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A newly discovered cysteine protease, Prp, has been shown to perform an essential, 

site-specific cleavage of ribosomal protein L27 in Staphylococcus aureus. In Firmicutes 

and related bacteria, ribosomal protein L27 is encoded with a conserved N-terminal 

extension that must be removed to expose residues critical for ribosome function. 

Uncleavable and pre-cleaved variants were unable to complement an L27 deletion in S. 

aureus, indicating that this N-terminal processing event is essential and likely plays an 

important regulatory role. The gene encoding the responsible protease (prp) has been 



 

shown to be essential, and is found in all organisms encoding the N-terminal extension 

of L27. Cleavage of L27 by Prp represents a new target for potential antibiotic therapy. 

In order to characterize this protease, Prp has been overexpressed and purified. Using 

an assay we have developed, based on cleavage of a fluorogenic peptide derived from 

the conserved L27 cleavage sequence, we have undertaken an analysis of the enzyme 

kinetics and substrate specificity for Prp cleavage and tested predictions made based 

on a structural model using active-site mutants. 
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Chapter 1 

Introduction 

 

 Staphylococcus aureus is a Gram-positive bacterium and is a commensal 

inhabitant of the skin and mucosal epithelia; it is estimated that approximately 20% of 

individuals are nasal carriers. This colonization provides a reservoir of bacteria with the 

ability to cause infection in cases of a breakdown in host defenses, such as loss of the 

skin barrier (wounds, surgery, etc.) or underlying disease (diabetes, AIDS, etc.). Upon 

infection, S. aureus can cause a wide range of disease, including skin, respiratory, 

bone, and endovascular disorders. More life-threatening conditions, such as 

bacteremia, endocarditis, metastatic infections, and sepsis, are also a major concern. 

These diseases can be further complicated by the presence of virulence factors, 

including surface proteins (microbial surface components recognizing adhesive matrix 

molecules—MSCRAMMs), capsules, hydrolytic enzymes (proteases, lipases, 

nucleases, etc.), and toxins (leukocidins, enterotoxins, exfoliative toxins, alpha-toxin, 

toxic shock syndrome toxin-1, etc.), which help the bacterium adapt to and evade the 

host immune system (Lowy, 1998; Wertheim et al., 2005, Gordon & Lowy, 2008; 

Chambers & DeLeo, 2009; Reyes-Robles et al., 2014).  

 S. aureus is naturally susceptible to practically all antibiotics. However, it has 

rapidly developed mechanisms of antibiotic resistance through horizontal gene transfer, 
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chromosomal mutations, and antibiotic selection (Chambers & DeLeo, 2009). The 

development of antibiotic resistance in S. aureus began shortly after the introduction of 

penicillin in the 1940s, whereupon strains carrying the gene for β-lactamase first 

emerged in health-care settings then spread to the community. In 1961, methicillin was 

introduced and used to treat patients with penicillin-resistant S. aureus infections. 

However, methicillin-resistant strains (MRSA) were isolated later that same year. Like 

the penicillin-resistant strains, methicillin-resistant strains spread from hospitals to the 

community, although, surprisingly, community cases also appeared in patients with no 

prior hospitalizations. The increasing prevalence of MRSA and community-acquired 

MRSA (CA-MRSA) led to a dramatic increase in the use of vancomycin, and 

predictably, strains with intermediate or complete resistance to vancomycin have since 

been isolated (Lowy, 2003).  

Currently, antibiotic resistance is found in all major pathogens and to all classes 

of antibiotics. Most available antibiotics are based on the chemical scaffolds of natural 

products that were discovered over 40 years ago. These scaffolds form the basis for a 

drug’s activity, while their surrounding chemical groups are altered in subsequent 

generations to circumvent resistance or make other improvements to the drug. 

Recently, only two new classes of broad-spectrum antibiotics have been developed and 

approved: the oxazolidinones (linezolid) and the lipopeptide antibiotic daptomycin 

(Fischbach & Walsh, 2009; Cole, 2014).  

Antibiotics target essential metabolic processes of bacteria. The main classes of 

antibiotics have only five targets: the ribosome, cell wall synthesis, RNA polymerase, 

metabolic enzymes, and DNA topoisomerase. The effects of antibiotics on these targets 
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can directly kill the bacteria or inhibit their growth, allowing the immune system to clear 

the infection. The development of antibiotic resistance is not a new phenomenon. 

Bacteria have evolved alongside organisms that naturally produce antibiotics and, to 

survive, bacteria have had to develop a variety of antibiotic resistance mechanisms. 

These mechanisms can include inactivation of the drug, modification of the drug target, 

modification of the permeability of the cell wall, overproduction of the target, or bypass 

of the inhibited metabolic steps (Coates et al., 2002). 

 

Bacterial Ribosomes 

Among the first antibiotics discovered from natural sources were some found to 

target the ribosome (Bush, 2011). Ribosomes are the site of protein synthesis inside 

cells. They are molecular machines composed of ribosomal RNA (rRNA) and proteins, 

which assemble to form a ribonucleoprotein complex (Figure 1.1). This complex is 

composed of a small subunit (30S) and a large subunit (50S) that come together to form 

a functional (70S) particle. The 30S subunit consists of 16S rRNA along with 21 proteins 

(S1-21), while the 50S subunit is composed of 23S rRNA, 5S rRNA, and 33 proteins 

(L1-36). Assembly of the ribosome is complex and highly organized; however, all of the 

necessary information is encoded within the rRNA and proteins themselves. Ribosomal 

RNA is synthesized as a single transcript, which is processed into separate rRNAs 

(23S, 16S, and 5S) by approximately five nucleases (RNase III, E, T, G, and one 

unidentified). These rRNAs can be modified at conserved and functionally important 

regions, which can influence both ribosome structure and function. The initial steps of 

ribosome assembly involve rRNA folding, which is guided along by ribosomal protein 
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ahierarchical manner and induce and stabilize structural changes. Many assembly 

factofklsdjfleawjfa  

 

 

 

Figure 1.1: The bacterial ribosome. 
 

(A) Diagrams of the 30S and 50S subunits from Thermus thermophilus. The backbone 
of rRNA is shown in yellow and grey and ribosomal proteins at the interfaces of the 
subunits are shown in bronze and blue. The A-, P-, and E-sites are labeled on each 
subunit. (B) A cross-section of the ribosome with a tRNA at the P-site. Messenger RNA 
is shown in purple and the polypeptide chain exit tunnel is shown as a red arrow. 
 
Reprinted from Nature Reviews-Microbiology, 3, Poehlsgaard, J., Douthwaite, S., The 
bacterial ribosome as a target for antibiotics, 870-881, (2005), with permission from 
Nature Publishing Group. 

 

 

A 
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binding. These proteins bind in a hierarchical manner and induce and stabilize structural 

changes. Many assembly factors, such as chaperones, maturation factors, and 

GTPases, also facilitate proper rRNA folding and protein-RNA interactions, or serve as 

checkpoint sensors during assembly (which is more important for the larger 50S 

particle). Ribosome assembly thus involves a series of rRNA conformational changes 

and protein-binding events and can proceed through various pathways with different 

assembly intermediates (Shajani et al., 2011). 

The function of ribosomes is to translate the information encoded in messenger 

RNA (mRNA) into the amino acid sequence of proteins. The 30S subunit associates 

with mRNA during translation initiation and contains the decoding site where the three-

nucleotide codons in the mRNA are matched with their corresponding aminoacylated 

transfer RNAs (tRNA). Initiation occurs when a start codon is positioned at the peptidyl 

site (P site) and interacts with an initiator tRNA carrying methionine. The 50S subunit, 

which carries the peptidyl transferase center (the catalytic site of peptide bond 

formation; PTC), then associates with the 30S subunit, forming the functional ribosome. 

A second codon at the acceptor site (A site) is matched with its corresponding 

aminoacyl-tRNA and a conformational change occurs, placing the aminoacyl end of the 

tRNA at the peptidyl transferase center, where a peptide bond is formed between the 

methionine and second amino acid. This moves the ribosome one codon further down 

the mRNA, placing the initiator tRNA at the exit site (E site) and the tRNA holding the 

dipeptide in the P site. The uncharged tRNA then exits the ribosome, while the acceptor 

site is open to receive the next charged tRNA. This process repeats until a stop codon 
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is reached and the polypeptide is released from the exit tunnel on the back of the 

ribosome (Poehlsgaard & Douthwaite, 2005). 

Many antibiotics that target the ribosome are still in use today, such as 

aminoglycosides, tetracyclines, and macrolides (Bush, 2011). Most antibiotics that 

target the ribosome target the active regions of the 30S and 50S subunits (Figure 1.2). 

Antibiotics that bind to the 30S subunit—tetracyclines, spectinomycin, and 

aminoglycosides—interfere directly with mRNA decoding by causing misincorporation of 

amino acids, blocking binding of tRNA at the A-site, or inhibiting translocation. The 

larger 50S subunit is targeted at three main regions, causing interference with GTP 

hydrolysis, peptidyl transfer, and polypeptide channeling through the exit tunnel. The 

50S subunit is targeted by a variety of antibiotics, including macrolides, lincosamides, 

streptogramins, chloramphenicol, puromycin, and oxazolidinones. Most of the antibiotics 

that target the ribosome have been found to bind at relatively few, overlapping sites 

(Poehlsgaard & Douthwaite, 2005; Hermann, 2005).  

 

Proteases 

 Proteases are enzymes that hydrolyze the peptide bonds between amino acids in 

proteins. They are one of the most abundant classes of enzymes and have been 

identified in almost all organisms.  Proteases play a role in most biological pathways 

and networks, including cell-cycle progression; cell signaling, proliferation, and death; 

protein trafficking; and the immune response. Due to their ubiquity, they have been 

implicated in many diseases, such as coagulopathies, inflammation, degenerative 
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diseases, cancer, and infectious disease, making them important drug targets. Protease 

fasdfasdfadfsafs 

 

 

 

 

 

 

 

Figure 1.2: Binding sites of antibiotics on the bacterial ribosome. 
 

The 30S subunit of Thermus thermophilus is shown on the left and the 50S subunit is 
on the right. Binding sites are shown as space-filling balls. Ribosomal RNA is shown as 
yellow and grey and ribosomal proteins are shown in bronze and blue. 
 
Reprinted from Nature Reviews-Microbiology, 3, Poehlsgaard, J., Douthwaite, S., The 
bacterial ribosome as a target for antibiotics, 870-881, (2005), with permission from 
Nature Publishing Group. 
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diseases, cancer, and infectious disease, which also makes them important drug 

targets. Protease inhibiting drugs are currently in use for coagulation disorders, 

hypertension, HIV infection, cancer, and diabetes. It is estimated that 5-10% of all 

currently pursued drug targets are proteases (Drag & Salvesen, 2010; Deu et al., 2012). 

