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INVESTIGATION OF GAIN-OF-FUNCTION INDUCED BY MUTANT P53 
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Catherine A. Vaughan, B.S. 

A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University 2015 

Major Director: Sumitra Deb, Ph.D. 

Professor, Department of Biochemistry and Molecular Biology 

 

p53 is mutated in 50% of all human cancers, and up to 70% of lung cancer.  Mutant p53 

is usually expressed at elevated levels in cancer cells and has been correlated with a poor 

prognosis.  Cancer cells that express mutant p53 show an increase in oncogenic phenotypes 

including an increase in growth rate, resistance to chemotherapeutic drugs, and an increase in 

motility and tumorigenicity to name a few.  We have identified several genes involved in cell 

growth and survival that are upregulated by expression of common p53 mutants: NFκB2, Axl, 

and epidermal growth factor receptor (EGFR).  The aim of this study was to determine the role 

NFκB2, Axl, and EGFR play in mutant p53’s gain of function (GOF) phenotype and to 

determine a mechanism for upregulation of mutant p53 target gene upregulation.   

Inhibition of mutant p53 in various cancer cell lines using RNAi in the form of transient 

siRNA transfection or stable shRNA cell line generation caused a decrease in the gain of 



 

 

function ability of those cells in the form of reduced chemoresistance, reduced cell growth and 

motility, and a reduction in tumor formation.  Additionally, inhibition of NFκB2, Axl, and EGFR 

also showed similar effects.  Promoter deletion analysis of the NFκB2 promoter did not show a 

specific mutant p53 response element needed for mutant p53 mediated transactivation.  

Similarly, deletion of the p53/p63 binding site on the Axl promoter did not inhibit mutant p53 

transactivation.  Sequence analysis of the NFκB2, Axl, and EGFR promoters revealed several 

transcription factor binding sites located throughout the promoters.  ChIP analysis of mutant p53 

and the promoter-specific transcription factor binding revealed that in the presence of mutant 

p53, individual transcription factor binding is increased to the NFκB2, Axl, and EGFR promoters 

as well as an increase in acetylated histone binding.  This data suggests that mutant p53 promotes 

an increase in transcription by inducing acetylation of histones via recruitment of transcription 

factors to the promoters of mutant p53 target genes.
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Introduction 

 

Discovery of p53.  p53 was discovered in 1979 by five independent groups when it 

coprecipitated with the large T antigen in simian virus 40 (SV40) transformed hamster cells (1-

6).  It was later found in high concentrations in various cancerous and transformed cells (2, 5, 7-

9).  p53 was originally thought to behave as an oncogene when co-transfection of mouse p53 

cDNA with activated Ras transformed rat embryonic fibroblasts (REF), however it was later 

learned that the p53 cDNA clone used contained a mutation (10-12).  Afterwards, co-transfection 

of wild-type (WT) p53 cDNA with activated Ras reduced the transformation potential of REFs 

and even inhibited the transformation potential when a known oncogene was added as well, 

leading to the belief that p53 acts as a repressor of cellular transformation (13, 14).  The role of 

p53 in tumor formation was later investigated through the creation of a mouse model system 

where one or both alleles of p53 were deleted, or left as wild-type.  p53 was shown to behave as 

a tumor suppressor when the majority of p53 null mice formed tumors by six months of age 

while WT mice showed very little tumor onset when aged three times as long (15). 

Structure and function of p53.  The p53 gene is located on the short arm of 

chromosome 17 and is a phosphoprotein that is localized mainly in the nucleus (16, 17).  It exists 

as an oligomer but mainly as a tetramer in the cell and binds to DNA sequence-specifically (18-

21).  Not only is p53 a transcriptional activator, it can also repress transcription (22-27).  The p53 

consensus sequence is defined as two half-sites of 5’-PuPuPuCWWGPyPyPy-3’ (Pu indicates a 



2 

 

purine base, Py indicates a pyrimidine base, and W indicates either adenine or thymine) that are 

separated by 0-13 bases (28).   

p53 is a 393 amino acid long protein with a well-established structure-function 

relationship.  The protein contains five functional domains: the transactivation domain (TAD, 

amino acids 1-92) contains both TADI (aa1-42) and TADII (aa43-92), the proline rich domain 

(aa64-92), the DNA binding domain (aa101-300), an oligomerization domain (aa307-355), and a 

C-terminal regulatory domain (aa356-393) (29-39) (Figure 1).  There are five highly conserved 

domains among p53 genes from evolutionarily distant species, the first is located within the first 

transactivation domain, and the remaining four are found within the DNA binding domain (40, 

41). 

WT p53 is activated in response to a variety of stressors including DNA damage, heat 

shock, and hypoxia to name a few.  Upon activation, p53 stabilizes and either causes transient or 

permanent (senescence) cell cycle arrest, activates DNA repair, or initiates apoptosis (Figure 2) 

(42-47).  WT p53 is a transcription factor that activates a large group of genes whose regulatory 

sequences have p53 consensus binding sites. (48, 49). Although WT p53 has biological activities 

that are transcription independent, the majority of its functions are dependent on its 

transcriptional ability (50). WT p53 has been shown to be involved in many biological activities 

including aging (51), DNA damage response (52), autophagy (53), maintenance of genetic 

stability (54), metabolism (55), miRNA transcription (56), and stem cell fate determination (57), 

amongst others. 

p53 regulation.  The tumor suppressor p53 is highly unstable due to its short half-life 

(21).  Under normal circumstances WT p53 is regulated via interaction with mouse double 
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Figure 1. Schematic of p53 protein indicating several mutations within the DNA binding 

domain.  
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Figure 2.  Simplified cartoon for the activation of WT p53 and its major functions.  
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minute 2 (MDM2) (58, 59).  MDM2 binds to p53 at the N-terminus, blocking transcriptional 

activity, and promotes p53 degradation by transporting it from the nucleus to the cytosol where it 

is marked for ubiquitination (58-65).  When cell stress or DNA damage activates p53 it is 

phosphorylated at several sites within the N-terminus which free it from MDM2, abrogating 

ubiquitination, leading to p53 stabilization and accumulation (66, 67). 

Another pathway that regulates p53 is the PI3K/Akt pathway.  Akt has been shown to 

phosphorylate MDM2 which translocates MDM2 to the nucleus where it targets p53 for 

ubiqutination (68-73).  p53 acetylation has also been shown to  increase the stability of the 

protein, leading to increased transcriptional activity due to an open conformation.  This can be 

accomplished through histone acetyltransferases (HATs) such as p300/CBP/PCAF or alternately, 

a decrease in histone deacetylases such as HDAC1 OR SIRT1 (74-78).   

Transcription by WT p53.  WT p53 mediated transactivation occurs when p53 binds to its 

consensus site on the DNA and assembles HATs to contact the RNA polymerase II complex at 

the site of transcription initiation via TBP associated factors (79, 80).  WT p53 was also shown 

to function as a transcriptional repressor in the early 90's when it was shown to inhibit 

transcription from a number of cellular and viral promoters (27, 81).  Repression of transcription 

by p53 can be either direct or indirect.  Direct transcriptional repression could happen by p53 

binding to its consensus site within the regulatory region of the genes it regulates which 

competitively inhibiting other activating transcription factors (82).  p53 has also been shown to 

bind to its site on the regulatory sequences of genes and recruit co-repressors such as mSin3A, 

which inhibits HATs and thereby represses transcription (83). 

p53 mutations.  p53 is the most frequently mutated gene in human cancer with 

approximately 50% of all human cancers carrying a mutation in the p53 protein (84-87).  The 
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majority (73%) of mutations that have been discovered within p53 are considered missense 

mutations that are located within the DNA binding domain (http://p53.iarc.fr/) (88, 89).  In most 

human tumors only the mutant protein is expressed; usually one allele is point mutated and the 

other allele is deleted (85-87, 90, 91).  The IARC database defines "hot spot" mutations as 

mutations that represent at least 20% of all reported p53 mutations, which include mutations at 

codons 175, 245, 248, 273, and 282 (89, 92, 93).  Mutations of p53 are classified as those that 

either affect protein-DNA contact (Class I, i.e. R273H), or alter the protein conformation (Class 

II, i.e. R175H) (94-96). 

Types of p53 mutations.  p53 mutations found in human cancer can be divided into three 

categories: (1) Loss of function mutations. These mutations are responsible for the loss of the 

tumor suppressor function of p53. Almost all of the p53 mutants that have been identified are 

categorized as loss of function mutations. In general, they are defective in sequence-specific 

transactivation of genes containing WT p53 consensus binding sites. (2) Dominant negative 

mutations.  Hetero-oligomeric complex formation between mutant p53 and WT p53 causes 

changes in the properties of WT p53, with the mutant becoming dominant over the WT protein’s 

properties, therefore inactivating its tumor suppressor functions. An example of this is the 

immortalization and transformation of rodent embryo fibroblasts by mutant p53 (9, 97). This is 

thought to cause the increased cancer susceptibility of patients with Li-Fraumeni syndrome as 

well as p53 +/- mice (98). (3) Gain of function (GOF) mutations. In this case, mutant p53 

acquires a dominant oncogenic role that does not depend on complex formation with WT p53. 

An example of this would be expression of mutant p53 in cells where WT p53 is absent which 

show enhanced oncogenic properties compared to p53-null cells.  

http://p53.iarc.fr/
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Gain-of-Function mutant p53.  Mutations that are characterized as GOF mutations not 

only lose the WT tumor suppressor function, but also gain new oncogenic functions.  

Overexpression of mutant p53 in a large number of human cancers not only distinguishes it from 

other tumor suppressors, but also suggests that there is a selective pressure behind its 

accumulation.  Expression of mutant p53 in cells lacking p53 altogether has been shown to 

stimulate growth and carries a worse prognosis in patients (99-103).  This also suggests that 

tumors containing mutant p53 may be more aggressive than p53-null tumors. 

 Gain of function mutant p53 properties.  Biological gain of function activity was 

confirmed when expression of human mutant p53 in the 10(3) murine fibroblast cell line that is 

endogenously p53-null, caused tumor formation in nude mice even though 10(3) cells alone or 

10(3) (vector transfected) cells do not (100).   Expression of mutant p53 has been shown to result 

in oncogenic and proliferative processes such as increased tumorigenicity (100, 104, 105), 

increased growth in soft agar (106), decreased sensitivity to chemotherapeutic drugs (107-110), 

increased DNA synthesis and increased growth rate (111-116), induction of gene amplification 

(117-119), induction of cellular motility, invasive capability and metastasis (120-125), increased 

tumor angiogenesis (126), and promotion of chronic inflammation and associated cancer (127).  

These phenotypes show that mutant p53 has a physiological role that leads to the aggressive 

tumor development and poor prognosis. 

 Mouse models of mutant p53.  Many groups have tried to use mouse models to 

demonstrate the gain of function ability of mutant p53. An increased metastatic potential was 

shown in mice inheriting knock-in p53-R172H (homologous to human p53-R175H)  (128), and 

evidence of gain-of-function associated with genomic instability was explored using transgenic 
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p53-R172H mice (129).  The necessity of stabilization for mutant p53 gain of function activity in 

a mouse system by MDM2 or p16 knock out has also been demonstrated (130).   

Mouse models of pancreatic cancer were used to show increased tumor formation and 

metastases in the presence of mutant p53 versus loss of WT p53 (131, 132).  The degree of GOF 

between mutations was studied using knock-in mice expressing two different hot spot p53 

mutations to investigate the difference in tumor formation and survival. A marked increase in 

tumor formation and decrease in survival in mice expressing R248Q versus G245S was 

ultimately found (133). 

 Transcription by mutant p53.  p53 mutants have been shown by several groups to 

upregulate genes involved in cell growth and oncogenesis through the use of microarray analysis 

in cells overexpressing mutant p53 in a p53-null background (110, 134, 135).  Mutant p53 has 

also been demonstrated to repress expression of a number of genes including inhibitor of 

differentiation (Id2) (136, 137) p21, gadd45, PERP and PTEN (137), among others. Some of 

these genes are involved in pro-apoptotic activities, including CD95 (Fas/ApoI) (138, 139), 

caspase-3 (140) and others (141, 142).  

 Mechanism of mutant p53 transactivation.  There are two possible mechanisms to 

explain transactivation by GOF mutant p53: one that involves its direct binding to DNA and 

transcriptional modulation of gene expression, and one in which mutant p53 does not directly 

come near regulatory sequences on the chromosome. This second category can be subdivided 

further: (1) protein-protein interactions between mutant p53 and other cellular protein(s), such as 

the p53 family members, p63 and p73, DNA machinery proteins, and/or proteins of the apoptotic 

pathway (143, 144); (2) modulation of target genes by mutant p53 (Figure 2), such as activating 
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growth promoting genes, disrupting DNA repair or apoptotic activities or inhibiting growth 

suppressive genes (138, 145-148).  

 As far as the first possible mechanism goes, there is evidence to show that GOF p53 does 

in fact bind to DNA on the chromosome, particularly in G/C rich areas around transcription start 

sites of some genes that are characterized by active chromatin marks (149-153).   

 As mentioned above, regulation of transcription by protein-protein interactions can be 

either via interaction of mutant p53 with its family members p63 and/or p73, or through 

interactions with transcription factors.  The fact that p53 family members p63 and p73 retain the 

capability of interacting with tumor-derived p53 mutants led to the possibility that such 

interactions may inhibit p63/p73 function (147, 154-158). In this model, it is thought that mutant 

p53 may inhibit p63/p73’s DNA binding ability by interacting with the DNA binding domain of 

p63/p73, as model systems predict (155). Some of the GOF activities of mutant p53 assume that 

mutant p53 would block the inhibitory effects of p63/p73 (mostly p63). However, transactivation 

observed by GOF p53 cannot be explained by this model alone, since there are genes that are 

transactivated by p63 as well as GOF p53 (159, 160). There is another model that is evolving 

that involves mostly p63 (and perhaps p73), in which it is assumed that mutant p53 can anchor to 

p63 and become nucleated on promoters with p63/p73 sites. There is evidence for this possibility 

also (161).  

 It was proposed about 20 years ago that mutant p53 may transactivate genes it up-

regulates indirectly through interactions with transcription factors that normally bind to the 

regulatory regions of those target genes (162-164). Various groups have shown interactions of 

p53 (both WT and mutant) with several transcription factors including Sp1, E2F1, Ets1, CREB, 

p300/CREBP, NFY-A (74, 113, 157, 164-168) and others. Although in some cases evidence has 
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been presented that indicates nucleation of mutant p53 on DNA by anchoring onto another 

transcription factor, in most cases there is a lack of clear-cut evidence. Overall it is assumed that 

mutant p53 becomes situated on the promoter-regulatory sequence of a target gene by its 

interaction with a transcription factor, and then through its intact transactivation domain it is able 

to interact with the transcription initiation complex presumably near the transcription start site. It 

is most likely that the transactivation domain interacts with the component of the “mediator” 

complex (79, 169, 170). Also, it is generally assumed that mutant p53-CREBP/p300 interaction 

would facilitate nucleation of these histone acetylases on the chromatin. This results in an 

opening up of the chromatin by acetylation of histones (171, 172). 

 Addiction to GOF mutant p53.  Oncogene addiction describes the situation where 

cancer cells cannot function without the many chromosomal abnormalities that have accrued 

within those cells (173).  Knock-down of a particular protein that a cancer cell is addicted to can 

cause the cell to cease functioning and apoptose, enter a slower growth phase, or growth arrest 

(173).  Many lung cancer cell lines with endogenous expression of different p53 mutants have 

been tested for their addiction to mutant p53 expression; interestingly, the addiction seems to be 

allele specific in some gain of function activities, although all the cell lines characteristically lose 

their enhanced growth rate on elimination of GOF p53 (174).  Understanding the mechanism 

behind the addiction to mutant p53 and its GOF activity is of the utmost importance toward 

improving cancer’s survival rate. 

