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Abstract

A COMPARISON OF OBESITY INTERVENTIONS USING ENERGY
BALANCE MODELS

By Marcella Torres, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.

Director: Angela Reynolds, Associate Professor, Department of Mathematics and Applied
Mathematics.

An energy balance model of human metabolism developed by Hall et al. is extended to

compare body composition outcomes among standard and proposed obesity interventions.

Standard interventions include a drastic diet or a drastic diet with endurance training. Out-

comes for these interventions are typically poor in clinical studies. Proposed interventions

include a gradual diet and the addition of resistance training to preserve lean mass and

metabolic rate. We see that resistance training, regardless of dietary strategy, achieves these

goals. Finally, we observe that the optimal obesity intervention for continued maintenance

of a healthy body composition following a diet includes a combination of endurance and

resistance training.



Chapter 1

Introduction

Changes in body weight depend on changes in energy intake and energy expenditure.

When more energy is consumed as food than is expended in the form of physical work

or maintenance of life, the result can be the storage of body fat and, ultimately, obesity.

By 2030, over 50% of the US population is expected to be obese, and obesity-attributable

disease is projected to rise by 6-8 million cases of diabetes, 5-6.8 million cases of coronary

heart disease and stroke, and 0.4-0.5 million cases of cancer [21]. In addition to the human

cost, the resulting economic burden is significant, with an estimated 27% of the increase

in health-care expenditure between 1987 and 2001 in the US due to increased spending on

obese individuals and a predicted doubling of these costs every decade [21].

Developing successful weight loss and weight management strategies is therefore of

considerable importance, and mathematical models can predict the outcomes of a variety

of obesity interventions such as changes in diet and physical activity. One such dynamic

mathematical model of human metabolism was developed by Kevin Hall et al. in [8], and

has been validated against clinical weight loss studies of the effects of standard obesity

interventions: a low calorie or very low calorie diet sustained for an extended period of time

as a stand-alone measure or coupled with endurance training such as jogging. Weight-loss
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trajectory output from the model, which closely matches clinical outcomes, predicts an

initial steep drop in both body fat and lean mass that gradually approaches equilibrium,

or weight maintenance, due to the effect of adaptive thermogenesis. Free-living research

subjects typically fail to maintain the predicted maximum of weight loss achieved after 6-8

months, however, and gradually regain weight [8].

An analysis of a wide range of clinical studies suggests that additional interventions can

lead to better outcomes. The subject of this thesis is the extension of this model of human

metabolism to include the effects of endurance and resistance training on energy partitioning

and the use of the extended model to assess the long-term effects of new interventions on

body composition over time, including a gradual step decrease in energy intake and various

exercise programs.
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Chapter 2

Background

The regulation of human metabolism and body weight involve a myriad of complex biologi-

cal processes, but the whole-body system is ultimately governed by the laws of thermody-

namics, making mathematical modeling possible [6]. The law of conservation of energy

requires that changes in the body’s energy content are due to an imbalance in energy intake

and energy expenditure and, since energy is stored in the body as either fat mass or lean

mass, it is possible to predict changes in body mass given an energy surplus or deficit [6].

Two such energy-balance models form the basis for the work in this paper, both developed

by Hall et al. [7, 8]. The simplified version consists of five differential equations that

describe the partitioning of energy stored in the body into fat or lean body mass, adaptive

thermogenesis, glycogen storage, and extracellular fluid retention. This chapter provides a

summary of the model in Hall et al.

2.1 Glycogen Storage

Carbohydrate consumed in food is stored in the body as glycogen, primarily in the liver and in

muscle tissue [10]. Although glycogen dynamics are a complex function of many metabolic

processes, glycogen content in the body primarily depends on dietary carbohydrate intake

3



CI, the first term in Equation (2.1). The glycogen term is quadratic so that carbohydrate

intake must be increased three-fold to increase glycogen by a factor of 1.8 [8]. The parameter

ρG=0.004 kcal/kg, the energy density of carbohydrate, and kG =CIb/G2
init , where Ginit=500

g and CIb is carbohydrate intake at the start of the diet [8].

ρG
dG
dt

=CI− kGG2 (2.1)

2.2 Extracellular Fluid

Extracellular fluid (ECF), or water retained in the body, changes according to dietary sodium

intake in Equation (2.2) where [Na] is the extracellular sodium concentration, ∆ [Na]diet is

the change in dietary sodium, and ξ[Na] and ξCI describe the effect of dietary carbohydrate

intake on renal sodium excretion [8].

ECF
dt

=
1

[Na]

(
∆ [Na]diet−ξ[Na](ECF−ECFinit)−ξCI(1−

CI
CIb

)

)
(2.2)

2.3 Energy Partitioning

Energy stored in the body is compartmentalized into either lean tissue or fat. Changes in

body fat (F) and lean mass (L) depend on energy intake (EI) and energy expenditure (EE)

and are modeled in Equations (2.3) and (2.4) [8].

ρF
dF
dt

= (1− p)(EI−EE−ρG
dG
dt

) (2.3)

ρL
dL
dt

= p(EI−EE−ρG
dG
dt

) (2.4)

In these equations ρF and ρL are the energy content per unit change in body fat or lean

tissue, respectively, and p is a dimensionless energy partitioning function p = C
C+F with C
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a constant [8]. Energy expenditure EE is given by Equation (2.5) where K is a calculated

constant, γF and γL are regression coefficients from models describing the contribution of

fat mass and lean mass, respectively, to resting metabolic rate (RMR) [14], and ηF and ηL

are the energy expended to change body fat and lean mass.

