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MULTI-PLATFORM ARABINOXYLAN SCAFFOLDS AS POTENTIAL WOUND 
DRESSING MATERIALS 
By Donald Chukwuemeka Aduba, Jr., Ph.D. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in Biomedical Engineering at Virginia Commonwealth University. 

 
Virginia Commonwealth University, 2015 

 
Research Director: Dr. Hu Yang 

Associate Professor, Biomedical Engineering 
 
 

Biopolymers are becoming more attractive as advanced wound dressings because of their 

naturally derived origin, abundance, low cost and high compatibility with the wound 

environment. Arabinoxylan (AX) is a class of polysaccharide polymers derived from cereal 

grains that are primarily used in food products and cosmetic additives. Its application as a wound 

dressing material has yet to be realized.  In this two-pronged project, arabinoxylan ferulate (AXF) 

was fabricated into electrospun fibers and gel foams to be evaluated as platforms for wound 

dressing materials. In the first study, AXF was electrospun with varying amounts of gelatin. In 

the second study, AXF was dissolved in water, enzymatically crosslinked and lyophilized to 

form gel foams. The morphology, mechanical properties, porosity, drug release kinetics, 

fibroblast cell response and anti-microbial properties were examined for both platforms. 

Carbohydrate assay was conducted to validate the presence of arabinoxylan ferulate in the 

electrospun GEL-AXF fibers. Swelling and endotoxin quantification studies were done to 

evaluate the absorptive capacity and sterilization agent efficacy respectively in AXF foams.  The 

results indicated successful fabrication of both platforms which validated the porous, absorptive, 

biocompatibility and drug release properties. The results also exhibited that silver impregnated 
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AXF scaffolds inhibited growth of Pseudomonas aeruginosa, Staphylococcus aureus and 

Enterococcus faecalis bacteria species, anti-microbial properties necessary to function as 

advanced wound dressing materials. Future work will be done to improve the stability of both 

platforms as well as evaluate its applications in vivo.  

 

Keywords: Absorptive, arabinoxylan, biocompatibility, non-toxic, advanced wound dressing, 

foam, nanofiber, biopolymer  
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CHAPTER 1: INTRODUCTION 
 
 

Fabrication of a functional wound dressing material is critical in managing wound healing.   

Wound dressing materials have been developed to help treat acute wounds by creating a moist 

microenvironment conducive to regeneration of new tissue while preventing infection at the 

injury site. An ideal wound healing material scaffold must possess the following properties to 

help aid wound management and healing. It is expected to have good biocompatibility. It is 

expected to have appropriate mechanical strength for insulation, wound protection and exudate 

removal from the injury site. A wound dressing material should be absorptive, impermeable to 

bacteria and inexpensive. 

Many current wound dressing materials on the market possess the aforementioned properties 

but none have used arabinoxylan (AX) as a base material. AX has the ability to absorb exudate at 

the injury site. Thus, more research needs to be done to examine whether AX can serve as a 

wound dressing material that facilitates efficient healing of acute, moderately exudating wounds. 

AX possesses appropriate properties of an acute wound dressing material with potential to 

improve exudate distribution and wound biological environment.  AX is very hydrophilic and 

possesses the ability to absorb large amounts of water – up to 100 grams of water per gram of 

polymer. Also, it is bio-inert and not vulnerable to physical changes by surrounding ionic 

environments.1 There is little research studying the biocompatibility of pure AX scaffolds in 

vitro or in vivo. In this study, the physical and biocompatible properties of two arabinoxylan 

ferulate (AXF) based formulations are evaluated: 

1) Electrospun Arabinoxylan ferulate-Gelatin (GEL-AXF) nanofiber composites 

2) Lyophilized Arabinoxylan ferulate (AXF) foams 
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These formulations studied highlight the versatility yet simple fabrication design for a 

polymer that has an untapped niche in the wound dressing market. The goal of this study is to 

investigate in vitro whether arabinoxylan ferulate based formulations are compatible wound 

dressing materials aimed to treat acute, moderately exudating wounds.  
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Abstract: 
 

Longer life expectancies, an increased elderly population and a higher prevalence of 

dietary disorders such as diabetes have led to an increased global demand for wound care. 

Wound dressing materials are critical for wound care because they provide a physical barrier 

between the injury site and outside environment, preventing the wound from further damage or 

infection. Wound dressings also manage and even encourage the wound healing process. There 

are many different types of wound dressings that exist in the market, applied specifically against 

particular types of wound classified by their condition, shape and other pathologies to encourage 

more efficient healing. Polysaccharide biopolymers are slowly becoming popular as modern 

wound dressings because they are naturally derived, highly abundant, inexpensive, non-toxic and 

non-immunogenic. However, there is no thorough review of this class of polymers and their 

applications as wound dressing materials. This review primarily focuses on polysaccharide 

platforms such as nanofibers and hydrogels designed and tested by research groups in vitro and 

in vivo to evaluate their potential as wound dressing materials. In addition, a brief background of 

the anatomy and physiology of skin, their function and relevance in wound healing is discussed. 

Other important discussion points such as acute and chronic wound healing wound management 

and wound dressing types are included. This comprehensive review will aim to focus on the 

properties of polysaccharide materials which will hopefully be the impetus towards further 

investigation of this class of polymers in wound dressing development. 

 

Keywords: wound healing, wound dressing, foam, nanofiber, hydrogel, wound management, skin  
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2.1 Introduction 
 

Wound care due to traumatic injury, surgery, burns and disease is an overlooked but growing 

problem in the United States. According to the National Center for Health Statistics, 40 million 

inpatient surgical procedures were done in the United States in 2000.2 These procedures are 

implicated in emergency care, natural disasters and in war battlefields. Unfortunately, over 6.5 

million Americans suffer from chronic wounds post-surgery which leads to an estimated $6 to 

$15 billion spent annually in health care costs.3 In 2010, the market for wound care products was 

estimated at $15.3 billion.2 Acute wounds often arise from incisions of skin created from trauma, 

surgery and superficial burns. Acute wounds typically heal quickly and tissue affected by the 

incision is fully restored. However, chronic wounds which are more difficult to heal stem from 

systemic diseases such as diabetes and obesity.2 Aging also plays a role in limiting wound 

healing due to the skin losing elasticity with time. These wound pathologies will put a further 

strain on hospitals globally with projected populations of individuals with diabetes, obesity and 

being over 65 more than doubling by 2050.4, 5 

Fabrication of a functional wound dressing material is critical in managing wound healing.   

Wound dressing materials have been developed to help treat acute wounds by creating a moist 

microenvironment conducive to regeneration of new tissue while preventing infection at the 

injury site. A wound dressing material is expected to possess the following properties: It must 

have good biocompatibility. It should have appropriate mechanical strength for insulation, 

wound protection and exudate removal from the injury site. A wound dressing material is also 

expected to be absorptive, impermeable to bacteria and inexpensive. 
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2.2 Anatomy & physiology of skin 
 

The skin is the largest organ of the body but also requires a lot of maintenance. This is 

required for the skin to function in all the conditions faced by the body. The skin protects the rest 

of the body from trauma, regulates the body temperature and is the first barrier of the immune 

response. The skin also serves as a unit of metabolism and communication.6 The skin is the 

largest organ in the body due to its large surface area. The skin of an adult covers 3000 square 

inches and weighs approximately seven pounds because of the large volume. The skin also 

demands over one-third of the body’s blood circulatory system. The skin’s large barrier allows 

the internal organs to enjoy a homeostatic environment. Skin has an inherent ability to self-

regenerate and can recover from mild injuries due to physical trauma or chemical damage.6 The 

ability of the skin to recover may be dependent on where on the body the injury took place. The 

skin thickness varies in different parts of the body for organ specific protection.6  

The skin is broken down into two layers which provide different structural properties and 

functions; the outer and inner layers are the epidermis and dermis respectively. Each layer has 

sub-anatomic regions which have different functions. The epidermis is the outer most skin layer 

which is avascular and has relatively uniform thickness throughout the body. The average 

thickness of the epidermis is 75-150 µm although the palms and feet exhibit thicknesses between 

400-600 µm.7  



 
 

7 
 

 

Figure 2.1: Schema of anatomy of skin adapted from Hooper et al. [8]  

 

2.2.1. Epidermis 
 

The epidermal layer is comprised of keratinocyte epithelial cells which are further broken 

down into the following five layers: stratum corneum, stratum lucidum, stratum granulosum, 

stratum spinosum and stratum basale. (Figure 2.2) The stratum corneum is the top layer of the 

epidermis and is made up of terminally differentiated keratinocytes. They are highly fibrous due 

to keratin protein making up 80% of the cell. They are flat, pancake shaped, anucleated cells that 

constantly slough off the skin during everyday activities such as handwashing, changing clothes, 

bathing and exercising. Keratin’s highly fibrous nature allows the cells in this layer to withstand 
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environmental changes in pH and temperature. The stratum lucidum is a very thin layer beneath 

the stratum corneum. It is only 1-5 cells thick and is typically absent from parts of the body 

where the epidermis is not thick. In this layer, active lysosomes are present to degrade the 

keratinocyte nucleus before they move up to the stratum corneum.9 The layer beneath the stratum 

lucidum is the stratum granulosum. It is the granular layer in the epidermis whose cells are 

diamond shaped in morphology. The cell’s nucleus is still active and has protein components 

such as profilaggrin, intermediate keratin filaments and lorcrin that are organized by the 

keratohyalin granules. This layer is only 1-5 cells thick. The stratum spinosum is beneath the 

stratum granulosum and is a layer above the stratum basale. The stratum spinosum contains three 

dimensional oblong shaped cells that has new batches of keratin filaments.10 It is the thickest of 

the epidermal sublayers.  

 

Figure 2.2: Schema of anatomy of subcutaneous tissue adapted from Hooper et al. [8]  

 

Last, the basal layer of the epidermis, the stratum basale is home to keratinocytes that 

actively respond to extracellular matrix, growth factors and other biological cues. Glucose 

metabolism takes place in this layer as the metabolite permeates less to the upper layers in a 

gradient fashion. The basal keratinocytes are very active by traveling through the epidermal 
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layers in approximately 28 days.10 During this migration process, the basal cells differentiate. 

Also in the basal layer, exists the dermo-epidermal junction, which contains valleys called rete 

ridges that help anchor the dermis in place and provide structural integrity. In addition, it is a 

source of basal stem cells. These stem cells are slow growing but produce daughter transient 

amplifying cells that make up 50% of the entire basal cell population. These cells have much 

shorter mitotic cycles (36 hours) during wound healing compared normal keratinocyte cells (300 

hours).11 

 

2.2.2. Dermis 
 

The dermis is the thickest layer of the skin and is highly vascularized and innervated. It is 

modestly populated with fibroblasts. It has an average thickness of 2 mm and varies in different 

parts of the body. The dermis’ vasculature allows the skin to receive nutrients and signals for 

important functions in homeostasis, wound healing, immune response and inflammation. The 

vasculature of the dermis also frequently involves angiogenesis due to the presence of important 

growth factors such as vascular endothelial growth factor (VEGF), and fibroblast growth factor 

(FGF). These growth factors are modulated by hypoxic conditions during the inflammatory stage 

of wound healing or in tumor growth.6 

The major proteins present in the dermis are: elastin and collagen. Within these protein 

fibrils are ground substance which are matrix components comprised of proteoglycans (PGs) and 

glycosaminoglycans (GAGs). PGs and GAGs provide flexibility to the dermal matrix because of 

its high water absorption capability. Hyaluron is another matrix component which provides 

binding sites for important growth factors and cells relevant to skin regeneration.12 Elastin is a 
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secondary structural protein in the dermis that provides elastic properties to the skin. Elastin has 

a coil configuration which winds and unwinds as it undergoes cyclic tension.13-15  

 All of the ECM components that build up the dermis are classified into two layers: the 

papillary and reticular dermis. The papillary dermis is located at the dermo-epidermal junction 

just below the epidermis. This area is made of interlocking papillary loops that provide blood 

circulation and nutrients to the area. The collagen fibers are much smaller in this layer than the 

reticular dermis but have more ground substance than the reticular layer. Meanwhile, the 

reticular layer is the most basal layer in the dermis and contains larger collagen fibers with less 

ground substance than the papillary layer.6 

Collagen is the major structural protein and source of nourishment in the dermis.16 It is 

produced by fibroblasts and its construction determines if the dermis is fully healed after 

wounding. It makes up 25% of dry protein weight in mammals and is best known for its great 

tensile strength. 17 Collagen is critical in wound healing because it serves as a reservoir for cell 

attachment, proliferation and differentiation.18 It also is a guide for cell migration and helps 

catalyze angiogenesis. Collagen is ubiquitous in the skin and native in organs throughout living 

mammalian systems.18 There are two types of collagen primarily present in the body: type I and 

III. Type I and III collagen composes of 77-85% and 15-23% of total collagen respectively. 

There are other types of collagen such as type V and type VII that are present in trace amounts.19 

Collagen in healthy dermis is a network of fibers intersecting perpendicularly into a woven mesh. 

In compromised dermis tissue, collagen is poorly organized which leads to excessive scarring.16 
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2.2.3. Skin function 
 

The skin provides protection from mechanical trauma, injury from chemicals, pathogenic 

infiltration and UV radiation. Skin is also key for water retention. A study in literature 

highlighted individuals who had skin burns lose six times as much fluid as normal individuals.20 

The skin is able to conserve the body’s general homeostasis because of its barrier like properties 

that typically inhibits high molecular weight drug permeability. The tensile and elastic properties 

of collagen and elastin give the skin strength to withstand forces.6 

The stratum corneum is the primary line of defense against pathogenic organisms. This 

layer eliminates microbes either through shedding or by function inhibition.21 During stratum 

corneum shedding, microbes that would have otherwise been attached to the skin fall out. On the 

other hand, the sebaceous glands in this layer produce a lipid substance called sebum which has a 

slightly acidic pH range from 4 to 6.8.22 This acidic consistency with natural anti-bacterial 

components in the substance prevent microbe growth. 22  

Flora is present in the skin which also assists in reducing bacterial growth by inhibiting 

its function.23 The key bacterial species inhibited by skin flora include: Staphylococcus aureus, 

Streptococcus pyogenes and Pseudomonas aeruginosa.24 These bacterial species are pathogenic 

and create chronic wounds because of producing high levels of toxins that lead overexpression of 

inflammatory cytokines.25 Biofilm formation results from these bacteria after they become 

embedded in a polysaccharide matrix. The biofilms can colonize and express resistance against 

antibiotics and host immune response.26 Thus, it is important that skin flora can regulate levels of 

pathogenic bacteria to prevent systemic inflammation and shock.  

Several cell types within the skin are key players in the skin’s immune response. They are 

Langerhans cells, mast cells, macrophages and dendrocytes. Langerhans cells are antigen 
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presenting cells that recognize and bind to T-cell receptors that destroy the invading microbe. 

Tissue macrophages come from bone marrow derived monocytes and have a variety of functions. 

First, they have a receptor which binds antigens on its surface that later is recognized by T-cells 

in the immune response. They engulf and phagocytose microbes while producing important 

growth factors and cytokines for wound healing and tissue remodeling.12 Mast cells are located 

in the papillary dermis and at the junction between organ tissues and their surrounding 

environments. They are called upon during inflammation to send chemical cues such as 

histamine and vasodilators to induce phagocytosis of microbes, parasites and other injury debris 

as wound healing transitions from the inflammation to proliferation stages.12 Dendrocytes are 

located in the dermal layers and function primarily as phagocytic cells that are highly expressed 

in diseased skin states.27 

The skin thermally protects the body because it is a physical barrier between the internal 

organs and outside environment. The skin also has more sophisticated physiological mechanisms 

in place to control the body’s temperature. These mechanisms are through blood circulation and 

sweating.6 Blood circulation in the skin can vasoconstrict to help the body retain heat in cold 

environments. In hot environments, blood vessels vasodilate to release heat out of the skin to 

help the body stay cool.9 In more pathological body states like a fever, the body needs to increase 

its caloric and fluid uptake by 13% for every 1◦ C the body core temperature increases. During 

rest, over 70% of heat production comes from the brain, trunk and visceral organs. In exercise, 

the skin produces 90% of the heat output.28 Sweating is the other skin thermoregulation 

mechanism dictated by the function of eccrine sweat glands. They are coils invaginated from the 

epidermis to dermis layer. They are located mostly on the palms and soles of hands and shoes 

respectively. There are 2 to 5 million of these glands with sizes of 0.05 to 0.1 millimeters. 
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Eccrine glands are stimulated by temperature changes and nervous system effects. The sweat 

glands produce fluids that are 99-99.5% water but also contain phosphate, urea, sulfate and 

sodium chloride ions.22, 29 Sweating controls temperature either through the retention, release and 

evaporation of sweat that maintains the body’s core temperature. 

 
2.3 Wound healing process 

 

The wound healing process is highly complex and requires extensive communication 

among extracellular matrix components, cells and signaling factors that fluctuate during each of 

the wound healing stages.16, 30 The acute wound healing process involves a progression of 

connected stages where cellular and tissue matrix changes are made to help remodel damaged 

tissue with new tissue. There are four stages in normal wound healing: hemostasis, inflammation, 

proliferation and remodeling.31, 32 (Figure 2.3) Hemostasis begins immediately after the skin 

undergoes an incision or trauma. Bleeding is initiated to wash out bacteria and other pathogenic 

agents from the wound. Next, platelets are recruited to the injury site to minimize the bleeding, 

protect the wound and recruit other cells involved in the wound healing response. Platelets create 

a temporary extracellular matrix which become the destination of the recruited cells. 16 They also 

activate the clotting cascade to produce tissue factor seven that leads to fibrin formation and a 

scab at the injury site.31,33 The inflammation phase begins about one day after injury where 

cytokines and chemokines produced by platelets activate vasodilation and angiogenesis of the 

injured area. 16 Subsequently, leukocytes are recruited to destroy bacteria and later convert into 

macrophages that engulf dead cells and debris, produce pro-inflammatory cytokines to recruit 

fibroblasts and keratinocytes.16, 34 Recruited fibroblasts and keratinocytes secrete fibroblast 

growth factor (FGF) and transforming growth factor (TGF-α) among other cell signals produced.  
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Figure 2.3: The four phases of normal wound healing: 1) homeostasis, 2) inflammation, 3) 
proliferation and 4) remodeling. Each step has many components. The pointed edge depicts an 
ongoing process. Adapted from [35, 36]  

In the proliferation stage one to three days post-injury, fibroblasts up-regulate receptor 

expression to allow migration and anchoring of these cells to fibrin, fibronectin and vitronectin 

present in the clot.37 Matrix metalloproteases (MMPs) are upregulated at the wound edge to 

degrade ECM components at the clot. This enables keratinocytes to unbind from the clot and 

migrate to the wound edge for wound epithelialization.38 Once the fibroblasts fully integrate in 

the clot, they change into myofibroblasts and synthesize new extracellular matrix, made mostly 

from collagen to rebuild the tissue. New blood vessels from granulation and increased expression 

of vascular endothelial growth factor (VEGF) also take place to re-establish and strengthen the 

injured wound closer to its original state before injury.16 A new layer of epithelial cells cover the 

wound site on top of the granulating tissue to protect the wound. Last, in the remodeling phase, 
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which can be up to a year after the original injury, fibroblast activity declines and collagen, 

fibronectin and proteoglycans are remodeled and formed around the scar site.31 The remodeled 

extracellular matrix is recovered but not perfectly back to its original form. In chronic wound 

healing, macrophages are continuously recruited to the injured site, inducing production of 

excess proteases and reactive oxygen species which constantly degrades the surrounding 

extracellular matrix. The imbalance between matrix degradation and production prevents the 

wound from progressing through the healing stages.39 As a result, tissue is repeatedly injured and 

cannot heal over time. Figure 2.4 summarizes the differences between acute and chronic wound 

healing. 
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Figure 2.4: Normal versus chronic wound healing adapted from Nwomeh et al. [40]  
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2.4 Wound management 
 

Wound management is an important aspect of the wound healing process. Many different 

types of wound dressings are available for particular wound conditions or etiologies. Wound 

dressings are classified to help determine which type of wound dressing is most appropriate for a 

specific application. Debridement is one characteristic that is very important for washing out 

necrotic tissue and foreign material which would otherwise prolong the inflammatory phase.31 

There are several debridement methods for treating necrotic wounds including: surgical removal, 

wound irrigation and enzymes for material breakdown.31 Another approach described by 

acronym TIME, Tissue assessment and management of tissue deficits, Inflammation and 

Infection control, Moisture balance and Enhancing epithelial advancement around the wound 

edges.41 The objective in choosing a wound dressing is to provide an environment at the wound 

surface where it can completely heal at its maximum rate while maintaining a cosmetically 

acceptable appearance.42 Usually a combination of dressings is needed to achieve this objective – 

whether they are primary dressings that interface directly with the wound or secondary dressings 

that cover and compress the primary dressing.  

2.5 Modern wound dressings in the market classified by function 
 

Many wound dressings are in the market to cover wounds specific to its size, shape, 

moisture, adherence, material and antimicrobial properties.31 Wound dressings can also be 

classified by the era of its development. Traditional wound dressings such as gauze and bandages 

are the first type to be used for wound healing while more modern wound dressings create a 

moist environment.31 Each type of dressing has strengths and weaknesses as well as a wound 

environment where it is most effective. Traditional dressings are dry and are effective for 
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insulation and protection from bacteria. However, they do not provide a moist environment and 

have to be changed frequently to prevent the wound bed from drying out. They can also adhere 

to the wound tissue which makes it painful to remove.31  

 

Table 2.1 Classifications and examples of commercialized wound dressings by function 

Adapted from References [43, 44] 

Dressing 
Classification 

Dressing Type Dressing Name Manufacturer 

Traditional Gauze First Aid Gauze Pads 

Sterile Gauze Pads 

Johnson & Johnson Healthcare 

Medi-First 

    

Modern Alginate Sorbsan 

Curasorb Calcium Alginate 
Dressing 

Tegaderm 

Bertek Pharmaceuticals 

Tyco Healthcare/Kendall 

                                                   
3M Healthcare 

 Hydrogel Purilon Gel 

Skintegrity Hydrogel 

Nu Gel Wound Dressing  

 

FlexiGel Hydrogel Sheet 
Dressing 

Coloplast Corp 

Medline Industries 

Johnson & Johnson Wound 
Management 

                                                   
Smith & Nephew  

 Foams Aquacel Hydrofiber           
Wound Dressing 

Optifoam Nonadhesive Dressing 

Tielle Hydropolymer Adhesive 
Dressing 

Allevyn Adhesive 

ConvaTec  

                                                   
Medline Industries 

Johnson & Johnson Wound 
Management 

Smith & Nephew 
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 Bioactive  Biostep Collagen Matrix 
Dressing 

Puracol Plus Collagen Dressings 

Hyalomatrix 

Smith & Nephew 

                                               
Medline 

Anika Therapeutics 

 Hydrocolloids Duoderm CGF Sterile Dressing 

Replicare Thin Hydrocolloid 
Dressing 

Convatec 

Smith & Nephew 

 Semi-permeable Bioclusive 

Mefilm 

OpSite Plus 

Tegaderm 

Systagenix 

AliMed 

Smith & Nephew 

Johnson & Johnson Wound 
Management 

 Anti-microbial Acticoat absorbent 

Actisorb Silver 220 

                                             
Aquacel AG 

Contreet H 

Contreet F 

Iodosorb 

Silvasorb Antimicrobial Silver 
Dressing 

Kerlix and Gauze 

Smith & Nephew 

Johnson & Johnson Wound 
Management 

Convatec 

Coloplast Corp 

Coloplast Corp 

HealthPoint Ltd 

Medline Industries 

                                                  
Tyco Healthcare/Kendall 

 

2.5.1. Alginates 
 

Alginates is a type of polysaccharide dressing which has excellent absorbance properties 

for wounds that create a high volume of exudate. They are salts of alginic acid polysaccharides 

that form gels upon exudate absorption and can swell 15 to 20 times their weight which can be 
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applied to wounds.44 Alginate also has had implications in wound healing where it induced 

fibroblast proliferation and macrophage signaling of tumor necrosis factor (TNF-α).45, 46 

Alginates are biocompatible and generally ideal for all stages of wound healing. However, they 

require secondary dressings, need to be changed daily and are not ideal for dry wounds with little 

exudate.31, 44 

2.5.2. Hydrogels & foams  
 

Hydrogels are non-toxic, inert cross-linked amorphous or elastic polymeric dressings that 

are insoluble in aqueous media. They can be made of synthetic polymers such as 

poly(methacrylates), polyvinylpyrrolidine or alginate based composites.31 Hydrogels provide 

moisture to the wound site and can absorb a certain amount of exudate depending on its 

composition. They also provide a non-adherent and cool surface that encourages wound 

debridement and provides comfort to patients.31 Hydrogels are indicated for necrotic and sloughy 

wounds.31, 44 Its drawback is it cannot absorb high amounts of exudate, otherwise leading to 

infection.44 Additionally, they are mechanically weak, leading to constant dressing changes. 

