
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2015

Coloring the Square of Planar Graphs Without
4-Cycles or 5-Cycles
Robert Jaeger
Virginia Commonwealth University, jaegerrj@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Discrete Mathematics and Combinatorics Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3816

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51290574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3816?utm_source=scholarscompass.vcu.edu%2Fetd%2F3816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Copyright c©2015 by Robert James Jaeger
All rights reserved



Coloring the Square of Planar Graphs Without
4-Cycles or 5-Cycles

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

by

Robert James Jaeger
B.S. Mathematics, VCU, 2008

B.S. Computer Science, VCU, 2008

Director: Daniel Cranston, Assistant Professor
Department of Mathematics and Applied Mathematics

Virginia Commonwealth University
Richmond, Virginia

May 2015



iii

Acknowledgements

Thanks be to God, from whom I derive all of my passion and talent for studying and

understanding Mathematics.

Thanks to Dan Cranston, who has been an inspiring teacher and mentor. I have greatly

enjoyed learning from and working with you, and I appreciate how much you have helped

set me up for future success, especially through your valuable advice and encouragement. I

can only hope that I’m so blessed to have a Ph.D. advisor like you in the future.

Thanks also to all my family and friends, who have always supported and believed in me.

Thanks especially to my parents, who have nurtured me and encouraged my love of learning

and of Mathematics in particular, and have given me countless opportunities to grow and

succeed.



iv

Table of Contents

Acknowledgements iii

List of Figures v

Abstract vi

1 Introduction 1

1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Vertex Coloring and Squares of Graphs . . . . . . . . . . . . . . . . . . . . . 3

2 Results 7

2.1 Statement and Supporting Lemmas . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Proof of the Main Theorem via Discharging . . . . . . . . . . . . . . . . . . 11

2.2.1 Discharging Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Discharging Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 25

Vita 27



v

List of Figures

1.1 Two planar graphs with chromatic number four. The graph in (i) has no

4-cycles, while the graph in (ii) has no 5-cycles. . . . . . . . . . . . . . . . . 4

1.2 Wegner’s construction for ∆ ≥ 8, where ∆ is even. . . . . . . . . . . . . . . . 5

1.3 Constructions for a lower bound of ∆+2: in any (∆+1)-coloring of the square

of G′∆, the (∆− 1)-vertex x and the 1-vertex z cannot receive the same color.

Because of this, no (∆ + 1)-coloring of the square of G∆ is possible, hence

χ(G2
∆) ≥ ∆ + 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Basic Reducibility cases: In (i) |N2(u)| ≤ ∆, so u can always be colored,

thus δ(G) ≥ 2 for a minimal counterexample. In (ii) |N2(u)| ≤ ∆ + 2 if

d(v1) + d(v2) ≤ ∆ + 4, making this configuration reducible. . . . . . . . . . . 9

2.2 Illustrations of how charge is redistributed in the four discharging rules. . . . 13

2.3 The 3-vertex u on a 3-face under consideration. . . . . . . . . . . . . . . . . 14

2.4 This configuration, where R3 would apply, is reducible by the Main Reducibil-

ity Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 A 2-vertex on a 3-face receives charge via R2 and R3. . . . . . . . . . . . . . 17

2.6 A 2-vertex u with a neighbor v1 such that d(v1) ≥ ∆− 2. . . . . . . . . . . . 18

2.7 A 2-vertex u with a 3-neighbor v1. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 A 2-vertex u with a 4-neighbor v1, where v1 has a high-degree neighbor z. . . 20

2.9 Cases where a 2-vertex u has a 5-neighbor v1. . . . . . . . . . . . . . . . . . 22



Abstract

COLORING THE SQUARE OF PLANAR GRAPHS WITHOUT 4-CYCLES OR

5-CYCLES

By Robert James Jaeger, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.

Director: Daniel Cranston, Assistant Professor, Department of Mathematics and Applied

Mathematics.

The famous Four Color Theorem states that any planar graph can be properly colored

using at most four colors. However, if we want to properly color the square of a planar graph

(or alternatively, color the graph using distinct colors on vertices at distance up to two from

each other), we will always require at least ∆ + 1 colors, where ∆ is the maximum degree in

the graph. For all ∆, Wegner constructed planar graphs (even without 3-cycles) that require

about 3
2
∆ colors for such a coloring.

To prove a stronger upper bound, we consider only planar graphs that contain no 4-cycles

and no 5-cycles (but which may contain 3-cycles). Zhu, Lu, Wang, and Chen showed that

for a graph G in this class with ∆ ≥ 9, we can color G2 using no more than ∆ + 5 colors. In

this thesis we improve this result, showing that for a planar graph G with maximum degree



vii

∆ ≥ 32 having no 4-cycles and no 5-cycles, at most ∆+3 colors are needed to properly color

G2. Our approach uses the discharging method, and the result extends to list-coloring and

other related coloring concepts as well.



Chapter 1

Introduction

Within the mathematical field of graph theory, the topic and problems of graph coloring can

be traced back to the mid-1800’s. In the original context, the driving question had to do

with coloring a map (e.g. of countries within a continent, or counties within a country): is

it always possible, for any given map, to color the map using no more than four colors such

that no two regions sharing some common boundary receive the same color? This question

remained open for over a century before it was finally resolved, and many of the major

developments in graph theory over that time can be tied back to attempts to solve (or at

least understand the nature of) this problem.

A map can be easily transformed into a graph, where the vertices of the graph correspond

to the regions of the map, and two vertices are joined by an edge whenever their corresponding

regions share some boundary. In this way the problem of coloring a map can be translated

into that of coloring the vertices of a particular type of graph. This problem can be widened

to consider coloring the vertices of any given graph, with the restriction that two vertices

which share an edge must not receive the same color. There are numerous applications of

this concept, especially to problems involving scheduling and optimal resource allocation. In

this thesis we consider this vertex coloring problem for a special class of graphs.
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1.1 Basic Definitions

Throughout this thesis, we will let G denote a finite simple graph. This means that G

consists of a finite set of vertices, denoted V (G), along with a (possibly empty) set of edges,

denoted E(G). These edges are undirected, and G does not contain any loops or parallel

edges, meaning elements in E(G) are unordered pairs of distinct vertices. When two vertices

u and v share an edge (i.e. {u, v} ∈ E(G)), we say that the vertices are adjacent. We will

often abbreviate this edge as uv.

