
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2008

Performance Analysis of a Light Weight Packet
Scanner
Paras Gandhi
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/1635

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51290744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1635?utm_source=scholarscompass.vcu.edu%2Fetd%2F1635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Performance Analysis of a Light Weight Packet Scanner

A thesis submitted in partial fulfillment of the

requirements for the degree Master of Science at Virginia

Commonwealth University

By

Paras Gandhi

Director: Dr. Ju Wang

Assistant Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

December 2008

ii

Acknowledgements

First and foremost, I would like to thank Dr. Wang for

being such a great advisor and a great friend. I would also

like to thank Dr. Choi for always answering any questions I

had and helping me understand the theoretical aspects of

networking. I would like to give my special thanks to Dr.

Sarkozi for providing me with all the resources I asked for

and always giving me the right advice as a professor and

most importantly for the precious fatherly advice which I

needed most.

In addition, I would like to thank the faculty of the

Computer Science Department for facilitating the excellent

academic experience that I have had here at Virginia

Commonwealth University.

Finally, I would like to thank Vrushali, Ashwin and Ravi

and all my friends and parents for the great support that

they have provided me through the course of my studies.

iii

Table of Contents

Acknowledgements ... ii

List of Figures ... v

Abstract ... vi

1. Introduction ... 1

2. Major Entities 6

2.1 Soekris net4801: 6

2.2 Installing an Operating System on Net4801: 9

2.2.1 Installing MiniBSD: 9

2.2.2 Installing NanoBSD: 10

2.3 FreeBSD Virtual Machine: 12

2.4 NanoBSD Image: 16

2.4.1 Source Code Patch: 17

2.4.2 Custom Kernel Configuration File: 17

2.4.3 Adding extra packages: 18

2.4.4 Configuration Options: 18

2.4.5 Custom Functions: 20

2.5 Intrusion Detection System: 21

2.5.1 Network Based IDS: 22

2.5.2 Host Based IDS: 23

2.5.3 Stack Based IDS: 24

3. Experiment Setup and Results: 26

iv

3.1 Graphs: .. 29

4. Conclusion .. 36

Bibliography ... 37

Appendix A – Configuration Files and Source Code 39

v

List of Figures

Figure 1. Soekris net48014

Figure 2 net4801 ..6

Figure 3 Virtual Machine System14

Figure 4 VMware Workstation running Ubuntu as a guest OS14

Figure 5 Multiple FreeBSD Virtual Machines15

Figure 6 Experiment Setup Without Net480127

Figure 7 Experiment Setup With Net480127

Figure 8 Five Threads (a) Without IDS (b) With IDS29

Figure 9 Ten Threads (a) Without IDS (b) With IDS30

Figure 10 Fifteen Threads (a) Without IDS (b) With IDS31

Figure 11 Twenty Threads (a) Without IDS (b) With IDS32

Figure 12 Twenty Five Threads (a) Without IDS (b) With IDS33

Figure 13 Fifty Threads (a) Without IDS (b) With IDS34

vi

Abstract

Performance Analysis of a Light Weight Packet Scanner

By Paras Gandhi

A thesis submitted in partial fulfillment of the

requirements for the degree Master of Science at Virginia

Commonwealth University

Virginia Commonwealth University, 2008

Director: Dr. Ju Wang, Assistant Professor, Department of

Computer Science

The growth of networks around the world has also given rise

to threats like viruses and Trojans. This rise in threats

has resulted in counter measures for these threats. These

counter measures are in the form of applications called

firewalls or IDS. The incorporation of these applications

in the network results in some delay in communications. The

aim of the experiment in this thesis is to measure the

delay introduced by such a firewall in the best case and

compare it with the communication done on a network without

such an application. These experiments are done using a

special miniature computer called the net4801 with an

embedded operating system and the packet scanning

application (firewall or IDS) executing on it.

1

1. Introduction

In today’s world of technology and internet, network

security is a very critical issue. For Instance, there are

hundreds of new viruses, Trojans and other types of

attacks. Viruses are small programs that are usually

intentional and harmful but sometimes they are not

intentional. All viruses however small they may be, have

the capability of affecting day-to-day life. There are

other types of attacks made by someone. These computer

attacks only corrupt a system’s security in very specific

ways. For example, an attacker might be able to read some

files from a remote computer but not change them. Some

types of attacks might enable the attacker to shutdown the

remote computer but not access the files on it. All these

types of attacks result in violation of availability,

confidentiality, integrity, and control. These violations

are described below. (Rebecca Bace 2001)

• Confidentiality: Information is available to a user

who is not authorized to access it.

2

• Integrity: An attack which allows the attacker to

change the state of the remote computer system or

affect the data passing through the system.

• Availability: An attack causes the remote system or

the resources on that system to be unavailable to the

authorized user whenever he/she needs it.

• Control: An attack which enables the attacker to grant

himself/herself, unauthorized control over the remote

system. This privilege enables a subsequent

confidentiality, integrity, or availability violation.

(Rebecca Bace 2001)

To combat these computer violations, there are many

different tools and programs available in the market today.