EE =
K + γFF + γLL+δBW +T EF +AT +(EI−ρG

dG
dt )[p

ηL
ρL

+(1− p)ηF
ρF
]

1+ pηL
ρL

+(1− p)ηF
ρF

(2.5)

Changes in energy intake result in an immediate change in the energy expended during

digestion, with T EF = βT EF∆EI, where βT EF = 0.1 [8].

Energy expenditure due to physical activity is modeled by in Equation (2.6) as with

PAL the physical activity level of the individual, BW current bodyweight, and RMR resting

metabolic rate [8].

δ =
[(1−βT EF)PAL−1]RMR

BW
(2.6)

RMR was modeled with the Mifflin St. Jeor equation such that

RMR = 10∗weight(kg)+6.25∗height(cm)−5∗age(y)+5

for males [13].

2.4 Adaptive Thermogenesis

Like friction opposes the movement of a pendulum, adaptive thermogenesis acts in opposi-

tion to weight change, bringing energy expenditure into equilibrium with energy intake. In

this model, adaptive thermogenesis changes according to perturbations of EI and persists

until energy expenditure is equal to energy intake [7]:

τAT
dAT
dt

= βAT ∆EI−AT (2.7)
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where βAT = 0.14 and τAT =14 days, the estimated time constant for the onset of adaptive

thermogenesis, is equal to 14 days.

6



Chapter 3

Adapted Mathematical Model

3.1 Background

Body weight outcomes have traditionally determined the success of an obesity intervention.

While body weight is a measure of total mass of the human body including both fat and lean

tissue, body composition describes the proportion of total mass that is fat versus lean. Fat

is stored as adipose tissue in the human body, while lean tissue, also referred to as fat-free

mass, is composed of muscle, water, bone, and organs. Fat and lean mass also have differing

energy densities, with lean mass weighing more than fat. Two individuals with the same

body weight may have vastly different proportions of fat and lean mass. Since obesity is a

medical condition defined by an excess of body fat, body composition can provide a measure

of obesity whereas body weight may not. Body composition is the outcome of interest here.

3.2 Simplifying Assumptions

The differential equation modeling changes in extracellular fluid, ECF , in response to

dietary changes was excluded because i.) it does not contribute to fat or lean mass but to

total body weight, which is not considered here, ii.) dietary sodium intake, which drives

7



change in ECF , is assumed to depend on carbohydrate intake which is kept constant here

and iii.) calculations and a review of output of the model in [7] revealed that ECF fluctuates

slightly around a baseline according to sodium intake over the time course of weight loss

and so can be assumed constant with no effect on model behavior. Units were also converted

from joules to calories.

The resting metabolic rate, which is the minimal rate of energy expenditure per unit time

while at rest, was calculated in Hall et al. using the Mifflin-St. Jeor equations which depend

on age, sex, and height. In this adapted model, RMR was calculated with the Katch-McArdle

formula, RMR = 21.6L+37 because it depends only on lean mass [12, p. 266].

3.3 Model Development

The differential equations for glycogen dynamics, energy partitioning, and adaptive thermo-

genesis were simulated in XPPAUT software [4]. See code in the Appendix. Energy intake

was modeled as EI(t) = EI(0)−800H(t−1) with H(t−a) the Heaviside step function

H(t−a) =


0, 0≤ t < a

1, a≤ t
(3.1)

which has a value of zero before time t = a and a value of one starting at time t = a. The

continuous function used to numerically approximate the Heaviside equation in the adapted

model is given by

h(t−a) =
1

1− e−20(t−a)
.

This function for energy intake models a diet of 800 kcal beginning on Day 1 and carbohy-

drate intake CI(t) was assumed to be 60% of EI(t).

Two parameters were calculated such that initially the system is at steady state (weight

8



Figure 3.1: Screenshot of Body Weight Simulator

maintenance),
dG
dt

= 0 =⇒ kG =
CI(0)
G(0)2

and

EE(0) = EI(0) =⇒ K = EI(0)− γFF− γLL−δBW.

3.4 Validation

The model of Hall et al. has been implemented in Java as a web-based simulation tool shown

in Figure 3.1 at http://bwsimulator.niddk.nih.gov/. This provided data output for comparison

to the adapted model for validation purposes.

Age, height, weight, and physical activity level were input into the simulator, which

generated a baseline diet of 3024 kcal. A lifestyle change was specified to start on Day 1

with a new diet of 2224 kcal. This generated tabular data output including body composition.

The same initial conditions were simulated in the adapted model, and output for body

9
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Figure 3.2: Body Composition Output from Adapted Model versus Body Weight Simulator. The individ-
ual modeled was a 100 kg, 180 cm, 23-year-old sedentary male.

composition was compared. The absence of a model for fluctuations in extracellular fluid

in the adapted model that is present in the model of Hall et al. accounts for the relative

smoothness of the graph. Given simplifying assumptions in the adapted model, the results

were judged to be reasonably close for the time scale over which we wish to examine the

effects of weight loss interventions.
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Chapter 4

Intervention One: Step Decrease in

Energy Intake

4.1 Biological Background

This intervention is a step decrease in energy intake. A periodic step decrease in calories is a

technique employed by physique athletes to minimize the effects of adaptive thermogenesis,

which rapidly works to brake the initial phase of fast weight loss that occurs with a sudden

large drop in energy intake [7]. A second, psychological benefit to the dieter of implementing

a step decrease in energy intake as part of an obesity intervention program is that less time

overall is spent at a severe calorie deficit, making better adherence to the diet likely.

