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Over the last century, physiological signals have been broadly analyzed and processed not only to

assess the function of the human physiology, but also to better diagnose illnesses or injuries and

provide treatment options for patients. In particular, Electrocardiogram (ECG), blood pressure

(BP) and impedance are among the most important biomedical signals processed and analyzed.

The majority of studies that utilize these signals attempt to diagnose important irregularities such

as arrhythmia or blood loss by processing one of these signals. However, the relationship between

them is not yet fully studied using computational methods.

Therefore, a system that extract and combine features from all physiological signals represen-

tative of states such as arrhythmia and loss of blood volume to predict the presence and the severity

of such complications is of paramount importance for care givers. This will not only enhance di-

agnostic methods, but also enable physicians to make more accurate decisions; thereby the overall

quality of care provided to patients will improve significantly.
10



In the first part of the dissertation, analysis and processing of ECG signal to detect the most

important waves i.e. P, QRS, and T, are described. A wavelet-based method is implemented

to facilitate and enhance the detection process. The method not only provides high detection

accuracy, but also efficient in regards to memory and execution time. In addition, the method is

robust against noise and baseline drift, as supported by the results.

The second part outlines a method that extract features from ECG signal in order to classify

and predict the severity of arrhythmia. Arrhythmia can be life-threatening or benign. Several

methods exist to detect abnormal heartbeats. However, a clear criterion to identify whether the

detected arrhythmia is malignant or benign still an open problem. The method discussed in this

dissertation will address a novel solution to this important issue.

In the third part, a classification model that predicts the severity of loss of blood volume by

incorporating multiple physiological signals is elaborated. The features are extracted in time and

frequency domains after transforming the signals with Wavelet Transformation (WT). The results

support the desirable reliability and accuracy of the system.

11



Novelty and Contributions

As death and complications associated with arrhythmias and severe loss of blood, in particular

the ones resulted from traumatic injuries, are increasing, so is the need for computer systems to

provide care givers with more detailed and more accurate information about the health of patients.

By creating such systems, diagnostic procedures, treatment outcomes and resource management

can be improved, and thereby ameliorate the survival rate only by means of quality, but also in a

cost effective sense.

Prior work has most often used single physiological signals at a time to detect arrhythmia or

predict the severity of loss of blood volume. However, a combination of the signals must also be

taken into account. Specific features such as the number of ectopic beats, heart rate and temper-

ature may have an important impact on the outcome and prediction of the severity of arrhythmia,

and thereby increase the accuracy of such predictive systems.

This dissertation focuses on the processing of ECG signal to detect the deflection waves to cre-

ate a model to predict the severity arrhythmia and blood volume loss using wavelet-based methods

and machine learning algorithms. The overall study aims to create a system that is capable of

combining features - including but not limited to the number of ectopic beats and heart rate - to

accurately predict patient’s condition from vital physiological signals such as ECG, blood pressure

and impedance.

The motivation for focusing on arrhythmia and hemorrhage is the fact that they are broadly

prevalent. The majority of the population experience arrhythmias daily whereas severe loss of

blood is found only among the spectrum of injuries. The following key components can summarize

the systems created in this dissertation:
12



1) A novel method to detect P, QRS, and T components of electrocardiogram signal, using wavelet-

based methods.

Since ECG is one of the best indications on how a human heart functions, analysis and pro-

cessing of ECG are conducted using many different methods. Generally speaking, since P

and T waves are hard to detect, the majority of previous studies concentrate on the detection

of only QRS complex. However, the method in this dissertation attempts to detect P and

T deflection points along with QRS components. The exact shape of an ECG beat is also

important and can cause complications in the detection process; for example, the polarity of

the beat can be positive or negative, which greatly affect the detection process. The specified

algorithm in this dissertation can be used to extract features from not only the five charac-

teristic waves, but also the overall shape of a beat. This has a major effect on the accuracy of

the overall system, in particular on the classification of arrhythmia as well as the prediction

of arrhythmia severity procedures.

2) A classification model using Support Vector Machine (SVM) that incorporates wavelet-based

features from ECG to classify the arrhythmia associated in the signal and detect severity.

Many algorithms using ECG morphological information are developed to detect abnormal

(ectopic) heart beats. However, the extracted set of features, do not include information

from P and T waves since they are not easy to detect. Detecting and extracting informative

features, can be thought of as the major challenge in creating an arrhythmia detection model.

The irregularities caused by arrhythmias affect the shape and timing of P and T waves as

well as QRS complex. Therefore, attributes such as the shape of P and T wave, duration of

important intervals such as ST-segment and relative amplitude of R wave must be measured

13



and included in the feature set in order to accurately detect ectopic beats.

The crux of the arrhythmia model implemented in this dissertation is to detect the severity

of from ECG signal. The method extracts features from P and T waves, QRS-complex, and

interval durations of waves in ECG using a novel detection algorithm. The set of attributes

are then fed into the SVM algorithm to train a model, it is then used to classify unknown

beats. The output of the model is a vector that contains the labels of each beat. Then, the

vector is used as input to a deterministic finite state automaton (DFA) to predict the severity

of arrhythmia based on rules provided from expert physicians.

The model is used to extract features, such as the rate of abnormal beats, to predict the

severity of blood loss.

3) A prediction method for loss of blood volume severity.

The main goal of this dissertation is to create a computerized model that can predict the

severity of blood loss in a scale of three levels; mild, moderate and severe.

Bleeding seems to affect vital biomedical signals such as ECG, blood pressure and impedance.

Analysis and processing of such signals are carried out in this dissertation to extract novel

features from time domain and wavelet coefficients. In addition, arrhythmia-related features

such as the rate of ectopic beats are also extracted and combined to the computed set of

features from the aforementioned signals for model building. To evaluate the importance of

incorporating multiple physiological signals, several models are created.

The overall system that combines these methods can be used to predict the severity of blood

volume loss. The gamut of the systems discussed hereafter provide an insight in creating an
14



automated decision support system that provides caregivers with accurate information, especially

in high-paced environments.
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CHAPTER 1 Introduction

1.1 Traumatic Injuries

In the United States, as in much of the world, traumatic injuries are considered the main cause of

death and disability in both civilian and combat settings [7, 39, 73, 103, 107]. Almost 36% (41.9

million out of 115.3 million) of all visits made to hospital emergency departments in the United

States are injury-related visits [94, 95]. Motor vehicle collision (MVC) is the leading cause of

injury death and the fourth leading cause of non-traumatic injuries treated in emergency rooms

(ERs) in the United States. More than 39% (343,570 out of 864,736) of deaths from unintentional

injuries between 1999 and 2006 are caused by MVCs [38, 124].

One of the most prevalent traumatic injuries is traumatic brain injury (TBI). The Federal Cen-

ters for Disease Control and Prevention (CDC) reported in 2004 that 1.4 million TBIs occur in the

US annually. Approximately, more than 85% of brain injuries that occur in the US each year are

considered mild. Although nonsevere brain injuries do not affect life expectancy, young patients

may face several years of neurological disorder (e.g. congenital malformation) leading to substan-

tial inability and unemployment [6, 31, 36, 78]. About 10% to 20% of traumatic injury patients

may suffer from post-traumatic stress disorder (PTSD) and 9% to 15% develop major depressive

disorder [94, 95]. On the other hand, pelvic injuries caused by high-energy impacts that destroy

the integrity of the pelvic ring are associated with a mortality rate of between 5 and 20% [108].

A presumably lethal consequence of traumatic injury, hemorrhagic shock (HS) is defined as the

excessive loss of blood due to bleeding [46, 62, 82]. HS may happen internally (inside the body) or

1
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externally, resulting in lack of blood flow throughout the body, hence inadequate tissue perfusion,

specifically in major organs such as the heart, lungs, brain, kidneys, etc [4, 46, 62, 82, 106].

Approximately 50% of deaths occurred in battlefields and 80% of civilian trauma mortalities in the

United States are as a result of severe loss of blood [85]. Notably, most deaths from pelvic fracture

are due to complications other than the fracture itself [34]. As many vital organs are located within

the pelvic structure, internal hemorrhage is a particularly high risk complication. In such cases the

patient may die from the hemorrhage itself, via exsanguination or shock. Alternatively, death

might be due to other conditions caused by hemorrhage such as severe infection [8].

It is reported that a better pre-hospital injury care can decrease both the incidents of trauma

life loss during the first few hours after injury and the long-term death and sickness, because such

better care may prevent incurable changes that could otherwise lead to death [30, 105]. A major

finding in a retrospective study by the Israel Defense Forces is that more than 83% (83 out of 101)

of the soldiers were killed during the first hour of injury and hemorrhage accounts for 50% of

deaths which makes it the major cause of death in the study group [112]. Another important study

finds that over 56% (643 out of 1130) of US military casualties between March and September of

2004 are as a result of battle injuries [126].

An important non-invasive signal that measures the heart activity is the heart rate variability

(HRV or RRI). HRV can be obtained from ECG signal when applying a simple QRS detection

algorithm. The difference in time between successive R peaks is then calculated to form RRI sig-

nal. Recently, analysis of HRV from electrocardiography (ECG) recording has become a popular

method for assessing activity of the autonomic nervous system.

Several studies over the past 20 years have discovered significant relationship between HRV

and heart diseases [23, 24, 37, 80, 100, 110]. Monitoring irregularity of heart beats observed in
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HRV appears to provide insightful information about the heart and neurological diseases as well

as physical and mental stress. Specifically, RRI is wildly studied as a measure of cardiovascular

function that can be used in risk estimation and diagnosis of cardiac events.

Power spectrum density (PSD) and fractal dimension (FD) are the traditional techniques used

for HRV analysis. Previous studies demonstrate that PSD and FD are useful tools to study the

heart functionality [24, 28, 29, 37, 80, 100, 110]. A common observation indicates that HRV

complexity is reduced in cardiac diseases. However, those traditional methods are limited to the

analysis of signals whose statistical characteristics change slowly. Moreover, PSD, naturally, con-

siders that the signal to analyze is at least weakly stationary. However, HRV signal is extremely

nonstationary [10, 84, 120]. Analysis and interpretation of nonstationary signals are significantly

more complicated than the stationary ones, requiring methodologies such as wavelet transform.

During pre-hospital transportation of traumatic injuries, vital biomedical signals such as ECG

and BP are regularly measured to manually assess the patient’s condition. Physicians face a chal-

lenging task: to integrate the information and make rapid and accurate treatment decisions in a

high-pace and stressful environment. Since inaccurate diagnosis severely impacts the welfare of

the patient and the cost of treatment, developing a system to automatically assess the severity of

injury as early as possible could both improve patient care and reduce costs; thereby enhance the

treatment provided by care givers [39]. Currently, however, there is no widely used system that can

evaluate the severity of injury by integrating and processing multiple physiological signals. Such

a system would need to analyze and process multiple physiological signals and extract informative

features to report the latent infirmity of a critical subject.
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1.2 Significance of this Study

The clinical significance of the prediction of loss of blood volume system lies in its capability to

provide physicians, and care givers with time-sensitive information which allow them to deliver

high quality care by improving diagnostic procedures, and making more accurate decisions in

high-pace critical environments. In addition, an accurate prediction system may be used in rural

and remote areas where trauma experts may not be available.

In the biomedical field, the analysis of ECG signals for the detection of P-QRS-T wave com-

ponents has received considerable attention. Wavelet transformation has previously been used to

detect all deflection points of ECG signal. In this dissertation, the detection system incorporates a

computationally efficient method compared to discrete wavelet transform which is called dual-tree

complex wavelet transform (DT-CWT). The algorithm is not limited to be used in prediction of

bleeding severity or arrhythmia detection systems. Any study that manipulates the ECG signal to

discover similar diseases and complications may benefit from the capability of this system.

1.3 Aims of this Study

The ultimate aim of this study is to construct a lucid system that can discover the latent risk

associated with excess loss of blood volume by integrating relevant knowledge from biomedical

signals, to support health care providers in diagnosis and treatment of injuries. The specific aims

for this study are:

1) Analyze and process electrocardiogram signals using dual-tree complex wavelet transform

(DT-CWT) to delineate the main deflection points (i.e. P-QRS-T).

2) Create a classification model using support vector machine learning algorithm to discriminate
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between three functional types of heartbeats; normal (N), premature atrial contraction (PAC)

and ventricular ectopic beat (VEB).

3) Amalgamate features from vital physiological signals (i.e. ECG, BP and impedance) and ar-

rhythmias (e.g. number of abnormal beats) to predict the severity of loss of blood volume

in patients with injury.

The remaining chapters of this dissertation are organized as follow: Chapter 2 describes the

related work as well as the advantages and limitations of the study. Chapter 3 presents the de-

tection algorithm of ECG deflection points. Chapter 4 explains the methodology for arrhythmia

classification and severity detection. Chapters 5 describes the system for the severity of blood loss

prediction. Chapter 6 contains an evaluation of the systems implemented. Chapter 7 describes the

time complexity of the algorithms. Chapter 8 elaborates the conclusions of the study as well as

the future work.
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CHAPTER 2 Background and Related Work

This chapter elaborates previous work related to methods addressed in this study. First, a

discussion of previous studies about the detection of ECG characteristic points is presented. Al-

gorithms specific to arrhythmia detection from ECG signals are then reviewed. Finally, methods

specific to detect and predict loss of blood volume severity are surveyed.

2.1 ECG Detection Systems

During the last decade, several ECG detection methods have been proposed. The majority of these

systems focus only on the detection of QRS-complex, since the relative magnitude of R wave is

much higher than the other waves (P and T). As such, studies that detect P and T components along

with QRS-complex are sparse. Meanwhile, different methods for QRS detection have been used

in several applications; for instance, approaches based on signal derivative [15, 17, 48, 63, 99],

mathematical morphology [117, 121, 133, 134], Hidden Markov Models (HMM) [20, 21, 44],

Hilbert Transform (HT) [9, 11, 42], Artificial Neural Network (ANN) [97, 119, 131], and Wavelet

Transform (WT) [75, 79, 83, 109] are among the most popular studies.

Derivative methods are based on calculating the first or second derivative of the signal to

enhance the slope of the R wave. Although noise is the main challenge for such methods. It can

be reduced by applying a bandpass filter as a preprocessing step. Derivative-based algorithms are

computationally simple and are understandable.

Mathematical morphology approaches are based on the terms erosion (	) and dilation (⊕)

that are drawn from image processing field, and applied for ECG signal-to-nose enhancement.

6
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Derived operators are opening (◦) and closing (•), that are designed as signal morphologic filters.

The detection of QRS is done by applying a sequence of mathematical morphology operations. In

addition noise is reduced and baseline contaminations are removed by successive application of

the morphological operators. The results of mathematical morphology are better than derivative

methods. However, the use of threshold values are selected empirically which makes it hard to

create a general method for all types of datasets.

HMM methods use a probability function that changes according to the underlying Markov

chains to model the observed data sequence. The crux of these algorithms is to extract the under-

lying state from any given portion of a signal; for example in ECG signals, possible states are P

wave, QRS, and T wave. The main drawback for such methods are the need to manually segment

each ECG cycle before training.

Hilbert transform approaches utilize the fact that Hilbert transform is an odd function. This

means that Hilbert transform of a signal will result in another signal that will cross zero on the time

axis (x-axis) whenever there is a deflection in the original signal. Though, noise and baseline drifts

will influence the transformation. However, it is not a disadvantage since the effect can be reduced

by applying a filter to ameliorate signal-to-noise ratio. Although results of Hilbert transform are

easy to understand and interpret, calculating Hilbert transform of long signals is very slow even

when Fast Fourier Transform (FFT) is used.

ANNs have been broadly used in nonlinear signal processing, classification, and optimization.

In ECG signal processing, multilayer perceptron (MLP), radial basis function (RBF) networks,

and learning vector quantization (LVQ) networks have been employed. While efficiency of ANNs

is better than classical linear methods for several applications. Optimization of the network pa-

rameters (i.e. number of neurons, the coefficients, center vectors and the standard deviations of
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the bases function) requires a great deal of computational effort.

Of particular relevance to the detection method adapted in this research are studies that apply

wavelet transformation. The transform of a signal yields in a time-scale representation similar to

the representation of time-frequency of the short-time Fourier transform (STFT). Unlike STFT,

WT uses a set of bases functions that allow flexible time and frequency resolution for different

frequency bands. The analysis function is called the mother wavelet, which is often a short os-

cillation, with finite time, and zero mean. Several mother wavelets exist. Unfortunately, there is

no universal rule to choose among them. However, the mother wavelet to be used is preferred to

captures the shape of the dominant waveform in the processed signal [92]. For digital signals, the

discrete wavelet transform (DWT) is applied. DWT can be easily implemented on digital signal

processors which makes it a valuable tool in the biomedical field. Moreover, the computational

complexity of DWT is of order O(n), which means it is very fast and simple.