 Future therapeutic potential.  Reducing mutant p53 expression in various cell lines has 

been shown to be an effective way to diminish cell growth, migration, and tumorigenicity.  

Unfortunately, there is no way at present to inhibit the mutant form of p53 in a patient without 

also targeting WT p53 in healthy cells.  Several therapies have been proposed within the last few 
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years that might prove to be useful.  One such therapy would be through the use of peptides to 

change the conformation of the mutant protein to that of WT (175).  Another would be to restore 

degradation of mutant p53 through the use of HDAC inhibitors (176, 177).  Small molecule 

inhibitors such as siRNA could be also be used to preferentially target the mutant protein while 

leaving WT p53 intact.  Since the goal of cancer research aims to discover what causes a cell to 

become oncogenic in the hope of developing a way to cure the disease, understanding the 

mechanism of gain of function is essential to be able to effectively target mutant p53 for cancer 

therapy.  It may be possible that due to the activation of different pathways a combination 

treatment strategy will have to be used.  
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Hypothesis 

 

 Major hypothesis.  The main goal of pursuing cancer research is to eventually discover a 

cure for the disease.  Unfortunately, there is no method for targeting mutant p53 without also 

causing harm to WT p53 in patient's cells.  The next best approach would be to develop therapies 

against mutant p53 target genes or to inhibit mutant p53-mediated upregulation of those genes.  

Mutant p53 utilizes several target genes to accomplish its gain of function phenotypes of 

increased cell growth, chemoresistance, and survival, but the molecular events that lead to cancer 

with GOF p53's participation, and the mechanisms of how GOF p53’s transactivation is involved 

in oncogenesis are unknown.  Previous research has shown that a group of genes involved in 

oncogenesis are upregulated by mutant p53 with differential requirements of the transactivation 

domain.  Knock-down of mutant p53 in several breast and lung cancer cell lines abolishes GOF 

activity of mutant p53 indicating the potential of targeting mutant p53 for cancer therapy.  ChIP 

sequencing has shown that mutant p53 interacts with promoters of its target genes.  Studies of 

histone acetylation by chromatin immunoprecipitation-sequencing and gene expression show 

that histones at mutant p53 target promoters are acetylated in the presence of mutant p53.  The 

major hypothesis is that targeting GOF p53 in cancer would substantially inhibit tumor growth 

and that the gain-of-function phenotype exhibited by various cancer cells containing mutant p53 

requires genes such as NFκB2, Axl, and epidermal growth factor receptor (EGFR), which are 

required for cancer progression.  The specific aims are designed to better understand the 
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relationship between mutant p53 and these three target genes and to determine a mechanism for 

mutant p53-mediated transactivation. 

 

 Specific aims. 

The following are the specific aims: (1) Determine the role of gain-of-function mutant 

p53 in NFkB2 transactivation, (2) Determine how mutant p53 utilizes receptor tyrosine kinase 

Axl to accomplish its gain-of-function activity, and (3) Determine how up-regulation of 

epidermal growth factor receptor (EGFR) affects addiction of lung cancer cells to gain-of-

function mutant p53. 
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Chapter 1 

DETERMINE THE ROLE OF GAIN-OF-FUNCTION MUTANT P53 IN NFKB2 

TRANSACTIVATION 

The work presented in this chapter has been published in the Archives of Biochemistry and Biophysics 

research journal (Arch Biochem Biophys. 2012 Feb 1;518(1):79-88.).  Some chemoresistance assasys were 

performed by Amber Heck and Amanda High and the motility assays were performed by Andrew Yeudall. 

 

Introduction.   

WT p53 induces apoptosis after DNA damage caused by cytotoxic drugs, and it appears 

that a cell’s p53 mutational status may determine the efficacy of many of these drugs (107, 108, 

178).  It has been shown that mutant p53 expression (in cells devoid of WT p53) can lead to 

decreased sensitivity to drugs such as doxorubicin, etoposide, cisplatin and others (107, 108).  

This can be partially explained by an effect of mutant p53 on p73 and p63 (179, 180).  In a 

previous study, evidence was presented to show that part of this chemoresistance may also arise 

as a result of up-regulation of p52/p100 NF-κB2 by mutant p53 (110).   

The NF-κB family of transcription factors regulates expression of many genes involved 

in growth, differentiation, survival, development and inflammation (181, 182).  In mammals this 

group has five members: Rel A (p65), Rel B, c-Rel, p50/p105 (NF-κB1) and p52/p100 (NF-κB2) 

(183); the factors function primarily as p50/Rel or p52/Rel heterodimers, although they may also 

function as different homo- and heterodimers.  The NF-κB2 protein is synthesized as a p100 

precursor that gets processed to p52 for more functional activities upon activation of the 

pathway.  p52 over-expression can lead to lymphocyte hyperplasia and transformation (184).  
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Constitutive nuclear NF-κB activity has emerged as a hallmark for many human leukemias, 

lymphomas, and several other cancers (185).   

Inhibition of NF-κB sensitizes many tumor cells to death-inducing stimuli, including 

chemotherapeutic agents (185-189).  Thus, transactivation of NF-κB could be a crucial step by 

which mutant p53 induces oncogenic progression.  Activation of NF-κB appears to protect tumor 

cells from apoptosis, through induction of anti-apoptotic genes (190, 191), while p52 over-

expression has been shown to inhibit pro-apoptotic genes as well (192).   

In this study, using a number of cancer cell lines expressing mutant p53, we show that 

GOF activities are dependent on the p53 level.  We also demonstrate that up-regulation of NF-

κB2 in H1299 lung cancer cells expressing mutant p53 is caused by changes in chromatin 

structure on the NF-κB2 promoter, and increasing interaction of crucial transcription factors with 

the promoter.  

 

Materials and Methods. 

 Cell lines.  Five human lung cancer cells lines: H23 (p53-M246I, NSCLC), 

H1048 (p53-R273C, SCLC), H1437 (p53-R267P, NSCLC), KNS-62 (p53-R249S, NSCLC), 

H1299 (p53-null, NSCLC); two human breast cancer cell lines: MDA-MB-468 (p53-R273H) and 

SK-BR-3 (p53-R175H); and a human melanoma cell line MDA-MB-435 (p53-G266E) were 

used in these studies, and grown in media prescribed by ATCC. 

Generation of stable cell lines.  Stable cell lines were generated after transfection of 

p53-null H1299 lung carcinoma cells with mutant p53 expression plasmids (or expression vector 

alone), which contain a neomycin resistance gene as described (104).  Mutant p53 knock down 

cell lines were generated by using lentivirus expressing short hairpin RNA (shRNA) against p53 
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utilizing lentivirus systems (Open Biosystems) following the manufacturer protocol.  Clones 

were isolated using puromycin selection at 1-3 µg/ml.  

Drug sensitivity assay.  Drug sensitivity assays were carried out as described by us 

earlier (112).  In general, cancer cells expressing mutant p53 were plated at 10,000 cells/10cm 

dish and treated with a final concentration of 1-6 uM etoposide (Sigma; St. Louis, MO); 

concentration of the drug used depended on the cell lines used and preliminary earlier 

experiments.  In our hands different cell lines respond differently towards the same concentration 

of etoposide as far as cell death is concerned as measured by colony formation assays.  We have 

done preliminary experiments where we used different concentrations of the drug to determine 

the sensitivity for individual cell lines.  These experiments dictated what concentration we 

ultimately chose for the final experiment the data of which we have presented.  For control, in 

order to avoid over-crowding, we plated 1000 cells/10cm dish treated with DMSO vehicle.  The 

number of cells used per assay varies depending on the cell line, its plating efficiency of the cells 

and sensitivity towards the chemotherapeutic drug under consideration; but for the same cell line 

and experiment we used identical number of cells.   

After drug/DMSO treatment, plates were washed and the media replaced.  The surviving 

cells were allowed to form colonies for 2-3 weeks with periodic changes of media.  Colonies 

were fixed with methanol, stained with methylene blue and counted as described earlier (193).  

The percent survival was calculated by dividing the average number of drug-treated colonies by 

the average number of DMSO-treated colonies and multiplying by 100.  This was done for each 

siRNA treatment, either si-control or si-p53.  All experiments were done in triplicate, and 

repeated multiple times.  The error bars represent standard deviation from the average number of 

colonies counted. 
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Growth assay.  Growth assays were carried out as described by us earlier with slight 

modifications (110, 135).  Cells were plated at 50,000 cells/6cm dish in triplicate for five time 

points and harvested after incubation with trypsin and counted using a Coulter Counter 

(Beckman).  Multiple cell clones were used for each assay.  All experiments were done in 

triplicate, and repeated multiple times.  The error bars represent standard deviation from the 

triplicates. 

PARP cleavage assay.  To determine if p53 knock down results in apoptotic cell death, 

we performed a transient infection with lentivirus expressing p53 shRNA (or GFP shRNA) to 

knock down mutant p53 in H1048 lung cancer cells expressing mutant p53 and assess apoptosis 

without selection.  For the PARP Western blot experiments we used H1048 cells treated with 

etoposide (9 uM) for 48 hours as a positive control for apoptosis.  The assay was carried out 

using an antibody from Cell Signalling. 

Xenograft assay.  Nu/nu mice were used for the tumorigenicity studies.  For all 

injections, 1x107 cells/250µl media were used.  Mice were injected subcutaneously on the flanks 

and tumors allowed to grow to a maximum size of 1cm, measuring periodically as described 

before (17, 18).  Three different clones of H1048 cells with mutant p53 levels reduced by shRNA 

were used in comparison to two GFP shRNA control cell lines to rule out clonal variations. 

siRNA transfection.  Breast or lung cancer cells were nucleofected with siRNA directed 

against a specific or non-specific gene (luciferase) using a nucleofector and a nucleofector kit 

following the manufacturer’s protocol (Amaxa Inc.; Gaithersburg, MD).  Sequences used were: 

Control (C): 5’- CAU GUC AUG UGU CAC AUC ACT T -3’ and 5’-GAG AUG UGA CAC 

AUG ACA UGT T -3’, p53: 5‘-GCA UGA ACC GGA GGC CCA UTT-3‘ and 5‘-AUG GGC 

CUC CGG UUC AUG CTT-3‘ (162) and NF-κB2: 5’-GCC CUG AGU GCC UGG AUC UTT-



18 

 

3’ and 5’-CGG GAC UCA CGG ACC UAG ATT-3’.  Twenty-four hours after nucleofection, 

cells were trypsinized, counted, plated and then exposed to etoposide or DMSO as a control for 

48h and colony formation assays performed as described above.   

Chromatin immunoprecipitation.  Chromatin immunoprecipitations (ChIP) were 

performed as described (135, 194).  To crosslink protein and DNA, cell cultures were incubated 

in 2% formaldehyde for 10min at ambient temperature and then 200mM glycine was added for a 

further 10min.  Cells were washed in cold PBS, scraped and centrifuged. Pellets were 

resuspended in lysis buffer containing 1% protease inhibitors and then sheared by multiple 

passages through a 27.5 gauge needle followed by 25min of sonication on ice such that the 

chromatin was fragmented to 500–2000 bp length. Following centrifugation, the protein content 

of the supernatants was determined and equal amounts used for immunoprecipitation overnight 

at 4ºC with gentle tilting with anti-acetylated histone H3 antibody or IgG as a control.  Immune 

complexes were captured using Protein A-agarose, then washed sequentially once in RIPA 

buffer (150mM NaCl, 50mM Tris pH8, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40), once 

in high salt buffer (500mM NaCl, 50mM Tris pH8, 0.1% SDS, 1% NP-40), twice in LiCl buffer 

(250mM LiCl, 50mM Tris pH8, 0.5% sodium deoxycholate, 1% NP-40) then twice in TE buffer.  

Protein-DNA complexes were eluted from beads in fresh elution buffer (20% SDS, 10mM DTT, 

100mM NaHCO3), crosslinking was reversed overnight at 65ºC in the presence of NaCl, and 

then samples were ethanol-precipitated. Following centrifugation, pellets were resuspended in 

TE buffer and incubated sequentially with 10mg/ml RNase A (30min) and 20mg/ml proteinase K 

(1h).  Samples were phenol/cholorform-extracted, ethanol-precipitated, and the pellets washed in 

70% ethanol, dried and resuspended in sterile water.  Acetyl histone H3 Ab and normal rabbit 

IgG (17-615) were from Millipore; CREB (sc-186), c-Rel (sc-272), NFkB p65 (sc-372), STAT2 
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(sc-476), p53 DO1 (sc-126) and AcH4 K16 (sc-8662) were from Santa Cruz Biotechnology, 

Santa Cruz, CA.  Quantitative PCR (QPCR) was used to quantify precipitated NF-κB2 promoter-

specific DNA segments.  We have performed two sets of QPCR: one with NF-κB2 specific 

primers and another with GAPDH specific primers.  The second set of QPCR (with GAPDH) has 

been done to normalize the NF-κB2 values as GAPDH expression remains unchanged by p53.  

Primers used to analyze ChIP samples were: GAPDH F: 5’-GTC AAC GGA TTT GGT CGT 

ATT-3’ and R: 5’-GAT CTC GCT CCT GGA AGA TGG-3’ and NF-κB2 F: 5’-GAG GGA 

GGA GGG GGC TTA ACC C-3’ and R: 5’-CGG GAG GCC CTC GAC AGT CTA C-3’. 

Luciferase reporter assays.  H1299 cells were transfected in triplicate with 200ng of the 

promoter-luciferase reporter constructs and 1µg of vector only (pCMV Bam) or p53 expression 

plasmid for 48 hr (112).  After transfection, cells were harvested and luciferase activity measured 

using the Promega luciferase assay kit (#E1500, Promega, Madison, WI) according to the 

manufacturer’s instructions.  Cell extracts were normalized to each other based on total protein 

concentration and luciferase activity detected using a Luminometer from Turner Designs.  

Western blotting.  Immunoblottings were carried out as described (110).  NF-κB2 levels 

were detected using an antibody from Upstate Biotechnology (#05-361; Charlottesville, VA).  

Actin levels were detected using the AC-15 antibody (Sigma; St. Louis, MO), p53 was detected 

using the p53 antibody PAb 1801, and Erk2 was detected using ERK2 (sc-154) antibody from 

Santa Cruz Biotechnology.  Westerns blots were developed by the ECL method (GE Healthcare; 

Piscataway, NJ).  SK-BR-3 blot was developed using Li-COR system as described by Sanka et 

al. 2011 (194). 

Migration assays.  Cell migration was carried out using wound-healing (scratch) assays, 

as previously described (195).  Briefly, cells were trypsinized, plated in quadruplicate in 12-well 
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cell culture plates and incubated at 37°C until cells were completely confluent.  At this time, a 

sterile pipette tip was used to scratch across the surface of the plate, removing the complete layer 

of cells within the scratch area.  Following cell removal, each well was washed once with PBS 

and then replaced with growth medium.  Immediately following, the width of the scratch was 

measured at six specific points under a 5x objective using a light microscope and AxioVision 

software (Carl Zeiss Microimaging, Thornwood, NY).  Cells were incubated at 37°C from 20-

60h depending on the cell line under study, at which time the scratch width was measured at the 

same position as at time 0. 