4.2 Mathematical Model

The Heaviside function in Equation (3.1) was again used in new energy intake function

E(t) = EI(0)−100
8

∑
n=1

H(t−1−7(n−1)) (4.1)

11



which resulted in eight total decrease decrements of 100 kcal from 3024 kcal to reach the

new diet of 2224 kcal as shown in Figure 4.1. In similar fashion, an energy intake function

with 29 daily decrements to reach 2224 kcal was written for comparison with the Body

Weight Simulator tool [8].
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Figure 4.1: Weekly Step Decrease in Energy Intake. Energy intake begins at 3024 kcal and decreases
weekly by 100 kcal to reach 2224 kcal on Day 51.

4.3 Results

The Body Weight Simulator tool [8] models either a one-time energy intake decrease or

a daily step decrease in energy to a specified level and implements a daily decrease in a

non-uniform fashion, shown in 4.2. The model of Hall et al. predicts only a slight advantage

of <1% body composition to be gained by implementing a one-time initial decrease versus a

daily decrement: see Figure 4.3.

Results from the adapted model for a one-time decrease of 800 calories versus a uniform

daily or uniform weekly step decrease were compared in Figure 4.4. Similarly to the Body

Weight Simulator, there was only a slight <1% lower body composition advantage in a

one-time initial decrease of 800 calories versus a gradual decrease.

Adaptive thermogenesis works against weight loss; the calories are negative because AT

is being subtracted from total energy expenditure. It is clear from viewing the area between

12
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Figure 4.2: Body Weight Simulator Daily Step Decrease in Energy Intake. Energy intake at baseline was
3024 kcal with a nonuniform daily decrement to reach a total decrease of 800 kcal on Day 29.
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Figure 4.3: Body Weight Simulator Body Composition Response to Energy Intake Drop, One-Time
versus Daily. The individual modeled was a 100 kg, 180 cm, 23-year-old sedentary male. Energy intake at
baseline was 3024 kcal, with either a one-time decrease of 800 kcal on Day One or a daily decrease to reach a
total decrease of 800 kcal on Day 29.

the two curves and the x-axis in Figure 4.5 that the total loss of energy expenditure calories

is greater for a one-time energy intake decrease, as was expected.
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Figure 4.5: Adapted Model Adaptive Thermogenesis with Energy Intake Decrease One Time versus
Weekly. Area under the curves gives total negative energy expenditure.
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Chapter 5

Intervention Two: Physical Activity

5.1 Background

This intervention added resistance training (RT) and endurance training (ET). RT, also called

strength training, is a type of anaerobic exercise that uses resistance in the form of weights

or body weight to produce muscular contractions which increase muscle size and strength.

Anaerobic training increases the quantity and activity of key enzymes controlling glucose

catabolism, a type of carbohydrate metabolism [12, p.460]. ET, also called aerobic exercise

or cardiovascular training, is exercise that increases endurance by improving the capacity

for respiratory control. Examples of ET include running and cycling. Aerobic training

increases fat metabolism during rest and sub-maximal exercise and increases carbohydrate

metabolism during maximal exercise, and the effects of the latter are greater than from

anaerobic training [12, p.460].

5.1.1 Effects of Endurance and Resistance Training on Fat and Lean Mass

While lean mass gained by fit non-dieting individuals varies widely, for untrained individuals

on a low calorie (1200 kcal per day) or very low calorie diet (800 kcal per day), lean mass

15



was found to be at least almost completely preserved with RT. In one study of two groups on

a very low calorie diet, the group that performed ET lost an average of 4.1 kg of lean mass

over 12 weeks versus only 0.8 kg lost in the RT group [2]. Resting metabolic rate (RMR)

was also preserved in the RT group in this study, while decreasing significantly for the

ET group. Similar results were obtained in [16]: “lean body tissue was almost completely

preserved in the exercised group, as the source of energy to meet the energy needs of the

dieting individuals was shifted almost entirely to triglyceride utilization”. Another study of

adults aged 65 and up showed a slight gain in lean mass for a RT group versus a significant

loss in the comparison group that performed no exercise at all - both groups were dieting

[1].

ET, however, is associated with lean mass loss, even without dieting [9, 16, 20, 23] and,

because fat metabolism is also promoted with aerobic exercise, total weight lost is greater

than with RT. Success of a weight-loss program has long been judged by total body weight

lost rather than improved body composition, which may be the reason that cardiovascular

exercise is often the sole type of physical activity in most weight loss intervention programs

as it is judged to be more effective by this measure.

However, the addition of energetically expensive lean tissue that results from RT should

produce better body composition outcomes, with a lower percentage of body fat and a

higher resting metabolic rate. Since cardiovascular exercise during dieting is associated

with greater loss of fat at the cost of lean mass while RT is associated with preservation or

gain of lean mass[2, 5, 9, 16, 20, 23], a combination of both types of training may achieve an

optimal balance of fat loss and lean mass preservation. This possibility was explored here.

5.1.2 ET and Physical Activity Level

Physical activity in the form of cardiovascular exercise causes weight loss primarily through

an increase in energy expenditure [8]. Physical activity level (PAL) is an indicator of daily

16



energy expenditure due to physical activity. The PAL scale shown in Table 5.1 describes

different levels of physical activity and their associated values.