We call these tools or programs Intrusion Detection Systems

(IDS) or Firewalls. Some of them are free and others are

not. When a computer is connected to a network, the Network

Interface Card (NIC) receives and sends packets of

information from and to other devices on the network. Each

of these packets could potentially contain viruses or

malicious scripts, therefore these packets need to be

scanned for such entities. When a packet is scanned for

3

viruses, it is held up for a while before it is used in any

way. This introduces a delay in the packet use. (Lau 2000)

For example when we upload a file to a web server, before

the server stores the file on the disk, its firewall scans

the file packets for viruses. If the file contains a virus,

then it is blocked thus saving the server from being

infected. Just to see how much delay, on an average is

introduced by such a packet scanning software, we conducted

an experiment. Multiple files are uploaded to a web server

using multiple threads but without any scanner. The time it

took to upload each of the files was recorded. Next, the

same size files were uploaded, but with a packet scanner in

the network.

For our experiment, we use a device built by

Soekris Engineering (Soekris 2004) as a special computer in

the network, which scans all the packets sent out on the

network and blocks ones with a virus on them.

4

Figure 1 Soekris net4801

 The actual packet scanning software on net4801 was made

available by Dr. Ju Wang. The operating system that was

installed on this computer was a stripped down version of

FreeBSD called NanoBSD (BSD 1995). This operating system

was installed on the net4801 (Soekris 2004) using a FreeBSD

Virtual Machine installed on a regular PC. An image of

NanoBSD was made first on the Virtual Machine (VMware 2008)

and then this image was transferred on a 512 MB CF card.

The kernel of this image was compiled with only the minimum

required modules and “user-land” utilities and programs.

This was all done using a Linux shell script (Gerzo 2006).

Once the net4801 computer was up and running, we prepare

another regular PC with Linux running on it. The Linux

computer had a web server running on it which in turn had a

php script which allowed clients to upload files to it.

5

We then prepared a third regular PC with a Linux Virtual

Machine running on it. We installed a special program

called Curl on this machine. Curl is a program which allows

the user to transfer files from the command line.

(Stenberg 2004) It actually simulates a users actions on a

web form such that the server does not know that the file

is coming from a command line argument and not the actual

web form. The user directly types in the hostname with the

script name and the file he/she wants to upload.

6

2. Major Entities

This chapter contains all the major entities of

the experiment, the experiment setup and the results.

2.1 Soekris net4801:

Figure 2 net4801

 Figure 2 represents a small size, cost effective

and a very advanced computing device which has a 266 MHz

7

586 class processor from AMD. It has three 10/100 Mbit

ethernet ports, 128 Mbyte SDRAM and we put in a 512Mb CF

card for programs and data. This computer is best used for

a firewall or a VPN Router or even an Internet Gateway. It

can also be used for other purposes as a communication

appliance. The following are the hardware specifications

for the experimental computer :

• 233 to 266 MHz NSC SC1100 single chip processor

• 128 Mbyte SDRAM, soldered on board

• 4 Mbit BIOS/BOOT Flash

• Compact FLASH Type I/II socket

• UltraDMA-33 interface with 44 pins connector for 2.5"

Hard Drive

• 3 10/100 Mbit Ethernet ports, RJ-45

• 2 Serial ports, DB9 and 10 pins header

• USB 1.1 interface

• Power LED, Activity LED, Error LED

• Mini-PCI type III socket. (t.ex for optional hardware

encryption.)

8

• PCI Slot, right angle 3.3V signaling only, dual PCI

slot option planned.

• 12 bit general purpose I/O, 20 pins header

• Temperature and voltage monitor

• Hardware watchdog

• Board size 5.2" x 5.7"

• Power using external power supply is 6-20V DC, max 15

Watt

• Option for 5V supply using internal connector

• Operating temperature 0-60 °C

The following are the software specifications :

• comBIOS for full headless operation over serial port

• PXE boot rom for diskless booting

• Designed for FreeBSD, NetBSD, OpenBSD and Linux

• Runs most real-time operating systems (Soekris 2004)

As previously noted, a stripped down version of FreeBSD

called NanoBSD running on the net4801 as the operating

system. It also has our firewall software running as a

daemon program on it.

9

2.2 Installing an Operating System on Net4801:

 Installing an operating system on this computer

could be done in two ways. We followed both.

• Install a version of FreeBSD called MiniBSD (Courtney

2005).

• Install a version of FreeBSD called NanoBSD.

2.2.1 Installing MiniBSD:

 This is a manual process and it has a lot of room

for error. It is also very difficult to reproduce. In this

method we created a FreeBSD “jail” which was actually

another installation of the same operating system within

itself. We then configured the remaining operating system

for compatibility with our net4801 by following the steps

shown below (Courtney 2005).

• Create Directory Structure

• Rebuild the boot loader

• Building Dynamic Executables

10

• Copying the binaries over

• Configuring boot files

• kernel compile

• Copying the libraries

• Populating /etc

• Building the binary image

• Writing the binary image to the media

• First Boot

• Add the desired shell(s)

The generic kernel could also work on net4801 but we used a

very specific kernel to save space.

