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The goal of this study was to identify critical regions of a novel gene, Nance-Horan syndrome-

like 1b (nhsl1b). It was previously discovered that C-terminal truncation of the Nhsl1b protein in 

nhsl1b mutants resulted in a loss of migration in the facial motor neurons of the hindbrain 

(Walsh et al. 2011). As nhsl1b expresses many isoforms, multiple targets were investigated in 

order to determine which transcript bears the largest impact on the motor neurons. Using 

confocal microscopy to observe immunostained embryos, we examined a mutation in an nhsl1b 

transcript that encodes a WHD, a domain that is known to function within the actin nucleation 

and polymerization pathways. In situ hybridization and injection of antisense morpholino 



 
 

oligonucleotides indicate that it is not the WHD but another transcript (ex1bnhsl1b) that is 

necessary for migration. The control experiments for rescuing the mutant phenotype have 

successfully been performed, but inducing expression of full length nhsl1b in the nhsl1b 

mutants is proving difficult. 
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Chapter I: Introduction 
 
 
 
 

In order for the brain to form a proper neural circuit, axons must be able to navigate to 

the correct target and location of innervation. The cell body of a neuron may migrate as well so 

that it will receive its extracellular cues and be in the area that axons are searching for them in. 

This is important because human congenital disorders such as epilepsy, schizophrenia, and 

lissencephaly are the result of aberrant or failed neuronal migration. 

 

Growth and development of motor neurons in the zebrafish brain 

The facial branchiomotor neurons or facial motor neurons (FBMN/FMNs) represent an 

excellent model for studying neuron migration. Born at 16 hours post fertilization (hpf) in the 

zebrafish hindbrain, the FBMNs start migration near the ventral and medial borders of the 

neural tube at 17 hpf and conclude their movement by 48 hpf. While beside the floorplate, they 

undergo a caudal migration from rhombomere 4 (r4) to r6 and some as far as r7 

(Chandrasekhar, Moens, Warren Jr, Kimmel & Kuwada, 1997). The axons of the FBMNs trail 

behind the migrating cell body in close apposition to the medial longitudinal fasciculus (MLF) 

and pathfind dorsolaterally to exit the nervous system at r4 (Chandrasekhar, 2004).  

Due to such a stereotypical migration pattern, defects in neuron migration can easily be 

determined by the impaired movement of the FBMNs. Additionally, the zebrafish embryo is 

transparent and the hindbrain lies close enough to the dorsal surface to allow for easy imaging 
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and optical classification via fluorescent microscope without the need to penetrate masses of 

tissue (Long, Meng, Wang, Jessen, Farrell & Lin, 1997). Together, these allow for the immediate 

and accurate identification of complications within the motor neuron migration system. 

To facilitate this process, the analysis of the motor neurons was made more simple 

through use of the transgenic line, Tg(isl1:GFP)rw0 (Higashijima, Hotta & Okamoto, 2000), that 

expresses GFP within the trigeminal (nV) neurons in r2 and r3, the facial branchiomotor 

neurons (nVII) and octavolateralis efferent neurons (OLe)  in r4-r7, the glossopharyngeal (nIX) in 

r7 and the vagus (nX) nerves in r8 and onwards.  

The facial motor neurons in r4 share their space with the octavolateralis efferent (OLe) 

neurons of the vestibuloacoustic and lateral line systems (Higashijima, Hotta & Okamoto, 

2000). These OLe neurons are also born in r4 and migrate along the same path as the FBMNs 

but send a contralateral dendrite across the midline to contact their mirrored population as 

well as a few posteriorly directed axons (Higashijima, Hotta & Okamoto, 2000). Due to their 

similarity in location as well as behavior in response to genetic mutation, the FBMNs and OLe 

neurons will be discussed as though representative of a single population of motor neurons. 

The facial branchiomotor neurons innervate muscles derived from the second branchial 

arch, also called the hyoid arch (Chandrasekhar, 2004). In humans, these muscles control facial 

expression as well as muscles in the cheek and pharyngeal regions. In zebrafish, these muscles 

are responsible for some movements of the jaw, throat, and opercle (Diogo, Hinits & Hughes, 

2008), but defects within the migration of the FBMNs cause the cell bodies and dendrites to be 

improperly located, thus disrupting the circuit. This leads to impairment on the zebrafish’s 
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ability to eat food which, in the wild, may lead to its death, but in a laboratory setting, it is not a 

lethal defect (Chandrasekhar, unpublished). 

 

Protein interactions within the hindbrain 

There are a number of genes that are responsible for the migration of FMNs and they 

can be categorized as cell and non-cell autonomous, though they are not mutually exclusive. 

Cell autonomous proteins are required to be expressed within the migrating body, while non 

cell autonomous proteins are required in the environment through which the cell is migrating. 

Adhesion and recognition molecules are important in order for the neurons to be able to 

migrate (Keller, 2002; Porcionatto, 2006) as well as identify with other cells to prevent 

migration past rhombomere boundaries (Guthrie, 2007). As such, it is important to establish 

cellular polarity to orient the cells and to form the structure of the neural tube, of which a 

critical component is transcription factors.  

As a regulatory mechanism, transcription factors control the activation of the genes 

necessary for migration to occur. Islet1(Isl1) is key among these as the predominant marker and 

initiator for motor neurons (Pfaff, Mendelsohn, Stewart, Edlund & Jessell, 1996), followed by 

factors such as hox, valentino, retinoic acid, and krox-20 which control rhombomere identity, 

patterning, and segmentation (Prince, Moens, Kimmel & Ho, 1998; Moens & Prince, 2002; 

Oxtoby & Jowett, 1993; Chandrasekhar, 2004).  Additionally, Hoxb1a has been shown to 

regulate Prickle1b (Rohrschneider, Elsen & Prince, 2007), a member within a group of proteins 

that serve to align cells. 
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This class of proteins, necessary for migration of the motor neurons, is the planar cell 

polarity (PCP) proteins. The PCP signaling pathway is thought to align cells with their neighbors 

within the plane of an epithelium. In this way, PCP is thought to be a form of cell-to-cell 

communication that transmits polarity information for uniform orientation of cells with the 

epithelial plane. It was found that in Drosophila, when the cells are lined in a single plane, these 

proteins function to orient the cell along axes, such as the anterior-posterior axis (Strutt, 

2003).   

In Drosophila, Van gogh (Vang) aligns itself asymmetrically within the cell, opposite to 

Frizzled (Fz), with Fz in the distal membrane and Vang occupying the proximal membrane 

(Adler, 2002). Based on their localization within the cells, these proteins signal to its adjacent 

neighbors and establish the directionality within the plane (Klein & Mlodzik, 2005). This 

establishes a polarity within the cell and plane that allows for such actions as the uniform 

development of the wing hair fibers on the distal edge of each cell (Strutt and Strutt, 2002). The 

removal of PCP proteins can then lead to the improper localization of the wing hair within the 

cell (Wong & Adler, 1993; Taylor, Abramova, Charlton & Adler, 1998).    