Category PAL value
Sedentary 1.4

Light (walking 1 time per week) 1.5
Moderate (walking ≥ 1 time per week) 1.6

Active (intense sport > 1 time per week) 1.7
Very Active (strenuous sport ≥ 3 times per week) 1.9

Table 5.1: PAL Value Scale. A simple value scale that is used to quantify level of energy expenditure due to
physical activity.Values are the same as those used in the Body Weight Simulator from Hall et al.

5.2 Resistance Training and Lean Mass Gain

Strenuous activity in the form of RT triggers a variety of responses in the body, such as

hormonal changes, growth factors, and temperature changes that in turn alter the activity of

signal transduction pathways that regulate gene expression during muscle growth, causing

an increase in muscle mass [18]. While the time course of muscle growth varies among

different modes of training and total lean mass gained varies widely among individuals,

studies suggest that for less damaging modes of RT, the rate of muscle hypertrophy is most

rapid for the initial 6-15 week period following the start of a new RT program, followed by

a long, slow decline as the body adapts to the exercise [22].

5.3 Mathematical Model

The effect of cardiovascular exercise on energy expenditure was modeled by varying the

value of parameter PAL in Equation (2.6). We modeled the lean mass gain in response to RT

with the addition of a multiplicative inhibition function to Equation 2.4 resulting in the new
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differential equation to model total change in lean mass given by Equation 5.1.

dL
dt

= p(EI−EE−ρG
dG
dt

)+ r · La

La +ua ·
1

1+
(L

d

)b (5.1)

(5.1) This equation consists of a Hill-type term for the growth dynamics, which is inhibited

by the lean mass. The inhibition multiplier was used to capture the later decay in growth

rate as the body adapts to the training program.

The exponent a controls the steepness of the ascent of the curve and the exponent b

controls the steepness of the descent. The parameter u is defined as the level of L at which

the Hill term is 1/2. The parameter d is defined as the level of L at which the multiplicative

inhibition term is 1/2. While u and d control the dynamics of lean mass gain, the response

to dose of RT is controlled by parameter r, with higher frequency, intensity, or volume of

training reflected in higher values. These training variables were not considered separately

because it has been shown that varying levels of each, combined in a variety of ways, can

produce equivalent results [15, 17, 19, 22].

5.4 Results

5.4.1 Validation

Predicted changes in body fat and lean mass gain were compared to experimental data from

the STRRIDE AT/RT randomized trial comparing the effects of 8 months of ET, RT, and

a combination program including both types of training (CT) on these variables [23]. The

close agreement between the model predictions and the data for each group, with parameter

values falling within expected ranges, provides some validation of the model.

A comparison of experimental outcomes and predicted outcomes following 8 months of

RT only is shown in Table 5.2. Experimental data used for comparison were mean values
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of the group with n=44 [23]. Model parameters were set to r=0.0195 kg/day, u=54.92 kg,

d=56.5 kg, a=7, and b=8. The r value that produced a predicted change near to the mean

was judged reasonable, as several similar studies [3, 9, 11, 20] showed average gains in lean

mass of 0.002 to 0.033 kg/day.

Variable
Baseline

(Std. Dev)

Experimental

Change

(Std. Dev)

Predicted

Change

Lean Mass (kg) 54.4 (13.3) 1.09 (1.54) 1.105

Fat (kg) 34.3 (9.12) -0.26 (2.16) -0.361

Table 5.2: RT Validation. Change is from baseline after 8 months of RT. Experimental data includes mean
values and standard deviation with n=44 [23]. Model parameters were set to r=0.0195 kg/day, u=54.92 kg,
d=56.5 kg, a=7, and b=8.

Similarly, experimental outcomes and predicted outcomes following 8 months of ET

only were compared, with results shown in Table 5.3. Experimental data includes mean

values and standard deviation with n=38 [23]. Subjects assigned to this group performed an

average of 17 minutes per day of cardiovascular activity, which can reasonably be described

as a light to moderate activity level. The parameter PAL produced a predicted change in fat

mass near to the mean experimental value when set to 1.5526, which is in the light-moderate

range.
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Variable
Baseline

(Std. Dev)

Experimental

Change (Std. Dev)
Predicted Change

Lean

Mass (kg)
53.3 (8.71) -0.1 (1.22) -0.511

Fat (kg) 34.7 (7.89) -1.66 (2.67) -1.664

Table 5.3: ET Validation. Change is from baseline after 8 months of ET. Experimental data includes mean
values and standard deviation with n=38 [23]. Model parameter PAL was set to 1.5526.

Finally, a comparison of experimental outcomes and predicted outcomes following 8

months of a combined program (CT) is shown in Table 5.4. Experimental data includes mean

values and standard deviation with n=37 [23]. Subjects assigned to this group performed an

average of 37 minutes per day of combined training, which can reasonably be described as a

light to moderate activity level. Model parameters were set to PAL=1.553, r=.01826 kg/day,

u=51.6 kg, d=58.4 kg, a=7, and b=8.

Variable
Baseline

(Std. Dev)

Experimental

Change (Std. Dev)
Predicted Change

Lean

Mass (kg)
54 (9.59) 0.81 (1.38) 0.79

Fat (kg) 34.9 (8.92) -2.44 (2.97) -2.45

Table 5.4: CT Validation. Change is from baseline after 8 months of CT. Experimental data includes mean
values and standard deviation with n=37 [23]. Model parameters PAL=1.553, r=.01826 kg/day, u=51.6 kg,
d=58.4 kg, a=7, and b=8.
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5.4.2 Sensitivity Analysis

The effect of small perturbations in parameters r, u, and d, and PAL on lean and fat mass

after a simulated 8-month training period was examined to determine the impact of these

changes on model behavior with results shown in Table 5.5. Changes in lean and fat mass

after 8 months of training were very small in response to small perturbations in parameters

r, u, and d and reasonable for a 10% variation in PAL, therefore the model is not overly

sensitive to slight fluctuations in parameter values.