2.2.2 Installing NanoBSD:

 The second method for installing a FreeBSD based

operating system on net4801 is installing NanoBSD. The

biggest advantage of NanoBSD over other operating systems

is that it can be installed using only one shell script.

Although it is not very easy for first timers, it is

simpler than most other methods. NanoBSD is suitable for

11

embedded applications and can be installed on a CF card.

The features of NanoBSD include the following :

• Ports and packages are the same in FreeBSD and NanoBSD

i.e. all the applications that can be installed on

FreeBSD can also be installed on NanoBSD.

• No missing functionality, i.e. Everything that you do

on FreeBSD can also be done in NanoBSD unless the user

specifically removes a part of the functionality from

the NanoBSD image while creating it.

• Everything is read-only at run-time i.e. no data can

be changed when the operating system is running.

Therefore when there is a sudden power outage or any

such failure which can potentially hamper the file

system, it won’t affect our NanoBSD file system.

• Easy to build and customize i.e. Making use of just

one shell script and one configuration file it is

possible to build reduced and customized images

satisfying any arbitrary set of requirements.

Two directories on the root partition are md (malloc

disks). They are in the main memory rather than the CF

12

card. The /etc directory and the /var directory. The /etc

directory contains all the setting files which are actually

scripts for various programs. If one wants to make any

changes to any of these files, he/she has to mount a

special directory called /cfg and copy the changed files

from /etc to /cfg and then unmount /cfg. What actually

happens is that all the files in the /etc and /var

directories are lost when the machine reboots because they

are in the main memory so there has to be some place on the

CF card that has to have the same information. On every

startup, these files are fetched from the /cfg directory

and put in the memory (Gerzo 2006).

2.3 FreeBSD Virtual Machine:

 A NanoBSD image is built from a FreeBSD Virtual

Machine. Virtual Machines are complete operating systems

running on top of another operating system but as a guest

(VMware 2008). There are Virtual Machine applications which

are available in the market. Two such popular applications

are MS Virtual Server and VMWare Server. The way it works

is this, in a regular PC running Windows, we install a

13

Virtual Machine server. In our case we used the freely

available VMware server. We then install a FreeBSD guest in

that application. The server is, infact, a complete

computer emulated in software. This emulated computer

excites programs just like a real computer. Today, there

are processors which are available which support virtual

machines. These processors have specialized architectures

which are conducive for virtual machines. These Virtual

Machines have many advantages, the biggest being cost. At

the price of a simple PC that people use in day-to-day

life, a Virtual Machine enterprise software can be bought.

This software can be used to install multiple guest

operating systems which act as different kind of servers

thus saving the cost of different hardware for each one of

those servers. A sample schematic of such a configuration

would look something like this:

14

Figure 3 Virtual Machine System

Figure 4 VMware Workstation running Ubuntu as a guest OS

15

The above picture shows a guest operating system (Ubuntu)

installed in VMware Workstation which is an enterprise

virtual machine software. This is a picture of one guest

running in a tab as seen in the picture. Just like this,

multiple guest operating systems can be running on the same

physical computer. In our case we install a FreeBSD Virtual

Machine instead of other guests. The following image shows

multiple FreeBSD virtual machines running on VMware Server.

Figure 5 Multiple FreeBSD Virtual Machines

16

2.4 NanoBSD Image:

 Once we had the FreeBSD virtual machine up and

running we had to create a NanoBSD image. It was created

using a simple script which could be found in

/usr/src/tools/tools/nanobsd directory. Executing this

script create a NanoBSD image in the /usr/obj/nanobsd.full

directory. In our case we had certain modifications done to

the source code of FreeBSD to accommodate the packet

scanning software. We also used a customized kernel

configuration file to strip off the modules which we did

not need and we also added certain packages in the image

which were not a part of the standard installation. We made

the following changes to the FreeBSD installation and the

NanoBSD image which were out of the ordinary:

• Change a small Part of the source code

• Use a custom kernel configuration file

• Add extra packages which are needed for later use

17

2.4.1 Source Code Patch:

 There were some parts of the FreeBSD source code

that our packet scanner would use and we had to modify that

for the packet scanner to work correctly. Therefore we

applied a patch to the FreeBSD source code. This patch was

applied in the /usr/src directory and the patch file would

take care of the rest of the file paths with respect to the

current directory.

2.4.2 Custom Kernel Configuration File:

 The generic kernel for FreeBSD had many modules

which were not useful when you installed the operating

system on net4801 for example, the display is not available

on the net4801, but the FreeBSD kernel had modules for

display. The USB 2.0 module was not useful because the

net4801 had only a USB 1.1 available. Hence all these

unwanted modules were removed and a custom kernel

configuration file was created.

18

2.4.3 Adding extra packages:

 The NanoBSD image was customized to accommodate

extra packages and the kernel configuration file. This

customization could be done using two ways:

• Configuration options

• Custom functions

2.4.4 Configuration Options:

 With the configuration options it is possible to

configure the options which are passed to the buildworld

and installworld stages of the image formation. In the

buildworld stage, the FreeBSD source which was now modified

using the patch, was compiled along with other userland

programs which were necessary. In the installworld stage

the compiled binaries are injected into the image. These

options can enable the user to cut down the size of the

NanoBSD image to as low as 64MB and even further down until

the image consists of only the kernel and a few more files

which are absolutely necessary for the user to interact

with the OS. A separate configuration file has to have the

19

various configuration options, the most important of those

being :

• NANO_NAME -- Name of build (used to construct the

workdir names).

