effectiveness of graft patency with stem cells is dependent on increased 

concentrations of NO (151).  We observed an increase in NO generation following sildenafil 

treatment (Chapter 2).
   

Furthermore, other studies have showed a rapid loss of transplanted cells 

after 24 h and 7 d following direct intramyocardial injection post-MI. Moreover similar to our 

study, it was reported that the numbers of cells present in the post-MI heart were almost 

negligible by 2 weeks. However, cellular transplantation still attenuated LV dysfunction and 

remodeling, reduced myocyte apoptosis and augmented myocardial neovascularization, despite 

poor engraftment of transplanted cells (152).   Another study by MacLellan et al (51) 

demonstrated the ability of ASCs, delivered acutely following LAD ischemia/reperfusion, to 

improve cardiac function independent of engraftment.  This is in agreement with Limbourg et al. 

who also showed that hematopoietic stem cells can improve cardiac function post-MI, even in 

the absence of sustained engraftment (153). Interestingly, similar reductions in fibrotic tissue 

have
 
been observed when either the supernatant from the modified

 
cells or specific secreted 

proteins used to modify the mesenchymal
 
stem cell were injected into the infarct zone (66).

 

These observations support the paracrine hypothesis of myocardial
 
repair, and suggest not only 

the potential for pharmacological or genetic enhancement
 
of stem cell therapies, but also suggest 

that high degree
 
of benefit observed with cell therapy is independent of cellular engraftment.  As 

cellular differentiation does not appear to play a major role in the therapeutic effect of ASCs in 

this model system, it is logical to hypothesize that the paracrine release of cytokines and growth 

factors by the transplanted ASCs in the first few days or weeks after injection is responsible for 

the observed effects. Consistent with our results, it is possible that a small number of specifically 
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conditioned or genetically altered cells may be able to exploit paracrine pathways to maximize 

the biological and clinical effects after cell delivery (9, 58 148, 154-159). Paracrine factors 

released by modified or preconditioned ASCs potentially mediate multiple mechanisms such as 

myocardial cell survival, remodeling, contractility, increased blood flow to ischemic tissue, 

regulation of inflammatory response, and recruiting endogenous stem cells to regenerate injured 

tissue. The lack of significant engraftment despite tremendous reduction in cardiac fibrosis seen 

in the preconditioned ASC treatments suggests that a paracrine mechanism from enhanced 

secretion of growth factors may play an important beneficial role in repairing the damaged 

myocardium.  

  This proposed mechanism has been suggested by other investigators examining stem cell 

therapy administered acutely post-MI.  Angiogenic and cytoprotective growth factors such as 

VEGF and Ang-1 have been shown to significantly improve cardiac function through increased 

angiogenesis and decreases in infarct size when administered acutely or delivered as a gene 

construct post-MI (21, 57, 59).  Similarly, Li et al. showed that increased capillary density 

following ASC treatment in a rat model of MI that correlated with higher VEGF mRNA and 

protein levels (57). Experiments have compared the effects of individual angiogenic genes, Ang-

1 and VEGF with ASC therapy in a murine model of MI.  While both Ang-1 and VEGF 

significantly improved cardiac performance, ASCs were superior in alleviating diastolic function 

and improving capillary density.  In our present study, we observed that reduction in fibrosis 

following transplantation of preconditioned ASC was associated with increased angiogenesis in 

the infarcted areas in post-MI hearts as demonstrated by increased capillary and arteriole density 

within the infarct border zones (Fig. 20). Our results showed that the observed improved vascular 
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density after transplantation of preconditioned ASCs was correlated with increased secretion of 

growth factors with angiogenic potential; b-FGF, IGF-1 and VEGF (Chapter 2).  While 

myocardial hypoxia during infarction has been demonstrated to induce expression of angiogenic 

growth factors including VEGF, the increased plasma levels of VEGF, Ang-1, and b-FGF we 

observed following treatment with preconditioned ASCs suggests the increased duration of 

ASCs within the ischemic microenvironment possibly allows them to function as ―paracrine 

pumps‖ to sustain increased levels of growth factors which are known to lead to increased 

angiogenesis, suppression of cardiac fibrosis, and attenuation of cardiomyocyte apoptosis.   

A number of studies have shown that apoptosis in cardiomyocytes contributes to the 

progression of heart failure after MI (97, 160), and chronic cardiac remodeling with chamber 

dilation and impaired systolic function is associated with increased myocyte apoptosis in the 

infarct border zone after MI (161). Our results demonstrate that transplantation of preconditioned 

ASCs abrogated resident cardiomyocyte apoptosis seen in non-treated ischemic hearts.  

