
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2011

THE PROGRAM PATHING TRUST MODEL
FOR CRITICAL SYSTEM PROCESS
AUTHORIZATION
Robert Dahlberg
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/237

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/237?utm_source=scholarscompass.vcu.edu%2Fetd%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Program Pathing Trust Model for

Critical System Process Authorization

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Engineering at Virginia Commonwealth University.

by

Robert Andrew Dahlberg

Master of Science, Computer Science, Northern Illinois University, 1982

Master of Arts, Philosophy, Northern Illinois University, 1982

Bachelor of Arts, Philosophy, Western Illinois University, 1976

Director: David Primeaux, PhD

Associate Professor

Computer Science Department

School of Engineering

Virginia Commonwealth University

Richmond, Virginia

April, 2011

i

Acknowledgement

I would like to thank my past teachers and employers for giving me opportunities, guidance

and support that lead to this dissertation. And to thank all those colleagues, with whom I have

collaborated with over the last 30 years, especially those with whom I first worked on the

Program Pathing problem. Special thanks to Barry Schager and Eb Klemens (the S and K in

SKK, Inc) for sharing their knowledge and granting many opportunities throughout my career.

Thanks to Dr. Robert Moore who inspired me while an undergraduate at Western Illinois

University to pursue a graduate degree. Dr. Mason Myers (deceased) who while as his teaching

assistant in logic encouraged me to study computer science. And thanks to Dr. Rodney Angotti,

who gave me my first teaching position at the university level and has encouraged me many

times throughout the years to pursue a PhD.

Special thanks to Lisa Porter for proof reading and editing this paper, to ensure its

readability.

Thanks to my parents for their encouragement. They never let me think that it was an option

not to go to college. I owe an especial debt to my grandparents, who took great pride in my

academic achievement which in itself was a source of encouragement. And thanks to all my

uncles who were engineers, many of who had never earned a degree but became respected

engineers in their industries and created a legacy for me to follow.

I‘d like to recognize my wife, Susan Dubuque, for all her moral support and constant

reminding that pursuing a PhD was fun and that the journey was more important than the goal.

Thank my daughters, Maribeth, Caroline, and Rebecca for their love and support. It is to

them that I dedicate this work.

And finally, I‘d like to thank the faculty of VCU‘s computer science department for opening

up the world of academic research. Special thanks to Dr. David Primeaux, my dissertation

director, who‘s mentoring has made this dissertation possible. Dr. Primeaux has enriched the

experience at VCU beyond just the pursuit of a PhD. His work on the creation of a master‘s

degree in information system security and the creation of a security lab has made this experience

at all the more valuable.

ii

Table of Contents

TABLE OF CONTENTS ... II

LIST OF FIGURES ... VIII

ABSTRACT ... X

CHAPTER 1: INTRODUCTION .. 1

1.1 OVERVIEW ... 1

1.2 CONTRIBUTIONS ... 2

CHAPTER 2: BACKGROUND TERMINOLOGY AND DISTINCTIONS... 4

2.1 PROCESSES .. 4

2.1.1 External Processes .. 4

2.1.2 Internal Processes .. 5

2.1.2.1 Operating System Processes ... 5

2.1.2.1.1 OS Kernel .. 5

2.1.2.1.2 OS Utilities .. 6

2.1.2.2 Application Processes .. 6

2.1.2.2.1 System Application Processes ... 6

2.1.2.2.2 User Application Processes ... 7

2.1.3 Process Behavior .. 7

2.1.3.1 Normal Process Behavior .. 8

2.1.3.2 Abnormal Process Behavior .. 9

2.2 PROCESS INVOCATION SEQUENCES ... 9

2.2.1 Valid Process Invocation Sequences ... 10

2.2.2 Invalid Process Invocation Sequences and System Integrity .. 10

CHAPTER 3: PROBLEM: WHY SYSTEM INTEGRITY IS IMPORTANT .. 12

iii

3.1 MALWARE ... 12

3.2 OPERATOR ERROR ... 14

3.3 RESEARCH ... 16

3.3.1 Requirements ... 16

3.3.1.1 Authentication .. 17

3.3.1.2 Authorization .. 17

3.3.1.2.1 Invocation ... 18

3.3.1.2.2 Static Process Invocation .. 18

3.3.1.2.3 Dynamic Process Invocation ... 19

3.3.1.3 Accountability ... 19

CHAPTER 4: SECURITY BACKGROUND .. 21

4.1 THE PROGRAM PATHING PROBLEM .. 21

4.2 SECURITY AND PROGRAM PATHING .. 24

4.2.1 Detection and Protection Systems ... 24

4.2.2 Aspects of Access Control Systems (Protection System)... 25

4.2.2.1 Data Security ... 26

4.2.2.2 System Security .. 27

CHAPTER 5: PROGRAM PATHING BACKGROUND ... 28

5.1 TRUSTED SYSTEM .. 28

5.1.1 What is a Trusted System? ... 28

5.2 PROGRAM PATHING AS PART OF A TRUSTED SYSTEM .. 29

5.2.1 Conceptual Security Models Related to Program Pathing ... 29

5.2.1.1 Goguen-Meseguer Model ... 29

5.2.1.2 Clark-Wilson Integrity Model .. 30

5.2.1.3 Brewer-Nash Model (Chinese Wall) .. 32

5.2.2 Other Implementations of a Trusted System Using Invocation Sequences .. 33

5.2.2.1 ACF2
®
 ... 37

iv

5.2.2.2 RACF
®

PADS.. 39

5.2.2.3 Top Secret
®
 .. 40

5.2.3 More Recent Background ... 41

5.2.3.1 Trusted Path Execution (TPE) .. 41

5.2.3.2 Symantec’s Critical Program System (CPS) .. 42

5.2.3.3 SELINUX ... 43

5.2.4 Current Literature on Program Pathing ... 47

5.2.4.1 Non-Computational Theory Approaches... 48

5.2.4.1.1 Hofmeyr-Forrest – N-Gram Approach ... 48

5.2.4.1.2 Warrender - Forrest – Alternate Data Models .. 50

5.2.4.1.3 Ghosh – ANN Approach .. 51

5.2.4.1.4 Ammons -Larus – Retrieval Tree Approach ... 52

5.2.4.2 Computational Theory Approach .. 54

5.2.4.2.1 Ko-Fink – Execution Monitoring .. 54

5.2.4.2.2 Kosoresow-Hofmeyr – System Call Traces .. 56

5.2.4.2.3 Sekar – Finite State Automata Approach .. 58

5.2.4.3 Context Free Grammar or Pushdown Automata ... 60

5.2.4.3.1 Feng - Kolesnikov –Pushdown Automata Approach ... 61

5.2.4.3.2 Wagner- Dean – Pushdown Automata Approach ... 62

CHAPTER 6: PPT THEORETICAL MODEL ... 65

6.1 CRITERIA FOR A COMPUTATIONAL MODEL ... 65

6.1.1 . Necessary & Sufficient .. 66

6.1.2 Choosing a Computational Model .. 67

6.1.2.1 Multitasking Requirement .. 68

6.1.2.2 Regular Language .. 69

6.2 APPROPRIATE REPRESENTATION OF THE PROBLEM... 72

6.2.1 Finite State Automata Representation ... 72

6.2.1.1 States Q ... 73

v

 Alphabet and process invocations .. 74

 Transition Relation ... 77

6.2.1.4 Start State P0 ... 80

6.2.1.5 FSA Issues .. 80

6.2.2 Regular vs. Context Free Language .. 82

6.3 FINITE STATE AUTOMATA AND THE PROGRAM PATH TRUST MODEL ... 82

6.3.1 Why Finite State Automata is a better Computational Model choice. ... 84

6.3.2 Finite State Automaton PPT Representation .. 84

6.3.3 PPT Finite-state Automata Learning Mode .. 86

6.4 RELATION BETWEEN LV AND L(DFAT) .. 90

CHAPTER 7: IMPLEMENTATION OF THE PPT MODEL .. 92

7.1 ALTERNATIVES FOR IMPLEMENTING THE PROGRAM PATHING TRUST DFA .. 93

7.1.1 PPT DFA Bit Map Implementation.. 93

7.1.2 PPT DFA Adjacency-List Implementation ... 96

7.2 MEASURING IMPLEMENTATION STRUCTURES .. 97

7.3 CODING STRUCTURES IN PPTM ... 99

7.3.1 PPTM Basic Structure ... 99

7.3.2 How the PPTM works .. 101

CHAPTER 8: DEVELOPMENT AND TEST RESULTS ... 104

8.1 DEVELOPMENT ... 104

8.2 UNIT TESTING AND DEBUGGING .. 105

8.2.1 Test Reading Training Data and Building the Automata Structure .. 105

8.2.2 Verify Data Against the Profiled Training Data in the Automata ... 106

8.3 SYSTEM TESTING ... 106

8.3.1 Tstdata – Random Test Data Generator .. 107

8.3.2 Performance Testing the PPTM prototype ... 108

vi

CHAPTER 9: FUTURE RESEARCH .. 111

9.1 IMPLEMENT PPTM INTO THE OPERATING SYSTEM’S KERNEL ... 111

9.2 TESTING .. 111

9.3 PROCESS AUTHENTICATION ... 112

9.4 THE VALIDITY OF INFERRED PROCESS INVOCATION SEQUENCES .. 112

CHAPTER 10: CONCLUSION ... 113

10.1 COMPUTATIONAL THEORY APPROACH TO VALIDATING PROCESS INVOCATION SEQUENCES .. 113

10.1.1 Required Computational Power ... 114

10.1.2 Translating Theory into Solutions .. 114

10.2 IMPACT UPON THE PROGRAM PATHING PROBLEM ... 115

10.2.1 Mapping Process Authority to Invoke Processes .. 115

10.2.2 Mode Characteristics of Some Process Invocations ... 116

10.3 POTENTIAL USE OF THE PROGRAM PATHING TRUST MODEL .. 117

10.3.1 Program Pathing in an Access Control System ... 117

10.3.2 Program Pathing in a System Integrity System .. 117

REFERENCES .. 119

APPENDIX A: PROTOTYPE SOURCE CODE .. 127

A.1 PPTM SOURCE CODE .. 127

A.2 PPTM AUTOMATA HEADER FILES .. 137

A.3 PPTM PRINT HEADER FILE ... 138

A.4 TESTDATA (AUTOMATED DATA CREATION) SOURCE CODE ... 140

A.5 TEST HEADER FILE ... 142

APPENDIX B: GLOSSARY .. 143

APPENDIX C: ACF2 PROGRAM PATHING DEFINTION MODULE .. 144

vii

APPENDIX D: PROCESS AUTHENTICATION ... 150

D.1 OWNERSHIP AUTHENTICATION FACTOR .. 151

D.2 INHERITANCE AUTHENTICATION FACTOR ... 151

D.3 LOCATION-BASED AUTHENTICATION FACTOR .. 152

APPENDIX E: IS = { }?.. 153

10.4 OTHER APPROACHES MAKING ASSUMPTIONS SIMILAR TO IS = { } ... 153

E.2 IMPACT OF THE ASSUMPTION .. 154

VITA .. 156

viii

List of Figures

Figure 3-1 New Malware Code Threats - Symantec .. 13

Figure 3-2: IDC‘s Survey of External vs. Internal Threats ... 14

Figure 5-1 MVS Control Block Structure that ACF2 Program Pathing Maps 38

Figure 5-2 SELinux Domain - Resource Concept .. 44

Figure 5-3 SELinux Policy Reference Language for daemon.te .. 45

Figure 5-4 Conceptual Diagram of Daemon Policy Reference Example 45

Figure 5-5 SELinux Process Control .. 46

Figure 5-6 SELinux Process Transitions .. 47

Figure 5-7 Literature Mapping.. 48

Figure 5-8 Seka's FSAFigure .. 59

Figure 6-1 Chomsky's Hierarchy of Formal Languages ... 65

Figure 6-2: Interleaved Process Execution ... 69

Figure 6-3: Definition of Regular Expression .. 71

Figure 6-4: Representation of the FSA Recognizing the Union of Languages S1 and S2 72

Figure 6-5: Definition of Deterministic Finite State Automata .. 73

Figure 6-6 Initial Start State – NFAt0 .. 77

Figure 6-7 NFAt1 ... 78

Figure 6-8 NFAt2 ... 78

Figure 6-9 Building the Valid Process Invocation language .. 79

Figure 6-10 DFAt=0 Transition Diagram ... 85

Figure 6-11: Initial PPT DFA Translation Table .. 86

Figure 6-12 Transition Diagram Representing the DFA Recognizing Language DFAt=3. 87

file:///C:/Documents%20and%20Settings/Robert%20Dahlberg/My%20Documents/Final%20Dissertation/Dissertation/Master/Master.docx%23_Toc293523402
file:///C:/Documents%20and%20Settings/Robert%20Dahlberg/My%20Documents/Final%20Dissertation/Dissertation/Master/Master.docx%23_Toc293523406

ix

Figure 6-13 DFAt=3 Transition Table Learning ... 88

Figure 6-14 DFAt=5 Transition Diagram ... 88

Figure 6-15 DFAt=5 Transition Table .. 89

Figure 6-16: Algorithm for Building PPT DFA ... 90

Figure 7-1: Algorithm for PPT DFA in Validation Mode .. 92

Figure 7-2 Program Pathing Bit Map.. 93

Figure 7-3: Adjacency-matrix ... 94

Figure 7-4: Adjacency-list .. 96

Figure 7-5: Memory and Process Representation Comparisons ... 97

Figure 7-6: PPTM Anchor Data Area ... 100

Figure 7-7: Automata Data Structures .. 101

Figure 7-8: ―automata‖ Data Area Containing the Process Invocation Sequences 102

Figure 7-9: Format of the ―automtrace‖ file ... 103

Figure 8-1 System Test Results .. 109

Figure E-1: Process Invocation Example .. 155

file:///C:/Documents%20and%20Settings/Robert%20Dahlberg/My%20Documents/Final%20Dissertation/Dissertation/Master/Master.docx%23_Toc293523417

x

ABSTRACT

THE PROGRAM PATHING TRUST MODEL FOR CRITICAL SYSTEM PROCESS

AUTHORIZATION

By Robert A. Dahlberg, MS, MA

A dissertation proposal submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2011

Dissertation Director: David Primeaux, PhD. Associate Professor, Computer Science

Since computers are relied upon to run critical infrastructures – from nuclear power plants to

electronic battlefield simulations – the concept of a ―trusted‖ or tamperproof system has

become even more important. Some applications have become so critical that it is imperative

that they run as intended, without interference. The consequences of these systems not

running as intended could be catastrophic. This research offers a solution for a key element

for protecting these critical servers – validating process invocation sequences.

The purpose of this research is to increase operating system security by detecting, validating,

and enforcing process invocation sequences within a critical system. If the processes on a

critical system are not those that are intended to run or support the critical system, or if a

system is able to run processes in an unauthorized sequence, then the system is compromised

and cannot be trusted. This research uses a computational theory approach to create a

framework for a solution for the process invocation sequence problem. Using the Program

Pathing Trust Model, a solution capable of identifying both valid and invalid process

invocation sequences is developed.

 1

Chapter 1: Introduction

Computer security emerged as an area of interest around 1967 [SCC70] [CST72] [Schr74-1]

[Schr74-2]. As computers became increasingly utilized in government and private industry,

they became indispensable. The need for computer security has become more evident with the

increased prevalence of malware combined with societal dependence upon computers. As

computers are relied upon more to run critical infrastructures – from nuclear power plants to the

electronic battlefield – the concept of ―trusted‖ or tamperproof systems has become even more

important. Critical applications must run as intended, without interference, or the consequences

could be catastrophic. Power grids could go offline, transportation systems could fail, battlefield

controls could black out or the nation‘s financial transactions could stall, resulting in scenarios

such as loss of human life and financial losses.

1.1 Overview

Early investigators discovered that to be effective security systems must work in a symbiotic

relationship with the operating system (OS). The OS relies upon the security system to ensure

that OS integrity is maintained. And the security system relies upon OS integrity not to let other

facilities interfere with or circumvent it.

The purpose of this research is to develop a security solution model for maintaining system

integrity, meaning that system integrity is maintained by permitting a system to execute only

normal processes in valid process invocation sequences. The terms normal process and valid

process invocation sequence are explained in detail later in section 2.2. OS security is increased

by ensuring that only trusted process invocation sequences are executed within the system. If the

 2

processes running on the system are not those intended or if the system is able to run processes in

an unacceptable sequence, then the system is compromised and cannot be trusted.

1.2 Contributions

This research takes a unique approach to the problem of insuring the integrity of a critical

system. While other approaches (described in chapter 5) focus upon determining whether a

previously encountered sequence of processes is valid, the approach in this research validates

each process‘s authority to invoke a subsequent process, thereby adding a new dimension to

access control. Prior approaches to access control do not address the validation of a process‘s

authority to invoke other processes.

The program pathing trust (PPT) model developed provides a theoretically sound framework

for assessing the validity of process invocation sequences. While other research has employed

theory-based structures such as automata without explicit discussion of the required

computational power, this research develops a theory-based approach with respect to the security

issue of validating process invocation sequences. This research shows that the computational

power of a Finite State Automaton is sufficient because process invocation sequences have the

structure of a Regular Language.

The PPT model resulting from this research is more compact than several previously

suggested models. In the PPT model each process is represented only once. This is not the case

in other approaches. Furthermore, where other approaches provide only a method determining

whether a previously encountered sequence of processes is valid, the PPT model can be used not

only to similarly assess whether some candidate process invocation sequence is valid, but also to

reject a set of invalid process invocation sequences, whether or not previously encountered, and

also to infer the possible validity of some process invocation sequences that have not been

 3

previously encountered.

 4

Chapter 2: Background Terminology and Distinctions

The terminology and distinctions made in this section are used to describe and define the

problem and the proposed solution.

2.1 Processes

The basic function of a computer is to execute programs. A program is a set of machine

instructions that are organized in a logical sequence to perform a task or process [Stall92]. A

process is a program that is loaded into main memory and executed [Silb05]. The operation of a

computer may be modeled as a series of processes invoking other processes [Stall92]. Other

than physical threats to a computer, a process is required in order to pose a threat to a computer.

Therefore, it is a fundamental premise of this research that all threats to a computer that are of

interest are associated with processes and the invocation sequences of processes.

2.1.1 External Processes

External processes are processes that have not been explicitly installed by a system

administrator. These processes might be applets loaded by users visiting a webpage, scripts or

programs written (or downloaded) by users, macros in an application (like Mircosoft Office
®

),

or malware that has otherwise infiltrated the system. External processes can pose a danger to a

system because they may come from unknown sources. For this reason they are generally not

desirable [CSI03] [Eete08].

External processes tend to be a security concern more for workstations than for critical

servers. However, even critical servers can be susceptible to external processes. Poor access

control can allow a user or a process to install an external process into a restricted directory. Or,

 5

system vulnerability can be exploited to implant an external process into a directory or into an

execution sequence. External processes pose an obvious threat.

2.1.2 Internal Processes

Internal processes are processes that have been intentionally installed on a computer system

by a system administrator. Internal processes are often part of a vendor-supplied software

package. They are usually purchased from and supported by a commercial vendor but may be

open source software. On a critical server, ideally only software that is critical to the function of

the system should be installed. There may be, however, processes included in the installed

software that are not used as part of the critical function of the system. Many software packages

have features that are not needed by a particular enterprise and are therefore not used. The

processes that support these features may be installed on the computer, but may not be executed.

2.1.2.1 Operating System Processes

Operating system processes are internal processes that are responsible for the management

of computer resources (hardware, memory, I/O and intercommunication), the coordination of

system activities and the sharing of the computer resources. The operating system acts as a host

for all other processes that run on the machine [Stall92]. The OS is composed of a number of

processes (such as services), not all of which are needed by a critical system – although in a full

installation they reside on the system.

2.1.2.1.1 OS Kernel

The OS kernel is a set of core OS processes. They perform the most critical functions of the

OS, and without them no other processes could execute. The OS kernel is made up of those

processes that manage the execution of other processes in the OS. They perform process,

 6

memory and I/O management and other OS support functions such as interrupt handling,

auditing and monitoring. Kernel processes with the highest authority execute in ―system‖ (or

―kernel‖) mode. System mode allows kernel processes to execute privileged instructions and be

exempt from access controls [Stal92]. Any process that maliciously modifies a kernel process is

referred to as a rootkit. Rootkits are designed to allow another process to gain elevated authority

to circumvent the system‘s data and system security [Hogl05]. If an OS kernel process is

compromised, the entire OS is generally un-useable and has to be reinstalled, unless the

compromised process is identified, and removed (or replaced).

2.1.2.1.2 OS Utilities

OS utilities are also internal processes that are part of the operating system. These processes

are usually invoked by terminal commands or through a user-initiated GUI. The processes are

loaded from the installed operating system directories. These directories usually require elevated

authority to update, and are therefore considered reliable. OS utilities may or may not run with

elevated authority. These processes are also vulnerable to rootkits.

2.1.2.2 Application Processes

Application processes are internal processes that a system administrator has installed on the

system and expects to run as an integral part of the system‘s primary function. These application

processes may or may not run with elevated privileges.

2.1.2.2.1 System Application Processes

System applications (sometimes referred to as middleware) can be defined as application

processes that are installed to support a user application. These applications are neither part of

the OS nor the user applications (described below) that they support. System applications such

 7

as a database or a data transport system add more sophisticated functions than the OS alone is

designed to provide. These processes, like OS processes, usually require elevated access and the

directories they reside in are restricted. However, as in the case with OS processes, there are

generally unnecessary features, utilities, application program interfaces or sample code that

could be used to interfere with the processes within the application‘s primary function. These

extraneous processes pose a possible threat if run, as they can steal CPU cycles or otherwise

interfere with the application [Bre89] [Gogu82].

2.1.2.2.2 User Application Processes

User applications are application processes that provide the reason why all the other

processes exist. On a critical system, only necessary user applications should be installed.

These processes may or may not need elevated access to execute. The directories in which they

reside must be protected with appropriate access control techniques.

User applications can be vendor supplied or developed in-house. Vendor-supplied user

applications can cause the same concerns as system applications and OS processes with respect

to their including extraneous content. An in-house developed user application, however, is

likely leaner in its deployment and only deploys those processes that are required by users of the

system. Therefore, in-house developed applications would be less likely to contain unnecessary

processes that might be executed and compromise the system. However, in-house user

applications require good version control because poor version control can introduce

vulnerability.

2.1.3 Process Behavior

Each of the preceding process types are classified as either having normal or abnormal

process behavior. In this research, a process’s behavior is defined as the execution of its

 8

sequence of machine instructions. A process can manipulate memory, invoke OS services or

invoke other processes. The process‘s logic may provide multiple execution paths, not all of

which may be desirable in a particular environment. Desired behavior is that behavior that is

designed into the process to fulfill the mission of the organization. Every process has a function

that an organization intends it to accomplish. In this paper, a normal process is defined as a

desired process running on a critical server.

2.1.3.1 Normal Process Behavior

The problem is broader in scope than previous related security research in intrusion

detection, which focuses only on malware intrusion. This research focuses on the larger problem

of system integrity. What would normally be a false positive for an intrusion detection system

may prove not to be such in this research. The distinction lies in the definition of normal

behavior. Normal behavior for an intrusion detection system generally means the execution of

any software that is intentionally installed by authorized users. The purpose of such an intrusion

detection system is to identify any other software that has infiltrated the system. For a critical

server, however, that definition is insufficient. This research defines normal behavior as

resulting from only those processes that are intended or are necessary to run on a system to

achieve its intended function. Thus, a process that may be considered part of normal behavior in

another system may not be considered normal in a critical system. For example, because only

processes that are necessary for the fulfillment of a critical system‘s function should be allowed

to run, it may not be acceptable for a critical system to allow SMTP (email) traffic processing.

This reduces superfluous processes executing and taking up valuable system resources or

otherwise interfering with critical functions.

 9

2.1.3.2 Abnormal Process Behavior

Abnormal processes are defined as the complement of the set of normal processes. All

processes are assumed to be abnormal unless they are determined necessary and appropriate to

support the mission for which the server was built. For example, a critical system created to run

a company‘s accounting system probably shouldn‘t be allowed to execute processes to run the

company‘s emails. Even an internal process installed as part of the OS or an application can be

considered abnormal, if it is not a process necessary to achieve the system‘s intended function.

Thus it is not necessary that a process be external in order for it to be labeled abnormal.

Abnormal processes (internal or external) can also be new processes that infiltrate the system,

or ones that masquerade as normal processes. New processes that infiltrate the system would

most likely be external processes. They can be a validly loaded process such as an applet which

might be an unknown process loaded into a JAVA virtual machine from across the network.

When an abnormal process masquerades as a normal process, it is generally malware or possibly

a variant of a normal process. A system does not maintain its integrity if it runs any abnormal

processes.

2.2 Process Invocation Sequences

A computer system executes a sequence of processes. As part of a normal process’s

behavior, it might invoke one or more processes for OS system services or another application

process; at some times, for some processes, this sequence is significant. The execution of some

processes should not occur in an unconstrained order, but rather within a range of acceptable

orders.

The OS provides a process scheduler that manages all process invocation sequences. From

the time the OS is booted, the computer executes a process sequence. The various orderings of

 10

processes that may be scheduled for execution by the OS scheduler represents a set of process

invocation sequences. Ensuring that some process invocations execute in order is as important

as ensuring that a process executes its machine instructions in the correct order. Determining

whether a process invocation sequence is valid or invalid is the central theme of this research.

2.2.1 Valid Process Invocation Sequences

Valid process invocation sequences are defined as those process invocation sequences that

invoke a set of normal processes in an order that accomplishes or supports the system‘s intended

primary function. In defining normal processes, a server dedicated to running accounting

functions should run only accounting processes and those processes necessary to support those

accounting functions. However, in addition, every normal process supporting this accounting

function should be coded to invoke only certain processes in a limited range of order. A

process‘s logic may support different logic paths, but the number of processes it may invoke is

finite (although, perhaps large), whether these processes include another application process or

an OS process. As the critical server executes its primary function, only a subset of all possible

process invocation sequences supports the intended functions of the system. This subset consists

of exactly the valid process invocation sequences.

2.2.2 Invalid Process Invocation Sequences and System Integrity

System integrity can be compromised by normal processes running in an invalid process

invocation sequence. The set of invalid process invocation sequences is the complement of the

set of valid process invocation sequences. A system is said to maintain its system integrity if it

runs only normal processes in valid process invocation sequences.

 11

The classic example of a valid and invalid invocation sequences is illustrated in z/OS

MVS
1
‘s AMASPZAP. AMASPZAP is a program that allows a system program to modify

machine instructions at the binary level. The system program can verify the binary instruction

codes and change them using AMASPZAP. AMASPZAP, which modifies machine instructions,

is a normal maintenance process. If that process is invoked from the SMP/E
2
 process, the

process invocation sequence is considered valid. The SMP/E process provides restricted access

control that AMASPZAP alone does not provide. Therefore, any invocation of AMASPZAP

that is not made directly from SMP/E is considered a system integrity breach. If the

AMASPZAP process is invoked directly from a TSO/E
3
 process or some other process, then the

process invocation sequence must be considered invalid.

The normality of a process invocation process can also be dependent on the wall-clock time

at which it is executed. For example, a process invocation sequence may be valid if it runs

during a system maintenance window (say: Saturday evenings 10:00PM to 4:00AM), but

execution at another time should be considered an invalid process invocation sequence.

1
 z/OS MVS is IBM‘s MVS operating system which runs on the z10 chip and is the most recent descendent of the

System/390, System/370 and System/360 chip series. z/OS is the most current version of the MVS operating

system that runs on the z10 chip. MVS is the standard operating system used on the IBM mainframe for the last 40

years. [Webb08]
2
 SMP/E is IBM‘s System Modification Program/Extended. SMP/E is a tool for installing and maintaining software

and for managing the inventory of software that has been installed on a Z/OS machine. [IBM08]
3
 TSO/E is a z/OS Base Time Sharing Option/Extensions (TSO/E) element that provides an interactive terminal

interface. Equivalent to Putty or terminal services in Unix. [IBM09]

 12

Chapter 3: Problem: Why System Integrity is Important

When addressing the problem of maintaining system integrity, it is important to understand

what might cause a system to become compromised. The OS does provide some system

integrity internally that is effective as long as programmers and administrators create and execute

only internal processes according to some basic security principles [Harr03]. Of course, the only

reasonably sure protection from programmer mistakes is to require stringent reviews of their

code and adequate quality assurance verification to ensure these principles have been followed.

However, even if these basic security principles are followed, system integrity remains

challenged by external processes and users. Exposure to external processes can cause a system

to be infected with malware. System integrity can also be compromised by access from

administrators with privileged access.

3.1 Malware

Nearly all computers have some exposure to the Internet and, as a result, are under constant

threat of attack by viruses, parasites, worms, Trojan horses, adware, bots and other intentionally

designed malware. Symantec, a prominent security company, has tracked and documented the

number of malware incidents per year is growing (see figure 3-1 below) [Syma10]. Almost all

computers encounter outages or suffer poor performance due to malware. Countless time and

money has been spent fixing, reimaging or replacing systems that have been compromised. Even

with a defense-in-depth strategy using anti-virus, anti-spyware, anti-malware, intrusion

detection, vulnerability assessment and access control security tools, new and innovative

malware still penetrates through the defenses. However most users accept the risk, and consider

it part of the cost of doing business [Eete08]. Even application servers buried deep in an

organization‘s infrastructure (such servers which are of most interest to this research) have some

 13

Figure 3-1 New Malware Code Threats - Symantec

exposure to the constant barrage of malware.

Some critical systems not only have to be concerned with the possibility of random malware

attack, but also with a relatively high likelihood of attacks specifically targeted by cyber

criminals or terrorists. Some systems support critical functions such as providing an electronic

battlefield, balancing power grids, coordinating air traffic or regulating the money supply.

Because of the critical applications they support, these systems cannot afford to be compromised,

and therefore, warrant a stronger defense. Therefore, some defenses that normally would not be

cost-effective on other systems are required on these systems. Fortunately, these critical systems

are more likely to run on dedicated computer systems and can be more tightly controlled.

Malware infects systems by either implementing themselves as a new process within a valid

sequence of process invocations or by masquerading as a known process within an apparently

valid process invocation sequence. Ensuring that all processes and/or sequences of processes are

normal becomes critical to verifying that malware has not infected a system. Preventing

malware contamination is a by-product of ensuring system integrity.

 14

3.2 Operator Error

Most prior work in OS security has been focused on intrusion detection [Amm98] [Appf04]

[Feng03] [Forr96] [Gho00] [Hof98] [Ko94] [Kos97] [Wag01] [Warr99] and has been a reaction

to the emergence of malware. Malware, although an important aspect of system integrity, is not

the only concern. Operator error or internal threats can also compromise system integrity.