For a vertex v ∈ V (G), we will denote by N(v) the neighborhood of v, i.e. the set of all

vertices sharing an edge with v. The degree of the vertex v is denoted d(v), and is equal to

the number of elements in N(v). We will write a k-vertex, k+-vertex, or k−-vertex to mean

a vertex with degree equal to k, at least k, or at most k, respectively. The maximum degree

of any vertex in G is denoted ∆(G), or simply ∆, while the minimum degree of any vertex

in G is denoted δ(G).

A k-cycle in a graph G is a sequence {v1, v2, . . . , vk} of k sequentially adjacent vertices

in V (G), where the first and last vertices are also adjacent. That is, vivi+1 ∈ E(G) for

each i such that 1 ≤ i ≤ k − 1, and also v1vk ∈ E(G). A complete graph is a graph in

which every pair of distinct vertices is adjacent. For a graph G and a set S ⊆ V (G), the

restriction of G to S, denoted by G[S], is a graph having vertex set S and with edge set

E = {uv ∈ E(G) | u ∈ S and v ∈ S}. A clique in a graph G is a set of mutually adjacent

vertices in G, i.e. a set S such that G[S] is a complete graph.

A planar graph is a graph that can be drawn in the plane without any edges crossing

each other. Such a graph drawn in this way is called a plane embedding of the graph, or

alternately a plane graph. It is then possible to talk about the faces of a plane graph:

intuitively, these are just regions enclosed by some set of edges with no other edges going

through them. More formally, the faces are the distinct connected regions of the plane that

remain after removing the points corresponding to the vertices and edges of a plane graph.

Every plane graph has a single unbounded exterior face. If G is a plane graph, let F (G)
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denote the set of faces of G, and for a face f ∈ F (G), let d(f) denote the number of edges

enclosing f . Let k-face, k+-face, and k−-face denote a face f where d(f) is equal to k, at

least k, or at most k, respectively.

1.2 Vertex Coloring and Squares of Graphs

For a graph G, let φ : V (G) → {1, 2, . . . , k} be a function assigning distinct values to the

endpoints of each edge in G, i.e. whenever uv ∈ E(G), then φ(u) 6= φ(v). In this case, we say

φ is a proper vertex coloring of G, and in particular, is a proper k-coloring. The chromatic

number of G, denoted χ(G), is the smallest value k such that G has a proper k-coloring.

The problem of determining the chromatic number of different classes of graphs has

been a driving factor behind much of the development of graph theory for over a century.

The most famous result in this area is the Four Color Theorem, which finally answered the

question posed in the beginning of the Introduction. The theorem is stated here in terms

of planar graphs rather than maps, but the translation from maps to graphs laid out in

the Introduction always produces a planar graph, hence this theorem answers the original

question about coloring maps.

Theorem 1.1 (Appel and Haken [1, 2]). If G is a planar graph, then χ(G) ≤ 4.

When certain structures do not appear in a planar graph G, it may be possible to con-

struct a proper coloring of G using fewer than four colors. In particular, it was shown in

[9] that a planar graph that does not contain any 3-cycles has chromatic number at most

three. In [11] it was conjectured that a planar graph G without any 4-cycles or 5-cycles

would also have χ(G) ≤ 3. A slightly stronger conjecture was put forth in [5], namely that

the same result would be true if G had no 5-cycles and no adjacent 3-cycles. It was shown

that if this conjecture were true, it would be best possible in the sense that planar graphs

with chromatic number four exist which satisfy either (but not both) of the two conditions,

as shown in Figure 1.1.

3



(i) (ii)

Figure 1.1: Two planar graphs with chromatic number four. The graph in (i) has no 4-cycles,
while the graph in (ii) has no 5-cycles.

Let G be a graph and let u, v ∈ V (G). We will let distG(u, v) denote the distance between

u and v in G, i.e. the length of the shortest path between the two vertices. We say the square

of G, denoted G2, is a new graph having the same vertex set as G, and where uv ∈ E(G2) if

and only if distG(u, v) ≤ 2. Finding a proper vertex coloring of G2 is equivalent to finding a

proper vertex coloring of G with the added condition that vertices at distance two from each

other must receive distinct colors. It is readily apparent that any graph G with maximum

degree ∆ satisfies χ(G2) ≥ ∆ + 1. This is because a ∆-vertex u ∈ V (G) along with N(u)

will form a clique on ∆ + 1 vertices in G2, thus all of these vertices must get different colors.

While much attention has been given to the problem of coloring planar graphs, it has

only been recently that coloring the squares of these graphs has been seriously studied. One

of the earliest instances of this was in [12], where the following conjecture was put forward.

Conjecture 1.2 (Wegner [12]). Let G be a planar graph with maximum degree ∆. Then

χ(G2) ≤


7 if ∆ = 3

∆ + 5 if 4 ≤ ∆ ≤ 7⌊
3∆
2

⌋
+ 1 if ∆ ≥ 8

.

The upper bounds given for ∆ ≥ 4 would be sharp in that specific constructions were

given where the bounds are attained. In particular, the general construction for ∆ ≥ 8,

4
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v w

. . . . .
.
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}

∆
2 {∆2

}∆
2
− 1

Figure 1.2: Wegner’s construction for ∆ ≥ 8, where ∆ is even.

called a “fat triangle”, is shown in Figure 1.2. In [10] it was shown that the upper bound

conjectured by Wegner holds asymptotically, i.e. for a planar graph G with maximum degree

∆ sufficiently high, χ(G2) ≤ 3∆
2

(1 + o(1)). Even if we restrict to planar graphs without 3-

cycles, the lower bound would not change substantially, since we could simply subdivide

edge vw in the graph of Figure 1.2 to get a nearly identical fat triangle without any 3-cycles,

which still requires 3∆
2

colors to color its square. Hence in order to substantially lower the

upper bound on χ(G2), the given construction must be avoided, which in particular implies

that 4-cycles should be forbidden.