The PCP pathway is conserved within vertebrates, as shown by the organization of 

stereocilia bundles within the cochlea (Kelly & Chen, 2007). In zebrafish, the removal of Vang-

like 2 (Vangl2), a vertebrate Vang homolog, leads to a block in motor neuron migration as well 

as convergence extension defects (Bingham, Higashijima, Okamoto & Chandrasekhar, 2002). A 

similar defect in FMN migration was made for the other core PCP components, including 

Frizzled3a, Prickle1b, and Celsr2. The elimination of Scribble (Scrib), a large scaffold protein 

with leucine rich repeats and four PDZ domains, has been shown to have a similar but lesser 
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phenotype to Vangl2 mutants (Montcouquiol, Rachel, Lanford, Copeland, Jenkins & Kelley, 

2003; Wada et al., 2005). The similarity in expression domains and the presence of a PDZ-

binding domain on the carboxyl terminus (C-terminus) of Vangl2 suggest that Vangl2 and Scrib 

undergo protein-protein interactions (Murdoch et al., 2003). In vertebrates, PCP proteins 

function to extend the body axis in gastrulation and convergent extension movements 

(Heisenberg & Tada, 2002). Additionally, though not arranged in a single plane, the 

neuroepithelium displays aspects of planar polarity and the neural tube requires PCP proteins 

in order to form (Ciruna, Jenny, Lee, Mlodzik & Schier, 2005) and close correctly (Murdoch, 

Doudney, Paternotte, Copp & Stanier, 2001; Curtin et al., 2003; Williams, Yen, Lu & Sutherland, 

2014).  

  In a forward genetic screen for mutants with FBMN migration defects, a mutation in the 

Nance-Horan syndrome-like 1b (nhsl1b) gene was identified in zebrafish. Nhsl1b bears 

homology with Nance-Horan syndrome (NHS) protein in humans and the Guanylate-kinase 

holder (Gukh) protein in Drosophila. Similar to Gukh, zebrafish Nhsl1b was shown, by 

immunoprecipitation, to physically interact with Scribble and PSD95; moreover, Nhsl1b and 

Scrib genetically interact in FBMN migration (Walsh, Grant, Morgan & Moens, 2011). Given the 

similarity in phenotypes and the interaction with the PCP protein Scribble, available evidence 

suggests that Nhsl1b is an effector of PCP signaling in FMN neurons during migration. Indeed, 

Nhs1b is required cell autonomously in FMNs during migration (Walsh et al., 2011). 
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Exploring the Nance-Horan Syndrome family 

Nance-Horan Syndrome (NHS) was first described in humans and is characterized by 

congenital cataracts, facial dysmorphisms, and mental retardation (Burdon et al., 2003). There 

is a paralog, NHSL1, with no known defects that have been reported on in humans. There are 

two homologs to NHSL1, nhsl1a and nhsl1b, due to the genomic duplication that occurred in 

zebrafish (Woods et al., 2000). nhsl1b is located on chromosome 20 and codes for 8 exons, with 

an alternatively spliced fifth exon (Walsh et al., 2011). Additionally, the first exon has at least 5 

alternative exon 1s (exon1, 1a, 1b, 1c, and 1e) (sequences in Appendix A), each with their own 

5’ UTR and translational start sites (Figure 1). Unless otherwise indicated, base pair and amino 

acid numbers are based on Nhsl1b with exon1, to be referred to as ex1Nhsl1b. The body of the 

protein (exon 2 - exon 8) is 1498 amino acids long and contains no known domains or motifs 

except for a nuclear localization sequence (276-291) and a serine rich region (524-970) and 

proline rich region (973-1089) in exon 6, an exon which represents more than 65% of the 

protein.  

While the exact locations of the interaction sites of PSD95 and Scribble are also 

unknown, truncation of the last 389 AAs (nhsl1bfh131) leads to a complete block in the FBMN 

migration out of r4 (Walsh et al., 2011). Additionally, the size of exon 6 has exploited with a 

reverse genetics process, known as TILLING (Draper, McCallum, Stout, Slade, & Moens, 2004), 

to identify two additional and more severe nonsense mutations, nhsl1bfh280 and nhsl1bfh281, 

both of which truncate more than 1150 amino acids from Nhsl1b and lead to impaired 

migration (Walsh et al., 2011). It is not yet known what the smallest fragment of the Nhsl1b 

protein is that can still carry out its functions within the cell, but this suggests that some portion 
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of the C-terminus is important for its function, presumably due to post-translational 

modification, localization, and/or protein-protein interaction. In support of this, Walsh et al. 

(2011) found that Nhsl1b protein is still made in nhsl1bfh131 mutants, albeit a truncated form. 

The C-terminus is critical for the mechanism of migration, but it is also important to 

determine if there is any significance in which first exon is expressed. Brooks et al. showed that 

there is a high degree of genomic conservation within the NHS family, both human paralogs and 

homologs across different species (Brooks et al., 2010). Thus, like human NHS (hNHS), when 

exon1 is present in the nhsl1b transcript, the translated protein is capable of forming the full N-

terminal WAVE Homology Domain (WHD). The WHD in the NHS family is encoded by the first 

exon in conjunction with exon 2; all nhsl1b transcripts will contain a latter portion of the 

domain, but it will not code for the fully functional WHD (Brooks et al., 2010). 

The WHD is present on the N-terminus of the three human WAVE [(Wiskott-Aldrich 

syndrome protein) WASP family Verprolin-homologous] proteins (Brooks et al., 2010) and 

directly binds between HSPC300 and Abi1 (Ableson-interactor protein 1) which itself is bound 

to Nap1 (Nck-associated protein 1) which binds to Sra-1 (specifically Rac1-associated protein) 

(Gautreau, Ho, Li, Steen, Gygi & Kirschner, 2004) (Figure 2A). These proteins or their orthologs 

(Soderling, Binns, Wayman, Davee, Ong, Pawson & Scott, 2002; Le, Mallery, Zhang, Brankle & 

Szymanski, 2006) form a heteropentameric complex (HSPC300/WAVE/Abi/Nap/Sra) that 

mediates membrane-localized actin nucleation and polymerization through Rac and Nck (Eden, 

Rohatgi, Podtelejnikov, Mann & Kirschner, 2002; Stradal, Courtney, Rottner, Hahne, Small & 

Pendergast, 2001). This actin modification occurs through the rest of the WAVE protein, which 

contains a medial proline rich region and C-terminal WASP homology, central/cofilin and acidic 
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(WCA) regions (Machesky et al., 1999; Rohatgi et al., 1999). The WASP homology or verprolin 

homology region interacts with G-actin for addition to the actin filament via the acidic region, 

which binds to the Arp2/3 complex and an actin filament and activates actin nucleation (Miki & 

Takenawa, 1998; Machesky & Insall, 1998) (Figure 2B).  