Figure 3-2: IDC’s Survey of External vs. Internal Threats

Computer operators and security practitioners know that external threats are not the only

threats to critical computer systems. In fact malware is not the main reason critical production

systems fail or encounter production outage incidents. Production outage incidents are known to

be caused more frequently by operator error or to occur after system maintenance or other

changes are introduced to a system [Chri08] [CSI03] [Keen05]. Users with elevated privileges

can pose a more serious threat to a system than malware because of their access using

administrative authority. Security professionals know that historically the most dangerous

threats to computer systems are internal, particularly for critical systems located deep in the

 15

infrastructure [CSI03]. In 2007, International Data Corporation (IDC) research found that most

threat focus was on external threats. A 2008 IDC report [Chri08] (figure 3-2) showed a shift of

focus from external threats to internal threats.

Since it is difficult to predict the variety of things a system administrator might need to do to

a system, they are granted higher privileges to enable them to fix or tune a system, which also

allows them to interfere with a system‘s intended function by mistake. Even the best technicians

make mistakes, sometimes with catastrophic effect [Chri08]. With a lack of understanding of

how exactly the system works, or by simply hitting the ENTER key by mistake, technicians can

unintentionally interfere with a critical system. Or technicians could submit a task that, although

otherwise benign, could consume valuable CPU cycles needed for intended execution of the

critical application.

System changes that may impact a critical system are normally reserved for a maintenance

window, a time when production processes are not executing. At these times, the critical system

is more tolerant of executing non-production associated processes. Administrators, however,

need a security mechanism that would allow them to maintain a system during maintenance

windows or when a system needs their intervention, such as when a system exhibits problems

and needs an emergency fix. The security mechanism must not allow the administrator to run

any process that may deviate from the normal production process during the hours when

production processing is running. Maintenance processes should only run at specific wall-clock

times within specific process invocation sequences and not while production process and process

sequences are running.

 16

3.3 Research

Other research in this field has taken a purely engineering approach. Researchers define a

solution by focusing upon intrusion detection [Feng03] [Forr96] [Gho00] [Hof98] [Ko98]

[Kos97] [Sek01] [Wag01] [War99] and focus upon resolving the malware problem only. These

approaches are quick to formulate a solution to the problem of indentifying malware in process

invocation sequences. While existing research addresses an important aspect of the problem,

there is far more to this complex problem. ―The engineer's first problem in any design situation

is to discover what the problem really is‖ [Beak69]. This research analyzes the problem from a

different perspective and then defines requirements to solve the problem(s) by developing a

solution model.

There is a need for a security model to enforce system integrity by adding to the defense-in-

depth arsenal that protects against malware and provides safeguards against technician errors.

The facility must adhere to some basic security principles: it must perform authentication and

authorization, and provide accountability. This research defines a solution model for a facility to

provide system integrity controls, not only to mitigate malware intrusions, but also to provide

control over technicians so that they can only apply changes during maintenance windows or in

emergency situations. This research analyzes the system integrity problem, analyzes which

computational model is necessary and sufficient to address the problem, defines the

requirements, creates a solution model, identifies the kinds of features needed in such a system,

and tests a prototype of the solution.

3.3.1 Requirements

As part of analyzing of the problem of system integrity, the system requirements are

identified. In this research, these requirements are based upon the AAA security principle:

 17

Authentication, Authorization and Accountability. The AAA principle is an industry-accepted

standard associated with all security solutions. Although the principle became best known

through the AAA protocol RFCs defined by the IETF [Ietf00], it has been a guiding principle

since the first access control systems were developed in the early 1970s. AAA is an accepted

principle in the development of all security controls [Fire03].

3.3.1.1 Authentication

Authenticating the identity of processes is a prerequisite to verifying that a process is normal

and that it belongs to a valid process invocation sequence. Unless a process is authenticated,

another process can masquerade in place of a normal process. This is a requirement overlooked

in other research concerned with mapping invocation sequences. Process authentication is

defined in section 9.3 and a discussion of authentication methods are discussed in more detail in

Appendix D. Although authentication of processes is very important, this component of security

is not the focus of this research. This research assumes all processes presented to the scheduler

are correctly authenticated.

3.3.1.2 Authorization

Process authorization (validating processes and invocation sequences) is a critical element of

this research. An authenticated process is evaluated as to whether it is authorized to be invoked

by the process that invoked it. Each process corresponding to the entire prefix (the portion of the

sequence preceding the process to be authorized) of the process invocation sequence must be

authorized in order for the executing process to be authorized. If the scheduler determines that a

process is not invoked by a process that is authorized to invoke it, then the process is not

scheduled for execution. If the process is abnormal, or any part of the prior process invocation

sequence is invalid, then the invoked process is determined to be unauthorized. This research

 18

focuses primarily on developing a model for determining the authorization of valid process

invocations. Process authorization has two distinct functions: (1) to learn or define a valid

process invocation sequence and (2) to verify that a current running process is the product of a

valid process invocation sequence.

Determining a valid invocation sequence has been one of the most challenging aspects of this

research. Other projects have used a variety of methods (see chapter 5), resulting in mixed

success. One of the problems with determining the validity of a process invocation sequence is

that today‘s systems are so complex that it seems no individual really knows what a valid

process invocation sequence might be.

3.3.1.2.1 Invocation

To determine a valid process invocation sequence, this research must first define the phrase

invoke process. In this research, the statement, 'P1 invokes P2' means that the CPU has executed

an instruction from P1 and that the executed instruction has the intent of requesting the OS

scheduler to place process P2 on the dispatch queue for CPU execution. An invocation sequence

is an ordered series of process invocations.

3.3.1.2.2 Static Process Invocation

Others have made the distinction between statically and dynamically invoked processes

[Feng03] [Kos97]. Statically invoked processes are those that are linked into an application;

they are part of the same load module as the invoking process [Hof98] [Sek01] [Wag01]. These

systems must have their source code or load module analyzed to determine the valid process

invocation sequences. Static process invocation sequences are not of particular interest to this

research. To modify processes within a load module would require in-depth knowledge of the

 19

application and probably privileged access to make changes to the load module, so such

processes pose limited risk to a system.

3.3.1.2.3 Dynamic Process Invocation

Dynamically invoked processes are processes not linked into the application‘s load module.

These processes are invoked in a number of ways: explicitly, implicitly and symbolically.

Explicitly invoked processes are invoked using fully qualified directory information. Explicit

process invocations cannot mistakenly invoke a process from the wrong directory. Implicit

process invocations use the ―home‖ directory. However, the ―home‖ directory actually consists

of a number of subdirectories, and the invoked process can be loaded from any one of these. If a

number of processes with the same name reside in multiple directories in the ―home‖ directory,

the first found process with the name of the invoked process is used, regardless of which part of

the ―home‖ directory it resides. Implicit invocation using the ―home‖ directory can be dubious at

best, because the ―home‖ directory can be changed dynamically.

Symbolic invocations appear to invoke a process from one directory when in fact they are

actually invoking a process in another directory. Determining the directory where a symbolically

invoked process actually resides can be accomplished, although it is not as straight-forward as

determining where other external invocation processes resided. Symbolic links are more

confusing than they are problematic because their target process can be uniquely identified.

This research is interested in dynamically invoked processes, because they provide an

opportunity to subtly compromise a system.

3.3.1.3 Accountability

A security system requires a means to enable accountability. When a security-related

incident occurs, administrators must be able to determine its cause. If a process invoking

 20

sequence has not been granted authority to execute, the security system must be able to identify

the reason for this situation. At a minimum the system should provide the administrator with the

invalid invocation sequence and its point of failure. The process invoking sequence can be

analyzed to determine the cause of the problem or to determine if the incident represented a

false positive result (that is, a result in which a valid process invocation sequence was identified

as invalid.) If a false positive result occurs, the security system should be corrected to allow the

process invoking sequence to be authorized in subsequent occurrences. In other words, the

security system must have the ability to report on the process invoking sequences that it

encounters and report which are valid and which are invalid.

Auditors need to review the security system as well, to verify that it is properly protecting the

rest of the system, and they need to verify what process invocation sequences are authorized.

Assurance that a computer system is adequately protected is essential to meeting government

certifications such as FISMA [FISM02] [FISM08]. FISMA certification is mandatory for U.S.

government computer systems. The capability to report on the process invocation sequences is

an essential function of accountability.

 21

Chapter 4: Security Background

As stated earlier, the purpose of this research is to increase operating system (OS) security by

detecting and enforcing trusted process invocation sequences within the system. The system

must run as expected before any other security measures can be enforced. Without good

operating system integrity, any other attempt to secure data, resource, users, etc. is a hollow

exercise. If the processes on the system are not those intended to run on the system or if the

system is able to run processes in an unauthorized sequence, then the system is already

compromised and cannot be trusted.

Operating system security has been an issue since the 1970s, [SCC70] [CST72] [Schr74-1]

[Schr74-2] and has become even more so with the increased prevalence of malware and societal

dependence upon computers. When referring to operating systems, often security is an after-

thought. Operating system designers have focused on the functionality of the OS, not its

integrity. [Bish03] [Ravi04] [SHA99] [Smal01a] [Spen99] Various projects have undertaken the

challenge of creating an OS with built in integrity [ACM99] [Smal01b]. Commercial OSs has

continued to enhance existing OSs by adding or modifying security features in order to assist in

maintaining system integrity [ACF99] [RACF03]. And there is a plethora of security add-on

tools to further enhance the assurance of system integrity [Appf04] [Ford97] [Mcca05]

[Syma05]. All of these approaches have met with various levels of success. This research

focuses on one neglected aspect of the system integrity problem, the problem of detecting invalid

process invocation sequences and preventing their execution.

4.1 The Program Pathing Problem

Why focus on process invocation sequences? The basic function of a computer is to run

processes and, as the computer continues to operate, to invoke other process. To ensure system

 22

integrity, it is important to verify that processes run in a valid sequence. When a process runs

out of sequence, the system is no longer operating as expected – and therefore can no longer be

―trusted.‖ A process invocation sequence is the order in which processes are invoked in a

system. When the OS boots up, a single process is loaded and invokes a series of other processes

until the entire OS is loaded. The scheduler, memory manager, I/O subsystem, and all system

services are inter-linked through a series of process invocation sequences. Whenever a user starts

an application, another substring of the process invocation sequence is started. Proper operation

of an OS consists of only certain process invocation sequences being executed. These process

invocation sequences are referred to in this research as program paths. When an OS or

application deviates from a valid program path (PP), the integrity of that system has been

compromised [Schr74-1].

Previous methods to map PP use traces, compiled languages, and even coding PP sequences

into programs [ACF99] [Mcca05]. These approaches soon become too difficult and too tedious

to administer [ACF99] [Mcca05]. Administrators needed in-depth system knowledge and in

some cases had to manually write sophisticated program languages to create new PP mappings.

Such mappings either began to take up too much memory, or took too long to calculate [Schr74-

1]. As some sparser, more manageable, PP maps began to be used on systems, administrators

found deficiencies in their function. These systems could only determine process invocation

sequences that were explicitly learned – they could not deduce implied process invocation

sequences.

Processes have a number of behavioral characteristics that make the mapping of process

invocation sequences particularly difficult. A running process has a unique process identity and

location, and may exhibit a number of behaviors such as accessing resources, running privileged

 23

instructions, and requesting allocation of executable and data memory. These and other

behavioral characteristics, although important for other considerations, may be added to the PP

model in later research. This research restricts itself to those characteristics that are relevant to

mapping process invocation sequences. The PP model is intended as a fundamental building

block to which other behavioral system characteristics can be attached.

Earlier attempts to map trusted program paths and identify some of the pitfalls encountered

are discussed in chapter 5. It is the not purpose of this research, to come up with a revolutionary

approach, but to keep the solution focused on solving only the process invocation mapping and

validation problem. Particular focus is given to the computational theory behind the program

pathing solution approach presented (see chapter 6). This research focuses upon an approach

that includes the necessary computational power to solve the problem, but no additional

computational power.

Before describing the proposed Program Pathing Trust (PPT) Model, it is important to

understand the arena in which it participates. Without a background in computer security, the

impact of the PPT model may not be obvious. Therefore, this paper first frames the context of

computer security in which the PPT model is relevant. The PPT model is not intended as a

comprehensive approach to computer security, but as an added dimension to existing security

systems. Over the past three decades, the developing discipline of computer security has

matured, but has taken many tangents. What started out as enforcement of access control has

developed into various other disciplines such as threat management, compliance, security policy

and forensics [Harr03]. This research demonstrates that an automaton provides an appropriate

computational model to solve an important system integrity problem in computer security, the

identification of valid process invocation sequences.

 24

4.2 Security and Program Pathing

4.2.1 Detection and Protection Systems

Computer security approaches can be divided into two distinct categories – detection and

protection. The detection branch of computer security developed as a result of computers

becoming more accessible through the Internet [Harr03]. Public users had direct access to

applications and the computers hosting these applications, making it possible for users to

interfere with normal computer functions. By virtue of being available to users, systems were no

longer isolated and became more vulnerable to a long list of threats: viruses, Trojan horses,

worms, time bombs and other malware. Intrusion detection systems were developed to identify

the infiltration of these threats [Harr03]. Such systems are traditionally signature based. That is,

they can only detect malware intrusions that are known and they are configured to identify

[Appf05] [Syma05]. As malware becomes more polymorphic and adaptable, more research is

being done on developing detection systems that can identify malware that has not been

previously encountered [Kole05]. Research on intrusion detection has relevance to this research

and is reviewed in chapter 5.

The protection branch of computer security, about 20 years older, is concerned with

regulating access to host computers and their applications. Initially the threat population for

computers was limited to the small group of operators and system programmers who had access

to computers, isolated in secured data centers. So, much of the attention to security was based on

limiting and defending computer resources against unauthorized internal access. Such protection

is known as access control and is primarily composed of authentication and authorization.

Access control systems are at the core of a ―trusted‖ system. A trusted system is one that can

be relied upon to maintain its status as an uncompromised and reliable system. The concepts of

 25

access control and trusted systems have been tightly linked from the beginnings of computer

security in the 1970s. They continue to be issues with the prevalence of malware and society‘s

interdependence upon computer applications. In the 1960‘s and 70‘s the problem was dealt with

by isolating computer systems in secure data centers, and physically restricting access. But even

then, there was concern that these systems might not be defendable against internal threats.

4.2.2 Aspects of Access Control Systems (Protection System)

Information security systems can be categorized into two types: data security and system

security. This is not a distinction that has always been made, because originally all information

security systems either presupposed system security or both data and system security were

integrated into access control systems. As the discipline of information security matured, the

distinction became clearer; government agencies began to define ―trusted‖ systems and the

private sector developed commercial products that aided in implementing ―trusted‖ system

integrity, using techniques such as anti-virus, compliance monitors and intrusion detection

systems.

Data security systems protect vital information stored and processed by the computer from

unauthorized access. System security systems protect the computer‘s resources and processes.

System security is a prerequisite for good data security. An access control security system

requires two preconditions: (1) the operating system must have integrity (initially free from

vulnerabilities), and (2) the operating system must be protected by a security system (to maintain

integrity). The security system and the operating system form a mutually enabling and

dependent relationship. The security system can permit damage to the operating system by

allowing exposures, malware or malicious users into privileged areas of the operating system.

The operating system can circumvent an access control security system by not implementing the

 26

proper security intercepts, or by not properly enforcing the privileges required by system

programs or personnel, enabling them to disable the security system.

4.2.2.1 Data Security

Data security protects the data being stored and processed by the computer. Data security

protects the integrity of the user‘s data, but can be extended to encompass all kinds of data, files,

directories, user applications and computer resources, such as printers, internet access and

executable programs. Data security is the ultimate goal of any computer security system.

Data security has been implemented in most operating systems in a variety of ways, but

generally as a discretionary access control (DAC) system which allows data owners to grant

access as they see fit. DAC systems traditionally require the defining of subjects (users) and

objects (computer resources). Subjects are granted access to objects through an enforcement

mechanism. Subjects can be granted READ, WRITE, ALLOCATE or EXECUTE privileges to

an object. Subjects can also be designated as owners of objects and possibly grant other subjects

access to objects they own. [ACF99]

Mandatory access control (MAC) also provides data security, although it is enforced by the

operating system using policies and only security administrators have the ability to grant access

to objects. MAC systems traditionally are multi-level security (MLS) systems tightly integrated

into the operating system. The U.S. Department of Defense Trusted Computer Security

Evaluation Criteria (TCSEC), also referred to as the DoD Orange Book, defines mandatory

security as being associated with security labels (security attributes) associated with objects to

reflect their level of sensitivity; security labels are also assigned to subjects [DoD85]. Under

MAC, subject and object labels must match or the subject label must dominate (be of a higher

authority than) the object‘s security label for the subject to have access to the object.

 27

4.2.2.2 System Security

System security ensures the integrity of the operating system. Traditionally, the primary

design goal for operating systems is functionality, not security. It is often said that security is an

after-thought in the design of operating systems [AFM99]. As described above, early attempts at

system security consisted of simply removing the entire system to a physical environment where

penetrability was acceptably minimized. In the 1970s, with the arrival of interactive systems

(timesharing, multi-programming, on-line, and multi-processing), securing the operating system

became the primary focus of computer security [Schr74-1]. Physically isolating the computer

and its access was no longer sufficient as a security strategy because the computer was being

accessed by a larger population, sometimes remotely connected by a private network (SNA or

LAN). Access control systems, although primarily data security controls, were modified to

provide some system security controls.

As computer access extended beyond secure data centers across the world through the

internet, maintaining a computer‘s ―trust‖ status became an imperative challenge for computers

running critical applications. In the context of computer systems, ―trust‖ has taken on many

meanings over the past decades [DoD85]. This research focuses on the question: can the

process invocations in ―trusted‖ computer systems be validated? Both discretionary access

control (DAC) and mandatory access control (MAC) contain rudiments of this form of system

security [ACF99] [Clar87]. Both protect the system executable files and directories.

 28

Chapter 5: Program Pathing Background

5.1 Trusted System

One can easily imagine the failure of a nation‘s financial system, regional power grid or

internet because of cyber terrorism, or accidental interference. A nation‘s central bank‘s

applications, for instance, may run on a collection of servers, any one of which might process

trillions of dollars a day and, if compromised, could cause catastrophic events. Interference to

one of these applications could damage the economy, reduce public confidence in the money

supply and possibly cause the devaluation of the nation‘s currency. Therefore, it is important for

computers running these applications to maintain a ―trusted‖ status. A ―trusted‖ system is not

just free from malware; it also has only prescribed applications running on the system. ―Trusted‖

machines are computers dedicated to run critical applications without interference. Other

applications, authorized to run on other systems, may not be authorized to run on the trusted

system. This restriction is required because untrusted (or unauthorized) process may steal CPU

cycles, reduce performance, or create exposures, causing vulnerabilities and lead to system

compromise. An application may be so critical that it is imperative it run without interference –

and therefore it must run only on trusted computer systems.

5.1.1 What is a Trusted System?

What constitutes a ―trusted‖ system? A ―trusted‖ system is defined by this research as a

dedicated system that is certified to run a critical application and that runs only those processes

necessary to support the critical application. ―Trusted‖ systems are required to be locked down

with the highest security requirements in order to ensure that the operating system, the

applications and the security systems maintain their integrity.

 29

Critical applications, as defined by this research, are any applications that are essential to an

organization. As a rule, these critical applications are necessary to fulfill the organization‘s

mission; without them the organization would fail. Critical applications have a requirement for

high availability and resilience. Examples of critical applications might be associated with

nuclear power plant operations, military infrastructure support, central financial applications, life

sustaining medical applications, communication systems and navigation systems. The need for a

―trusted‖ system is a function of the organization‘s tolerance for doing without the critical

application(s). If an organization determines that it can do without an application for a period of

time, even when failover systems fail, and are willing to accept the risk, then the application is

probably not critical and a ―trusted‖ system is not necessary.

5.2 Program Pathing as part of a Trusted System

Program Pathing is by no means the whole solution to the system integrity problem and by

itself does not guarantee a system is ―trusted.‖ There are many aspects of a trusted system the

program pathing model does not address. However, it is an essential part of the solution.

5.2.1 Conceptual Security Models Related to Program Pathing

A number of computer security models have been developed over the past 30 years.

Although they are all important, a specific few provide a good background to this research and

have an influence upon it.

5.2.1.1 Goguen-Meseguer Model

Goguen-Meseguer took the military lattice approach to information security and created a

model to define a ―security policy‖. They make a distinction between security policy and

security model. By their definitions a security model is a description of a security system,

 30

whereas a security policy is the set of requirements for a security system. The approach identifies

the need to administer a security policy that is not static. [Gogu82]

The concept of security policy allowed for the definition of policies such as multi-level

security (MLS), capability passing, confinement, compartmentalization, discretionary access,

authorization chains and downgrading. The existing concept of ―trusted processes‖ was not that

the processes were restricted from running, but that they were restricted from access to sensitive

data. Most operating system processes were considered ―trusted processes‖ because they needed

universal access to all resources. Goguen-Meseguer considered ―trusted processes‖ such as

these to be unnecessarily dangerous, since they could perform any action upon any of the system

resources. Their model intended to define precise security policies for subsystems by creating

domains, and hence restricting the access of processes to resources.

The Goguen-Meseguer model is important because it introduced two concepts. First, it

introduced the use of an automaton to model a security solution. The present research goes

further and actually uses automaton theory to implement a solution. Secondly, the Goguen-

Meseguer model introduced the concept of compartmentalization to security policy, with regards

to operating system integrity. This concept arises numerous times in solutions proposed for the

system integrity problem. The PPT model restricts valid sequences to only specific authorization

paths.

5.2.1.2 Clark-Wilson Integrity Model

Clark-Wilson recognized that the traditional military model of computer security proposed in

academic circles at the time was not well suited to the commercial realm. In the mid to late

1980s the military was focused upon mandatory access control systems whereas commercial

systems were focused upon discretionary access control systems. The Clark-Wilson model

 31

noted the fact that the problem of data integrity existed for both military and commercial

environments. The goal of the Clark-Wilson model was to ensure that no user, not even an

authorized one, should be permitted to corrupt data, either by accident or with the intent to

commit fraud or to be malicious. To this end, Clark-Wilson‘s model focused upon two concepts:

(1) the well-formed transaction, and (2) separation of duties. [Clar87]

The well-formed transaction stipulates,

…that a user should not manipulate data arbitrarily, but only in constrained ways that

preserve or ensure the integrity of the data. A very common mechanism in well-formed

transactions is to record all data modification in a log so that actions can be audited later.

[Clar87]

In other words, a user may have access to a resource only indirectly through a particular program

(or set of programs), written specifically for manipulating the data. Giving access only to the

program, without identifying the user would not be sufficient, as ―individual accountability‖

would be lost; it would be known that the program modified the data, but who used the program

to modify the data would not be known.

The Clark-Wilson model sets up a data integrity problem to which the program pathing trust

model is a solution. That is, the Clark-Wilson model presupposes that all application developers

code their applications with this security concept in mind. However, not only do some

application programmers not use the Clark-Wilson model, it has an inherent flaw. It assumes

that if the program that has access to the data and the user is valid, then the transaction is a ―well-

formed transaction.‖ It is possible, however, for a malicious user or process to invoke the valid

process out of sequence of the intended application, thereby circumventing the well-formed

transaction.

 32

5.2.1.3 Brewer-Nash Model (Chinese Wall)

Although Clark-Wilson made mandatory access control more palatable, commercial

mandatory access control gained few footholds in the commercial world except for those

industries required to comply with government contracts. ACF2
®4

 and RACF
®5

 both

implemented mandatory access control using the Clark-Wilson model, but the feature was rarely

used [ACF99] [RACF03].

The Brewer-Nash model integrated the concepts of Clark-Wilson by creating another

variation of a mandatory access control. The Brewer-Nash model, commonly known as the

Chinese Wall Security Policy [Bre89], defines a model based upon the concept of ―conflict of

interest classes.‖ The concept is built upon the theory that as a subject gains access rights in one

class of data, it restricts the subject‘s access to other data within the same class. The idea is to

keep commercial subjects from profiting ―inside knowledge‖ of data accessed in one area or

from gaining similar knowledge from another entity within the same class.

The model is best explained using the Brewer-Nash example of 3 companies. Say that a

system stores information on Bank-company-A, Oil-company-B, and Oil-company-C. The

model has three levels of ―significance‖ (1) objects at the lowest level, (2) groups of all objects

that belong to an organization or company, the company dataset, and (3) the group of all the

company datasets whose companies are in competition, the conflict of interest class. [Bre89] In

this example, if a user has access to Oil-company-B, the user can be permitted access to Bank-

company-A, but not Oil-company-C. This is because Oil-company-B and Oil-company-C are in

the same conflict of interest class, whereas Bank-company-A is not in the same conflict of

interest class as the two oil companies.

4
 ACF2

 is an access control product designed for MVS by Computer Associates

5
 RACF

is an access control product designed for MVS by IBM

 33

The Chinese Wall Security Policy model is important to consider when analyzing system

integrity, in that it addresses an important problem in multi-processing computer environments.

PPT uses Chinese Wall concepts to solve a system integrity problem, in a computing

environment where it is not valid to run two different process invocation sequences at the same

time. For instance, it may be valid to execute Application A, except when Application B is

executing. Running both applications simultaneously may create an integrity exposure – as in

the case of running a maintenance process while production processing is running.

5.2.2 Other Implementations of a Trusted System Using Invocation Sequences

The first attempt to define ―trusted‖ system began in December of 1972, at the interim IBM

SHARE [Schr74-1] (user group) meeting in San Diego. The SHARE VS/OS Security and Data

Management Project met in open session to begin its investigation into the lack of system

integrity and computer security in IBM‘s OS/MVT operating system. It was one of the first

known assemblies of computer industry professionals to come together to discuss the topic of

creating a commercial computer security system. A diverse group, representing educational

institutions, service bureaus, the Department of Defense and commercial industry, met to discuss

the requirements for making computer systems secure. Barry Schrager, Data Center Director at

the University of Illinois and SHARE Project Manger, documented the findings and

requirements of the group in a white paper and presented it to IBM [Schr74-2].

The SHARE Security and Data Management Project focused on two basic concepts: (1) a

security system was needed, and (2) as a prerequisite, the operating system had to ensure basic

system integrity. SHARE defined system integrity as ―the ability of the system to protect itself

against unauthorized user access to the extent that the security controls cannot be compromised

[Sch74-1].‖ The group identified that these two issues, system integrity and data security, were

 34

crucial to a computer security system. The committee‘s white paper highlighted specific

requirements:

 The security system should be an integral part of the operating system

 Identification and validation of users is the first level of security

 The security system should not be able to be turned off

 The system should not have to purge all jobs just to run secure jobs

 The security system should be able to selectively run high-overhead functions on an

individual basis.

 A program interface should be the only way to access specific data [Sch74-1].

The last point defines the need for an access control system where data can only be accessed

through specified program interfaces (this pre-dates the Clark-Wilson model by 12 years). This

requirement was defined by the VS/OS group SHARE requirement #73-86:

Description:

There should be a centralized bank of resource control information and an installation replaceable operating

system provided service for accessing and maintaining it. The resource control information must relate

resources (such as datasets, program paths, etc.), conditions under which they can be made available (such as

levels of validation), and user identifiers must all be installation definable.

All authorization and delegation must flow through the single operating system access and maintenance service,

and this service must be invokable during normal production operation. Invocation for the purpose of

validating access to a resource should return a yes or no answer and optionally a variable length byte string to

be used in corrective action (e.g. an error message, module name, or a limit on a quantitative resource).
[Sch74-1]

Further discussion identified the issue of validation of the program path in accessing data.

Although the technologies have changed since the 1970‘s, the concerns about program structures

providing increased integrity remain valid today. This requirement is at the heart of this research

and was specified in VS/OS group SHARE requirement #73-89:

Description:

There should be the capability of associating with any dataset a single interface program capable of accessing

that dataset. Where the interface program is a subsystem (e.g. IMS) an interface should be provided to other

subsystems (e.g. TSO).

 35

Incentive:

The need to be able to limit the path to a dataset to one interface program structures the system so as to

provide increased integrity, security and backup capabilities. [Sch74-1]

In the SHARE security white paper, the program pathing requirement expressed not only a

concern for data security but also for data integrity. Data accuracy and completeness, as well as

the protection of the data from unauthorized destruction, modification or disclosure (accidental

or intentional) were a concern. The requirement recognized that granting access permissions to

data was not sufficient for some data, the security system must also identify and validate the

interface program structure by which the data is accessed.

In the final IBM white paper, the user group described program pathing as an integral part of

the security system as follows:

Its interfaces to the system should be modifiable so that, with simulation, its decision making processes could

be more easily tested, understood and verified. With a well planned set of interfaces via the system control

program, it could be easy to use for application programs. Since it would be removed from the application

programs themselves, application programmers need not know the exact decision making process that would be

used. Conversely, the decision process could be easily modified without having to modify each of the

application programs. And finally, since it would easily be removed from the physical resource control, it could

easily control conceptual resource such as program paths.

Program paths are transactions, command sequences, and operating processes such as ―OPEN‖. A program

path can also be defined to include the flow of control within a module. This enables an installation to define

different security levels for different paths within an application program, without having to rewrite different

application programs due to the differing requirements for security. [Sch74-2]

IBM response to the SHARE white paper was mixed. They accepted the basic premises, but

rejected (or ignored) some of its requirements. The OS integrity requirements were accepted and

implemented in OS/MVS. Protection keys and separation of user applications were enforced

using virtual storage address spaces. The data security requirements were responded to by IBM

with the introduction of their access control product RACF

. However, IBM did not include all

the security requirements from the white paper in their newly developed security system, RACF

and program pathing was one of those features missing in the new security system. In response

 36

to IBM‘s rejection of the security model described in the SHARE white paper, a few members of

the SHARE group developed a security system using the SHARE white paper as the conceptual

design. The result was ACF2

, IBM‘s primary competitor in computer security [Sch74-2].

ACF2
®
 (Access Control Facility – Second Generation) implemented a version of program

pathing. ACF2
®
 was created by SKK, Inc. (Schrager, Klemens, and Krueger, Inc., 1978-1986)

in Chicago, Illinois after the founders left the University of Illinois Circle Campus, where the

first generation of the ACF

security system was developed

The RACF
®
 philosophy of computer security was opposite of that of ACF2

®
. Whereas

ACF2
®

‘s view of data security was from the resources point of view (rule based), RACF
®
 took

an end-user‘s point of view (profile based). ACF2
®
 based its philosophy on the notion that

resources (information) were corporate assets. An organizations main goal was to protect those

assets and therefore would want to look at the computer security from that perspective. RACF
®
,

on the other hand, viewed computer security as a means to control user access to assets. RACF

took a programmer‘s or user‘s point of view. One other primary difference between the two

security systems at the time was that ACF2
®
 enforced security by default – access was denied

unless explicitly granted. RACF
®
 would later adopt the same strategy.