· · ·

x

y

z
G′∆

· · · · · · · · · · · ·

· · · · · ·

x1 x2 x∆−2 x∆−1
u

z

w

G∆

Figure 1.3: Constructions for a lower bound of ∆ + 2: in any (∆ + 1)-coloring of the square
of G′∆, the (∆ − 1)-vertex x and the 1-vertex z cannot receive the same color. Because of
this, no (∆ + 1)-coloring of the square of G∆ is possible, hence χ(G2

∆) ≥ ∆ + 2.

The girth of a graph G is the length of the shortest cycle in G. In [3] it was shown that for

a planar graph G of girth at least seven and with maximum degree ∆ ≥ 30, χ(G2) = ∆ + 1.

This provides not just an upper bound but true equality since ∆ + 1 is always a lower bound

on the chromatic number of G2. Later, in [8, 4], it was shown that if G is a planar graph

5



of girth at least six and maximum degree ∆ ≥ 30, then χ(G2) ≤ ∆ + 2. This means that

widening the class of graphs considered to include those with 6-cycles, we will only ever need

at most one more color than the trivial lower bound. Furthermore, planar graphs with girth

six and arbitrarily high maximum degree were constructed (see Figure 1.3) needing ∆ + 2

colors to color the square, meaning for at least some graphs, the given upper bound is sharp.
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Chapter 2

Results

2.1 Statement and Supporting Lemmas

As seen in the previous chapter, when coloring the square of planar graphs, we can achieve

an upper bound that is linear in ∆ by only considering graphs that do not contain certain

structures. To reiterate from before, when 3-cycles, 4-cycles, and 5-cycles are all forbidden,

this upper bound is ∆ + 2. If we then widen the class of graphs under consideration, it can

be expected that more colors may be needed to color the square of a given graph in the class.

In [6], the class was expanded to include all planar graphs without any 4-cycles or 5-cycles

(but where 3-cycles may be present). For a graph G in this class having maximum degree

∆ ≥ 9, it was shown that χ(G2) ≤ ∆ + 5. We improve on this upper bound, giving us the

following result.

Main Theorem. Let G be a planar graph with maximum degree ∆ ≥ 32 that contains no

4-cycles and no 5-cycles. Then χ(G2) ≤ ∆ + 3.

To prove this, we use the Discharging Method, a powerful tool that has been used in

graph theory for over 100 years, including in the original proof of the Four Color Theorem.

Discharging is a form of counting argument used to prove various structural results about

graphs. In a discharging argument, charge is assigned to elements in a graph (e.g. the

7



vertices), and then is moved around (but never created or destroyed) according to some

specially tailored rules. By assuming that certain structures or configurations do not exist in

the graph, one can reach a contradiction to some global hypothesis, and therefore conclude

that the graph must contain one of the given configurations.

Though the structural results of a discharging argument can stand on their own, they

are often used to prove that all graphs in some family G have a property P . A configuration

C is chosen that cannot exist in a minimal counterexample to this claim, i.e. if G ∈ G such

that every proper subgraph of G has property P , and C appears in G, then G has property

P as well. Such configurations are said to be reducible for the property at hand. Once

reducible configurations have been found, discharging can be used to show that a minimal

counterexample to a desired claim must contain a reducible configuration, and therefore a

counterexample cannot exist, hence the claim must be true. An in-depth exploration of the

discharging method is given in [7].

When thinking about coloring the square of a graph G, it is useful to consider the 2-

neighborhood of a vertex. Let u ∈ V (G), and let N2(u) denote the 2-neighborhood of u, i.e.

the set of all vertices at distance at most two to u in G. When we are coloring the vertices

of G and come to u, we must avoid using any color that has already been used in N2(u).

Note that

|N2(u)| ≤ dG(u) +
∑

v∈NG(u)

(dG(v)− 1) =
∑

v∈NG(u)

dG(v).

If |N2(u)| ≤ ∆ + 2, then even when all the vertices in N2(u) are colored before u, we can

still assign u a color when we have ∆ + 3 total colors to choose from. More generally, if we

can guarantee that at the time u gets colored, at most ∆ + 2 vertices in N2(u) have already

been colored, then we can find a viable color for u out of ∆ + 3 total colors. This leads to

the following reducibility lemma.

Basic Reducibility Lemma. Let G be a graph with maximum degree ∆, and let u ∈ V (G)

such that |N2(u)| ≤ ∆+2. If (G−u)2 ∼= G2−u and χ((G−u)2) ≤ ∆+3, then χ(G2) ≤ ∆+3.

8



Proof. Fix a proper (∆ + 3)-coloring φ of (G− u)2. Since (G− u)2 ∼= G2− u, it follows that

whether or not two vertices are adjacent in G2 is unaffected by the presence of u, hence we

can extend φ to be a proper (∆ + 3)-coloring of G2 by simply choosing a color for u. By

assumption, there are at most ∆ + 2 vertices in the 2-neighborhood of u, and thus at most

∆ + 2 colors forbidden for u. Since there are ∆ + 3 colors to choose from, at least one viable

color remains, and the coloring can be extended. �

This Lemma is most useful in the following specific cases, which are illustrated in Fig-

ure 2.1. Note that here and throughout the paper, a vertex that is drawn as a filled circle

has all of its incident edges drawn, while a vertex that is drawn as an empty box may have

other incident edges that are not shown.

Corollary. Let G be a graph with maximum degree ∆. If u ∈ V (G) is (i) a 1-vertex or (ii)

a 2-vertex on a 3-cycle uv1v2 such that d(v1) + d(v2) ≤ ∆ + 4, and χ((G − u)2) ≤ ∆ + 3,

then χ(G2) ≤ ∆ + 3.

Proof. A 1-vertex has a 2-neighborhood of size at most ∆, and a 2-vertex as described has

a 2-neighborhood of size at most ∆ + 2. In each case, no edges in G2 arise from two vertices

being connected at distance 2 through u, so (G− u)2 ∼= G2 − u. �

u v
(i)

u

v1 v2

(ii)

Figure 2.1: Basic Reducibility cases: In (i) |N2(u)| ≤ ∆, so u can always be colored, thus
δ(G) ≥ 2 for a minimal counterexample. In (ii) |N2(u)| ≤ ∆ + 2 if d(v1) + d(v2) ≤ ∆ + 4,
making this configuration reducible.