• NANO_SRC -- Path to the source tree used to build the

image.

• NANO_KERNEL -- Name of kernel configuration file used

to build kernel.

• CONF_BUILD -- Options passed to the buildworld stage

of the build.

• CONF_INSTALL -- Options passed to the installworld

stage of the build.

• CONF_WORLD -- Options passed to both the buildworld

and the installworld stage of the build.

• FlashDevice -- Defines what type of media to use.

Check the FlashDevice.sub file for more details.

These options are also there in the nanobsd.sh file but

they have the defaults assigned. The options in the custom

configuration file are used to override the default values.

20

2.4.5 Custom Functions:

 It is possible to apply the finishing touches to

the NanoBSD image using customized shell functions. One can

do almost anything desired to the image right from adding

packages to adding users and assigning passwords which is a

bit of a security loop hole in the FreeBSD architecture. A

few examples of such functions are:

• cust_foo () (

 echo "bar=topless" > \

 ${NANO_WORLDDIR}/etc/foo

)

customize_cmd cust_foo

• cust_etc_size () (

 cd ${NANO_WORLDDIR}/conf

 echo 30000 > default/etc/md_size

)

customize_cmd cust_etc_size

21

• install_packages () (

mkdir -p ${NANO_WORLDDIR}/packages

cp /usr/src/tools/tools/nanobsd/packages/*

${NANO_WORLDDIR}/packages

chroot ${NANO_WORLDDIR} sh -c 'cd packages; pkg_add -v

*;cd ..;'

rm -rf ${NANO_WORLDDIR}/packages

)

customize_cmd install_packages

We also made one very important change to the nanobsd.sh

file instead of keeping the partitions read only, we

changed it to read write for our convenience. This can

always be changed back to the usual read only format.

Once all this is done, we get the net4801 up and running

and we install the packet scanning software on it.

2.5 Intrusion Detection System:

 Intrusion Detection Systems are softwares which

look for attacks signatures. These signatures are specific

22

patterns which are usually indications of malicious intent.

There is usually a promiscuous node in the network, which

looks out for these signatures. There are basically three

types of IDSs (Liang 2000) (Marinova-Boncheva 2007). These

are:

• Network Based

• Host Based

• Stack Based

2.5.1 Network Based IDS:

 Network Based IDS use the packets on a network as

their data source. They work on the network at real time as

packets travel on the network. All the network traffic goes

through a first level of filter. This filters out all the

unsuspicious traffic. This helps in increasing the

performance of the network because all the known un-

malicious traffic is filtered out. An example of this would

be the following scenario. Consider a node on a network

which is suppose to receive a hundred packets, which

together are an executable file. Five packets out of these

23

contain malicious scripts. The first level of filters

recognizes these packets and let the remaining ninety-five

packets through. The IDS can be configured so that all

future packets arriving from the location of the previous

hundred packets can be filtered out before the source is

repaired and cleaned according to requirement. It is very

easy to mis-configure the IDS so that it blocks more

traffic than what is required. Once all the above is

accomplished, an attack recognition module is brought into

picture which recognizes the actual attack packets and

finally a third module which is the action module is

invoked which takes actions based upon the IDS

configurations, for example, it can create a log of the

packet or show an alert on a terminal. Hence in our

scenario, by the time the ninety-five non-malicious packets

are available on the destination, the remaining five

packets are acted upon and the user knows what happened to

the remaining five packets.

2.5.2 Host Based IDS:

 This type of IDS came into existence long before

networks were prevalent. They work on one simple

24

fundamental principle, that is, audit logs. The operating

system creates logs of all the activities on the host.

These logs are reviewed from time to time for any

suspicious activity. These days, all the operating systems

have a facility. The only difference between now and a few

years back is that these systems have become much more

automated and sophisticated with the detection and

responses. The IDS monitors these logs continuously and

responds to new activity or suspicious activity in near

real-time. Some host based IDS can also monitor specific

ports and alert when some specific port is accessed any

time.

2.5.3 Stack Based IDS:

 This type of IDS is the newest. This type works

very closely with the TCP/IP stack. The packets are

monitored closely as they traverse the different layers of

the OSI reference model. This allows the IDS to recognize

malicious packets before they the Operating System or the

application has a chance to process them.

25

Our packet scanning software is primarily a network based

IDS. We now are ready to conduct the test to measure

performance of this IDS. We check how much time it takes to

upload a file from a client to a server without any such

IDS and then we do the same with our packet scanner in the

network. The whole experiment setup and results are

explained in the next section.