In 1986, ACF2
®
 was purchased by UCCEL and then the following year by Computer

Associates (CA). CA struggled with the program pathing feature in ACF2
®
 as the z/OS

computing environments became more complex. Finally, in 1999 CA removed the original

program pathing feature and now verifies only the program accessing the resource, instead of the

entire program path [ACF99].

The ACF2
®
 version of program pathing is an early version and inspiration of the Program

Pathing Trust Model described in this document. It is the purpose of this research to overcome

 37

some of the implementation problems that forced CA to remove the feature from ACF2
®
, and to

show how, by expanding the model, it can be used to deal with trusted computer environment

problems.

5.2.2.1 ACF2®

ACF2
®

‘s version of program pathing was implemented in 1974, and immediately

experienced problems with properly mapping process invocation sequences. In 1999, ACF2
®

disabled the program sequence checking feature of program pathing, due to the complexity of

identifying program paths [ACF99]. The approach of implementing program pathing used by

ACF2
®
 was to take a core dump of a running process. The systems programmer would then read

the core dump, find the Task Control Block (TCB) and follow the Request Block (RB) chain

which represented the program invocation sequence that was recorded by the operating system

scheduler. The program path that was discovered in the operating system‘s TCB/RB chain was

then manually translated into assembler MACROs (created by ACF2

 developers for that

purpose) and assembled into the ACF99@RB module (see Appendix C). ACF99@RB was able

to define a number of programming environments using the TCB/RB linkage chains. ACF2

program pathing was not able to use source to develop the mappings in ACF99@RB, due to the

fact that not all vendors supplied the source code to their processes.

Figure 5-1 is a representation of a program path making up application 1 with a process

invocation sequence of Program1, Program2, Program3, OSProgram1, OSProgram2, and

OSProgram3. Program3 requests OS services to OPEN and READ the file. OSProgram3 does

the actual OPEN and READing of the data file. Under the ACF2
®
 model of program pathing,

the operating system is considered trusted and the ACF2
®

 path does not extend into the operating

system program flow. In the ACF2
®
 model only the program state RB chain would have to be

 38

Figure 5-1 MVS Control Block Structure that ACF2 Program Pathing Maps

defined in ACF99@RB. Therefore, only the ―Program‖ program flow would be relevant in the

program path. ACF2

‘s constructs were not always strictly adhered to from release to release.

This was due to the changing architecture of OS/MVS as IBM tightened up system integrity. In

some releases, selected parts of the OS programs were often identified in the program path as

well. Below is how the example in figure 5-1 would have been coded in ACF99@RB [ACF89].

APPL1 @CMD ,

@TCB #APPL1

#PROGRAM1 @RB PROGRAM1,NOSYSLIB,CMD=(CDE,NEXTTCB),LASTTCB,

NEXT=(RB,#PGM##)

#PGM## @RB PROGRAM**,NOSYSLIB,CMD=(CDE,NEXTTCB),LASTTCB,

NEXT=(RB,#PGM##,#OS##)

#OS## @RB PROGRAM**,NOSYSLIB,CMD=(CDE,NEXTTCB),END

[ACF89]

Updating ACF99@RB was a tedious task and took intimate knowledge of the task

scheduling subsystem in the IBM MVS operating system. With the increasing complexity of the

MVS operating system (as IBM updated MVS with new architectures, going from MVS, to XA,

to ESA to z/OS) and fewer and fewer technicians understanding MVS and ACF2 internals,

 39

Computer Associates was forced to simplify the program pathing feature in CA-ACF2
®
.

Currently, ACF2
®
 program pathing involves validating only the program that actually issues the

OPEN for a dataset (file), in this case, Program3, not the entire program path RB chain

(programming environment).

In the current implementation of program pathing, the security administrator only needs to

specify the name of the program that issues the OPEN of the file on the ACF2 rule as follows:

MY.DATA UID(*******userid) PROGRAM(XYZ) READ(ALLOW)

The above ACF2
®
 rule line specifies that the userid can only read the MY.DATA file if the user

accesses the file using the XYZ program through the paths defined in ACF99@RB. By dropping

program pathing from ACF2

, program XYZ can be validated for accessing the resource

MY.DATA, but the paths in ACF99@RB are no long part of the authorization criteria. This

presents a problem if XYZ is a generic read program that any programmer can invoke from any

program. It may be necessary to validate that a user is attempting access by a program that is

authorized to invoke XYZ. ACF99@RB is no longer used in ACF2

.

5.2.2.2 RACF® PADS

RACF
®
, IBM‘s z/OS (MVS) security system, implemented program control using Program

Access to Data Support (PADS) [RACF03]. PADS performs somewhat like ACF2
®
 in its

current implementation. Trusted programs are registered in PROGRAM profiles, and only

authorized users can execute these programs (although PADS does not validate the entire

program path, it does restrict access to programs). An example of RACF‘s PADS

implementation is as follows:

RDEFINE PROGRAM XYZ ADDMEM(„SYS1.LINKLIB‟)

 40

In the above example, the XYZ program in the ―SYS1.LINKLIB‖ file is identified as a trusted

program.

PERMIT XYZ ID(userid) ACCESS(EXECUTE) CLASS(PROGRAM)

In this example, the userid is given execute access to the XYZ program defined in the previous

command.

Data is protected from being accessed by anyone except through a particular program by

specifying the program in the data profile:

PERMIT „MY.DATA‟ ID(userid) WHEN(PROGRAM(XYZ)) ACCESS(READ)

The example above specifies that the userid has read access to the MY.DATA file, but only if

it is accessed by the XYZ program. PADS performs the same functionality as the current

ACF2
®
 implementation.

5.2.2.3 Top Secret®

Computer Associates‘ other z/OS security product, CA-Top Secret
®
, defines computer

environments with the use of its Facility feature. CA-Top Secret
®
‘s approach is to define the

initialization program and the program name id. Under z/OS (MVS), the tradition is that the first

3 characters of a program product are unique to the program product – CA-Top Secret® takes

advantage of this to identify a Facility (or programming environment). CA-Top Secret
®
 creates

a facility by grouping a set of program names. Taking advantage of the z/OS programming

convention that all the program names of a function within an application begin with the same 3

characters, facilities can be defined by masking the program names, e.g., ISP***** (which

would define the ISPF programming environment). CA-Top Secret
®
, however, does not have

the concept of program pathing as referred to in this research – it merely names the programs in

the program path, but does not identify their invocation sequences. Top Secret

 facilities can

 41

identify an environment - identify all the programs belonging to an environment, but cannot

identify their invocation sequence.

5.2.3 More Recent Background

5.2.3.1 Trusted Path Execution (TPE)

Niki Rahimi (IBM) has done work in the area of program path validation in Linux, taking

advantage of the Linux Security Modules (LSM) hooks. His work, the "Trusted Path Execution"

(TPE) [Rahi04] although possibly appearing to be similar to the PPT model, takes a different

approach. The trusted path that Rahimi refers to in the TPE is the directory path from which an

executable resides, not the sequence of program flow path. Although TPE‘s intent is partially

the same as that of the PPT model, to prevent the execution of malicious code, it does not

encompass the whole of PPT‘s strengths. TPE only verifies that a program was loaded from a

particular directory.

Rahimi‘s concept is to validate that the directory paths where a system program resides, and

verify that only root has authority to write to that directory. Any program that resides in a

directory that is writeable by any other userid than root is considered untrusted. Rahimi‘s TPE is

based on the premise that a malicious user can overwrite or damage the operating system code if

the directory has the write privilege granted to anyone else but to the root ID. [Rahi04]

Rahimi‘s theory works under the assumption that it is a good thing for root to install all

software. However, this does not promote a Role Based Access Control (RBAC)

implementation of security. Most security professionals would try to limit the use of root to only

the operating system. Most IT shops are trying to restrict the use of root. Root has ―all

powerful‖ authority – the user using root, cannot be identified when s/he performs activities,

making individual accountability difficult. In addition, there is no good way to restrict a user‘s

 42

use of root to only those tasks s/he needs to perform. SUDO [Mann03] (under UNIX and Linux)

could be used to restrict a user‘s use of root, although SUDO has flaws that enable a

sophisticated user to get around these restrictions.

The goal of a true RBAC implemented system is to (1) restrict all users to only those

functions and data they are required to perform, and (2) to log a user‘s actions on the computer,

so as to ensure individual accountability. If all software had to be installed with root then too

many technicians would have to be granted root authority, because in large shops there are

multiple technical roles. TPE provides a good mechanism to ensure that a program is coming

from a directory in which it was installed, however the theory needs further refinement if it were

to fit an RBAC implementation of security.

The PPT model can be used in tandem with Rahimi‘s TPE; they are not incompatible. PPT

deals only with the progression of the process invocation sequences, not with validating the

directory from which the program resides, so this is an aspect of TPE that would enhance a PPT

implementation (see section 9.3).

5.2.3.2 Symantec’s Critical Program System (CPS)

In Symantec Corporation‘s

purchase of Platform Logic, it acquired the Host Intrusion

Prevention product, AppFire
®

[Appf04]. AppFire
®
, now enhanced and re-branded Critical

System Protection
®

(CPS), approaches system integrity using a behavior-based approach.

Symantec‘s approach is based upon the concept that each software program accesses particular

resources and accesses them in a particular way. For example, a program may have to create,

update or read a log file, or access a particular tablespace in a database. Behaviors might be

described as such things as functions of the operating system or application as it accesses files,

registries, devices, network connections or other system services.

 43

Behaviors are defined in Behavior Control Descriptions (BCD). Each BCD is a set of

behavior definitions defining a set of resource names, access permissions requested and time or

frequency of access. The BCD is in turn associated with a set of processes or a logical group of

processes invoked a Process Set (PSET). The PSET associates a set of resources and

permissions to the set of processes defined in the PSET. The Process Binding Rules (PBR)

assigns a process to a process set (PSET).

BCDs are defined with the product‘s ―profiler tool,‖ which can be set to automatically

generate a BCD. The process of automatically creating the BCD is referred to as ―self-learning‖.

One of the chief advantages of CPS is that the self-learning mode provides a ―crystal box‖

approach, where the administrator can audit the behavior controls generated, and the

administrator can review and modify the generated behavior policy defined in the BCD.

CPS‘s architecture is not concerned with program pathing (program flow control), however it

does offer an interesting self-learning concept using the ―crystal box‖ technique. Unlike many

―self-learning‖ systems, CPS provides the administrator with the ability to review what the

system has learned in human-readable format, providing the administrator the opportunity to

fine-tune and correct the BCD access permissions. The concept used in CPS more closely

resembles the Clark-Wilson model implemented by ACF2

‘s program control and RACF

‘s

PADS than it resembles PPT.

5.2.3.3 SELINUX

Security-Enhanced Linux (SELinux) [NSA01] [Mcca05] [Smal01b] is a National Security

Agency (NSA) project created to protect against the exploitation of vulnerabilities in Linux.

SELinux is a mandatory access control system developed to secure government systems for

critical applications. SELinux is based on Flux Advanced Security Kernel (FLASK) [Spen99], a

 44

security architecture framework for operating systems. The FLASK architecture is based upon

the Flux OS toolkit [Ford97] and was prototyped in the Fluke OS [AFM99]. SELinux is built

upon a mandatory access control, but it departs from the traditional definition of mandatory

access control. Unlike the more traditional versions of mandatory access control (MAC) as

defined by Bell-LaPadula [Bell76], Biba [Biba77] and the Clark-Wilson [Clar87] models, the

FLASK model is a policy-based model. The basic components of SELinux are a combination of

type enforcement (TE), role-based access control (RBAC), and multi-level security (MLS). The

policy is made up of a reference policy language. It is compiled and loaded into a reference

policy in the Linux kernel.

The reference policy is made up of a policy language that defines computer types. SELinux

defines many kinds of types, but a simplistic example is one which defines types of the attributes

files and processes. Processes are defined in domains. Files are defined as resources. After

defining domains and resources, the reference policy language defines the domains‘ access to the

resources, as shown in figure 5-2.

Figure 5-2 SELinux Domain - Resource Concept

Figure 5-3 is an example of a SELinux policy reference language [Mcca05]. Note that the

reference policy language defines all the computer entities, both files and processes. The first

part of the policy reference language defines the types, then the attributes of

 45

Figure 5-3 SELinux Policy Reference Language for daemon.te

the types are assigned. In the second part of the policy the domain type is granted access to each

resource type. Figure 5-4 illustrates a graphic representation of the security policy in figure 5-3.

Figure 5-4 Conceptual Diagram of Daemon Policy Reference Example

An interesting feature of SELinux is how it maps process invocation sequences. It groups

processes in domains and identifies which processes in the domain can invoke other processes in

the domain using type enforcement. SELinux‘s type enforcement (TE) domain transitions are

based upon the association of programs (or processes) within domains. A domain is a set of like-

programs (or processes) that work together to create a function (domain). A domain of programs

type daemon.edit;

type daemon.d;

type daemon.log;

type daemon.conf;

type port_80;

domain daemon : { dirFiles piple };

resource port_80 : { direFiles sockets };

domain daemon.edit : { dirFiles };

domain daemon.d : {dirFiles pipes };

resource daemon.log : { dirFiles };

resource daemon.conf : { dirFiles };

access daemon.d port_80 read { dirFiles:stat

sockets:read };

access daemon.d port_80 write { dirFiles:none

sockets: read };

access daemon.edit daemon.conf read;

access daemon.edit daemon.conf write;

access daemon.d daemon.conf read;

access daemon.d daemon.log write { dirFiles:append };

 46

is a type. Each domain is assigned a set of permissions that allow the domain (the set of

programs) to perform a function. Domains can invoke other programs within the same domain

or in other domains using ―transition‖ rules. SELinux‘s focus, however, is not restricted to the

invoking sequence of one process invocation to another, but on one domain transitioning to

another or other types (files, sockets, etc.) – this is determined by type enforcement (TE), which

is type transition rules.

The reference policy language illustrated in Figure 5-5 [Macc05] modifies the reference

policy in Figure 5-3.

Figure 5-5 SELinux Process Control

In this new domain, the daemon.init process is added to the daemon domain and becomes the

initialization process that invokes the daemon.edit and daemon.d processes. The daemon domain

is modified as shown in Figure 5-6.

The SELinux reference policy language is not easy to use – and the examples above are very

simple cases, not using all the capabilities of the language. Although the language is very

powerful it requires in-depth knowledge of the processes, files and other resources running on

the Linux system in order to use it well. There are literally hundreds of man-years of

development of the SELinux reference policy. At this time the kernel reference policy has been

type daemon-init;

type daemon.edit;

type daemon.d

domain_type(daemon-init)

init_daemon_domain(daemon-init,daemon.edit,

daemon.d)

allow daemon-init daemon.edit:process

transition;

allow daemon-init daemon.d:process

transition;

 47

Figure 5-6 SELinux Process Transitions

nearly completed. No application programs have had a reference policy written yet. To write

the reference policy for an application would require someone to have both in-depth knowledge

of the internals of the application and proficiency with the reference policy language.

5.2.4 Current Literature on Program Pathing

The current literature on process invocation sequence validation is not in the realm of access

control, but are approaches intended to solve intrusion detection issues. The literature focuses

upon discovering invalid process invocation sequences, and does not deal with the prevention of

unauthorized processes or processes running out of sequence. Figure 5-7 is a citation map of the

literature showing the evolution of process invocation sequence mapping (see section 2.2) in

intrusion detection. Although the literature does not specifically address all the requirements this

research is investigating, it does deal with the problem of mapping the process invocation

sequences (refer to section 4.1) which is central to solving the system integrity problem.

 48

Figure 5-7 Literature Mapping

5.2.4.1 Non-Computational Theory Approaches

As stated earlier, one of the premises of this research is to use computational theory as a

basis. A number of approaches in the literature depart from our approach. The next four

approaches are examples of some of these unique approaches.

5.2.4.1.1 Hofmeyr-Forrest – N-Gram Approach

Every program produces a set of process invocation sequences. The sequences are

determined by the execution order of the processes. Each process is dealt with as a black box –

the process invocation sequence does not review the internal workings or role of the process,

outside its invocation of other processes. Hofmeyr-Forrest [Hof98] defines these sets of

 49

sequences as normal behavior and divides the sequences into pattern lengths of 5, 6, or 11

processes. Patterns allow for a look-ahead expectation of what processes should follow an

executed process. The patterns (n-grams) are stored in a database as normal behavior sequences.

Any behavior not matching one of the n-gram patterns is determined to be abnormal indicating

an anomaly.

The approach is performed in two stages. The first stage scans traces for normal behavior,

where patterns are created and stored in a database. In the second stage new behaviors from

traces are matched to patterns in the database. Anomalies, new behaviors that are found to be

different than those captured in the n-gram patterns, are reported as intrusions. Process

invocation is determined whenever a process is created (or invoked) using a fork or vfork. In

Hofmeyr-Forrest‘s research, only the fork processes were collected as invoked processes. The

vfork is created in the process invocation sequence as a new process ID, and is therefore difficult

to associate in a trace with the process invocation sequence (which has a different process ID).

This difficulty is easily overcome by profiling the invocation sequences by intercepting

processes before they are placed on the dispatch queue.

Collection of normal behaviors can be accomplished by one of two methods. First, the

database can collect learned normal behaviors automatically from traces, through a series of

tests. Or normal activity from a running production system can be monitored and the database

can collect the learned normal behavior. Secondly, the database can be loaded from manually

constructed traces. These are normal variations of possible normal behavior created by the

researchers. This latter is the approach taken by Hofmeyr-Forrest to test their approach. It was

felt that by using these artificial normal behaviors, more variations in behaviors could be

 50

captured and fewer false positives would be detected (i.e. the system would identify fewer false

intrusion detections).

 Hofmeyr-Forrest identifies a number of hurdles that must be dealt with before the theory can

be put into practical use. The hurdles identified involve both operating system issues and

problems with the n-gram theory that still must be resolved. The operating system issue is that

most such systems do not provide the necessary trace facilities with the required detail to collect

the process invocation sequences. Therefore, either a better trace facility would have to be

provided by the operating systems or one would have to be added to the OS. The issue with the

n-gram theory is that there is no ―stopping criteria.‖ That is to say, there is no criterion by mean

of which it can be determined whether the system learned enough different process environments

to fully capture the process invocation sequences in a system.

5.2.4.1.2 Warrender - Forrest – Alternate Data Models

Warrender- Forrest [Warr99] uses the hidden Markov model (HMM) to create a structure to

map process invocation sequences. The hidden Markov model is a Bayesian network where the

state transitions are probabilities. The HMM takes much longer to train than the other

approaches discussed in this paper. Warrender- Forrest stated that HMM took two months to

train as opposed to other methods that were trainable in a matter of hours for their largest

training data.

Another disadvantage of the HMM method is that the researchers had to predict the number

of states needed for the number of system invocations. They used a 40-state HMM in most

cases. In this approach, prior knowledge of the process invocation environment is needed. The

Warrender-Forrest approach is more complicated than needed for detecting invalid process

invocations.

 51

The HMM is not only more complex than is needed, it also takes more time and effort to

train and more computing power than other methods. Therefore, the HMM is not a good

candidate for our purposes, since predicting probability of new process invocation sequences is

not necessary in validating them.

5.2.4.1.3 Ghosh – ANN Approach

Artificial Neural Networks (ANN) is an attractive approach because it‘s a relativity simple

approach to code and calculate. Ghosh‘s [Gho00] approach uses a combination of three

algorithms to create an ANN supported by a finite state automaton (FSA). The ANN algorithm

used is the Elman recurrent neural network [Elm90]. Unlike traditional forward-feed back

propagation neural networks, the Elman neural network has a feedback loop from the hidden

layer to a context layer, which gives the new input another source of input feedback from the

previous input string. In effect, this allows a string to be broken up into smaller substrings.

As an input is fed into the input nodes, they are propagated into the hidden nodes, and the results

are fed into the output nodes and context nodes. The next input data is fed to the hidden nodes,

and the context nodes using the previous input‘s context node results are fed into the hidden

node. The FSA accepts all the sequences from the training data.

The data fed into the Elman ANN is converted into n-gram sequences which are further

divided up into l-gram sequences (l < n) by the string transducer. The l-gram sequences are fed

into the Elman ANN input nodes for training and later for verification. One or more l-grams can

make up an n-gram (see section 5.2.4.1.1). A process invocation sequence can be made up of

multiple n-grams which are recorded into the FSA by the ―state tester.‖ The ―state tester‖ is

responsible for automatically creating a FSA to represent valid process invocation sequences.

The training data is made up only of normal behavior and is used to profile normal behavior.

 52

The FSA‘s transitions relate to specific l-gram sequences, which in turn make up one or more n-

grams mapping normal processes. The n-grams and l-grams are just substrings of the process

invocation sequence. The n-grams serve the same function as those in the Hofmeyr-Forrest

approach. The l-grams are produced from the n-grams so they can be fed into the ANN.

One of the objections to ANNs is that it is difficult to determine what the ANN has learned.

The n-gram and FSA appear to help resolve this issue. The combination usage of the n-gram and

Elman ANN solves the problem of determining how many input nodes to use in the ANN. And

the use of the Elman ANN creates a good decision making engine. Like most ANN systems, it is

difficult to determine accountability. The ANN can identify what process invocation sequences

are valid, or invalid, but cannot determine why, because the ANN cannot identify specifically

what part of the process invocation sequence it found invalid. This is because ANN uses

stochastic gradient decent to determine whether or not a sequence is valid or invalid [Mitc97].

The ANN translates the sequence into statistical relationships and the original input is lost. This

is the major objection to the ANN approach.

5.2.4.1.4 Ammons -Larus – Retrieval Tree Approach

Although Ammons-Larus‘s [Amm98] research is concerned with program execution paths as

opposed to process invocation sequences, it does illustrate other approaches that can be used to

represent process invocation sequences. Mapping program execution paths (internal branches

within a load module) involves different kinds of processes than mapping process invocation

sequences; however, they both have a similar intent. They both map the program paths of an

application or program. Program execution pathing maps the internal processes (see section

2.1.2) whereas process invocation sequences map the external processes (see section 2.1.1) of

one process to another. So their research has some relevance to this research.

 53

The Ammons-Larus method is an adaptation of the Ball-Larus [Ball96] method. The Ball-

Larus approach maps execution paths to a direct acyclic graph (DAG). Program execution paths

(DAGs) are profiled in a control-flow graph (CFG), where each edge is labeled with the

frequency over a number of dynamic tests. As the test data is run, each execution path is

recorded in the CFG and each edge is updated by one as the program‘s execution path is

recorded. Each subsequent program test is captured into a CFG.

The CFG is converted to use a DAG to model the execution paths. They heuristically

identify all explicit paths; the DAG optimizes the spanning tree so that no edges sprouting from a

node have the same value. This allows the diagram to identify the optimal path. DAGs are

appealing because they are used in system scheduling theory to optimize task scheduling of jobs

to find the longest and shortest paths.

Ammons/Larus uses Ball-Larus‘s techniques, where the path profiles count the number of

times a program executes acyclic paths in a CFG. Ammon-Larus identify the ―hot‖ paths using

the frequency values on the edges. Then using the Aho-Corasick [Aho75] algorithm Ammons-

Larus construct a retrieval tree from the hot paths. A single retrieval tree can represent a number

of program flows. Note that unlike Ball-Larus, Ammons-Larus repeats patterns as it progresses

through the program path. Program flows with the same beginning prefixes are organized

together. As paths are validated against the retrieval tree, if a path enters a state where there isn‘t

an edge that matches the path, then a failure function is entered, and the path is reset.

Ammons-Larus claim that if there are no paths that match the substring, then the failure

function resets the automaton. However, Ammons-Larus do not define their automaton. It may

be that they are only referring to their structure loosely as an automaton and do not mean it as a

formal automaton in the theoretical sense. The retrieval tree structure lacks an accepting state.

 54

The retrieval tree also does not take advantage of the Keene closure, although this is not a

requirement of a deterministic finite state automaton. They divide their paths into partitions,

which has advantages if we want to isolate different invocation sequences that may be mutually

exclusive. A version of this is accomplished in the PPT model. Operations that are mutually

exclusive are defined in separate FSA machines.

5.2.4.2 Computational Theory Approach

This research shows that a finite automata approach is the preferred computational model to

use. Other researchers have had similar hypotheses, and their work is reviewed in this section.

5.2.4.2.1 Ko-Fink – Execution Monitoring

Ko and Fink‘s [Ko94] approach analyzes and maps the behavior of privileged programs as a

comparison reference with actual program behavior recorded in system audit logs. Although

privileged programs can potentially do anything, they tend to perform intended behavior that is

limited and benign. Privileged programs can bypass both mandatory and discretionary access

control mechanisms due to their root privilege. Ko-Fink‘s research developed a language to

monitor these privileged program behaviors. The monitoring language verifies that resources

can only be accessed through invocation of the proper system invocations.

Unlike other approaches, the mapping of invocation sequences in Ko-Fink mainly focused

upon processes executing with privileged access. Unprivileged processes are mapped, but only as

they relate to the privileged processes. Any unprivileged process invocations encountered are

considered part of the privileged process invocation sequence.

Ko-Fink maps the process invocation sequences using a language based upon predicate logic

and regular expressions. It is created manually from system audit logs. The language is made up

of three operands described in the example below which define the following: (1) The name of

 55

the process executing and the objects it manipulates, (2) the attributes of the processes, or

objects, for example the owner or permissions, and (3) the current operations of the program

execution, for instance what the program can do. An example of the language follows:

#define mailboxdir “/usr/spool/mail”

#define mailport 25

#define root_mail_handler “/home/root/mail_handler”

PROGRAM sendmail(user)

read(X) :- worldreadable(X);

 write(X) :- inside(X, mailboxdir);

 bind(mailport);

 exec(“bin/mail”);

 exec(root_mail_handler) :- user.uid = 0;

END [Ko94]

The ―#define‖ operand defines the attributes of the objects in the rule. The ―PROGRAM‖

operand defines the beginning of the rule. The ―exec‖ operand identifies the other processes

invoked in the sequence.

Ko-Fink uses a Sendmail example to illustrate how the mapping works. The Sendmail

program performs a number of functions: (1) it runs as a daemon process to accept mail from

mail ports and route the mail to remote systems, (2) it executes mail handlers on the user‘s

behalf and (3) it resends pending mail in the mail queue. Sendmail has a vulnerability that

enables a user to make Sendmail execute a user program with root access. The Ko-Fink

monitoring language restricts Sendmail to executing only processes in the /bin/mail directory

(shown in the example monitor language rule above). The monitoring language is a form of

process invocation sequence verification – Sendmail can only execute processes from a specific

directory and not just any program specified by the user.

The merit of this approach is mentioned by other significant papers that investigate

alternative approaches to the process invocation sequence problem. The Ko-Fink approach,

although not practical from an implementation stand-point, does define some of the issues

 56

around why mapping and verifying process invocation sequences is important. It shows a

number of vulnerabilities that can be exploited by users to compromise security using some

simple techniques, underlying the need for controlling process sequence validation. The problem

with Ko-Fink‘s approach is that mapping the invocation sequences with the language requires it

to be done manually by a knowledgeable technician.

5.2.4.2.2 Kosoresow-Hofmeyr – System Call Traces

Kosoresow-Hofmeyr‘s [Kos97] research is probably one of the most important approaches in

the recent literature as far as mapping process invocation sequences is concerned. In this

approach, process invocation sequences are mapped from system traces using a regular language

and are used to construct a deterministic finite state automaton (DFA). A process invocation

sequence is mapped in the form of a regular language construct called a macro. Macros do not

map an entire process invocation sequence, but are built from repeatable patterns found in the

system calling traces. Macros are created from a three-phase process, (1) a process is executed,

which may or may not generate a process invocation sequence (invoke other processes). A trace

of system invocations is produced, showing the processes invoked from the initial process. (2)

The system call trace is analyzed by a script that identifies the invocation sequences for a

particular execution path; this is done to reduce the size of the invocation sequences and identify

the common invocation sequence patterns characteristic of the process invocation. The script

also identifies only process invocation sequences that are interesting (part of the execution

sequence being mapped), because there is always a number of system and other overhead

processes running that are not part of the process invocation sequence, for instance system

service calls which are not mapped as part of Kowsorsow-Hofmeyr‘s approach. (3) Finally, a set

of macros are created heuristically from the analyzed system calling traces. This is done though

 57

a combination of scripts and manual coding of the language. The macros are then loaded into a

DFA using another set of scripts.

Each unique invocation sequence is divided into three parts: a prefix, a main body and a

suffix. For each invocation sequence the common prefixes and suffixes are identified. Then the

main body sequences are scanned for common reoccurring strings of two to six invocations.

Each recurring substring of common prefix, shortened main body sequences and suffix become

macros. The macros take advantage of Kleene closure [Hopc01] to reduce the size of the process

invocation sequences captured, for example when process x invokes itself, x
*
 is used where x is

represented 0 or multiple times. The macros are then loaded into a DFA.

By using this method, the researchers found that they could reduce the number of invocation

string instances they had to capture. The technique could take advantage of all the different

reoccurring patterns (macros). In one case, the researchers found that instead of mapping 75

strings they could capture the same representation in 36 macros. The approach drastically

reduced the size of the process invocation sequence map. And the researchers found that their

approach provided ―a reasonably close approximation of normal behavior.‖ Their approach

admittedly used a combination of scripts and manual methods to create the DFA, and the issue of

efficiency was an acknowledged issue by the researchers. They admitted an exact DFA

representation of a process invocation sequence was likely to be problematic, mainly because to

do so the DFA would have to map every possible system invocation sequence, which would

likely cause the DFA to become too large. Secondly, there would be false negatives, because

some process invocation sequence variations would probably be missed. Thirdly, the more

sequences that were mapped into macros, the longer the calculation time would be to determine

 58

the macros. The program pathing trust model developed in this paper addresses the problems

encountered by the Kosoresow-Hofmeyr model.

5.2.4.2.3 Sekar – Finite State Automata Approach

Sekar [Sek01] also uses a finite state automaton to capture invocation sequences. Unlike

previous approaches, the automaton approach is not limited by the length of the invocation

sequence. Longer, more complicated invocation sequences do not pose a problem and it is

computationally efficient. It easily accommodates program loops and branches. The FSA

approach also uses the program counter (PC) to capture information about process invocation

sequences that would not be possible in the static approaches. The advantages of the FSA

approach over previous approaches entails:

 Faster learning – Entire invocation sequences can be learned at once, as opposed to learning

multiple n-grams. Experimentation shows that convergence occurs quicker in the FSA

model than in the n-gram model.