 There are seven classes of proteases (aspartate, glutamate, cysteine, 

metalloproteases, serine, threonine, and asparagine peptide lyases) that are classified 

with respect to their catalytic mechanism (Figure 1.3). Serine, cysteine, and threonine 

proteases use nucleophilic amino-acid side chains at the active site to catalyze 

hydrolysis through covalent intermediates, whereas aspartate, glutamate, and 

metalloproteases carry out hydrolysis using an activated water molecule generated by a 

carboxylic acid group or metal ion. Due to the highly conserved mechanisms among the 

different classes of proteases, target specificity has been a major obstacle in the 

development of protease inhibitors. Many proteases have closely related homologs with 

nearly identical catalytic mechanisms, which often leads to cross-reactivity with 

inhibitors and unwanted side effects. Nevertheless, there have been many successful 

drugs that target proteases (Drag & Salvesen, 2010; Deu et al., 2012). 

 

A Novel Drug Target in S. aureus and Related Bacteria 

One way to combat the increasing prevalence of antibiotic resistant infections is 

to find novel antibiotic targets that require brand new classes of drugs. Our lab has 

recently discovered a novel drug target in S. aureus and related bacteria—the protease 

responsible for a newly discovered, essential N-terminal processing of ribosomal protein 
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peptidyl transferase center and has been shown to contribute to 50S ribosomal subunit 

sdkjlflajelfjalejfle  

 

 

 

 

 

Figure 1.3: Tetrahedral intermediates formed during peptide cleavage. 
 

A diagram of the tetrahedral intermediates formed during proteolysis. Serine (Ser), 
cysteine (Cys), and threonine (Thr) proteases form covalent bonds between the 
substrate and the enzyme’s catalytic nuclephoile (Nuc) during catalysis. 
Metalloproteases and aspartic acid proteases (Asp) use a non-covalent acid-base 
system involving a highly reactive water molecule. 
 
Reprinted from Nature Reviews: Drug Discovery, 9, Drag, M., Salvesen, G.S., Emerging 
principles in protease-based drug discovery, 690-701, (2010), with permission from 
Nature Publishing Group. 
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L27. In Escherichia coli, the N-terminus of ribosomal protein L27 extends into the 

peptidyl transferase center and has been shown to contribute to 50S ribosomal subunit 

assembly, A- and P-site tRNA positioning and stability, and peptidyl transferase activity 

(Figure 1.4) (Lotti et al., 1987; Wower et al., 1998; Maguire et al., 2005; Voorhees et al., 

2009; Shoji et al., 2011). Studies have shown that the first three N-terminal residues of 

E. coli L27—alanine 2, histidine 3, and lysine 4 (AHK)—are critical for facilitating 

translation (Maguire et al., 2005). However, in S. aureus and related bacteria, these 

critical residues (ASK) are located directly after an N-terminal extension of nine amino 

acids (Spilman et al., 2012). This N-terminal extension was discovered due to its 

homology to a cleavage motif in staphylococcal phage 80α scaffold and major capsid 

proteins, which were found to be cleaved at their N-terminus at a conserved motif, 

KLKxNLQxF*A (where * denotes the cleavage site) (Poliakov et al., 2008). The 

homology between the N-termini of these proteins and the importance of the A(H/S)K 

motif for peptidyl transferase activity suggested that S. aureus L27 was also cleaved at 

this conserved motif and that this cleavage is required for proper ribosome function.  

 We confirmed this novel cleavage event in S. aureus and found that it is 

performed by a previously unclassified cysteine protease (Wall et al., 2015). This 

protease is encoded in an open reading frame (ORF) located between the genes for 

ribosomal proteins L21 (rplU) and L27 (rpmA) in S. aureus and related bacteria. All 

bacteria that encode the N-terminal extension of L27 have also been found to encode a 

homolog of this protease (Figure 1.5). The conservation of this N-terminal extension and 

the protease responsible for its cleavage in this subset of bacteria suggests that they 
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biology of these organisms. We have named this protease phage-related ribosomal 

protease, sdlkfjaslfjal;sdjfl;as2015). 

  

 

 

 

 

 

Figure 1.4: Ribosomal protein L27 and tRNA at the PTC in E. coli. 
 

(A) A diagram of the N-terminus of ribosomal protein L27 (dark blue) in relation to the 3’ 
ends of A- and P-site tRNAs (green and purple, respectively) at the PTC. (B) Predicted 
interactions of L27 with A- and P-site tRNAs and 23S RNA (light blue). 
 
Reprinted/adapted from Nature Structural and Molecular Biology, 16 (5), Voorhees 
R.M., Weixlbaumer A., Loakes D., Kelley, A.C., Ramakrishnan V., Insights into 
substrate stabilization from snapshots of the peptidyl transferase center of the intact 
70S ribosome, 528-533, (2009), with permission from Nature Publishing Group. 
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Figure 1.5: L27 and Prp phylogeny across major bacterial phyla. 
 
A neighbor-joining phylogenetic tree (Jukes Cantor; BLOSUM80) consisting of 
sequences from representative species of each major bacterial phyla. Gram-positive 
species are designated in red. Gram-negative species are designated in black. Species 
containing the conserved N-terminal extension in L27 are bold and italicized. Species 
containing a Prp homolog are indicated by black diamonds. 
 
Reprinted from Molecular Microbiology, 95 (2), Wall E.A., Caulfield J.H., Lyons, C.E., 
Manning K.A., Dokland, T., Christie, G.E., Specific N-terminal cleavage of ribosomal 
protein L27 in Staphylococcus aureus and related bacteria, 258-269, (2015), with 
permission from John Wiley and Sons. 
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play an important role in the biology of these organisms. We have named this newly 

discovered protease phage-related ribosomal protease, or Prp (Wall et al., 2015). 

Both L27 and Prp have been shown to be essential in S. aureus. Therefore, 

cleavage of the N-terminal extension was thought to be an essential process as well. To 

test this, a complementation system was generated to determine if S. aureus could 

survive in the presence of pre-cleaved (Δ2-9) or un-cleavable (F8A:F9A) variants of L27 

(Figure 1.6). In this system, native S. aureus L27 was deleted from the chromosome 

and complemented with IPTG-inducible, wild-type L27 on a plasmid. This made S. 

aureus completely dependent on IPTG for survival. Then, a second, arsenite-inducible 

plasmid was introduced, which expressed wild-type, pre-cleaved, or un-cleavable L27. 

Using the different inducers, each of these L27 variants were expressed and their 

effects on cell survival were determined. In this system, only wild-type L27 could 

complement the chromosomal deletion, proving that its N-terminal cleavage is an 

essential process (Wall, 2015).  

Due to its role in carrying out an essential and previously undescribed cleavage 

of L27, Prp is a promising target for novel antibiotics. The goal of this study was to 

characterize the activity and substrate specificity of Prp, which will provide insight into 

its function and lay the groundwork necessary for finding inhibitors of this enzyme. 

Towards this end, our lab has developed a fluorogenic peptide cleavage assay, based 

on the cleavage of a peptide 11-amino acids long, derived from the conserved cleavage 

motif of S. aureus ribosomal protein L27 (Figure 1.7). Flanking this peptide is a 

fluorophore, 2-aminobenzoic acid (2-abz), at its N-terminus and a quencher, 

dinitrophenol (Dnp), at its C-terminus. When Prp cleaves this substrate between the 
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fluorescence is quantitated using a Tecan Infinite® M1000 microplate reader. This assay 

fjsdjlfjasldfjasldfja 

 

 

 

 

Figure 1.6: An L27 complementation system. 
 
Native L27 was deleted from the S. aureus chromosome and replaced with a 
spectinomycin-resistance cassette (SpecR). An IPTG-inducible plasmid expressing wild-
type L27 was introduced alongside an arsenite-inducible plasmid expressing wild-type, 
pre-cleaved, or un-cleavable L27 (L27*). Results show that only wild-type L27 was able 
to complement the chromosomal deletion (Wall, 2015). 
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Figure 1.7: Diagram of the fluorogenic peptide cleavage assay. 
 

In the assay used in this study, an 11-amino acid long peptide based on the conserved 
cleavage motif of S. aureus L27 is cleaved by Prp. Upon cleavage, the N-terminal 
fluorophore (2-abz) and C-terminal quencher (Dnp) are separated, causing an increase 
in fluorescence upon excitation at 325 nm. This increase in fluorescence is measured 
using a microplate reader (Adapted from Wall, 2015). 
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phenylalanine and alanine residues, the fluorophore and quencher are separated 

causing an increase in fluorescence intensity upon excitation at 325 nm. Using a Tecan 

Infinite® M1000 microplate reader, this assay was optimized and used to determine the 

enzyme kinetics of wild-type Prp, test its substrate specificity using competitive peptide 

substrates, and test predictions made based on a structural model using active-site 

mutants. 
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Chapter 2 

Materials and Methods 

 

Note: All reagents were procured through standard suppliers including Fisher Scientific 

(Waltham, MA) and Sigma-Aldrich (St. Louis, MO), unless otherwise specified. 

 

I. Bacterial Culture 

 

 Bacterial strains used in this study are listed in Table 1. E. coli strains were 

cultured in Luria-Bertani (LB; Fisher Scientific; Waltham, MA) broth or on 1.5% LB agar 

plates supplemented with ampicillin (100 µg/ml) and/or chloramphenicol (30 µg/ml), as 

required, and grown at 37°C overnight. S. aureus strain RN4220 was cultured in LB 

broth or on 1.5% LB agar plates and incubated at 37°C overnight. Liquid cultures were 

grown on an orbital shaker at 200 rpm. 

 

II. DNA Manipulations 

 

 Restriction endonucleases, restriction enzyme buffers, and bovine serum 

albumin (BSA) were purchased from New England Biolabs (Ipswich, MA) and used 

according to the manufacturer’s instructions. Restriction digests were generally 
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performed in 25 µl reactions. Plasmid DNA was purified using the QIAprep® Spin 

Miniprep Kit (Qiagen; Valencia, CA) according to manufacturer’s instructions. When 

 
 
Table 1. Bacterial strains and plasmids used in this study 
E. coli strains Description Reference or 

source 

Stellar™ competent 
cells 

HST08 derivative, high transformation 
efficiency strain. 