Apoptosis-DNA Ladder Assay.  H1048 cells stably expressing a shRNA against p53 or 

GFP were used for this assay along with a positive control (U937 cells treated with 

camptothecin, provided in the kit from Roche cat. # 11835246001).  Two million cells were used 

for preparation of DNA for each sample.  Cells were lysed with the binding/lysis buffer, and the 

lysate applied to filter tubes which contain glass fiber fleece to bind nucleic acids.  Impurities are 

removed by washing and DNA is eluted off of the columns.  2µg of each DNA sample was run 

in a 1% agarose TBE gel and run at 70V until full separation of the positive control DNA ladder 

was visible. 

 

Experimental Results.   

Reducing p53 levels by RNAi in cancer cells with mutant p53 lowers gain of function 

activities.  If mutant p53 expression in cancer cells induces GOF phenotypes such as increased 

tumorigenicity, growth rate, chemoresistance and motility, we hypothesized that by reducing the 

level of mutant p53 in those cells we should be able to see reduction of these properties.  

Therefore, we wanted to test whether that principle holds using cancer cell lines expressing 
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Figure 3.  Reducing p53 levels in cancer cells with mutant p53 by RNAi lowers 

chemoresistance.  The indicated cells were transfected with control (si-luc or si-scrambled) or 

p53-specific siRNA, treated with appropriate concentrations of etoposide for 48h depending on 

the sensitivity of the cell line to the drug, and colony formation determined (upper panels) as 

described in Materials and methods.  Immunoblots show the efficacy of p53 siRNA treatment.  

Erk2, GAPDH, or actin was used as a loading control (lower panels).  Percent survival is shown 

in the figures with error bars representing standard deviation from the average number of 

colonies.  The percent survival was calculated by dividing the average number of drug-treated 

colonies by the average number of DMSO-treated colonies and multiplying by 100.  Experiments 

were done in triplicate and data shown are representative of multiple independent repeats. 

  



22 

 

mutant p53.  Figure 3 shows the results of colony formation assays performed with cell lines 

MDA-MB-468, MDA-MB-435, H1048 and SK-Br-3, after treatment with etoposide or DMSO.  

Cells were treated with the drug or DMSO for 48h after being nucleofected with siRNA specific 

for p53 or control (scrambled or luciferase) as described in Materials and methods.  The data 

demonstrate that these cell lines become more chemosensitive when the mutant p53 level is 

reduced; thus the p53 mutants in these cells show GOF activity.   

Figure 4 shows growth assay data of cancer lines H23, H1048 and H1437 when their p53 

levels were reduced by lentivirus infection expressing shp53, compared to shGFP controls.  The 

data indicate that reduction of mutant p53 level has a significant effect of reducing the growth 

rate of H23, H1048 and H1437 lung cancer cells.  Thus mutant p53 controls the rate of growth of 

cancer cells expressing GOF mutant p53.  We carried out a PARP cleavage assay (to detect 

apoptosis), which showed no significant differences between the shGFP and shp53 lentivirus 

infected H1048 cells (Figure 4D) suggesting slower proliferation instead of induction of 

apoptosis.  We have also performed a DNA degradation assay using H1048 cells expressing 

shRNA for GFP or p53 to further detect apoptosis.  The data shown in Figure 4E indicated that 

while in the positive control we could see DNA ladder formation, H1048 cells (expressing 

shRNA for GFP or p53) did not show any indication of ladder formation corroborating PARP 

cleavage data.  This conclusively shows that mutant p53 reduction in H1048 cells does not cause 

apoptosis.   

Another GOF phenotype of mutant p53 is an increase in cell motility.  To determine the 

relationship between mutant p53 and motility, we performed migration assays of KNS-62 and 

H1437 lung cancer cells after their p53 levels were knocked down by lentivirus expressing p53 

shRNA, compared to shGFP controls (Figure 5A).  The data indicate that reduction of mutant  
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Figure 4.  p53 knock down causes a decrease in growth rate in cancer cell lines.  A-C. 

Mutant p53 levels were knocked down in three cancer cell lines by lentivirus expressing p53 

shRNA as indicated and their growth rates measured in comparison to the corresponding cell 

lines generated after infecting with lentivirus expressing GFP shRNA as described in Materials 

and methods.  Cells were harvested every other day and cell numbers were determined by 

Coulter Counter.  Error bars represent standard deviation between the average cell counts.  

Experiments were done in triplicate, and data are representative of multiple independent repeats.  

Immunoblots show the efficacy of p53 knock down.  ERK2 was used as a loading control.  D. 

For the H1048 cells, we performed a PARP cleavage assay to check for caspase activation using 

PARP antibody from Cell Signaling.  E. Apoptosis DNA-Ladder assay of H1048 cells stably 

transfected with shp53 (1) or shGFP (2).  U937 cells after treatment with CAM (3) were used as 

a positive control for apoptosis. 
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p53 level decreases cell motility.  Thus, mutant p53 contributes to the increased motility rate of 

cancer cells expressing GOF mutant p53. 

Figure 5B shows a tumorigenicity assay of H1048 lung cancer cells when their p53 levels 

were knocked down by lentivirus expressing p53 shRNA, compared to shGFP controls.  The data 

indicate that inhibiting mutant p53 expression leads to a reduction in tumor growth rate.  Thus 

mutant p53 controls the rate of tumorigenicity of cancer cells expressing GOF mutant p53.  We 

used three shp53 clones and two shGFP clones to rule out clonal variations, and got similar 

results.  Taken together, these studies demonstrate that p53 mutants contribute to multiple GOF 

phenotypes in a wide range of cancer cell lines with endogenous p53 mutations. 

Thus, different cell lines with different endogenous mutant p53 tested show similar loss 

of GOF activities in reducing the level of mutant p53 (Figures 3-5), suggesting the generality of 

the conclusion that mutant p53 levels determine GOF phenotypes. 

Reducing NF-κB2 levels in cancer cells with mutant p53 by RNAi lowers GOF 

activity of mutant p53-expressing cells.  We proposed earlier that mutant p53-induced GOF 

activity (such as chemoresistance) in cancer cells may be due to induction of NF-κB2 by mutant 

p53 (110).  If that is the case then reducing the level of NF-κB2 in cancer cell lines with mutant 

p53 should reduce chemoresistance.  Since reduction of mutant p53 levels reduces GOF 

activities in a number of cancer cell lines, we tested the idea whether a similar effect can be seen 

by reducing the level of NF-κB2.  RNAi directed against NF-κB2 using MDA-MB-435 

melanoma cells harboring a p53-G266E substitution (one of the cell lines tested in p53 knock 

down experiments above) was used for this.  The data presented in Figure 6A and 6C show that 

RNAi directed against NF-κB2 reduces the level of expression of the corresponding gene, and 

reduces resistance to the chemotherapeutic drug etoposide substantially versus DMSO.   
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Figure 5.  p53 knock down in cancer cell lines with naturally occurring p53 mutations 

causes a decrease in rate of motility and tumor growth. A. The indicated cell lines were 

cultured to confluence, a scratch made in the monolayer, and the distance measured as described 

in Methods. p>0.001 for both.  Two mutant p53 knocked down clones (confirmed by Western 

blot, as indicated) were used for each cell line with the average migration between the clones 

shown.  Error bars represent standard deviation from the mean migration rate. B. Mutant p53 

levels were knocked down in the lung cancer cell line H1048 (p53-R273C) by lentivirus 

expressing p53 shRNA or GFP shRNA (used as our control cell line) as indicated and its 

tumorigenic ability measured after subcutaneous injection into nude mice.  For all injections, 

1x107 cells/250µl media were used.  Mice were injected subcutaneously and tumors allowed to 

grow to a maximum size of 1cm, measuring periodically as described before (17, 18).  Three 

different clones of H1048 cells with mutant p53 levels knocked down by shRNA were used in 

comparison to two GFP shRNA control cell lines to eliminate clonal variations.  Average tumor 

size was calculated by taking the average of the width and length of each tumor, then taking the 

average of all tumors from the particular cell line.  
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Furthermore, cell motility –another GOF p53 phenotype – is significantly inhibited by NF-κB2 

RNAi (Figure 6B).  p53 RNAi also inhibited cell migration (not shown), consistent with results 

with NF-κB2 RNAi.  Thus, NF-κB2 at least partially regulates two mutant p53 GOF phenotypes 

in these cells, suggesting the possibility that mutant p53 may induce its GOF activity via NF-κB2 

up-regulation, an observation we reached by expressing mutant p53 in H1299 lung carcinoma 

cell lines that are normally p53 null (196).  Figures 6D and 6E show reduced resistance to the 

chemotherapeutic drug paclitaxel after treatment with RNAi against NF-κB2 in H1299 cells 

expressing either an empty vector (HC5) or the p53 mutant R273H, and Western analysis 

showing decreased NF-κB2 protein expression.  Our data obtained by p53 knock down 

experiments, using cancer cell lines with naturally occurring mutant p53, and ectopic expression 

of mutant p53, in p53 null lung cancer cells, are similar, and interchangeable in this respect.  

Having determined that, we decided to determine the mechanism of up-regulation of NF-κB2 by 

mutant p53 using H1299 cell systems where mutant p53 was expressed. 

Promoter deletion analysis by transient transcription assays does not indicate a 

mutant p53 response element.  To test whether we could detect a mutant p53 response element 

on the NF-κB2 promoter, we generated a number of deletion mutants of the NF-κB2 promoter 

(110) by PCR and subcloned them into the pGL3-basic plasmid vector (Promega).  We tested 

their promoter function by transient transfection in H1299 p53-null lung carcinoma cells as 

described (110).  After harvesting the cells at 48 h post-transfection, we prepared extracts and 

determined the luciferase activity as described (110).  Data presented in Figure 7 show that none 

of the deletion mutants eliminated the transactivation capacity of mutant p53–R273H.  Some of 

the deletions resulted in higher transactivation by mutant p53 suggesting that some sequences of  
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Figure 6.  Reduction of NF-κB2 causes reduction of drug sensitivity, growth rate and rate 

of and motility.  A.  Chemoresistance of MDA-MB-435 cells depends on the NF-κB2 level.  

The indicated cells were transfected with control or NF-κB2-specific siRNA, treated with 

etoposide, and colony formation determined as described in Materials and methods (upper 

panels).  Percent survival is shown in the figure with error bars representing standard deviation 

from the average number of colonies from triplicate samples.  B.  Motility of MDA-MB-435 

cells depends on the NF-κB2 level.  MDA-MB-435 cells were transfected as above. 48h later, 

standard Transwell migration assays were carried out, and migrating cells stained and counted as 

described (197).  Bar = +/- 1 SD from the mean of 18 samples.  C. NF-κB2 and Erk2 levels were 

determined by immunoblotting for MDA-MB-435 cells used in A and B.  D.  H1299 cells 

expressing an empty vector (HC5) or p53-R273H were treated with control (si-scrambled) or 

RNAi against NF-κB2, treated with paclitaxel, and colony formation determined as described in 

Materials and methods.  E.  Western analysis of NF-κB2 knock down by siRNA in H1299 cells 

expressing an empty vector or p53-R273H.  
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Figure 7.  Promoter deletion analysis by transient transcription analysis does not indicate a 

mutant p53 response element.  A number of NF-κB2 (110) promoter deletion mutants were 

generated by PCR, and their promoter activity was measured by transient transcriptional analysis 

using H1299 p53-null lung cancer cell lines transfected with empty vector as control, or p53-

R273H (left panel) or p53-D281G (right panel).  Forty-eight hours after transfection, cells were 

harvested and luciferase assays were performed using equal amounts of protein.  The figure 

shows a representative example of multiple experiments.  Relative fold of activation in luciferase 

activity has been plotted compared to that obtained by vector alone.  Error bars indicate 

deviations in luciferase readings relative to vector transfected cells.  All experiments were done 

in triplicate.   
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the promoter may act negatively on transactivation; the reason for that needs further 

investigation.  We also tested another mutant, p53-D281G, with the full-length and the largest 

promoter deletion mutant.  Both were transactivated, showing that this sequence independence 

has generality as far as mutant p53 is concerned.  Thus, transient transcriptional analysis failed to 

provide evidence for a mutant p53 response element on the NF-κB2 promoter.  These data are in 

agreement with those published by us earlier (198) where EGFR promoter deletion did not result 

in identification of a mutant p53 response element either.  Therefore, it is possible that the gene 

specificity is attained at the chromatin level. 

ChIP analysis indicates mutant p53 induced histone acetylation on the NF-κB2 

promoter.  Because mutant p53 can demonstrate GOF activity in different cells, and presumably 

one of its important targets is NF-κB2, we used H1299 cells in which mutant p53-R273H is 

expressed as a model to explore the mechanism of up-regulation.  We wanted to test whether 

mutant p53 alters the chromatin structure on the endogenous NF-κB2 promoter in H1299 cells.  

Therefore, we performed ChIP assays using H1299 cells stably transfected with empty vector 

alone (HC5) or H1299 cells expressing mutant p53-R273H.  The data shown in Figure 8A 

demonstrate that mutant p53 induces formation of acetylated histone H4 (but not acetylated 

histone H3) on the NF-κB2 promoter in H1299 cells expressing mutant p53–R273H, suggesting 

that the up-regulation of NF-κB2 expression by mutant p53 seen in these cells may occur via a 

transactivation role of mutant p53 executed at the NF-κB2 promoter through chromatin 

modification. 

Mutant p53 induces binding of CBP and STAT2 on the NF-κB2 promoter.  To 

extend our studies, we used ChIP analysis to determine whether there is preferential 

enhancement of interaction of one or more transcription factor(s) on the NF-κB2 promoter in 
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H1299 cells stably transfected with vector alone (HC5) or expressing mutant p53-R273H.  The 

transcription factors CREB, NF-κB p65, STAT2, CBP, c-Rel, and p53 were chosen for ChIP 

analysis based on transcription factor binding sites located on the NF-κB2 promoter as well as 

known interactions.  The data presented in Figure 8B show that STAT2 nucleation, as 

determined by ChIP assays, is significantly higher in mutant p53 expressing cells.  Thus, our 

results demonstrate that mutant p53 induces STAT2 interaction on the NF-κB2 promoter, and 

suggests a STAT2-mutant p53 mechanism.  Similarly, when tested by ChIP analysis, CBP, a 

histone acetyltransferase, is nucleated more on the NF-κB2 promoter in the presence of mutant 

p53 (Figure 8C).  This suggests that CBP nucleation enhances histone acetylation on the 

promoter.   

Figure 8 also shows no enhanced nucleation of mutant p53 on the NF-κB2 promoter as 

we did not observe any additional promoter fragments immunoprecipitated by p53 antibody DO1 

or a p53 antibody recognizing the total protein (Figures 8C and 8D).  This suggests that under the 

conditions of our assay, including cross-linking, we were unable to detect mutant p53 directly on 

the promoter.  It is possible that by changing conditions we may be able to detect mutant p53 on 

the promoter if it is nucleated via protein-protein interactions. 

 

Chapter Summary.   

Since a previous report suggested part of mutant p53’s chemoresistance was due in part 

to up-regulation of NF-κB2, this chapter investigated the role NF-κB2 plays in mutant p53 

mediated gain of function.  We report that p53-mediated NF-κB2 up-regulation significantly 

contributes to the aggressive oncogenic behavior of cancer cells.  Lowering the level of mutant 

p53 in a number of cancer cell lines resulted in a loss of GOF phenotypes directly implicating  
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Figure 8.  ChIP analysis indicates acetylation of histones on the NF-κB2 promoter.  ChIP 

analysis was performed on H1299 cells stably transfected with vector (HC5) or mutant p53-

R273H (R273H) to test whether histones are preferentially acetylated on the NF-κB2 promoter, 

and if different transcription factors and mutant p53 are nucleated on the promoter.  A. ChIP 

performed with antibodies directed against acetylated histone H3 (acetylated at K9 and K14) and 

H4 (acetylated at K16).  B. ChIP performed with antibodies directed against CREB, NF-κB p65, 

and STAT.  C.  ChIP performed with antibodies directed against CBP, cRel and p53 DO1.  D.  