 Improved detection – Using the PC enables the FSA to detect classes of attacks that were not

detected in other approaches. For instance, the n-gram approach can determine that an

invocation sequence has executed valid n-gram sequences, but it cannot determine that it has

missed or skipped a sequence. Also detection takes less computational time and is quicker

than other approaches. The FSA has the advantage of being kernel-based, although this is

also a disadvantage because it entails modifying the kernel.

 Fewer false positives – The FSA can generalize learned normal behavior, in essence predict

unlearned behavior, whereas, the previous approaches can only identify those sequences they

have learned.

 Simpler and more compact representation – The FSA takes up less memory. For instance,

 59

where the n-gram approach needs to represent 51 system invocations the FSA only needs 13.

The FSA is trained in real time. Normal behavior is recorded in the FSA in real time,

capturing the system invocation name and the point at which the system invocation was made,

(the value of the PC when the invocation was made). Each value in the PC represents a different

state in the FSA. The system call name (the name of the process being invoked) is represented

by the transitions. Sekar represents the automaton by symbolizing the transitions in pairs

and

 where the transition from state Prev PC to PC is labeled by Prev SysCall. Sekar

encountered a problem with dynamically linked programs - because these programs may get

loaded into different locations, they cannot be relied upon to have the same PC location from one

invocation to another. Another problem is that system function invocations may invoke other

processes that cause multiple extensive system invocation sequence branches, which then return

control back to the original invocation process. Figure 5-12 represents three invocation

sequences:

Figure 5-8 Seka's FSAFigure

The invocation sequences in 5-12 are:

 60

As processes are invoked by the operating system, they are placed in frames on the process

stack. Each process frame represents an invoked process and contains the return address,

parameters passed to the process and local variables defined to the process. This is provided in

all programming languages.

The fork and exec system invocations provide a unique problem for Sekar, as they either

create another copy of the invocation process or create a child process. The fork and exec are

basic system invocations that appear quite often in invocation sequences. For Sekar‘s FSA

approach, he must decide if processes invoked by a fork or exec should be recorded in the current

FSA or a new FSA – this suggests that Sekar is building an FSA for each process invoked by a

command line or deamon.

This model most resembles the PPT model, and chapter 6 shows how they differ. The major

difference between Sekar‘s approach and the Program Pathing Trust Model is that the Sekar

method maps process invocation sequences within a load module, requiring either the source

code, the op codes for the invocations or hooks in the exec and fork intercepts to map the

invocation sequences. Whereas the Sekar model has problems mapping dynamic invocations,

the program pathing model focuses upon the mapping of these invocations.

5.2.4.3 Context Free Grammar or Pushdown Automata

There are a number of process invocation mapping approaches that are based upon

theoretical computational models that are not exclusively finite automaton based. The

approaches described below are a examples of models that have developed more computationally

complex models.

 61

5.2.4.3.1 Feng - Kolesnikov –Pushdown Automata Approach

The Feng-Kolesnikov approach uses the system call stack to gather information about valid

process invocation sequence behavior, and develops a pushdown automaton. Like Wagner and

Sekar, Feng [Feng03] uses the system call stack and PC (Program Counter), to gain more

information about the nature of invocation sequences. From the PC the current executing

program‘s next instruction can be determined. From the call stack, the process invocation

sequence, its status and the invocation program‘s return address, from which the offset into the

invocating process where the invoked process was invoked, can be determined. Feng‘s approach

is called VtPath, and is unique in that it uses the return addresses recorded in the call stack. The

method abstracts two execution points, one from the invoking process and the other from the

invoked process, and determines if they are valid based upon previously learned normal

behavior.

Training is performed by gathering the process return addresses from the call stack and is

recorded in a hash table called RA (return address) table. If the return address is the last entry in

the virtual stack, then the call number is saved with it. A VP (virtual path) hash table is used to

save the parent invocation sequences for the process. During training all valid process

invocations are added to the hash tables saving their return addresses and virtual paths.

The VtPath approach is able to handle Dynamically Linked Libraries (DLLs), which the

Sekar approach had difficulty handling. VtPath claims that the Sekar‘s FSA approach was an

―unnecessary simplification.‖ The VtPath uses call stack history, as well as PC information. By

doing so, the VtPath traverses function paths that the FSA method only records the system call

name and the current PC. The VtPath also records the return addresses from the call stack in the

VP stack. The VP stack represents a history of all the unreturned functions.

 62

The approach introduces a pushdown automaton, mainly because it is dealing with the

program counter and system call stack. The researchers, dealing with a pushdown automaton

implemented in the OS, emulated the same structure to solve their problem of mapping process

invocation sequences. However, the problem of mapping and validating process invocation

sequences is not the same problem as managing process flows. Validating process invocation

sequences does not require the number of times a process is invoked recursively for instance, or

involve the fact that if process A is invoked 4 times, then process B must be invoked 4 times.

Therefore, a pushdown automaton has more computational power than is needed. This is

analyzed in more detail in section 6.2.1.5.

5.2.4.3.2 Wagner- Dean – Pushdown Automata Approach

Wagner-Dean [Wag01] also attempts to solve the problem of detecting system intrusion by

profiling valid process invocation behavior. Wagner-Dean‘s assumption is that formal methods

alone are insufficient to build a system to model valid process invocation behavior. They base

this observation on the fact that formal systems have been used for 25 years, and have yet to

realize this goal. They agree with the basic premise of these systems, however, that a system‘s

behavior can be learned by observing its normal behavior. The assumption is ―a compromised

application cannot cause much harm unless it interacts with the underlying operating system,

and those interactions can be readily monitored‖[Wag01].

The Wagner-Dean approach begins by creating a model of the expected behavior of an

application from program source code. Then, they monitor the program and check the system

call trace for compliance to the model. Although Wagner-Dean uses practical observation, their

models do use formal languages, either regular or context-free languages.

 63

Wagner-Dean‘s research investigates four approaches to capturing expected process

invocation behavior. The four models used are the trivial, the callgraph, the abstract stack and

the digraph models. Each model refines the normal behavior represented a little more to prevent

false positives. The trivial model is a regular language model that is inferred from a parse tree. It

identifies the set of system invocation from an alphabet S. The model of normal behavior is

defined from a regular language S
*
. Any invoked process not recognized by the language is an

invalid process invocation. The trivial model identifies all the processes that are valid, although

does not identify the sequence. The model is fed by analyzing source code to determine what

process invocations are performed for an application. Wagner-Dean believe that although the

trivial phase is ―easy to implement, sound and efficient‖, [Wag01] it does not detect attacks that

use valid process invocation sequences. The approach is not granular enough to detect abuses of

the valid process invocation sequences, such as the open() system invocation, which can be used

to modify any file – including another file that is an executable in the language S
*
.

The trivial model just identifies the processes that are allowed to be invoked within an

invocation sequence, but does not identify the ordering of the invocation sequence. Ordering of

the alphabet S is performed by Wagner-Dean using a non-deterministic finite automaton

(NDFA). The NDFA (or callgraph) is built by performing a flow-control analysis upon the

application The NDFA is built assuming that only one invocation can be made from a single

application location. In this NDFA, every correct transition state is considered an accepting

state. However, this approach has the problem of showing how processes return control to the

originating process. Function calls are a particular problem; they are invoked for services and

are not part of a long invocation sequence. They appear to be dead-end nodes on a NDFA. The

 64

dead-end nodes (impossible paths) result in a larger than needed NDFA. To deal with the

problem of these dead-end nodes, the abstract stack model is introduced.

The abstract stack model is a non-deterministic pushdown automaton (NDPA) which allows

for a context free language. It emulates the program counter and the call stack in the operating

system. The dead-end nodes are not a problem, because they are pushed on the NDPA when

they are invoked, i.e. entry(f), and popped off the NDPA when they return control, i.e. exit(f).

Again the NDPA is created from an analysis of application source code. However, the use of the

NDPA model proves to be a challenge. In monitoring an application‘s invocation behavior the

NDPA has to search for all possibilities, this can be theoretically and computational exhausting.

Another problem that Wagner-Dean discusses is NDPA‘s difficulty in monitoring activity for

intrusions, because of the need for a top-down analysis. A top-down analysis may be needed if

intrusion detection is being done against a system trace log. However, if intrusion detection is

being done against real-time processing, the bottom up approach that the NDPA lends itself to

would be an advantage. If a process is intercepted in the scheduler before it is executed, the

system data area representing the process has pointers back to the process that invoked it. That

process has a data area with pointers to who invoked it, and so on. Therefore, a bottom up

mapping of process invocation sequences would be advantageous.

65

Chapter 6: PPT Theoretical Model

By analyzing the problem in the light of Chomsky‘s Hierarchy of Formal Languages (see

figure 6-1), this research identifies an appropriate theoretical model for developing a solution

model. By determining requirements and identifying the most restrictive computational theory

model that sufficiently expresses the problem, the solution avoids being overly complex. The

computational theory model selected is used as the basis for creating a solution model.

6.1 Criteria for a Computational Model

Bell and LaPadula claim it is important to ―bridge the gap between general system theory and

practical problem solving [Bell73].‖ Their research emphasizes the necessity of using

computational models to guide solutions for IT security issues. A mathematical model allows

researchers to represent system requirements and rigorously analyze them. Existing research on

Intrusion Detection uses computational theory models associated with regular or context free

Figure 6-1 Chomsky's Hierarchy of Formal Languages

66

languages, but does not provide justification with respect to the selection of one theoretical

model over another, nor does it exploit the theoretical characteristics of the selected model

[Ko94] [Kos97] [Warr99]. This research explains its choice for a computational theory model,

and shows how the theoretical characteristics of the model can be used to enforce a policy

permitting only valid process invocations sequences (VPIS). The intent of analyzing

computational models to find an appropriate theoretical framework is to preclude potential

solution-related issues that might not otherwise present themselves prior to implementation of

the solution.

6.1.1 . Necessary & Sufficient

Traditional logic‘s criteria of necessity and sufficiency are used to assist in the selection of an

appropriate computational model to use in this research. If, when some condition occurs, an

event associated with that condition also occurs, the condition is said to be sufficient for that

event. However, the existence of an event does not imply that a specific sufficient condition has

occurred since some sufficient conditions may be replaced by other conditions that are also

sufficient. On the other hand, if a condition is necessary for the occurrence of an event, the

occurrence of the event implies that the condition must have occurred. In other words, the event

occurs if and only if the necessary condition occurs [Bark80] [Copi78].

The computational model selected in this research is sufficient to model the computational

events investigated here. Turing Machines (TM) and their computational equivalents are

sufficient to model any computational event. But TMs are not necessary to model all

computational events. This research finds the computational model with the least computational

power that still provides the computational power required to model the event.

67

In an argument, the set of necessary conditions contain only the essential conditions that

support the conclusion. All conditions that are not necessary to support the conclusion may be

removed to simplify the solution. Unnecessary premises can obscure an argument and make it

difficult to follow [Copi78]. Similarly, in designing engineering solutions, unnecessary

requirements can cause an engineer to loose focus on solving the problem. The logical principle

of Ockham‘s razor suggests that the simpler solution is usually the better one. Although more

complex solutions may also solve a problem, a better solution involves only those conditions that

are necessary to realize the solution. Ockham‘s razor can be used general guide in the selection

of the theoretical computational model to avoid unnecessary complexity [Gau03]; this approach

is taken in this research.

6.1.2 Choosing a Computational Model

To identify the simplest computational model necessary to model the problem of validating a

process invocation sequence instances of invocation sequences are represented in symbolic form.

After representing the instances in symbolic form, the validation problem is evaluated using

computational models from the simplest to the most complex, as required, stopping at the

simplest computational model necessary to model the event. By evaluating the simplest

computational models first, and only moving on to more complex models if it is determined that

a simpler model is inadequate, this research can be certain that it bases its solution on the

simplest necessary computational model.

The computational model associated with the theory chosen should have the capacity to

accept or reject a candidate string representing a process invocation sequence. The

computational model must have the ability to recognize the set of strings in a language L in

which each string represents a finite sequential invocation of processes during execution of an

68

operating system so long as each process is invoked by a process that is authorized to invoke it.

Any string representing some other process invocation sequence should be rejected as not

belonging to language L.

6.1.2.1 Multitasking Requirement

Within the computational model it is necessary to represent an executing process and the

sequence of process invocations. This is complicated by the fact that multiple invocation

sequences can execute with apparent parallelism. This research makes the simplifying

assumption that a system contains a single CPU. The ability of computers to run multiple

unrelated process sequences, which appear to execute simultaneously, is called multitasking. A

user‘s series of processes, although logically executed in a sequential chain, may not actually be

scheduled in an uninterrupted, temporally contiguous sequence by the operating system‘s

scheduler. Rather, the scheduler may find it necessary to interrupt that process invocation

sequence by starting or resuming one or more other process invocation sequences needing to run

on the single CPU. As a result, a number of unrelated process invocation sequences may be

competing for time on a single CPU processor. Or, a server may process multiple functions

within an application on behalf of multiple users, creating multiple process invocation sequences.

Multitasking presents a challenge requiring a computational model capable of evaluating

multiple simultaneous process invocations sequences.

Take two jobs submitted for execution to a server, job a is represented by the process

invocation sequence abcabc and job x is represented by the process invocation sequence

xwybzw. Assume that job a: abcabc and job x: xwybzw each represent valid process invocations

sequences with each symbol in a string corresponding to the process being invoked. Also

assume that a sequence of processes associated with job a is executing on behalf of user 1 and a

69

sequence of processes associated with job x is executing on behalf of user 2. To the scheduler

and CPU, however, the execution of the processes associated with the two strings may actually

occur as shown in figure 6-2:

Figure 6-2: Interleaved Process Execution

This happens because, when a process invokes another process, an interrupt occurs, allowing

the scheduler to dispatch another process sequence or system service. System interrupts cause

interleaving of process sequences, meaning, effectively, that multiple process invocation

sequences must be simultaneously evaluated for authorization.

6.1.2.2 Regular Language

From the perspective of formal language theory, a Finite State Automata (FSA) is the

simplest computational machine. Other researchers have used a FSA in an attempt to map valid

process invocations sequences in different forms. In intrusion detection research, which also

attempts to map valid process invocations sequence, both Kosoresow [Kos97] and Sekar [Sek01]

entertained the use of the FSA approach.

Kosoresow identified a Deterministic Finite State Automata (DFA) as an appropriate

approach to identify patterns with in an invocation sequence [Kos97]. However, Kosoresow also

identified some issues using a DFA. For instance, (1) using a DFA to calculate the minimal

description of a valid process invocation sequence may be time consuming and is potentially NP-

70

hard [Kos97]. (2) Creating a DFA from valid process invocations sequence has do be done

heuristically, using scripts and manually. Therefore, an exact DFA representation is likely to be

problematic. And (3) creating a DFA from traces would require substantial space (memory)

[Kos97]. A description of Kosoresow‘s approach can be found in section 5.2.4.1.2.

Sekar, on the other hand, embraced the Finite State Automata (FSA) as an approach to solve

the problem of verifying valid process invocation sequences. Sekar‘s approach solved the

problem of manual learning [Sek01], although it can be argued that Sekar did not address the

issues of the computational expense and the excessive space needed to implement this model as

raised by Kosoresow [Kos97]. By way of contrast, the present research uses the concept of

―one state, one process‖ in its implementation to solve these issues (see chapter 7). A

description of Sekar‘s approach can be found in Section 5.2.4.1.3.

 Other, more complex, conceptual models have also been used, such as Push Down

Automata (PDA) [Feng03] and the probabilistic Hidden Markov Model (HMM) [Gho00]. For

more information on other research using a FSM and other theoretical computational methods to

map valid process invocation sequences, see section 5.2.4. But recall that a more complex

solution, although sufficient, may not be logically necessary.

A FSA recognizes a regular language. Therefore, this model is appropriate if the set of

strings representing process invocation sequences form a regular language. Each language

accepted by some FSA has a corresponding representation in a Regular Expression (RE). A RE

is defined [Sips06] [Rich08] as follows:

71

Figure 6-3: Definition of Regular Expression

A language L is regular if the set of strings in L corresponds to some regular expression

string as defined by the definitions above. For example, if strings corresponding to regular

expression S1 are in some regular language L1 and strings corresponding to regular expression S2

are in the regular language L2, then a regular expression can be formed corresponding to the

language consisting of exactly the union of the set of strings corresponding to S1 with the set of

strings corresponding to S2. Let one set of strings in the language corresponding to S1 represent

a set of valid process invocation sequences and let another set of strings corresponding to S2

represent another set of valid process invocation sequences. Both sets are part of a regular

language described by the union of their respective corresponding regular expressions. Let one

FSA be constructed to recognize S1, and the other S2. Then, an FSA can be constructed to

recognize the sets of strings corresponding to both S1 and S2, using ε transitions from a new start

state to the original start states of the two FSAs previously used to recognize each set

individually. The resulting non-deterministic FSA now recognizes a new set of valid process

invocations sequences containing all the members of S1 and all the members of S2.

Regular Expression Definition

String S is a regular expression over the alphabet , if S is:

 a for some a in alphabet

2. ε

4. (S) is a regular expression

5. Union: (S1 S2), where S1 and S2 are regular expressions.

6. Concatenation: (S1 S2), where S1 and S2 are regular expressions.

7. Kleene Star: S
*

8. Kleene Plus: S
+

72

Figure 6-4: Representation of the FSA Recognizing the Union of Languages S1 and S2

Figure 6-4 illustrates the fact that Regular Languages are closed under union.

6.2 Appropriate Representation of the Problem

Any two FSAs (whether deterministic or non-deterministic) are said to be equivalent if they

recognize exactly the same language [Hopc01] [Rich08] [Sips06]. Furthermore, it is known that

every non-deterministic FSA (NFA) has an equivalent deterministic FSA (DFA). Every NFA

can be algorithmically transformed into its equivalent DFA [Brzo62] [Hopc01] [Rich08]

[Sips06] [Wats95] [Wats00]. The PPT models the process invocation sequence problem using a

DFA.

6.2.1 Finite State Automata Representation

A 5-tuple definition of a FSA (Q, , , P0, F) as shown in figure 6-5 (modified from

[Sips06]) is the starting point for defining the elements required to represent a process invocation

sequence. As detailed below, the DFA is used to accept or reject a process invocations,

represented as a string over , with the states in Q representing the processes, i.e. Q =

{processes}. This same representation could be used even if a more computationally powerful

machine were required. That is: the processes are represented by the states in Q, and the

invocation sequences are represented by a sequence of symbols over . Therefore both Q and

are associated with processes, where Q = {processes} and = {process invocations}.

73

Both nondeterministic FSAs (NFA) and deterministic FSAs (DFA) are used throughout this

chapter to describe the program pathing solution. Because an algorithm exists to convert an

arbitrary NFA to an equivalent DFA [Sips06], either one is used as convenient. The primary

difference between the deterministic and nondeterministic definition is step 3 in figure 6-5,

where the transition function of the deterministic FSA is replaced with the transition relation

of the nondeterministic FSA, where : Q ({}) (Q-{P0}). [Rich08]

6.2.1.1 States Q

In the finite set Q, Pi represents process i executing in the system. More formally, Q = ({P0}

 {Pi : Pi represents a process Pi that has been dispatched to execute by the scheduler}). States

are labeled as P0, P1, P2, … ,Pn, where the symbol Pn represents the name of a real process. |Q| =

n+1, there n is determined by the number of processes represented in Q. If there are five

processes, then there are five states in the DFA, plus one for the start state P0. All states in Q

represent processes that are authorized to execute on the computer. P0 is a start state (described

in section 6.2.1.4) and is not reachable after transition to another state in Q.

Figure 6-5: Definition of Deterministic Finite State Automata

Deterministic Finite State Automata Definition

(Q, , , P0, F)

Q is a finite set of states.

 is a finite alphabet.

 : Q (Q-{P0}) is the transition function.

P0 Q is the unique start state.

F Q is the set of accepting states.

74

 Alphabet and process invocations

Normal processes are those processes that are allowed to execute on the critical server as

defined in chapter 2 to fulfill its critical function. is the alphabet of all the transition inputs of

normal process invocations corresponding to the set of process represented in Q and are

represented as lower case p. Every process, whether normal or not, that can be invoked on a

system is associated with a corresponding symbol in a finite, though possibly large, alphabet .

Symbol pi represents the invocation of process Pi. These symbols are used to form strings

representing all possible process invocation sequences in a language L. The alphabet is a finite

set of symbols, therefore, over which all possible process invocation sequences both valid and

invalid are formed. Thus while Pi Q-{P0} represents a process named Pi executing, pi

represents the invocation of process Pi. The language constructed from is the language

consisting of the set of all possible strings that can form over the alphabet , that is, =

 , where | | = n.

When process Pi invokes Pk, it causes a transition in the NFA represented as ({Pi},pk). This

transition represents that while executing the process Pi, the system encounters the invocation of

a process Pk as a transition input (or invocation) represented as pk. Because not all possible

process invocations are valid process invocations, it is possible that ({Pi},pk) is not defined for

some pk or for some Pi Q. For example, some processes should never be allowed to

execute on a critical server, because these processes are not essential to the primary function of

the server. These invalid process invocations are represented by a subset alphabet . The

set of valid process invocations in is represented by the subset alphabet , where , with

 being partitioned by and . That is:

75

and

The set of invalid process sequences is of interest. Any process invocation sequence that

contains a non-empty substring from the alphabet by definition is an invalid process

invocation. It is invalid because it contains at least one symbol corresponding to the invocation

of an abnormal process. Since is a set of process invocations, there are two possible subsets

for any sequence in the set of invalid process invocations sequences.

 {
 , where w contains at least one symbol from the alphabet .}, which

represents the set of invalid process invocations made up of normal and abnormal

processes. Any string made up of a symbol not belonging exclusively to the alphabet

 is considered invalid.

 represents the set of invalid process invocations made up of only abnormal processes.

Any string made up of a symbol not belonging to the alphabet is considered invalid.

 w

The set
 contains all the possible strings that can be created from the alphabet . Thus,

 contains all possible strings representing valid process invocation sequences over a language

using as the alphabet, and more generally, .
 may also contain some invalid process

invocation sequences. This is because for a process invocation to be valid, it is required that the

order of its symbols appear in an appropriate sequence and that the sequence be profiled. It is

possible that an invalid invocation process sequence could be constructed from the set of valid

process invocations. An invalid process invocation sequences over represents the case in

76

which normal processes are invoked in a sequence that is not appropriate. The language Lx is

the language made up of the subset of
 that makes up the set of invalid process invocation

sequences. The set of strings
 containing the subset of invalid process invocation sequences

Lx such that:

The strings in the language Lx represent process invocation sequences made up of valid

process invocations from the alphabet , but there is at least one substring w in each string such

that | w | ≥ 2 and w represents an invalid process invocation.

Consider a system process invocation sequence: PqPr Ps Pt. A normal process can only

execute if it is invoked by another normal process and if that invocation is valid. Thus Ps

executes, because it has been invoked by process Pr. Similarly, process Pt executes because it

was invoked by process Ps. The ordinal execution of these processes is represented as a

sequence over by the following, pr ps pt. As the OS schedules a finite sequence of processes

for execution, a corresponding finite-length sequence of symbols w over is formed. At any

invocation index t in the scheduled sequence, the length of w at invocation index t is represented

as |wt|. When the next process is scheduled, a new string wt+1 is created such that |wt+1| = (|wt|+1).

The set of valid process invocations sequences is the language Lv, over the alphabet . In Lv

each symbol in a string represents invocation of a normal process that is authorized to invoke the

subsequent process represented by the subsequent symbol in that string. The set of valid process

invocation sequences is a possibly infinite set of such finite-length strings forming the language

Lv. Recognition of the language Lv is the focus of this research.

77

 can be divided therefore, into two distinct partitions, Lx and Lv where:

That is: the set of invalid process invocation sequences
 , represents the set of

process invocation sequences that are invoked in an invalid order, although made up of only

symbols representing valid process invocations, while the set of possible valid process

invocation sequences
 , represents the set of valid process invocation sequences.

Transition Relation

An invocation of process P2 by process P1 is expressed in the NFA transition relation as

({P1},p2) = {P2}. This representation indicates a transition from the NFA set of states

containing P1 to the set of states containing P2 on the input symbol p2. The inferred substring w

is represented as the sequence w = (p1p2) over v. Let pj represent invocation of process Pj

immediately subsequent to w. Then a new process invocation sequence is formed by the

concatenation wpj.

At invocation index t0 no process has been invoked. P0 is an accepting state. Therefore the

initial language is defined as Lt0 = {}. The NFA recognizing Lt0 is called NFAt0 = (Q={P0},, ,

P0, F={P0}) as shown graphically in figure 6-6.

Figure 6-6 Initial Start State – NFAt0

78

Assume for the moment that every process invocation would occur in a valid sequence.

Then for invocation of process P1 we consider NFAt1 formed by replicating NFAt0 and adding a

transition on input p1 to a new accepting state P1. As a result, NFAt1 = (Q={P0,P1},={p1}, P0, ,

F={P0,P1}) as shown in graphically in figure 6-7 recognizes Lt1= {, p1}.

Figure 6-7 NFAt1

As each invocation progresses and adds another process invocation to the string, a new

language is created consisting of the previous language and adding a new string. Assume string

p1 has resulted in the machine NFAt1 being in the state P1 at invocation index t1. Then at index t2

with next process invocation p2, a transition resulting in sting p1p2 is recognized by machine

NFAt2 = (Q={P0,P1,P2}, ={p1,p2},, P0, F={P0,P1,P2}) which recognizes the language Lt2 = {,

p1, p1p2}.

Figure 6-8 NFAt2

Similarly, invocation index t3, where the transition relation ({P2},p3) = {P3}, the transition

represents the addition of p3 process invocation. Machine NFAt2 adds the string (p1p2p3), which

recognizes a new language Lt3 = {, p1, p1p2, p1p2p3} resulting in the machine NFAt3 =

(Q={P0,P1,P2,P3}, ={p1,p2,p3},, P0, F={P0,P1,P2,P3}) The sequence of invocation event indices

occurs until the process sequence terminates and the all process invocation sequences are

mapped.

79

Figure 6-9 Building the Valid Process Invocation language

As each new normal process invocation is concatenated to some string present in the current

set of valid process invocation sequences, a new language is created. The building of the sets of

process invocation sequences is symbolized:

Initially,

because,
 ,

we know that
 |

Figure 6-9 illustrates the building of the new language as it grows in graphic form.

Note that the series of machines constructed in this manner do not recognize
 , but only

increasingly large subsets of that language. Invocation index based string construction allows

for validating a process invocation sequence as the sequence is processed by the system‘s

scheduler.

80

6.2.1.4 Start State P0

An assumption is that only process invocations that occur subsequent to a machine being in

state P0 are of interest. In a computing system this can be any assumed environment. It can be a

user pushing a power start button, issuing a command, clicking on a GUI. Or it can be the state

after a computer‘s OS has been booted. In this research the symbol P0 is used to symbolize any

assumed safe starting condition. P0 is not an executing process.

6.2.1.5 FSA Issues

This research represents a series of process invocations as an FSA. The standard 5-tuple

definition of an FSA can be used with the definitions above to model process invocation

sequences. Let a machine PPTM (Program Pathing Trust Machine) be an FSA with process

states Q= {P0,P1,P2,P3,…,Pn}. P0 is not an executable process and P1 through Pn are executable

processes. The alphabet corresponds to the set of process invocations (see section 6.2.1.2)

{p1,p1,p3,…pn}. P0 represents the initial start state of the PPTM. The set of final or accepting

states is represented by FQ. Process invocation transitions are defined as relation.

: Q ((Q – {P0})

Mapping process invocation sequences (strings) over an alphabet is clear enough.

However, this mapping does not resolve the issue of which computational model is needed to

solve the problem of determining valid invocation sequences. Validating the authority of a

normal process to invoke another normal process is also a requirement and does not just entail a

strict mapping of each instance of a process invoked by the scheduler. This is a mistake made by

some other solutions proposed to solve the problem [Amm98] [Ball96]. However this research

makes the assumption that once a process is authorized to invoke another process, it is valid for

81

the invocation to be repeated, no matter how many times. This assumption is explained in this

section and in section 6.2.2.

Suppose (p1p2p3p3p4) represents a valid process invocation sequence. For the program

pathing problem, the regular expression representing this process invocation sequence is

(p1p2p3
+
p4). The regular expression does not count the number of times p3 occurs in the

sequence, but does indicate that p3 must occur in the sequence, at least once, subsequent to p2

and prior to p4. Since the regular expression does not have to insure that a sequence be exact in

the number of times a process be invoked, the language is regular. The above regular expression

specifies that p1 precedes p2, p2 precedes p3, and that p3 can precede itself and precedes p4. Once

it is established that P3 may validly invoke P3 then this invocation can occur each time the

machine is in P2 and can occur any number of times.

Validating the authority of a process to invoke another process is not dependent upon the

number of times the process is invoked. Proving the correctness of execution of some portion of

the computation may require counting invocations, but that is a different problem. The program

pathing problem requires validating that a process has the authority to invoke another process

and is different from verifying the correctness of the execution. A process may invoke or fail to

invoke a normal process that it is authorized to invoke, yet the process is still authorized to

perform the invocation. Whether or not the process performs the correct invocation may involve

a program logic error, but is not a question of validating the process‘s authority to perform the

invocation. For instance, a teleprocessing program may invoke a process three times to serve

three different users, but if only two of the processes invoked the ending process and the third

process ends in error, then the third ending process is never invoked. This use case would

constitute a process flow logic error, but not an invalid invocation sequence. A language

82

containing strings that need to represent how many times a normal process has been invoked

would not be a regular language and would require a more complex machine to recognize the

language. If a more complex language were required, a context free language would have to be

considered.

6.2.2 Regular vs. Context Free Language

Without the need for a language to pump a symbol of the alphabet a specific number of

times, it is not necessary to use a machine more powerful than an finite state automata. The

classic example of a language that does not meet the criteria for the regular language pumping

lemma is

 . For L it is necessary to count the number of times a process is

called, assuming L is a set of strings representing correct process invocation sequences.

However, the program pathing problem does not involve verifying that the process invocation

sequence is logically correct, but that the process invocation sequence is authorized. Anytime a

symbol occurs consecutively, it can be replaced in the corresponding regular expression by the

Kleene plus. This means that a string of the form A
n
B

n
 for n>0 in the context of this problem

has the equivalent regular expression A
+
B

+
. As a result the language is no more complex

than a regular language [Bar61] [Hopc01] [Rich08] [Sips06].

6.3 Finite State Automata and the Program Path Trust Model

Given that an FSA is a reasonable theoretical foundation upon which to build the Program

Pathing Trust Machine (PPTM) and that it is possible to represent that problem symbolically as

described earlier, it is necessary to show how the PPTM can be constructed. Let M be a

computational model (machine). Let L(M) be the language recognized by machine M.

83

 Let Lv (M) represent the language recognized by some machine M and containing all the strings

representing the valid process invocation sequences. The symbolic representation for this

machine has been discussed in section 6.2.

