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In the medical literature, there has been an increased interest in evaluating association 

between exposure and outcomes using nonrandomized observational studies. However, because 

assignments to exposure are not done randomly in observational studies, comparisons of 

outcomes between exposed and non-exposed subjects must account for the effect of confounders. 

Propensity score methods have been widely used to control for confounding, when estimating 

exposure effect. Previous studies have shown that conditioning on the propensity score results in 

biased estimation of odds ratio and hazard ratio. However, there is a lack of research into the 

performance of propensity score methods for estimating the area under the ROC curve (AUC). In 

this dissertation, we propose AUC as measure of effect when outcomes are continuous. The 

AUC is interpreted as the probability that a randomly selected non-exposed subject has a better 

response than a randomly selected exposed subject. The aim of this research is to examine 

methods to control for confounding when association between exposure and outcomes is 



x 
 

 
 

quantified by AUC. We look at the performance of the propensity score, including determining 

the optimal choice of variables for the propensity score model. Choices include covariates related 

to exposure group, covariates related to outcome, covariates related to both exposure and 

outcome, and all measured covariates. Additionally, we compare the propensity score approach 

to that of the conventional regression approach to adjust for AUC. We conduct a series of 

simulations to assess the performance of the methodology where the choice of the best estimator 

depends on bias, relative bias, mean squared error, and coverage of 95% confidence intervals.  

Furthermore, we examine the impact of model misspecification in conventional regression 

adjustment for AUC by incorrectly modelling the covariates in the data. These modelling errors 

include omitting covariates, dichotomizing continuous covariates, modelling quadratic covariates 

as linear, and excluding interactions terms from the model. Finally, a dataset from the shock 

research unit at the University of Southern California is used to illustrate the estimation of the 

adjusted AUC using the proposed approaches. 
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CHAPTER 1: INTRODUCTION 

 

In epidemiologic research, investigators are often interested in comparing a group of 

people with a specific exposure to a similar group of people without that specific exposure 

before disease appearance or other health outcomes. This objective is easily achieved in 

experimental studies where the assignment to the exposure is controlled by the investigator and 

is done in a random fashion. More generally, the exposure group could also be treatment or non-

treatment groups, populations with the risk factor or not-with the risk factor, diseased or non-

diseased populations, or some other binary indicator of a clinical state. However, experimental 

studies are not always feasible for ethical, practical or financial reasons. For instance, in a study 

comparing men and women in terms of health results, gender is the exposure of interest and it is 

clearly impossible to randomly assign subject to different gender groups. Hence, the subjects 

assigned themselves to one of the exposure groups in a non-random manner; this is referred to as 

an observational study. 

 There has been an increased interest in observational studies to evaluate association 

between exposure (risk factors of outcome) and outcomes. Because assignments to exposure are 

not random in observational studies, any comparisons of outcomes between exposed and non-

exposed subjects must account for factors related to the exposure of interest. This is important 

because failing to adjust for the confounding variables could lead to biased estimates of true 

effects. As a result, researchers using observational data are required to use advanced statistical 

methods to control for bias and confounding. 

Propensity score methods have been used for a long time to reduce bias in observational 

studies (Rosenbaum & Rubin, 1984) . The main goal of the propensity scores is to balance 
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observed covariates between two groups in nonrandomized trials so that the two groups are 

comparable in the sense that their baseline covariates are expected to have similar distribution. 

The most common ways of using propensity score to reduce confounding are: stratification on 

the propensity score, matching on the propensity score and covariate adjustment on the 

propensity score (Austin, 2008; Austin, 2010; Rosenbaum & Rubin, 1983) However, a common 

concern in the development of propensity scores models, is the choice of variables to include in 

the model. So far, there is no agreed upon ‘correct’ propensity score model among researchers. 

  In his seminal work on propensity scores, Peter Austin had investigated the performance 

of propensity scores methods to estimate relative risk, odds ratio, hazard ratio, marginal odds 

ratio, marginal hazard risk and difference in means (Austin, 2007a; Austin, 2008; Austin, 2010, 

2013; Austin, Grootendorst, Normand, & Anderson, 2007). However, there is no mention in the 

literature of the performance of propensity score when association is quantified by the area under 

the receiver operating characteristic (ROC) curve. 

 In clinical research with continuous outcomes, the area under the ROC curve (AUC) has 

gained an interest to assess treatment effects (Acion, Peterson, Temple, & Arndt, 2006; 

Brumback, Pepe, & Alonzo, 2006; Hauck, Hyslop, & Anderson, 2000). The AUC can be 

interpreted as the probability that a randomly selected participant in the exposed group has a 

larger response (or greater suspicion in terms of continuous outcome) than a randomly selected 

participant in the non-exposed group. For example, in a clinical study of whether or not obesity 

is a risk factor for hypertension, an AUC of 0.76 may imply that a randomly selected patient 

from the obese group (exposed group) has 76% chance of, say, a more suspicious (higher) blood 

pressure than a randomly selected patient from the non-obese (non-exposed) group. Here, higher 

values of blood pressure indicate hypertension. 
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  This dissertation research has two major parts. In the first part, we proposed the 

propensity score methodology to control for confounding when association between exposure 

and outcomes is quantified by area under the ROC curve. Additionally, we sought to determine 

the optimal choice of variables to include in the propensity score model. Choices include 

covariates related to risk group, covariates related to outcome, covariates related to both risk 

group and outcome, and all measured covariates. We also compared the performance of the 

propensity score approach to control for confounding to that of a conventional regression 

approach to adjust for AUC. In the second part of this research, we examined the impact of 

model misspecification in AUC regression adjusting for covariates by incorrectly modelling the 

covariates in the data. These modelling errors include omitting covariates, dichotomizing 

continuous variables, modelling quadratic covariates as linear, and excluding interactions terms 

from the model. 

This research is organized as follows. Chapter 2 contains a thorough review of literature 

on propensity score methods, issues of variable selection in propensity score models, the area 

under the ROC curve as a measure of association, methods to adjust for covariates and model 

misspecification issues in AUC regression analysis. Chapter 3 addresses the first part of the 

dissertation through a simulation study. In Chapter 4, the issue of model misspecification when 

estimating the AUC adjusting for covariates is investigated through a simulation study. In 

Chapter 5, the proposed approaches are applied to data from the Shock Research Unit at the 

University of Southern California, Los Angeles, California. Chapter 6 is a concluding chapter 

which summarizes the results of the simulations studies, addresses limitations and suggests 

future study. Appendices cover SAS codes to estimate the AUC controlling for confounding and 

validation of the simulated data along with balance diagnostics. 
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CHAPTER 2: BACKGROUND & REVIEW 

 

2.1  Introduction to propensity score 

2.1.1 Definition of the propensity score 

In cohort studies, failing to adjust for confounding variables could lead to biased estimates of 

risk effect. In 1983, Rosenbaum and Rubin introduced the concept of propensity scores as a tool 

to reduce bias in observational studies. In randomized experiments, subjects are assigned 

randomly to treatment or control groups so that the two groups are comparable in the sense that 

the distribution of their baseline covariates are expected to be the same. However, in 

nonrandomized trials, the absence of random assignment doesn’t guarantee a similarity in the 

distributions of the covariates between two groups; thus, direct comparisons may be misleading.  

The goal of the propensity scores, then, is to balance observed covariates between two groups in 

nonrandomized trials. Rosenbaum and Rubin defined the propensity score as the conditional 

probability of assignment to a particular group given a vector of observed covariates 

(Rosenbaum & Rubin, 1984). For instance, suppose each subject in the cohort has a vector of 

observed covariates X , and an indicator of risk status Z such that 1Z   if subject has the risk 

factor and 0Z   if subject has no-risk factor. Then the propensity score,    Pr 1|e x Z  X  is 

the probability that a subject with covariates X  is in the risk factor group.  

In a randomized trial,    Pr 1| Pr 0 |Z Z  X X i.e. subjects have the same chance to 

be assigned to treatment or control using a randomization mechanism. In this manner, the 

propensity score   1
2

e x   for every X . On the other hand, in an observational study, some 

subjects are more likely than others to have the risk factor or to not have the risk factor at all, so 
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their propensity scores could be either    1
2

e x  or   1
2

e x  . This is mostly due to the non-

existence of random assignment in observational studies. For example, suppose the risk factor of 

interest is obesity and the outcome is high blood pressure, in a study.  Some subjects who are 

physically inactive are more likely to be in the risk group than subjects who are physically 

active, hence their propensity score is   1
2

e x  . Another example is diabetes as a risk factor 

and cardiovascular disease as outcome. Subjects with no history of diabetes in the family would 

more likely fall in the non-risk group more often than people with a family history of diabetes; 

hence subjects with no family history of diabetes have a smaller probability to be in the risk 

group; so their propensity score would be   1
2

e x  . Now, two subjects with the same 

propensity score, say   0.75e x  are compared. Although, these subjects may differ in terms of 

their respective covariates X  but the good thing is that both subjects have the same chance of 

being assigned to the risk group. Hence, this suggests that in the absence of random assignment, 

if subjects in the risk factor and non-risk factor groups are grouped or matched based on the 

same propensity scores, then the subjects in each group are expected to have similar covariates 

distributions. Therefore, the propensity score is an instrument that balances observed covariates 

between two risk groups in order to create the same probability structures as that achieved by a 

“randomized” experiment. 

 

2.1.2 Estimating propensity scores 

Several approaches exist to estimate a propensity score such as the classification tree technique 

using the recursive portioning and the neural networks methods (Setoguchi, Schneeweiss, 

Brookhart, Glynn, & Cook, 2008; Stone, Obrosky, Singer, Kapoor, & Fine, 1995)  , discriminant 
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analysis (D'Agostino, 1998; Rosenbaum & Rubin, 1984), and the generalized additive models 

(Woo, Reite, & Karr, 2008). However, logistic regression is used far more often than any of the 

above mentioned methods. Logistic regression models the probability of having the risk factor as 

a function of a set of the observed covariates X . The propensity score is then computed as the 

expected probability of being in the risk group, conditional on X . The choice of covariates to be 

included in the propensity score model is addressed in more detail in Section 2.2.  

 

2.1.3 Propensity score methods to estimate risk effect 

Once the propensity score has been estimated, it is used as a variable in an analysis to control for 

confounding when estimating risk effect. The most common propensity score analysis methods 

include stratification, matching, and covariate adjustment on the propensity score (Austin, 

Grootendorst, & Anderson, 2007).   

The basic idea of stratifying on the propensity score is to group subjects usually into five 

approximately equal-size groups determined by the quintiles of the estimated propensity score. 

These groups are considered to be homogeneous as subjects in each group are expected to have 

similar propensity scores. The use of five strata is common because researchers have shown that 

five groups can remove over 90% of the bias due to each baseline covariate (Cochran, 1968; 

Rosenbaum & Rubin, 1984).  The risk effect is then estimated within each stratum. The overall 

estimated risk effect for the outcome will be a weighted average of the five stratum-specific risk 

effects. The propensity score in stratification is very useful in adjusting for baseline differences 

because outcome responses from the two risk groups are compared within subjects with similar 

propensity score. Therefore, with stratifying on the propensity score, we expect to compare 

individuals in risk and no-risk factor groups with similar distributions of baseline covariates X .  
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In propensity score matching, the idea is to create matched pairs of risk factor and non-

risk factor subjects with similar propensity scores. In the literature, the most commonly used 

matching method is the so-called greedy matching. As noted in Rosenbaum & Rubin (1984), the 

greedy matching includes the: a) nearest available matching on the estimated propensity score; b) 

Mahalanobis metric matching including the propensity score; and c) nearest available 

Mahalanobis metric matching within calipers defined by the propensity score. These methods 

have been meticulously defined elsewhere (D'Agostino, 1998; Rosenbaum & Rubin, 1985), and, 

therefore, they are not shown here. According to Rosenbaum  the third method i.e. the greedy 

matching using calipers of a specified width produces the best balance between the covariates in 

the two risk groups (Rosenbaum, 1995). This method consists of finding a match for a randomly 

selected subject in the risk group by selecting the closest subject in the non-risk group within a 

fixed distance i.e. the predetermined caliper of the propensity score. If there are several 

candidates as potential match for the risk subject, then one is selected at random. If there are no 

candidates, for instance if no subject in the non-risk group has a propensity score close to that of 

the risk group subject, then the subject in the risk group is not included in the final matched 

sample. The process is then repeated and once the risk subject has been matched to a non-risk 

subject, then the latter is no longer available for consideration as a match for subsequent subjects 

in the risk group; this is referred to as one-to-one (1-1) matching or matching without 

replacement.  

In the literature, users of greedy matching have matched risk groups subjects using 

calipers of width ranging from 0.005 to 0.01 on the propensity score scale (Austin, 2009a). 

However, from the results of a simulation study, Austin recommended using calipers of width 

0.2 of the standard deviation of the logit of the propensity score or of width 0.02 or 0.03 on the 
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propensity score scale, as they tend to have superior performance compared with other methods 

that are used in the medical literature (Austin, 2007b, 2009a).  

Other methods of matching include matching with replacement where the selected 

subject in the non-risk group can serve as a match for more than one subject in the risk group. 

However, this method has not been discussed much in the literature. Another alternative to the 

greedy matching is optimal matching as described by Rosenbaum in his book Observational 

Studies. This method consists of minimizing the total difference between the propensity scores of 

the risk and non-risk subjects. This method can be computationally involved and is rarely use in 

epidemiologic studies  (Rosenbaum, 1995).  

The propensity score covariate adjustment method, also referred to as regression 

(covariance) adjustment was described by Rosenbaum & Rubin (1983) in their early work. In 

this method, the outcome is regressed on two independent variables: an indicator variable Z

denoting the risk status group and the estimated propensity score. The estimated risk effect is 

obtained from the regression coefficient for risk status. In a systematic review conducted by 

Weitzen et al. (2004), they have shown that over half of the selected studies used the covariate 

adjustment method. In these studies, the propensity score is used as either a single variable in the 

regression model or with additional variables in a multivariable model. In other cases, the 

propensity score was used as a categorical variable by dividing the propensity score into quintiles 

to create categories (Weitzen, Lapane, Toledano, Hume, & Mor, 2004).  

Regardless of the propensity score analysis method used, the focus should be to create 

balance on all patients’ characteristics before comparing response outcomes for patients with the 

risk factor and without the factor.  Therefore, the estimated propensity score should be assessed 
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on its performance in creating balance before carrying out any outcome analysis as described in 

Section 2.1.4.   

 

2.1.4 Balance diagnostics for the propensity scores 

Once the strata and the matched sample based on the propensity score have been constructed, it 

is of great importance to check whether balance is achieved in measured baseline covariates 

between risk factor and non-risk factor subjects. Methods to assess balance of each covariate 

after propensity score adjustment include: i) measuring the standardized differences where it has 

been suggested that a standardized difference greater than 0.1 is considered as an important  

difference in the mean or prevalence of a covariate between risk factor groups (Austin & 

Mamdani, 2006; Normand et al., 2001); ii) assessing the distribution of the propensity scores via 

box plots: If the distributions of the propensity scores for risk and non-risk groups within each 

quintile are similar, then a good balance is achieved. Furthermore, one should assess the overall 

distribution of the propensity scores within each risk group (via box plots or histograms), and if 

they overlap then the two groups are comparable in the sense of covariates; iii) finally, one could 

report t-tests of equality of means between the two risk groups in regard to each continuous 

covariate and a chi-square test for the dichotomous covariates within each quintile to show 

similarity of the distribution of measured baseline covariates after propensity score adjustment. 

To compare baseline characteristics between exposure groups, the standardized differences have 

been suggested to be better than doing statistical tests as the former are independent of sample 

size and estimates how many standard deviations the two groups differ by (Austin, 2009c). If 

balance is not satisfied researchers recommend modification of the propensity score model by 

deleting or adding covariates or even by considering a more complex model that includes 
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interactions or nonlinear terms. This being said, in Section 2.2, we investigate the issues of 

variable selection in the propensity score models.  

 

2.2  Issues of variables selection in propensity score models 

In the literature, a common concern in developing a propensity score model is to choose 

which variables to include in the model.  Little is known about the problem of variable selection 

for propensity score models (Brookhart et al., 2006). In a propensity score model, the indicator 

of risk status is treated as a dependent variable whereas the observed covariates are considered to 

be the predictors. Based on their association with the risk group and the outcome, one can 

categorize the observed covariates into four groups: 1) baseline covariates related to risk group; 

2) baseline covariates related to the outcome; 3) baseline covariates related to both risk group 

and outcome; these are referred to as true confounders; 4) and finally, all measured baseline 

covariates (Austin, 2007a; Austin, 2008; Austin & Mamdani, 2006).  

While there is no agreed upon method for determining the ‘correct’ propensity score 

model, Weitzen et al. suggest using an algorithmic method such as backward elimination, 

forward selection or stepwise selection for inclusion criteria (Weitzen et al., 2004). However, 

Monte Carlo simulations studies have shown that a propensity score model with only covariates 

associated with outcome or the true confounders resulted in a larger number of matched pairs, 

thus, resulting in a smaller bias in the estimated risk effect (Austin, 2007a) and a smaller mean 

squared error (Brookhart et al., 2006). These findings are consistent with the recommendations 

of Rubin and Thomas  that a variable related to the outcome should be included in the propensity 

score model even if it is not statistically significant (Rubin & Thomas, 1996). The simulations 

studies also noted that matching on models that contain baseline covariates related to risk group 
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only or all measured covariates, resulted in a lower number of matched pairs (Austin, 2007b) and 

increased the variance of the estimated risk effect without decreasing bias (Brookhart et al., 

2006). Also, D’Agostino & D’Agostino recommend “fitting a model… that includes a subset of 

patient characteristics that are thought to be the most important known potential confounders”. 

The rationale behind this is to add precision to the effect estimate and adjust for any residual 

imbalances that may exist after the propensity score modelling (D'Agostino & D'Agostino, 

2007).   