E. coli F–, endA1, supE44, thi-1, recA1, 
relA1, gyrA96, phoA, Φ80d lacZΔM15, 
Δ(lacZYA-argF)U169, Δ(mrr-hsdRMS-

mcrBC), ΔmcrA, λ– 

Clontech 

BL21-CodonPlus™ 
(DE3)-RIL competent 

cells 

Stratagene BL21-Gold derivative. 
E. coli B F– ompT hsdS(r8

– m8
–) dcm+ Tetr 

gal λ(DE3) endA Hte [argU ileY leuW Camr] 

Agilent 
Technologies 

RN 

Scarab cells containing pHYRS52 with His6-
tagged ubiquitin-like protein-specific 

protease 1 (Ulp1) under control of T7lac 
promoter 

Dr. Darrell 
Peterson 

S. aureus strains 

RN4220 Restriction-defective derivative of RN450 Kreiswirth, B.N., 
et al., 1983. 

Plasmids for protein overexpression 

pRW 
pET21a derivative with T7lac promoter, Stu1 
site, His6-SUMO tag, HindIII site, Xho1 site 

and T7 terminator 

Dr. Darrell 
Peterson 

pEW34 Plasmid pRW with His6-SUMO-tagged wild-
type Prp Wall, E. A. 

pEW40 Plasmid pRW with His6-SUMO-Prp C34S  
(TGT ! AGT) Wall, E. A. 

pALJ5 Plasmid pRW with His6-SUMO-Prp S38A  
(TCA ! GCT) This work 

pALJ6 Plasmid pRW with His6-SUMO-Prp D31A  
(GAT ! GCA) This work 

pALJ7 Plasmid pRW with His6-SUMO-Prp H22A  
(CAT ! GCA) This work 

pALJ8 Plasmid pRW with His6-SUMO-Prp G21A  
(GGC ! GCA) This work 
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performed in 25 µl reactions. Plasmid DNA was purified using the QIAprep® Spin 

Miniprep Kit (Qiagen; Valencia, CA) according to manufacturer’s instructions. When 

applicable, plasmid DNA was eluted in HPLC-grade water for DNA sequencing. PCR 

products were analyzed and prepared for purification using agarose gel electrophoresis. 

The DNA bands were excised and the DNA was purified using a Nucleospin® Gel and 

PCR Clean-up Kit (Macherey-Nagel; Düren, Germany) according to manufacturer’s 

instructions. The concentration of purified DNA was determined using a Nanodrop™ 

1000 spectrophotometer (Thermo Scientific; Waltham, MA). Cloning reactions were 

performed using an In-Fusion® HD Cloning Kit (Clontech Laboratories Inc.; Mountain 

View, CA) according to manufacturer’s instructions. 

 

III. Generating Prp Mutants 

 

a. Isolation of Genomic DNA (Ligozzi and Fontana, 2003) 

 To isolate the genomic DNA of S. aureus, 250 µl of fresh RN4220 overnight 

culture was centrifuged at 14,000 rpm for five minutes to pellet the bacteria. The cells 

were resuspended in 100 µl of EB buffer (Qiagen; Valencia, CA) and 2 µl of lysostaphin 

(5 mg/ml) and incubated for 30 minutes in a 37°C water bath to lyse. Five hundred 

microliters of DNAzol™ (Invitrogen; Grand Island, NY) was added, gently mixed by 

inversion, and the mixture was incubated for five minutes at 65°C. This mixture was 

then transferred to a QIAprep® Spin Miniprep column and centrifuged for one minute at 

10,000 rpm to allow the gDNA to bind the column. The column was then washed with 

750 µl of PE buffer (Qiagen; Valencia, CA) and centrifuged for one minute at 10,000 
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rpm. The flow through was discarded and the column was spun again at 10,000 rpm for 

one minute to dry. The column was then washed with 750 µl of 70% ethanol and 

centrifuged at 10,000 rpm for one minute and the flow through was discarded. The 

column was placed in a clean 1.5 ml microcentrifuge tube and 50 µl of pre-warmed 

(65°C) EB buffer was added. After standing for five minutes at room temperature, the 

gDNA was eluted via centrifugation for one minute at 10,000 rpm. The gDNA from 

several isolations was concentrated using an Amicon® Ultra-0.5 Centrifugal Filter (EMD 

Millipore; Billerica, MA) according to manufacturer’s instructions. 

 

b. Polymerase Chain Reaction (PCR) 

 PCR reactions were performed using a T-Gradient Thermoblock thermocycler 

(Biometra; Göttingen, Germany). Primers used in this study are listed in Table 2 and 

were produced by Integrated DNA Technologies (Coralville, IA). Lyophilized primers 

were resuspended to 1 mM with HPLC-grade water and working primer stocks were 

made by 1:100 dilution with HPLC-grade water to 10 µM. PCR amplification reactions 

were prepared as follows: 1X PfuUltra II reaction buffer (Agilent Technologies; Santa 

Clara, CA), 100 µM dNTPs (Invitrogen; Grand Island, NY), DNA template (~10 ng of 

RN4220 gDNA), 0.2 µM of each primer, and 0.5 µl of PfuUltra II fusion HS DNA 

polymerase (Agilent Technologies; Santa Clara, CA) brought to a final reaction volume 

of 50 µl with HPLC-grade water. PCR reaction master-mixes were made with 3.3X of 

each component and split into three 50 µl reactions.  

 In general, the PCR thermocycling program was as follows: initial denaturation 

for 2 minutes at 95°C, followed by 32 cycles of denaturation for 20 seconds at 95°C, 
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primer annealing for 15 seconds, and primer extension for 15 seconds at 72°C. After 

these cycles was a final fjeocldnef  

 
 
Table 2. Primers used in this study 

Primer Sequence (5’ !  3’) Purpose Direction Tm 
(°C) 

DNA 
Template 

FIXEAW101 
AGA ACA GAT TGG AGG* C ATG 
ATT ACT GTT GAT ATT ACA GTT 

AAT GAT GAA GG 
Prp into pRW F 55.6 RN4220 

EAW102 
GTG CGG CCG CAA GCT* TCA 

CTT ATA ATT TAA TCT AAT ATT 
CTC ATT ATA TTC TTC TTC AAT 

Prp into pRW R 55.2 RN4220 

EAW185 GTC AGC (TGC) GCC ATC* CAT 
AAT AAC GTC TGT TAC TTT G 

Prp H22A 
substitution R 56.1 RN4220 

EAW186 GAT GGC (GCA) GCT GAC* CATG 
GTG AAT ATG GTC 

Prp H22A 
substitution F 55.7 RN4220 

EAW189 TAC AGC (AGC) AGC TCC* AGC 
ACA AAC GAT ATC ATG ACC 

Prp S38A 
substitution R 60.6 RN4220 

EAW190 
GGA GCT (GCT) GCT GTA* TTG 

TTT GGT AGT GTT AAT GCG ATT 
ATA GG 

Prp S38A 
substitution F 59.0 RN4220 

EAW191 AAC GAT (TGC) ATG ACC* ATA 
TTC ACC ATG GTC AGC ATG 

Prp D31A 
substitution R 59.0 RN4220 

EAW192 GGT CAT (GCA) ATC GTT* TGT 
GCT GGA GCT TCA GC 

Prp D31A 
substitution F 60.2 RN4220 

EAW225 AGC ATG (TG)C ATC CAT* AAT 
AAC GTC TGT TAC TTT GCC TTC 

Prp G21A 
substitution R 57.6 RN4220 

EAW226 ATG GAT G(CA) CAT GCT* GAC 
CAT GGT GAA TAT GGT C 

Prp G21A 
substitution F 57.9 RN4220 

T7term CTA GTT ATT GCT CAG CGG T Sequencing 
Prp R 52.0 

pEW34, 
pEW40, 
pALJ5-8 

Annealing sequence is underlined 
Tm corresponds to annealing sequence 
Restriction sites marked with asterisks 
Mutations in parentheses 
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primer annealing for 15 seconds, and primer extension for 15 seconds at 72°C. After 

these cycles was a final extension for three minutes at 72°C, then the reactions were 

chilled to 4°C or stored at -20°C. Annealing temperatures for each reaction were 

optimized based on the melting temperatures (Tm) of the specific primers and were 

generally the average Tm-5°C. 

 

c. Agarose Gel Electrophoresis 

 Analytical and preparatory gels were used to analyze whether PCR reactions 

were successful, to prepare PCR products for gel purification, or to verify the insertion of 

cloned genes into vectors. 1.3% and 2% agarose (KSE Scientific; Durham, NC) gels 

were cast in 1X Tris-acetate-EDTA  (TAE) buffer with 0.3 µg/ml ethidium bromide.  

Samples were prepared as follows (when applicable): one microliter of 6X 

loading dye (50% v/v glycerol, 50% v/v 1X TAE, tiny amount of bromophenol blue) was 

mixed with three microliters of HyperLadder™ IV (Bioline; Taunton, MA), 25 µl of 6X 

loading dye was added to ~150 µl of PCR product, 4 µl of 6X loading dye was mixed 

with 25 µl of restriction digested plasmid, and 1 µl of 6X loading dye was added to 1 µl 

of double-digested empty vector. 

 For analytical gels, 1.3% gels were used. Four microliters of HyperLadder™ IV 

mixture and 1 µl of PCR product sample were loaded onto the gel and electrophoresed 

in 1X TAE at 115 V for about one hour. 

 For preparatory gels, 1.3% gels were used. Four microliters of HyperLadder™ IV 

mixture and all of the remaining PCR product sample (~175 µl) were loaded onto the gel 

and electrophoresed in 1X TAE at 115 V for about one hour.  
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 For verification of cloned genes inserted into vectors, 2% gels were used. Four 

microliters of HyperLadder™ IV mixture, the entire restriction digested plasmid sample, 

and 2 µl of double-digested empty vector were loaded onto the gel and electrophoresed 

in 1X TAE at 115 V for about one hour.  

 After electrophoresis, the gels were visualized using a White/UV transilluminator 

(VWR; Randor, PA) and photographed using a Fotodyne FOTO/Analyst® Apprentice - 

UV system (Heartland, WI) with a Canon PowerShot S100 (Melville, NY).  

 

d. Construction of Expression Plasmids 

 Plasmids were constructed following the general scheme: preparation of the 

vector (bacterial culture, plasmid DNA extraction, restriction enzyme digestion, gel 

extraction), preparation of the gene of interest (bacterial culture, gDNA isolation and 

purification, PCR amplification, gel extraction), and In-Fusion® reaction to ligate the 

gene of interest into the vector. In-Fusion® reactions generally included ~60 ng of 

restriction enzyme-digested vector, ~20 ng of insert DNA, and 2 µl of 5X In-Fusion® HD 

Enzyme Premix brought to a final reaction volume of 10 µl with HPLC-grade water. The 

reactions were incubated for 15 minutes at 50°C then placed on ice. The reaction was 

then either used to transform competent cells or stored at -20°C. Vector control 

reactions were performed in the same manner but without the insert DNA. 