ChIP performed with an antibody against the total p53 protein  
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p53 mutants in the process.  RNAi against NF-κB2 in naturally occurring cancer cell lines also 

lowered GOF activities.  In H1299 cells expressing mutant p53, chromatin immunoprecipitation 

 (ChIP) assays indicated that mutant p53 induces histone acetylation at specific sites on the 

regulatory regions of its target genes.  ChIP assays using antibodies against transcription factors 

putatively capable of interacting with the NF-κB2 promoter show increased interaction of CBP 

and STAT2 in the presence of mutant p53.   Thus, we propose that in H1299 cells, mutant p53 

elevates expression of genes capable of enhancing cell proliferation, motility, and tumorigenicity 

by inducing acetylation of histones via recruitment of CBP and STAT2 on the promoters causing 

CBP-mediated histone acetylation. 
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Chapter 2 

DETERMINE HOW MUTANT P53 UTILIZES RECEPTOR TYROSINE KINASE 

AXL TO ACCOMPLISH ITS GAIN-OF-FUNCTION ACTIVITY 

The work presented in this chapter has been published in the Genes and Cancer research journal (Genes 

Cancer. 2012 Jul;3(7-8):491-502.).  Microarray data was analyzed by Brad Windle, Western analysis of H1299 cells 

expressing different p53 mutants was performed by Shilpa Singh, the H1793 growth assay was performed by Becky 

Frum, and the motility assays were performed by Andrew Yeudall. 

 

Introduction. 

 We and others have identified several genes important for their involvement in growth 

and oncogenesis that are regulated at the level of expression by GOF mutant p53 (110, 135, 178, 

199-202). Receptor tyrosine kinases (RTKs) play an important role in growth and differentiation 

of normal cells, and represent a major class of protooncogenes, involved in the progression and 

metastasis of cancer (203).  Axl/Mer/Sky represents a comparatively recent class of the RTK 

family that induces extracellular signals inside cells (204).  Axl is a RTK with transforming 

activity (205, 206), and may be used as a target for therapy (207).     

The antiapoptotic, cell adhesion, and chemotactic activities of Axl have been ascribed to 

an increased expression of Axl and its increased interaction with Gas6 (208).  The invasiveness 

and metastasis in various cancer cell types is associated with an elevated level of Axl expression, 

which is also correlated with poor prognosis of patients with various cancers such as: myeloid 

leukemia (205, 209), metastatic lung cancer (210, 211), breast cancer (212), and gastric cancer 

(213).  Use of RNAi techniques and dominant-negative receptor mutants of Axl have resulted in 

growth suppression of cancer cells in a xenograft model (214, 215).     
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Here, we show that the receptor protein tyrosine kinase Axl is up-regulated by p53 

mutants in H1299 lung cancer cells expressing mutants p53-R175H, -R273H, and –D281G.  

Knock-down of Axl by Axl-specific RNAi caused reduction of GOF activities in lung cancer 

cells expressing endogenous mutant p53 suggesting that mutant p53 may induce Axl as one of 

the target genes to execute its GOF activities.   

 

Materials and Methods. 

 Cell lines.  Four human lung cancer cell lines: H1299 (p53-null, NSCLC), H1048 

(p53-R273C, SCLC), H1437 (p53-R267P, NSCLC), ABC-1 (p53-P278S, Adenocarcinoma), and 

H1793 (p53-R273H, NSCLC) were used in these studies.  H1299, H1048, and H1437 were 

grown in RPMI media supplemented with 10% fetal bovine serum while H1793 was grown in 

DMEM supplemented with 5% fetal bovine serum. 

Generation of H1299 cells expressing GOF p53 mutants.  To determine whether 

expression of mutant p53 leads to GOF phenotypes in human cells, we have used the H1299 

(p53-null) lung cancer cell line and generated cells expressing p53 mutants -R175H, -R273H and 

-D281G (216).  These GOF p53 mutants are commonly found in human cancer 

[http://www.iarc.fr/p53/Index.html].   

Generation of mutant p53 knock down cell lines. The independent cell lines H1048, 

ABC-1, and H1437 were used to make stable p53 knock down cell lines.  They were generated 

by using lentivirus expressing short hairpin RNA (shRNA) against p53 utilizing lentivirus 

systems (Open Biosystems) following the manufacturer’s protocol.  Clones were isolated using 

puromycin selection at 1 µg/ml.  

http://www.iarc.fr/p53/Index.html
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Expression analysis.  Microarray analysis was carried out as described previously (110, 

134) after isolating RNA from H1299 cells expressing p53 mutants or stably transfected with 

vector alone.  We analyzed expression of different genes using Affymetrix U95Av2 arrays as 

described earlier (110, 134).  QPCR analysis of RNA levels were also done as described before 

(110, 134). 

Tumor RNA analysis and p53 sequencing.  Tumor RNAs were provided by the Tissue 

and Data Acquisition and Anaylsis Core repository under an Institutional Review Board 

approved protocol; cDNAs were prepared using the Superscript III cDNA synthesis kit 

(Invitrogen) and QPCR performed using primers specific for Axl (F: 5’-TGT TTG GTG TTT 

CTG GGA CA-3’ and R: 5’-TCG CAG GAG AAA GAG GAT GT-3’).  The degree of 

expression was quantitated using a relative standard curve and normalized to GAPDH (F: 5’-

GTC AAC GGA TTT GGT CGT ATT-3’ and R: 5’-GAT CTC GCT CCT GGA AGA TGG-3’) 

corresponding to the cDNA batch.  The p53 gene is sequenced following the method described 

by Sjogren et al. (217).  Whenever a mutation is found, a new PCR reaction is performed and 

fragment re-sequenced to verify sequence information obtained previously.  The AXL levels in 

the two populations of tumors, one with WT p53 and one with mutant p53, were compared and 

found to be different with a statistically significant difference based on the student t test. 

siRNA transfection.  Lung cancer cells were transfected with Lipofectamine 2000 

(Invitrogen) two times (once every 24 hours) with RNAi directed against a specific or non-

specific gene (luciferase) following the manufacture’s protocol.  Sequences used were: Control 

(C): 5’- CAU GUC AUG UGU CAC AUC ACT T -3’ and 5’-GAG AUG UGA CAC AUG ACA 

UGT T -3’ and Axl siRNA, was purchased from Santa Cruz Biotechnology.  Forty eight hours 
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after transfection, cells were trypsinized, counted, plated and growth or migration assays were 

carried out as described below. 

Growth assay.  Growth assays were carried out as described by us earlier with slight 

modifications (110, 135).  Cells were plated at 50,000 cells/6cm dish in triplicate for five time 

points and harvested after incubation with trypsin and counted using a Coulter Counter 

(Beckman).  Each set of triplicate plates was counted three times, giving a total of nine counts 

per siRNA treatment per day.  To determine the number of cell doublings, the ratio of Axl and 

control (Scram) siRNA treated cells was calculated to be the number of cells counted on day two 

divided by day one, and so on for the five time points.  The ratios throughout the assay were 

averaged and plotted, and the standard deviation was calculated to be the difference in ratios 

from the triplicate counts per time point.  All experiments were done in triplicate, and repeated 

multiple times.  The cells lines were analyzed for growth rate using replicates based on 

exponential growth.  The statistical difference between growth rates was determined by the 

student t test. 

Axl promoter cloning and transient promoter assays.  Axl promoter and its deletion 

mutants were cloned in pGL3-basic vector using sequence information available in NCBI.  The 

primers used to generate the Axl promoter deletions were: 0-959: 5’-CCG GGG TAC CCG CAG 

GCA GCA GAT CTG CAA TAA C-3’ and 0-200: 5’-CCG GTT ACC GGG AGT GAG GGA 

AGG AGG CAG GGG TGC TGA-3’.  Transient transfection was performed with 200ng of 

promoter and 1ug of expression plasmid using Lipofectamine 2000 (Invitrogen) following the 

manufacturer’s instructions.  Luciferase analysis was carried out using the luciferase assay 

system (E1500) and instructions from Promega.  Both transfection and luciferase assay were as 

described previously in triplicate (218). 
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Chromatin immunoprecipitation.  Chromatin immunoprecipitations were performed as 

described (134).  To crosslink protein and DNA, cell cultures were incubated in 2% 

formaldehyde for 10min at 37°C and then 200mM glycine was added for a further 10min.  Cells 

were washed in cold phosphate buffered saline (PBS), scraped and centrifuged.  Pellets were 

resuspended in lysis buffer containing 1% protease inhibitors and then sheared by six passages 

through a 27.5 gauge needle followed by 25min of sonication on ice such that the chromatin is 

fragmented to 500–2000bp in length. Following centrifugation, the protein content of the 

supernatants was determined and equal amounts used for immunoprecipitation overnight at 4ºC 

with gentle tilting with protein-specific antibodies or IgG as a control. Immune complexes were 

captured using Protein A-agarose, then washed sequentially in RIPA buffer (150mM NaCl, 

50mM Tris pH8, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40), high salt buffer (500mM 

NaCl, 50mM Tris pH8, 0.1% SDS, 1% NP-40), twice in LiCl buffer (250mM LiCl, 50mM Tris 

pH8, 0.5% sodium deoxycholate, 1% NP-40) then twice in TE buffer.  Protein was eluted from 

beads in fresh elution buffer (20% SDS, 10mM DTT, 100mM NaHCO3), crosslinking reversed 

overnight at 65ºC in the presence of NaCl, and then samples were ethanol-precipitated.  

Following centrifugation, pellets were resuspended in TE buffer and incubated sequentially with 

10mg/ml RNase A (30min) and 20mg/ml proteinase K (1h).  Samples were phenol-extracted, 

ethanol-precipitated, and the pellets washed in 70% ethanol, dried and resuspended in sterile 

water.  Acetyl histone H3 (17-615), acetyl histone H4 K8 (07-328), and normal rabbit IgG were 

from Millipore.  p300 (sc-585), CREB (sc-186), E2F1 (sc-22820), p53 DO1 (sc-126), and p53 

FL393 (sc-6243) were obtained from Santa Cruz. PCR primers used to analyze ChIP samples 

were: Axl (5kb) F: 5’-CCT TGA CTG AGG CTT TAC CA-3’ and R: 5’-TTT TCA AAG TGC 

ACC GAC AT-3’; and Axl F: 5’-GAT GCA GCA GTT CCC AAA AT-3’ and R: 5’-TAT CAT 
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CCC TTC TCC ATC GC-3’.  The Axl promoter scanning primers are: Axl 2200-2000bp are the 

same primers indicated above, 1-400bp F: 5’-CCC CGT CTC TAC CAA AAA TA-3’ and R: 5’-

GGC CCT TCA CCG TTG T-3’; 401-800bp F: 5’-GAA GGG GCA GGT AGA AGA GA-3’ 

and R: 5’-AGC CCT GAT CAT TCC ACT G-3’; 801-1200bp F: 5’-AGC GAT CCT CCC ACC 

TT-3’ and R: 5’-ATC TTC AGA CAC GCC AAA AC-3’; 1201-1600bp F: 5’-TCT GCG TGT 

CTC TGC TTG TC-3’ and R: 5’-TCT GGG CTC TGT GTC TGG TA-3’; and 1601-2000bp F: 

5’-GGT CCC CTT CCC CCT CCT CA-3’ and R: 5’-CCC AGC AGC CGC CTT CTC A-3’.  

Axl (5kb) corresponds to a sequence 5 kb upstream of the Axl gene without any regulatory 

sequences in it.  This was used to normalize the QPCR values.  The percent p53 binding was 

calculated by determining the fold activation of the Axl promoter by mutant p53 (versus control) 

for each region of the promoter.  Five sets of ChIP experiments were averaged and the percent 

binding was calculated by setting the Axl ChIP primers (2200-2000bp) as equal to 100%.  The 

standard deviation was calculated between the five sets of experiments and plotted. 

Western blotting.  Immunoblottings were carried out as described (110).  Axl levels 

were detected using an antibody from Abnova (H00000558-M01).  Erk2 (sc-154) and β-tubulin 

(sc-5274) levels were detected by antibodies from Santa Cruz.  p53 was detected using the p53 

antibody PAb 1801 (93).  Westerns blots were developed by the ECL method (GE Healthcare; 

Piscataway, NJ). 

Migration assays.  Cell migration was carried out using wound-healing (scratch) assays, 

as previously described (219).  Briefly, cells were trypsinized, plated in quadruplicate in 12-well 

cell culture plates and incubated at 37°C until cells were completely confluent.  At this time, a 

sterile pipette tip was used to scratch across the surface of the plate, removing the complete layer 

of cells within the scratch area.  Following cell removal, each well was washed once with PBS 
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and then replaced with growth medium.  Immediately following, the width of the scratch was 

measured at six specific points under a 5x objective using a light microscope and AxioVision 

software (Carl Zeiss Microimaging, Thornwood, NY). Cells were incubated at 37°C from 20-60h 

depending on the cell line under study, at which time the scratch width was measured at the same 

position as at time 0. 

 

Experimental Results. 

 The transactivation-deficient mutant p53-D281G (L22Q/W23S) is effective in 

up-regulating many mutant p53 target genes.  We focused our attention on potential 

mechanisms of GOF mutant p53 by studying the role for p53’s transactivation domain in gene 

regulation.  We determined whether the triple amino acid substitution mutant p53-D281G 

(L22Q/W23S) has retained the ability to up-regulate expression of mutant p53 target genes 

identified by our expression analysis (110).  We compared gene expression profiles of three 

H1299 cell lines stably transfected with vector alone (HC5), stably expressing p53 mutant –

D281G, and the transactivation domain mutant -D281G (L22Q/W23S) using Affymetrix 

GeneChip arrays.  The data shown in Table 1 shows a list of examples genes induced by p53 

D281G and not affected by the 22Q, 23S mutations (p-value = 3x10-24).  This indicates that a 

substantial part of the mutant p53 gene expression signature is independent of the transactivation 

domain at codons 22 and 23.   

Interaction between mutant p53 and p63 has been demonstrated and shown to be 

independent of the transactivation domain mutants (220).  The mutant p53 induced genes we 

identified that are not dependent on the transactivation domain might involve a mutant p53-p63 

interaction.  We analyzed mutant p53 induced genes for over-representation of genes that contain  
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putative p63 binding sites.  The Axl gene was selected for further study based on the presence of 

a p63 binding site, it’s known role in oncogenesis (205, 211, 214, 221, 222), and it’s potential 

role in mutant p53 GOF activities.  We first verified the microarray data by performing RT- 

QPCR quantitation of the Axl mRNA, confirming induction by mutant p53.  Data presented in 

Figure 9A show presence of more Axl RNA in the H1299 cells expressing mutant p53 compared 

to vector transfected cells (compare lanes HC5 with R175H, R273H, D281G and D281G 

(L22Q/W23S)).  We also tested the Axl expression at the protein level by performing 

immunoblot analysis as described in Materials and Methods.  Protein expression analysis shown 

in Figure 9B demonstrates that cell lines expressing mutant p53 express higher levels of Axl 

protein compared to the vector transfected cells.  This induction of Axl protein expression by 

mutant p53 remains when the transactivation domain mutations at codons 22 and 23 are present, 

confirming our RNA expression analysis.  Similar data was also observed when we compared 

Axl levels in H1299 cells expressing p53-R273H and -R273H with additional mutations at 

codons 22 and 23 (Figures 9C and 9D). 