Variable %

Change

Change

in Lean

Mass (kg)

% Change

in Lean

Mass

Change in

Fat (kg)

% Change

in Fat

r + 10 0.1102 0.2 -.0361 -0.1

r - 10 -0.1103 -.2 0.0359 0.1

u, d + 10 -0.1617 -0.29 0.0450 0.15

u, d - 10 -0.1208 -0.22 0.0425 0.13

PAL+ 10 -1.331 -2.5 -3.971 -12

PAL- 10 1.29 2.3 4.111 12.44

Table 5.5: Model Sensitivity to Changes in r, u, and d. Parameters were changed from baseline values
r=0.0195, u=57.8, and d=56.5 used for validation against experimental results for RT only, with u and d
change in tandem to meet requirement that u>d. Parameter PAL was changed from baseline value PAL=1.5526
used for validation against experimental results for RT only.

5.4.3 Comparison of Body Composition Outcomes Among Training Programs

In the next chapter we examine body composition outcomes for an obesity intervention

program that include both exercise and diet. It is also interesting to compare outcomes for

the same individual with changes in exercise program only. The time-course of change in fat,
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Figure 5.1: Comparison of Body Composition Time-Course Among Training Programs. The individual
modeled was a 100 kg, 180 cm, 23-year-old male.

lean mass, and body composition for 8 months of simulated RT, ET, and a combined program

is compared in Figure 5.1. As expected, fat loss is greater for cardiovascular versus RT, yet

more lean mass is lost which, interestingly, results in the worst body composition outcome

among the three programs. RT, considered widely to be sub-optimal for fat loss, actually

results in the greatest gain in lean mass and a better ultimate body composition than ET. The

beneficial effects of lean mass and metabolic rate retention do not become apparent until

around 100 days into the diet; prior to that point, ET appears most effective. As metabolic

rate begins to slow midway through the diet due to lean mass lost, fat loss slows as well,

shown in the inflection of the ET curve in the left graph of Figure 5.1. At this point in the

diet, fat loss with RT picks up speed resulting in the reversal of positions of ET and RT in

the right graph. Maximum fat loss is ultimately achieved with a combined program because

of the higher amount of energetically expensive lean mass and preservation of metabolic

rate that results from RT in addition to the energy expended through cardiovascular activity.

This makes the combined training program optimal for improving body composition in the

long-term.
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Chapter 6

Case Study

A low calorie diet is often associated with a significant loss of lean mass and a decrease

in resting metabolic rate (RMR) and ET, the most commonly used exercise intervention,

often only exacerbates the effect [2]. Here we evaluate the relative effectiveness of different

dietary approaches and exercise interventions for a single individual with 100 kg total

mass and body composition of 27.2% with the ultimate goal of maximizing fat loss while

preserving lean mass and metabolic rate.

It was shown in Section 4.3 that a step decrease in energy intake has a slight metabolic

benefit that minimizes the difference in body composition outcome versus a one-time initial

decrease, with a gradual decrease resulting in only about 0.5-1% greater ultimate body

composition. This is negligible given the psychological benefit to the gradual dieter, who

will take two months of very gradual progress to achieve a calorie deficit that the drastic

dieter will have already endured for that entire period, making it likely that the former

approach would lead to greater adherence to the diet. Both strategies are shown in the

included figures, as the psychological benefit and improved adherence to a gradual diet is

difficult to prove or quantify. The intervention that is clearly beneficial in these comparisons,

however, is exercise.
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Figure 6.1: Comparison of Energy Expenditure Time-Course Among Training Programs Coupled with
Gradual Diet. The individual modeled was 100 kg with body composition of 27.2%. Energy intake was
initially 3024 kcal and decreased by 100 kcal per week for 8 weeks to reach 2224 kcal.
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Figure 6.2: Comparison of Body Composition Among Standard and Proposed Optimal Interventions.
The individual modeled was 100 kg with body composition of 27.2%.

A comparison of daily energy expenditure among diet and diet coupled with RT, ET, or

CT shown in Figure 6.1 demonstrates the additional metabolic benefit of including resistance

training in an obesity intervention strategy. Diet coupled with either RT or CT both lead to

higher energy expenditure in the long term than the two standard clinical interventions of

either diet alone or diet with ET. A comparison among body composition outcomes for the

two standard interventions of a one-time initial drastic decrease in energy intake, either alone

or with ET, and a one-time or gradual decrease with CT, shown in Figure 6.2, demonstrates

the relative effectiveness of the addition of RT and ET to either dietary scheme.

It was mentioned earlier that free-living research subjects in clinical studies typically
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Figure 6.3: Energy Intake Time-Course Through Maintenance, Diet, and Reverse Diet. Energy intake
decreased from 3024 kcal daily, the initial level required for weight maintenance, to 2224 kcal daily for the
diet. Gradual decrease is shown in the blue curve, an initial total decrease is shown in red. Both diets then
gradually returned to maintenance level.

fail to maintain the predicted maximum of weight loss achieved after 6-8 months, gradually

regaining much of the weight lost[8]. This is because a decreased metabolic rate and a lower

level of lean mass at the end of the diet, when the individual begins to increase calories, can

often lead to a regain of the fat that has been lost [8] because energy intake is increasing

while energy expenditure has decreased. An obesity intervention that is successful in the

long-term will preserve as much lean mass and metabolic rate as possible in addition to

causing fat loss so that an individual can maintain their improved body composition when

normal eating is resumed. Ideally, the exercise program would then continue as part of a

healthy lifestyle change.