This corollary implies that a minimal counterexample G to the Main Theorem must have

δ(G) ≥ 2. We can extend the idea behind the Basic Reducibility Lemma to give another,

even stronger reducibility lemma.
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Main Reducibility Lemma. Let G be a graph with maximum degree ∆ such that for every

proper subgraph H of G, χ(H2) ≤ ∆ + 3. If there is a sequence S = {v1, . . . , vn} of distinct

vertices in V (G) such that E(G[S]) 6= ∅, and |N2(vi)\{vi+1, . . . , vn}| ≤ ∆ + 2 for 1 ≤ i ≤ n,

then χ(G2) ≤ ∆ + 3.

Proof. Let e ∈ E(G[S]). Since G− e is a proper subgraph of G, we can fix a proper (∆ + 3)-

coloring φ of (G − e)2. Note that since e ∈ E(G[S]), two vertices in V (G) \ S are adjacent

in G2 if and only if they are adjacent in (G − e)2. Now we can modify φ to be a proper

(∆ + 3)-coloring of G2 by uncoloring the vertices in S, and then greedily recoloring them

in their given order (i.e. starting with v1 and ending with vn). By assumption, each vertex

in S will have no more than ∆ + 2 neighbors in its 2-neighborhood that have already been

colored, hence it will have no more than this number of colors forbidden. Since there are

∆ + 3 colors to choose from, at least one viable color must remain, so the coloring can be

extended. �

Whenever this lemma is invoked, we will always list the sequence S in the appropriate

order. While this result holds in general, it will be most often used in the following form:

Corollary. Let G be a graph with maximum degree ∆ such that for every proper subgraph

H of G, χ(H2) ≤ ∆ + 3. If u and v are adjacent vertices in G such that |N2(u)| ≤ ∆ + 3

and |N2(v)| ≤ ∆ + 2, then χ(G2) ≤ ∆ + 3.

Proof. This corollary follows directly from the lemma where S = {u, v}. �

In section 2.2.2 we will often know that |N2(u)| ≥ ∆ + k for some vertex u and integer

k, and seek to show that u receives sufficient charge. The following lemma proves useful for

this end.

Concavity Lemma. Let f(x) = 1 − 4
x
, considered on some interval [a,∞) where a > 0.

If x1, . . . , xn are to be chosen in [a,∞) such that
∑n

i=1 xi = C for some fixed constant

C, then the minimum value of
∑n

i=1 f(xi) is achieved when x1 = . . . = xn−1 = a and

xn = C − a(n− 1).

10



Proof. It suffices to show that f(x1) + f(x2) ≥ f(a) + f(x1 + x2 − a) for all x1, x2 ∈ [a,∞),

since we can then proceed by induction on the number of xi that are not equal to a.

Assume without loss of generality that x1 ≤ x2, and let t = x1 − a. Since f is concave,

its derivative is decreasing, and can be bounded at a point by left and right secants there,

giving:

f(x2 + t)− f(x2)

t
≤ f ′(x2) ≤ f ′(x1) ≤ f(x1)− f(x1 − t)

t
.

Clearing denominators and rearranging terms gives f(x2 + t) + f(x1 − t) ≤ f(x1) + f(x2).

But this is equivalent to f(x1 + x2 − a) + f(a) ≤ f(x1) + f(x2), as was desired. �

We have stated the Concavity Lemma in terms of the function f(x) = 1− 4
x

= x−4
x

since

this is how we apply it hereafter. However, the same reasoning used above shows that the

result holds for any concave, differentiable, strictly increasing function.

2.2 Proof of the Main Theorem via Discharging

As stated above, in order to prove the Main Theorem, we will employ the Discharging

Method.

Proof of the Main Theorem. Assume that the Main Theorem is not true, and let G be a

minimal counterexample. Since G is assumed to be a counterexample, it must be a planar

graph with maximum degree ∆ ≥ 32 that contains no 4-cycles and no 5-cycles such that

χ(G2) ≥ ∆ + 4. Since G is furthermore assumed to be a minimal counterexample, it must

further be that for any proper subgraph H of G, χ(H2) ≤ ∆ + 3. We can assume that G

is connected, since otherwise we could color the components of G individually, violating the

minimality of G. Now we fix a plane embedding of G, and assign initial charges to each

vertex and face:

ch(x) = d(x)− 4 for every x ∈ V (G) ∪ F (G).

11



Euler’s formula states that if G is a plane graph, then |V (G)|− |E(G)|+ |F (G)| = 2. We

can use this to calculate the sum of initial charges as follows:

∑
x∈V (G)∪F (G)

ch(x) =
∑

v∈V (G)

d(v)− 4 +
∑

f∈F (G)

d(f)− 4

= (2|E(G)| − 4|V (G)|) + (2|E(G)| − 4|F (G)|) = −4(|V (G)| − |E(G)|+ |F (G)|) = −8.

Now we redistribute charge via the four discharging rules outlined in section 2.2.1, giving

a final charge function ch∗. Since G is a minimal counterexample, it must not contain any

configurations that are reducible for being (∆ + 3)-colorable. We use the absence of such

configurations to show in section 2.2.2 that each face and vertex finishes with nonnegative

final charge, giving the following contradiction:

−8 =
∑

x∈V (G)∪F (G)

ch(x) =
∑

x∈V (G)∪F (G)

ch∗(x) ≥ 0.

Hence no such minimal counterexample can exist, thus the Main Theorem is true. �

2.2.1 Discharging Rules

The following four discharging rules are applied to the elements of G successively, in phases.

Examples of these rules are illustrated in Figure 2.2.

R1: Each 6+-face gives charge 1
3

to each incident edge. If such an edge e is incident to a

3-face f , then e gives this charge to f . Otherwise, e splits this charge evenly between

any 3−-endpoints it has, or else splits it evenly between both endpoints if both have

degree at least 4. 1

1Edges only ever act as a charge carrier between faces and other faces or vertices. Outside of this phase,
edges always have zero charge.
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R2: Each 5+-vertex v splits its initial charge evenly among its lower-degree neighbors if

d(v) < 10, or among its lower-or-equal-degree neighbors if d(v) ≥ 10. 2

R3: Let u be a 4+-vertex on a 3-face uvw and suppose u receives some charge c during R2

from v. If w is a 2-vertex, then u passes charge c on to w. If instead w is a 3-vertex

with a 2-neighbor whose other neighbor has degree less than ∆, then u passes charge

min{c, 1
2
} on to w. 3

R4: If a 3+-vertex has positive charge after R1-R3, it splits this charge among its neighbors

with negative charge, such that a 3-vertex gives charge at most 4
15

to another 3-vertex,

and otherwise all charge splits evenly.