 

e. Bacterial Transformation 

 To amplify and isolate newly generated plasmids, Stellar™ competent E. coli cells 

(Clontech Laboratories Inc.; Mountain View, CA) were transformed with the plasmids. 
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The cells were thawed on ice, then 50 µl were pipetted into a 15 ml conical tube on ice 

along with 2.5 µl of completed In-Fusion® reaction. The reaction was incubated on ice 

for 30 minutes, heat-shocked in a 42°C water bath for 45 seconds, then put back on ice 

immediately. After 1-2 minutes, 450 µl of SOC medium (Clontech) was added to the 

reaction mixture and it was incubated on a 200 rpm orbital shaker at 37°C for one hour. 

After incubation, 5 and 100 µl of the transformation reaction were plated on LB plates 

with the appropriate antibiotics. A concentrate was prepared by centrifuging the 

remaining reaction mixture in a 1.5 ml microcentrifuge tube for 3.5 minutes at 4000 rpm 

to pellet the bacteria. The supernatant was discarded and the cells were resuspended in 

the residual media by vortexing, then the remaining mixture was plated. The plates were 

incubated at 37°C overnight. 

 BL21-CodonPlus™(DE3)-RIL (Agilent Technologies; Santa Clara, CA) E. coli 

cells were used as the host strain for plasmids designed for protein overexepression. 

Competent cells were thawed on ice, then 100 µl of cells were pipetted into a 15 ml 

conical tube on ice. Two microliters of 1:10 diluted XL10-Gold β-mercaptoethanol mix 

was added and the tube was swirled gently to mix. The cells were incubated on ice for 

10 minutes, with gentle mixing every two minutes, then about 25 ng of plasmid DNA 

was added and the reaction was gently mixed. This reaction was incubated on ice for 30 

minutes, then heat-pulsed in a 42°C water bath for 20 seconds and placed back on ice 

for two minutes. Nine hundred microliters of prewarmed (42°C) SOC medium was 

added and the reaction was incubated on a 200 rpm orbital shaker at 37°C for one hour. 

After incubation, 5 and 100 µl of the transformation reaction were plated on LB plates 

with the appropriate antibiotics. A concentrate was prepared by centrifuging the 
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remaining reaction mixture in a 1.5 ml microcentrifuge tube for 3.5 minutes at 4000 rpm 

to pellet the bacteria. The supernatant was discarded and the cells were resuspended in 

the residual media by vortexing, then the remaining mixture was plated. The plates were 

incubated at 37°C overnight. 

 To verify that genes of interest had been properly cloned, transformants were 

restreaked to isolate isogenic colonies and liquid cultures of candidates were prepared. 

The plasmids were purified by miniprep and digested using the same restriction 

enzymes that had initially been used to linearize the vector, then compared by agarose 

gel electrophoresis with the linear vector. If the insert was present, the plasmid was sent 

for sequencing by Eurofins MWG Operon (Huntsville, AL).  

 To freeze down and store the newly generated plasmids and autoexpression 

strains, liquid cultures were prepared, grown overnight, then mixed 1:1 with a 40% 

glycerol:LB solution, stored in labeled vials, and frozen at -80°C. 

 

IV. Expression and Purification of Recombinant Proteins  

 

a. Recombinant Protein Overexpression via Autoinduction Culture 

 Hexahistidine-small ubiquitin-related modifier (His6-SUMO) tagged Prp and His6-

tagged ubiquitin-like protein-specific protease 1 (Ulp1) were overexpressed in BL21-

CodonPlus™(DE3)-RIL and Scarab E. coli cells, respectively. The bacteria were grown 

in three one-liter cultures of autoinduction media containing 25 mM sodium phosphate 

(Na2HPO4; EMD Chemicals; Gibbstown, NJ), 25 mM potassium phosphate (KH2PO4), 

50 mM ammonium chloride (MCB Reagents; Gibbstown, NJ), 5 mM sodium sulfate (EM 
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Science; Cherry Hill, NJ), 5 g/L yeast extract, and 10 g/L tryptone in deionized water. 

The media was autoclaved to sterilize and allowed to cool to room temperature. Each 

liter of media was then supplemented with 1X carbohydrate mixture (0.5% glycerol, 

0.05% glucose, 0.2% lactose), 1 mM MgSO4, 100 µg/ml ampicillin (Ulp1 and Prp), 30 

µg/ml chloramphenicol (Prp only), and 1 ml of fresh overnight culture and incubated 

overnight at 30°C on an orbital shaker at 200 rpm. The cultures were collected in one 

liter centrifuge bottles and pelleted in a Beckman Coulter Avanti® J-26 XP 

ultracentrifuge (Indianapolis, IN) for 15 minutes at 8,000 rpm at 4°C. The pellets were 

resuspended in approximately 100 ml of nickel column wash buffer (25 mM Tris, pH 8, 

300 mM NaCl, 10 mM imidazole), collected in plastic bags, sealed with a heat sealer, 

and stored at -80°C until purification. 

 

b. Purification of Recombinant Proteins 

 To purify the overexpressed His6-SUMO-Prp or His6-tagged Ulp1, bacterial 

pellets were thawed under running tap water, emptied into a beaker on ice, and stirred 

until evenly mixed. The bacteria were lysed using an Emulsiflex C3 High Pressure 

Homogenizer (Avestin Inc.; Ottawa, ON, CA) at ~20,000 psi and the lysate was 

collected in a clean beaker on ice. Fifty milliliter ultracentrifuge tubes were filled with 

lysate and weighed in pairs to balance, then the lysate was clarified by centrifugation at 

20,000 rpm for 30 minutes at 10°C in an Avanti® J-27S XPI ultracentrifuge (Beckman 

Coulter; Indianapolis, IN). A nickel affinity column was prepared by adding 10-20 ml of 

Profinity™ IMAC Uncharged Resin (Bio-Rad; Hercules, CA), followed by 5-10 ml of 100 

mM nickel sulfate (NiSO4). The column was washed with ~30 ml of wash buffer (25 mM 
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Tris, pH 8, 300 mM NaCl, 10 mM imidazole) and the clarified supernatant was added to 

the column, allowing the His6-tagged protein to bind the resin. The bound protein was 

washed and the absorbance of the flow-through was periodically read in a 1 cm 

pathlength quartz cuvette at 280 nm using a Bio-Rad® SmartSpec™ 3000. Once the 

absorbance was ≤0.050 AU, the bound protein was eluted with ~100 ml elution buffer 

(25 mM Tris, pH 8, 300 mM NaCl, 110 mM imidazole) and ~3-5 ml fractions were 

collected. Once elution was complete, the absorbance of the fractions was measured to 

identify those containing protein. The fractions were then analyzed via SDS-PAGE 

alongside samples of the pellet, lysate, clarified supernatant, and nickel column wash 

flow-through. The fractions containing protein were pooled, sodium azide was added to 

0.02% v/v, and the protein was dialyzed versus 50 mM sodium phosphate buffer, pH 7.5 

with 0.02% v/v sodium azide (and 10% v/v glycerol for Ulp1).  

 

c. Cleavage of the His6-SUMO Tag from Prp 

 To cleave the His6-SUMO tag from purified and dialyzed His6-SUMO-Prp, His6-

tagged Ulp1 was added in a ~1:1 by weight ratio with His6-SUMO-Prp with 150 mM 

NaCl. The reaction was agitated by hand at room temperature intermittently for about 

four hours. Five microliter samples were taken at t=0h, 1h, 2h, and 3h and analyzed for 

extent of cleavage via SDS-PAGE. After sufficient cleavage, the reaction was 

centrifuged for 10 minutes at 20,000 rpm at 10°C and purified via nickel affinity 

chromatography in the same manner as the tagged protein, except fraction collection 

began immediately after the sample was applied to the column. After dialyzing, the 

purified, tagless protein in solution was filter sterilized using a Millex® 0.22 µm syringe 
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filter (EMD Millipore; Billerica, MA), a 40% v/v glycerol stock was made, and it was 

stored in one milliliter aliquots at -20°C. 

 

d. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 Proteins were analyzed via SDS-PAGE using a Bio-Rad® Mini PROTEAN® 

system (Hercules, CA). Gels were cast with a 12.5% resolving gel (187.5 mM Tris, 1.7 

mM SDS, pH 8.8) and 10% stacking gel (250 mM Tris, 70 mM SDS, pH 6.8). Samples 

were prepared as follows: five microliters of the pellet, lysate, clarified supernatant, and 

flow-through were each mixed with 20 µl of deionized water and 25 µl of 2X sample 

buffer (100 mM Tris, pH 6.8, 4% w/v SDS, 20% v/v glycerol, 0.1% w/v bromophenol 

blue, 10% v/v β-mercaptoethanol) and 25 µl of each eluted fraction was mixed with 25 

µl 2X sample buffer. The samples were boiled for two minutes then 10 µl of each 

prepared sample was loaded onto the gel and electrophoresed at a constant current of 

30 mA for 50 minutes using a Bio-Rad® Mini-PROTEAN® Tetra Cell with a Bio-Rad® 

PowerPac™ Basic power supply. Running buffer was composed of 45 mM Tris, 382 mM 

glycine, and 3.5 mM SDS. After running the gel, it was stained (50% v/v methanol, 10% 

v/v acetic acid, 40% v/v deionized water, 0.2 % w/v coomassie brilliant blue R250) for 

15 minutes then destained (10% v/v acetic acid, 30% v/v methanol, 60% v/v deionized 

water) overnight. The gel was visualized using a custom light-box and photographed 

using ArcSoft WebCam Companion® software with an HP® Webcam HD-2200. 
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e. Bradford Protein Quantification Assay (Kruger, 2009) 

 To determine the concentration of purified Prp, a Bradford protein quantification 

assay was used. Bradford reagent was made by first dissolving 10 mg of Coomassie 

blue G250 (BioRad; Hercules, CA) in 5 ml of 95% ethanol. Ten milliliters of 85% 

phosphoric acid was added and this solution was brought to 100 ml with deionized 

water. It was then gravity filtered through Whatman® No. 1 filter paper and stored in an 

amber bottle at room temperature. To prepare the protein standards, 1 mg/ml BSA was 

diluted with 50 mM sodium phosphate buffer (pH 7.5) to 0.1 mg/ml. This stock was then 

used to make a series of 100 µl standards with concentrations of 0.1, 0.08, 0.06, 0.04, 

