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Philosophy at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2015 
 
 

Director: Dr. Hooman Vahedi Tafreshi 
Professor, Mechanical and Nuclear Engineering 

 

 The goal of this study is to further advance the state of the art in developing self-

sufficient methods to predict the performance of an aerosol filter. The simulation methods 

developed in this study are based on first principles and consequently, they do not rely on 

empirical correction factors. These simulation methods can be used to predict the instantaneous 

collection efficiency and pressure drop of a filter under dust-loading conditions. In the current 

study, 3-D micro- and macroscale CFD models are developed to simulate the service life of flat-

sheet and pleated filters. These CFD micro- and macroscale models are also used to quantify the 

effects of a fiber’s cross-sectional shape on the performance of the resulting filter. As fiber 

manufacturing methods are rapidly advancing, these fibers are becoming more accessible. The 

filtration performance of trilobal fibers is compared with their circular counterparts under dust-
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loading conditions. Our results show that trilobal fibers do not outperform circular ones except in 

very limited conditions, revealing no advantage over circular fibers. 

 

 In addition, a fast but approximate 2-D model is developed to predict the filtration 

performance of flat and circular pleated filters. The predictions of the model are compared with 

predictions from the more sophisticated CFD models, as well as with experimental work in the 

literature. Our 2-D model developed in this study is aimed at providing the aerosol filtration 

industry with a fast but fairly accurate method of designing pleated filters. With a CPU-time of 

practically zero, the developed model allows one to conduct a broad parameter study, altering the 

parameters that affect the filtration performance of pleated filters. Using this model, predictive 

correlations for dust-loaded pleated filters are presented. These correlations allow one to estimate 

the instantaneous pressure drop and collection efficiency of pleated filters effectively. 
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Chapter 1 

General Introduction 

 

1. Background 

Fibrous materials are the most commonly used means of particle filtration. The theory of particle 

filtration was originally developed for a single fiber (the single fiber theory which dates back to 

the work of Kuwabara in 1959) and later extended to also include the effects of neighboring 

fibers (see the books of Brown, 1993; Spurny, 1998; and Tien, 2012 for comprehensive reviews 

of the filtration literature). These theories have originally been developed using an exact or a 

numerical solution of the flow field around perfectly clean fibers placed normal to the flow 

direction in a 2-D ordered configuration (i.e., lattice). Obviously, deposition of filtered particles 

leads to the formation of complicated dendrites on the surface of the fibers, altering the flow 

field inside a filter, and thereby affecting its pressure drop and collection efficiency beyond the 

predictions provided by the above theories. 

The pressure drop across clean fibrous media can be predicted by the empirical well-known 

equation of Davies (1973): 

1.5 3
0

2
(1 65 )64

f

p V
Z d

α αµ
∆ +

=          (1.1) 
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Where α is the Solid Volume Fraction (SVF), df is the fiber diameter, Z is the filter thickness and 

V is the air velocity. The collection efficiency of any fibrous structure is defined as the fraction 

of captured particles to the total inlet particles to the fibrous medium: 

inlet outlet

inlet

N NE
N
−

=            (1.2) 

In addition to the efficiency, penetration is commonly used in filtration defined as 

outlet

inlet

NP
N

=             (1.3) 

There are three major mechanisms that cause particles to deposit on the surface of a fiber in a 

filter. A brief discussion for each of these mechanisms is given below. 

 

I. Brownian Diffusion 

Brownian motion is the irregular wiggling motion of a particle caused by the random 

collision of the gas molecules with the surface of the particle. Thermal diffusion is the 

primary deposition mechanism for particles less than 0.1 µm in diameter (Hinds, 1982). This 

random motion of the small particles enhances the probability of colliding with the fiber’s 

surface and hence, the deposition probability as can be seen in Fig. 1.1. 

 

Figure 1.1: Single fiber collection by diffusion.1 
 

                                                 
1 W.C. Hinds, Aerosol Technology, properties, behavior, and measurement of airborne particles. John Wiley & 
Sons, Inc. New York, 1982 
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II. Direct Interception 

Interception deposition takes place when a particle perfectly follows the streamlines of the 

gas and touches the fiber’s surface because of its finite volume (i.e. when the streamline is 

closer to the surface of the fiber with a distance of a particle radius or less) as shown in Fig. 

1.2.  

 

Figure 1.2: Single fiber collection by interception.2 
 

 

III. Inertial Impaction 

Inertial impaction takes place when the particle deviates from following the streamline 

because of its inertia. Inertial particles need more time to adjust to the change in the 

direction, which cause the particle to hit the fiber as they fail to exactly adapt their motion to 

match the curved streamlines of the flow close to the fiber as shown in the Fig. 1.3. 

 

Figure 1.3: Single fiber collection by impaction.3 
                                                 
2 W.C. Hinds, Aerosol Technology, properties, behavior, and measurement of airborne particles. John Wiley & 
Sons, Inc. New York, 1982 
3 W.C. Hinds, Aerosol Technology, properties, behavior, and measurement of airborne particles. John Wiley & 
Sons, Inc. New York, 1982 
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The total Single Fiber Efficiency (SFE) is defined as the ratio of the number of particles 

collected by the fiber to the number of particles that passed through an imaginary projected area 

of the fiber. The SFE by interception, diffusion, and impaction can be obtained from different 

correlations; however, for the sake of brevity we chose some of the well-known expressions and 

stated them below. 

 

For the interception SFE, the expression proposed by Lee and Liu (1982) is commonly used: 

210 6
1R

α Rη .
Ku R
−

=
+  

         (1.4)  

In this equation 2250750
2

α.α.αlnKu −+−−= is the Kuwabara factor, R is the particle to fiber 

diameter ratio. The SFE due to impaction is obtained using the following expression given by 

Brown (1993) for moderate values of Stokes number: 

3

3 2
St

St 0 77St 0 22Iη . .
=

+ +
         (1.5)  

where 
2

18

c
P P

f

ρ d c VStk
μ d

= is the Stokes number. 

SFE due to Brownian Diffusion can be obtained from the expression proposed by Lee and Liu, 

(1982) as in the following equation: 

1 3
2 312 6

/
/

D
αη . Pe

Ku
−− =  

 
         (1.6) 

Where Ku is the Kuwabara factor as mentioned above, fPe V d / D= is the Peclet number, 

(3 )c
PD σ c T / π μ d= is particle diffusivity, and 23 2 2 11 38 10 ( )σ . m kg s K− − −= × is Boltzmann 

constant. 
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Filtration efficiency, E, can be obtained based on the total SFE, 0Ση , as follows using (Brown 

1993): 

( )( )( )0 1 1 1 1R I Dη η η η∑ = − − − −          (1.7)  

041
(1 )
Σ

f

α η ZE exp
πd α

 −
= −   − 

         (1.8) 

 

1.1. Aerosol Filtration via Fibrous Filters 

The first numerical study to simulate the effects of particle deposition on pressure drop and 

collection efficiency of a filter is that of Payatakes and Tien (1976), who simulated the growth of 

chain-like dendrites on a fiber in a Kuwabara cell. For simplicity, they considered interception to 

be the only particle collection mechanism. Later, Payatakes and Gradon (1980) modified this 

model to also include particle capture via diffusion and inertial impaction mechanisms. Utilizing 

a Monte Carlo technique in a Kuwabara cell, Kanaoka et al. (1980) calculated the SFE for 

particles in the inertial and interception regimes. More recently, Kanaoka et al. (2001) and 

Cheung et al. (2005) reported on case studies in which particle deposition on orderly packed 

electret fibers was numerically simulated. Nevertheless, in neither of the above studies was the 

air flow field recalculated during the particle deposition process, leading to an overestimation of 

the fibers’ collection efficiency. Since then, there have been few other studies that reported 

simulation of particle dendrite growth on a single fiber (e.g., Filippova and Hanel, 1997; Przekop 

et al., 2003; Lantermann et al., 2007; Li and Marshall, 2007; Wang et al., 2012; Hosseini and 

Tafreshi, 2012). 

 



 

6 
 

In spite of its relevance, predicting the capture efficiency and pressure drop of a particle-loaded 

fibrous filter via any form of a 2-D simulation is a simplification. This is because of the inherent 

differences between the random three-dimensional structure of a real fibrous filter and a two-

dimensional ordered structure. Moreover, particle dendrites are 3-D objects by their own nature, 

and any 2-D simulation of their growth is a misrepresentation of the physics of the problem. In 

addition, it is hard to relate the outcomes of a study conducted for a single fiber under dust-

loading conditions to the performance of a real particle-loaded filter, as in a real fibrous filter the 

fibers located on the side of the filter facing the incoming particles receive more deposition than 

those deep inside the structure. Therefore, because of the fundamental differences between both 

the geometry and the particle deposition pattern in a real fibrous filter and those in its 2-D 

counterpart, the results of cell model calculations always require empirical correction factors (not 

available prior to manufacturing and testing a new filter) before they can be used to provide 

reliable performance predictions.  

 

Our research group have previously demonstrated and reported the advantages of generating 

virtual 3-D models that can mimic the internal microstructure of a fibrous structure for predicting 

simulating pressure drop and collection efficiency of clean filters (Hosseini and Tafreshi, 2010a). 

Such 3-D models do not need empirical correction factors, as they are developed based on first 

principles, and their predictions can directly be used for product design and development. The 

problem with 3-D microscale models, however, is that they are computationally expensive. This 

may limit one’s ability to conduct an extensive parameter study, especially in the presence of 

particle loading. Fortunately, with the current rate of progress in the development of advanced 

computers, it is expected that 3-D microscale simulations will become more viable. However, the 
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above studies investigate the performance of clean filters not loaded. It is also important to 

mention that the humidity affect the filtration performance in addition to the adhesion efficiency 

(the probability of a particle to stick on the filter surface and not to rebound, see Gupta et al., 

1993; Joubert et al., 2010, 2011; Montgomery et al., 2015 for more information). However, 

studying the effect of the humidity and particle rebound was beyond the objective of this 

research.  

 

1.2 Pleated Aerosol Filters 

Pleated filters have vast areas of applications in the automotive industry, HVAC systems, and 

clean rooms among many others, especially when high aerosol filtration performance or compact 

filter design is required. Controlling the air flow inside pleats is an essential consideration which 

allows for minimizing pressure drop and maximizing particle collection efficiency. The air flow 

pattern in pleated filters usually depends on two major contributors. The first is the fibrous 

medium or the flat-sheet paper which will be folded to make pleats. The second is the pleat 

geometry (i.e. pleat width, pleat height and pleat shape) which can influence the performance of 

the filter via viscous effects. In addition, dust deposition can be another factor involved in filter 

performance. In general, most of the published research which studies pleated filters concentrates 

on optimizing clean pleats to minimize pressure drop (Chen et al., 1995; Lucke and Fissan, 1996; 

Del Fabbro et al., 2002; Caesar and Schroth, 2002; Subernat et al., 2003; Tronville and Sala, 

2003; Wakeman et al., 2005; Waghode et al., 2007; Lo et al., 2010). To the knowledge of the 

authors, there are no criteria for designing pleat shape and pleat count which optimize both the 

pressure drop and collection efficiency.  
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The influence of particle loading (i.e., filter aging) on the performance of pleated fibrous filters 

has not been vastly studied in the past. To date, there are a few studies that can be found which 

study the effects of surface dust loading on the performance of pleated filters: the work of Rebai 

et al, (2010), Fotovati et al., (2011), and the experimental work of Hasolli et al., (2013). These 

numerical studies are limited in their findings by simplifications. For instance, the work of Rebai 

et al., (2010) was limited to only surface deposition and mainly monitored pleats’ pressure drop. 

In addition, their results rely on empirical coefficients that correspond to certain specific 

conditions. They also did not report the shape of deposition and neglected the inertia of the 

particles as they assumed that the particles exactly follow the flow streamlines. In our group, 

Fotovati et al., (2011) reported the pressure drop of pleated filters when loading; however, 

particle deposition was assumed to be on the surface—simulating HEPA filters. Fotovati et al., 

(2012) proposed a methodology to model in-depth dust deposition and measure the collection 

efficiency of pleated filters. Two-dimensional dendrites do not provide realistic results as the 

dendrites in reality are 3-D structures, which leads 2-D simplifications to report higher values of 

pressure drop and higher rates of increase in collection efficiency with loading as discussed 

earlier. All of the aforementioned numerical studies concerning deposition in pleated filters were 

conducted in two dimensional domains, however, the current study provides a more realistic and 

comprehensive study of the performance of pleated filters. In this macroscale model, depth and 

surface deposition of poly-dispersed particles is simulated in 3-D domains. Fig. 1.4 demonstrates 

the domain of a pleated filter with its boundary conditions. 
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Figure 1.4: An example of pleated filter domain with its boundary conditions. 

 

 

1.3 Overall Objectives of this Thesis 

This thesis primarily focuses on predicting filtration performance of a fibrous filter under dust 

loading conditions. The main parameters describing the performance of a fibrous filter are the 

filtration efficiency and the pressure drop.  In this study, we developed micro and macroscale 

models to be able to predict the performance of flat-sheet and pleated filters. We also used these 

models to understand the effect of fiber cross-sectional shape on the filtration performance of 

fibrous filters exposed to particle loading.   

 

Chapter 2 focuses on our microscale approach which was developed to simulate the pressure 

drop and collection efficiency of flat-sheet fibrous media under dust loading conditions. The 

chapter explains how the air flow field through 3-D disordered geometries representing the 

internal microstructure of a fibrous filter is obtained by numerically solving Stokes’ equations. 

For particle tracking, a Lagrangian approach is used to track the particles through our virtual 

filter media and determine the filter’s collection efficiency under different dust-load conditions. 

The calculations in this chapter were conducted using the ANSYS CFD code enhanced with a 

series of in-house C subroutines. We then compared the results of our simulations with those 
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obtained from a 1-D macroscale model developed based on some of the pioneering studies 

reported in the literature.  

 

In Chapter 3, we present a flexible 3-D macroscale simulation method for modeling the 

instantaneous pressure drop and collection efficiency of pleated fibrous filters when exposed to 

poly-dispersed aerosols in both the surface and depth filtration regimes. The simulations are 

conducted using the Fluent CFD code enhanced with a different set of in-house subroutines. A 

cluster-injection method is developed to accelerate the formation and growth of dust-cake both 

inside and outside the filter media. The model was calibrated with empirical and more accurate 

microscale simulations. The macroscale model can be used to simulate the service life of a 

pleated filter with reasonable accuracy and CPU time and can be used to design and develop 

pleated filters for different applications. In particular, it allows one to study the effects of pleat 

shape, pleat count, filter porosity, fiber diameter(s), flow velocity, aerosol concentration, and 

particle diameter, as well as the aerodynamic parameters of the flow on the evolution of a filter’s 

pressure drop and collection efficiency over time. For demonstration purposes, performance of 

an arbitrary filter with 2 and 4 pleats per inch is simulated when challenged with poly-dispersed 

particles of 1 to 10 μm in diameter. 

 

In Chapter 4, both micro and macroscale models mentioned above were utilized to shed some 

light on the filtration performance of fibers with trilobal cross-section in comparison to their 

circular counterparts when loaded with aerosol particles. Different flow velocities are considered 

to discuss performance of trilobal fibers under different particle capture regimes. Trilobal fibers 

are found to outperform their circular counterparts only when the particles are highly inertial, 
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and only if the orientation of the trilobal cross-section with respect to the incoming flow is such 

that one of the grooves of the fiber faces the flow with a normal angle. In cases of low-inertia 

particles, trilobal fibers were found to experience higher efficiency values with loading but at the 

expense of higher increase in pressure drop.  We also studied the effects of the through-plane 

orientation of the trilobal fibers on their performance relative to their circular counterpart. 

Similar conclusions were drawn from the latter simulations. 

 

Chapter 5 presents a semi-numerical 2-D model for predicting the instantaneous pressure drop 

and collection efficiency of filters made up of rectangular and triangular pleats in both the depth 

and surface filtration regimes. Inspired from our previous CFD simulations, the semi-numerical 

model adopts appropriate average velocity profiles in the axial and lateral directions to 

approximate the flow field inside rectangular and triangular pleat channels using Darcy’s law 

and the continuity equation. The model therefore circumvents the need to obtain a CPU-intensive 

solution for the partial differential equation governing the flow through a filter, i.e., the Navier–

Stokes equation. The above-mentioned analytical flow field can then be used to predict the 

trajectory of the particles flowing through pleat channel by numerically solving the equation of 

motion for each particle––a simple set of second order ordinary differential equations. With the 

particles trajectories obtained, the deposition location and hence the dust-cake profile can be 

approximated. This allows one to predict the instantaneous pressure drop and collection 

efficiency of a filter (filter’s service life) with a CPU-time of practically zero. A brief parameter 

study is presented to demonstrate the method. 
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Chapter 6 focuses on extending the above-mentioned 2-D semi-numerical model for predicting 

the instantaneous pressure drop and collection efficiency of radial pleated filters (cartridge 

filters). Based on CFD simulations, the velocity profiles inside the pleat channels were adopted 

in radial and tangential direction and were different than those in a flat triangular pleated filter 

presented in our previous work. The model for radial filters is used to predict the particle 

trajectories by solving the equation of motion for the particles. Obtaining these particle 

trajectories, the dust-cake profile can be approximated. The deposition sites of the particles were 

found to depend on the inlet and outlet diameter of the radial pleated filter. In this chapter, the 

differences between the performance of flat and radial pleated filters were reported by 

conducting a parameter study. In addition, a comparison between the predictions of our model 

and CFD data is presented for validation of the model. 

 

Chapter 7 discusses our developed correlations which describe the instantaneous pressure drop of 

pleated filters under service conditions. Both depth and surface filtration were considered for 

both flat and radial pleated filters. We believe these correlations help the design and 

development of pleated filters by circumventing the need to pursue any CFD or macroscale 

simulation for loading pleated filters. We used our macroscale models in Chapter 4 and Chapter 

5 flat and cartridge pleated filters in order to construct these correlations.  Finally, the overall 

conclusions of this work are presented in Chapter 8. 
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Chapter 2 

3-D Microscale Simulation of Dust-Loading in Thin Flat-Sheet Filters: A 

Comparison with 1-D Macroscale Simulations4 

 

2.1 Introduction 

In this chapter, a microscale approach is undertaken to simulate the instantaneous pressure drop 

and collection efficiency of fibrous media exposed to particle loading, i.e., filter aging. The air 

flow field through 3-D disordered geometries representing the internal microstructure of a 

fibrous filter is obtained by numerically solving Stokes’ equations.  The advantages of generating 

virtual 3-D models that can mimic the internal microstructure of a fibrous structure for predicting 

simulating pressure drop and collection efficiency of clean filters are presented elsewhere (Wang 

et al., 2006; Maze et al., 2007; Hosseini and Tafreshi, 2010a). Such 3-D models do not need 

empirical correction factors, as they are developed based on first principles, and their predictions 

can directly be used for product design and development. The problem with 3-D microscale 

models, however, is that they are computationally expensive. This may limit one’s ability to 

conduct an extensive parameter study, especially in the presence of particle loading. Fortunately, 

                                                 
4 Contents of this chapter appear in the following publication: 
Saleh, A.M., Hosseini, S.A., Tafreshi, H.V., Pourdeyhimi, B. (2013). 3-D Microscale Simulation of Dust-Loading in 
Thin Flat-Sheet Filters: A Comparison with 1-D Macroscale Simulations. Chem. Eng. Sci. 99: 284-291. 
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with the current rate of progress in the development of advanced computers, it is expected that 3-

D microscale simulations will become more viable. We believe 3-D microscale simulation will 

be the industry’s preferred design method in the next few years. Moreover, such simulations, 

unlike the cell-model-type calculations, can be utilized to design filters with more than one fiber 

type (i.e., fibers with different diameters or even cross-sectional shapes). To better illustrate the 

advantage of 3-D microscale simulations in a more quantitative manner, we compare the 

instantaneous collection efficiency and pressure drop values obtained from our simulations with 

those of a CPU-friendly 1-D macroscale model that we developed based on the pioneering work 

of Thomas et al. (2001). 

 

In the next section, we briefly describe our algorithm for generating disordered 3-D fibrous 

domains. We then discuss our governing equations and their boundary conditions followed by 

our particle tracking method. In Section 2.3, we present our implementation of the 

abovementioned 1-D macroscale model. Our results and discussion are given in Section 2.4, and 

they are followed by our conclusions for this chapter outlined in Section 2.5. 

 

2.2 Microscale Modeling of Dust Deposition in 3-D Fibrous Media 

2.2.1 Virtual Fibrous Structures 

Our 3-D disordered fibrous structures were generated using an in-house C++ program as 

described elsewhere (e.g., Wang et al. 2006; Wang et al. 2007). We treated the fibers as perfect 

cylinders with lengths much greater than the size of the simulation box. Our fibrous structures 

are assumed to consist of fourteen layers (i.e., fibers have no through-plane orientations). The 

choice of fourteen layers was arbitrary, but in consideration of the available memory and the 
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desired CPU time for each simulation. In each layer, we allowed the fibers to interpenetrate into 

each other. Allowing the fibers to penetrating into one another has no effect on the accuracy and 

reliability of the simulations as long as the solid volume fraction (SVF) of the final structure is 

calculated correctly. This is guaranteed by exporting the coordinates of each fiber to the Gambit 

software package, where the structure’s void volume was calculated accurately and also meshed 

using tetrahedral elements. The thickness of each layer was taken to be 1.4 times greater than the 

fiber diameter to ease the mesh generation process (see Wang et al. 2006 for more information). 

Figure 2.1 shows and example of our fibrous domains and its boundary conditions. 

 
Figure 2.1: An example of our simulation domains and the boundary conditions. 

 

2.2.2 Governing Equations 

The Stokes flow regime is expected to prevail in a porous medium when the Reynolds number is 

smaller than unity. We used ANSYS code to solve the Stokes flow equations in void space 

between the fibers: 

0V∇ ⋅ =


           (2.1) 

2p Vµ∇ = ∇


                               (2.2) 



 

16 
 

where ˆˆ ˆV ui vj wk= + +


 represents the flow field velocity. Air is assumed to enter the domain with 

a uniform velocity and leaves through a pressure-constant boundary downstream of the filter 

media. The lateral boundaries are considered to be symmetry (for more information regarding the 

boundary conditions see Wang et al. 2006). It is important to ensure that the x-y dimensions of 

the simulation domain are large enough such that the statistical uncertainty of the output results 

is minimized. We used the Brinkman screening length criterion for selecting appropriate x-y 

dimensions for our computational domains (Jaganathan et al. 2008).  

 

Aerodynamic slip is expected to occur on the fiber surface when the fiber diameter is close to the 

mean free path of the molecules/atoms in the interstitial gas (about 65 nm for air in Normal 

Temperatures and Pressures). The aerodynamic slip is often characterized using the Knudsen 

number defined as 2 /f fKn dλ= where λ is the mean free path and fd is the fiber diameter. 

Previous studies on the effects of aerodynamic slip in fibrous media revealed that while 

aerodynamic slip can have a considerable impact on pressure drop, it does not affect the filter’s 

collection efficiency, for the range of particle diameters of general concern in the context of 

aerosol filtration (see Hosseini and Tafreshi 2010b; Hosseini and Tafreshi 2011). In these 

studies, we developed a correction factor for the pressure drop values that one can obtain from 

analytical studies in which the no-slip boundary condition was considered for the fibers (e.g., 

that of Speilmann and Goren 1968 or Happel 1959) or the empirical correlations that have been 

developed using fibrous media with large fibers (e.g., empirical equation of Davies, 1973). 

Similarly, our correction factor can also be used to correct the pressure drop values obtained 

from numerical simulations conducted in the absence of aerodynamic slip. As our objective in 
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this study was merely to provide a comparison between 3-D microscale and 1-D macroscale 

simulations, we used the no-slip boundary condition in both formulations. 

 

A Lagrangian method is considered for tracking the trajectory of aerosol particles through our 

filter media. The standard Discrete Phase Model (DPM) of ANSYS code is enhanced with a 

series of in-house subroutines to customize this general purpose CFD code for the simulations 

conducted here. In the Lagrangian particle tracking method, the balance of forces exerted on a 

particle is integrated to obtain its position and velocity throughout the simulation domain.  

( )2
18p

p
p p c

dV
V V

dt d C
µ

ρ
= −



 

         (2.3) 

where pV


is the particle velocity. Note that Brownian forces are not included in this equation, as 

the particles considered in the current study are not submicron. Interested readers are referred to 

the work of Maze et al. (2007) and Hosseini and Tafreshi (2010c) for modeling trajectory of 

nano-particles through fibrous media.    

 

2.2.3 Implementation  

As mentioned earlier, the standard DPM module in ANSYS code needs to be enhanced with in-

house subroutines before it can be used for modeling aerosol filtration. ANSYS code models a 

particle as a point mass. Therefore, it is unable to detect a collision between a particle and a fiber 

(or a previously deposited particle) unless the particle’s center of mass touches the fiber. This 

obviously leads to a significant error in calculating particle collection efficiency via interception. 

This has been corrected by developing a user-defined function (UDF) as reported by Hosseini 

and Tafreshi (2010a). 
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To accurately simulate particle deposition, one needs to record the center-of-mass coordinates of 

the particles that deposit on the fibers or previously deposited particles. This is performed by 

developing two additional UDFs. The first UDF is implemented to mark the cells containing 

solid phase (any portion of a particle). The second UDF adds a sink term to the momentum 

equation in the marked cells, so that an artificial pressure drop is generated for the flow when 

passing through these cells. To mark the cells containing solid phase, a User Defined Memory 

(UDM), is defined. The process starts by assigning a zero to the UDM value of any 

computational cell that does not contain any solid phase. If the cell becomes filled with a 

deposited particle, we then change its UDM value to unity. Interested readers are referred to the 

work of Hosseini and Tafreshi (2012) for more details about our cell-marking procedure. It is 

worth mentioning that in our current work we add a sink term to the momentum equation in the 

marked cells, instead of increasing the air viscosity (the approach considered by Hosseini and 

Tafreshi 2012). The latter method was found to lead to simulations less susceptible to numerical 

divergence. 