It is also important to note that the findings for the choice of variables described above 

resulted from methods where investigators looked at outcome measures such as difference in 

means or proportions, odds ratios, relative risk, or hazard ratios. 

Regardless of the recommendations to select the ‘best’ propensity score model, users of the 

propensity score analysis method seem to agree that the best model is based on whether balance 

is achieved on all baseline covariates in order to correctly estimate risk effect between patients 

with risk factor and non-risk factor.   

 

2.3 Area under the ROC Curve as Measure of Association 

2.3.1 P(X > Y) in clinical trials 

For normal continuous outcomes, the mean difference between two populations is a well-known 

measure of treatment effect. However, there is an increasing interest in the literature about the 

use of the probability that a randomly selected participant in the treatment group  X  has a 

better response than a randomly selected participant in the placebo group  Y , i.e.  P X Y . The 

use of  P X Y as a measure of the effect in clinical trials has been introduced by Hauck et al. 
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(Hauck et al., 2000)  following a work by O’Brien (1988) in considering  P X Y  to assess 

treatment effects after noting that standard tests may fail to identify important treatment 

differences. Hauck et al. (2000) believe that  P X Y is more understandable for the evaluation 

of treatment comparisons.  They also feel that it doesn’t make sense to restrict statistical 

approaches to the simple difference of means between two populations because these two 

populations might have different variations. For instance, a new treatment may have effects on 

the distribution of responses other than on the average response. Therefore, if there is an 

increased variability due to the effect of the new treatment, then the estimated effect is attenuated 

when  P X Y  is used as measure of treatment effect.    

Acion et al. have also shown that  P X Y is clinically more meaningful than the change 

in means which represents the magnitude of the mean difference but does not tell patients their 

chance to improve under the new treatment. They described  P X Y as a “measure that 

presents good qualities of meaning, simplicity, and robustness” (Acion et al., 2006). 

As noted in Tian (2008), there are a few advantages of using  P X Y to assess treatment 

effects over the change in means. First, it is scale-free, making  P X Y  a reasonable measure 

of treatment effect no matter how much variability exists between the two populations’ 

responses. Second, she showed that  P X Y  does not change under monotonic transformation. 

Hence, the theory developed for the original distribution are also valid for transformed 

distributions (Tian, 2008). 

Furthermore, the mean difference does not account for variability within the groups being 

compared. Even if the standardized mean difference is used to overcome this problem, it is 



13 
 

 
 

difficult for clinicians to interpret practically the improvement measured in standard deviations 

units (Nunney, Clark, & Shepstone, 2013). 

It is important to note that the probability  P X Y  is equivalent to the area under the 

curve (AUC) in methods for receiver operating characteristic (ROC) analysis. 

 

2.3.2 P(X > Y) in ROC Analysis 

The receiver operating characteristic (ROC) curve was originally developed for signal detection 

theory by Green and Swets in 1966 (Green & Swets, 1966). Since 1982, however, the ROC 

curves have been extensively used in the medical diagnostic testing as a powerful tool to assess 

how well a diagnostic test can discriminate diseased and non-diseased populations. The ROC 

curve is a plot of sensitivity vs 1-specificity. In general, the ROC curve describes the separation 

between the distribution of the continuous outcome in two different populations (Brumback et 

al., 2006). The ROC curve lies in the unit square, in which the diagonal line from vertices (0, 0) 

to (1, 1) indicates no effect i.e. the distribution of response in the disease group is the same as 

that of the response in the non-disease group. When the curve is pulled closer toward (0, 1) it 

indicates better separation of the distributions of the responses in each group. The area under the 

ROC curve (AUC) is an index used to summarize the accuracy of the diagnostic test. One 

interpretation for AUC is the probability that for a randomly selected pair of diseased and non-

diseased individuals, the diagnostic test value is higher for the diseased person (Pepe, 2003).  

In this dissertation research, the measure of risk effect we suggest is the probability that a 

randomly selected participant in the risk group has a larger response than a randomly selected 

participant in the non-risk group. We assume without loss of generality that larger response 

values are associated with the risk population, and smaller values with the non-risk population. 
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More generally, the risk groups could also be diseased or non-diseased populations, treatment or 

non-treatment (or placebo or standard treatment) groups, or some other binary indicator of a 

clinical state. We restrict our research to the comparison of two groups: one of subjects with the 

risk factor and the other of subjects without the risk factor. Let RFY and NRFY be two continuous 

responses from the risk and non-risk group, respectively. In ROC analysis, the area under the 

ROC curve (AUC) has a direct relationship with  RF NRFP Y Y .  If there is no risk effect i.e. 

when the distribution of RFY is equal to the distribution of NRFY , then the AUC would be 0.50, that 

is   0.5RF NRFP Y Y  . This probability moves toward 1 as the risk group shows a higher 

response.  

2.4 Methods for estimating AUC 

2.4.1 Correspondence of AUC with Mann-Whitney U 

Let
iRFY , ( 1,..., )i n  and

jNRFY , ( 1,..., )j m  represent two continuous responses from random 

variables RFY and NRFY representing n subjects in the risk group and m subjects in the non-risk 

group, respectively. The Mann-Whitney U statistic is defined by:  
1 1

 
i j

m n

RF NRF

i j

U I Y Y mn
 

 

where  
i jRF NRFI Y Y is an indicator function of the number of concordant pairs in which 

  1
i jRF NRFI Y Y     

i jRF NRFif Y Y  , and 0 otherwise.  

The detail of the proof of the equivalence between the Mann-Whitney statistic U and 

AUC is shown in (Pepe, 2003). However, a brief summary of this correspondence is based on the 

observation that  RF NRFAUC P Y Y  . This is evident from the ROC curve that plots  



15 
 

 
 

   

1 1

  
m n

RF NRF

j i

I Y c Y c
versus

n m 

 
   i.e. the estimation of the      RF NRFP Y c versus P Y c 

where c represents some threshold such that a participant is classified as having the risk factor 

when their response is greater than c. 

Sometimes, the responses RFY and NRFY are related to baselines covariates. Hence, in order 

to accurately compare the two outcomes, adjustment for these covariates should be made. 

 

2.4.2 Correspondence of AUC with placement values 

Delong et al. introduces the idea of placement values (DeLong, DeLong, & Clarke-Pearson, 

1988). The goal of the placement values is to use the distribution of the responses in the non-risk 

population as the reference (or control) distribution for standardizing the responses in the risk 

population. For instance, suppose 
iRFY  and

jNRFY denote responses for a sample of n  subjects in 

the risk group and m subjects in the non-risk group, respectively.  According to the Delong 

Method, for a response 
iRFY  for a subject i  in the risk group, its “placement value”, called 

 
ii RFV Y , is the fraction or percentage of the responses 

jNRFY  in the non-risk group that it exceeds. 

Hence, its placement value formula is given by:  

     
1

1
,         1,2,...,

i i j

m

i RF RF NRF

j

V Y Y Y i n
m




   

where  ,
i jRF NRFY Y is an indicator variable indicating the ordering of the responses such that 

 , 1
i jRF NRFY Y  if 

i jRF NRFY Y , 0 if 
i jRF NRFY Y , and 0.5 if 

i jRF NRFY Y .  
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Similarly, if the distribution of the responses in the risk population is set as the reference 

distribution, the placement value,  
jj NRFV Y , for a subject j in the non-risk group is given by: 

     
1

1
,         1, 2,...,

j i j

n

j NRF RF NRF

i

V Y Y Y j m
n




   

Where  , 1
i jRF NRFY Y  if 

j iNRF RFY Y , 0 if 
j iNRF RFY Y , and 0.5 if 

i jRF NRFY Y .   

The placement value concept is a familiar way of standardizing the outcome relative to 

the reference population distribution. For example, if a child’s weight corresponds to the 75th 

percentile in a healthy population then its equivalent placement value is 25% (Pepe, 2003).  

      Pepe et al. have also extended the Delong Method to show that the set of  placement values 

    ,
i ji RF j NRFV Y V Y  can be used to plot the ROC curve (Pepe & Cai, 2004; Pepe & Longton, 

2005). The area under the ROC curve (AUC) is obtained by averaging the placement values: 

       
i ji RF j NRFAUC mean of V Y mean of V Y  .     

 

2.5 AUC controlling for covariates 

In the literature, there exist some works describing how to accommodate for covariates 

for AUC. Recall in the context of this research, we set  RF NRFAUC P Y Y  where 

  RF NRFY and Y are continuous responses from a risk-group and a non-risk group, respectively.  

In context for the reliability of the stress-strength system, early work introduced by 

Reiser et al. has examined statistical inference for  1 2P Y Y , where 1Y and 2Y are independent 

normal variates with unknown means and variances. In their model, Reiser and Guttman 

considered 1Y  as the strength and 2Y as the stress where the stress is applied to the strength of a 
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component. As such,  1 2P Y Y  measures the reliability (Reiser & Guttman, 1986). In the same  

context of stress-strength models, Guttman et al. (1988) estimated  1 2P Y Y adjusting for 

covariates through linear regression models with the following assumptions: 1Y  and 2Y are 

normally distributed, 1Y  and 2Y depend (linearly) on the covariates to adjust for, and there exists 

an equal variance between strength ( 1Y ) and stress ( 2Y ) (Guttman, Johnson, Bhattacharyya, & 

Reiser, 1988).  

In 2003, Faraggi extended Guttman et al.’s method to examine covariate effects on AUC, 

assuming a parametric distribution (Faraggi, 2003). His method is based on using regression 

modelling to model the covariates effects on the outcomes to obtain AUC depend on covariates.  

Other work to accommodate for covariates for AUC was based on nonparametric and 

semiparametric theories developed by Margaret Sullivan Pepe. For continuous diagnostic tests, 

Pepe proposed three methods based on regression analysis techniques to control for possible 

effects of covariates on ROC curves (Pepe, 1998).. Her second approach which is relevant to 

estimating AUC while adjusting for covariates consisted of estimating AUC nonparametrically 

using the Wilcoxon statistic. In this approach, the AUC for each covariate with level k was 

estimated by ˆ
k . Then, the expected value of ˆ

k was modelled as a linear function of the 

covariates X , which, at level k, are denoted by kX  such that   0 1
ˆ k

kE b b X   . This method 

may be computationally involved and complex. 

Brumback et al. developed a more general approach to accommodate for covariates for 

the non-parametric treatment effect,  RF NRFP Y Y . Their method mainly consists of adjusting 

for a discrete covariate X . Their technique can be described as follows: 
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 1) Each level of the discrete covariate X is considered as a stratum s  such as 1,..., ,s S  

where S represents the total number of strata; 

 2) Within each stratum s , they compute all of the 0 or 1 indicator data such that  

  1  
i j i jRF NRF RF NRFI Y Y if Y Y    , and 0 otherwise;  

3) The adjusted AUC is the sum of all the indicator function of the the number of 

concordant pairs, i.e.  
i jRF NRFI Y Y within each strata divided by the sum of the product of the 

number of subjects in the risk factor group and non-risk factor group in stratum s . Hence, the 

adjusted estimator is given by  
1 1 1

/

s s

i j

S n m
adj

RF NRF

s i j

AUC I Y Y N
  

   where 
1

,
S

s s

s

N n m


 and 
sn

and 
sm are the number of subjects in the risk factor and non-risk factor group in stratum s, 

respectively (Brumback et al., 2006). The caveat of this method is that it only accomodates a 

single discrete covariate.  

Janes et al. proposed a covariate-adjusted measure of classification accuracy called the 

covariate-adjusted ROC curve, or AROC for accomodating for covariates in ROC analysis. The 

AROC is a weighted average of covariate-specific ROC curves. The deriving summary indice is 

the area under the covariate-adjusted ROC curve, AAUC which is interpreted as the probability 

that, for a random case and control marker observation with the same covariate value, the case 

observation is higher than the control. Their AAUC can be estimated empirically or a parametric 

distribution can also be assumed (Janes, Longton, & Pepe, 2009) .  

In this research, we applied Janes et al.’s approach in the context of epidemiologic 

research to compare two risk groups while controlling for confounding and where the risk effect 
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is quantified by the probability that a randomly selected participant in the risk group has a larger 

response than a randomly selected participant in the non-risk group,  RF NRFP Y Y .  

Janes et al.’s approach in estimating the AUC controlling for confounding is based on the 

concept of placement values (PV). For instance, let RFY and NRFY be two continuous normal 

responses arising from a risk factor population and a non-risk factor population, respectively. 

The indicator variable T denotes the populations such that 1T   if the subject has the risk factor 

and 0T  if the subject is without the risk factor. Let Z denotes a vector of covariates for each 

subject. Let us consider the population where T = 0, as the reference or control group and use the 

subscript NRF  (Non-Risk Factor) for index-related quantities. According to Jane et al.’s 

method, the covariate adjusted AUC is computed following two major steps. The first consists of 

estimating the cumulative distribution (CDF) for the response NRFY  in the control group as a 

function of Z  (i.e. the vector of covariates of interest requiring adjustment). This is done by 

specifying a linear model 
0NRF

Y    
1

Zβ  in which the error term is normally distributed and 

the covariates act linearly on the distribution of NRFY . Then for each subject i  in the risk factor 

group, we compute the placement values. The placement value is the standard normal CDF of

, hence   , 0
/RF Z RF

PV Y     
1

Z β  where 0 1, ,  and     are the 

regression coefficients estimates and the standard deviation of the linear model of control 

observations, respectively. The second major step is to estimate the adjusted AUC which is the 

mean of the estimated placement values: ,

1

/
RF

RF Z

n

RF

i

AUC PV n


 where RFn  is the number of case 

observations. The algorithm for estimating the adjusted AUC under a parametric assumption is 

summarized in the following table: 

 0
/

RF
Y   

1
Z β
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Step Procedure Description Model Assumption 

1 

Estimate the cumulative 

distribution of Y in the control 

group as a function of Z :  
0NRF

Y    
1

Zβ   2
0,N   

2 

Calculate the placement values for 

each subject in the risk factor 

group. 

  , 0
/RF Z RF

PV Y     
1

Z β

 

0 1   , and   are the regression 

coefficients estimate, and the 

standard deviation, respectively of 

the control observations.  is the 

Standard normal CDF. 

3 

 

Estimate AUC by computing the 

mean of the estimated placement 

values. 

,

1

/
RF

RF Z

n

RF

i

AUC PV n


  RFn is the number of case 

observations. 

 

The standard errors for the estimated AUC are obtained by bootstrapping the data. The 

data is resampled separately within risk and non-risk strata. The algorithm for computing the 

adjusted covariate AUC has been incorporated into STATA under the comproc command 

developed by Janes et al. We developed a similar algorithm in SAS called the %aAUC macro to 

estimate the adjusted AUC-See Appendix.  

 

2.6 Model Misspecification 

Several parametric, semiparametric and nonparametric methods have been proposed in 

estimating AUC adjusting for covariates (Brumback et al., 2006; Faraggi, 2003; Janes et al., 

2009; Pepe, 1998). However, little is known about the impact of model misspecification when 

estimating the AUC that accommodates for covariates. Walsh (1997) investigates the robustness 

of the binormal assumption by specifically investigating bias associated with the estimates of 

AUC if the binormal assumption was violated (Walsh, 1997). In the context of stress-strength 

model, Greco and Ventura in a recent work recognized that model assumptions can badly affect 
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the estimated AUC, and propose a robust inferential procedure to address this issue (Greco & 

Ventura, 2011). However, none of these methods mention model misspecification in the 

presence of covariates.  

In 1988, Lagakos investigated the effects of misspecification in linear models for measured 

response variables. He examined the particular case of mismodelling or discretizing a continuous 

variable (Lagakos, 1988)  . Furthermore, in 1990, Begg and Lagakos have considered the 

consequences of model misspecification when the model contains misspecified forms for both 

exposure and covariates (Begg & Lagakos, 1990). They found that omitting a needed variable 

lead to a seriously biased estimates of treatment effect. 

Failing to correctly model the covariates could lead to biased estimates of treatment 

difference in outcome.  To our knowledge, no research has been carried out to investigate the 

effect of covariates misspecification in estimating the adjusted AUC. In this research, we use the 

term “misspecification” to investigate a wide range of modelling errors and its impact on the 

estimated AUC. These modelling errors include omitting covariates, dichotomizing continuous 

variables, modelling quadratic covariates as linear, and excluding interactions terms from the 

model. The performance of the estimated AUC is examined based on bias, relative bias, mean 

squared error and coverage of 95 per cent confidence intervals. 
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CHAPTER 3: PROPENSITY SCORE 

 

In this chapter, we examine the performance of propensity score methods to control for 

confounding when AUC is used to quantify association. We estimated several adjusted AUC using 

different propensity score-based methods as presented in Section 2.1.3. As a secondary objective, 

we sought to determine the optimal choice of variables for the propensity score model. This choice 

includes covariates related to risk group, covariates related to the outcome, covariates related to 

both risk group and outcome, and all measured variables. A simulation study was conducted to 

evaluate and compare the propensity score methods and models.  

 

 Design of Simulation Study 

Data were simulated using a framework similar to those used by Austin et al. to examine 

the performance of different propensity score methods and models for estimating treatment effects 

(Austin, 2008; P. C. Austin et al., 2007). Data are generated according to the following steps: 

Step 1: Eighteen baseline covariates were randomly generated such that nine of them 

were dichotomous and the other nine were continuous.  Each of the 18 variables varied in their 

association with the risk factor group and the outcome as described in the following table: 
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Table 3.1  Association between baseline covariates with risk group and outcome. 