A sequence of process invocations is defined as an ordered series observed prior to some

fixed event at invocation index t as a computing system schedules consecutive processes. The

set of all possible invocation sequences forms the set *
. This language may be viewed as two

subsets, as described in section 6.2. One subset Lv (M) contains exactly the set of sequences

corresponding to the series of acceptable process invocations of the system. The other subset

 contains the set of sequences corresponding to the series of invalid process invocations in

the system that are known to be invalid. The two subsets are disjoint and partition the set of all

possible process invocation sequences (see section 6.2.1.1).

Taking both subsets into account, we can create a corresponding DFA. The FSA solution

model proposed in this research initially assumes that the set of valid invocation sequences is

. As the solution model identifies and adds new valid process invocations sequences to the

set, the set of valid invocation sequences grows. The solution model ensures system integrity by

identifying valid process invocation sequences. Techniques for distinguishing these subsets are

discussed in detail in sections 6.3.2 and 6.3.3. Over time, by building the set L Lv (M), we

can reduce the occurrences of rejection of valid process invocation sequences, and allow the

system to identify valid sequences that it may not have explicitly recorded. However, this

means there may be some process invocation sequences that are inferred by Mt, but have not

been encountered. These process invocations sequences may or may not be valid, but cannot be

determined, without application of domain knowledge (as discussed in section 6.3.3 and

following).

84

6.3.1 Why Finite State Automata is a better Computational Model choice.

One possible concern with the FSA approach is that in a real system many processes are

invoked and the FSA might quickly become very large and complex, especially if it is to be

deterministic. This concern can be addressed to some extent by using minimization algorithms

for DFAs as described by Hopcroft [Hopc01] and Watson [Wats95], or by the minimization

algorithm for non-deterministic FSAs described by Brzozowki [Brzo62]. Application of such

minimization algorithms can yield a simpler equivalent machine with fewer states.

Another concern with the use of FSA, from the machine learning perspective, is that while

learning by rote, it may appear that the FSA cannot abstract or generalize from the data that it

profiles. However, the process of generating equivalent states through application of the DFA

minimization algorithm can be viewed as generalization. This generalization is accomplished in

two ways. (1) The looping structures allow for the machine to recognize process invocation

sequences it has not encountered previously, such as multiple invocations of a process or set of

processes. (2) The FSA can encounter multiple prefix invocation subsequences leading to some

configuration from which machine M transitions to an accepting state, using the remaining

portion of another input process invocation subsequence to represent a novel process invocation

sequence.

6.3.2 Finite State Automaton PPT Representation

The set of abnormal processes is a finite set of processes that should never be permitted to be

invoked in the computer. This set is symbolized as as the set of abnormal process

invocations.

 = G

where, G

85

The set is the set of partially indeterminate processes. It includes the set of abnormal

processes from the alphabet . However, it also includes the set G, which is the set of all

normal process from the alphabet whose transitions and states have not yet been represented

in the DFA. The set G is important, because it represents those normal processes not considered

valid to be invoked some time. Once a normal process from G is considered authorized to be

invoked, it is removed from the set G, and therefore removed from .

Valid process invocation sequences (VPIS) are the only process invocation sequences that

can execute. The system runs continuously as long as the process invocation sequences are

valid. When a valid process invocation is encountered, the DFA transitions to an accepting state.

When an invalid process invocation is encountered, the DFA enters a trap state from which it

cannot escape. Since this state is not an accepting state, the DFA can not recognize any process

invocation sequence that causes it to enter the trap state, and therefore the sequence is

determined to be invalid. The DFAt, recognizes the subset of the language Lv, i.e., it recognizes

a subset of valid process invocation sequences.

Figure 6-10 DFAt=0 Transition Diagram

DFAt=0 (figure 6-10) initially accepts the empty string,, and rejects invalid process

invocation sequences and L(DFAt=0). In this initial machine no actual process invocation

sequence is valid. Any process invocation sequence that is presented to the DFAt=0 is invalid,

and is not recognized by the DFA. As processes are encountered, they are validated against the

DFA‘s states, and are assumed valid as long the input invocation transition causes a transition to

86

an accepting state. If the input invocation causes a transition to H (the trap state), then the

process invocation sequence is determined to be invalid.

6.3.3 PPT Finite-state Automata Learning Mode

It has been established that a DFA can be used to represent a process invocation sequence.

However, the challenge is in populating the PPT DFA with valid process invocation sequences.

The most straight forward approach is to initially train the DFA with valid training data. The

process invocations the DFA profiles by rote represent valid process invocation sequences that

can be audited by a person.

The method used in this research is to provide a profiling mode. An administrator can turn

on profiling while accessing a particular application. When the profiling mode is turned on, the

sequence of application process invocations are introduced to the DFA as training data. New

strings in the language Lv are recognized by the DFA as they are encountered. As a result a new

DFA is created as necessary with appropriate transitions with all other input transitions to the

new state being set to the default of transitioning to the trap state (see figure 6-11). Therefore,

as each normal process is validly invoked, transitions are added to the DFA until the entire valid

process invocation sequence is recognized. Consider a newly initialized PPT DFA before it

encounters any normal process invocations. Its transition table is shown in figure 6-11; here and

afterwards, the start state appears in the first row of the transition table and all accepting states

are shown in boldface and underlined type.

Figure 6-11: Initial PPT DFA Translation Table

Consider, a DFAt=1 where the valid process invocation sequence (p1 p1 p3) is encountered.

P0 H

H H

Input

ts

State

s

87

Remember,

L(DFAt=0) = { }

and, L(DFAt=0) Lv

As the DFAt=0 encounters p1, symbol p1 representing a previously unseen process is encountered,

that symbol is removed from creating the set - {p1}. The encounter of the first process

invocation p1 in the sequence (p1p1p3) causes a new DFA machine to be created:

L(DFAt=1) = L(DFAt=0) {p1}

As the DFAt=1 encounters p1 again, the second process invocation in the sequence (p1p1p3)

another new DFA machine is created.

L(DFAt=2) = L(DFAt=1) {p1p1}

Recall that the corresponding regular expression for the substring p1p1 is
 . As a result, the

loop back transition is create on the P1 state as shown in figure 6-12. As the DFAt=2 encounters

p3, the third process invocation in the sequence (p1p1p3) another new DFA machine is created, as

shown in figure 6-12.

L(DFAt=3) = L(DFAt=2) {p1p1p3}

Figure 6-12 Transition Diagram Representing the DFA Recognizing Language DFAt=3.

88

The DFA transition table for the machine DFAt=3 is shown in figure 6-13.

. p1 p3

P0 H P1 H

H H H H

P1 H P1 P3

P3 H H H

Figure 6-13 DFAt=3 Transition Table Learning

As DFAt=3 is presented a new valid process invocation sequence (p1 p2 p3), and the first

process invocation p1 is encountered, p1 is already accepted by DFAt=3, so no new DFA machine

need be created. As DFAt=3 encounters the second process invocation, p2 in the sequence a new

DFA machine is created.

L(DFAt=4) = L(DFAt=3) {p1p2}

The result should be recognition of L(DFAt=4) adding the sequence p1 p2 to the language

L(DFAt=3). As the DFAt=4 encounters p3, the third process invocation in the sequence {p1p2p3}

another new DFA machine is created.

L(DFAt=5) = L(DFAt=4) {p1p2p3}

Figure 6-14 DFAt=5 Transition Diagram

89

The resulting DFAt=5 recognizes the language L(DFAt=5) and is shown in the transition diagram

in figure 6-14. The three strings used as input have been used to create the following fully

qualified deterministic finite automaton DFAt=5.

Each state has a transition to the trap state in the instance that an invalid process invocation

sequence is encountered. The resulting machine is a fully qualified DFA with transitions

specified as in figure 6-15.

 p1 p3 p2

P0 H P1 H H

P1 H P1 P3 P2

P2 H H P3 H

P3 H H H H

H H H H H
Figure 6-15 DFAt=5 Transition Table

After profiling (p1 p2 p3), DFAt=5 can profile the next valid process invocation sequence. If

DFAt=5 encounters a previously unseen process invocation sequence such as (p1 p1 p2 p3), it can

accept that sequence without the necessity of creating a new machine.

A new DFA is created after each new process invocation sequence is encountered in

―profiling‖ mode. When ―profiling‖ mode is turned off, the DFA has established steady state, no

new processes are added to the PPT DFA. If we examine the DFAt=5 transition table created by

the PPT profiling, we can see that other unseen valid process invocation sequences are accepted

by the DFA, e.g. p1 p1 p1 p1 p3 and p1 p1 p1 p1 p2 p3. This does not present a problem, because the

DFA has established that P1 can invoke P1, P2 and P3, and that P1 can invoke P1 any number of

times. Whether or not P1 should invoke P1 more than once is a matter of program execution

correctness, but is not a matter of authorizing P1 to invoke P1. The validity of the substring p1p1

has been established. An algorithm for building a PPT DFA is given in figure 6-16.

90

6.4 Relation Between Lv and L(DFAt)

Because the DFA is built incrementally, it is not known at any value time t whether L(DFAt)

= Lv. However, the strings in the set called the white list are in the non-empty intersection

L(DFAt) Lv. Because the white list is also built incrementally it cannot be claimed that the set

of strings called the white list is exactly the set of stings L(DFAt). Furthermore, it is not known

whether the set L(DFAt) merely form a non-empty subset of Lv. L(DFAt) could contain a set of

strings that are not a subset of Lv. That is, it is not known whether there exists another non-

empty subset of strings both in L(DFAt) and outside Lv. More formally, it is not known whether

(
) = { }. This remains an open theoretical question and a topic for future

research. The PPT model uses domain knowledge both to build DFAt and to determine whether

strings known to be in L(DFAt) are also in Lv. In this way the PPT model incrementally builds

Algorithm for building a PPT DFA

Set whitelist = { } // set of known valid processes

Set Q = {P0, H} // set of DFA states

Set F = {P0} // set of accepting states

Set = { } //initialized alphabet

Set tempstring w =

Get input sting

For (i=1; i n; i++)

Set w = wpi

IF ((w is not in whitelist) and (expert validates w))

Add Pi to Q

Add Pi to F

Add pi to

Add DFA transition ((Pi-1,pi)Pi)

Add w to whitelist

ENDIF

ENDFOR

Figure 6-16: Algorithm for Building PPT DFA

91

the non-empty intersection L(DFAt) Lv called the white list. This open theoretical question is

further discussed in appendix E.

92

Chapter 7: Implementation of the PPT Model

In this chapter the PPT DFA theoretical computational model is instantiated into a structure

that can be implemented on a computer system in the form of a Program Pathing Trust Machine

(PPTM). The transition table represented at the end of chapter 6 provides a map for moving the

theoretical computation model to an implementation of the PPT model into a PPTM.

The PPTM will operate in two modes. One mode is the learning mode. Psuedo code for the

learning mode was provided in figure 6-16. Psuedo code for the validation mode is provided in

figure 7-1.

Figure 7-1: Algorithm for PPT DFA in Validation Mode

The remaining sections of this chapter describe the issues associated with implementation of

PPTM.

PPT DFA Validate Mode

Use DFA built in Learning mode

Set greylist = { } //holds invocations strings of unknown validity

Set current DFA state to P0

Set tempstings w =

Get input sting of form p1p2……pi….pn for pi

FOR (i-1;i n; i++)

 Set w = wpi //append pi to w

 IF (w is not in whitelist)

 IF(transiton ((Pi-1, pi) is valid) and (pi is in F)) THEN

 Place w in greylist

 ELSE

 Reject w and END

 ENDIF

 ENDIF

ENDFOR

93

7.1 Alternatives for Implementing the Program Pathing Trust DFA

Implementing the PPTM using a transition table can be done in a number of ways. The

application of the DFA dictates what implementation strategy should be used. Each application

of the PPT DFA has its own requirements. For instance, in discretionary and mandatory access

control the number of process invocation sequences mapped for access to a particular resource is

small and therefore a small and simple mapping structure is sufficient. For an integrity trusted

model, which is the focus of this research, all the valid process invocation sequences are mapped.

Because a much larger number of processes and process invocation sequences are mapped, a

different structure to implement the PPT DFA model is advisable.

7.1.1 PPT DFA Bit Map Implementation

For discretionary and mandatory access control applications, only a small number of process

invocations need to be mapped. Take for instance the process invocation sequences where only

Process P3 is allowed to access resource X, using the invocation sequences p1 p1 p3, p1 p2 p3, and

p1 p1 p2 p3. The number of normal processes and valid process invocation sequences in the

alphabet are very small in number and can be implemented in a very simple structure such as a

bit map.

 p1 p2 p3

P0 0 1 0 0

H 0 0 0 0

P1 0 1 1 1

P2 0 0 0 1

P3 0 0 0 0

Figure 7-2 Program Pathing Bit Map

Consider a small population of process invocations. For this population, a bit map can be

used effectively for the mapping structure to represent the PPT DFA. Consider Figure 6-15, the

Process Invocations

P
ro

ce
ss

94

DFA transition table in chapter 6. The table is easily represented by the instantiation of the bit

map structure in Figure 7-2.

Initially in the bit map structure all process invocations in the alphabet are initialized to

binary 0s - meaning all processes invoked end up in the trap state. Any transition that is marked

as binary 0 is defined as a transition to the trap state H. As the DFA learns new processes and

new valid invocations, a binary 1 is placed in the cells where the process in the row is authorized

to invoke the process in the column. A binary 0 in a cell means move to the trap state, from

which there is no escape. A binary 1 means that the process in the row can invoke the process in

the intersecting column.

The Program Pathing bit map implementation uses the adjacency-matrix representation used

in graphic structures [Sedg02]. Using an adjacency-matrix graph of n by n array of Boolean

values, a Program Pathing bit mapping implementation of an DFA can be built using a small

amount of storage, given a small number of processes. The advantage of using a bit map is that

it allows for mapping every combination of invocations of the processes represented in the

matrix. Looking up invocations and adding new invocations to the matrix is relatively simple,

and computationally inexpensive.

Adding an invocation or invocation sequence entails adding new processes to the row and

column and changing the binary 0s to 1s for the cells representing process invocations.

Figure 7-3: Adjacency-matrix

95

Figure 7-3 represents the adjacency-matrix for the bit map represented by figure 7-2 and figure

6-15.

Note in figure 7-3 that the first table is an array of process names with pointers to rows in the

bit map. This is done so that the process name can be looked up. The relative offset into the

process name table is the relative position of the process in the bit map, as indicated by the

numbers along the rows and columns.

A disadvantage of using a bit map is that most operating systems are written in the C

language, which has poor bit manipulation, and therefore coding a bit map in the C language is

challenging. Another disadvantage of the adjacency-matrix bit map is that it may result in a

wasting space. Mathematically, the adjacency–matrix is still more efficient with storage than the

retrieval tree approach. For discretionary and mandatory access control applications the

adjacency-matrix is sufficient, since these applications are interested in allowing only a few

process invocation sequences for access to a particular resource.

Access control identifies the program pathing DFA in the access control list for the resource

being restricted. Therefore in an access control system there are multiple program pathing DFAs

identifying process invocation sequences for each resource needing program pathing controls.

Although the adjacency-matrix bit map implementation would be sufficient for access control, it

may not however be sufficient for intrusion detection or ensuring trusted systems where all

process invocation sequences must be mapped. Therefore another implementation approach

must be considered,

96

7.1.2 PPT DFA Adjacency-List Implementation

The mapping of all valid process invocation sequences is required for intrusion detection or

to establish a trusted system. The adjacency-matrix bit mapping approach to program pathing

would require too much memory to map all process invocations in a system. In such cases, the

program pathing DFA mapping structure can be implemented in the form of an adjacency-list

[Sedg02]. The adjacency-list approach implementation of the program pathing DFA removes the

empty spaces in the adjacency-matrix by using linked lists. Although this approach uses more

memory for smaller process invocation sequences, it ends up taking less space for larger process

invocation sequences, particularly if the adjacency-matrix is sparsely populated. The benefit of

the adjacency-list approach is that it can map a large diverse set of process invocation sequences

more efficiently if there are a large number of different processes performing the invocations and

little redundancy. Figure 7-4 illustrates the adjacency-list approach mapping the same p1 p1 p3,

p1 p2 p3, and p1 p1 p2 p3 invocation sequences used in Chapter 6, figure 6-15.

Figure 7-4: Adjacency-list

Although the adjacency-list mapping takes more memory per invocation, as the number of

processes increases it takes less space when compared to the adjacency matrix. If p = the

number of processes invocations in a sequence, then the adjacency-matrix uses p
2
 space to

implement the mappings whereas, the adjacency-index uses p+L (where L = the count of

linkages to invoking processes.)

Using an adjacency-list to implement the program pathing DFA is more efficient than earlier

approaches because it does not have to map a process invocation multiple times if it appears in

97

different invocation sequences, thereby saving space. The adjacency-list approach is more

efficient than the adjacency-matrix in situations were the number of unique processes making

process invocations is greater than 110 processes or 1.5K of storage. The adjacency-index

method can represent 192 process invocation relationships in 1.5K, whereas the adjacency-

matrix can only represent 110 processes but also represent all the possible process invocation

relationships of those processes. The adjacency-matrix method is much more efficient in

representing all the possible process invocation relationships between the processes in the matrix

– there is no extra cost for representing a process invocation between processes already

represented in the matrix. But adding a new process invocation relationship between a process

already existing in the adjacency-list implementation always has a cost.

7.2 Measuring Implementation Structures

Preliminary results showed that the program pathing approach using an adjacency-matrix or

adjacency-list can provide a more efficient and simpler mapping of process invocation

sequences. Figure 7-5 shows a comparison between the adjacency-matrix, the adjacency-list and

the retrieval tree approaches. The ―Implementation Approaches‖ columns shows the number of

processes each approach can represent give the ―Memory‖ allocation.

Figure 7-5: Memory and Process Representation Comparisons

In 1K of storage, the adjacency-matrix approach can represent close to the same number of

processes as the other two approaches, however its advantage is that it can represent more

process invocations between the processes it represents. Both the retrieval tree and the

98

adjacency-list approaches can only represent the same number of process invocations as there are

processes represented and adding new process invocations has a cost. For the retrieval tree

approach, the cost is higher because each process invocation must identify every process that it

invokes, even if it has been mapped before.

The adjacency-matrix approach is also efficient in creating and processing the mapping

structure which allows for easy addition of processes and process invocations. Adding a process

to the matrix can be done by adding a new row and column to the matrix. Validating if a process

invocation is authorized is as easy as verifying that the process is represented in the matrix and

that the cell in the matrix that represents the process invocation is set to a binary 1.

For larger mappings of multiple and more complex process invocation sequences the

adjacency-matrix can become too large. For some applications, this disadvantage can be

overcome by breaking up the program pathing DFA into multiple DFAs, like SELINUX does

with its reference policies [Smal01b]. Each DFA represents a domain of valid process

invocation sequences. The relationship between the DFA domains can be mapped in a higher

level DFA of domain invocations. The SELINUX approach using domains makes the

adjacency-matrix approach an optimal solution, where it can be applied. However, in the case

where all the process invocation sequences must be mapped in a single DFA, the adjacency-list

approach is a better implementation of the program pathing model. The approach allows for the

most efficient use of storage.

The program pathing approach, regardless of the method used to implement it (adjacency-

matrix or adjacency-list) provides a good alternative to previously tried methods, i.e. n-gram

[Hof98] or retrieval trees [Amm98]. Even though both methods‘ DFA can recognize process

invocation sequences not previously learned, this is not unlike a machine learning algorithm. If a

99

process invocation has been learned and identified as trusted, then it should be trusted in other

process invocation sequences that lead to the same process invocation.

7.3 Coding Structures in PPTM

Instantiation of a PPT DFA entails creating data areas that support the adjacency-matrix.

Developing an implementable PPT DFA using an adjacency-matrix is not just a matter of coding

the structure, the structure has to be designed for maintainability. The design techniques used

must be scalable and allow for ease of diagnostics. The Program Pathing Trust Machine (PPTM)

was written in C language, the language of choice for most operating systems. Ideally, the

PPTM would be integrated as a subsystem in the operating system‘s kernel. However, the

PPTM is only a functional prototype to prove that an instantiation of a PPT DFA is possible and

is capable of solving the problem. Further testing has to be performed in production ready

systems to prove that the prototype is sufficient. The C language also provides the ability to use

and maintain address pointers, which is useful in designing an implementation of the PPT DFA.

The PPTM prototype was not implemented into the system‘s kernel, but as a stand-alone

application that creates the PPT DFA structure, for mapping valid process invocations sequences

and for validating the authority of process invocation s to determine if they are invalid process

invocations. Verification of the prototype was essential before attempting to make any

modifications to the system‘s kernel. Complete exploration of issues concerning the

modification of the system‘s kernel is a topic for future research (see chapter 9).

7.3.1 PPTM Basic Structure

This section describes the data areas created to realize a functioning PPTM. The data areas

support an implementation of the PPT DFA described in chapter 6.

100

The main data area for the PPTM is the anchor, as shown in figure 7.6. The anchor data area

is the communication vector that is an anchor point for all the PPTM‘s basic components. The

anchor data area

Figure 7-6: PPTM Anchor Data Area

is made up of a length field, an eye catcher field and a number of address pointers. The fields

are defined as follows:

len Length of the entire anchor data area. This field is initialized after the data area is

allocated and is used to deallocate the data area when the application ends.

eyecat The eye catcher field is initialized with the ASCII text of ―ANCHOR.‖ The ASCII

text allows a technician to quickly identify the anchor data area in a core dump of

memory when diagnosing the application.

stkptr Address pointer to allocated memory data area called stack, which is a block of singly

linked list cells each defined by the scell data area. Scells define the invoked

processes.

sptr Address pointer of the next available unused scell in the scell stack data area.

snum Number of the next indexed scell available in the scell stack data area.

autptr Address pointer to the automata data area, where the names of all the encountered

processes are recorded in an array of data areas called acell.

aptr Address pointer to the next unused acell available in the acell automata data area.

anum Number of the next indexed acell available in the acell automata data area.

The PPT DFA is made up of four sets of data areas: automata, stack, acell and scell.

101

These four data structures work together to instantiate the PPT DFA. The automata data area is

the main structure of the PPT DFA; it is an array of the states in the DFA or the normal

processes. The elements in the automata data area are acells; each acell represents a state or

normal process with reference to the DFA 5-tuple characteristics of the PPT DFA. Q =

automata data area or Q = (acell[1], acell[2],…acell[n]). The alphabet is represented by the

elements in the stack data area called scells. They represent transitions or valid process

invocations. = stack data area or = (scell[1], scell[2],…scell[n]).

Figure 7-7: Automata Data Structures

7.3.2 How the PPTM works

The prototype is initialized by allocating the anchor, stack and automata data areas. These

blocks of memory all have a length (len) and eye catcher (eyecat) initialized so that the end of

each data area can be determined and so that the data area can be easily found in a memory core

dump. The size of the data area blocks in the prototype is arbitrarily determined by an internally

defined variable, however in a production-quality implementation the data areas can be allocated

dynamically depending upon the size of the stored DFA recorded (for instance the number of

acells allocated in the automata data area are exactly the number of processes recorded). The

102

size of the data area is important for the purposes of de-allocating the memory at a later time, and

for reading a memory core dump if necessary.

Once the main data areas are allocated and initialized the PPTM reads the valid process

invocation sequences needed to populate the automata data area. Populating processes into the

cells is a matter of recording processes as they are encountered when the PPTM is in recording

mode – in the case of the prototype, this means reading the ―train‖ file. In recording mode, all

process invocation sequences are assumed to be valid process invocation sequences and are

recorded in the automata.

After all the recorded processes are loaded into the automata data area, the PPTM prints out

the automata structure into an ―autotrace‖ file. This is to allow auditing of the automata data area

created by the PPTM application. Using the example of the valid process invocation sequences

Figure 7-8: “automata” Data Area Containing the Process Invocation Sequences

p1p1p3, p1p2p3, and p1p1p2p3, (described in chapter 6), the automata data area would look as

illustrated in figure 7-8.

 The PPTM automata data area is interpreted from the in core memory version and translated

into a text file. The resulting ―automtrace‖ file is a representation of the automata data area in

grammatical form, indicating that the process on the left can call either the processes P1, P2 or

P3.

103

Automata Trace

Caller Process -> Called Process | Called Process

S -> ProcessP1

ProcessP1 -> ProcessP1 | ProcessP2 | ProcessP3

ProcessP2 -> ProcessP3

ProcessP3

Figure 7-9: Format of the “automtrace” file

The PPTM then validates any process invocation sequences it encounters against the valid

process invocation sequences it has recorded in the automata data area. The PPTM is now in

validate mode. Any process or process invocation that is encountered but not authorized is

recorded as an error. For the sake of the prototype, all unauthorized processes or process

invocations that are not valid are recorded in the ―auditfile‖ file. In validate mode, if the PPTM

encounters a process that has not been recorded in the automata data area, the PPTM writes an

error message to the ―auditfile‖ file:

Called process [ID2] - [process name] invalid.

If on the other hand the PPTM encounters a process invoking a process that is a normal process,

but is not authorized to invoke, then the PPTM writes another error message to the ―auditfile‖

file:

 It is invalid for PID [ID3] - process [process name 1]6 to call

process [process name 2]
7
.

As a process is validated, the PPTM writes out the process invocation process so that it can be

audited later. If the audited process invocation sequence was validated incorrectly, a technician

can correct the PPTM by submitting the audited process invocation sequence to be recorded in

the automata data area.

6
 [Process name 1] refers to the process attempting to invoke process 2

7
 [Process name 2] refers to the process being invoked by process 1

104

Chapter 8: Development and Test Results

Development and testing of the PPTM prototype was done on a Dell Latitude C640 with an

Intel Pentium 4, 1.80 GHz, 500 MB RAM and 30GB hard drive hardware, running Linux Red

Hat Fedora Core 6. It was also tested on a Dell Latitude D600 with an Intel Pentium M, with 1.6

GHz, 2 GB RAM and 60 GB hard drive hardware. This system ran Windows XP with service

pack 3. The code was additionally tested on a MacBook 5.2 with an Intel Core 2 Duo, 1.23 GHz,

4GB RAM and 160GB hard drive, running OS X 10.6.5. The code was recompiled on each of

these systems and ran without any problems.

8.1 Development

Implementing the PPTM involved making some decisions concerning the operating system

and the programming language to be used. Given that the PPTM would eventually reside in the

OS kernel, it was decided to use C language and given that the PPTM has to be used in multiple

OS environments, this research chose GNU‘s gcc compiler, since it supports multiple OS

environments. The source code was transferred to two other computers running different OS

`systems for testing.

The source code was placed in a development directory. The system path was positioned to

the source code in the development directory using the PATH=$PATH:. command. The gcc

PPTM.c –o PPTM command was used to create an executable program called PPTM. A copy

of the PPTM source code can be found in Appendix A.

105

8.2 Unit Testing and Debugging

Testing the PPTM was a challenge because it proved difficult to acquire test data from

production or quality assurance (QA) critical servers that ran processes that needed to be

protected. In order to secure sufficient test data from critical servers, this research would have to

demonstrate that the algorithms perform and function as designed. Initially it was important to

verify that the code performed the functions it was designed to perform properly. A series of

unit tests were conducted to verify each function.

8.2.1 Test Reading Training Data and Building the Automata Structure

Mock training data was used to test the PPTM program‘s ability to read in the data and store

it in the automata. The training data was sparse to make it easy to debug and was crafted to test

the different features of the automata structure. The implemented automaton is made up of acells

and scells. An acell is a data area that represents a process, or in computational theory

vernacular, a state. The scell data area represents a transition to a state. The test training data

verified that both acells and scells were created properly. If an acell for a process already

existed, another acell would not need to be created and the acell for the process would be re-

used.

As a process invokes other processes, scells representing the invoked processes are linked to

the invoking process‘s acell. The scell also links to the invoked process‘s acell, if it exists,

otherwise an acell is created for the invoked process and the linked scell in the invoking process

acell linklist points to the invoked process‘s scell. If a process‘s scell is already linked to an

invoking processes acell, then a duplicate scell does not need to be linked to the acell. The scell

would be re-used.

106

After all the crafted mock training data was read and modeled in the PPTM automaton, the

PPTM code printed out the automaton representation to an ―automtrace‖ file. The ―automtrace‖

file was used to verify that the training data was represented properly in the automaton and could

be used for debugging later.

8.2.2 Verify Data Against the Profiled Training Data in the Automata

Once the automata machine was loaded with the mock test data, and the ―automtrace‖ file

verified that the automata structure was successfully built, the PPTM prototype was then tested

to see if it could be used to verify process invocations. The validation testing determined if the

automata could identify the process invocation sequences that the PPTM loaded into the

automata and determined if it was able to identify invalid process invocation sequences. The

testing was intended to verify that the automaton could identify the following invalid process

invocations:

1. An abnormal process tries to invoke a process.

2. A normal process tries to invoke an abnormal process.

3. A normal process tries to invoke a normal process that it is not authorized to invoke.

8.3 System Testing

In absence of available test data, mock test data was created programmatically. The Tstdata

program was created to generate test data to test the PPTM program. See Appendix A for the

Tstdata souce code. The Tstdata program randomly generates system test data to test the PPTM

program and to find any problems that the simulated hand crafted test data in the functional

testing did not reveal.

107

8.3.1 Tstdata – Random Test Data Generator

The Tstdata program randomly generates process names and process invocation sequences.

The Tstdata has three defined constants in the Test.h file which control the volume and

characteristics of the test data.

1. NoProcess – Defines the number of processes the Tstdata can choose from.

2. NoIDs – Defines the number of process invocation sequences to generate.

3. NoProString – Defines the maximum number of processes that can be in a process

invocation string.

The Tstdata program generates NoIDs number of process invocation sequences, choosing 1

to NoProString number of processes in a sequence. The number of processes in a sequence is

randomly generated for each sequence, so each may have a different number of processes. Each

process invocation sequence is assigned a UID number 1 through NoIDs, e.g., {UID1, UID2,

…,UIDn}. Each process added to a process invocation sequence is randomly chosen from a

number 1 to NoProcess. The processes are assigned a name based upon the random number

generated with an M preceding it, e.g., {M1, M2, M3, …, Mn}.

The test data generated is in the following format:

UID1 S M291

UID1 M291 M876

UID1 M876 M97

UID2 S M79

UID2 M79 …

Note that every process invocation sequence starts with the start state S, which is equivalent to

the P0 start state described in the theoretical model in chapter 6.

108

Each line in the test data represents a process invocation, identifying the process sequence it

belongs to (indicated by the UIDn), the invoking process, immediately after the process sequence

number and the invoked process, right after the invoking process name.