The detection method in this study incorporates dual-tree complex wavelet transform (DT-

CWT), which is a recent enhancement to DWT. The importance of using this mother wavelet are

two fold; it is shift invariant, and is based on computationally efficient filter back [113].

2.2 Arrhythmia Detection Systems

Since it is a potentially dangerous and life threatening complication, considerable attention has

been devoted to the field of arrhythmia detection. Arrhythmia is any variation in the pacemaker

sites or any delay in the conduction network of the heart [127]. Because ECG reflects the func-

tionality of the heart, many algorithms have been proposed for ECG beat classification to detect

arrhythmias. Almost all methods that process ECG to detect arrhythmia have two stages: feature

extraction and beat classification.
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In arrhythmia classification from ECG, the types of features are of paramount importance. At-

tributes from ECG timing [28, 87, 98], higher order cumulant [35, 97], multiscale morphological

derivative (MMD) transform [118], wavelet transform (WT) or Fourier transform [2, 45, 53, 116,

123] are among the different types considered.

Approaches that compute features from ECG morphology (e.g. QRS width) are easy to un-

derstand and do not need extensive calculations. Although this type of feature is sensitive to

variations and noise. A suitable filter could be researched to improve signal-to-noise ratio. Higher

order cumulant features are less susceptible to the aforementioned changes. Nevertheless, they are

computationally expensive. The inherent noise in a single is reduced when features from MMD

transform are extracted. However, the transform must be defined at different scales to determine

the best representative scale of the signal. Frequency domain features by signal transformation

such as Fourier and WT are robust to variations in the signal. Indeed, WT is better than Fourier

transform for ECG analysis, since it is non-stationary [92].

For classification, the methods used include linear discriminants [28], artificial neural net-

works (ANNs) [35, 45, 97, 98], autoregressive modeling (AR) [41], Hidden Markov models

(HMM) [2] and support vector machines (SVM) [53, 87, 116, 123].

Good results can be achieved when linear discriminant methods are considered. However,

much of the work is spent to find the number of discriminant variables that elicit the best sep-

aration between the classes. Moreover, they are time consuming, hence to implement them in

real-time applications is neither simple nor easy. Although, AR models are clear and easy to un-

derstand, they assume linear relationship between the samples of the signal. However, ECG beats

are non-linear by nature [92]. The use of ANNs for beat classification is capable of providing more

accurate results than the aforementioned models. However, the cost function of neural networks is
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to minimize the sum of square between the decision function and the training data points, though

the accuracy is very sensitive to the overlapping between the data points. In addition, ANN meth-

ods can trap into local and global minima. HMMs algorithms provide comparable results to ANN

algorithms, but they exploit large assumptions about the data and the number of parameters that

will be used.

Arrhythmia classification studies which incorporate support vector machines (SVM) are rele-

vant to the work in this dissertation. The key features of SVMs are two folds; the maximization

of the margin between the closest examples from each class and a few samples are involved in

the determination of the classification (sparse solution). This feature gives the superiority of SVM

over ANN. The main challenge when using SVM is the choice of the kernel.

2.3 Existing Models for Loss of Blood Volume

Most deaths as a result of traumatic injury are due to hemorrhage [30, 107]. When loss of blood

volume is detected and assessed as early as possible, incurable consequences may be prevented or

avoided. Therefore, injury-related death may be reduced. However, studies on the assessment of

the severity of blood loss are scarce.

Lee et. al. (2010) [74], creates a survival prediction model for rats, to achieve early diagnosis of

hemorrhagic shock. The method incorporates heart rate, mean arterial pressure (MAP), respiration

rate and temperature. An artificial neural network model is then created to predict the survival

rate. The sensitivity and specificity of survival prediction were 98.4 and 96.6%, respectively. The

limitation of the study is that the data samples are from rats. Therefore, results are not directly

applicable to human physiology.

Hakimzadeh et. al. (2009) [47], study the prediction capability of a non-invasive biomedical
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signal called Transcranial Doppler (TCD). The implementation applies advanced signal processing

and machine learning methods. The research has two parts; the first one is to categorize the severity

of blood volume loss into three functional classes; mild, moderate and severe. The second part

considers two classes only; severe and non-severe. The study allows assessment of volume loss

and prediction of hemorrhagic shock (HS), particularly in cases of traumatic injury. This method

can be used in real-time monitoring of internal bleeding during surgical procedures. Results of the

first part shows that the method has 70% accuracy and for the second part, the accuracy is more

than 84%.

Ji et. al. (2009) [60], study the capability of low level physiological signals using discrete

wavelet transformation (DWT) and machine learning methods to predict the severity of hemor-

rhage encapsulated in the patterns of these signals. Physiological signals such as ECG, BP and

thoracic impedance (IZT and DZT) are used for feature extraction. Machine learning algorithms

are used to create a model that can distinguish between three classes as in the study mentioned

before; mild, moderate and severe. The dataset is obtained from lower body negative pressure

(LBNP) procedure. The research shows that the highest accuracy obtained is 82% when using

support vector machine technique.

Porter et al. (2009) [100] study the change of RRI during different stages of hemorrhage in

rats. Frequency-based features from power spectrum are calculated. Three types of hemorrhage

are recorded (low rate, intermediate rate, and fast rate). The findings of this study show that the

heart rate increase while atrial pressure (AP) did not change significantly during 15% of total blood

volume loss. Moreover, the study highlights the importance of the rate of blood loss and its effect

on the compensation process. Since the study is done on rats, its results are not directly applicable

to human physiology.
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Chen et al. (2008) [13], formulates a tool that incorporates vital signals to identify patients

who require blood transfusion. The study uses two classes; hemorrhagic, patients who received

blood in emergency room, and control, patients who did not. The method extract features from

ECG, photoplethysmogram, respiratory and patient attribute data. For classification tasks [13]

uses a linear classifier that is trained using least-square method. Expressed as the area under a

receiver operating characteristic curve (ROC), the accuracy of the classifier is 75%.

Batchinsky et al. (2007) [5] analyze hemorrhage shock in group of sheep. As other studies,

HRV is monitored and transformed by Fourier transformation to compute the power spectrum of

RRI. In addition to HRV, atrial blood pressure (ABP) is also monitored. The main observations of

this study is that the heart rate and systolic arterial pressure (SAP) start to change after 20 minutes

of hemorrhage, but the diastolic arterial pressure (DAP) decreased continuously. Again, the study

is conducted on animals only.

Cooke et al. (2006) [24], presents an approach that analyzes data from pre-hospital trauma

patients to test if the survival rate is correlated to higher parasympathetic and lower sympathetic

autonomic activity. In addition to Galsgow coma scale score (GCS) and patients’ demographic

information, signals such as ECG and atrial blood pressure (ABP) are used. Heart rate variability

(HRV) is also calculated by ECG filtering and R peak detection. Ectopic beats are excluded

from the study and features from time-domain and frequency-domain are extracted. Specifically,

features from power spectrum density (PSD) as computed using Fourier transform. Statistical

analysis is carried out to discriminate between surviving or died patients.The assumption about

ECG to be ectopic-free and the use of power spectral which assumes the signal is stationary, limit

use of results in real application.

In conclusion, traditional physiological signs such as heart rate variability have a limit in de-
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tecting and predicting the severity of hemorrhage. Research conducted on animals are not directly

applicable for humans. Basic, vital and non-invasive biomedical signals have proved the predic-

tion of hemorrhage, but still real-time applications are very hard to implement using these methods.

Since pre-hemorrhage status, the beginning of hemorrhage, and rate of blood loss are generally

unknown. Incorporating multiple physiological signals such as ECG, ABP and impedance, in ad-

dition to the severity of arrhythmia latent in ECG signal, may have a better chance of creating a

system for detection and predicting the severity of hemorrhage.

2.4 Approach of this Study

The novelty of the system described in this dissertation is, its ability to combine features extracted

from physiological signals that can be easily acquired to detect and predict the severity of hem-

orrhage. Unlike other hemorrhage models, the implemented method performs successfully in the

presence of noise, baseline drifts and abnormal beats. Moreover, the datasets considered are by ap-

plying the lower body negative pressure (LBNP) protocol on humans. It is proved in [22, 23] that

LBNP model induces similar physiological responses that simulate acute hemorrhage in humans.

The approach of the study is hierarchical; he method first detects the characteristic points in

ECG signal, and uses the information obtained to identify the type of arrhythmia beat-by-beat.

Arrhythmia classification model is then applied classify the test dataset in order to predict the

severity of arrhythmia using a deterministic finite automaton (DFA). In addition to the information

obtained from arrhythmia, raw signals of ABP and impedance are also used to train a model by

SVM machine learning method to output the severity of the hemorrhage. More informed decision

can be taken by care givers after the severity is estimated and acquired by the system.

The overall process is outlined in Figure 2.1. More detailed schematic diagrams for each
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process are provided in relevant chapters.

Figure 2.1: Schematic diagram for the systems in this dissertation
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CHAPTER 3 Detection of ECG Characteristic Points

This chapter introduces the method for detection of ECG waves by combining the capabilities

of dual-tree complex wavelet transform (DT-CWT) to capture the morphological characteristics of

ECG signal. The algorithm can be used for ECG processing applications, such as calculation of

the HRV signal. The results prove that the method is robust against noise and typical artifacts in

ECG signal, such as baseline drift.

The rest of this chapter is organized as follows. Section 3.1 introduces the physiology behind

ECG. A detailed description of the algorithm is presented in Section 3.2. Results and their com-

parison to those of other algorithms are given in Sections 3.3 and 3.4. Section 3.5 Summarize the

chapter.

3.1 Introduction

Figure 3.1: One cycle of ECG based upon car-
diac physiology. Atria depolarization, ventricu-
lar depolarization, and ventricular repolarization
are represented as in a normal beat

Several clinical details are encapsulated as in-

tervals and amplitudes in ECG signal (see Fig-

ure 3.1). Many algorithms have been devel-

oped in order to extract such information. The

most important clinical details in ECG signal

are P, Q, R, S, and T waves. Sometimes, a sixth

wave (U) may follow T. The waves Q, R, and

S are grouped together to form QRS-complex,

which in turn can be used to detect P, and T

15
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waves not only because of its central location relative to these waves, but also its relatively high

amplitude which makes this complex easier to detect.

When the sinoatrial (SA) node generates an impulse, a depolarization wave moves from the

right atrium to the left atrium. If the wave is measured by electrodes, the P wave in ECG is shaped

and lasts for about 0.08 seconds. The atria contract about 0.1 seconds after P wave starts. The

electrical activity travels from the SA node towards the atrioventricular (AV) node, which will

result in ventricular depolarization.

Ventricular contraction is accompanied by depolarization. As a result of ventricular depolar-

ization, the QRS is formed in ECG. The duration of QRS is between 0.08 to 0.12 seconds. Since

the mass of the ventricles is greater than the atria, the magnitude of QRS is higher than other

waves, such as P and T.

After the ventricles contract, they are repolarized and T wave is generated and lasts about 0.16

seconds. T wave is more prolongated than the other waves such as QRS and P waves because the

repolarization is slower than depolarization. While the atria repolarize after they depolarize and

since the QRS complex is recorded at the same time as the repolarization of the atria, the resulting

wave from the repolarization is obscured.

Literature shows numerous methods for R and QRS detection, however, P and T wave detection

methods are rare.

In this dissertation, an algorithm based on DT-CWT for the detection of QRS-complex, and

wavelet transformation (WT) using Daubachi 2 (db2) as the mother wavelet at level 2 for the

detection of P, and T waves is presented. The method first detects QRS complex, then P wave,

followed by T wave. The implemented detection system is used to extract informative features

from not only QRS-complex, but also from P and T waves. The extracted features will be used to
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classify the severity of blood loss. Figure 3.2 shows the overall process for the method. The next

section elaborates the details of the system.

Figure 3.2: Schematic diagram for ECG waves detection system

3.2 Methodology

3.2.1 Data Specification

To ensure the accuracy and reliability of the results, two different dataset are used for testing and

validation. The details for each of them is given herein.

3.2.1.1 USAISR LBNP Dataset

In this dataset, 93 subjects from Lower Body Negative Pressure (LBNP) [23] are considered.

LBNP is a protocol where the lower half of the body is placed in a depressurized chamber. One

purpose of (LBNP) chambers is to simulate the transition from earth gravity to micro-gravity.

Physiological tests are conducted to assess stresses upon the cardiovascular system during these

simulations. In general, the internal negative air pressure of LBNP chambers is controlled with a

proportional control system using only air-pressure as input. In each test, the subject experienced

multi-stages air pressure where in each stage, the level of negative air pressure is increased by
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a step of −15mmHg for 5 minutes and after 20 minutes, the pressure is decrease by −10mmHg,

while ECG together with other physiological signals such as ABP and thoracic impedance are

sampled at 500Hz. Table 3.1 shows the LBNP level for each stage.

Table 3.1: Different pressure levels during LBNP procedure

LBNP protocol Stage Time

0 mmHg Baseline 5 Min
-15 mmHg Stage 1 5 Min
-30 mmHg Stage 2 5 Min
-45 mmHg Stage 3 5 Min
-60 mmHg Stage 4 5 Min
-70 mmHg Stage 5 5 Min
-80 mmHg Stage 6 5 Min
-90 mmHg Stage 7 5 Min
-100 mmHg Recovery 5 Min

The dataset is provided by the U.S. Army Institute of Surgical Research (USAISR) under a

protocol approved by the Institutional Review Boards of both the USAISR and Virginia Common-

wealth University (VCU).

3.2.1.2 MIT/BIH Dataset

The MIT/BIH arrhythmia database [81] contains 45 half-hour recordings, each containing two

ECG lead signals that are band-pass filtered at 0.1 − 100Hz and sampled at 360Hz. There are

more than 100, 000 QRS complexes in this database. Some records have a clean R-peaks with

few artifacts, while in some other subjects it is difficult to detect the P-QRS-T components due to

contamination such as abnormal morphology, noise, and other artifacts in the signal.
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3.2.2 Preprocessing of ECG signal

As Figure 3.2 shows, the first step in the detection procedure is ECG preprocessing. This step

is intended to remove noise and baseline drifts caused by subject movements or respiration. The

output of this step is important for further analysis since it will enhance the signal quality. The step

is divided into two main sub-processes, namely, ECG filtering and ECG baseline drift removal,

where the output of the first sub-process is used as input to the other.

3.2.2.1 Filtering

Since noise causes different distortion to a signal, a suitable filter must be chosen to remove it [86].

For each dataset in this study, a different bandpass filter is designed. A Butterworth bandpass filter

of order 4 and cutoff between 1 Hz and 55 Hz is designed for the LBNP dataset, whereas for the

MIT-BIH dataset the cutoff is between 1 Hz and 35 Hz with the same order. After a comprehensive

comparative study using Fast Fourier Transform (FFT), these cutoffs proved to reduce the roll-off

of the filter. Figure 3.3 shows the overall frequency response of the bandpass filters.

(a) The cutoffs for LBNP are 1 − 55Hz (b) The cutoffs for MIT-BIH are 1 − 35Hz

Figure 3.3: The amplitude response of the digital bandpass (3 dB) used for each dataset
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3.2.2.2 Baseline Drift Removal

Any change in the AC current while measuring the ECG causes a drift in the baseline of the signal.

Respiration, muscle contraction, and electrode impedance changes due to breathing or movement

of the body are the most significant sources of baseline drift in most types of ECG recordings [40].

The presence of baseline drift in ECG signals influences the visual interpretation of the ECG as

well as the results obtained from computer-based off-line ECG analysis [125]. For example, the

amplitude of a signal at a specific time is harder to obtain when the signal contains baseline drift

(see Figure 3.4 (a)).

(a) ECG signal before baseline drift removal (b) ECG signal after baseline drift removal

Figure 3.4: The effect of baseline drift removal on ECG signals (20 seconds of ECG sample,
sampling rate is 500Hz)

In this method, the ECG baseline drift removal is conducted by subtracting the regression

line that best fits the samples within a window of size equal to the sampling rate; for example

the window size for the LBNP data is 500, whereas the window size for MIH-BIH data is 350.