 
Strongly associated 

with risk group 

Moderately associated 

with risk group 

Not associated with 

risk group 

Strongly 

associated with 

outcome 
1 1,b c  2 2,b c  3 3,b c  

Moderately 

associated with 

outcome 
4 4,b c  5 5,b c  6 6,b c  

Not associated 

with outcome 7 7,b c  8 8,b c  9 9,b c  

 

The 12 variables 1 1 2 2 4 4 5 5 7 7 8 8, , , , , , , , , ,and ,b c b c b c b c b c b c  are related to the risk group, while 

the 12 variables 1 1 2 2 3 3 4 4 5 5 6 6, , , , , , , , , ,and ,b c b c b c b c b c b c are related to the outcome. The 8 variables 

1 1 2 2 4 4 5 5, , , , , ,  and ,b c b c b c b c are related to both risk group the outcome and are thus confounders. 

The two variables 9 9,b c are neither associated with the risk group nor with the outcome. 

The association between a given variable and risk group was measured by the odds ratio. 

A moderate or a strong association was assumed if the presence of the given variable in the logit 

model increases the odds of being in the risk group by a factor of 1.5 or 2, respectively (Austin, 

2009b; Monson, 1990). A moderate or a strong association was defined as the odds of having the 

risk factor is increased by a factor of 1.5 or 2 for binary covariates, respectively (Austin, 2009b) 

and 1.5 and 1.25 for continuous covariates (Austin, 2010).  

Similarly, the association between outcome and a binary variable is measured with the 

point-biserial correlation; the association between outcome and a continuous variable is 

measured with the Pearson correlation. The point biserial correlation is a measure of association 

between a continuous variable and a binary variable. It is a special case of the Pearson 

correlation. The strength of the association between a given variable and an outcome is measured 
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with a correlation of 0.5 and 0.3 to reflect a strong and a moderate association, respectively. 

Cohen in 1988 , proposed these guidelines for interpreting the magnitude of correlation 

coefficients (Cohen, 1988). Such correlations are not unusual in epidemiologic research. For 

example, in a study of association between cardiovascular death rates and municipal drinking 

water, Schroeder (1966) reported a correlation between death rates from arteriosclerotic heart 

disease and hardness of municipal waters of -0.50 (P<0.0005) in males and of -0.36 (p<0.005) in 

females (Schroeder, 1966). Another study from the child and adolescent trial for cardiovascular 

health (Osganian et al., 1999) also showed correlations of magnitude similar to those considered 

here. For example, the study has found a strong correlation between folic acid and vitamin B6 (r 

=0.48; P =0.001) and “somewhat stronger” correlation between serum homocysteine and folic 

acid (r= -0.36; P=0.001). 

Hence, for this simulation study, we considered correlations values of 0.5, 0.3 and 0 to 

depict strong, moderate and no association, respectively between a given variable and the 

outcome; and odd ratios values of 2, 1.5, and 1 for a strong, moderate, and no association 

between a covariate and the risk factor group. 

To determine the optimal choice of variables for the propensity score (PS) model, four 

propensity score models were specified in the Monte Carlo simulation experiments: 

PS-Model 1: This model includes all 12 variables associated with the risk factor group: 

1 1 2 2 4 4 5 5 7 7 8 8, , , , , , , , , ,and ,b c b c b c b c b c b c .    

PS-Model 2: This model includes all 12 variables associated with the outcome: 

1 1 2 2 3 3 4 4 5 5 6 6, , , , , , , , , ,and ,b c b c b c b c b c b c .  
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PS-Model 3: This model includes all 8 variables associated with both the risk factor group and 

the outcome: 1 1 2 2 4 4 5 5, , , , , ,and ,b c b c b c b c .  

PS-Model 4: This model includes all 18 generated variables: 1 9 1 9andb b c c  .  

Step 2: Next, we generated a risk factor status T for each subject. To do so, data were 

simulated such that the logit of the probability of having the risk factor for the ith subject is 

linearly related to the 12 covariates associated with the risk factor group. In other words, the 

subject-specific probability of group assignment was determined assuming that the probability of 

group assignment  groupP  was related to the 12 baseline covariates that are strongly and 

moderately associated with the risk group i.e.  1 2 4 5 7 8 1 2 4 5 7 8, , , , , , , , , , ,b b b b b b c c c c c c through the 

following logit model: 

                0 1 1 2 2 4 4 5 5 7 7 8 8

1 1 2 2 4 4 5 5 7 7 8 8

log
1

                                           

group

group

P
logit b b b b b b

P

c c c c c c

      

     

 
          

     

  (3.1) 

  

Hence, the subject-specific probability of group assignment is obtained by inversing the logit: 

 

 

exp

1 exp
group

logit
P

logit



                (3.2) 

The risk factor status T for each of the N subjects was generated from a Bernoulli distribution 

with a parameter  groupP  i.e.  groupT Bernoulli P . The risk factor status vector is computed by 

comparing the estimated probability of group assignment  groupP  to a random variable U 
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generated from  0,1Uniform . We assign 
1   if 

0   if 

group

group

U P
T

U P


 


.  T =1 if the subject has the risk 

factor and T=0 otherwise. 

Step 3: In this last step of our data generating process, for each of the N subjects, a 

continuous outcome Y conditional on risk factor status T was generated through the following 

linear model:   

* * * * * *

0 1 1 2 2 3 3 4 4 5 5 6 6

* * * * * *

1 1 2 2 3 3 4 4 5 5 6 6                    

Y T b b b b b b

c c c c c c

       

      

       

      
  (3.3) 

Each regression coefficient was estimated assuming the outcome Y and the single covariate X  

(i.e. 1 9 1 9,b b c c  ) were related through a regression equation: 

Y X        (3.4) 

where  is a regression parameter and  represents modelling error such that  2( , )N     The 

covariate X  could be continuous, 2( , )x XX N   , or dichotomous, ( )X Bernoulli p .   The 

following is a derivation of the formula used to estimate the regression coefficients in Equation 

(3.3) 

If X and Y are linearly related, then the Pearson product-moment correlation is estimated by 

 

( , )

( ) ( )

Cov Y X

Var Y Var X
 


                       (3.5)    

The formula for   is known to be related to the regression coefficient as: 



27 
 

 
 

x

y


 


   (3.6) 

From equation (3.6), we derived the regression coefficient  such that 

y

x


 


   (3.7) 

The formula for   can be written in terms of variances of X and ,  

 

     
2 2 2

x

x

  
 




   (3.8) 

where        2 2 2 2 2=y xVar Y Var X Var X Var               

Solving (3.8) for  , each regression coefficient in equation (3.3) is determined by  

 2

1

1-x

 
 

   (3.9) 

where x  and   are the standard deviations of the covariate of interest and the error term, 

respectively. 

 The effect on outcome of risk group compared to non-risk group is quantified by AUC 

statistic through T in Equation (3.3). Hence, the effect size is given by  1

02* AUC  

that is   is a function of the true AUC which is denoted 0AUC . This formula can be derived as 

follows:  
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When outcomes are normally distributed in the risk factor  RF  and non-risk  NRF  

populations i.e.    2 2 2, ,  , ,and ( , )RF RF RF NRF NRF NRFY N Y N N         , then the AUC for 

the binormal ROC curve is:  

21

a
AUC

b

 
  

 

   (3.10) 

where ,   RF NRF NRF

RF RF

a b
  

 


  ,  denotes the standard normal cumulative distribution 

function (Pepe, 2003).   

We assumed 0,   NRF RF NRF       . Hence,   and  1RFa b





  .  

Thus, the true AUC can be expressed as   

0
2

RFAUC






 
   

 

   (3.11) 

Solving Equation (3-11) for RF which we called   for simplicity, the effect size is given by 

 1

0* 2RF AUC       (3.12) 

 

 Simulating Data 

A sample of size N = 500 was considered in this simulation study; for each of the N subjects, 

we randomly generated:  

1) 18 independent baseline covariates such that 9 of them are dichotomous variables from a  
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Bernouilli distribution with parameter 0.5:    1 2 4 5 7 8 9, , , , , , 0.5b b b b b b b Bernouilli and the other 

9 are continuous from a standard normal distribution:    1 2 4 5 7 8 9, , , , , , 0,1c c c c c c c N . Each of 

the 18 covariates varies in their association with the risk group and the outcome as described in 

Table 3.1.  

2) A risk factor status for each of the N subjects by first generating the logit model in 

Equation (3.1):  

1 2 4 5 7 8

1 2 4 5 7

log 1.65 log(2) log(1.5) log(2) log(1.5) log(2) log(1.5)
1

                                     log(1.5) log(1.25) log(1.5) log(1.25) log(1.5) log(1.25

group

group

P
logit b b b b b b

P

c c c c c

 
           

      8)c

 

0  is set to -1.65, so that approximately 50% of subjects would be exposed to the risk factor 

group. This was determined in an initial set of Monte Carlo simulations. As described in section 

3.1, we set  1 4 7, , log(2)    and  1 4 7, , log(1.5)     to depict a strong association between 

the risk group with the binary and continuous covariates, respectively;  2 5 8, , log(1.5)    and 

 2 5 8, , log(1.25)    to depict a moderate association between the risk group with the binary 

and continuous variables, respectively. Next, we generated a risk factor status T according to the 

methods described in Section 3.1 and Equation (3.2).   

3) A continuous outcome conditional on the risk factor status T using Equation (3.3): 

 

1 2 3 4 5 6

1 2 3 4 5 6

4.6 4.6 4.6 2.6 2.6 2.6

     2.3 2.3 2.3 1.3 1.3 1.3  

Y T b b b b b b

c c c c c c





      

      
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where  0,4N . The regression coefficients were determined using Equation (3.9) such that 

the correlation value between  1 2 3 1 2 3, , , , ,b b b c c c  and the outcome would be 0.5 for a strong 

association and the correlation between  4 5 6 4 5 6, , , , ,b b b c c c  and the outcome would be 0.3 for a 

moderate association. We set 0 0  .  is a function of the true AUC as shown in Equation 

(3.12). We considered three different values of 0AUC in the outcomes-generating process: 0.5, 

0.7, and 0.9. These values were set according to the general rule of interpreting AUC suggested 

by Hosmer and Lemeshow (Hosmer & Lemeshow, 2000). An AUC of 0.5 indicates no 

association between outcome and exposure; an AUC of 0.7 indicates an acceptable association; 

and an AUC of 0.9 indicates an excellent association between exposure and outcome. The AUC 

values of 0.5, 0.7, and 0.9 are interpreted as follows: If we randomly select two subjects, one 

with the risk factor and the other without the risk factor, the probability that the subject with the 

risk factor has the condition is 0.5, 0.7, and 0.9 respectively. In other words, there is a 50-50, 70-

30 and 90-10 chance for a subject having the risk factor to develop the condition compared to a 

subject not having the risk factor. 

The data generating process described here was repeated 2500 times. All data generation and 

analyses were completed using SAS version 9.3 and 9.4.  

 

 Estimating the propensity score 

In this research, the propensity score is estimated using a logistic regression model where 

the risk factor status T is regressed on measured baseline covariates. To determine the optimal 

choice of variables for the propensity score model, we consider four categories of variables for 

inclusion in the propensity score model: 1) variables related to risk group; 2) variables related to 
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the outcome; 3) variables related to both risk group and outcome; and 4) all measured variables. 

The logistic model depicting the conditional probability of assignment to a particular risk group 

given a vector of observed covariates iX  for the 
thi  subject is given by: 

   Pr 1|
1

i i i

e
T e x

e
  



i i

i i

x β

x β
X      (3.13) 

Where iT is the binary group assignment and 1iT  if the subject belong to the risk factor group 

and 0iT  if the subject is in the non-risk factor group. 
i
β is the vector of regression parameters. 

 

 Constructing strata and matched sets with the estimated propensity scores 

In general, the estimates of propensity scores are used for sub-classification and in 

matching to control for confounding in observational studies.  

As described in Section 2.1.3, a step-by-step approach described by D’Agostino Jr. 

(1998) and Perkins (2000) was used to create propensity score strata based on the quintiles of the 

estimated propensity scores  (D'Agostino, 1998; Perkins, Tu, Underhill, Zhou, & Murray, 2000).   

Furthermore, matched pairs of risk factor and no- risk factor subjects with similar 

propensity scores were formed. The 1:1 greedy matching technique using calipers of width 0.2 of 

the standard deviation of the logit of the propensity score  was used to form these pairs (P. C. 

Austin et al., 2007; Austin & Mamdani, 2006). The %GMATCH macro in SAS obtained from 

the Mayo Clinic website at http://www.mayo.edu/research/departments-divisions/department-

health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-

macros was used to construct a SAS dataset containing the matched subjects. 

http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
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 Estimation of risk effect 

Risk effects were estimated via the AUC statistic using different propensity score 

analysis methods as described in Chapter 2. We also used different propensity score models in 

estimating AUC to explore how variable selection affects the estimate of the risk effect on the 

outcome. 

 

3.5.1 Unadjusted AUC 

As described in Section 2.4.1 the unadjusted AUC is computed based on the fact that it is 

equivalent to the two-sample Mann-Whitney U statistic (Brumback et al., 2006; Mann & 

Whitney, 1947; Pepe, 2003)  in the form: 

     

 

 

1 1
                     

1,   
 

0,       

i j

i j

i j

m n

RF NRF

i j

RF NRF

RF NRF

I Y Y

U
mn

if Y Y
where I Y Y

otherwise

 






  





     (3.14) 

iRFY , ( 1,..., )i n  and  
jNRFY , ( 1,..., )j m are two continuous responses from random variables 

RFY and NRFY representing populations in the risk group and the non-risk group, respectively.  The 

variance of the unadjusted AUC is calculated based on a formula suggested by  (DeLong et al., 

1988) which is incorporated into SAS via PROC LOGISTIC. 
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3.5.2 AUC based on stratifying on the propensity score (The PS stratified AUC) 

The adjusted AUC based on stratifying on the propensity score was obtained by extending the 

method proposed by Brumback et al. (2006) as described in Section 2.5. Following their 

technique, the adjusted AUC is given by:  

 
1 1 1

/

s s

i j

S n m
adj

RF NRF

s i j

AUC I Y Y N
  

   (3.15) 

where 
1

,
S

s s

s

N n m


 and 
sn and 

sm are the number of subjects in the risk factor and non-risk 

factor group in stratum s, respectively. 

Our proposed method is based on Equation (3.15) where each strata is determined by the 

quintiles of the estimated propensity scores; that is the 20th, 40th, 60th, 80th, and 100th percentile 

of the total sample. It can readily be shown that the proposed adjusted AUC that we refered to as 

the “Adjusted Propensity Score Stratified AUC” is a weighted average of the stratum-specific 

AUCs, given by: 

1
Stratified

S
adj

s S

s

AUC w AUC


    (3.16) 

Where 

1

s s

s S
s s

s

m n
w

m n





, 

sm and 
sn  are are the number of subjects in the risk factor and non-risk 

factor group in stratum s, respectively.  1,2,3,4,5S  correspond to the quintiles of the 

propensity score.  

This can be readily seen as follows.   Suppose RFY and NRFY are two continuous outcome 

measures for m subjects in the risk factor  RF  group and n subjects in the non-risk  NRF
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group. Let X be a discrete covariate corresponding to 5 stratas  where each strata is determined 

by the quintiles of the estimated propensity scores. From Equation (3.14), the unadjusted AUC is 

given by: 

   
1 1

1
                     

m n
unadj

RF NRF RF NRF

i j

AUC P Y Y I Y Y
mn  

     

Hence, the stratum-specific AUC can be written as: 

 
1 1

1
s sm n

S RF NRFs s
i j

AUC I Y Y
m n  

      (3.17) 

where ( 1,2,3,4,5)s  and 
sm and 

sn represent the number of subjects in the risk factor and non-

risk factor group in stratum s, respectively.  

From Equation (3.15), the adjusted AUC can be written as: 

1

1

*
Stratified

s sS
adj

S S
s ss

s

m n
AUC AUC

m n






    (3.18) 

We observe that the adjusted AUC in Equation (3.18) is a weighted average of the stratum-

specific SAUC . Thus, Equation (3.18) may be rewritten to obtain the Equation in (3.16): 

 

1
Stratified

S
adj

s S

s

AUC w AUC


  where 

1

s s

s S
s s

s

m n
w

m n





 

The variance of  the adjusted propensity score stratified AUC is given by: 

   
2

1
Stratified

S
adj

s S

s

Var AUC w Var AUC


  
                              (3.19) 

The variance equation is derived as follows.  
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 

   

1

1

2

1

                          

                          

Stratified

S
adj

s S

s

S

s S

s

S

s S

s

VAR AUC VAR w AUC

VAR w AUC

w VAR AUC







 
     

 











 

The AUCs standard errors are also obtained using Delong’s approach (1988) of estimating the 

variance of the Mann-Whitney statistic which was incorporated in SAS PROC LOGISTIC 

(DeLong et al., 1988).  

 

3.5.3 AUC based on matching on the propensity score 

We estimated the adjusted risk effect via AUC in the propensity score matched sample based on 

Janes et al.’s method (2009) for accommodating covariates in ROC analysis as described in 

Section 2.5. The estimated risk group effect is estimated in the matched sample as the mean of 

the placement values (PVs) for each subject with propensity score PS  in the risk group:   

,

1

/
RF

RF PS

n
adj

matched RF

i

PVAUC n


     (3.20) 

where RFn is the number of subjects having the risk factor in the matched sample. The PVs of the 

response RFY for each subject with estimated propensity score PS  in the risk group is given by: 

  0 1, /
RFRF PS Y PSPV       . 0 1   , and   are the estimates of regression coefficients and 

the root mean squared error, respectively, from the observations in the  non-risk group. These 

estimates were obtained through a regression model of the response 
NRF

Y  in the non-risk group as 

a function of the propensity score PS . The model is given by
0 1NRF

Y PS     , where 
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 2
0,N  . The variance estimates of the adjusted AUC were obtained via bootstrapping using 

1000 bootstrap samples of the original observations.  