The variables in the Test.h file can be changed to simulate various process invocation

sequence scenarios. The Tstdata.c program must then be re-complied using the GNU gcc

compiler to accept the changes made in the Test.h file. The Tstdata program is then executed to

generate test data that is written to the Train file, so it can be used as training input to the PPTM

program.

8.3.2 Performance Testing the PPTM prototype

System testing focused upon establishing the performance baselines for building the

automata and validating process invocation sequences against training data loaded into the

automata. Unlike the functional tests, this data was larger in volume and more complex. The

test data was generated automatically using the Tstdata program. The table in figure 8-1 shows

the system testing and the parameters used to test the PPTM prototype.

Figure 8-1 is the results from the system test. The table scells and acells represent the

memory allocation of the PPTM data structures to so that the amount of memory necessary to

represent the process invocation sequences using either the adjacency-matrix or the adjacency –

list can be determined. The test provides statistics to verify the amount of memory that PPTM

needs for each approach. It is important to know the memory requirements of PPTM when it

runs on critical servers so as to prevent system resources from being over utilized by PPTM.

Since PPTM is to be implemented into the kernel to intercept processes being scheduled for

dispatching to the CPU, the PPTM structures should not use up too much RAM.

109

The result of system testing uncovered some problems not discovered in the functional

testing, such as buffer overflows (which happened when a large volume of test data was

presented to the PPTM). Further, the system test identified the fact that an automaton becomes

denser as the invocation sequences invoke more processes.

System testing demonstrated that the PPTM could handle a large number of processes and

sequences. The tests performed as expected, the PPTM profiled all the test data and identified

the process invocations it should have indentified as invalid. No anomalies were found during

testing of the validation phase of the PPTM

of

sequences

of

processes

Max # of

processes

per

sequence

acells scells

Max number of

possible

invocation

combinations

Memory

allocation for

matrix in MB

Memory

allocation

for link-list

in MB

percentage

density

10 10 10 10 40 121 0.000320 0.0009 33.06%

10 100 50 93 253 10,201 0.004054 0.0067 2.48%

10 1,000 100 434 567 1,002,001 0.132692 0.0219 0.06%

100 10 10 10 116 121 0.000320 0.0021 95.87%

100 100 100 100 3,979 10,201 0.004268 0.0638 39.01%

100 1,000 100 997 5,460 1,002,001 0.149874 0.1137 0.54%

1,000 10 10 10 118 121 0.000320 0.0021 97.52%

1000 100 100 100 10,074 10,201 0.004268 0.1568 98.76%

1000 1,000 100 1,000 48,438 1,002,001 0.149965 0.7696 4.83%

1000 10,000 100 9,943 49,569 100,020,001 12.226750 1.0598 0.05%

10,000 10 10 10 116 121 0.000320 0.0021 95.87%

10,000 100 100 100 10,170 10,201 0.004268 0.1582 99.70%

10,000 1,000 100 1,000 392,882 1,002,001 0.149965 6.0254 39.21%

10,000 10,000 100 10,000 494,121 100,020,001 12.228489 7.8449 0.49%

100,000 10 10 10 117 121 0.000320 0.0021 96.69%

100,000 100 100 100 10,164 10,201 0.004268 0.1581 99.64%

100,000 1,000 100 1,000 994,279 1,002,001 0.149965 15.2020 99.23%

100,000 10,000 100 10,000 2,430,739 100,020,001 12.228489 37.3953 2.43%

100,000 100,000 100 100,000 5,025,487 10,000,200,001 1,195.168495 79.7346 0.05%

Figure 8-1 System Test Results

The high mark testing was 100,000 processes in 100,000 process invocation sequences

averaging 50 processes in each sequence. All 100,000 processes were used in the invocation

test, and over 5 million process invocations were profiled. Memory utilization for the PPTM

using the adjacency-list and the adjacency matrix were calculated. The amount of allocated

110

RAM needed to represent the PPTM adjacency-list structure was about 80MB versus over 1 GB

using the adjacency-matrix. The density of the invocations was measured to determine the point

at which the adjacency-matrix began out performing the adjacency-list structure.

For tests where the number of processes were between 10 and 1000, there was no significant

difference between the two structures. As the number of processes increased, the adjacency-list

began allocating less memory than the adjacency-matrix. This trend continues until the number

of process invocations grows and begins filling the adjacency-list. When the adjacency-list

structure starts to converge to around 40% of the maximum number of possible invocation

combinations, the adjacency-matrix starts to become the more optimal structure for conserving

memory. It is, however, unlikely that process invocations would reach a 40% density. It would

mean that if there were 10,000 processes, there would be 100 million process invocation

possibilities and that the system would have to make 40 million of process invocations for the

adjacency-list to be suboptimal. The tests suggest that the adjacency-list is the preferred

structure to use of system integrity process invocation authorization.

111

Chapter 9: Future Research

9.1 Implement PPTM into the Operating System’s Kernel

Implementation of PPTM requires that it be installed in the OS kernel so that it can validate

program path sequence of process invocations. Of course, if the PPT model were to be adopted

as part of an existing access control system, the OS intercept problem would be partially solved,

as most access control systems already have intercepts in the OS.

Once the PPTM system is implanted into the kernel, it can monitor every process that is

loaded for execution in real time. The PPTM system is able to verify all process invocation

sequences. A fully functional PPTM subsystem must be developed with all the user interfaces

and options to enable the PPTM prototype to function in a production environment.

9.2 Testing

The PPTM has been tested with mock data. However additional testing with real data is

necessary once the PPTM has been implemented in a system as described above. All the

features in the PPTM implemented in the kernel described in section 9.1 must be tested and with

a number of application scenarios. A number of known applications have to be tested in

combination and separately to determine if the system can identify and distinguish between valid

and invalid process sequences. To understand how exactly the PPTM system works, the system

must be tested for performance as well as accuracy. Comparing the results of PPTM to other

process invocation sequence models is difficult, due to lack of a standard test bed, but

comparative evaluations should be made so far as possible. A useful extension of this research

may be the development and proposal of a standard test bed made available to other researchers

to facilitate comparisons of approaches.

112

9.3 Process Authentication

Process authentication is important for determining that a process is the process it purports to

be. Future research will determine whether the PPT model can en extended to include

authentication. Further discussion on this issue is presented in appendix D.

9.4 The Validity of Inferred Process Invocation Sequences

One may make the assumption that by authorizing individual process invocations the PPT

model can infer valid process invocation sequences it has not yet encountered. This assumption

may allow the PPT DFA to accept sequences that are invalid. Further research should aim at

determining whether some members of L(DFAt) are not in Lv. Further discussion on this issue is

presented in appendix E.

113

Chapter 10: Conclusion

This research has identified a model to validate process invocations in order to prevent the

execution of unnecessary processes that steal CPU cycles or otherwise interfere with production

processing. Unlike intrusion prevention, the significance of program pathing is to keep normal

processes from being invoked at inappropriate times, as well as to keep malware from running.

The goals of the program pathing model are to be scalable to a production environment, and to

take relatively little time and knowledge to implement and maintain.

The first principle of engineering is to analyze and understand the problem to be solved.

Rigorous analysis of a problem often yields a good solution, and one that is not overly complex.

A simpler solution is easier to manage, thus better positioned to perform optimally. This

research has analyzed the problem of validating process invocation sequences using a

computational theory approach.

10.1 Computational Theory Approach to Validating Process Invocation

Sequences

Bell and LaPadula stated that it was important to ―bridge the gap between general theory and

practical problem solving‖ [Bell73]. And it is important to engage theoretical modeling in the

problem solving process. This research has used computational theory to define and analyze the

problem. Representing the process invocation sequence problem symbolically and examining it

in the context of computational theory has enabled a more precise definition of the problem.

Computational theory has focused the problem, allowing the solution to emerge from problem

analysis.

114

10.1.1 Required Computational Power

 It was determined that a finite state automaton (FSA) has sufficient computational power to

solve the problem of mapping process invocation sequences. In the DFA model chosen valid

process invocations are mapped to verify the authority of each process to invoke or be invoked

by another process. This technique assumes that all process invocations are invalid unless

registered in the DFA.

To take into account abnormal processes from the alphabet the automata had to define a

new variable symbol . The symbol deviates from traditional automata theory. Traditional

automata theory does not use variables in the alphabet. There is literature to suggest that a

variable of indeterminate or unknown inputs in a transition might be acceptable [Buch60a]

[Buch60b] [Elie74]. However, the present research did not further pursue these more

computationally complex approaches because the DFA used here has sufficient computational

power.

10.1.2 Translating Theory into Solutions

When dealing with even simple computational theory it is difficult to translate theory into

implementation. There are some tools that allow researchers to convert regular expressions into

implementation, such as lex and yacc [Levi95], but these are scripting languages and not

applicable to the PPTM. The PPTM must be implemented into the kernel. This research has

identified two possible data structures to implement an DFA – adjacency-matrix and adjacency-

list [Sedg02]. Adjacency algorithms are graph algorithms, and the DFA is represented as a

graph.

The adjacency-matrix (or bit map) fulfills all the requirements necessary to implement an

DFA state transition table. The adjacency-matrix algorithm performs well if there are a large

115

number of input transitions. For state transition tables that have fewer input transactions, an

adjacency-list (or link-list) is more memory efficient. The optimal implementation of the DFA

depends upon the constraints dictated by the problem and the calculated memory requirements

required to represent the DFA in implementing each of the adjacency algorithms.

10.2 Impact upon the Program Pathing Problem

This research‘s approach to the program pathing problem (process invocation sequence

problem) has been to look for a simple solution. Instead of concentrating on mapping entire

process strings or patterns, focus has been upon a process‘s authority to invoke another process.

This simpler solution enables a DFA to profile invocation sequences more easily, as the

invocation sequences are built from individual mappings of authorized process invocations.

Other solutions have tried to map either the whole invocation sequence or substrings of that

sequence.

Although the program pathing model prototyped has been functionally tested and system

tested, it still needs to be embedded, implemented, and tested in an actual operating system. As

stated in chapter 9, the real test for the model is for PPTM to be implemented without a lot of

effort and to run effectively on a production system. This has to wait for future research and an

institutional partner willing to spend the time testing.

10.2.1 Mapping Process Authority to Invoke Processes

The PPTM maps running process invocations as they are encountered to build the invocation

sequences to be authorized. Instantiating the DFA into a series of linked lists of process

invocations simplifies the mapping of sequences. A process cannot invoke another process

unless the process that invoked it in turn was authorized to be invoked by another invoking

116

process. The valid invocation sequences are implied to be authorized, because only valid

process invocations are allowed to be executed.

An advantage of the program pathing model is that it can populate the DFA linked list as

process invocations are encountered and profiled from a running system. There is no need to

edit or write a policy language to map process invocation sequences. If a process invocation

sequence is encountered that has not been profiled by the program pathing DFA, the audit record

identifying the encountered process invocation can be used to update the DFA, and capture that

invocation as valid.

False negatives (i.e., prevention a process from being invoked when it should) can be

prevented by placing the PPTM into Warn mode. Warn mode allows processes that may be

critical to the operation to continue to be invoked, but alerts administrators that there is a

potential false negative and something must be checked.

10.2.2 Mode Characteristics of Some Process Invocations

One characteristic of program pathing is that some process invocation sequences may be

valid at one time but not another. For instance, it is not valid to run maintenance processes

during production times. There may be processes that should run at scheduled times, and only at

those times. The program pathing model must be able to handle cases where a sequence is valid

at one point in time and invalid at another. The program pathing DFA can deal with these cases

by (1) turning off the PPTM to allow the usually invalid processes to be invoked, or (2)

switching the program pathing DFA to another DFA to allow the processes to run PPTM, or (3)

including a time window as part of each process invocation symbol in .

117

10.3 Potential Use of the Program Pathing Trust Model

The Program Pathing Trust Model is not intended to be a stand-alone function. It is intended

to be a component of a larger security system as are the original program pathing in ACF2

[ACF99] and the program controls in SELinux [Mcca05]. That is to say, it is not intended to be

used as a stand-alone function such as an intrusion prevention system (like Symantec‘s Critical

System Protection [Suma05]).

10.3.1 Program Pathing in an Access Control System

The original use of program pathing was in a discretionary access control system (ACF2

[ACF99].) Its purpose was to verify that a user‘s access to a resource was granted but only

through particular process invocation sequences. Any access to the resource outside the valid

process invocation sequence was considered inappropriate and was denied. User authentication

and user authorization to the resources is handled by the access control system, and the process

invocation sequence validation could be handled by the Program Pathing Trust Model working

as a component of the access control system.

Using the Program Pathing Trust Model to validate process invocation sequences would

prevent a user from accessing data through any means but an authorized process, thereby adding

a more secure dimension to access control. Restriction of user access to data in this way could

help prevent unauthorized copying or leaking of data.

10.3.2 Program Pathing in a System Integrity System

A form of program pathing has been used in SELinux [Mcca05], and falls into some of the

same pitfalls as the ACF2

‘s implementation. It identifies the process invocation sequences

allowed within a domain, and writes these relationships into a security policy using the SELinux

118

policy language. SELinux also validates access to other domains, resources, security labels and

levels, etc. SELinux is a mandatory access control and system integrity system that could use the

Program Pathing Trust Model in the same manner as discretionary access control. In the case of

mandatory access control, a user with a security label could access a resource with the same

security label but would only be allowed access it using specific process invocation sequences.

SELinux has redefined mandatory access control to include system integrity [Mcca05].

The Program Pathing Trust Model can be used in the SELinux subsystem to define the

processes within a domain. The Program Pathing Trust Model would remove the need to define

each process manually in a security policy – thereby simplifying SELinux‘s implementation.

119

References

[ACF99] CA-ACF2 Systems Programmer Guide CA-ACF2 Release 6.3, September 1999

[ACF89] ACF99@RB module from CA-ACF2

 Release 6.2, Computer Associates,

International, 1989

[AFM99] Assurance in the Fluke Microkernel: Final Report, Secure Computing Corporation,

Contract no. MDA904-97-C-3047, April 1999.

[Aho75] Alfred Aho, Margaret Corasick, ―Efficient string matching: An aid to bibliographic

search‖, Communications of ACM, Volume 18, Issue 6, pages 333-340, 1975.

[Aho97] Alfred Aho, ―Algorithms for finding patterns in strings‖. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume A, chapter 5, pages 255-300. MIT Press,

1994.

[Aho00] Alfred Aho, Jeffery Ullman, Foundations of Computer Science C Edition, Computer

Science Press, NY, 2000.

[Amm98] Glenn Ammons, James Larus, ―Improved data-flow analysis with path profiles,‖ ACM

SIGPLAN Notices, Volume 33, Issues 5 (May 1998), pp. 72-84.

[Appf04] The AppFire Suite for Host Intrusion Prevention: Technical White Paper,

PlatformLogic, www.platformlogic.com (website no longer available see citation below)

[Ball92] Thomas Ball, James Larus, ―Optimally Profiling and Tracing Programs,‖ Proceedings

of the 19th annual ACM symposium on Prinicples of Programming Languages, p.59-70,

Albuquerque, NM, Jan. 19-22, 1992..

[Ball96] Thomas Ball, James Larus, ―Efficient path profiling,‖ Proceedings of the 29th annual

ACM/IEEE international symposium on Microarchitecture, p.46-57, December 2-4, 1996, Paris,

France.

[Bar61] Y. Bar-Hillel, M. Perles, and E. Shamir, "On formal properties of simple phrase-

structure grammars". Zeitschrift für Phonetik, Sprachwissenschaft, und

Kommunikationsforschung 14: 143–177, 1961.

[Bark80] Stephen Barker, The Elements of Logic, Third Editon, McGrall-Hill, NY, 1980.

[Beak69] George C. Beakley, Donovan L. Evans, Deloss H. Bowers, Careers in Engineering and

Technology, Macmillan Company, 866 Third Avenue, New York, New York 10022, Page 448,

1969.

120

[Bell73a] Bell, D E, LaPadula, L J. "Secure Computer Systems‘ Mathematical Foundations,"

ESD-TR-73-278, vol. 1, ESD/AFSC, Hanscom AFB, Bedford, Mass., Nov. 1973 (MTR-2547,

vol. 1, MITRE Corp., Bedford, Mass.)

[Bell73b] Bell, D. E., LaPadula, L. J "A Secure Computer Systems' A Mathematical Model,"

ESD-TR-73-278, vol. 2, ESD/AFSC, Hanscom AFB, Bedford, Mass., Nov. 1973 (MTR-2547,

vol 2, MITRE Corp., Bedford, Mass.}

[Bell74a] Bell, D. E. "Secure computer systems: A Refinement of the Mathematical Model,"

ESD-TR-73-278, vol. 3, ESD/ AFSC, Hanscom AFB, Bedford, Mass, April 1974 (MTR 2547,

vol. 3, MITRE Corp., Bedford, Mass.}.

[Bell74b] Bell, D. E, LaPadula, L. J. "Secure Computer Systems. Mathematical Foundations and

Model," M74-244, MITRE Corp, Bedford, Mass., Oct, 1974.

[Bell76] D. E. Bell, L. J. LaPadula, ―Secure Computer Systems: Unified Exposition and Multics

Interpretation,‖ ESD-TR-75-306, Project 522B, MITRE Corporation, Deputy for Command and

Management Systems, USAF, Contract No. F19628-76-C-0001, March 1976.

[Biba77] K. J. Biba, ―Integrity Considerations for Secure Computer Systems,‖ ESD-TR-76-372,

Project 522B, MITRE Corporation, Deputy for Command and Management Systems, USAF,

Contract No. F19628-76-C-0001, April 1977.

[Bish03] Matt Bishop, "What Is Computer Security?," IEEE Security and Privacy, vol. 1, no. 1,

pp. 67-69, Jan. 2003, doi:10.1109/MSECP.2003.1176998.

[Bove02] Daniel Bovet and Marco Cesati, Understanding the Linux Kernel, Second Edition,

O‘Reilly & Associates, 20

[Bran88] Branstad, M.; Tajalli, H.; Mayer, F. Aerospace Computer Security Applications

Conference, 1988., Fourth Volume , Issue , 12-16 Dec 1988 Page(s):362 – 367

[Bre89] David Brewer and Michael Nash, ―The Chinese Wall Security Policy,‖ p. 206, 1989

IEEE Symposium on Security and Privacy, 1989

[Brzo62] J.A. Brzozowski. ―Canonical Regular Expressions and Minimal State Graphs for

Definite Events,‖ Mathematical Theory of Automata, Vol. 12, MRI Symposia Series, pp. 529-

561, Polytechnic Press, Polytechnic Institute of Brooklyn, NY, 1962.

[CC04] Common Criteria for Information Technology Security Evaluation Part 2: Security

functional requirements, January 2004, Version 2.2 CCIMB-2004-01-002

[CCA08] CA Access Control, Protecting Server Resources with CA Access Control, Technical

Brief: CA Access Control, 2008

121

[Chri08] Christian Christiansen, IDC White Paper - Server Resource Protection: A Critical

Element of IT Security, Interactive Data Corporation, July 2008

[Clar87] D. D. Clark, and D. R. Wilson, "A Comparison of Commercial and Military Computer

Security Policies," IEEE Security and Privacy Symposium, p. 184-194, April 1987.

[Copi78] Irving Copi, Introduction to Logic, Fifth Edition, MacMillian Publishing, NY, 1978.

[CSI03] Computer Security Institute, ‖2003 CSI/FBI Computer Crime and Security Survey,―

(2003).

[CST72] Computer Security Technology Planning Study, Deputy for Command and

Management Systems, HQ Electronic Systems Division, ESD-TR-73-51, Vol. II, October 1972.

[CIP05] Critical Infrastructure Protection: Department of Homeland Security Faces Challenges

in Fulfilling Cybersecurity Responsibilities, United States Government Accountability Office,

Report to Congressional Requesters,GAO-05-434, http://www.gao.gov/cgi-bin/getrpt?GAO-05-

434, May 2005.

[Dahl94]

 Robert Dahlberg, Personal Experience as a Software Developer on CA-ACF2 working

on various aspects of the product including program pathing, SKK/UCCEL/Computer

Associates, Chicago, IL, 1984 – 1994

[Denn87] Denning, D.E. ―An Intrusion-Detection Model, Software Engineering,‖ IEEE

Transactions on Volume SE-13, Issue 2, Feb. 1987 Page(s): 222 - 232

[Dij59] E. W. Dijkstra. A note on two problems in connection with graphs. Nuerische

Mathematik, 1:269-271, 1959.

[DoD85] Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-

STD, Library no. S225,711 December 1985

[Eete08] Michael van Eeten, Johannes Bauer, Economics of Malware: Security Decisions,

Incentives and Externalities, Organization of Economic Co-operation and Development,

Directorate for Science, Technology, and Industry, Paris, France, 2008.

[Elm90] J. L. Elman, ―Finding Structure in Time‖, Cognitive Science, 14:179-211, 1990.

[Fedo06] Fedora (2006). Retrieved 05/15/2006: http://www.fedora.info/

[Feng03] Henry Hanping Feng , Oleg M. Kolesnikov , Prahlad Fogla , Wenke Lee , Weibo

Gong, ―Anomaly Detection Using Call Stack Information,‖ Proceedings of the 2003 IEEE

Symposium on Security and Privacy, p.62, May 11-14, 2003

[Fire03] Donald Firesmith, Engineering Security Requirements, Journal of Object Technology,

vol. 2, no. 1, January-February 2003, pages 53-68.

122

[FISM02] ‗‗Federal Information Security Management Act of 2002‖, H. R. 2458—48,

[FISM08] ―Federal Information Security Management Act of 2008‖, S.3474 .

[Ford97] Bryan Ford, Kevin Van Maren, Jay Lepreau, Stephen Clawson, Bart Robinson, Jeff

Turner, ―The Flux OS Toolkit: Reusable Components for OS Implementation,‖ The Sixth

Workshop on Hot Topics in Operating Systems, Cape Cod, MA, USA, page(s): 14-19, May 5-6

1997

[Forr96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, Thomas A. Longstaff, "A Sense

of Self for Unix Processes," sp, pp.0120, 1996 IEEE Symposium on Security and Privacy, 1996.

[Gass88] Morrie Gasser, Building a Secure Computer System, New Your: Nostrand Reinhold,

1988.

[Gau03] Hugh G. Gauch, Scientific Method in Practice, Cambridge University Press, 2003

[Gho00] Anup K. Ghosh , Christopher Michael , Michael Schatz, ―A Real-Time Intrusion

Detection System Based on Learning Program Behavior,‖ Proceedings of the Third International

Workshop on Recent Advances in Intrusion Detection, p.93-109, October 02-04, 2000

[Gogu82] J. A. Goguen and J. Meseguer, ―Security Policies and Security Models,‖ IEEE

Symposium on Security and Privacy, 1982

[Grah72] G.S. Graham and P. J. Denning,―Protection – Principles and Practice,‖ AFIPS

Conference Proceedings, Vol. 40, Spring Joint Computer Conference, Montvale, New Jersey,

1972.

[Harr03] Shon Harris,―CISSP Certification Exam Guide‖, 2
nd

 Edition, McGraw-Hill, 2003.

[Hart05] Hart, James L. M., Captain, USAF, ―An Historical Analysis of Factors Contributing to

the Emergence of the Intrusion Detection Discipline and its Role in Information Assurance‖,

Thesis, AFIT/GIR/ENV/05M-06, Department of the Air Force Air University, Air Force Institute

of Technology, 2005.

[Hick07] Boniface Patrick Hicks, ―Secure System Development Using Security-Typed

Languages,‖ PhD Dissertation, Pennsylvania State University, Department of Computer Science

and Engineering, December 2007.

[Hof98] Steven A. Hofmeyr, Stephanie Forrest, Anil Somayaji, ―Intrusion Detection Using

Sequences of System Calls,‖ Journal of Computer Security, Volume 6, Number 3 / pp.151 – 180,

1998.

[Hogl05] Greg Hoglund, James Butler ―Rootkits: Subverting the Windows Kernel,‖ Addison-

Wesley, 2005.

123

[Hopc01] John Hopcroft, Raheev Motwani, Jeffery Ullman, ―Introduction to Automata Theory,

Languages, and Computation,‖ 2
nd

 Edition, Addison-Wesley, 2001.

[IBM08] SMP/E V3R1.0 for z/OS and OS/390 Reference, SA22-7772-01, Online Library,

available on the IBM Online Library Omnibus Edition: MVS Collection CD-ROM, SK2T-0710,

2008.

[IBM09] z/OS TSO/E Bookshelf, GA22-7489-12 Online Library available on the IBM Online

Library Omnibus Edition: z/OS DVD Collection (SK3T-4271), 2009

[Ietf] Internet Engineering Taskforce (IETF), RFCs 2903 2904, 2905, 2906, www.ietf.org

[ISO96] Security Frameworks for Open Systems: Access Control Framework, Technical Report

ISO/IEC 10181-3, ISO, 1996

[Jaeg04] Trent Jaeger, Anthony Edwards, Xiaolan Zhang, ―Consistency Analysis of

Authorization Hook Placement in the Linux Security Modules Framework,‖ ACM Transactions

on Information and System Security (TISSEC),Volume 7 , Issue 2 (May 2004), Pages: 175 -

205

[Jaeg05] Trent Jaeger, “Clark-Wilson Integrity as a Security Goal for SELinux Policies,‖ IBM

TJ Watson Research Center, USA, SELinux Symposium, 2005

 http://www.selinux-symposium.org/2005/presentations/session5/5-2-jaeger.pdf

[Ju07] Hu Jun, Shen Changxiang, ―An Information Flow Security Model to Trusted Computing

Sytem,‖ The First International Symposium on Data, Privacy, and E-Commerce, page(s): 310-

315, November 1-3, 2007.

[Keen05] Keeney, M., et al.: Insider Threat Study: Computer System Sabotage in Critical

Infrastructure Sector. Technical report, US Secret Service and CERT Program,SEI, CMU,

Pittsburgh, PA (May 2005)

[Ko94] Calvin Ko, George Fink and Karl Levitt, ―Automated Detection of Vulnerabilites in

Privileged Programs by Execution Monitoring,‖ 10
th

 Annual Computer Security Applications

Conference Proceedings, page(s): 134-144, Orlando, FL, December 5-9, 1994.

[Kole05] Oleg Kolesnikov and Wenke Lee. ―Advanced Polymorphic Worms: Evading IDS by

Blending in with Normal Traffic.‖ Technical Report GIT-CC-05-09, Georgia Institute of

Technology, 2005.

[Kos97] Andrew P. Kosoresow, Steven A. Hofmeyr, ―Intrusion Detection via System Call

Traces,‖ IEEE Software, v.14 n.5, p.35-42, September 1997.

[Lar99] James Larus, ‗Whole Program Paths‖, Proceedings of the SIGPLAN 1999 Conference

on Programming Languages Design and Implementation, Atlanta, GA. May 1999.

124

[Levi95] John Levine, Tony Mason, Doug Brown, ―lex & yacc‖, O‘Reilly & Associates, Inc.,

1995.

[Lipt77] R. J. Lipton and L. Snyder, ―A Linear Time Algorithm for Deciding Subject Security‖,

Journal of Association for Computer Machinery, Vol. 24, No 3, July 1977, pp. 455-464

[Losc05] Peter Loscocco, Stephen Smalley, ―Integrating Flexible Support for Security Policies

into the Linux Operating System,‖ SELinux Symposium, 2005

[Mann03] Scott Mann, Ellen Mitchell, Mitchell Krell, ―Linux System Security: An

Administrator‘s Guide to Open Source Security Tools‖, Prentice Hall, 2003.

[Mcca05] Bill McCarty, SELINUX NSA‘s Open Source Security Enhanced Linux, O‘Reilly &

Associates, 2005

[Mins67] Marvin Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., 1967

[Mitc97] Tom Mitchell, Machine Learning, WCB/McGraw-Hill, 1997

[NIST1]

 http://niap.nist.gov/cc-scheme/cc_docs/index.html, National Institute of Standards and

Technology

[NSA01]

 http://www.nsa.gov/selinux/index.cfm, National Security Agency, Central Security

Service, Fort George G. Meade, MA, NSA Press Release, January 2001.

[Park03] Jaehong Park, Usage Control: A Unified Framework for Next Generation Access

Control, PhD dissertation, George Mason University, Fairfax VA., Summer 2003

[RACF03]

 z/OSV1R6.0 Security Server RACF Security Administrator‘s Guide, IBM

Corporation, SA22-7683-05, August 8, 2003

[Rahi04] Niki Rahimi (IBM), ―Trusted Path Execution for the Linux 2.6 Kernel as a Linux

Security Module,‖ 14
th

 USENIX Security Symposium, pages 73–80 of the Proceedings, June

2004.

[Ravi04] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. ―Security in Embedded

Systems: Design Challenges.‖ ACM Transactions on Embedded Computing Systems, 3(3),

August 2004.

[Rich08] Elaine Rich, ―Automata, Computability, and Complexity,‖ Prentice Hall, Upper Saddle

River, NJ, 2008.

[Rose99] Kenneth Rosen, ―Discrete Mathematics and Its Applications,‖ 4
th

 Edition,

WCB/McGraw-Hill, 1999

125

[SCC70] Security Controls for Computer Systems: Report of Defense Science Board Task Force

on Computer Security, Rand Corporation, Office of the Director of Defense Research and

Engineering, Washington D.C., February, 1970.

[Schr74-1] Barry Schrager, SHARE VS/OS Security and Data Management Project Goals for

Data Security, SHARE Conference, March 4, 1974.

[Schr74-2] Barry Schrager, Centralized Resource Control Information Facility, IBM Data

Security Forum, Denver, Co., September 1974.

[Sedg02] Robert Sedgewick, Algorithms in C: Part 5 - Graph Algorithms, 3
rd

 Edition, Addison-

Wesley, 2002.

[Sek01] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, ―A fast automaton-based method for

detecting anomalous program behaviors‖, Proceedings of the 2001 IEEE Symposium on Security

and Privacy, Page(s): 144-155, 2001.

[SHA99] 1955: IBM Customers form the First Computer User Group. Computer World, May

5
th

 1999; SHARE is IBM user group organization established in 1955 (the first such

organization). It met for the first time at Rand Corporation in Santa Monica, CA on August 15
th

,

1955. SHARE works with IBM to evaluate and develop requirements and enhancements to IBM

products and to the computer industry at large.

[Silb05] Abraham Silberschatz, Peter Galvin, Greg Gagne, ―Operating System Concepts,‖ 7
th

Edition, Addison-Wesley, 2005.

[Sips06] Michael Sipser , ―Introduction to the Theory of Computation.‖ 2
nd

 edition, Thomson

Course Technology, Section 1.4: Nonregular Languages, pp. 77–83. Section 2.3: Non-context-

free Languages, pp. 123–129, 2006.

[Ski90] S. Skiena, "Minimum Spanning Tree." §6.2 in Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 232-

236, 1990.