Hydrogels also typically require a secondary dressing to be held in place. Foam dressings are like 

semipermeable films in that they are made of polyurethane plastics and have an occlusive 

backing to prevent water loss and bacterial absorption; however, they are more absorbant.31 It is 

more absorbent due to the foam’s pore size that allows a high moisture vapor transmission rate.47, 

48 Foam dressings provide great insulation and have hydrophilic-hydrophobic layers which allow 

optimal distribution of exudate within the dressing in addition to preventing leakage. Foam 

dressings also come in thicker conformations to fill cavity like wounds.44 Foams, however do not 

work well with dry wounds because these dressings require wound exudate to provide the 

necessary moisture at the injury site. 
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2.5.3. Bioactive dressings 
 
Bioactive dressings are the most compatible of wound dressings because of their origin in 

the human body, particularly extracellular matrix components in addition to actively playing a 

role during the wound healing process. In literature, collagen, elastin, hyaluronic acid and 

chitosan are natural biomaterials that have been explored as wound dressing materials.49-51 They 

are biodegradable, do not illicit an immune response and directly assist in the wound healing 

process. Collagen, for example induces clotting in the homeostasis phase while encouraging 

fibroblast proliferation and endothelial cell recruitment to the wound site during the proliferation 

stage.52, 53 Collagen sponges were reported to absorb exudate, debris and inflammatory cells from 

the wound site.54 Hyaluronic acid, whose origin as a joint lubricant has been used as a carrier for 

growth factor delivery in acute wound treatment.55 In more recent years, chitosan has received 

attention as a potential wound dressing biomaterial as a study helped validate its ability to 

accelerate granulation during the wound healing process.56 

2.5.4. Hydrocolloids & semipermeable films 
 

Hydrocolloid dressings are occlusive films or sheets made of materials such as 

carboxymethylcellulose, gelatin and pectin which form a gel-like consistency upon adherence to 

either dry or wet surfaces.44 They are water impermeable and usually have adhesive layers on the 

perimeter of the dressing to maintain a moist wound environment.44 These dressings are 

indicated for low and moderately exudating wounds and have been used to treat diabetic ulcers.31, 

44 One disadvantage of hydrocolloid dressings is that their adhesive layer can prevent oxygen 

exchange between the outside environment and the wound. Another problem is fiber residues 

that remain in the wound bed have to be removed upon dressing change.31 



 
 

22 
 

Semipermeable films are transparent layers made of polyurethane with an acrylic 

adhesive backing which are highly flexible for application at joints, body contours and other hard 

to reach areas.31, 44 They are impermeable to fluids but actively exchanges gases around the 

wound site. Semipermeable films can only be used for low to moderately exudating wounds and 

are not thick enough to fill cavity like wounds. 31, 44 

2.6 Wound dressing therapeutics 
 

Therapeutics have been added to wound dressings over the years to enhance patient 

comfort and to help accelerate the wound healing process. Doxycycline is an antibiotic 

therapeutic used to inhibit tissue degrading MMPs during chronic wound healing.57 It is a 

tetracycline class of antibiotics that combats bacterial infections. It works by deactivating the 

30S ribosomal subunit that would otherwise initiate translation of the destructive MMPs. As a 

result, doxycycline prevents biofilm formation common in chronic wounds. In addition, this 

antibiotic is active against E. coli, methicillin-resistant Staphylococcus aureus (MRSA), 

respiratory and urinary tract infections.58  

Antimicrobial dressings are important during the wound healing process because they 

contain therapeutic agents which inhibit potential bacterial infections caused by acute tissue 

injury, post-operative surgery or from more chronic, pathological states such as diabetes.31 Many 

anti-microbial dressings are impregnated with silver, which broadly act against infections caused 

by skin burns and wounds. Antimicrobial dressings have been used to help fight looming 

infections after tissue injury, particularly in diabetic ulcers. Silver has been the traditional 

antimicrobial agent to treat bacterial colonies such as Staphylococcus aureus and P. 

aeruginosa.44 Its mechanism of action involves the influx of silver ions to the bacterial 

cytoplasm, where they shut down enzyme activity and as a result, potassium ions leak out the 
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cell.59 The released ions cause the cytoplasm to burst and destroy the cell wall, leading to 

apoptosis. 59 Silver can only be applied locally but has been effective inhibiting bacterial growth 

and its resistance.60 Commercially, silver sulfadiazine is widely popular as a topical 

antimicrobial agent for skin wounds and burns. However, its spectrum of use should be limited 

because of its cytotoxicity. Iodine complexes, povidone-iodine and cadexomer iodine have been 

integrated into fabrics to improve wound healing due to its ability to inhibit microbe growth and 

encouraging debridement of the wound site.44 Gentamycin and oflaxcin have been impregnated 

into collagen and silicone substrates respectively to form antimicrobial dressings. 31 

Antimicrobial dressings are excellent broad-spectrum acting materials due to its ability to 

prevent systemic infections that could otherwise cause acute wounds to become necrotic and 

evolve into a chronic state. Nonetheless, the amount of anti-microbials should be moderated and 

treated locally to prevent systemic toxicity or bacterial resistance. 

2.7 Electrospun polysaccharides: material properties & applications 
 

Electrospinning was first patented by Anton Formhals in 1934 as a technique to create 

non-woven fibers using a voltage gradient between the syringe tip and collecting mandrel.61 

Specifically, the polymer solution ejected from the syringe tip has an applied charge given by the 

high voltage power supply. The applied charge in the solution overcomes its surface tension to 

create a jet which dries into fibers as it propels to the collecting mandrel to create a non-woven 

fiber sheet. (Figure 2.5) 
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Figure 2.5: Electrospinning scheme 
 

Electrospun nanofibers are an attractive platform as a wound dressing material because of 

its high surface to volume ratio and porosity to allow moisture and exudate transport between the 

dressing and injury site.62 The high porosity of nanofiber dressings have shown to absorb more 

wound exudate than film dressing formulations.63 In addition, the high porosity of nanofibers 

provides an environment where cells can exchange oxygen and inhibit bacterial permeation at 

the wound-nanofiber interface.62  Nanofiber wound dressings are highly flexible and can 

conform to the shape of the wound because of the very fine fiber diameter. This provides better 

patient compliance and comfort.62 Beyond the physical characteristics, nanofibers can express or 

maintain biological functionality after integrating bioactive components such as therapeutics, 

growth factors and antifungals to enhance the wound healing process.62 These bioactive agents 

can be homogenously distributed within the nanofiber scaffold, unlike other wound dressing 

formulations which compartmentalize the agents in separate layers. The nano-scale morphology 

also can encourage cell attachment and proliferation at the fibers for extracellular matrix 
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production.64, 65 The physical properties of electrospun fibers can be easily modulated by its 

polymer, solvent and electrospinning setup parameters.64 This is summarized in Table 2.2. 

 

Table 2.2 Parameters affecting physical properties of electrospun fibers. [66] 

Polymer Properties Solution Properties Other properties 

Molecular weight Viscosity Substrate properties 

Molecular-weight distribution Viscoelasticity Solution Feed Rate 

Glass-transition temperature Concentration Field strength 

Solubility Surface tension Geometry of electrode(s) 

 Electrical conductivity Vapor pressure of the solvent 

  Relative humidity 

 

Polysaccharide biopolymers have become widely popular in wound dressing 

development recently because of their natural abundance, biodegradability, non-toxicity, 

biocompatibility, and anti-microbial properties.65, 67, 68 They are versatile polymers because their 

material properties can be manipulated by molecular weight, charge and chemical composition. 

They are found in plants, animals and microbial organisms.69 Polysaccharides such as 

glycosaminogylcans (GAGs) or proteoglycans are also a component of the extracellular matrix 

whose integrity is important during wound healing.  Cellulose, alginate, heparin and hyaluronic 

acid with additives or in multiple solvent systems have been successfully electrospun into 

nanofibers.69 Meanwhile, chitosan and chitin have been blended with other biopolymers such as 

collagen and gelatin into nanofibers to study their potential use as a wound dressing material. 
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2.7.1. Alginate 
 

Alginate is an anionically charged, water soluble polysaccharide derived from brown 

seaweed. It is a linear copolymer made up of M (mannuronic acid) and G-block (guluronic acid) 

monomers. The proportion of M and G-blocks can influence the physical properties of the 

nanofiber.70 Alginate fibers with high M-block content exhibit fibers with high absorption 

capacity but low mechanical strength. Meanwhile, alginate fibers with high G-block content are 

much stronger but has lower fluid absorption capacity.70 Alginate is attractive as a wound 

dressing because it is non-toxic, non-immunogenic and biocompatible.69 Shalumon et al. created 

Alginate/PVA blended nanofibers with zinc oxide as an anti-bacterial wound dressing.71 

However, its potential in electrospinning has not been fully realized because of existing 

challenges to fabricate uniform, continuous fibers. This is due to low chain entanglement created 

by negative charge repulsions and length of polymer chains within the alginate network.69, 72, 73 

As a result, groups introduced other polymers to assist in electrospinning such as polyethylene 

oxide (PEO), polyvinyl alcohol (PVA) and glycerol to neutralize the electrostatic repulsions 

which help promote greater fiber entanglement.69 

2.7.2. Chitosan 
 

Chitosan is a positively charged polysaccharide derived from chitin present in 

crustaceans’ sea shells.69 Chitosan is a deacetylated form of chitin due to the loss of an acetyl 

group (-COCH3). It is soluble in acidic solutions (pH < 6) whose properties are dependent on the 

polymer’s molecular weight, degree of acetylation and distribution of acetylation on the polymer 

backbone.74, 75 Chitosan is a strong candidate as a wound dressing material because it is:  

biocompatible, non-toxic, anti-microbial, biodegradable, hemostatic, and can be a substrate for 
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cell attachment.76 Chitosan nanofibers can be a substrate for cell attachment because their 

polymer structure is similar to glycosaminoglycans (GAGs) which are a major component of the 

extracellular matrix.69 Unfortunately chitosan, like alginate is difficult to spin because of its 

highly charged nature but there are a handful of solvents that can dissolve it into a solution that 

can be successfully electrospun. Acetic acid (90 wt. %), trifluoroacetic acid (TFA) and 

TFA/dichloromethane (DCM) are solvent systems typically used to electrospin chitosan.77 

However, chitosan fibers lack stability in aqueous solutions and have limited electrospinning 

conditions that can successfully form fibers so additional polymers are introduced to improve 

spinnability such as PEO, PVA, collagen and silk.65, 68, 77, 78  

2.7.3. Hyaluronic acid 
 

Hyaluronic acid is a linear polysaccharide that is a major part of the extracellular matrix 

in connective tissues.79 Hyaluronic acid is a quality wound dressing material for its 

biocompatible and biodegradable properties. Hyaluronic acid (HA) has been reported to be 

successfully electrospun in dimethylformamide and water.79 However, there has been limited 

success electrospinning HA on its own due to its high charge density and surface tension. As a 

result, blended co-polymers are needed for it to be consistently electrospun successfully. Gelatin, 

PEO and zein, a corn protein have been blended with HA to form fibers. Ji et al. electrospun 

hyaluronic acid derivatives into fibers as an ECM mimicking substrate favorable for NIH3T3 

cell attachment and spreading which is ideal for tissue regeneration.80 

2.8 Polysaccharide hydrogels: material properties & applications 
 

Hydrogels are crosslinked networks that are very hydrophilic and absorb large amounts 

of water without dissolving because of irreversible chemical or physical bonds that stabilize the 
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gel.81 They are excellent platforms for wound dressing applications because they swell 

significantly which helps with wound exudate absorption. Also, their hydrophilic properties 

enable the hydrogel to keep the wound bed moist. Hydrogels have good bioadhesive properties 

that assist with maintaining moisture at the wound site while potentially delivering 

antimicrobials that may be integrated in the hydrogel for sustained action against infected 

wounds. Hydrogels are very flexible and conform in a variety of conditions.82-85  

The hydrogel’s material properties are dependent on: i) amount of fluid absorption and ii) 

the nature of bonding within the crosslinked polymer chains.81 The more hydrophilic groups in 

the hydrogel the greater swelling properties and vice versa. The bonding within crosslinked 

hydrogels is between functional groups within the polymer chains that stabilize the gel from 

dissolving.81 Hydrogel crosslinking can take place by either non-covalent crosslinks through 

physical entanglement and secondary bonding or by covalent crosslinks.86, 87 Non-covalent 

hydrogel crosslinking can reversibly take place while hydrogel crosslinking via covalent bonds is 

permanent. As a result, the reversibility of the crosslinking reaction has a major influence on the 

elasticity of the hydrogel’s swelling in solution. This swelling takes place through the expansion 

of the polymer chains as aqueous solution rushes into the hydrogel. In reversible hydrogel 

systems, its polymer chains constantly fluctuates in expansion and retraction while irreversible 

systems undergo fluctuation until reaching a swelling equilibrium.88 The hydrogel’s surface 

wettability, solute diffusion coefficient and mechanical properties are influenced by its swelling 

equilibrium.89-91  

Polymer properties such as molecular weight, charge and crosslinking density all play a 

role in modulating the degree of swelling in aqueous solutions. Typically, hydrogels with high 

molecular weights and crosslinking densities are stiff and rigid with high modulus values.92, 93 
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Meanwhile, solute diffusion out of hydrogels are controlled by their crosslinking density, mesh 

and pore sizes.94, 95 Polysaccharides in hydrogel formulations have been used in many 

applications because they are highly versatile, complex polymers that are readily available and 

can be easily manipulated into gels. They are natural, non-toxic while exhibiting 

immunomodulatory properties.96 Polysaccharide hydrogels have been predominantly used as 

drug delivery carriers but are gaining traction as tissue engineering scaffolds because of the 

similar structure it has to the extracellular matrix. A variety of polysaccharides have been used 

for tissue engineering and drug delivery such as alginate, gellan, dextran, hyaluronic acid and 

etc.97 There are also countless therapeutics that have been integrated into polysaccharide 

hydrogels to enhance application. Although there has been an explosion of papers in literature 

that have reported on the uses of polysaccharide hydrogels in drug delivery and tissue 

engineering, there is a gap in research regarding their potential applications as wound dressing 

materials.  

2.8.1. Alginate 
 

Alginate is an anionically charged, water soluble polysaccharide derived from brown 

seaweed. 70 It is widely used because of its fast ability to form gels. This is due to the carboxylic 

acid moieties on the alginate chain interacting with di-valently charged ions such as calcium, 

lead and copper which initiate crosslinking.97 The material properties of alginate can be modified 

by changing the ratio of its M-block (mannuronic acid) and G-block (guluronic acid) monomers. 

Alginate hydrogels with high M-block content have high fluid absorption capacity but low 

mechanical strength. Conversely, hydrogels with high G-block content have high strength but 

low water absorption capacity. 70 Alginate hydrogels have potential as wound dressing materials 

because they form stable hydrogels while exhibiting biocompatibility, non-immunogenicity and 
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porosity for fluid absorption. 97 Alginate hydrogels are considered candidates of wound dressing 

materials because of its ability to form an in-situ hydrogel in calcium ions present in wound 

exudate.98 Balakrishan et al. completed a series of studies where alginate, gelatin and anti-septic 

borax were incorporated into an in-situ forming hydrogel for wound healing applications.99-101  

2.8.2. Chitosan 
 

Chitosan is a linear polysaccharide β 1-4 linked D-glucosamine and N-acetyl-D-

glucosamine units. It is produced by the deacetylation of its parent polymer chitin and is often 

found in shells of shrimp and crab. Chitosan is different from other polysaccharides by the 

presence of nitrogen atoms, its cationic charge and ability to form polyelectrolyte complexes. 81 

They are good candidates as wound dressing materials because they are biocompatible, non-toxic 

and biodegradable. They are highly conformable and come in many shapes and sizes.85   

These hydrogels are fabricated via physical mixture or crosslinks to create a structured network. 

Chitosan hydrogels can be physically mixed into stable networks by introducing anionic ions or 

macromolecules to neutralize the positively charged chitosan and induce electrostatic attraction 

within the gelatinized network. Secondary bonding, hydrophobic-hydrophilic interactions and 

thermoresponsive gelation can also take place in chitosan hydrogels depending on what 

monomers or catalysts are added to it.81  While this method is non-toxic, the issue with physical 

crosslinking is the lack of long term stability and should only be used for short-term applications. 

Chemical crosslinking of chitosan hydrogels is straightforward using either small molecules, 

light, enzyme catalysts or polymers to create more stable networks. However, this crosslinking 

method is more toxic because of the by-products created from the reaction. 81  
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Figure 2.6: Chemical structure of chitosan  

 

Chitosan has been used as a wound dressing material because of its ability to protect the 

wound while being biocompatible and providing moisture to the wound environment. It has been 

shown that chitosan accelerates wound healing and promotes smooth scarring due to enhanced 

vascularization and a high supply of chittooligomers that incorporate collagen fibrils more 

efficiently at the extracellular matrix.102, 103 Important wound healing mediator fibroblast growth 

factor (FGF-2) has been successfully integrated into chitosan hydrogels. It maintained its 

bioactivity after impregnation into the chitosan hydrogel.51 Park et al. developed bFGF-loaded 

chitosan hydrogels to accelerate wound repair in chronic ulcers.104 
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2.8.3. Dextran 
 

Dextran is a glucose homopolysaccharide that is primarily used as a protein drug delivery 

system because their sustained release kinetics improve the protein’s bioavailability compared to 

being free in circulation.97 Dextran can be crosslinked physically by gamma irradiation to 

provide greater stability in the network. The stability of the dextran hydrogel is controlled by the 

length of irradiation and dextranase levels in the system which hydrolytically degrades the 

scaffold. The proteins trapped inside the dextran hydrogel have Fickian diffusion release kinetics 

in aqueous solution because they are much smaller than the pore sizes in the network that allow 

proteins to travel from an area of high concentration to low concentration. 97 Dextran hydrogels 

are relevant as potential wound dressing materials because anti-microbials can be introduced 

whose release is controlled by matrix metalloproteases active at the wound site. They have also 

exhibited angiogenesis and promotion of complete skin healing in animal burn wound models.105 

Sun et al. created excisions to full-thickness wounds before dextran hydrogel scaffolds were 

implanted with a secondary dressing layer for up to 21 days. 105 The study showed complete 

dermal regeneration after implantation of dextran hydrogels compared to non-treated and treated 

control groups. (Figure 2.7) 
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Figure 2.7: Evaluation of regenerated skin structures. (A) Quantification of skin structures in 
terms of dermal differentiation (i), epithelial maturation (ii), and the number of hair follicles (iii). 
(B) A 5-week-long study further demonstrated that dextran hydrogels promote complete skin 
regeneration with new hair growth, as shown by photos (arrows indicate the center of the original 
wound; Upper) and H&E-stained histologic sections. High magnification corresponds to boxed 
area in the low-magnification images. (C) Quantification of skin thickness after 3-week and 5-
week-long treatment compared to normal mouse skin. Significance levels were set at: *p < 0.05, 
**p < 0.01, and ***p < 0.001. Values shown are means ± SD. Scale bars, 100 μm. (from ref[105] 
with permission) 
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2.8.4. Gellan 
 

Gellan gum is a polysaccharide derived from Sphingomonas elodea bacterium 

fermentation. Gellan, like alginate forms gels when mixed with divalent ions. Its mechanical 

strength is dependent on the degree of acylated groups. 97 The more acylated groups, the more 

soft and elastic the gel is while deacylated gellan hydrogels are stiff and non-elastic. Although 

gellan has primarily been explored as ocular, nasal and drug delivery carriers, more recent work 

has been done to evaluate gellan as a silver impregnated wound dressing.106-109 Nonetheless, 

gellan gum is still in an early stage of being evaluated solely as a wound dressing. 

 

Figure 2.8: Average structures and/or repeating units of gellan  

 

2.8.5. Hyaluronic acid 
 

Hyaluronic acid is a glycosaminoglycan composed of repeating disaccharide units of D-

glucuronic acid and N-acetylglucosamine.110 It is a large component of the extracellular matrix, 

particularly in connective tissues. Also, it is viscoelastic, highly biocompatible, non-

immunogenic and biodegradable which makes it appealing as a hydrogel formulated wound 

dressing. 97 Hyaluronic acid forms hydrogels upon crosslinking with use of glutaraldehyde and 1-
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Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reagents.111 One group used hyaluronic 

acid functionalized with adipic dihydrazide and crosslinked with poly-ethylene glycol (PEG) 

propriondialdehyde to create a film which successfully delivered anti-microbial and anti-

inflammatory agents in vitro, showing promise as a wound dressing.112 Others have combined 

hyaluronic acid with agarose or fibronectin to create hydrogels which also could potentially be 

used as a wound dressing material.113, 114 

2.8.6. Arabinoxylan  
 

Arabinoxylan (AX) is a neutral non-starch polysaccharide derived from cereal grains 

such as wheat.1 They are water extractable and are comprised of a xylose backbone substituted 

onto arabinose units. Arabinoxylan ferulate (AXF) is arabinoxylan with ferulic acid substituted 

onto its arabinose monomer. (Figure 2.9) AXF can be readily cross-linked with oxidative 

reagents peroxidase and hydrogen peroxide. They function by creating an ester bond between 

ferulic acid and arabinose units to form a dimer which crosslinks the arabinoxylan chains 

together.115 Cross-linked arabinoxylan gels have high water absorption capacity which allows for 

potential drug delivery applications of therapeutics such as albumin and ibuprofen.1, 116 

Experiments have shown arabinoxylan hydrogels to have a two and a half fold increase in 

swelling when introduced into water.115 This phenomenon was attributed to its honeycomb 

shaped pores and hydrophilic properties as a lyophilized hydrogel. Arabinoxylan also does not 

require the use of toxic organic solvents but uses water instead for solubilization.   
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Figure 2.9: Arabinoxylan ferulate structure. Arabinoxylan ferulate (AXF) is composed of three 
components: A) xylose backbone substituted to B) arabinose sugar units, one of which is 
substituted to C) ferulic acid. 
 

Arabinoxylan polysaccharides have many benefits outside of its material properties. 