We investigated if the converse was true, that reduced expression of endogenous mutant 

p53 would result in reduced expression of Axl.  We studied the Axl RNA level in two lung 

cancer cell lines with endogenous mutant p53, H1437 (p53-R267P) and H1048 (p53-R273C), 

after knock-down of the mutant p53 levels in these lines by generating stable cell clones using 

lentivirus vectors expressing p53 shRNA with comparison to control cells expressing green 

fluorescence protein (GFP) shRNA.  Data depicted in Figure 10A shows that reduction of mutant 

p53 levels is accompanied by a reduction of Axl levels suggesting, along with the mutant p53 

induction studies, that mutant p53 regulates Axl expression.    
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Figure 9.  H1299 cells expressing gain of function mutant p53 up-regulate protein receptor 

tyrosine kinase Axl.  A and C. Reverse transcriptase (RT) QPCR analysis of Axl levels in 

H1299 cells stably transfected with vector or mutant p53 expression plasmids.  QPCR was 

performed for GAPDH and was used to normalize with Axl values.  B and D. Western blot 

analysis of Axl levels in H1299 cells stably transfected with vector or mutant p53 expression 

plasmids.  Data shows mutant p53 induced Axl expression both at RNA and protein levels in 

H1299 cells, and this induction is not disturbed by mutations at amino acids 22 and 23.  Error 

bars showing standard deviations are indicated. 
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Lung tumors cells expressing mutant p53 show higher Axl levels.  Since we observed 

that mutant p53 up-regulates Axl expression in lung cancer cell lines studied, we investigated 

whether this is also valid in human lung tumors expressing mutant p53.  Figure 10B depicts the 

Axl level of different human lung tumors collected in Virginia Commonwealth University cancer 

tissue repository.  On average, there was significantly more Axl expression in samples with 

mutant p53 versus samples with WT p53 (average 5.63-fold, p-value 0.013) corroborating our 

cell culture data that mutant p53 upregulates Axl expression.    

Axl up-regulation mediates GOF activities of mutant p53.  Axl is known to be 

involved in promoting growth and movement of cells (208, 210, 214, 215, 222-224).  Therefore, 

we tested whether mutant p53-induced enhancement of growth and motility has any relationship 

with the fact that mutant p53 up-regulates expression of Axl.  We used the lung cancer cell line 

H1048 expressing a mutant p53 (-R273C) for testing its growth rate and motility as described in 

Materials and Methods.  To test whether the level of Axl affects the properties affected by GOF 

of mutant p53 expression, we transfected this cell line with siRNA against Axl (or control 

scrambled siRNA), and performed the growth and motility assays.  Figure 11A shows a 

representative example of the growth effect showing a reduction of growth rate (shown as cell 

doubling/day) when the Axl level is reduced (p-value 0.0065).  This suggests a correlation 

between mutant p53-mediated up-regulation of Axl level and the growth rate enhancement 

induced by mutant p53.  We also tested the relationship between cell motility rate and Axl level 

in these cells.  As shown in Figure 11B there is a significant reduction in cell mobility rate as 
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Figure 10.  Lung tumor cells expressing p53 mutations show higher Axl levels.  A. RT-

QPCR of Axl mRNA levels in lung cancer cell lines H1437 and H1048.  Lung cancer cell lines 

H1048 and H1437 were infected with control shRNA or p53 shRNA lentivirus to generate 

mutant p53 knock down cell lines.  Western blot analysis was performed on isolated clones to 

identify p53 knock down clones.  Erk2 was used as a loading control.  These clones were further 

analyzed for Axl mRNA expression by QPCR using primers specific for the Axl gene and 

normalized by GAPDH.  The data indicates lowering of mutant p53 levels lowers Axl levels.  B. 

RT-QPCR of Axl levels in lung tumors.  cDNA was prepared from human lung tumor RNAs 

(labeled VLU to protect patient identity) and a normal tissue sample (labeled 2N).  The degree of 

expression was quantitated using a relative standard curve and normalized to GAPDH 

corresponding to the cDNA batch.   
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measured by scratch assays when the Axl level is reduced by the Axl siRNA even though the 

mutant p53 level remains unchanged.  Similar data have been obtained from H1793 cell as well 

(Figures 11C, 11D).  Thus, mutant p53 may induce some of its GOF activities via induction of 

Axl.   

Mutant p53 up-regulates the Axl promoter.  We have evidence that mutant p53 

expressing cells have higher Axl levels both at RNA and protein levels (see above); therefore, we 

determined whether the upstream sequences of the human Axl gene can act as a faithful 

regulatory promoter in a transient promoter assay.  We have cloned a 2000 bp long fragment 

encompassing the upstream sequences of the Axl into the pGL3 basic luciferase reporter vector 

(Promega), and tested its promoter activity by transient transfection analysis.  We transfected 

p53-null human lung cancer H1299 cells with Axl-pGL3 basic in the presence and absence of 

different p53 expression plasmids and after 48 hours performed luciferase assays as described 

(110, 225).  The data shown in Figure 4 indicate that mutant p53 up-regulates the Axl upstream 

sequences as expected.  The Axl promoter sequence contains a putative p53/p63 binding site on 

the Axl upstream sequences raising the possibility of its involvement in mutant p53-mediated 

transactivation since some studies of GOF functions have implicated the p63-mutant p53 

interactions (179, 180, 226, 227).  Data shown in Figure 12 (and Figure 13, see below) also show 

that p63 (full length p63γ) and WT p53 could transactivate the Axl promoter depending on the 

presence of the p53/563 binding site.   

Mutant p53 up-regulates the Axl promoter in H1299 cells independent of the p63 

binding site.  We generated two Axl promoter deletion mutants with and without the p63-

binding site and tested whether transactivation by mutant p53 requires the p63-binding site.  The 

data presented in Figure 13 shows that p63-mediated transactivation is lost by a deletion of the  
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Figure 11.  Axl up-regulation by mutant p53 has physiological significance.  A and C.  
Growth rate of H1048 and H1793 lung cancer cells depends on the Axl level.  H1048 and H1793 

cells were transfected with control or Axl-specific siRNA, plated in equal numbers, and 

harvested each day for five days to determine the rate of doubling. In parallel, p53, Axl and Erk2 

levels were determined by immunoblotting (right panel).  B and D. Motility of H1048 and 

H1793 cells depends on the Axl level.  H1048 and H1793 cells were transfected as above. 48h 

later, standard scratch assays were carried out as described in Materials and Methods, and 

migrating cells stained and counted. Bar = +/- 1 SD.   
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Figure 12.  Mutant p53 up-regulates the Axl promoter in H1299 cells.  H1299 cells were 

transfected with 200ng of pGL3-basic vector containing the Axl promoter upstream of the 

luciferase reporter gene, and 1ug of the indicated p53 expression plasmid.  Cells lysates were 

prepared 48hr after transfection, and luciferase activity was determined.  Data is shown as fold 

activation over control.  Experiments were done in triplicate.   
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Figure 13.  Mutant p53 up-regulates the Axl promoter in H1299 cells independent of the 

p63 site.  Two deletion mutants of the Axl promoter were constructed and tested for promoter 

activity in H1299 cells in the presence and absence of mutant p53 and p63 to determine if the 

putative p63-binding site is required for mutant p53-mediated transactivation.  The data indicates 

that mutant p53 does not require the p63 binding site to transactivate the Axl promoter.  H1299 

cells were also co-transfected with pGL3 basic or the larger Axl deletion mutant and empty 

vector or mutant p53 to ensure the transactivation capabilty is not lost.  Data is shown as fold 

activation over control.  Experiments were performed in triplicate.   
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p63-binding site; however, mutant p53-induced transactivation remained undisturbed even in the 

absence of the p63-binding site while the negative control (pGL3-basic alone) did not get 

activated at all.  This suggests that GOF mutant p53 transactivates the Axl promoter independent 

of the p63 binding sites in transient transfection assays.   

Mutant p53 induces acetylation of histones on the Axl promoter.  We used H1299 

cells expressing mutant p53-R273H as a model to study the mechanism of up-regulation of Axl 

expression by mutant p53.  We performed ChIP assays using H1299 cells stably transfected with 

empty vector alone or H1299 cells expressing mutant p53-R273H using an antibody directed 

against acetylated histone to assay for the extent of histone modification as a measure of 

transcriptional activity at this gene.  The data shown in Figure 14A and 14B demonstrate that 

mutant p53 induces enhanced formation of acetylated histone H3 and H4 on the Axl promoter in 

H1299 cells expressing mutant p53-R273H, suggesting that the up-regulation of Axl expression 

by mutant p53 seen in these cells may occur via a transactivation role of mutant p53 through 

chromatin modification at the Axl promoter location.   

Knock-down of mutant p53 reduces histone acetylation on the Axl promoter.  Since 

the overexpression of mutant p53 induces the acetylation of histones on the Axl promoter, we 

wanted to see if the reduction of mutant p53 would produce the opposite effect.  We used two 

lung cancer cell lines, ABC-1 (p53-P278S) and H1048 (p53-R273C) after knock-down of their 

endogenous mutant p53 using a shRNA lentivirus directed against p53 or control GFP.  The data 

shown in Figures 14C and 14D show a decrease of histone acetylation upon mutant p53 

reduction compared to GFP control in both ABC-1 (Figure 14C) and H1048 (Figure 14D) cell 

lines.  This further supports the idea that mutant p53 up-regulates Axl expression via chromatin 

modification. 
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Figure 14.  ChIP assay demonstrates increased acetylation of histones on the Axl promoter.  

ChIP analysis was performed on H1299 cells stably transfected with vector (HC5) or mutant 

p53-R273H (R273H) to test whether histones are preferentially acetylated on the Axl promoter.  

A. ChIP performed with an antibody directed against acetylated histone H3 (acetylated at K9 and 

K14).  B. ChIP performed with an antibody directed against acetylated histone H4 (acetylated at 

K8).  C and D.  ChIP performed on ABC-1 and H1048 p53 knock-down cell lines using an 

antibody directed against acetylated histone H3 (acetylated at K9 and K14) shows a reduction in 

histone acetylation on the Axl promoter.  Experiments were done in triplicate.    
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Nucleation of mutant p53 on the Axl promoter.  Next we examined if we could locate 

mutant p53 on the Axl promoter sequences using the ChIP and H1299 cell systems described 

above (Figure 14).  Here, chromatins were immunoprecipitated using p53 antibodies D01 and 

FL-393 (Santa Cruz), or corresponding antibody controls, as described in Materials and 

Methods.  Immunoprecipitated DNA was quantified by QPCR, and data is shown in Figure 15A.  

It is clear that mutant p53 got localized on the sequences upstream to the Axl gene either directly 

or indirectly binding to DNA.  To locate the site or sites of mutant p53 binding to the Axl 

promoter, the full length promoter was divided into five fragments and primers were designed.  

Fold activation by mutant p53 on the Axl promoter was determined and the percent of p53 

binding was calculated (Figure 15B).  The data shown indicate major mutant p53 interaction 

distal to ATG. 

Transcription factor binding is enhanced by mutant p53 on the Axl promoter.  Next, 

we wanted to check whether we could determine the transcription factor(s) that bind more 

efficiently on the Axl promoter in the presence of mutant p53 (Figure 16).  For that purpose we 

performed ChIP assays using antibodies against transcription factors, p300, E2F1, and CREB, 

which putatively may interact with the Axl promoter.  ChIP assay data carried out using vector 

transfected and mutant p53 (-R273H) expressing H1299 cells and corresponding antibodies 

against these transcription factors show that binding all transcription factors are increased:  p300 

2.5-fold, E2F-1 4.3-fold and CREB 8-fold.  Increased binding of transcription factors is likely to 

contribute to the induced Axl expression mediated by mutant p53.   
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Figure 15. ChIP data showing p53-R273H binding in H1299 cells expressing this mutant 

to the Axl promoter region.  A. ChIP was performed on H1299 cells stably transfected with 

vector (HC5) or mutant p53-R273H (R273H) to test whether mutant p53 is nucleated on the 

promoter.  B. Primers were designed to amplify the full length Axl promoter in five regions: 

2000-1601bp, 1201-1600bp, 801-1200bp, 401-800bp, and 1-400bp. QPCR was performed for 

each of these fragments on H1299 cells expressing either an empty vector (HC5) and p53-R273H 

that were used for ChIP with antibodies against p53 (D01 and FL393) or IgG as a control. 
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Figure 16.  ChIP assay shows the mutant p53 mediated increase in transcription factor 

binding on the Axl promoter.  ChIP analysis was performed on H1299 cells stably transfected 

with vector (HC5) or mutant p53-R273H (R273H) to test whether transcription factors are 

preferentially binding to the Axl promoter. ChIP was performed with antibodies directed against 

CREB, E2F1, and p300.  Experiments were done in triplicate. 

  



54 

 

Chapter Summary. 

 Microarray data of H1299 lung adenocarcinoma cells expressing different p53 mutants 

showed up-regulation of genes that may affect growth and oncogenesis.  We have investigated 

the receptor protein tyrosine kinase Axl, which is up-regulated by p53 mutants at both RNA and 

protein levels in H1299 lung cancer cells expressing mutants p53-R175H, -R273H, and –D281G.  

Knock-down of endogenous mutant p53 levels in human lung cancer cells H1048 (p53-R273C) 

and H1437 (p53-R267P) led to reduction of the level of Axl as well.  This effect on Axl 

expression is refractory to the mutations at positions 22 and 23 of p53 suggesting that p53’s 

transactivation domain may not play a critical role in the up-regulation of Axl gene expression.  

Chromatin immunoprecipitation (ChIP) assays carried out with acetylated histone antibodies 

demonstrated induced histone acetylation on the Axl promoter region by mutant p53.  Direct 

mutant p53 nucleation on the Axl promoter was demonstrated by ChIP assays using antibodies 

against p53.  The Axl promoter has a p53/p63 binding site, which however, is not required for 

mutant p53-mediated transactivation.  Knock-down of Axl by Axl-specific RNAi caused 

reduction of gain of function (GOF) activities, reducing cell growth rate and motility rate in lung 

cancer cells expressing mutant p53.  This indicates that for lung cancer cell lines with mutant 

p53, GOF activities are mediated in-part through Axl.   
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Chapter 3 

DETERMINE HOW UP-REGULATION OF EPIDERMAL GROWTH FACTOR 

RECEPTOR (EGFR) AFFECTS ADDICTION OF LUNG CANCER CELLS TO GAIN-

OF-FUNCTION MUTANT P53 

The manuscript for the work presented in this chapter is currently under preparation.  Growth assays and 

immunoprecipitations were performed by Isabella Pearsall, migration assays were performed by Andrew Yeudall, 

Western blot analysis on the different human lung cancer cell lines was performed by Shilpa Singh. 

 

Introduction. 

In earlier work, we have shown that GOF p53 transactivates the human EGFR promoter 

in transient transfection assays in the absence of specific DNA binding by p53 (198, 228).  

EGFR is involved in cell proliferation and motility (229) and its over-expression has been found 

to be implicated in various cancers including lung cancer (230).  The mechanism through which 

GOF p53 up-regulates gene expression is not yet clear. 