Furthermore, the extent of apoptosis was significantly lower from preconditioned ASC treated 

hearts compared with control ASC treated hearts at 28 days post-MI.  Overexpression of Ang-1, 

VEGF, or b-FGF has been shown to improve cell survival, neovascularization, and cardiac 

function by limiting the remodeling process in the scar while decreasing apoptosis of myocytes 

in the peri-infarct region (21, 58, 78). Transplantation of ASCs along with their secretion of 

VEGF, bFGF, and IGF attenuated cardiomyocyte apoptosis in vitro and in vivo (21). 

Preconditioning of ASCs through PDE-5 inhibition exerts a similar cardioprotective effect. The 

present results are consistent with the limitation of necrosis and apoptosis of adult 

cardiomyocytes treated with conditioned medium and preconditioned ASCs subjected to SI/RO 
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(Chapter 2) suggesting that the protective effect is attributed to increased duration and release of 

paracrine factors in the ischemic myocardium.  

Besides the increased duration of pro-survival growth factors, another explanation for the 

cardioprotection seen following transplantation of preconditioned ASCs, could be due to the 

induction of NO generation following PDE-5 inhibition observed in Chapter 2. We speculate that 

increased duration of preconditioned ASCs concomitant with increased NO release could allow 

for diffusion of NO into the ischemic region and possibly preserve cardiomyocytes through the 

opening of mitoKATP channels, preventing Ca
2+

 overload, and reducing oxidative stress.  

Moreover, we have shown that sildenafil attenuated apoptosis as well as necrosis in 

cardiomyocytes subjected to simulated ischemia and reoxygenation through nitric oxide (NO)-

dependent pathway (75). It is also likely that the reduction of fibrotic tissue seen after cellular 

treatment with preconditioned ASCs could be the result of increased generation of NO that could 

then diffuse into the ischemic zone and restore the cGMP/PKG pathway. We have reported 

previously that sildenafil-induced increases in NO is involved in infarct size reduction after 24 h, 

even in a model of permanent LAD occlusion  as the infarct sparing effect of sildenafil were 

blocked with NOS inhibitor, L-NAME (91). Although, there is no clear mechanism for the 

observed reduction of apoptosis and fibrosis following preconditioned ASC therapy, it is likely 

that increased release of NO along with pro-survival growth factors confers a cardioprotective 

mechanism through enhanced paracrine signaling.  However, further studies are needed to 

investigate the role of NO in our model. 

In conclusion, we have shown that ex vivo preconditioning of ASCs by PDE-5 inhibition 

prior to transplantation into mice post-MI ameliorates LV remodeling, preserves LV function, 
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and reduced cardiomyocyte apoptosis and fibrosis possibly by improving stem cell survival and 

paracrine effects.   Sildenafil is already being tested clinically in patients with heart failure and 

preserved ejection fraction (i.e. EF>50%) in the ongoing NIH multicenter trial (RELAX: 

Evaluating the Effectiveness of Sildenafil at Improving Health Outcomes and Exercise 

Ability in People With Diastolic Heart Failure; NCT00763867).  We believe that the easy 

availability of ASCs from humans during surgery combined with the preconditioning strategy of 

blocking PDE-5 using clinically approved PDE-5 inhibitors may hold great promise for initiation 

of clinical trials in heart failure patients. 
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Chapter 4 

Conclusion and Future Directions 

 

 

 

Ischemic heart disease (IHD) remains a leading cause of morbidity and mortality despite 

recent advances in pharmacotherapy and improved acute care. Increased incidence of risk factors 

such as hypertension, obesity, diabetes, and smoking over the last several decades have all 

contributed to this increased prevalence of IHD. Therefore a conceptual breakthrough is needed 

to develop novel targets and strategies to prevent and cure IHD.    In recent years, cardiac repair 

by stem cells has gained tremendous attention and imagination because of its initial success and 

safety potential. However, there are several major hurdles such as improvement in the number of 

reparative cells homing to injured areas, selection of ideal cell type(s), enhancement of 

regenerative and differentiation capacity of transplanted cells and optimization of extracellular 

milieu for engraftment and differentiation that would significantly impact long-term beneficial 

effects on cardiac functions.  In the present study, we have used an innovative strategy of 

preconditioning the adipose stem cells (ASC) through inhibition of phosphodiesterase-5 (PDE-5) 