 

Note that, to avoid the formation of unrealistically long and chain-like particle dendrites on the 

fibers’ surface, such as those in the simulations of Payatakes and Tien (1976), one has to inject 

the particles from randomly selected sites near the inlet boundary. Automated random injection 

has been implemented via an additional UDF (Hosseini and Tafreshi 2010c). Figure 2.2 shows 

an example of our dust-loaded fibrous media at different loading stages. The medium shown here 

has a fiber diameter of 1 μm, SVF of 7.5%, and is loaded with particles with a diameter of 1 μm. 
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(b)(a)

 
Figure 2.2: An example of our 3-D virtual loaded media at different stages of particle loading with a fiber diameter 
of 1µm and SVF of 7.5% loaded with 1µm-particles. 
 

 

2.4 Mesh Independence  

As mentioned earlier, 3-D microscale simulation of dust deposition in fibrous media is 

computationally expensive. It is obviously desirable to reduce the number of cells required for a 

given simulation. However, it is important to ensure that the grid size chosen for the simulations 

is not too coarse to affect the accuracy of the simulation results. In this concern, we considered a 

single fiber with a diameter of one micrometer inside a square domain and meshed it with 

different grid densities ranging from 5 to 35 mesh counts around the fiber’s circular perimeter. 

To facilitate the comparison between these simulations, particles were injected from exact same 

locations at the inlet leading to almost identical particle dendrite formations in each case (see 

also Hosseini and Tafreshi, 2012). The pressure drop values before and after particle depositions 

are plotted in Figure 2.3 for two different SVFs of 2.5 and 10 percent. It can be seen that the 
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influence of mesh density becomes almost insignificant for mesh counts greater than 15. It is also 

interesting to note that mesh-independence can be achieved at smaller mesh counts for the 

domains with lower SVFs. This is probably due to the fact that spatial flow gradients become 

stronger with increasing SVF (i.e., narrowing the flow passage) requiring better refined mesh 

distributions in the domain. In our simulations, we used fourteen grid points around the circular 

perimeter of a fiber for all cases considered as it seemed to be a reasonable trade-off point 

between accuracy and CPU time. 
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Figure 2.3: Normalized pressure drop a fiber with a diameter of 1 µm loaded with particles of 1 µm diameter. Two 
different SVFs of 2.5 and 10% are considered. 
 

As mentioned earlier in the introduction, there are reliable expressions available for predicting 

pressure drop and collection efficiency for clean filter media. An example of such expressions 

for pressure drop (empirical correlation of Davies 1973) and collection efficiency calculations 

(Lee and Liu, 1982 and Brown, 1993) are given in Appendix A, and used here to validate our 

clean filter simulations (see Figure 2.4). In this figure, fibrous media with a fixed fiber diameter 

of 2 µm but different SVFs of 2.5, 5, and 7.5% are challenged with aerosol particles having a 

diameter of 1 µm and a velocity of 1 m/s. Good general agreement between our results and the 
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empirical/semi-empirical correlations in the literature is evident. It must be noted that there exist 

no perfectly accurate expressions in the literature that one can use to benchmark the pressure 

drop or collection efficiency predictions of a numerical model (or that obtained from an in-house 

experiment). In fact, none of the available empirical expressions in the literature agree with one 

another (see the discussion in Hosseini and Tafreshi, 2010c) to an extent better than what is 

shown in Figure 2.4. On this basis, we consider any simulation data that are within some 20% 

margin of these empirical correlations as validated.  

0 2.5 5 7.5 10
SVF

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

0

50

100

150

200

250

300

350

400

450

500

Pr
es

su
re

dr
op

(P
a)

Eqn. A1 - A4
Simulation filtration efficiency
Davies (1973)
Simulation pressure drop

 
Figure 2.4: Pressure drop and collection efficiency for clean filter media with different SVFs of 2.5, 5, and 7.5% 
compared with the predictions of the existing semi-empirical correlations from literature (equations in A1-A5 in 
Appendix A). 

 

2.3. Macroscale Modeling of Dust Deposition in 1-D Fibrous Media 

Existing methods for predicting the performance of a dust-loaded filter are generally based on 

some 1-D macroscale representation of a fibrous filter that uses cell-model-type expressions for 

SFE and pressure drop calculations. An example of such models includes, but is not limited to, 

the work of Thomas et al. (1999, 2001) who developed a numerical model based on dividing a 

fibrous filter into some thin layers (each having their own averaged properties, e.g., porosity), 

and using the existing cell-model-type expressions (e.g., those given in Appendix A) for SFE and 
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pressure drop calculations in each layer. As will be discussed later in this Chapter, such 

macroscale models, due to their over-simplified representation of the dynamic changes of a 

filter’s microstructure, often need some ad-hoc case-dependent correction factors or assumptions 

in their formulations that limit their applications to the specific filtration problem for which they 

are developed.  

 

We developed a MATLAB implementation of the macroscale model of Thomas et al. (2001) 

with some minor modifications. This model assumes a filter to be made up of a series of thin 

homogeneous layers each treated as individual filter media. For the sake of simplicity, this model 

assumes that particle dendrites, formed on the surface of the fibers, act like additional fibers with 

a diameter equal to that of the particles. Therefore, each layer has two types of collectors, one is 

made of the actual fibers and the other is made of the deposited particles. The particle collection 

efficiency in each layer and at each pseudo time-step (i.e., each particle batch injection) is 

obtained using the aforementioned semi-empirical expressions given in Appendix A. Particles 

filtered in each layer are assumed to contribute to the SVF of the layer (increasing with time). 

The 1-D nature of this model does not allow for a given layer to reach an SVF greater than that 

of the layer before it, i.e., mass deposition monotonically decreases with thickness, as expected. 

Therefore, when SVF of the first layer reaches a given maximum allowable value, any additional 

particle deposition will be considered as surface deposition on the face of the filter. We defined a 

maximum allowable SVF for each layer using the empirical correlation of Kasper et al. (2010) 

reported for mono-dispersed particle cakes, 

0.36 0.64exp( 0.29 / )c p p wde ρ ρ= + −         (2.4) 
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where pd  is the particle diameter in micrometers and max (1 )cα e= − . The total pressure drop of 

the filter is the summation of the pressure drop values in each layer plus the pressure drop caused 

by the cake (if any). The total efficiency of the filter is obtained by adding up the mass deposited 

in each layer divided by the total amount of mass injected at the inlet. The pressure drop caused 

by particles deposited on the filter surface and those deposited in depth are calculated based on 

the expression of Bergman (1978) developed for both depth and surface filtration, 

3 2 2
0 , , ,16 (2 / 2 / )(1 56( ) ) 4 / 4 /t f f p t p f p t f f p t pp U z d d d dµ α α α α α α∆ = + + + +

   (2.5) 

It is important to mention that the algorithm proposed by Thomas et al. (2001) assumes that the 

aerosol particles are either captured by the actual fibrous filter or by the fictitious fibrous media 

made up of the particle dendrites. The mass fraction flowing through the former and latter media 

are intuitively, but not mathematically, assumed by these authors to be proportional to 

1 ( / (1 ))p fα α− −  and / (1 )p fα α− , respectively. Our macroscale model implementation is shown 

with greater details in a flowchart in Figure 2.5. 

 

2.4. Results and Discussion 

As mentioned before, with the continuing rate of advancement in manufacturing fast computers, 

one can expect 3-D microscale simulations to become the common method of filter design in the 

near future. Being developed based on first principles, these models are self-sufficient (do not 

need empirical correction factors), and their predictions can directly be used for product design. 

To provide a comparison between the results of our 3-D microscale simulations and the 

aforementioned 1-D macroscale model, we simulated media with a constant fiber diameter of 2 

μm but three different SVFs of 2.5, 5 and 7.5% (three common SVFs for fibrous filters). We 
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challenged these virtual filters with dust particles having a velocity of 1 m/s and a diameter of 1 

μm.  
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layer

Calculate collection efficiency and 
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Figure 2.5: Calculation’s flow chart for our 1-D macroscale model. 

 

Figure 2.6a shows a comparison between the predictions of the instantaneous pressure drop 

values versus the mass of the deposited particles per unit surface area of the filter obtained from 

3-D microscale and 1-D macroscale simulations. To produces these results, we injected as many 
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particles as needed to reach a collection efficiency of 100%, as can be seen in Figure 2.6b 

(obviously, more particles are needed for filters with lower SVFs).  

 

In order for the results of 1-D macroscale simulations to somewhat agree with those of the 3-D 

microscale simulations, we had to consider two major assumptions. Following the statement 

made by Bergman et al. (1978) that the parameter dp in Equation 2.5 is not necessarily equal to 

the particle diameter, we used a value of 3μm for dp even though the particles considered for the 

simulations are 1µm in diameter. 

 

Also, in our 1-D macroscale algorithm, we had to assume that the filter is made of one single 

layer (which can be justified considering the filters simulated here are very thin). With these 

assumptions, the pressure drop values from the 1-D model came to close agreement with those of 

3-D simulations, especially for higher SVFs. Nevertheless, for the media with an SVF of 2.5%, 

the macroscale model estimates an earlier transition from the depth filtration to the surface 

filtration regime. This could be due to our assumption of media being composed of one single 

layer only. However, increasing the number of layers in this 1-D model affects the agreement 

between the microscale and macroscale simulations at other SVFs. Note that we did not attempt 

to load our virtual filters beyond a collection efficiency of 100%, where the pressure drop is 

expected to increase linearly with the mass of deposited particles, as that was beyond the 

objectives of our current work. 

 



 

26 
 

10 20 30 40
Distance from the bottom (µm)

0

5

10

15

20

25

N
or

m
al

iz
ed

Fr
eq

ue
nc

y
%

SVF=2.5% with E=80.81%

10 20 30 40
Distance from the bottom (µm)

0

5

10

15

20

25

N
or

m
al

iz
ed

Fr
eq

ue
nc

y
%

SVF=5% with E=96.375%

10 20 30 40
Distance from the bottom (µm)

0

5

10

15

20

25

N
or

m
al

iz
ed

Fr
eq

ue
nc

y
%

SVF=7.5% with E=99.19%

(a)

(b)

(d)

(c)

(e)

0 1 2 3 4
Mass per unit area (g/m2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y

1-D Macroscale SVF=2.5%
1-D Macroscale SVF=5%
1-D Macroscale SVF=7.5%
3-D Microscale SVF=2.5%
3-D Microscale SVF=5%
3-D Microscale SVF=7.5%

0 1 2 3 4
Mass per unit area (g/m2)

0

200

400

600

800

1000

Pr
es

su
re

dr
op

(P
a)

1-D Macroscale SVF=2.5%
1-D Macroscale SVF=5%
1-D Macroscale SVF=7.5%
3-D Microscale SVF=2.5%
3-D Microscale SVF=5%
3-D Microscale SVF=7.5%

 
Figure 2.6: Comparison between pressure drop (a) and collection efficiency (b) values obtained from 1-D 
macroscale and 3-D microscale simulations at different mass depositions for media with a fiber diameter of 2 µm 
but SVFs of 2.5, 5, and 7.5%. Mass deposition profiles across the thickness of the filter media with SVFs of 2.5% 
(c), 5% (d), and 7.5% (e) are shown at a mass deposition of 2 g/m2. 
 

In interpreting the collection efficiency results shown in Figure 2.6b, note that there exist some 

differences in the predictions of the 3-D and 1-D models even at zero mass deposition (i.e., clean 

filter), as was discussed earlier in relation to Figure 2.4. Obviously the above differences 

eventually vanish as all collection efficiencies eventually reach a common value of 100%. 
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However, in the case of media with an SVF of 2.5%, this discrepancy seems to increase before it 

starts to decrease, i.e., 1-D simulations tend to be less accurate.    

 

For completeness of the study, we have also presented the mass deposition profile across our 

virtual media for a total deposition mass of 2 g/m2 in Figure 2.6c–2.6e; obviously, more depth-

deposition has taken place in media with lower SVFs. At a loading mass of 2 g/m2, we have also 

obtained the instantaneous collection efficiencies for media with SVFs of 2.5, 5, and 7.5% to be 

81, 96, and 99%, respectively.  

 

2.5. Chapter Conclusions  

Two different approaches were considered in this chapter for simulating the unsteady-state 

pressure drop and collection efficiency for fibrous filters loaded with mono-dispersed aerosol 

particles. The first approach is a computationally inexpensive 1-D macroscale model developed 

based on the studies reported in the literature, and uses cell-model-type semi-empirical (and/or 

semi-analytical) expressions for pressure drop and collection efficiency predictions. The second 

approach is a computationally-expensive 3-D microscale model, which produces a realistic 

representation of the particle loading and its evolution over time. A close comparison between 

the results of 1-D macroscale and 3-D microscale simulations indicates that while the former 

requires a series of ad-hoc or case-dependent correction factors before it can produce accurate 

predictions for the instantaneous pressure drop or collection efficiency of a fibrous filter under 

dust-loading. The 3-D microscale simulation method proposed in this study, in contrast, is self-

sufficient, as it is developed based on first principles, and can potentially replace the traditional 

design methods currently used in industry for product development. 
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Chapter 3 

Modeling Service Life of Pleated Filters Exposed to Poly-Dispersed 

Aerosols5 

 

3.1 Introduction 

With the current computational power, it is practically impossible to devise a 3-D microscale simulation 

discussed in the previous chapter to model the deposition of aerosol particles in a pleated filter. Therefore, 

macroscale models that can be used to simulate the performance of dust-loaded pleated filters have been 

developed for the past few years (the term macroscale simulation is used here to refer to simulations on 

scales comparable to the dimensions of the filter, i.e., scales 3–4 orders of magnitudes larger than those of 

microscale simulations). In a paper by Fotovati et al., 2011, we simulated the effects of dust-cake 

formation on the pressure drop of a pleated filter under the surface filtration regime (e.g., pleated HEPA 

media). An improved simulation method was later developed by Fotovati et al., 2012 to model the 

particle capture and pressure of a filter under the depth filtration regime on the macroscales (e.g., pleated 

pre-filters). The work in this chapter contributes to the state of the art in modeling dust-loaded pleated 

filters by 1) combining the above two algorithms (surface and depth depositions) into one unified 

simulation scheme that can be used to simulate performance of pleated filters with no limitation on the 

                                                 
5 Contents of this chapter appear in the following publication: 
A.M. Saleh, S. Fotovati, H.V. Tafreshi, B. Pourdeyhimi, Modeling service life of pleated filters exposed to poly-
dispersed aerosols, Powder Technol. 266 (2014) 79–89. 
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deposition regime, 2) extending the above algorithms to 3-D so that one can correctly model the clogging 

of a pleated filter (an inherently 3-D phenomenon by its nature), and most importantly 3) developing the 

formulations required for modeling the performance of pleated filters under poly-dispersed dust-loading. 

 

In the next sections, we first present the governing equations for the flow of air and particles in a pleated 

filter in Section 3.2, and then discuss the methodology that we have developed for simulating pleated 

media loaded with poly-dispersed dust particles in Section 3.3. In Section 3.4, we present a brief 

parameter-study conducted to demonstrate the capabilities of our model. This is followed by our 

conclusions of this chapter in Section 3.5.  

 

3.2. Flow Field and Particle Trajectory Calculations 

The governing equation for the flow of air in a pleat channel is the Navier–Stokes equation: 

0i
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x
∂

=
∂

          (3.1) 
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i j i i
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x ρ x x x

 ∂ ∂∂
+ =  

∂ ∂ ∂ ∂ 
        (3.2) 

 

The Fluent code has been adopted as the platform for our simulations and is enhanced with in-

house subroutines whenever needed. The convective terms of the Navier–Stokes equations 

become negligible for the air flow inside the fibrous structure of a filter. The fibrous media of the 

filter is modeled as a porous zone with a given permeability tensor. Fluent assigns an artificial 

pressure drop (momentum sink) to the cells located in the porous zone. This pressure drop is 

calculated based on a permeability tensor that is input to the code. The above pressure gradient in 

the x, y, and z directions is defined as: 
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p μ u
x k
∂

=
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           (3.3) 

where ijk is the permeability tensor of fibrous media. The elements of the permeability tensor 

ijk depend on the pleat angle, and can be found from the principal permeability values. We 

assume that the fibrous media are layered (Wang et al., 2007; Fotovati et al., 2010). Therefore, 

the media’s permeability tensor in the principal directions (i.e., the through-plane TPk  and in-

plane IPk permeability constants) can easily be obtained from the expressions of Spielmann and 

Goren, 1968:  
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= +        (3.4) 
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f f TP

K d kk
d K d kα

= +        (3.5)  

where 0K and 1K are the modified zeroth and first order Bessel functions of the second kind.  

 

A Lagrangian approach is considered to track particles and determine their paths through the 

filter. In this approach, Eqn. 2.3 is the equation for the balance of forces exerted on a particle is 

integrated to obtain the particle’s velocity and position over time (Brownian forces are negligible 

for the particle diameters considered in this study, 1–10 µm). 

 

In order to avoid the formation of unrealistic dendrites with ordered microstructures, the particles 

are injected in the simulation domain from random points at the inlet by developing a User-

Defined Function as discussed previously by Hosseini and Tafreshi 2010, 2011 (also refer to the 

previous chapter about the discussion on enhancing Fluent for particle capture via interception). 
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After injecting a certain number of particles, referred here as batch-injection, the flow field is 

recalculated.  

 

Formation of dust-cake, either on the surface or on the inside of a fibrous filter, is very slow 

process in real-life. Thousands of particles (or millions, depending on their size) are needed to 

build up a macroscopically measurable dust-cake. Similarly, a computer simulation of dust-cake 

formation requires a very long CPU time. To expedite this process, we have developed a 

“cluster” injection method in which a group of particles in the discrete particle tracking is 

modeled as a cluster of imaginary particles with the same particle diameter (Fotovati et al., 

2012). It is then assumed that the cluster continuously loses a fraction of its mass (i.e., some of 

its particle content) as it travels through the filter (or an existing dust-cake). The number of 

imaginary particles grouped into a cluster is designed to be an input depending on the actual size 

of the particle and the desired CPU time. Injecting a cluster containing, for example, 100 

imaginary particles and tracking its trajectory throughout the filter replaces the process of 

tracking the trajectories of 100 particles with the same diameter injected from the exact same 

point at the inlet. This numerical treatment helps to shorten the CPU time required to simulate 

the formation of a dust-cake by orders of magnitudes. The treatment, however, can affect the 

morphology of the dust-cake. If the number of particles grouped in a cluster is too high, the 

resulting dust-cake can become unrealistically non-uniform. Therefore, depending on the level of 

accuracy required to achieve the objectives of a study and the acceptable computational cost, one 

can decide on the number of imaginary particles that can be grouped in a cluster. Note that this 

number also depends on the size of the computational mesh considered for the simulations. 

Generally speaking, the number of particles in a cluster should not be so high to max out the 
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allowable Solid Volume Fraction (SVF) of a computational cell in one deposition (see the next 

section). After each batch-injection, the amount of mass deposited in the filter is used to 

calculate the instantaneous collection efficiency. The permeability of the cells in the porous zone 

is also updated using the amount of mass deposited to obtain the instantaneous pressure drop of 

the filter.  

 

3.3. Flat-Sheet Filters Loaded with Poly-Dispersed Dust  

The formulations presented here allow one to take the effect of particle size polydispersity into 

consideration when simulating the performance of a particle-loaded pleated filter, for the first 

time. To do so, we divide a given particle diameter distribution into 10 mono-dispersed sub-

groups with different weight factors. We assign a User Defined Memory (UDM) to each sub-

group for each cell. This is considered so that the number of particles ni (subscript i refers to the 

particles having a particle diameter of di) is available for calculating a geometric average 

diameter dg and geometric standard deviation σg for the deposited particles in a cell. With this 

information, one can calculate the instantaneous SVF of the cells during the simulation using the 

geometric standard deviation as  

ln
ln i i
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n d
d

N
= ∑           (3.6)  

2(ln ln )
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n d d
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−
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−

∑          (3.7) 

where N is the total number of particles in a cell. The geometric average diameter is also used 

along with the geometric standard deviation to calculate the permeability of the cells containing 

poly-dispersed particles as will be discussed later.  
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The SVF for each cell can be estimated by knowing the amount of deposited mass in that cell 

and the cell volume. The maximum allowable SVF maxα  in a cell is obtained based on the 

diameter of the deposited particles, using the equation proposed by Kasper et al., 2010. 

{ }max 1 0.36 0.64 exp( 0.29 / )p pg wdα ρ ρ = − + −         (3.8)  

 

As mentioned earlier, the flow field is recalculated after injecting each batch of clusters. Before 

flow recalculation, the permeability of the computational cells containing deposited mass is 

updated. The next section presents our proposed formulations for obtaining these permeability 

values. For clarity of the presentation, we first discuss our procedure for modeling surface 

filtration in Section 3.3.1, and then present our combined surface-and-depth filtration algorithm 

in Section 3.3.2.  

 

3.3.1 Surface Filtration with Flat-Sheet Filters 

The pressure drop of a dust-cake formed on the surface of a flat-sheet filter can be studied using 

the following equation Rudnick and First, 1978: 

2
c

c
c

MP K V
A

∆ =            (3.9)  

where 2K is the specific cake resistance, V  is the air velocity, and /c cM A  is the cake mass per 

unit area. The specific cake resistance can be obtained from the empirical correlations of 

Rudnick and First, 1978 or Kozeny–Carman (Carman, 1956) given in Equations 3.10 and 3.11, 

respectively. 
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where cc  is the Cunningham slip correction factor and ε is the cake porosity. Representing the 

cake mass as (1 )c p c cM A Lρ e= − , Equations 3.10 and 3.11can be used together with Darcy’s law 

/ ( )g c cV k P Lµ= ∆  to obtained permeability expressions for the dust-cake.  
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The equation of Rudnick and First, 1978 is implemented in our simulations to calculate the 

permeability of the cells containing mono-dispersed particles.  

 

Gupta et al., 1993 modified the expression of Rudnick and First, 1978 such that it becomes 

applicable to poly-dispersed cakes. Using the specific cake resistance expression of Gupta et al., 

1993, we obtain: 
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    (3.14) 

 

Figure 3.1 shows our algorithm for modeling surface filtration (particles cannot penetrate into the 

filter, i.e., collection efficiency is 100%) with mono- or poly-dispersed particles in the form of a 

flowchart. As can be seen, the cell model equations (written for a granular bed, see Appendix B) 

are solved inside each computational cell to calculate the mass of the deposited particles, if a 

cluster’s trajectory encounters the dust-cake. Otherwise, if the cluster reaches the surface of the 

filter, its entire mass is deposited in the cells adjacent to the filter surface. When the SVF of a 
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cell reaches maxα , it is then considered to be blocked, and the incoming clusters will have to 

deposit in the cells upstream to this blocked cell. 

 

The resistance of the cells containing a deposit can be calculated using Equations 13–15 for 

mono- or poly-dispersed particles. These instructions are provided to Fluent code via a series of 

in-house User-Defined Functions (UDFs). The UDFs first check for an interception between a 

traveling cluster and the blocked cells in the dust-cake (or the cells assigned to the fibrous media 

in the case of surface filtration). If such encounter is detected, the entire mass of the cluster will 

be deposited in the cell that hosts the cluster. If no encounter is detected, then the fraction of the 

cluster’s mass that should be deposited in cells along its trajectory is calculated using equations 

B.1–B.5. The distance that a cluster travels inside each cell is recorded to obtain the total length 

of the cluster’s trajectory inside the cake. At the end, the mass of the deposited particles is 

recorded in a User-Defined Memory (UDM), and used to assign a new SVF to the marked cells. 

For poly-dispersed dust, the geometric particle diameter and standard deviation are calculated for 

the particles deposited in each cell and used in Equation 3.14 for permeability calculation. 

 

As mentioned earlier in this section, the concept of using clusters instead of actual particles is a 

numerical treatment considered here to accelerate the dust-cake formation. The choice of the 

cluster mass (the number of particles grouped in a cluster) can influence the accuracy of the 

numerical values obtained from the simulations. This parameter is left to be chosen by the 

modeler in trading accuracy for CPU time. It is therefore, recommended to calibrate the 

simulations with an experiment to determine the error associated with a given cluster mass for 
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simulating a given dust-filter combination (without a calibration one can only expect qualitative 

predictions from the model). 
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is zero

stop
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yes

no

no

yes

yes

no

deposit cluster and update the
SVF and permeability of the cell

 
Figure 3.1: The flowchart for modeling surface filtration. 

 

Once the simulation is calibrated, one can use it to simulate different filter geometries and 

aerodynamic conditions. As mentioned in the Introduction section, we have developed accurate 

microscale simulations for predicting the collection efficiency and pressure drop of flat-sheet 

fibrous media under loading (Saleh et al., 2013). Being CPU-intensive, such 3-D microscale 

simulations are not suitable for simulating filters on scales comparable to the dimensions of a 

pleated filter, but they are very valuable in benchmarking the accuracy of our macroscale 

simulations for pleated media. In this Chapter, we use both the experimental data and microscale 

simulation results (Section 3.3.2) for calibrating our macroscale models.  
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To calibrate our macroscale model with experiment, we set up a simple 3-D simulation domain 

as shown in Figure 3.2a. We considered a flat-sheet filter loaded with mono-dispersed particles 

of 1 μm diameter. An example of a simulated dust-loaded flat sheet is shown in Figure 3.2b. We 

compared the instantaneous pressure drop of our simulations with the predictions of the 

empirical correlations given in Equations 3.10 and 3.11.  As mentioned before, the choice of 

cluster mass should be in relation to the volume of the computational cell used in the simulation. 