Intuitively, the drift for each second is being removed.
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The best fit line associated with n points (x1, y1), (x2, y2), ..., (xn, yn) has the form:

y = mx + b (3.1)

Where y is a point on the line, m is the slop of the line and b is the intercept.

The slope, m, and the intercept of the line, b, in equation 3.1 are calculated as follows

m =
n(

∑n
1 xy) − (

∑n
1 x)(

∑n
1 y)

n(
∑n

1 x2) − (
∑n

1 x)2

b =

∑n
1 y − m(

∑n
1 x)

n

After subtracting the best fit line of the samples in the window, the signal is drift free clean

(see Figure 3.4 (b)) and is ready for the next step which is dual-tree complex wavelet transform

(DT-CWT).

3.2.3 Wavelet Transformation

The WT of a function f (t) is an integral transform defined by,

W f (a, b) =

∫ ∞

−∞

f (t)ψ∗a,b(t)dt. (3.2)

where ψ∗(t) denotes the complex conjugate of the wavelet function ψ(t)a,b. WT uses a set of

basis functions that allows variable time and frequency resolution for different frequency bands.

The set of basis functions, the wavelet family ψa,b, is deduced from a mother wavelet ψ(t) as

ψa,b(t) =
1
√

2
.ψ

(
t − b

a

)
(3.3)
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where a and b are the dilation (scale) and translation parameter, respectively. The mother

wavelet is a short oscillation with zero mean.

Discretizing the scale and translation (shift) parameters in (3.3) results in a discrete wavelet

transform (DWT). The discretization should obey some defined rules. The usual choice is to follow

a dyadic grid on the time-scale plane with: a = 2k and b = 2kl k ∈ Z [92]. The mother wavelet ψ(t)

is then modified to form the basis functions as:

ψ2k ,b(t) =
1

2k/2 .ψ

(
t − b
2k

)
(3.4)

The dyadic DWT (DyWT) integral transform can be obtained by substituting ψ2k ,b(t) from

Equation (3.4) in Equation (3.2). Although defined as an integral transform, the DyWT is usually

implemented using a dyadic filter bank where the filter coefficients are directly derived from the

wavelet function used in the analysis [92]. The decomposition is carried out by cascading two

types of filters, Low Pass Filter (LPF) which outputs the approximation coefficients and is followed

by down sampling, and High Pass Filter (HPF) which outputs the detailed coefficients and is

followed by down sampling.

Figure 3.5: Decomposition of a signal with filter
bank by cascading LPFs and HPFs

Figure 3.5 shows level 4 decomposition of

a signal. DWT can be applied to ECG signals

using this filter bank.

There are many popular mother wavelets

ψ(t) including Daubechies wavelets, Mexi-

can Hat wavelets and Morlet wavelets. The

Daubechies wavelet family contains the Haar

wavelet, i.e. db1, which is the simplest one.
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Unfortunately, there is no universal rule to fol-

low when choosing the best mother wavelet for decomposition. However, typically, the mother

wavelet should resemble the dominant wave in the signal [92].

When wavelet coefficients are used for real-world signals, they enable near-optimal signal pro-

cessing based on simple thresholding, denoising, approximation, and deterministic and statistical

signal and image algorithms [115].

However, apart from being computationally efficient, the wavelet transform have four funda-

mental, intertwined drawbacks as follows:

1. OSCILLATIONS

As mentioned before wavelets are bandpass functions. Therefore, the generated coeffi-

cients tend to have large positive and negative oscillations around singularities. In addition,

wavelet function crosses through zero several times. As a result, wavelet coefficients could

be very small or near zero. This complication makes singularity extraction extremely hard

[16].

2. SHIFT VARIANCE

In addition to positive and negative oscillations around singularities, wavelet coefficients

are disturbed by small shifts oscillate around the singularities of the signal. This is another

complication of wavelet transform, since the coefficients must be competent to the wide

spectrum of patterns exist in the signal [33, 102].

3. ALIASING

Wavelet coefficients are computed via iterated discrete-time down-sampling operations of
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low and high-pass filters that are, of course, not ideal. As a result, substantial aliasing exists

in the transformation. This application has this drawback only when the signal needs to be

reconstructed [113].

4. LACK OF DIRECTIONALITY

The product construction of wavelets results in a pattern that is oriented along several di-

rections. Lack of directional influence the processing of multi-dimensional analysis of geo-

metric image, such as edge detection [113].

The method implemented in this dissertation will be subjected to the first two complication if

wavelet transform is considered for QRS detection. Therefore, DT-CWT at level 4 is used for this

purpose.

Figure 3.6 shows the effect of the transformation of a normal ECG beat, when (3.6b) DWT

db4 at level 4 is used and (3.6c) DTCWT at level 4 is applied.

However, since the aforementioned drawbacks have very small effects over the patterns of

those two waves, wavelet transform is used in this study to detect P and T waves. Empirically,

Daubechie 2 (db2) at level 2 is incorporated for the detection of P and T waves. Figure 3.7 presents

the mother wavelet of the decomposition.

3.2.4 QRS Detection

The QRS complex is the most important characteristic waveform of the ECG signal. Its high

amplitude makes QRS detection easier than the other waves. Thus, QRS is generally used as a

reference within the cardiac cycle [83]. In this study, duration of a cardiac cycle, Ci, as the time

interval between (Ri − Ri−1)/2 and (Ri+1 − Ri)/2 where Ri is the time index of the R wave of cycle

i is considered.
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(a) Normal ECG signal

(b) DWT of db4 at level 4 detail coefficients (c) DTCWT level 4 detail coefficients

Figure 3.6: Illustration of the transformation of a normal ECG using DWT with db4 and DTCWT
at level 4

Figure 3.7: The mother wavelets used in the analysis
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In order to detect QRS complex, the DT-CWT of ECG at level 4 is calculated. The resulted

detail coefficients are then squared to detect the peaks (R waves) in the signal. Figure 3.8 shows

the resulted detail coefficients of the transformation when DT-CWT at level 4 is incorporated on 8

seconds ECG signal.

Figure 3.8: ECG signal after DT-CWT is applied on 8 seconds (Sampling rate is 360 Hz). The
decomposition is at level 4

A threshold α is applied to the squared detailed coefficient. After examining the data for all

subjects in the data set, α is set to α = 2 · σ according to variations across these coefficients,

where σ is the standard deviation of detailed coefficient. The threshold α gives a measure of the

minimum error of detection. Then Ri in each cardiac cycle Ci is detected for i = 1, 2, 3, ..., n where

n is the number of cardiac cycles in ECG signal. Figure 3.9 shows the steps of squaring, and

thresholding applied to the detailed coefficient.

Ri is obtained from the detailed coefficient. To find the location L(Ri) of cycle Ci. The location

obtained from the detailed coefficient (Ri) multiplied by 4. This is because the detailed coefficients

are obtained at level 4, which means we downsampled the signal by 4; for example, if the detected

Ri from the detailed coefficients is at location k, then L(Ri) is at location 4 · k in the original signal.



27

Figure 3.9: The detailed coefficients squared and thresholded by 2 standard deviation

Since the signal may have noise after filtering, a window of size 0.1 · fs centered at L(Ri) is

defined, where fs is the sampling frequency. This window is defined to detect the exact location of

R peak in the original signal. In other words, this window is defined to reduce the effect of noise

that may still exist in the signal after filtering.

This window size is obtained from the physiological meaning of QRS signal. As mentioned

before, the QRS lasts between 80 to 120 milliseconds, and so the expected duration of QRS is 100

ms which is equal to 0.1 · fs. The range of the defined window is [(L(Ri)−0.1 · fs), (L(Ri)+0.1 · fs)]

Figure 3.10: Two possible shapes of QRS-
complex

Figure 3.10 shows that QRS complex can

have a positive or negative polarity. To distin-

guish if QRS is either positive or negative, the

absolute maximum |M| and absolute minimum

|m| amplitudes of the signal in the previously

defined window are calculated and compared.

Assume that the maximum amplitude at xi
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is M and the minimum amplitude at x j is m,

where xi , x j. The decision about the QRS complex polarity is determined by the following:

if |M| > |m| then

L(Ri)← i

else

L(Ri)← j

end if

The pseudocode means that, if R is positive (convex), then the sample which has the the maxi-

mum amplitude in the window is used as the correct location of R wave in the original ECG signal,

and if its negative (concave), the position of the minimum is used.

Once R is detected, Q is searched for within a window of size (0.1 · fs)/2 to the left of the

detected R. If R is convex, then the location of the minimum magnitude in this window is found

and detected as Q, otherwise the location of the maximum amplitude is used.

For S wave detection, the same steps for Q wave are followed with one exception; the window

is now to the right of the detected R wave.

3.2.5 P and T Detection

For P wave detection, a window from the beginning of the cycle to the detected Q wave is defined.

The same steps for QRS complex detection are taken, but instead of using DT-CWT at level 4, db2

at level 2 is used as the mother wavelet, and the standard deviation (α = 1) of the squared detailed

coefficient is used as the threshold.

For T wave detection, the same steps for P wave detection are followed, but within a window

from the detected S wave to the end of the cycle.
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The beginning of the next cycle is obtained by adding (0.16 · fs)/2 to the location of the

detected T wave of the previous ECG cycle. This is because the T wave lasts about 0.16seconds;

the division by 2 is due to the fact that T is approximately located in the center of the wave.

3.3 Results

In this section, the performance of the algorithm over the data sets used is presented. The criterion

for reporting results is as follows: if the difference between the detected wave by the algorithm

and the actual location is less than 0.02seconds, the detection is considered as valid, otherwise it

is invalid.

As suggested by literature, the results are presented by the percentage of error, Sensitivity (Se),

and positive predictability P+ according to the following equations:

%Error =
(FP + FN)

#Cycles
(3.5)

S e =
T P

(T P + FN)
(3.6)

P+ =
T P

(T P + FP)
(3.7)

Where TP is the true positive, FP the false positive and FN is the false negative.

3.3.1 Results of the LBNP dataset

The performance of the method on the ECG recordings of subjects undergoing the LBNP when

detecting P, QRS, and T waves is depicted in Tables 3.2, 3.3, and 3.4, respectively. A total number

of 173538 cycles from 90 cases are processed. Table 3.2 shows that the algorithm produces 99.77%
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and 99.78% for sensitivity and positive predictability of P wave detection. Table 3.3 shows the

sensitivity for QRS detection is 99.91% and the positive predictability is 99.86%. As in Table 3.4,

the algorithm produces 99.74% sensitivity for T detection and 99.78% for positive predictability.

The accuracies, are calculated as 100 −
∑

i = 1nErrori, for detecting P, QRS and T are 99.557%,

99.898% and 99.525%, respectively.

Table 3.2: Performance evaluation of the implemented ECG detection algorithm in detecting P
wave for LBNP dataset

Stage #Cycles #TP #FP #FN Error Se (%) P+ (%)

1 32224 32192 34 32 0.2 99.90 99.89
2 27407 27388 29 19 0.175 99.93 99.89
3 29710 29681 15 29 0.148 99.90 99.94
4 32531 32503 23 28 0.157 99.91 99.93
5 27872 27831 42 41 0.297 99.85 99.84
6 15711 15692 24 19 0.273 99.88 99.85
7 6501 6481 19 20 0.599 99.69 99.71
8 1582 1568 13 14 1.7 99.12 99.18

Average .443 99.77 99.78

Table 3.3: Performance evaluation for the implemented ECG detection algorithm in detecting
QRS-complex wave for LBNP dataset

Stage #Cycles #TP #FP #FN Error Se (%) P+ (%)

1 32224 32206 17 18 0.1 99.95 99.94
2 27407 27391 19 16 0.12 99.94 99.93
3 29710 29695 13 15 0.09 99.95 99.95
4 32531 32514 23 17 0.12 99.94 99.92
5 27872 27855 16 17 0.11 99.93 99.94
6 15711 15698 14 13 0.17 99.91 99.91
7 6501 6490 16 11 0.04 99.83 99.75
8 1582 1579 8 3 0.07 99.81 99.5

Average .102 99.91 99.86
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Table 3.4: Performance evaluation for the implemented ECG detection algorithm in detecting T
wave for LBNP dataset

Stage #Cycles #TP #FP #FN Error Se (%) P+ (%)

1 32224 32190 34 34 0.2 99.89 99.89
2 27407 27386 29 21 .18 99.92 99.89
3 29710 29680 15 30 .15 99.89 99.95
4 32531 32500 23 31 .16 99.9 99.93
5 27872 27829 42 43 .3 99.85 99.84
6 15711 15694 24 17 .26 99.89 99.85
7 6501 6477 19 24 .66 99.63 99.71
8 1582 1565 13 17 1.89 98.93 99.17

Average 0.475 99.74 99.78

3.3.2 Results of the MIT-BIH dataset

The detection performance for P, QRS complex, and T waves on MIT-BIH arrhythmia database

are given in Tables 3.5, 3.6, and 3.7 respectively. A total number of 101579 cycles from 45 cases

are processed. Table 3.5 shows that the algorithm produces 99.89% and 99.93% for sensitivity

and positive predictability of detecting P wave. Table 3.6 shows the sensitivity for QRS detection

is 99.96% and the positive predictability is 99.97%. In Table 3.7, the algorithm produces 99.81%

sensitivity for T detection and 99.80% for positive predictability. The accuracies, calculated as

100 − mean(Error), for detecting P, QRS and T are 99.823%, 99.93% and 99.62%, respectively.
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Table 3.5: Results of performance evaluation for the implemented ECG detection algorithm in
detecting P wave for MIT-BIH dataset

Record #Cycles #TP #FP #FN Error Se (%) P+ (%)
100 2273 2270 5 3 0.35 99.8680 99.7802
101 1865 1862 1 3 0.21 99.8391 99.9463
102 2187 2185 2 2 0.18 99.9086 99.9086
103 2084 2083 3 1 0.19 99.9520 99.8562
104 2230 2226 3 4 0.31 99.8206 99.8654
105 2572 2567 6 5 0.43 99.8056 99.7668
106 2027 2022 2 5 0.35 99.7533 99.9012
107 2137 2135 0 2 0.09 99.9064 100
108 1763 1755 9 8 0.96 99.5462 99.4898
109 2532 2530 2 2 0.16 99.9210 99.9210
111 2124 2123 1 1 0.09 99.9529 99.9529
112 2539 2537 4 2 0.24 99.9212 99.8426
113 1795 1793 2 2 0.22 99.8886 99.8886
114 1879 1878 1 1 0.11 99.9468 99.9468
115 1953 1952 3 1 0.20 99.9488 99.8465
116 2412 2411 0 1 0.04 99.9585 100
117 1535 1532 1 3 0.26 99.8046 99.9348
118 2275 2274 2 1 0.13 99.9560 99.9121
119 1987 1985 0 2 0.10 99.8993 100
121 1863 1862 1 1 0.11 99.9463 99.9463
122 2476 2474 0 2 0.08 99.9192 100
123 1518 1517 2 1 0.20 99.9341 99.8683
124 1619 1617 1 2 0.19 99.8765 99.9382
200 2601 2600 0 1 0.04 99.9616 100
201 1963 1957 2 6 0.41 99.6943 99.8979
202 2136 2134 1 2 0.14 99.9064 99.9532
203 2982 2973 1 9 0.34 99.6982 99.9664
205 2656 2654 1 2 0.11 99.9247 99.9623
207 1862 1861 2 1 0.16 99.9463 99.8926
208 2956 2956 1 0 0.03 100 99.9662
209 3004 3002 1 2 0.10 99.9334 99.9667
210 2647 2645 2 2 0.15 99.9244 99.9244
212 2748 2745 2 3 0.18 99.8908 99.9272
213 3251 3250 1 1 0.06 99.9692 99.9692
217 2208 2206 1 2 0.14 99.9094 99.9547
219 2154 2153 0 1 0.05 99.9536 100
220 2048 2047 1 1 0.10 99.9512 99.9512
221 2427 2426 0 1 0.04 99.9588 100
222 2484 2482 0 2 0.08 99.9195 100
228 2053 2050 0 3 0.15 99.8539 100
230 2256 2254 1 2 0.13 99.9113 99.9557
231 1886 1884 0 2 0.11 99.8940 100
232 1780 1779 0 1 0.06 99.9438 100
233 3079 3077 0 2 0.06 99.9350 100
234 2753 2751 1 2 0.11 99.9274 99.9637