In this project, we show that lung cancer cells expressing GOF p53 are addicted to mutant 

p53; knock-down of p53 in lung cancer cells causes lowering of tumorigenicity and other GOF 

properties.  We demonstrate that mutant p53 up-regulates epidermal growth factor receptor 

(EGFR) expression and activates the EGFR pathway.  Knock-down of p53 lowers EGFR 

overexpression; however, the addiction to GOF p53 can be compensated by overexpressing 

EGFR suggesting that EGFR is in the GOF p53 pathway and plays a critical role in the addiction 

of lung cancer cells to GOF p53.  Using chromatin immunoprecipitation (ChIP) assays we show 

that GOF p53 interacts with the EGFR promoter and increases H3 histone acetylation.  ChIP and 
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ChIP-re-ChIP studies show docking of GOF p53 on Sp1 as well as increased binding of Sp1 and 

CBP on the EGFR promoter. 

 

Materials and Methods. 

Cells. H1299 (ATCC; Manassas, VA), KNS-62, VMRC (JCRB Cell Bank; Osaka, 

Japan), H1975, H23, H596, H1048, H1437, H1573, H1793, H2405, and ABC1 (ATCC) cell 

lines were all purchased from commercial sources and were maintained in media as suggested by 

the suppliers.  Methods for lipofection, nucleofection, and generation of stable transfectants were 

as described (160, 231, 232).  Clones were isolated using puromycin selection at 1µg/ml. 

Generation of H1299 cells expressing GOF p53 mutants.  To determine the influence 

of the transactivation domains on mutant p53-mediated transactivation, we have constructed 3 

amino acid substitution mutants: p53-R273H (L22Q/W23S) using the Quikchange mutagenesis 

kit (Agilent; Santa Clara, CA), and expressed these p53 mutants in H1299 cells.  Multiple clones 

were isolated with p53 expression equivalent to that of p53-R273H alone.  We used these clones 

in comparison with vector transfected cell clones for our assays.  We have also used H1299 cells 

expressing p53-R273H as described earlier (135). 

EGFR promoter transient assays.  The EGFR promoter-luciferase construct was 

obtained from Active Motif (Carlsbad, CA).  The EGFR expression plasmid was created by 

cloning the EGFR cDNA sequence into the pWZL Hygro plasmid purchased from Addgene 

(Cambridge, MA).  Transient transfection was performed with 500ng of promoter and 1ug of 

expression plasmid using Lipofectamine3000 (Invitrogen; Grand Island, NY) following the 

manufacturer’s instructions.  Luciferase analysis was carried out using the dual luciferase assay 
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system (E1500) according to the manufacturer’s instructions (Promega; Madison, WI).  Both 

transfection and luciferase assay were performed in triplicate as described previously (232). 

siRNA Transfection.  siRNAs were nucleofected into H1299 cells expressing p53-

R273H or vector control following the manufacturer's instructions (Lonza; Walkersville, MD).  

Sequences used to target individual transcription factors were as follows: siCBP: 5'-

UUGAGGAAUCAACAGCCGCtt-3' (233), siEGFR: 5'-

GCAAAGUGUGUAACGGAAUAGGUAUtt-3 '(234), siEts1: 5'-

ACUUGCUACCAUCCCGUACtt-3 '(235), sip63: 5'-AAAGCAGCAAGUUUCGGACAGtt-3 

(236)', siSp1: 5'-GGUAGCUCUAAGUUUUGAUtt-3' (237), and siScrambled (control): 5'-

CAUGUCAUGUGUCACAUUCtt-3 '(238). 

Growth assays.  Growth assays were carried out as described by us earlier with slight 

modifications (135).  Cells were plated at a density of 50,000 cells/6cm dish in triplicate for five 

time points, harvested after incubation with trypsin and counted using a Coulter Counter 

(Beckman).  For siRNA treatment of cells, siRNA transfection was carried out for two 

consecutive days before starting the growth assay.  All experiments were done in triplicate.   

Xenograft assay.  Nu/J (Nude, Jackson Labs; Bar Harbor, ME) or NOD.CB17-

Prkdcscid/NcrCrl (Scid, Charles River Labs; Raleigh, NC) mice were used for the tumorigenicity 

studies.  Mice were injected with 1x107 cells subcutaneously on the flanks and tumors allowed to 

grow to a maximum size of 1cm, measuring periodically as described before (232).  Two 

different clones of cells were used to rule out clonal variations.  For the xenograft assays where 

transfections were done prior to injection, we counted the cells after transfection at the day of 

injection (48-72 h post transfection). 
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Western blotting.  Immunoblotting was carried out as described earlier (135).  Briefly, 

for a typical Western blot we have prepared extracts in Promega Lysis Buffer (Promega).  For 

Western blots to detect phosphorylated proteins, we have prepared the extracts in RIPA buffer 

(see below) with the addition of phosphatase inhibitors.  p53 was detected using the p53 antibody 

PAb 1801 (93), EGFR and Erk2 antibodies were from Santa Cruz Biotechnology (Dallas, TX) 

(sc-03 and sc-154 respectively), phospho-EGFR and phospho-Erk were from Cell Signaling 

(Danvers, MA) (2234 and 4370 respectively); transcription factors (TFs) were detected using 

respective antibodies from Santa Cruz Biotechnology: CBP (sc-369), Ets-1 (sc-350), p63 (sc-

8431), and Sp1 (sc-59).  Westerns blots were developed by the ECL method (GE Healthcare; 

Piscataway, NJ). 

Tumor RNA analysis and p53 sequencing.  Tumor RNAs were provided by the Tissue 

and Data Acquisition and Analysis Core repository under an Institutional Review Board 

approved protocol; cDNAs were prepared using the Superscript III cDNA synthesis kit 

(Invitrogen) and QPCR performed using primers specific for EGFR (F: 5’-

AAGTGTAAGAAGTGCGAAGG-3’ and R: 5'-GGAGGAGTATGTGTGAAGGA-3').  The 

degree of expression was quantified using a relative standard curve and normalized to GAPDH 

(F: 5'-GTCAACGGATTTGGTCGTATT-3’ and R: 5'-GATCTCGCTCCTGGAAGATGG-3') 

corresponding to the cDNA batch.  The p53 gene is sequenced following the method described 

previously (160).  Whenever a mutation was found, a new PCR reaction was performed and 

fragment re-sequenced to verify sequence information obtained previously.  The EGFR levels in 

the two populations of tumors, one with WT p53 and one with mutant p53, were compared and 

found to be different with a statistically significant difference based on the student t-test. 
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Chromatin immunoprecipitation.  Chromatin immunoprecipitation (ChIP) assays were 

performed as described earlier (135).  Antibodies used for ChIP were: p53 (DO1: sc-126 and FL-

393: sc-6243, Santa Cruz), acetylated histone H3 that recognizes acetylated lysine at positions 9 

and 14 (17-615, Millipore; Billerica, MA), total histone H3 (06-755, Millipore), TFs (CBP (sc-

369), Ets-1 (sc-350), p63 (sc-8431), Sp1 (sc-59), and USF1 (sc-229), Santa Cruz Biotechnology) 

and IgG (normal mouse: sc-2025 and normal rabbit: sc-2027, Santa Cruz).  Quantitative PCR 

(QPCR) was used to quantify precipitated DNA using promoter specific primers.  The following 

primers were used: GAPDH ChIP (F: 5'-GTATTCCCCCAGGTTTACAT-3' and R: 5'-

TTCTGTCTTCCACTCACTCCT-3'), EGFR ChIP (F: 5'-CCCGCGCGAGCTAGACGTCC-3' 

and R: 5'-GCTCGCTCCGGCTCTCCC-3'), EGFR ChIP set 2 (F: 5'-

ACTATGAAGGCTGTTGTCTC-3' and R: 5'-ACAACAGTGGAACATAAAAT-3'), EGFR 

ChIP set 3 (F: 5'-TCTGTGTTTCTACGGACTGC-3' and R: 5'-ATGTTTGTGCCTGGGTCT-3'), 

and EGFR ChIP set 4 (F: 5'-AAAGATGTAAGGTTGCTCCC-3' and R: 5'-

TTGGCCAAAAGAAACTGAG-3').  ChIP-re-ChIP was performed following the method 

described (239) by incubating equal amounts of extracts with p53 and IgG antibodies overnight 

and then incubating with BSA and sonicated salmon sperm saturated protein A agarose beads for 

one hour at 4°C.  The DNA-protein-antibody complexes were then washed once with RIPA 

(150mM NaCl, 50mM Tris pH8, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40), once with 

High Salt Buffer (500mM NaCl, 50mM Tris pH 8, 0.1% SDS, 1% NP-40), once with LiCl 

Buffer (250mM LiCl, 50mM Tris pH 8, 0.5% sodium deoxycholate, 1% NP-40), and once with 

1X TE.  DNA-protein complexes were eluted from the protein A agarose beads by incubation at 

37°C for 30min in 10mM DTT in 1X TE. Eluants were then incubated with the indicated second 

antibody overnight, and BSA and sonicated salmon sperm saturated protein A agarose beads 
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were added for one hour at 4°C the following day.  The DNA-protein-antibody complexes were 

then washed once with RIPA, once with High Salt Buffer, once with LiCl Buffer, and once with 

1X TE.  DNA-protein complexes were eluted at 65°C overnight in fresh elution buffer (20% 

SDS, 10mM DTT, 100mM NaHCO3), RNase and proteinase K digested, phenol/chloroform 

extracted, and QPCR was performed with specific primers. 

Immunoprecipitation assays.  Co-immunoprecipitation (IP) of proteins as an indication 

of protein-protein interactions were carried out as described earlier (240, 241).  Briefly, 

immunoprecipitations were carried out as follows: cells were washed with 1X PBS and harvested 

in NP-40 Buffer (50mM Tris pH 7.5, 150mM NaCl, 2mM EDTA, 0.5% NP-40 supplemented 

with PMSF and protease inhibitors).  Cells were lysed for 30min on ice and passaged through a 

27 G needle three times.  Lysates were centrifuged and protein concentrations were determined 

using the BCA Protein Assay Kit (Thermo Scientific; Waltham, MA).  Equal protein amounts 

were used for IP.  Protein extracts were precleared with protein A agarose rocking at 4°C for one 

hour.  The extract/bead mix was centrifuged and the supernatant was transferred to new tubes.  

Extracts were then incubated with an antibody against p53 (PAb 421) or CBP (sc-369, Santa 

Cruz) and protein A agarose beads while rocking at 4°C overnight.  The following morning the 

extract/bead/antibody mix was centrifuged and the beads were washed three times with NP-40 

Buffer.  The buffer was removed and equal volume 2XLLB was added and boiled for ten 

minutes.  Extracts were then run in a PAGE gel.  Additionally, a small aliquot of the IP 

supernatant was set aside and run in a gel to show the loading control. 

Cell migration assays. Cell migration was determined by wound closure assays 

described previously (125). Briefly, cells were trypsinized, counted, plated in both chambers of 

tissue culture inserts (Ibidi GmbH, Martinsried, Germany), and then grown to confluence. The 



61 

 

insert was removed, and the distance across the cell-free zone measured (Axiovision software; 

Carl Zeiss Microimaging, Thornwood, NY). Cultures were returned to the incubator, allowed to 

migrate for 8h, and the width of the cell-free zone re-measured. Migration rate was determined 

by subtraction of the final measurement of distance from the initial measurement, divided by 

time. 

Statistical Analysis.  All statistical analyses were calculated using the student's t-test.  

Data was considered significant if the p-value was below 0.05. 

 

Experimental Results. 

Tumor-derived gain-of function mutant p53 binds on the upstream region of the 

EGFR gene and induces histone acetylation.  In order to decipher the mechanism of activation 

of gene expression by GOF p53 we first identified promoter sequences bound by GOF p53-

R273H in H1299 cells expressing p53-R273H by performing ChIP-Seq [to be communicated 

separately, (242)].  In this analysis, we identified EGFR as a candidate gene whose promoter is 

bound by GOF p53.  Figure 17A shows mutant p53 (R273H) ChIP-Seq driven peak analysis of 

mutant binding on the EGFR promoter with Figure 17B giving the sequence where maximal 

mutant p53 binding occurs (indicated by brackets surrounding the peaks).  Some of the known 

TF binding sites are identified in the sequence.  We verified mutant p53 binding on the promoter 

region of the EGFR gene by ChIP assays followed by QPCR (Figure 17C).  We have also carried 

out ChIP assays with an antibody against acetylated histone H3 (AcH3) (Figure 17D).  Figure 

17D shows increased binding of K9/K14 acetylated histone H3 to the EGFR promoter upon 

expression of mutant p53.  It is possible that p53-R273H binds to one or more of the TFs 

indicated (Figure 17B) and gets nucleated on the promoter, thereby leading to increased  
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Figure 17. p53 and AcH3 ChIP sequence peaks on EGFR gene upstream sequences and 

QPCR verification of ChIP on the EGFR promoter.  Details of ChIP seq analysis and their 

verifications have been previously (150).  A. The peaks representing areas under which maximal 

p53-R273H binding occurs as apparent by next generation sequence analysis (242). B. Sequence 

of the major peak (shown above red brackets in A) where mutant p53 binding occurs along with 

some of the prominent TF binding sites. C and D. ChIP assay results showing p53-R273H and 

AcH3 binding to the EGFR promoter. E. ChIP assay result showing total histone H3 binding to 

the EGFR promoter.  Asterisks indicate a p-value of less than 0.05. 
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AcH3 binding on the EGFR promoter. Figure 17E shows a marginal increase of total histone H3 

binding to the promoter, strengthening the case for mutant p53 causing an enhanced amount of 

acetylated histone H3 binding to the EGFR promoter. 

Tumor-derived gain-of function mutant p53 induces expression of the EGFR gene.  

Once we found that mutant p53 binds to the EGFR promoter region, coupled with the knowledge 

that mutant p53 also transactivates the EGFR promoter (198, 228), we tested whether H1299 

cells expressing p53-R175H and -R273H show higher levels of EGFR mRNA compared to 

vector transfected cells.  We prepared RNA from these cells and determined EGFR mRNA 

levels in samples prepared from two individual clones per transfection.  RT-QPCR data shown in 

Figure 18 demonstrates that EGFR expression is up-regulated by the p53 mutants in each case in 

multiple stable clones.  Figure 18B shows an example of a Western blot with higher level of 

EGFR in H1299 cells expressing p53 mutants.   

EGFR is a target of GOF p53. Next, we wanted to determine if EGFR behaves as a 

mutant p53 inducible gene in lung cancer cells expressing endogenous GOF p53.  Thus, we 

generated p53 knocked-down derivatives from lung cancer cells H1975 (p53-R273H) and KNS-

62 (p53-R249S) using lentiviral vectors carrying p53 shRNA.  Figure 19 indicates knock-down 

of the endogenous p53 in stable clones of H1975 and KNS-62 cell lines and shows that the 

EGFR level is reduced upon mutant p53 knockdown consistent with EGFR being a mutant p53 

target gene.  Figure 19B shows the results of RT-QPCR experiments to assay for EGFR levels in 

the cell clones generated (as shown in Figure 19A).   

Since GOF p53 transactivates the EGFR promoter and induces EGFR expression, we 

tested whether it results in enhanced phosphorylation  of EGFR, which is indicative of the 

activation of EGFR pathway (229).  We tested the level of these proteins in H1299 cells  
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Figure 18.  Gain-of-function mutant p53 up-regulates expression of EGFR in H1299 lung 

cancer cells.  H1299 cells have been stably transfected to express p53 mutants -R175H and -

R273H (or vector alone).  A. RT-QPCR was used to assay for EGFR levels in different cell 

clones.  The data presented show that GOF p53 up-regulates EGFR mRNA expression.  