Arabinoxylan has shown potential as a drug delivery system as a gel by exhibiting high protein 

release. The rate of release can be modulated by the initial amount of protein loaded into the 

gel.1As a lyophilized hydrogel, it has relatively large pore sizes ranging from 200 to 400 

nanometers which allow the proteins to be introduced into without any significant damage to the 

protein.1 In addition, the flexibility of arabinoxylan chains enables fluid and solute movement in 

and out of the delivery system based on the gel’s degree of crosslinking.1 Studies have also 

shown arabinoxylan to regulate the lining of the gastrointestinal system.1, 117 Clinical studies with 

diabetes implications have shown arabinoxylan’s ability to modulate gut metabolism affecting 

glucose levels downstream.118, 119 Last, arabinoxylan has been integrated with other natural 

polymers such as alginate and gelatin to form fiber meshed wound dressings.70 
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2.9 Conclusions  
 

Polysaccharides have been primarily used in food, textile or cosmetic products but their 

potential as wound dressings is vast because of their abundant, non-toxic, biocompatibility and 

non-immunogenic properties in physiological systems. They also are excellent candidates 

because they are structurally diverse in their molecular weight and chemical structure which in 

turn influences the overall material properties. Many of the polysaccharides described in this 

review have demonstrated their applicability in the laboratory in vitro and in vivo. However, 

these class of polymers are still considered niche bioactive wound dressings commercially. We 

hope this review will encourage research groups to further explore polysaccharides and 

appreciate its value within the wound dressing market. 
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CHAPTER 3: Electrospinning of arabinoxylan as a novel fiber 
scaffold 
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Abstract: 
 

Research strategies in developing polysaccharide carbohydrate biomaterials for wound 

healing have steadily grown over the last decade. Arabinoxylan (AX) is a carbohydrate polymer 

derived from cereal grains. However, its potential for clinical applications has yet to be fully 

realized. Arabinoxylan ferulate (AXF), a type of arabinoxylan is hydrophilic and possesses 

tunable swelling properties for wound fluid absorption. This study aims to demonstrate the 

feasibility of electrospinning AXF to fibers and investigate the physical and biocompatible 

properties of the resulting nanofiber constructs. Gelatin (GEL) was blended with AXF to 

facilitate fiber formation and provide a natural polymer that host tissues can readily accept after 

injury. Blends of GEL and AXF at 1:1, 2:1 and 4:1 ratios were successfully electrospun and 

characterized in terms of morphology, tensile properties, pore size and molecular composition. 

Fiber diameter increased with respect to polymer concentration (0.425, 0.586 and 1.09 µm for 

1:1, 2:1 and 4:1 GEL-AXF blends respectively). Moduli values for 1:1, 2:1 and 4:1 GEL-AXF 

blends were 6.3, 22.9 and 46.0 MPa respectively, indicative of the greater strength with respect 

to polymer concentration. In addition, the scaffold possessed excellent cytocompatibility 

(fibroblast cell viability > 95%). Silver was impregnated into GEL-AXF nanofibers at 5% w/w 

concentration to enhance its anti-microbial properties against wound pathogens. After integration 

of silver, the drug exhibited near zero-order release kinetics with 20.9, 17.0 and 10.6% 

cumulative drug release for 1:1, 2:1 and 4:1 GEL-AXF blends respectively after 48 hours. Silver 

release from the scaffolds also inhibited bacterial growth as confirmed by disk-diffusion assay. 

This work shows electrospun GEL-AXF fibers are biocompatible and have tunable material 

properties. However, its stability in water needs to be improved with co-electrospinning with 
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more stable polymers to achieve the potential of this novel scaffold for wound dressing 

development. 

Keywords: gelatin, electrospinning, nanofiber, arabinoxylan, wound dressing 

3.1 Introduction 
 

  Electrospun fibers are an attractive platform as wound dressing materials because of its 

high surface to volume ratio, porosity, conformity at the wound site and ease of fabrication. 120 

The properties of electrospun fibers can be easily manipulated by the polymer concentration, 

flow rate, voltage and air gap distance. Electrospun polysaccharide polymers have become 

widely popular in wound dressing development recently because of their natural abundance, 

biodegradability, non-toxicity, biocompatibility, and anti-microbial properties.65, 67, 68 They are 

versatile polymers because their material properties can be manipulated by molecular weight, 

charge and chemical composition. Polysaccharides such as glycosaminogylcans (GAGs) or 

proteoglycans are play a role in the extracellular matrix as a substrate for cell migration and 

attachment during the proliferative phase of wound healing.  They are found in plants, animals 

and microbial organisms.69 Polysaccharides such as cellulose, alginate, heparin, chitosan and 

hyaluronic acid combined with additives or in multiple solvent systems have been successfully 

electrospun into nanofibers.69  

Arabinoxylan (AX) is a polysaccharide biopolymer containing a xylose backbone with 

arabinose substituted in the O-2 or O-3 positions of the backbone.1 The xylose and arabinose 

units are linked together by ester linkages which makes AX hydrophilic. The applications of 

arabinoxylan range from packaging materials, as prebiotics to regulate gut metabolism to fiber 

meshes.70, 119, 121AX’s hydrophilic and absorbent properties allows for moisture exchange 

between the wound dressing and wound.115 However, little work has been done to explore AX as 
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an electrospun wound dressing material despite many of the aforementioned strengths. Like 

other polysaccharides, AX cannot be electrospun solely due to the polymeric backbone’s 

repulsive charges reducing chain entanglement.  In this study, arabinoxylan ferulate (AXF) 

blended with gelatin produced novel, co-electrospun fiber mats that are highly porous, exhibit 

tensile strength, are biocompatible and can exhibit anti-microbial properties after integration with 

silver sulfadiazine. The results suggest there is potential of this biomaterial in advanced wound 

dressing development. 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.1: Arabinoxylan ferulate structure. AXF is composed of three components: A) xylose 
backbone substituted to B) arabinose sugar units, one of which is substituted to C) ferulic acid. 
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3.2 Materials and methods 

3.2.1. Materials 
 

Arabinoxylan ferulate (AXF) was purchased from Cambridge Biopolymers (Cambridge, 

UK). Porcine type-A gelatin, Total Carbohydrate Assay Kit, 70% Nitric Acid, Silver (I) 

Sulfadiazine  were purchased from Sigma-Aldrich (St. Louis, MO). 1,1,1,3,3,3-hexafluoro-2-

propanol (HFP) was purchased from TCI America (Portland, OR). Phosphate buffered saline 

(PBS) was purchased from EMD Chemicals (Gibbstown, NJ). Dulbecco’s modification of 

eagle’s medium (DMEM) was purchased from Invitrogen (Carlsbad, CA). Fetal calf serum was 

purchased from Lonza (Walkersville, MD). Hyclone 0.05% Trypsin was purchased from Thermo 

Scientific. (Logan, UT) Penicillin Streptomycin was purchased from Life Technologies. (Grand 

Island, NY). Sulfuric Acid was purchased from Fisher Scientific (Pittsburgh, PA). 

3.2.2. Scaffold preparation 
 

Preparation of GEL-AXF nanofiber blends involved two steps: homogenization and 

electrospinning.  

3.2.2.1. Preparation of electrospinning solution  

A mass of 250 milligrams of AXF was added to 10 mL of HFP. The mixture was 

homogenized for five minutes to break down particles in the solvent. Next, 250, 500 and 1000 

mg of gelatin were quickly added to the resulting mixture. The resulting mixtures led to 1:1, 2:1 

and 4:1 GEL-AXF mixtures respectively. The vials were placed on a shaker plate and shaken 

continuously overnight. 



 
 

43 
 

 

Figure 3.2: Schematic of GEL-AXF electrospinning solution preparation 
 

 

3.2.2.2. Preparation of silver-loaded GEL-AXF electrospinning solution 

To create 1:1, 2:1 and 4:1 GEL-AXF blends with 5% w/w silver sulfadiazine, 30, 40 and 

70 milligrams of silver sulfadiazine was added with 250 milligrams of arabinoxylan in HFP 

before homogenization. (Table 3.1) This concentration of silver in the GEL-AXF blends was 

used to be equivalent to the amount in the 3M Alginate commercialized wound dressing 

containing an ionic silver complex made of silver, sodium, hydrogen, zirconium and 

phosphate.122, 123 After homogenization, 250, 500 and 1000 milligrams of gelatin was added to 

the resulting mixture and placed on a shaker plate overnight. 
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Table 3.1 Preparation of silver loaded GEL-AXF scaffolds 

Formulation GEL (mg) AXF (mg) Silver sulfadiazine (mg) 

1:1 GEL-AXF 250 250 30 
2:1 GEL-AXF 500 250 40 
4:1 GEL-AXF 1000 250 70 

 
 
 
3.2.2.3. Preparation of GEL-AXF scaffolds  

To fabricate electrospun gelatin fibers, the GEL-AXF solution was drawn up through the 

blunted needle (18G×1½ in) of a 10 ml syringe. The syringe was loaded into a syringe pump, 

propelling the gelatin solution out of the needle 150 mm away from the collecting mandrel at a 

rate of 5 ml/hr for 4:1 and 2:1 blends. The flow rate was decreased to 2 ml/hr for 1:1 blends 

because the solution would otherwise bead at 5 ml/hr. The needle was connected to a positive 

electrode of a high voltage power supply (Spellman CZE100R, Spellman High Voltage 

Electronics Corporation). The positive electrode applied a 20 kV voltage to the needle. This 

voltage created an electric field opposite to the grounded target to overcome the surface tension 

at the needle tip. These conditions generated a Taylor cone which allowed a steady stream of 

gelatin solution to flow from the needle to the grounded collecting plate in a jet-like fashion. As 

the GEL-AXF solution was being streamed from the needle tip, the HFP solvent evaporated. 

Randomly aligned nanofibers were collected on a flat, stainless steel mandrel (7.5 cm×2.5 

cm×0.5 cm, L× W×T) rotating at 500 rpm. Scaffolds were sterilized by UV light for ten minutes 

on each side. 
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Figure 3.3: Electrospinning setup and conditions. 
 
3.2.2.4. Crosslinking of GEL-AXF scaffolds 

GEL-AXF electrospun scaffolds were immersed in approximately 500 μl of 1% w/v 

PEG-Diacrylate and 10% w/v Eosin-Y photoinitiator solution per 100 mg of scaffold before 10 

minute UV light treatment for each side of the scaffold. 

3.2.3. Scanning electron microscopy (SEM) 

Prior to SEM imaging, scaffolds were placed on a 1 cm diameter stub. The stub was 

placed on a specimen holder and platinum sputter coated. SEM images were taken and analyzed 

under JEOL JSM-5610LV Scanning Electron Microscope.  One hundred randomly chosen fibers 

and their pores in each SEM images were analyzed with UTHSCSA ImageToolTM software for 

fiber diameter and pore size measurement. 

 

 

 

 
syringe polymer solution 

syringe pump  

1:1 GEL-AXF – 2 ml/h 

2:1 and 4:1 GEL-AXF – 5 ml/h 

Needle – 18 G x ½ in 

fibers
collecting mandrel – ~ 500 rpm 

High Voltage Power Supply – 20 kV 

Air gap distance – 150 mm 
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3.2.4. Tensile testing 

“Dog-bone” shaped samples (n=12) were obtained using a punch die (ODC Testing & 

Molds) of the dimensions 19.0, 3.2 and 6.1 mm at its length, narrowest point and widest point, 

respectively.124 Mechanical properties of the samples, including peak load, peak stress, modulus, 

strain at break and energy to break, were tested using the MTS Bionix 200 Mechanical Testing 

System in conjunction with TestWorks 4.0 software.  

3.2.5. Carbohydrate assay 

The entire electrospun 1:1, 2:1 and 4:1 Gel-AXF blends were weighed with their masses 

recorded.124 Then the mats were dissolved in 10 mL of PBS. Based on their corresponding 

concentrations, the dissolved mats were diluted to 2.5 mg/mL. 2 mg/mL concentration of glucose 

standards in the carbohydrate assay kit produced by Sigma Aldrich (St. Louis, MO) were used to 

reference the sample concentrations. A 20 µL microliter aliquot was taken out of 1:1, 2:1 and 4:1 

GEL-AXF 2.5 mg/mL stock solutions and added to a 96 well plate in five replicates before being 

filled to a 50 µL volume with de-ionized water. Next, 150 µL of sulfuric acid was added to each 

well and incubated in a water bath at 90◦C for 15 minutes. After cooling down, 30 µL developer 

solution from the assay kit is added to each well that is placed on a horizontal shaker plate for 5 

minutes. After shaking, the plate is read at 490 nm for quantitative spectrophotometric 

measurement to confirm the presence of arabinoxylan in the scaffolds after electrospinning. 

3.2.6. Drug release kinetics studies 
 

  One half of the electrospun 1:1, 2:1 and 4:1 Gel-AXF blends impregnated with silver 

sulfadiazine was weighed with their masses recorded. The scaffolds were immersed in a conical 

flask containing 20 mL of 2% nitric acid solution. At 1 hr, 2 hr, 6 hr, 12 hr, 24 hr and 48 hr time-
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points, a 5 mL aliquot of release media was taken out and collected into a 15 mL centrifuge tube. 

The sample aliquots were then analyzed for silver release quantification by ICP-OES. Intensity 

measurements for silver were calibrated against a standard curve to estimate silver concentration 

values which were then converted to mass. Triplicate samples were independently measured 

twice for the study. 

3.2.7. WST-1 cell viability assay 
 

The entire electrospun 1:1, 2:1 and 4:1 GEL-AXF blends were weighed with their masses 

and concentrations recorded. Next, they were sterilized with 1000 ppm peracetic acid for 15 

minutes and washed in PBS three times for 10 minutes using the protocol developed by 

Yoganarasimha et al.125 The sterilized fibers were centrifuged for five minutes at 3000 rpm. 

Afterwards the fibers was dissolved in DMEM and 10% PBS for 15 minutes to a stock 

concentration of 25 mg/mL. The treatment medium was centrifuged again for five minutes at 

3000 rpm before collecting the supernatant which was serially diluted to 5, 0.5, 0.05 mg/mL with 

pure DMEM serving as a control. NIH3T3 fibroblasts were seeded at a density of 10,000 cells 

per well in 96 well plates then 200 µL of the degradation media was added. The cells were 

incubated with the degradation media for 24 hours at 37◦C and 5% CO2. After incubation, the 

seeded cells were given 100 µL of fresh DMEM media before adding 10 µL of WST-1 reagent. 

The cells were incubated for one hour before the plate is read spectrophotometrically at 450 nm. 

Relative cell activities from treated groups were measured by taking their absorbance 

measurements and normalizing them versus absorbance values from untreated control groups. 

WST-1 assay works through the reagent salt, tetrazolium being cleaved into a dark red formazan 



 
 

48 
 

dye whose intensity can be quantified. The salt cleavage is due to mitochondrial enzymes 

produced by metabolically active cells whose proliferation and viability correlate colormetrically.  

3.2.8. Trypan blue cell viability & proliferation assay 
 

  The same preparation procedures were done for these electrospun blends as in Section 

3.2.7. before treating the cells with the prepared degradation media. After preparation, NIH3T3 

fibroblasts were seeded at a density of 50,000 cells per well in a 24 well plate before 500 µL of 

the degradation media was added. The cells were incubated with the degradation media for 24 

hours at 37◦C and 5% CO2. After incubation, the seeded cells were trypsinized with and 

suspended in 1:1 trypsin-DMEM solution before centrifugation for five minutes at 3000 rpm. 

After centrifugation, the supernatant was aspirated and the cell pellet was re-suspended in a 1:1 

mixture of PBS-trypan blue dye for five minutes before 20 µL aliquots were taken out to 

measure viability and cell number. 

3.2.9. Kirby-Bauer disk diffusion assessment 
 

The Kirby-Bauer Disk Diffusion susceptibility test determines bacterial antibiotic 

susceptibility or resistance based on the size of its inhibition zone.126 Pseudomonas aeruginosa, 

Staphylococcus aureus and Enterococcus faecalis were subject bacteria in this study because of 

their occurrence being the three most frequent bacteria species in an epidemiology study on 

patients with post-surgical wound infections.127 Five microliter frozen aliquots of gram-positive 

bacterial species Staphylococcus aureus and Enterococcus faecalis were cultured in BHI broth 

media for 18 hours at 37◦C. Gram-negative strain Pseudomonas aeruginosa was cultured in LB 

broth media for 18 hours at 37◦C. S. aureus and P. aeruginosa were cultured in a standard 

incubator shaking at 200 rpm while E. faecalis was incubated in a 6% oxygen Anoxomat jar. All 
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species were cultured overnight to a concentration of approximately 1-2 x 109 CFU/mL after 

incubation. 

After incubation, a sterile cotton swab was inoculated in each of the cultures and spread 

on agar medium in a 100 mm Petri dish and allowed to dry for five minutes. After drying, 6 mm 

diameter filter paper samples impregnated with a known concentration of antibiotic for the test 

organism was used as a positive control. Representative 6 mm diameter 4:1 GEL-AXF fibers 

impregnated with silver sulfadiazine and negative control 4:1 GEL-AXF fibers without silver 

sulfadiazine were placed in the remaining two quadrants on the agar. (Table 3.2) The Petri 

dishes containing samples inoculated with S. aureus and P. aeruginosa were stored in a standard 

incubator for 24 hours. Petri dishes containing test samples of E. faecalis were incubated in a 6% 

oxygen Anoxomat jar for 24 hours. After incubation, top and bottom images of the Petri dishes 

were acquired using a digital camera and image processing software (Photo/AnalystR PC Image, 

Fotodyne, Inc.). The growth inhibition zones diameters were measured manually with a caliper. 

Disk diffusion susceptibility testing was performed twice under the same conditions on different 

days. The mean of the inhibition zone diameters of each treatment were then determined. 

Table 3.2 Kirby-Bauer susceptibility test setup 

 

Bacterial 
Species (Strain) 

Positive Control 
(Antibiotic) 

Treatment  Negative Control  
(no treatment) 

Pseudomonas 
aeruginosa (PAO1) 

Tetracycline; 30 µg 4:1 GEL-AXF fibers 
w/ 5% silver 
sulfadiazine 

4:1 GEL-AXF fibers w/o 
silver sulfadiazine 

Staphylococcus 
aureus (RN450) 

Erythromycin; 15 µg 4:1 GEL-AXF fibers 
w/ 5% silver 
sulfadiazine 

4:1 GEL-AXF fibers w/o 
silver sulfadiazine 

Enterococcus 
faecalis (V583) 

Tetracycline; 30 µg 4:1 GEL-AXF fibers 
w/ 5% silver 
sulfadiazine 

4:1 GEL-AXF fibers w/o 
silver sulfadiazine 
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3.2.10. Statistical analysis 

Statistical analysis was carried out using an unpaired t-test and one way analysis of 

variance (ANOVA) with post-hoc analysis for subgroup comparison. P values less than 0.05 

were considered statistically significant. 

3.3 Results and discussion 

3.3.1. Fiber morphology, diameter and pore size 
 

Uniform and random aligned fiber morphology were seen in all uncrosslinked GEL-AXF 

blends. Fiber diameter and pore size increased with respect to gelatin concentration. The 1:1, 2:1 

and 4:1 GEL-AXF blends have fiber diameters of 425 nm, 586 nm and 1.09 µm respectively. 

(Figure 3.5) Meanwhile, the pore sizes for 1:1, 2:1 and 4:1 Gel-AXF blended fibers are 0.66, 1.4 

and 3.6 µm2 respectively. (Figure 3.5) This data suggest that the electrospun mat’s pore sizes 

increase with respect to higher GEL-AXF blends because their larger fiber diameter reduces the 

number of intersecting points which creates larger void spaces within the mat. Another possible 

reason that fiber diameter and pore size correspondingly increase with gelatin concentration is 

the 2 ml/hr flow rate for 1:1 GEL-AXF blends propel less polymer out of the syringe compared 

to 5 ml/hr flow rates for 2:1 and 4:1 GEL-AXF blends. 

Ethanol and tri-ethanolamine were used to dissolve crosslinking reagents, PEG-DA and 

Eosin Y before crosslinking the electrospun mat. The scaffolds completely lost their morphology 

after the crosslinking step. This was attributed to the hydrophilicity of gelatin and arabinoxylan 

which created fiber fusion in their mats. Scaffold shrinkage also took place after crosslinking. As 

a result, the fiber diameter and pore size could not be measured quantitatively.  
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3.10.2 Tensile Testing 

 

 

 

 

 

Figure 3.4: SEM of GEL-AXF scaffolds. A) 1:1 GEL-AXF blend; B) 2:1 GEL-AXF blend; C) 
4:1 GEL-AXF blend; D) 1:1 GEL-AXF blend with crosslinker; E) 2:1 GEL-AXF blend with 
crosslinker; F) 4:1 GEL-AXF blend with crosslinker. 
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Figure 3.5: Fiber diameter & pore size of GEL-AXF blended scaffolds (n = 100) 
A) Fiber Diameter; B) Pore Size (*p < 0.05; significant differences among each of 1:1, 2:1 and 
4:1 GEL-AXF groups tested vs. each other) 

3.3.2. Tensile testing 
 

Uncrosslinked GEL-AXF nanofibers had moduli values of 6.3, 22.9 and 46.0 MPa for 1:1, 

2:1 and 4:1 GEL-AXF blends respectively. (Table 3.3). It was also clear that peak load and peak 

stress increased in proportion to amount of gelatin blended into the fibers. Meanwhile, strain at 

break decreased with respect to gelatin blended. Due to strain being inversely proportional to 

modulus, the higher moduli values for GEL-AXF blends with greater amounts of gelatin 

possessed lower strain values. Crosslinked 1:1, 2:1 and 4:1 GEL-AXF fibers had moduli values 

of 1.00, 3.10 and 2.00 MPa respectively. Although peak load and peak stress increased in 

proportion to gelatin, it was not as pronounced when compared to uncrosslinked GEL-AXF 

scaffolds. No correlation between GEL-AXF blend ratios and modulus was present in 

B 
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crosslinked scaffolds. (Table 3.4) This is possibly due to the crosslinker changing the original 

thickness of the scaffold which directly relates to modulus as shown for uncrosslinked scaffolds. 

Table 3.3 Mechanical properties of uncrosslinked GEL-AXF scaffolds (n =12) 

GEL-AXF 
Blend Ratio 

Thickness 
(in) 

Peak Load (N) Peak Stress 
(MPa) 

Modulus 
(MPa) 

Strain At 
Break 
(mm/mm) 

Energy to 
Break 
(N*mm) 

1:1 0.0084 ± 
0.00133 

0.29 ± 0.093 0.50 ± 0.16 6.3 ± 2.2 0.14 ± 0.056 0.15 ± 0.071 

2:1 0.011 ± 
0.0015 

0.59 ± 0.16 0.77 ± 0.19 23.0 ± 9.3 0.075 ± 0.040 0.12 ± 0.031 

4:1 0.017 ± 
0.00077 

1.4 ± 0.18 1.2  ± 0.15 46.0  ± 5.7 0.033 ± 
0.0069 

0.17 ± 0.049 

 

Table 3.4 Mechanical properties of crosslinked GEL-AXF scaffolds (n = 12) 

GEL-AXF 
Blend Ratio 

Thickness 
(in) 

Peak Load 
(N) 

Peak Stress 
(MPa) 

Modulus 
(MPa) 

Strain At 
Break 
(mm/mm) 

Energy to 
Break 
(N*mm) 

1:1 0.001 ± 
0.0023 

1.2 ± 0.56 1.80 ± 0.62 1.1 ± 0.28 2.2 ± 0.38 9.8 ± 5.8 

2:1 0.015 ± 
0.0065 

2.2 ± 1.1 2.3 ± 0.63 3.1 ± 2.3 1.9 ± 0.64 16 ± 8.9 

4:1 0.013 ± 
0.0049 

2.8 ± 0.83 3.3  ± 1.19 2.0  ± 0.92 2.2  ± 0.33 23 ± 7.9 
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3.3.3. Carbohydrate assay 
 

Overall, arabinoxylan was present in all of the electrospun 1:1, 2:1 and 4:1 GEL-AXF 

blends, with 11%, 4% and 2% of arabinoxylan in the entire scaffold respectively. (Figure 3.6) 

The 1:1 GEL-AXF blend had a greater absolute proportion of arabinoxylan amount remaining 

compared to other blends. However, the 1:1 GEL-AXF blend lost a significantly greater 

proportion of arabinoxylan during electrospinning than the 2:1 and 4:1 blends. Meanwhile, the 

GEL-AXF 4:1 blend lost a significantly smaller proportion of arabinoxylan during 

electrospinning than the 2:1 and 1:1 blends. (Figure 3.7) This is attributed to the ability of 

gelatin and its ability to be electrospun and capture arabinoxylan particles at higher 

concentrations such as the 4:1 GEL-AXF blend. A greater proportion of arabinoxylan is left 

behind during electrospinning for 1:1 and 2:1 GEL-AXF blends where the gelatin concentrations 

are lower and less suitable to generate fibers on the mandrel. 