[Smal01a] Stephen Smalley, Timothy Fraser, and Chris Vance, ―Linux Security Modules:

General Security Hooks for Linux‖, http://lsm.immunix.org/ September, 2001

[Smal01b] Stephen Smalley, Timothy Fraser, ―A Security Policy Configuration for the Security-

Enhanced Linux‖, http://www.nsa.gov/selinux/papers/policy/policy.html, February 2001

[Smal04] Stephen Smalley, Chris Vance, Wayne Salamon, ―Implementing SELinux as a Linux

Security Module,‖ Contract MDA904-01-C-0926, March 2004

[Spen99] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Anderson, Jay

Lepreau, ―The Flask Security Architecture: System Support for Diverse Security Policies,‖

Proceedings of The Eighth USENIX Security Symposium, August 1999, pages 123-139.

http://en.wikipedia.org/wiki/Michael_Sipser

126

[Syma05] Symantec Critical System Protection A Technical White Paper given to me by

Symantec representative, Summer 2005 (after PlatformLogic acquisition)

[Syma10] Symantec Global Internet Security Threat Report: Trends for 2009 A Technical White

Paper, Volume XV, April 2010.

[Stall92] William Stallings, ―Operating Systems‖, Macmillan Publishing Company, 1992.

[Tayl98] R. Gregory Taylor, Models of Computation and Formal Languages, Oxford University

Press, 1998

[Wag01] D. Wagner and R. Dean, ―Intrusion detection via static analysis‖, Proceedings of the

2001 IEEE Symposium on Security and Privacy, Page(s): 156-168, 2001.

[War99] C. Warrender, S. Forrest, B. Pearlmutter, ―Detecting intrusions using system calls:

alternative data models‖, Proceedings of the 1999 IEEE Symposium on Security and Privacy,

Page(s):133 – 145, 1999.

[Wats95] Bruce W. Watson, A Taxonomy of Finite Automata Minimization Algorithms,

Computer Science report 93/44, Eindhoven University of Technology, Netherlands, January 24,

1995.

[Wats00] Bruce W. Watson, Directly Constructing Minimal DFAs : Combining Two Algorithms

by Brzozowski, in S. Yu and A. Paun, eds, CIAA 2000, London, Ontario, Lecture Notes in

Computer Science, 2088(2001), 311–317, Springer, 2000.

[Webb08] Charles F. Webb, IBM, z10: The Next-Generation Mainframe Microprocessor, IEEE

Micro, vol. 28, no. 2, pp. 19-29, March/April, 2008.

[Wrig02a] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-

Hartman, ―Linux Security Module Framework,‖ 11
th

 USENIX Security Symposium, August

2002

[Wrig02b] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-

Hartman, ―Linux Security Modules: General Security Support for the Linux Kernel,‖ 11
th

USENIX Security Symposium, August 2002.

127

Appendix A: Prototype Source Code

A.1 PPTM Source Code

/***

/* PPTM - Program Pathing Trust Model

/***

/*

/* Purpose of this program is to simulate an automata for the purposes of mapping

/* a sequence of process invocation calls. The program will then validate those

/* calls using the built automata.

/*

/* Developer: Robert Dahlberg - PhD candidate

/* Virginia Commonwealth University

/* Computer Science Department

/* School of Engineering

/* Prototype as partial fulfillment of PhD dissertation

/*

/* Created: Febuarary 7th, 2010

/* Updated: January 23rd, 2011

/***/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "Automata.h"

#include "print.h"

/***

/* define global variables

/***/

acell * scnatm(anchor * ack, char * pgm);

void traceaut(anchor * ank);

const char blank[] = " ";

char * bid = NULL;

char * bcaller = NULL;

char * bcalled = NULL;

char * vid = NULL;

char * vcaller = NULL;

char * vcalled = NULL;

char * last = NULL;

anchor * achr;

stack * stk;

automata * autom;

char TFile[200] = "train";

char tbuffer[80] = " ";

char VFile[200] = "validate";

char vbuffer[80] = " ";

char AFile[200] = "auditfile";

char abuffer[80] = " ";

main() {

128

/***/

/* allocate storage for anchor data area */

/***/

achr = (anchor *) malloc(sizeof(anchor));

achr->len = sizeof(anchor);

strcpy (achr->eyecat,"*ANCHOR*");

achr->stkptr = 0;

achr->sptr = 0;

achr->snum = 0;

achr->autptr = 0;

achr->aptr = 0;

achr->anum = 0;

printf (" anchor pointer = %p \n",achr);

/***/

/* allocate storage for Stack data area */

/***/

stk = (stack *) malloc(sizeof(stack));

memset(stk,'\0',sizeof(stack));

stk->len = sizeof(stack);

strcpy (stk->eyecat, "**STACK*");

stk->nxtstk = 0;

achr->stkptr = stk;

achr->sptr = & stk->cellstk[0];

achr->snum = 0;

printf (" stack pointer = %p\n", stk);

/***/

/* allocate storage for Automata data area */

/***/

autom = (automata *) malloc(sizeof(automata));

memset(autom,'\0',sizeof(automata));

autom->len = sizeof(automata);

strcpy (autom->eyecat, "AUTOMATA");

achr->autptr= autom;

achr->aptr = & autom->autcell[0];

achr->anum = 0;

printf ("automata pointer = %p\n", autom);

/**/

/* Build Automata from recorded system */

/**/

/**/

/* Open Training file */

/**/

acell * aelement = NULL;

acell * a3element = NULL;

scell * aselement = NULL;

acell * a2element = NULL;

scell * lselement = NULL;

scell * selement = NULL;

FILE *tfp;

 if((tfp = fopen(TFile,"r")) == NULL)

 {

 printf("Cannot OPEN " BOLDBLACK "train" RESET " file \n");

129

 exit(1);

 }

 /***

 /* read training record */

 /***/

while(fgets(tbuffer,sizeof(tbuffer),tfp)!= NULL)

{

 bid = strtok(tbuffer,blank);

 printf("ID = %s \n",bid);

 bcaller = strtok(NULL,blank);

 printf("Caller = [%s] \n",bcaller);

 bcalled = strtok(NULL,blank);

 printf("Called = [%s] \n",bcalled);

/**/

/* Find caller process in automata */

/**/

 aelement = scnatm(achr,bcaller); /* find caller's acell in automata */

/***/

/***/

/* "caller" not found in automata */

/***/

/***/

 if (aelement == NULL) /* caller's acell not found */

 {

 /***

 /* Add "caller" to Automata */

 /***/

 aelement = achr->aptr; /* get new acell */

 strcpy(aelement->pgm,bcaller); /* copy caller process into new acell */

 achr->anum = achr->anum + 1; /* update acell number by one */

 achr->aptr = &autom->autcell[achr->anum]; /* ptr to next available acell */

 selement = achr->sptr; /* get next available unused scell */

 stk = achr->stkptr; /* get pointer to stack */

 achr->snum = achr->snum + 1; /* update scell number by one */

 achr->sptr = &stk->cellstk[achr->snum]; /* get next available unused scell */

 aelement->lnkcell = selement; /* store 1st available scell in new acell*/

 /***/

 /* printf("Caller = [%s] not found\n",bcaller);

 /***/

 a2element = scnatm(achr,bcalled); /* find calling process acell in automata*/

 /**/

 /* "called" process not in automata */

 /**/

 if (a2element == NULL) /* if caller process not found */

 {

 a2element = achr->aptr; /* get an acell for calling process */

 strcpy(a2element->pgm,bcalled); /* move calling process into acell */

 a2element->lnkcell = NULL; /* clear acell's link to scell */

 achr->anum = achr->anum + 1; /* update scell number by one */

 achr->aptr = &autom->autcell[achr->anum]; /* point to next free acell */

 }

130

 selement->pgmcell = a2element; /* move called acell to scell of caller */

 selement->lnkcell = NULL; /* clear scell's next scell pointer */

 }

 else

 {

 /***/

 /***/

 /* "Caller" process found */

 /***/

 /***/

 a2element = NULL; /* clear a2element */

 a2element = scnatm(achr,bcalled); /* find if an acell for called */

 /***/

 /* called process NOT found - make sure called acell in scell */

 /***/

 if (a2element == NULL)

 {

 selement = aelement->lnkcell; /* get 1st scell out of acell */

 if (selement == NULL)

 {

 stk = achr->stkptr; /* get stack */

 aelement->lnkcell = achr->sptr; /* point last scell to new scell */

 selement = achr->sptr; /* get next free scell */

 achr->snum = achr->snum + 1; /* increment scell number by one */

 achr->sptr = &stk->cellstk[achr->snum]; /* advance next free scell ptr*/

 a2element = achr->aptr; /* get next free acell ptr */

 achr->anum = achr->anum + 1; /* increment acell number by one */

 achr->aptr = &autom->autcell[achr->anum]; /* advance to next acell ptr*/

 strcpy(a2element->pgm,bcalled); /* copy called process name to new acell */

 selement->pgmcell = a2element; /* point to new acell from new scell */

 selement->lnkcell = NULL; /* init new scell pointer to next scell*/

 }

 else

 {

 a3element = selement->pgmcell; /* get acell out of 1st scell */

 lselement = selement;

 /**/

 /* search scells in found "called" acell for "caller" process acell */

 /**/

 while ((a3element != a2element) && (selement != NULL))

 {

 lselement = selement; /* save this scell as last scell */

 selement = lselement->lnkcell;

 if (selement != NULL)

 {

 a3element = selement->pgmcell; /* get acell out of next scell */

 }

 }

 /************************************

 /* was NO scell found?

 /************************************/

131

 if (selement == NULL)

 {

 if (a3element != a2element)

 {

 stk = achr->stkptr; /* get stack */

 lselement->lnkcell = achr->sptr; /* point last scell to new scell */

 selement = achr->sptr; /* get next free scell */

 achr->snum = achr->snum + 1; /* increment scell number by one */

 achr->sptr = &stk->cellstk[achr->snum]; /* advance next scell ptr*/

 a2element = achr->aptr; /* get next free acell ptr */

 strcpy(a2element->pgm,bcalled); /* copy called process name to acell */

 selement->pgmcell = a2element; /* point to new acell from new scell */

 selement->lnkcell = NULL; /* init new scell ptr to next scell*/

 achr->anum = achr->anum + 1; /* increment acell number by one */

 achr->aptr = &autom->autcell[achr->anum]; /* advance to next acell*/

 }

 }

 }

 }

 else

 {

 /***/

 /* called process FOUND - make sure called acell in scell */

 /***/

 selement = aelement->lnkcell;

 if (selement == NULL)

 {

 stk = achr->stkptr; /* get stack */

 aelement->lnkcell = achr->sptr; /* point last scell to new scell */

 selement = achr->sptr; /* get next free scell */

 achr->snum = achr->snum + 1; /* increment scell number by one */

 achr->sptr = &stk->cellstk[achr->snum]; /* advance next free scell ptr*/

 selement->pgmcell = a2element; /* point to new acell from new scell */

 selement->lnkcell = NULL; /* init new scell pointer to next scell*/

 }

 else

 {

 while ((a3element != a2element) && (selement != NULL))

 {

 lselement = selement; /* save this scell as last scell */

 selement = lselement->lnkcell;

 if (selement != NULL)

 {

 a3element = selement->pgmcell; /* get acell out of next scell */

 }

 }

 if (a3element != a2element)

 {

 stk = achr->stkptr; /* get stack */

 lselement->lnkcell = achr->sptr; /* point last scell to new scell */

 selement = achr->sptr; /* get next free scell */

132

 achr->snum = achr->snum + 1; /* increment scell number by one */

 achr->sptr = &stk->cellstk[achr->snum]; /* advance to next scell ptr*/

 selement->pgmcell = a2element; /* point to new acell from new scell */

 selement->lnkcell = NULL; /* init new scell ptr to next scell*/

 }

 }

 }

 }

memset(tbuffer,'\0',sizeof(tbuffer));

}

 fclose(tfp);

 traceaut(achr);

/**/

/* Open Validate file */

/**/

printf("\nProcessing Validate file \n\n");

FILE *vfp;

if((vfp = fopen(VFile,"r")) == NULL) {

 printf("Cannot OPEN " BOLDBLACK "validate" RESET " file \n");

 exit(1); }

/**/

/* Open auditfille file */

/**/

printf("\nProcessing auditfile file \n\n");

FILE *afp;

if((afp = fopen(AFile,"w")) == NULL)

 {

 printf("Cannot OPEN " BOLDBLACK "auditfile" RESET " file \n");

 exit(1);

 }

/**/

/* Validate a Process */

/**/

while(fgets(vbuffer,sizeof(vbuffer),vfp)!= NULL)

{

 vid = strtok(vbuffer,blank);

 printf("ID = [%s] \n",vid);

 vcaller = strtok(NULL,blank);

 printf("Caller = [%s] \n",vcaller);

 vcalled = strtok(NULL,blank);

 printf("Called = [%s] \n",vcalled);

 /**

 /* Validate Process invocation calls

 /***/

 memset(abuffer,'\0',sizeof(abuffer));

 aelement = scnatm(achr,vcaller); /* find caller acell in automata */

 if (aelement == NULL)

 {

 strcpy(abuffer,"Caller process [");

 strcat(abuffer,vid);

 strcat(abuffer,"] - [");

 strcat(abuffer,vcaller);

 strcat(abuffer,"] invalid \n");

133

 fputs(abuffer,afp);

 printf("Caller process %s - [%s] invalid \n",vid,vcaller);

 }

 else

 {

 a2element = scnatm(achr,vcalled); /* find called acell in automata */

 if (a2element == NULL)

 {

 strcpy(abuffer,"Called process [");

 strcat(abuffer,vid);

 strcat(abuffer,"] - [");

 strcat(abuffer,vcalled);

 strcat(abuffer,"] invalid \n");

 fputs(abuffer,afp);

 printf("Called process %s - [%s] invalid \n",vid,vcalled);

 }

 else

 {

 selement = aelement->lnkcell;

 if (selement != NULL)

 {

 a3element = selement->pgmcell;

 while ((a3element != a2element) && (selement != NULL))

 {

 lselement = selement; /* save this scell as last scell */

 selement = lselement->lnkcell;

 if (selement != NULL)

 {

 a3element = selement->pgmcell; /* get acell out of next scell */

 }

 }

 if (a3element != a2element)

 {

 strcpy(abuffer,"It is invalid for PID [");

 strcat(abuffer,vid);

 strcat(abuffer,"] - process [");

 strcat(abuffer,vcaller);

 strcat(abuffer,"] to call process [");

 strcat(abuffer,vcalled);

 strcat(abuffer,"] \n");

 fputs(abuffer,afp);

 printf("It is invalid for process %s - [%s] to call process [%s] \n",vid,vcaller,vcalled);

 }

 }

 else

 {

 strcpy(abuffer,"It is invalid for PID [");

 strcat(abuffer,vid);

 strcat(abuffer,"] - process [");

 strcat(abuffer,vcaller);

 strcat(abuffer,"] to call process [");

 strcat(abuffer,vcalled);

 strcat(abuffer,"] \n");

 fputs(abuffer,afp);

 printf("It is invalid for process %s - [%s] to call process [%s] \n",vid,vcaller,vcalled);

 }

134

 }

 }

memset(abuffer,'\0',sizeof(abuffer));

}

fclose(vfp);

fclose(afp);

printf(BOLDBLACK"Exit Program" RESET "\n");

return 0;

}

/**/

/***/

/* Subroutine: scnatm */

/*---*/

/* search automata for a program name */

/***/

/***/

acell * scnatm(anchor * ack, char * pgm)

{

 automata * atm = ack->autptr;

 int xno = ack->anum;

 int i = 0;

 int finda = 0;

 acell * xelement = NULL;

 xelement = &atm->autcell[i];

 /**/

 /* Scan Automata until end of automata sting or found the process name */

 /**/

 while ((xno != i) && (finda == 0))

 {

 /***/

 /** Matching program found in automata **/

 /***/

 if (strcmp(xelement->pgm,pgm) == 0) /* compare acell processes */

 {

 finda = 1; /* found it - mark flag */

 }

 /***/

 /** Get next process name in automata **/

 /***/

 else

 {

 i++; /* advance to next acell in automata */

 xelement = &atm->autcell[i]; /* get @ of next acell in automata */

 }

 }

 /**/

 /* Was process name not found? */

 /**/

 if (finda == 0) /* no match found - mark return element */

 {

 xelement = NULL; /* mark return element to NULL */

 }

135

 return xelement;

}

/**/

/**/

/* Subroutine: traceaut */

/*--*/

/* Trace automata and print out programs */

/**/

/**/

void traceaut(anchor * ank)

{

 char TraceFile[200] = "automtrace";

 char Tracebuffer[200] = " ";

 scell * scelement = NULL;

 acell * aaelement = NULL;

 acell * abelement = NULL;

 automata * ama = ank->autptr;

 int ano = ank->snum;

 int sno = ank->anum;

 int j = 0;

 int x =0;

 char cella[24];

 char cells[24];

FILE *tracefp;

if((tracefp = fopen(TraceFile,"w")) == NULL)

 {

 printf("Cannot OPEN " BOLDBLACK "autotrace" RESET " file \n");

 exit(1);

 }

 printf("\n Trace Automata \n");

 printf("number of acells: [%d] \n",sno);

 strcpy(Tracebuffer," Automata Trace \n");

 fputs(Tracebuffer,tracefp);

 strcpy(Tracebuffer,"--\n");

 fputs(Tracebuffer,tracefp);

 memset(Tracebuffer,'\0',sizeof(Tracebuffer));

 strcpy(Tracebuffer,"Caller Process -> Called Process |Called Process \n");

 fputs(Tracebuffer,tracefp);

 strcpy(Tracebuffer,"--\n");

 fputs(Tracebuffer,tracefp);

 memset(Tracebuffer,'\0',sizeof(Tracebuffer));

 aaelement = &ama->autcell[j];

 /**/

 /* Scan Automata until end of automata sting or found the process name */

 /**/

 while (j < sno)

 {

 /***/

 /** Matching program found in automata **/

 /***/

 printf("Calling = [%s]",aaelement->pgm);

 strcpy(Tracebuffer,aaelement->pgm);

136

 scelement = aaelement->lnkcell;

 /***/

 /** Get next process name in automata **/

 /***/

 while ((scelement != NULL))

 {

 abelement = scelement->pgmcell;

 if (x == 0)

 {

 printf("->[%s]",abelement->pgm);

 strcat(Tracebuffer,"->");

 x ++;

 }

 else

 {

 printf("|[%s]",abelement->pgm);

 strcat(Tracebuffer,"|");

 if (strlen(Tracebuffer) >= (200-9))

 {

 printf("\n");

 strcat(Tracebuffer,"\n");

 fputs(Tracebuffer,tracefp);

 memset(Tracebuffer,'\0',sizeof(Tracebuffer));

 }

 }

 strcat(Tracebuffer,abelement->pgm);

 scelement = scelement->lnkcell;

 }

 if (strlen(Tracebuffer) >= 2)

 {

 printf("\n");

 strcat(Tracebuffer,"\n");

 fputs(Tracebuffer,tracefp);

 memset(Tracebuffer,'\0',sizeof(Tracebuffer));

 }

 j++;

 x = 0;

 aaelement = &autom->autcell[j];

 }

 printf("close auditfile \n");

 snprintf(cella, sizeof(cella), "%d", ank->anum - 1);

 strcpy(Tracebuffer,"Number of acells =");

 strcat(Tracebuffer,cella);

 strcat(Tracebuffer,"\n");

 fputs(Tracebuffer,tracefp);

 memset(Tracebuffer,'\0',sizeof(Tracebuffer));

 snprintf(cells, sizeof(cells), "%d", ank->snum - 1);

 strcpy(Tracebuffer,"Number of scells =");

 strcat(Tracebuffer,cells);

 fputs(Tracebuffer,tracefp);

 fclose(tracefp);

 return;

}

137

A.2 PPTM Automata Header files

#define n 1000000

#define m 100000

/***************************************/

/* link list scells

/***************************************/

struct scell

 {

 struct acell * pgmcell;

 struct scell * lnkcell;

 };

/**

/* Stack of link list scells */

/***************************************/

struct stack

 {

 int len;

 char eyecat[8];

 struct stack * nxtstk;

 struct scell cellstk[n];

 };

/**

/* Automata acell */

/***/

struct acell

 {

 char pgm[24];

 void * lnkcell;

 };

/**

/* Audit pcell */

/***/

struct pcell

 {

 struct acell * aptr;

 short int acount;

 short int status;

 struct pcell * dauptr;

 struct pcell * sibprt;

 };

/***/

/* Automata structure

/***/

struct automata

 {

 int len;

 char eyecat[8];

 struct acell autcell[m];

 };

/**

/* Process invocation sequence trace

/***/

struct IDtrace

138

 {

 int len;

 char eyecat[8];

struct pstack * pstptr; /* pstack pointer */

 struct pcell * pptr;

 int pnum;

 struct automata * invptr; /* invalid processes */

 struct acell * iaptr;

 int ianum;

 struct automata * trctab; /* Trace table */

 struct acell * trcptr;

 int trcnum;

 };

/**

/* Process stack

/***/

struct pstack

 {

 int len;

 char eyecat[8];

 struct pstack * nxtpstk; /* next pstack pointer */

 struct pcell pcellptr[n];

 };

/**

/* typedefs

/***/

typedef struct acell acell;

typedef struct scell scell;

typedef struct stack stack;

typedef struct automata automata;

typedef struct IDtrace IDtrace;

typedef struct pcell pcell;

typedef struct pstack pstack;

/***

/* System Anchor - main data area

/**/

typedef struct

 {

 int len;

 char eyecat[8];

 stack * stkptr;

 scell * sptr;

 int snum;

 automata * autptr;

 acell * aptr;

 int anum;

 IDtrace * IDptr;

 } anchor;

A.3 PPTM Print Header file

#define RESET "\033[0m" /* Reset Attribute */

#define BLACK "\033[30m" /* Black */

139

#define RED "\033[31m" /* Red */

#define GREEN "\033[32m" /* Green */

#define YELLOW "\033[33m" /* Yellow */

#define BLUE "\033[34m" /* Blue */

#define MAGENTA "\033[35m" /* Magenta */

#define CYAN "\033[36m" /* Cyan */

#define WHITE "\033[37m" /* White */

#define BOLDBLACK "\033[1m\033[30m" /* Bold Black */

#define BOLDRED "\033[1m\033[31m" /* Bold Red */

#define BOLDGREEN "\033[1m\033[32m" /* Bold Green */

#define BOLDYELLOW "\033[1m\033[33m" /* Bold Yellow */

#define BOLDBLUE "\033[1m\033[34m" /* Bold Blue */

#define BOLDMAGENTA "\033[1m\033[35m" /* Bold Magenta */

#define BOLDCYAN "\033[1m\033[36m" /* Bold Cyan */

#define BOLDWHITE "\033[1m\033[37m" /* Bold White */

140

A.4 Testdata (automated data creation) Source Code

/***

/* Tstdata - generate test data for PPT

/***

/*

/* Purpose of this program is to generate test data to test the PPT program

/*

/* Developer: Robert Dahlberg - PhD candidate

/* Virginia Commonwealth University

/* Computer Science Department

/* School of Engineering

/* Prototype as partial fulfillment of PhD dissertation

/*

/* January 2th, 2011

/*

/***/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include "Test.h"

#include "print.h"

/***/

/* define global variables */

/***/

const char blank[] = " ";

struct ID

 {

 char ProID[3];

 char Pronum[21];

 };

char CallPro[24] = " ";

 /**

 /* CalledPro of link list scells */

 /***/

struct Pro

 {

 char MID[1];

 char MNum[23];

 };

char str[23];

char TFile[200] = "train";

char tbuffer[80] = " ";

int StrProc = 0;

int y = 0;

int x = 0;

int Process = 0;

main()

{

141

 struct ID UID;

 struct Pro CalledPro;

 /***/

 /* OPEN Training file "train" */

 /***/

 printf("Start Tstdata \n");

 FILE *tfp;

 if((tfp = fopen(TFile,"w")) == NULL)

 {

 printf("Cannot OPEN " BOLDBLACK "Train" RESET "file \n");

 exit(1);

 }

 printf("OPENed train file \n");

 /*************************/

 /* Initialize variables */

 /*************************/

 x = 0;

 strcpy(CallPro,"S");

 srand(time(NULL));

 /**/

 /* Dowhile more stings are required */

 /**/

 while (x < NoIDs)

 {

 x = x + 1; /* add one to UID count */

 strcpy(UID.ProID,"UID");

 snprintf(UID.Pronum, sizeof(UID.Pronum), "%d", x);

 /***/

 /* determine random number of processes in the sting */

 /***/

 StrProc = 1 + rand() % NoProString;

 y = 0;

 /**/

 /* Dowile more processes needed in string */

 /**/

 while(y < StrProc)

 {

 memset(tbuffer,'\0',sizeof(tbuffer));

 /**/

 /* randomly determine a process ID */

 /**/

 Process = 1 + rand() % NoProcess;

 /**/

 /*sprintf(str, "%d", num); */

 /* str now contains "3" sprintf() is like printf() but outputs to a string. */

 /**/

 strcpy(CalledPro.MID,"M");

 snprintf(CalledPro.MNum, sizeof(CalledPro.MNum), "%d", Process);

 /***/

 /* Construct training record and write to training file */

 /***/

 strcpy(tbuffer,UID.ProID);

 strcat(tbuffer," ");

 strcat(tbuffer,CallPro);

142

 strcat(tbuffer," ");

 strcat(tbuffer,CalledPro.MID);

 strcat(tbuffer," \n");

 printf("[%s]\n",tbuffer);

 fputs(tbuffer,tfp);

 y = y + 1;

 strcpy(CallPro,CalledPro.MID);

 }

 strcpy(CallPro,"S");

 }

 printf("End of Tstdata \n");

 fclose(tfp);

 return 0;

}

A.5 Test Header file

#define NoProcess 100000 /* Number of processes to chose from */

#define NoIDs 100000 /* Number of Stings in test data */

#define NoProString 100 /* Max Number of processes per string */

143

Appendix B: Glossary

Abnormal Process Any process that does not accomplish or support the system‘s intended

function.

Abnormal Process

Behavior

The result of executing abnormal processes or executing normal

processes in an invalid invocation sequence. Abnormal behavior is the

complement of normal behavior.

Invalid Process

Invocation Sequence

The set of invalid process invocation sequences is defined as the

complement of valid process invocation sequences.

Critical Application An application that must not be interrupted.

Critical System

A server dedicated to run a critical application. Interrupting, delaying

or halting these systems can have dire consequences.

External Process

Those processes that have not been intentionally installed by a system

administrator.

Internal Process

Those processes that have been intentionally installed on a computer

system by a system administrator.

Invocation When it is stated that, 'P1 invokes P2' it means that the CPU has

executed an instruction from P1 and that the executed instruction has the

intent of requesting the scheduler to place process P2 on the dispatch

queue awaiting the CPU to execute P2‘s instructions

Normal Process An internal or external process that conforms to the intended design

specifications and/or supports the system‘s intended function

Normal Process

Behavior

Normal system behavior is the result of executing only normal processes

in a valid invocation sequence that supports a system‘s intended

function.

Valid Process

Invocation Sequence

Valid process invocation sequences are exactly those process invocation

sequences that invoke a set of normal processes in a sequence that

accomplishes or supports the system‘s intended primary function.

Process A process is a program that is loaded into main memory and executed.

Process Invocation

Sequence

A computer system does not just run a single process, but a sequence of

processes. One process will invoke another, and so on. The execution

of these processes should not occur in a random order. These processes

should execute in a predetermined order.

Program A program is a set of machine instructions that are organized in a

logical sequence to perform a task or process.

System Integrity

An attribute of a system maintained to execute only normal processes in

valid process invocation sequences.

144

Appendix C: ACF2

 Program Pathing Defintion Module

No longer used by ACF2, ACF99@RB was a compiled program that provided a static

dictionary of process invocation sequences that were authorized to gain access to resources.