0.02, and 0.01 mg/ml BSA with a 0 mg/ml BSA (100 µl of 50 mM sodium phosphate 

buffer, pH7.5) blank. One hundred microliter purified Prp protein samples were prepared 

via dilution with buffer for 1:10, 1:20, and 1:100 samples. One milliliter of Bradford 

reagent was then added to each of the standards and samples and gently mixed. Two 

hundred and ten microliters of the blank, standards, and samples were pipetted in 

duplicate into a clear, flat-bottomed, 96-well plate (Greiner Bio-One; Monroe, NC) and 

assayed at 595 nm using a SpectraMax® 250 microplate reader with the Bradford 

protein quantitation template in the SoftMax® Pro data analysis software (Molecular 

Devices; Sunnyvale, CA). The results were printed, saved, and used to calculate the 

concentration of the undilute Prp sample. 
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V. Fast Protein Liquid Chromatography (FPLC) 

 

Fast protein liquid chromatography was performed on a sample of tagless, wild-

type Prp with His6-tagged Ulp1 present using an ÄKTAFPLC
™ system with UNICORN™ 

system control software and a 125 ml P-10™ size-exclusion column (20,000 MWCO; 

Bio-Rad; Hercules, CA) equilibrated to 50 mM sodium phosphate buffer, pH 7.5. Five 

milliliters of Prp:Ulp1 sample was manually injected onto the column and eluted with 50 

mM sodium phosphate buffer, pH 7.5. Two-milliliter fractions were collected at a flow 

rate of 1 ml/min while the elution profile was monitored spectrophotometrically at 280 

nm. Peak fractions were analyzed via SDS-PAGE. 

 

VI. Fluorogenic Peptide Cleavage Assay, Generating a Standard Curve and 

Determining the Extent of Assay Completion, and Data Analysis  

 

a. Fluorogenic Peptide Cleavage Assay 

 Peptides used in this study were purchased from United Biosystems (Herndon, 

VA) and are listed in Table 3. Stock fluorogenic peptide (SauL2711) was made by 

dissolving a small amount of lyophilized peptide in DMSO. Its concentration was 

determined by measuring its absorbance in a 0.1 cm pathlength quartz cuvette at 325 

nm with a Bio-Rad® SmartSpec™ 3000 and dividing this number by its molar extinction 

coefficient (2,850 L cm-1 mol-1). Aliquots were frozen at -20°C until use. 

 Competitive peptides used in this study were resuspended to 10 mM with DMSO. 

One millimolar working stocks were stored at -20°C until use. 
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Table 3. Synthetic peptides used in this study 

Peptide Sequence Length         
(# of AAs) Description 

SauL2711 2-Abz-
KLNLQFF*ASKK(Dnp) 11 Fluorogenic peptide based on L27 

cleavage sequence 

EW11 Ac-KLNLQFF*ASKK-NH2 11 Peptide based on L27 cleavage 
sequence 

EW10 Ac-LNLQFF*ASKK-NH2 10 Peptide based on L27 cleavage 
sequence 

EW8 Ac-NLQFF*ASK-NH2 8 Peptide based on L27 cleavage 
sequence 

EW6 Ac-QFF*ASK-NH2 6 Peptide based on L27 cleavage 
sequence 

CP13 Ac-KLKLNLQHF*ASNN-
NH2 

13 Peptide based on 80α capsid 
cleavage sequence 

CP11 Ac-KLNLQHF*ASNN-NH2 11 Peptide based on 80α capsid 
cleavage sequence 

* denotes site of cleavage 
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 Cleavage assays were performed using a Tecan Infinite® M1000 microplate 

reader with Magellan™ data analysis software (Männedorf, Switzerland) and Greiner® 

Bio-One black, flat-bottomed, chimney well, non-sterile, non-binding, 96-well 

microplates (Monroe, NC).  

 Assays were standardized with respect to pH and concentration of dithiothreitol 

(DTT), ethylenediaminetetraacetic acid (EDTA), and sodium chloride (NaCl). 

Standardized assays had final concentrations of 1.5 mM DTT, 2.35 mM EDTA, 2.53% 

DMSO, and various concentrations of fluorogenic peptide and/or competitive peptide in 

50 mM sodium phosphate buffer, pH 7.0. Two milliliters of each assay sample were 

prepared (1 blank, 4 trials) and 190 µl was pipetted into wells containing 10 µl of 0.01 

mg/ml Prp (21.38 nM final concentration) or 10 µl of no-enzyme blank (40% glycerol, 

0.02% sodium azide, sodium phosphate buffer, pH 7.5) for final assay volumes of 200 

µl. 

 The plate reader was set to read fluorescence intensity at an excitation 

wavelength of 325 nm and an emission wavelength of 414 nm with 5 nm bandwidths. 

Cleavage reactions were read at 8-second intervals for 10 minutes at ambient 

temperature. The plate reader’s gain was optimized at 255 and the Z-position height 

was optimized at 20,450 µm. The Magellan™ assay protocol was saved as 

Abz_Dnp_ALJ Data were exported to Microsoft® Excel® (Redmond, WA) and saved for 

further analysis. 
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b. Generating a Standard Curve and Determining the Extent of Assay 

Completion 

To convert the raw values of relative fluorescence units (RFU) versus time from 

the assay data to concentration of fluorogenic substrate cleaved versus time, a standard 

curve of RFU versus concentration of fluorogenic substrate cleaved was prepared 

(Figure 2.1). Ten microliters of 1 mg/ml trypsin resuspended in 50 mM sodium 

phosphate buffer, pH 7.5, with 40% glycerol and 0.02% sodium azide was used in the 

standard cleavage assay with varying amounts of substrate (0-1.0 µM). A no-enzyme 

blank was used to correct for background. The blank-corrected RFU values from four 

completed reactions at each concentration were averaged and the results were plotted 

versus the concentration of substrate included in the reaction. 

Trypsin was also used in assays to determine the extent of assay completion by 

Prp. Identical assays were performed, cleaving 2 µM substrate with 10 µl of 1 mg/ml 

trypsin and Prp and the average absolute RFU values for four completed reactions were 

compared. Results indicated that both reactions approached the same RFU values, 

indicating that both reactions proceeded to the same extent of completion (Figure 2.2). 

 

c. Data Analysis 

 Assay data were analyzed using Microsoft® Excel® 2011 and GraphPad Prism® 

(La Jolla, CA). Data were collected and organized in Excel®, then the blank RFU value 

at each timepoint was subtracted from the corresponding timepoint of each trial for each 

assay. The blank-corrected RFU data were then converted to concentration of substrate 

cleaved using the equation of the standard curve (Figure 2.1) and plotted using a 
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smooth marked scatter plot. The slope of the initial, linear portion of each curve (initial 

velocity) was  

 

 

 

 

Figure 2.1. Standard curve for converting raw RFU values from Prp assays to 
concentration of fluorogenic substrate cleaved. 
 
A standard curve generated by cleaving varying amounts of fluorogenic peptide 
using trypsin. The equation of the standard curve was used to convert the raw RFU 
values from Prp assays to concentrations of substrate cleaved. 
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Figure 2.2. Comparing absolute RFU values between completed reactions with 
trypsin and Prp. 
 
Two micromolar fluorogenic substrate was cleaved with the same amount of trypsin 
and Prp. The absolute RFU values from four completed reactions were averaged 
and indicated that both reactions proceeded to the same extent of completion. 
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smooth marked scatter plot. The slope of the initial, linear portion of each curve (initial 

velocity) was determined for each assay.  

For enzyme kinetics data for the wild-type enzyme, the initial velocities for each 

substrate concentration were entered into Prism®, where the data were analyzed using 

non-linear regression fits to the Michaelis-Menten kinetics and kcat equations (ET 

constrained to 42.765 nM active sites). 

For competition data from assays with competitive-peptide inhibitors, the percent 

activity and percent inhibition relative to a no-inhibitor control were calculated from the 

initial velocities for each inhibitor assay. These results were then entered into Prism® 

and analyzed using an ordinary one-way ANOVA, comparing the mean initial velocity 

for each inhibitor to that of the no-inhibitor control. 

 For activity data for the Prp active-site mutants, the percent activity relative to a 

wild-type control was calculated from the initial velocities for each mutant assay. These 

results were then entered into Prism® and analyzed using an ordinary one-way ANOVA, 

comparing the mean initial velocity for each mutant to that of the wild-type enzyme. 
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Chapter 3 

Expression and Purification of Wild-type Prp and Generation of Active-site 

Mutants 

 

 Expression and purification of wild-type Prp were the first steps toward its 

biochemical characterization. The gene for wild-type Prp had been previously cloned by 

our lab into the T7 overexpression vector pRW, generating His6-SUMO-tagged Prp. 

This vector places the expression of the fusion protein under the control of the T7lac 

promoter, which contains a copy of the lacO operator sequence downstream of the T7 

promoter. A plasmid-encoded copy of the LacIq repressor tightly binds this operator 

sequence and prevents basal transcription of the target gene in the absence of 

induction (Studier & Moffatt, 1986; Dubendorff & Studier, 1991).  

 BL21-CodonPlus™(DE3)-RIL competent cells, which contain a chromosomal 

copy of the T7 RNA polymerase under the control of the lacUV5 promoter, were 

transformed with the expression plasmid. This promoter has mutations that remove the 

need for CRP:cAMP:promoter complex formation, allowing high-level expression of the 

T7 RNA polymerase upon induction (Pribnow, 1975; Sweet, 2003; Studier, 2005).  

 To induce protein expression, cells transformed with the expression plasmid 

were grown in autoinduction media, which is supplemented with 0.5% glycerol, 0.05% 

glucose, and 0.2% lactose. In this method of induction, glucose acts as the primary 



 38 

carbon source during bacterial growth and is utilized first, which also suppresses basal 

target protein expression. As the cells run out of glucose and begin to ferment lactose, 

the lacUV5 and T7lac promoters are derepressed, inducing expression of the T7 RNA 

polymerase, which subsequently transcribes the gene for the target protein. The 

presence of glycerol in the media provides a carbon source for sustained cell growth 

after induction. This method of induction generally yields higher quantities of protein and 

is easier to accomplish than the usual route of IPTG induction (Studier, 2005).  

 After expression of the fusion protein, the next steps were its purification and 

removal of the His6-SUMO tag. This tag can be efficiently cleaved by the protease Ulp1 

at a Gly-Gly motif found at the C-terminus of the SUMO moiety (Malakhov et al., 2004). 