1
31

6
1
6

1
3

1
3

1
6

1
6 1

3
R1:

v1

v2

v3v4

v5
R2:

( )
d(v1) ≥ 5,
d(vi) < 5 for

2 ≤ i ≤ 5

1
4

1
4

1
4

1
4

w

v u
R3:

c

w

v u
c

u

v1

v2

v3

v4

R4:

( )
After R1-R3,
ch(u) = 1

2
,

v1 and v2

need charge

1
4

1
4

Figure 2.2: Illustrations of how charge is redistributed in the four discharging rules.

2.2.2 Discharging Analysis

As stated above, we now show that ch∗(x) ≥ 0 for each x ∈ V (G) ∪ F (G). It turns out

that this is easy for everything except 3-vertices and 2-vertices, which require more detailed

analysis.

2The distinction between lower-degree and lower-or-equal degree is only necessary to prevent a single
problematic case from disrupting the analysis, and can for the most part be safely ignored.

3This rule does not frequently come into play; most charge passes via R1, R2, and R4.
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Faces and High-Degree Vertices

First we show that all faces end with nonnegative final charge. Each 6+-face f starts with

charge d(f) − 4 and gives away charge d(f)
3

, thus f ends with ch∗(f) = 2d(f)
3
− 4, which is

nonnegative since d(f) ≥ 6. A 3-face cannot be adjacent to another 3-face since 4-cycles are

forbidden. Since G has no 4-cycles or 5-cycles, each 3-face g must be adjacent to a 6+-face

on each of its edges. Each such 6+-face passes charge 1
3

to g via their common edge, so

ch∗(g) = 3− 4 + 3(1
3
) = 0.

Each 4+-vertex v starts out with nonnegative initial charge, and by the design of the

discharging rules never gives away more than it currently has (i.e. its “positive balance”),

so ch∗(v) ≥ 0. Now we must verify that all 2-vertices and 3-vertices end with nonnegative

final charge as well, which will complete the analysis.

3-vertices

First consider a 3-vertex u that is not incident to any 3-faces. The three faces meeting at u

must all be 6+-faces, and thus each will give total charge 2
3

to two of the edges incident to

u. Even if all of u’s neighbors are 3−-vertices, u will receive at least half of this charge, and

hence end with ch∗(u) ≥ 3− 4 + 3(1
3
) = 0.

w

u

v1 v2

Figure 2.3: The 3-vertex u on a 3-face under consideration.

Now consider a 3-vertex u on a 3-face uv1v2 whose third neighbor is w, as shown in

Figure 2.3. Note that since v1 and v2 are adjacent, |N2(u)| ≤ d(w) + d(v1) + d(v2)− 2. The

two faces incident to u other than the 3-face must be 6+-faces, and hence will give total

charge 2
3

to the edge uwvia R1. If d(w) ≥ 4, then all of this charge will pass to u, while if

d(w) ≤ 3, then u will receive charge 1
3

from this edge.
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If d(vi) = 2 for any i, then vi is reducible under the Basic Reducibility Lemma. Alter-

nately, if d(vi) ≥ 12 for some i, then u will receive charge at least 12−4
12

= 2
3

from vi via R2,

and since uw sends u charge at least 1
3

via R1, ch∗(u) ≥ 3 − 4 + 2
3

+ 1
3

= 0. Hence we can

assume 3 ≤ d(vi) ≤ 11 for i ∈ {1, 2}. Also, if d(v1) + d(v2) ≥ 16, then by the Concavity

Lemma u receives at least as much charge as when one of the vi’s is a 12-vertex, which, as

just shown, ensures that ch∗(u) ≥ 0. Thus we will assume d(v1) + d(v2) ≤ 15. Now we

consider what happens to u based on the degree of w.

Case d(w) ≥ 6: Here u receives charge at least 6−4
6

= 1
3

from w via R2, as well as charge

2
3

from uw, thus ends with ch∗(u) ≥ 3− 4 + 2
3

+ 1
3

= 0.

Case d(w) = 2: Since |N2(u)| ≤ d(v1) + d(v2) ≤ 15 and |N2(w)| ≤ ∆ + 3, when ∆ ≥ 13

this configuration is reducible under the Main Reducibility Lemma.

Case d(w) ∈ {3, 4, 5}: We will show that u receives charge at least 1
2

total from w and the

edge uw, and at least 1
4

from each of v1 and v2. This ensures that ch∗(u) ≥ 3−4+ 1
2
+2(1

4
) = 0.

First consider the charge from w and uw: if d(w) ≥ 4, then as mentioned above, all 2
3

of

the charge that passes through uw will go to u, and 2
3
> 1

2
. Otherwise, if d(w) = 3, then u

receives 1
3

from uw, and so needs at least 1
6

more from w for this total to reach 1
2
.

Let x1 and x2 denote the neighbors of w other than u. Since {u,w} is not reducible, the

Main Reducibility Lemma implies that d(x1) + d(x2) ≥ ∆ + 1. Now the Concavity Lemma

implies that w will have the least charge to give to u via R4 when d(x1) = ∆ − 1 and

d(x2) = 2. If w does not lie on a 3-face, then it receives charge 3(1
3
) from its three incident

edges via R1, making its charge nonnegative. Now the additional charge of (∆−1)−4
∆−1

from x

will be split at most two ways. When ∆ ≥ 7, this ensures that u gets an additional charge

of at least 1
6

from w.

Suppose instead that w does lie on a 3-face. Now we know that d(x2) ≥ 3, since a 2-vertex

on a 3-face with a 3-neighbor is reducible according to the Basic Reducibility Lemma. Now

if d(x2) ≥ 4, then x2 always has nonnegative charge and thus never needs to receive charge.

If d(x2) = 3, then x2 will receive charge at least 1
3

from its incident edge not on the 3-face,

15



and at least 2
3

from x as long as d(x) ≥ 12, meaning it will not need any charge from w.