Average 0.177 99.89 99.93
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Table 3.6: Results of performance evaluation for the implemented ECG detection algorithm in
detecting QRS for MIT-BIH dataset

Type #Cycles #TP #FP #FN Error Se (%) P+ (%)
100 2273 2273 0 0 0.00 100 100
101 1865 1865 0 0 0.00 100 100
102 2187 2187 0 0 0.00 100 100
103 2084 2084 0 0 0.00 100 100
104 2230 2228 1 2 0.13 99.91 99.96
105 2572 2570 5 2 0.27 99.92 99.81
106 2027 2025 2 2 0.20 99.90 99.90
107 2137 2137 0 0 0.00 100 100
108 1763 1757 3 6 0.51 99.66 99.83
109 2532 2532 0 0 0.00 100 100
111 2124 2124 0 0 0.00 100 100
112 2539 2539 3 0 0.12 100 99.88
113 1795 1795 3 0 0.17 100 99.83
114 1879 1879 3 0 0.16 100 99.84
115 1953 1953 0 0 0.00 100 100
116 2412 2411 0 1 0.04 99.96 100
117 1535 1535 0 0 0.00 100 100
118 2275 2275 1 0 0.04 100 99.96
119 1987 1987 0 0 0.00 100 100
121 1863 1861 2 2 0.21 99.89 99.89
122 2476 2476 0 0 0.00 100 100
123 1518 1518 0 0 0.00 100 100
124 1619 1619 0 0 0.00 100 100
200 2601 2600 0 1 0.04 99.96 100
201 1963 1960 1 3 0.20 99.85 99.95
202 2136 2134 0 2 0.09 99.91 100
203 2982 2975 0 7 0.23 99.77 100
205 2656 2656 0 0 0.00 100 100
207 1862 1861 0 1 0.05 99.95 100
208 2956 2955 0 1 0.03 99.97 100
209 3004 3004 0 0 0.00 100 100
210 2647 2647 2 0 0.08 100 99.92
212 2748 2748 0 0 0.00 100 100
213 3251 3251 1 0 0.03 100 99.97
217 2208 2207 1 1 0.09 99.95 99.95
219 2154 2154 0 0 0.00 100 100
220 2048 2048 0 0 0.00 100 100
221 2427 2425 0 2 0.08 99.92 100
222 2484 2480 1 4 0.20 99.84 99.96
228 2053 2052 0 1 0.05 99.95 100
230 2256 2255 2 1 0.13 99.96 99.91
231 1886 1886 0 0 0.00 100 100
232 1780 1780 0 0 0.00 100 100
233 3079 3079 0 0 0.00 100 100
234 2753 2753 0 0 0.00 100 100

Average 0.07 99.96 99.97
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Table 3.7: Results of performance evaluation for the implemented ECG detection algorithm in
detecting T wave for MIT-BIH dataset

Type #Cycles #TP #FP #FN Error Se (%) P+ (%)
100 2273 2270 4 3 0.31 99.87 99.82
101 1865 1863 3 2 0.27 99.89 99.84
102 2187 2183 1 4 0.23 99.82 99.95
103 2084 2083 4 1 0.24 99.95 99.81
104 2230 2225 5 5 0.45 99.78 99.78
105 2572 2567 2 5 0.27 99.81 99.92
106 2027 2024 4 3 0.35 99.85 99.80
107 2137 2132 3 5 0.37 99.77 99.86
108 1763 1757 4 6 0.57 99.66 99.77
109 2532 2527 3 5 0.32 99.80 99.88
111 2124 2120 3 4 0.33 99.81 99.86
112 2539 2533 7 6 0.51 99.76 99.72
113 1795 1791 7 4 0.61 99.78 99.61
114 1879 1872 8 7 0.80 99.63 99.57
115 1953 1947 2 6 0.41 99.69 99.90
116 2412 2410 7 2 0.37 99.92 99.71
117 1535 1533 3 2 0.33 99.87 99.80
118 2275 2268 7 7 0.62 99.69 99.69
119 1987 1983 8 4 0.60 99.80 99.60
121 1863 1858 7 5 0.64 99.73 99.62
122 2476 2467 8 9 0.69 99.64 99.68
123 1518 1513 2 5 0.46 99.67 99.87
124 1619 1617 5 2 0.43 99.88 99.69
200 2601 2594 5 7 0.46 99.73 99.81
201 1963 1956 6 7 0.66 99.64 99.69
202 2136 2133 2 3 0.23 99.86 99.91
203 2982 2976 7 6 0.44 99.80 99.77
205 2656 2654 6 2 0.30 99.92 99.77
207 1862 1859 5 3 0.43 99.84 99.73
208 2956 2954 3 2 0.17 99.93 99.90
209 3004 2999 1 5 0.20 99.83 99.97
210 2647 2642 1 5 0.23 99.81 99.96
212 2748 2744 1 4 0.18 99.85 99.96
213 3251 3249 2 2 0.12 99.94 99.94
217 2208 2205 3 3 0.27 99.86 99.86
219 2154 2153 2 1 0.14 99.95 99.91
220 2048 2046 4 2 0.29 99.90 99.80
221 2427 2424 5 3 0.33 99.88 99.79
222 2484 2480 8 4 0.48 99.84 99.68
228 2053 2051 7 2 0.44 99.90 99.66
230 2256 2249 5 7 0.53 99.69 99.78
231 1886 1884 3 2 0.27 99.89 99.84
232 1780 1776 5 4 0.51 99.78 99.72
233 3079 3074 2 5 0.23 99.84 99.93
234 2753 2749 1 4 0.18 99.85 99.96

Average 0.38 99.81 99.80



35

3.4 Comparisons

As mentioned before, the literature focused on the detection of QRS complex only since it is easy

to detect due to it’s high amplitude comparable to the surrounding waves. Therefore, the compar-

isons in this section are between the accuracy of detecting QRS using the algorithm described in

this chapter and other widely used methods in literature. The comparison between QRS detection

using the implemented algorithm and other methods is presented in Table 3.8.

The results show that the method implemented in this dissertation performs better than other

methods from literature.

Table 3.8: QRS detection comparison between the implemented QRS detection Algorithm and
other important methods over the MIT-BIH dataset

Method #FP #FN Error Se (%) P+ (%)

ECG DT-CWT (this work) 31 39 0.07 99.96 99.97
Martinez et al. [83] 153 220 0.34 99.8 99.86

Pan et al. [99] 507 277 0.71 99.75 99.54
Li et al. [75] 65 112 0.17 99.89 99.94

Zhang et al. [134] 204 213 0.38 99.81 99.80
Ghaffari et al. [43] 160 213 213 99.80 99.85

3.5 Summary

This chapter presents a novel method for the detection of ECG deflection points based on a com-

bination of Dual-Tree Complex Wavelet Transform (DT-CWT) and wavelet transform. For QRS

complex, DT-CWT as the mother wavelet at level 4 is used. For P and T waves, db2 at level 2 is

incorporated. Two datasets are used for reporting the results of the algorithm. The LBNP dataset

contains 90 excerpts with more than 170,000 heartbeats. The MIT-BIH arrhythmia database con-
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tains 45 cases with more than 100,000 cycles.
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CHAPTER 4 Detection and Classification of Arrhythmia Severity

This chapter focuses on the creation of a computer-assisted decision making system for ar-

rhythmia severity detection using machine learning algorithm and deterministic finite automate

(DFA). Decision-making rules are based on the perceived dangers of certain ectopy and supported

by the medical literature. Time-domain features as well as frequency domain features from Dis-

crete Wavelet Transform (DWT) are extracted. The classification task is done using support vector

machine method. Then, based on the rules, the system analyzes the vector using a deterministic

finite automaton (DFA) to report severe abnormalities.

The obtained results of this system provide insights into the detection and classification of

severe arrhythmia that may indicate cause for concern by health care providers that more serious

cardiac event is occurring. In addition, it can be applied to applications where arrhythmia is an

important factor to consider, such as blood volume loss systems.

The rest of this chapter is organized as follows. Section 4.1 briefly introduces the system. A

description of the data is presented in Section 4.2. The method is described in Section 4.3 and the

results are illustrated in Section 4.4. A comparison to other algorithms is presented in Section 4.5.

The chapter is summarized in Section 4.6.

4.1 Introduction

Due to the potentially dangerous and life threatening nature of its complication, significant ef-

forts have been devoted to develop automated arrhythmia detection systems. Any variation in the

pacemaker sites or any delay in the conduction network of the heart may result in arrhythmias.

37
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Even though imaging techniques, such as echocardiography or tallium scintigraphy offer de-

tailed diagnostic evidences for some clinical applications, ECG plays a major role in the diagnosis

of many cardiovascular diseases and malfunction, since it is non-invasive and low cost procedure.

Many studies have been conducted to explore effective ECG signal analysis and pattern recog-

nition techniques for computer-aided diagnosis (CAD), such as arrhythmia. Arrhythmia can be

categorized as life-threatening, such as ventricular fibrillation (VF) and tachycardia, and non-

imminently life-threatening, such as ventricular ectopic beat (VEB) and supraventricular ectopic

beat (SVEB). Although some types of arrhythmias are considered to have minimal consequences,

if left untreated they may eventually lead to stroke or sudden cardiac death [104]. Hence it is

prefeered that they are detected at any early stage.

Some abnormalities appear infrequently, such as sequences of heartbeats with abnormal timing

or ECG wave form(s). For such abnormalities, often up to a week of ECG recordings recording

by a Holter ECG monitor devices may be required to successfully capture the abnormalities [28].

Beat-by-beat analysis and classification of ECG can provide important information regarding the

subject’s cardiac condition [104]. Manual classification of heartbeats from long ECG recordings

can be very time-consuming, therefore a reliable automated method to process, analyze, and clas-

sify arrhythmias from the hidden information encapsulated in patterns such as the intervals and

amplitudes of ECG waves is of considerable importance.

The goal of this system described in this chapter is to go one step further than classifying the

arrhythmia type recorded by the ECG; to automate the determination of the severity of arrhythmias

detected by the ECG signal. The innovative system integrates several simple rules developed from

the medical literature and formulate these rules in a deterministic finite automaton (DFA). This

combination is novel to March of 2011, no similar systems have been developed.
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In this system, features are extracted from time and frequency domains to train a model that

classifies a heartbeat into one of three functional classes; normal (N), ventricular ectopic beat

(VEB) or premature atrial contraction (PAC). Based on the classification, the output is checked

according to a set of predefined rules formed from medical literature to report if the arrhythmia

recorded in the signal is severe or not.

The algorithms used in this system are lucid, fast and amenable to real-time implementation.

Figure 4.1 shows the overall process for the method. Next section elaborates on the details.

Figure 4.1: Schematic diagram of arrhythmia classification and severity detection system

4.2 Description of Dataset

The MIT/BIH arrhythmia database is a widely used database by the community to test and compare

different methods [81]. Forty-eight excerpts, each contains two ECG lead signals with 11-bit

resolution over a 10mV range that are band-pass filtered at 0.1Hz to 100Hz and sampled at 360Hz.

Grouped into fifteen classes, the dataset has more than 100,000 labeled beats. Normal (N), pre-

mature atrial contraction (PAC) and ventricle ectopic beat (VEB) are the only classes considered

in this study. The annotations of the other beat types are considered normal in this system, since
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the rules do not relate them to severe arrhythmia. The grouping of different types is presented in

Table 4.1.

Table 4.1: MIT/BIH mapping into three functional classes

Class Number Short Name #of Cycles MIT/BIH Beats
Normal, Left and Right Bundle Branch Block
(LBBB and RBBB), Atrial escape beats (AE)

1 N 91413 Fusing of Ventricular, Normal beat (fVN)
Paced beat (P), fusion of Paced

Normal beat (fPN), and Unclassified beat (U)
Atrial Premature beat (AP), and aberrated

2 PAC 2897 Atrial Premature beat (aAP)
Premature Ventricular Contraction

3 VEB 7269 (PVC), SVEB and ventricular escape beat (VE)

4.3 Methodology

The system implemented in this dissertation is an automated one. Figure 4.1 presents the schematic

diagram of the system.

Two groups of raw ECG signals are used; training and testing datasets. First, for each signal

in both datasets, the characteristic points (P,QRS and T) of the heartbeats are identified by the

detection algorithm introduced in Section 3.2. Then, the start and end of each beat are found using

the information from the previous step. From each heartbeat, two types of features are extracted;

time and Frequency domain features. The next step is to train a support vector machine (SVM)

model using only the extracted features from the beats of the training dataset. The model is then

used to classify the testing dataset beats into one of three functional classes (N, VEB, or PAC) as

mapped in Table 4.1. The result is a vector of classified beats. Finally, an overlapping window of

30-last classified beats is analyzed according to several simple rules developed from the medical

literature. After analyzing the vector. The results are provided.
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4.3.1 P-QRS-T Detection

For the purpose of detecting the ECG characteristic points, the method discussed in Chapter 3 is

used. One of the properties that the detection method has is that it can detect whether R wave has

positive or negative deflection. This can helps greatly in the discrimination between VEBs and

other types of heartbeats when features are extracted from the information of the characteristic

points, such as the amplitude of R, the ratio or T amplitude to R and the ratio of P amplitude to R.

Figure 4.2 provides an insight about how important such features can be used as attribute

to train a machine learning algorithm model that can discriminate between the different types

considered in this dissertation.

(a) 10 normal heartbeats

(b) 10 PAC heartbeats (c) 10 VEB heartbeats

Figure 4.2: A sample of 10 beats of normal (a), PAC (b) and VEB (c), as annotated in the MIT/BIH
arrhythmia database
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4.3.2 Heartbeats Demarcation

The start and end of each beat are found using the information from theP-QRS-T detection step.

After detecting the deflection points (P, QRS and T), information from the P and T peaks is used

to mark the beginning and ending of each heartbeat in the signal. The beats are then forwarded to

a feature extraction step.

4.3.3 Feature Extraction

The observed pattern of beats in the ECG signal are often extremely complicated. Therefore, the

features that are extracted must be directly related to the types the system tries to distinguish. For

example, time-domain features such as ST interval, QT prolongation and QRS width indicate that

the heart is functioning abnormally if the variations of these intervals are different than normal

[56, 65, 111, 114].

As important as time-domain features, frequency-domain features can provide information

about the abnormality of a heartbeat. For example, the complexity of a beat decreases when it is

not normal [92]. In this system, frequency domain features are considered as well. To measure the

complexity of a heartbeat, we apply wavelet transform to the beat. The beat is transformed using

Daubechie 4 (db4) as the mother wavelet at level 2. The dominant shape in the ECG is a normal

beat. As mentioned before, there is no standard rule to choose the mother wavelet. In this system,

db4 is chosen because it resembles the normal beat (see Figure 4.3).

The transformation is followed by summing the detail coefficients that are close to zero. In

addition, the sum of the absolute value of high frequency coefficients, the maximum and minimum,

the median, just before median, and just after median coefficients are the features that are are

computed and incorporated in this dissertation. A summary of features is provided in Table 4.2.
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(a) Daubechie 4 (db4) (b) Normal neat

Figure 4.3: The mother wavelets used in this method

Table 4.2: The set of the features used for arrhythmia system

Number Abbreviation Full Name
1 QT QT-interval
2 ST ST-segment
3 QS QRS width
4 PQ PQ-interval
5 PR PR-interval
6 HFs Sum of the Absolute Value of High Frequency Coefficients
7 Minc min Detailed Coefficient
8 Maxc max Detailed Coefficient
9 Med Medium of Detailed Coefficients
10 JAmed Just After the Median
11 JBmed Just Before the Median

Finally, the examples are divided into testing and training groups. As mentioned before, each

signal in the dataset lasts for 30 minutes. The beats in the first five minutes (roughly 16%) are

considered for training and the rest of the beats are taken as the testing dataset.

4.3.4 Model Training

Several machine learning methods have been dedicated for binary problems, in which there are

only two output classes [26]. When the training data contains the labels, the problem is called



44

supervised learning, otherwise its called unsupervised. Another emerging type of learning is called

semi-supervised learning; when some of the data have known class types [18].

Since linear methods are inefficient even in the classification of simple functions such as ex-

clusive disjunction [58], non-linear algorithms for medical applications are widely used [77, 92].

One of the most important machine learning algorithms in the biomedical field is support

vector machine (SVM), introduced by Cortes and Vapnik [25].