For a mesh volume of 3.5×10-3 mm3, we found a cluster volume of 2.4×10-5 mm3 (corresponding 

to a cluster-to-cell volume ratio of 0.007) resulting in good agreement between the predictions of 

our model and the above correlations (see Figure 3.2c).  
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Figure 3.2: Simulation domain for modeling particle deposition on flat-sheet media (a). A dust-cake example 
composed of mono-dispersed particles of 1 µm diameter at a face velocity of 1 m/s formed on the surface of a flat-
sheet filter (b). Model calibration using empirical correlations of Rudnick and First, 1978 and Kozeny–Carman 
(Carman 1956) resulting in a cluster-to-cell volume ratio of 0.007 (c). Effects of mesh volume on pressure drop 
prediction for a constant cluster-to-cell volume ratio of 0.007 (d).  
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In order to further demonstrate the uniqueness of the above-mentioned cluster-to-cell volume 

ratio, we increased the cell dimensions from 3.5×10-3 mm3 to 8×10-3 and 1.5×10-2 mm3 and 

repeated the simulation with cluster volumes of 5.5×10-5  and 10.6×10-5 mm3, respectively 

(maintaining the same cluster-to-cell volume ratio) in Figure 3.2d. It can be seen that once the 

cluster mass is obtained through calibration with a given mesh density, further increase or 

decrease of the mesh will not affect the results, as long as the cluster-to-cell volume ratio is held 

constant.  

 

For completeness of the study, in Figure 3.3, we present another calibration study in which we 

simulated the experiment of Cheng and Tsai, 1998 conducted for poly-dispersed limestone 

particles with a mass mean aerodynamic average diameter of 2.66 μm and a geometric standard 

deviation of 2.1 (note that Cheng and Tsai , 1998 did not discuss the properties of their filters, 

indicating that the reported pressure drop values are for the cake only). The volume of the cluster 

was set to be 2.4×10-3 mm3 for a mesh volume of 3.5×10-3 mm3.  
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Figure 3.3: Pressure drop of a flat-sheet filter loaded with poly-dispersed particles with a mass mean aerodynamic 
diameter of 2.66 µm and a geometric standard deviation of 2.1 at an air velocity of 0.9 cm/s devised to simulate the 
experiment of Cheng and Tsai, 1998 for model calibration. 
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3.3.2 Combined Depth and Surface Filtration with Flat-Sheet Filters 

Our algorithm for particle tracking and particle deposition in combined depth and surface 

filtration regimes is presented in the flowchart shown in Figure 3.4. The algorithm is very similar 

to the one shown in Figure 3.1, except that this algorithm the clusters are allowed to enter and 

deposit inside the fibrous media. When a cluster enters the fibrous domain the cell-model 

equations (Equations C.1–C.3 from Appendix C) are solved inside each computational cell to 

obtain the mass of the deposited particles. In the absence of more accurate estimates, we 

assumed the maximum allowable SVF in a fibrous zone to be the same as the value used for the 

granular zone (see Equation 3.8). 
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start
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update cluster position
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Figure 3.4: The flowchart for modeling the combined depth and surface filtration regimes. 
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For the cells located inside the fibrous zone containing particle deposits, the cell’s resistivity 

(inverse of permeability) due to particles should be added to that caused by the fibers. The latter 

is calculated using the expressions of Spielmann and Goren, 1968 in this work, as mentioned 

earlier. There are several formulas in the literature for calculating the permeability of porous 

media comprised of different solid components, like fibers and particles (Clague and Phillips, 

1998; Mattern and Deen, 2007; Tafreshi et al, 2009). In our preliminary investigations, we 

observed consistent pressure drop predictions with the un-weighted resistivity (Equation 3.15) 

and the volume-weighted resistivity (Equation 3.16) formulations of Mattern and Deen, 2007 

(also see Tafreshi et al., 2009 for additional information):  

1 1 2 2

1 1 1
( ) ( )totk k kφ φ

= +          (3.15) 

1 2

1 2

1 1 1
( ) ( )tot tot tot tot totk k k

φ φ
φ φ φ φ

= +         (3.16) 

where 1φ  and 2φ are the SVF of the fibrous and granular mass in a cell, respectively, with k1 and 

k2 representing their corresponding permeability values. In Equation 3.16, totφ is the overall SVF 

of the cell (both permeability values are calculated using totφ and weight-averaged according to 

their corresponding volume fractions). With the mass deposited in each cell recorded, the total 

resistivity of the particle-loaded fibrous media can be obtained using either of the un-weighted or 

the volume weighted resistivity equations (Equation 3.15–3.15). 

 

As mentioned earlier, microscale simulations are expected to be significantly more accurate than 

the macroscale models. In the absence of experimental data, one can use microscale models to 

calibrate (even validate in many cases) the macroscale models. To demonstrate this, we use the 

results of the microscale 3-D simulations of Chapter 1 (Saleh et al. 2013) to calibrate our 
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macroscale model for a flat-sheet filter having a fiber diameter of 2 µm loaded with particles 

with a diameter of 1 µm (see Figure 3.5a and 3.5b). The dimensions of the porous zone in the 

macroscale model are chosen such that they match the dimensions of the fibrous structure 

considered for the microscale simulations (a square side length of 55 µm and a thickness of 40 

µm).  

0 1 2 3 4
Mass per unit area (g/m2)

0

100

200

300

400

500

600

700

800

900

Pr
es

su
re

dr
op

(P
a)

3-D macroscale model, SVF=5%
3-D macroscale model, SVF=7.5%
3-D microscale model, SVF=5%
3-D microscale model, SVF=7.5%

(c)

df=2 μm
dp=1 μm

0 1 2 3 4
Mass per unit area (g/m2)

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y

3-D macroscale model, SVF=5%
3-D macroscale model, SVF=7.5%
3-D microscale model, SVF=5%
3-D microscale model, SVF=7.5%

(d)

df=2 μm
dp=1 μm

(a)

df = 2 μm, dp = 1 μm, 
SVF = 5%, m = 2.6 g/m2

(b)

df = 2 μm, dp = 1 μm, 
SVF = 5%, m = 2.6 g/m2

 
Figure 3.5: A comparison between 3-D microscale and 3-D macroscale simulation of flat-sheet filters with a fiber 
diameter of 2µm and SVFs of 5 and 7.5 % loaded with particles of 1µm diameter. A mass deposition of 2.6 g/m2 on 
the filter with an SVF of 5% is shown on micro- and macroscales in (a) and (b), respectively. Instantaneous pressure 
drop (c) and collection efficiency (d) of the microscale simulations are used to calibrate the macroscale model. 
 
 

Figure 3.5a and 3.5b show the deposition of 2.6 g/m2 of particles on a flat sheet-filter having an 

SVF of 5%. Note that the deposition patterns are not exactly identical for two main reasons. 
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First, the fibrous zone in the macroscale model is a homogenous porous medium whereas the one 

in the microscale model is made of actual fibers with random in-plane orientations. Second, the 

particles in both simulations are injected from random cites at the inlet. In other words, the 

simulations are only statistically identical and one should only compare the ensemble average 

values obtained by repeating the simulations, as shown in Figure 5c and 5d. It was found that for 

a mesh volume of 170 µm3 and a cluster volume of 52 µm3 (corresponding to a cluster-to-cell 

volume ratio of 0.3) the macro- and microscale simulations agree well, as can be seen in Figure 

5c and Figure 5d. Note also in these figures that two different SVFs of 7.5 and 5% have been 

considered, both having the same cluster-to-cell volume ratios. 

 

3.4. Surface and Depth Deposition of Poly-Dispersed Dust in Pleated Filters 

The main objective of this study is to provide a means of modeling the instantaneous 

performance of dust-loaded pleated filters over time.  Triangular (V-shaped) pleats with different 

widths (or angles) but identical lengths of 25.4 mm are considered for the study presented here 

(see Figure 3.6). The depth in the z-direction is assumed to be 2.5 mm. Media thickness, SVF, 

fiber diameter, and inlet air velocity are assumed to be 0.7 mm, 7.5%, 15µm, and 0.5 m/s, 

respectively. All dimensions and parameters considered in our simulations are chosen arbitrarily, 

but are somewhat representative of a general dust-filtration application. Note that the inlet 

velocity is the velocity of the air at the entrance of the pleat channel and should not be confused 

with the face velocity, which is the velocity of air as it enters the fibrous medium. The aerosol 

mass concentration is assumed to be 72.52 10C −= ×  kg/m3 with its flux C  given as  

inC C u= ⋅           (3.17) 
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Figure 3.6: The mass distribution of the poly-dispersed aerosols used for simulating the pleated filters (a) along with 
the domain and boundary conditions considered for the simulations (b). 
To demonstrate the capabilities of our macroscale model, three different aerosol flows have been 

considered in this study: mono-dispersed particles with a diameter of 1 µm, mono-dispersed 

particles with a diameter of 10 µm, and poly-dispersed particles with a diameter distribution 

between 1 and 10 µm having a mass average diameter of 4.77 µm. The mass distribution of the 

poly-dispersed aerosol particles is shown in Figure 3.6. To study the effects of pleat count on 

filtration performance, one should make sure that the number of clusters injected at each time 

step is obtained based on the inlet area of the filter (a variable dependent on the filter’s pleat 

count). This guarantees that the aerosol concentration flux is maintained constant when 

comparing filters with different pleat counts. 

 

Figure 3.7 shows the pressure drop and collection efficiency (mass-based) of filters with 2 and 4 

pleats per inch versus loaded mass per unit area (left column) and time (right column). It can be 
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seen that, the rate of increase of pressure drop and collection efficiency is lower for filters with 

more pleats, as expected. It is often expected that pressure drop and collection efficiency values 

obtained for filters with different pleat counts collapse on top of each other when plotted versus 

mass per unit filtration area. This however, is only true if the flow patterns in filters with 

different pleat counts are exactly identical––a condition that may prevail in the early stages of 

dust loading only. It is also worth mentioning that by adding more pleats, one also adds more 

impermeable crease lines which in fact reduce the available air passage. For instance, increasing 

the pleat count by a factor of 2 does not decrease the face velocity by a factor of 2. 

 

In Figure 3.7, note that the collection efficiency is almost 100%, independent of the loaded mass, 

for the filter challenged with particles with a diameter of 10 µm (Figures 3.7a and 3.7b). In 

contrast, collection efficiency of the same filter, when exposed to 1 µm-diameter particles, 

increases from less than 10% to 100% after collecting about 0.12 kg/m2 of dust per unit filtration 

area (corresponding to about 150 and 200 days of operation for the filter with 2 and 4 pleats per 

inch, respectively), as can be seen in Figures 3.7c and 3.7d. The initial collection efficiency 

(mass-based) of the filter challenged with the aforementioned poly-dispersed aerosol falls 

between those obtained for 1 and 10 micrometer particles, and unlike the two other cases, is 

sensitive to the number of pleats (see Figures 3.7e and 3.7f). In Figure 3.7, it can also be seen 

that pressure drop in filters loaded with large particles (e.g., 10 µm particles) is less than that of 

the same filters loaded with small particles (e.g., 1 µm particles) for the same mass per unit 

filtration area (see Figures 3.7a, 3.7c, and 3.7e). This is simply because for a given mass the cake 

made of small particles has a higher surface area causing more friction with the air flow. 
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Expectedly, for the poly-dispersed particles, the pressure drop falls in between those of the two 

mono-dispersed extremes.  
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Figure 3.7: Instantaneous pressure drop and collection efficiency of filters with 2 and 4 pleats per inch with an inlet 
velocity of 0.5 m/s. Mono-dispersed aerosols with a particle diameter of 10 µm (a) and (b), mono-dispersed aerosols 
with a particle diameter of 1 µm (c) and (d), and poly-dispersed aerosols with a particle diameter of 1-10 µm (e) and 
(f). 
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Plotting the pressure drop and collection efficiency values versus time in service reveals 

additional information about the performance of a pleated filter. It can interestingly be seen in 

Figures 3.7b, 3.7d, and 3.7f that the pressure drop of the filters considered in our study increases 

faster when they are exposed to the poly-dispersed dust. For instance, the filter with 2 pleats per 

inch reaches a pressure drop of 6 kPa in about 190 days, if exposed to the aerosol flow with 10 

µm particles, about 140 days, if exposed to the aerosol flow with 1 µm particles, and about 60 

days, if exposed to the aerosol flow poly-dispersed particles. This indicates that the filters 

considered here reach the end of their service-life in less number of days when exposed to the 

poly-dispersed aerosol. To better understand the reason for this counter intuitive behavior note 

that the above filters have very low initial collection efficiencies when challenged with the 1 µm 

particles. This means that the cake made up of 1 µm particles grows very slowly with time. The 

same filters when exposed to 10-µm particles have very high (almost 100%) collection 

efficiencies, i.e., their cakes, made up of 10 µm particles, grow very quickly. On the other hand, 

a cake made up of 1 µm particles causes a lot more pressure drop than the one made of 10 µm 

particles with the same mass, as discussed earlier. Therefore, the interplay between the diameter 

of the particles in a cake and the rate by which the filter collects the particles (i.e., filter’s 

collection efficiency) leads a shorter service-life for the filters exposed to poly-dispersed 

aerosols.  

 

It is also interesting to note that, increasing the number of pleats per inch from 2 to 4 

significantly improved the service life of the filters considered in our study when challenged with 

the poly-dispersed aerosols. More specifically, increasing the number of pleats per inch from 2 to 

4 increased the service life of the filter exposed to the poly-dispersed aerosols from about 60 
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days to about 140 days (a factor of 2.33) for a maximum pressure drop of 6 kPa. Similar increase 

in the number of pleats for the same pressure drop 6 kPa, increased the filters’ service life from 

about 140 days to about 200 days (a factor of 1.43), for the aerosol flow with 1-µm particles, and 

from about 190 days to about 320 days (a factor of 1.68), for the aerosol flow with 10-µm 

particles (see Figures 3.7b, 3.7d, and 3.7f). The reason is that increasing the pleat count 

decreases the face velocity. As can be seen in the cell model calculation results shown in Figure 

3.8, the initial collection efficiency of the filter considered here depends on the face velocity only 

when challenged with particles with a diameter between about 2 to 7 µm. For an inlet velocity of 

0.5 m/s, theoretical face velocities of 0.125 and 0.0625 m/s can be obtained for the filters with 

pleat counts of 2 and 4 pleat per inch, respectively (neglecting the aforementioned impermeable 

fold line). Therefore, for particles with a diameter of 1 or 10 µm, the collection efficiency is not 

affected when increasing the number of pleats. However, for particles with a diameter of about 2 

to 7 µm, increasing the pleat count reduces the collection efficiency due to inertial impaction, 

and consequently, the total initial filtration efficiency (see Figure 3.7f).  
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Figure 3.8: Initial (clean) collection efficiency predictions obtained using the cell-model equations for the flat-sheet 
filter discussed in Figure 7. Face velocities of 0.125 and 0.0625 m/s are used for when the pleat count is increased 2 
to 4 pleats per inch. 
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Figure 3.9 shows the macroscopic dust-cake in filters discussed in Figure 7 at the moment when 

all the filters reached an instantaneous pressure drop of 8 kPa. The amount of deposited mass per 

unit filtration area (in kg/m2) and the time in service (in days) are also shown in the figures for 

better comparison. The filter shown in the left column (Figures 9a, 9c, and 9e) and the ones 

shown in the right column (Figures 9b, 9d, and 9f) have a pleat count of 4/inch and 2/inch, 

respectively. The filters shown in the first, second, and third row in this figure are challenged 

with the 10 µm, 1 µm, and poly-dispersed aerosol flows, respectively. Note that deposition 

pattern becomes less uniform when decreasing the particle size or increasing the pleat count.  
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Figure 3.9: An example of 3-D dust deposition pattern in pleated filters with 4 and 2 pleats per inch challenged with 
different particle sizes at a pressure drop of 8 kPa and an air inlet velocity of 0.5 m/s. Mono-dispersed aerosols with 
a particle diameter of 10 µm (a) and (b), mono-dispersed aerosols with a particle diameter of 1 µm (c) and (d), and 
poly-dispersed aerosols with a particle diameter of 1-10 µm (e) and (f). 
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3.5. Chapter Conclusions   

A CPU-friendly 3-D simulation method is developed to model the service life of pleated fibrous 

filters when challenged with mono- and poly-dispersed aerosols. The model is capable of 

simulating pressure drop and collection efficiency of such filters in both the surface and depth 

filtration regimes over time, and is suitable for parameter study and product design. The novelty 

of the macroscale simulation method presented here is that it is computationally fast, and 

therefore allows one to simulate and compare the lifecycle of pleated filters of different 

properties with one another. The method however, requires calibration with experiment or 

simulations conducted on smaller scales (i.e., more accurate simulations). 

  

As an example, the lifecycle of an arbitrary filter with 2 and 4 pleats per inch is simulated when 

challenged with poly-dispersed particles having diameters in the range of 1 to 10 μm, as well as 

mono-dispersed particles of 1µm diameter and mono-dispersed particles of 10µm diameter. It 

was found that the life of a filter is elongated by increasing the number of pleats, but the 

relationship is not linear. Increasing the pleat count from 2 to 4, for instance, improved the 

service life of the filter by a factor greater than 2 when loaded with the poly-dispersed particles, 

and a factor smaller than 2 when loaded with the mono-dispersed particles of 1 or 10 µm 

diameter. It was also found that the life of the filter is shorter when it is loaded with the poly-

dispersed particles in comparison to when it is loaded with the above mono-dispersed aerosol of 

1 or 10 µm particles, under the same mass flow rate. This peculiar behavior can be explained in 

terms of the diameter of the particles in the cake and the rate by which the filter collects the 

particles (i.e., filter’s collection efficiency). 
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Chapter 4 

Filtration Performance of Dust-Loaded Trilobal Fibers6 

 

4.1. Introduction 

In the half-century long history of modern aerosol filtration theory, the interactions between the 

aerosol flows with a clean single fiber with a circular cross-section has been the basis for 

developing correlations to estimate the collection efficiency of a filter (Kuwabara 1959, 

Stechkina and Fuchs, 1965;  Brown 1993; Spurny 1998; Hinds, 1999; Tien, 2012). During a 

filter’s service, particles deposit on the fibers and change the morphology of the filter’s structure. 

As a result, the flow experiences higher resistance and the deposited particles enhance the 

collection mechanisms. The effect of particle deposition on the filtration performance (i.e., 

collection efficiency and pressure drop) of fibers with circular cross-section has been 

investigated previously in a many studies (e.g., Filippova and Hanel, 1997; Hinds and Kadrichu, 

1997; Kanaoka et al., 2001; Przekop et al., 2003; Lantermann and Haenel, 2007; Li and 

Marshall, 2007; Kasper et al., 2009; Dunnett and Clement, 2009 and 2012; Hosseini and 

                                                 
6 The contents of this chapter appears in the following publication: 
A.M. Saleh, H.V. Tafreshi, On The Filtration Performance of Dust-Loaded Trilobal Fibers, 2015. Separation and 
Purification Technology, 149, 295–307 
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Tafreshi, 2012). Although trilobal fibers are becoming increasingly more available (Jung et al., 

2010; Geisler et al., 2008; Karaca and Ozcelik 2007; Omeroglu et al., 2010; Tascan and Vaughn, 

2008), the literature is very scarce (and controversial sometimes), when it comes to using such 

fibers for aerosol filtration (Lamb and Gostanza, 1975, 1980a and 1980b; Sanchez et al., 2007, 

2010). In fact, there are too many unanswered questions with regards to the actual advantage of 

such fibers over fibers with circular cross-sections. In this Chapter, we specifically aim to shed 

some light on the differences between the performance of fibers with trilobal and circular cross-

sections. This chapter is an extension for the previous study reported in (Fotovati et al., 2011), 

which was focused on performance of clean trilobal fibers, by taking the dust-deposition on the 

fibers into consideration.  

 

In the remainder of this chapter, we first present the governing equations considered in this study 

to simulate the flow of air and airborne particle over a single fiber. In Section 4.3, we discuss our 

microscale and macroscale simulations strategies as well as fiber geometries and other numerical 

parameters considered in our study. In Section 4.4, we present our results and discussion where 

we compare the performance of trilobal fibers under dust loading conditions with their circular 

counterparts. In this section, we also study the effects of fibers’ through-plane orientation on 

their filtration performance. The main conclusions drawn from this chapter are given in Section 

4.5. 
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Figure 4.1: Simulation domain and boundary conditions used in the study. 
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4.2. Governing Equations 

The equation governing the flow of air around a single fiber is the Stokes Equation which will be 

solved using ANSYS–Fluent code with appropriate boundary conditions as shown in Figure 4.1. 
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          (4.2) 

The air enters the simulation domain from a velocity inlet boundary, far upstream from the fiber, 

and exits the domain from a pressure outlet boundary. The inlet was placed far upstream the fiber 

so that the flow can adapt before reaching the fiber, and the outlet boundary condition was 

chosen so that no reversed flow takes place which may affect the accuracy of the calculation. A 

no-slip boundary condition is considered for the flow at the fiber surface. The particles are 

tracked via a Lagrangian approach in which the forces acting on the particle are integrated in 

order to update the particle position and velocity with time. 
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The first term in the right hand side of the above equation is the drag force and the second is the 

Brownian force term (Li and Ahmadi, 1992):  

0
i i

Sn G
t

π
=

∆
           (4.4) 

where 0 2 2 5 2
216

c
p p

TS
d S c
µσ

π ρ
=  is the spectral intensity of the fluctuations, 23 2 2 11 38 10 ( )σ . m kgs K− − −= × is 

the Boltzmann constant and iG is a zero-mean variant from a Gaussian probability function 
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obtained by using two randomly chosen numbers 1λ and 2λ from a uniform distribution function 

(Box and Miller, 1958): 

1 22ln cos(2 )iG λ πλ=           (4.5) 

The Brownian forces were only considered for particles with a diameter of 0.75 μm or smaller. 

The Brownian forces were incorporated in our particle tracking via a user-defined function for 

the Fluent code (Longest and Jinxiang, 2007; Hosseini and Tafreshi, 2010a, 2010b). In both 

models, the surface of the fiber is treated like a wall boundary condition. If the center of a 

particle reaches a distance from the fiber equal or less than the particle diameter, it is treated as a 

deposited particle (i.e., intercepted). Therefore, a user-defined function has been used to 

constantly monitor the distance between the airborne particles and the surface of the fiber or any 

previously deposited particle (Hosseini and Tafreshi, 2010b). 

 

4.3. Simulation Strategies and Parameters 

As the relative size of the particles and fibers with respect to one another can vary by orders of 

magnitudes, it is not always feasible (or computationally economical) to simulate such systems 

on a fixed scale for the entire range of variable. In this concern, we have considered two different 

modeling strategies for simulating particle loading on a fiber. These modeling strategies are 

referred to as microscale and macroscale models. The former is utilized when the particles are 

generally comparable to fibers in diameter (e.g., a particle-to-fiber diameter ratio of greater than 

0.1, corresponding to a particle diameter greater than 1 µm in this study), whereas the latter is 

employed when the particles are much smaller than the fibers (e.g., a particle-to-fiber diameter 

ratio of smaller than 0.1, corresponding to a particle diameter less than 1 µm here). For the 

microscale simulations, the computational domain has to be meshed on scales smaller than the 
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particle diameter and as a result, each deposited particle will be represented by a number of 

computational cells (Saleh et al., 2013). Therefore, the computational cost of conducting 

microscale simulations rapidly increases for particles with small diameters relative to the fibers. 

Our macroscale modeling strategy, on the other hand, is designed for simulations in which 

resolving the actual shape of the particles in a dendrite has no real significance, and therefore the 

dendrite can be simulated with a coarser resolution as discussed in our previous work (Fotovati 

et al., 2011, 2012; Saleh et al., 2014a). In the macroscale model, each computational cell in the 

dendrite can accommodate more than one particle. The dendrite in this approach is modeled as a 

macroscopic porous medium comprised of randomly packed particles. The macroscale 

simulations, therefore, do not require excessively refined cells. In addition, to accelerate the 

formation of dendrites on a fiber in the macroscale models, the particles can be injected in 

clusters rather than individually (see Fotovati et al., 2012 and Saleh et al., 2014a for more 

detailed information).  

 

In our macroscale approach, permeability of the dust-cake (i.e., cells containing particles) is 

predicted using the Kozeny–Carman equation (Carman, 1956). 
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where α is the cell solid volume fraction, pd is the particle diameter, and cc is the Cunningham 

slip correction factor.  The maximum solid volume fraction (SVF) that a computational cell can 

attain in the macroscale model is predicted using Equation 3.8, which is empirical correlation 

presented in the previous chapter. If the SVF of a cell reaches maxα , the cell is considered to be 

filled and is made impermeable to the particles. The unfilled cells, on the other hand, are treated 
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as individual filters, and the amount of particle deposited in each of them is calculated using the 

cell model equations given in Appendix B. 

 

To investigate how a trilobal geometry can influence the filtration performance of a fiber under 

dust-loading, we consider a trilobal fiber comprised of three overlapping ellipses (united in their 

focal points) similar to the work of Fotovati et al., 2011. Our objective in this Chapter is to 

compare the performance of a trilobal fiber with its circular counterparts under different levels of 

dust-load (i.e., time in service). The counterpart circular fibers considered for this comparison 

are a fiber with an Area-Based Circular (ABC) diameter (the circular fiber with a cross-sectional 

area equal to that of the trilobal fiber) and a fiber with a Circumscribed Circular (CC) diameter 

(the circular fiber with a diameter equal to the circumscribed circle to the trilobal fiber) as shown 

in Figure 4.2a. This objective is motivated by the lack of a clear understanding of the advantages 

of using grooved fibers (e.g., trilobal fibers) over their circular counterparts. This question was 

addressed when the fibers are clean in Fotovati et al., 2011; It was concluded that clean trilobal 

(or multi-lobal) fibers have no significant advantage over their circular counterparts. In this 

chapter, we discuss this question for when the fibers are loaded with aerosol particles (fiber’s 

dust-hold capacity). For this study, we have arbitrarily chosen a major diameter of majd = 8 µm 

and a minor diameter of mind = 4 µm for the ellipses constituting our trilobal fibers. Figure 4.2a 

also shows the ABC (9.5 µm) and CC (15 µm) diameters of the trilobal fiber for comparison. 