After an initial purification of His6-SUMO-tagged Prp by nickel affinity chromatography, 

His6-tagged Ulp1 was used to cleave away the His6-SUMO tag, leaving unmodified Prp. 

In determining the best route for the purification of tagless Prp, a sample of post-

cleavage Prp with His6-tagged Ulp1 present was run on FPLC on a P10 size-exclusion 

column (MWCO=20,000). Our hope was that tagless Prp (MW=11,691.79) would elute 

from the column first, leaving His6-tagged Ulp1 (MW=27,394.05) behind. However, the 

elution profile from this column only showed one peak and subsequent SDS-PAGE 

analysis of the protein-containing fractions showed that tagless Prp and His6-tagged 

Ulp1 had co-eluted (Figure 3.1). These results, and previous structural studies 

(Chirgadze et al., 2014), indicated that Prp was a dimer with an approximate molecular 

weight of 23,383. Due to this complication, adjustments had to be made to the 

purification scheme. The nickel affinity-purified His6-SUMO-Prp was dialyzed to remove 

the elution buffer, which would prevent the hexahistidine tag from re-binding to the 
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Figure 3.1: SDS-PAGE gel of His6-tagged Ulp1 and Prp from P10 column. 
 
The left lane of this composite gel shows cleaved His6-SUMO Prp with His6-tagged Ulp1 
present before size-exclusion FPLC. The right lane shows a sample from the FPLC 
fraction with the highest peak, showing that His6-tagged Ulp1 and tagless Prp co-eluted. 
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nickel affinity column. His6-tagged Ulp1 was again used to cleave away the His6-SUMO 

tag and the tagless protein was purified via nickel affinity chromatography. Through this 

route, tagless Prp was eluted directly from the column while the His6-SUMO tag and 

His6-tagged Ulp1 remained bound (Figure 3.2).  

 The fractions containing purified Prp were pooled and dialyzed and the 

concentration of protein was determined using a Bradford assay (Kruger, 2009). The 

concentration of protein in the pooled fractions was determined to be approximately 1.7 

mg/ml. For long-term storage, a 40% glycerol:0.02% sodium azide freezer stock was 

made and the protein was stored at -20°C until characterization. The final concentration 

of the freezer stock was approximately 1.0 mg/ml. 

 In addition to the wild-type protein, several active-site mutants were generated in 

order to determine the effects of the mutations on catalysis and substrate binding and 

test predictions made based upon a structural model. Mutations in prp were introduced 

during PCR amplification using overlapping internal forward and reverse primers 

containing the desired codon changes (Table 2). Here, the target gene was amplified in 

two separate fragments, which were ligated together along with the vector during the In-

Fusion® cloning reaction. Successful reactions were confirmed by Sanger sequencing.   

Mutations were introduced at residues previously shown to be highly conserved 

near the active site or in the catalytic residues themselves (Wall et al., 2015). These 

residues include the catalytic cysteine (C34; Wall et al., 2015), the catalytic histidine 

(H22), a highly conserved serine (S38), and completely conserved glycine and aspartic 

acid residues (G21 and D31) (Figure 3.3). Each of these residues was changed to 

alanine except for the catalytic cysteine, which was replaced with a serine.  
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Figure 3.2: SDS-PAGE gel of Prp pre- and post-purification. 
 
The left lane of this composite gel shows the His6-SUMO-Prp:His6-tagged Ulp1 
cleavage reaction before purification by nickel affinity chromatography. The right lane 
shows purified, tagless Prp that was eluted during the second nickel affinity 
chromatography purification step. 
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Figure 3.3: Active-site mutations introduced into Prp. 
 
A molecular model of the Prp dimer showing a ribbon model under a transparent 
surface model. The active-site residues changed in this study are shown as space-filling 
atoms. The teal residue is S38, orange is D31, blue is H22, green is G21, and yellow is 
C34. The model was made in SYBYL based on a previous crystal structure of Prp (PDB 
ID: 2p92) [Created by Dr. Erin A. Wall]. 
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These residues were replaced with alanine because it effectively removes side 

chain function while preserving the protein’s backbone structure, which can provide 

clues to the function of the side chains in the wild-type protein (Peracchi, 2001). Serine 

was chosen because it is the same size as cysteine, with a hydroxyl group replacing the 

nucleophilic thiol, which has previously been shown to inactivate Prp (Wall et al., 2015). 

This result also indicates that replacing the catalytic cysteine with serine does not allow 

Prp to function as a serine protease. Each of these mutants was expressed, purified, 

and stored in the same manner as the wild-type protein until their characterization. 
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Chapter 4 

Standardization of a Fluorogenic Peptide Cleavage Assay 

 

 To characterize the activity and substrate specificity of wild-type Prp and 

determine the effects of active-site mutations on substrate binding and catalysis, we 

have developed a fluorogenic peptide cleavage assay (Figure 1.7). Before beginning 

characterization, the optimum settings for the plate reader were determined based on 

several test assays. Various volumes of Prp were mixed with various concentrations of 

fluorogenic substrate and the run time, number of reads, temperature, z-position 

(position of the microplate versus the measuring head), and gain (sensitivity of the 

photomultiplier tube) were optimized. Based on these tests, assays were read at 

ambient temperature for 10 minutes with 8 second reads; the z-position for all assays 

was set to 20,450 µm; and the gain was set to 255 (unless otherwise noted). After 

determining the optimum settings for the plate reader, the conditions for the assay were 

optimized with respect to pH and concentration of DTT, EDTA, and sodium chloride.  

 Enzymatic activity can be greatly affected by pH; therefore, it was necessary to 

find a suitable buffer system and pH where Prp showed the highest activity. To optimize 

the pH of the assay, 50 mM sodium phosphate buffer was prepared at various pHs (5.5, 

6.0, 6.5, 7.0, 7.5, and 8.0) and assays were performed in each of these buffers. 

Fluorogenic substrate was added to each of the buffers (35 µM final concentration) and 
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they were mixed with one microliter of 1.0 mg/ml Prp (213.8 nM final concentration) and 

the increase in fluorescence intensity was measured. Initial velocities from three trials at 

each pH were averaged and indicated an optimum activity at pH 7.0 (Figure 4.1). This 

pH was used for all future assays. 

 Dithiothreitol is a reagent commonly used to reduce and prevent formation of 

disulfide bonds in proteins. Prp is a cysteine protease that has two solvent-exposed 

cysteine residues per molecule; therefore, the addition of DTT in the assay may prevent 

intermolecular disulfide bond formation, which could potentially lead to inactivation of 

the enzyme. Various concentrations of DTT were added to 50 mM sodium phosphate 

buffer, pH 7.0, along with 35 µM fluorogenic substrate. Assays were performed 

identically to those for pH and the initial velocities from four trials were averaged. The 

results indicated no significant difference in activity over the range tested (Figure 4.2). 

We chose a concentration of 1.5 mM DTT to use in further assays. 

Ethylenediaminetetraacetic acid is a chelating agent that sequesters metal ions 

in solution. Some enzymes use metal ions as cofactors (such as metalloproteases) and 

will not function in their absence (Bisswanger, 2014). If Prp requires metal ions to 

function, their sequestration would cause a decrease in activity. To test the dependence 

of Prp activity on the presence or absence of metal ions, the concentration of EDTA was 

varied in the assay in the same manner as DTT and the initial velocities from four trials 

were averaged. Results indicated highest activity at around 2.4 mM and above (Figure 

4.3). A concentration of 2.35 mM EDTA was used in further assays.  

Sodium chloride can affect the ionic strength of a solution, which is an important 

factor to consider in enzymatic assays. Very high or very low ionic strength can affect 
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Figure 4.1: Effect of pH. 

Assays were performed in sodium phosphate buffers with varying pH. The initial velocity 
of each reaction was determined and plotted versus pH. The highest initial velocity was 
observed at pH 7.0. 
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Figure 4.2: Effect of DTT. 

Assays were performed with various amounts of added DTT. The initial velocity of each 
reaction was determined and plotted versus the concentration of DTT in the reaction. 
No significant difference in activity was seen over the range tested. 1.5 mM DTT was 
used in further assays.  
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Figure 4.3: Effect of EDTA. 

Assays were performed with various amounts of added EDTA. The initial velocity of 
each reaction was determined and plotted versus the concentration of EDTA in the 
reaction. The highest initial velocity was observed around 2.4 mM EDTA and above.  
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the activity of an enzyme or destabilize protein structure (Bisswanger, 2014). The 

concentration of sodium chloride in the assay was varied and the averaged initial 

velocities from four trials indicated that the assays with no sodium chloride gave the 

highest activity, with decreasing activity at higher concentrations (Figure 4.4). Therefore, 

it was excluded from further optimizations. 

 After testing the effects of these substances and conditions separately, the 

concentrations of each that gave highest initial velocity were combined to determine if 

they had an additive effect. Fifty millimolar sodium phosphate buffer, pH 7.0, alone; 1.5 

mM DTT alone; and 2.35 mM EDTA alone were tested alongside 50 mM sodium 

phosphate buffer, pH 7.0, with 1.5 mM DTT and 2.35 mM EDTA. Averaged initial 

velocities from four trials showed that the combination of sodium phosphate buffer, DTT, 

and EDTA gave a slightly higher average initial velocity than either DTT or EDTA alone, 

although this difference was not statistically significant (Figure 4.5). Based on these 

results, the conditions for all future assays were standardized to 50 mM sodium 

phosphate buffer, pH 7.0, with 1.5 mM DTT and 2.35 mM EDTA. 
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Figure 4.4: Effect of NaCl. 

Assays were performed with various amounts of NaCl added. The initial velocity of each 
reaction was determined and plotted versus the concentration of NaCl in the reaction. 
No added NaCl gave the highest initial velocity, with decreasing activity with increasing 
amounts. 
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Figure 4.5: Additive effects of pH 7.0 buffer with DTT and EDTA. 
 
Assays were performed in pH 7.0 buffer alone, pH 7.0 buffer with1.5 mM DTT, pH 7.0 
buffer with 2.35 mM EDTA, and pH 7.0 buffer with both 1.5 mM DTT and 2.35 mM 
EDTA. The initial velocity of each reaction was determined. The combination of DTT 
and EDTA gave a slightly higher initial velocity than either alone, but the difference was 
not statistically significant. 
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Chapter 5 

Enzyme Kinetics of Wild-type Prp, Competition Assays with Alternative 

Substrates, and Activity of Active-site Mutants 

 

 Once the standard conditions for the fluorogenic peptide cleavage assay were 

established, this assay was used to determine the enzyme kinetics of wild-type Prp. 