Thus, whatever the degree of x2, vertex w will not have to give any charge to x2 via R4. As

long as ∆ ≥ 25, this will ensure w gets charge 1
3

+ 5
6

via R1 and R2, and thus can give charge

1
6

to u via R4. Hence we have shown that u always gets charge at least 1
2

from w and the

edge uw.

Now we show that u receives charge at least 1
4

from v1 and, by symmetry, also from v2.

If d(v1) ≥ 6, then v1 gives charge at least 1
3

to u via R2, and 1
3
> 1

4
. Otherwise assume

d(v1) ≤ 5. Recall that |N2(u)| ≤ d(w) + d(v1) + d(v2) − 2 ≤ 18. If {u, v1} is not reducible

under the Main Reducibility Lemma, then |N2(v1)| ≥ ∆ + 4, i.e. v1 has at least one high-

degree neighbor z. If d(v1) = 5, then v1 will split its charge at most four ways in R2, meaning

it gives charge at least 1
4

to u, as desired. If instead d(v1) ∈ {3, 4}, then v1 has no excess

charge to give to u initially, but will be able to give the needed charge via R4. Note that by

the same reasoning used above, since {u, v2} is not reducible under the Main Reducibility

Lemma, v2 must have a high-degree neighbor as well. This means that v1 will never need to

give charge to v2 via R4: v2 only ever needs to receive charge if it is a 3-vertex, and in such

a case, it will receive all the charge it needs from its high-degree neighbor and incident edge

off of the 3-face.

In the case that d(v1) = 3, v1’s neighbor z not on the 3-face must have degree at least

∆ − 8. When ∆ ≥ 18, this ensures that v1 gets charge at least 3
5

+ 2
3

from z and the edge

v1z. Thus v1 will be able to pass charge at least 4
15
> 1

4
to u.

w

u

v1
v2z

t

s

Figure 2.4: This configuration, where R3 would apply, is reducible by the Main Reducibility
Lemma.
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If instead d(v1) = 4, then v1 will have to split any excess charge it receives at most two

ways via R4 (since neither z nor v2 will need charge). Let t be v1’s neighbor other than u, v2,

and z, and note that v1 will only send charge to t via R4 if d(t) < 4. By the Concavity

Lemma, v1 will receive the least charge when d(z) = ∆ − 4, d(v2) = 4, and d(t) = 3. If

v1zt is not a 3-face, then v1 will receive at least charge (∆−4)−4
∆−4

+ 1
3

from z and the edge v1z.

When ∆ ≥ 9, this lets v1 get charge at least 8
15

, meaning it passes at least 4
15
> 1

4
to u via

R4.

If instead v1zt is a 3-face, then we note that t cannot be a 2-vertex, since this would be

reducible. Also, t cannot be a 3-vertex with a 2-neighbor s, where the other neighbor of s

has degree less than ∆, because this also would be reducible under the Main Reducibility

Lemma (using the vertex sequence S = {t, s, u} and coloring t first), as shown in Figure 2.4.

Since these are the only times when R3 can apply, we conclude that this rule is not used

here. Hence v1 gets charge at least (∆−4)−4
∆−4

from z, which it can then send at least half of to

u. As long as ∆ ≥ 12, this means v1 sends at least 1
4

to u as desired.

2-vertices

2-vertex on a 3-face: First consider a 2-vertex u on a 3-face uv1v2, as depicted in Figure 2.5.

By the Basic Reducibility Lemma, this is reducible unless d(v1) + d(v2) ≥ ∆ + 5. By the

Concavity Lemma, we know that u receives at least as much charge as if d(v1) = ∆ and

d(v2) = 5. Now u will receive charge at least ∆−4
∆

+ 1
4

via R2. However, v2 also receives

charge ∆−4
∆

from v1 via R2, and the conditions are met for R3, so v2 will pass this charge

along to u. Hence in total u receives charge at least 2(∆−4
∆

) + 1
4
. When ∆ ≥ 32, u will end

with ch∗(u) ≥ 2− 4 + 2(32−4
32

) + 1
4

= 0.

v1

u

v2

Figure 2.5: A 2-vertex on a 3-face receives charge via R2 and R3.
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2-vertex with one high-degree neighbor: Now we will assume that the 2-vertex

u, with neighbors v1 and v2, does not lie on a 3-face. Note that if d(vi) = 2 for some

i ∈ {1, 2}, then {u, vi} is reducible under the Main Reducibility Lemma. Hence we assume

that d(v1) ≥ 3 and d(v2) ≥ 3. Suppose d(v1) ≥ ∆ − 2; now u receives charge 2
3

through

the edge uv1 via R1 and (∆−2)−4
∆−2

from v1 via R2. If d(v2) ≥ 4, then u also gets 2
3

through

the edge uv2 via R1, and so ends with final charge at least 2− 4 + 2(2
3
) + (∆−2)−4

∆−2
, which is

nonnegative when ∆ ≥ 14.

v1 u v2

w1

w2

Figure 2.6: A 2-vertex u with a neighbor v1 such that d(v1) ≥ ∆− 2.

Otherwise, suppose d(v2) = 3, where v2’s other neighbors are w1 and w2, as pictured

in Figure 2.6. Note that v2 and u each receive charge 1
3

from the edge uv2 via R1. Now

{u, v2} is reducible under the Main Reducibility Lemma unless |N2(v2)| ≥ ∆ + 3. Suppose

that v2 lies on a 3-face, which implies d(w1) + d(w2) ≥ ∆ + 3. By the Concavity Lemma,

v2 receives at least as much charge as when d(w1) = ∆− 1 and d(w2) = 4. Hence after R2,

v2 has charge at least 3 − 4 + 1
3

+ (∆−1)−4
∆−1

. When ∆ ≥ 26, this ensures that v2 has charge

at least −1 + 1
3

+ 21
25
> 1

6
after R2, which it passes to u via R4. (Note that w2 does not

receive charge from v2 via R4: since v2w1w2 is a 3-face, d(w2) > 2. Further, if d(w2) = 3,

then w2 will receive enough charge from w1 and its incident edge off of the 3-face.) Hence

ch∗(u) ≥ 2− 4 + 2
3

+ 1
3

+ (26−2)−4
26−2

+ 1
6

= 0.