   

3.5.4 AUC based on covariate adjustment using the propensity score 

The adjusted risk group effect is estimated under the covariate adjustment method by regressing 

the outcome variable on the estimated propensity score and the variable representing risk group 

status T using the regression method developed by Janes et al (2009) described in Section 2.4. 

The standard errors for the estimated AUC were obtained by bootstrapping the data. 

 

3.5.5 AUC based on simple regression adjustment not using the propensity score 

For comparison purposes we estimated AUC based on ROC regression method (Janes et al., 

2009). This method consists in directly modelling covariates effects on the response, within the 

general context of regression. Hence, the outcome is modelled as a function of an indicator 

variable denoting the risk group status and a set of independent covariates. We refer to this 

method as the “direct AUC regression adjustment” method. We use the same four groupings of 

covariates for inclusion in the regression model as were used in the propensity models: 1) 

covariates related to risk group; 2) covariates related to the outcome; 3) covariates related to both 

risk group and outcome; and 4) all measured covariates. The effect of the covariates on the 

outcome is directly estimated by the AUC statistic using the concept of placement values as 

described in Section 2.4.2.  
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 Evaluation criteria for estimated AUC 

As evaluation criteria for the performance of the estimated AUC, we considered bias, 

relative bias, variance estimation, mean squared error (MSE), and coverage of 95% confidence 

interval across the 2,500 simulated data sets. In this section we review some of those criteria. 

 

3.6.1 Bias and relative bias 

An estimation of bias of the estimated adjusted AUC for a given propensity score model is the 

mean estimated adjusted AUC of the 2,500 samples minus the true AUC that is used in the data 

generating process. The relative bias provides a measure of the magnitude of the bias; it is 

defined as the ratio of the estimator bias and its true value.   

trueBias AUC AUC      (3.21) 

 100* true

true

AUC AUC
Relative Bias

AUC

 
  

 
  (3.22) 

3.6.2 Mean squared error and root mean squared error 

The mean squared error (MSE) of the estimator AUC is the average squared difference between 

the estimator AUC and the true value of the risk effect trueAUC . It incorporates both bias and 

variance.  The RMSE is the square root of the MSE. The more accurate estimator would lead to a 

smaller MSE and RMSE. 

   

 
   

2,500
2

21

2,500

true

i

AUC AUC

MSE Var AUC Bias



  


  (3.23) 
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3.6.3 Coverage probability of 95% confidence interval 

For each propensity score method and model, a coverage probability of the 95% CI is reported. 

The coverage probability is the percentage of estimated 95% confidence intervals that contain 

the true AUC. The intervals estimators were computed using the normal approximation interval 

i.e. 0.975, 1 0.975, 195% s/ , s/n nCI AUC t n AUC t n 
   
 

where the  1 / 2 quantile of the t 

distribution is 
1 /2, 1nt  

with 1n degrees of freedom.  Coverage was estimated by counting the 

proportion of times out of 2500 that the estimated confidence interval included the true value.  

We determined whether the coverage was significantly different from 0.95 by approximating the 

distribution of the binomial probability p using the normal distribution with standard deviation

1
(1 )p p

n
 . Hence, the normal approximation interval is given by

1
ˆ ˆ ˆ(1 )p z p p

n
  . Therefore, 

based on the 2,500 simulated data, any coverage outside of  94.15%,  95.85%  is statistically 

different from 95%.  

  

 Results of the simulation study 

Results of the simulation study are given in Tables 3.2 to 3.8 and in Figures 3.1 to 3.3. 

The mean estimated risk effect across the 2,500 simulated data sets for each propensity sore 

methods and each model we considered is given in Table 3.2. The crude estimate is biased 

positively when the true risk group effect are 0.5 and 0.7 but is biased negatively when the true 

AUC is 0.9.   



39 
 

 
 

 When stratification on the quintiles of the propensity score is used, we observe three 

things: 1) the amount of bias is similar within each effect group regardless of the propensity 

score model used; 2) the risk effect is overestimated when there is no effect (True AUC = 0.5) 

and underestimated when the true effects are 0.7 and 0.9; 3) the risk estimate when truth is 0.7 is 

associated with the least bias. 

When matching on the propensity score is used, we noticed that when there is no effect, 

the bias is almost null, but it is not the case when the true was 07 or 0.9. Also, the choice of 

models did not matter, the risk estimates were similar across all models for each true AUC. 

When covariate adjustment on the propensity score is used, the findings are similar to 

those previous ones. When AUC is 0.5, the results are similar to those found with matching, 

including the RMSE. However, PS model 2 i.e. model including variables associated with 

outcome seems to have the least bias. These findings are not consistent across the true effects 

and the amount of bias is still high. 

From these results, it appears that stratifying, matching and covariate adjustment on the 

propensity score resulted in biased estimation of AUC. When true effects were 0.7 and 0.9, the 

estimated risks from all methods and models were negatively biased with relative biased ranging 

from -15% to -7% as seen in Table 3.4. Prior research demonstrated that conditioning on the 

propensity score resulted in biased estimation of odds ratio and hazard ratio (P. C. Austin et al., 

2007). So our results are not totally unexpected. 

 Finally, we investigated risks effects estimated from simple regression adjustment for 

comparative purposes. The mean estimated risk effects perform better than those estimated from 

the propensity score models. The second regression model including all covariates associated 

with outcomes was found to be the best model in estimating the true effect. Similarly, the fourth 
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model including all measured covariates resulted in unbiased estimates of the risk effect except 

when true was 0.5.  However, the first and third models which do not include all the variables 

related to outcome resulted in biased estimates of the true AUC. Also, these models increased 

MSE especially when true effects were 0.7 and 0.9.  

In conclusion, if an investigator is interested in estimating AUC while controlling for 

covariates, we recommend not to use the propensity score methods to adjust covariates; instead 

the conventional AUC regression adjustment is the method to use. Furthermore, AUC regression 

modeling adjusting for covariates related to the outcome and the model adjusting for all variables 

lead to unbiased estimation of AUC. 
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     Table 3.2  AUC Estimates from different methods and different models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 0.6293 0.7302 0.8468 

PS Stratify -M1  0.5502 0.6374 0.7900 

PS Stratify -M2 0.5488 0.6493 0.8078 

PS Stratify -M3 0.5511 0.6511 0.8101 

PS Stratify -M4  0.5495 0.6370 0.7890 

PS Matching -M1  0.4967 0.6137 0.7638 

PS Matching -M2 0.5042 0.6314 0.7897 

PS Matching -M3 0.4901 0.6227 0.7882 

PS Matching -M4  0.4986 0.6160 0.7663 

PS Covariate Adjust - M1 0.5067 0.6374 0.7900 

PS Covariate Adjust - M2 0.4970 0.6493 0.8078 

PS Covariate Adjust - M3 0.4823 0.6511 0.8101 

PS Covariate Adjust - M4 0.5117 0.6370 0.7890 

Reg. Adjustment - M1 0.5070 0.6530 0.8257 

Reg. Adjustment - M2 0.5013 0.7018 0.9014 

Reg. Adjustment - M3 0.4862 0.6341 0.8128 

Reg. Adjustment - M4 0.5166 0.7139 0.9065 
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Figure 3.1  AUC Estimates from different methods and different models 
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Table 3.3  Bias in estimating AUC using Different PS models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 0.1293 0.0302 0.0532 

PS Stratify -M1  0.0502 -0.0626 -0.1100 

PS Stratify -M2 0.0488 -0.0507 -0.0922 

PS Stratify -M3 0.0511 -0.0489 -0.0899 

PS Stratify -M4  0.0495 -0.0630 -0.1110 

PS Matching -M1  -0.0033 -0.0863 -0.1362 

PS Matching -M2 0.0042 -0.0686 -0.1103 

PS Matching -M3 -0.0099 -0.0773 -0.1119 

PS Matching -M4  -0.0014 -0.0840 -0.1337 

PS Covariate Adjust - M1 0.0067 -0.0745 -0.1243 

PS Covariate Adjust - M2 -0.0030 -0.0751 -0.1150 

PS Covariate Adjust - M3 -0.0177 -0.0854 -0.1187 

PS Covariate Adjust - M4 0.0117 -0.0709 -0.1227 

Reg. Adjustment - M1 0.0070 -0.0470 -0.0743 

Reg. Adjustment - M2 0.0013 0.0018 0.0014 

Reg. Adjustment - M3 -0.0138 -0.0659 -0.0872 

Reg. Adjustment - M4 0.0166 0.0139 0.0065 
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Table 3.4  Relative Bias in estimating AUC using different methods and different models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 25.8527 4.3076 5.9070 

PS Stratify -M1  10.0387 -8.9477 -12.2259 

PS Stratify -M2 9.7690 -7.2440 -10.2455 

PS Stratify -M3 10.2277 -6.9815 -9.9870 

PS Stratify -M4  9.9047 -8.9956 -12.3315 

PS Matching -M1  -0.6688 -12.3302 -15.1365 

PS Matching -M2 0.8322 -9.7960 -12.2543 

PS Matching -M3 -1.9724 -11.0410 -12.4274 

PS Matching -M4  -0.2886 -11.9942 -14.8570 

PS Covariate Adjust - M1 1.3354 -10.6492 -13.8160 

PS Covariate Adjust - M2 -0.6033 -10.7243 -12.7760 

PS Covariate Adjust - M3 -3.5442 -12.1923 -13.1864 

PS Covariate Adjust - M4 2.3374 -10.1260 -13.6343 

Reg. Adjustment - M1 1.3956 -6.7087 -8.2597 

Reg. Adjustment - M2 0.2647 0.2619 0.1545 

Reg. Adjustment - M3 -2.7593 -9.4143 -9.6898 

Reg. Adjustment - M4 3.3258 1.9813 0.7268 
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Figure 3.2  Relative Bias in estimating AUC using different methods and different models 
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Table 3.5  Standard error in estimating AUC using Different PS models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 0.0248 0.0222 0.0170 

PS Stratify -M1  0.0641 0.0609 0.0490 

PS Stratify -M2 0.0614 0.0580 0.0452 

PS Stratify -M3 0.0610 0.0575 0.0447 

PS Stratify -M4  0.0648 0.0616 0.0497 

PS Matching -M1  0.0216 0.0209 0.0174 

PS Matching -M2 0.0209 0.0199 0.0159 

PS Matching -M3 0.0213 0.0205 0.0164 

PS Matching -M4  0.0221 0.0213 0.0177 

PS Covariate Adjust - M1 0.0174 0.0167 0.0137 

PS Covariate Adjust - M2 0.0173 0.0166 0.0133 

PS Covariate Adjust - M3 0.0177 0.0171 0.0138 

PS Covariate Adjust - M4 0.0173 0.0166 0.0136 

Reg. Adjustment - M1 0.0186 0.0174 0.0130 

Reg. Adjustment - M2 0.0186 0.0166 0.0096 

Reg. Adjustment - M3 0.0184 0.0176 0.0133 

Reg. Adjustment - M4 0.0187 0.0165 0.0094 
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    Table 3.6  Root Mean Squared Error in estimating AUC using different methods and models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 0.1316 0.0375 0.0558 

PS Stratify -M1  0.0814 0.0874 0.1205 

PS Stratify -M2 0.0785 0.0770 0.1027 

PS Stratify -M3 0.0796 0.0755 0.1004 

PS Stratify -M4  0.0816 0.0881 0.1216 

PS Matching -M1  0.0219 0.0888 0.1373 

PS Matching -M2 0.0213 0.0714 0.1114 

PS Matching -M3 0.0235 0.0800 0.1130 

PS Matching -M4  0.0222 0.0866 0.1349 

PS Covariate Adjust - M1 0.0186 0.0764 0.1251 

PS Covariate Adjust - M2 0.0176 0.0769 0.1158 

PS Covariate Adjust - M3 0.0251 0.0871 0.1195 

PS Covariate Adjust - M4 0.0209 0.0728 0.1235 

Reg. Adjustment - M1 0.0198 0.0501 0.0755 

Reg. Adjustment - M2 0.0186 0.0167 0.0097 

Reg. Adjustment - M3 0.0230 0.0682 0.0882 

Reg. Adjustment - M4 0.0251 0.0216 0.0114 
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Figure 3.3  Root Mean Squared Error in estimating AUC using different methods and models 
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Table 3.7  Coverage of 95% confidence intervals for AUCs using different PS models 

  True AUC 

Models/Methods 0.5 0.7 0.9 

Unadjusted 0.00 71.04 9.64 

PS Stratify -M1  99.96 99.60 20.92 

PS Stratify -M2 99.80 99.96 41.04 

PS Stratify -M3 99.76 99.64 45.40 

PS Stratify -M4  99.92 99.96 18.84 

PS Matching -M1  91.76 2.08 0.00 

PS Matching -M2 83.56 13.60 0.00 

PS Matching -M3 78.96 11.28 0.00 

PS Matching -M4  95.08 2.04 0.00 

PS Covariate Adjust - M1 86.24 2.36 0.00 

PS Covariate Adjust - M2 75.04 6.68 0.00 

PS Covariate Adjust - M3 64.88 4.80 0.00 

PS Covariate Adjust - M4 83.76 3.36 0.00 

Reg. Adjustment - M1 93.36 22.32 0.00 

Reg. Adjustment - M2 95.28 94.92 94.20 

Reg. Adjustment - M3 87.96 3.32 0.00 

Reg. Adjustment - M4 85.60 85.76 86.76 
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CHAPTER 4: MODEL MISSPECIFICATION 

 

In Chapter 3, we have shown that propensity score methods (stratification, matching and 

covariate adjustment) resulted in biased estimation of the true AUC. We have also shown that the 

direct AUC regression adjustment on the covariates lead to unbiased estimation of AUC under 

certain circumstances. This is true especially when the covariates related to the outcome or all 

measured covariates are included in the model.  

The AUC regression adjustment is based on modelling the ROC curve as a function of 

placement values to estimate the adjusted AUC, as described in Section 2.5. However, in 

observational studies, little is known about the impact of misspecifying the model adjusting for 

the AUC.   Therefore, in this part of the dissertation research, we aim to assess model 

misspecification in AUC regression adjustment. In other words, we sought to determine the 

impact of incorrectly modelling the covariate effects on the risk effect estimate. We conducted a 

simulation study to evaluate model misspecification in AUC regression adjustment. The 

simulation study is designed to specifically illustrate the following aims: 1) The impact of 

missing influential variables; 2) The impact of modelling continuous variables as dichotomous; 

3) The impact of failing to include interactions; 4) and the impact of non-linearity.  

 

4.1 Design of the simulation study 

The data generating process is similar to those used in Chapter 3, Section 3.1. The 

following have been simulated:   

1) Three independent continuous covariates 1 2 3, ,x x x . Each of the three covariate varies in their 

association with the outcome and the risk factor group as described in the following table: 
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Table 4.1  Association between baseline covariates with risk group and outcome 

 
Strongly associated 

with risk group 

Moderately associated 

with risk group 

Weakly associated 

with risk group 

Strongly associated 

with outcome 1x    

Moderately 

associated with 

outcome 

 2x   

Weakly associated 

with outcome 
  3x  

 

Hence, 1x is strongly associated with the risk group and the outcome; 2x is moderately 

associated with the risk group and the outcome; and 3x  is weakly associated with the risk group 

and the outcome.  For aims 1- 3 of this simulation, the strength of the association between a given 

variable and the outcome is measured with the Pearson correlation. We consider correlations 

values of 0.7, 0.4 and 0.1 to depict strong, moderate and weak association, respectively (Pett, 

1997). Similarly, the association between the risk factor group and the covariates is measured by 

the odds ratio. A strong, moderate or a weak association is defined as the odds of having the risk 

factor is increased by a factor of 4.5, 2.5, and 1.5, respectively (Rosenthal, 1996).  

 

Table 4.2  A guide to strength of association  

Association Correlation 

Strong .7 - .89 

Moderate .5 - .69 

Weak 0 - .28 

  Source: Adapted from Pett, 1997 
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2) A risk factor status Ti was generated such that the logit of the probability of having the 

risk factor for the ith subject is linearly related to  1 2 3, ,x x x . The logit model is given by:  

0 1 1 2 2 3 3logit x x x           (4.1) 

where    1 2 3log 4.5 , log 2.5 , log(1.5)     . The value of 0 was set according to the 

specific aim under investigation. Hence, for each subject, a treatment status denoted by T was 

generated from a Bernoulli distribution with parameter  treatP where exp
1

 
  

 
treat

logit
P

logit
, i.e. 

 treatT Bernoulli P . T =1 if the subject has the risk factor and T=0 otherwise. The treatment 

status vector is computed by comparing the estimated probability of assignment to a random 

variable U generated from  0,1Uniform . We assigned 1 if treatT U P   and 0 if treatT U P  .    

3) A continuous response Yi was randomly generated as an outcome conditional on risk factor 

status (Ti) and a set of independent covariates. The outcome is modelled specific to the aim under 

investigation. More details are given in section below.   

 

4.2 Data Simulation 

A sample of size N = 500 was considered for this simulation with 1,500 replications. The 

data generating process was done according to the methods in section 4.1 to specifically illustrate 

the following four aims:  

4.2.1  Aim1: The impact of missing influential variables 

To examine the impact of missing influential variables, for each of the N subjects, we generated 

three independent covariates  1 2 3, , (0,1)x x x Normal according to Table 4-1. We generated a 
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treatment status for each subject based on the logit model in Equation (4.1). 0 was set to 0 so 

that approximately 50% of subjects would be exposed to the risk factor group. This was 

determined in an initial set of Monte Carlo simulations. The true outcome model is generated 

using the following linear model: 

0 1 1 2 2 3 3iY T x x x             (4.2) 

where  0,4N . The regression coefficients were determined according to Equation (3.9). 