by sildenafil or genetic knockdown with a silencing vector.  Our results showed that 

preconditioned ASC developed significant resistance against ischemic injury in vitro with both 

of these approaches.    Furthermore, transplantation of preconditioned ASC following a chronic 
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model of myocardial infarction (MI) resulted in amelioration of left ventricular (LV) remodeling, 

preserved LV function, reduced cardiomyocyte apoptosis and fibrosis possibly by improving 

stem cell survival through paracrine effects.  We also like to mention that sildenafil is an 

interesting drug because it is widely used for treatment of erectile dysfunction and other 

cardiovascular disorders including pulmonary hypertension in patients.  Moreover, there is an 

ongoing NIH multicenter trial (RELAX: Evaluating the Effectiveness of Sildenafil at Improving 

Health Outcomes and Exercise Ability in People With Diastolic Heart Failure; NCT00763867) in 

patients with heart failure. Another clinical trial on sildenafil has recently been initiated 

(REVERSE-DMD, NCT01168908) to treat Duchenne’s patients with cardiac disease, which is 

currently recruiting patients at the Johns Hopkins Medical Institutions.  Because of the clinical 

safety and efficacy of sildenafil, we believe that this drug would be an ideal candidate to trigger 

cGMP-dependent surivival pathway for preconditioning of ASC and their eventual use in 

patients for myocardial repair      

We also like to stress that despite our promising results, further studies need to be done to 

investigate the role of PDE-5 inhibition in enhancing stem cell therapy.  In particular   the effect 

of preconditioned ASC transplantation should be examined in a model of ischemia/reperfusion 

injury model in addition to the permanent ischemia model used in the current investigation. This 

is because the majority of patients with acute myocardial infarction
 
undergo spontaneous or 

therapeutic reperfusion.  Reperfusion is known to cause tissue damage when blood supply 

returns to the tissue following ischemia.  The restoration of circulation following the absence of 

oxygen and nutrients from blood results in a surge of free radicals in the form of reactive oxygen 

species and oxidative stress causing subsequent oxidative damage and inflammation.  
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Consequently, it is of utmost importance
 
to determine whether ASC are effective when coronary 

occlusion
 

is followed by reperfusion, an event that dramatically alters
 
the milieu of the 

myocardial interstitium and of the myocardium
 
itself.  

In addition to the physiological studies, there is critical need to examine new molecular 

mechanisms by which preconditioning of ASC leads to improvement in cardiac function and 

preservation of myocardial structure.  We will study the role of PKG in mediating the 

cytoprotective effect by using strategies such as overexpression of PKG-1α in ASC using 

adenoviral/lentiviral approaches prior to transplantation in the heart.  We also plan to study the 

role frizzled related protein 2 (Sfrp2) as a survival molecule in ASCs preconditioned with PDE-5 

inhibition/PKG1α overexpression.  Recent studies have identified sfrp2 as a key survival 

molecule which acts via the canonical Wnt/β-catenin pathway (162). We anticipate that our 

current study and future efforts would lead to expanding the use of sildenafil and other clinically 

used PDE-5 inhibitors in regenerative medicine.   
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16. Salloum FN, Das A, Chau VQ, Hoke NN, Ockaili RA, Stasch PJ, Kukreja RC. Bay 58-

2667, a Novel NO-Independent Activator of Soluble Guanylate Cyclase, Protects Against 

Ischemia/Reperfusion Injury: Role of Hydrogen Sulfide Signaling. Accepted for 

presentation at Experimental Biology 2010 Annual Conference. 

 

17. Salloum FN, Chau VQ, Hoke NN, Abbate A, Kukreja RC. Mitigation of Heart Failure 

Progression with Sildenafil Involves Inhibition of Rho-A/Rho Kinase Pathway.  Accepted 

for presentation at Experimental Biology 2010 Annual Conference. 

 

18. Salloum FN, Hoke NN, Das A, Sturz GR, Thomas CS, Kukreja RC. MicroRNA-21 

mediates cardioprotection with PKGI-α over-expression through upregulation of hydrogen 

sulfide.  Accepted for presentation at the American Heart Association 2010 Annual 

Conference. 

 

19. Hoke NN, Salloum FN, Woolbright BL, Das A, Kukreja RC. Sildenafil Increases the 

Efficacy of Adipose Derived Stem Cell Transplantation following Myocardial Infarction.  
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Accepted for presentation at VCU’s Watt’s Day 2010 and Experimental Biology 2011 

Annual Conference.   
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