26

3. Experiment Setup and Results:

 As stated earlier, the main goal of this

experiment was to check the performance of a lightweight

packet scanner, which scanned packets in real time. To do

this we setup two different experiment ideas. In the first

experiment, we tried uploading some files based on an

interlaid connection from the client to the server via the

NET4801 computer and hence via the packet scanner. Where

as, in our next experiment, the file transfer was done by

eliminating the NET4801 computer and instead directly

connecting the client to the server. The client and the

server were connected to a DHCP switch in the case where

there was no NET4801 in the network. In the case where we

had the network packets go through the NET4801 computer on

the network, we connected the server to the switch, we

connect the NET4801 to the switch and we connect the client

to the NET4801. This way all traffic had to go through the

NET4801 computer and hence the packet scanner. Both the

setups are explained in the diagrams below:

27

Figure 6 Experiment Setup Without Net4801

Figure 7 Experiment Setup With Net4801

28

We first set the network up without the NET4801 as shown in

figure 6. Once this was done, we executed a program on the

client, which uploaded files to the web server by calling a

PHP script. This program uploaded the specified number of

files to the server in parallel mode using the pthread

library. We calculated the time taken by each thread to

upload its respective file and we plotted the graphs of the

thread number Vs time taken by the thread. We did this for

a variable number of files both with the NET4801 and

without it. The results are explained with the help of

graphs for each different setup in the later section. The

packet scanner was supposed to perform better in low

traffic conditions and the performance eventually degrades

as the network traffic increases. The first setup had five

threads to upload five files of 2MB each. First, we did it

without the NET4801 and next we did it with NET4801. To

summarize the above mentioned setup and the results, the

following graphs are shown.

29

3.1 Graphs:

Number of Files: 5

Figure 8 Five Threads (a) Without IDS (b) With IDS

30

Number of Files: 10

Figure 9 Ten Threads (a) Without IDS (b) With IDS

31

Number of files: 15

Figure 10 Fifteen Threads (a) Without IDS (b) With IDS

32

Number Of Files: 20

Figure 11 Twenty Threads (a) Without IDS (b) With IDS

33

Number Of Files: 25

Figure 12 Twenty Five Threads (a) Without IDS (b) With IDS

34

Number Of Files: 50

Figure 13 Fifty Threads (a) Without IDS (b) With IDS

35

As clearly seen form the above graphs, the time taken by

each thread increses with the introduction of an IDS in the

network. Also, since the IDS was a lightweight software,

that is, it worked well under low traffic conditions, the

performance was better with fewer threads.

36

4. Conclusion

The performance of a network with a firewall in it

definitely degrades. In this experiment the firewall was

only for name sake. That is, although the packets were

scanned by the firewall, it was effectively, only parsing

the packet. There was no signature database to actually

compare the signature of the packet to the signatures in

the database. The performance of the network was still

degraded by the packet scanner. If the comparison mechanism

were to be involved, the performance of the packet scanner

and hence the network would be further hampered as in

addition to parsing the packet there would also be

comparison.

37

Bibliography

Courtney, David. 8 2005.

https://neon1.net/misc/minibsd.html#t1 (accessed 2007).

Distrubution, Berkley Software. FreeBSD Handbook. 1995.

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/

(accessed 2008).

Fanglu Guo, Tzi-cker Chiueh. "Traffic Analysis: From

Stateful Firewall to Network Intrusion Detection System."

Stony Brook: Stony Brook University.

Gerzo, Daniel. "Introduction to NanoBSD." The FreeBSD

Documentation Project. 2006.

James Harris, Americo J. Melara, Hugh Smith and Phillip

Nico. Performance analysis of the Linux firewall in a host.

California Polytechnic State University, 2002.

Juan Pablo Pereira. Comparison of Firewall, Intrusion

Prevention and Antivirus Technologies. Sunnyvale: Juniper

Networks, Inc., 2006.

Kostic, Chris, and Matt Mancuso. Firewall Performance

Analysis Report. Hanover: Computer Sciences Corporation,

1995.

Lau, Michael R. Lyu and Lorrien K. Y. "Firewall Security:

Policies, Testing and Performance Evaluation." Shatin: The

Twenty-Fourth Annual International Computer Software and

Applications Conference, 2000.

Liang, Brian. Intrusion Detection Systems. Sovereign House,

2000.

Marinova-Boncheva, Vera. "A Short Survey of Intrusion

Detection Systems." Bulgaria: Ministry of Education,

Project No MU-MI-1601/2006., 2007.

38

Molitor, Andrew. "Measuring Firewall Performance."

Rebecca Bace, Peter Mell. Intrusion Detection Systems.

Special Publication, Gaithersburg: National Institute of

Standards and Technology , 2001.

Soekris, Engineering. Soekris Engineering net4801 series

boards and systems. 2004.

Stenberg, Daniel. Curl Manpage. August 2004.

http://curl.haxx.se/docs/manpage.html (accessed 2008).

VMware. "Installing and Configuring Linux Guest Operating

Systems." VMware Resources. VMware, 2008.

39

Appendix A – Configuration Files and Source Code

/* upl.c

 * Author - Paras Gandhi

 * Uploads a Files to a Web Server in parallel mode.