Note that in comparing a trilobal fiber with its circular circumscribed counterpart, we considered 

two different cases. In the first case, we simply replaced the trilobal fiber with the circumscribed 

fiber allowing the filter’s SVF to increase from 10% to 19.6% (i.e., keeping the cell dimensions 

constant). In the second case, we increased the cell dimensions in order to maintain the same 
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SVF of 10% for the filter. Two extreme conditions are considered for the cross-sectional 

orientation of the trilobal fibers with respect to the direction of the incoming aerosols. The first 

case is when one of the grooves with its imaginary entrance plane normal to the flow direction is 

upstream of the fiber (facing the flow), and the second case is when this groove is downstream of 

the fiber (back to the flow) as shown with red dashed lines in Figure 4.2b. The former and the 

latter are referred to here as Normal Grooves Upstream Trilobal (NGUT) fiber and Normal 

Grooves Downstream Trilobal (NGDT) fibers, respectively.   
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Figure 4.2: The trilobal fiber considered in the study and its circular counterparts is shown in (a). The two extreme 
orientations of a trilobal fiber with respect to flow direction: Normal Groove Upstream Trilobal (NGUT) fiber and 
Normal Groove Downstream Trilobal (NGDT) fiber in (b). The SFE definitions considered in the study for non-
circular fibers are graphically shown in (c). Dashed and solid lines represent the circular diameters and the 
symmetric boundary conditions, respectively. 

 

The SFE was originally developed for fibers with circular cross-sections and was defined as the 

ratio of the number of particles collected by a fiber to the number of particles that passed through 

an imaginary projected area of the fiber. No distinctive definition has yet been proposed for the 

SFE of fibers with non-circular cross-sections, due in part to the lack of axial symmetry of such 
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geometries making the orientation of the cross-section with respect to the flow an additional 

parameter to be included in the analysis. In this chapter, we define the SFE of a trilobal fiber as 

the ratio of number of particles deposited on the fiber to the number of particles that passed 

through an imaginary projected area of its corresponding ABC fiber as shown in Figure 4.2c. 

Note that SFE may exceed unity indicating the capability of a single fiber to collect a number of 

particles greater than that of injected particles from its corresponding defined projected area. 

This is in agreement with the previous work in the literature (Hosseini and Tafreshi, 2012; 

Raynor, 2008; Regan and Raynor, 2009). For the CC fibers, we use the above-mentioned 

conventional circular-fiber definition of the SFE. 

 

Aerosol particles with diameters of 0.125, 0.25, 0.75 and 2 µm are considered in our study. For 

particles with a diameter greater than 1 µm, we considered a microscale model, and for those 

smaller than 1 µm in diameter we used our macroscale approach. As mentioned earlier in Section 

4.2, injecting the particles in the form of clusters allows one to significantly speed up the 

formation of a dust-cake on a fiber. However, this is at the cost of losing the morphology of the 

dendrites. As described elsewhere in the previous chapter, the outcomes of our macroscale model 

depends on the choice of the so-called cluster-to-cell volume ratio (CCVR) considered for the 

aerosol particles. Simulations conducted with a large CCVR are faster but less accurate. 

Decreasing the CCVR slows down the simulations but results in dendrites with more realistic 

morphologies. To select a suitable CCVR, we monitored the effects of varying the CCVR on the 

pressure drop values obtained for a NGUT fiber loaded with 0.5 µm particles. For the mesh 

volume of 1 µm3 considered in this approach, we used a cluster volume of 0.06 µm3 (i.e., 

CCVR=0.06) as the pressure drop values seemed to converge for CCVR values smaller than 0.06 
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(see Figure 4.3a). As shown in the figure, using CCVR greater to 0.06 causes the pressure drop 

to deviate from those values obtained with 0.06 or less CCVR.  
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Figure 4.3: Effects of cluster-to-cell volume ratios (CCVR) on the pressure drop (a) and SFE (b) for a NGUT fiber 
loaded with particles with a diameter of 0.5 µm at a velocity of 0.1 m/s. Dust deposition profiles for the different 
CCVRs at a pressure drop of 5.7 Pa are shown in (c). 
 

Figure 4.3b shows the effects of CCVR on SFE with loading. Although the SFE convergence is 

not as perfect as that of pressure drop, we believe that the error associated with this is 

insignificant from the perspective of the goals of this study as will be discussed later in this 

Chapter. The scatter in the SFE values shown in Figure 4.3b is due to the random injection. We 

inject the particles from random points near the inlet surface inside the domain to ensure the 

formation of a realistic dust deposition. Figure 4.3c shows dust deposition on a NGUT fiber 
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obtained using different CCVRs at a pressure drop value of 5.7 Pa. It can be seen that the 

location of the dust cake on the surface of the fiber is not affected by the choice of CCVR, and 

except for the case of CCVR=0.16, all other dust deposition patterns are comparable to one 

another. It is important to mention that particles tracked here have a density of 1000 kg/m3. The 

domain was meshed with about 22 grid points around the trilobal fiber. The flow was 

recalculated after injecting 200 clusters and calculated till the residuals reach a value of 1×10-10. 

 

Additionally, we compared our microscale model SFE values of a circular fiber with the 

experimental work of Kasper et al. 2009. It is important to mention that in their experimental 

work, the authors report the SFE values with mass loading per unit fiber length in addition to the 

adhesion probability of the particles to stick to the bare stainless fibers. The adhesion efficiency 

for the fiber considered is defined as a function of Stokes number (Kasper et al. 2009): 
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        (4.7) 

In order to compare our model results with the experimental work reported in Kasper et al. 2009, 

we included the probability of a particle intercepting with the fiber to adhere (and not to 

rebound) in our model using Equation 4.7 presented in their paper. The fiber considered here has 

a diameter of 30 µm loaded with 2.6 µm polystyrene particles with a corresponding Stokes 

number of 3. The fiber is placed in a cell with an SVF of 0.4%. Figure 4.4 shows the comparison 

of the SFE of the circular fiber as a function of mass loaded per unit length predicted by our 

microscale simulation model and the experiment presented in Kasper et al. 2009. The microscale 

simulations were repeated three times to avoid any statistical error resulting from the random 

injection and the adhesion probability processes. It is important to note that our simulation model 

does not take into account particles break off which might occur in the experiment with such 
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high-inertia particles. This is the reason why our predictions slightly over predicts the SFE when 

compared with the experimental results. 
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Figure 4.4: A comparison between the experimental data of Kasper et al. (2009) and our microscale simulation 
model. Fiber considered here has a diameter of 30 µm loaded with 2.6 µm polystyrene particles with a Stokes 
number of 3. Black symbols represent the experimental SFE values while blue, red and green represents three 
different repetitions of our microscale simulations considering particle to fiber rebound. 
 

4.4. Results and Discussion 

In this section, we present the results of our simulations conducted to study the performance of 

trilobal fibers of different cross-sectional orientations and their corresponding ABC and CC 

fibers under dust loading (Section 4.4.1). We will also study the effects of fibers through-plane 

orientation on the filtration performance of the above fibers under dust loading condition 

(Section 4.4.2). 

 

4.4.1 Trilobal Fibers vs. Circular Fibers 

In this section, we report the instantaneous performance (pressure drop and SFE) of a trilobal 

fiber when loaded with particles of different diameters at different velocities and compare the 

results with those obtained for the fiber’s circular counterparts. 
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To better illustrate how the cake morphology on a fiber varies with the size and velocity of the 

depositing particles, contour plots of cells’ SVF are shown in Figure 4.5 for two particle 

diameters of 0.25 µm and 0.5 µm and two flow velocities of 0.5 m/s and 5 m/s. The figures show 

the dust deposit for each case at a pressure ratio of 0/ 2p p∆ ∆ ≅ . It can be seen that particles with 

higher inertia tend to deposit on the front side of the fibers whereas the smaller particles mostly 

deposit on the fiber’s lateral sides. Particle deposited on a fiber’s lateral sides can significantly 

increase the fiber’s projected frontal area and consequently increase the fiber’s pressure drop. 

Note that the maximum packing fraction maxα is smaller for smaller particles. This means that for 

a given mass of deposit, dendrites made of small particles occupy larger volumes of the void 

space between the fibers. It is interesting to note that the subfigures in Figure 4.5 show a smaller 

dust cake for the case of pd =0.25 µm than the case of pd =0.5 µm (see for instance the Figures in 

4.5a, 4.5b, and 4.5c). This is because smaller particles cause more pressure drop, and therefore 

less number of particles (in volume) was needed to raise the initial pressure drop of the fiber by a 

factor of 2. Of particular interest here is the difference between performance of NGUT and 

NGDT fibers. It can be seen that having the normal groove facing the flow can be useful if the 

particles have sufficient inertia to penetrate deep into the stagnant air inside the groove. Among 

the particle diameters and flow velocities shown in Figure 4.5, this happened only for 

0.5pd µm= and 5 /V m s= (see Figure 4.5a–4.5f). In other words, the trilobal fibers showed no 

advantage over their circular counterparts when the particles are not highly inertial. The dust 

deposits shown in Figures 4.5c, 4.5f, 4.5i, 4.5l, and 4.5o indicate that it is in fact easier for the 

low-inertia particles to deposit on the front face of a fiber if the fiber is circular rather than 

trilobal (these particles tend to deposit on the lateral sides of trilobal fibers leaving the grooves 

between the lobes clean).  
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Figure 4.5: Dust deposition profiles at a pressure of 0/ 2p p∆ ∆ ≅ for the different fibers when loaded with particles 
with diameters of 0.5 and 0.25 μm at velocities of 0.5 and 5 m/s. 
 

More quantitative comparison between the rate of increase of pressure drop and collection 

efficiency of these fibers is given in Figures 4.6a–4.6f as a function of the mass of particles 
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loaded on the fiber per unit length M . The initial values of the pressure drop at different air inlet 

velocities for the five cases considered in this figure are presented in Table 4.1. In generating 

these data, the fibers were loaded with particles until their pressure drop reached a value about 

two times greater than their clean pressure drop. Although the trilobal fibers and their ABC and 

CC counterparts have the same cross-sectional area (i.e., their unit cells have the same SVF), the 

trilobal fibers have higher initial pressure drop. This is because the trilobal fibers have larger 

surface areas. Moreover, the trilobal fibers have larger projected frontal area than their ABC 

counterparts. The results shown in Figures 4.6a–4.6c are selected from a larger group of data 

generated in this study. Figures 4.6a–4.6c show that regardless of the cross-sectional shape of the 

fiber, the rate of increase of pressure drop is higher when the particles are smaller, as expected. 

For instance, with a mass per unit length of 1 µg/m, the pressure drop ratio of the NGUT fiber 

reaches a value of about 1.6 if loaded with particles with a diameter of 0.25 µm at 5 m/s inlet 

velocity, and about 1.1 if loaded with particles of 0.5 µm diameter at the same velocity (see 

Figures 4.5a and 4.5b). The reason for this is twofold: 1) larger particles have smaller specific 

surface areas leading to less resistance against the flow, and 2) larger particles tend to deposit on 

the front side of the fiber (facing the flow) as opposed to the lateral sides of the fiber. Therefore, 

the rate of increase of a fiber’s frontal projected area is slower when the fiber is loaded with large 

(inertial) particles.  

 
Table 4.1: Initial (clean) pressure drop values for different fibers with a zero through-plane fiber orientation. 

V (m/s) 0.5 1 5 
Δp

0
 , NGUT, SVF=10% (Pa)  17.5 29.0 185.4 

Δp
0
 , NGDT, SVF=10% (Pa)  17.3 28.7 182.9 

Δp
0
 , ABC, SVF=10% (Pa)  10.9 17.5 114.4 

Δp
0
 , CC, SVF=10% (Pa)  7.2 14.4 79.0 

Δp
0
 , CC, SVF=20% (Pa)  30.0 51.6 314.3 
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Figure 4.6: Pressure drop and SFE ratios for fibers of different cross-sectional shapes versus mass per unit fiber 
length loaded with particles of different diameters of 0.25 and 0.5 µm and at different velocities of 0.5 and 5 m/s are 
given in (a) through (f). Linear least square regression lines are given for each case.  
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Figures 4.6d–4.6f show the ratio of the instantaneous SFE h to that in the absence of dust 

deposit 0h for the same fibers. Negative values shown in the scatter points in these figures occur 

when the instantaneous SFE (h  ) is less than the initial value of SFE ( 0h ), this is due to the 

random injection of the particles.  

 

Similar to the case of pressure drop, the rate by which the SFE increases depends strongly on the 

particle deposition pattern. In the case of high-inertia particles (e.g., Figure 4.6d), the cake 

formation takes place mostly on the upstream face of the fibers as shown in the dust profiles (see 

Figures 4.5a, 4.5d, 4.5g, 4.5j, and 4.5m), whereas for the low-inertia particles (e.g., Figure 4.6f) 

the cake tends to grow laterally leading to a faster rate of increase in the fiber’s collection 

efficiency (see Figures 4.5c, 4.5f, 4.5i, 4.5l and 4.5o).  

 

The trend of the data shown in Figure 4.6a–4.6c implies that the pressure ratio varies almost 

linearly with the mass of particles deposited on the fibers, 

0

p M
p

ϕ∆
=

∆
          (8) 

where ϕ is the slope of the line obtained by curve fitting, and M is the mass per fiber length in 

µg/m. This equation is curve fitted into our data and also shown in Figure 4.6a–4.6c. The 

coefficient ϕ is plotted versus the product of Stokes number 
f

c
pp

d
VCd

St
µ

ρ
18

2

=  and particle-to-fiber 

diameter ratio 
f

p

d
d

R =  for 0.125 < pd < 0.75 µm and 0.5 <V < 5 m/s (see Figure 4.7). Here 

ABCf dd = for the trilobal and ABC fibers, and CCf dd =  for the CC fibers. Note that ABCd  is the 

diameter of the ABC fiber.   
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Figure 4.7: Coefficient ϕ  representing the rate at which fiber pressure drop increases with loading is given for the 
fibers considered in the current study. Dashed-lines show the power-law curve fits.  
 

Power-law curve fits are also generated for the relationship between the slope ϕ and R St in the 

form of  

( )R St χϕ γ=           (9) 

where the values ofγ and χ  are shown in Table 4.2.  

 

Similarly, the data given in Figure 4.6d–4.6f in addition to other data not shown here for the sake 

of brevity are used to develop correlations that describe the behavior of the SFE with loading as 

a function of mass loaded M (µg/m) as shown in the following form: 

0

1 Mh ξ ψ
h

− = +          (10) 

where ξ  and ψ  are the curve fit parameters. 
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Table 4.2: Curve fit parameters for the pressure drop ratio correlation of Equation 9. 
dp (µm) 0.25 0.25 0.50 
V (m/s) 0.5 5.0 5.0 
ξ, NGUT, SVF=10% 0.08 0.58 0.09 
ξ, NGDT, SVF=10% 1.49 1.09 0.15 
ξ, ABC, SVF=10% 0.00 0.18 0.00 
ξ, CC, SVF=10% 0.00 0.14 0.03 
ξ, CC, SVF=20% 0.39 0.37 0.10 
ψ, NGUT, SVF=10% 6.01 3.22 0.06 
ψ, NGDT, SVF=10% 14.78 4.18 0.18 
ψ, ABC, SVF=10% 1.31 1.14 0.11 
ψ, CC, SVF=10% 1.68 0.96 0.09 
ψ, CC, SVF=20% 1.66 0.18 0.13 

 

The coefficients ξ and ψ are presented in Table 3 as a function of particle diameter for the 

different fiber cross-sections.  

As mentioned earlier in this section, there are some requirements for a particle to be able to 

deposit inside a flow-facing groove: 1) the particle should be smaller than the groove; and 2) the 

particle should be highly inertial to penetrate into the stagnant layer of air inside the groove. 

 
Table 4.3: Curve fit parameters for the SFE ratio correlation of Equation 10. 

dp (µm) 0.25 0.25 0.50 
V (m/s) 0.5 5.0 5.0 
ξ, NGUT, SVF=10% 0.08 0.58 0.09 
ξ, NGDT, SVF=10% 1.49 1.09 0.15 
ξ, ABC, SVF=10% 0.00 0.18 0.00 
ξ, CC, SVF=10% 0.00 0.14 0.03 
ξ, CC, SVF=20% 0.39 0.37 0.10 
ψ, NGUT, SVF=10% 6.01 3.22 0.06 
ψ, NGDT, SVF=10% 14.78 4.18 0.18 
ψ, ABC, SVF=10% 1.31 1.14 0.11 
ψ, CC, SVF=10% 1.68 0.96 0.09 
ψ, CC, SVF=20% 1.66 0.18 0.13 
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To better quantify this, we present the inertial and interception components of the SFE for the 

ABC fiber in Table 4 using the conventional cell model equations for a circular fiber (see 

Appendix C). For the trilobal fibers, we used an ABC circular diameter in these equations for the 

lack of a better alternative. It was found that when the inertial impaction is the dominant 

deposition mechanism and interception is negligible, the NGUT fiber shows the slowest rate of 

increase of pressure drop and collection efficiency. On the other hand, when interception is the 

dominant mode of particle capture, the particles tend to deposit in the lateral sides of the fiber 

and cause rapid increase in the fiber’s pressure drop and collection efficiency. In contrast, the 

streamlined shape of the NGDT fiber seems to make the grooves inaccessible to the particles and 

promote the growth of the cake in the lateral directions even in the inertial impaction dominant 

regime causing them to experience the highest rate of increase in pressure drop and collection 

efficiency. For instance, consider the case of loading the trilobal and circular fibers with particles 

having a diameter of 0.5 µm at a velocity of 5 m/s (i.e., St=0.4). In this case, the NGUT fiber has 

one of the least increases in pressure drop ratios and collection efficiency (Figures 4.6a and 

4.6d). Here, the ratio of SFE due to impaction to the total SFE is almost 1 whereas the same ratio 

for SFE due to interception is 0.02. This explains why the dust profiles shown in the left column 

of Figure 4.5 is mainly on the upstream side of the fiber rather than the lateral sides. When 

loading the above fibers with 0.25 µm particles at inlet velocity of 0.5 m/s which represents low-

inertia particles of St= 0.01 (Figures 4.6c and 4.6f), both configurations of the trilobal fiber show 

undesirable rate of increase of pressure drop with loading.  In this case is almost zero (negligible 

deposition due to inertial impaction) as can be seen in the dust profiles shown in the right column 

in Figure 4.5. This indicates that that the NGDT fibers, having a somewhat aerodynamic shape, 

can hardly accommodate any particles in any of their grooves at any loading condition. 
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Table 4.4: Ratios of impaction and interception SFEs to the total SFE for different particle diameters and flow 
velocities calculated based on the cell model equations for ABC fiber. 

dp (µm) 0.125 0.25 0.5 0.75 
V (m/s) 5 0.5 1 5 0.5 1 5 0.5 1 5 
ηI /η∑ 0.02 0.00 0.01 0.77 0.06 0.40 1 0.32 .85 1 
ηR /η∑ 0.13 0.21 0.29 0.13 0.58 0.47 0.02 0.59 0.21 0.01 

 

To compare the performance of the fibers with different cross sectional shape from a different 

perspective, we normalized the performance for the five different fibers considered here with the 

initial values of the ABC fiber in Figure 4.8. We only included the two extreme cases (the 

highest and the lowest inertial particles) among the three cases discussed in Figure 4.6.In the first 

case as shown in Figure 4.8a and 4.8b, we plotted the normalized pressure drop and the SFE of 

the different fibers when loaded with 0.5 µm at 5 m/s inlet velocity. It is clearly shown that the 

CC fiber with 20% SVF has the maximum pressure drop; in spite of that, it does not experience 

the maximum SFE. Instead, both trilobal fibers (NGUT and NGDT) experience the maximum 

SFEs. The pressure drop is lower of course in the case of NGUT for the same reasons discussed 

above and more importantly it experiences the slowest increase with loading. The ABC fiber in 

this case has average pressure drop and SFE, but its pressure drop increases faster with loading; 

which makes the NGUT performs better that circular ones as discussed before. Note that the CC 

fiber experience the least pressure drop and the SFE values compared to the rest of the fibers. 

 

In the second case as shown in Figure 4.8c and 4.8d, we plotted the normalized pressure drop 

and SFE of the different fibers with the initial values of ABC fiber when loaded with 0.25 µm at 

0.5 m/s inlet velocity. In this case with lowest inertia particles, both trilobal fibers experience 

almost the same pressure drop values initially and with loading. Their pressure drop values 
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increase faster in this case than the circular fiber. The ABC fiber showed low pressure drop with 

slow increase with loading in addition to good SFE initially higher than the trilobal ones. 
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Figure 4.8: Pressure drop and SFE for fibers of different cross-sectional shapes versus mass per unit fiber length 
loaded with particles of different diameters of 0.25 and 0.5 µm and at different velocities of 0.5 and 5 m/s are given 
in (a) through (d). Pressure drop and SFE values here are normalized with the initial values of the ABC circular 
fiber. 
 
To study the instantaneous performance of our trilobal fibers when challenged with larger 

particles we use the aforementioned microscale simulation method. Figure 4.9 shows our 

microscale simulation results obtained for a particle size of 2 µm at a velocity of 5 m/s (St= 6.3). 

Examples of our particle dendrites on the aforementioned fibers are shown in Figure 4.9a at a 
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pressure ratio of 0/ 1.5p p∆ ∆ ≅ . It can be seen that particles tend to deposit inside of the normal 

groove in the NGUT fiber and the cake growth in the lateral directions is minimal.  

 

Note that in our microscale dust-cake simulations, the particles are released in the simulation 

domain from random locations at the inlet. This allows us to produce particle dendrites with 

realistic morphologies. As such, the simulations should be repeated a few times to reduce the 

statistical uncertainty of the results. Therefore, the pressure drop and collection efficiency values 

reported here are the averaged values over three repetitions of the same particle-fiber 

combinations (see Figures 4.9b and 4.9c). 
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Figure 4.9: Microscale simulation results for the instantaneous pressure drop and SFE of the fibers discussed in the 
study when loaded with particles with a diameter of 2 μm at a velocity of 5 m/s. (a) Dust profiles at a pressure drop 
ratio of 0/ 1.5p p∆ ∆ ≅ ; (b) instantaneous pressure drop ratio; and (c) instantaneous SFE. 
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As can be seen in Figure 4.9b, the NGUT fiber performs quite well relative to other fibers in 

terms of the rate of pressure drop increase with loading. This is due to the aforementioned ability 

of the inertial particles to deposit deep inside the normal groove in the NGUT fibers. In contrast, 

the NGDT configuration has resulted in the highest rate of pressure drop increase as the particles 

tend to deposit on the tips of the lobes and grow in the lateral directions. Figure 4.9c shows the 

SFE of these fibers as functions of deposited mass. Despite the inherent statistical noise of the 

calculations, one can note that the NGUT and NGDT fibers have higher overall SFE values. 

Note also the rate of increase of SFE is quite slow in the case shown here as particles are highly 

inertial ( 6St = ).  

 

4.4.2 Effects of Fiber’s Through-Plane Orientation on Dust-Loaded Performance 

We previously studied the effects of fibers’ through-plane orientations on the pressure drop and 

collection efficiency of a clean filter (Fotovati et al., 2011CES). It was shown that pressure drop 

and collection efficiency of a clean filter decrease with increasing the through-plane orientation 

of the fibers. In this section, we study the effects of fiber’s through-plane orientation on a filter’s 

dust-loaded performance. More specifically, we conduct a series of macroscale simulations to 

investigate if the grooves on a trilobal fiber may actually become more effective when the axis of 

the fiber is not necessarily perpendicular to the flow direction. We considered three particle 

diameters of 0.25, 0.5, and 0.75 µm and two air flow directions of 22.5° and 45° with respect to 

the x-axis. For these simulations, we used periodic boundary conditions for the side boundaries 

in contact with the fiber as shown in Figure 4.10a. This allows one to consider inlet angles for 

the incoming air flow. The top and bottom boundaries were kept symmetric. 



 

73 
 

26.6 µm

(b)

(a)

Through-plane angle = 45°, dp=0.5 µm, V= 0.5 m/s, St=0.040.1%

8.7% SFE=0.22 , M=1.34 µg/m
Δp0=12.4 Pa, Δp=21.9 Pa

NGUT

SFE=0.25 , M= 1.21µg/m
Δp0=12.2 Pa, Δp=22.7 Pa

NGDT

SFE= 0.18, M= 1.51µg/m
Δp0=7.7 Pa, Δp=16.1 Pa

ABC

Periodic

z

y x Symmetry
θ Through-plane 

angle

 
Figure 4.10: Simulation domain and boundary conditions used for fibers with a non-zero through-plane orientation 
(a), and dust deposition profiles on NGUT, NGDT and ABC fibers at a pressure drop ratio of 0/ 2p p∆ ∆ ≅  and a 
flow velocity of 0.5 m/s consisting of particles with a diameter of 0.5 μm (b). 

 

Figure 4.10b compares the dust deposit on a trilobal fiber in the NGU and NGD configurations 

with its ABC counterpart at a pressure ratio of 0/ 2p p∆ ∆ ≅ for a fiber through-plane orientation of 

45 degrees loaded with particles with a diameter of 0.5 µm and a velocity of V= 0.5 (St =0.04). 

Obviously, this is not an impaction-dominant deposition mechanism ( Ih hΣ = 0.06 and 

Rh hΣ =0.58), and that is why the particles have not been able to deposit inside the grooves of the 

trilobal fiber. More importantly, these results show no evidence of an improved performance for 

the trilobal fiber relative to its ABC counterpart when the fibers have a through-plane orientation 

of 45 degrees. More quantitative comparison between the pressure drops of these fibers is given 

in Figure 4.11a through 4.11d for particle diameters of 0.5 and 0.25µm, flow velocities of 0.5 

and 5m/s, and fiber through-plane orientations of 0θ =  and 45 degrees as a function of mass 

loaded per unit fiber length. 
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Figure 4.11: Instantaneous pressure drop as a function of mass loaded per unit fiber length for the NGUT fiber, 
NGDT fiber, and the ABC fiber with through-plane orientations of 0 and 45 degrees are shown in (a) through (d) for 
particle diameters of 0.25 and 0.5 µm and air velocities of 0.5 and 5 m/s. 
 