As the WHD is incapable of binding to Sra and Nap on its own (Innocenti et al., 2004), 

the loss of Abi leads to the elimination of PDGF-stimulated Rac-mediated membrane ruffling, an 

indicator of a migration-viable cell (Scita et al., 1999), while the loss of specific isoforms of 

WAVE phenocopies Abi loss as well as impairs directed migration and axon growth (Yan et al., 

2003; Tahirovic et al., 2010). Complementary to this, knockdown of NHS in human cell lines 

leads to loss of cellular shape and excessive lamellipodia formation around the cell, but 

overexpression causes widespread localization of the Arp2/3 complex (Brooks et al., 2010).  

Though there are multiple members of the NHS and WAVE families, they are not 

thought to function redundantly in all cases or be capable of mitigating or overlapping functions 

(Suetsugu, Yamazaki, Kurisu & Takenawa, 2003). Thus, the loss of a specific isoform of Nhsl1b 

may not cause as striking a phenotype if other isoforms are present. However, as only ex1Nhsl1b 

encodes the WHD, if the protein’s migratory function is mediated through the WHD, then 

removal of the transcript and protein should be lead to a migration defect.  

While the ability to knockdown/knockout a gene through antisense oligonucleotides, 

siRNA, mutants, etc. is required, a way in which to implement and observe the function and 

expression of an exogenous gene is also necessary. RNA injections tend to be at far greater 

concentrations than endogenously expressed initially, but as the cells divide, the RNA becomes 

so dilute or degraded that expression past a certain timepoint is considered to be negligible (Xu, 
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1999). While zebrafish undergo a great deal of embryonic development within the first five 

days post fertilization, such that protein from injected material could still be expressed, a more 

stable and controlled method of gene expression leads to more reliable results (Xu, 1999).  

Integration into the zebrafish genome by only injecting DNA is inefficient, at less than 

5% success (Stuart, McMurray & Westerfield, 1988), however the Tol2 system represents a 

simple and efficient (>50%) method of gene insertion (Kawakami et al., 2004). First discovered 

in the medaka fish (Kawakami, Koga, Hori & Shima, 1998), the Tol2 element, when coupled with 

a functional transposase, is capable of nonspecific genomic transposition (insertion, excision, 

and/or reintegration) in zebrafish (Kawakami et al., 2000; 2004) as well as other vertebrates 

(Kawakami & Noda, 2004b; Kawakami, Imanaka, Itoh & Taira, 2004c).  This means that a gene 

placed between two Tol2 recognition sites can be expressed under the control of ubiquitous or 

specific promoters placed beside the gene or used in an enhancer or gene trap (Kawakami et 

al., 2004). Additionally, the transposase system can be used to disrupt endogenous transcripts 

via insertion into the middle of an exon, establish transgenic lines via germline integration 

(Kawakami et al., 2004), or to rescue mutant phenotypes if expressed within the correct tissue 

(Taylor et al., 2005). 

The mutants of nhsl1b, nhsl1bfh131 and nhsl1bfh281, have nonsense mutations that lead to 

400 or 1150 amino acid truncations in the protein, respectively, which lead to a block in FBMN 

migration (Walsh et al., 2011). In order to introduce fragmented or the full length nhsl1b gene 

into zebrafish embryos, the Tol2 system is ideal for efficient integration. However, it is 

necessary to ensure that the concomitant genes accompanying nhsl1b between the Tol2 

elements (Figure 3) do not interfere or have unexpected effects. crest1, an enhancer of the 
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islet1 promoter, and hsp70l, a minimal promoter, are found within the zebrafish genome and 

are not expected to have a deleterious effect and allow for tissue-specific expression in cranial 

motor neurons, such as FMNs. 

The aim of this study is to identify which nhsl1b isoform is responsible for its function in 

neuronal migration and to determine which regions of the gene are capable of rescue and 

restoration of the mutant phenotype. 
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Chapter II: Materials and Methods 
 
 
 
 
Fish Husbandry  

Zebrafish were maintained and staged as previously described (Kimmel, Ballard, Kimmel, 

Ullmann, & Schilling, 1995). The Isl1:GFP transgenic line, registered as Tg(isl1:GFP)rw0 at The 

Zebrafish International Resource Center (ZIRC) (Higashijima, Hotta, & Okamoto, 2000) was 

maintained in the *AB background. The nhsl1bfh131 mutants have a nonsense mutation (E1219*) 

in exon 6 and were originally described in (Walsh et al., 2011), the nhsl1bfh281 mutants also have 

a nonsense mutation (Q408*) in exon 6, and nhsl1bfh353 has a truncating nonsense mutation, 

but in exon1 (E9*). 

 

Genotyping 

Heterozygous mutants for the three nhsl1b mutations (fh131, fh281, and fh353) were 

incrossed and the progeny was grown for at least 4 months. The adults’ caudal fin were clipped 

using a scalpel and treated with a 1X Base solution (25 mM NaOH, 0.2 mM EDTA), then 

incubated at 95℃ for 30 minutes followed by the addition of 1X Neutralization solution (40 mM 

Tris-HCl). PCR was conducted using TaKaRa ExTaq DNA polymerase and primers from Eurofins  

(fh131 Forward [F]: TCCAATTCTGATCCAACATCCTTCC;  

fh131 Reverse [R]: CAGCACAGGTATGGGGTCCA;  

fh281 F: GTGCAAAAGCACCTAAGCAGATTGGAA;  
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fh281 R: GCTGTGAAGAGCAAAAACCTCAGCA;  

fh353 F: TTAAAATGCCGTTTCCCGAGAGAGCCCTC;  

fh353 F2: TTAAAATGCCGTTTCCCGAGAGAGCCGGC 

fh353 R: TGTCACTGGCGTGTCGGGATAGA). A restriction enzyme digest using HphI for fh131, 

SspI for fh281, XhoI for fh353 was incubated at 37℃ overnight and run on a 2% agarose gel. The 

previous enzymes only cut wild type DNA. An alternative enzyme, NheI, utilizing the fh353 F2 

primer cuts only mutant DNA. 