SVMs are based on the concept of decision hyperplanes that define decision boundaries be-

tween the different classes. The hyperplane separates a group of examples having different class

labeled into positive and negative sets in n-dimensional space. A special nonlinear function called

kernels are used to preserve the maximum distance between two classes into the transformed n-

dimensional space [132]. We used SVM since it is widely used in medical applications [27, 66, 91].

The advantages of SVM over neural networks is in the cost function used. This means that

SVM try to maximize the margin between the closest data points in different classes whereas NN

tries to minimize the sum of square error. In other words, the effect of overlapping in generating a

non-reliable model is decreased when the solution is provided by SVM.

SVM has disadvantages too. The main concern about using SVM is that they are computa-

tionally expensive when training a classification model. Moreover, to find the best kernel that can

separate the data needs a huge effort. However, once SVM is used to train the model, testing of

new data points is relatively fast. Another disadvantage for SVM is that it can generate an over

fitted model if the classes in the dataset are imbalance. This problem is identified in this study and

a method is provided to overcome the issue.

Given a set of N examples S = (x1, y1), ..., (xn, yn), where yi ∈ {+1,−1}, x ∈ <d, and d is

the dimensionality of the input. Training a model by SVM involves the minimization of the error
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function:

1
2

WT W + C
N∑

i=1

ξi (4.1)

subject to:

yi
(
WTφ (xi) + b

)
≥ 1 − ξi and ξi ≥ 0, i = 1, ...,N

where C is the capacity constant, W is the vector of coefficients, b a constant and ξi are parameters

for handling input data. The kernel (φ) is a mapping from the independent vector X to the feature

space. The most popular kernel function is the radial bases function (RBF) as provided in (4.2).

φ = exp
(
−γ

∣∣∣xi − x j
∣∣∣2) (4.2)

The error function in (4.1) is minimized when W =
∑

i αiγiφi, where φi is the kernel to be used

for object i, γi is how wide the Gaussian function over example i, and αi represent the influence

data point i have on the decision function. Non-zero value of αi makes object i a support vector

(SV).

In this dissertation, a non-linear RBF-SVM model is trained using only the training examples

obtained from the first five minutes as mentioned before. A publicly free software called LibSVM

2.89 is used to generate the model [12].

The values of the capacity constant C and γ of the kernel have direct influence on the model.

For example, the larger the C, the more the error is penalized and γ is related to how wide the

Gaussian is positioned around the data point. Thus, to abase over fitting, they should be chosen

with care. It is also important to choose different capacity constant for different classes when the
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dataset is imbalanced [1]. In this study, the best values of the capacity constant for each class and

γ are obtained using a try and error method.

4.3.5 Vector Generation of Classified Beats

In this step, the trained model created before is used to classify the beats of the other 25 minutes

of the signal (the testing dataset). This dataset consists of features generated from the heartbeats

in ECG signal from five minutes and up to the end of that signal.

It is important to note that the model is trained using the first five minutes of all the 45 excerpts

that the database has, and is tested one subject at a time incorporating the beats from after the five

minutes to the end of that signal. This means that the overlapping exists between the heartbeats

from the same signal is minimized. As a result, the constructed model is invulnerable to over

fitting and hence have high reliability.

In order to classify a given unknown example Xk using the model created before, we simply

calculate the following function:

f (Xk) = sgn (yi < W, φ (Xi) > −b) (4.3)

After successively classifying every heartbeat in the testing dataset using the formula in (4.3),

a vector that represent these classifications is generated and then analyzed by rules supported by

the medical literature. Next section elaborates how the analysis is done.

4.3.6 Analysis of the Classified Beats with Deterministic Finite-State

It is important to point out that the crux of this system is to detect how severe the arrhythmia is.

The result is a report of whether the signal contains severe abnormality or not. To generate such

a report, three simple rules are formulated based on the medical literature that would give health
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care providers information that a severe heart arrhythmia is occurring or is about to occur.

As Figure 4.4 shows, the rules are instituted as a deterministic finite automate (DFA) to analyze

the vector of classified heartbeats generated before. A window of 30 classified beats is considered

for the analysis. This is because the study is aimed to discover a severe abnormality as soon as

possible and this window size converges with the rules. Moreover, the window size is believed to

be clinically relevant.

Figure 4.4: The deterministic finite automate (DFA) of the rules used in this study. State 0 repre-
sents the start state and E is the final (severe) state. The possible alphabets of the DFA are N, A,
or V. Only one alphabet is received at a time and the input causes a transition to only one state

The analysis is done by a sliding window of five beats. The rules that are considered in this

study are:

• Rule 1: Three consecutive VEBs in a window

When analyzing the window and there are three VEB beats in a row, then the whole signal

is considered as severe. Finding three VEB beats in window is a concern for the potential

development of more lethal arrhythmias such as ventricular tachycardiac which may lead
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to cardiovascular collapse and/or sudden cardiac death or be an indication of developing

ischemia [67, 90].

• Rule 2: A minimum of six PAC beats in a window

If the analysis resulted in finding six PAC beats (but not necessarily in a row), that signal

is reported as severe. Six PAC beats represent 20% of the window. While PAC beats are

benign in the healthy heart, they can herald the onset of more serious arrhythmias such as

atrial fibrillation and atrial flutter in a diseased heart. [52, 55, 96].

• Rule 3: The following rules were created since the combination of VEBs and PACs may

indicated cardiac irritability from a number of causes ranging from respiratory pathology,

cardiac toxicity of medications to circulating electrolyte imbalances [49, 50, 64, 128].

Rule 3.a: Four PAC beats adjoin with one or more VEB.

Rule 3.b: Two consecutive VEBs with one or more PACs.

Rule 3.c: Two VEBs not in a row with three or more PACs.

The mathematical model of the diagram in Figure 4.4 is given below:

A deterministic finite-state machine is a quintuple (Σ, S , s0, δ, F) [89] where:

• Σ is non-empty set of alphabet defines the accepted input. The accepted input for this study

DFA are {N, A, V}, where N means a normal beat in the classified vector, A is a PAC beat,

and V is a VEB.

• S is a finite, non-empty set of states. As Figure 4.4 shows, the states for our DFA are {0, 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, E}.
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• s0 represents the start state and must ∈ S . Clearly, the start state is 0 as shown in the figure.

• δ is the function used to transition from one state to another when one of the acceptable

alphabets is read. Each transition returns only one state ∈ S . The mathematical notation of

this function is δ : S × Σ→ S .

• F is a set of final states and it must ∈ S . In our diagram, the final state is E.

Figure 4.4 can also be represented as a state-transition table. Typically, state-transition tables

are two-dimensional where the vertical dimension represents events and horizontal dimension is

the current state. The state-transition table for Figure 4.4 is given in Table 4.3.

Table 4.3: The state transition table from the deterministic finite automate (DFS) of Figure 4.4.
The start state is 0 and the end state E represents a severe arrhythmia

State Transition Table
Event⇒ N A V
State ⇓

0 0 3 1
1 4 8 2
2 5 9 E
3 3 4 8
4 4 5 9
5 5 6 7
6 6 7 8
7 7 E E
8 8 9 2
9 9 10 7
10 10 E 7
E E E E

In this system, when a vector is generated, the alphabets of the vector are considered as an

expression and is shoved to the DFA. As the expression is evaluated, the system triggers a search

to the final state E and if visited, a severe arrhythmia is reported. If the alphabets of the window
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did not lead to a finial state, the window is shifted five beats and the procedure is applied again. If

none of the windows that are checked resulted in a visit to the final state, the signal is reported as

non-severe.

4.4 Results

In this section, the results for arrhythmia classification and severity detection are illustrated. All

data processing was performed off-line using a commercial software package (MATLAB 7.7, The

MathWorks Inc., Natick, MA, 2000). The classification of arrhythmia is done by support vector

machine learning algorithm as implemented in LibSvm 2.89 [12]. A radial basis function is used

as the kernel.

The number of beats in training and testing datasets are provided in Table 4.4 below. As it can

be seen in the table, the datasets for training and testing are imbalanced. There is an imbalance

of 13 to 1 between N and VEB classes and it reaches to 55 to 1 between N and PAC classes in

the training dataset. This leads to the necessity to provide a different capacity constant C for each

class when the model is trained [1].

Table 4.4: The number of beats for the functional classes (N, PAC and VEB) as extracted from
the MIT/BIH database. The training beats are generated from the first five minutes of each signal.
The rest of the beats are counted in the testing dataset. If the annotation in the database is not PAC
or VEB then it is considered as normal

Class #Beats #Training #Testing
N 91413 15674 75739

PAC 2897 282 2615
VEB 7269 1211 6058

The results of the classification are presented by Sensitivity (Se), Specificity (Sp) and accuracy

as in equations (3.6), (4.4) and (4.5). True Positive (TP), False Negative (FN), True Negative (TN)
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and False Positive (FP) are also computed and provided in the results.

S p =
T N

(T N + FP)
(4.4)

Accuracy =
T P + T N

(T P + +T N + FN + FP)
(4.5)

4.4.1 Arrhythmia Classification Results

The classification model is first trained with the training dataset and then it is used to classify the

testing dataset. Before training the model, the best values of γ and the capacity constants C for

each class must be found with care since their values will affect the accuracy. To find these values

several runs are performed and illustrated in Subsection 4.4.1.1. The results of the trained model

is given in Subsection 4.4.1.2. Subsection 4.4.1.3 shows the results for the testing dataset.

4.4.1.1 Finding the capacity constants and γ to train the model

As shown in Table 4.4, the training dataset is imbalanced. So, to find the best values for γ and

the capacity constants for each class, a trial and error method is performed. The g-means metric

suggested by Kubat et al [69] is used to measure the performance of the trained model. The g-

mean metric has been used by several researchers for evaluating classifiers on imbalanced datasets

[1, 68, 69, 130]. Equation 4.6 shows the definition of this metric, where acc+ and acc- are the

average sensitivity and specificity of the model, respectively.

g =
√

acc + ȧcc− (4.6)

In each run, one parameter is picked and increased in a step of multiple of 2. For example, the

first run is performed with C1, C2, C3 and γ are all = 2, where C1, C2 and C3 stand for the capacity
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constant for N, PAC and VEB, respectively. The second run with C1=4 and the other parameters

are equal to 2 and so on until the value is equal to 1024. This scenario resulted in 10,000 runs

and in each execution the g-mean is calculated and stored along with the value for each parameter.

The highest value of g-mean is then used to obtain the values of the parameters. The best values

provided by the g-mean are found to be 1024, 64, 128 and 0.5 for C1, C2, C3 and γ, respectively.

4.4.1.2 Training Model Results

The training examples are obtained from the first five minutes of each subject in the database. A

total of more than 17,000 annotated beats are used. The value of each parameter from the previous

subsection is used. The results of the trained model with 10-fold cross-validation are illustrated in

Table 4.5. The accuracy of the model is 99.54%.

Table 4.5: Sensitivity and specificity of arrhythmia classification model using the training dataset
with 10-fold cross-validation

Class #TP #TN #FP #FN Se (%) Sp (%)
N 15613 1445 32 61 99.61 97.83

PAC 269 16789 20 13 95.39 99.88
VEB 1176 15882 57 35 97.11 99.64

4.4.1.3 Testing Results

The trained model created before is used to classify each heartbeat in the testing dataset. As

mentioned before, the testing dataset is created from the heartbeats in each signal from after five

minutes up to the end of that signal. The results are provided in Table 4.6 below. The accuracy of

the model is 93.52%.
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Table 4.6: Sensitivity and specificity of arrhythmia classification model using the testing dataset

Class #TP #TN #FP #FN Se (%) Sp (%)
N 68923 7622 882 6816 91.00 89.63

PAC 2267 74278 1772 348 86.69 97.67
VEB 5355 71190 5213 703 88.39 93.18

4.4.2 Results for Detection of Arrhythmia Severity

The novelty of this system is to detect the presence of and classify the severity of arrhythmia

according to several simple rules supported by the medical literature. In this study, the rules are

implemented using a finite state machine. Table 4.3 provides the state transition table and Figure

4.4 shows the finite state automaton diagram. There are twelve states with 0 as the start state and

the mnemonic E is the final (severe) state. The classes of beats in the vector generated before are

read and inputted one by one to the DFA. When E state is visited, a severe arrhythmia is reported.

To substantiate the results, another analysis is done for the testing dataset without classifica-

tion. The actual labels for the segmented beats are used. A vector is created for each signal from

these labels and are fed to the DFA. This is because we want to create a gold standard to compare

the results of the classified beats with. When analyzing the testing labels without classification,

the DFA reports a severe arrhythmia in 29 cases and the other 16 subjects as non-severe.

According to the trained model, the system reports a severe arrhythmia in 25 cases. From the

45 subjects in the database, the system indicated a non-severe arrhythmia in 13 records producing

an accuracy of the decision support system of 84.44%. In addition, we calculate TP, TN, FP and

FN, sensitivity and specificity of the arrhythmia severity detection system as compared the the

gold standard. Table 4.7 lists these values for the implemented system.
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Table 4.7: Arrhythmia severity detection results. The golden measurement used for comparing is
the analysis of the actual annotated beats of the testing dataset when provided as input to the DFA

Class #TP #TN #FP #FN Se Sp Accuracy
Severe 25 13 3 4 86.21 81.25 84.44

NonSevere 13 25 4 3 81.25 86.21 84.44

4.5 Comparison

It is difficult to compare the result with other studies in literature for many reasons. First, different

studies use different number of classes. Second, even though two studies have the same number

of classes, the mapping for their classes might be different than the MIT/BIH annotations. Finally,

some studies exclude some records from the database since they contain noisy signals.

To fairly compare the results between the algorithm implemented in this dissertation and other

methods, the same mapping is used. In other words, the mapping used in this dissertation is altered

to match the mapping that the other study uses. In addition, if the study excludes a specific record

from the database, that record is also excluded when reporting the results from the implemented

algorithm. Following this scheme, the results can fairly be compared.

The comparison between the implemented algorithm and other methods from literature is pre-

sented in Table 4.8. Some studies reported their results using sensitivity and specificity, whereas

in some other studies only the accuracy is found. The features used in the created models are 11

as in Table 4.2. Each row in Table 4.8 shows the sensitivity (Se), specificity (Sp) and the accuracy

of the created model using the map that the other study uses to categorize the annotated beats in

MIT/BIH arrhythmia database.
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Table 4.8: Comparison between arrhythmia classification model implemented in this dissertation
and other method in literature

This work Other Study
#Classes Se Sp Acc Se Sp Acc #Features Study

4

95.3 96.7 95.8 91 92 N/A 11 Exarchos et al. [37]
95.3 96.7 95.8 97.78 97.78 N/A 19 Güler and Übeyli [45]
95.3 96.7 95.8 N/A N/A 93.46 19 Nasiri et al. [93]
96.9 98.8 98.1 N/A N/A 98.2 3 Tsipouras et al.[122]
95.3 96.7 95.8 82.6 97.1 94 9 Hu et al. [51]

5
96.7 97.9 97.4 N/A N/A 94.6 15 Chazal et al. [28]
95.3 96.7 95.8 96.23 99.09 93.59 150 Kutlu and Kuntalp [72]

6
96.1 96.6 96.3 N/A N/A 91.67 303 Melgani and Yakoub [87]
96.1 96.6 96.3 N/A N/A 97.33 11 Arifet et al. [3]
97.3 98.7 98.5 99.6 95.1 98.9 17 Song et al. [116]

7
97.4 99.3 98.7 N/A N/A 96.5 50 Lin et. al. [76]
97.4 99.3 98.7 N/A N/A 96 08 Osowski and Linh [97]

4.6 Summary

The novelty of this study is to detect the presence of and classify the severity of arrhythmia accord-

ing to several simple rules developed from the medical literature using a decision support system

and deterministic finite automaton. The system is divided into three sub-systems; ECG detection,

arrhythmia classification and arrhythmia analysis. ECG detection sub-system is used to extract

features form time-domain and wavelet transformation is applied to calculate frequency-domain

features. An arrhythmia classification sub-system is implemented to train a model and use it to

test the class of unknown beats into one of three function classes (normal, premature atrial con-

traction and ventricular ectopic beat). The classified beats are then used in the arrhythmia analysis

sub-system to indicate ectopy, which may lead to heart dysfunction. The MIT/BIH arrhythmia

database is used for this purpose.

The method described allows for the development of a computationally inexpensive method to
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rapidly detect and report ectopy in an early warning manner that may allow health care providers

for more time to react prior to possible patient deterioration. In this dissertation, the system im-

plemented in this chapter can be used to extract informative features that tell something about the

arrhythmia severity to predict the severity of blood volume loss as discussed in the next chapter.
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CHAPTER 5 Loss of Blood Volume Prediction

In this chapter, a novel method for the severity prediction of loss of blood volume is introduced.