 */

#include <stdio.h>

#include <inttypes.h>

#include <pthread.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

#include <sys/time.h>

#define __USE_UNIX98

#include <unistd.h>

#include <string.h>

#define MAXFILENAME 20

#define MAXCOMMANDSIZE 255

#define MAXTHREADS 10

#define HOSTNAME 128

40

typedef struct

{

 uint64_t microsec;

 char command[MAXCOMMANDSIZE];

 int thnum; //thread number

}thread_struct;

extern void *thread_upl(void *tfu);

int main(int argc, char *argv[])

{

 int maxthreads = MAXTHREADS;

 thread_struct *tfu;

 pthread_t *tid;

 int cret;

 char hostname[HOSTNAME] = "localhost";

 char filename[MAXFILENAME];

 int errflag = 0;

 int i;

 int fd;

 loff_t offset;

41

 ssize_t res;

 ssize_t bytes;

 void *buf;

 FILE *fp;

 while((cret = getopt(argc, argv, "f:h:"))!= -1)

 {

 switch (cret)

 {

 case 'f':

 if (optarg == " ")

 {

 errflag = 1;

 break;

 }

 maxthreads = atoi(optarg);

 break;

 case 'h':

 if (optarg == " ")

 {

 errflag = 1;

 break;

 }

 strcpy(hostname, optarg);

 break;

42

 default:

 printf("\nArgument(s) not supported

!!!\n");

 errflag = 1;

 }

 }

 if(errflag == 1)

 {

 printf("Using Defaults for wrong arguments!\n");

 }

 tid = malloc(sizeof(pthread_t) * maxthreads);

 tfu = malloc(sizeof(thread_struct) * maxthreads);

 printf("Hostname\t:%s\n",hostname);

 printf("Files\t\t:%d\n",maxthreads);

 for(i = 0; i < maxthreads; i++)

 {

 res = 0x400;

 buf = malloc(0x400);

 offset = 0x200000 - 0x400;

 snprintf(tfu[i].command, MAXCOMMANDSIZE,

 "curl -F ufile=@uplo/%d -F Submit=Upload

http://%s/upload_ac.php > j 2>&1",i,hostname);

 snprintf(filename, MAXFILENAME, "uplo/%d",i);

43

 tfu[i].thnum = i;

 if ((fd = open(filename, O_RDWR | O_CREAT |

O_SYNC, 0666)) < 0)

 {

 perror(filename);

 exit(0);

 }

 else

 {

 lseek(fd, offset, SEEK_SET);

 while(res > 0)

 {

 bytes = pwrite(fd, buf, res, offset);

 if (bytes <= 0)

 {

 perror("Write Failed!\n");

 exit(0);

 }

 offset +=bytes;

 res -= bytes;

 }

 close(fd);

 }

 free(buf);

 //printf("%s\n",tfu[i].command);

44

 }

 for(i = 0; i < maxthreads; i++)

 {

 pthread_create((&tid[i]),

 NULL,

 thread_upl,

 (void *) &tfu[i]);

 }

 for(i = 0; i < maxthreads; i++)

 {

 pthread_join(tid[i], NULL);

 printf("%d\n",tfu[i].microsec);

 }

 if((fp = fopen("out","w+"))!= NULL)

 {

 fprintf(fp,"Thread\tThreadID\tTime in usec\n");

 for(i = 0; i < maxthreads; i++)

 {

 fprintf(fp,"%d\t%lld\t%ld\n",

 i,(long long int)tid[i],(long

int)tfu[i].microsec);

 }

45

 fclose(fp);

 }

}

void *thread_upl(void *tfu)

{

 thread_struct *thu;

 int j;

 struct timeval before;

 struct timeval after;

 thu = (thread_struct *)tfu;

 printf("Thread %d created!\n", thu->thnum);

 gettimeofday(&before, NULL);

 system(thu->command);

 gettimeofday(&after, NULL);

 timersub(&after, &before, &after);

 thu->microsec = (uint64_t)after.tv_sec * 1000000

 + (uint64_t)after.tv_usec;

46

 printf("Thread %d Completed!\n", thu->thnum);

 pthread_exit(0);

}

47

MINIBSD

Author – Paras Gandhi

Kernel Configuration File for the Nanobsd Image.

Based on the Generic kernel configuration file for

FreeBSD

GENERIC -- Generic kernel configuration file for

FreeBSD/i386

machine i386

cpu I586_CPU

ident MINIBSD

Options Specific to the Soekris NET48XX

options CPU_GEODE

#options CPU_SOEKRIS

To statically compile in device wiring instead of

/boot/device.hints

#hints "GENERIC.hints" # Default places to look for

devices.

options SCHED_4BSD # 4BSD scheduler

options INET # InterNETworking

options INET6 # IPv6 communications

protocols

options FFS # Berkeley Fast Filesystem

options SOFTUPDATES # Enable FFS soft updates

support

options UFS_ACL # Support for access control

lists

options UFS_DIRHASH # Improve performance on big

directories

options MD_ROOT # MD is a potential root

device

options NFSCLIENT # Network Filesystem Client

options NFSSERVER # Network Filesystem Server

48

options NFS_ROOT # NFS usable as /, requires

NFSCLIENT

options MSDOSFS # MSDOS Filesystem

options CD9660 # ISO 9660 Filesystem

options PROCFS # Process filesystem

(requires PSEUDOFS)

options PSEUDOFS # Pseudo-filesystem framework

options GEOM_GPT # GUID Partition Tables.