To simulate a return to a normal diet after 8 months of reduced calories, energy intake

was gradually increased up to pre-diet levels. The individual in this case study initially

consumed 3024 kcal daily to maintain their weight and then decreased by 800 calories to

2224 kcal daily. Beginning at Day 224, the diet was reversed with an increase of 100 kcal

weekly back up to the initial maintenance level of 3024 kcal daily; the time-course of energy

intake is shown in Figure 6.3. An obesity intervention followed by a return to normal eating

with the healthy lifestyle change of continued exercise was simulated for the case study
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Figure 6.4: Body Composition Outcomes Following Obesity Interventions. Energy intake decreased from
3024 kcal daily, the initial level required for weight maintenance, to 2224 kcal daily for the diet, and then
gradually returned to maintenance level after 273 days which was then maintained. Exercise interventions
continued for the entire period.

individual with: an 8 month diet phase with CT followed by a reverse diet phase and then

15 months of continued CT at energy intake levels that previously led to maintenance of an

obese body composition. A comparison of body composition in Figure6.4 shows a striking

contrast between predicted results for the standard interventions of either drastic diet or

drastic diet and ET and the proposed optimal interventions that include a combination of

RT and ET exercise. It is clear that the standard interventions ultimately lead to a return to

pre-diet body composition levels, as seen in clinical studies. Whether a gradual or drastic

diet is implemented, the addition of a moderate CT program leads to continued improvement

in body composition even after resuming an energy intake level that initially maintained an

unhealthy body composition. Once a desired body composition is reached, the individual

could increase energy intake until energy balance is achieved and the new, healthier body

composition is maintained.
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Chapter 7

Conclusion

There is a clear need for alternatives to standard obesity interventions that often have poor

outcomes. We have extended an energy balance model of human metabolism developed by

Kevin Hall et al. to examine the effects of two alternative interventions, a gradual diet and

resistance training, on ultimate body composition. A new energy intake function modeling

a step decrease in calories consumed was added to simulate a gradual diet and lean mass

dependant growth with self inhibition to model lean mass gain in response to resistance

training was added to the differential equation modeling change in lean mass to simulate a

resistance training program. Predicted outcomes were then validated against experimental

data. Finally, full simulations of obesity interventions including diet, exercise, and a return

to normal energy intake were compared to determine relative effectiveness in reducing body

composition in the long-term.

We observed that there is a slight advantage to a drastic diet versus a gradual diet and that

there is a metabolic benefit that results from increased lean mass due to moderate resistance

training. This increased energy expenditure appears to eventually exceed energy expended

during endurance training, in part due to the loss of lean mass that occurs in response to

that activity, which is the standard exercise intervention employed today. A comparison
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of two-year outcomes for simulated standard and proposed interventions supports results

from clinical studies that a return to normal energy intake causes eventual weight regain

following standard interventions, while also indicating that a continued healthy lifestyle

change of moderate endurance and resistance training may lead to the maintenance of a new,

healthy body composition.

It remains to examine how energy intake decrement size or frequency of decrement

may influence the relative effectiveness of a gradual diet as compared to a drastic diet. A

closer examination of the effects of endurance training and resistance training on energy

expenditure is also needed for further information about optimal amounts of each to include

in a combination training program. Additionally, more research on adaptive thermogenesis

may ensure accurate representation of long-term behavior in the model so that it is possible

to investigate when, if ever, a new stable equilibrium of body composition maintenance is

achieved following proposed interventions and at what new higher energy intake level that

occurs. These continued efforts can assist in the development of a recommended obesity

intervention with a greater likelihood of positive outcomes.

28



Bibliography

29



Bibliography

[1] Joshua J Avila, Julie A Gutierres, Megan E Sheehy, Ingrid E Lofgren, and Matthew J
Delmonico, Effect of moderate intensity resistance training during weight loss on body
composition and physical performance in overweight older adults, European journal
of applied physiology 109 (2010), no. 3, 517–525.

[2] Randy W Bryner, Irma H Ullrich, Janine Sauers, David Donley, Guyton Hornsby,
Maria Kolar, and Rachel Yeater, Effects of resistance vs. aerobic training combined
with an 800 calorie liquid diet on lean body mass and resting metabolic rate, Journal
of the American College of Nutrition 18 (1999), no. 2, 115–121.

[3] Brett A Dolezal and Jeffrey A Potteiger, Concurrent resistance and endurance training
influence basal metabolic rate in nondieting individuals, Journal of applied physiology
85 (1998), no. 2, 695–700.

[4] Bard Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to
xppaut for researchers and students, vol. 14, Siam, 2002.

[5] Allan Geliebter, Margaret M Maher, Laura Gerace, Bernard Gutin, Steven B Heyms-
field, and Sami A Hashim, Effects of strength or aerobic training on body composition,
resting metabolic rate, and peak oxygen consumption in obese dieting subjects., The
American journal of clinical nutrition 66 (1997), no. 3, 557–563.

[6] Kevin D Hall, Mechanisms of metabolic fuel selection: modeling human metabolism
and body-weight change, Engineering in Medicine and Biology Magazine, IEEE 29
(2010), no. 1, 36–41.

[7] , Predicting metabolic adaptation, body weight change, and energy intake in
humans, American Journal of Physiology-Endocrinology and Metabolism 298 (2010),
no. 3, E449–E466.