The method extracts features from physiological signals and combines them with other features

extracted from the arrhythmia severity detection system discussed in the previous chapter. Three

biomedical signals are used in the analysis, namely ECG, ABP and impedance.

The rest of this chapter is organized as follow: Section 5.1 briefly introduces the approach.

The method is illustrated in Section 5.2 and the results are given in Section 5.3. A comparison to

other algorithms is presented in Section 5.4. The chapter is then summarized in Section 5.5.

5.1 Introduction

Hemorrhage can be a fatal consequence of a traumatic injury in both military and civilian settings.

From physiological point of view, blood loss will influence many biomedical signals including,

but not limited to, ECG, ABP, skin temperature, phonocardiogram (PCG), carotid pulse (CP) and

impedance. Focusing on only one of such signals to build a model that is capable to distinguish the

severity of hemorrhage means that some information may be ignored. However, analyzing all of

them is time consuming and would substantially increase the complexity of the model. Therefore,

a trade off should be applied when choosing the signals to be processed in order to detect the

severity of blood loss.

Some questions arise here; what are the most informative signals? How many signals should

be analyzed and processed and how easy they are acquired? The former two questions are implicit

in the military setting. However, in civilian setting the answer to the first question is the most

57
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important one, since a wider range of monitoring devices can be used. Nevertheless, the focus of

this project is to create a system with the following properties:

1. The system should be capable of discriminating between severe and non-life-threatening

hemorrhage; inevitably, achieving high accuracy.

2. The system should continuously provides feedback about the state of the subject. For ex-

ample, at each point in time the feedback/recommendations is formed using the last few

seconds/minutes of the collected signals.

3. The system should be efficient in terms of memory requirement and execution time. More-

over, it must be close to real-time.

Although, the second and third properties are very important, the first property seems to be the

most important one, at least from medical point of view.

In this dissertation, a novel method for the prediction of the severity of blood volume loss is

illustrated. The schematic diagram for the method is shown in Figure 5.1.

The method includes three main steps: Signal pre-processing, Feature Extraction, and Clas-

sification. The signals that are chosen for analysis are ECG, ABP and thoracic impedance. The

dataset used is obtained from lower body negative pressure (LBNP) protocol. LBNP was proved

to be a useful tool for simulating the early phase of acute hemorrhage in humans [22–24].

5.2 Methodology

As shown in Figure 5.1, the inputs to this system are from ABP, impedance, ECG detection algo-

rithm and arrhythmia classification and severity detection system. Features from ABP, impedance



59

Figure 5.1: Schematic diagram for prediction of loss of blood volume severity system

and ECG detection algorithm and arrhythmia classification and severity detection system are ex-

tracted and used as the attributes for classifying blood volume loss.

The feasibility of analyzing multiple physiological signals to predict the severity of loss of

blood volume is elaborated by creating and comparing five types of models, in which features

extracted from, respectively:

1. ECG signal only.

2. ECG and ABP signal.

3. ECG, ABP and impedance.

4. ABP and impedance.

5. ECG and impedance



60

5.2.1 Description of the dataset

The LBNP dataset that is used in this work is described in Section 3.2.1.1. In this dataset different

cases have different collapse stages; for example, some may collapse at stage 4, where someone

else may collapse at stage 7. This observation calls for further attention when forming a prediction

system. One solution to this problem is the division of the stages into some predefined categories

identified by clinicians. This idea is adopted in this dissertation. The categorization of different

collapse stages into classes is done by physicians. Table 5.1 presents the mapping of collapse

stages into three classes (mild, moderate and severe). The main idea in forming this mapping is

that the first stages (lower stages) are mapped to mild, the last few stages are mapped to severe and

all middle LBNP stages are mapped to moderate.

Table 5.1: Mapping of different collapse stages into three class labels

Collapse Stages Mild Moderate Severe
4 Baseline and Stage 1 Stage 2 Stage 3 and 4
5 Baseline and Stage 1 Stage 2 and 3 Stage 4 and 5
6 Baseline, Stage 1 and 2 Stage 3 and 4 Stage 5 and 6
7 Baseline, Stage 1 and 2 Stage 3 and 4 Stage 5, 6 and 7

5.2.2 Signal Preprocessing

Several types of noise might exist in ABP and impedance signals. Therefore a suitable filter to en-

hance signal-to-noise ratio must be designed and used. For this purpose, a Butterworth bandpass

filter is designed with stop and pass bands specified for each signal by applying Fourier transfor-

mation (FT) to identify the cut-off of the filter.

Figure 5.2a shows the magnitude of the Fourier Transform for ABP signal vs. frequency.

Observing this figure and the knowledge of the signal, a low-pass filter that filters out frequencies
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higher than 6Hz is designed for the ABP signal. It is important to mention that Figure 5.2a is not

to scale in frequency. The results before and after applying the designed filter based on Fourier

transform are provided in Figure 5.2b and Figure 5.2c, respectively.

(a) Fourier transform (b) ABP before filtering (c) ABP after filtering

Figure 5.2: The process of filter design for ABP signal

To design a filter for impedance signal, Fourier transform is also applied to the signal. Figure

5.3a shows the transformation. From the figure, a band-pass filter with cut-off of 0.8Hz and 10Hz

is designed. Figure 5.3a is not to scale. The results before and after applying the filter are provided

in Figure 5.3b and Figure 5.3c, respectively.

(a) Fourier transform of impedance sig-
nal

(b) Impedance signal before filtering (c) Impedance signal after filtering

Figure 5.3: The process of filter design for impedance signal
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5.2.3 Feature Extraction

A quick look at Figure 5.1 shows that the inputs for this stage are the filtered version of ABP and

impedance signals, ECG characteristic points (i.e. P-QRS-T), and abnormal heart beats.

Two different sets of features are extracted from ECG signal; features from time domain and

wavelet domain. The features are extracted from a non-overlapping window of size 20 seconds.

This is because the study is aimed to discover a severe loss of blood as soon as possible. Moreover,

the window size is believed to be clinically relevant. In the following subsections, the extracted

features are illustrated.

5.2.3.1 Time Domain Features

1. ECG Intervals and Amplitude Ratios.

The time domain features that are computed from ECG signal are the average intervals of

the beats in the window. These intervals are PQ, QRS, PR, ST and QT. In addition, the

standard deviation and median is computed for each interval and included. Moreover, the

average ratio of amplitudes are also calculated. These ratios are P-to-Q, Q-to-S, P-to-R,

S-to-T and Q-to-T.

There are 20 features extracted from the ECG characteristic points.

2. Statistical Measurements.

The mean, standard deviation and median are the statistical properties that are considered

in this dissertation for each signal (ABP, ECG and Impedance). In addition, Heart rate

variability (HRV) signal is calculated from the ECG and the aforementioned measurements

are computed from the obtained signal. RRI is proved medically to be a good feature that
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indicate blood loss when used in such a system. However, it is not included in the feature

set because the mean of HRV signal is already considered.

Thus 12 statistical features are extracted from the signals.

3. Signal Complexity and Mobility.

For each signal considered in this dissertation, the complexity and mobility are calculated

and included in the feature set. These two features are computed since they can measure

the level of variations among any signal quantitatively and are often used in biomedical

applications to quantify the first and second order variations of the signal [92].

Assume a signal xi, i = 1, ...,N., vector D represents the first order variations in X, and

vector G represents the second order variations such that:

di = xi − xi−1

gi = di − di−1

Now, using the signal vector X and vectors D and G, the following first and second order

factors are defined:
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S 0 =

√∑N
i=1 x2

i

N

S 1 =

√∑N−1
i=2 d2

i

N − 1

S 2 =

√∑N−2
i=3 g2

i

N − 2

Then, the complexity and mobility are defined as equations (5.1) and (5.2), respectively.

S ignal Complexity =

√√
S 2

2

S 2
1

−
S 2

1

S 2
0

(5.1)

S ignal Mobility =
S 1

S 0
(5.2)

4. KullbackLeibler Distance. Given two probability distributions P and Q, Kullback-Leibler

Distance (KLD) is a non-symmetric measure of the divergence between those two distribu-

tions [70]. Typically P represents the ”true” distribution and Q represents the approximation

of P.

For probability distributions P and Q of a discrete random variable their KLD is calculated

from equation (5.3).

KLD(P ||Q) =

N∑
i=1

P(i)log
P(i)
Q(i)

(5.3)
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The ECG, ABP and Impedance are discrete stochastic signals and therefore form discrete

random variables. In this work, three subjects are randomly selected and for their signals,

the probability distribution function is calculated. That means, there are 9 functions; three

for ECG, three for ABP and three for Impedance.

Let Pi
ECG, Pi

ABP and Pi
Imp define the probability distribution functions of the ith randomly

selected subject. Now, to extract features form each subject in the dataset, KLD, as defined

in equation (5.3), is calculated between each of the predefined functions and the probability

distribution functions computed from the subject’s signals. That means, nine features are

extracted from each subject. These features are KLD(Pi
ECG ||QECG), KLD(Pi

ABP ||QABP)

and KLD(Pi
Imp ||QImp), where QECG, QABP and QImp represent the probability distribution

functions obtained from the subject’s ECG, ABP and Impedance, respectively.

5. Rate of Abnormal Heartbeats

The arrhythmia classification and severity detection system that was discussed in Chapter 4

is used to extract the rates of abnormal beats in the window defined earlier. The number of

PACs and VEBs are the two features considered from the arrhythmia system. The novelty

of using such features is in quantitatively exploring the relationship between arrhythmia

and blood loss. This study further explores the observation that the rate of arrhythmic beats

increases as a result of hypoxia, whereas hypoxia becomes very likely during an acute blood

loss. The relationship between hypoxia and arrhythmia is explained on the metabolic basis

[19, 71, 101, 129].

The prediction system feeds the whole window to the arrhythmia system. The result will be

a vector of classified beats. From this vector, the number of VEBs and PAC are counted and
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included.

The actual arrhythmia system used here is slightly different from the one discussed in Chap-

ter 4. The system used here is trained with the whole ECG signal instead of the first five

minutes. This is because the model is applied to a different database. This means that the

model was trained with the MIT-BIH beats, and then the trained model was used to clas-

sify the beats in the LBNP database. It it important to note that the two signals are not the

same. To standardize both datasets, a normalization in terms of amplitude is applied to be

between [−1, 1]. The extracted features are also normalized by the sampling rate, if and

only if, the feature is generated from time domain. For example, PQ is used as a feature and

it is extracted from time-domain. As such, this feature is normalized by the sampling rate to

standardize the concept of this feature in both datasets.

It was observed that the rate of abnormal beats due to hypoxia increased substantially in

the case of acute blood loss, which would make such features very important to distinguish

severe hemorrhages.

The total number of time-domain features extracted, when the ECG, ABP, and Impedance

signals are considered is 49 attributes. That is, 33 features from the ECG and 8 from each of the

ABP and impedance signals.

5.2.3.2 Wavelet Domain Features

To extract features from the frequency domain, wavelet transform is applied with daubechie 4

(db4) at level 4. The resulting detail coefficients of levels 1 to 4 are used to calculate statisti-

cal features. For each level, the standard deviation, mean, median, kurtosis, and skewness are

computed. The approximation coefficients at level 4 are used, as well as the detail coefficients to
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calculate the entropy of the frequency domain as described in equation (5.4).

Entropy = −plog(p), (5.4)

where p is calculated as follows:

p =

∑N
j=1 |ac j|

2

N
∑4

l=1
∑M

i=1 dci

where acj’s are the approximation coefficients at level 4, N is the number of these coefficients

and dci’s are the detail coefficients at level l.

Empirically, the best results are achieved when db4 at level 4 is used for the transformation.

The total number of features extracted from the frequency domain is 21 attributes form each in-

corporated signal.

5.2.4 Classification

The machine learning algorithm, SVM, introduced in Section 4.3.4 is applied to predict the sever-

ity of loss of blood volume. As mentioned before, five models are created in order to emphasis the

importance of incorporating multiple physiological signals. The labels for the examples is mild,

moderate or severe.

The RBF kernel function in (4.2) is adopted for all models. The SVM parameters for each

model are selected based on an optimization tool installed from LibSvm [12]. The values for the

parameters for each model are given in the following section.

5.3 Results

In this study, 90 subjects from the LBNP dataset are used. For each stage, a non-normalized and

non-overlapping window of size 20 seconds (10000 samples) is defined. Three types of signals

(ECG, ABP and impedance) are used to extract a total of 112 features. The labels for the examples
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are mild, moderate or severe as defined in Table 5.1. The sensitivity and specificity are calculated

using equations (3.6) and (4.4), respectively. The accuracy is calculated using equation (5.5). For

model validation, two types of validations are considered; 10-fold cross validation and leave one

subject out cross validation. The results are illustrated in Table 5.2.

Leave one subject out cross validation is computed as training the model with n − 1 subjects

(n = 90), then the trained model is used to test the excluded subject. From each subject, several

examples are obtained using a non-overlapping sliding window of size 20 seconds. This means

that all the examples generated from a subject will be tested by a model that was trained with the

examples obtained from the n − 1 subjects. This way will decrease the dependency between the

examples and a more reliable model is created. Moreover, this way simulates the model in real

medical application.

Accuracy = 1 −
#missclassi f ied

Total number o f examples
(5.5)

Time complexity is measured using an eight cores computer, where each is 1.67GHz. The size

of the model is given as the space required to store a serialized JAVA object from the model. The

capacity constant C and σ are obtained from a tool installed with LibSvm 2.89.

Figures 5.4 and 5.5 visually illustrate the results in Table 5.2 using 10-folds cross validation

and leave one subject out cross validation, respectively.
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Table 5.2: Results for the different blood loss models that are created in this dissertation. The
classes are mild (2670 examples), moderate (1745 examples) and severe (2052 examples)

Signals Used
ECG ECG & ECG, ABP & ABP & ECG &
Only ABP IMP IMP IMP

Parameters

C 25 25 27 25 25

σ 2−3 2−5 2−5 2−1 2−1

#Features 54 83 112 58 83
Model Size 2375 KB 3834 KB 4302 KB 2926 KB 3941 KB

Time 26.13sec 36.56 sec 40.74 sec 34.66 sec 32.73 sec

10 Folds CV
Se 89.4 90.7 91.6 82.3 91.4
Sp 94.7 95.2 95.6 91.2 95.7

Missclassified 686 604 543 1146 555
Acc 89.39 90.66 91.6 82.28 91.42

Leave one subject out
Se 73.8 74.6 79.6 60.1 74.1
Sp 78.1 79 85.3 68.4 77.9

Acc 75.95 76.8 82.45 64.2 75.7

Figure 5.4: Results of the created models using 10 folds cross validation
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Figure 5.5: Results of the created models using leave one subject out cross validation

5.4 Comparison

The comparison of the algorithm presented in this chapter with other methods is presented in Table

5.3. The same data is used in all studies. The Hakimzadeh et. al. [47] algorithm incorporates the

transcranial doppler (TCD) signal only. Ji et. al. method [57] uses ECG, ABP, impedance from

the throat (IZT) and from the chest (DZT). In both methods, the best results is reported using SVM

classifier. Comparison results are illustrated in Table 5.3.

Table 5.3: Comparison results for the implemented blood loss detection method and other studies.
The number of classes is 3. The same mapping and 10-fold cross validation are adopted to report
the results in all methods

Method Se (%) Sp (%) Accuracy (%)
This work 79.6 85.3 91.6

Hakimzadeh et. al. [47] N/A N/A 70%
Ji et al. [57] 79.8 83 82
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5.5 Summary

This chapter presents a method for prediction of the severity of loss of blood volume by incorpo-

rating multiple physiological signals such as ECG, ABP and impedance. The method combines

features from time domain, frequency domain and arrhythmia. Five models are provided to sup-

port the importance of using multiple signals. The dataset used to investigate the accuracy of

the model is LBNP. The MIT-BIH database is used to create a classification model to distinguish

three types of heartbeats (normal, premature atrial contraction, and ventricular ectopy beat). The

method determines the severity of blood loss as one of three functional classes (mild, moderate

and severe) as supported by physician.
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CHAPTER 6 System Evaluation on Bodymedia Dataset

6.1 Introduction

In this chapter, an evaluation of the algorithms to predict the severity of blood loss is illustrated

on a different dataset; the Bodymedia LBNP dataset. The Bodymedia LBNP dataset compromises

of 45 subjects obtained from the same LBNP protocol discussed before. All signals in this dataset

are sampled using SenseWear R© Pro 3 armband (see Figure 6.1), which is a product designed and

built by BodyMedia, Inc.