 

Carbohydrate Assay: Amount of Arabinoxylan in Scaffold
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Figure 3.6: AXF percentage in scaffold after electrospinning (n = 10) (*p < 0.05; significant 
difference for 1:1 GEL-AXF group vs. 2:1 and 4:1 GEL-AXF groups) 
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Carbohydrate Assay: Difference of Arabinoxylan proportion 
before and after electrospinning
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Figure 3.7: AXF loss percentage in GEL-AXF scaffold after electrospinning (n = 10) (*p < 0.05; 
significant differences among each of 1:1, 2:1 and 4:1 GEL-AXF groups tested vs. each other)  

3.3.4. Silver release kinetics 
 

  Overall, the release rate of each of the silver loaded GEL-AXF blended nanofiber 

scaffolds was similar over the 48 hour time course. (Figure 3.8) There was an initial burst 

release within the first two hours before following more controlled kinetics afterwards, 

characteristic of zero-order kinetics. In the first two hours, the 1:1 and 2:1 GEL-AXF blended 

nanofiber scaffolds possessed a significantly greater cumulative silver release of 8.49 and 7.29% 

than the 4:1 GEL-AXF blend which released 4.19% silver. After two hours, only the 1:1 GEL-

AXF blend had a significantly greater percent cumulative release than the 4:1 blend. After 48 

hours, 1:1, 2:1 and 4:1 GEL-AXF impregnated with silver had 20.9, 17.0 and 10.6% cumulative 

release respectively. This phenomenon is likely due to the greater density of gelatin nanofibers in 
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4:1 GEL-AXF blends encapsulating the silver longer before release. Also, the greater density of 

gelatin reduced bulk degradation within the scaffold which slowed release of the encapsulated 

silver. 
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Figure 3.8: Cumulative silver sulfadiazine release from 1:1, 2:1 and 4:1 blended GEL-AXF 
scaffolds over a 48 hour period. (n = 6) (*p < 0.05; significant differences among 1:1 GEL-AXF 
vs. 2:1 and 4:1 GEL-AXF groups at denoted times) (**p < 0.05; significant differences among 
1:1 GEL-AXF vs. 4:1 GEL-AXF at denoted times.) 

 

3.3.5. WST-1 assay for cell viability 
   

  After 24 hours, all treatment groups containing degradation media produced greater cell 

activity values than control groups containing plain DMEM. Cell activity steadily increased with 

respect to concentration of 2:1 and 4:1 GEL-AXF blends up to 1.77 and 1.64 fold respectively 
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until 25 mg/mL where it slightly declined to 1.67 and 1.38 fold. Meanwhile, 1:1 GEL-AXF 

blends induced greater cell activity for all concentration values, ranging from 1.08 to 2.25 fold at 

0.05 and 25 mg/mL respectively. (Figure 3.9) The presence of arabinoxylan may have induced 

greater cell activity compared to control treatments and with respect to its blend ratio with 

gelatin. This could be indicative of arabinoxylan’s naturally derived origin promoting 

biocompatibility in the cell microenvironment. Overall, arabinoxylan electrospun in gelatin 

nanofiber scaffolds encouraged cell activity and was not cytotoxic to fibroblasts which play a 

key role in tissue matrix regeneration and wound healing. 
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Figure 3.9: Relative cell activity of NIH3T3 cells with respect to GEL-AXF blend ratio and 
concentration after 24 hour incubation period. (n = 8) (*p < 0.05; significant differences among 
denoted 1:1, 2:1 and 4:1 GEL-AXF groups) 
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3.3.6. Trypan blue cell viability & proliferation assay 
 

 Introduction of arabinoxylan into electrospun gelatin did not have a cytotoxic effect on 

NIH3T3 fibroblast cells. Fibroblasts possessed viability percentages of at least 94.7% after 

treatment with degradation media from 1:1, 2:1 and 4:1 GEL-AXF blended fibers for 24 hours. 

(Figure 3.10) No significant differences were found in percent viability with respect to GEL-

AXF blend ratio. Fibroblasts treated with degradation media from 1:1 GEL-AXF, 2:1 and 4:1 

fibers had viability percentages ranging from 94.5 to 98.6%, 97.1 to 98.4% and 94.6 to 97.7% 

respectively. Non-treated fibroblasts were 97.8% viable after 24 hour incubation in DMEM +10% 

FBS. There were no statistically significant differences among blended fibers with respect to 

degradation media concentration.  

 GEL-AXF fibers also had a positive effect on fibroblast proliferation as the cell number 

doubled from 50,000 to 100,000 after 24 hour incubation for all treatments with exception to 25 

mg/ml concentration of 2:1 GEL-AXF blend. The grey dotted line in (Figure 3.11) illustrates the 

doubling mark of 100,000 cells. No significant differences were found in percent viability with 

respect to GEL-AXF blend ratio. Fibroblasts treated with degradation media from 1:1 GEL-AXF 

fibers had cell numbers increase with respect to concentration, reaching a peak of 142,000 cells 

at 5 mg/mL before declining to 125,000 at 25 mg/mL. Fibroblasts treated with degradation media 

from 2:1 and 4:1 fiber blends also exhibited a similar trend reaching a peak cell number of 

155,000 and 151,000 before falling to 73,500 and 110,000 respectively. Non-treated fibroblasts 

proliferated to 101,000 after 24 hour incubation in DMEM +10% FBS. Despite the high cell 

viability numbers for fibroblasts treated with 25 mg/mL concentrations of 1:1, 2:1 and 4:1 blend 

ratios of GEL-AXF, the lower cell proliferation numbers at this concentration may be attributed 

to a material dosing effect where the cell activity is hindered by the scaffold. Nonetheless, there 
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were no statistically significant differences among blended fibers with respect to degradation 

media concentration. 
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Figure 3.10: Viability of NIH3T3 fibroblast cells with respect to GEL-AXF blend ratio and 
concentration after 24 hour incubation period. (n = 8) 
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Figure 3.11: Cell number of NIH3T3 fibroblasts with respect to GEL-AXF blend ratio and 
concentration after 24 hour incubation period. (n = 8) 
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3.3.7. Kirby-Bauer disk diffusion assessment 
 

GEL-AXF fibers were assessed for their anti-microbial activity by measuring the 

inhibition zones within each species of bacteria. P. aeruginosa was highly susceptible to silver 

sulfadiazine impregnated 4:1 GEL-AXF fibers, which actively inhibited bacterial growth with an 

inhibition zone of 16.24±1.43 mm, greater than the inhibition zone of the tetracycline positive 

control. The effectiveness of silver sulfadiazine was consistent to previous data showing its 

applicability in a skin wound models.128 Gram-positive S. aureus and E. faecalis species were 

less sensitive to the silver sulfadiazine impregnated 4:1 GEL-AXF fibers with an inhibition zone 

diameter of 9.51 ± 0.37 and 9.39 ± 0.54 mm respectively. One possible reason that these species 

showed some resistance compared to gram-negative P. aeruginosa is that gram-positive bacteria 

are more susceptible to antibiotics and have a thicker cell wall that make it more difficult to 

break down.129  All three species of bacteria were sensitive to 4:1 GEL-AXF fibers impregnated 

with silver sulfadiazine. P. aeruginosa was most susceptible to the silver impregnated fibers 

among the three species. All three positive control treatments achieved clear inhibition of each of 

the bacterial species after 24 hour incubation. (Figure 3.12) As expected, all bacterial species 

grew and showed resistance to 4:1 GEL-AXF fibers with no silver sulfadiazine. The growth 

inhibition data from two trials are also summarized in Table 3.5.  
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Figure 3.12: Antimicrobial properties of 4:1 GEO-AXF fiber mats using Kirby-Bauer disk 
diffusion susceptibility test on gram negative G(-) and gram positive G(+) bacteria. Tetracycline 
(A), Silver sulfadiazine impregnated 4:1 GEL-AXF fibers (B) and 4:1 GEL-AXF fibers (C) were 
tested on Pseudomonas aeruginosa and Enterococcus faecalis bacterial species. Erythromycin 
(A), Silver sulfadiazine impregnated 4:1 GEL-AXF fibers (B) and GEL-AXF fibers (C) were 
tested on Staphylococcus aureus bacterial strain. (n = 2) 

 

 

 

 

 

 

 

 

 

Top 

Bottom 

P. aeruginosa G(-) S. aureus G(+) E. faecalis G(+)

A 

B 

A 

B 

A 

B 

A 

B 

B 

A 

B 

A 

C C 

C C 

C 

C 



 
 

63 
 

Table 3.5 Sensitivity profiles of bacterial species after treatment 

  

 
 

 

Species Treatment Average inhibition zone (mm) 

P. aeruginosa   
 Positive Control  

(30 µg Tetracycline) 
15.38±0.53 

 4:1 GEL-AXF fibers w/ 
5% silver sulfadiazine 

16.24 ±1.43 

 Negative Control  
(no treatment) 

0 

S. aureus   
 Positive Control  

(15 µg Erythromycin) 
23.83 ±0.55 

 4:1 GEL-AXF fibers w/ 
5% silver sulfadiazine 

9.51 ±0.37 

 Negative Control  
(no treatment) 

0 

E. faecalis   
 Positive Control  

(30 µg Tetracycline) 
28.25 ±1.06 

 4:1 GEL-AXF fibers w/ 
5% silver sulfadiazine 

9.39 ±0.54 

 Negative Control  
(no treatment) 

0 
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3.4 Conclusions 

 
Synthesis of blended GEL-AXF electrospun nanofibers was successful. Addition of 

gelatin increased fiber diameter and the pore size of the scaffold. In turn, this increased the 

scaffold’s elastic modulus. Crosslinker reagents were formulated to help stabilize the scaffold 

but the results indicate reduced surface morphology and mechanical strength. Arabinoxylan was 

successfully integrated into the gelatin nanofibers and has potential to act as a wound dressing. 

However, the degradation profile indicated the uncrosslinked and crosslinked GEL-AXF scaffold 

disintegrated within 30 minutes in aqueous media (data not shown). Arabinoxylan should be 

incorporated with a more stable polymer such as polylactic acid (PLA) or polylactic-co-glycolic 

acid (PLGA) to reduce scaffold degradation in media.130 In vitro biocompatibility results were 

promising as fibroblast cell viability and proliferation were the same or greater than non-treated 

groups. Silver impregnated GEL-AXF fibers exhibited antimicrobial activity against bacterial 

pathogens. In future testing, GEL-AXF fibers will be implanted onto an injury site of an animal 

model where in vivo drug release and tissue viability will assess the drug delivery and 

biocompatibility properties. The host immune response after foam implantation in vivo will be 

examined by measuring at neutrophil count or pro-inflammatory cytokines in affected biopsy 

wounds. Electrospun GEL-AXF fibers are good platforms as wound dressing materials because 

of their high surface to volume ratio, abundance, their naturally derived origin and their 

absorptive capacity. This study hopes to exhibit the feasibility and efficacy of fabricating novel 

electrospun arabinoxylan based fibers in an effort to advance wound dressing development. 
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Abstract: 
 

Fabrication of a functional wound dressing material is critical in managing wound 

healing. Traditional wound dressings such as gauze achieve the minimum by simply protecting 

and covering the wound. More advanced wound dressings aim to achieve greater functionality by 

absorbing wound exudate to keep the wound site moist and preventing biofilm formation. Many 

current advanced wound dressing materials on the market possess the aforementioned properties 

but none have used arabinoxylan (AX) as a base material. AX should be considered as a wound 

dressing because of its absorptive properties and naturally derived origin. It is also inexpensive. 

The goal of this study is to investigate and highlight the material and biocompatible properties of 

Arabinoxylan ferulate (AXF) foams as a potential wound dressing material. To achieve this goal, 

the AXF foam’s material properties such as morphology, storage modulus, porosity, swelling 

and cumulative drug release kinetics were examined. Endotoxin quantification, fibroblast activity 

and microbial growth inhibition studies were completed to test the in vitro biocompatibility of 

AXF foams. Tegaderm Alginate foam dressings manufactured by 3M were included in many of 

these studies for comparison. The in vitro results indicate that AXF foams are highly porous, 

absorptive scaffolds which have swelling ratios over 20 times its original weight. AXF foams are 

non-toxic to the cell microenvironment, exhibiting cell viabilities over 95% and cell numbers 

doubling after 72 hours. Silver (5% w/w) was successfully integrated into AXF foams and 

achieved 45% cumulative release after 48 hours in vitro. Silver impregnated AXF foams also 

inhibited bacterial lawn growth using a modified Kirby-Bauer disk-diffusion method. Overall, 

AXF foams possess many appropriate material properties necessary to be a candidate material in 

wound dressing development. 

Keywords: wound dressing, foam, arabinoxylan, wound management, biopolymer, crosslinking  
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4.1 Introduction 
 

Wound dressing development is important in clinical settings because of the emphasis to 

improve the rate of wound healing while preventing threatening infections after injury.  Medical 

device manufacturers are advancing wound dressing features beyond what is already exhibited in 

traditional dressings such as gauze. Those types of wound dressings are expected to primarily 

protect the wound from further injury. Advanced wound dressings are expected to keep the 

wound site moist, absorb wound exudate, remove the wound odor, prevent biofilm formation and 

encourage skin regeneration in addition to the features described of traditional wound 

dressings.33, 34 It should also have good biocompatibility. It should have appropriate mechanical 

strength for insulation, wound protection and exudate removal from the injury site. Lastly, it is 

expected be absorptive, impermeable to bacteria and inexpensive. 31, 43  

Polysaccharide polymers have been used as advanced wound dressings because they are 

natural, highly abundant, biodegradable and non-toxic. They also have components that are 

recognized by the body and play a role in rebuilding the extracellular matrix.131  Polysaccharides 

can be crosslinked to form gels that are highly absorbent that keep the wound bed moist.132 They 

are candidates as wound dressing materials because of their ability to carry and deliver drugs in a 

controlled fashion. Alginate, chitin, chitosan, hyaluronan and heparin are examples of 

polysaccharides that have been used as commercially wound dressings.131 

Arabinoxylan (AX) is a polysaccharide containing a xylose backbone with arabinose 

substituted in the O-2 or O-3 positions of the backbone.1 The xylose and arabinose units are 

linked together by ester linkages which gives the biopolymer its hydrophilic properties. Ferulic 

acid can be coupled to arabinoxylan via ester linkages to produce the resulting Arabinoxylan 

ferulate (AXF). AXF in water can be crosslinked to form gels by radical polymerization to create 
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dimers at the ester bond between ferulic acid and the arabinose unit.115  The applications of 

polysaccharides related to AX range from packaging materials to prebiotics that regulate gut 

metabolism.70, 119, 121 More specifically, AX gels have been developed by several groups as 

delivery systems which have proven to deliver therapeutics such as methyl xanthine and albumin 

in vitro.1, 115 AX gel fabrication is very simple, does not require use of harsh organic solvents and 

its mechanical properties can be tuned with respect to the crosslinking density. Arabinoxylan has 

an ability to swell and absorb liquids because of its hydrophilic properties.115 In this study, 

lyophilized AXF foams will be fabricated then characterized to evaluate their material properties, 

and biocompatibility to evaluate its potential as a wound dressing.   

4.2 Materials and methods 

4.2.1. Materials 
 

Arabinoxylan ferulate (AXF) was purchased from Cambridge Biopolymers (Cambridge, 

UK). Horseradish peroxidase and 35% wt. hydrogen peroxide were purchased from Sigma-

Aldrich (St. Louis, MO). 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) was purchased from TCI 

America (Portland, OR). Phosphate buffered saline (PBS) was purchased from EMD Chemicals 

(Gibbstown, NJ). Dulbecco’s modification of eagle’s medium (DMEM) was purchased from 

Invitrogen (Carlsbad, CA). Fetal calf serum was purchased from Lonza (Walkersville, MD). 

Hyclone 0.05% Trypsin was purchased from Thermo Scientific (Logan, UT). Penicillin 

Streptomycin was purchased from Life Technologies (Grand Island, NY). Tegaderm Alginate 

and Ag Tegaderm Alginate was purchased from 3M Health Care (St. Paul, MN). LAL 

Chromogenic Endotoxin Quantitation Kit was purchased from Thermo Scientific (Rockford, IL). 
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4.2.2. Scaffold preparation 

 

4.2.2.1. Preparation of arabinoxylan foams  

Two batches of 600 milligrams of AXF dry powder were added to two 10 milliliter 

aliquots of deionized water, stirred and shaken until dissolved. Next, 50 µl of 1 mg/mL solution 

of peroxidase and 60 µl of (3% w/v) hydrogen peroxide was added to each of the reaction 

mixtures and stirred to initiate enzymatic crosslinking.133 (Figure 4.1) Immediately, the solutions 

were poured together into a 100 mm Petri-dish before sonication for 30 minutes. After sonication, 

the crosslinked solutions were set in room temperature for three hours to cure. After curing, the 

crosslinked gel was freeze-dried overnight to produce the final product. 3MTM Tegaderm 

Alginate foam dressing served as an established commercialized peer for comparison. 

 

Figure 4.1: Diagram of enzymatic crosslinking of arabinoxylan ferulate (AXF) in solution. The 

ferulic acid group of AXF ( ) crosslinked with the arabinose sugar of arabinoxylan ( ) via 
horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a hydrogel network on the 
xylose backbone ( ). 
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4.2.2.2. Preparation of silver-loaded arabinoxylan foams 

To create AXF foams with 5% w/w concentration of silver, approximately 65 milligrams 

of silver sulfadiazine was added with 600 milligrams of AXF in deionized water before stirring. 

After stirring, the procedure was followed from Section 4.2.1. Ag 3MTM Tegaderm Alginate 

foam dressing with 5% silver served as an established commercialized peer for comparison. This 

concentration of silver in the GEL-AXF blends was equivalent to the amount in the Alginate 

wound dressing that contained an ionic silver complex made of silver, sodium, hydrogen, 

zirconium and phosphate.122, 123 

4.2.3. Morphology 

Prior to SEM imaging, scaffolds were placed on a 1 cm diameter stub. The stub was 

placed on a specimen holder and platinum sputter coated. SEM images were taken and analyzed 

under JEOL JSM-5610LV Scanning Electron Microscope to see any distinguishing features in 

the surface morphology of the scaffolds.   

4.2.4. Rheology 
 

Rheological testing was performed on samples and cut into 10 mm diameter disks. 

Testing was performed on dry and wet samples on a temperature controlled plate of a Discovery 

Hybrid Rheometer. Wet samples were immersed in 1 mL of phosphate buffer saline (PBS) for 

one hour before blot drying. Each set of samples on the plate at 25 and 37 degrees Celsius were 

under compression, undergoing shear stress by an 8 mm diameter probe. The parameters for the 

compression probe were as follows: 500 µm gap size, 0.1-100 Hz frequency and 0.1% strain rate 

during the measurement. These settings derived from the work done by Zuidema et al.134 This 

study was done in duplicate. 
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4.2.5. Swelling ratio 

The sample was cut into 10 mm diameter disks by biopsy punch then weighed to record 

their masses. Next, they were immersed in 1.5 mL of PBS at room temperature for seven days 

and taken out at pre-determined time points (6h, 12h, 24h, 48h, 72h and 168h). At each time 

point, the swollen foam was taken out, blot dried and re-weighed to record its mass. The swelling 

ratio was calculated by the following formula: 

Swelling Ratio = [(Wf/Wa)] x 100  

Where Wf = final mass of sample, and Wi = initial mass 

This study was done in duplicate. 

4.2.6. Drug release kinetics  
 

  Samples were cut into 10 mm diameter disks then incubated in 20 mL of 2% Nitric acid 

solution at 37 degrees. The mass of silver sulfadiazine in the scaffold was estimated by taking 5% 

of the scaffolds mass. The foams were immersed in a conical flask containing 20 mL of 2% 

Nitric acid solution. At 1 hr, 2 hr, 6 hr, 12 hr, 24 hr and 48 hr time-points, a 5 mL aliquot of 

release media was taken out and collected into a 15 mL centrifuge tube. The sample aliquots 

were then analyzed for silver release quantification using ICP-OES. Intensity measurements for 

silver were calibrated against a standard curve to estimate silver concentration values which were 

then converted to mass. Triplicate samples were independently measured twice for the study. 
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4.2.7. Limulus amebocyte lysate (LAL) endotoxin assay 
 

The AXF foams were weighed then sterilized with 1000 ppm peracetic acid for 15 

minutes and washed in PBS three times for 10 minutes using the protocol developed by 

Yoganarasimha et al.125 The sterilized AXF foams were air-dried for 10 minutes and along with 

unsterile foams, were placed into tissue culture inserts for each well. The inserts containing the 

foam samples were immersed in PBS for four hours. After immersion, a 50 µl aliquot was 

extracted from the release media and diluted 20-fold with addition of 1 mL of endotoxin free 

media from the endotoxin assay kit. After dilution, 50 µl aliquots were taken from the diluted 

samples and added to a 96-well plate. Next, 50 µl  of LAL reagent was added to the sample for 

10 minute incubation at 37◦C. Afterwards, 100 µl of chromogenic substrate was added to the 

reaction mixture and incubated for six minutes at 37◦C to induce colormetric reaction based on 

protease enzyme activity induced by the endotoxin. A 50 µl aliquot of 25% acetic acid was 

added to end the reaction before samples were gently shaken before spectrophotometric 

measurement at 405 nm. 

4.2.8. Trypan blue cell viability & proliferation assay 
 

The AXF foams were sterilized with 1000 ppm peracetic acid for 15 minutes and washed 

in PBS three times for 10 minutes using the protocol developed by Yoganarasimha et al.125 The 

sterilized AXF foams were air-dried for 10 minutes and placed into tissue culture inserts which 

were immersed into individual wells. NIH3T3 fibroblasts were seeded at a density of 50,000 

cells per well in a 12 well plate before the inserts were introduced. The cells were incubated with 

the scaffold containing inserts for 24 and 72 hours at 37◦C and 5% CO2. After incubation, the 

seeded cells were trypsinized with and suspended in 1:1 trypsin-DMEM mixture before 
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centrifugation for five minutes at 3000 rpm. After centrifugation, the supernatant was aspirated 

and the cell pellet was re-suspended in a 1:1 mixture of PBS-trypan blue dye for five minutes 

before 20 µL aliquots were taken out to measure viability and cell number. 3M Alginate foams 

were used for commercial scaffold comparison while no scaffold served as a control treatment. 