Assays were performed at a constant enzyme concentration of 21.38 nM with 

fluorogenic substrate concentrations ranging from 0.2 to 2.0 µM. Raw assay data were 

corrected for background with respect to no-enzyme blank reactions and then converted 

to concentration of substrate cleaved using the equation of a standard curve (Figure 

2.1). Initial velocities were calculated for each substrate concentration and the results 

were entered into Prism®. The data were then fit to non-linear regression equations for 

Michaelis-Menten kinetics (1) and kcat (2): 

 

𝑣! =
!!"#[!]
!!![!]

  (1) 

𝑣! =
[!!]!!"#[!]
!!![!]

 (2) 

 

where v is initial velocity at a specific substrate concentration, vmax is the maximum 

velocity of the enzyme, [S] is the substrate concentration, Km is the substrate 

concentration at one-half vmax, [ET] is the total concentration of enzyme active sites 
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(constrained to 42.765 nM active sites), and kcat is the turnover number. 

 Results from these analyses are shown in Figure 5.1. The maximum velocity for 

cleavage of the fluorogenic substrate was determined to be 1.960 ± 0.060 nM/s, the Km 

was 0.1824 ± 0.0280 µM, the turnover number (kcat) was 0.0458 ± 0.0014 s-1, and the 

specificity constant (kcat/Km) was 0.2511 ± 0.0393 µM-1s-1. 

 Prp is also known to cleave the N-termini of S. aureus bacteriophage 80α 

scaffold and major capsid proteins (Wall et al., 2015). Based on this information, we 

wanted to assess the substrate specificity of wild-type Prp. We ordered competitive 

peptides of various lengths (Table 3), based on the conserved L27 and 80α major 

capsid protein cleavage motifs, and used these in the fluorogenic peptide cleavage 

assay. These assays will help determine what length of peptide is required for proper 

cleavage and whether Prp has higher affinity for one substrate over another. Assays 

were performed with each of the competitive peptides at 0.8 µM with 0.2 µM fluorogenic 

substrate and 21.38 nM enzyme. The raw data were treated identically to the kinetic 

data and the initial velocity for each reaction was used to calculate the percent inhibition 

with respect to a fluorogenic-peptide-only (no inhibitor) control. The initial velocity and 

percent inhibition for each inhibitor were then compared to the no-inhibitor control via an 

ordinary one-way ANOVA analysis with a p-value of 0.05. 

All of the initial velocities and calculated percent inhibitions were significantly 

different from the no-inhibitor control. The results in Figure 5.2 show that the 13-mer 

based on the 80α major capsid protein cleavage motif (CP13mer) causes more 

inhibition than a peptide identical to the fluorogenic peptide (without the fluorophore and 
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L27 11mer). These data jflsakdjflasdjfla generally cause more inhibition than their 

shorter counterparts.  

 

 

 

 

Figure 5.1: Michaelis-Menten plot of Prp kinetics data. 
 
The average initial velocity at each substrate concentration was plotted. Based on fits to 
non-linear regression equations for Michaelis-Menten kinetics and kcat, the vmax was 
1.960 ± 0.060 nM/s, the Km was 0.1824 ± 0.0280 µM, kcat was 0.0458 ± 0.0014 s-1, and 
the specificity constant (kcat/Km) was 0.2511 ± 0.0393 µM-1s-1.  
 

 

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

[Substrate] (µM)

In
iti

al
 V

el
oc

ity
 (n

M
/s

)

kcat 0.0458 ± 0.0014 s-1

Km 0.1824 ± 0.0280 µM

vmax 1.960 ± 0.060 nM/s



 55 

 

 

 

Figure 5.2: Initial velocity and percent inhibition of assays with competitive 
peptides. 
 
(A) The average initial velocity for reactions containing 0.8 µM of each inhibitor. (B) The 
percent activity for each peptide were calculated relative to the no-inhibitor control and 
converted to average percent inhibition. 
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quencher pair; L27 11mer). These data also show that peptides of longer length 

generally cause more inhibition than their shorter counterparts.  

After determining the kinetics of the wild-type enzyme and testing several 

competitive peptides, the activity of several active-site mutants was tested and 

compared to that of the wild-type enzyme. Wild-type Prp and the mutants S38A, D31A, 

H22A, G21A, and C34S were assayed at 21.38 nM with 2.0 µM fluorogenic substrate. 

Figure 5.3 shows that none of the mutants had any measureable activity at these 

concentrations. To determine if higher concentrations of mutant enzyme would produce 

any measureable activity, 213.8 nM of each enzyme was tested with 2.0 µM substrate. 

Of these reactions, the S38A mutant had slight activity, measuring just 2.06 ± 0.22% 

activity relative to the wild-type enzyme (Figure 5.4). These results indicate that all of 

the mutations made in Prp were detrimental to substrate binding, catalysis, or both.  
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Figure 5.3: Initial velocity and percent activity of Prp active-site mutants. 
 
(A) The average initial velocity for assays with each mutant. (B) The average percent 
activity for each mutant relative to the wild-type enzyme. 
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Figure 5.4: Percent activity of S38A mutant. 
 
The average percent activity of the S38A mutant relative to the wild-type enzyme for 
reactions containing 10X more enzyme than usual (213.8 nM). The percent activity of 
the S38A mutant measured just 2.06 ± 0.22% relative to wild-type. 
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Chapter 6 

Discussion 

 

Phage-related ribosomal protease is a 23.4 kDa dimer composed of two identical 

chains of 106 amino acids. Each of its monomers has two α-helices, which form a two-

layer α/β sandwich with a five-strand, antiparallel β-sheet. This interface creates a cleft 

between the first α-helix and second β-strand that contains several highly conserved 

residues, including a completely conserved cysteine and histidine, which constitute the 

proposed catalytic dyad of this protease. The dimer interface is formed between the two 

sets of α-helices and is flanked by the two β-sheets on opposite sides. This protease 

has been classified by the MEROPS database into a new family, C108, which includes 

a protein of unknown function, TM1457, from Thermatoga maritima and a prohead 

protease from pneumococcal bacteriophage Cp-1 (Shin et al., 2005; Chirgadze et al., 

2014; Rawlings et al., 2014; Wall, 2015). Based on a protein characteristics calculator, 

its approximate net charge at pH 7.0 is -27.1, its approximate isoelectric point is 4.07, 

and its approximate extinction coefficient is 10,240 M-1 cm-1 (Innovagen). This protein 

has been shown to perform a novel, site-specific processing of ribosomal protein L27 in 

S. aureus (and the scaffold and major capsid proteins of staphylococcal phage 80α).  

L27 is a component of the large (50S) ribosomal subunit and has been found to 

be in close proximity to the peptidyl transferase center (Lotti et al., 1987). It is composed 
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of a globular domain, which is a β-barrel-sandwich hybrid consisting of two sets of four-

stranded β-sheets around a hydrophobic core, and an unstructured N-terminal region 

that has been shown to form an extended tail (Figure 1.4) (Wang et al., 2004). L27 has 

been shown to be necessary for efficient peptide bond formation and to be important for 

50S subunit assembly; its deletion leads to impaired cell growth and partially assembled 

50S subunit precursors (Wower et al., 1998). The N-terminal tail of L27 in E. coli 

extends into the peptidyl transferase center and its first three residues (AHK) have been 

shown to be important for peptidyl transferase activity, possibly helping to correctly 

position and stabilize tRNA in the PTC (Maguire et al., 2005; Voorhees et al., 2009). We 

have found that in S. aureus and related bacteria, L27 is encoded with a conserved N-

terminal extension of nine amino acids, which occludes those residues shown to 

contribute to peptidyl transferase activity. Most bacteria with this extension encode a 

conserved gene encoding the protease responsible for its cleavage, which is not 

present in bacteria without this extension (Figure 1.5) (Spilman et al., 2012; Wall et al., 

2015). This cleavage event has been shown to be essential to cell survival; pre-cleaved 

and un-cleavable variants could not complement a chromosomal deletion of L27 (Figure 

1.6) (Wall, 2015).  

All sequenced Firmicutes, Fusobacteria, and Synergistetes, as well as some 

Thermatogae and Tenericutes have been found to encode N-terminally extended L27 

along with a Prp homolog (Wall et al., 2015). This includes many well-known pathogens, 

several of which have been identified in national reports for their increasing prevalence 

of antibiotic resistance. In 2013, the Centers for Disease Control and Prevention (CDC) 

released an Antibiotic Resistance Threat Report listing several tiers of threats from 
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antibiotic resistant organisms. In this report, they list Clostridium difficile as an urgent 

threat (the highest level); while vancomycin-resistant Enterococcus, methicillin-resistant 

S. aureus, and drug-resistant Streptococcus pneumoniae are listed as serious threats; 

and vancomycin-resistant S. aureus is listed as a concerning threat (the lowest level) 

(CDC, 2013). Each of these organisms has been found to encode an L27 protein with 

the conserved N-terminal extension along with a homolog of Prp (Figure 1.5). This 

conservation suggests that with properly designed inhibitors, targeting the action of Prp 

could be an important and novel mechanism for helping to control these pathogens.  

In this study, we have sought to determine the enzyme kinetics of wild-type Prp, 

test its substrate specificity using competitive peptide substrates, and test predictions 

made based on a structural model by generating and testing the activity of several 

active-site mutants. The results from this work provide insight into the basic functions of 

this enzyme while laying the groundwork necessary for the discovery of specific 

inhibitors via high-throughput screening. 

The first steps in this study were the expression and purification of wild-type Prp. 

In order to simplify protein expression, we used autoinduction media, which relies on a 

metabolic switch from fermentation of glucose to lactose when growing cells reach a 

critical density. This switch induces high-level target-protein expression from the T7lac 

promoter and generally yields higher amounts of protein than conventional IPTG 

induction (Studier, 2005). After expressing Prp, we removed its His6-SUMO tag and 

purified the tagless protein. We found that the most efficient route involved an initial 

purification of the His6-SUMO-tagged protein via nickel affinity chromatography, 

followed by dialysis to remove the elution buffer. The purified fusion protein was then 
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cleaved with His6-tagged Ulp1, removing the His6-SUMO tag and leaving unmodified 

Prp. The mixture of His6-tagged Ulp1, the His6-SUMO tag, and tagless Prp was then run 

on another nickel affinity column and the tagless protein was eluted directly from the 

column, while the His6-SUMO tag and His6-tagged Ulp1 remained bound. This method 

provided a pure sample of Prp and was subsequently used to purify each of the active-

site mutants (Figure 3.2).  