In general, increasing the flow velocity reduces the rate of increase in pressure drop for all fiber 

cross-sections as more particles tend to deposit on the upstream face of the fibers. Therefore, 

more mass can deposit on the fibers before its pressure drop reaches twice the initial (clean fiber) 

value as shown in Figures 4.11a–4.11b and Figures 4.11c–4.11d for particles with a diameter of 

0.5 and 0.25 µm, respectively. In agreement with the discussion given in the previous section, 

the NGUT fiber shows the best performance when the particles are highly inertial (St=0.4), as 
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can be seen in Figure 4.11a for both 0 and 45° through-plane angles. As shown in Table 3, the 

corresponding SFE ratio Ih hΣ for this case is almost one, indicating that inertial impaction is the 

dominant deposition mechanism. Similarly, the NGUT fiber has the best performance for the 

case shown in Figure 4.11c for both through-plane orientations when loaded with particles with a 

diameter of 0.25 µm at an inlet velocity of 5 m/s (St=0.1). For this case, we have Ih hΣ = 0.77, 

again signifying that importance of inertial impaction in particle capture.  In contrast, the NGUT 

fiber does not show a good performance relative to other cross-sections when the particles are 

not inertial, and the above-mentioned through-plane orientation made no contribution to 

improvement the problem. This is shown in Figures 4.11b and 4.11d, where the fibers are loaded 

at a flow velocity of 0.5 m/s with particles with diameters of 0.5 µm (St=0.04) and 0.25 μm 

(St=0.01), respectively. The ratio Ih hΣ is 0.06 and 0 for the results shown in Figures 4.11b and 

4.11d, respectively, indicating that inertial impaction is insignificant in both cases. It is important 

to note that we normalized the pressure drop value of each fiber with its own initial pressure 

drop. Note that the initial pressure drop in the case of higher oriented fibers is less than that in 

fibers with no through plane orientation. This is the reason why in most of the cases shown in 

Figure 4.11 the pressure drop ratios of oriented fibers are higher than their normal counterparts 

as they are normalized with smaller number. 

 

4.5. Chapter Conclusions 

In this chapter, micro- and macroscale approaches were utilized to study and quantify the 

unsteady-state behavior of a fiber under particle loading. In particular, we compared the 

performance of trilobal fibers with their circular cross-sections when other parameters are kept 

constant to better understand the merits of using trilobal fibers in aerosol filtration. We used the 
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ANSYS–Fluent code as the platform for our simulations and enhanced its capabilities with a 

series of in-house User-Defined Functions. We conducted a parameter study (particle diameters 

between 0.125 µm to 2 µm) to produce correlations for the instantaneous pressure drop and 

collection efficiency of trilobal and circular fibers as a function of the mass deposited per unit 

length of the fiber. A trilobal geometry consisting of three overlapping elliptical lobes with major 

and minor diameters of 8 and 4 µm was considered here as representative example of trilobal 

fibers used in aerosol filtration applications. For the range of particle and fiber diameters 

considered, the trilobal fibers are found to perform superior to their circular counterparts only 

when the particles are highly inertial, and only if the trilobal cross-section is in the NGUT 

configuration. Therefore, one may summarize that the probability of an aerosol filter comprised 

of trilobal fibers performing better than its counterpart made of circular fiber is not very high, 

given the lack of control over the orientation of the grooves on a trilobal fiber in a fibrous filter 

with respect to the flow direction. We also studied the effects of the through-plane orientation of 

the trilobal fibers on their performance relative to that of their circular counterpart. While both 

the clean and dust-loaded pressure drop values are lower for trilobal or circular fibers with a non-

zero through-plane orientation, a trilobal fiber can only perform better than its circular 

counterpart if placed in the NGUT position.   
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Chapter 5 

Semi-Numerical Model for Pleated Air Filters7 

 

5.1. Introduction 

As discussed in Chapter 1, most air filters are made of pleated fibrous media. This is to 

accommodate as much filtration media as possible in a limited space available to an air filtration 

unit. A variety of parameters contribute to the performance of a pleated filter. These parameters 

include, but are not limited to, geometry of the pleat (e.g., pleat height, width, and count), 

microscale properties of the fibrous media (e.g., fiber diameters, fiber orientation, and solid 

volume fraction), aerodynamic and thermal conditions of the flow (e.g., flow velocity, 

temperature, and operating pressure), and particle properties (e.g., diameter, density, and shape). 

In addition, an important parameter that strongly affects the performance of a filter through its 

service life is the dust deposition pattern––a non-linear function of the above-mentioned 

parameters (Bourrous et al., 2014; Gervais et al., 2014; Fotovati et al., 2011, 2012; Saleh et al., 

2014). Two filters with identical clean pressure drop and collection efficiency values, for 

instance, may exhibit very different performances as they collect particles over time. Despite its 

obvious importance, effects of dust loading on the performance of pleated filters have not been 

                                                 
7 Contents of this chapter appear in the following publication: 
A.M. Saleh, H.V. Tafreshi, Semi-Numerical Model for Predicting the Service Life of Pleated Filters, Sep. Purif. 
Technol. 137 (2014) 94–108 
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sufficiently studied in the literature, especially from a computational viewpoint. In this context, 

we have contributed to the state of the art in modeling dust-loaded pleated filters by developing 

macroscale Computational Fluid Dynamics (CFD) simulation methods for surface and depth 

filtration of mono- and poly-disperse aerosols (Fotovati et al., 2011, 2012; Saleh et al., 2014).  

These macroscale CFD simulation methods were developed using the information that was 

previously obtained from microscale simulations of both clean and dust-loaded flat sheet media 

(Wang, et al., 2006; Hosseini and Tafreshi 2010a, 2010b, 2010c; Fotovati et al.,2010; Hosseini 

and Tafreshi, 2012; Saleh et al., 2013). Again, note that the terms microscale and macroscale 

simulations are used here to refer to simulations on scales comparable to fiber and filters 

dimensions, respectively. These studies themselves were inspired from the many pioneering 

simulations for clean or dust-loaded single fibers such as those given in the work done by 

(Payatakes and Tien, 1976; Payatakes and Gradon, 1980; Kanaoka et al., 1980; Filippova and 

Hanel 1997; Kanaoka et al., 2001; Przekop et al.,2003; Lantermann and Haenel 2007; Li and 

Marshall, 2007). All the above studies, as well as many others similar to them in nature, are 

developed on the basis of solving some simplified forms of the Navier–Stokes equations via a 

numerical method, i.e., solving a partial differential equation. Such CFD simulations are often 

computationally very expensive making the approach unattractive for a real-life industrial 

product development. The semi-numerical method presented in this chapter, is therefore aimed at 

developing a simulation method that is practically CPU-independent (i.e., the CPU time is 

extremely short). This model allows one to simulate the entire lifecycle of a pleated filter in a 

few minutes, rather than few days CPU time (the typical completion time for the above-

mentioned CFD simulations). As expected, this model can only produce an average profile for 

the shape of the dust-cake in a pleated filter, and so will be inaccurate in predicting phenomena 
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that arise from the heterogeneity of the dust morphology such as premature clogging due to 

dendrites bridging across the pleat channel.  

 

In the remainder of this chapter, we first present our model formulations for rectangular and 

triangular pleats with and without dust-loading (Secs. 5.2 and 5.3). We then discuss the 

implementation of the surface and depth filtration formulations in Sec. 5.4. In Sec. 5.5, we 

compare the predictions of the semi-numerical model to those obtained from more accurate 

macroscale CFD simulations and some experimental data from literature. Our results and 

discussion are given in Sec. 5.6 followed by our conclusions in Sec. 5.7. 

 

5.2. Formulations for Rectangular Pleats 

In this section, we first present our formulations for the flow and particle trajectory calculations 

in a clean rectangular pleat (Sec. 5.2.1). We then discuss two different patterns for the growth of 

dust-cakes inside rectangular pleats: cakes with uniform thickness (Sec. 5.2.2), and cakes with 

linearly growing thickness (Sec. 5.2.3). A mathematical treatment is given in Sec. 5.2.4 for the 

onset of clogging in the pleated filters followed by our modifications for the entrance region of 

rectangular pleats when formulating the flow of air and particles in Sec. 5.2.5.  

 

5.2.1 Clean Pleats 

Clean pleated filters have been studied in many previous investigations (Chen et al., 1995; Lucke 

et al., 1996; Subrenat et al., 2003; Wakeman et al., 2005; Waghode et al., 2007; Rebai et al., 

2010; Lo et al., 2010). Some studies divide the pressure drop of by a pleated filter into a pressure 

drop due to geometry and pressure drop caused by the fibrous media, and some neglect the 
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former in comparison to the latter, especially for filters having fibrous fabrics with low 

permeability (e.g., HEPA filets). Likewise, we ignore the pressure drop due to geometry. For 

clean fibrous media with uniform properties, the filtration velocities in the x and y 

directions, ( )u l ( )v h , across the media is given by Darcy’s law: 

( ) ( )
m

Δp kv h u l
t μ

= =          (5.1) 

where Δp is the pressure drop across the media, k is the permeability of the media, mt  is the 

thickness of the fibrous media, and μ is the air viscosity.  
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Fig. 5.1: Schematic drawing representing our model for rectangular pleats. Clean (a), uniformly loaded (b), and 
linearly loaded (c) channels. 
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Considering a control volume inside the pleat channel, the conservation of mass can be used to 

develop a relationship between filtration and inlet velocities: 

( ) ( )i i i iU h = v h l+u x h          (5.2) 

where iU is the inlet velocity, l is the pleat height, and h is the pleat half-width as shown in Fig. 

5.1a. The average velocity ( )u x can similarly be obtained using the conservation of mass, 

( ) 1i
i

xu x U
l h

 
= − + 

         (5.3)  

In other words, the average axial velocity changes linearly with the axial position in the channel. 

The linear reduction in the axial velocity is due to the constant filtration velocity ( )v h by which 

air exits the channel from the top (note that for a clean filter ( ) ( )u l v h= ).  

In this work, we include the particle drag force in both axial and lateral directions. Trajectory of 

the particles can be obtained by integrating the force balance equation in the x and y directions 

written as follow 

2

2

1 1 ( , )p pd x dx
u x y

dt dtt t
+ =         (5.4) 

2

2

1 1 ( , )p pd y dy
v x y

dt dtt t
+ =         (5.5) 

where 2 1 /18c
p pd ct ρ µ−=  is the particle relaxation time, and with the initial conditions given as 

( 0) 0x t = = ,  ( 0) i
p py t y= = , ( 0)p i

p

dx
t u

dt
= = , and ( 0)p i

p

dy
t v

dt
= = . The system of Ordinary 

Differential Equations (ODEs) given in Eqs. 5.4 and 5.5 can numerically be solved using a 

conventional Runge–Kutta method. 
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5.2.2 Uniform Dust Profile 

The macroscale CFD simulations of (Fotovati et al., 2011) revealed that particles with low 

inertia (e.g., small particles) tend to uniformly deposit on the horizontal walls of a rectangular 

pleat. On this basis, we have developed a uniform cake growth model for pleated filters loaded 

with such particles (see Fig. 5.1b).  The thickness of the cake on the horizontal and the vertical 

walls of the channel are denoted by i fδ δ= and eδ respectively, and the filtration velocities across 

these walls, ( )v h and ( )u l , can be calculated based on the corresponding fractions of the 

particles that deposit on each one from the particle trajectory calculations. 

( ) ( )i eΔp v h r u l r= =          (5.6) 

where m i
i

c

μ μδr
k k
t

= + and m e
e

c

μ μδr
k k
t

= +  are the resistances to the flow across horizontal and vertical 

walls of the channel, and mt  is the thickness of the fibrous media. The cake permeability ck can be 

obtained based on the Kozeny–Carman equation (Carman 1956): 

2 3

2180 (1 )

c
p

c

d c
k e

e
=

−
         (5.7) 

In this equation, the cake porosity e is obtained from an empirical correlation proposed in the 

experimental work of Kasper et al., 2010: 

0.36 0.64exp 0.29 p
p

w

d
ρ

e
ρ

 
= + − 

 
       (5.8) 

Writing the continuity equation for a channel accommodating uniform dust-cake with 

thicknesses of iδ and eδ  on its horizontal and vertical walls, we obtain 

( )( ) ( )( )i i e i iU h v h l δ u l h δ= − + −        (5.9) 
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Solving the above equations, we can obtain expressions for filtration velocities across the 

horizontal and vertical fibrous walls, and consequently, predict the filter’s instantaneous pressure 

drop. Likewise, the axial velocity along the pleat axis can be obtained as, 

( ) ( )i i

i i

U h xv h
u x

h δ
−

=
−

         (5.10) 

The above expressions for the average air velocity in a pleat channel accommodating uniform 

dust can be used in the ODEs of Eqs. 5.4–5.5 to obtain the pressure drop and the particle 

collection efficiency of the dust-loaded filters. 

 

5.2.3 Linear Dust Profile 

For highly inertial particles (e.g., large particles), the macroscale CFD simulations of Fotovati et 

al., 2011 indicated that dust-cake tends grow from the pleat end, leaving clean areas on the 

horizontal walls near the channel entrance. Therefore, we considered a linear growth pattern for 

the dust-cake composed of such inertial particles as can be seen in Fig. 5.1c. In this model, with 

the dust-cake growing linearly on the pleat’s horizontal wall, it is assumed that the filtration 

velocity also changes linearly along the pleat axis from ( )0v ,h to ( )ev l δ ,h− . The pressure inside 

the pleat channel is assumed to be uniform and therefore the filtration velocities on the horizontal 

and vertical walls can be related as: 

( ) ( ) ( )0 i e f e eΔp v ,h r v l δ ,h r u l δ r= = − = −       (5.11) 

where i
i

c

mμ μδr ,
k
t

k
= + f

f
c

m μδμr ,
k
t

k
= + and m e

e
c

μ μδr
k k
t

= + . Writing the continuity equation for the 

flow in the channel with the above filtration velocities and a uniform axial velocity of 

( )eu l δ− on the vertical wall, we obtain 
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( ) ( ) ( ) ( )( )1 0
2i i e e e fU h l δ v ,h v l δ ,h u l δ h δ = − + − + − −      (5.12) 

Solving the above equations, we can obtain expressions for ( )0v ,h , ( )ev l δ ,h− and ( )eu l δ− in 

terms of the inlet flow velocity iU . The filtration velocity across the horizontal wall ( )v x,h is 

given as, 

( ) ( ) ( ) ( )0 0 e
e

xv x,h v ,h v ,h v l δ ,h
l δ

 = − − −  −
      (5.13) 

The average axial velocity at any cross-section along the pleat axis can be obtained as, 

( ) ( ) ( ) ( ) ( )
( )

201 0
2

e
i i

i e

v ,h v l δ ,h
u x U h xv ,h x

h δ x l δ
 − −

= − + 
− −  

    (5.14) 

As mentioned earlier, the method presented in the current work is built on the basis of the 

knowledge that was generated using our more accurate micro- and macroscale CFD simulations. 

The CFD results for flow inside a rectangular channel indicates that the x and y components of 

the velocity field can be represented by parabolic and sinusoidal profiles, respectively. 

Therefore, we assume  

( ) ( ) ( )

2
3 1
2

yu x, y u x
h x

  
 = −      

        (5.15) 

( ) ( ) ( )
Sin

2
π yv x, y v x,h

h x
 

=   
 

        (5.16) 

Substituting these profiles in Eqs. 5.4 and 5.5, one can obtain the trajectory of the particles in the 

channel and thereby predict the collection efficiency and the pressure drop of the filter. Figure 

5.2a shows the velocity profiles in different locations along the axis of a rectangular channel of a 

filter with 4 pleats per inch and an inlet velocity of 1 m/s. The fibrous medium in this filter is a 

mat of 9 µm fibers with an SVF of 7.5%. It can be seen that velocity decreases along the axis of 
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the channel (the accuracy, e.g., mesh independence, of the CFD results shown here is examined 

in our previous studies as shown in Chapter 3, Fotovati et al., 2011 and Saleh et al., 2014. Figure 

5.2b shows the flow axial velocity profile normalized by its local average value for different 

locations inside the pleat channel obtained from our CFD simulations. As can be seen in this 

figure, velocity profiles obtained from different locations along the axis have identical 

dimensionless profiles. We have, therefore, approximated the axial velocity profile inside the 

channel with a parabolic profile. Figure 5.2b also shows the y-velocity profiles across the length 

of the channel normalized using the maximum vertical velocity at pleat horizontal wall. We have 

approximated the y-velocity profile with a sinusoidal profile. Figure 5.2c shows the variation of 

the axial and lateral velocities across the pleat length obtained from the CFD simulations and 

those used here for our present approach. 
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Fig. 5.2: Velocity vectors inside a rectangular channel obtained from CFD calculations for a filter with 4 pleats per 
inch (a). The x and y velocity components from CFD calculations are used to produce parabolic and sinusoidal 
profiles utilized in our present model (b). The average axial and maximum vertical velocities are shown as a 
function of position along the channel (c). 
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5.2.4 Onset of Clogging 

The onset of clogging is defined here as the moment when the cake thickness somewhere on the 

channel’s horizontal wall grows enough to reach the pleat axis. This definition is applied here 

regardless of which cake growth model (uniform or linear) is considered. For the case of uniform 

cake growth, we expect that the cake on the vertical wall (pleat end) will always be close to or 

equal to the thickness of the cake on the horizontal wall. For the case of linear cake growth, we 

have considered two sets of formulations for the onset of clogging. The first set is used when the 

cake thickness at the pleat end is thinner than the cake thickness on the horizontal wall near the 

end (Fig. 5.3a), and the second set is for when the cake thickness at the end has grown to become 

equal to that on the horizontal wall (Fig. 5.3b). In the latter, we have assumed that the channel 

end becomes impermeable. For as long as eδ h< , the flow is allowed to pass through the pleat 

end (that is for when mx x≥ , where mx is the distance at which the cake thicknesses are equal in 

the vertical and horizontal directions). 
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Fig. 5.3: Schematic drawing for linearly cake growth in the case of clogging for eδ h< in (a) and eδ h> in (b). 
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 Following the aforementioned constant pressure assumption in the pleat channel, we can now 

obtain the following relationships between the filtration velocities.  

( ) ( ) ( ) ( )0 0i e f m m e eΔp v ,h r v l δ ,h r u x ,h r u l δ , r= = − = = −     (5.17) 

where i
i

c

mμ μδr ,
k
t

k
= + m

f
c

μ μhr
k k
t

= + , f
m

c

m μδμr
k k
t

= +  and m e
e

c

μ μδr
k k
t

= + . 

Similarly, we can apply the continuity equation to provide another equation for filtration 

velocities: 

( ) ( ) ( ) ( ) ( )0 5 0 0 5 0i i e e m m eU h . l δ v ,h v l δ ,h . y u l x ,h u l δ ,   = − + − + − + −      (5.18) 

Solving Eqs. 5.17 and 5.18 simultaneously, one can obtain expressions for the velocities across 

the fibrous media ( )0v ,h , ( )mv x ,h , ( )mu x ,h and ( )0eu l δ ,− in terms of the inlet velocity. The 

filtration velocities across the top and the end of the pleat ( )v x,h and ( )u x,h can be represented 

as, 

( )
( ) ( ) ( )0 0

0

e e
e

e

xv ,h v ,h v l δ ,h , x l δ
l δv x,h

, x l δ

  − − − ≤ −   −= 
 > −

   (5.19) 

( ) ( ) ( ) ( )

0

0

m

m
m m e m

m e

, x x
u x,h x xu x ,h u x ,h u l δ , , x x

l x δ

<
= −  − − − ≥  − −

    (5.20) 

Accordingly, the flow axial velocity can be obtained as 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0
2

1 0
2 2

2

i i m

m m m
i i m m

e m

m
m m

xU h v ,h v x,h , x x

x y x xu x U h v ,h v x ,h u x ,h u x,h
h x l δ x

x x v x,h v x ,h , x x


 − + ≤  


−    = − + − +    − −

 −
 − + >  

 (5.21) 
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Same as before, with these updated velocity profiles Eqs. 5.4 and 5.5 can be solved to obtain the 

trajectory of the particles and the collection efficiency of the filter. 

 

For the second scenario, i.e., when eδ h≥ , the resistance to the flow is higher at the pleat end. 

Therefore, we assumed that air flows through the pleat top only ( 0 ex l δ< < − ). Therefore,  

( ) ( )0 i e fΔp v ,h r v l δ ,h r= = −         (5.22) 

where i
i

c

mμ μδr ,
k
t

k
= + and m

f
c

μ μhr
k k
t

= + . 

Additionally, from the continuity equation we have, 

( ) ( ) ( )0 5 0i i e eU h . l δ v ,h v l δ ,h = − + −         (5.23) 

 

Solving Eqs. 5.22 and 5.23, one can obtain expressions for ( )0v ,h and ( )ev l δ ,h− in terms of the 

inlet velocity (the filtration velocity across the horizontal wall of the pleat ( )v x,h follows Eq. 

5.13 as discussed earlier). The average axial velocity ( )u x  inside the channel can be obtained 

from Eq. 5.14. The velocity components ( )u x, y   and ( )v x, y  can be obtained using the 

aforementioned parabolic and sinusoidal profiles, respectively. This information is then used to 

obtain the particle trajectories from Eqs. 5.4 and 5.5. 

 

5.2.5 Initial Conditions for Particles Entering Rectangular Pleat Channels 

The macroscale simulations of (Fotovati et al., 2011; 2012; and Saleh et al., 2014) showed that 

the air streamlines (and so the particle trajectories) contract as the flow enters into a rectangular 

pleat leading to the formation of a vena contracta at the channel’s entrance. The vena contract 
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forces the particles to move toward the axis of the pleat as can be seen in Figs. 5.4a and 5.4b. In 

order to obtain quantitative information for the initial position and velocity of the particles, a 

series of CFD simulations were conducted for the range of parameters of interest, i.e., pleat 

densities of 2–8 pleat/inch, flow velocities of 0.5–5 m/s, and particle diameters of 1–10 µm, 

along with a pleat height of 2.54 cm. These simulations were used to obtain the fraction of the 

incoming particles that actually enter into the pleat channel, referred to here as Pleat Entrance 

Ratio (PER)ψ . As can be seen in Fig. 5.4c, PER is different for filters with different pleat 

counts, and it varies from 0.6 for a filter with a pleat count of 8 per inch to about 0.72 for the 

case of 2 per inch in the case of tracking 10 µm particles. The number concentration of the 

particles injected into the domain was varied to ensure that our PER calculation is independent of 

the number of the particles injected. For these calculations the particles were injected from a 

distance equal to the height of the pleats, i.e., 2.54 cm, upstream of the pleat channel. Note that 

ψ is assumed to be one for filters with triangular pleats. 

 

As can be seen from the example particle trajectories shown in Fig. 5.4b, the initial angle (with 

respect to the x-axis) by which a particle enters the pleat channel, i.e., entrance angle, depends on 

the position of the particle at the channel entrance. The entrance angle is a function of the flow 

velocity, particle inertia (here diameter), and pleat height, and is greater for particles farther 

away from the pleat axis. 
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Fig. 5.4: Schematic drawing (a) and CFD particle trajectories (b) illustrating the definition of the PER. Particle inlet 
concentration effect on PER for filters with 2, 4, 6, and 8 pleats per inch challenged with particles with a diameter of 
10 µm and at an air velocity of 5 m/s (c). Normalized and maximum inlet angles plotted versus Stokes number (d). 
The data are obtained from CFD simulations filters with 2, 4, 6, and 8 pleats per inch and particle diameters of 1, 2, 
5, and 10 µm. The air velocities of 0.5, 1, 2, and 5 m/s are considered.  
 

In fact, the entrance angle is smaller for inertial particles, as they do not follow the curvature of 

their streamlines very closely, and for filters with lower pleat counts. Particle entrance angles 

obtained from the abovementioned CFD simulations are normalized by their corresponding 

maximum values max ( )iy hα α= =  and plotted in Fig. 5.4d. A polynomial curve fit is then used to 

generate a mathematical expression for normalized entrance angle as a function of normalized 

particle position at the pleat entrance: 

2

max
+

i i

y y
h h

α χ ς
α

 
=  

 
         (5.24) 
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where 0.78χ = and =0.16ς . Figure 5.4d shows the maximum entrance angle maxα  as a function of 

Stokes number defined here in terms of pleat width as
( )
2

St
18 2

c
P P i

i

ρ d c U
μ h

= , where cc is the 

Cunningham slip correction factor. We curve fitted an exponential function into our CFD 

simulation data to obtain an expressions for the maximum entrance angle in terms of Stokes 

number, 

max
Ste ωα ζ −=           (5.25) 

where 75ζ = and 1.61ω = . 

Equations 5.24 and 5.25 provide the necessary information for correctly assigning an initial (i.e., 

entrance) angle to the particles at the pleat entrance.  

 

For the sake of simplicity, we have assumed that the particles entering a rectangular pleat are 

distributed uniformly across the entrance plane. While this is not exactly accurate, as the off-axis 

streamlines may tend to be closer to one another, the error associated with this assumption is 

negligible as can be seen in Fig. 5.5a. In this figure, the spatial distribution of particles of 1 to 10 

micrometer in diameter is shown as they enter the pleat channel. Inlet velocities and pleat counts 

in the range of 0.5 to 5 m/s and 2 to 8 per inch, are considered in this figure, respectively. 

 

Our semi-numerical model (while written in terms of flow velocity upstream of the filter), is 

developed for the flow inside the pleat channel only. Therefore, the flow and particle velocities 

at the channel entrance should be modified before the formulation can correctly represent the 

actual flow facing a pair of pleats (see the inset in Fig. 5.5b). 
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In this concern, we have obtained the ratio of the average air velocity at the pleat entrance to the 

flow velocity upstream of the filter from our CFD simulations (see Fig. 5.5b). It can be seen that 

flow velocity entering the channel is about two times higher than that upstream of the filter. In 

addition, some of the particles deposit on the pleat vertical wall, and so, do not enter the pleat 

channel (see Fig. 5.4a and 5.4b). 
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Fig. 5.5: Particle distribution at channel entrance averaged over particles with diameters in the range of 1 to 10 µm 
entering channels with 2, 4, 6, and 8 pleats per inch with inlet velocities of 0.5 to 5 m/s (a).  Average air velocity at 
channel entrance normalized with the far field upstream velocity (b). PER calculated from the CFD simulation 
results and its curve fit. 
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A correction factor is therefore needed to account for these particles. Hence, we plotted ψ as a 

function of Stokes number from CFD simulations for inlet velocities, particle diameters, and 

pleat counts in the range of 0.5 to 5 m/s, 1 to 10 µm, and 2 to 8 per inch, respectively. These 

results are used to produce a mathematical correlation in the form of 2aSt bSt cψ = + + where 

,   and a b c are constant values obtained from curve fitting (see Fig. 5.5c).  