Thus, 1 2 33.92,  1.75,  0.4     . We set 0 0  . The effect on outcome of risk group 

compared to non-risk group is quantified by the AUC statistic through  in Equation 4-2 using 

the relationship  1

02* AUC    as described in Equation (3.12). We considered three 

different values of 0AUC  in the outcomes-generating process: 0.5, 0.7, and 0.9. These values 

were set according to the general rule of interpreting AUC suggested by Hosmer and Lemeshow 

(2000) to indicate no discrimination, an acceptable discrimination, and an excellent 

discrimination, respectively (Hosmer & Lemeshow, 2000).   

Under Aim1, we specifically sought to determine what would happen if the model is 

missing:  

a) A covariate strongly associated with the outcome. So, the investigative model is given 

by: 0 1 1 2 2 3 3i iY T x x x           . 

b) A covariate moderately associated with the outcome? ( 0 1 1 3 3i iY T x x         )   

c) A covariate weakly associated with the outcome? ( 0 1 1 2 2i iY T x x         )  

d) Covariates moderately and weakly related to the outcome? ( 0 1 1i iY T x       )   
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4.2.2   Aim2: The impact of modelling continuous covariates as dichotomous. 

To evaluate the effect of modeling continuous variables as dichotomous, the data generating 

process is the same as in section 4.2.1 and the true outcome model is exactly similar to Equation 

(4.2).  We investigated the following models: 

a) A covariate strongly associated with the outcome is dichotomized i.e. 1x  is dichotomized 

as 1D  .The research model is 0 1 1 2 2 3 3i iY T D x x              

b) A covariate moderately associated with the outcome is dichotomized: 2x  is dichotomized 

as 2D  ( 0 1 1 2 2 3 3i iY T x D x             

c) A covariate weakly associated with the outcome is dichotomized: 3x  is dichotomized as 

3D  ( 0 1 1 2 2 3 3i iY T x x D           )  

d) All three covariates are dichotomized i.e. 1 2 3, ,x x x  are dichotomized as 1 2 3, ,D D D  

 0 1 1 2 2 3 3i iY T D D D           . 

 

4.2.3  Aim3: The impact of excluding interactions 

To evaluate the impact of missing interactions in model misspecification, we consider the 

following outcome model with interaction effects: 

   1 1 2 2 3 3 1 1 2 2 1 3 3 2 3i i iY T x x x x x x x x x                  (4.3) 

where  0,4N and  1 2 3, , 1,1x x x Normal  are independent variables associated with the 

outcome strongly, moderately, and weakly, respectively. In this setting 1 3 x x have mean 1 

rather than 0 so that they would not be centered. Not centering the variables would effectively 
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eliminate the association between main terms and interactions terms. We refer to the independent 

terms, 1 2 3,  ,  x x x as “main terms” and 1 2 1 3 2 3,  ,  x x x x x x  as ‘interaction terms’. To keep things 

simple, the coefficients of the interaction terms in Equation 4-3 were set to be the same 

coefficients as we would have used for the main effects for strong, moderate and low association. 

The regression coefficients 1 2 3, ,   were determined using Equation 3-9. We set

1 23.92,  1.75   , 3 0.4   and 0 0  . 0  in Equation 4.1 was set to -2.83 so that 

approximately 50% of the subjects would be exposed to the risk factor group. The interaction 

terms are likely to be correlated with the main effect terms as seen in Table 4.3; this is referred to 

as multicollinearity. However, we believe multicollinearity can safely be ignored in this situation 

as discussed by Woolridge in Introductory Econometrics (Wooldridge, 2000). Woolridge argues 

that collineratity induced by two main effects and their interaction (for example x1, x2 and x1x2) 

are not something to worry about as they are not linearly related. For instance both variables 

should be included in the regression to capture the relation between the predictor and the 

outcome as a function of another predictor.  

Table 4.3  Correlation coefficients between outcome, 

main effects and interactions terms 

Pearson Correlation Coefficients 

 Y x1 x2 x3 

x1 0.7361 1 -0.0003 0.0002 

x2 0.4653 -0.0003 1 0.0001 

x3 0.1949 0.0002 0.0001 1 

x1x2 0.8674 0.5772 0.5771 0.0001 

x1x3 0.6143 0.5768 -0.0002 0.5766 

x2x3 0.3985 -0.0001 0.5770 0.5770 
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We evaluated the impact of interaction according to these investigative models: 

a) Ignoring any interaction term with the strong covariate i.e. 

1 1 2 2 3 3 3 2 3i i iY T x x x x x              

b) Ignoring any interaction term with the moderate covariate 

1 1 2 2 3 3 2 1 3i i iY T x x x x x            

c) Ignoring any interaction term with the weak covariate i.e.  

1 1 2 2 3 3 1 1 2i i iY T x x x x x            

d) Ignoring all interaction terms   ( 1 1 2 2 3 3i i iY T x x x         ) 

 

4.2.4  Aim 4: The impact of non-linearity 

To evaluate the performance of model misspecification on nonlinear fitting, we consider the 

following quadratic regression model:    

     
2 2 2

1 1 1 2 2 2 3 3 3i i iY T x c x c x c              (4.4) 

where we generated 1 2 3, ,x x x uniformly distributed from 0 to 4 and  0,2.5i N . The 

regression coefficients 1 2 3, ,   were set to 6, 3, and 2 respectively to depict strong, moderate 

and weak association between the outcome and the covariates. We used the Hoeffding’s D to 

determine the correlations between 1 2 3, ,x x x  and Y.  Unlike the Pearson and the Spearman 

correlations, the Hoeffding’s D can be used to detect nonlinear dependency beyond linear and 

monotonic association (Hoeffding, 1948)  . The values of the statistic vary between -0.5 and 1, 

with 1 indicating complete dependence. We also used a visual check to measure the strength of 
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the association between Y and the covariates.  1 2 3, ,c c c in Equation 4-4 represent the lowest 

points where the quadratic curve changes direction i.e. the vertex. We consider two sets of values 

of  1 2 3, ,c c c resulting to two quadratic functions: a U-shaped curve and J-shaped curve with the 

following respective models:  

     
2 2 2

1 1 2 2 3 31.95 1.95 1.95i i iY T x x x             (4.5) 

     
2 2 2

1 1 2 2 3 31.27 1.27 1.27i i iY T x x x             (4.6) 

 The risk status was generated for each subject based on the logit model in Equation (4.1) where 

we set 0 5.75   to produce a 50/50 risk and non-risk factor group.  

The relationships between the outcome and the covariates based on Equation (4.5) are given in 

Figure 4.1 and Table 4.4 and those based on Equation (4.6) are given in Figure 4.2 and Table 4.5. 

From the plots, we can clearly see that Plot A shows a strong relationship between Y and 1x as 

the data points fall close to the line. Plots B and C indicate a moderate and a low relationship, 

respectively. From the tables, 1x has the highest Hoeffding’s correlation, followed by 2x and 

then 3x . 

      Figure 4.1  Plots of association between the outcome and the covariates using Equation (4.5) 

 

    
       Plot A        Plot B    Plot C 
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     Figure 4.2  Plots of association between the outcome and the covariates using Equation (4.6) 

 

    

  
    Plot A    Plot B    Plot C 

 

 

 

 
 

 

Table 4.4  Correlation coefficients between the 

Outcome and the covariates for Model 4.5 

Hoeffding Dependence Coefficients 

  Y x1 x2 x3 

x1 0.1285 1 0 0 

x2 0.0723 0 1 0 

x3 0.0436 0 0 1 

 

Table 4.5  Correlation coefficients between the 

Outcome and the covariates for Model 4.6 

Hoeffding Dependence Coefficients 

 Y x1 x2 x3 

x1 0.3797 1 0 0 

x2 0.2856 0 1 0 

x3 0.2140 0 0 1 

 



59 
 

 
 

Under Aim 4, we investigated the influence of modelling a covariate as linear when it is 

in fact quadratic. We specifically look at the impact of the following models: 

a) Modelling 1x as linear i.e.      
2 2

1 1 1 2 2 2 3 3 3i i iY T x c x c x c             

b) Modelling 2x as linear i.e.      
2 2

1 1 1 2 2 2 3 3 3i i iY T x c x c x c             

c) Modelling 3x as linear i.e.      
2 2

1 1 1 2 2 2 3 3 3i i iY T x c x c x c             

d) Modelling 1 2 3, ,x x x as linear i.e.      1 1 1 2 2 2 3 3 3i i iY T x c x c x c             

 

4.3 Estimation of Risk effect 

The adjusted risk effect was estimated via AUC based on Janes et al.’s method (2009) for 

accommodating covariates in ROC analysis as described in Chapter 2 and briefly in Section 

3.6.5. 

4.4 Evaluation criteria 

Five criteria were used to evaluate the impact of model misspecification in AUC 

regression adjustment. The first three are bias, relative bias and root mean square error (RMSE) 

as defined in Sections 3.7.1 and 3.7.2. The other two criteria are the 95% confidence intervals 

coverage and the type I error. The coverage was used to determine the proportion of times the 

true mean was contained in the interval estimator. Using the normal approximation interval and 

our 1,500 simulated data sets, any coverage less than 93.9% and greater than 96.1% is 

statistically different from 95% as described in Section 3.6.3.  The type I error was used to 

determine the smallest possible error probability in rejecting the true null hypothesis. We fix the 

level of the test to 0.05. 
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4.5 Results of the simulation study 

Results of the simulation study are given in Tables 4.6 to 4.10 and Figures 4.3 to 4.7. 

When we examined the impact of missing influential covariates in Aim 1, the results of the mean 

estimated risk effect across the 1,500 simulated data sets in Table 4.6 and Figure 4.3 showed that 

the greatest bias is associated with leaving a strong covariate out. The relative bias ranged from 

4.2% to 43.72% for AUC = 0.9 to 0.5, respectively. When the model was missing a moderate 

covariate, the risk estimates were also biased but much less biased than the results with the 

strong covariate. Furthermore, a model ignoring a covariate weakly related to the outcome did 

not have a great impact on the estimated risk effect: In all three cases, the bias was almost null; 

the coverage proportions were significantly less than 95%; and the type I error has the smallest 

possible error probability of 5.53% . Another important finding is that the RMSE is greater when 

there is no effect (AUC=0.5) compared to when true AUC is .7 or .9. Finally, modelling a strong 

covariate alone leads to results similar to the model missing the moderate covariate.  

When we examined Aim 2 i.e. what would happen if a continuous covariate is 

categorized as dichotomous, the results in Table 4.7 and Figure 4.4 suggested that modelling a 

weak continuous covariate as dichotomous has a superior fit than dichotomizing a moderate and 

strong covariate. Among the four models in Aim 2, the worst is when all continuous covariates 

are categorized as dichotomous: the model is associated with the greatest bias and a type I error 

of 99.93%.   

When we investigated the impact of leaving out interaction terms when in reality the true 

model contains interactions (Aim 3), we found out that any model ignoring any interaction term 

leads to biased estimates of the true AUC. The greatest biases were associated with models 1, 2, 
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and 4 when leaving out strong, moderate and all interactions, respectively -See Table 4.8 and 

Figure 4.5.  

Finally, when we examined the effect of non-linearity by modelling a covariate as linear 

when it is in fact quadratic, we note three important results. First, the U-shaped and the J-shaped 

models produce the exact same results when the true models are misspecified as seen in Tables 

4.9 and 4.10 and in Figures 4.6 and 4.7. Second, when the strong covariate and when all three 

covariates were considered linear, the true estimates were greatly biased. Finally, to our surprise, 

AUC of 0.5 is not associated with the greatest bias anymore as we have seen in Aims 1-3 but the 

risk effect is most biased when AUC = 0.7 or 0.9. 

In conclusion, it is far more damaging when misspecification involves a strong covariate 

than to incorrectly model a covariate weakly associated with the outcome. Among all fitted 

models from Tables 4.6 to 4.10 and Figures 4.3 to 4.7, the greatest bias is seen when there is no 

effect (AUC=0.5) except when we incorrectly modelled the non-linear relationship. For the 

“correct” models or “Model 0” in Tables 4.6 through 4.10 and Figures 4.3 to 4.7, we would 

expect the models to perform best which is the case. However, the type I error are greater than 

expected. We speculate that this might be due to the choice of bootstrapping method used in the 

simulations, or the normality assumption in estimating the parametric AUC might be violated.   
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Table 4.6  AIM 1 Simulation Results 

True 

AUC 

Mean 

Adjusted 

AUC 

Bias 
Relative 

bias 

Bootstrap 

Standard error 
RMSE 

95% CI 

Coverage (%) 

Type I 

Error (%) 

Model 0:  Real model including all 3 covariates 

0.5 0.4918 -0.0082 -1.6322 0.0184 0.0201 91.60 8.40 

0.7 0.6914 -0.0086 -1.2350 0.0166 0.0187 91.60 -- 

0.9 0.8944 -0.0056 -0.6274 0.0098 0.0113 92.20 -- 

Model 1: Model missing strong covariate  

0.5 0.7186 0.2186 43.7164 0.0159 0.2192 0.00 100.00 

0.7 0.8346 0.1346 19.2353 0.0124 0.1352 0.00 -- 

0.9 0.9384 0.0384 4.2708 0.0070 0.0391 0.60 -- 

Model 2: Model missing moderate covariate 

0.5 0.5670 0.0670 13.4021 0.0184 0.0695 5.47 94.53 

0.7 0.7446 0.0446 6.3756 0.0157 0.0473 20.47 -- 

0.9 0.9135 0.0135 1.5045 0.0089 0.0162 62.47 -- 

Model 3: Model missing weak covariate 

0.5 0.5008 0.0008 0.1503 0.0181 0.0181 94.47 5.53 

0.7 0.6976 -0.0024 -0.3403 0.0163 0.0164 94.13 -- 

0.9 0.8964 -0.0036 -0.3956 0.0095 0.0102 94.13 -- 

Model 4: Model including strong covariate only 

0.5 0.5769 0.0769 15.3834 0.0181 0.0790 1.27 98.73 

0.7 0.7517 0.0517 7.3822 0.0152 0.0539 10.27 -- 

0.9 0.9163 0.0163 1.8082 0.0086 0.0184 50.40 -- 

-- Indicates Power = 100%      
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Figure 4.3  Simulation Results for Aim 1 
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Table 4.7  AIM 2 Simulation Results 

True 

AUC 

Mean 

Adjusted 

AUC 

Bias 
Relative 

bias 

Bootstrap 

Standard error 
RMSE 

95% CI 

Coverage (%) 

Type I 

Error (%) 

Model 0:  Real model including all 3 covariates 

0.5 0.4918 -0.0082 -1.6322 0.0184 0.0201 91.60 8.40 

0.7 0.6914 -0.0086 -1.2350 0.0166 0.0187 91.60 -- 

0.9 0.8944 -0.0056 -0.6274 0.0098 0.0113 92.20 -- 

Model 1:Covariate strongly associated with the outcome is dichotomized 

0.5 0.5879 0.0879 17.5782 0.0180 0.0897 0.40 99.60 

0.7 0.7500 0.0500 7.1442 0.0152 0.0523 12.47 -- 

0.9 0.9082 0.0081 0.9052 0.0089 0.0121 79.07 -- 

Model 2: Covariate moderately associated with the outcome is dichotomized 

0.5 0.5090 0.0090 1.8008 0.0186 0.0207 91.67 8.33 

0.7 0.7035 0.0035 0.5041 0.0166 0.0170 93.53 -- 

0.9 0.8986 -0.0014 -0.1603 0.0097 0.0098 93.80 -- 

Model 3: Covariate weakly associated with the outcome is dichotomized 

0.5 0.4959 -0.0041 -0.8291 0.0183 0.0187 93.53 6.47 

0.7 0.6942 -0.0058 -0.8239 0.0165 0.0174 93.33 -- 

0.9 0.8954 -0.0046 -0.5147 0.0097 0.0107 92.80 -- 

Model 4: All three covariates are dichotomized 

0.5 0.6053 0.1053 21.0678 0.0178 0.1068 0.07 99.93 

0.7 0.7626 0.0626 8.9433 0.0149 0.0643 3.87 -- 

0.9 0.9135 0.0135 1.4996 0.0086 0.0160 61.73 -- 

-- Indicates Power = 100%      
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Figure 4.4  Simulation Results for Aim 2 
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Table 4.8  AIM 3 Simulation Results 

True 

AUC 

Mean 

Adjusted 

AUC 

Bias 
relative 

bias 

Bootstrap 

Standard error 
RMSE 

95% CI 

Coverage (%) 

Type I 

Error (%) 

Model 0:  Real model including all 3 interactions  

0.5 0.4898 -0.0102 -2.0388 0.0185 0.0211 90.53 9.47 

0.7 0.6883 -0.0117 -1.6684 0.0168 0.0204 89.40 -- 

0.9 0.8919 -0.0081 -0.9006 0.0100 0.0129 89.33 -- 

Model 1: Model ignoring strong interactions  

0.5 0.6589 0.1589 31.7811 0.0185 0.1600 0.00 100.00 

0.7 0.7496 0.0495 7.0784 0.0165 0.0522 16.33 -- 

0.9 0.8534 -0.0466 -5.1764 0.0131 0.0484 3.00 -- 

Model 2: Model ignoring moderate interactions 

0.5 0.6527 0.1527 30.5472 0.0187 0.1539 0.00 100.00 

0.7 0.7458 0.0458 6.5404 0.0168 0.0488 22.40 -- 

0.9 0.8520 -0.0480 -5.3300 0.0134 0.0498 2.27 -- 

Model 3:Model ignoring weak interactions 

0.5 0.5154 0.0154 3.0772 0.0187 0.0242 86.60 13.40 

0.7 0.6985 -0.0015 -0.2163 0.0168 0.0169 94.73 -- 

0.9 0.8875 -0.0125 -1.3931 0.0105 0.0163 80.07 -- 

Model 4: Model ignoring all interactions 

0.5 0.6591 0.1591 31.8262 0.0185 0.1602 0.00 100.00 

0.7 0.7499 0.0499 7.1252 0.0165 0.0525 16.00 -- 

0.9 0.8538 -0.0462 -5.1389 0.0131 0.0481 3.47 -- 

-- Indicates Power = 100%      
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Figure 4.5  Simulation Results for Aim 3 
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Table 4.9  AIM 4 U-shaped Simulation Results 