 

Reverse Transcription-PCR 

RT-PCR was performed on wild-type embryos at 10, 24, 48, and 72 hpf. RNA was 

extracted from approximately 30 embryos with the RNeasy Mini Kit (QIAGEN, #74104) and 

converted to cDNA using random primers with the Protoscript M-MuLV Taq RT-PCR kit (NEB, 

#E6400S). The nhsl1b exon 1s were amplified and run on a 3% agarose gel  

using first exon-specific forward and exon 3 or 4 reverse PCR primers:  

ex1nhsl1b F: GCTCGCTTCAGATTTGAACAGGATT 

ex1nhsl1b R: GAGAAAGTGGGCCCCTGTGAGTAGT 

ex1anhsl1b F: AGAGGGAGGGAGTGTCAGTGTGTTT 

ex1anhsl1b R: TGAAGATGCTGTGGACTTTTTGTCA  

ex1bnhsl1b F: ATACGCTCAGCACCTCTCCATAGTG  

ex1bnhsl1b R: TGAAGATGCTGTGGACTTTTTGTCA 

ex1cnhsl1b F: GTTGGCAAGAGGACACAGGTTTTC  

ex1cnhsl1b R: TTGGCAGGAGTCTTTCTCTTCCTCT 
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ex1enhsl1b F:  AAGTGACCTGAAATTCATCTGCTGAC 

ex1enhsl1b R: GCTCTCATTTGGCAGGAGTCTTTCT 

 

RNA in situ hybridization 

In situ probes were generated by PCR amplification of exon 1 specific sequences with a 

T7 RNA polymerase binding site incorporated into the reverse primer. PCR DNA template was 

used to obtain antisense RNA probes. The primers used to amplify nhsl1b exon 1s are as 

follows: 

ex1nhsl1b F: GCTCGCTTCAGATTTGAACAGG 

ex1nhsl1b R: GTATTTTAACCGATTTTGGATCGAG 

ex1anhsl1b F: AGAGGGAGGGAGTGTCAGTGTG 

ex1anhsl1b R: CTTCAAGGCATGACATGATTC 

ex1bnhsl1b F: ATACGCTCAGCACCTCTCCATA 

ex1bnhsl1b R: TGGGAAAGCAAGACAATGAGTT  

ex1cnhsl1b F: GTTGGCAAGAGGACACAGGTT 

ex1cnhsl1b R: CCTTGCGTTTGAAGTATTTAATG 

ex1enhsl1b F:  TGAAGAGGGTATGATGAGGGACA  

ex1enhsl1b R: CTATGTAGTGCTGGGGCTCATAAA 

 

Zebrafish embryos were fixed at 24 hpf in 4% PFA (in PBS) overnight (O/N) at 4℃ and 

then washed 5x 5 minutes in PBSTw (1X PBS with 0.5% Tween-20) at room temperature (RT). 

Embryos were permeabilized with ProteinaseK for 5 minutes, refixed in 4% PFA for 1 hour at RT, 
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and washed 5x 5 minutes in PBSTw. The embryos were then prehybridized in hybridization 

buffer (50% formamide, 5X SSC, 0.1% Tween-20, citric acid to adjust pH to 6.0) for 1 hr at 65℃.  

Digoxigenin-labelled probes against the exon 1s of nhsl1b and islet1 were created and 

diluted to 0.5 ng/uL in hybridization buffer. The prehybridization buffer on the embryos was 

replaced with prewarmed buffer plus probe and incubated O/N at 65℃. Buffer with probe was 

removed and stored at -20℃ and the embryos were washed at 65℃ with the following 

prewarmed solutions: 66% hybridization buffer, 33% 2X SSC for 5 minutes; 33% buffer, 66% 2X 

SSC for 5 minutes; 2X SSC for 5 minutes, 0.2X SSC + 0.1% Tween-20 for 20 minutes; 0.1X SSC + 

0.1% Tween-20 for 20 minutes twice. These steps were followed by room temperature washes: 

66% 0.2X SSC, 33% PBSTw for 5 minutes; 33% 0.2X SSC, 66% PBSTw for 5 minutes; PBSTw 

washes for 5 minutes.  

The embryos were blocked with PBSTw with 2% sheep serum and 2 mg/mL bovine 

sheep albumin (BSA) for 1h at RT. Embryos were incubated in alkaline-phosphatase conjugated 

anti-digoxigenin diluted in the block solution (1:5000) O/N at 4℃, then washed 5x 15 minutes in 

PBSTw. Freshly made coloration buffer (100 mM Tris-HCl ph 9.5, 50 mM MgCl2, 100 mM NaCL, 

0.1% Tween-20) was used to wash the embryos 4x 5 minutes. A nitro-blue tetrazolium (NBT) 

and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) combined stock solution was used at 20 uL 

per mL of colorization buffer as substrates for the detection of the digoxigenin-labelled probe. 

The NBT/BCIP in colorization buffer was refreshed hourly while the embryos were rocked in the 

dark at room temperature and then the buffer was refreshed before rocking the embryos O/N 

at 4℃. The reaction was stopped with a few quick washes in sterile water. Background staining 
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was decreased through the addition of 100% methanol to the embryos followed by graded 

washes of 75%, 50%, and 25% methanol (in PBSTw) and finally washed into PBSTw.  

To prepare for image analysis, the embryos were deyolked and serially dehydrated with 

glycerol in 25%, 50%, and 75% glycerol (in PBS), or dehydrated and then deyolked, or only 

deyolked.  

 

In situ cross sections 

After embryos underwent in situ hybridization, the yolk was completely removed and 

the region of the hindbrain between and including the otic vesicles was cut out. These pieces 

were embedded in resin and 2 um thick coronal sections were cut every 10 um. 

 

Morpholino injection 

Antisense morpholino oligonucleotides (MOs) were injected at the 1-cell stage:  

ex1bnhsl1b ATG MO: TTGCAGGTGTAAAAGTTGGCATCCC, 3.3 ng;  

ex1cnhsl1b ATG MO: TGAGCGAAGTCCCGATGAACACCAT, 3.3 ng; 

p53 MO: GCGCCATTGCTTTGCAAGAATTG, 3.3 ng. Morpholinos were co-injected with p53 MO to 

reduce MO-induced toxicity (Robu et al., 2007). 

 

Plasmid and RNA injection 

Using the Gateway system, a plasmid encoding full length ex1nhsl1b was subcloned into a 

pTol2 vector under control of crest1 enhancer and hsp70l minimal promoter with an N-

terminally fused mCherry gene (Villefranc, Amigo, & Lawson, 2007). Capped transposase mRNA 



16 
 

was synthesized using mMessage mMACHINE (Ambion) from pTransposase (Kawakami et al., 

2004). 60 and 100 ng/uL of transposase was mixed 1:1 with plasmid concentrations of 50 ng/uL 

and 200 ng/uL. Approximately 1 nL of the mixture was injected into one-cell zebrafish embryos. 

 

Immunocytochemistry 

To prevent pigmentation, at 22-24 hpf, embryos were placed in N-Phenylthiourea (PTU) 

diluted to 0.003% in fish water. The chorions were removed and embryos were fixed with 4% 

paraformaldehyde (in PBS) at 24 and 48 hpf O/N at 4℃. Embryos were washed in PBSTw (1X 

PBS with 0.5% Tween-20), permeabilized with acetone for 7 minutes at -20℃ and then washed 

with PBSTw. Embryos were blocked with 4% goat serum (GS) and 4% bovine sheep albumin 

(BSA) in PBSTx (1x PBS with 0.25% Triton X-100) at room temperature for at least one hour or 

O/N at 4℃. Primary antibodies used were rabbit αGFP (TP401 Torrey Pines; 1:2000) and, where 

applicable, mouse αmCherry (1:1000) diluted in blocking solution and rocked O/N at 4℃. 