 

Figure 5.6 shows the effects of Stokes number on particle trajectories in rectangular pleats. It can 

be seen that particles with higher Stokes number tend to deposit deeper in the pleat channel. In 

this figure, note the region on the horizontal wall inaccessible to particles with high Stokes 

numbers. This peculiar property of the particle trajectories is the key factor here in deciding 

between the choice of a uniform or a linear growth pattern for the dust cakes.  

 

Our observations of the particle trajectory patterns inside rectangular channels indicated that a 

Stokes number of 0.1 is a good criterion for deciding between the two models. For St < 0.1 

particle deposition (and so the cake growth) is considered uniform, whereas for St > 0.1 the cake 

growth is better represented with a linear profile. The ratio of the cake thicknesses at half way 

through the channel and at the channel end ( )2 fδ l / / δ is set equal to the ratio of the number of 

particles deposited on the first half of the channel horizontal wall to that on the second half, as 

shown in Fig. 5.6f.  
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Fig. 5.6: Effects of Stokes number on particle trajectory for Stokes numbers ranging from about zero to 0.5 from (a) 
through (e) for a filter with 4 rectangular pleats per inch. Beyond a Stokes number of 0.1 the particle deposition 
inside the channel starts to become non-uniform. Dashed lines show the particle trajectories inside the pleat channel. 
A schematic drawing illustrating the ratio of the cake thicknesses obtained on the basis of the fraction of particles 
deposited on the first and second halves of the pleat horizontal wall. 
 

5.3. Formulations for Triangular Pleats 

The filtration velocity, being normal to the fibrous media, forms an angle / 2π θ− with the x-

direction for the case of triangular pleats with a half pleat angle of θ (see Fig. 5.7a). Using the 

continuity equation for clean filters 

( )i i w
WU h v W v x,h

cosθ
= =         (5.26) 
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where W is the length of the pleat wall, and wv  is the filtration velocity perpendicular to it. The 

average axial velocity along the x-direction in the pleat channel can be derived as  

( ) ( ) ( )1
i i

xWu x U h v x,h
h x l cosθ

 = − 
 

       (5.27) 

The vertical filtration velocity ( )v x,h  can be obtained from the following expression: 

( ) wv x,h v cosθ=          (5.28) 

These flow velocity expressions can be used in Eqs. 5.4 and 5.5 to obtain the trajectory of the 

particles inside the pleat channel. Since a vena contracta is not likely to form in a triangular 

pleat, we assumed that the dust growth on the pleat walls will be uniform as depicted in Fig. 

5.7b.  
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Fig. 5.7: Schematic drawing representing our present model for triangular pleats. Clean (a), and dust-loaded (b) 
pleats. 
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A constant cake thickness, obviously, leads to a constant filtration velocity across pleat walls. 

For dust-loaded filters, we again use Darcy’s law and continuity equation to derive equations for 

vertical filtration velocity ( )v x,h ,  

( )
cos

v x,h
Δp r

θ
=           (5.29) 

( ) ( )cos
cosi e

v x,h
U h W δ θ

θ
= −         (5.30) 

where m f

c

μδμr
k
t

k
= + . 

The average axial velocity along the axis of a dust-loaded triangular pleat channel can be 

expressed as: 

( ) ( )
( ) ( )1 cos
cosi i e

e

v x,h xu x U h W δ θ
h x θ l δ

 
= − − − 

      (5.31) 

On the basis of our CFD simulation results, we used parabolic and fourth order profiles for the x 

and y components of the velocity field inside a triangular pleat, respectively (see Sec. 5). 

Therefore, ( ) ( ) ( ) ( ) ( ) ( )

4 3 2
y y y yv x, y v x,h a b c d

h x h x h x h x

      
 = + + +                 

  (5.32) 

where ,  ,  ,  and a b c d are obtained via curve fitting. 

 

Figure 5.8a shows an example of a velocity field inside a triangular channel in a filter with a 

pleat count of 4 per inch made of a fibrous medium with a fiber diameter of 15 µm and an SVF 

of 7.5%. Figure 5.8b depicts the non-dimensionalized axial and vertical velocity profiles at 

different locations along the pleat channel. It can be seen that a parabolic profile seems to be a 

reasonable approximation for axial velocity in the channel. For the y -velocity, we have 
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approximated the profile with a fourth-order polynomial function of ( )y / h  as shown in Fig. 

5.8b (the coefficients in Eq. 5.32 are obtained by curve fitting to the data shown in this figure). 

The x and y velocity components in Fig. 5.8b are normalized with the average axial 

velocity ( )u x and the vertical velocity at the fibrous medium ( )v x,h  (see Fig. 5.8c). Note that 

( )u x and ( )v x,h in triangular pleats do not significantly vary along the length of the channel, 

unlike the case of flow in rectangular pleats. 
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Fig. 5.8: Velocity vectors inside a triangular channel obtained from CFD calculations for a filter with 4 pleats per 
inch (a). The x and y velocity components from CFD calculations are used to produce parabolic and forth order 
profiles utilized in our present model (b). The average axial and maximum vertical velocities are shown as a 
function of position along the channel (c). 
 

Figure 5.9 shows the effect of Stokes number on particles trajectories in triangular pleats. As can 

be seen in this figure, Stokes number has a negligible effect on the particle trajectories or the 

particle deposition sites. Therefore, the cake is assumed to grow uniformly in the direction 

normal to the wall. 
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(a) 4 pleat/inch, inlet velocity =0.5 m/s (St=0.02)

(b) 4 pleat/inch, inlet velocity =1m/s (St=0.05)

(c) 4 pleat/inch, inlet velocity =5 m/s (St=0.24)

 
Fig. 5.9: Effects of Stokes number on particle trajectory for Stokes numbers ranging from about 0.02 to 0.24 from 
(a) through (c) for a filter with 4 triangular pleats per inch. Dashed lines show the particle trajectories inside the 
pleat channel. 

 

 

5.4. Depth and Surface Filtration 

As mentioned earlier, the model presented in this work can predict both the collection efficiency 

and pressure drop of dust-loaded pleated filters. For the efficiency predictions, we obtain the 

initial efficiency of the pleated filter from the cell model equations using the filtration velocities 

derived in Secs. 5.2 and 5.3. 

 

Particle collection efficiency of a fibrous sheet can be estimated using the well-known Single 

Fiber Efficiencies (SFEs) from literature as shown in appendix A. These equations are developed 

for clean fibrous structures (valid only for the early stages of a filter’s service life). Our approach 

to model the collection efficiency of particle-loaded media has been to assume that the 

deposition of particles inside a fibrous structure only affects its SVF.  The loaded particles 

increase the SVF of the filter and hence its collection efficiency. For the sake of simplicity in our 
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present model, we also assume that the filtration efficiency of a fibrous structure increases 

linearly with the mass of the particles deposited within the structure (Chapter 3). We assume 

collection efficiency of the filter reaches 100% when the SVF of the particles within the fibrous 

media reaches a maximum value defined by the porosity value in Eq. 5.8 (SVF is equal to 1 e− ). 

The instantaneous efficiency of the filter for SVFs smaller than the maximum allowable value is 

calculated via linear interpolation between the clean efficiency, at the SVF of the media, and 

100%, at the maximum SVF.  

 

For calculating the pressure drop of particle-loaded fibrous media, we use a more realistic 

approach: we assume that pressure drop of the particle-loaded media is the summation of 

pressure drop caused by the clean fibers and that due to deposited particles. We used the un-

weighted resistivity method of (Mattern and Deen, 2007) for its simplicity as well as accuracy. 

The un-weighted resistivity model adds up the above-mentioned resistances with no weight 

factors: 

( ) ( )
m m

l m p
m c p

t tr r r
k k
µ µ
φ φ

= + = +         (5.33) 

where lr , mr , and pr are the resistance of particle-loaded media, clean media, and the particles 

deposited within the media. 

 

5.5. Comparison with CFD Simulation 

Like any measurement tool, the accuracy of a low-resolution computational tool can be verified 

using a computational tool that has a better resolution. This is of course in addition to 

benchmarking the results with accurate and reliable experimental data if available. In this 
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section, we present three different studies in which we compare the results of our simple 

analytical model with those obtained from the more sophisticated (and so more realistic) CFD 

simulations (as discussed in Chapter 3). We also present a comparison with the experimental 

data of (Gervais et al., 2014) obtained for pleated HEPA filters. 

 

5.5.1 Surface Filters with Rectangular Pleats 

Figure 5.10 presents the pressure drop values and cake profiles of rectangular surface filters 

(collection efficiency of 100%) when loaded with dust particles with a diameter of 10 µm at inlet 

velocity of 1 m/s. The fibrous media has a through-plane permeability value of k=5.4×10-11 m2 

(see Fotovati et al., 2011 for more information about the in-plane and through-plane permeability 

of fibrous structures). We considered a fiber diameter of 9 μm, a media thickness of 0.5 mm, and 

an SVF of 7.5% for this comparison. Figure 5.10a shows the pressure drop vs. mass loading per 

unit area for a 4 pleats per inch rectangular filter at an inlet velocity of 1 m/s. Two particle 

diameters of 1 µm (St=0.002) and 10 µm (St=0.2) are considered to represent the uniform and 

linear dust-cake growth patterns, respectively.  

 

The CFD predictions are obtained and compared with the predictions of our semi-numerical 

method. Figures 5.10b and 5.10c compare the dust-cake profiles obtained from our present 

model with the more accurate, but CPU-intensive, CFD calculations. As can be seen in these 

figures, increasing the particle diameter (Stokes number) results in non-uniform dust-cake 

formation leaving a large portion of the pleat’s horizontal wall practically clean. As mentioned 

earlier, in constructing a linear dust-growth pattern, we use the particle trajectories to determine a 

slope of the cake profile. For instance, for the case with 10 µm particles, the ratio of the particles 
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deposited in the first half of the horizontal wall to that in the second half was found to be about 

0.25 (based on our semi-numerical model particle trajectory calculations). Therefore, a slope 

of 0 125i fδ / δ .=  was considered for the cake profile (see Fig. 5.6f). 
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Fig. 5.10: Comparison between pressure drop predictions of the present model and our CFD calculations for a filter 
with 4 rectangular pleats per inch in surface filtration regime (a). Two particle diameters of 1 and 10 µm are 
considered at an air velocity of 1 m/s. Dust-cake profiles obtained from the present model and the macro-scale CFD 
calculations at a mass loading of 0.1 kg/m2 mass deposited per unit filtration area are compared in (b) and (c). The 
blue dashed lines show the dust-cake in the present model. 
 

In addition, in this section we also present a comparison with the recent experimental data given 

in the work of (Gervais et al., 2014) for pleated HEPA filters loaded with poly-dispersed alumina 

dust (ρ=3970 kg/m3) with a mass median diameter of 1µm and a geometric standard deviation of 

3.2. The fabric of the filter used in the experiments of (Gervais et al., 2014) is reported to have a 

thickness of 521 µm, a packing density of 7.1%, and was made of fibers with a count median 

diameter of 0.6 µm. The pleat height and pitch are reported to be 27.5 and 2.2 mm, respectively. 
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The study by Gervais et al., 2014 reports pressure drop measurements as a function of the cake 

mass.  

 

To predict the pressure drop of the pleated filter, we first obtained the permeability constant of 

its fabric from the reported initial pressure drop (200 Pa) and air velocity (0.046 m/s) using 

Darcy’s law. We then considered our uniform dust-cake growth model based on the Stokes 

number of the particles. Since our model is developed for mono-dispersed dust, we considered 

the mass median diameter of the particles (1 µm) as a representative size in Eqs. 5.7–5.8. Our 

predictions of the filter’s pressure drop are plotted in Fig. 5.10d as a function of cake mass. Good 

agreement between the simulation and experimental data is evident except for when the filter is 

about to be totally filled with particles (about 110 g according to the experiments reported in the 

work of Gervais et al., 2014 and 120 g in our semi-numerical simulations).  

 

5.5.2 Surface and Depth Filters with Rectangular Pleats 

In this section, we considered a more complicated filtration regime in which the particles can 

deposit both inside and outside the fibrous media in a pleated filter. We compare the results of 

our present model with those of the 3-D macroscale simulations. The fibrous medium considered 

here has an SVF of 7.5% with a fiber diameter of 15 µm. The corresponding fibrous media has a 

through-plane permeability constant of k=1.6×10-10 m2. The macroscale model was discussed in 

detail in Chapter 3. In Fig. 5.11 we present the predictions of the present model along with those 

of the above-mentioned 3-D macroscale CFD simulations for a filter with a pleat count of 4 per 

inch loaded with 1 µm particles at an inlet velocity of 0.1 m/s. Given the complexity of the 

problem at hand, the general agreement shown in Fig. 5.11a is appreciable (see the complicated 
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cake morphology and its present model counterpart in Figs. 5.11b). Note that pressure drop and 

collection efficiency predictions obtained from the CFD simulations show slower rates of 

increase in comparison to those obtained from the analytical formulations. This is because, 

unlike the case with our semi-numerical model, the dust cake in the CFD simulations (and in 

reality) does not start as a perfectly thin layer of particles deposited uniformly all over the pleat 

channel. In reality, the deposition starts non-uniformly but becomes more uniform over time as 

the areas with thicker cake resist against the air flow and so redirect the particles toward areas 

with less deposition.  Also, recall that our present model does not consider any premature 

clogging or dendrite bridge formation across the pleat channel. Therefore, the pressure drop 

prediction from the model does not show a sudden increase, as may be the case with the CFD 

simulations.  Particle trajectories, obtained from the CFD calculation and our semi-numerical 

method, are shown in Fig. 5.10c for comparison.  

 
Fig. 5.11: Comparison between pressure drop and collection efficiency predictions of the present model and our 
CFD calculations for a filter with 4 rectangular pleats per inch in surface and depth filtration regimes (a). A particle 
diameter of 1 µm is considered at an air velocity of 0.1 m/s. Dust deposition patterns and clean particle trajectories 
are compared in (b) and (c), respectively. The mass loading shown in (b) is 0.11 kg/m2. The blue dashed lines show 
the dust-cake in the present model. The black dashed and black solid lines show the particle trajectories in the 
present and CFD simulations, respectively. Figure (d) shows a comparison between the results of our present model 
and the experimental data of Gervais et al., 2014. 
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5.5.3. Surface and Depth Filters with Triangular Pleats 

Similar to the case discussed in Sec. 5.5.2, here we also consider both the surface and depth 

depositions, but now for a triangular pleat with a pleat count of 4 per inch. Similarly, fiber 

diameter, SVF, inlet velocity, and particle diameter are 15 µm, 7.5%, 0.5 m/s, and 1 µm, 

respectively. Figure 5.12 presents a comparison between the predictions of our model with those 

of the aforementioned 3-D macroscale CFD simulations for a filter with a 4 triangular pleats per 

inch loaded with 1 µm particles at an inlet velocity of 0.5 m/s. Once again, the agreement 

between the two methods is reasonably good, given the complexity of the problem (see Fig. 

5.12a). The dust-cakes and particle trajectories are also compared in Fig. 5.12b and 5.12c.  
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Fig. 5.12: Comparison between pressure drop and collection efficiency predictions of the present model and our 
CFD calculations for a filter with 4 triangular pleats per inch in surface and depth filtration regimes (a). A particle 
diameter of 1 µm is considered at an air velocity of 0.5 m/s. Dust deposition patterns and clean particle trajectories 
are compared in (b) and (c), respectively. The mass loading shown in (b) is 0.11 kg/m2. The blue dashed lines show 
the dust-cake in the present model. The black dashed and black solid lines show the particle trajectories in the semi-
numerical and CFD simulations, respectively.   
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5.6. Results and Discussion  

In this section, we present a brief parameter study investigating the effects of pleat geometry and 

aerosol properties on the service life of rectangular and triangular pleated filters. Figure 5.13 

shows the instantaneous collection efficiency and pressure drop increase values of filters with 2 

and 4 pleats per inch for rectangular pleats when loaded with particles of 1, 5, and 10 µm 

diameters at an inlet velocity of 1 m/s as a function of time and loading per unit filtration area. 

An aerosol mass concentration of 2.52×10-7 kg/m3 is considered for all simulations. As expected, 

increasing the pleat count generally helps to reduce the rate by which pressure drop (and 

collection efficiency) increases over time because, when the pleat count is higher, each pleat 

channel receives less mass per unit time. To better illustrate the growth of the dust-cakes in 

filters discussed in Fig. 5.13, we have also presented sample cake profiles for each case for 

arbitrary mass depositions corresponding to points marked with a star in Fig. 5.13. Note that the 

cake thickness is about the same in both filters with 2 and 4 pleats per inch. This is because at a 

given mass per unit filtration area, there is more mass deposited in the filter with the higher pleat 

count as it has a higher surface area (the filter with 4 pleats per inch has a filtration area about 

two times greater than the filter with 2 pleats per inch and so it has about two times the mass 

loaded). The pressure drop caused by the filter with higher pleat count is lower as its face 

velocity is about two times smaller. 

 

In Fig. 5.13, note how the filtration regime changes from the initial depth-and-surface filtration 

to surface filtration as more mass deposit in the filters challenged with 1 and 5 µm particles. It is 

important to mention that collection efficiency reaches 100% with almost the same amount of 

mass deposited for both pleat counts. This is because it takes the same amount of mass (but not 
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the same amount of time) to clog the pores of the filter media, regardless of the pleat count. 

Beyond this point, the filter operates in the surface filtration regime. For particles of 10 µm 

diameter, the filters operate in surface filtration regime as 10 µm particles, cannot penetrate 

through the fabric of the filter. Also note that, the initial collection efficiency (efficiency in the 

absence of dust loading) does not vary significantly with varying the pleat count for the case of 

aerosols with 1 and 10 µm particles. However, this is not the case for particles with a diameter of 

5 µm as shown in Figs. 5.13b.  

 

To better understand the underlying reason behind this effect, one should pay a closer attention 

to how the collection efficiency of a fibrous sheet varies with particle diameter for face velocities 

corresponding to those experienced by the channel walls (see Fig. 5.14). It can be seen that, for 

particles of 1 and 10 µm in diameter, collection efficiency is almost independent of face velocity 

(Equations 5.33–5.36). However, for particles with a diameter in the neighborhood of 5 µm, the 

dependence is noticeable.  

 

Note that for all cases shown in Fig. 5.13, we have used a uniform cake growth model except for 

the case of filters with 4 pleats per inch loaded with 10 μm particles (the figure on the right in 

Fig. 5.13c) where a linear cake growth model is considered as a non-uniform cake growth was 

expected. In this figure, note the point at which the pressure drop starts to increase at a higher 

rate (at time of 440 days and a corresponding mass loading of about of 1.1 2kg / m ). This point 

depicts the onset of clogging for this filter. Note also the maximum SVF is higher for dust-cakes 

comprised of larger particles, i.e., it takes a larger amount of mass (not to be confused with the 

number of particles) to fill up the pleat channel with larger particles.  
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Fig. 5.13: The evolution of collection efficiency and pressure drop with time for filters with 2 and 4 rectangular 
pleats at an inlet velocity of 1 m/s as a function of loading time and mass deposited per unit filtration area. Particles 
with a diameter of 1, 5, and 10 µm are considered in (a), (b), and (c), respectively. Sample dust-cake profiles are 
given for each case for illustrations. The blue dashed lines show the dust-cake in the present model.  
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Fig.5.14: Cell-model clean-filter efficiency predictions as a function of particle diameter for flat-sheet fibrous media 
at face velocities equal to those of rectangular and triangular pleats having an inlet velocity of 1m/s. 

 

Figure 5.15 shows the performance of triangular channels with pleat counts of 2 and 4 per inch 

challenged with the aerosol flow as described in Fig. 5.13. Similarly, sample dust-cake profiles 

are added to the figure for illustration purposes. These profiles correspond to points marked with 

a star in Fig. 5.15.  

 

Comparing the predictions given in Fig. 5.13 and Fig. 5.15 indicates that the instantaneous 

pressure drop caused by loaded rectangular pleats is generally less than that of their triangular 

counterparts. The reason for this is threefold. First, some fractions of the incoming particles tend 

to deposit on the front face of the filter outside the channel for when the pleat shape is 

rectangular. This means that less number of particles actually enter the pleat channel. Note that 

the particles depositing outside the pleat channel may cause some pressure drop for a filter with 

rectangular pleats. This pressure drop, however, is expected to be relatively small, and is not 

included in our model. The second cause for the higher pressure drop in the triangular pleats is 
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that the dust-cake can quickly grow to reach the channel axis and render a large portion of the 

fabric inaccessible to air flow in regions near the end of the pleats (see the regions shown with 

arrows in Fig. 5.13c and 5.15c). For instance, for the case shown in Fig. 5.15c, the area available 

to air flow is about (for both 2 and 4 pleats per inch filters) 25% larger in the case of rectangular 

pleats leading to a lower pressure drop value. The third reason for the rectangular pleats showing 

smaller pressure drop seems to be due to the fact that for the same pleat length and height, the 

total area of the filter (total surface area of the pleat walls) is up to about 4% higher when the 

pleats are rectangular (see the clean pressure drop values reported in Fig. 5.13 and Fig. 5.15.  

 

Finally, as mentioned earlier, that the presnent model developed in this study does not include 

the effects of dendrite formation inside or outside the pleat channels. Therefore, despite their 

superior performance shown in Figs. 5.13 and 5.15, rectangular pleats may exhibit premature 

clogging due to particle dendrite formation at high mass loadings or high pleat counts. 
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Fig. 5.15: The evolution of collection efficiency and pressure drop with time for filters with 2 and 4 triangular pleats 
at an inlet velocity of 1 m/s as a function of loading time and mass deposited per unit filtration area. Particles with a 
diameter of 1, 5, and 10 µm are considered in (a), (b), and (c), respectively. Sample dust-cake profiles are given for 
each case for illustrations. The blue dashed lines show the dust-cake in the present model.  
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5.7. Chapter Conclusions   

This chapter presents a simple semi-numerical model to predict the instantaneous performance of 

rectangular and triangular pleated filters under dust loading. The model is developed on the basis 

of detailed information obtained from our more accurate and realistic, but yet computationally-

expensive, CFD simulations on how air and particles behave inside the channels of a pleated 

filter. The analytical nature of the formulations developed in this work allows one to circumvent 

the need for solving partial differential equations, and therefore presents an attractive alternative 

to the CPU-extensive CFD calculations needed to predict the service life of a pleated filter. In 

our model, we used analytical expressions for the x and y components of the velocity field inside 

rectangular and triangular channels. The dust-cake pattern and its growth rate are determined by 

tracking the trajectory of the particles inside the pleat channel. Utilizing the conservation of mass 

and Darcy’s law, we then obtain instantaneous pressure drop and collection efficiency estimates 

for pleated filters in presence of dust-loading in both depth and surface filtration regimes.  

 

We observed reasonable agreement between the results of our semi-numerical model 

formulations and those of previously-developed macroscale CFD simulations especially for the 

case of triangular pleats where premature clogging of the channel is not common––our 

formulations are not accurate in predicting premature clogging that sometimes occurs in filters 

with high pleat counts. For model demonstration, a parameter study was conducted for filters 

with different pleat counts having rectangular and triangular shapes loaded with particles of 1, 5, 

and 10 µm in diameter. The effects of pleat shape and pleat count on instantaneous pressure drop 

and collection efficiency is quantified and discussed in detail. For instance, it is shown that filters 
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with rectangular pleats can potentially provide better performance than their triangular 

counterparts under heavy loading.  

 

Despite the approximate nature of its predictions, the speed by which a large parameter study can 

be completed makes the present model developed in this work very practical for design and 

development of pleated filters. One can start a design process with our semi-numerical method to 

narrow down the design variables and then continue with a more comprehensive CFD model for 

finalizing the design. 
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Chapter 6 

Semi-Numerical Model for Circular Pleated Filters8 

 

6.1. Introduction 

Aerosol filters are often pleated into triangular or rectangular patterns and the resulting 

geometries are often rolled up into a circular shape to accommodate as much filtration media as 

possible in a confined space (see Figure 6.1a). Obviously, the inlet and outlet diameters of the 

pleats depend on the dimensions of the casing in which the circular cartridge will be used. 

Despite the widespread use of pleated filters, the effects of dust deposition and cake formation on 

the performance of such filters have only been reported in a very few studies (e.g., the 

computational studies in Rebai et al., 2010; Fotovati et al., 2011; Fotovati et al., 2012; Saleh et 

al., 2014a; Saleh et al., 2014b or the experimental work in Lo et al., 2010; Park et al., 2012; 

Bemer et al., 2012; Joubert et al., 2010; Hasolli et al., 2013). As such, no study has yet been 

reported to establish a link between the radial geometry of a circular pleated filter and its 

filtration performance (collection efficiency and pressure drop) when loaded with dust particles. 

This chapter is therefore devised to study the effects of geometric parameters on the filtration 

                                                 
8 Contents of this chapter is submitted for publication and may appear as: 
A.M. Saleh, H.V. Tafreshi, B. Pourdehimi, Service Life of Circular Pleated Filters vs. their Flat Counterpart, 
Submitted for publication, Separation and Purification Technology 
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performance of circular pleated filters over time. From the basic principles of fluid dynamics, 

one expects the flow field inside a circular pleat to be different from that of a flat pleat (flow into 

a sink versus a uniform flow). Therefore, the current work is particularly focused on the 

differences between the performance of a circular pleated filter and its flat counterpart (see 

Figure 6.1b), as pleated fibrous media are often tested in a flat configuration. The present study 

builds on the in-depth knowledge obtained from our previous computational fluid dynamics 

(CFD) simulations of dust-cake growth inside pleated filter media in a flat configuration 

(Fotovati et al., 2011; Fotovati et al., 2012; Saleh et al., 2014a). However, in contrast to such 

CFD simulations, the approximate model presented in this chapter allows one to simulate the 

entire lifecycle of a filter in a few minutes.  