options COMPAT_43 # Compatible with BSD 4.3 [KEEP

THIS!]

options COMPAT_FREEBSD4 # Compatible with

FreeBSD4

options SCSI_DELAY=15000 # Delay (in ms) before

probing SCSI

options KTRACE # ktrace(1) support

options SYSVSHM # SYSV-style shared memory

options SYSVMSG # SYSV-style message queues

options SYSVSEM # SYSV-style semaphores

options _KPOSIX_PRIORITY_SCHEDULING # POSIX P1003_1B

real-time extensions

options KBD_INSTALL_CDEV # install a CDEV entry in

/dev

options AHC_REG_PRETTY_PRINT # Print register

bitfields in debug

output. Adds ~128k to driver.

options AHD_REG_PRETTY_PRINT # Print register

bitfields in debug

output. Adds ~215k to driver.

options ADAPTIVE_GIANT # Giant mutex is adaptive.

device apic # I/O APIC

Bus support. Do not remove isa, even if you have no isa

slots

device isa

device eisa

device pci

ATA and ATAPI devices

49

device ata

device atadisk # ATA disk drives

options ATA_STATIC_ID # Static device numbering

Floating point support - do not disable.

device npx

Power management support (see NOTES for more options)

#device apm

Add suspend/resume support for the i8254.

device pmtimer

Serial (COM) ports

device sio # 8250, 16[45]50 based serial

ports

PCI Ethernet NICs that use the common MII bus controller

code.

NOTE: Be sure to keep the 'device miibus' line in order

to use these NICs!

device miibus # MII bus support

device sis # Silicon Integrated Systems SiS

900/SiS 7016

Wireless NIC cards

#device wlan # 802.11 support

#device an # Aironet 4500/4800 802.11

#wireless NICs.

#device awi # BayStack 660 and others

#device wi # WaveLAN/Intersil/Symbol 802.11

#wireless NICs.

#device wl # Older non 802.11 Wavelan

#wireless NIC.

Pseudo devices.

device loop # Network loopback

device mem # Memory and kernel memory devices

device io # I/O device

device random # Entropy device

50

device ether # Ethernet support

#device sl # Kernel SLIP

#device ppp # Kernel PPP

#device tun # Packet tunnel.

device pty # Pseudo-ttys (telnet etc)

device md # Memory "disks"

device gif # IPv6 and IPv4 tunneling

device faith # IPv6-to-IPv4 relaying

(translation)

The `bpf' device enables the Berkeley Packet Filter.

Be aware of the administrative consequences of enabling

this!

Note that 'bpf' is required for DHCP.

device bpf # Berkeley packet filter

USB support

#device uhci # UHCI PCI->USB interface

#device ohci # OHCI PCI->USB interface

#device ehci # EHCI PCI->USB interface (USB

2.0)

#device usb # USB Bus (required)

#device udbp # USB Double Bulk Pipe devices

#device ugen # Generic

#device umass # Disks/Mass storage -

Requires scbus and da

options BRIDGE

options IPDIVERT

options IPSTEALTH

options IPFIREWALL

options IPFIREWALL_VERBOSE

options IPFIREWALL_VERBOSE_LIMIT=5

options IPFIREWALL_DEFAULT_TO_ACCEPT

51

myconf.nano

Custom configuration file for adding functionality

to the nanobsd image.

NANO_NAME=custom

NANO_SRC=/usr/src

NANO_KERNEL=CDP

NANO_IMAGES=2

NANO_CODESIZE=409600

NANO_CONFSIZE=20480

NANO_DATASIZE=81920

NANO_PACKAGE_DIR=Pkg

CONF_BUILD='

NO_KLDLOAD=YES

NO_NETGRAPH=YES

NO_PAM=YES

'

CONF_INSTALL='

NO_ACPI=YES

NO_BLUETOOTH=YES

NO_CVS=YES

NO_FORTRAN=YES

NO_HTML=YES

NO_LPR=YES

NO_MAN=YES

NO_SENDMAIL=YES

NO_SHAREDOCS=YES

NO_EXAMPLES=YES

NO_INSTALLLIB=YES

NO_CALENDAR=YES

NO_MISC=YES

NO_SHARE=YES

'

CONF_WORLD='

NO_BIND=YES

NO_MODULES=YES

52

NO_KERBEROS=YES

NO_GAMES=YES

NO_RESCUE=YES

NO_LOCALES=YES

NO_SYSCONS=YES

NO_INFO=YES

'

FlashDevice SanDisk 512MB

cust_nobeastie() (

 touch ${NANO_WORLDDIR}/boot/loader.conf

 echo "beastie_disable=\"YES\"" >>

${NANO_WORLDDIR}/boot/loader.conf

)

cust_autoboot() (

 touch ${NANO_WORLDDIR}/boot/loader.conf

 echo "autoboot_delay=\"-1\"" >>

${NANO_WORLDDIR}/boot/loader.conf

)

cust_terminal() (

 echo "setenv TERM vt100" >>

${NANO_WORLDDIR}/root/.cshrc

)

cust_lighttpd_conf() (

 sed -i "" -e '/"mod_fastcgi"/s/#/ /'