[8] Kevin D Hall, Gary Sacks, Dhruva Chandramohan, Carson C Chow, Y Claire Wang,
Steven L Gortmaker, and Boyd A Swinburn, Quantification of the effect of energy
imbalance on bodyweight, The Lancet 378 (2011), no. 9793, 826–837.

[9] Suleen S Ho, Satvinder S Dhaliwal, Andrew P Hills, and Sebely Pal, The effect of
12 weeks of aerobic, resistance or combination exercise training on cardiovascular

30



risk factors in the overweight and obese in a randomized trial, BMC public health 12
(2012), no. 1, 704.

[10] Berg JM and L Stryer, Biochemistry, W H Freeman, New York, 2002.

[11] Michael S Lo, Linda LC Lin, Wei-Jen Yao, and Mi-Chia Ma, Training and detraining
effects of the resistance vs. endurance program on body composition, body size, and
physical performance in young men, The Journal of Strength & Conditioning Research
25 (2011), no. 8, 2246–2254.

[12] William D McArdle, Frank I Katch, and Victor L Katch, Essentials of exercise physiol-
ogy, Lippincott Williams & Wilkins, 2006.

[13] Mark D Mifflin, ST St Jeor, Lisa A Hill, Barbara J Scott, Sandra A Daugherty,
and YO Koh, A new predictive equation for resting energy expenditure in healthy
individuals., The American journal of clinical nutrition 51 (1990), no. 2, 241–247.

[14] Karl M Nelson, Roland L Weinsier, Calvin L Long, and Yves Schutz, Prediction of
resting energy expenditure from fat-free mass and fat mass., The American journal of
clinical nutrition 56 (1992), no. 5, 848–856.

[15] K Ohkawara, S Tanaka, M Miyachi, K Ishikawa-Takata, and I Tabata, A dose–response
relation between aerobic exercise and visceral fat reduction: systematic review of
clinical trials, International journal of obesity 31 (2007), no. 12, 1786–1797.

[16] Konstantin N Pavlou, William P Steffee, Robert H Lerman, and Belton A Burrows,
Effects of dieting and exercise on lean body mass, oxygen uptake, and strength.,
Medicine and Science in Sports and Exercise 17 (1985), no. 4, 466–471.

[17] Regis Radaelli, Cíntia E Botton, Eurico N Wilhelm, Martim Bottaro, Lee E Brown,
Fabiano Lacerda, Anelise Gaya, Kelly Moraes, Amanda Peruzzolo, and Ronei S Pinto,
Time course of low-and high-volume strength training on neuromuscular adaptations
and muscle quality in older women, Age 36 (2014), no. 2, 881–892.

[18] Michael J Rennie, Henning Wackerhage, Espen E Spangenburg, and Frank W Booth,
Control of the size of the human muscle mass, Annu. Rev. Physiol. 66 (2004), 799–828.

[19] Mads Rosenkilde, Pernille Auerbach, Michala Holm Reichkendler, Thorkil Ploug,
Bente Merete Stallknecht, and Anders Sjödin, Body fat loss and compensatory mech-
anisms in response to different doses of aerobic exercise—a randomized controlled
trial in overweight sedentary males, American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology 303 (2012), no. 6, R571–R579.

[20] E Sanal, F Ardic, and S Kirac, Effects of aerobic or combined aerobic resistance
exercise on body composition in overweight and obese adults: gender differences.
a randomized intervention study., European journal of physical and rehabilitation
medicine 49 (2013), no. 1, 1–11.

31



[21] Y Claire Wang, Klim McPherson, Tim Marsh, Steven L Gortmaker, and Martin Brown,
Health and economic burden of the projected obesity trends in the usa and the uk, The
Lancet 378 (2011), no. 9793, 815–825.

[22] Mathias Wernbom, Jesper Augustsson, and Roland Thomeé, The influence of frequency,
intensity, volume and mode of strength training on whole muscle cross-sectional area
in humans, Sports Medicine 37 (2007), no. 3, 225–264.

[23] Leslie H Willis, Cris A Slentz, Lori A Bateman, A Tamlyn Shields, Lucy W Piner,
Connie W Bales, Joseph A Houmard, and William E Kraus, Effects of aerobic and/or
resistance training on body mass and fat mass in overweight or obese adults, Journal
of Applied Physiology 113 (2012), no. 12, 1831–1837.

32



Appendix A

XPPAUT Code

A.1 Validation Model

#Models ONE decrease in calories beginning at day 1

#energy intake functions

h(t)=1/(1+exp(-20*t))

#One decrease of 100 kcal

EI(t)=EI0-800*h(t-30)

CI(t)=.6*EI(t)

#glycogen storage, units in kg

dG/dt=(CI(t)-k*G2̂)/.004

#adaptive thermogenesis, units in kg/day

dAT/dt=(.14*(EI(t)-EI0)-AT)/14

#thermic effect of feeding, units in kg

TEF=.1*(EI(t)-EI0)

#energy expenditure

EE(t)=(E+3.107*F+21.989*L+(.9*PAL-1)*(21.6*L+370)+TEF+AT
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+(EI(t)-(CI(t)-k*G2̂))*((.1073)*(2/(2+F))+

.018987))/(1+.1073*(2/(2+F))+.018987)