(a) (b)
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Figure 6.1: Circular pleated filter (a); flat pleated filter (b). 

 

In the remainder of this chapter, we first present our formulations for predicting the pressure 

drop and collection efficiency of circular pleated filters with and without dust-cake (Sec. 6.2). In 

Sec. 6.3, we compare the predictions of our model to those obtained from more accurate CFD 
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simulations. Our results and discussion are given in Sec. 6.4 followed by our conclusions in Sec. 

6.5. 

 

6.2. Modeling Circular pleated Filters 

6.2.1 Clean Fitters 

Assuming filter media to be the sole source of pressure drop in a pleated filter, the face velocity 

(air velocity normal to the media) can be obtained using Darcy’s law: 

w
m

Δp kv
t μ

=            (6.1) 

where Δp is the pressure drop across the media, k is the permeability of the media, mt is the 

thickness of the fibrous media, and μ  is the air viscosity. Considering a control volume inside 

the pleat channel, the conservation of mass can be used to develop a relationship between the 

face velocity wv  and the inlet velocity iU , 

i i wU s = v w            (6.2) 

where is  is the arc length at the inlet, and w is the length of the pleat’s fibrous wall, as shown in 

Figure 6.2a.   

On the basis our CFD observations of the velocity field inside a pleat channel (see the next 

section), the face velocity over w  is assumed to be constant in our formulation. The average 

radial velocity ( )rv r can also be obtained using the conservation of mass, 

( )( ) ( ) max
r i i w

r sinθ rv r s r U s v w
sin γ

 
= − − 

 
         (6.3)  

where ( )s r is the arc length at any radius or < r < ir , ( )maxθ r is the angle of the pleat channel at a 

radius r (measured from the center of the pleat), and γ  is the pleat’s half-angle. 
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Figure 6.2: Computational domain for a clean circular pleat (a) and a circular pleat accommodating a dust-cake (b). 
 

The flow velocity components in the x and y directions can then be obtained as, 

( ) ( ) ( )r θu x, y v r,θ cosθ v r,θ sinθ= +          (6.4)  

( ) ( ) ( )θ rv x, y v r,θ cosθ v r,θ sinθ= −          (6.5)  

These velocities are then used in the particle equation of motion, Equations 6.6 and 6.7, 

with ( 0) 0x t = = , ( 0) i
p py t y= = , ( 0)p i

p

dx
t u

dt
= = , and ( 0)p i

p

dy
t v

dt
= = as the initial conditions, to 

obtain the instantaneous position and velocity of the particles in the pleat channel.  

2

2

1 1 ( , )p pd x dx
u x y

dt dtt t
+ =          (6.6) 



 

117 
 

2

2

1 1 ( , )p pd y dy
v x y

dt dtt t
+ =          (6.7) 

In these differential equations, 2 1 18c
p pτ d ρ c μ /−= is the particle relaxation time.  

 

6.2.2 Dust-Loaded Filters: Surface Filtration 

Our CFD simulations of particle deposition in triangular pleat channels have revealed that dust-

cake tends to grow uniformly over the length of the media regardless of the filter’s pleat density 

(Fotovati et al., 2011; Fotovati et al., 2012; Saleh et al., 2014a). Similar simulations conducted 

for circular pleated filters, on the other hand, indicate that dust particles tend to deposit 

somewhat deeper into the pleat channel especially when the filter’s inlet-to-outlet diameter ratio 

io i oR r / r= increases (see the next section). Therefore, we considered a linear growth profile for 

the thickness of dust-cake on fibrous walls of the pleat channel. As shown in Figure 6.2b, the 

thickness of the cake normal to the pleat wall is assumed to vary linearly from iδ at the channel 

entrance to fδ where the cake reaches the channel’s symmetry line. With this assumption, the 

face velocity varies linearly from ( )w iv r to ( )w o ev r δ+ . The face velocity can be calculated as, 

( ) ( )w i i w o e fΔp v r β v r δ β= = +          (6.8) 

where i
i

c

mμ μδβ ,
k
t

k
= + and f

f
c

m μδμβ
k k
t

= + are the resistances against the air flow. The cake 

permeability ck can be obtained from the Kozeny–Carman equation (Carman, 1956), 

2 3

2180 (1 )

c
p

c

d c
k e

e
=

−
          (6.9) 

with the cake porosity e  obtained from an empirical correlation proposed in the work of Kasper 

et al., 2010], 
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0.36 0.64exp 0.29 p
p

w

d
ρ

e
ρ

 
= + − 

 
        (6.10) 

Considering the conservation of mass for the air in a dust-loaded pleat (see Figure 6.2b), we 

obtain, 

( )( )1 ( ) ( )
2i i e w i w o eU s w δ cos γ v r v r δ= − + +        (6.11) 

Solving Equations 6.8 and 6.11, we can obtain an expression for the filtration velocity across the 

length of the pleat wall ( )wv r , 

( ) ( )
( )

( ) ( ) ( ) ( ) o e
w w i w i w o e

i o e

r r δ
v r v r v r v r δ

r r δ
− +

= − − +
− +

      (6.12) 

Similar to the case of clean pleats, the average radial velocity at any cross-section inside the pleat 

channel can be obtained as, 

( )1 1( ) ( ) ( )
( ) 2r i i w i w

r sinθv r U s v r v r w
s r sin γ

  
= − + −  

  
      (6.13) 

In order to obtain both the tangential and radial velocity distributions at any point inside the pleat 

channel, we conducted a series of CFD simulations for circular pleated filters with different pleat 

angles. The fibrous media considered in these calculations were assumed to be 2 mm thick with 

an SVF of 7.5%, and a fiber diameter of 15 µm. Our CFD simulations were conducted using 

ANSYS–Fluent code enhanced with a series of in-house subroutines (Fotovati et al., 2011; 

Fotovati et al., 2012; Saleh et al., 2014a). Figure 6.3a shows the computational domain and the 

boundary conditions used in the CFD calculations (due to symmetry, only a half-pleat was 

simulated). Figure 6.3b shows examples of velocity field inside pleat channels with different 

inlet-to-outlet diameter ratios for illustration purposes. For these simulations, two arbitrary inlet 

radii of 76.2 and 152.4 mm were considered along with a varying outlet radius to obtain pleat 
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channels with different pleat angles. Figures 6.3c and 6.3d show the normalized radial and 

tangential channel velocities at different normalized radii * ( ) / ( )i i or r r r r= − −  versus tangential 

normalized angle maxθ / θ for pleats with different inlet-to-outlet diameter ratios. The data 

included in these figures include pleat geometries with inlet radii of 76.2 and 152.4 mm having 

three different pleat angles of 20, 30, and 45°. These radial and tangential velocity components 

are normalized using the average radial velocity ( )v r and the tangential velocity at the pleat 

fibrous wall ( )θ maxv r,θ , respectively (see Figures 6.3e and 6.3d). 

 

It can be seen in Figure 6.3c that the normalized radial velocity is independent of the 

angle θ except for when θ  approaches maxθ  (at the surface of the fibrous media) where it sharply 

decreases by about 20–40%. This trend has consistently been observed for all the pleat 

geometries considered in our study, and we have therefore assumed a uniform radial velocity at 

any radius: 

( ) ( )r rv r ,θ v r=            (6.14) 
 

Note that the decrease in the radial velocity takes place in an area very close to the surface of the 

fibrous media, where particles can no longer remain airborne (they become intercepted by the 

pleat fibrous walls). Therefore, the assumption of uniform radial velocity does not impact the 

accuracy of our particle trajectory calculations. The permeability of the fibrous media was also 

varied in order to study its effect on the velocity profile inside the pleat channel. 
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Figure 6.3: Computational domain used in CFD simulations is shown in (a). Velocity field obtained from CFD 
simulations for 12-pleat circular filters having a fixed inlet diameter of 152.4 mm but different outlet diameters are 
shown in (b). The radial and tangential components of the velocity field are obtained from our CFD calculations for 
pleated circular filters and are shown in (c) and (d). Average radial velocity and maximum tangential velocity are 
shown in (e) and (f) respectively.  
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It was observed that face velocity remains uniform along the length of the pleat walls except for 

when an unrealistically high permeability was considered for the fibrous media (e.g., greater than 

5.4×10-10 m2 for the geometry considered here). In that case, the face velocity was observed (not 

shown here for the sake of brevity) to increase slightly near the pleat end. Our results also 

showed that the tangential velocity inside the pleat channel can be best approximated with a 

linear profile and does not depend on the inlet diameter or the pleat count, as long as the pleat 

angle is fixed. The normalized tangential velocity inside the pleat channels (shown with open 

symbols in Figure 6.3d) was found to depend only on the pleat half angle γ . We therefore 

produced an expression for the flow angular velocity through curve fitting for 20 45o oγ< < : 

( ) ( ) ( )θ max θ maxv r,θ χ θ / θ v r,θ=          (6.15) 

In this equation, 21 0 9845 0 2181χ . γ . γ= − + , and the angle γ is in radian. It is important to mention 

that the normalized tangential velocity was found to be independent of the pleat inlet diameter or 

the inlet-to-outlet diameter ratio ioR . However, the values of the maximum tangential velocities 

( )θ maxv r,θ  are different for each case as shown in Figure 6.3f. It is expected that 

( )θ maxv r,θ increases with the increase of the angle γ as the pleat wall length decreases resulting 

from the increase in the filtration velocity. More importantly, the angles from which the 

normalized velocities are measured differ with changing the inlet diameters. Filters with smaller 

inlet diameters will cause stronger radial air flow toward the center point. But with higher inlet 

diameter (or ioR values close to 1), the center point is far from the pleat and the radial flow is not 

as strong as pleats with smaller inlet diameter. Having the velocity field inside the pleat 

calculated, one can obtain the trajectory of a particle traveling inside a pleat channel and predict 

the collection efficiency of the filter by solving Equations 6.6 and 6.7 using the velocity field 

given in Equations 6.14 and 6.15.   
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Figure 6.4a demonstrates how the pleat angle can influence the trajectory of particles in the pleat 

channel using particles with a diameter of 10 µm as an example. Looking closely at the particle 

deposition sites in Figure 6.4a, one can notice that decreasing the pleat angle forces the particles 

to deposit deeper into the pleat channel, forming a non-uniform cake profile (note that pleat 

angle increases when increasing the inlet diameter but keeping the length of the pleat wall 

w constant). Interestingly, circular pleated filters with 1ioR ≅  experience uniform particle 

deposition, and their performance tend to become similar to that of flat pleated filters (this was 

also observed in simulations conducted for circular filters with different pleat counts, but the 

results are not shown for the sake of brevity). Figure 6.4b shows the effects of varying ioR for a 

12-pleat circular filter having a constant inlet diameter but varying pleat wall lengths w  at a 

constant air flow rate. It can be seen that, the inlet-to-outlet diameter ratio ioR  plays a major role 

in particle deposition profile: increasing ioR , while the inlet diameter is kept constant, forces the 

particles to deposit deeper into the pleat channel. Note that, particle position sites determine the 

slope of the cake profile. More specifically, the ratio of the number of particles deposited on the 

first half of the channel’s wall to that deposited on the second half is taken here as the ratio of the 

cake thickness at the middle point of the pleat wall to that when the cake comes into contact with 

the channel’s centerline ( ) 2i f fδ δ / δ+ .  
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Figure 6.4: Effects of pleats’ inlet-to-outlet diameter ratio on particle trajectory for circular pleated filters having the 
same pleat wall length (a), or having the same inlet diameter (b). The air flow rate is the same in both cases. 
 

6.2.3 Dust-Loaded Filters: Depth and Surface Filtration 

In the case of depth filters, our model calculates the filter’s initial performance using the cell 

model equations (the equations are not presented here for the sake of brevity but they can be 

found in Chapter 5). Our model assumes that the efficiency of a filter changes linearly from its 

clean efficiency to 100%, as particles continue to deposit in the filter causing the media’s SVF 

increase from its clean value to the maximum value defined by Equation 6.10. For pressure drop 

calculations, we use the un-weighted resistivity method of the work of Mattern and Deen, 2008. 
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In this method, the resistance of the loaded media is assumed to be the summation of both the 

resistance of the clean fibrous medium and that of the particle-loaded media: 

( ) ( )
m m

l m p
m c p

t t
k k
µ µ

β β β
φ φ

= + = +         (6.16) 

where lβ , mβ , and pβ are the resistance of particle-loaded media, clean media, and the particles 

deposited within the media; mφ  and pφ  are the solid volume fraction of the fibrous and particles 

deposited in the media, respectively. 

 

6.3. Comparison with CFD Simulations 

In this section, we compare the predictions of our semi-numerical model with the more accurate 

predictions of our macroscale CFD simulations (for more information about the accuracy of 

these CFD simulations see Fotovati et al., 2011; Fotovati et al., 2012; Saleh et al., 2014a). 

Figures 6.5a and 6.5b show the pressure drop and collection efficiency of a 19-pleat circular 

filter with an SVF of 7.5%, a thickness of 0.7 mm, and a fiber diameter of 5 µm. The inlet and 

the outlet diameters are taken to be 85 and 34 mm, respectively, and the inlet volume flow rate is 

set equal to 0.185m3/s. Figures 6.5a and 6.5b are obtained for particles with a diameter of 1 and 

10 µm, with their corresponding trajectories in Figure 6.5c and 6.5d, respectively.  The results 

shown in Figure 6.5 show that there exists good general agreement (less than 20%) between the 

predictions of our semi-numerical model and those of the CFD calculations (the mismatch is due 

to the simplistic nature of the cake growth models considered in our semi-numerical model). 
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Figure 6.5: Comparison between pressure drop and collection efficiency predictions obtained from the present 
model and our CFD simulations for a circular pleated filter with 19 pleats loaded with dust particles at an air 
velocity of 0.5 m/s. The data shown in (a) and (b) are obtained for 1 µm and 10 µm particles, respectively. Particle 
trajectories from CFD simulations are compared with those of the current model in (c) and (d) for 1 µm and 10 µm 
particles, respectively. 
 

6.4. Results and Discussion  

In this section, we compare the performance of circular pleated filters to their flat counterparts. 

We arbitrarily chose a fibrous medium made of fibers with a diameter of 15 µm, an SVF of 10%, 

a thickness of 0.7 mm and a pleat length of 25.4 mm for the cases considered in this section. The 

flat pleated filters were constructed such that pleat geometries with 2 and 4 pleats per inch and 

half-pleat angles of 7.125° and 14.25° were obtained. The same pleat angles were also used for 

the circular filters (see Figure 6.6), but different inlet diameters were used to obtain different 

inlet-to-outlet diameter ratios. 
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Figure 6.6: Illustration of a circular pleated filter and its flat counterpart. 
 

Figures 6.7a–6.7d show a comparison between the performance of circular pleated filters and 

their flat counterparts having a half-pleat angle of 7 125oγ .= when loaded with mono-dispersed 

particles of 1 and 10 µm diameters. These circular filters have 28 and 32 pleats, corresponding to 

inlet radii of 32.4 and 28.4 mm, when considering ioR ratios of 4.7 and 10.2, respectively. 

Figures6.7e–6.7h present similar a comparison but for circular filters having 16 and 14 pleats 

with corresponding inlet-to-outlet diameter ratios of 4.9 and 11.8 and inlet radii of 32.6 and 28.5 

mm, respectively, leading to a half-pleat angle of 14 25oγ .= . Figures 6.7a, 6.7c, 6.7e, and 6.7g 

compare dust-cake profiles in circular pleated filters with those in their flat counterparts for 

particles of 1 or 10 µm diameters at different mass loadings. It is clearly shown in Figures 6.7b 

and 6.7d that circular pleated filters experience slightly less pressure drop increase due to mass 

loading when 1ioR >> . This is because increasing the inlet-to-outlet diameter ratio forces the 

particles to deposit deeper into the pleat channel, leaving a thin dust-cake near the pleat entrance 

where the flow can pass through with less resistance. For instance, the circular pleated filter with 

an inlet-to-outlet diameter ratio 10ioR = exhibits 25% less pressure drop than its flat counterpart 

when loaded with particles of 1 µm at a mass loading of 0.15 kg/m2 (or 8% at a mass loadings of 
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0.69 kg/m2 with 10 µm particles). This effect becomes clearer when the pleat angle is increased. 

As shown in Figures 6.7f and 6.7h, when the pleat with angle is increased to 14.25°, for instance, 

the circular pleated filters with 4 9ioR .= and 11 8ioR .= show 36% and 62% less pressure drops 

than their flat counterpart loaded with particles of 1 µm diameter at a mass loading of 0.29 

kg/m2, respectively.  

 

6.5. Conclusions   

This chapter presents an easy-to-use approximate model to predict the filtration performance of 

circular pleated filters under dust loading conditions. Our model starts by considering a 

reasonable profile for the dust-cake inside a filter’s pleat channels, and allows it to grow as the 

filter accumulates particles over time. Utilizing Darcy’s law for pressure drop and Newton’s 2nd 

law for particle trajectory calculation, our model provides quantitative information with regards 

to the instantaneous performance of a circular pleated filter in both the depth and surface 

filtration regimes. The predictive model developed in this work is approximate, but given the 

trade-off between accuracy and speed, the rate at which a large parameter study can be 

completed makes our model uniquely attractive for design and development of circular filters. 

One can start a design process with our present method to narrow down the design variables and 

then continue with a more comprehensive CFD model for finalization of the design.  



 

128 
 

0 0.25 0.5 0.75
Mass per unit fitlration area (kg/m2)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Ef
fic

ie
nc

y
0

10000

20000

30000

40000

∆P
-∆

P 0
(P

a)

Press., Flat
Press., Rio=4.7
Press., Rio=10.2
Eff., Flat
Eff., Rio=4.7
Eff., Rio=10.2

0 0.05 0.1 0.15
Mass per unit fitlration area (kg/m2)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Ef
fic

ie
nc

y

0

10000

20000

30000

∆P
-∆

P 0
(P

a)

Press., Flat
Press., Rio=4.7
Press., Rio=10.2
Eff., Flat
Eff., Rio=4.7
Eff., Rio=10.2

(a)

(b)

 

m= 0.15 kg/m2, Flat
Δp= 16 kPa, dp=1 µm

m= 0.15 kg/m2, Rio=10.2
28 pleats, Δp= 12 kPa, dp=1 µm

m= 0.15kg/m2, Rio=4.7 
32 pleats, Δp= 16 kPa, dp=1 µm

 

(d)

(c)
m= 0.69 kg/m2, Flat
Δp= 25 kPa, dp=10 µm

m= 0.69 kg/m2, Rio=10.2
28 pleats, Δp= 23 kPa, dp=10 µm

m= 0.69 kg/m2, Rio=4.7
32 pleats, Δp= 26 kPa, dp=10 µm

(c) m= 1.1 kg/m2, Flat
Δp= 93 kPa, dp=10 µm

m= 1.1 kg/m2, Rio=11.8,
14 pleats, Δp= 51 kPa, dp=10 µm

m= 1.1 kg/m2, Rio=4.9
16 pleats, Δp= 75 kPa, dp=10 µm

 

(d)

 

(a)

(b)

m= 0.29 kg/m2, Flat,
Δp= 75 kPa, dp=1 µm

m= 0.29 kg/m2, Rio=11.8 
14 pleats, Δp= 28 kPa, dp=1 µm

m= 0.29 kg/m2, Rio=4.9
16 pleats, Δp= 55 kPa, dp=1 µm

(e)

(h)

(g)

(f)

0 0.1 0.2 0.3 0.4
Mass per unit fitlration area (kg/m2)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Ef
fic

ie
nc

y

0

50000

100000

150000

∆P
-∆

P 0
(P

a)

Press., Flat
Press., Rio=4.9
Press., Rio=11.8
Eff., Flat
Eff., Rio=4.9
Eff., Rio=11.8

0 0.5 1 1.5
Mass per unit fitlration area (kg/m2)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Ef
fic

ie
nc

y

0

50000

100000

150000

200000
∆P

-∆
P 0

(P
a)

Press., Flat
Press., Rio=4.9
Press., Rio=11.8
Eff., Flat
Eff., Rio=4.9
Eff., Rio=11.8

dp=10 µm
γ=14.25°

dp=1 µm
γ=14.25°

dp=1 µm
γ=7.125°

dp=10 µm
γ=7.125°

 
Figure 6.7: Dust-cake profile examples for circular and flat pleated filters of a fixed pleat half angle of 

7 125oγ .= at an inlet velocity of 1 m/s are shown with blue dashed lines in (a) particles with a diameter of 1 µm. 
The instantaneous collection efficiency and pressure drop for this filter-particle combination is given in (b) as a 
function of mass deposited per unit filtration area. The results in (c) and (d) correspond to the same calculations but 
for particles with a diameter of 10 µm. Likewise, the results in (e), (f), (g), and (h) are obtained for the same circular 
pleated filter but when the half angle in increased to 14 25oγ .= . 
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In this Chapter, in particular, performance of a circular pleated filter is compared to its flat 

counterpart. It was found that circular pleated filters with high inlet-to-outlet diameter ratios 

perform better than their flat counterparts. This is because when a filter’s inlet-to-outlet diameter 

ratio is high, the particles tend to deposit deeper into the pleat channel leaving a thin, relatively 

more permeable, dust-cake near the pleat entrance. Our pressure drop and collection efficiency 

predictions are also compared with the results of our previously developed more sophisticated 

CFD simulation methods, and reasonable agreement has been observed.  
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Chapter 7 

Predictive Correlations for Dust-Loaded Pleated Filters9 

 

7.1. Introduction 

In previous chapters we presented models to predict the performance of dust-loaded pleated 

filters. However, it is impossible for any numerical or experimental study to consider all the 

parameters affecting the filtration performance of a pleated filter. It is then very necessary for the 

industry to develop correlations that estimate the filtration efficiency of a pleated filter in service 

as a first step of product design and development.  

 

In this chapter, we use analytical derivations as well as our previously developed models to 

develop correlations that predict the filtration performance of flat rectangular or triangular 

pleated filters in addition to cylindrical pleated filters made of triangular pleats. These 

correlations are very helpful in predicting an approximate value of the collection efficiency and 

pressure drop of a pleated filter during its service as a function of the amount of mass deposited 

in the filter. Using these correlations will be the first step of the pleat design process before 

conducting any expensive experimental or numerical experiments.  

                                                 
9 Contents of this chapter is prepared to be submitted for journal publication 
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In the following subsection, we first present our correlation formulations for depth filtration in 

triangular pleated filters under dust-loading (Sec. 7.2). We then discuss the formulations 

describing the pressure drop in the surface filtration regime of flat and cylindrical pleated filters 

in Sec. 7.3 and Sec. 7.4, respectively. In Sec. 7.5 and Sec. 7.6, we discuss the depth and surface 

filtration correlations for rectangular filters. We compare the predicted performance of the 

presented correlations with CFD simulations and with the macroscale model predictions in 

Section 7.7, followed by our conclusions are given in Sec. 7.8. 

 

7.2. Depth Filtration in Triangular Pleats 

Assuming filter media to be the sole source of pressure drop in a pleated filter, the pressure drop 

of a clean filter can be obtained using Darcy’s law: 

0 0w m w
m

μΔp v t v β
k

= =           (7.1) 

where Δp and wv are the pressure drop and the filtration velocity across the fibrous media, 

respectively, mk  is the permeability of the media, mt is the thickness of the fibrous media, 0β is the 

resistance of the clean fibrous medium, and μ  is the air viscosity. When particles deposit inside 

the media, they cause additional resistance to the flow which increases the pressure drop. The 

pressure drop of a loaded medium can be obtained as 

w lΔp v β=            (7.2) 

where lβ  is the dust-loaded media resistance. Using the un-weighted resistivity method, the 

following expression can be used for the total dust-loaded resistance: 

( ) ( )
m m

l m p
m m c p

t t
k k
µ µ

β β β
φ φ

= + = +           (7.3) 
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where mφ  and pφ  are the solid volume fraction of the clean fibrous medium and particles 

deposited in the medium, respectively. ck is the permeability of the granular media due to particle 

deposition and can be obtained from: 

2 3

2

(1 )
180

c
p p

c
p

d c
k

φ
φ
−

=           (7.4) 

(b)

(a)

fibrous
media

h

l

γ
U

l
δe

dust 
cake

γ

h

 
Fig. 7.1: Illustration of dust loaded triangular flat pleated filter with depth (a) and surface (b) deposition. 
 

Rearranging Equation 7.2, the following expression for the pressure drop increase due to particle 

deposition can be obtained as 

Using Equation 7.2, the following expression for the pressure drop increase due to particle deposition can 

be obtained 
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( )
m

p w
c p

tΔp v μ
k φ

=           (7.5) 

where pΔp  is the pressure drop increase due to deposition inside the fibrous media. In order to 

relate the filtration velocity across the fibrous media to the inlet velocity, we applied mass 

conservation on a control volume including the pleat channel as shown in Figure 7.1a. Therefore, 

we obtain 

wwv hU=            (7.6) 

where w  is the filtration area per unit pleat depth and h  is the pleat height (see Figure 7.1a). The 

depth of the pleat is the direction normal to the paper. By definition, volume fraction of 

deposited particles pφ can be written as 

p p
p

m

n V
φ

V
=            (7.7a) 

in which pn is the number of particles deposited inside the media, pV is the volume of one 

particle, and mV  is the volume of the fibrous media, and p p p pm ρ n V=  is the total mass of the 

deposited particles. Therefore, Equation 7.7a can be written as: 

p
p

p m

m
φ

ρ V
=            (7.7b) 

in which pρ is the density of the particle material. Equation 7.5 can therefore be written as: 

2 3

2
180 1p pm m

p c
c p m p mp

m mt UhμtUhμΔp
w k w ρ V ρ Vd c

−
    

= = −             
      (7.8) 
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 The above equation gives the pressure drop increase in the depth filtration regime, and is valid 

as long as  

( )0 p p m p mm Vρ α ϕ≤ ≤ −           (7.9a) 

( )0 p p mϕ α ϕ≤ ≤ −           (7.9b) 

where mϕ is the SVF of the clean fibrous media. This means that the total volume of the particle 

granular structure should be less than the volume of the particle pack subtracted from it the 

volume occupied by the original fibers. Here, we use an empirical correlation for pα reported by 

Kasper et al., 2010: 

0.64 0.64exp( 0.29 )p
p p

w

d
ρ

α
ρ

= − −         (7.10) 

where wρ is the density of the water. Note that in the case of p mα φ≤ , there is no depth filtration, 

as particles have no space to be deposited inside the filter medium besides the fibers and hence, 

particles will start depositing on the surface immediately. 