Figure 6.1: SenseWear R© pro 3 armband

The armband was designed to be worn under a patient’s clothing for continuous data collection

and has the following sensors:

1. Two-axis accelerometer to track the movement of the upper arm and body and provides infor-

mation about body position.

72
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2. A proprietary heat-flux (HF) sensor that measures the amount of heat being dissipated by the

body by measuring the heat loss along a thermally conductive path between the skin and a

vent on the side of the armband.

3. Skin temperature sensor to measure temperature of the body using sensitive thermistors.

4. Galvanic Skin Response (GSR) sensor that measures the changes in the ability of the skin to

conduct electricity caused by sweating or emotional stimuli.

5. ECG sensor to sample the ECG signal with a sampling rate of 128Hz.

HF, skin temperature and GSR are samples at 1/60Hz frequency, whereas the ECG is sampled

at 128Hz.

Since the LBNP signal is proved to simulate blood loss, the armband signals are used to evalu-

ate the algorithms discussed in this dissertation to predict the severity of blood loss. The schematic

diagram for the evaluation process is shown in Figure 6.2.

Figure 6.2: Schematic diagram for prediction of loss of blood volume severity using SenseWear R©

pro 3 armband
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The method includes two main steps: Feature Extraction and Classification. The signals that

are chosen for analysis are ECG, GSR, HF and skin temperature. Since the former three signals

(GSR, HF and skin temperature) are sampled at 1/60Hz, the system extracts features from them

directly without the need to pre-process those signals.

6.2 Methodology

As shown in Figure 6.2, the inputs to this system are from GSR, HF, skin temperature, ECG

detection algorithm and arrhythmia classification and severity detection system. Because GSR, HF

and skin temperature signals have low sampling frequency, the features are extracted form them

directly without pre-processing. The ECG signal is forwarded to the ECG detection algorithm

to delineate the five important signal’s characteristic points (P, QRS and T). The output of the

algorithm is then used to extract features from the time and wavelet domains of the ECG signal

and also is forwarded to the arrhythmia system to determine the type of each beat in the signal to

extract the rate of abnormal heartbeats. The extracted features are fed into SVM machine learning

algorithm to predict the severity of blood loss.

6.2.1 Description of the dataset

As mentioned before, there are 41 subjects in this dataset. Each subject is admitted to the LBNP

protocol wearing the armband. The ECG, GSR, HF and skin temperature signals are collected as

the pressure is decreased until that subject is unable to continue the protocol and a collapse stage

is identified. For compatibility, the same mapping that is presented in Table 5.1 is used in the

evaluation process.
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6.2.2 Feature Extraction

As shown in Figure 6.2, the inputs for this stage are GSR, HF, skin temperature signals and the

ECG signal after it was processed by ECG wave detection system.

The time that a subject expends in the LBNP protocol is divided using a non-overlapping

window of size 20 seconds. For example, if a subject stayed for 30 minutes inside the LBNP

machine, then the subject’s signal is divided into 90 examples.

As discussed before, 20 seconds window is used because the study is aimed to discover a

severe loss of blood as soon as possible. Moreover, the window size is believed to be clinically

relevant.

From each example, two different sets of features are extracted; time and wavelet domains

features. The following subsections describe the extracted features.

6.2.2.1 Time Domain Features

1. ECG Intervals and Amplitude Ratios.

The ECG signal obtained from the armband is processed by the ECG detection system

described in Chapter 3 to detect the characteristic points of each beat in the example. From

the detected points of each heartbeat, several clinically important intervals are extracted.

These intervals are PQ, QRS, PR, ST and QT. Since there are multiple beats in each window,

the standard deviation, mean, median, minimum and maximum of each interval type are

calculated and included in the feature set. Moreover, the average ratio of amplitudes are

also calculated. These ratios are P-to-Q, Q-to-S, P-to-R, S-to-T and Q-to-T.

The total number of features generated from the ECG intervals and amplitudes are 30 fea-

tures.
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2. Statistical Measurements.

From the whole ECG signal, mean, median, standard deviation, minimum and maximum

are calculated. In addition, Heart rate variability (HRV) signal is computed from the ECG

and the aforementioned measurements are obtained from the generated signal.

This means that the total of 10 statistical features are extracted from the ECG and HRV

signals.

3. Signal Complexity and Mobility.

Equations number (5.1) and (5.2) are used to find the complexity and mobility of the ECG

signal for each example and are included in the feature set. As discussed in Subsection

5.2.3.1, these two features will can quantify the level of variations among the ECG signal.

Calculating such features is very important since the heart will pump faster when the body

is losing blood in a process called compensation, which means variations in the ECG signal

will become more likely.

There will be 2 features that represent the variation of the ECG signal added to the feature

set.

4. KullbackLeibler Distance.

As mentioned in Subsection 5.2.3.1 , to extract features using Kullback-Leibler Distance

(KLD), one need two probability distributions P and Q. Typically P represents the ”true”

distribution and Q represents the approximation of P. Equation (5.3) can then be used to

compute the KLD between P and Q.
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Three subjects are randomly selected and for their ECG signal, the probability distribu-

tion function is calculated. The result is three functions; P1
ECG, P2

ECG and P3
ECG. Now

for each example, the probability distribution function (QECG) for the ECG signal is calcu-

lated and equation (5.3) is used to compute KLD(P1
ECG ||QECG), KLD(P2

ECG ||QECG) and

KLD(P1
ECG ||QECG).

The above discussion means, that there will be three features that represent the distances

between the true distributions (Ps) and the approximate distribution (Q) and are included in

the feature set.

5. Rate of Abnormal Heartbeats

As can be seen in Figure 6.2, the ECG signal is forwarded to the detection system, then the

result is forwarded to the feature extraction step and arrhythmia classification and severity

detection system. The same arrhythmia system that was discussed in Section 4.3 is used to

classify every heartbeat in the ECG signal of each example. The result of this classification

will be a vector of classified beats. From this vector, the number of VEBs and PAC are

counted and included in the feature set.

The rate of abnormal beats will add another two features to the feature set.

6. GSR, HF and Skin Temperature Features The sampling rate of the armband to gather GSR,

HF and skin temperature is 1/60Hz, and since each minute of sampling is divided into three

windows (each of length 20 seconds). Therefore, GSR, HF and skin temperature signals

measured at the beginning of each minute are copied into the second and third windows for

that minute.
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Example: Assume that there is a subject, wears an armband, stayed for 2 minutes in the

LBNP chamber. The collected signals are then divided into six windows each of length 20

seconds. Because GSR, HF and skin temperature are sampled at 1/60Hz, the first and fourth

windows will have a value for these signals. Since these samples are used as features, then

the values of GSR, HF and skin temperature signals in the first window are copied into the

second and third windows, and the values for the same signals in the fourth window are

copied into the fifth and sixth windows.

Because each example now has only one value for those three signals, no processing is

applied to the obtained signals values and are included directly. This will add three features

to the feature set to represent GSR, HF and skin temperature.

The total number of features that are extracted from time-domain is 50 features.

6.2.2.2 Wavelet Domain Features

To extract features from the frequency domain, two wavelet transforms are applied to the ECG

signal. The first tranformusing daubechie 4 (db4) and the second transform is by dual-tree com-

plex wavelet transform (DT-CWT). The transforms are done at level 4 and the resulted detail

coefficients of each level are used to calculate statistical features from the frequency domain.

For each level, the standard deviation, mean, median, kurtosis, and skewness are computed

from the detail coefficients of each transform.

The total number of features extracted from wavelet domain is 40 attributes from each example.

6.2.3 Classification

The same machine learning algorithm (SVM) that was used in chapter 5 to predict the severity of

blood loss is used. The kernel function in equation (4.2) is adopted for the model. The parameters
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are selected based on the optimization tool from LibSvm [12]. The values for the parameters for

each model are given in the following section. The total number of features is 90 attributes from

time and wavelet domains.

6.3 Results

In this study, 41 subjects from the Bodeymedia LBNP dataset are used. For each stage, a non-

normalized and non-overlapping window of size 20 seconds (10000 samples) is defined. Four

types of signals (ECG, GSR, HF and skin temperature) are used to extract a total of 90 features.

All these signals are non-invasive. The labels for the examples are mild, moderate or severe

as defined in Table 5.1. The sensitivity and specificity are calculated using equations (3.6) and

(4.4), respectively. The accuracy is calculated using equation (5.5). Two types of validations are

considered; 10-folds cross validation and leave one subject out cross validation. The results are

illustrated in Tables 6.1 and 6.2.

The true positive (TP), true negative (TN), false positive (FP) and false negative (FN) are cal-

culated and provided in the tables. In addition, the sensitivity (Se), Specificity (Sp) and Accuracy

(Acc) are computed and shown in the tables.

Table 6.1: Results of blood loss prediction with 10-folds cross validation on Bodymedia LBNP
dataset. The number of cases are 1074 mild, 840 moderate and 758 severe. σ=2−1 and C = 25.

Class TP TN FP FN Se Sp Acc
Mild 1048 1404 26 103 91.05 98.18 97.58

Moderate 716 1736 124 73 90.75 93.33 85.24
Severe 688 1764 70 44 93.99 96.18 90.77

Figure 6.3 visually illustrates the sensitivity, specificity and accuracy of the model as validated

with 10 folds. The values are from Table 6.1.
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Figure 6.3: Sensitivity, specificity and accuracy of the model with 10 folds cross validation

Table 6.2 shows the results of the model using by subject cross validation as described in

Section 5.3. This type of validation is adopted to verify the real accuracy of the model when it is

implemented in real systems.

Table 6.2: Results of blood loss prediction with leave one subject out cross validation on Body-
media LBNP dataset. The number of cases are 1074 mild, 840 moderate and 758 severe. σ=2−1

and C = 25

Class TP TN FP FN Se Sp Acc
Mild 1038 1181 36 244 80.97 97.04 96.65

Moderate 527 1692 313 104 83.52 84.39 62.74
Severe 654 1565 104 105 86.17 93.77 86.28

Figure 6.4 visually illustrates the sensitivity, specificity and accuracy of the model as validated

with leave one subject out is used. The values are in Table 6.2. It is clear that the accuracy dropped

to 62.74% when leave one subject out cross validation. This could indicate that the examples

generated from one subject are dependable. The only solution to this problem is by increasing the

samples in the dataset to adopt different cases.
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Figure 6.4: Sensitivity, specificity and accuracy of the model with leave one subject out cross
validation

Figure 6.5 visually illustrates a comparison between the accuracies obtained from the models

that were validated with 10 folds and leave one subject out cross. The results indicate that the

highest difference between the two models are in predicting the moderate examples.

Figure 6.5: Comparison between the accuracy obtained from 10 folds cross validation model and
leave one subject out cross validation model
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6.4 Summary

This chapter presents an evaluations of the algorithms described in this dissertation on another

dataset obtained from Bodymedia, Inc. The data is collected using an armband worn under the

clothes as the subject enters a LBNP protocol. Four biomedical signals collected by the armband

are used; ECG, GSR, HF and skin temperature. Ninety features are extracted from the time and

frequency domain of the signals.
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CHAPTER 7 Analysis of Time Complexity

In this chapter, a simplified analysis to approximate the Time-complexity for each system

implemented in this dissertation are elaborated. There are three systems created in order to assess

the severity of blood loss; ECG detection, Arrhythmia classification and severity detection and

blood loss severity prediction. All the complexities are based on Big-O notation, which defines

the worst case scenario.

This chapter is organized in four sections. Section 7.1 defines the notation used for the analy-

sis. Section 7.2 elaborates on the time complexity of the ECG detection system. The arrhythmia

classification and severity detection system are analyzed in Section 7.3. The computation com-

plexity for blood loss system is outlined in Section 7.4. The chapter is summarized in Section

7.5.

7.1 The ”Big-Oh” Notation

In this dissertation, an asymptotic notation called Big-O notation is used to define an upper bound

on the worst case scenario for a given algorithm.

Definition Let f (n) be a function that approximate the worst case running time of an algorithm

of input size n. Let g(n) be a function mapping nonnegative integers to real numbers. We say that

f (n) is O(g(n), if there exist a constant C > 0 and an integer constant n0 > 0 such that f (n) ≤ cg(n)

for sufficiently large n ≥ n0.

83
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This means that f is asymptotically upper bounded by g. The definition is often referred to as

the ”big-oh” notation. Alternatively, we can also say ” f (n) is order g(n)”. In the following sections,

an approximation of f (n) is analyzed and the corresponding g(n) is proved using Theorem 7.1.1.

Theorem 7.1.1 (Asymptotic Upper Bound) Let f and g be two functions that

lim
n→∞

f (n)
g(n)

exists and is equal to some number c > 0. Then f (n) = O(g(n)).

7.2 Time Complexity Analysis of the ECG Detection System

As can be seen in Figure 3.2, the ECG detection system is compromised of four main parts: Pre-

processing, QRS detection, P detection and T detection. Each part contains two components. The

following sections will elaborates the complexities of the components that make up the system.

7.2.1 Preprocessing

In this step, two components collaborate to generate artifacts-free signal. The first phase is to

apply a band pass Butterworth filter and the second step is to subtract the best-fit line that fits the

signal’s samples in a window of size equal to the sampling frequency of the signal.

The growth rate function in terms of time when applying a band-pass Butterworth filter is

f (n) = n, where n is the length of the signal. The complexity of such a filter does not depend on

the order of that filter. Even though the order of the filter is n. This means that the growth rate is

linear as the order is increased.

The second step is to find the best-fit line and subtract it from the samples of the signal in a

window of size equals to the sampling frequency s. Equation 3.1 shows that the growth of the

line calculation is linear, hence the complexity to construct such a line is f (k) = k, where k is

the length of vector x in equation (3.1). As said before, a window of size equals to the sampling
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frequency is defined for the baseline removal step. Therefore, the growth rate function to remove

the baseline drift in one window is f (s) = s. This means that if the signal has n samples, then there

are n
s windows that will be defined to remove the baseline drift. Therefore, the overall growth rate

of this step is f (n) =
(
s n

s

)
.

Therefore, the overall rate of growth for this component is f (n) = 2n

7.2.2 QRS Detection

In this part of the system, the signal is transformed with dual-tree complex wavelet transform. For

all types of wavelet transform, the computational complexity depends mainly on the implementa-

tion method. Nowadays, there exist methods that can generate the wavelet transform of a signal

in a growth rate of f (n) = n, where n is the length of the signal. The transform is done in this

dissertation using Matlab 7.7. The growth rate of WT as implemented in this package is f (n) = n.

After the transformation is applied the algorithm squares the resulted detail coefficients and a

threshold is applied afterwards. As mentioned before, the transformation takes place at level 4.

As a characteristic of wavelet transform, the signal is down sampled by 2 for each decomposition

level, which means the length of the detail coefficients that will be squared in the implemented

algorithm is n
16 . The square and threshold are linear operations, hence the growth rate of these

steps is f (n) =
(
2 ∗ n

16

)
.

Therefore, the overall rate of growth for detecting QRS-complex using the implemented method

is f (n) = n + 2 ∗ n
16 .

7.2.3 P and T Detection

To detect P and T waves, two windows are defined of length 0.16s, where s is the sampling

rate. WT is applied at level 2 for this window and the resulted coefficients are also squared and
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thresholded. By using the fact that there are n
s , this means that the growth rate to detect P and T

waves is f (n) = 2(0.16n + 2 ∗ 0.16n
4 ).

7.2.4 Overall Complexity

After approximating the computation complexity for the individual components of the system, the

overall complexity is calculated by summing up the overhead for the individual parts, since these

components are performed sequentially. Therefore, the complexity of the algorithm is:

f (n) = (2n) +

(
n + 2 ∗

n
16

)
+

(
2
(
0.16n + 2 ∗

0.16n
4

))
= 3n +

n
8

+ 0.32n + 0.16n

= 25
n
8

+ 0.48n (7.1)

Assume that g(n) = n, according to theorem 7.1.1, the time complexity of f (n) in Equation 7.1

is O(n).