[ACF99]

 MACRO ACF 310 00010000

 ACF99@RB 00020000

ACF99@RB TITLE 'ACF2 STRUCTURE MODEL MODULE' ACF 310 00030000

 PRINT ON,GEN,DATA PRINT EVERYTHING ACF 310 00040000

 COPY ACFDOC ACF 22 00050000

*** 00060000

* * 00070000

* * TS89408 00070100

* CHANGE LOG: * TS89408 00070200

* * TS89408 00070300

* THIS MODULE DEFINES TO ACF2 THE STRUCTURAL * 00080000

* MODELS OF TSO COMMANDS AND MODULES TO ALLOW * 00090000

* FOR MACRO DEFINITION OF PATH CONTROL. * 00100000

* * 00110000

* TK52778 05/22/89 REL 5.2 TK52778 00115000

* NEW RELEASE OF MSPF VERSION 2.5 TK52778 00115500

* 00115600

* TK52021 09/27/89 REL 5.2 TK52021 00115700

* COMMENT CARDS WITHOUT SEQUENCE NUMBERS TK52021 00115800

* 00115900

*** 00120000

 EJECT 00120100

************************ REL 6.0 ************************** TS89408 00120200

* * TS89408 00120300

* TS88952 06/26/90 * TS88952 00120400

* INUSRE PROGRAM PATHING GET CORRECT PROGRAM NAME * TS88952 00120500

* WHEN 'REXX' IS IN CONTROL. * TS88952 00120600

* * TS88952 00120700

* TS89408 06/27/90 * TS89408 00120800

* ALLOW PROGRAM PATHING FOR PROGRAMS CALLED FROM TSO * TS89408 00120900

* READY MODE. * TS89408 00121000

* * TS89408 00121100

* TS89418 06/27/90 * TS89418 00121200

* FOR ISPTASK IN ISPF, SET THE ACTIVE PROGRAM TO BE * TS89418 00121300

* EITHER THE CURRENT PROGRAM, OR THE FIRST NON-APF * TS89418 00121400

* PROGRAM, NOT THE PROGRAM TO WHICH ISPTASK PASSED * TS89418 00121500

* CONTROL. * TS89418 00121600

* * TS89418 00121700

* TS89429 06/27/90 * TS89429 00121800

* CORRECT IPCS COMMAND STRUCTURE FOR ESA 3.1. * TS89429 00121900

* ALLOW BLSUINI1 AND BLSQINI2. * TS89429 00122000

* * TS89429 00122100

* TS89439 06/27/90 * TS89439 00122200

* PREVENT INV-CMD EFFECT WITH TSO/E V2 USING CLISTS. * TS89439 00122300

* V2 BRANCH ENTERS A DEFINED MODULE AND DOESN'T CAUSE * TS89439 00122400

* A PRB TO BE GENERATED. * TS89439 00122500

* * TS89439 00122600

* TS90535 07/12/90 * TS90535 00122700

* ALLOW THE 'EX' FORM OF TSO EXEC COMMAND TO ACCESS * TS90535 00122800

* CLIST LIBRARIES SET AS 'EXEC' FILES, AND NOT GET A * TS90535 00122900

* READ VIOLATION. * TS90535 00123000

145

* * TS90535 00123100

* TS90532 08/14/90 * TS90532 00123200

* PREVENT 913 MESSAGES WHEN JCLCHECK IN PROCESS. * TS90532 00123300

* ALLOWS JCLCHECK TO VERIFY LOADLIBS AND NOT BE * TS90532 00123400

* FLAGGED BECAUSE IDCAMS IS CHECKING LOADLIBS. * TS90532 00123500

* * TS90532 00123600

* TS90878 07/15/91 * TS90878 00123800

* VIOLATION OCCURRING AFTER TS91150 APPLIED. * TS90878 00123900

* PROGRAM ISRPCP APPEARS AS PROGRAM FOR VALIDATION * TS90878 00124000

* * TS90535 00124100

* TS91161 07/16/91 * TS91161 00124300

* MODIFIY THE STRUCTURE PROCESSING TO GET THE PREVIOUS * TS91161 00124400

* RB IF PL/I PROGRAM. * TS91161 00124500

* * TS90535 00124600

* TS91189 07/16/91 * TS91161 00124700

* DEFINE 'EX' AS AN ALIAS FOR 'EXEC' FOR REXX. * TS91161 00124800

* CHANGE WAS MADE ON THE @CMD FOR EXEC. * TS91161 00124900

* * TS90894 00125000

* TS90894 07/22/91 * TS90894 00125100

* DEFINE 'SASXA1' TCB, RB STRUCTURE FOR NEW SAS * TS90894 00125200

* RELEASE 6.06. * TS90894 00125300

* * TS90894 00125500

* TS90537 07/22/91 * TS90537 00125600

* DEFINE JCLCHECK AND EDCHK TCB AND RB STRUCTURES. * TS90537 00125700

* * TS90894 00125800

* TS84746 10/11/91 * TS84746 00125900

* ADD SUPPORT FOR SISTER TCB'S WHEN USING TO SUPPORT * TS84746 00126000

* APPLICATION MANAGER INTERFACE. * TS84746 00126100

* * TS95683 00126200

* TS95683 04/03/92 * TS95683 00126300

* ADD SUPPORT FOR TSPLUS REL 4. DEFINE NEW STRUCTURE * TS95683 00126400

* 'TSOSESS#' AND 'TSOSESS@'. * TS95683 00126500

* * TS95670 00126600

* TS95670 04/03/92 * TS95670 00126700

* ADD ENDEVOR COMMAND STRUCTURE SUPPORT. * TS95670 00126800

* * TS95670 00126900

* TS93164 09/02/92 * TS93164 00127000

* DEFINE ISPICP UNDER ISPF. * TS93164 00127100

* * TS93164 00127200

* TS95935 09/08/92 * TS95935 00127301

* ADD SUPPORT FOR TSO/E PLATCMD. * TS95935 00127401

* * TS93164 00127503

* TS98124 10/01/92 * TS98124 00127603

* ADD SAS 6.06 AND 6.07 PGM SASHOST * TS98124 00127703

* * TS98124 00127803

* TS95948 10/01/92 * TS95948 00127903

* ADD SUPPORT FOR SPIFFY PRODUCT * TS95948 00128003

* * TS95948 00128103

* * 00128200

*** TS89408 00129000

 EJECT 00129010

************************ REL 6.2 ************************** 00129012

* * 00129014

* TA0378A 12/09/93 * TA0378A 00129016

* ADD IKJEXC2 AS ALIAS OF EXEC * TA0378A 00129018

* * 00129020

* TA1028C 06/17/94 Z0006 * TA1028C 00129022

* ADD DB2'S DSN COMMAND STRUCTURE * TA1028C 00129024

* * 00129026

* TA0946C 06/20/94 Z0009 * TA0946C 00129028

* ADD SASXAL7 * TA0946C 00129030

* * 00129032

* TA1389C 06/20/94 Z0009 * TA1389C 00129034

* REMOVE #PLI,#JCLCHK,#EDCHK FROM 2ND SPF @TCB * TA1389C 00129036

* TO REMOVE PGM-PATH INV-CMD VIO FOR JCLCHECK * TA1389C 00129038

* * 00129040

* TA1792C 11/17/94 Z0008 * TA1792C 00129042

* FIX TA1389, ADDED BACK #PLI,#JCLCHK,#EDCHK. * TA1792C 00129044

* SOURCED FIX: REMOVE #ISRPTC FROM SPF @TCB. * TA1792C 00129046

* * 00129048

* END OF LOG. * 00129050

146

*** 00129052

 SPACE 1 00130000

ACF99@RB CSECT ACF 22 00140000

 SPACE 1 ACF 22 00150000

* ACF 310 00160000

* ACF 310 00170000

* SPF COMMAND STRUCTURE ACF 310 00180000

* --------------------- ACF 310 00190000

* ACF 310 00200000

SPF @CMD ISPF,PDF,ISPSTART,MULTISPF,MSPF,ISRPCP,ISPICP TS90878 00210000

* TS93164 00211000

 @TCB (#SPF,#ISPF,#ISPSTAR,#PDF,#ISPICP,#ISRPCP, TS74831X00220000

 #MSPF,#MULTSP), TS74831X00221000

 (#ISPMAIN,#SPFMAIN) TS77767 00230000

 @TCB (#ISPTASK,#TSOSESS), TS95683,TS77851X00240000

 (#MMAIN,#ISRYXDR,#ISPANRC,#IPNRECV, TK52794,TA1389CX00251000

 #PLI,#JCLCHK,#EDCHK, TK52794,TA1389CX00251100

 #ISPXC, TS91161,TK52794,TA1389C,TA1792CX00251200

 #ISPXP), TS91161,TK52794,TA1389C,TA1792CX00251300

 FLAGS=SISTER TS74452 00252000

#MSPF @RB MSPF,CMD=CMD, TK52778X00253000

 NEXT=(RB,#MISPICP,#MISRPCP,#SPFMAIN,#ISPMAIN) TK52778 00254000

#MULTSP @RB MULTISPF,CMD=CMD, TK52778X00255000

 NEXT=(RB,#MISPICP,#MISRPCP,#SPFMAIN,#ISPMAIN) TK52778 00255100

#MISPICP @RB ISPICP,CMD=CMD,NEXT=(RB,#ISPMAIN,#SPFMAIN) TK83561 00256000

#MISRPCP @RB ISRPCP,CMD=CMD,NEXT=(RB,#ISPMAIN,#SPFMAIN) TK83561 00257000

#SPF @RB SPF,CMD=CMD TS77851 00260000

#SPFMAIN @RB SPFMAIN,CMD=CMD TS77851 00270000

#ISPF @RB ISPF,CMD=CMD TS77851 00280000

#ISPMAIN @RB ISPMAIN,CMD=CMD TS77851 00290000

#ISPSTAR @RB ISPSTART,CMD=CMD TS77767 00300000

#PDF @RB PDF,CMD=CMD TS77767 00310000

#ISPICP @RB ISPICP,CMD=CMD TS77767 00320000

#ISRPCP @RB ISRPCP,CMD=CMD TS77767 00330000

#ISRPTC @RB ISRPTC,CMD=(CDE,NEXTRB),END TK52794 00330100

* TS77851 00340000

#ISPTASK @RB ISPTASK,LASTTCB,CMD=(CMD,NEXTTCB) TS77851 00350000

#TSOSESS @RB TSOSESS*,LASTTCB,CMD=(CDE,NEXTTCB) TS95683 00351000

#ISRYXDR @RB ISRYXDR,NEXT=(RB,#ISRYXX),CMD=CMD TS77851 00360000

#ISRYXX @RB ISRY**,NEXT=(RB,#ISPXC,#ISPXP), TS77851X00370000

 LASTTCB,CMD=(CMD,NEXTTCB) TS77851 00380000

#ISPANRC @RB ISPANREC,NEXT=(RB,#ISPXC) TS77851 00390000

#IPNRECV @RB IPNRECV,NEXT=(RB,#ISPXC) TS51563 00391000

#JCLCHK @RB JCLCHECK,RENT,SYSLIB,END,CMD=CDE TS90537 00392000

#EDCHK @RB EDCHECK,RENT,SYSLIB,END,CMD=CDE TS90537 00393000

#ISPXC @RB ********,LASTTCB,RENT,SYSLIB,CMD=(CDE,NEXTTCB), TS89418X00400000

 NEXT=(RB,#JCLCHK,#EDCHK,#ISPXC,#ISPXP) TS90537,TS89418 00401000

#ISPXP @RB ********,END,NORENT,NOSYSLIB,CMD=(CDE,NEXTTCB) TS74452 00410000

* TS91161 00411000

* FOR PL/I ASSIGN THE NAME OF THE CALLING PGM TS91161 00412000

* TS91161 00413000

#PLI @RB IBMBOP**,RENT,SYSLIB,LASTTCB,NEXT=(RB,#ISPXC), TS91161X00414000

 CMD=(CDE,PREVRB) TS91161 00415000

* ACF 310 00420000

* TS74452 00430000

* EXAMINE COMMAND STRUCTURE TS74452 00440000

* -------------------- TS74452 00450000

* TS74452 00460000

#MMAIN @RB LTDMMAIN,NOSYSLIB,CMD=(CDE,NEXTTCB),LASTTCB, TS74452X00510000

 NEXT=(RB,#M###0) TS74452 00510100

#M###0 @RB LTDM###0,NOSYSLIB,CMD=(CDE,NEXTTCB),LASTTCB, TS74452X00510200

 NEXT=(RB,#MS##0) TS74452 00510300

#MS##0 @RB LTDM*##0,NOSYSLIB,CMD=(CDE,NEXTTCB),END TS74452 00510400

* ACF 310 00560000

* ACF 310 00561000

* XC COMMAND STRUCTURE ACF 310 00570000

* -------------------- ACF 310 00580000

* ACF 310 00590000

XC @CMD , R41P166 00600000

 @TCB #XC 00610000

#XC @RB ********,NORENT,END,CMD=CDE 00620000

147

* TS95670 00622000

* TS95670 00623000

* ENDEVOR COMMAND STRUCTURE TS95670 00624000

* ------------------------- TS95670 00625000

* TS95670 00626000

NDVRC1 @CMD , TS95670 00627000

 @TCB #NDVRC1 TS95670 00628000

#NDVRC1 @RB NDVRC1,CMD=(CMD,NEXTTCB),LASTTCB TS95670 00629000

* TS95670 00629100

BC1PSRVL @CMD , TS95670 00629200

 @TCB #BC1PSRV,(#ISPXC,#ISPXP) TS95670 00629300

#BC1PSRV @RB BC1PSRVL,CMD=(CMD,NEXTTCB),LASTTCB TS95670 00629400

* TS95670 00629500

BC1PSATT @CMD , TS95670 00629600

 @TCB #BC1PSAT,(#ISPXC,#ISPXP) TS95670 00629700

#BC1PSAT @RB BC1PSATT,CMD=(CMD,NEXTTCB),LASTTCB TS95670 00629800

* ACF 310 00630000

* TK86602 00631000

* 'PARALLEL TMP CALL' COMMAND STRUCTURE TK86602 00632000

* ------------------------------------- TK86602 00633000

* TK86602 00634000

PTMPCALL @CMD , TK86602 00635000

 @TCB (#EFF76,#PTCALL),NEXT=END TK86602 00636000

#EFF76 @RB IKJEFF76,NEXT=(TCB,#FIBCMDS) TK86602 00637000

#PTCALL @RB ********,CALL,END,NORENT,NOSYSLIB,CMD=CDE TK86602 00638000

* TK86602 00639000

* ACF 310 00640000

* PARALLEL TMP FIB COMMANDS STRUCTURE TK86602 00641000

* ----------------------------------- TK86602 00642000

* TK86602 00643000

#FIBCMDS @TCB #EFF04 TK86602 00644000

#EFF04 @RB IKJEFF04,END,CMD='SUBMIT' TK86602 00645000

* TK86602 00646000

* TK86602 00647000

* QED COMMAND STRUCTURE ACF 310 00650000

* --------------------- ACF 310 00660000

* ACF 310 00670000

QED @CMD Q 00680000

 @TCB (#QED,#Q) 00690000

#QED @RB QED,END,CMD=(CMD,NEXTTCB) 00700000

#Q @RB Q,END,CMD=(CMD,NEXTTCB) 00710000

* ACF 310 00720000

* ACF 310 00730000

* EDIT COMMAND STRUCTURE ACF 310 00740000

* ---------------------- ACF 310 00750000

* ACF 310 00760000

EDIT @CMD E,IKJEBEMA,IKJEBECO 00770000

 @TCB (#EDIT,#E1,#E2) ACF 310 00780000

#EDIT @RB IKJEBE**,END,CMD=(CMD,NEXTTCB) 00790000

#E1 @RB EDIT,END,CMD=(CMD,NEXTTCB) ACF 310 00800000

#E2 @RB E,END,CMD=(CMD,NEXTTCB) ACF 310 00810000

* ACF 310 00820000

* ACF 310 00830000

* CALL COMMAND STRUCTURE ACF 310 00840000

* ---------------------- ACF 310 00850000

* ACF 310 00860000

CALL @CMD SPFCALCP,IKJEFG00 TK86608 00870000

 @TCB (#CALL,#SPFCALL,#KJEFG00,#TSOCALL,$TSOCALL), TS89408X00880000

 FLAGS=SISTER TS84746 00881000

#CALL @RB CALL,CALL,END,CMD=(CMD,NEXTTCB) 00890000

#KJEFG00 @RB IKJEFG00,CALL,END,CMD=(CMD,NEXTTCB) TK86608 00890100

#SPFCALL @RB SPFCALCP,CALL,END,CMD=(CMD,NEXTTCB) 00900000

* CALLED PGM FROM TSO READY MODE TS89408 00900500

#TSOCALL @RB ********,END,CMD=CDE TS89408 00900600

$TSOCALL @RB ********,END,NORENT,NOSYSLIB,CMD=CDE TS89408 00900700

* ACF 310 00910000

* ACF 310 00920000

* ISPCALL COMMAND STRUCTURE ACF 310 00930000

* ------------------------- ACF 310 00940000

* ACF 310 00950000

ISPCALL @CMD , TS77106 00960000

148

 @TCB #ISPCALL TS73712 00970000

#ISPCALL @RB ISPCALL,CALL,END,CMD=(CMD,NEXTTCB) TS73712 00980000

* ACF 310 00990000

* ACF 310 01000000

* VSAPL COMMAND STRUCTURE ACF 310 01010000

* ----------------------- ACF 310 01020000

* ACF 310 01030000

*VSAPL @CMD , R41P166 01040000

* @TCB #VSAPL ACF 22 01050000

* @TCB #VSTAR,FLAGS=SISTER ACF 22 01060000

*#VSAPL @RB VSAPL,CMD=CMD ACF 22 01070000

*#VSTAR @RB ASVPSTAR,NOSYSLIB,END,CMD=(CMD,NEXTTCB) ACF 22 01080000

* ACF 310 01090000

* ACF 310 01100000

* LIST COMMAND STRUCTURE ACF 310 01110000

* ---------------------- ACF 310 01120000

* ACF 310 01130000

LIST @CMD L,IKJEBLI1,IKJEBLI2,IKJEBLP1,IKJEBLM1 XL,XLIST ACF 22 01140000

 @TCB (#LIST,#L1,#L2) ACF 310 01150000

#LIST @RB IKJEBL**,END,CMD=CMD ACF 22 01160000

#L1 @RB L,END,CMD=CMD ACF 310 01170000

#L2 @RB LIST,END,CMD=CMD ACF 310 01180000

*--*TS77534 01190000

* IPCS COMMAND STRUCTURE TS77534 01200000

*--*TS77534 01210000

IPCS @CMD , R41P166 01220000

 @TCB #IPCS,#IPCSSUB TS77534 01230000

#IPCSALL @TCB #IPCSTSO TS89429 01240000

#IPCS @RB IPCS,CMD=CMD TS77534 01250000

#IPCSSUB @RB BLS*****,CMD=CMD,NEXT=(TCB,#IPCSALL) TS89429 01260000

#IPCSTSO @RB BLS*****,CMD=(CMD,NEXTTCB),END TS89429 01270000

* TS89429 01270100

* TS79065 01271000

* TS79065 01271100

* SAS COMMAND STRUCTURE TS79065 01271200

* --------------------- TS79065 01271300

* TS79065 01271400

SASCP @CMD TS79065 01271500

 @TCB #SASCP TS79065 01271600

 @TCB (#SASLPA,#SAS, TS98124,TS90894,TS79065,TA0946CX01271702

 #SASXA1, TS98124,TS90894,TS79065,TA0946CX01271704

 #SASHOST,#SASXAL7) TS98124,TS90894,TS79065,TA0946C 01271706

 @TCB (#SASCALL,#SASLIB) TS79065 01271800

#SASCP @RB SASCP,NOSYSLIB,CMD=CMD TS98124,TS79065 01271902

#SASLPA @RB SASLPA,NOSYSLIB,CMD=CMD TS79065 01272000

#SAS @RB SAS,END,CALL,NOSYSLIB,CMD=(CDE,NEXTTCB) TS79065 01272100

#SASCALL @RB SASCALL,END,CALL,NOSYSLIB,CMD=(CDE,NEXTTCB) TS79065 01272200

#SASHOST @RB SASHOST,END,NOSYSLIB,CMD=(CDE,NEXTTCB) TS98124 01272302

#SASLIB @RB SASLIB,END,CALL,NOSYSLIB,CMD=(CDE,NEXTTCB) TS79065 01272400

#SASXA1 @RB SASXA1,END,CALL,NOSYSLIB,CMD=(CDE,NEXTTCB) TS90894 01272500

#SASXAL7 @RB SASXAL7,END,CALL,NOSYSLIB,CMD=(CDE,NEXTTCB) TA0946C 01272530

* TA1028C 01273000

* TA1028C 01273010

* DB2'S DSN COMMAND STRUCTURE TA1028C 01273020

* --------------------------- TA1028C 01273030

* TA1028C 01273040

DSN @CMD , TA1028C 01273050

 @TCB #DSN TA1028C 01273060

 @TCB #ECP10,#DB2MASK TA1028C 01273070

#DSN @RB DSN,CMD=CMD TA1028C 01273080

#ECP10 @RB DSNECP10,CMD=CMD TA1028C 01273090

#DB2MASK @RB ********,END,NORENT,NOSYSLIB,CMD=(CDE,NEXTTCB) TA1028C 01273100

* TS88952 01275000

* TS88952 01275100

* REXX COMMAND STRUCTURE TS88952 01275200

* --------------------- TS88952 01275300

* TS88952 01275400

EXEC @CMD EX,IKJEXC2 TA0378A TS91189 01275500

 @TCB (#EXEC,#EX,#EXC2),FLAGS=SISTER TA0378A TS89439 01275600

#EXEC @RB EXEC,END,CMD=(CDE,NEXTTCB) TS90535 01275700

#EX @RB EX,END,CMD=(CDE,NEXTTCB) TS90535 01275800

149

#EXC2 @RB IKJEXC2,END,CMD=(CDE,NEXTTCB) TA0378A TS90535 01275810

* LINE DELETED BY TS89439 01275900

* TS95948 01276003

* SPIFFY CMD TS95948 01276103

* ---------- TS95948 01276203

* TS95948 01276303

SPIFFY @CMD , TS95948 01276403

 @TCB (#SPIFFY) TS95948 01276503

#SPIFFY @RB SPIFFY,LASTTCB,CMD=(CDE,NEXTTCB) TS95948 01276603

* TS95935 01276701

* TS95935 01277001

* SUPPORT FOR TSO/E PLATCMD TS95935 01278001

* ------------------------- TS95935 01279001

* TS95935 01279101

IKJFCP03 @CMD , TS95935 01279201

 @TCB #KJFCP03,FLAGS=SISTER TS95935 01279301

#KJFCP03 @RB IKJFCP03,LASTTCB,RENT,SYSLIB,CMD=(CDE,NEXTTCB), TS95935X01279401

 NEXT=(RB,#JCLCHK,#EDCHK,#PLI,#ISPXC,#ISPXP) TS95935 01279501

 EJECT ACF 310 01280000

* ACF 310 01290000

* COMMAND CROSS REFERENCE TABLE. ACF 310 01300000

* ACF 310 01310000

 @CXREF 01320000

 SPACE 2 01330000

 @ID , 01340000

 SPACE 1 01350000

 MEND ACF 310 01360000

 ACF99@RB ACF 310 01370000

 END , 01380000

150

Appendix D: Process Authentication

A method for authenticating that some other process is not masquerading as a process

previously authorized to invoke another process, is essential to PPTM. This section outlines

some possible to explore in future research for adding process authentication to the resulting

PPTM solution model. This present research assumes all processes presented to the scheduler

have been correctly authenticated.

An authentication verifies identity. Traditional authentication methods determine whether a

user or resource is what it claims to be. Authentication of a user is traditionally determined by

one or more factors such as ownership, knowledge or inheritance [Harr03]. Ownership usually

translates into ―something you have‖ such as a certificate, token, key or some such object that is

uniquely issued to the user. Knowledge usually translates into ―something you know‖ such as a

password, the answers to a series of personal questions or an answer to a challenge. Inheritance

usually translates into ―something you are‖ such as a fingerprint or some other biometric

signature; something that is physically unique the user. These factors were intended for user

authentication and are not all appropriate to authenticate a process. For example, a process

cannot ―know‖ something and therefore cannot be authenticated by this factor.

Processes can be authenticated by inheritance and ownership factors. For instance, a process

can have a certificate, thereby authenticated by ―what it has.‖ A process can also be

authenticated by ―what it is‖ using process characteristics, such as size, number of invocations or

an associated hash value.

Additional authentication factors have emerged and are occasionally applied to users: social

networking, web-trust, location-based and time-based [Harr03]. The authentication of processes

151

can use some of these factors, especially location-based and time-based factors as good

indicators in authenticating processes.

In a process invocation sequence, each process must be authenticated to verify that the

process is assigned the appropriate symbol from the alphabet . The process name alone is not

sufficient for authentication, since a process can masquerade as another process by using the

same name. This is an area of the research that has not been addressed by other researchers. The

three factors that would most likely best serve process authentication would be ownership,

inheritance and location-based.

D.1 Ownership Authentication Factor

Process authentication could be effected using the ownership factor, if all processes had

certificates as do some JAVA processes using JARS. However, this entails that all software

development be required to start using digital certificates whenever a module is created, and this

would be difficult to do.

D.2 Inheritance Authentication Factor

Using the inheritance factor in process authentication has potential. A digital hash such as

SHA2, SHA1 or MD5 could be taken of a process at the time it is identified as a process and first

scheduled for execution in a process invocation sequence. Then, whenever a process using the

same name is encountered subsequently, a digital hash can be taken and compared to the hash

taken when that named process was initially determined to be a normal process in a valid

invocation sequence. If these two hashes match, then there is a very high likelihood that it is the

same process. The only problem with this approach is that hash is CPU intensive and could

152

cause performance problems, although in some applications system criticality might justify the

cost of additional hardware for this purpose.

The inheritance method can be found as a feature in Computer Associates CA Access

Control
®
 software. CA Access Control

®
 [CAA08] creates hashes of all executables in the

system and authenticates them before they execute. As maintenance is applied to these

processes, new hashes are taken. Using CA Access Control
®
 with the solution model described

in this research could satisfy the authentication requirement.

D.3 Location-based Authentication Factor

The third method usable for process authentication is location-based. Identifying the

directory from which a process is loaded is a good authentication method, if good access control

is followed. If directories are well managed, then a directory from which a process is loaded is a

good indication that the process being executed is the process intended. A process loaded from

another directory would suggest that the process differs from the one intended to run. This is a

preferred method, as it would not take much additional processing time to determine.

Unfortunately, the Linux and UNIX OS do not save the name of the directory structure from

which a process was loaded. The OS loader is independent of the OS scheduler. At the time the

OS loads a file (for execution or otherwise) it does not know if the file is a data file or one that is

used by the scheduler for execution. In the scheduler, the directory from which the process was

loaded is not available in any of the data areas. Therefore, to authenticate a process with this

method in these OS would require a modification of the OS kernel.

153

Appendix E: Is
 = { }?

Because the DFA is built incrementally, it is not known at any time t whether L(DFAt) = Lv.

However, the strings in the set called the white list are in the non-empty intersection L(DFAt)

Lv. Because the white list is also built incrementally it cannot be claimed that the set of strings

called the white list is the set of stings L(DFAt). Furthermore, it is not known whether the set

L(DFAt) merely forms a non-empty subset of Lv. L(DFAt) could contain a set of strings that are

not a subset of Lv. That is, it is not known whether there exists another non-empty subset of

strings both in L(DFAt=5) and outside Lv. More formally, it is not known whether

 = { }. This remains an open theoretical question and a topic for future research, as

described in chapter 9.

The PPT model uses domain knowledge both to build DFAt and to determine whether strings

known to be in L(DFAt) are also in Lv. In this way the PPT model incrementally builds the non-

empty intersection of L(DFAt) and Lv called the white list. However, the PPT DFA may also

accept sequences that are invalid.

10.4 Other Approaches Making Assumptions similar to Is
 = { }

Hofmeyr-Forrest [Hof98] and Ball-Larus [Ball92] assume that inferred strings are valid and

recognizes this as an unproven assumption in later research [Ball96] [Laru99]. Hofmeyr-

Forrest‘s n-gram approach used substrings of process invocation sequences to create patterns.

Empirically they discovered that an n-gram of eleven processes was sufficient to discover

anomalies in process invocation sequences. However, they did not validate whether the prefix n-

gram preceding or the suffix n-gram following an n-gram were authorized.

154

Ball-Larus make the same assumption [Ball92]. They do not entertain the notion that the

structure might infer paths that have not have been encountered. Ball-Larus use edge profiling to

count the number of times a process path has been used. They hadn‘t identified 1) that they‘ve

made an assumption or 2) that once path between two processes is valid it is always valid

regardless of whether or not there are prefix paths or suffix paths that were ever encountered.

Larus discovers this assumption in later research [Laur99] and suggests that the whole process

invocation sequence be validated. Over a series of articles he offers a number of solutions, such

as process sequence probability and edge profiling.

E.2 Impact of the Assumption

One of the reasons why mapping valid process invocation sequences are so difficult to

profile is due to all the possible invocation sequences that must be generated by a running a

critical system as if it were in production. Each invocation sequence can have any number of

variations, such as invoking processes for system or application services. These all produce

multiple variations of an invocation sequence and must all be profiled.

It is almost impossible to profile all the possible valid invocation sequences due the

complexity of all the various code paths in an application. Take for example an application that

has error recovery processes that only gets invoked if an error occurs, or a process that only gets

invoked if specific data is presented to the invoking process. These are process invocation

sequences that are valid, but are not be profile-able in every case.

155

Figure E-1: Process Invocation Example

Using the potential DFA shown in figure E-1, assume that sequences p1p2p3 and p1p2p5 are

valid process invocation sequences and that P2 invokes P5 only in rare occasions when an error

occurs. The string p1p2p3 and p1p2p5 are both profiled by the PPT model because P2 was caused

to fail. Also consider that p4p2p3 is profiled, but forcing p4p2 to fail so it profiles the valid

process invocation sequence p1p2p5 is difficult and therefore was not profiled because P2 could

not be forced to fail when invoked by P4. Using domain knowledge, it is known that p1p2p5 is a

valid process invocation sequence, but it was unsuccessfully profiled. In the PPT model

assumption, this sequence is accepted by the language and considered a valid process invocation

sequence because p4p2p5 is inferred. In this case the inferred process sequences, using domain

knowledge, are valid. It is accepted by figure E-1, and if
 proves true, all process

invocation sequences accepted by PPTM are valid whether or not the sequences was previously

encountered or inferred. But what if domain knowledge were to decide that p4p2p5 is not valid?

Because the answer to this question requires domain knowledge, it is unlikely a purely

theoretical solution to the question would be satisfactory.

Vita

Robert Andrew Dahlberg was born on May 27, 1954 in Alameda County, California at the U.

S. Naval Hospital in Oakland, and is an American citizen. He graduated from Hononegah High

School in Rockton, Illinois in 1972. He received a Bachelor of Arts from Western Illinois

University, Macomb, Illinois in Philosophy and Comparative Religious Studies in 1976. He also

received a Masters of Arts in Philosophy and a Master of Science in Computer Science, in 1982

from Northern Illinois University, DeKalb, Illinois. He subsequently became a Computer

Science instructor in 1983 and taught 300 and 400 level courses in assembly language, PL/I,

analysis and design, and JCL & Utilities for 4 semesters.

Bob has spent the majority of his career as a security professional specializing in access

control, authentication, security designs and vulnerability assessment. He started his

professional security career in 1984 at SKK, Inc., the creator of ACF2
®
, in Rosemont, Illinois

where he served as a Security Software Developer and was first exposed to the concept of

program pathing presented in this dissertation. SKK was later purchased by Computer

Associates International in 1986 where Bob served as Manager of Software Development for

ACF2
®
, Examine

®
, Pan-Audit

®
, and PRMS

®
 for 8 years.

Bob became a Security Consultant to private industry in 1994 where he spent the next 9 years

converting security system, developing security software solutions and assessing security

systems. During that time, Bob started his own consulting company – Aware Computing

Services, Inc. He worked as a consultant and developed security software designs for JME

Software, Vasco Data Security International Inc., Computer Associates, EKC Inc., Blockade

Systems Corporation, and Vanguard Integrity Professionals, Inc. Some companies Bob has

consulted at are USB Swiss Bank, Sempra Energy, Ameritech, Cigna, TransUnion, Brown

University, First National Bank of Chicago, NBD Bank, Wells Fargo and the Federal Reserve

System.

Bob is currently full time employee at the Federal Reserve‘s National IT (FRIT) organization

at the Federal Reserve of Richmond, where he presently serves as the National IT Design

Review Board Chairman and Senior Technology Advisor. In his tenure at FRIT he also served

as a Security Engineer for 5 years working on national IT applications and network infrastructure

for the Federal Reserve.

Bob is a PhD student at Virginia Commonwealth University‘s School of Engineering in the

Computer Science Department. Where in addition to his PhD work, he also works part time in

Dr. Primeaux‘s Information Security Lab as a Senior Researcher. His research interest is

primarily in the areas of Trusted Systems and Access Control, but is also extends to being

actively involved in Computer Forensics for Apple‘s MAC and Security Design Methodologies.

	Virginia Commonwealth University
	VCU Scholars Compass
	2011

	THE PROGRAM PATHING TRUST MODEL FOR CRITICAL SYSTEM PROCESS AUTHORIZATION
	Robert Dahlberg
	Downloaded from

	tmp.1404570246.pdf.A7GJf