 

For the collection efficiency prediction, we can use the well-known Single Fiber Efficiencies 

(SFEs) from literature to estimate the initial efficiency of the pleated filter. Here, we use the 

expression of (Stechkina et al., 1982) for SFE due to Brownian diffusion,  

1 3 2 3 12 9 Pe 0 62Pe/
DE . Ku .− − −= +          (7.11)  
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where 2ln 0.75 0.25
2

m
m mKu ϕ

ϕ ϕ= − − + −  is the Kuwabara factor, Pe w fv d / D= is the Peclet number 

(3 )c
PD σ c T / π μd= is particle diffusivity, and 23 2 2 11 38 10 ( )σ . m kgs K− − −= × is the Boltzmann 

constant. The SFE due to interception is calculated using the expression proposed in (Lee and 

Liu, 1982): 

210.6
(1 )

m
R

RE
Ku R
ϕ−

=
+

          (7.12) 

The SFE due to impaction is obtained using the equation of the study by Landahl and Hemann, 

1949:  

3

3 2
St

St 0 77St 0 22IE
. .

=
+ +

         (7.13) 

 

where
2

18

c
p P w

f

d c v
St

d
ρ

µ
= is Stokes number and calculated based on the filtration velocity inside the 

fibrous media (not the inlet velocity). The total collection efficiency of the clean pleated filter 

can then be obtained using the following equation (Brown, 1993), 

0
41 exp

(1 )
m m

f m

E tE
d
ϕ

π ϕ
Σ

 −
= −   − 

         (7.14) 

where 1 (1 )(1 )(1 )Σ D R IE E E E= − − − − is the total SFE.  

 

The above equations are developed for clean filters. Our object however is to model the 

collection efficiency of particle-loaded filters. We assumed that the deposition of particles inside 

a fibrous structure only affects its SVF.  The loaded particles increase the SVF of the filter and 

hence its collection efficiency. For the sake of simplicity, we assume that the filtration efficiency 

of a fibrous structure increases linearly with the mass of the particles deposited within the 
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structure. We assume collection efficiency of the filter reaches 100% when the SVF of the 

particles within the fibrous media reaches a maximum value max
pφ . The instantaneous efficiency 

of the filter for SVFs smaller than the maximum allowable value is estimated via linear 

interpolation between the clean efficiency, at the SVF of the media ( mφ ), and 100%, at the 

maximum SVF ( max
pφ ). Therefore, the efficiency of a loaded filter holding mass pm can be 

predicted as: 

0 0(1 ) p
m max

p

m
E E E

m
= + −           (7.15) 

where mE is the efficiency of dust-loaded pleated filter and max
pm  is the maximum mass that can 

fill the fibrous media. 

p

max max
p p mm φ ρ V=           (7.16) 

max
p p mφ α φ= −            (7.17) 

 

7.3. Triangular Flat Pleats with Surface Filtration 

Applying Darcy’s Law to obtain the pressure drop due to surface dust deposition ( sΔp ) in a 

pleated filter, 

s w w c
c

μΔp v δ v β
k

= =           (7.18) 

where cβ is the resistance of the dust granular media to the air flow. The thickness of the cake δ  

can be expressed in terms of mass deposition, 

p p c p p f pm ρ V α ρ A δα= =          (7.19) 
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where cV is the volume of the particle granular pack and fA  is the filtration surface area and is 

equal to the product of the length ( w ) and the depth ( z ) of the pleat wall.  

Hence, pressure drop can be approximated in the following expressions: 

s w
c p p f

μ mΔp v
k ρ α A

≈           (7.20) 

It can be seen from the above equation that the pressure drop is inversely proportional to the dust 

cake permeability ck , the surface area available for filtration ( ew δ cos γ− ), and the cake solid 

volume fraction pα . It is also linearly proportional to the inlet velocity U  as shown in Fig. 7.1b. 

Hence we have: 

1 1 1
s

c p e
Δp U , , ,

k α w δ cos γ
∝

−
         (7.21) 

where eδ  is the dust cake thickness measured from the pleat end, and γ  is the pleat half angle. 

Therefore we can obtain an expression for the pressure drop increase due to surface deposition as 

( )
1

s
f p c e

mΔp ψ U
A α k w δ cos γ

=
−

        (7.22) 

where ψ is a constant of proportionality.  

 

The cake thickness at the end of the pleat can be related to the mass deposited as 

2
21 1

p
e

mw cotγ
w ρα

δ
cosγ

 
 − −
 
 =          (7.23) 
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Substituting in the pressure drop equation (Eq. 7.22) we can obtain 

10 5

21 1 1 2
.

p
s

f p c p p

m U mΔp ψ cotγ
A α k w w ρ α

−
     = − − −         

      (7.24) 

It is shown in the above equation that the pressure drop is not a linear function of mass per unit 

area. In order to linearize the relation we divided the increase in pressure drop by 

1

0 5
21 1 (1 2 )p .

p c p p

mU cotγ
α k w w ρ α

−
   − − −      

. Hence, we obtain a linear function of the linearized 

pressure drop and the mass loaded per unit area p fm / A  as can be seen in Figure 7.2. The case 

presented in this figure is for a 2 pleat per inch surface filter with a pleat height and width of 

0.635 cm and a pleat angle of 45°. The dashed line shows an exact linear function, and the solid 

line shows the linearized pressured drop as a function of mass per unit area. 

U, dp
W= 0.009 m
Pleat Angle = 45°
2 pleat per inch

Li
ne

ar
iz

ed
 p

re
ss

ur
e 

dr
op

Mass per unit filtration area (kg/m2)  
Fig. 7.2: Example of linearized pressure drop as a function of mass per unit area of a surface flat triangular pleated 
filter. This plot is applicable to any particle diameter and inlet velocity. 
 

The constant of proportionality ψ was found to be only dependent on the pleat geometry. More 

specifically, it was not a function of the flow velocity or the particle diameter. Values of ψ is 
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plotted in Fig. 7.3. These values were obtained by applying our 2-D semi-numerical model for 

different pleat lengths and heights in order to cover the most common dimensions of any pleated 

filter. 

ψ

Pleat height (mm)

Pleat length= 6.35 mm
Pleat length= 12.7 mm
Pleat length= 25.4 mm
Pleat length= 38.1 mm
Pleat length= 50.8 mm

 
Fig. 7.3: The coefficient ψ  for a flat triangular pleated filter as a function of pleat geometry. 

 
The total pressure drop of a pleated filter at any mass loading can be obtained by adding the three 

components of the pressure drop ( 0Δp , pΔp , and sΔp ). An example of the regimes of filtration 

(depth and surface) is shown in Fig. 7.4. 
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Fig. 7.4: Illustration of the dust loading deposition regimes, the transition from depth to surface filtration shown for 
dust loading performance of a triangular flat  pleated filter. 
 

 

7.4. Triangular Radial Pleats with Surface Filtration 

A triangular filter can be in either a flat pleated arrangement or in a radial pleated arrangement 

(cartridge filters). To obtain the radial pleated filters correlation, we first conducted a series of 

parameter studies to report the ratio of dust cake thickness i fδ / δ  as illustrated in Fig. 7.5. Note 

that the dust cake is assumed to be a linear profile in the case of radial pleats. 

 

The fraction i fδ / δ was only a function of the inlet to outlet diameter ratio ( ioR ) as shown in Fig. 

7.6. In this figure, we conducted a wide parameter study changing the number of pleats and 

consequently pleat angles, and fabric length. As shown in the figure, the fraction of cake 

thicknesses only depends on ioR . 
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δe

dust 
cake

rori  
Fig. 7.5: Illustration of the dust-loaded radial pleated filter with linear cake profile. 

 

We conducted a series of parameter studies to calculate the coefficient ψ in the case of non-

uniform cake profiles with different pleat heights, widths and cake thickness ratios (f= i fδ / δ ) as 

shown in Fig. 7.7a. 
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Fig. 7.6: initial to final thickness ratio i fδ / δ as a function of inlet-to-outlet diameter ratio ioR . 

 

Figure 7.7b shows the normalized coefficient ψ with respect to its maximum corresponding 

value for each pleat geometry (in the case of uniform cake as in the corresponding flat pleat). 

Hence, we can relate the performance of a radial pleated filter to its flat counterpart as 
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3 20 9551 2 811 2 86
flat

ψ . f . f . f
ψ

= − +         (7.25) 
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Fig. 7.7: the coefficient of proportionality ψ (a) and its normalized values (b) as a function of initial to final 
thickness ratio (f= i fδ / δ ). 

 

7.5. Depth Filtration in Rectangular Pleats 

Similar to the discussion given in Section 2 for triangular pleats with depth deposition, the 

filtration performance of rectangular pleated filters during depth filtration is discussed here. The 

filtration velocity can be obtained as a function of the inlet velocity by applying mass 

conservation on the control volume which includes the pleat channel (see Fig. 7. 8a), 

( )2 2wh l v hU+ =           (7.26) 

where l is the pleat length. Using Darcy’s law (Eqn. 7.5), we can obtain the expression for the 

pressure drop as a function of mass loaded inside the pleat fibrous media as 

2 3

2
2 2 180 1
2 2

p pm
p c

c p m p mp

m mtUhμ UhμΔp
h l k h l ρ V ρ Vd c

−
    

= = −        + +     
      (7.27) 
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Fig. 7.8: Illustration of dust loaded triangular flat pleated filter with depth (a) and surface (b) deposition. 

 

Regarding the collection efficiency prediction, the same expressions used in Equations 7.11-7.15 

can be used here to predict the dust-loaded rectangular pleated filter efficiency. The only 

differences will be in calculating the filtration velocity wv  and volume of the fibrous media mV . 

 

7.6. Rectangular Pleats with Surface Filtration 

Similar to the discussion presented in Section 3 regarding surface filtration of triangular flat 

pleated filters, the pressure drop due to surface dust deposition in a pleated filter is inversely 

proportional to the dust cake permeability, the surface area available for filtration ( 2 2l h δ+ − ), 

and the cake solidityα . It is also linearly proportional to the inlet velocity U  as shown in Fig. 

7.8b. Hence we have: 
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1 1 1
2 2s

c p
Δp U , , ,

k α l h δ+ −
−          (7.28) 

where δ  is the dust cake thickness (we assume uniform thickness layer along the pleat wall). 

Therefore we can obtain an expression for the pressure drop increase due to surface deposition as 

( )
1
2 2

p
s

f p c

m
Δp ψ U

A α k l h δ
=

+ −
        (7.29) 

where ψ is a constant of proportionality. The cake thickness along the pleat can be related to the 

mass deposited as 

p

f p p

m
δ

A ρ α
=            (7.30) 

where fA here is equal to ( 2l h+ ). Substituting in the pressure drop equation we can obtain 

1
22
2

p p
s

f p c p p

m mUΔp ψ l h
A α k ρ α l h

−
 

= + −  + 
       (7.31) 

 

It is shown in the above equation that the pressure drop is not a linear function of mass per unit 

area. In order to linearize the relation we divided the increase in pressure drop by 

1
22
2

p

p c p p

mU l h
α k ρ α l h

−
 
+ −  + 

. Hence, we obtain a linear function of the linearized pressure drop 

and the mass loaded per unit area p fm / A  as can be seen in Fig. 7. 9. The case presented in this 

figure is for a rectangular pleated surface filter with a pleat height and length of 0.725 and 2.54 
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cm. The dashed line shows an exact linear function and the solid line shows the linearized 

pressured drop as a function of mass per unit area. 
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Fig. 7.9: Example of linearized pressure drop as a function of mass per unit area a surface flat rectangular pleated 
filter. This plot is applicable to any particle diameter and inlet velocity. 
 

The constant of proportionality ψ was found to be only dependent on the pleat height and length. 

More specifically, it was not a function of the flow velocity or the particle diameter. Values of 

ψ are plotted in Fig. 7.10. Each point in this figure represents a complete simulation case using 

our 2-D semi-numerical model when loading each pleat geometry with the mass that fills its 

channel. We chose the most common pleat heights and lengths so that we can cover the 

performance of any rectangular pleated filter with any dimension. 
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Fig.7.10: The coefficient ψ  for a flat rectangular pleated filter as a function of pleat geometry. 

 

7.7. Results and Discussion 

In this section we compare our results with our previous macroscale model and with CFD 

simulations. We start with triangular flat filters in Section 7.1 and then rectangular filters in 

Section 7.2. In section 7.3 and 7.4, we compare the predictions of our correlations with the 

macroscale model, which was benchmarked and validated before, for flat triangular and 

rectangular pleats as well as cylindrical triangular dust-loaded pleats. 

 

7.7.1. Comparison with CFD Simulation: Triangular Pleats 

In this section, we considered a complicated filtration regime in which the particles can deposit 

both inside and outside the fibrous media in a pleated filter. We compare the results of our 2-D 

macroscale model and the 3-D CFD simulations with those of the present correlations as in 

Equation 7.7 and 7.13 (see Saleh et al., SPT 2014 for more information about these models). The 
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fibrous medium considered here has an SVF of 7.5% with a fiber diameter of 15 µm. The 

corresponding fibrous media has a through-plane permeability constant of k=1.6×10-10 m2.  

Figure 11a shows the pressure drop predictions between our present correlation predictions of 

the pressure drop and both our 3-D CFD and 2-D macroscale model. The triangular pleated filter 

considered here was challenged with mono-dispersed particles of 1 µm diameter. The dust cake 

profiles are shown for both the CFD and the macroscale model in Fig. 7.11b. 
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Fig.7.11: Comparison between pressure drop and collection efficiency predictions of the present correlations with 
both the macroscale model and our CFD calculations for a filter with 4 triangular pleats per inch in surface and 
depth filtration regimes (a). A particle diameter of 1 µm is considered at an air velocity of 0.5 m/s. Dust deposition 
patterns are compared in (b) at a mass loading of 0.11 kg/m2. 
 

7.7.2. Comparison with CFD Simulation: Rectangular Pleats 

In this section we present the predictions of our present correlations with both the 2-D 

macroscale model and the 3-D CFD simulations for a rectangular filter with a pleat count of 4 

per inch loaded with 1 µm particles at an inlet velocity of 0.1 m/s and with the same fibrous 

media characteristics mentioned in Section 7.1. Given the complexity of the problem, the general 
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agreement shown in Fig. 7.12a is acceptable (see the complicated cake morphology and its semi-

analytical model counterpart in Figs. 7.12b). 
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Fig.7.12: Comparison between pressure drop and collection efficiency predictions of the present correlations and 
both the macroscale model and our CFD calculations for a filter with 4 rectangular pleats per inch in surface and 
depth filtration regimes (a). A particle diameter of 1 µm is considered at an air velocity of 0.1 m/s [3]. Dust 
deposition patterns are compared in (b) at a mass loading of 0.11 kg/m2. 
 

7.7.3. Comparison with 2-D macroscale model: Flat Pleats 

In this section, we present the predictions of our present correlations with the 2-D semi-

numerical macroscale model for triangular and rectangular pleated filters of 2 and 4 pleat counts 

per inch loaded with 5 µm particles at an inlet velocity of 1 m/s. The fibrous media were 

composed of fibers of 15 µm diameter and an SVF of 7.5%. Figure 7.13a shows the pressure 

drop increase due to loading the triangular pleated filters with 5 µm particles as a function of 

mass loading per unit area. Whereas Figure 7.13b shows the pressured drop increase when 

loading the rectangular pleated filters with the same mono-dispersed particles. It can be clearly 

seen that the pressure drop predictions of the present correlations are in good agreement with 

those from the 2-D semi-numerical model. 
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Fig. 7.13: Comparison between pressure drop and collection efficiency predictions of the present correlations and 
the 2-D semi-numerical macroscale model for a filter with 2 and 4 triangular (a) and rectangular (b) pleats per inch 
in surface and depth filtration regimes. Inlet air velocity and particle diameter are 1 m/s and 5 µm, respectively. 
 

7.7.4. Comparison with 2-D macroscale model: Cylindrical Pleats 

In this section we compare the predictions of our correlations in the case of cylindrical pleated 

filters with those obtained from our semi-numerical model (Chapter 6). The filters considered 

here have a half pleat angle of 14.25° and a pleat height and length of 6.4 and 25.4 mm, 

respectively. We considered two inlet diameters for the cylindrical pleated filters of 57.1 and 

65.1 mm and challenged the two pleated filters with 1 and 10 µm particles. Figure 7.14a and 

7.14b shows the pressure drop as a function of mass loading per unit area for both our present 

correlations and the macroscale model predictions when the filters are challenged with 1 and 10 

µm particles, respectively. Both predictions seem to agree well with one another.  
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Fig. 7.14: Comparison between pressure drop and collection efficiency predictions of the present correlations and 
the 2-D semi-numerical macroscale model for a cylindrical filter with half pleat angle γ of 14.25° for different pleat 
inlet diameters of 57.07 and 65.1 mm when challenged with 1 and 10 µm particles in (a) and (b) respectively. Pleat 
height and length was 6.4 and 25.4 mm, respectively. 
 

7.8. Chapter Conclusions  

This chapter presents the correlations that describe the surface and depth filtration performance 

in flat and cylindrical triangular pleated filters in addition to flat rectangular pleated ones under 

dust-loading conditions. These correlations were developed based on simple analytical study in 

order to minimize the considered parameters that affect the filtration performance of a pleated 

filter. The predictions of the filtration performance (collection efficiency and pressure drop) of 

the correlations presented in this work were compared with our previous 2-D semi-numerical 

model predictions. In order to obtain the pressure drop of dust loaded pleated filters, series of 

simulations were conducted using our semi-numerical model that was published before for 

different pleat shapes and geometries. These correlations are believed to be very helpful in the 

design and development of pleated filters.  
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Chapter 9 

Overall Conclusions 

 

The main goal of this thesis is to advance the modeling of the filtration performance of fibrous 

filters under dust loading conditions in order to better design a filter. Achieving this goal helps 

develop correlations describing the filtration performance of a pleated filter from the first day of 

its service until it is regenerated or disposed using these modeling techniques. 

 

In Chapter 2, we illustrated the microscale model which is used to simulate loading flat-sheet 

fibrous filters with particles. The air flow field through 3-D fibrous structures was obtained by 

solving Stokes’ equations. Particles were tracked in a Lagrangian approach using ANSYS–

Fluent code enhanced with user-defined functions in order to be able to model the instantaneous 

efficiency and pressure drop of a dust-loaded filter. We also implemented a 1-D macroscale 

model from the literature.  The comparison between the models revealed thatA close comparison 

between the results of the 1-D macroscale and 3-D microscale simulations indicates that the 

former requires a series of ad-hoc or case-dependent correction factors before it can produce 

accurate predictions for the instantaneous pressure drop or collection efficiency of a fibrous filter 

under dust-loading. In contrast, the 3-D microscale simulation method proposed in this study is 
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self-sufficient, as it is developed based on first principles, and can potentially replace the 

traditional design methods currently used in industry for product development.  

 

In Chapter 3, we presented a CPU-affordable 3-D macroscale model to simulate the service life 

of pleated fibrous filters when challenged with mono- and poly-dispersed aerosols. The model 

enables one to predict the pressure drop and collection efficiency in both surface and depth 

filtration regimes. It is important to mention that this model is much faster than the microscale 

model which makes it feasible to conduct limited parameter studies to help product design. The 

model was compared with microscale model in the case of flat-sheet filter and good agreement 

between the results was evident. 

 

In Chapter 4, we utilized both the above 3-D micro and macroscale models in order to 

investigate the performance of trilobal fibers when compared with their circular counterparts 

under dust loading. Correlations for both pressure drop and collection efficiency were presented 

for the fibers with different cross-sectional shape. Trilobal fibers are found to outperform their 

circular counterparts only when the particles are highly inertial, and only if the orientation of the 

trilobal cross-section with respect to the incoming flow is such that one of the grooves of the 

fiber faces the flow with a normal angle. In cases of low inertial particles, trilobal fibers were 

found to experience higher efficiency values with loading but at the expense of higher increase in 

pressure drop.  The same performance prevails when the fibers have through-plane orientation. 

Therefore, trilobal fibers are not expected to have any advantage over circular ones given the 

lack of the available control on their orientation. 
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A fast easy-to-use 2-D semi-numerical model was presented in Chapter 5 and Chapter 6 for 

simulating the filtration performance of dust loaded flat and circular pleated filters, respectively. 

The model uses the knowledge of the CFD micro and macroscale models illustrated in Chapter 2 

and 3 in order to obtain the velocity field inside the pleat channel. The dust-cake pattern is 

obtained by tracking the particle trajectories inside the pleat channel. The particles’ equations of 

motion are solved with the analytical expression of the velocity fields—a set of second order 

ordinary differential equations. Instantaneous pressure drop and collection efficiency estimates 

for pleated filters in presence of dust-loading in both depth and surface filtration regimes were 

obtained by the approximate dust cake profiles, air flow mass conservation and Darcy’s law. 

Good agreement was observed when the results of this model were compared with CFD models. 

It was found that filters with rectangular pleats can potentially provide better performance than 

their triangular counterparts under heavy loading, due to their larger surface area available for 

the filtration. From the comparison in Chapter 6 between flat and circular (cartridge) triangular 

pleated filters, circular pleated filters were found to outperform their flat  counterparts, especially 

when they experience smaller inlet diameters (high inlet to outlet diameter ratios).  

 

In Chapter 7, we presented the correlations that describe the performance of any pleated filter 

(rectangular, triangular flat and radial pleated filters). These correlations are very helpful for the 

industry to obtain good approximate predictions of the pressure drop of any pleated filter under 

dust loading conditions. 
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Appendix A 

 

Collection efficiency due to interception and inertial impaction are the dominant capture 

mechanism for the particles considered here. For the interception SFE, we used the expression 

proposed by Lee and Liu (1982), 

2

0
10 6

1R
α Rη .

Ku ( R )
−

=
+

       (A1) 

In this equation 2250750
2

α.α.αlnKu −+−−= is the Kuwabara factor. The SFE due to impaction 

is obtained using the following expression given by Brown (1993) for moderate values of Stokes 

number,  
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where 
2
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c
P P

f

ρ d c VStk
μ d

= is the Stokes number. 

Filter efficiency, E, can be obtained based on the total SFE, 0Ση , as follows using (Brown 1993), 

0 0 01 (1 )(1 )Σ R Iη η η= − − −        (A3) 
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       (A4) 

 

The empirical pressure drop correlation of Davies (1973) for clean fibrous media ΔP0 is given as, 
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Appendix B 

 

The three major mechanisms for particle capture are Brownian diffusion, direct interception, and 

inertial impaction. To predict the capture mechanisms due to diffusion in granular beds, we used 

the following expression for the single collector efficiency (Tien, 2012): 

1 3 2 34 / /
DE As Pe=         (B1) 

In the above equation, fPe V d / D= is the Peclet number, (3 )c
PD σ c T / π μ d= is particle 

diffusivity, 23 2 2 11 38 10 ( )σ . m kg s K− − −= × is the Boltzmann constant, and As is the correction 

factor. Note that ( ) ( )5 5 62 1 2 3 3 2As q / q q q= − − + −  , and 1 3SVF /q = . To obtain the capture 

efficiency due to interception with Reynolds number less than 1, the following equation was 

used: 

3 21 5RE . g R=          (B2) 

The correction factor g for the range of granular collectors (previously deposited particles) in 

this study is the following (Sirkar, 1975): 

( ) ( ) ( ) ( )
1 30 522 1 5 1 1 5 8 1 3 1 2 3 1

/.
g . ε . ε ε ε ε     = + − + − − − − −      

 (B3) 

Equation A3 is valid when the granular collector has 1Re < , with cell porosity ε of greater than 

0.33 and Peclet number greater than 1000. Finally, for the single collector efficiency due to 
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inertial impaction, the equation offered by Doganoglu (1978) was modified for the range of our 

collector and particles sizes: 

2 89IE . γStk=          (B4) 

where
2

18

c
P P

c

ρ d c VStk
μ d

=  is the Stokes number, and dc is the collector diameter. Note that 

1 2480 00318 .γ . Stk −= is the correction factor. It has been added to the equation B4, to make it valid 

for the range of particles Stokes number ( 0 01Stk .> ) in this study (Tien, 1989).  

Particle penetration through a filter can be estimated based on the above single collector 

expressions: 

4
(1 )
Σ c

f c

α E thkP exp
πd α

 −
=   − 

       (B5) 

In this equation ΣE is the total single collector efficiency, and is defined 

as 1 (1 )(1 )(1 )Σ D R IE E E E= − − − − . Particle penetration through each computational cell P is 

calculated using the above equation. The cell dimension here is used as the filter thickness. 
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Appendix C 

 
For particle capture in fibrous media, the work of Stechkina (1969) was used to estimate the 

Single Fiber Efficiency (SFE) due to Brownian diffusion, as shown below. 

1 3 2 3 12 9 0 62/
DE . Ku Pe . Pe− − −= +       (C1) 

In this equation 20 75 0 25
2

lnαKu . α . α=− − + − is the Kuwabara factor, Pe is the Peclet number. 

To predict SFE due to interception, the expression proposed by Lee and Liu (1982) was used: 

210 6
1R

α RE .
Ku ( R )
−

=
+

       (C2) 

The SFE due to impaction was predicted using the following expression (Pich, 1966):  

3

3 20 77 0 22I
StkE

Stk . Stk .
=

+ +
       (C3) 

Note that fiber diameter fd is constant, but the SVF of the cell (α ) will be updated every time 

some mass is deposited in the cell. 

Using the above equations, the value for total SFE ( ΣE ) can be obtained and the total particle 

penetration through the filter can be calculated using equation (B5). 
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