Embryos were washed with PBSTw 5x 30 minutes and secondary antibodies were added. Alexa 

Fluor 488 goat anti-rabbit IgG (H+L) and Alexa Fluor 568 goat anti-mouse IgG (H+L) were used at 

3:1000 diluted in blocking solution and rocked O/N at 4℃. Embryos were washed with PBSTw 

5x 30 minutes and then serially dehydrated in 25%, 50%, and 75% glycerol (in PBS). 

 

Microscopy 

Motor neuron migration of wild-type and mutant embryos was assessed via Zeiss 

Discovery.V8 stereoscope. Live images of embryo morphology were obtained on the 

stereoscope using a Zeiss Axiocam 105 color. For immunofluorescent and colorimetric analysis 
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of the motor neurons in the hindbrain, embryos were deyolked and mounted on microscope 

slides, ventral-side-down, in 75% glycerol. Images of motor neurons were obtained on a Zeiss 

Observer.Z1 spinning disk laser confocal microscope. A 63x objective was used in conjunction 

with a 488nm and 568nm laser for immunostained embryos. In situ hybridization images were 

taken using differential interference contrast (DIC) and brightfield microscopy on 20x and 63x 

(closeup) objectives. Sections of Z-stacks, no thicker than 35 um, were used to construct 

maximum intensity projections for the quantification of proportional motor neuron migration. 
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Chapter III: Results 
 
 

 
 
The WHD is not required for proper FBMN migration  

In order to determine whether the Wave Homology Domain (WHD) is essential in the 

migration of the facial motor neurons, a zebrafish mutant carrying a nonsense mutation 

exclusively in the exon1 of nhsl1b (nhsl1bfh353), which is the transcript variant that encodes the 

WHD, was analyzed. A heterozygote, nhsl1bfh353/+ incross gave rise to a majority of embryos 

that were capable of normal FBMN migration. Embryos displaying the most normal and well 

defined motor neuron migration were enzymatically digested and all 3 genotypes were present 

in that pool (Figure 5). To eliminate the presence of possibly confounding maternally-loaded 

ex1nhsl1b mRNA and proteins, nhsl1bfh353/fh353 homozygous mutant fish were mated and their 

embryos imaged at 24 and 48 hpf (Figure 6). We found that FBMN migration proceeds normally 

in maternal-zygotic nhsl1bfh353 mutant embryos lacking the ex1nhsl1b transcript that encodes 

the WHD. Taken together, our results show that the WAVE homology domain in nhsl1b 

transcripts is dispensable for FBMN migration. 

 

Temporal and spatial expression of the alternatively spliced exon 1s 

Given the lack of a phenotype within nhsl1bfh353 mutants, it became important to 

determine the expression of all nhsl1b variants within the embryo during the period of 

migration (16 - 36 hpf). Using RT-PCR, it was shown that all nhsl1b isoforms are present at 10, 
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24, 48, and 72 hpf (Figure 7). However, the presence of an nhsl1b transcript does not 

automatically indicate that it is important for migration or even expressed within the motor 

neurons, an important distinction to make (Walsh et al., 2011).  

To localize the expression pattern of the nhsl1b transcripts, RNA probes spanning the 

entirety of each of the exon 1s were utilized in an in situ hybridization. The nhsl1b mRNA is 

present throughout the brain, eyes and upper portions of the trunk for all splice variants (Figure 

8A), but a darker signal in between the otic vesicles recapitulating motor neuron migration 

(arrows) is indicative of the probe’s presence within the FBMN. From a dorsal view, only the 

ex1bnhsl1b probe mimicked the control islet1 probe in its enrichment within the motor neurons 

(Figure 8B). Cross sections of in situ hybridized embryos show that only ex1bnhsl1b displays a 

non-uniform stain in the hindbrain; enrichment is visible within the cells at the location that 

should be occupied by facial motor neurons (Figure 8C).  

 

Loss of function of ex1bnhsl1b phenocopies nhsl1bfh281 

Injection of translation blocking antisense morpholino oligonucleotides (MOs) into one-

cell stage embryos is an efficient way to knockdown the translation of a particular gene 

transcript. However, they are known to cause MO-induced toxicity, leading to the death of cells 

within the embryo, including the neuroepithelium. To alleviate these concerns, the p53 MO, 

which blocks activation of apoptosis, can be co-injected (Robu et al. 2007). Importantly, loss of 

p53 does not affect neural development (Robu et al. 2007). 

When p53 MO is not added, the embryos display a brain with cell death, thus all further 

MO injections were performed with co-injected p53 MO. As there are no significant domains 
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encoded by the other nhsl1b variants, ex1cnhsl1b was selected for a control MO injection (Figure 

9A). Embryos injected with ex1cnhsl1b MO had FBMNs that underwent normal migration (Figure 

9D). The ex1bnhsl1b MO was used to verify the enriched stain within the motor neurons seen in 

the in situ hybridization. The embryos injected with this MO displayed a phenotype similar to 

the C-terminal truncation mutations, nhsl1bfh131 and nhsl1bfh281 (Figure 6). The majority of the 

facial motor neurons completely fail to migrate out of r4 (Figure 9C). 

 

Expression of nhsl1b in nhsl1bfh281 to rescue migration 

Our data suggests that FBMN migration is dependent on ex1bnhsl1b, largely because this 

is the only variant of nhsl1b expressed in FBMNs. Although, our analysis of mutants indicates 

that the ex1nhsl1b variant that encodes for the WHD at its N-terminus is not necessary, we do 

not know whether the ex1nhsl1b is sufficient to drive migration of FBMNs in nhsl1b mutants. To 

determine whether some or all nhsl1b variants are sufficient for rescue we made use of a 

genetic tool to express foreign genes in FBMNs using the motor neuron specific promoter 

Islet1. As discussed in the Introduction, transgenic expression can be achieved by injection of 

transposase and a plasmid containing transposase recognition sequences called Tol2 sites. 

The full length nhsl1b pTol plasmid has an N-terminally fused fluorophore and is under 

the control of the islet1 promoter. This causes nhsl1b to be expressed in excess of normal 

endogenous quantities when present within the motor neurons. Two stable zebrafish lines 

expressing GFP or membraneRFP (mRFP) under the control of the islet1 promoter have shown 

that the GFP and mRFP fluorophores do not inhibit motor neuron migration (Figure 10). The 

constructs to be injected into these lines (Figure 4) will serve as controls for the rescue. To 
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verify that the mCherry fluorophore does not affect the migration of the FBMNs, we injected 

the isl1:mCherry into wild type isl1:GFP embryos and found no motor neuron defect; 93.05% of 

mCherry/GFP-expressing neurons were found in r6, 6.94% were found in r5 (n=72) (Figure 11A). 