Proof To proof that f (n) in Equation 7.1 is O(g(n)), we will apply the limit in Theorem 7.1.1 to

find a constant c > 0. We have f (n) = 25 n
8 + 0.48n and g(n) = n. That is
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lim
n→∞

f (n)
g(n)

= lim
n→∞

3.125n + 0.48n
n

= lim
n→∞

3.605n
n

= lim
n→∞

3.605

= 3.605

As the proof shows, there is a constant c > 0 that satisfy the limit in Theorem 7.1.1. Since n0

must be integer, we can say the f (n) in Equation 7.1 is O(n), for n ≥ 4.

In fact, the following theorem holds for all polynomial functions of degree d.

Theorem 7.2.1 (Asymptotic Upper Bound) Let f be a polynomial of degree d , such that

f (n) = adnd + ad−1nd−1 + ... + a0

where ad is positive. Then f = O(nd).

This theorem will be used to find the time complexity in the following sections.

7.3 Time Complexity Analysis of the Arrhythmia Classification and Severity Detection Sys-
tem

7.3.1 Analysis of Arrhythmia Classification System

The arrhythmia classification system is created by training a SVM model using features extracted

from time and frequency domains. The computational complexity to train a model using SVM

takes very long time. However, once the model is trained, classifying a new beat is easily done

by applying Equation 4.3. In fact, the model should be trained off-line, and then it can be saved

to classify the type of a new heartbeat. The only concern is how much time is needed to extract
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the features from each beat. As can be seen in Figure 4.1, time domain features are obtained from

the results of the ECG detection system. Let m denotes the length of the beat that the system

will extract the features from. Therefore, the growth rate to extract features from the time domain

is f (m) = 3.605m as shown in Equation 6.1. On the other hand, frequency domain features are

extracted by applying wavelet transform to the beat at level 4. As a result, the rate of growth to

generate the frequency domain features is f (m) = m.

Therefore, the overall growth rate to extract the features from a beat is f (m) = 4.605m.

7.3.2 Analysis of Arrhythmia Severity Detection System

After classifying ever beat in the ECG, the detection of arrhythmia severity is performed by ma-

nipulating a vector from the classified beats. Let c denotes the number of beats in the vector. A

window of the 30 last beats is defined and the deterministic finite automate (DFA) is used to test

this window. If the DFA did not result in a severe arrhythmia according to the rules, the window is

shifted five beats and the DFA is tested again. That means, there are (c − 30) windows that will be

tested. Since the analysis of the vector is sequential, then the growth rate to process one window is

30. Therefore, the overall time growth rate to test the whole vector is f (c) = 30(c−30) = 30c−900.

7.3.3 Overall Complexity

According to the decision before, and since the classification takes place first then the detection,

the overall time complexity of the arrhythmia classification and severity detection system using

Theorem 7.2.1 is:
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= f (m) + f (c)

= 2m + 30c − 900

= O(c)

For sufficiently large c � m.

7.4 Time Complexity Analysis of the Blood Loss Prediction System

As Figure 5.1 shows, the blood loss prediction system uses information from the ECG detection

system and the arrhythmia classification system. The system creates a SVM model, and as said

before, the model should be trained off-line, stored, and then used to test other signals. There are

five models implemented in this dissertation to highlight the importance of incorporating different

types of signals to assess the severity of blood loss. From each considered signal, different types

of features are extracted. Though, the analysis of time required to extract the features is provided

from the signal type point of view. As a reminder, a window of size 20 seconds is used as one

example in this system. Let n defines the length of the window, and b represents the number of

beats in that window.

7.4.1 Time Complexity Analysis when the ECG Signal is Used

Figure 5.1 shows that the ECG signal is passed through the ECG wave detection system and the

arrhythmia classification system and the results are forwarded to a feature extraction step. Two

types of features are calculated as follows:

7.4.1.1 Time Domain Features

1. ECG Intervals and Amplitude Ratios.
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As discussed in Section 5.2.3.1, the intervals and amplitudes features are extracted from the

output of the ECG detection system. Equation (7.1) shows that f (n) of the detection system

is f (n) = 3.605n, where n is the length of the window. A total of 20 features are extracted by

averaging the information from the ECG deflection points. Since there are b heartbeats in

the window, then the growth rate for generating such features is f (n, b) = 3.605n+20b. That

is, we need 3.605n to detect the waves, and 20b to calculate the features from the results.

2. Statistical Measurements

As well as the ECG signal, HRV signal is computed from the results of the ECG detection

system and the mean, standard deviation, and median are calculated from the two signals

(ECG and HRV). Since b represents the number of beats in the window, then it takes f (b) =

b − 1 to generate the HRV signal. The statistical measurements considered in this study are

lucid and linear. A total of 6 features are calculated from ECG and HRV. Therefore, the

overall rate of growth to find the statistical attributes is f (n, b) = 3n + 3(b−1) = 3n + 3b−3.

3. Signal Complexity and Mobility

These are two features that are used to quantify the first and second order variations of the

signal. Equations (5.1) and (5.2) are used to calculated the complexity and mobility of the

ECG signal. It takes n − 1 to find vector d and n − 2 to find vector g. For S 0, it is clear that

we need n steps, and to calculate S 1 and S 2, they take n−1 and n−2. Therefore, the growth

rate extract the signal complexity from Equation (5.1) is f (n) = n − 2 + n − 1 + n = 3n − 3,

and f (n) to compute the mobility of a signal is f (n) = n − 1 + n = 2n − 1. Then, the overall

growth rate to find the mobility and complexity of a signal is f (n) = 3n−3+2n−1 = 5n−4.
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4. Kullback Leibler Distance

To calculate features from Kullback Leibler distance (KLD), three subjects are picked ran-

domly and the histogram for their ECG is calculated. These histogram represent the ”true”

distributions Pi, for i = 1, 2, 3. In fact, these histograms are calculated off-line, hence

the time incurred is insignificant. The histogram for the window is calculated to serve

as the approximation distribution Q of P. Calculating the histogram of a signal is linear

and f (n) is equal to n, since we simply count the frequency of each amplitude in the digi-

tized signal. Equation (5.3) is then used to calculated KLD between Pi and Q. Clearly, the

equation is linear, therefore the growth rate to compute the KLD features from the ECG is

f (n) = n + 3n = 4n. That is, it takes n to construct the histogram, and another n to find

KLD(Pi||Q), for i = 1, 2, 3.

5. Rate of Abnormal Heartbeats

These two features are calculated from the arrhythmia classification system. It is shown

before that the time complexity for this system is O(2m), where m is the length in time of

a heartbeat. To extract these features, the system should classify every beat in the defined

window. Let k represents the number of heartbeats that the window has, therefore, the rate

of growth to calculate the rate of abnormal heartbeats is f (k,m) = (k(2m)). It is clear that

the multiplication of the number of heartbeats by the length of longest heartbeat is greater

that or equal to the length of the signal. That is km ≥ n. Though, the rate of growth to find

the abnormal heartbeats is f (n) = 2n.
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7.4.1.2 Wavelet Domain Features

Wavelet features are extracted by applying wavelet transformation at level 4 as discussed in Section

5.2.3.2. Standard deviation, mean, median, Kurtosis, and Skewness are extracted from the detail

coefficients for each level of the transformation. As mentioned before, the transformation costs

O(n) and the resulted coefficients are down sampled by 2 for each decomposition level. Therefore,

these simple features take f (n) = O(n) + 5n/2 + 5n/4 + 5n/8 + 5n/16. That is, it takes O(n) to

generate the transformation and the time to calculate the five features from each level is 5n/2i for

i = 1, 2, 3, 4.

In addition, the entropy of the transformation is also calculated using equation (5.4). To cal-

culate p for the equation, the approximation and detail coefficients are used. Since the number

of the approximation coefficients at level 4 is n/16. Therefore, to calculate the entropy of the

transformation it takes f (n) = n/16 + n/2 + n/4 + n/8 + n/16. That is, to find the summation of

the approximation coefficients it takes n/16, and the summation of the detail coefficients at level i

takes n/2i, for i = 1, 2, 3, 4. The overall growth rate to extract features from wavelet domain is

f (n) = O(n) + 5n/2 + 5n/4 + 5n/8 + 5n/16 + n/16 + n/2 + n/4 + n/8 + n/16

= O(n) + 6n/2 + 6n/4 + 6n/8 + 7n/16

7.4.1.3 Overall Complexity when ECG is used

To find the growth rate to extract the whole features from the window, we can simply sum up the

individual growth rates for each type of feature. That is, the overall growth rate is
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f (n, b) = 3.605n + 20b + 3n + 3b − 3 + 5n − 4 + 4n + 2n + O(n) + 6n/2 + 6n/4 + 6n/8 + 7n/16

= 23.2925n + 23b − 7

Finally, referring to Theorem 7.2.1, the time complexity to generate features from the ECG

signal to create a blood loss prediction system is O(n).

7.4.2 Time Complexity Analysis when the ABP or Impedance Signals are Used

Since the same set of features are extracted from the ABP or impedance signals, this section will

analyze the time complexity when one of them is incorporated. As Figure 5.1 shows, each signal

is preprocessed by applying a suitable filter to reduce the effect of noise and other artifacts. The

applied filter is a Butterworth band pass filter as discussed in Section 5.2.2. This type of filter takes

no more than O(n) and the complexity has nothing to do with the order of the filter.

The growth rate function to extract features from each signal is analyzed in the following

sections.

7.4.2.1 Time Domain Features

1. Statistical Measurements The mean, standard deviation, and median are calculated from

both signals. As said before, it takes n steps to compute each feature. A total of 3 features

are calculated from each signal. Therefore, the overall rate of growth to find the statistical

attributes of a signal is f (n) = 3n.

2. Signal Complexity and Mobility
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Section 6.3.1.1. shows that the overall growth rate to find the mobility and complexity of a

signal is f (n) = 3n − 3 + 2n − 1 = 5n − 4.

3. Kullback Leibler Distance

The growth rate to compute the KLD features from ABP or Impedance is f (n) = n+3n = 4n.

That is, it takes n to construct the histogram, and another n to find KLD(Pi||Q), for i = 1, 2, 3.

This is discussed in Section 6.3.1.1.

7.4.2.2 Wavelet Domain Features

The same wavelet features that are extracted from the ECG signal are also extracted from ABP or

Impedance. That means, the growth rate is the same. Section 6.3.1.2 shows that the overall growth

rate to extract features from wavelet domain is f (n) = O(n) + 6n/2 + 6n/4 + 6n/8 + 7n/16.

7.4.2.3 Overall Complexity when ABP or Impedance are used

To find the growth rate to extract the whole features from the window, we can simply sum up the

individual growth rates for each type of feature. So, the overall growth rate is.

f (n) = 3n + 5n − 4 + 4n + 6n/2 + 6n/4 + 6n/8 + 7n/16 + O(n)

= 17.6875n − 4 + O(n)

Referring to Theorem 7.2.1, the time complexity to incorporate features from ABP or Impedance

signals in a blood loss prediction system is O(n).
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7.5 Summary

In this chapter, analysis of time complexity of each system implemented in this dissertation is

discussed. The provided analysis is an approximation and the running time may increase by a

constant factor. The discussion shows that the algorithms implemented are simple and take O(n).

Therefore, the methods can be implemented in real-time.



96

CHAPTER 8 Conclusions and Future Work

In this dissertation, a system that predicts the severity of blood volume loss by incorporating

multiple physiological signals is presented. The majority of previous studies concentrate on ana-

lyzing the complexity of heart rate variability (HRV) by using traditional methods such as power

spectrum density (PSD) and fractal dimension. However, these methods are only applicable to

signals that have stationary property (the statistical measurements are the same at all times). In

this study, wavelet transform (WT) is used to process non-stationary signals such as ECG, ABP,

impedance and HRV.

This chapter is organized in two sections. Section 8.1 provides the conclusions of the different

systems outlined in this dissertation. Plans for the future work are proposed in Section 8.2.

8.1 Conclusions

The system implemented is compromised of three subsystems. The conclusions for each sub-

system is given below:

8.1.1 Conclusions on the ECG Detection System

Prior to prediction, ECG characteristic points (P-QRS-T) are detected using a novel approach

based on the physiology of the ECG. This system is implemented to extract informative features

from not only QRS complex, but also P and T waves.

The results of the system show that it is reliable and robust to noise or artifacts exist in the

ECG signal. It is important to note that some of the previous studies exclude records number 107,

96
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201 and 231, since they have heavy noise in the signal obtained. However, when reporting the

results of the system, these subjects are included.

In addition to the detection of QRS as well as P and T waves, the algorithm described can

distinguish weather QRS has positive or negative deflection. This is important to consider when

the application that incorporates such a system needs this information, specifically, for arrhythmia

classification.

These properties of the detection system make it novel and applicable to a wide spectrum of

applications where the ECG signal is incorporated.

8.1.2 Conclusions on the Arrhythmia Classification and Severity Detection System

The novelty of the created system is to detect the severity of arrhythmia encapsulated in the ECG

signal’s heartbeats using several simple rules supported by the medical literature. The rules are

implemented with a deterministic finite automata (DFA) that runs the expression from the heart-

beats after classification. Such a system, provided by the results, is capable to distinguish between

severe and benign arrhythmias.

The implemented algorithm is scalable. This is proved when the trained model that uses an-

notated beats from the MIT/BIH arrhythmia database is incorporated to classify heartbeats of the

LBNP dataset to extract the rate of abnormal beats as a feature for the blood loss severity predic-

tion system. The size of the trained model is small, when saved as a JAVA serializable object (¡ 700

KBs). The running time of the algorithm is polynomial, since the features are extracted from time

and frequency domains by transforming the beat using a wavelet transformation method, which

takes O(n) in the worst case.

The method described will allow for the development of a computationally inexpensive deci-

sion support system to rapidly detect and report ectopy in an early warning manner that may allow
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health care providers more time to react prior to possible patient deterioration.

8.1.3 Conclusions on the Prediction of Blood Volume Loss System

The system focuses specifically on manipulating multiple physiological signals that are easy and

simple to acquire using remote devices to extract informative features to detect the severity of

hemorrhage. The dissertation presents a novel work in integrating several biomedical signals such

as ECG, ABP and impedance, to automatically classify the severity of blood volume loss into one

of three functional classes (mild, moderate and severe).

The results provided show that, when incorporating three signals (ECG, ABP and Impedance)

the accuracy is very close to the ECG and Impedance signal pairs. However, this must be elabo-

rated from two different points of view. From medical perspective, incorporating three signals is

more useful than processing two of them. The results illustrate that there are 12 objects will be

classified correctly, when three different types of signals are used. Keep in mind that these are 12

windows, where each window is 20 seconds. This means that there will be an addition of about

four minutes for a physician to make a decision (4 = 12 ∗ 20/60). This is very important time

frame in high pace environments, where physicians should take critical decisions in very short

amount of time. However, from technical point of view, incorporating only two signals is more

feasible from time and space complexities.

8.2 Future Work

The first immediate goal is to obtain expert assistance from multiple cardiologist in labeling the

datasets. Although, such a need is likely to prove difficult logistically due to the expected volume

of data and the time demands involved. More rigorous testing demands a gold standard, which in

this dissertation is manual for detecting the ECG deflection points and the accuracy of applying the
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arrhythmia classification model over different dataset cannot be obtained because the heartbeats

of the LBNP dataset are not labeled.

The most crucial stage of the future work is in integrating more information from the arrhyth-

mia system. In this dissertation, informative features such as the number of ectopic beats per

window are calculated and combined to the set of features extracted from the ECG, ABP and

Impedance signals. This feature, i.e. number/rate of ectopic beats, is believed to be correlated

to hypoxia. The relationship between hypoxia and arrhythmia is explained on the metabolic ba-

sis [19, 71, 101, 129]. It is anticipated that adding the rate of other ectopic beats that are not

considered in this study is crucial and may increase the accuracy of the hemorrhage predicition

system.

Therefore, the second aim is to expand the work done for arrhythmia classification and severity

detection system to obtain different abnormal beat types and include the rate for each of them in

the system implemented in this dissertation. I believe that the blood loss severity prediction system

can be enhanced substantially, when the arrhythmia classification and severity detection system is

used to extract more than two types of abnormal heartbeats. However, considering extracting more

than two types will directly affect the complexity of an arrhythmia system. Moreover, the accuracy

of the system is affected by the morphology of some of the ectopy that will fool the algorithm.

Concerning the technical aspects, an important future task is to improve the robustness of the

overall processes. This will include testing the ECG deflection points detection algorithm with

several signals from the wide spectrum of different beat patterns. The obtained results should be

evaluated by a cardiology to asses the capability of the implemented algorithm.
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