True 

AUC 

Mean 

Adjusted 

AUC 

Bias 
relative 

bias 

Bootstrap 

Standard error 
RMSE 

95% CI 

Coverage (%) 

Type I 

Error (%) 

Model 0:  Real model including all covariates 

0.5 0.5560 0.0560 11.2050 0.0181 0.0589 86.13 13.87 

0.7 0.7433 0.0433 6.1812 0.0153 0.0459 21.87 -- 

0.9 0.9183 0.0183 2.0316 0.0082 0.0200 40.93 -- 

Model 1: Modelling x1 as linear  

0.5 0.6567 0.1567 31.3338 0.0205 0.1580 0.00 100.00 

0.7 0.7156 0.0156 2.2351 0.0184 0.0242 84.53 -- 

0.9 0.7960 -0.1040 -11.5545 0.0148 0.1050 0.00 -- 

Model 2: Modelling x2 as linear  

0.5 0.5553 0.0553 11.0682 0.0187 0.0584 16.33 83.67 

0.7 0.6692 -0.0308 -4.4040 0.0168 0.0351 55.00 -- 

0.9 0.8112 -0.0888 -9.8670 0.0124 0.0897 0.00 -- 

Model 3: Modelling x3 as linear  

0.5 0.5336 0.0336 6.7136 0.0184 0.0383 54.60 45.40 

0.7 0.6743 -0.0257 -3.6707 0.0167 0.0306 66.60 -- 

0.9 0.8392 -0.0608 -6.7527 0.0117 0.0619 0.07 -- 

Model 4: Modelling all 3 covariates as linear  

0.5 0.6751 0.1751 35.0189 0.0195 0.1762 0.00 100.00 

0.7 0.7244 0.0244 3.4901 0.0179 0.0303 69.40 -- 

0.9 0.7906 -0.1094 -12.1606 0.0153 0.1105 0.00 -- 

-- Indicates Power = 100%      
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Figure 4.6  Simulation Results for U-shaped Aim 4 
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Table 4.10  AIM 4 J-shaped Simulation Results 

True 

AUC 

Mean 

Adjusted 

AUC 

Bias 
relative 

bias 

Bootstrap 

Standard error 
RMSE 

95% CI 

Coverage (%) 

Type I 

Error (%) 

Model 0:  Real model including all covariates 

0.5 0.5560 0.0560 11.2050 0.0181 0.0589 86.13 13.87 

0.7 0.7433 0.0433 6.1812 0.0153 0.0459 21.87 -- 

0.9 0.9183 0.0183 2.0316 0.0082 0.0200 40.93 -- 

Model 1: Modelling x1 as linear  

0.5 0.6567 0.1567 31.3338 0.0205 0.1580 0.00 100.00 

0.7 0.7156 0.0156 2.2351 0.0184 0.0242 84.53 -- 

0.9 0.7960 -0.1040 -11.5545 0.0148 0.1050 0.00 -- 

Model 2: Modelling x2 as linear  

0.5 0.5553 0.0553 11.0682 0.0187 0.0584 16.33 83.67 

0.7 0.6692 -0.0308 -4.4040 0.0168 0.0351 55.00 -- 

0.9 0.8112 -0.0888 -9.8670 0.0124 0.0897 0.00 -- 

Model 3: Modelling x3 as linear  

0.5 0.5336 0.0336 6.7136 0.0184 0.0383 54.60 45.40 

0.7 0.6743 -0.0257 -3.6707 0.0167 0.0306 66.60 -- 

0.9 0.8392 -0.0608 -6.7527 0.0117 0.0619 0.07 -- 

Model 4: Modelling all 3 covariates as linear  

0.5 0.6751 0.1751 35.0189 0.0195 0.1762 0.00 100.00 

0.7 0.7244 0.0244 3.4901 0.0179 0.0303 69.40 -- 

0.9 0.7906 -0.1094 -12.1606 0.0153 0.1105 0.00 -- 

-- Indicates Power = 100%      
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Figure 4.7  Simulation Results for J-shaped Aim 4 
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CHAPTER 5: APPLICATION 

 

 In the first part of this chapter, we apply different propensity score methods and models 

to data from the Shock Research Unit at the University of Southern California, Los Angeles, 

California. We also compare the propensity score results to corresponding results derived from 

the AUC direct regression for estimating the adjusted AUC. 

  In the second part of the chapter, we examine model misspecification in AUC regression 

by incorrectly modelling the covariates in the data. 

 

 Introduction 

In the United States, there are more than 1 million admissions to emergency departments 

annually due to shock, according to Merck (Merck, 2009). The medical disorder of shock is 

mostly characterized by an abnormal low systolic blood pressure or hypotension. For people in 

shock, the tissues of the body do not receive enough blood. As a result, the tissues with impaired 

circulation suffer damage from lack of oxygen. Damage to tissues and organs of the body can 

lead to severe disability or death of patients in shock. 

In this data analysis, it is of primary interest to compare patients in shock with patients 

not in shock upon admission to the shock research unit at the University of Southern California 

in Los Angeles, California, in terms of diastolic blood pressure (DBP) at discharge. In other 

words, we sought to study whether shock status at admission is a risk factor for diastolic blood 

pressure at discharge. Because this is an observational study where subjects are assigned to one 

of the risk factor groups in a non-random manner, there is a possibility that discharge diastolic 

blood pressure in subjects with shock and non-shock is related to some baseline covariates such 
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as demographic or physiological variables. In order to accurately estimate the risk effect, it is of 

practical importance to account for those covariates. Failing to adjust for those variables could 

lead to biased estimates of shock status effect on diastolic blood pressure at discharge. 

Therefore, we illustrate our dissertation research findings by using different propensity 

score methods and models to estimate the probability that the DBP response from the jth 

randomly chosen patient in the shock group is less than that from the ith randomly selected 

patient in the non-shock group. This is defined as  NS SP Y Y where SY and NSY  are diastolic 

blood pressure measure for patients in shock and non-shock groups, respectively.     

      

 Methods 

The data consists of 113 critically ill patients who were admitted to the Shock Research 

Unit at the University of Southern California, Los Angeles, California. Data on many 

physiological variables were collected successively in time on each patient. From the wealth of 

data that was collected, the present data is a subset that appeared in the book “Statistical 

Analysis: A computer Oriented Approach” by Afifi and Azen in 1979 for examples and exercises 

purposes (Afifi & Azen, 1979). In this set, initial measurements (that is, measurements upon 

admission) and final measurements on the same variables (that is, measurements just before 

death or discharge) were collected. Hence, each patient has 2 records and each record contains 

21 variables: 6 general variables and 14 physiological variables. The outcome of interest was 

diastolic blood pressure at discharge, whereas the risk factor of interest was shock. A patient is 

defined as having a shock if experiencing any of these shocks: hypovolemic shock, cardiogenic 

shock, bacterial shock, neurogenic shock or other. 
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For each subject, propensity scores (PS) were estimated by fitting a logistic regression to 

predict shock, as a function of baseline covariates. We constructed four different PS models 

including different combinations of measured covariates: PS model 1 (PS-M1) included 

variables associated with the shock status group. The association between the covariates and the 

shock group were determined using a t-test for continuous covariates and a chi-square test for 

categorical variables at 5% significance level. PS model 2 (PS-M2) included variables associated 

with the outcome, diastolic blood pressure. The association between the outcome and the 

continuous covariates were measured using a Pearson correlation; and a t test is used to test 

association between the outcome and the categorical covariates. PS model 3 (PS-M3) included 

variables associated with both the risk factor group and the outcome i.e. all common covariates 

to the previous two models. PS model 4 (PS-M4) included all measured variables. 

As described in Section 3.4, strata were created based on the quintiles of the estimated 

propensity scores; and also matched pairs of subjects in shock and not in shock were created 

using the 1:1 greedy matching technique with calipers of width 0.2 of the standard deviation of 

the logit of the propensity score. 

Two analyses were carried out: The first analysis comprised all measured variables while 

the second analysis included only uncorrelated variables. The reason for the second analysis was 

to more closely mimic the simulations, which assumed uncorrelated variables. Four different 

methods were used to estimate the adjusted AUC in diastolic blood pressure at discharge. First, 

subjects were stratified based on the quintiles of the propensity score and the adjusted AUC was 

computed as described in section 3.5.2. Second, we estimated the adjusted shock effect via AUC 

in the propensity score matched sample as described in Section 3.5.3. Third, the risk group effect 

is estimated under the covariate adjustment on the propensity score method using the method 



75 
 

 
 

described in 3.5.4. Finally, for comparison purposes, we used the direct AUC regression method 

to adjust for covariates in directly modelling covariates effects on the response as described in 

3.5.5. For this method, we considered 4 separate regression models as well where each model is 

described above. 

Furthermore, the issue of model misspecification in AUC regression method was 

investigated. Eight different models were used: these models included 4 models missing 

influential variables and 4 models where continuous variables were modelled as dichotomous. 

The estimated AUCs were computed and then compared to the adjusted AUC obtained from our 

“best” model.   

 Results 

The study sample consisted of n=113 critically ill subjects of whom 79 (69.91%) where 

in shock and 34 (30.09%) were not in shock upon admission to the shock research unit. Table 5.1    

shows the summary statistics of the baseline covariates between subjects in shock and not in 

shock. Subjects in the two groups were compared using pooled t-tests and chi-square tests for 

continuous and dichotomous variables, respectively. The descriptive analysis reveals that 

patients in shock have lower values of mean arterial pressure, systolic and diastolic pressure 

upon admission (p<0.0001, p<0.0001 and p = 0.0042, respectively). Heart rate beats and mean 

circulation time tend to be higher in those in shock than those not in shock (all p-value <0.05). 

Surprisingly, the urinary output is almost three times higher in patients not in shock compared to 

patients in shock (p=0.0019). There was no statistical difference between the two groups of 

patients in regards to age, mean central venous pressure, body surface index, appearance time, 

red cell index, hemoglobin, hematocrit and gender.   
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Table 5.1  Baseline Characteristics of the Study Sample by Shock Group 

    Shock No-shock Total P-value Pearson r 

Variable 
N = 79 

(69.91%) 

N =34 

(30.09%) 
N=113     

Age (years) 55.1  ± 16.9 53.4 ± 15.9 54.6  ±  16.6 0.6114 -0.0483 

Systolic Pressure (mm Hg) 97.8  ±  28.9 127.6  ± 23.4 106.2  ±  30.7 <.0001 0.4577 

Mean arterial pressure (mm 

Hg) 
68.2 ± 21.6 85.5  ± 18.1 73.4 ± 22 <.0001 0.3625 

Heart rate (beats/min) 108.8 ± 28.1 94.3  ± 31.0 104.4 ± 29.6 0.0158 -0.2265 

Diastolic pressure (mm Hg) 55.3  ± 18.8 66.1  ± 15.7 58.5 ±  18.5 0.0042 0.2676 

Mean central venous 

pressure (cmH2O) 
9.1  ± 5.5 8.4  ± 6.2 8.9 ±  5.7 0.5272 -0.0601 

Body surface index (m2) 1.7  ± 0.2 1.7  ± 0.8 1.7 ± 0.2 0.4165 0.0772 

Cardiac index (liters/min 

m2) 
2.36  ± 1.4 3.1  ± 1.5 2.6 ±  1.5 0.0190 0.2203 

Appearance time (sec) 10.78  ± 5.0 8.9  ± 4.3 10.2 ± 4.9 0.0570 -0.1796 

Mean circulation time (sec) 24.1 ± 10.8 19.7  ± 9.0 22.8 ± 10.5 0.0391 -0.1944 

Urinary output (ml/hr) 33.2 ± 79.0 103.7  ± 156.6 54.4 ± 112.3 0.0019 0.2888 

Plasma volume index 

(ml/kg) 
47.0 ± 15.7 52.9  ± 13.5 48.8 ± 15.2 0.0579 0.1789 

Red Cell Index (ml/kg) 21.1 ± 9.4 22.0  ± 7.1 21.4 ± 8.7 0.6444 0.0439 

Hemoglobin (gm/100 ml) 11.6 ± 2.6 11.0  ± 2.2 11.4 ± 2.5 0.2834 -0.1018 

Hematocrit (percent) 35.3 ± 8.1 33.9  ± 7.1 34.9 ± 7.8 0.3687 -0.0854 

Sex Male 38 (48.10 %) 21 (61.76 %) 59 (52.21%) -0.1255 -0.1255 

  Female 41 (51.90 %) 13 (38.24 %) 54 (47.79%)     

Continuous variables are reported as mean ± standard deviation. Dichotomous variables are reported as 

frequency and percent. 
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The selection of the variables entering the different PS models is summarized in Table 5.2. 

The number of covariates in the PS models range from 3 to 16. Logistic regression is used to 

estimate the propensity scores and the c-statistic, a measure known to measure model fit for 

logistic regression is also reported. The unadjusted model doesn’t contain any variable; it has a c-

statistic value of 0.7174. The PS-M1 contains 7 covariates with a c-statistic of 0.85; PS-M2 has 6 

variables and a c-statistic of 0.826; PS-M3 contains 3 covariates with c-statistic of 0.812; and 

finally PS-M4 contains all 16 variables and has a c-statistic of 0.895.   

The crude AUC between shock groups was 0.7174. We obtain a 95% confidence interval for 

the unadjusted AUC of (0.61-0.82) using the Delong formula incorporated into SAS PROC 

LOGISTIC. Since the confidence interval does not contain the null value 0.5, we conclude that 

for two randomly chosen patients from the shock and non-shock groups, the probability that the 

DBP response from the participant in the non-shock group exceeds that the response from the 

patient in the shock group is estimated to be 71.74%. In other words, there is a significant chance 

that the DBP of those in the non-shock group is greater than that of those in the shock group.   
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Table 5.2  Selection of variables entering different propensity score models  

Covariates PS model 1 PS model 2 PS model 3 PS model 4 

Age (years)    

Systolic Pressure (mm Hg)     

Mean arterial pressure (mm Hg)     

Heart rate (beats/min)     

Diastolic pressure (mm Hg)    

Mean central venous pressure (cmH2O)    

Body surface index (m2)    

Cardiac index (liters/min m2)    

Appearance time (sec)    

Mean circulation time (sec)    

Urinary output (ml/hr)    

Plasma volume index (ml/kg)    

Red Cell Index (ml/kg)    

Hemoglobin (gm/100 ml)    

Hematocrit (percent)    

Sex    

 

The adjusted estimates using four different methods are reported in Table 5.3.  Using 

stratification on the quintiles of the propensity score, the adjusted estimates of  NS SP Y Y  

range from 0.6337 to 0.6833 for different PS models. The standard error and the confidence 

interval were obtained using Equation 3-18. In contrast to the unadjusted AUC, all four 95 per 

cent confidence intervals contain the null value of 0.5. This indicates that under stratification, the 

adjusted AUC is not statistically different from the null value i.e. we fail to reject

: 0.5oH AUC  .  
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Propensity score matching resulted in the formation of 22, 26, 28 and 21 pairs of subjects 

in shock and not in shock for PS models 1, 2, 3, and 4 respectively. The adjusted estimates range 

from 0.599 to 0.675. The standard error and the 95% confidence interval were obtained using 

1000 bootstrap samples of the original observations. The results are not consistent under this 

method as some confidence intervals contain the null value and some do not. 

Using covariate adjustment on the propensity score, inconsistency of the results is similar 

to what we found with matching. The standard errors were also estimated based on 1000 

bootstraps.  

 The fourth method consisting of using the AUC regression to directly model the 

covariates on the response resulted in values of adjusted AUC close to each other ranging from 

0.596 to 0.639. All four confidence intervals estimated based on bootstrap are consistent and 

contain the null value of 0.5. 

From the results of the Monte Carlo simulations described in Section 3.7, we found the 

crude estimate is biased positively when true AUC is around 0.5 and 0.7. Hence, the crude 

estimate in this application is most likely overestimated. Furthermore, we found out that 

stratifying, matching and covariate adjustment on the propensity score resulted in biased 

estimation of AUC. Thus, in our illustration study, these estimates obtained from the propensity 

score methods and models are likely subject to a great deal of bias. Given the results and the 

recommendations of our simulations, our best estimate of the true risk effect is most likely the 

estimate obtained from model 2 using the direct AUC regression adjustment. Hence the adjusted 

estimate of the probability that the DBP response from the jth randomly chosen patient in the 

shock group is less than that from the ith randomly patient in the non-shock group i.e. 

 NS SP Y Y is 0.6224; the 95% CI based on 1,000 bootstrap samples is (0.4633, 0.7919). Since 
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the confidence interval includes 0.5, there is no statistical evidence that shock status upon 

admission is a risk factor for diastolic blood pressure.   