4.2.9. Kirby-Bauer disk diffusion assessment 
   

  The Kirby-Bauer Disk Diffusion susceptibility test determined bacterial antibiotic 

susceptibility or resistance based on the size of its inhibition zone.126 Pseudomonas aeruginosa, 

Staphylococcus aureus and Enterococcus faecalis were subject bacteria in this study because of 

their occurrence being the three most frequent bacteria species in an epidemiology study on 

patients with post-surgical wound infections.127 Five microliter frozen aliquots of gram-positive 

bacterial species Staphylococcus aureus and Enterococcus faecalis were cultured in BHI broth 

media for 18 hours at 37◦C. Gram-negative strain Pseudomonas aeruginosa was cultured in LB 

broth media for 18 hours at 37◦C. S. aureus and P. aeruginosa were cultured in a standard 

incubator shaking at 200 rpm while E. faecalis was incubated in a 6% oxygen Anoxomat jar. All 

species were cultured overnight to a concentration of approximately 1-2 x 109 CFU/mL after 

incubation. 

After incubation, a cotton swab was inoculated in each of the cultures and spread on agar 

medium in a 100 mm Petri dish and allowed to dry for five minutes. After drying, 6 mm diameter 

samples impregnated with a known concentration of antibiotic for the test organism was used as 

a positive control. AXF foams impregnated with silver sulfadiazine, Alginate foam impregnated 

with silver and AXF foams without silver were placed in the remaining three quadrants on the 

agar. (Table 4.1) The Petri dishes containing samples inoculated with S. aureus and P. 
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aeruginosa were stored in a standard incubator for 24 hours. Petri dishes containing test samples 

of E. faecalis were incubated in a 6% oxygen Anoxomat jar for 24 hours. After incubation, top 

and bottom images of the petri dishes were acquired using a digital camera and image processing 

software (Photo/AnalystR PC Image, Fotodyne, Inc.). The growth inhibition zones diameters 

were measured manually with a caliper. Disk diffusion susceptibility testing was performed 

twice under the same conditions on different days. The mean of the inhibition zone diameters of 

each treatment were then determined. 

 

Table 4.1 Kirby-Bauer susceptibility test setup 

 

Bacterial 
Species (Strain) 

Positive Control 
(Antibiotic) 

Treatment 1 Treatment 2 Negative Control 
(no treatment) 

Pseudomonas 
aeruginosa (PAO1) 

Tetracycline; 30 µg AXF foam w/ 
5% silver 
sulfadiazine 

ALG foam 
w/5% silver 

AXF foam w/o silver 
sulfadiazine 

Staphylococcus 
aureus (RN450) 

Erythromycin; 15 µg AXF foam w/ 
5% silver 
sulfadiazine 

ALG foam 
w/5% silver 

AXF foam w/o silver 
sulfadiazine 

Enterococcus 
faecalis (V583) 

Tetracycline; 30 µg AXF foam w/ 
5% silver 
sulfadiazine 

ALG foam 
w/5% silver 

AXF foam w/o silver 
sulfadiazine 

4.2.10. Statistical analysis 

Statistical analysis was carried out using an unpaired t-test and one way analysis of 

variance (ANOVA) with post-hoc analysis for subgroup comparison. P values less than 0.05 

were considered statistically significant. 
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4.3 Results and discussion 

4.3.1. Morphology 
 

 The AXF foams exhibited a porous, smooth morphology which allows high fluid 

absorption. Also, the pores were in the micro scale and evenly distributed along the surface 

which encouraged fluid absorption and drug release. Meanwhile, the 3M Alginate foams 

possessed a smooth surface with a random entanglement of microfibers. The porous structure 

was less ordered which may affect fluid absorption but not significant enough to dry out the 

wound bed. (Figure 4.2) 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.2: SEM images of A) 3M Alginate at 500 µm; B) 3M Alginate at 100 µm; C) AXF 
foam at 500 µm; D) AXF foam at 100 µm.  
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4.3.2. Rheology 
   

The AXF foams had significantly higher storage modulus values than 3M Alginate foams 

in the dry state at both 25 and 37 degrees Celsius. (Figure 4.3) The storage modulus for dry 3M 

Alginate foams across 0.1-100 Hz frequencies was 2.58-4.07 MPa. Meanwhile, the storage 

modulus for AXF foams at 25 degrees Celsius was 30.6-52.2 MPa. At 37 degrees Celsius, 3M 

Alginate foams and AXF foams had storage moduli of 2.40-3.86 and 24.8-25.9 MPa respectively 

over the same frequency range. This phenomenon was attributed to the greater stiffness and 

viscosity in the dry AXF foams. Hydrated 3M Alginate and AXF foams at 25 degrees Celsius 

exhibited storage moduli of 0.256-1.62 and 0.005-0.792 MPa across 0.1-100 Hz frequency range, 

respectively. Hydrated 3M Alginate and AXF foams at 37 degrees have storage modulus values 

of 0.242-1.48 and 0.006-0.822 MPa across the same frequency range respectively. The results 

suggested hydrated AXF foams to some extent lost some stiffness and were more viscous than 

elastic. In the hydrated state, 3M Alginate foams had significantly higher storage modulus values 

than AXF foams because AXF is a hydrophilic polymer that swells significantly when hydrated. 

As a result, the polymer chains in the foam expanded which compromised its elasticity and 

strength. Overall, the storage modulus of the AXF and Alginate foams were lowered by three 

and one order of magnitude respectively after they were hydrated. (Figure 4.4) 



 
 

77 
 

Frequency (Hz)

0.01 0.1 1 10 100 1000

S
to

ra
g

e
 M

o
d

ul
us

 (
P

a
)

1e+6

1e+7

1e+8

Dry 3M Alginate foam at 25 degrees Celsius 
Dry AXF foam at 25 degrees Celsius 

 

Figure 4.3: Storage modulus of dry AXF and 3M alginate foams under shear stress at A) 25 and 
B) 37 degrees Celsius. (n = 16) (*p < 0.05; significant differences of AXF foam vs. 3M Alginate 
foam at both temperatures) 
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Figure 4.4: Storage modulus of hydrated AXF and 3M alginate foams under shear stress at A) 
25 and B) 37 degrees Celsius. (n = 16) (*p < 0.05; significant differences of AXF foam vs. 3M 
Alginate foam at both temperatures) 
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4.3.3. Swelling ratio 
 

  Overall, both scaffolds had high swelling capacities because of their porous morphology. 

The swelling ratios of 3M Alginate at 25 degrees Celsius were 670% at six hours to a final 

swelling ratio of 1703% after 168 hours. AXF foams had a six hour swelling ratio of 1432% at 

six hours and 2145% after 168 hours. Meanwhile at 37 degrees, 3M Alginate foams possessed a 

six hour swelling ratio of 930% that swelled to a 1096% after 168 hours. AXF foams at 37 

degrees had swollen 1302% then reaching 2025% after 168 hours. Both scaffolds swell rapidly 

within the first 12 hours before reaching a plateau at 24 hours. (Figure 4.5) The AXF foam 

exhibited a significantly higher swelling ratio than 3M Alginate foams during the 168 hour time 

period. This is because AXF is highly water absorbent which increases in mass after being 

immersed in water. AXF foams also have a tendency to retain fluid much more than its 3M 

Alginate counterparts due to its inelasticity within the polymer network.  
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Figure 4.5: Swelling ratio of AXF and 3M alginate foams immersed in PBS at A) 25 and B) 
37◦C. (n = 5) (*p < 0.05; significant differences of AXF foam vs. 3M Alginate foam at both 
temperatures) 
 

 

4.3.4. Drug release kinetics studies 
 

  AXF foams released 12% of silver sulfadiazine by weight in the first hour, and continued 

to linearly release silver over the study’s time course to give a final cumulative silver release of 

44% after 72 hours. (Figure 4.6) The amount of cumulative silver sulfadiazine release from AXF 

foams was much higher than the 3M Alginate foam. This was most likely attributed to initial 

swelling, bulk degradation and erosion of the AXF foam in comparison to Alginate foams. Like 

many polysaccharide based materials, AXF’s hydrophilicity causes aqueous medium to penetrate 

and cause the foam to swell significantly and allow silver to diffuse out quickly. Subsequently, 

the foam’s polymer chains became loosened, leading to a loss of its integrity and drug solute 

transport.135 The amount of silver sulfadiazine released from the 3M Alginate foam was below 

the limit of quantification threshold during ICP-OES analysis. This may be due to the dressing 

B
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being designed for very slow release and being less hydrophilic than AXF foams. The initial 

burst release of silver sulfadiazine out of AXF foams is expected to inhibit microbes at the 

wound site which will prevent further inflammation, biofilm formation and the wound from 

transitioning into the chronic state. However, because the cumulative silver sulfadiazine release 

becomes linear after the burst effect at 1 hr, it is important to analyze the cytotoxicity of the 

silver sulfadiazine impregnated AXF foams over an extended period of time. Silver in excessive 

amounts kill healthy cells in addition to microbes. 
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Figure 4.6: Cumulative silver sulfadiazine release from AXF foam. (n = 6)  
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4.3.6. Limulus amebocyte lysate (LAL) endotoxin assay 
 

  LAL Endotoxin levels for unsterilized and sterilized AXF foams were 5.30 ± 1.10 and 

3.42 ± 0.87 EU/mg respectively, showing a 35.6% reduction after treatment. (Figure 4.7) The 

Food and Drug Administration does not have a uniform endotoxin level limit for wound dressing 

materials. However, it is imperative to minimize endotoxins to reduce symptoms such as fever 

and septic shock. The reduction of endotoxins after peracetic acid sterilization helped contribute 

to making AXF foams less cytotoxic and maintain baseline cell viability and proliferation in 

vitro.  
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Figure 4.7: LAL endotoxin content in AXF foams before and after sterilization. (n = 8) (*p < 
0.05; significant difference of sterilized AXF foam compared to unsterilized AXF foam) 
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4.3.7. Trypan blue cell viability & proliferation assay 
 

  The introduction of AXF foams into the in vitro microenvironment did not have a 

cytotoxic effect on NIH3T3 fibroblasts. Their viability values were 96.6 and 96.4% over a 24 

and 72 hour time period respectively. After exposure to the Alginate foam, fibroblasts were 96.7 

and 97.3% viable after 24 and 72 hours. Untreated fibroblasts showed viability values of 95.8 

and 96.9% after 24 and 72 hours. (Figure 4.8) There were no significant differences in viability 

between AXF foams, Alginate foams and non-treated test groups.  Based on the results, it can be 

concluded that fibroblasts, which play a prominent role in the proliferative and remodeling stages 

of wound healing were not negatively affected by exposure to AXF foams as their viability 

maintained baseline levels.  

 Fibroblast proliferation after exposure to AXF foams was encouraging partly due to their 

high viability in vitro. After incubation with an initial cell seeding density of 50,000 cells per 

well, fibroblast cell number increased to 166,000 and 212,000 after 24 and 72 hours respectively. 

Fibroblasts cultured with Alginate foams proliferated from 50,000 to 129,000 and 302,000 cells 

per well after 24 and 72 hours respectively. (Figure 4.9) Meanwhile, non-treated test groups had 

cell numbers of 205,000 and 289,000 cells per well after 24 and 72 hours respectively. There 

were significant differences in cell number between 0 and 72 hour time-points for all treatment 

groups.  

The results summarized the biocompatibility and bio-inert properties of AXF foams. In 

fact, they had proliferative inducing effects as they have greater cell numbers than Alginate and 

non-treated groups after the first 24 hours. However, they were not statistically significant for 

that time period. Another insight from the data was the lower cell number for AXF foam treated 

fibroblasts compared to Alginate and non-treated groups after 72 hours. This was most likely 
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attributed to the highly absorptive, hydrophilic properties of AXF foams as they absorbed 

important growth factors (i.e. FGF) or intracellular signals necessary for fibroblast proliferation. 

However, there were no significant differences with respect to treatment group for the 72 hour 

incubation period. 
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Figure 4.8: Cell viability of NIH3T3 fibroblast cells after exposure to alginate and AXF foams 
after 24 and 72 hour incubation period. (n = 8) 
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Figure 4.9:  Cell proliferation of NIH3T3 fibroblast cells after exposure to 3M Alginate and 
AXF foams after 24 and 72 hour incubation period. (n = 8) (*p < 0.05; significant differences in 
cell number at 24 hours compared to cell number at 72 hours for all treatments) 
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4.3.8. Kirby-Bauer disk diffusion assessment 
 

The four treatment groups were assessed for their anti-microbial activity by measuring 

the inhibition zones within each species of bacteria. P. aeruginosa was highly susceptible to 

silver sulfadiazine impregnated AXF foams, which actively inhibited bacterial growth with an 

inhibition zone of 22.17±1.53 mm, greater than the inhibition zone of the tetracycline positive 

control. The effectiveness of silver sulfadiazine was consistent with previous data in literature 

showing its applicability in a skin wound model.128 Gram-positive S. aureus and E. faecalis 

species were less sensitive to the silver sulfadiazine impregnated AXF foams with an inhibition 

zone diameter of 12.39 ± 1.26 and 12.32 ± 0.81 mm respectively. One possible reason that these 

species showed some resistance compared to gram-negative P. aeruginosa is that gram-positive 

bacteria are more susceptible to antibiotics and have a thick cell wall difficult to break down.129   

All three species of bacteria were sensitive to AXF foams impregnated with silver 

sulfadiazine. P. aeruginosa was most susceptible to the silver impregnated AXF foams among 

the three species. For Alginate foams, the bacteria were more resistant with lower inhibition zone 

diameters than silver impregnated AXF foams. In fact, E. faecalis was completely resistant to 

silver impregnated Alginate foam. Irregularly shaped inhibition zones for silver impregnated 

AXF foams against P. aeruginosa were due to the scaffold melting during incubation. All three 

positive control treatments achieved clear inhibition of the three species after 24 hour incubation. 

(Figure 4.10) As expected, all bacterial species grew and showed resistance to AXF foams with 

no silver sulfadiazine. The growth inhibition data from two trials were summarized in Table 4.2.  

The results suggest anti-microbials such as silver integrated into AXF foams can be successfully 

delivered to the site of infections. In the future, more specific bacteria susceptible antibiotics can 

be integrated in the AXF foam to improve efficacy. Combinations of antibiotics and silver could 
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be combined together to create an anti-microbial cocktail to treat against infections. However, 

the antibiotic selected is important as there is a wide array of bacteria species that is not 

susceptible to the same antibiotic, possibly developing resistance and other complications at the 

wound site. 

 

 

 

 

Figure 4.10: Antimicrobial properties of 3M alginate and AXF foams using Kirby-Bauer disk 
diffusion susceptibility test on gram negative G(-) and gram positive G(+) bacteria. Tetracycline 
(A), Silver sulfadiazine impregnated AXF foams (B), AXF foams (C) and silver impregnated 3M 
Alginate foams (D) were tested on Pseudomonas aeruginosa and Enterococcus faecalis bacterial 
species. Erythromycin (A), Silver sulfadiazine impregnated AXF foams (B), AXF foams (C) and 
silver impregnated 3M Alginate foams (D) were tested on Staphylococcus aureus bacterial strain. 
(n = 2) 
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Table 4.2 Sensitivity profiles of bacterial species after treatment 

Species Treatment Average inhibition zone (mm) 
P. aeruginosa   
 Positive Control           

(30 µg Tetracycline) 
14.40±5.44 

 AXF foam w/ 5% silver 
sulfadiazine 

22.17±1.53 

 ALG foam w/ 5% silver  10.04±1.82 

 Negative Control         
(no treatment) 

0 

S. aureus   
 Positive Control          

(15 µg Erythromycin) 
23.02 ±0.59 

 AXF foam w/ 5% silver 
sulfadiazine 

12.39 ±1.26 

 ALG foam w/ 5% silver 5.75 ±0 

 Negative Control         
(no treatment) 

0 

E. faecalis   
 Positive Control          

(30 µg Tetracycline) 
27.62 ±0.16 

 AXF foam w/ 5% silver 
sulfadiazine 

12.32 ±0.81 

 ALG foam w/ 5% silver 0 

 Negative Control        
(no treatment) 

0 
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4.4. Conclusions 
 

AXF foams are highly porous, biocompatible scaffolds that have a potential niche in the 

market as a polysaccharide based wound dressing because it is inexpensive, easy to fabricate and 

has material properties that are beneficial in wound healing. In this pre-clinical study, AXF 

foams possessed higher swelling capabilities and compared to 3M Alginate foams 

commercialized in the market. In their dry state, AXF foams also had higher mechanical strength 

as its storage modulus was greater than for 3M Alginate foams. AXF foams can be impregnated 

with silver which can be released in moist wound environments. However, more work needs to 

be done to improve the mechanical stability of the scaffold in aqueous environments. A more 

stable polysaccharide such as chitosan can be introduced to decrease the scaffold’s degradation 

in solution. Additionally, a greater concentration of crosslinker can be used to strengthen the 

polymer network. Processing conditions such as AXF gel freezing temperature and 

lyophilization pressure will need to be explored to examine its effect on its material properties.    

In the future, in vivo tests such as wound closure rate, in vivo drug release, and host immune 

response should be done to validate the foam’s healing properties in injury and pathogenic 

wound conditions. This work hopes to bring arabinoxylan polysaccharides to the forefront as a 

biopolymer wound dressing that can be applied for treatment of wounds. 
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CHAPTER 5: Summary & future work 

5.1 Summary 
 

This dissertation aims to be the first to influence the biomaterials community to 

investigate arabinoxylan as a wound dressing material. Arabinoxylan should be investigated as a 

wound dressing material because of its high absorbency and hydrophilicity which absorbs wound 

exudate. Arabinoxylan is naturally derived and biocompatible to not elicit a cytotoxic or foreign 

body immune response. Arabinoxylan is also abundant and inexpensive which makes fabrication 

cost-effective. Lastly, arabinoxylan can be successfully integrated with other polymers or in a 

variety of formulations. Arabinoxylan can also be impregnated with anti-microbial drugs that can 

be delivered to prevent wound infections.  

 

5.1.1. GEL-AXF fibers 
 

Arabinoxylan was successfully fabricated and characterized as a nanofiber scaffold after 

being electrospun with different amounts of gelatin. GEL-AXF electrospun scaffolds possessed a 

well-defined fiber morphology tunable from the nano and micro scales. GEL-AXF fibers also 

possessed large pores to allow nutrient and oxygen exchange between the wound bed and 

scaffold. Increased gelatin concentration in these blended fibers improved the mechanical 

properties of the scaffold. However, when the scaffold was exposed in aqueous environments, it 

was prone to degradation and losing mechanical strength which compromised its function as a 

barrier. Silver sulfadiazine was successfully integrated into GEL-AXF fibers with its release 

exhibiting near zero-order kinetics and anti-microbial properties against common bacterial 

species encountered during wound healing. GEL-AXF fibers were biocompatible and did not 

hinder fibroblast proliferation in vitro.  
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Overall, these scaffolds show potential as a wound dressing material because of their 

conformability, high surface to volume ratio and biocompatibility. However, its stability will 

need to be improved to progress beyond the pre-clinical stage. This would be rectified by 

blending in more stable polymers such as PCL, PLGA or PLA as additives that can be co-

electrospun with arabinoxylan. This would reduce the degradability of the scaffold in aqueous 

solution while maintaining biocompatibility. In turn, it is important that the amount of these 

polymers are minimized so the natural component of arabinoxylan can illicit its natural, bio-

derived properties within the wound environment. 

 

5.1.2. AXF foams 
 

Arabinoxylan foams were fabricated and tested as a wound dressing material with 3M 

Tegaderm Alginate foam as a commercial peer to compare against. A detailed summary of 

properties of AXF foams are shown in Table 5.1. AXF foams exhibited a honeycomb 

morphology with a highly porous structure that enable moisture and fluid exchange at the injury-

dressing interface. AXF foams in dry states were much stiffer than 3M Tegaderm Alginate 

counterparts, illustrating its ability to be a barrier from the external environment. AXF foams can 

be introduced with silver sulfadiazine to serve as a drug carrier to deliver a sustained dose of 

anti-microbials to the wound site during a two day period. This delivery was validated by linear 

release kinetics data and growth inhibition using the disk diffusion method. The in vitro 

biocompatibility of the foams was also validated with cell viability and proliferation on par with 

3M Alginate and non-treated groups. Sterilization of these scaffolds reduced bacterial endotoxin 

content and ensured contamination was minimized.  
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In summary, AXF foams possessed many material properties necessary to function as a 

wound dressing material. Its mechanical stability in highly aqueous media will need to be 

improved to fully achieve its potential. However, the ultimate application of AXF foams will be 

to serve as an absorbent layer sandwiched between two polyurethane film layers micro-printed 

with pores on its surface for wound fluid absorption. (Figure 5.1) This design will best optimize 

the swelling properties of AXF foams while minimizing its weaknesses by surrounding it with a 

much more stable polymer such as polyurethane. Polyurethane film is non-degradable, a 

substrate for adhesives and is bio-inert to function as part of the dressing that directly interfaces 

with the skin.135, 136 Polyurethane and arabinoxylan would be an ideal combination of polymers 

whose prototype design would help treat against acute, moderately exudating wounds.  

 

 
 
 
Figure 5.1: Diagram of polyurethane-arabinoxylan wound dressing material prototype. 
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Table 5.1: Summary of AXF foam material properties. 

Properties Experimental test Expected Outcomes Results

Morphology Scanning Electron 
Microscopy 

Highly porous, smooth surface, close to or 
better than commercialized control 

 



Mechanical Properties: 
Shear Modulus 

Rheometry Close to or better than commercialized control 

 



Porosity Apparent Volume Method Achieve porosity values between 70-90%; close 
to or better than commercialized control 

 



Swelling  Swelling Ratio Maximal swelling above 200%; close to or 
better than commercialized control 

 



Cumulative Drug 
Release Kinetics 

Inductively Plasma Optical 
Emission Spectrometry 

Burst release kinetics in first six hours before 
more controlled release; close to or better than 
commercialized control 

 



Bio-inert LAL Endotoxin Assay Reduction of bacterial endotoxins after 
sterilization 



Biocompatibility Cell Viability and 
Proliferation Assays;  

Above 80% Cell Viability and double cell 
number after 3 days; close to or better than 
commercialized control 

 



Anti-microbial 
properties 

Kirby Bauer Growth 
Inhibition Assay 

No bacterial lawns on inoculated agar gel; close 
to or better than commercialized control 

 



**Results subjectively rated from 1-3 checks in comparison to 3M Alginate foam dressing** 
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5.2 Future work 
 

This project attempted to comprehensively evaluate material properties of arabinoxylan 

as electrospun fiber and foam platforms and evaluate its potential as a wound dressing material. 

Although many of the properties in vitro have been successfully characterized, more work needs 

to be done before it can be evaluated in a clinical setting. The three dimensional porosity of 

arabinoxylan fibers and foams needs to be accurately measured using mercury porosimetry 

method. Processing conditions such as AXF gel freezing temperature and lyophilization pressure 

will need to be explored to examine its effect on its material properties. In vitro, additional cell 

studies such as looking at macrophage and keratinocyte viability and proliferation should be 

considered. Extracellular matrix production should also be considered by analyzing fibronectin 

protein assembly through fluorescent antibody staining.137 Additionally, a blood clotting test 

developed by Shih et al. would appropriately assess the clotting properties of AXF scaffolds in a 

physiologically inclined environment.138    

Next, in vivo testing models need to be conducted in detail to look at important 

characteristics such as wound closure rate, neutrophil count, wound histology, extracellular 

matrix production and mortality rate. Shin-Yeu et al. designed silver loaded chitosan gel 

dressings for wound healing. This group conducted a study by creating wound incisions on the 

dorsal region that were infected with P. aeruginosa before implanting the dressing on mice for 

up to 14 days.139 The wound areas were measured to analyze the degree of closure and its scabs 

were extracted, homogenized and plated on agar for bacteria quantification at 1, 2, 7 and 14 days. 