After determining the concentration of wild-type Prp via Bradford assay and 

preparing a 40% glycerol freezer stock, a fluorogenic peptide cleavage assay was 

optimized. Several trial assays were performed to determine the appropriate settings for 

the plate reader, and then assays were performed to optimize the pH and 

concentrations of DTT, EDTA, and sodium chloride. The highest initial velocity was 

found at pH 7.0 with 1.5 mM DTT and 2.35 mM EDTA (Figure 4.5); therefore, these 

conditions were used for all subsequent assays. 

To determine the kinetics of the Prp cleavage reaction, assays were performed 

with 0.2-2.0 µM substrate and 21.38 nM enzyme. A standard curve (Figure 2.1) was 

used to convert the raw RFU values to concentration of substrate cleaved and the initial 

velocities were calculated using the linear portion of the curve for each reaction. These 

data were then fit to non-linear regression equations for Michaelis-Menten kinetics and 

kcat. The maximum velocity (vmax) for cleavage of the fluorogenic substrate was 

determined to be 1.960 ± 0.060 nM/s, the Km was 0.1824 ± 0.0280 µM, the turnover 

number was 0.0458 ± 0.0014 s-1, and the specificity constant (kcat/Km) was 0.2511 ± 

0.0393 µM-1s-1 (Figure 5.1).  
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We compared the kinetic parameters of Prp with those of Tobacco Etch Virus 

nuclear inclusion A protease (TEV NIa) (Table 4). This protease is another sequence-

specific cysteine protease that has been well characterized. It cleaves at a conserved 

sequence of seven amino acids, ExxYxQ*(S/G) (where * denotes the cleavage site), 

and is used to separate constituents of the 364-kDa TEV polyprotein (Parks et al., 

1995). Both Prp and TEV NIa have comparable specific activity (0.2325 vs. 0.38 µmol 

min-1 mg-1). However, the Km of Prp is about 400 times lower than TEV NIa, indicating 

that it has much higher affinity for its substrate. Also, the specificity constant (kcat/Km) is 

higher for Prp. This could be due to the fact that the consensus sequence for Prp has 

more conserved residues and is slightly longer than that of TEV NIa, which may allow 

better recognition. Although the affinity and specificity of Prp is higher than TEV NIa, its 

turnover (kcat) is not as rapid, which could be due to its higher binding affinity, which 

must also be overcome to release its products. This kinetics profile provides information 

that will be useful during future high-throughput screening for inhibitors. 

To next determine the substrate specificity of Prp, competitive peptides were 

included in assays with the fluorogenic substrate. These peptides ranged in length from 

6-13 amino acids and were derived from either the L27 cleavage sequence or the 

sequence from staphylococcal phage 80α major capsid protein (Table 3). Each of these 

peptides was added at 0.8 µM into assays with 0.2 µM fluorogenic substrate and 21.38 

nM enzyme. An ordinary one-way ANOVA analysis of the initial velocity and percent 

inhibition from each assay indicated that each of the peptides caused significant 

inhibition compared to a no-inhibitor control (Figure 5.2). There was a visible trend in 
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inhibition, with longer peptides causing more inhibition than their shorter counterparts. 

While the 13-mer based on the jflsdjfldsjfl;jsadlfjdsl; (CP 13mer) caused the 

 

 

Table 4. Comparing the kinetics of sequence-specific proteases 

 Phage-relate Ribosomal 
Protease (Prp) 

Tobacco Etch Virus (TEV) 
Nuclear Inclusion A (NIa) 
Protease* 

Sp. Activity (µmol min-1 mg-1) 0.2352 ± 0.0072 0.38 

Km (µM) 0.1824 ± 0.0280 69 ± 24 

kcat (s-1) 0.0458 ± 0.0014 0.18 ± 0.022 

kcat/Km (µM-1 s-1) 0.2511 ± 0.0393 0.0026 

Substrate KLNLQFF’ASKK PTTENLYFQ’SGTVDRR 

Consensus Sequence KLXNLQXF’A EXXYXQ’(S/G) 

* Parks et al., 1995 
X indicates non-conserved amino acid 
‘ indicates cleavage site 
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inhibition, with longer peptides causing more inhibition than their shorter counterparts. 

While the 13-mer based on the 80α major capsid protein motif (CP 13mer) caused the 

greatest amount of inhibition (63.22%), there was no peptide from the L27 sequence 

that was directly comparable. Meanwhile, the 11-mer based on the L27 cleavage 

sequence showed similar inhibition to the 11-mer based on the 80α major capsid protein 

sequence (39.26% vs. 32.38%). It is difficult to make conclusions based on these 

results with respect to which sequence Prp preferentially cleaves. By ordering peptides 

of matching length (both before and after the cleavage site) based on each of these 

motifs (including the 80α scaffold protein motif) we would be able to make a more 

comprehensive evaluation of its specificity with respect to these different substrates. 

Another possible route would be to order the different peptides with fluorophore-

quencher pairs and test them in individual kinetics assays. The respective kinetics data 

could then be used to compare the affinity of Prp towards the various substrates to 

determine which sequence is preferentially cleaved. While these results are 

inconclusive with respect to specificity, they do provide information that will be useful for 

inhibitor design. We have shown that Prp preferentially binds longer sequences; 

therefore, it is unlikely that a small, sequence-based inhibitor will be effective. On the 

other hand, because such a large recognition sequence seems to be required, a 

molecule that binds to or blocks somewhere along the binding site could prove to be an 

effective inhibitor. 

Our lab has generated an active-site model of Prp based on an existing, 

incomplete crystal structure of Prp from S. aureus (Figure 6.1). This structure was 

lacking a flexible loop that included the catalytic histidine, which had to be built back into 
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structural models. We found that the flexible loop at the active site is important for its 

catalytic conffjlsadjflasjdfljsormation, that glycine 2 

1 may be involved in  

 

 

 

 

Figure 6.1: Prp model with substrate docked. 
 
A molecular model of the Prp dimer (tan) built from an existing, incomplete crystal 
structure of Prp from S. aureus. A flexible loop between residues 21 and 32 was built 
back into the model, and a seven amino acid-long substrate (NLQFFAS; red) was 
docked at the active site. The catalytic cysteine and histidine are labeled (Adapted from 
Wall, 2015). 
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lacking a flexible loop that included the catalytic histidine, which had to be built back into 

the model (Wall, 2015). It was hypothesized that this flexible loop was important for 

substrate binding, and likely contributed to the formation of the active site. We have 

docked a seven amino acid-long substrate (Figure 6.1, red) into the active site of the 

Prp model and have identified several conserved residues that may play a role in 

substrate binding and catalysis (Wall, 2015). Figure 6.2 shows an atomic resolution 

model with residues FFAS of the substrate docked at the active site. Based on these 

models, we have chosen to mutate the catalytic cysteine (C34) and histidine (H22); the 

completely conserved glycine 21 and aspartic acid 31; and the partially conserved 

serine 38. Our model predicts π-π stacking between the P1 phenylalanine ring of the 

substrate and the catalytic histidine. This interaction likely stabilizes the catalytic 

conformation of H22, which is predicted to be mobile due to its location on a flexible 

loop. This histidine is preceded on the loop by a completely conserved glycine that likely 

forms a hinge that allows for its movement. Aspartic acid 31 is found at the other end of 

the flexible loop and may be involved in substrate stabilization in the binding pocket. 

Finally, serine 38 seems to hydrogen bond with the amide nitrogen between the P2 and 

P1 phenylalanines of the substrate, which seems to orient the backbone in a way that 

promotes a split conformation between them, positioning them both in hydrophobic 

pockets. Each of these residues was changed to alanine, except for the catalytic 

cysteine, which was replaced with serine. 

These mutants were expressed and purified identically to the wild-type enzyme, 

and surprisingly, in initial assays with 21.38 nM of each enzyme and 2.0 µM fluorogenic 
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substrate, none of the mutants showed any measurable activity (Figure 5.3). After 

adjustin 

 

 

 

 

 

Figure 6.2: Atomic resolution model of Prp active site with substrate docked. 
 
An atomic resolution model of the active site of Prp with residues FFAS of the substrate 
(ball-and-stick model with green backbone) docked (active-site residues shown as 
space-filling atoms over ball-and-stick models with red backbone). The catalytic 
cysteine (C34) and histidine (H22) are labeled, as well as residues G21, D31, and S38 
(Adapted from Wall, 2015). 
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substrate, none of the mutants showed any measurable activity (Figure 5.3). After 

adjusting the concentration of the enzyme to 213.8 nM and keeping the same amount of 

substrate, only the S38A mutant showed slight activity; just 2.06 ± 0.22% relative to the 

wild-type enzyme. We expected some of these mutants to have less dramatic effects 

and to be able to determine and compare the kinetics of each mutant. However, the 

results showed that they were all highly detrimental to substrate binding, catalysis, or 

both. We knew that mutating the cysteine and histidine would prevent catalysis and 

used them as controls along with the wild-type enzyme. The lack of activity in the 

glycine mutant shows that flexibility of the loop is critical and may be required for the 

histidine to adopt its catalytic conformation. The very low activity of the serine mutant 

shows that its stabilization of the substrate is very important for proper catalysis, and the 

effect of mutating the aspartic acid could be due to the presence of a catalytic triad, 

rather than a dyad, which would call for further refinement of our active-site model. 

Based on this information we are working on new models and are currently pursuing a 

crystal structure of Prp with its substrate bound, which will provide more in depth 

information about substrate binding and catalysis. 

In this study, we have sought to characterize a novel cysteine protease that 

performs the essential, site-specific N-terminal processing of ribosomal protein L27 in S. 

aureus and related bacteria. We expressed and purified the wild-type enzyme and 

optimized an assay for its activity. Using this assay, we determined the kinetics of Prp 

and found that it has high affinity and specificity for its substrate, which may lead to its 

relatively slower rate of turnover. We then determined the substrate specificity of Prp 

and found that it prefers longer substrates, which has implications for inhibitor design. 
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Finally, we generated several active-site mutants to test predictions made based on our 

structural models. We found that the flexible loop at the active site is important for its 

catalytic conformation, that glycine 21 may be involved in the proper positioning of H22 

for catalysis, that serine 38 seems to be important for substrate binding and stability, 

and that aspartic acid 31 may be part of a catalytic triad. 

Future directions for this work include further examination of the substrate 

specificity of Prp, revisiting the role of aspartic acid 31 in the active-site model, 

generating a crystal structure for Prp with its substrate bound, using the optimized 

assay in high-throughput screening for inhibitors, and determining the cross-reactivity of 

Prp between species. The information gained from this and future studies will result in 

better understanding of this ribosomal protein-processing event and will aid in the 

design of new antibiotics that target this conserved, essential protease in S. aureus and 

related bacteria. 
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