So suppose instead that v2 does not lie on a 3-face. Now |N2(v2)| ≥ ∆ + 3, implying

that d(w1) + d(w2) ≥ ∆ + 1. Again using the Concavity Lemma, we can assume that

d(w1) ≥ ∆ − 3. Now v2 gets charge at least 1
3

from each of the edges uv2 and v2w2, and 2
3

from the edge v2w1 via R1, which already puts its total charge at 3 − 4 + 4
3

= 1
3
. Now v2

splits its positive charge at most two ways (giving to u and possibly w2) via R4. Since v2
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has charge at least 1
3

after R1, it will give charge at least 1
6

to u via R4. As shown above,

when ∆ ≥ 26 this ensures that ch∗(u) ≥ 0, as desired.

Hereafter we assume that d(v1) ≤ ∆−3 and d(v2) ≤ ∆−3. We show that u must receive

total charge at least 1 from edge uv1 and vertex v1; by symmetry the same is true of edge

uv2 and vertex v2. This ensures that u ends with final charge at least 2− 4 + 1 + 1 = 0, as

desired. If d(v1) ≥ 6, then u gets charge 2
3

from uv1 via R1 and charge d(v1)−4
d(v1)

≥ 6−4
6

= 1
3

from v1 via R2. This gives u the charge of 1 from v1’s side as needed, so henceforth we

assume d(v1) ≤ 5.

2-vertex with a 3-neighbor: Suppose d(v1) = 3 where the other neighbors of v1 are

w1 and w2, such that d(w1) ≥ d(w2). Now u receives charge 1
3

from the edge uv1 via R1,

meaning it needs to get 2
3

from v1 via R4. First suppose that v1 does not lie on a 3-face.

Since d(v2) ≤ ∆ − 3, we apply the Main Reducibility Lemma with S = {v1, u}, unless

d(w1) + d(w2) ≥ ∆ + 2. Likewise, if d(w2) = 2, then we simply take S = {v1, w2, u}.

Hence we assume d(w2) ≥ 3. If d(w2) ≥ 4, then v1 receives charge 2
3

from both of the

edges v1w1 and v1w2, along with 1
3

from the edge uv1 via R1. This means that after R1

alone, v1 will have charge 3−4+ 1
3

+2(2
3
) = 2

3
, which it can then send to u via R4 as needed.

So suppose instead d(w2) = 3, which implies d(w1) ≥ ∆− 1. Now v1 gets charge at least 4
3

via R1 (1
3

each from edges uv1 and v1w2, and 2
3

from edge v1w1) and (∆−1)−4
∆−1

from w1 via

R2. When ∆ ≥ 11, this ensures that v1 has charge at least 3 − 4 + 4
3

+ (11−1)−4
11−1

= 14
15

after

R2. Since v1 gives no more charge than 4
15

to w2 via R4, it can give at least 10
15

= 2
3

to u via

R4 as needed. So u gets charge at least 1 from v1 and uv1.

w1

w2

v1 u v2

Figure 2.7: A 2-vertex u with a 3-neighbor v1.
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Now suppose instead that v1 does lie on a 3-face. If we cannot apply the Main Reducibility

Lemma with S = {v1, u}, then d(w1)+d(w2) ≥ ∆+4. By the Concavity Lemma, v1 receives

at least as much charge as when d(w1) = ∆ and d(w2) = 4. Thus v1 receives charge 1
3

from

edge uv1 via R1, and further receives charge at least ∆−4
∆

from w1 via R2. Additionally, w2

receives at least ∆−4
∆

from w1 via R2, and the criteria are met for R3; when ∆ ≥ 8, this

means w2 will pass charge 1
2

to v1. Hence after R3, v1 has charge at least 3−4+ 1
3

+ 1
2

+ ∆−4
∆

.

When ∆ ≥ 24, this means v1 will have charge at least −1
6

+ (24−4
24

) = 2
3

that it can pass to u

via R4 as needed.

2-vertex with a 4-neighbor: Now suppose d(v1) = 4. In this case, u receives charge 2
3

from edge uv1 via R1, and hence only needs to get charge 1
3

more from v1 via R4. We can

apply the Main Reducibility Lemma with S = {u, v1} unless |N2(v1)| ≥ ∆ + 4, which means

the degree sum of the neighbors of v1 other than u is at least ∆ + 2. The least charge will

pass from v1 to u via R4 when v1 has as many 3−-neighbors as possible, hence we will assume

v1 has two 3−-neighbors w1 and w2 and one high-degree neighbor z, as shown in Figure 2.8.

By the Concavity Lemma, v1 receives at least as much charge via R2 as if d(w1) =

d(w2) = 3 and d(z) = ∆ − 4. If v1 and z do not lie on a common 3-face, then v1 receives

charge 1
3

from edge v1z via R1. When ∆ ≥ 16, v1 receives charge at least (16−4)−4
16−4

= 2
3

from

z via R2, giving v1 a total charge of at least 1 after R2. Since v1 splits its charge at most

three ways, it will pass charge at least 1
3

to u via R4, as needed.

z

w1
v1

w2

u v2

Figure 2.8: A 2-vertex u with a 4-neighbor v1, where v1 has a high-degree neighbor z.

Instead, assume v1zw1 is a 3-face. By the Basic Reducibility Lemma, we know w1 cannot

be a 2-vertex, so instead assume d(w1) = 3, and let x be the third neighbor of w1 besides v1
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and z. Now w1 receives charge at least 1
3

from edge w1x via R1 and, since ∆ ≥ 16, receives

charge at least (16−4)−4
16−4

= 2
3

from z via R2. Hence w1 has nonnegative charge after R2, and

thus does not need charge from v1 via R4, meaning v1 only splits its positive charge at most

two ways.

Now v1 also receives charge at least 2
3

from z via R1. If d(x) = 2 and the other neighbor

of x has degree less than ∆, then the sequence S = {w1, x, u} is reducible under the Main

Reducibility Lemma. If instead d(x) ≥ 3, or d(x) = 2 and the other neighbor of x has degree

∆, then the conditions for R3 are not met, which means v1 keeps its charge from z until R4.

Splitting at most two ways, v1 can give charge at least 1
3

to u via R4, which is all u still

required.