Different cell clones are indicated by clone numbers.  Experiments were done in technical 

triplicates.  Asterisks indicate a p-value of less than 0.05. B. Example of Western analysis 

showing EGFR and mutant p53 levels in different cell clones.   

p53-R175H p53-R273H Vector 
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Figure 19.  p53 knock-down in H1975 and KNS-62 cells reduces EGFR levels.  A. Western 

blot showing phospho-EGFR, EGFR, p53, and Erk2 levels in H1299 cells expressing either an 

empty vector or the p53 mutant R273H as well as different cell clones used generated by 

recombinant lentiviruses expressing p53 shRNA or control GFP shRNA in H1975 and KNS-62 

cells.  B. RT-QPCR data for EGFR in different cell lines under study.  Different cell clones are 

indicated by clone numbers.  Experiments were done in technical triplicates.    
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expressing p53-R273H (or vector control) as well as H1975 and KNS-62 cells p53 knock-down 

(and GFP knock-down control).  Data shown in Figure 19A shows that p53-R273H led to an 

increase of phospho-EGFR.  These data are corroborated by our observations in p53 knock-down 

cells.   

Lung tumor cells expressing mutant p53 show higher EGFR levels.  Since we 

observed that mutant p53 up-regulates EGFR expression (see above), we tested if this is also true 

for other lung cancer cell lines and human lung tumors expressing mutant p53.  Figure 20A 

shows p53 and EGFR protein levels and Figure 20B shows EGFR mRNA levels in different lung 

cancer cell lines.  Figure 20C depicts EGFR mRNA levels of different human lung tumors 

collected in Virginia Commonwealth University's cancer tissue repository.  On average, there 

was more EGFR expression in samples with mutant p53 versus samples with WT p53 (average 

2.1-fold, p-value 0.03), corroborating our cell culture data that mutant p53 up-regulates EGFR 

expression. Thus, overall there is an increased expression of EGFR in human lung tumors with 

mutant p53. 

Lung cancer cells with endogenous GOF p53 are addicted to mutant p53.  We tested 

whether reduction of p53 would cause significant reduction in oncogenic functions of lung 

cancer cells as measured by tumorigenicity in immunodeficient mice.  Thus, we performed 

tumorigenicity assays in nude or SCID mice as described in Materials and Methods.  Figure 21A 

shows that p53 knock-down results in remarkable reduction of tumorigenicity, demonstrating 

that these lung cancer cells are addicted to mutant p53 for effective tumor formation.   

Reduction of mutant p53 and EGFR in lung cancer cells retards tumorigenicity 

growth rate and cell motility.  To determine the effect of reducing expression of the 

endogenous mutant p53 in the H1975 and KNS-62 cell lines, we performed tumorigenicity  
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Figure 20.  Lung tumor cells expressing mutant p53 show higher EGFR levels.  A.  EGFR 

levels in various lung cancer cell lines.   Western blot analysis of protein extracts of different 

lung cancer cell lines were assayed by immunoblot analysis.  Many of these lines expressing 

mutant p53 also express higher levels of EGFR.  B. EGFR mRNA levels in the lung cancer cell 

lines presented in A.  C. RT-QPCR of EGFR levels in lung tumors.  Experiments were done in 

technical triplicates as described in the text.    
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assays in nude mice where the stable knockdown cell clones were subcutaneously injected.  We 

then wanted to test whether reduction of p53 can be mimicked by EGFR knock-down in terms of 

reduction of oncogenicity as measured by tumorigenicity as well as proliferation and motility 

rate of lung cancer cells.  Thus, we performed growth assays as described in Materials and 

Methods.  Similarly, we transiently transfected H1975 cells with EGFR siRNA (or scrambled 

siRNA) and performed nude mice tumorigenicity and cell growth assays. Tumorigenicity data 

shown in Figure 21B indicate a drastic effect on the tumor growth of H1975 cells suggesting a 

strong dependence of the growth of the tumor cells on EGFR even when GOF p53 is present.  

Data shown in Figures 21C show that knock-down of either p53 or EGFR reduced the growth 

rate significantly.  This result suggests the possibility that GOF p53 regulates cell growth, at least 

in part, through EGFR expression.  In parallel, we performed wound closure assays to determine 

the impact of reducing GOF p53 and EGFR on cell motility.  As shown in Figures 21E and 21F 

respectively, EGFR and GOF p53 knockdown resulted in a decrease in cell motility. 

We hypothesize that GOF p53 may execute (some of) its oncogenic function via the 

EGFR pathway; if that is true, then the defects encountered by knock-down of GOF p53 should 

be compensated by EGFR overexpression in those cells.   Therefore, we tested whether EGFR 

overexpression can restore the growth and tumorigenicity defect encountered by knock-down of 

GOF p53.  Figures 21D and 21G show that expression of EGFR by transfection of H1975 (p53-

R273H) p53 knock-down cells with an EGFR expression plasmid compensates for the reduced 

growth rate and, more importantly, tumorigenicity, respectively, in nude mice.  This suggests 

that EGFR plays a crucial role in mediating the effects of the mutant p53 GOF pathway. 

TFs are involved in inducing binding of acetylated histone H3 on the EGFR 

promoter.  In order to decipher the mechanism used by GOF p53 in inducing upregulation of  
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Figure 21.  Reduction of mutant p53 and EGFR in lung cancer cells retards tumorigenicity, 

growth rate and cell motility.  A. H1975 and KNS-62 cell clones stably expressing shRNA 

against p53 were injected into nude (H1975) or SCID (KNS-62) mice.  B. H1975 lung cancer 

cells were transfected with siRNA targeting EGFR and subsequently injected into nude mice.  C. 

(i) Growth assay of H1975 cells knocked-down for p53 (and control) generated by recombinant 

lentivirus expressing p53 shRNA.  (ii) Growth rate of H1975 cells depends on the EGFR level.  

H1975 cells were transfected with control or EGFR-specific siRNA.  Asterisks indicate a p-value 

of less than 0.05. D. H1975 p53 knock-down cells were transfected with an EGFR expression 

plasmid to compensate for the EGFR expression loss, and growth assays were performed.  

Asterisks indicate a p-value of less than 0.05.  E. Migration of H1975 after transient transfection 

of RNAi against EGFR shows a reduced migration rate.  Asterisk indicates a p-value of less than 

0.05.  F. H1975 cells show a reduction in migration when the endogenous mutant p53 is stably 

knocked-down. Asterisk indicates a p-value of less than 0.05.  G. H1975 p53 knock-down cells 

were transfected with an EGFR expression plasmid to compensate for the EGFR expression loss, 

and tumorigenicity (in nude mice) assays were performed. EGFR expression recovers GOF 

activity loss observed on knock-down of mutant p53 of H1975 cells. Western blot showing 

EGFR levels of a representative experiment is shown.  Experiments were done in triplicate.    
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EGFR expression, we investigated the transcriptional machinery at the EGFR promoter which 

might be positively influenced by GOF p53.  One such mechanism could be to promote 

chromatin opening through histone acetylation.  To determine which TFs may be involved in 

influencing binding of AcH3 on the EGFR promoter, we transfected mutant p53-R273H 

expressing cells (and control) with individual siRNAs targeting different TFs (as well as a 

nonspecific control), and performed AcH3 ChIP to test if AcH3 binding on the EGFR promoter 

has been changed along with decrease in the TF levels.  If a particular TF satisfies this criterion, 

this would indicate the involvement of that particular TF in the induction of acetylated H3 

histone binding to the EGFR promoter.  Figure 22A depicts RNAi experimental data showing 

that siRNAs against CBP, Ets-1 and Sp1 had significant effects on binding of AcH3 on the 

EGFR promoter whereas RNAi against p63 had limited effects.  Figure 22B shows immunoblots 

depicting reduction of TF levels after treatment with the respective siRNA.  Thus, our results 

shown in Figure 22 suggest an involvement of Ets1, Sp1 and CBP in the activation of the EGFR 

promoter by GOF p53. 

Sp1, CBP and Ets1 affect mutant p53 binding on the EGFR promoter.  Since the 

data presented in Figure 22A indicated the involvement of TFs Ets1, Sp1 and the histone acetyl 

transferase (HAT) CBP, we wanted to test whether these factors are also required for interaction 

of mutant p53 on the promoter.  To test this, once again we performed TF-directed RNAi 

experiments and carried out ChIP for mutant p53 to determine if lowering the levels of any of 

these TFs impacts mutant p53 binding.  Figure 22C shows that although nonspecific siRNA did 

not affect the level of TFs or the binding of mutant p53 on the EGFR promoter, siRNA directed 

against Sp1, Ets1 and CBP indeed drastically inhibited the interaction of p53-R273H with the 

EGFR promoter.  Figure 22D shows that the individual transcription factor expression levels  
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Figure 22.  TFs are involved in inducing binding of acetylated histone H3 and p53 on the 

EGFR promoter.  A. AcH3 ChIP analysis was performed on H1299 cells expressing p53-

R273H (or vector alone) transfected with RNAi against TFs suspected of binding to the EGFR 

promoter (or scrambled siRNA).  Normalized values for each siRNA treatment were divided by 

the normalized IgG value to calculate fold binding over IgG.  The vector was then set to 1 in 

each set to be able to compare AcH3 binding between the different transcription factor 

knockdowns.  Asterisks indicate a p-value of less than 0.05.  B.  Western blot shows extent of 

knock-down of different TFs levels.  C. ChIP assays to determine the extent of TF-mediated p53 

binding on the EGFR promoter.  H1299 cells expressing p53-R273H (or vector alone) were 

transfected with RNAi against Sp1, CBP and Ets1 (or scrambled siRNA).  Normalized values for 

each siRNA treatment were divided by the normalized IgG value to calculate fold binding over 

IgG.  The vector was then set to 1 in each set to be able to compare p53 binding between the 

different transcription factor knockdowns.  Asterisks indicate a p-value of less than 0.05.  D. 
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Western blot analysis of cells used in C showing the effect of TF siRNA on their expression 

levels. E. Western analysis of p53 and EGFR expression in siRNA treated cells used for ChIP in 

A and C.  F. EGFR mRNA expression in siRNA treated cells used for ChIP in A and C. 

Asterisks indicate a p-value of less than 0.005.  
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were indeed reduced without changing the level of mutant p53 (Figure 22E).  This suggests that 

these TFs are involved in nucleating mutant p53 on the promoter. Transcription factor silencing 

also affects mutant p53-mediated EGFR transactivation.  Through expression analysis after 

transfection of different siRNAs we show a reduction of EGFR expression (Figure 22F). 

Facilitation of TF interactions on the EGFR promoter.  We wanted to determine if 

GOF p53 facilitates interaction of one or more TFs on the EGFR promoter.  Therefore, we 

carried out ChIP assays as described (160) using antibodies against TFs with H1299 cell lines 

expressing p53-R273H and vector control.  We wanted to determine any difference in interaction 

of TFs with the EGFR promoter in the presence of mutant p53.  Data in Figure 23A show that 

mutant p53 induces an increased interaction of a number of TFs on the EGFR promoter, 

suggesting cooperative interactions between these TFs and GOF p53.  In vivo GOF p53-TF 

interactions were studied by immunoprecipitation analysis using procedures described previously 

(240, 243).   

Data shown in Figure 23B support GOF p53 interactions with Sp1, Ets1, and CBP.  

Mutant p53-transcription factor cooperation is particularly high in cases of Ets1, Sp1 and CBP 

suggesting that GOF p53 induces nucleation of CBP on the EGFR promoter thorough Sp1 and 

Ets1.  It is also possible that mutant p53 may stabilize or activate certain TFs and as a result up-

regulate EGFR gene expression (Figure 23B).   

We next used ChIP-re-ChIP experiments to determine if any of these mutant p53-TF 

interactions are occurring on the chromatin itself.  Figure 23C shows ChIP-re-ChIP data 

investigating the interaction of CBP and Sp1 and mutant p53 on the promoter, and demonstrates 

Sp1 as a strong candidate in multiple assays, while CBP also showed significant interactions on  
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Figure 23.  GOF p53 facilitates interaction of TFs on the EGFR promoter.  A. ChIP of 

individual TFs on the EGFR promoter in the presence and absence of GOF p53 shows enhanced 

interaction of different TFs on the promoter.  Normalized values for each transcription factor 

were divided by the normalized IgG value to calculate fold binding over IgG.  The vector was 

then set to 1 in each set to be able to compare binding between the different transcription factors.  

Asterisks indicate a p-value of less than 0.05.  B. In vivo interactions between different TFs were 

carried out in H1299 cells expressing p53-R273H (or vector alone) without transfection of TFs 

by immunoprecipitation analysis.  Immunoprecipitation of p53-R273H from mutant p53 

expressing cells shows binding of mutant p53 with CBP, Ets1, and Sp1.  C.  ChIP-re-ChIP assay 

showing an increased interaction between mutant p53 and CBP as well as mutant p53 and Sp1.  

Antibodies used for the first immunoprecipitation are indicated in the body of the figure, and 

antibodies used for the second immunoprecipitation are shown on the X-axis. Asterisks indicate 

a p-value of less than 0.05 for CBP and less than 0.005 for Sp1.  
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the promoter under the conditions of the assay.  These data demonstrate that mutant p53 may 

nucleate on the EGFR promoter through Sp1 and, to some extent, CBP. 

EGFR transactivation by GOF p53 can withstand mutations in the p53 

transactivation domain.  To determine if the transactivation domain (TAD) of GOF p53 is 

needed for up-regulation of EGFR expression, we stably transfected H1299 cells with p53-

R273H or p53-R273H (22Q/23S) (or vector alone) and isolated independent cell clones.  Figure 

24A shows Western blot analysis of EGFR and p53 levels of the clones being used in our assays.  

Next, we isolated RNA from each cell clone, and performed quantitative RT-QPCR to determine 

the level of EGFR mRNA in the different cell lines. The data presented in Figure 24B show that 

the particular TAD mutations did not affect EGFR induction by mutant p53-R273H. To ensure 

that our TAD mutants do in fact transactivate the EGFR promoter we performed a transient 

transactivation assay and found (Figure 24C) that the presence of TAD mutations do not inhibit 

EGFR promoter activation. 