 

Table 5.3  Effect estimates from different methods and models   

Models/Methods AUC  SE 95%CI 

Unadjusted 0.7174 0.0529 0.6138 - 0.8210 

PS Stratify -M1  0.6734 0.1478 0.3837 - 0.9630  

PS Stratify -M2 0.6404 0.1239 0.3975 - 0.8833 

PS Stratify -M3 0.6833 0.1209 0.4463 - 0.9204 

PS Stratify -M4  0.6337 0.1599 0.3203 - 0.9471 

PS Matching -M1  0.59902 0.0867 0.4330 - 0.7728 

PS Matching -M2 0.67498 0.07423 0.5314 - 0.8224 

PS Matching -M3 0.6698 0.0700 0.5349 - 0.8094 

PS Matching -M4  0.64918 0.0825 0.4888 - 0.8120 

PS Covariate Adjust - M1 0.62574 0.08133 0.4712 - 0.7900 

PS Covariate Adjust - M2 0.64133 0.06598 0.5128 - 0.7714 

PS Covariate Adjust - M3 0.64756 0.0629 0.5265 - 0.7731 

PS Covariate Adjust - M4 0.6117 0.07937 0.4550 - 0.7661 

Reg. Adjustment - M1 0.60579 0.08173 0.4467 - 0.7670 

Reg. Adjustment - M2 0.62241 0.08382 0.4633 - 0.7919 

Reg. Adjustment - M3 0.63894 0.07523 0.4917 - 0.7865 

Reg. Adjustment - M4 0.59619 0.09238 0.4208 - 0.7829 

 

In the second part of our data illustration, we aim to explore model misspecification. The 

“best” model is considered as the model containing the 6 variables associated with the outcome 

(Regression adjustment Model 2). Each of these variables varies in their association with the 

response DBP according to the Pearson correlations values and their classification in Table 5.4.  
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Table 5.4  Classification of baselines covariates based on their association with outcome 

    Pearson r 
Strong 

Covariates 

Moderate 

Covariates 

Weak 

Covariates 

Variable         

Age (years) -0.01490    

Systolic Pressure (mm Hg) 0.47679   

Mean arterial pressure (mm 

Hg) 

0.52209 
  

Heart rate (beats/min) 0.03178   

Diastolic pressure (mm 

Hg) 

0.52558 
  

Mean central venous 

pressure (cmH2O) 

-0.29073 
  

Body surface index (m2) 0.31300   

Cardiac index (liters/min 

m2) 

0.04843 
  

Appearance time (sec) -0.10126   

Mean circulation time (sec) -0.13453   

Urinary output (ml/hr) 0.15508   

Plasma volume index 

(ml/kg) 

-0.19066 
  

Red Cell Index (ml/kg) 0.03015   

Hemoglobin (gm/100 ml) 0.12164   

Hematocrit (percent) 0.13331   

Sex -0.12310 -0.12550   

  Female     

 

Hence, systolic, diastolic and mean arterial pressure are strongly related to outcome (r 

ranging from 0.48 to 0.53 and p-values are highly significant, p<0.0001).  Mean central venous 

pressure and body surface index are moderately associated with DBP: r value close to 0.3. 

Finally, plasma volume index is weakly related to DBP, r = -0.19 and p-value = 0.0431. 

The estimates of  NS SP Y Y  in model misspecification are given in Table 5.5. When we 

examined the impact of missing influential covariates, the greatest bias was associated with 



82 
 

 
 

leaving the strong covariates out. The estimated AUC was 0.736 with a 95% CI of (0.6253, 

0.8436). There’s not much harm in leaving a weak covariate out. These results were consistent 

with our findings from the Monte Carlo simulations.  

 From our simulations results in Section 4.5, we found that modelling a weak covariate as 

dichotomous has a superior fit than modelling a strong covariate as dichotomous. The findings in 

our case study are consistent with those of the simulations study. The worst model in 

dichotomization is modelling all covariates as dichotomous when they are in fact continuous.  

From the case study, we conclude that it is far more damaging to incorrectly model 

covariates strongly associated with the outcome than to incorrectly model covariates weakly 

associated with the outcome. These findings were consistent with previous findings in our Monte 

Carlo simulations.    

Table 5.5  Effect Estimates from Model Misspecification 

Models AUC  SE 95%CI 

Best model 0.6224 0.0838 0.4633 - 0.7919 

Missing strong covariates 0.7360 0.0557 0.6253 - 0.8436 

Missing moderate covariates 0.6463 0.0798 0.4917 - 0.8045 

Missing weak covariates 0.6168 0.0811 0.4627 - 0.7806 

Including strong covariates only 0.6389 0.0752 0.4917 - 0.7865 

Strong covariates are dichotomized 0.7083 0.0651 0.5815 - 0.8367 

Moderate covariates are dichotomized 0.6262 0.0817 0.4681 - 0.7883 

Weak covariates are dichotomized 0.6182 0.0843 0.4595 - 0.7899 

All covariates are dichotomized 0.7074 0.0694 0.5719 - 0.8441 

 

For our second analysis, a subset of covariates not correlated with each other was 

selected using the Pearson correlation criteria. A total of 6 variables was considered as compared 

to 16 variables in the previous analysis – See Table 5.6-.  
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Table 5.6  Pearson Correlation Coefficients, N = 113   

 MAP HR MCVP CI BSI RCI 

Mean arterial pressure in mm Hg 1 -0.0702 -0.0778 0.04001 0.21098 0.04198 

Heart rate in beats/min -0.0702 1 0.05307 -0.0296 -0.0464 -0.0398 

Mean central venous pressure in 

cmH2O 
-0.0778 0.05307 1 0.00248 0.0763 -0.0566 

Cardiac index in liters/min m2 0.04001 -0.0296 0.00248 1 0.0494 -0.1206 

Body surface index in m2 0.21098 -0.0464 0.0763 0.0494 1 -0.0462 

Red Cell Index in ml/kg 0.04198 -0.0398 -0.0566 -0.1206 -0.0462 1 

 

The selection of the variables entering the different PS models is summarized in Table 5.7. 

The number of covariates in the PS models range from 1 to 6. Hence, the PS-M1 contains 3 

covariates; PS-M2 has 3; PS-M3 contains 1 covariate; and finally PS-M4 contains all 6 

uncorrelated variables.   

 

Table 5.7  Selection of variables entering different propensity score models 

Covariates PS model 1 PS model 2 PS model 3 PS model 4 

Mean arterial pressure (mm Hg)     

Heart rate (beats/min)     

Mean central venous pressure 

(cmH2O) 
   

Body surface index (m2)    

Cardiac index (liters/min m2)    

Red Cell Index (ml/kg)    

 

 

The adjusted AUC estimates were given in Table 5.8. Stratifying on the quintiles of the 

propensity score yield to adjusted AUCs ranging from 0.62 to 0.67. Under the stratification 

method, all four 95% confidence intervals contain the null value of 0.5 which indicate that there 

is no significant chance that the DBP of those in the non-shock group is greater than that of those 

in the shock group.  
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      Table 5.8  Effect estimates from different methods and models   

Models/Methods AUC  SE 95%CI 

Unadjusted 0.7174 0.0529 0.6138 - 0.8210 

PS Stratify -M1  0.6223 0.136 0.3557 - 0.8889 

PS Stratify -M2 0.6717 0.1103 0.4555 - 0.8879 

PS Stratify -M3 0.6573 0.1397 0.4485 - 0.8661 

PS Stratify -M4  0.6300 0.1397 0.3561 - 0.9039 

PS Matching -M1  0.6209 0.0810 0.4669 -0.7846 

PS Matching -M2 0.6196 0.0725 0.4778 - 0.7619 

PS Matching -M3 0.6206 0.0722 0.4779 - 0.7608 

PS Matching -M4  0.6768 0.0744 0.5339 - 0.8257 

PS Covariate Adjust - M1 0.6301 0.0675 0.5013 - 0.7661 

PS Covariate Adjust - M2 0.6693 0.0535 0.5668 - 0.7764 

PS Covariate Adjust - M3 0.6717 0.0540 0.5684 - 0.7799 

PS Covariate Adjust - M4 0.6315 0.0697 0.4999 - 0.7730 

Reg. Adjustment - M1 0.6685 0.0625 0.5471- 0.7919 

Reg. Adjustment - M2 0.6770 0.0557 0.5697 - 0.7880 

Reg. Adjustment - M3 0.6661 0.0521 0.5643 - 0.7686 

Reg. Adjustment - M4 0.6831 0.0668 0.5532 - 0.8149 

 

For propensity score matching and covariate adjustment on the propensity score methods, 

the adjusted AUCs range from 0.62 to 0.68. The standard error and the 95% confidence interval 

were obtained using 1000 bootstrap samples of the original observations. The results are not 

consistent under these two methods as some confidence intervals contain the null value and some 

do not. For AUC regression adjustment, the values of the adjusted AUCs are very close to each 

other and close to 0.67. All confidence intervals are consistent and do not contain the null value 

of 0.5. Hence, we conclude that there is a significant probability that DBP when in shock status 

is greater than DBP when in no-shock status.  

The results obtained from the propensity score methods in this second analysis are 

consistent with those obtained from the first analysis. However, with the regression adjustment 

method, it appears that correlation between variables has a great effect on the estimate of the 
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adjusted AUC: The AUC estimates were not significant different from 0.5 when the covariates 

were correlated but they were significant when the covariates were uncorrelated. Given these 

findings, correlation between covariates should be taken into account when estimating AUC 

through regression adjustment. One may also speculate that the difference between the two 

analyses might be due to the fact that the first analysis included more covariates (up to 16) while 

the second analysis included only a maximum of 6 covariates and we  know that excluding 

covariates can lead to incorrect answers.  

In the second part of this second analysis, we explore model misspecification. From the 

recommendations of the simulations study, we consider the “best” model to be model 2 for 

Regression Adjustment in Table 5.8. This model refers to the model containing the 3 variables 

associated with the outcome. Each of these three variables varies in their association with the 

response DBP according to the correlations values and their classification in Table 5.4. 

Therefore, mean arterial pressure is strongly related to outcome (r=0.52) while mean central 

venous pressure and body surface index are moderately associated with DBP (r ~ 0.3). There was 

no variable weakly associated with the outcome in this subset analysis. The AUC estimates from 

model misspecification are given in Table 5.9. We notice that the greatest harm is associated 

with leaving a strong covariate out as compared to leaving a moderate covariate out. These 

results were consistent with our findings from the Monte Carlo simulations.  
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    Table 5.9  Effect Estimates from Model Misspecification 

Models AUC  SE 95%CI 

Best model 0.67699 0.0557 0.5697 - 0.7880 

Missing strong covariates 0.721 0.053 0.616- 0.824 

Missing moderate covariates 0.666 0.052 0.564 - 0.769 

Including strong covariates only 0.666 0.052 0.564- 0.769 

Strong covariates are dichotomized 0.694 0.055 0.586 - 0.803 

Moderate covariates are 

dichotomized 
0.666 0.054 0.561 - 0.772 

All covariates are dichotomized 0.687 0.054  0.582  - 0.791 

 

Furthermore, we investigated the effect of dichotomizing continuous variables in model 

misspecification. We found that modelling a strong continuous covariate as dichotomous is 

worse than dichotomizing a moderate covariate. The results also suggest that it is not a good idea 

to dichotomize continuous covariates in AUC regression adjustment.  

These findings all lead to the same conclusion that there is an evidence that there is a 

significant chance that the DBP in the non-shock group is greater than the DBP in the shock 

group. The results were also consistent with those in the Monte Carlo simulations. 

Finally, we conclude that incorrectly modeling covariates in AUC regression adjustment 

lead to unbiased estimates of the true effect.  
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CHAPTER 6: DISCUSSION 

 

6.1 Conclusion 

In the first part of this dissertation research, the primary objective was to evaluate the 

performance of propensity score methods to estimate the area under the ROC curve while 

controlling for confounding. The simulation study demonstrated that when AUC is used as 

measure of risk factor effect, conditioning on the propensity results in biased estimation of the 

true effect. When the true effect was null i.e. AUC was 0.5, matching on the propensity score and 

covariate adjustment on the propensity score were associated with less bias compared to the 

method of stratifying on the propensity score. When the true effect was different from the null 

effect, the estimated AUC were all associated with large bias for all different methods.  

In a simulation study conducted by Austin et al. (2007), they found that controlling for 

covariates using propensity score methods when estimating conditional odds ratio and 

conditional hazard ratio resulted in biased estimation of the true effect (P. C. Austin et al., 2007)  

. Thus our results are not totally unexpected. This study is the first to evaluate the performance of 

different propensity score methods for estimating area under the ROC curve i.e.  RF NRFP Y Y . 

Due to the increased interest in epidemiologic research to report  RF NRFP Y Y  as the measure 

of association and to the use of propensity score methods to control for confounding, it is of 

practical importance that the statistical properties of propensity scores estimators for AUC be 

understood. 

 A secondary objective was to determine the best choice of variables to include in the 

propensity score model. We found that when matching and covariate adjustment on the 

propensity score methods are used, the propensity score model including variables associated 
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with outcome seems to have the least bias. Models including those variables that are both 

associated with outcome and risk group (these are referred to as true confounders) did not 

perform well. But these findings are not conclusive because the results were not consistent 

throughout the true effects and the amount of bias is still high. In prior research investigating the 

issue of variables selection in  propensity score models, Brookhart et al. (2006) found that a 

propensity score model with only covariates associated with outcome or the true confounders 

resulted in a larger number of matched and a smaller mean squared error (Brookhart et al., 2006)  

Furthermore, Austin found that variables associated with treatment exposure but not the outcome 

increased the MSE of the estimated relative risk (Austin, 2008)  . 

 A third objective was to compare the performance of the propensity score approach with 

that of a conventional regression approach to estimate  RF NRFP Y Y . The results of our 

simulation study show that the AUC regression model including all covariates associated with 

outcomes has the best performance and resulted in unbiased estimates of the risk effect. 

However, regression models that did not include all variables associated with outcome and only 

contained variables associated with risk factor group or variables associated with both risk group 

and outcome resulted in biased estimates of the true AUC and in an increased MSE. Austin et al. 

(2007) advocate that the choice between propensity score methods and regression adjustment 

when estimating odds ratio or hazard ratio should be based on whether one wishes to estimate the 

marginal or the conditional treatment effect. They noted that the conventional regression 

adjustment estimates conditional treatment effect while the propensity score estimates marginal 

treatment effects (P. C. Austin et al., 2007). 

 Finally, in the second part of this research, the goal was to investigate the impact of 

model misspecification in the conventional AUC regression adjustment. These modelling errors 
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include omitting covariates, dichotomizing continuous variables, modelling quadratic covariates 

as linear, and excluding interactions terms from the model. We found that the greatest bias was 

associated with the model that omitted a covariate strongly associated with the outcome. And in 

general, it is far more damaging to incorrectly model a strong covariate than to incorrectly model 

a covariate weakly associated with the outcome. The results of this study suggest that researchers 

must focus on these variables known to be strongly related to the outcome variable and should 

attempt to correctly model them.  

Given these findings, we do not recommend the use of propensity score methods to 

provide adjusted estimates of  RF NRFP Y Y . Instead the conventional AUC regression 

adjustment is the method to use. When the outcome variable is continuous, if one is interested in 

using the propensity score methods, then the difference in means allows for unbiased estimation 

of the risk effect.  When the conventional AUC regression adjustment is used to control for 

confounding, analysts must focus on variables related to the outcome; these covariates 

(especially if they are strongly associated with the outcome) should be correctly modelled in 

order to estimates accurate effect when assessing relationship between exposures and outcome. 

Furthermore, leaving out important variables in AUC regression models could lead to biased 

estimates of the true effect. Therefore, researchers and epidemiologists must make an effort to 

identify significant risk factors.   

 

6.2 Limitations 

A limitation to the use of the propensity score methodology in practice includes the fact 

that it only controls for observed variables. The unobserved variables are accounted for only 

if they are correlated with the observed covariates. Although the baselines covariates were 
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assumed to be correctly measured in the Monte Carlo simulations, this assumption in practice 

can be more problematic. Another limitation is in the choice of true AUC. The true effect of 

AUC was limited to 0.5, 0.7 and 0.9. Perhaps, the performance of the adjusted AUC should 

also be evaluated on a wider range of true effect. Other limitations include considering cases 

where the outcome variable is normally distributed. The effect of sample size on the 

performance of the proposed methods should have also been investigated. Here, only one 

sample size was used (N=500). Also, we assumed equal numbers of people with and without 

the risk factor.  Different prevalences could have had an influence on results. Also, only 

independent variables were considered in this research; we could have considered correlated 

variables as well. We also looked at cases where the standard deviations between the risk and 

non-risk groups are equal; perhaps we should have also considered cases where the standard 

deviations between the two groups are not equal. Finally, all possible types of 

misspecification of the covariates have not been considered. Perhaps, other ways to model 

curvilinear association should have been considered.  

6.3 Future Work  

Future work in this area should focus on estimating the area under the curve under the 

non-normal assumption and on identifying if the propensity score methods performs well if we 

sought to estimate the “marginal” area under the ROC curve. This will involve defining a new 

measure based on the AUC used in the current research which will be referred to as the 

“marginal” area under the ROC curve (Austin 2007a). For future research, perhaps we should 

expand on nonlinear modelling errors beyond quadratic relationships; and on interaction models 

where the interactions terms are more independent i.e. not based on combination of strong, 

moderate and weak. In the future, we should also investigate the effect of sample size and the 
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prevalence of case-control on the performance of the adjusted AUC. For example, does it 

perform well for fairly small samples? We should also investigate the effect of prevalence of 

case and control in estimating AUC as well as the effect of different variance estimates between 

the two groups.  
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APPENDIX 

A. BALANCE DIAGNOSTICS & SIMULATION CHECK 

 

The correctness of the simulated data was checked by, for a single dataset of size N=500, 

whether: 

a. Approximately 50% of subjects are exposed to the risk factor by computing the 

frequency of the risk factor status. 

Risk Factor Status 

T Frequency Percent 

0 251 50.2 

1 249 49.8 

 

b. The covariates are imbalanced at baseline by computing a standardized difference 

between subjects with risk factor and subjects without risk factor for each covariate in 

the data. 

 

Table A.1  Standardized difference comparing the mean or prevalence  

of baseline covariates between risk factor groups 

Continuous 

covariates 

Standardized 

difference 

Binary 

covariates 

Standardized 

difference 

c1 0.337 b1 0.286 

c2 0.182 b2 0.169 

c3 0.001 b3 0.004 

c4 0.331 b4 0.288 

c5 0.182 b5 0.166 

c6 0.000 b6 0.002 

c7 0.331 b7 0.287 

c8 0.180 b8 0.165 

c9 0.001 b9 0.002 
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A standardized difference greater than 0.1 is considered as a significant difference in the mean or 

prevalence of a covariate between risk factor groups (Normand et al., 2001). 