Neutrophils from the mice’s blood were counted using a hemostasis analyzer to determine the 

degree of inflammation after implanting the chitosan scaffold. The wound histology after 

chitosan implantation was examined using hematoxylin and eosin, Masson Trichrome and Gram-
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Twort staining (H&E) to qualitatively assess inflammatory cell infiltration, collagen production 

and bacteria presence. 139 Histology work from Sun’s group also used histology to look at dermal 

differentiation, epithelial maturation and skin growth after implanting dextran hydrogels on mice 

burn wound models during a three and five week period.105 Mortality rate also needs to be 

considered during these studies. Mouse subjects in Shin-Yeu’s work were euthanized when their 

physical condition deteriorated. Mice that survived after day 7 of the 14 day study were 

classified as long term survivors while mortality rate was determined by the number of mice that 

survived after Day 14.139 Implementing these in vivo studies using arabinoxylan polymers will 

give a much clearer picture of its clinical effectiveness as a wound dressing material.  

In literature, arabinoxylan has been largely unnoticed as potential wound dressing 

material. However, its material properties, naturally derived origin and abundance are desirable 

characteristics that warrant further investigation in vivo before clinical trials. This project aimed 

to highlight the unique properties of arabinoxyan, its fabrication in nanofiber and foam 

formulations and its application for treatment of acute, moderately exudating wounds. The in 

vitro data from this project suggests a promising future for these platforms in advancing wound 

dressing development. So far, there have been no entries of “arabinoxylan” found in any medical 

device database stored by the United States Food and Drug Administration (FDA), indicating a 

niche that has yet to be established commercially.140 This dissertation aimed to contribute and 

catalyze this area in wound development.  
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Abstract: 

Polyamidoamine (PAMAM) dendrimers have emerged as an important class of 

nanostructured materials and have found a broad range of applications. There is also an ongoing 

effort to synthesize higher-complexity structures using PAMAM dendrimers as enabling building 

blocks. Herein, we report for the first time the fabrication of electrospun nanocomposite fibers 

composed of dendrimer derivatives, namely PEGylated PAMAM dendrimers, blended with a 

small amount of high-molecular-weight polyethylene oxide (PEO). Morphological features and 

mechanical properties of the resulting dendrimer fiber mats were assessed.  

Keywords: electrospinning, dendrimer, nanofiber, PEGylation, fast Fourier transform 
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6.1. Introduction 
 

Polyamidoamine (PAMAM) dendrimers have emerged as an important class of 

nanostructured materials and have found a broad range of applications by virtue of their highly 

branched, nearly perfect monodisperse structures of defined sizes.  These distinct nanodomain 

features include a hydrophobic interior and a relatively hydrophilic surface presenting numerous 

functional groups 141, 142 The structural versatility of PAMAM dendrimers has led to a vast array 

of intriguing dendritic architectures as nanocarriers for therapeutic and diagnostic applications.143, 

144 There is also an ongoing effort to synthesize higher-complexity structures using PAMAM 

dendrimers as enabling building blocks 145-147 Of particular interest is the utility of PAMAM 

dendrimers in construction of high-dimensional structures for drug delivery and tissue 

engineering applications.148 For instance, PAMAM dendrimers are used as a cross-linker  or 

building block to construct cross-linked networks.149, 150  

Electrospinning has been widely adopted to make fibers with desirable structural features 

for drug delivery and tissue engineering application.151-157 A wide range of synthetic and natural 

linear polymers have been electrospun into fibers with success.158  Although polymer molecular 

weight and solution concentration are critical in successful electrospinning, intermolecular chain 

entanglements within the polymer are very important to stable fiber formation as well. 158 

Probably because of the widely recognized steric crowding on the dendrimer periphery 

precluding chain entanglements, there is scarcity in the literature on the fabrication of dendrimer 

fibers via electrospinning. Madani et al. reported electrospinning of blends of non-functionalized 

PAMAM dendrimers and high-molecular-weight polyethylene oxide (PEO), in which PEO, 

however, accounts for a large proportion (at least 30% by weight) of fiber mass.159 Our recent 

work shows that PAMAM dendrimer can be hybridized with linear polymers, e.g., gelatin, and 
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electrospun into fibers as a secondary component.60 Alternatively, PAMAM dendrimers can be 

covalently coupled to fibers in a post-electrospinning step.160  

In this paper, we report for the first time electrospun nanocomposite fibers composed of 

dendrimer derivatives, namely PEGylated PAMAM dendrimers, blended with a small amount of 

high-molecular-weight polyethylene oxide (PEO) (6.25% by weight). The new dendrimer-

containing nanocomposite fibers represent a new structure with added complexity of dendrimer 

and fibrous mat. PEGylation reduces the cytotoxicity of the resulting conjugate of the 

nanomaterial due to the superb biocompatibility of PEG.161-163 PEGylated dendrimers may 

encourage greater retention time in the circulatory system due to the stealth properties of PEG.164 

We envision that new dendrimer-containing fibers will broaden the use of dendrimers in 

biomedical applications such as drug delivery, and the ease of fabrication via electrospinning 

will allow this new platform to be readily translatable. 

 

6.2. Experimental section 

6.2.1. Synthesis of PEGylated PAMAM dendrimer conjugates 
 

PAMAM dendrimer G3.0 was used as the underlying core for the synthesis because of its 

combination of possessing low cytotoxicity at high molar concentrations and a relatively large 

number of surface groups for functionalization. 161-163 Methoxypolyethylene glycol (mPEG, 2000 

g/mol) was coupled to PAMAM dendrimer G3.0 at feed molar ratios of 32:1 and 16:1, 

respectively following the method published by us.165 These two molar ratios were chosen to 

ensure the resulting PEGylated dendrimer conjugates with discrete degrees of PEGylation could 

be achieved. 165 PEGylated G3.0 conjugates were purified using SnakeSkin tubing with 7000 

MWCO and freeze dried.  
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6.2.2. Electrospinning 

Electrospinning solutions of mPEG or mPEG-G3.0 with or without high-molecular-

weight PEO (Mv = 900,000 g/mol) additive were prepared in 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFP) and tested for fiber formation (Table 6.1). The electrospinning solution was then drawn 

up through a blunt-end needle (18G×1½ in) on a 5 ml syringe.  The syringe was loaded into a 

syringe pump, delivering the solution to the needle orifice 30 cm away from the collecting 

mandrel at a rate of 2 ml/h. The needle and the collection target were connected to a positive 

electrode (+ 20 kV) and the earth ground of a high voltage power supply (Spellman CZE100R, 

Spellman High Voltage Electronics Corporation), respectively. Fibers were collected on a 

rounded, stainless steel mandrel (120 mm length with 6 mm diameter) rotating at 500 rpm. 

Table 6.1. Electrospinning conditions tested for fiber formation. 

Polymer (A/B)  A 

(% w/v) 

B 

(% w/v) 

Fiber formation 

mPEG2000/PEO  20‐25  0  No 

mPEG2000/PEO  20‐25  0.05‐0.1  Yes 

mPEG‐G3.0 (32:1)/PEO  20‐40  0  No 

mPEG‐G3.0 (32:1)/PEO  15  1  Yes 

mPEG‐G3.0 (16:1)/PEO  15  1  Yes 
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6.2.3. 1H NMR spectroscopy 

1H NMR spectra were recorded on a Varian Mercury 600 MHz spectrometer. Deuterium 

oxide (D2O, 99.9%) was used as solvent in 1H NMR measurements. 1H NMR spectroscopy was 

applied to characterize PEGylated G3.0 conjugates and determine actual degrees of PEGylation. 

6.2.4. Scanning electron microscopy (SEM) 

Prior to SEM imaging, scaffolds were placed on a 1 cm diameter stub. The stub was 

placed on a specimen holder and gold sputter coated. SEM images were taken on a JEOL JSM-

5610LV scanning electron microscope. One hundred randomly chosen fibers in each SEM image 

were analyzed with UTHSCSA ImageToolTM software for fiber diameter and pore size 

measurements.  

6.2.5. Tensile testing 

“Dog-bone” shaped samples (n=8) were obtained using a punch die (ODC Testing & 

Molds) of the dimensions 19.0, 3.2 and 6.1 mm at its length, narrowest point and widest point, 

respectively. Mechanical properties of the samples, including peak load, peak stress, modulus, 

strain at break and energy to break, were tested using the MTS Bionix 200 Mechanical Testing 

System in conjunction with TestWorks 4.0 software.  

6.2.6. Fast fourier transform (FFT) 
  

FFT technique was conducted to analyze the degree of fiber alignment and anisotropy 

based on the work reported by Ayers and coworkers.154, 166 This was completed by taking the 

SEM image of the scaffolds and converting its image information from the time domain to a 

discrete frequency domain.154 The output image after FFT is grayscale pixels within a circle that 
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have varying intensities with respect to its angle about the circle’s central point. Image 

conversion and analysis was done on Image J software.  

6.2.7. Statistical analysis 

Statistical analysis was completed using unpaired t-test and the Mann-Whitney method 

for subgroup comparison. A p-value less than 0.05 was considered statistically significant. 

6.3. Results and discussion 
 

For the demonstration of proof-of-concept, we chose amine-terminated PAMAM 

dendrimer G3.0 as the underlying core (Scheme 6.1). We coupled mPEG2000 to the dendrimer 

surface at feed molar ratios of 16:1 and 32:1, respectively, following a procedure previously 

described.165 According to 1H NMR spectroscopy characterization (Figure 6.2), the degrees of 

PEGylation of mPEG-G3.0 (16:1) and mPEG-G3.0 (32:1), i.e., percentages of dendrimer PEG 

surface amines coupled to PEG, were 44% and 92%, respectively. For electrospinning 

fabrication, coupling mPEG to PAMAM dendrimer G3.0 at 32:1 (i.e. 100% PEGylation) would 

be more favorable. However, for drug delivery applications, an increased density of mPEG 

chains can reduce the ability to couple drugs and moieties of interest due to steric hindrance of 

PEG and reduced surface groups.165 
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Figure 6.1. Schematic illustration of synthesis and electrospinning of mPEG-G3.0 blended with 
a small amount of high-molecular-weight PEO 900,000 Da. 
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Figure 6.2. 1H NMR spectrum of PEGylated PAMAM dendrimers. (A) mPEG-G3.0 (32:1) and 
(B) mPEG-G3.0 (16:1). (peak a, (CH2CH2O)n ; peak b, CH3 CH2 CH2 O ; multiple peaks 
2.4-3.45 ppm, methylene protons of dendrimer) 
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It is challenging to make fibers out of pure dendrimers or PEGylated dendrimers because 

of their highly compact structures, low chain entanglements, and high viscosity. Although it 

remains controversial as to whether the presence of chain entanglements is essential for fiber 

formation, it has been shown that a small fraction of PEO in electrospinning solution promotes 

PEG fiber formation, which was attributed to fluid elasticity increase by PEO other than chain 

entanglements.167 Electrospinning solutions of mPEG or mPEG-G3.0 with or without high-

molecular-weight PEO additive were tested for electrospinning. After mPEG-G3.0 (16:1 and 

32:1) (15% w/v in HFP) was blended with PEO (Mv=900,000 Da) (1% w/v), mPEG-G3.0 was 

successfully electrospun into fiber mats, presumably as a result of promotion of both chain 

entanglements and fluid elasticity. Fluid elasticity of mPEG-G3.0 solution was attributed to its 

ability to adjust to stresses during a longer period of relaxation time. 167 Quantitative analysis of 

rheological properties of mPEG-G3.0 electrospinning solutions is warranted for electrospinning 

optimization and will be investigated in future work.  

SEM images were used to characterize the electrospun mat’s fiber morphology. As 

shown in Figure 6.3, mPEG-G3.0 (32:1) fibers exhibited some beads. The beading formation 

could be due to applied charges breaking the solution up into droplets, otherwise known as 

Rayleigh instability. According to the histograms of fiber size and pore size distributions shown 

in Figure 6.4, the average diameters of mPEG-G3.0 (32:1) and mPEG-G3.0 (16:1) fibers were 

3.8±2.3 µm and 4.2±2.8 µm, respectively. These relatively large variations in fiber diameter are 

presumably attributed to high polymer concentrations (10% or higher), which have a tendency to 

produce a non-normally distributed population of fibers.168 Average pore sizes of mPEG-G3.0 

(32:1) and mPEG-G3.0 (16:1) fiber mats were 209 µm2 and 135 µm2, respectively. Typically, 

electrospun scaffolds exhibit fiber diameters in the micrometer diameter range, but they can 
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achieve nanometer fiber diameters under proper processing conditions. For this study, these 

scaffolds were in the micron size range. This is likely due to the high concentration of mPEG-

G3.0 (Table 6.1) in electrospinning solution. One potential method to create fibers in the 

nanoscale would be to 1) reduce the mPEG-G3.0 concentration below 10% to create nanofibers 

as illustrated for PEO in literature and 2) increase the PEO additive concentration from 1% 

(Table 6.1) up to 7% to improve spinnability. 168 The balance of those two parameters could help 

achieve stable, nano-scaled fibers that can closely mimic the extracellular matrix, encouraging 

cellular activity for tissue engineering applications. Having a nano-fiber topography can also 

inspire a well-controlled drug release system for drug delivery applications because of the 

scaffold’s high surface area to volume ratio.130  
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Figure 6.3. SEM images of electrospun fibers on the basis of mPEG-G3.0(32:1)(A, B) and 
mPEG-G3.0(16:1)(C, D) at different magnifications. 
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Figure 6.4. Fiber diameter and pore size distributions of mPEG-G3.0 (32:1) and mPEG-G3.0 
(16:1) fiber scaffolds. (n=100) 
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Uniaxial material testing on dendrimer fiber mats was attempted with the MTS Bionix 

200 Mechanical Testing System.60, 124 Stress-strain curves of mPEG-G3.0 (32:1) fiber scaffolds 

are shown in Figure 6.5. Electrospun mPEG-G3.0 (32:1) fibers exhibited poor mechanical 

properties in terms of peak load (0.19 ± 0.09 N), peak stress (0.11 ± 0.07 MPa), modulus (3.0 ± 

1.7 MPa), and energy to break (0.05 ± 0.03 N×mm). However, insufficient data was acquired for 

mPEG-G3.0 (16:1) fiber mat using the same method because the mat’s thickness (0.1 ± 0 mm) 

was much less than mPEG-G3.0 (32:1) mat’s thickness (0.7 ± 0.2 mm). Therefore, it was 

difficult to preserve mat structure during the sample preparation.  As a result, mPEG-G3.0 (16:1) 

fiber mats were neither thick enough nor reproducible for accurate tensile measurements.   
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Figure 6.5. Stress-strain curves of mPEG-G3.0 (32:1) fiber scaffolds (n=8). 
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The fast Fourier transform (FFT) technique was conducted to characterize the degree of 

fiber alignment and anisotropy following the work by Ayers et al.166 In particular, this analysis 

was completed by converting SEM image information from the time domain to a discrete 

frequency domain. The output image after FFT is grayscale pixels within a circle that has 

varying intensities with respect to its angle about the circle’s central point. 166 Image conversion 

and analysis was done by using Image J. Distinct peaks in the FFT plots indicates fiber 

alignment. According to the FFT analysis result (Figure 6.6), the peak normalized intensities of 

mPEG-G3.0 (32:1) and mPEG-G3.0 (16:1) fibers are 0.14 and 0.08, respectively. This result 

quantitatively confirms that mPEG-G3.0 (16:1) scaffold possesses a higher degree of fiber 

alignment, which, in turn, leads to a less porous structure as evidenced by smaller pore size. A 

higher degree of fiber alignment enables an anisotropic scaffold that can better withstand 

uniform axial loads and provide signaling cues for changes in cell proliferation, migration and 

phenotype.154, 169  
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Figure 6.6. Pixel intensity plots with respect to the angle of acquisition for electrospun mPEG-
G3.0 fiber scaffold.  

Overall, the mPEG-G3.0 fiber scaffolds exhibit poor mechanical properties, which may 

limit the scaffold’s stability to promote cellular activity and controlled release in tissue 

engineering and drug delivery applications, respectively. To improve the physical properties of 

dendrimer fiber scaffolds, additional polymers such as poly(lactic-co-glycolic acid) (PLGA) can 

be coupled to PEG to form PLGA-PEG copolymers on the dendrimer surface for drug delivery 

applications.170 PLGA has high mechanical strength and elasticity in an early time course. 130 Its 

material properties such as hydrophilicity and elasticity can be controlled by changing its 

polymer concentration or ratio of lactic to glycolic acid. However, optimization of these 
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electrospinning additives is necessary to improve the physical properties while maintaining the 

original properties of the mPEG-G3.0 conjugates. In addition, dendrimer surface groups may be 

chemically functionalized to form a cross-linked network following electrospinning to further 

enhance structural stability and mechanical properties of dendrimer fibrous mats.  

By theory, a critical concentration (c*) for chain entanglements in solution should be surpassed 

for successful fiber formation during electrospinning.158 This parameter can be theoretically 

estimated based on Equation 1:  

∗ 3 /4           (1) ref. [167]  

where M is molecular weight, NA is the Avogadro number, and Rg is the radius of gyration of the 

polymer and can be estimated using Equation 2.  

0.215 . Å          (2) ref. [171]  

Although PEG chain interpenetration among PEGylated dendritic molecules may help 

with chain entanglements, PEGylated dendrimers are highly compact. Rg of PAMAM G3.0 fully 

conjugated with PEG of 5000 Da was reported to be 6.27 nm [172], which was only twice the 

radius of gyration of linear PEG 5000 Da (3.08 nm according to Equation 2 [171]). The same is 

true for PAMAM G3.0 coupled with mPEG2000 due to an even smaller Rg. Not surprisingly, the 

highest concentration 40% w/v tested for mPEG-G3.0 (32:1) did not generate fibers. Only 

droplets deposited on the mandrel were observed during the electrospinning process. Therefore, 

this estimation suggested a slight chance of electrospinning PEGylated dendrimers alone into 

fibers due to the difficulty of achieving a critical concentration and further substantiated the use 

of long PEO as a fiber forming additive. Nonetheless, PEO additive contributed to only 6.25% 

fiber mass, the structure and properties of the resulting fiber mats are predominately influenced 

by PEGylated PAMAM dendrimers. 
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In future work, the in vitro cytocompatibility of the scaffolds will be assessed. Anti-

microbial tests such as the Kirby-Bauer assay or turbidity measurement will be utilized to 

validate the sterility of the scaffold before application. The encapsulation and efficacy of relevant 

drugs, growth factors and anti-microbial agents will be tested to confirm the functions of 

bioactive molecules within our novel fiber system. Additional polymers such as PLGA may be 

incorporated to enhance the scaffold’s mechanical stability. Lastly, in vivo studies will be 

planned to examine its pre-clinical potential in physiological conditions.  

6.4. Conclusions 

In summary, we have successfully fabricated electrospun dendrimer-containing 

nanocomposite fibers. Morphologically, the mats possessed a uni-modal, non-normal distribution 

of fibers on the micrometer scale. Fiber alignment is influenced by the degree of PEGylation on 

the dendrimer surface. The dendrimer fibrous mats show weak mechanical properties that can be 

improved by adding more stable copolymers such as PLGA without compromising the 

functionality of dendrimers. In addition, dendrimer surface groups may be chemically 

functionalized to form a cross-linked network following electrospinning to further enhance 

structural stability and mechanical properties of dendrimer fibrous mats. Further improvements 

in the mat’s mechanical properties can make it a potential platform for drug delivery and tissue 

engineering applications.   
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Appendix A – Statistical analysis: Electrospinning of arabinoxylan as a novel 
fiber scaffold:  
 

Morphology: Fiber Diameter & Pore Size 
 

One Way Analysis of Variance Monday, October 14, 2013, 10:03:33 AM 
 
Data source: Data 1 in Fiber diameter Gel_AXF 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, October 14, 2013, 10:03:33 AM 
 
Data source: Data 1 in Fiber diameter Gel_AXF 
 
Group N  Missing  Median    25%      75%     
Gel-AXF 1:1 100 0 0.410 0.350 0.490  
Gel-AXF 2:1 100 0 0.560 0.430 0.670  
Gel-AXF 4:1 100 0 1.015 0.610 1.350  
 
H = 103.971 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
Gel-AXF 4:1 vs Gel-AXF 1:1 12488.000 14.396 Yes   
Gel-AXF 4:1 vs Gel-AXF 2:1 6767.500 7.801 Yes   
Gel-AXF 2:1 vs Gel-AXF 1:1 5720.500 6.594 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
One Way Analysis of Variance Monday, October 14, 2013, 10:15:48 AM 
 
Data source: Data 1 in Pore Size Gel_AXF 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, October 14, 2013, 10:15:48 AM 
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Data source: Data 1 in Pore Size Gel_AXF 
 
Group N  Missing  Median    25%      75%     
Gel-AXF 1:1 100 0 0.505 0.333 0.808  
Gel-AXF 2:1 100 0 1.195 0.725 1.795  
Gel-AXF 4:1 100 0 2.620 1.215 4.845  
 
H = 117.749 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
Gel-AXF 4:1 vs Gel-AXF 1:1 13280.000 15.309 Yes   
Gel-AXF 4:1 vs Gel-AXF 2:1 5843.500 6.736 Yes   
Gel-AXF 2:1 vs Gel-AXF 1:1 7436.500 8.573 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 

Tensile Properties 
 
 
One Way Analysis of Variance Monday, October 14, 2013, 10:45:06 AM 
 
Data source: Thickness in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.238) 
 
Equal Variance Test: Passed (P = 0.258) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 12 0 0.00842 0.00133 0.000384  
2:1 Gel-AXF 12 0 0.0113 0.00152 0.000437  
4:1 Gel-AXF 12 0 0.0169 0.000772 0.000223  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 0.000445 0.000222 143.277 <0.001  
Residual 33 0.0000512 0.00000155    
Total 35 0.000496     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 



 
 

130 
 

 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
4:1 Gel-AXF vs. 1:1 Gel-AXF 0.00846 16.629 <0.001 Yes   
4:1 Gel-AXF vs. 2:1 Gel-AXF 0.00562 11.059 <0.001 Yes   
2:1 Gel-AXF vs. 1:1 Gel-AXF 0.00283 5.570 <0.001 Yes   
 
 
 
 
One Way Analysis of Variance Monday, October 14, 2013, 10:43:04 AM 
 
Data source: Peak Load in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.905) 
 
Equal Variance Test: Passed (P = 0.161) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 12 0 0.288 0.0932 0.0269  
2:1 Gel-AXF 12 0 0.588 0.162 0.0468  
4:1 Gel-AXF 12 0 1.380 0.182 0.0524  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 7.643 3.822 168.687 <0.001  
Residual 33 0.748 0.0227    
Total 35 8.391     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
4:1 Gel-AXF vs. 1:1 Gel-AXF 1.092 17.778 <0.001 Yes   
4:1 Gel-AXF vs. 2:1 Gel-AXF 0.792 12.888 <0.001 Yes   
2:1 Gel-AXF vs. 1:1 Gel-AXF 0.300 4.890 <0.001 Yes   
 
 
 
One Way Analysis of Variance Monday, October 14, 2013, 10:44:07 AM 
 
Data source: Peak Stress in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.848) 
 
Equal Variance Test: Passed (P = 0.813) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 12 0 0.503 0.156 0.0452  
2:1 Gel-AXF 12 0 0.774 0.186 0.0536  
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4:1 Gel-AXF 12 0 1.207 0.149 0.0429  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 3.027 1.513 56.009 <0.001  
Residual 33 0.892 0.0270    
Total 35 3.918     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 