#energy partitioning equations

dF/dt=(1-2/(2+F))*(EI(t)-EE(t)-(CI(t)-k*G2̂))/9440.727

dL/dt=(2/(2+F))*(EI(t)-EE(t)-(CI(t)-k*G2̂))/1816.444

init G=.5,F=27.2,L=72.8

par k=7257.6,EI0=3024,PAL=1.5,E=658.8224

@ bound=10000, TOTAL=365, METH=stiff

done

A.2 Intervention One Model

#Models decrements of 100 calories per week beginning at Day 1

#energy intake functions

h(t)=1/(1+exp(-20*t))

# 8 decreases of 100 kcal

EI(t)=EI0-100*(h(t-1)+h(t-8)+h(t-15)+h(t-22)+h(t-29)+

h(t-36)+h(t-44)+h(t-51))

CI(t)=.6*EI(t)

#glycogen storage, units in kg

dG/dt=(CI(t)-kG*G2̂)/.004

#adaptive thermogenesis, units in kg/day

dAT/dt=(.14*(EI(t)-EI0)-AT)/14

#thermic effect of feeding, units in kg

TEF=.1*(EI(t)-EI0)

#energy expenditure

34



EE(t)=(K+3.107*F+21.989*L+(.9*PAL-1)*(21.6*L+370)+TEF+AT+

(EI(t)-(CI(t)-kG*G2̂))*((.1073)*(2/(2+F))+

.018987))/(1+.1073*(2/(2+F))+.018987)

#energy partitioning equations

dF/dt=(1-2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/9440.727

dL/dt=(2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/1816.444

init G=.5,F=27.2,L=72.8

par kG=7257.6,EI0=3024,PAL=1.5,K=658.8224

@ bound=10000, TOTAL=365, METH=stiff

done

A.3 Intervention Two Model

#Model used for parameter fitting by comparison to study Effects

of aerobic training and/or resistance training on body mass and

fat mass in overweight or obese adults

#values set to match study mean baseline values for body composition,

energy intake, lean and fat mass

#energy intake functions

h(t)=1/(1+exp(-20*t)) #no diet EI(t)=EI0

CI(t)=.4*EI(t)

#glycogen storage, units in kg

dG/dt=(CI(t)-kG*G2̂)/.004

#adaptive thermogenesis, units in kg/day

dAT/dt=(.14*(EI(t)-EI0)-AT)/14

#thermic effect of feeding, units in kg
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TEF=.1*(EI(t)-EI0)

#energy expenditure

EE(t)=(K+3.107*F+21.989*L+(.9*PAL-1)*(21.6*L+370)+TEF+AT+

(EI(t)-(CI(t)-kG*G2̂))*((.1073)*(2/(2+F))+

.018987))/(1+.1073*(2/(2+F))+.018987)

#resistance training

#energy partitioning equations

dF/dt=(1-2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/9440.727

dL/dt=(2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/1816.444+

r*((Lâ/(Lâ+uâ))*(1/(1+(L/d)b̂)))

init G=.5,F=34.3,L=54.4

par kG=3214.4,EI0=2009,PAL=1.5,K=165.4643,

r=0.0195,u=54.92, d=56.5,a=7,b=8

aux RT=r*((Lâ/(Lâ+uâ))*(1/(1+(L/d)b̂)))

aux BC=F/(F+L)

@ bound=10000, TOTAL=224, METH=stiff, dt=1

done

A.4 Case Study Model

#Model used to simulate a diet phase followed by a reverse diet

that returned to initial energy intake levels

#energy intake functions

h(t)=1/(1+exp(-20*t))/par #either drastic or gradual diet could

be selected by commenting out or in energy intake functions

#drastic:
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EI(t)=EI0-800*h(t-1)+100*(h(t-224)+h(t-231)+h(t-238)+h(t-245)+

h(t-252)+h(t-259)+h(t-266)+h(t-273))

#or gradual:

EI(t)=EI0-100*(h(t-1)+h(t-8)+h(t-15)+h(t-22)+h(t-29)+h(t-36)+

h(t-44)+h(t-51))+100*(h(t-224)+ h(t-231)+h(t-238)+h(t-245)+

h(t-252)+h(t-259)+h(t-266)+h(t-273))

CI(t)=.4*EI(t)

#glycogen storage, units in kg

dG/dt=(CI(t)-kG*G2̂)/.004

#adaptive thermogenesis, units in kg/day

dAT/dt=(.14*(EI(t)-EI0)-AT)/14

#thermic effect of feeding, units in kg

TEF=.1*(EI(t)-EI0)

#energy expenditure

EE(t)=(K+3.107*F+21.989*L+(.9*PAL-1)*(21.6*L+370)+TEF+AT+

(EI(t)-(CI(t)-kG*G2̂))*((.1073)*(2/(2+F))+

.018987))/(1+.1073*(2/(2+F))+.018987)

#resistance training

#energy partitioning equations

dF/dt=(1-2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/9440.727

dL/dt=(2/(2+F))*(EI(t)-EE(t)-(CI(t)-kG*G2̂))/1816.444+

r*((Lâ/(Lâ+uâ))*(1/(1+(L/d)b̂)))

init G=.5,F=34.3,L=54.4

par kG=3214.4,EI0=2009,PAL=1.5,K=165.4643,

r=0.0195,u=54.92, d=56.5,a=7,b=8

aux BC=F/(F+L)
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aux INTAKE=EI0-800*h(t-1)+100*(h(t-224)+h(t-231)+h(t-238)+h(t-245)+

h(t-252)+h(t-259)+h(t-266)+h(t-273))

#for drastic diet, or EI(t) for gradual diet @ bound=10000,

TOTAL=224, METH=stiff, dt=1

done
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