 

c. The distribution of the propensity score “reasonably” overlap by computing a c-

statistic to predict if the distributions of the PS overlap (Westreich, Cole, Funk, 

Brookhart, & Sturmer, 2011). Westreich reported a high-c statistic in the propensity 

model is “neither necessary nor sufficient for control of confounding”. 

The values of the C-statistic in the propensity score model including variables related to 

treatment; all covariates, binary covariates only, and continuous covariates only were 0.753, 

0.756, 0.666 and 0.696, respectively. These values of the c-statistic are considered “reasonable” 

since they are neither too high nor too low. (Recall the c-statistic takes on values between 0.5 

and 1). 

 

d. The two risk factor groups are comparable i.e. if the overall distribution of the estimated 

propensity score within each risk group “reasonably” overlap.. We checked this via 

histograms. 
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                        Figure A.1  Distribution of the estimated propensity score in each  

                                                                 risk factor group 

  

The estimated propensity score “reasonably” overlap which means the risk factors and the non-

risk factors groups are comparable. 

  

e. Balance for the measured covariates is achieved between the risk factor and the non-

risk factor groups by 1) Assessing the balance of each covariate after adjustment by 

computing a standardized difference; and 2) Summarizing the distribution of the 

propensity scores via box plots: If they overlap then a good balance is achieved. 

This property is checked using two propensity score methods: 1) Propensity score matching to 

check balance of the covariates after adjustment in the PS matched sample and 2) Stratification 

on the propensity using the technique of box plots. 
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Table A.2  Standardized difference comparing the mean or prevalence of variables between risk 

factor groups after PS adjustment by matching technique 

Continuous 

covariates 

Standardized 

difference 

Binary 

covariates 

Standardized 

difference 

c1 0.012 b1 0.039 

c2 0.095 b2 0.013 

c3 0.053 b3 0.105 

c4 0.009 b4 0.039 

c5 0.066 b5 0.026 

c6 0.089 b6 0.184 

c7 0.058 b7 0.013 

c8 0.035 b8 0.026 

c9 0.046 b9 0.079 

 

After adjustment in the propensity score matched sample, all the covariates have a standardized 

difference less than 0.1 except b6. Hence, balance is achieved for almost 95% of the baseline 

variables. 

 

Figure A.2  Graphical analysis for balance diagnostics in stratifying the quintiles of the PS 
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The distribution of the estimated propensity score appears to be similar within the two risk 

groups. Given this graphical evidence, we conclude that stratifying on the quintiles of the 

propensity scores resulted in the creation of subjects who are balanced in observed covariates 

between the two risk factor groups.  

 

f. The association between the risk factor group and the covariates depicts an odds ratio 

of log(2) and log(1.5) for binary variables and log(1.5) and log(1.25) for continuous 

variables by computing the odds ratio between the risk factor and each covariate in 

the data. 

          Table A.3  Odds Ratio Estimates of the simulated data 

Odds Ratio Estimates 

Variable Point estimate Variable Point estimate 

b1 2.00 c1 1.51 

b2 1.51 c2 1.25 

b3 1.01 c3 1.00 

b4 2.01 c4 1.50 

b5 1.51 c5 1.25 

b6 1.00 c6 1.00 

b7 2.00 c7 1.50 

b8 1.50 c8 1.25 

b9 1.00 c9 1.00 

 

 

We clearly see that  1 4 7, , 2b b b  ,  2 5 8, , 1.5b b b  ,  1 4 7, , 1.5c c c  , and  2 5 8, , 1.25c c c  . This is 

what was expected. Hence, our data have been correctly generated. 
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g. The association between the outcome and the covariates depicts a correlation of 0.5 

for strong and 0.3 for moderate by computing the correlations between the 

independent variables and the outcome.  

Table A.4  Correlation coefficients between outcome and the simulated continuous covariates 

  Outcome Y 

c1 0.498 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

c2 0 0.498 0 0 -0.001 0 0 0 0 

c3 -0.001 -0.001 0.498 -0.001 -0.002 -0.002 -0.001 -0.001 -0.001 

c4 0 -0.001 -0.001 0.309 -0.001 -0.001 -0.001 -0.001 -0.001 

c5 0.001 0 -0.001 0 0.309 0 0 0 0 

c6 0.001 0 -0.001 0 0 0.309 0 0 0 

c7 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

c8 0 0 0 0 0 0 0 0 0 

c9 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 

 

Table A.5  Correlation coefficients between outcome and the simulated dichotomous covariates 

  Outcome Y 

b1 0.497 -0.001 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 

b2 0.001 0.499 0 0 0 0 0 0 0 

b3 0 0.001 0.499 0.001 0.001 0.001 0.001 0.001 0.001 

b4 0 0 0 0.309 0 -0.001 0 0 0 

b5 -0.001 0 0 0 0.309 0 0 0 0 

b6 0 0 0 0 0 0.309 0 0 0 

b7 0 0 0 0 0 0 0 0 0 

b8 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

b9 0 0 0 0 0.001 0 0 0 0 
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Table A.6  Correlation coefficients between the simulated covariates 

  b1 b2 b3 b4 b5 b6 b7 b8 b9 

c1 0 0.001 0 0.001 -0.001 0.001 0.001 0 0.001 

c2 0 -0.001 -0.002 0 0 -0.002 0 -0.002 0.001 

c3 -0.001 0.001 0 0.001 0.001 0 0.002 0.001 0 

c4 -0.001 0 0.001 0 0.001 -0.002 0 0 -0.001 

c5 0.001 -0.002 0.001 -0.001 0 0.004 -0.001 0 -0.001 

c6 -0.001 0.001 0 0.001 0 0 -0.001 0 0 

c7 0 -0.001 -0.001 0 0 0.001 0.001 -0.001 0.002 

c8 0.001 0 -0.001 -0.001 0 -0.001 -0.001 0 0 

c9 0 0.001 0 0.001 -0.002 0 -0.002 0 0 

 

These correlations values are expected. Furthermore, the correlations values in Table 3-10 show 

that the covariates are uncorrelated with each other thus independent. This demonstrates once 

again that our data has been correctly generated.  

   

h. The outcome based on a single dataset is approximately normal by 1) Overlaying a 

normal PDF on a histogram; and 2) Constructing a Q-Q plot. If the data are sample 

from the normal distribution, then the points on the plot tend to fall along a straight 

line (Chambers et al. 1983). 

Figure A.3  Distribution of the outcome based on a single dataset 
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i. The sample mean AUC based on 2500 replications is approximately normal by 1) 

Overlaying a normal PDF on a histogram; and 2) Constructing a Q-Q plot. If the data 

are sample from the normal distribution, then the points on the plot tend to fall along 

a straight line (Chambers et al. 1983). 

 

Figure A.4  Distribution of the AUC sample mean across 2500 datasets 
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B. SAS CODES 

 

B.1  SAS Code to compute the “Stratified “adjusted AUC  

 

*Using Stratification on the PS, for each PS model, we will compute the stratum specific AUC 

along with its std. error; 

 

%macro StratifiedAUC (data,title,outcome); 

proc sort data =&data; by quintile; run; 

proc logistic data = &data; 

 ods select none ; 

 by quintile; 

 model anyshock  = &outcome; *(event='Women'); 

 roc 'DBP2' &outcome; *To output auc and its std error; 

 ods output ROCAssociation= Raucs; 

 ods output ResponseProfile= Rfreq; 

 Title "Logistic model to estimate the stratum specific AUC for: &title"; 

Run; 

 

Data AUCStratum (Keep = Quintile Area StdErr Outcome Count); 

 set Raucs; 

 set Rfreq; 

 call symput ('AUC', area); 

 call symput ('StdErr', StdErr); 

 call symput ('Shock', Count); 

 call symput ('Noshock', Count); 

run; 

 

Data AUCStratum ; 

 set AUCStratum; 

 length NewShock $14; 

 if Outcome = 0 then NewShock = 'Shock'; else NewShock = 'Noshock'; 

run; 

 

*The adjusted AUC and its std error is caluclated using the weighted average of the stratum 

specific AUCs: Ws = ms*ns/sum(ms*ns); 

proc sql; 

 title "Adjusted AUC as the weighted average of the stratum-specific AUCs"; 

 create table Abc as  

     select one.Quintile, 

   one.Count as shock, two.Count as Noshock, one.area as auc, one.StdErr as 

stderr, 

   one.Count*two.Count as  numerator, 

   sum(one.Count*two.Count) as denominator, 

   one.Count*two.Count/sum(one.Count*two.Count)as weight, 
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   one.area*(one.Count*two.Count/sum(one.Count*two.Count)) as 

StratumAUC 

  from AUCStratum as one INNER JOIN AUCStratum as two 

  On (one.Quintile = two.Quintile) 

  where one.NewShock = 'Shock' and two.NewShock = 'Noshock'; 

quit; 

 

proc sql; 

 create table Aa as  

  select *, 

   sum(StratumAUC) as AdjAUC, 

   weight*stderr as StratumSE, 

   sum(calculated StratumSE) as AUCSE, 

   (calculated AdjAUC) - 1.96*(calculated AUCSE)as LLCI, 

   (calculated AdjAUC) + 1.96*(calculated AUCSE)as ULCI 

  from Abc; 

Quit; 

 

Data StratifiedAUC (keep = AdjAUC AUCSE LLCI ULCI); 

 set AA; 

 where Quintile = 1; 

ods select all; 

proc print data = StratifiedAUC noobs; format AdjAUC 5.4 AUCSE 5.4 LLCI 5.4 ULCI 5.4 ; 

 title "The Adjusted Stratified AUC is for: &title";  

run; 

%mend; 

 

* Example of macro call; 

%StratifiedAUC(Ps_dataM1, PS model 1, dbp2); 
 

B.2   SAS Code to compute the adjusted AUC using the concept of placement values 

 

/* 

The aAUC %macro is based the COMPROC command developed by  

Janes, Longton & Pepe, 2008 for accommodating covariates in ROC analysis.  

 

Description 

The aAUC macro estimates the area under the ROC curve using the concept of placement values 

while adjusting for covariates.  

The placement values (PV) are estimated parametrically assuming a normal distribution. The 

process is conducted in two steps. First, estimate the cumulative distribution (CDF) of the 

response Y in the control group as a function of Z (i.e. the covariates of interest to adjust for). 

This is done by specifying a linear model (Y = Bo + B1Z + e) assuming the error term is 

normally distributed and the covariates act linearly on the distribution of Y. Then for each 

subject i in the risk factor (or “disease”, or “treatment”, or “case”, or “condition” or “event”) 

group, compute the placement values. The PV is the standard normal CDF of (Y - Bo_hat - 
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B1_hatZ)/sd, where Bo_hat, B1_hat, and sd are the regression coefficients estimates and the 

standard deviation of the control observations, respectively. The second step is to estimate the 

adjusted AUC by computing the mean of the estimated placement values.  

 

The inputs are: data, T, outcome adjcov, bsamp, n 

a- data = specifies the dataset to be used for analysis. 

b- T = specifies the variable denoting the risk factor (or “case” or 

“disease” or “treatment”) group. T has the values 0/1. 

c- outcome = specifies the continuous response arising from the 

populations with and without the risk factor. 

d- adjcov = specifies the covariates to adjust for. 

e- n = number of covariates to adjust for. 

f- bsamp = number of bootstrap samples to be drawn for estimating standard 

errors and Cis of the the adjusted AUC. 

 

*/ 

 

%macro aAUC (data, T, outcome, adjcov, n, bsamp); 

 

* 

+***************************************************************************+ 

 Computing the placement values and the adjusted AUCs for each replicate (SampleID) 

* 

+***************************************************************************+; 

 

* +-------------------------------------------------------------------------+ 

 *Step 1: running an OLS regression to estimate the CDF of Y in the control group  

* +------------------------------------------------------------------------+; 

 

proc reg data=&data (where =(&T =0))outest=OutEst; 

 By SampleID; 

     model &outcome = &adjcov/noprint; 

 title "Linear model to estimate the CDF of Y in the control group"; 

run; 

 

*Read in the data where only the regression coefficients are computed and "renaming" the 

variables; 

Data RegCoef (Drop = _MODEL_ _DEPVAR_ &outcome &adjcov i) ; 

 set OutEst;  

 if _TYPE_ = 'PARMS'; 

 array cov{&n} &adjcov; 

 array coef{&n} coef1-coef&n; 

  do i = 1 to &n;   

   coef{i}=cov{i}; 

  end; 

run; 
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*Preparing the case data and creating a new variable _Type_ to merge on;  

Data Case (Keep = SampleID &T &outcome _TYPE_ &adjcov); 

 Set &data (where =(&T =1)); 

 _TYPE_ = 'PARMS'; 

run; 

 

*Merging the regression coefficients data with the case data; 

data CaseData ; 

 merge RegCoef Case; 

 by _TYPE_; 

run; 

 

* +------------------------------------------------------------------------+ 

  Step 2: Estimating the placement values for each subject in the risk factor.  

* +------------------------------------------------------------------------+; 

 

data PVdata (Keep = SampleID &T &outcome _RMSE_ Intercept z1-z&n meancontrol PV); 

 set CaseData; 

 array cov{&n} &adjcov; 

 array coef{&n} coef1-coef&n; 

 array covcoeff{&n} z1-z&n; 

  do i =1 to &n; 

   covcoeff{i} = cov{i}*coef{i}; 

  end; 

 meancontrol = intercept + sum(of covcoeff {*}); 

 PV = PROBNORM((&outcome - meancontrol)/_RMSE_); 

run; 

 

* +-------------------------------------------------------------------------+ 

  Step 3: Estimating the mean of the placement values i.e. the Adjusted AUC.  

* +------------------------------------------------------------------------+; 

 

proc means  data = PVdata noprint; 

 By sampleID; 

 var PV; 

 output out =  AdjAUC0 mean= AdjAUC var = AUCVar std = AUCStd; 

run; 

 

* +**************************************************************************+ 

   Computing the variance and standard deviation for each adjusted AUC via Bootstrap 

* 

+**************************************************************************+; 

proc sort data = &data; 

 by SampleID T; 

run;  
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%let MyData = &data; 

proc surveyselect data=&MyData seed=1        

 out=BootSS        

    method=urs samprate=1                           

    reps=&bsamp     

    outhits; 

 strata sampleID T; *To maintain prevalence of case and control as in the original data; 

run; 

 

* Redoing steps 1, 2, 3 above with the bootstrap sample; 

 

* +------------------------------------------------------------------------+ 

 *Step 1: running an OLS regression to estimate the CDF of Y in the control group  

* +------------------------------------------------------------------------+; 

 

proc reg data=BootSS (where =(&T =0))outest=OutEst1; 

 By SampleID; 

     model &outcome = &adjcov/noprint; 

 title "Linear model to estimate the CDF of Y in the control group"; 

run; 

 

*Preparing the case data and creating a new variable _Type_ to merge on;  

Data Case1 (Keep = Replicate SampleID &T &outcome _TYPE_ &adjcov); 

 Set BootSS (where =(&T =1)); 

 _TYPE_ = 'PARMS'; 

run; 

 

*Read in the data where only the regression coefficients are computed and "renaming" the 

variables; 

Data RegCoef1 (Drop = _MODEL_ _DEPVAR_ &outcome &adjcov i) ; 

 set OutEst1;  

 if _TYPE_ = 'PARMS'; 

 array cov{&n} &adjcov; 

 array coef{&n} coef1-coef&n; 

  do i = 1 to &n;   

   coef{i}=cov{i}; 

  end; 

run; 

 

*Merging the regression coefficients data with the case data; 

data CaseData1 ; 

 merge RegCoef1 Case1; 

 by _TYPE_; 

run; 
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* +------------------------------------------------------------------------+ 

  Step 2: Estimating the placement values for each subject in the risk factor.  

* +------------------------------------------------------------------------+; 

 

data PVdata1 (Keep = Replicate SampleID &T &outcome _RMSE_ Intercept z1-z&n 

meancontrol PV); 

 set CaseData1; 

 array cov{&n} &adjcov; 

 array coef{&n} coef1-coef&n; 

 array covcoeff{&n} z1-z&n; 

  do i =1 to &n; 

   covcoeff{i} = cov{i}*coef{i}; 

  end; 

 meancontrol = intercept + sum(of covcoeff {*}s); 

 PV = PROBNORM((&outcome - meancontrol)/_RMSE_); 

run; 

 

proc datasets library=work; 

 delete CASE1 CASEDATA1; 

run; 

quit; 

* +------------------------------------------------------------------------+ 

  Step 3: Estimating the mean of the placement values i.e. the Adjusted AUC.  

* +------------------------------------------------------------------------+; 

proc sort data = PVdata1; by sampleID Replicate ; run; 

proc means  data = PVdata1 noprint; 

 By sampleID Replicate ; 

 var PV; 

 output out =  AdjAUCint mean= AdjAUC var = AUCVar std = AUCStd; 

run; 

proc means  data = AdjAUCint VARDEF = N noprint; 

 By sampleID ; 

 var AdjAUC; 

 output out =  AdjAUC1 mean= AdjBootMean var = AUCBootVar std = AUCBootStd; 

run; 

Data adjustedAUC; 

 merge adjauc0 adjauc1; 

 By SampleID; 

 T_crit = tinv(1-&alphalev/2, &bsamp-1); 

 LB_N = AdjAUC - T_crit*AUCBootStd; *Normal Distribution CI;  

 UB_N = AdjAUC + T_crit*AUCBootStd; 

run; 

%mend aAUC; 

 

* Example of macro call; 

%aAUC(shockdata, shockStatus, dbp2, SBP MAP HR DBP CI MCT UO, 7, 1000);  
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