 
One Way Analysis of Variance Monday, October 14, 2013, 10:46:54 AM 
 
Data source: Modulus in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.987) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, October 14, 2013, 10:46:54 AM 
 
Data source: Modulus in Notebook1 
 
Group N  Missing  Median    25%      75%     
1:1 Gel-AXF 12 0 5.731 4.395 7.851  
2:1 Gel-AXF 12 0 22.148 16.307 32.483  
4:1 Gel-AXF 12 0 46.463 40.584 51.656  
 
H = 30.709 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
4:1 Gel-AXF vs 1:1 Gel-AXF 286.000 7.836 Yes   
4:1 Gel-AXF vs 2:1 Gel-AXF 146.000 4.000 Yes   
2:1 Gel-AXF vs 1:1 Gel-AXF 140.000 3.836 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance Monday, October 14, 2013, 10:47:22 AM 
 
Data source: Strain at Break in Notebook1 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, October 14, 2013, 10:47:22 AM 
 
Data source: Strain at Break in Notebook1 
 
Group N  Missing  Median    25%      75%     
1:1 Gel-AXF 12 0 0.124 0.107 0.154  
2:1 Gel-AXF 12 0 0.0645 0.0432 0.0952  
4:1 Gel-AXF 12 0 0.0330 0.0273 0.0365  
 
H = 25.607 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
1:1 Gel-AXF vs 4:1 Gel-AXF 260.500 7.138 Yes   
1:1 Gel-AXF vs 2:1 Gel-AXF 114.500 3.137 No   
2:1 Gel-AXF vs 4:1 Gel-AXF 146.000 4.000 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
 
One Way Analysis of Variance Monday, October 14, 2013, 10:41:57 AM 
 
Data source: Energy to Break in Notebook1 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, October 14, 2013, 10:41:57 AM 
 
Data source: Energy to Break in Notebook1 
 
Group N  Missing  Median    25%      75%     
1:1 Gel-AXF 12 0 0.145 0.0895 0.186  
2:1 Gel-AXF 12 0 0.128 0.0847 0.136  
4:1 Gel-AXF 12 0 0.183 0.134 0.191  
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H = 7.576 with 2 degrees of freedom.  (P = 0.023) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = 0.023) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
4:1 Gel-AXF vs 2:1 Gel-AXF 142.000 3.891 Yes   
4:1 Gel-AXF vs 1:1 Gel-AXF 74.000 2.028 No   
1:1 Gel-AXF vs 2:1 Gel-AXF 68.000 1.863 No   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 

Carbohydrate Assay 
 
 
 
One Way Analysis of Variance Saturday, March 28, 2015, 9:43:12 PM 
 
Data source: Data 1 in Carbohydrate Assay compiled 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.457) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Saturday, March 28, 2015, 9:43:12 PM 
 
Data source: Data 1 in Carbohydrate Assay compiled 
 
Group N  Missing  Median    25%      75%     
Gel-AXF 1:1 10 0 9.695 7.833 15.637  
Gel-AXF 2:1 10 0 3.895 2.163 5.235  
Gel-AXF 4:1 10 0 1.615 0.578 2.740  
 
H = 21.399 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
Gel-AXF 1:1 vs Gel-AXF 4:1 180.000 6.466 Yes   
Gel-AXF 1:1 vs Gel-AXF 2:1 114.000 4.095 Yes   
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Gel-AXF 2:1 vs Gel-AXF 4:1 66.000 2.371 No   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
 
One Way Analysis of Variance Saturday, March 28, 2015, 9:44:04 PM 
 
Data source: Data 1 in Carbohydrate Assay compiled 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.458) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Saturday, March 28, 2015, 9:44:04 PM 
 
Data source: Data 1 in Carbohydrate Assay compiled 
 
Group N  Missing  Median    25%      75%     
AXF Pct Loss Gel-AXF 1:1 10 0 40.305 34.363 42.167  
AXF Pct Loss Gel-AXF 2:1 10 0 29.405 28.065 31.137  
AXF Pct Loss Gel-AXF 4:1 10 0 18.385 17.260 19.422  
 
H = 25.806 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison                                                  Diff of Ranks          q P<0.05   
GEL-AXF 1:1 Pct Loss vs GEL-AXF 4:1 Pct Loss  200.000 7.184 Yes   
GEL-AXF 1:1 Pct Loss vs GEL-AXF 2:1 Pct Loss  100.000 3.592 Yes   
GEL-AXF 2:1 Pct Loss vs GEL-AXF 4:1 Pct Loss  100.000 3.592 Yes   
 

Drug Release Kinetics 
 
 
One Way Analysis of Variance Wednesday, March 25, 2015, 3:24:16 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.475) 
 
Equal Variance Test: Passed (P = 0.159) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 1 h 6 0 5.045 1.727 0.705  
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2:1 Gel-AXF 1 h 6 0 4.103 0.807 0.329  
4:1 Gel-AXF 1 h 6 0 2.193 0.450 0.184  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 25.340 12.670 9.914 0.002  
Residual 15 19.170 1.278    
Total 17 44.510     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.002). 
 
Power of performed test with alpha = 0.050: 0.944 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1:1 Gel-AXF vs. 4:1 Gel-AXF  2.852 4.370 0.002 Yes   
2:1 Gel-AXF vs. 4:1 Gel-AXF  1.910 2.926 0.021 Yes   
1:1 Gel-AXF vs. 2:1 Gel-AXF  0.942 1.443 0.170 No   
 
 
One Way Analysis of Variance Wednesday, March 25, 2015, 3:34:35 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.889) 
 
Equal Variance Test: Passed (P = 0.126) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 2 h 6 0 8.495 2.259 0.922  
2:1 Gel-AXF 2 h 6 0 7.291 1.120 0.457  
4:1 Gel-AXF 2 h 6 0 4.186 0.773 0.316  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 59.316 29.658 12.792 <0.001  
Residual 15 34.778 2.319    
Total 17 94.094     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = <0.001). 
 
Power of performed test with alpha = 0.050: 0.986 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1:1 Gel-AXF vs. 4:1 Gel-AXF  4.309 4.901 <0.001 Yes   
2:1 Gel-AXF vs. 4:1 Gel-AXF  3.105 3.532 0.006 Yes   
1:1 Gel-AXF vs. 2:1 Gel-AXF  1.204 1.369 0.191 No   
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One Way Analysis of Variance Wednesday, March 25, 2015, 3:35:09 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.889) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, March 25, 2015, 3:35:09 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Group N  Missing  Median    25%      75%     
1:1 Gel-AXF 6 h 6 0 12.564 8.273 15.215  
2:1 Gel-AXF 6 h 6 0 8.837 8.045 10.733  
4:1 Gel-AXF 6 h 6 0 6.338 4.648 7.351  
 
H = 10.889 with 2 degrees of freedom.  (P = 0.004) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = 0.004) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
1:1 Gel-AXF 6 vs 4:1 Gel-AXF 6 59.000 4.512 Yes   
1:1 Gel-AXF 6 vs 2:1 Gel-AXF 6 16.000 1.224 No   
2:1 Gel-AXF 6 vs 4:1 Gel-AXF 6 43.000 3.288 No   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
 
One Way Analysis of Variance Wednesday, March 25, 2015, 3:35:41 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.671) 
 
Equal Variance Test: Passed (P = 0.332) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 12 h 6 0 14.541 4.084 1.667  
2:1 Gel-AXF 12 h 6 0 10.978 2.320 0.947  
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4:1 Gel-AXF 12 h 6 0 7.832 1.600 0.653  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 135.204 67.602 8.236 0.004  
Residual 15 123.123 8.208    
Total 17 258.326     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.004). 
 
Power of performed test with alpha = 0.050: 0.885 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1:1 Gel-AXF vs. 4:1 Gel-AXF  6.709 4.056 0.003 Yes   
1:1 Gel-AXF vs. 2:1 Gel-AXF  3.563 2.154 0.093 No   
2:1 Gel-AXF vs. 4:1 Gel-AXF  3.146 1.902 0.077 No   
 
 
 
One Way Analysis of Variance Wednesday, March 25, 2015, 3:36:14 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.935) 
 
Equal Variance Test: Passed (P = 0.338) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 24 h 6 0 17.283 5.332 2.177  
2:1 Gel-AXF 24 h 6 0 13.488 4.211 1.719  
4:1 Gel-AXF 24 h 6 0 9.487 1.847 0.754  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 182.413 91.207 5.520 0.016  
Residual 15 247.849 16.523    
Total 17 430.262     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.016). 
 
Power of performed test with alpha = 0.050: 0.680 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1:1 Gel-AXF vs. 4:1 Gel-AXF  7.797 3.322 0.014 Yes   
2:1 Gel-AXF vs. 4:1 Gel-AXF  4.001 1.705 0.206 No   
1:1 Gel-AXF vs. 2:1 Gel-AXF  3.796 1.617 0.127 No   



 
 

138 
 

One Way Analysis of Variance Wednesday, March 25, 2015, 3:37:00 PM 
 
Data source: Data 1 in Drug Release Study March 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.912) 
 
Equal Variance Test: Passed (P = 0.057) 
 
Group Name  N  Missing Mean Std Dev SEM  
1:1 Gel-AXF 48 h 6 0 20.894 7.882 3.218  
2:1 Gel-AXF 48 h 6 0 16.965 6.977 2.848  
4:1 Gel-AXF 48 h 6 0 10.596 1.957 0.799  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 324.125 162.062 4.241 0.035  
Residual 15 573.210 38.214    
Total 17 897.335     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.035). 
 
Power of performed test with alpha = 0.050: 0.523 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1:1 Gel-AXF vs. 4:1 Gel-AXF  10.298 2.885 0.034 Yes   
2:1 Gel-AXF vs. 4:1 Gel-AXF  6.370 1.785 0.180 No   
1:1 Gel-AXF vs. 2:1 Gel-AXF  3.929 1.101 0.288 No   
 

 
WST-1 Assay 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
One Way Analysis of Variance Thursday, June 18, 2015, 10:02:55 AM 
 
Data source: Data 1 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.121) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, June 18, 2015, 10:02:55 AM 
 
Data source: Data 1 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 0.05 mg/ml 8 0 1.035 1.023 1.142  
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1-1 0.5 mg/ml 8 0 1.430 1.188 1.533  
1-1 5 mg/ml 8 0 1.615 1.363 1.730  
1-1 25 mg/ml 8 0 2.325 1.635 2.598  
 
H = 20.590 with 3 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
1-1 25 mg/ml vs 1-1 0.05 mg/ml 162.000 6.106 Yes   
1-1 25 mg/ml vs 1-1 0.5 mg/ml 103.000 3.882 Yes   
1-1 25 mg/ml vs 1-1 5 mg/ml 51.000 1.922 No   
1-1 5 mg/ml vs 1-1 0.05 mg/ml 111.000 4.183 Yes   
1-1 5 mg/ml vs 1-1 0.5 mg/ml 52.000 1.960 No   
1-1 0.5 mg/ml vs 1-1 0.05 mg/m 59.000 2.224 No   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
One Way Analysis of Variance Thursday, June 18, 2015, 10:04:05 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, June 18, 2015, 10:04:05 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
2-1 0.05 mg/ml 8 0 1.075 0.972 1.360  
2-1 0.5 mg/ml 8 0 1.625 1.355 1.775  
2-1 5 mg/ml 8 0 1.760 1.672 1.838  
2-1 25 mg/ml 8 0 1.735 1.445 1.992  
 
H = 13.778 with 3 degrees of freedom.  (P = 0.003) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = 0.003) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
2-1 5 mg/ml vs 2-1 0.05 mg/ml 129.500 4.881 Yes   
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2-1 5 mg/ml vs 2-1 0.5 mg/ml 43.500 1.639 No   
2-1 5 mg/ml vs 2-1 25 mg/ml 21.000 0.791 Do Not Test   
2-1 25 mg/ml vs 2-1 0.05 mg/ml 108.500 4.089 Yes   
2-1 25 mg/ml vs 2-1 0.5 mg/ml 22.500 0.848 Do Not Test   
2-1 0.5 mg/ml vs 2-1 0.05 mg/m 86.000 3.241 No   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is found between the two rank 
sums that enclose that comparison.  For example, if you had four rank sums sorted in order, and found no significant 
difference between rank sums 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 
vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed rank sums is a procedural rule, 
and a result of Do Not Test should be treated as if there is no significant difference between the rank sums, even 
though one may appear to exist. 
 
 
One Way Analysis of Variance Thursday, June 18, 2015, 10:04:52 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.985) 
 
Equal Variance Test: Passed (P = 0.156) 
 
Group Name  N  Missing Mean Std Dev SEM  
4-1 0.05 mg/ml 8 0 1.050 0.246 0.0869  
4-1 0.5 mg/ml 8 0 1.365 0.270 0.0955  
4-1 5 mg/ml 8 0 1.643 0.473 0.167  
4-1 25 mg/ml 8 0 1.375 0.437 0.154  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 3 1.409 0.470 3.430 0.030  
Residual 28 3.834 0.137    
Total 31 5.243     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.030). 
 
Power of performed test with alpha = 0.050: 0.538 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
4-1 5 mg/ml vs. 4-1 0.05 mg/ml 0.593 3.202 0.020 Yes   
4-1 25 mg/ml vs. 4-1 0.05 mg/ 0.325 1.757 0.376 No   
4-1 0.5 mg/m vs. 4-1 0.05 mg/ 0.315 1.702 0.343 No   
4-1 5 mg/ml vs. 4-1 0.5 mg/ml 0.278 1.500 0.375 No   
4-1 5 mg/ml vs. 4-1 25 mg/ml 0.268 1.446 0.293 No   
4-1 25 mg/ml vs. 4-1 0.5 mg/ml 0.01000 0.0540 0.957 No   
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One Way Analysis of Variance Thursday, June 18, 2015, 10:05:58 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.066) 
 
Equal Variance Test: Passed (P = 0.420) 
 
Group Name  N  Missing Mean Std Dev SEM  
1-1 0.05 mg/ml 8 0 1.084 0.149 0.0528  
2-1 0.05 mg/ml 8 0 1.130 0.216 0.0763  
4-1 0.05 mg/ml 8 0 1.050 0.246 0.0869  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 0.0258 0.0129 0.299 0.745  
Residual 21 0.906 0.0431    
Total 23 0.932     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.745). 
 
Power of performed test with alpha = 0.050: 0.049 
 
The power of the performed test (0.049) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
 
One Way Analysis of Variance Thursday, June 18, 2015, 10:06:40 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.588) 
 
Equal Variance Test: Passed (P = 0.850) 
 
Group Name  N  Missing Mean Std Dev SEM  
1-1 0.5 mg/ml 8 0 1.371 0.220 0.0779  
2-1 0.5 mg/ml 8 0 1.603 0.229 0.0809  
4-1 0.5 mg/ml 8 0 1.365 0.270 0.0955  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 0.293 0.147 2.527 0.104  
Residual 21 1.218 0.0580    
Total 23 1.511     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.104). 
 
Power of performed test with alpha = 0.050: 0.278 
 
The power of the performed test (0.278) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
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One Way Analysis of Variance Thursday, June 18, 2015, 10:07:12 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.573) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, June 18, 2015, 10:07:12 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 5 mg/ml 8 0 1.615 1.363 1.730  
2-1 5 mg/ml 8 0 1.760 1.672 1.838  
4-1 5 mg/ml 8 0 1.695 1.265 2.070  
 
H = 2.117 with 2 degrees of freedom.  (P = 0.347) 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.347) 
 
  
 
One Way Analysis of Variance Thursday, June 18, 2015, 10:07:54 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.637) 
 
Equal Variance Test: Passed (P = 0.515) 
 
Group Name  N  Missing Mean Std Dev SEM  
1-1 25 mg/ml 8 0 2.250 0.613 0.217  
2-1 25 mg/ml 8 0 1.668 0.427 0.151  
4-1 25 mg/ml 8 0 1.375 0.437 0.154  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 3.175 1.587 6.355 0.007  
Residual 21 5.246 0.250    
Total 23 8.420     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.007). 
 
Power of performed test with alpha = 0.050: 0.789 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
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Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
1-1 25 mg/ml vs. 4-1 25 mg/ml 0.875 3.501 0.006 Yes   
1-1 25 mg/ml vs. 2-1 25 mg/ml 0.583 2.331 0.059 No   
2-1 25 mg/ml vs. 4-1 25 mg/ml 0.292 1.170 0.255 No   
 
 
 
t-test Thursday, June 18, 2015, 10:11:12 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:11:12 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 0.05 mg/ml 8 0 1.035 1.023 1.142  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 8.000 
 
T = 92.000  n(small)= 8  n(big)= 8  P(est.)= 0.008  P(exact)= 0.010 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = 0.010) 
 
 
t-test Thursday, June 18, 2015, 10:11:34 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:11:34 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 0.5 mg/ml 8 0 1.430 1.188 1.533  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 8.000 
 
T = 92.000  n(small)= 8  n(big)= 8  P(est.)= 0.008  P(exact)= 0.010 
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The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = 0.010) 
 
 
t-test Thursday, June 18, 2015, 10:12:00 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:12:00 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 5 mg/ml 8 0 1.615 1.363 1.730  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 0.000 
 
T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = <0.001) 
 
 
 
t-test Thursday, June 18, 2015, 10:12:20 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:12:20 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
1-1 25 mg/ml 8 0 2.325 1.635 2.598  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 0.000 
 
T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = <0.001) 
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t-test Thursday, June 18, 2015, 10:12:36 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:12:36 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
2-1 0.05 mg/ml 8 0 1.075 0.972 1.360  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 16.000 
 
T = 84.000  n(small)= 8  n(big)= 8  P(est.)= 0.082  P(exact)= 0.105 
 
The difference in the median values between the two groups is not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.105) 
 
 
t-test Thursday, June 18, 2015, 10:13:24 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:13:24 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
2-1 0.5 mg/ml 8 0 1.625 1.355 1.775  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 0.000 
 
T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = <0.001) 
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t-test Thursday, June 18, 2015, 10:13:52 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:13:52 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
2-1 5 mg/ml 8 0 1.760 1.672 1.838  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 0.000 
 
T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = <0.001) 
 
 
t-test Thursday, June 18, 2015, 10:14:41 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:14:41 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
2-1 25 mg/ml 8 0 1.735 1.445 1.992  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 8.000 
 
T = 92.000  n(small)= 8  n(big)= 8  P(est.)= 0.008  P(exact)= 0.010 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = 0.010) 
 
 
t-test Thursday, June 18, 2015, 10:15:01 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
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Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:15:01 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
4-1 0.05 mg/ml 8 0 1.035 0.920 1.252  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 32.000 
 
T = 68.000  n(small)= 8  n(big)= 8  P(est.)= 1.000  P(exact)= 1.000 
 
The difference in the median values between the two groups is not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference  (P = 1.000) 
 
 
t-test Thursday, June 18, 2015, 10:15:20 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:15:20 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
4-1 0.5 mg/ml 8 0 1.355 1.100 1.580  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 8.000 
 
T = 92.000  n(small)= 8  n(big)= 8  P(est.)= 0.008  P(exact)= 0.010 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = 0.010) 
 
t-test Thursday, June 18, 2015, 10:15:43 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.062) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
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Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:15:43 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
4-1 5 mg/ml 8 0 1.695 1.265 2.070  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 8.000 
 
T = 92.000  n(small)= 8  n(big)= 8  P(est.)= 0.008  P(exact)= 0.010 
 
The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference (P = 0.010) 
 
 
t-test Thursday, June 18, 2015, 10:16:13 AM 
 
Data source: Data 2 in wst compiled run 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Thursday, June 18, 2015, 10:16:13 AM 
 
Data source: Data 2 in wst compiled run 
 
Group N  Missing  Median    25%      75%     
4-1 25 mg/ml 8 0 1.250 1.018 1.667  
Normalized Control 8 0 1.000 1.000 1.000  
 
Mann-Whitney U Statistic= 16.000 
 
T = 84.000  n(small)= 8  n(big)= 8  P(est.)= 0.082  P(exact)= 0.105 
 
The difference in the median values between the two groups is not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.105) 
 

 
Trypan Blue Assay: Cell Viability 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:39:14 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.862) 
 
Equal Variance Test: Passed (P = 0.608) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 0 mg/ml 3 0 97.800 0.557 0.321  
Gel-AXF 1:1 blend 0.05 mg/ml 3 0 95.133 2.937 1.695  
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Gel-AXF 1:1 blend 0.5 mg/ml 3 0 98.600 1.389 0.802  
Gel-AXF 1:1 blend 5 mg/ml 3 0 97.767 2.223 1.284  
Gel-AXF 1:1 blend 25 mg/ml 3 0 94.467 2.173 1.255  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 40.157 10.039 2.445 0.115  
Residual 10 41.060 4.106    
Total 14 81.217     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.115). 
 
Power of performed test with alpha = 0.050: 0.296 
 
The power of the performed test (0.296) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:39:50 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.742) 
 
Equal Variance Test: Passed (P = 0.396) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 2:1 blend 0 mg/ml 3 0 97.800 0.557 0.321  
Gel-AXF 2:1 blend 0.05 mg/ml 3 0 98.367 0.950 0.549  
Gel-AXF 2:1 blend 0.5 mg/ml 3 0 97.500 0.721 0.416  
Gel-AXF 2:1 blend 5 mg/ml 3 0 97.100 1.873 1.082  
Gel-AXF 2:1 blend 25 mg/ml 3 0 97.200 0.854 0.493  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 3.143 0.786 0.658 0.635  
Residual 10 11.947 1.195    
Total 14 15.089     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.635). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:40:27 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.618) 
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Equal Variance Test: Passed (P = 0.312) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 4:1 blend 0 mg/ml 3 0 97.800 0.557 0.321  
Gel-AXF 4:1 blend 0.05 mg/ml 3 0 94.633 3.800 2.194  
Gel-AXF 4:1 blend 0.5 mg/ml 3 0 96.200 2.553 1.474  
Gel-AXF 4:1 blend 5 mg/ml 3 0 97.733 1.266 0.731  
Gel-AXF 4:1 blend 25 mg/ml 3 0 97.100 3.143 1.815  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 20.876 5.219 0.797 0.554  
Residual 10 65.513 6.551    
Total 14 86.389     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.554). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:42:20 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.811) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 12:42:20 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Group N  Missing  Median    25%      75%     
Gel-AXF 1:1 blend 0.05 mg/ml 3 0 94.600 92.500 98.300  
Gel-AXF 2:1 blend 0.05 mg/ml 3 0 98.400 97.400 99.300  
Gel-AXF 4:1 blend 0.05 mg/ml 3 0 94.700 90.800 98.400  
 
H = 2.891 with 2 degrees of freedom.  P(est.)= 0.236 P(exact)= 0.254 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.254) 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:43:12 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.502) 
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Equal Variance Test: Passed (P = 0.397) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 0.5 mg/ml 3 0 98.600 1.389 0.802  
Gel-AXF 2:1 blend 0.5 mg/ml 3 0 97.500 0.721 0.416  
Gel-AXF 4:1 blend 0.5 mg/ml 3 0 96.200 2.553 1.474  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 8.660 4.330 1.448 0.307  
Residual 6 17.940 2.990    
Total 8 26.600     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.307). 
 