It is also necessary to establish that the migration of FBMNs is not blocked when nhsl1b 

is overexpressed in motor neurons. First, we injected isl1: GFP-ex1cnhsl1b into isl1:mRFP fish and 

no migration defect was present; 87.22% of neurons expressing GFP/mRFP were found in r6, 

6.02% in r5, and 6.77 in r4 (n=133) (Figure 11D). This allows us to visualize FBMNs 

overexpressing ex1cnhsl1b in GREEN next to the neighboring wild type FBMNs that are RED. We 

found that GFP-ex1cnhsl1b-expressing FBMNs underwent proper migration. This suggests 

suggest that overexpression of Nhsl1b does not affect migration of wild-type neurons. Similarly, 

full length ex1nhsl1b fused with mCherry (isl1:mCherry- ex1nhsl1b) was injected into isl1:GFP fish 

and the neurons still migrated correctly; 73.68% of neurons expressing mCherry/GFP were 

found in r6, 5.26% in r5, and 21.05% in r4 (n=19) (Figure 11B), showing once again that an 

excess of nhsl1b transcripts does not inhibit motor neuron migration. Finally, we injected a 

construct that only encoded for the C-terminus (CT) of nhsl1b, a truncated version that codes 

for the last 1166 bps (nhsl1b-CT). These are the very amino acids that are lost from nhsl1bfh131 

mutants. This truncated form of nhsl1b was fused to GFP and injected into isl1:mRFP fish, 

resulting in neurons that underwent proper migration; 78.21% of neurons expressing 

GFP/mRFP were found in r6, 14.1% in r5, and 7.69% in r4 (n=390) (Figure 11C). 

To prove that the Nhsl1b protein portion of the translated plasmid transcript is 

responsible for any changes seen in the rescue experiment and not the fluorophore, the 

isl1:mCherry plasmid was injected into nhsl1bfh281 mutants. Neurons were not seen to be 
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capable of migrating out of r4, regardless of whether they expressed red or green; 3.23% of 

neurons expressing mCherry/GFP were found in r5, 96.77% were found in r4 (n=62) (Figure 

11E). Next, we injected isl1:mCherry-nhsl1b-CT into nhsl1bfh281 mutants. We reasoned that the 

C-terminus might be sufficient to rescue migration since this was the portion that was lost in 

nhsl1bfh131 mutants. However, we failed to successfully express mCherry-nhsl1b-CT in FBMNs in 

nhsl1bfh281 mutants. Finally, we injected isl1:mCherry-ex1nhsl1b into nhsl1bfh281 mutants. Again, 

however, we were unable to obtain expression of mCherry-ex1nhsl1b in FBMNs of nhsl1bfh281 

mutants. 
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Chapter IV: Discussion 
 
 
 
 

The nhs1lb gene is required for proper facial branchiomotor neuron migration in 

zebrafish and inhibited migration leads to a disruption in this neural circuit. The migratory 

function of Nhsl1b is believed to be mediated in part by its protein-protein interactions (Walsh 

et al 2011). For instance, Nhsl1b can physically interact with Scribble, a protein known for its 

role in planar cell polarity. In addition, the phenotype of nhsl1b mutants mirrors that seen in 

Scribble mutants and mutants in other PCP genes, indicating that Nhsl1b is a downstream 

effector of the PCP pathway. Additionally, the presence of an N-terminal WAVE homology 

domain in the Nhsl1b protein suggests that Nhsl1b may function through the regulation of the 

actin cytoskeleton, since WAVE proteins are known to play a role in promoting actin 

polymerization necessary for cell motility.  

 

The WAVE Homology Domain does not function within the FBMN migration pathway 

The migration of FBMNs in zebrafish lacking the ex1Nhsl1b protein looks identical to wild 

type (Figure 6). To show that hetero- and homozygous nhsl1bfh353 embryos give rise to motor 

neurons capable of undergoing the stereotypical migration, a heterozygous incross was 

screened for the most normal-looking migrants and digested for DNA analysis (Figure 5). To 

confirm that the nonsense mutation (E9*) was still in the correct location and coded for, an 
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additional restriction enzyme was used to genotype zebrafish with nhsl1bfh353. The NheI enzyme 

cuts only mutant DNA and has been used to verify and complement genotyping with XhoI. 

While wild type embryos were expected to show well defined migration, the fact that 

hetero- and homozygous nhsl1bfh353 shows that the WHD of ex1Nhsl1b is not required for nor 

involved in the migration of the FBMNs in the zebrafish hindbrain. It has been theorized that 

the WHD of hNHS functions as a regulatory mechanism for WAVE-mediated actin 

polymerization as the lack of hNHS leads to increased cell spreading; this cell surface area 

increase was due to excessive lamellipodia formation thought to originate from unchecked and 

unfocused activation of the Arp2/3 complex via WAVE (Brooks et al., 2010). In terms of 

migration, an unorganized distribution of lamellipodia leads to no net movement. 

The uniqueness of the WHD within ex1nhsl1b suggested that even if other nhsl1b 

variants could compensate for the functions of the C-terminal portions of protein, no 

alternative transcript could take over for activity of the N-terminus of ex1Nhsl1b. The lack of a 

phenotype within the FBMNs and the body as a whole demonstrates that there are no lethal or 

gross morphological or reproductive defects resulting from the loss of the ex1nhsl1b transcript. 

 

The localization and expression of nhsl1b mRNA highlights the importance of exon1b 

Previous experiments with nhsl1b showed that its RNA transcripts were expressed 

before and after the time period for FBMN migration (16-48 hpf) (Walsh et al., 2011), however, 

which specific variants are present in this same window has not been examined. The RT-PCR for 

the five current nhsl1b transcripts displays the expression of all five before, during, and after 

FBMN migration (Figure 7). This means that no transcript variant can be immediately 
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disqualified for responsibility of the migratory function of nhsl1b. While ex1nhsl1b seems to 

increase its expression from 10 to 24 hpf and again between 48 and 72 hpf, ex1cnhsl1b and 

ex1enhsl1b appear to both decrease from 48 to 72 hpf. This may be due to the non-neuronal 

function of the WHD of ex1nhsl1b in the rest of the body; as the embryo grows, more cells are 

born and need to migrate, leading to a higher number of cells with the WAVE and WASP 

pathways active.  