TAD mutations differentially affect GOF p53 interactions and binding of acetylated 

histones on the EGFR promoter.  Since TAD is an important component of the transactivation 

machinery and is where TFs have a tendency to contact p53 (244), we wanted to test if TAD 

mutations affect transactivation by GOF p53 via effects on mutant p53 binding on the EGFR 

promoter and/or effects on histone acetylation.  Therefore, we used QPCR to quantitatively 

determine the effects of TAD mutations on mutant p53-mediated activation of EGFR 

transcription (assayed by RT-QPCR) as well as nucleation of p53-R273H and AcH3 on its 

promoters (assayed by ChIP) (Figure 25A).  TAD mutations did indeed show a significant 

reduction of mutant p53 and TF interactions on the region examined (shown in Figure 17B).   
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Figure 24.  EGFR transactivation by GOF p53 can withstand mutations in the 

transactivation domain of GOF p53.  H1299 cells were stably transfected with expression 

plasmids containing either the p53 mutant R273H, the p53 TAD mutant R273H (L22Q/W23S), 

or vector alone and cell clones were isolated.  A. Western blots show expression levels of mutant 

EGFR and p53.  B.  RT-QPCR analysis showing levels of EGFR in different cell lines.  Asterisks 

indicate a p-value of less than 0.005.  C.  Luciferase assay showing transactivation of the EGFR 

promoter by both p53-R273H as well as p53-R273H 22/23. Asterisks indicate a p-value of less 

than 0.05.  
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This is accompanied by a reduction of histone H3 acetylation and the data are shown in Figure 

25A.  Next we looked at the ability of our TAD mutant cell line to recruit transcription factors to 

the EGFR promoter.  Figure 25B shows a reduction of transcription factor binding that was 

similar to the reduction of mutant p53 and histone H3 acetylation binding in Figure 25A at the 

region shown in Figure 17B.  This suggested to us that mutant p53 with TAD mutations might be 

efficiently interacting at one or more different sites other than that shown in Figure 17B.  We 

have performed ChIP using PCR primers corresponding to sequences spanning different regions 

on the EGFR promoter as shown on the schematic.  Figure 25D shows data supporting our 

hypothesis that mutant p53-R273H and its TAD mutant both interact significantly with multiple 

locations on the EGFR promoter (identified by ChIP Seq), although the TAD mutant failed to 

interact in the primary site identified by ChIP Seq; these interactions perhaps result in activation 

of histone H3 acetylation where TFs are also successfully recruited (Figure 25C).  It is possible 

that TAD interacts with different sequences of the EGFR promoter region using motifs defined 

by amino acids other than those mutated in the present construct (amino acids 22 and 23). 

 

Chapter Summary. 

 Earlier work has shown that GOF p53 transactivates the EGFR promoter using transient 

transfection assays.  Microarray and RNA sequencing have also shown up-regulation of EGFR 

by mutant p53.  Here, we show that lung cancer cells expressing GOF p53 are addicted to mutant 

p53; knock-down of p53 in H1975 (p53-R273H) and KNS-62 (p53-R249S) lung cancer cells 

causes reduction of tumorigenicity and other GOF properties.  Using H1299 cells expressing 

p53-R273H we demonstrate that mutant p53 up-regulates epidermal growth factor receptor 

(EGFR) expression and activity.  Human lung tumors expressing mutant p53 also show higher  
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Figure 25. TAD mutations differentially affect GOF p53 interactions and binding of 

acetylated histones with the EGFR promoter.  A. ChIP assays showing mutations in TAD 

alter a majority of interactions of mutant p53 and enhanced binding of acetylated histone H3 to 

the EGFR promoter.  Normalized values were divided by the normalized IgG. Asterisks indicate 

a p-value of less than 0.05. B. ChIP assays showing mutations in TAD alter binding of different 

transcription factors to the EGFR promoter.  Asterisks indicate a p-value of less than 0.05. C. 

ChIP samples in Figure 6B were assayed using a different set of primers on the EGFR promoter 

about 1.5kb upstream of set 1 to show mutant p53 and its TAD mutant have a similar binding 

pattern at a distant location (as shown in the diagram). N.S. indicates no significant difference.  

D. ChIP samples in Figure 6A were assayed using three different sets of primers on the EGFR 

promoter about 500bp-1.5kb upstream of set 1 to show mutant p53 and its TAD mutant have a 

similar binding pattern at a distant locations.  Positions of the primer sets are shown in the figure.  

N.S. indicates no significant difference.  
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EGFR levels. Knock-down of p53 in H1975 and KNS-62 cells lowers EGFR overexpression; 

however, the addiction to GOF p53 can be compensated in H1975 cells by overexpressing 

EGFR, suggesting that EGFR is in the GOF p53 pathway and plays a critical role in addiction of 

lung cancer cells to GOF p53. Chromatin immunoprecipitation (ChIP) assays show that p53-

R273H interacts with the EGFR promoter and increases histone H3 acetylation, indicating a 

mechanism whereby mutant p53 enhances chromatin opening for improved access to 

transcription factors.  ChIP and ChIP-re-ChIP studies show docking of GOF p53 on Sp1, leading 

to increased binding of Sp1 and CBP on the EGFR promoter. Using a transactivation domain 

(TAD) mutant of GOF p53, we show that TAD-mutated GOF p53 is efficient in up-regulating 

EGFR.  Although TAD mutations cause disruption of mutant p53 interactions at a major binding 

site, mutant p53-promoter interactions at multiple sites appear to be responsible for significant 

mutant p53-mediated EGFR transactivation capability which suggests multiple contacts of TAD 

with transcription factors. 
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Discussion 

 

 p53 plays a significant role in oncogenesis, whether it is present in the cell as the wild-

type or mutant form of the protein.  WT p53 has long been shown to be key to maintaining the 

integrity of the cell and therefore preventing oncogenesis; meanwhile mutant p53 causes the 

acquisition of new oncogenic functions.  Both WT and mutant p53 have biological activities that 

are dependent on its transcriptional ability, and both proteins have been demonstrated to repress 

and activate expression of a number of genes.  We and others have shown that expression of 

tumor-derived mutant p53 in cells leads to upregulated expression of a set of genes, some of 

which are involved in increased cell growth rate, cell motility, tumorigenicity, and loss of 

sensitivity to chemotherapeutic drugs (107, 110, 245) as an indicator of GOF activity.   

We have suggested earlier that, in the case of H1299 lung carcinoma cells, the 

chemoresistance observed by the expression of mutant p53 can be attributed at least in part 

through mutant p53-mediated transactivation of the NF-κB2 gene (110).  Here, using cancer cell 

lines containing endogenous GOF p53, we have demonstrated that the presence of p53 mutants 

leads to GOF phenotypes as shown by an increase in cell growth rate, cell motility, 

tumorigenicity, and loss of sensitivity to chemotherapeutic drugs (Figures 3-5). We have further 

shown that the GOF activities are dependent on the level of NF-κB2 (Figure 6), verifying that 

mutant p53-induced GOF functions utilize NF-κB2 to accomplish these phenotypes, at least in 

part.  

We next examined the mechanism of up-regulation of NF-κB2 by mutant p53 since 

transient transcriptional analysis could not detect any mutant p53 response element (Figure 7).  
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This was not unexpected as previous studies also failed to detect any (163, 198).  Furthermore, 

ChIP experiments showed that mutant p53 induces chromatin changes via histone acetylation 

that may cause activation of the NF-κB2 promoter (Figure 8).  This histone acetylation perhaps 

leads to increased interaction of the transcription factor STAT2 to a STAT binding site on the 

NF-κB2 promoter which may be the reason for increased NF-κB2 promoter activity in the 

presence of mutant p53 (Figure 8).  Data also show an interaction of CBP with the NF-κB2 

promoter (Figure 8).  Since CBP/p300 has histone acetylase activity associated with it, these data 

indicate that mutant p53 may be enhancing histone acetylation through the use of CBP/p300.  

Interestingly, interactions of CBP/p300 and STAT, p53 and STAT as well as p53 and CBP/p300 

have been reported (246-248).  Since the data was generated, several reports have been published 

illustrating STAT regulation via acetylation (249).  In fact, STAT2 was even shown to recruit 

HATs and cause transient acetylation of histones even though p300/CBP is not required for 

STAT function (248). 

  With that information in hand, we speculate that the STAT1/STAT2 complex on the 

NF-κB2 promoter interacts with CBP/p300 to open up chromatin and pull down mutant p53.  We 

further speculate that mutant p53 then stimulates further opening up of chromatin via its 

interaction with CBP/p300 with a positive feed-back loop.    

Earlier, we had suggested that the GOF activities observed in H1299 cells after 

expression of mutant p53 can be explained in part by mutant p53’s ability to enhance expression 

of NF-κB2 (110).  Axl has been identified as another player via microarray analysis of H1299 

cells stably expressing different p53 mutants.  Axl has previously been implicated in oncogenesis 

(206) and is significantly up-regulated by tumor derived p53 mutants in lung cancer cell lines 

and human lung tumors (Figures 9 and 10).  One interesting and important aspect of Axl being 
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up-regulated by p53 mutants is the fact that p53 mutants do not require an intact transactivation 

domain for this up-regulation (Figure 9).  Thus, this mutant p53 target seems to be a good 

candidate gene that is up-regulated by mutant p53 perhaps through interaction with p63/p73 

(155).  We note that there is a second transactivation subdomain that may contribute to 

transactivation, and further studies would need to be performed to investigate the role the second 

transactivation domain plays in Axl upregulation by mutant p53.   

Using human lung cancer cell lines and lung tumor samples expressing mutant p53 we 

demonstrate that expression of GOF mutant p53 induces Axl expression (Figure 10).  We found 

that knocking down Axl levels by RNAi in H1048 cells led to a decrease in cell motility and 

growth rate (Figure 11) while mutant p53 level remained constant.  This suggests that GOF 

mutant p53 may induce part of its GOF activity via induction of Axl.   

We have examined the promoter sequences of Axl and identified several transcription 

factor binding sites (Figure 12 top), and have performed transient transcriptional analysis to 

determine the mechanism of activation of the promoter by GOF mutant p53.  Transient 

transfections showed that mutant p53 indeed transactivates the Axl promoter in H1299 cells 

(Figure 12), however, our promoter deletion analysis indicated that the p53/p63-binding site 

present is not needed for transactivation by mutant p53 in H1299 cells (Figure 13).  This shows 

that GOF p53 mutants transactivate the Axl promoter without the necessity of p63 binding to the 

promoter.  

ChIP assay analysis demonstrated that GOF mutant p53 induces histone acetylation at the 

Axl promoter (Figure 14A-D) suggesting that mutant p53 causes chromatin modifications on the 

promoter indicative of increased transcriptional activity.  Transcription factor ChIP analyses 

indicated that mutant p53 induced interaction between p300, CREB, and E2F1 on the Axl 
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promoter (Figure 16), which suggests their involvement in general in transactivation of Axl by 

mutant p53.  The observed increased histone acetylation may lead to increased interaction of the 

transcription factors p300, CREB, and E2F1 with their binding sites on the Axl promoter, which 

then leads to an increase in Axl promoter activity.  Since CBP/p300 has histone acetylase activity 

associated with it, these data suggest that mutant p53 may be enhancing histone acetylation of 

the Axl promoter through the use of CBP/p300.  Interestingly, interactions of CBP/p300 and 

E2F1 and CREB (250) may further nucleate p300 on the Axl promoter and lead to further 

acetylation of histones increasing its promoter activity.   

We have demonstrated that there is more mutant p53-mediated activation of the Axl 

promoter further away from the transcription start site indicating mutant p53 may bind to an 

enhancer-like region to regulate transcription (Figure 15).  Further in vivo and in vitro work is 

needed to clarify the mechanism of transactivation by mutant p53. 

We next examined the mechanism of up-regulation of EGFR expression by GOF p53 and 

demonstrated that EGFR is elevated at the mRNA level by GOF p53 in H1299, KNS-62 and 

H1975 cells.  Through RNAi experiments in H1975 cells we show that reduction of mutant p53 

or EGFR levels lowers the proliferation rate of these cells, indicating that both genes are in a 

pathway that controls cell proliferation.  Since mutant p53 up-regulates EGFR, this also suggests 

that this particular GOF activity of mutant p53 is through EGFR up-regulation, at least in part.  

This concept has been strengthened further by restoration of GOF activity lost by reduction of 

p53 levels on overexpression of EGFR (Figure 21).  However, multiple mutant p53 targets have 

been identified that may be responsible for induction of proliferation (84, 160, 251).  Thus, a 

thorough functional-genomic approach is needed to fully understand which genes are required 

for different GOF activities. 
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We also show that mutant p53 expression leads to enhanced binding of GOF p53 on the 

EGFR promoter, and importantly it induces enhanced interaction of TFs on the EGFR promoter 

including the HAT, CBP and Sp1 (Figure 23).  ChIP for AcH3 indicates enhanced acetylation of 

histone H3 in the presence of mutant p53, indicative of induced opening of the chromatin near 

the mutant p53 binding site.  Thus, the mechanism by which mutant p53 activates EGFR 

transcription may depend upon nucleation of mutant p53 that then induces acetylation of histone 

H3, opening chromatin and activating transcription.   

We examined the contribution of the transactivation domain in transactivation of EGFR 

and nucleation of mutant p53 and AcH3 (as assayed by ChIP).  Interestingly, mutations in TAD 

affected nucleation of mutant p53 and AcH3 at the major binding site (Figure 25) but not 

transactivation of EGFR (Figure 24).  Since our data show no absolute requirements of integrity 

of amino acids at positions 22 and 23, it perhaps points to the possible interactions of TFs 

included in extended regions of TAD.  However, we showed that transactivation by GOF p53 

requires the presence of TAD (198) suggesting an important contribution of TAD in 

transactivation.  The scanning ChIP QPCR data shown in Figure 25 suggest that the promoter 

sequences defined by primer set 1 requires integrity of amino acids 22 and 23 of TAD to be 

precise, perhaps through a direct interaction of TFs whereas TAD can contact other regions via 

other TAD sequences.  It is possible in that case sequences in the second transactivation domain 

may prove to be important (244). 

It is important to note that we find that mutant p53 induces enhanced interaction of TFs 

on the EGFR promoter.  It is possible that this results in enhanced binding of CBP/p300 to the 

EGFR promoter and consequently higher levels of acetylation of histone H3.  This is expected to 

impact the chromatin structure in a positive manner, paving the way for a higher rate of 
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transcription.  In the future, it needs to be ascertained if the information exchange between the 

proteins happens while they remain on the promoter or when they are unbound from the DNA.  

Involvement of the Sp1 and Ets group of transcription factors and mutant p53 in mutant p53-

mediated transactivation as a component of its GOF activity has been suggested by us and others 

in the past (166, 242, 252). 

Since NF-κB2, Axl, and EGFR all show enhanced histone acetylation and transcription 

factor binding to their promoters in the presence of GOF p53, it is possible that mutant p53 

utilizes a similar mechanism to activate transcription and thus upregulate expression of these 

three genes.  We have shown that mutant p53 enhances Sp1 and CBP binding for both the Axl 

and EGFR promoters, however, the NF-κB2 promoter also has Sp1 binding sites which have not 

been explored yet.  It would be interesting to know whether we can also see enhanced Sp1 

binding in the presence of mutant p53 on the NF-κB2 promoter as well.  In addition, Sp1 and 

Ets1 are known to interact, and in the case of the EGFR promoter ChIP-reChIP, Sp1 was seen to 

interact with mutant p53 at the promoter whereas Ets1 was not (data not shown).  In this case, it 

is possible that the enhanced Ets1 binding to that particular promoter may be due at least in part 

to interaction with Sp1 since there are many more binding sites for Sp1 than Ets1. 

The work presented here shows a possible mechanism of up-regulation of mutant p53 

target gene expression with the involvement of chromatin modifications.  In the case of NF-κB2, 

this chromatin modification is brought into action most likely by CBP which is found to be 

nucleated on the promoter.  As a result of the histone acetylation, we can observe increased 

STAT interaction on the promoter that might be the reason for enhanced transcription of the 

mutant p53 target, NF-κB2.   
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We suggest a model (Figure 26) in which mutant p53 interacts on the target promoters 

via interaction with multiple TFs: Ets1, Sp1 and perhaps others (Figure 25).  Possibly, GOF p53 

docks with Sp1 and CBP.  p300/CBP may become involved in the process either because of 

direct interaction of p53 and CBP/p300  or through Ets1-CBP/p300 and/or Sp1-CBP/p300 

interactions (253-256).  Sp1 and Ets1 interactions with CBP/p300 have been suggested to 

facilitate acetylation of histones (257, 258).  This increased histone acetylation then translates 

into chromatin opening and increased transcription. 
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Figure 26. Proposed model for GOF p53 nucleating on a target promoter.  
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