Power of performed test with alpha = 0.050: 0.094 
 
The power of the performed test (0.094) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:43:54 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.084) 
 
Equal Variance Test: Passed (P = 0.913) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 5 mg/ml 3 0 97.767 2.223 1.284  
Gel-AXF 2:1 blend 5 mg/ml 3 0 97.100 1.873 1.082  
Gel-AXF 4:1 blend 5 mg/ml 3 0 97.733 1.266 0.731  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 0.847 0.423 0.126 0.884  
Residual 6 20.113 3.352    
Total 8 20.960     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.884). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:44:41 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.701) 
 
Equal Variance Test: Passed (P = 0.570) 
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Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 25 mg/ml 3 0 94.467 2.173 1.255  
Gel-AXF 2:1 blend 25 mg/ml 3 0 97.200 0.854 0.493  
Gel-AXF 4:1 blend 25 mg/ml 3 0 97.100 3.143 1.815  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 14.416 7.208 1.410 0.315  
Residual 6 30.667 5.111    
Total 8 45.082     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.315). 
 
Power of performed test with alpha = 0.050: 0.090 
 
The power of the performed test (0.090) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 

 
 
Trypan Blue Assay: Cell Proliferation 
 

 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:45:25 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.900) 
 
Equal Variance Test: Passed (P = 0.370) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 0 mg/ml 3 0 101266.667 25562.733 14758.651  
Gel-AXF 1:1 blend 0.05 mg/ml 3 0 116133.333 32751.997 18909.375  
Gel-AXF 1:1 blend 0.5 mg/ml 3 0 131933.333 21822.313 12599.118  
Gel-AXF 1:1 blend 5 mg/ml 3 0 141933.333 71978.423 41556.762  
Gel-AXF 1:1 blend 25 mg/ml 3 0 125400.000 53556.325 30920.759  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 2888906666.667 722226666.667 0.352 0.837  
Residual 10 20503066666.667 2050306666.667    
Total 14 23391973333.333     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.837). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
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One Way Analysis of Variance Wednesday, June 10, 2015, 12:46:07 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.631) 
 
Equal Variance Test: Passed (P = 0.487) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 2:1 blend 0 mg/ml 3 0 101266.667 25562.733 14758.651  
Gel-AXF 2:1 blend 0.05 mg/ml 3 0 126133.333 53787.111 31054.003  
Gel-AXF 2:1 blend 0.5 mg/ml 3 0 134333.333 35947.369 20754.223  
Gel-AXF 2:1 blend 5 mg/ml 3 0 154933.333 15738.276 9086.498  
Gel-AXF 2:1 blend 25 mg/ml 3 0 73533.333 27943.753 16133.333  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 11862842666.667 2965710666.667 2.527 0.107  
Residual 10 11734533333.333 1173453333.333    
Total 14 23597376000.000     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.107). 
 
Power of performed test with alpha = 0.050: 0.312 
 
The power of the performed test (0.312) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 

 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:46:52 PM 
 
Data source: Raw Data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.062) 
 
Equal Variance Test: Passed (P = 0.986) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 4:1 blend 0 mg/ml 3 0 101266.667 25562.733 14758.651  
Gel-AXF 4:1 blend 0.05 mg/ml 3 0 178066.667 34368.784 19842.827  
Gel-AXF 4:1 blend 0.5 mg/ml 3 0 116066.667 30675.289 17710.386  
Gel-AXF 4:1 blend 5 mg/ml 3 0 151266.667 25738.169 14859.939  
Gel-AXF 4:1 blend 25 mg/ml 3 0 110266.667 29342.347 16940.812  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 12486624000.000 3121656000.000 3.631 0.045  
Residual 10 8598133333.333 859813333.333    
Total 14 21084757333.333     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.045). 
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Power of performed test with alpha = 0.050: 0.518 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
Gel-AXF 4:1 vs. Gel-AXF 4:1  76800.000 3.208 0.090 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  67800.000 2.832 0.149 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  62000.000 2.590 0.196 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  50000.000 2.088 0.367 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  41000.000 1.712 0.528 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  35200.000 1.470 0.611 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  26800.000 1.119 0.745 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  14800.000 0.618 0.909 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  9000.000 0.376 0.919 No   
Gel-AXF 4:1 vs. Gel-AXF 4:1  5800.000 0.242 0.813 No   
 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:49:48 PM 
 
Data source: raw data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.506) 
 
Equal Variance Test: Passed (P = 0.804) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 0.05 mg/ml 3 0 116133.333 32751.997 18909.375  
Gel-AXF 2:1 blend 0.05 mg/ml 3 0 126133.333 53787.111 31054.003  
Gel-AXF 4:1 blend 0.05 mg/ml 3 0 178066.667 34368.784 19842.827  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 6632808888.889 3316404444.444 1.933 0.225  
Residual 6 10293920000.000 1715653333.333    
Total 8 16926728888.889     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.225). 
 
Power of performed test with alpha = 0.050: 0.144 
 
The power of the performed test (0.144) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 

 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:50:29 PM 
 
Data source: raw data in 6_9_15 compiled data 
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Normality Test (Shapiro-Wilk) Passed (P = 0.627) 
 
Equal Variance Test: Passed (P = 0.825) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 0.5 mg/ml 3 0 131933.333 21822.313 12599.118  
Gel-AXF 2:1 blend 0.5 mg/ml 3 0 134333.333 35947.369 20754.223  
Gel-AXF 4:1 blend 0.5 mg/ml 3 0 116066.667 30675.289 17710.386  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 591182222.222 295591111.111 0.327 0.733  
Residual 6 5418800000.000 903133333.333    
Total 8 6009982222.222     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.733). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:51:01 PM 
 
Data source: raw data in 6_9_15 compiled data 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.654) 
 
Equal Variance Test: Passed (P = 0.124) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 5 mg/ml 3 0 141933.333 71978.423 41556.762  
Gel-AXF 2:1 blend 5 mg/ml 3 0 154933.333 15738.276 9086.498  
Gel-AXF 4:1 blend 5 mg/ml 3 0 151266.667 25738.169 14859.939  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 269555555.556 134777777.778 0.0664 0.936  
Residual 6 12182080000.000 2030346666.667    
Total 8 12451635555.556     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.936). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 12:51:53 PM 
 
Data source: raw data in 6_9_15 compiled data 
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Normality Test (Shapiro-Wilk) Passed (P = 0.607) 
 
Equal Variance Test: Passed (P = 0.405) 
 
Group Name  N  Missing Mean Std Dev SEM  
Gel-AXF 1:1 blend 25 mg/ml 3 0 125400.000 53556.325 30920.759  
Gel-AXF 2:1 blend 25 mg/ml 3 0 73533.333 27943.753 16133.333  
Gel-AXF 4:1 blend 25 mg/ml 3 0 110266.667 29342.347 16940.812  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 4268506666.667 2134253333.333 1.420 0.313  
Residual 6 9020213333.333 1503368888.889    
Total 8 13288720000.000     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.313). 
 
Power of performed test with alpha = 0.050: 0.091 
 
The power of the performed test (0.091) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
Kirby-Bauer Growth Inhibition Assay 
 
 
One Way Analysis of Variance Friday, July 17, 2015, 2:28:18 PM 
 
Data source: P. aeruginosa in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.958) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:28:18 PM 
 
Data source: P. aeruginosa in Notebook1 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 15.375 15.000 15.750  
4:1 GEL-AXF 2 0 16.240 15.230 17.250  
Negative Control 2 0 0.000 0.000 0.000  
 
H = 3.824 with 2 degrees of freedom.  P(est.)= 0.148 P(exact)= 0.200 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.200) 
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One Way Analysis of Variance Friday, July 17, 2015, 2:29:03 PM 
 
Data source: S. aureus in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.773) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:29:03 PM 
 
Data source: S. aureus in Notebook1 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 23.830 23.440 24.220  
4:1 GEL-AXF 2 0 9.510 9.250 9.770  
Negative Control 2 0 0.000 0.000 0.000  
 
H = 4.706 with 2 degrees of freedom.  P(est.)= 0.095 P(exact)= 0.067 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.067) 
 

 
One Way Analysis of Variance Friday, July 17, 2015, 2:29:38 PM 
 
Data source: E. faecalis in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.954) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:29:38 PM 
 
Data source: E. faecalis in Notebook1 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 28.250 27.500 29.000  
4:1 GEL-AXF 2 0 9.385 9.000 9.770  
Negative Control 2 0 0.000 0.000 0.000  
 
H = 4.706 with 2 degrees of freedom.  P(est.)= 0.095 P(exact)= 0.067 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.067) 
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Appendix B – Statistical analysis: Arabinoxylan foams for wound healing 
applications 
 
Rheometry 
 
 
One Way Analysis of Variance Friday, December 05, 2014, 12:40:39 PM 
 
Data source: Data 1 in Rheometry 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 12:40:39 PM 
 
Data source: Data 1 in Rheometry 
 
Group N  Missing  Median    25%      75%     
3M Tegaderm Alginate at 25 deg 16 0 3030305.500 2809754.750 3276940.250  
AXF foam at 25 degrees Cels 16 0 41721206.500 36002237.500 47338803.500  
 
H = 23.273 with 1 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
AXF foam vs 3M Tegaderm  256.000 6.822 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
 
One Way Analysis of Variance Friday, December 05, 2014, 12:56:54 PM 
 
Data source: Data 1 in Rheometry 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 12:56:54 PM 
 
Data source: Data 1 in Rheometry 
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Group N  Missing  Median    25%      75%     
3M Tegaderm Alginate at 37 deg 16 0 2933280.500 2704148.750 3154513.000  
AXF foam at 37 degrees Cels 16 0 36400194.000 30817059.500 41458269.250  
 
H = 23.273 with 1 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
AXF foam vs 3M Tegaderm  256.000 6.822 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
One Way Analysis of Variance Friday, December 05, 2014, 12:59:51 PM 
 
Data source: Data 2 in Rheometry 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 12:59:51 PM 
 
Data source: Data 2 in Rheometry 
 
Group N  Missing  Median    25%      75%     
3M Tegaderm Alginate at 25 deg 16 0 526542.000 368287.275 751232.925  
AXF foam at 25 degrees Cels 16 0 7478.929 6015.412 48108.995  
 
H = 18.138 with 1 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
3M Tegaderm vs AXF foam 226.000 6.023 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance Friday, December 05, 2014, 1:00:24 PM 
 
Data source: Data 2 in Rheometry 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 1:00:24 PM 
 
Data source: Data 2 in Rheometry 
 
Group N  Missing  Median    25%      75%     
3M Tegaderm Alginate at 37 deg 16 0 486225.800 341389.825 691757.200  
AXF foam at 37 degrees Cels 16 0 7075.829 5940.793 48064.872  
 
H = 17.501 with 1 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
3M Tegaderm A vs AXF foam 222.000 5.916 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 

Porosity 
 
 
One Way Analysis of Variance Friday, December 05, 2014, 1:25:17 PM 
 
Data source: Data 1 in Porosity 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.195) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 1:25:17 PM 
 
Data source: Data 1 in Porosity 
 
Group N  Missing  Median    25%      75%     
Tegaderm 3M Alginate 8 0 1.000 1.000 1.000  
AXF foam 8 0 1.000 1.000 1.000  
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H = 3.579 with 1 degrees of freedom.  P(est.)= 0.059 P(exact)= 0.065 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.065) 
 

 
Swelling 
 
 
One Way Analysis of Variance Friday, December 05, 2014, 1:04:39 PM 
 
Data source: Copy of Data 1 in Swelling_revised 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.407) 
 
Equal Variance Test: Passed (P = 0.877) 
 
Group Name  N  Missing Mean Std Dev SEM  
3M Tegaderm at 25 degrees Cels 8 0 1316.851 303.442 107.283  
AXF foam at 25 degrees Cels 8 0 1848.899 257.950 91.199  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 1 1132300.537 1132300.537 14.277 0.002  
Residual 14 1110306.534 79307.610    
Total 15 2242607.070     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; there 
is a statistically significant difference (P = 0.002). 
 
Power of performed test with alpha = 0.050: 0.936 
 
 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t P P<0.050   
AXF foam vs. 3M Tegaderm  532.048 3.779 0.002 Yes   
 
 
One Way Analysis of Variance Friday, December 05, 2014, 1:06:02 PM 
 
Data source: Data 1 in Swelling_revised 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.440) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, December 05, 2014, 1:06:02 PM 
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Data source: Data 1 in Swelling_revised 
 
Group N  Missing  Median    25%      75%     
3M Tegaderm at 37 degrees Cels 8 0 1017.442 960.002 1036.382  
AXF foam at 37 degrees Cels 8 0 1672.819 1533.197 1879.197  
 
H = 11.294 with 1 degrees of freedom.  P(est.)= <0.001 P(exact)= <0.001 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
AXF foam vs 3M Tegaderm  64.000 4.753 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 

LAL Endotoxin Assay 
 
 
t-test Wednesday, July 01, 2015, 1:37:57 PM 
 
Data source: Data 1 in Notebook1 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.655) 
 
Equal Variance Test: Passed (P = 0.573) 
 
Group Name  N  Missing Mean Std Dev SEM  
Unsterilized AXF  8 0 5.301 1.099 0.388  
Sterilized AXF 8 0 3.416 0.871 0.308  
 
Difference 1.885 
 
t = 3.803 with 14 degrees of freedom. (P = 0.002) 
 
95 percent confidence interval for difference of means: 0.822 to 2.948 
 
The difference in the mean values of the two groups is greater than would be expected by chance; there is a 
statistically significant difference between the input groups (P = 0.002). 
 
Power of performed test with alpha = 0.050: 0.940 
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Trypan Blue: Fibroblast Cell Viability 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:06:55 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:06:55 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
24 hr AXF 8 0 97.750 94.950 98.850  
24 hr 3M Teg 8 0 97.350 94.650 98.175  
24 hr None 8 0 96.300 94.450 97.550  
 
H = 2.008 with 2 degrees of freedom.  (P = 0.366) 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.366) 
 
  
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:07:17 PM 
 
Data source: Data 1 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:07:17 PM 
 
Data source: Data 1 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
72 hr AXF 8 0 97.100 96.025 97.575  
72 hr 3M Teg 8 0 97.500 97.050 97.750  
72 hr None 8 0 97.300 96.550 97.675  
 
H = 0.925 with 2 degrees of freedom.  (P = 0.630) 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.630) 
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One Way Analysis of Variance Wednesday, June 10, 2015, 1:07:51 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:07:51 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
24 hr AXF 8 0 97.750 94.950 98.850  
72 hr AXF 8 0 97.100 96.025 97.575  
 
H = 0.799 with 1 degrees of freedom.  P(est.)= 0.371 P(exact)= 0.382 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.382) 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:08:17 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:08:17 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
24 hr 3M Teg 8 0 97.350 94.650 98.175  
72 hr 3M Teg 8 0 97.500 97.050 97.750  
 
H = 0.0249 with 1 degrees of freedom.  P(est.)= 0.875 P(exact)= 0.878 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.878) 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:08:49 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.057) 
 
Equal Variance Test: Passed (P = 0.343) 
 
Group Name  N  Missing Mean Std Dev SEM  
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24 hr None 8 0 95.787 1.919 0.678  
72 hr None 8 0 96.925 1.335 0.472  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 1 5.176 5.176 1.895 0.190  
Residual 14 38.244 2.732    
Total 15 43.419     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.190). 
 
Power of performed test with alpha = 0.050: 0.135 
 
The power of the performed test (0.135) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 

Trypan Blue: Fibroblast Cell Proliferation 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:11:41 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:11:41 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
0 hr AXF 8 0 50000.000 50000.000 50000.000  
0 hr 3M Teg 8 0 50000.000 50000.000 50000.000  
0 hr None 8 0 50000.000 50000.000 50000.000  
 
H = 0.000 with 2 degrees of freedom.  (P = 1.000) 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 1.000) 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:12:08 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.192) 
 
Equal Variance Test: Passed (P = 0.687) 
 
Group Name  N  Missing Mean Std Dev SEM  
24 hr AXF 8 0 166350.000 56132.369 19845.789  
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24 hr 3M Teg 8 0 128825.000 79448.056 28089.130  
24 hr None 8 0 205350.000 75518.380 26699.779  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 23427203333.333 11713601666.667 2.317 0.123  
Residual 21 106161035000.000 5055287380.952    
Total 23 129588238333.333     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.123). 
 
Power of performed test with alpha = 0.050: 0.244 
 
The power of the performed test (0.244) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 

 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:12:34 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.293) 
 
Equal Variance Test: Passed (P = 0.250) 
 
Group Name  N  Missing Mean Std Dev SEM  
72 hr AXF 8 0 212025.000 47514.141 16798.786  
72 hr 3M Teg 8 0 302000.000 76911.823 27192.436  
72 hr None 8 0 288718.750 108982.272 38531.052  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 37743529375.000 18871764687.500 2.824 0.082  
Residual 21 140351104687.500 6683385937.500    
Total 23 178094634062.500     
 
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.082). 
 
Power of performed test with alpha = 0.050: 0.327 
 
The power of the performed test (0.327) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results 
should be interpreted cautiously. 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:13:03 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.257) 
 
Equal Variance Test: Failed (P < 0.050) 
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Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:13:03 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
0 hr AXF 8 0 50000.000 50000.000 50000.000  
24 hr AXF 8 0 161900.000 111000.000 205500.000  
72 hr AXF 8 0 220000.000 163700.000 241000.000  
 
H = 17.041 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
72 hr AXF vs 0 hr AXF 110.500 5.525 Yes   
72 hr AXF vs 24 hr AXF 29.000 1.450 No   
24 hr AXF vs 0 hr AXF 81.500 4.075 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:14:25 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:14:25 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
0 hr 3M Teg 8 0 50000.000 50000.000 50000.000  
24 hr 3M Teg 8 0 94500.000 65250.000 193300.000  
72 hr 3M Teg 8 0 287000.000 254000.000 357000.000  
 
H = 19.725 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
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All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
72 hr 3M Teg vs 0 hr 3M Teg 123.000 6.150 Yes   
72 hr 3M Teg vs 24 hr 3M Teg 54.000 2.700 No   
24 hr 3M Teg vs 0 hr 3M Teg 69.000 3.450 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
 
One Way Analysis of Variance Wednesday, June 10, 2015, 1:15:27 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.110) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, June 10, 2015, 1:15:27 PM 
 
Data source: Data 2 in Compiled Data 6_8 
 
Group N  Missing  Median    25%      75%     
0 hr None 8 0 50000.000 50000.000 50000.000  
24 hr None 8 0 201700.000 140150.000 265500.000  
72 hr None 8 0 279575.000 186000.000 394500.000  
 
H = 17.197 with 2 degrees of freedom.  (P = <0.001) 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = <0.001) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
72 hr None vs 0 hr None 111.500 5.575 Yes   
72 hr None vs 24 hr None 31.000 1.550 No   
24 hr None vs 0 hr None 80.500 4.025 Yes   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Kirby-Bauer Growth Inhibition Assay 
 
One Way Analysis of Variance Friday, July 17, 2015, 2:39:33 PM 
 
Data source: P. aeruginosa in Growth Inhibition data.JNB 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.897) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:39:33 PM 
 
Data source: P. aeruginosa in Growth Inhibition data.JNB 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 14.375 10.500 18.250  
AXF Foam 2 0 22.170 21.090 23.250  
3M Alginate 2 0 10.040 8.750 11.330  
Negative Control 2 0 0.000 0.000 0.000  
 
H = 6.241 with 3 degrees of freedom.  P(est.)= 0.100 P(exact)= 0.038 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = 0.038) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
AXF Foam vs Negative Control 12.000 3.464 No   
AXF Foam vs 3M Alginate 7.000 2.021 Do Not Test   
AXF Foam vs Positive Control 5.000 1.443 Do Not Test   
Positive Cont vs Negative Cont 7.000 2.021 Do Not Test   
Positive Cont vs 3M Alginate 2.000 0.577 Do Not Test   
3M Alginate vs Negative Cont 5.000 1.443 Do Not Test   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is found between the two rank 
sums that enclose that comparison.  For example, if you had four rank sums sorted in order, and found no significant 
difference between rank sums 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 
vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed rank sums is a procedural rule, 
and a result of Do Not Test should be treated as if there is no significant difference between the rank sums, even 
though one may appear to exist. 
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One Way Analysis of Variance Friday, July 17, 2015, 2:40:49 PM 
 
Data source: S. aureus in Growth Inhibition data.JNB 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.523) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:40:49 PM 
 
Data source: S. aureus in Growth Inhibition data.JNB 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 23.020 22.600 23.440  
AXF Foam 2 0 12.390 11.500 13.280  
3M Alginate 2 0 0.000 0.000 0.000  
Negative Control 2 0 5.750 5.750 5.750  
 
H = 6.829 with 3 degrees of freedom.  P(est.)= 0.078 P(exact)= 0.010 
 
The differences in the median values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference (P = 0.010) 
 
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparison Diff of Ranks q P<0.05   
Positive Cont vs 3M Alginate 12.000 3.464 No   
Positive Cont vs Negative Cont 8.000 2.309 Do Not Test   
Positive Control vs AXF Foam 4.000 1.155 Do Not Test   
AXF Foam vs 3M Alginate 8.000 2.309 Do Not Test   
AXF Foam vs Negative Control 4.000 1.155 Do Not Test   
Negative Cont vs 3M Alginate 4.000 1.155 Do Not Test   
 
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is found between the two rank 
sums that enclose that comparison.  For example, if you had four rank sums sorted in order, and found no significant 
difference between rank sums 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 
vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed rank sums is a procedural rule, 
and a result of Do Not Test should be treated as if there is no significant difference between the rank sums, even 
though one may appear to exist. 
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One Way Analysis of Variance Friday, July 17, 2015, 2:41:10 PM 
 
Data source: E. faecalis in Growth Inhibition data.JNB 
 
Normality Test (Shapiro-Wilk) Passed (P = 0.120) 
 
Equal Variance Test: Failed (P < 0.050) 
 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, July 17, 2015, 2:41:10 PM 
 
Data source: E. faecalis in Growth Inhibition data.JNB 
 
Group N  Missing  Median    25%      75%     
Positive Control 2 0 27.615 27.500 27.730  
AXF Foam 2 0 12.320 11.750 12.890  
3M Alginate 2 0 0.000 0.000 0.000  
Negative Control 2 0 0.000 0.000 0.000  
 
H = 6.811 with 3 degrees of freedom.  P(est.)= 0.078 P(exact)= 0.067 
 
The differences in the median values among the treatment groups are not great enough to exclude the possibility that 
the difference is due to random sampling variability; there is not a statistically significant difference    (P = 0.067) 
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Appendix C – Statistical analysis: Electrospinning of PEGylated 
polyamidoamine dendrimer fibers  
Morphology: Fiber Diameter 
 
 
t-test Friday, December 20, 2013, 10:05:56 AM 
 
Data source: Data 1 in fiber diameter_mPEG_G3.0 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Friday, December 20, 2013, 10:05:56 AM 
 
Data source: Data 1 in fiber diameter_mPEG_G3.0 
 
Group N  Missing  Median    25%      75%     
Col 1 101 1 3.210 2.060 4.803  
Col 2 101 1 3.235 2.518 4.500  
 
Mann-Whitney U Statistic= 4552.500 
 
T = 9602.500  n(small)= 100  n(big)= 100  (P = 0.275) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility that the 
difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.275) 
 

Morphology: Pore Size 
 
t-test Friday, December 20, 2013, 9:54:39 AM 
 
Data source: Data 1 in Pore Size 
 
Normality Test (Shapiro-Wilk) Failed (P < 0.050) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test Friday, December 20, 2013, 9:54:39 AM 
 
Data source: Data 1 in Pore Size 
 
Group N  Missing  Median    25%      75%     
32:1 PEGylation 100 0 153.360 87.120 311.440  
16:1 PEGylation 100 0 112.140 49.560 208.050  
 
Mann-Whitney U Statistic= 3582.000 
 
T = 11468.000 n(small)= 100  n(big)= 100  (P = <0.001) 
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The difference in the median values between the two groups is greater than would be expected by chance; there is a 
statistically significant difference  (P = <0.001) 
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