Using in situ hybridization, the presence of the alternative exon 1s nhsl1b transcripts 

within the embryo during the time of motor neuron migration confirms the results of the RT-

PCR. As the majority of the embryos’ brains are stained at some basal level, detecting the 

presence of mRNA expression within the FBMNs requires extended incubation within the 

colorization buffer. This allows for the visualization of any enrichment within the motor 

neurons, which would indicate that the mRNA is expressed at background levels in the 

surrounding tissue as well as in higher quantities inside the FBMNs. Walsh et al. showed that 

nhsl1b is required cell autonomously (Walsh et al., 2011), suggesting that enrichment within the 

motor neurons themselves is a critical observation to make when analyzing in situ images. 

However, the lack of enrichment is not itself indicative of the absence of a transcript, given the 

brevity of the probes, the concentration within the cells, and the nature of in situ hybridization. 

The enrichment seen in embryos probed against ex1bnhsl1b implies that only the ex1bnhsl1b 

transcript is present within the FBMNs. Importantly, ex1nhsl1b transcripts were not found in 

FBMNs which explains why mutations in ex1nhsl1b did not cause a defect in FBMN migration.  

Blast analysis of exon1b of Nhsl1b did not reveal any known protein domains or post-

transcriptional modifications, thus, it remains unclear whether exon1b confers a specific 



26 
 

function to the Nhsl1b protein, or whether this simply reflects alternative promoter usage by 

motor neuron- specific transcription factors for this variant in FBMNs. 

 

The specific expression of ex1bnhsl1b in the FBMN may mediate its migratory function 

Translation blocking MOs inhibit the production of proteins by binding to mRNA and 

preventing their translation (Nasevicius & Ekker, 2000). Zebrafish embryos reach one thousand 

cells at 3 hpf, right when zygotic transcription is beginning to increase activity (Mathavan et al., 

2005). The MO concentration at that time is already diluted due to cellular division and will 

become further so as the embryo continues to divide and develop. The concentration and 

density of the MO is insufficient to bind every single mRNA molecule transcribed, leading to a 

knockdown, a partial or reduced knockout effect. Despite these dilute levels, morpholinos can 

cause MO-induced toxicity, leading to the death of nervous cells within the embryo (Ekker & 

Larson, 2001). This phenotype can be characterized by an opaque and “cloudy” brain due to the 

clustered, non-transparent dead cells. There also may be the failure to form the basement 

membrane which leads to neurons falling out of the neural tube and failing to progress through 

the surrounding tissue. In some cases, ventricular hypertrophy, fluid in the neural ventricles, 

may also occur, visible as a large and clear sac on top of the brain; to alleviate these effects, the 

p53 MO was co-injected (Robu et al., 2007), as cell death is not typically associated with 

mutations in nhsl1b.  

The embryos injected with ex1bnhsl1b ATG MO had a majority of blocked r4 neurons, 

resembling the phenotype of the truncation mutants, while the embryos injected with 

ex1cnhsl1b ATG MO displayed no block in FMBN migration. This confirms the staining pattern 



27 
 

seen in the ex1bnhsl1b in situ image and supports the claim that ex1bnhsl1b is responsible for 

nhsl1b’s function in the migration pathway. It also provides support to the exclusive presence 

of ex1bnhsl1b within the FBMNs. If any other nhsl1b variants are present within the FBMNs, they 

are (i) not present in sufficient quantities to carry out the migratory function, (ii) not involved in 

the migration pathway, or (iii) not in possession of the necessary protein structure necessary to 

fulfill the role of nhsl1b in the motor neurons. 

 

Recovery of migration in the FBMNs of nhsl1b mutants may prove difficult 

It was necessary to inject the partial pieces of the mCherry-nhsl1b pTol plasmid to show 

that they do not block motor neuron migration. Knowing that the fluorophore itself did not 

cause any defects in FBMN migration of wild type embryos and did not cause migration in 

mutant embryos, testing the constructs that would be used to attempt a rescue of the mutant 

phenotype was the next required step. The CT construct is the exact portion of the gene that is 

truncated in the nhsl1bfh131 mutant. If the C-terminus with an N-terminally fused mCherry forms 

the correct tertiary structure, then it is possible that it could possess the proper binding 

domains necessary to reestablish nhsl1b functionality.  

As the fluorophore and nhsl1b are under control of the islet1 promoter, presumably 

stronger expression than endogenous nhsl1b expression, it is also important to determine if 

overexpression of nhsl1b could lead to an inhibitory effect on FBMN migration. In human cell 

lines, overexpression of hNHS leads to impaired activation of WAVE, a key component in the 

actin-mediated cellular migration pathway (Brooks et al. 2010); similarly, overexpression of Fz 

leads to tissue polarity defects in the Drosophila wing (Strutt, 2001). When ex1nhsl1b and 
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ex1cnhsl1b were expressed in isl1:GFP and isl1:mRFP embryos, respectively, the FBMN were 

capable of normal migration and any neurons that may have been lagging or stuck in r4/5 were 

rarely seen to be expressing the plasmid’s fluorophore.  

Due to the ex1cnhsl1b ATG MO injections and the offspring of nhsl1bfh353 incrosses, it can 

be concluded that these two variants are not required for FBMN migration. Rescue with either 

of these constructs would support two conclusions: (i) that the FBMN block resulting from the 

removal of ex1bnhsl1b is due to the solitary expression of that transcript in the motor neurons 

and (ii) that the N-terminus of nhsl1b is nonspecific and expression of any full length transcript 

is sufficient for FBMN migration. Rescue of the mutant phenotype with the CT construct would 

also show (ii) and go further to claim that the first 75% of the protein may not even be 

necessary for migration. This claim cannot be fully substantiated however, until the CT 

construct rescues migration after the Nhsl1b protein has been completely removed from the 

embryo; both nhsl1bfh131 and nhsl1bfh281 zebrafish still generate the protein in its truncated 

form (Walsh et al., 2011).  

 

Future directions: Unfolding Nhsl1b 

It has been shown that the WHD is not necessary for proper motor neuron migration. To 

complete the panel of required nhsl1b variants as well as substantiate the in situ hybridization 

results, an analysis of the knockout or knockdown of ex1anhsl1b and ex1enhsl1b should be 

conducted. MOs are acceptable, but to reduce the chance of off target effects and death in the 

neural tube, a more precise technique, such as CRISPR, may be attempted. Upon assessment, a 

closer examination of the nhsl1b isoforms whose loss leads to a phenotype may be able to 
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provide insight into a functional sequence, previously unrecognized by localization or 

modification standards. 

Preliminary results suggest that the C-terminus construct is incapable of rescuing the 

nhsl1bfh281 phenotype. Though attempting a rescue with all variants has its merit, the critical 

rescue experiment to perform would be the injection of the full length ex1bnhsl1b construct. The 

lack of a rescued phenotype with what is deemed the principal nhsl1b transcript in FBMNs 

would strongly support the inability of a rescue. If integration into the genome poses an 

insurmountable obstacle, direct injection of mRNA can be attempted. 