${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e

'/server\.errorlog/s/\/var\/log\/lighttpd\.error\.log/\/dev

\/null/' ${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e

'/accesslog\.filename/s/\/var\/log\/lighttpd\.access\.log/\

/dev\/null/' ${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

53

 sed -i '' -e

'/#fastcgi.server/,/####/s/\/var\/run\/lighttpd\//\/tmp\//'

${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e '/#fastcgi.server/,/####/s/php-cgi-

cgi/php-cgi/' ${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e '/#fastcgi.server/,/####/s/^# / /'

${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e '/#fastcgi.server/s/#/ /'

${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

 sed -i '' -e '/^server.document-

root/s/\/usr\/local\/www\/data\//\/www\//'

${NANO_WORLDDIR}/usr/local/etc/lighttpd.conf

)

cust_rc_conf() (

 echo "cloned_interfaces=\"bridge0\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "ifconfig_bridge0=\"addm sis0 stp sis0 addm sis2

stp sis2 up\"" >> ${NANO_WORLDDIR}/etc/rc.conf

 echo "ifconfig_sis0=\"DHCP\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "ifconfig_sis1=\"inet 192.168.1.1 netmask

255.255.255.0\"" >> ${NANO_WORLDDIR}/etc/rc.conf

 echo "ifconfig_sis2=\"up\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "defaultrouter=\"NO\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "lighttpd_enable=\"YES\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "dhcpd_enable=\"YES\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "dhcpd_ifaces=\"sis1\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "sshd_enable=\"YES\"" >>

${NANO_WORLDDIR}/etc/rc.conf

54

 echo "syslogd_enable=\"NO\"" >>

${NANO_WORLDDIR}/etc/rc.conf

 echo "filter_enable=\"YES\"" >>

${NANO_WORLDDIR}/etc/rc.conf

)

cust_sysctl_conf() (

 echo "net.link.bridge.ipfw=0" >>

${NANO_WORLDDIR}/etc/sysctl.conf

 echo "net.link.bridge.pfil_member=0" >>

${NANO_WORLDDIR}/etc/sysctl.conf

 echo "net.link.bridge.pfil_bridge=1" >>

${NANO_WORLDDIR}/etc/sysctl.conf

)

cust_sudoers() (

 sed -i "" -e '/^root/i\

www ALL=(ALL) NOPASSWD: ALL'

${NANO_WORLDDIR}/usr/local/etc/sudoers

)

cust_cdp() (

 echo "/dev/${NANO_DRIVE}s4 /ext ufs rw 1 1" >>

${NANO_WORLDDIR}/etc/fstab

 mkdir -p ${NANO_WORLDDIR}/ext

 cp -f dhcpd.conf

${NANO_WORLDDIR}/root/dhcpd.conf.default

 cp -f filter.conf

${NANO_WORLDDIR}/root/filter.conf.default

 cp -f rc.d.filter

${NANO_WORLDDIR}/root/rc.d.filter.default

 cd ${NANO_DEVICE_DIR}

 chmod -R 700 ${NANO_WORLDDIR}/www

 chown -R www:wheel ${NANO_WORLDDIR}/www

 chmod -R 700 ${NANO_WORLDDIR}/root

55

 cp -f ${NANO_WORLDDIR}/etc/rc.conf

${NANO_WORLDDIR}/root/rc.conf.default

 cp -f ${NANO_WORLDDIR}/root/rc.d.filter.default

${NANO_WORLDDIR}/usr/local/etc/rc.d/filter

 cp ${NANO_WORLDDIR}/root/filter.conf.default

${NANO_WORLDDIR}/usr/local/etc/filter.conf

 cp ${NANO_WORLDDIR}/root/dhcpd.conf.default

${NANO_WORLDDIR}/usr/local/etc/dhcpd.conf

 chmod 555 ${NANO_WORLDDIR}/usr/local/etc/rc.d/filter

 chmod 666 ${NANO_WORLDDIR}/usr/local/etc/filter.conf

 chmod 666 ${NANO_WORLDDIR}/usr/local/etc/dhcpd.conf

 chroot ${NANO_WORLDDIR} sh -c 'echo admin | pw useradd

-n admin -h 0'

 cp /usr/share/misc/termcap

${NANO_WORLDDIR}/usr/share/misc/termcap

)

customize_cmd cust_comconsole

customize_cmd cust_install_files

customize_cmd cust_pkg

customize_cmd cust_allow_ssh_root

customize_cmd cust_nobeastie

customize_cmd cust_autoboot

customize_cmd cust_terminal

customize_cmd cust_lighttpd_conf

customize_cmd cust_rc_conf

customize_cmd cust_sysctl_conf

customize_cmd cust_sudoers

customize_cmd cust_cdp

	Virginia Commonwealth University
	VCU Scholars Compass
	2008

	Performance Analysis of a Light Weight Packet Scanner
	Paras Gandhi
	Downloaded from

	Microsoft Word - gandhip_Thesis.doc