2-vertex with a 5-neighbor: Finally, suppose d(v1) = 5. Similar to above, u will

receive charge 2
3

from edge uv1 via R1. Also, we can apply the Main Reducibility Lemma

with S = {u, v1} unless |N2(v1)| ≥ ∆ + 4. Hence v1 has at least one high-degree neighbor,

and since it starts with initial charge 5 − 4 = 1, it will pass charge 1
4

to u via R2. Thus in

order for u to receive charge at least 1 from v1 and the edge uv1, it only needs to get charge

1
12

more from v1 via R4.

Let z denote the highest-degree neighbor of v1, and denote its other neighbors by w1,

w2, and w3. If v1 and z are not together on a 3-face, then v1 will receive charge 1
3

from

edge v1z via R1, and will not lose this charge prior to R4. Thus in R4, v1 has charge

at least 1
3

which it splits at most four ways, meaning it sends charge at least 1
12

to u, as

needed. Otherwise, assume that v1zw1 is a 3-face. Now since |N2(v1)| ≥ ∆ + 4, we have

d(z) +d(w1) +d(w2) +d(w3) ≥ ∆ + 4; by the Concavity Lemma, v1 receives at least as much

charge via R1 and R2 as if d(z) = ∆− 8 and d(w1) = d(w2) = d(w3) = 4.

Suppose d(w1) = 2. This configuration is not immediately reducible under the Basic

Reducibility Lemma or the Main Reducibility Lemma, but is in fact reducible using a hybrid

of the two approaches. If we delete the vertex w1 as in the Basic Reducibility Lemma, we can
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zw1

v1

w2 w3

u v2

zw1

v1

w2 w3

u v2

zw1x
v1

w2 w3

u v2

Figure 2.9: Cases where a 2-vertex u has a 5-neighbor v1.

get a coloring of the square of the smaller graph. Now adding w1 back in, we can uncolor u,

leaving w1 with at most (∆+5−2)−1 = ∆+2 colored vertices in its 2-neighborhood. Thus

we can choose a good color for w1, and since |N2(u)| ≤ d(v1) + d(v2) ≤ (∆− 3) + 5 = ∆ + 2,

we will always be able to choose a good color for u, hence this configuration is reducible.

Now assume d(w1) ≥ 3. If d(w1) ≥ 4 then whatever charge v1 gets from z via R2 it keeps

until R4. When ∆ ≥ 14, this means v1 receives charge at least (14−8)−4
14−8

= 1
3

in R2, and splits

it at most three ways in R4, meaning it gives u charge at least 1
9
> 1

12
. So instead suppose

d(w1) = 3, and let x be the other neighbor of w1. If the criteria for R3 are not met (i.e.

d(x) ≥ 3 or d(x) = 2 and the other neighbor of x has degree ∆), then v1 keeps any charge it

receives from z via R2 until R4. Thus as before, v1 still gets charge at least 1
3

since ∆ ≥ 14,

and splitting at most four ways will give charge 1
12

to u via R4 as needed.

If instead d(x) = 2 and the other neighbor of x has degree at most ∆− 1, then v1 passes

some charge that it gets from z via R2 to w1 via R3. Since ∆ ≥ 24, v1 receives charge at

least (24−8)−4
24−8

= 3
4

from z via R2. Now v1 gives charge 1
2

to w1 via R3, leaving it with charge

3
4
− 1

2
= 1

4
. Since w1 gets charge at least 1

3
from the edge w1x via R1, 3

4
from z via R2, and 1

2

from v1 via R3, it has nonnegative charge, and thus needs no charge from v1 via R4. Hence

v1 splits its remaining 1
4

charge at most three ways, meaning it gives charge at least 1
12

to u

via R4 as needed.
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2.3 Conclusion

In summary, we have shown that for every face f ∈ F (G) we have ch∗(f) ≥ 0, and for every

vertex v ∈ V (G) we have ch∗(v) ≥ 0. This means that the final charges of all elements in the

graph sum to a nonnegative value. Recall, however, that the initial charges summed to -8,

and charge was only ever moved around, hence the initial charge sum and the final charge

sum must be equal. This is a contradiction, and so we know that the minimal counterexample

G must not exist, thus no counterexample can exist, and the Main Theorem is true.

An alternative way of understanding the result is the following: Suppose G is a planar

graph containing no 4-cycles or 5-cycles such that ∆ = ∆(G) ≥ 32. Then the discharging

argument shows that G must contain some reducible configuration, either from the Basic

Reducibility Lemma, the Main Reducibility Lemma, or the hybrid configuration encountered

at the end of section 2.2.2. Since these configurations are reducible, we know we can remove

them and get a good (∆ + 3)-coloring of the square of the smaller graph, and then extend

this coloring to G2 without using any additional colors, thus χ(G2) ≤ ∆ + 3.

The way we showed that the coloring could be extended to each of our reducible configu-

rations involved a simple argument about the number of forbidden colors at each step. That

is, whenever we colored one of the final vertices v, we showed that at most ∆ + 2 vertices in

the 2-neighborhood of v were already colored, and thus at most ∆ + 2 colors must not be

used for v. Since there were ∆+3 total colors to work with, this guaranteed that the coloring

could be extended. Since the reducibility arguments never addressed the actual colors being

used, then the above approach and the main result can be extended to a stronger form of

coloring called list coloring.

In list coloring, each vertex in a graph is given its own list L of possible colors, and the

goal is to find a proper vertex coloring of the graph where each vertex uses a color from its

own list. We say a graph is k-choosable if we can always find such a good coloring whenever

the lists assigned to each vertex all have k colors. The list chromatic number of a graph G,

denoted χ`(G), is the least value k such that G is k-choosable. It is always the case that
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χ(G) ≤ χ`(G), since a valid list assignment is to give the same list to every vertex.

Now the above argument shows that that our reducible configuration work for G2 to be

(∆ + 3)-choosable as well as (∆ + 3)-colorable. Suppose every vertex starts with a list of

∆ + 3 allowable colors. Since we can build up the coloring from a smaller graph by choosing

an ordering for the vertices so that there are at most ∆ + 2 forbidden colors at each step,

then there will always be at least one good color remaining in the list of the vertex being

colored, and the coloring can be extended. As before, the discharging argument used shows

that each planar graph G of maximum degree ∆ ≥ 32 that has no 4-cycles or 5-cycles must

contain one of these reducible configurations, and so we can conclude that χ`(G
2) ≤ ∆ + 3,

which is a stronger result than the Main Theorem.
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