Assuming that the mutant phenotype is capable of being rescued, to establish which 

portions of Nhsl1b are important for its migratory function, a shifting but overlapping window 

of the gene can be used to rescue mutants. If expression of nhsl1b-CT is successful, using 

smaller and smaller fragments within that domain can restrict the possibilities of what may be a 

critical component in nhsl1b. However, as the structure of the C-terminus is not currently 

known, excessive truncation may lead to improper folding in the translated protein. 

Additionally, given that Nhsl1b physically interacts with Scribble and PSD95, it is possible that 

both sites are required for migration and as such there may be a gap in the sequence required 

to restore proper migration. This split would most likely present itself as a partially rescued 

motor neuron block when either of the sequences is expressed, but as a more substantial 

rescue when the two individual sequences are expressed together.  

Complementary to discovering the sequence required to obtain a rescued phenotype, 

resolving the structure of the Nhsl1b protein may provide an indication of how it functions in 

the motor neurons. An antibody against Nhsl1b was developed (Walsh et al., 2011) and showed 
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that Nhsl1b localizes to membrane protrusions, as does Scribble (Wada et al., 2005), and that 

they co-immunoprecipitate; it has not, however, been shown whether or not they colocalize in 

vivo. Determining the distribution of Nhsl1b and PCP proteins and the manner in which they are 

affected by mutations in the Nhs and PCP families will provide knowledge about the signal 

transduction pathway that governs motility and migration.  
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Figure 1. The genomic structure of nhsl1b. White boxes represent alternative transcription 
start sites and/or UTR, black boxes are exons, all else are introns. The three mutations 
examined in this study are indicated. 
 
 
 

 
Figure 2. Lamellipodium formation is mediated via the WAVE complex. (A) The VCA of WAVE is 
auto-inhibited in the natural conformation, but interaction with Rac (B) frees the region to 
function in actin formation. 
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Figure 3. A basic motor neuron pTol2 plasmid template. Expression of the gene with an N-
terminally fused fluorophore is under the control of isl1 and a polyA tail is present to ensure 
mRNA is made. Everything between the Tol2 sites will be inserted into the embryo’s genome. 
 
 
 
 
 

 
Figure 4. The expressed regions of the injected plasmid constructs. mCherry (star) and GFP 
(circle) are N-terminally linked to nhsl1b gene sequences. 
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Figure 5.  nhsl1bfh353 genotype conducted on embryos with normal FBMN migration. When 
using the XhoI restriction enzyme, the mutant embryo lacks the requisite nucleotide sequence 
for digestion; heterozygous embryos possess a subset of wild type DNA. 
 
 

 
 
Figure 6. Comparison of the FBMN phenotypes in nhsl1b mutants to wild type migration. 
Display of wild type and mutant FBMN migration during (A-D) and after (E-H) migration. Motor 
neurons in embryos with nhsl1bfh281 or nhsl1bfh131 are unable to migrate out of r4. All mutant 
embryos are maternal-zygotic.  
 



34 
 

 

 
 
 
Figure 7. All nhsl1b isoforms are expressed before, during, and after migration. Transcription 
levels of ex1bnhsl1b remain steady while the others vary. ODC, ornithine decarboxylase control. 
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Figure 8. nhsl1b mRNA is expressed throughout the brains of 24 hpf embryos. Dorsal view (A) 
with a 20x objective is able to distinguish a darker stain in exon1b (arrows) similar to islet1. A 
close-up of the area between the otic vesicles (B) with a 63x objective reveals deeper coloring 
around cells migrating in a column.  Cross sections of the hindbrain (C); only exon1b displays 
enrichment of FBMN that is properly located at the ventral and medial borders of the neural 
tube, situated just above the notochord. 
 
 
 
 

 
 
 
Figure 9. Translation blocking MOs inhibit FBMN migration when targeted against ex1bnhsl1b. 
(B) Wild type migration as reference; a majority of facial motor neurons are blocked in r4 for 
the ex1bnhsl1b MO (C), but neuron migration remains predominantly normal after the 
knockdown of the ex1cnhsl1b transcript (D). 
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Figure 10. Migration of FBMNs in a wild type embryo concurrently expressing GFP and mRFP 
under control of isl1. Expression levels and localization of mRFP (A) and GFP (B) are unaffected 
by the presence of the other.  
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Figure 11. Control injections do not cause a change in the FBMN migration pattern of the 
embryo. (A,E) Fluorophore only, (C) nhsl1b-CT, (B,D) full length nhsl1b. Isl1:mCherry causes the 
least impact, 93% (A) and 96% (E), when injected; a GFP construct follows closely at 87% (D). 
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Appendix A 
 
 
 
 
ex1nhsl1b 
 
ATGCCGTTTCCCGAGAGAGCCGTTGAGCCTCAGCTGCTGTGCCGGTTGAGGGGGAGCGATGGACCCGA
GAAGAGCTTTATAACACCGGACGGTCGCAAAGTTCGCAAACCGGTTTTGTTTTCCTCTCTGGAGGAAGTT
TGTTGTCATACGTTCACCAGCATCCTACATCAGCTGTCCGATCTATCCCGACACGCCAGTGACATATTCCT
GGGAATTGAGACTCAAGCTGGGCTAATCTCGCACAGGACATCGAGGATTCAAGCGCGTTTGGAGAGGA
TACAGCACACCGTTCAAACGCTCGATCCCAAATCGGTTAAAATAC 
 
ex1anhsl1b 
 
ATGTTCAACGTGAGCAGGCCTGACTGTGTGTCTGGATATGGGCTCGCTGGAGTGGGATTGACATCTTCA
GGGGTCTCTAGTGGACACAGAGCTAGAATCATGTCATGCCTTGAAG 
 
ex1bnhsl1b 
  
ATGGGCAACACTCCACCTTCACAGCTTCTGTCTCCTTCAGGACTGGATCCAGCCCAGACCCCTGGTGTTA
GGAGCGATTGTGGCATCAGACGCAGGCTTTTGGCCTCGAAGGTCCACCAGAGACCCGAATCACTGTGG
ACACCTAAACCAATGCTAAGAGCAGAAGTTAAAGGCTCACAAGGAGACACACTGACGCGCTCTCAGTCC
TGTTGCAAGGGGAACTCATTGTCTTGCTTTCCCA 
 
ex1cnhsl1b 
 
ATGGTGTTCATCGGGACTTCGCTCAAGTCAGTCATTAAATACTTCAAACGCAAGG 
 
ex1enhsl1b 
 
ATGATGAGGGACAAGCGTTCTGGGTCTTTTAGGAGGGACAAGACAGAGAAGCCTGCGCCGATCTCTCG
GGCTCTCAGCTGGCTGAGCGTGTCCTCTCTGTCACAGCAGACACGCAAACTGTTCCGCAGCCAGAACAG
CCTTCACAACCACTCACACACTCCAGAGGGAGGAGATGATGAAGATGACAACTGGGTTTATGAGCCCCA
GCACTACATAG 
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